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Abstract
Crossing Number is a celebrated problem in graph drawing. It is known to be NP-complete
since the 1980s, and fairly involved techniques were already required to show its fixed-parameter
tractability when parameterized by the vertex cover number. In this paper we prove that computing
exactly the crossing number is NP-hard even for graphs of path-width 12 (and as a result, for simple
graphs of path-width 13 and tree-width 9).

Thus, while tree-width and path-width have been very successful tools in many graph algorithm
scenarios, our result shows that general crossing number computations unlikely (under P ̸= NP) could
be successfully tackled using graph decompositions of bounded width, what has been a “tantalizing
open problem” [S. Cabello, Hardness of Approximation for Crossing Number, 2013] till now.
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1 Introduction

The notion of a crossing number originally arose during WWII by Turán [16] for completed
bipartite graphs in the context of the minimization of the number of crossings between tracks
connecting brick kilns to storage sites. Formally, the crossing number cr(G) of a graph G is
the minimum number of pairwise edge crossings in a drawing of G in the plane. Determining
the crossing number of a graph is one of the most prominent combinatorial optimization
problems in graph theory.

Back in the 1980s, Garey and Johnson [8] showed that the crossing number minimization is
NP-hard. Their result has been extended even to fairly restrictive graph classes, in particular
the problem is NP-hard even for cubic graphs [10], and also for a fixed rotation scheme [14].
Moreover, Crossing Number is APX-hard [2] (does not admit a PTAS unless P = NP) in
its general setting.

Another direction of the extensive research is on computation of the crossing number for
graphs that are initially close to planar graphs. Surprisingly, Crossing Number remains
NP-hard for almost planar graphs (graphs that can be made planar and hence crossing-free
by the removal of just a single edge) [3], and remains NP-hard on almost planar graphs even
when only 3 vertices are of degree greater than 3 [11,12]. This means that with respect to
the maximum degree of the graph, as well as with respect to the number of edges to remove
from the graph to make it planar, Crossing Number is para-NP-hard.
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One more way to deal with the hardness of Crossing Number, is exploiting the structure
of the input to get an understanding of how it affects the computational feasibility of the
problem. From this side, if the input graph has a vertex cover of bounded size, then the
crossing number can be computed exactly in FPT-time (some function of the parameter, i.e.
vertex cover number, multiplied by a polynomial of the input size) [13]. Thus, investigation
of the Crossing Number for other structural parameters (in particular, feedback vertex set
number, tree-depth, path-width, and tree-width) not once was mentioned as an interesting
research venue to explore [1, 2, 17]. In this direction, it is known that the problem is solvable
in linear time on maximal graphs of path-width 3, admits a 2-approximation algorithm on
(general) graphs of path-width 3, and admits a 4w3-approximation on maximal graphs of
path-width w [1]. For a more involved overview of the results on Crossing Number, we
refer the reader to a recent survey by Zehavi [17].

In this paper, we present a hardness result: Crossing Number is NP-hard even on a
graphs of constant path-width (and, respectively, tree-width), namely, for path-width 12 (and
tree-width 9). That also immediately closes the question of whether Crossing Number is
FPT or XP on aforementioned graph classes under usual complexity assumptions, since our
result shows that the problem is para-NP-hard.

▶ Theorem 1.1 (cf. Theorem 3.1 and Theorem 3.2). Given a graph G and an integer k, the
problem to decide whether a graph G can be drawn with at most k crossings is NP-complete
even when G is required to have path-width at most 12, and when G is required to be simple
of path-width at most 13 and tree-width at most 9.

In Section 2 we define the basic concepts, i.e., of a drawing, the crossing number, width
decompositions, and the problem itself. In Section 3 we describe a hardness reduction from
Satisfiability. Since the proof is rather technical, we propose separately the construction
(Section 3.3), necessary conditions for an existence of a drawings with some predefined
crossing number (Section 3.4), correctness of the reduction (Section 3.5), and, lastly, that
the width parameters, i.e. path-width and tree-width, of the constructed graph are constant
(Section 3.6). We conclude with Section 4.

