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Abstract
Additively Separable Hedonic Games (ASHGs) are coalition-formation games where we are given a
directed graph whose vertices represent n selfish agents and the weight of each arc uv denotes the
preferences from u to v. We revisit the computational complexity of the well-known notion of core
stability of symmetric ASHGs, where the goal is to construct a partition of the agents into coalitions
such that no group of agents would prefer to diverge from the given partition and form a new coalition.
For Core Stability Verification (CSV), we first show the following hardness results: CSV
remains coNP-complete on graphs of vertex cover 2; CSV is coW[1]-hard parameterized by vertex
integrity when edge weights are polynomially bounded; and CSV is coW[1]-hard parameterized
by tree-depth even if all weights are from {−1, 1}. We complement these results with essentially
matching algorithms and an FPT algorithm parameterized by the treewidth tw plus the maximum
degree ∆ (improving a previous algorithm’s dependence from 2O(tw∆2) to 2O(tw∆)). We then move on
to study Core Stability (CS), which one would naturally expect to be even harder than CSV. We
confirm this intuition by showing that CS is Σp

2-complete even on graphs of bounded vertex cover
number. On the positive side, we present a 22O(∆tw)

nO(1)-time algorithm parameterized by tw + ∆,
which is essentially optimal assuming Exponential Time Hypothesis (ETH). Finally, we consider the
notion of k-core stability: k denotes the maximum size of the allowed blocking (diverging) coalitions.
We show that k-CSV is coW[1]-hard parameterized by k (even on unweighted graphs), while k-CS
is NP-complete for all k ≥ 3 (even on graphs of bounded degree with bounded edge weights).
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1 Introduction

Coalition-formation games model situations where a subset of selfish agents need to be
partitioned into teams (coalitions) in such a way that takes into account their preferences.
Because such games capture a vast array of interesting situations in the real world [40], they
have been a subject of intense study in computational social choice and the social sciences
at large. One particularly interesting and natural special case of such games is when the
preferences of each agent only depend on the other agents that she is placed together with in
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the same coalition (and not on the placement of agents on other coalitions). Such games are
referred to in the literature as hedonic games and have also attracted much interest from
the computer science perspective [1, 2, 6, 7, 10, 12, 13, 20, 30, 35, 42], thanks in part to
their numerous applications in, for example, social network analysis [36], scheduling group
activities [18], and allocating tasks to wireless agents [41]. For more information we refer the
reader to [14] and the relevant chapters of standard computational social choice texbooks [4].

Hedonic games are extremely general. Unfortunately, this generality renders them hard
to study from the computer science perspective – indeed, even listing the preferences of all n
agents takes space exponential in n as the naïve approach would require listing an ordering of
all coalitions for each agent. This motivates the study of natural restrictions of hedonic games.
In this paper we focus on one of the most natural such restrictions: Additively Separable
Hedonic Games (ASHGs) introduced in [11], where the input is an edge-weighted directed
graph, vertices represent the agents, and the weight of the arc uv denotes the preference
of u for v, that is, the utility that agent u derives from being in the same coalition as v.
The utility of an agent u in a coalition C can then be succinctly encoded as the sum of the
weights of edges incident on u with their other endpoint in C. If the weights of uv and vu are
the same for every pair of agents u, v, ASHGs are called symmetric. For symmetric ASHGs,
the input graph becomes undirected.

In any situation where agents behave selfishly, it becomes critical to look for stable
outcomes, that is, outcomes which the agents are likely to accept, based on their preferences.
In the context of ASHGs, the question then becomes: given an edge-weighted graph G

representing the agents’ preferences, can we find a stable partition of the agents into coalitions
(possibly also optimizing some other social welfare goal)? The computational complexity of
such questions has been amply studied [3, 5, 21, 27, 36, 37, 44] and several natural notions
of stability have been proposed. In this paper we revisit the computational complexity of
one of the most widely-studied such notions, which is called core stability ([35, 39, 43, 45]).
Intuitively, a partition of n agents is called core stable, if a group of agents does not want
to leave their coalitions to form a coalition together. More formally, given a partition P
of the agents, a blocking coalition is a set of agents X such that all v ∈ X have strictly
higher utility in X than in the initial partition P. Hence, if a blocking coalition X exists,
the initial partition is unstable, because the agents of X would prefer to form a new coalition.
A partition is then called core stable if no blocking coalition (of any size) exists. Notice that
core stability is a very strong (and hence very desirable) notion of stability, compared with
simpler notions, such as Nash stability (which only precludes divergence by a single agent).

Attractive though it may be from the game theory point of view, the notion of core
stability presents some serious drawbacks from the point of view of computational complexity.
In particular, deciding if an ASHG admits a core stable outcome is not just NP-hard, but in
fact Σp

2-complete, that is, complete for the second level of the polynomial hierarchy [45], even
if the preferences are symmetric (i.e., the input graph is undirected), has bounded degree,
and edge weights are bounded by a constant [39]. Compared to simpler notions of stability,
such as Nash stability (which is “only” NP-complete [23]), core stability is therefore highly
intractable, and this strongly motivates the search for a better understanding of what the
source of this intractability is and for ways to deal with it. The focus of this paper is on using
notions of graph structure from parameterized complexity to achieve a more fine-grained
understanding of the complexity of this problem. Throughout the paper we will concentrate
on the case where agent preferences are symmetric, that is, the given graphs are undirected.
Since most of our results are negative, this (natural) restriction only renders them stronger.
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Figure 1 The complexity of Core Stability (CS) and Core Stability Verification (CSV)
with respect to graph parameters: treewidth (tw), pathwidth (pw), tree-depth (td), vertex integrity
(vi), and vertex cover (vc). We denote by wmax the maximum absolute weight. The hardness results
are colored in red and the algorithmic results are colored in blue. The connection between the upper
parameter p and the lower parameter q indicates that q ≤ p + 1 holds for any graph G.

Our results. In this paper we present several results that improve and clarify the state of
the art on the complexity of finding core stable outcomes in ASHGs (see Figure 1). We study
two closely related problems: Core Stability (CS) and Core Stability Verification
(CSV), which correspond to deciding if a core stable partition exists and deciding if a given
partition is indeed core stable respectively. Intuitively, the reason CS is complete for the
second level of the polynomial hierarchy (and not just NP-complete) is that CSV is also
known to be intractable (coNP-complete [16, 43]). Our high-level aim is to understand which
parts of the combinatorial structure of the input are responsible for the complexity of these
two problems. In order to quantify the input structure we will use standard structural tools
from the toolbox of parameterized complexity, such as the notions of treewidth and related
parameters1.

We begin our investigation with CSV and ask the question which restrictions on the
input are likely to render the problem tractable (or conversely, what are the sources of the
problem’s intractability). We identify two possible culprits: the problem could become easy
if we either impose restrictions on the graph structure, for example by requiring that the
input be of low treewidth or degree, or if we impose restrictions on the allowed edge weights.
Our results indicate that these two sources of intractability interact in non-trivial ways:
placing restrictions of one type is typically not enough to render the problem tractable, but
the problem does sometimes become tractable if we restrict both the graph structure and
the allowed weights. More precisely, we show that:

If we place absolutely no restrictions on the allowed weights, CSV remains hard even on
severely restricted instances, that is, graphs of vertex cover 2 (Theorem 2). We find this
rather surprising, as this class of graphs (which are essentially stars with one additional
vertex) is rarely general enough to render problems intractable.
One may be tempted to interpret the previous result as an artifact of the exponentially
large weights we allow in the input. However, we show that even if we place the restriction
that weights are polynomially bounded in the input size, CSV still remains quite hard from

1 Throughout the paper we assume the reader is familiar with the basics of parameterized complexity, as
given for example in [17].
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the parameterized perspective, and more precisely coW[1]-hard parameterized by vertex
integrity (Theorem 3). Note that graphs with small vertex integrity are graphs where
there exists a small separator whose removal breaks down the graph into components
of bounded size, so this parameterization is again rather restrictive because it usually
easily renders most graph problems almost as tractable as parameterizing by vertex
cover [25, 33].
Finally, we show that even if we insist on weights only being selected from the set {−1, 1},
CSV is coW[1]-hard parameterized by tree-depth (Theorem 4).

Taken together these results show that CSV is an unusually intractable problem where
hardness comes from a combination of two factors: the complexity of dealing with the edge
weights and the complexity of dealing with the graph-theoretic structure of the input. We
complement the above with several algorithms that paint a clearer picture of the complexity
of CSV showing that: (i) CSV is polynomial-time solvable on trees (Theorem 5), hence
Theorem 2 cannot be extended to graphs of vertex cover 1 (i.e., stars) (ii) CSV is FPT
parameterized by vertex integrity plus the maximum edge weight (Theorem 7), so the hardness
result of Theorem 4 cannot be extended to vertex integrity (iii) Theorem 4 is matched by an
XP algorithm parameterized by treewidth with parameter dependence (∆wmax)O(tw), that
is, an XP algorithm when weights are polynomially bounded (Theorem 8) (iv) the former
algorithm can be improved to an FPT running time (even for unbounded weights) if we
parameterize by tw+∆ (this was already observed by Peters [38], who gave an algorithm with
parameter dependence 2O(∆2tw), but we improve this complexity to 2O(∆tw) in Theorem 9).

The results above paint a comprehensive and rather negative picture on the complexity
of CSV, which seems to imply that our main problem, that is, finding core-stable partitions,
is likely to be even more intractable. We confirm this intuition by showing that CS remains
Σp

2-complete even on graphs of bounded vertex cover (Theorem 10). One encouraging
piece of news, however, is that we did manage to obtain an FPT algorithm when CSV is
parameterized by tw + ∆, so this seems like a case worth considering for CS. Indeed, Peters
[38] already showed that CS is FPT for this parameterization, without, however, giving an
explicit algorithm (his argument was based on Courcelle’s theorem). We improve upon this
by giving an explicit algorithm whose dependence is double-exponential on tw + ∆, using the
technique of reducing to ∃∀-SAT advocated in [31] (Theorem 11). Despite fixed-parameter
tractability, it is fair to say that the running time of our algorithm is quite disappointing.
Our main contribution in this part is to show that this is, unfortunately, likely to be optimal:
even for instances of bounded degree, the existence of an algorithm with better than double-
exponential dependence on treewidth would violate the ETH (Theorem 16). This shows
another aspect where core-stability is significantly harder than Nash stability, which has
“just” slightly super-exponential dependence in tw + ∆ [28]. Note that the phenomenon that
problems complete for the second level of the polynomial hierarchy tend to have double-
exponential complexity in treewidth has been observed before [22, 32, 34, 8]. Along the way,
we provide a fine-grained analysis of the complexity of solving ∃∀-SAT parameterized by
treewidth, which may be of independent interest.