2 Preliminaries

We will consider finite graphs with possible parallel edges throughout the paper. We begin
with the standard terminology of graph theory [7], including the notions of tree-width and
path-width [5] which are commonly used parameters to capture the complexity of a graph,
and of graph drawing concepts [6].

Furthermore, for an integer n ∈ N, we denote by [n] = {1, . . . , n}.

2.1 Drawings
A drawing G of a graph G in the plane is a mapping of the vertices V (G) to distinct points
in the plane, and of the edges E(G) to simple curves connecting their respective endpoints
but not containing any other vertex point. When convenient, we will refer to the elements
(vertices and edges) of the drawing by the corresponding elements of G. A crossing is the
intersection (a common point) of two distinct edge curves, other than their common endpoint.
It is well established that the search for an optimal solution to the crossing number problem
can be restricted to so called good drawings: any pair of edges crosses at most once, adjacent
edges do not cross, and there is no crossing point in common to three or more edges.
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A drawing G is planar (or a plane graph) if G has no crossings, and a graph in planar if it
has a planar drawing. The number of crossings in a particular drawing G is denoted by cr(G)
and the minimum over all good drawings G of a graph G by cr(G). We call cr(GG) and cr(G)
the crossing number of the drawing GG and the graph G, respectively. The Crossing
Number problem for a given graph G asks for a good drawing G with the least possible
number of crossings.

We will also use a common artifice in crossing number research. In a weighted graph,
each edge is assigned a positive number (the weight or thickness of the edge, usually an
integer). Now the weighted crossing number is defined as the ordinary crossing number, but
a crossing between edges e1 and e2, say of weights t1 and t2, contributes the product t1 · t2
to the weighted crossing number. For the purpose of computing the crossing number, an
edge of integer weight t can be equivalently replaced by t parallel edges of weights 1; this is
since we can easily redraw each of the t edges closely along one with the least number of
crossings. Hence, from now on, we will use weighted edges instead of parallel edges, and
shortly say crossing number to the weighted crossing number.

2.2 Tree-width and Path-width
A tree decomposition T of an undirected graph G is a pair (T, χ), where T is a tree (whose
vertices we call nodes) rooted at a node r and χ is a function that assigns to each node t ∈ T
a set χ(t) ⊆ V (G) such that the following holds:

For every {u, v} ∈ E(G) there is a node t such that u, v ∈ χ(t).
For every vertex v ∈ V (G), the set of nodes t satisfying v ∈ χ(t) forms a nonempty
subtree of T .

The sets χ(t), for t ∈ V (T ), are called bags of the tree decomposition. The width of a tree
decomposition (T, χ) is the size of a largest set χ(t) minus 1, and the tree-width of the
graph G, denoted tw(G), is the minimum width of a tree decomposition of G.

The path decomposition and path-width are defined analogously with the only difference
that the tree T is required to be a path.

We are going to use the following cops-and-robber game characterization on the graph G.
The robber player can freely move along cop-free paths in the graph.
The cops fly in a helicopter; can land on a vertex or be lifted back up. When the helicopter
shows above a vertex v, the robber has time to escape wherever they chooses to.
The robber is caught whenever a cop lands on the robber’s vertex v.

Such a game is called monotone if the robber never gets a chance to reach a vertex previously
occupied by a cop.

The cited characterization is as follows.

▶ Theorem 2.1 (Seymour and Thomas [15]).
(1) The tree-width of G is at most t if and only if t + 1 cops can always catch the robber in

G in a monotone game if the robber is visible to the cop player.
(2) The path-width of G is at most t if and only if t + 1 cops can always catch the robber in

G in a monotone game provided the robber is not visible to the cops.