Finally, we conclude our paper by considering one last relevant parameter: the size of the
allowed blocking coalition. We say that a partition is k-core stable if no blocking coalition of
size at most k exists. The concept of k-core stability was first proposed in [20] for handling
more practical scenarios. For small values of k this is a natural variation of the problem,
which could potentially render it more tractable – indeed, for k fixed, CSV is trivially in P
and CS is trivially in NP. Unfortunately, we show that not much more is gained from these
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parameterizations: CSV is coW[1]-hard parameterized by k (even on unweighted graphs);
while k-CS is NP-complete for all fixed k ≥ 3, even on graphs of bounded maximum degree
and with bounded weights.

The full version of this paper is available on arXiv, where all missing proofs can be found.

2 Preliminaries

We use standard graph-theoretic notation and focus on undirected graphs. An Additively
Separable Hedonic Game (ASHG) is represented by a directed graph G = (V,E), where
vertices of V represent the agents, and a weight function w : E → Z. To simplify notation we
will extend w to all pairs of vertices and assume that w(uv) = 0 whenever uv ̸∈ E. We also
assume that the self-utility of an agent is 0, that is, w(uu) = 0. If w(uv) = w(vu) for every
pair of u, v, an ASHG is called symmetric and the input graph is undirected. A partition
P of V is a collection of disjoint subsets of V whose union includes all of V . We will call
the sets of such a partition coalitions. Slightly abusing notation, we will write, for u ∈ V ,
P(u) to denote the set of P that contains u. The utility of an agent u ∈ X in a set X ⊆ V

is defined as ut(X,u) =
∑

v∈X w(uv), while the utility of u in a partition P is defined as
utP(u) = ut(P(u), u) =

∑
v∈P(u) w(uv). Even though we defined w as a function to the

integers, we will sometimes allow rational edge weights, but with denominators sufficiently
small that it will always be easy to obtain an equivalent integer instance by multiplying all
weights by an appropriate integer. We use wmax to denote the maximum absolute weight of
a given ASHG instance. Unless otherwise stated, we assume that w is given to us encoded in
binary (and hence wmax may have value exponential in the input size).

We are chiefly interested in the following notion of stability.

▶ Definition 1 (Core stability). A partition P of an ASHG (G,w) is core stable, if there
exists no X ⊆ V (G) such that for all u ∈ X we have ut(X,u) > utP(u).

If the set X mentioned in Definition 1 does exist, then we say that P is unstable and
that X is a blocking coalition. For fixed integer values of k, we will also study the notion of
k-Core Stability: a partition is k-core stable if no blocking coalition of size at most k exists.

The two computational problems we are interested in are Core Stability (CS) and
Core Stability Verification (CSV). In the former problem we are given as input an
ASHG and are asked if there exists a core stable partition; in the latter we are also given a
specific partition P and are asked if P is core stable.

We say that a partition P of V (G) is connected if G[P ] is connected for every P ∈ P.
Notice that for both CSV and CS we may assume that the partition P we seek or we are
given is connected, as replacing a disconnected coalition P ∈ P with a coalition for each of
its components does not change utP(u) for any u ∈ V and hence does not affect stability.

Graph parameters and Parameterized Complexity. We assume the reader is familiar with
the basics of parameterized complexity, such as the classes FPT and W[1], as given for
example in [17]. We assume that the reader is also familiar with standard structural graph
parameters. The parameters we will focus on are treewidth (tw), pathwidth (pw), tree-depth
(td), vertex integrity (vi), and vertex cover (vc). For the definitions of treewidth and
pathwidth, as well as the corresponding (nice) decompositions we refer the reader to [17].
The vertex integrity vi(G) of a graph G is defined as the minimum k such that there exists
a set S ⊆ V (G) (called a vi(k)-set) such that the largest component of G− S has order at
most k−|S|. The tree-depth of a graph G is defined inductively as follows: an isolated vertex
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Figure 2 The graph (G, w) constructed in the proof of Theorem 2. The vertex cover is marked
by blue squares. The initial partition is given by dot-dashed boxes.

has tree-depth 1; the tree-depth of a disconnected graph is the maximum of the tree-depth of
its components; the tree-depth of a connected graph G is defined as minv∈V (G) td(G− v) + 1.
The vertex cover of G is the size of the smallest set of vertices of G that intersects all edges.

It is well known that for all graphs G we have tw(G) ≤ pw(G) ≤ td(G) ≤ vi(G) ≤
vc(G) + 1 where the second relationship is shown in [9] and the others follow immediately
from the definition of the respective parameters. In terms of parameterized complexity these
parameters therefore form a hierarchy: if a problem is FPT for a smaller parameter, then it
is FPT for the larger ones and conversely if a problem is intractable for a large parameter,
then it is intractable for a smaller one. We therefore say that larger parameters are more
restrictive, with vertex cover being the most restrictive parameter we consider. We use ∆(G)
to denote the maximum degree of a graph G and omit G when it is clear from the context.

3 Core Stability Verification

In this section we study the complexity of Core Stability Verification (CSV). What
we discover is that this is an unusually intractable problem, even for quite restricted para-
meterizations. We complete the picture by giving complementing algorithms.

3.1 Hardness Results
We first prove the following three hardness results.

▶ Theorem 2. Core Stability Verification is weakly coNP-complete on graphs of vertex
cover number 2.

Proof. First note that CSV is in coNP as it is polynomial to verify that a given coalition
is blocking. We give a reduction from Partition. Given a set of positive integers A =
{a1, . . . , an}, the Partition problem asks whether there exists a subset A′ of A such
that

∑
a∈A′ a = s/2 where s =

∑
a∈A a. This problem is well-known to be weakly NP-

complete [24].
We construct an instance of CSV. The construction is depicted in Figure 2. First, we

create n vertices v1, . . . , vn corresponding to a1, . . . , an ∈ A and four vertices x, y, x′, y′. Then
we add edges vix of weight ai + ϵ, viy of weight −ai, xx′ of weight 3s/2, yy′ of weight s/2,
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and xy of weight s+ ϵ. Here, without loss of generality, let ϵ be an integer sufficiently smaller
than mini ai; this can be achieved for example by multiplying all elements of A (and s) by n,
and setting ϵ = 1. Let (G,w) be the constructed graph. The partition P to verify consists of
{x, x′}, {y, y′} and singletons {v1}, . . . , {vn}. Also note that {x, y} is a vertex cover of G.

If there exists A′ ⊆ A such that
∑

a∈A′ a = s/2, then the coalition X = {vi : ai ∈
A′} ∪ {x, y} blocks P. To see this, observe that the utility of each vertex in X increases by
at least ϵ and thus X is a blocking coalition of P.

Conversely, suppose that there exists a blocking coalition X of P. Clearly, X contains
neither x′ nor y′. If X does not contain x, no vertex can have positive utility in X. Thus,
they also do not join X as they have non-negative utility in P. Thus, X must contain x.
To increase the utility of x, y must be contained in X. In particular, if y was not contained
in X, then the utility of x would be at most s + nϵ < 3s/2. Since y must have utility
more than s/2 in X, it holds that

∑
vi∈X ai ≤ s/2. Finally, since x obtains at least s + ϵ

utility in X from y ∈ X, and x has 3/2s utility in P , we have that s+ ϵ+
∑

vi∈X ai > 3/2s,
that is

∑
vi∈ai

> 1/2s − ϵ. Since ϵ is sufficiently smaller than mini ai, this implies that∑
vi∈X ai = s/2 and hence there exists a subset A′ of A such that

∑
a∈A′ a = s/2. ◀

We use a similar but more involved construction to reduce Bin Packing to CSV.

▶ Theorem 3. Core Stability Verification is coW[1]-hard parameterized by vertex
integrity, even if all weights are bounded by a polynomial in the input size.

We prove the third hardness result by a reduction from Bounded Degree Deletion.

▶ Theorem 4. Core Stability Verification is coW[1]-hard parameterized by tree-depth,
even if all weights are in {−1, 1}.

3.2 Algorithms
In this section, we prove the algorithmic results complementing the hardness results of the
previous section.

▶ Theorem 5. Core Stability Verification is polynomial time solvable on trees.

▶ Theorem 6. Core Stability Verification can be solved in time (vcwmax)O(vc)∆2 +
O(vcn).

Proof. Given a graph (G,w) and a partition P of V (G), we check whether there is a blocking
coalition X ⊆ V (G) of P. In the algorithm, we first compute a minimum vertex cover S of
size vc in time O(1.25284vc + vcn) [29]. Then we guess the intersection S′ of X and S. The
number of possible candidates of the intersection S′ is at most 2|S|. Let I ′ ⊆ V (G) \S be the
set of vertices in V (G)\S such that each vertex u ∈ I ′ satisfies

∑
v∈NG(u)∩S′ w(uv) > utP(u).

The vertices in I ′ could form a blocking coalition of P by cooperating with the vertices in
S′. In order for X to become a blocking coalition, all the vertices in S′ must have larger
utility in X than their utility in P after some vertices in I ′ joined X. This condition can be
represented as an Integer Linear Program (ILP) as follows:∑

v∈I′

w(uv)xv +
∑

v∈NG(u)∩S′

w(uv) ≥ utP(u) + 1 ∀u ∈ S′ (1)

xv ∈ {0, 1} ∀v ∈ I ′ (2)

ISAAC 2024
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where the variable xv represents whether vertex v ∈ I ′ joins X. On the left hand side of
(1),

∑
v∈NG(u)∩S′ w(uv) represents the contribution of edge weights in S′ to the utility of u.

Clearly, the ILP is feasible if and only if there is a blocking coalition X because the utility of
each agent in X strictly increases. Note that we suppose that each edge weight is an integer.

Here, the feasibility check of an ILP {Ax = b, x ≥ 0, x ∈ Zn} can be solved in time
(m · Λ)O(m) · ||b||2∞ where A ∈ Zn×m, b ∈ Zm, and Λ is an upper bound on each absolute
value of an entry in A [19]. By adding a slack variables in Z to each inequality in (1),
the ILP can be transformed into the form {Ax = b, x ≥ 0, x ∈ Zn} where n = |I ′| + |S′|
and m = |S′|. Since the maximum absolute value of coefficients of variables is wmax, the
range of utP(u) and

∑
v∈NG(u)∩S′ w(uv) is [−wmax∆, wmax∆], the ILP can be solved in time

(vcwmax)O(vc)(wmax∆)2 = (vcwmax)O(vc)∆2. Thus, the total running time is O(1.25284vc +
vcn) + 2vc(vcwmax)O(vc)∆2 = (vcwmax)O(vc)∆2 +O(vcn). ◀

▶ Theorem 7. Core Stability Verification is in FPT parameterized by vi + wmax.

▶ Theorem 8. Core Stability Verification can be computed in time (∆wmax)O(tw)nO(1).

▶ Theorem 9. Core Stability Verification can be computed in time 2O(tw∆)(n +
logwmax)O(1).

4 Core Stability

In this section we study the complexity of Core Stability (CS). We first show that CS
remains Σp

2-complete even on graphs of bounded vertex cover number (Theorem 10).
The second part of this section is dedicated to extending our understanding of the

complexity of CS parameterized by tw + ∆. We give an algorithm for CS running in time
22O(∆tw)

n (Theorem 11) improving on the previous algorithm based on Courcelle’s Theorem by
Peters [38]. In order to avoid having to formulate a tedious dynamic programming algorithm,
we instead obtain our algorithm via a reduction to ∃∀-SAT, which is known to be solvable in
double-exponential time (in treewidth) [15]. We complement these results by giving an ETH
based lower bound of 22o(pw) on graphs of bounded degree (Theorem 16). This shows that
the double-exponential dependence of our algorithm on treewidth is in fact inevitable, and
confirms a pattern shown by other Σp

2-complete problems [32].

4.1 Core stability on graphs of bounded vertex cover number
In this section we prove the following result.

▶ Theorem 10. Core Stability is Σp
2-complete on graphs of vertex cover number 12.

To obtain this result we use a variation of the constructions used to prove Theorem 2
and Theorem 3; however reducing from an appropriate variant of Partition namely ∃∀-
partition. To control how core stable partitions behave we use a gadget utilizing the non-core
stable graph given in [3]. Details of this auxiliary gadgets construction and behaviour is
omitted due to space limitation.

4.2 Core stability parameterized by maximum degree and treewidth
We first prove the algorithmic result of the section.

▶ Theorem 11. Core Stability can be solved in time 22O(∆tw)
nO(1).
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Before we prove Theorem 11, let us sketch our high-level strategy. Given an instance of
Core Stability, we want to produce an equivalent instance ϕ of ∃∀-SAT, such that ϕ
has treewidth roughly ∆tw, where ∆ and tw are the maximum degree and treewidth of
the original instance. We could then use the known (double-exponential) algorithm for
∃∀-SAT [15] to solve our problem. Intuitively, we would then attempt to use the existential
part of ϕ to encode the “there exists a partition” part of the problem, and the universal part
to encode the “all blocking coalitions fail to be blocking” part.

Fundamentally, this strategy is sound and works in a relatively straightforward way for
the universal part: we use a boolean variable for each vertex (to encode whether it belongs in
the potential blocking coalition) and to check that a coalition fails to be blocking for a vertex
v we need to place a constraint on v and all its (at most ∆) neighbors. This means that a
tree decomposition of ϕ should be constructible from a tree decomposition of the square of
the original graph, which would have width at most ∆tw.

Where we run into some more difficulties, however, is in encoding the existential part.
Intuitively, this is because encoding the partition of the vertices of a bag into coalitions
requires a super-linear number of bits, hence it is not sufficient to define a variable for each
vertex. Indeed, to simplify things, we define a variable for each pair of vertices that appear
together in a bag, encoding whether they are together in a coalition. This means that the
treewidth of the formula ϕ we construct is in fact not O(∆tw), but actually can only be
upper-bounded by O(tw2 + ∆tw).

Nevertheless, we insist on obtaining an algorithm that is double-exponential “only” in
∆tw, and not in tw2. In order to circumvent this difficulty we observe that the term that is
super-linear in treewidth only depends on existentially quantified variables. Thankfully, we
manage to show, via an argument that is more careful than that of [15], that ∃∀-SAT has
a time complexity that only needs to be double-exponential in the number of universally
quantified variables of each bag (Proposition 12). Using this, we are able to show that the
second exponent of the running time is “only” O(∆tw), which as we show later is optimal,
even when ∆ = O(1), under the ETH.

Let us now give some more details. We first recall that ∃∀-SAT is a variant of the SAT
problem where we aim to decide the satisfiability of a given quantified Boolean formula
(QBF) ϕ which is of the form ∃x1 . . . ∃xk∀y1 . . . ∀yℓψ where ψ is a DNF formula on variables
x1, . . . , xk, y1, . . . , yℓ. Two common ways of associating structure of satisfiability problems is
to consider the primal or incidence graph of the formula. The primal graph of a formula ϕ
(in CNF or DNF) is a graph on the set of variables of ϕ where two variables are adjacent if
they appear in the same clause. Similarly, the incidence graph is a bipartite graph on the set
of variables and clauses of ϕ where a variable is adjacent to all clauses it appears in. For
convenience, we use a variant of ∃∀-SAT. We say that a QBF ϕ is in ∃3 CNF ∀ DNF if ϕ can
be written as

ϕ = ∃x1 . . . ∃xk

k′∧
i=1

di ∀y1 . . . ∀yℓ

ℓ′∨
i=1

ci

for some k, k′, ℓ, ℓ′ ∈ N where di are disjunctive clause over variables x1, . . . , xk containing at
most 3 literals per clause and ci are conjunctive clauses over variables x1, . . . , xk, y1, . . . , yℓ.
We present an algorithm for ∃3 CNF ∀ DNF in several steps. First, we give an algorithm with
an improved running time than that of [15].
▶ Proposition 12. There is an algorithm that takes as input an instance of ∃∀-SAT
∃x∀yϕ(x, y), where x, y are tuples of boolean variables, ϕ is in 3-DNF, and a tree decom-
position of the primal graph of ϕ where each bag contains at most t∃ existentially quantified
variables and at most t∀ universally quantified variables and decides if the input is satisfiable
in time 2O(t∃+2t∀ )|ϕ|O(1).
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▶ Proposition 13. There is an algorithm that takes as input an ∃3 CNF ∀ DNF-SAT instance
ϕ and a tree decomposition of its incidence graph of width t that contains at most t∀ universally
quantified variables in each bag and at most 2 clauses in each bag, and decides ϕ in time
2O(t2t∀ )|ϕ|.

Proof of Theorem 11. We prove Theorem 11 by a reduction to ∃3 CNF ∀ DNF-SAT. Let
(G,w) be an instance of CS and (T, β) be a rooted tree decomposition of G. Here, we denote
the bag of a node t ∈ T by β(t). First we let (G′, w′) be the graph obtained from (G,w)
by adding edges uv of weight 0 for every pair of vertices u, v appearing in a bag together.
It is straightforward to see that (G,w) is a YES-instance of CS if and only if (G′, w′) is a
YES-instance of CS. Additionally, G′ is chordal and (T, β) is a tree decomposition of G′.

We construct an instance ϕ of ∃3 CNF ∀ DNF-SAT. We introduce a variable xe for every
e ∈ E(G′) and a variable yu for every vertex u ∈ V (G′). An assignment αX : {xe : e ∈
E(G′)} → {0, 1} represents a subset of E(G′) and an assignment αY : {yu : u ∈ V (G′)} →
{0, 1} represents a subset of V (G′). Intuitively, a partition of V (G′) corresponds to a
set of edges, i.e., by including all edges that are incident to vertices from the same part.
For every t ∈ V (T ) we define a formula ϕt essentially expressing transitivity. We use
formula ϕt to enforce sufficient criteria for the set of edges represented by an assignment
αX : {xe : e ∈ E(G′)} → {0, 1} to correspond to a partition of V (G′). Let

ϕt =
∧

u1,u2,u3∈β(t)

(
xu1u2 ∧ xu2u3

)
→ xu1u3 =

∧
u1,u2,u3∈β(t)

(
¬xu1u2 ∨ ¬xu2u3 ∨ xu1u3

)
.

For a fixed partition P represented by some assignment αX : {xe : e ∈ E(G′)} → {0, 1} our
formula needs to ensure that no blocking coalitions exist. This is realized by guaranteeing
that for each assignment αY : {yu : u ∈ V (G′)} → {0, 1} the set corresponding to αY is not
blocking. Intuitively, the formula ϕu defined below ensures that the utility of vertex u in P is
at least as large as the utility of u in the coalition represented by αY . To realize this, we make
sure that the set N of neighbors of u which are in the coalition represented by αY and the set
Ñ of neighbors of u which are in the same part as u in P satisfy

∑
v∈N w(uv) ≤

∑
v∈Ñ w(uv).

For u ∈ V (G′) let

ϕu =
∨

N,Ñ⊆N
G′ (u),∑

v∈N
w(uv)≤

∑
v∈Ñ

w(uv)

(
yu∧

∧
v∈N

yv ∧
∧

v∈NG′ (u)\N

¬yv ∧
∧

v∈Ñ

xuv ∧
∧

v∈NG′ (u)\Ñ

¬xuv

)
.

We now define the formula ϕ to be

ϕ = ∃xe1 . . . ∃xem

∧
t∈V (T )

ϕt ∀yv1 . . . ∀yvn

(
¬yv1 ∧ · · · ∧ ¬yvn

)
∨

∨
u∈V (G′)

ϕu.

Observe that ϕ is in ∃3 CNF ∀ DNF. In the following we prove that (G′, w′) is a YES-instance
of CS if and only if ϕ is satisfiable.

First assume that P is a core stable partition of V (G′). We define an assignment
αX : {xe : e ∈ E(G′)} → {0, 1} by setting αX(xe) = 1 if e is incident to two vertices
residing in the same part of P and αX(xe) = 0 otherwise. This assignment satisfies ϕt for
every t ∈ V (T ) as for any three vertices u1, u2, u3 ∈ β(t) it holds that if αX(xu1u2) = 1 and
αX(xu2u3) = 1, then u1, u2 and u3 must reside in the same part of P and hence αX(xu1u3) = 1.
Furthermore, consider any assignment αY : {yu : u ∈ V (G′)} → {0, 1} and let X = {u ∈
V (G′) : αY (yu) = 1}. We have to argue that the formula

(
¬yv1 ∧ · · · ∧ ¬yvn

)
∨

∨
u∈V (G′) ϕu is
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satisfied under the assignments αX and αY . In case thatX = ∅, the clause
(
¬yv1 ∧ · · · ∧ ¬yvn

)
is satisfied. On the other hand, if X ̸= ∅, then there must be a vertex u ∈ X whose utility
in P is at least as large as its utility in X as the set X cannot be a blocking coalition.
Hence, for the sets N = NG′(u) ∩ X and Ñ = NG′(u) ∩ P , where P ∈ P is the part
containing u, we have that

∑
v∈N w(uv) ≤

∑
v∈Ñ w(uv). Therefore, ϕu contains the clause(

yu∧
∧

v∈N yv ∧
∧

v∈NG′ (u)\N ¬yv ∧
∧

v∈Ñ xuv ∧
∧

v∈NG′ (u)\Ñ ¬xuv

)
and this clause is satisfied

under the assignment αX and αY by choice of N and Ñ . This shows that ϕ is satisfiable.

On the other hand, assume that ϕ is satisfiable and let αX : {xe : e ∈ E(G′)} → {0, 1} be
an assignment such that

∧
t∈V (T ) ϕt as well as ∀yv1 . . . ∀yvn

(
¬yv1 ∧ · · · ∧ ¬yvn

)
∨

∨
u∈V (G′) ϕu

is satisfied under αX . We let EX = {e ∈ E(G′) : αX(xe) = 1} and define a partition P by
letting every part of P correspond to the vertices of a connected component of the graph
(V (G′), EX). To show that the partition P is core stable we use the following claim.

▷ Claim 14. For every edge uv ∈ E(G′) it holds that uv ∈ EX if and only if u and v are
contained in the same part of P.

Towards a contradiction assume that P is not core stable and let X be a blocking coalition.
We define an assignment αY : {yu : u ∈ V (G′)} → {0, 1} by setting αY (yu) = 1 if u ∈ X and
αY (yu) = 0 otherwise. By assumption, the DNF formula

(
¬yv1 ∧ · · · ∧ ¬yvn

)
∨

∨
u∈V (G′) ϕu

is satisfied under assignment αX and αY . As X cannot be empty there is at least one
u ∈ V (G′) such that αY (yu) = 1 and hence the clause

(
¬yv1 ∧ · · · ∧ ¬yvn

)
cannot be

satisfied under the assignment αY which implies that some clause in
∨

u∈V (G′) ϕu must be
satisfied. Let u ∈ V (G′) and N, Ñ ⊆ NG′(u) with

∑
v∈N w(uv) ≤

∑
v∈Ñ w(uv) such that the

clause
(
yu∧

∧
v∈N yv ∧

∧
v∈NG′ (u)\N ¬yv ∧

∧
v∈Ñ xuv ∧

∧
v∈NG′ (u)\Ñ ¬xuv

)
is satisfied under

assignments αX and αY . This implies that N = NG′(u)∩X and Ñ = {v ∈ V (G′) : uv ∈ EX}.
Since by Claim 14, {v ∈ V (G′) : uv ∈ EX} = NG′(u)∩P , where P is the part of P containing
u, this implies that the utility of u in X is less or equal to the utility of u in P. As this
contradicts our assumption that X is a blocking coalition it follows that P is core stable.

▷ Claim 15. The formula ϕ has incidence treewidth at most ∆(G′)tw(G′) + tw(G′)2 + 2.
Furthermore, we can construct a decomposition of that width which contains at most 2
clauses per bag and at most (∆(G′) + 1)tw(G′) universally quantified variables per bag.

As (T, β), G′ and the formula ϕ can be computed in time O(tw(G′)2n), combining the
reduction with the algorithm from Proposition 13 yields a 22O(∆tw)

nO(1) time algorithm. ◀

Finally, we prove our ETH based lower bound.

▶ Theorem 16. Unless the ETH fails, there is no algorithm for Core stability running
in time 22o(pw)

nO(1) even if G has bounded degree and weights are constant.

We give an overview of our construction. Given an instance ϕ of (3, 3)-SAT (each variable
appears at most 3 times) we construct a graph (G,w) and show that ϕ is satisfiable if and
only if (G,w) is core stable. Firstly, we use a gadget based on the non-core stable graph
given in [3] to control potential core stable partitions. The auxiliary gadget is a non-core
stable graph H that we attach with positive weight edges at a set S of vertices. Because
H is not core stable any partition must place some vertex of H in a part with some s ∈ S.
Using negative weight edges we can control this behaviour even further. We achieve that
{h, s} must be in any core stable partition for one vertex s ∈ S where h ∈ V (H) is a fixed
vertex of H.
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We now describe the construction. Every variable xi, i ∈ [n] of ϕ is represented by
two vertices yi and ¬yi and for each i ∈ [n] we attach one auxiliary gadget at {yi,¬yi}.
We add further vertices (details follow in the next paragraph). Each of these additional
vertices v either has its private auxiliary gadget attached at {v} or is not connected to any
auxiliary gadgets. We define a special set of partitions of V (G) which we refer to as candidate
partitions as follows. Any candidate partition P has to contain either {h, yi} or {h,¬yi}
(but not both) where h is a vertex of the respective auxiliary gadget. For any other vertex v
without an attached auxiliary gadget (excluding vertices of auxiliary gadgets) any candidate
parition P has to contain {v}. For any vertex v with an auxiliary gadget attached at {v} any
candidate partition P has to contain the set {h, v} where h is a vertex of respective auxiliary
gadget. Using the properties of the auxiliary gadget, we can argue that any core stable
partition has to be a candidate partition. By the construction, there is a correspondence
between assignments and candidate partitions, i.e., α(xi) = 1 if and only if {h, yi} ∈ P for
candidate partition P and the corresponding assignment α.

Any blocking coalition of a candidate partition allows us to find a clause which is not
satisfied under the assignment which corresponds to the candidate partition and vice versa.
This is realized as follows. We take 2m+ 1 cycles U1, . . . , Um, V 1, . . . , V m, Z of length 3n
where 2m ≤ 3n is the number of clauses of ϕ. By choosing suitable edge weights, we enforce
that any blocking coalition of any candidate partition contains Z and either Uk or V k (but
not both) for every k ∈ [m]. For now, we call any set containing Z, Uk or V k (but not both)
for every k ∈ [m] (and some other vertices we neglect here) a candidate blocking coalition.
We number the clauses of ϕ in such a way that each candidate blocking coalition corresponds
to a clause. More sprecifically, the j-th clause corresponds to the candidate blocking coalition
X in which Uk ∈ X if and only if the k-th bit of j in binary is 0.

Each vertex in Z corresponds to the appearance of a variable. Assume z ∈ Z corresponds
to the appearance of variable xi in clause cj . We connect z to either yi or ¬yi dependent
on whether xi appears negated in cj . We connect z to either Uk or V k for every k ∈ [m]
dependent on whether the k-th bit of j in binary is 0 or 1 using a gadget we call clause
selection gadget. The gadget enforces that z obtains a +1 towards its total utility in X if
and only if the candidate blocking coalition X does not encode the clause cj . By choice of
edge weights, we ensure that vertex z can only be convinced to join a blocking coalition if it
either gets utility +1 from its clause selection gadget or utility +1 from yi (or ¬yi, resp.).
On the other hand, yi (¬yi, resp.) can only be convinced to join a blocking coalition if it
appears as a singleton in the partition we are trying to block and hence the corresponding
literal is false. In conclusion, for any candidate partition P there is a blocking coalition X

if and only if for the clause corresponding to X each literal is false. Hence, (G,w) is core
stable if and only if ϕ is satisfiable.

5 k-Core Stability

In this section we consider the complexity of finding and verifying k-core stable partitions,
when the size of the allowed blocking coalitions k is a parameter. Even though the two
problems do become easier when k is a fixed constant (because we can check all possible
blocking coalitions in polynomial time), we show that it is likely that not much more can
be gained from this assumption: k-CSV is coW[1]-hard parameterized by k (Theorem 17),
while k-CS is NP-complete even if k ≥ 3 is a fixed constant (Theorem 19). On the positive
side, we do show that finding 2-core stable partitions is in P, but it is worth noting that the
fact that we consider undirected graphs is crucial to obtain even this small tractable case.
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▶ Theorem 17. k-Core Stability Verification is in XP when parameterized by k

whereas coW[1]-hard even on unweighted graphs.

Proof. The upper bound can be easily shown by brute force. That is, given a coalition
structure P , for each coalition X of size at most k, we check if each agent v in X has higher
utility than in P. The running time of brute force is nO(k).

Then we show that k-CSV is W[1]-hard even on unweighted graphs. We give a reduction
from k-Clique. Given a graph G, we attach k − 2 pendant vertices for each vertex in V (G).
Let Pv be the set of pendant vertices for v. We set P = {Pv ∪ {v} : v ∈ V (G)} as a coalition
structure to verify.

In the following, we show that there exists a k-clique in G if and only if there exists
a blocking coalition for P. Let C be a clique of size k in G. For C, each vertex in C has
the utility k − 1. Since v ∈ V has the utility k − 2 in P, C is a blocking coalition for P.
Conversely, let X be a blocking coalition for P . Since vertices in

⋃
v∈V (G) Pv have maximum

utility 1 in P , they do not join X. Thus, X is a subset of V (G). Since the utility of v ∈ V (G)
is k − 2 in P and |X| = k, X is a clique of size k. ◀

▶ Theorem 18. Every graph admits a 2-core stable partition and 2-Core Stability can be
solved in polynomial time.

Proof. Given a weighted graph (G,w), start with the partition where every vertex is a
singleton. Order the positive-weight edges in non-increasing order e1, e2, . . . , em. For each ei,
do the following: if the endpoint of ei are currently singletons, merge them into a cluster of
size 2; otherwise move to the next edge. The resulting partition P is 2-core stable because if
there was a blocking coalition of size 2, it would have to induce an edge ei = uv. However,
when ei is considered, at least one of u, v was not a singleton. Therefore, the utility of that
vertex must be larger in P than in the coalition {u, v} contradicting the assumption that
{u, v} is a blocking coalition. ◀

▶ Theorem 19. For any fixed k ≥ 3, k-Core Stability is NP-complete on bounded degree
graphs, even if the weights are constant.

6 Conclusion

The general tenor of our results indicates that core stability is an algorithmically highly
intractable notion: even for very restricted input structures, obtaining efficient algorithms
seems out of reach; and even for the few cases where positive fixed-parameter tractability
results can be obtained, complexity lower bounds still push the parameter dependence
to prohibitive levels. Despite the above, we believe that a promising avenue for future
research may be the further investigation of k-core stability. Even though we have shown
that parameterizing the problem by k alone does not help, it would be interesting to ask
whether parameterizing at the same time by both k and a structural parameter (such as
treewidth) could help us evade the lower bounds that apply to each case individually. Finally,
investigating the parameterized complexity of core stability in other variants of hedonic
games such as fractional hedonic games [2, 26, 20] is another promising direction.
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