3 Hardness Reduction

In this section, we present and prove a polynomial time reduction that given an instance
I = (C, V) of Satisfiability, constructs an equivalent instance (G, k) of Crossing Number
on a graph of constant path-width (and tree-width).

ISAAC 2024
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Satisfiability
Input: A set of clauses C = {C1, . . . , Cℓ} over variables V = {x1, . . . , xn}
Question: Does there exist an assignment of the variables τ : V → {True, False}
satisfying all clauses in C?

Crossing Number
Input: A graph G, and k ∈ Z≥0
Question: Does G admit a drawing G in the plane such that G has at most k crossings?

▶ Theorem 3.1. There is a polynomial-time algorithm that, given an instance I of Satis-
fiability, outputs an equivalent instance of Crossing Number on a graph G of path-width
at most 12 and tree-width at most 9 (where G is allowed to have parallel edges).

If simplicity of the graph G is desirable, we immediately conclude:

▶ Corollary 3.2. There is a polynomial-time algorithm that, given an instance I of Satis-
fiability, outputs an equivalent instance of Crossing Number on a simple graph G of
path-width at most 13 and tree-width at most 9.

Proof. For any graph G and e ∈ E(G), the same drawing as a point set may be used both
for G and for G with the edge e subdivided; informally, subdivisions of edges do not matter
for Crossing Number. Hence, if the graph G of Theorem 3.1 contains parallel edges, we
form a graph G′ by subdividing each such edge of G once and obtain cr(G′) = cr(G). The
tree-width does not change, and the path-width of G′ grows by at most 1 compared to G. ◀

3.1 High-level Idea
Naturally, for interpreting a Satisfiability instance I = (V, C) in an instance (G, k) of
Crossing Number, one would use a large “grid structure”. Such structure would allow to
separately interpret values of the variables V, and to let all clauses C interact with their
variables; one could imagine, e.g., variables in columns and clauses in rows of the grid
structure, and their interaction happening in specially crafted cells in which the row and the
column intersect.

However, if a graph contains a large grid as a minor, then its tree-width is also large, and
our aim here is to obtain a graph G of constant tree-width and path-width. Thus, we are
instead going to base our reduction on a frame graph F with many small separators (here of
size 4 + 4) ordered from left to right, in order to achieve constant path-width of resulting G.
The crucial thing is that for each of the separators X, there are three components of (F − X)
– the “left”, “middle” and “right” ones – such that the left and right components are forced
to cross with the middle component many times (see Figure 1 and Figure 2 for a brief
illustration). This way we enforce the sought large grid structure in any optimal drawing of
the frame F , and consequently in any optimal drawing of G.

At the same time, the frame is constructed such that there is certain drawing flexibility
possible, namely we can perform “vertical flips” of the middle components of separators
mentioned in the previous paragraph (see Figure 1), and these will form a part of the variable
gadgets in our reduction. We will use this drawing flexibility of our variable gadgets to
encode the truth values of variables in Satisfiability (see Figure 4 for a brief illustration of
this encoding). Specific small gadgets (see Figure 3) will be added to the variable gadgets in
G to encode in which clauses they participate, and a satisfying assignment of the variables
will then be checked as a possibility to draw added global clause edges of G (one edge per
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Table 1 Color-encoding of the weights of the corresponding edges; and Θn,ℓ(ω1) denotes the
class of functions f such that C1 · ω1 ≤ f(ω1) ≤ C2 · ω1 for positive constants C1, C2 dependent on
n and ℓ, but not on ω.

Color Usage Weight

Heavy-brown (HB) The frame and Var-gadgets attachments ω8

Light-black (LB) Var-gadgets interior skeletons ω6

Red (R) Paths in Var-gadgets (vertical) ω4 + Θn,ℓ(ω1)

(R’) Stairs interconnecting Var-gadgets (horizontal) ω3

Blue (B) Paths in Var-gadgets (vertical) ω4 + Θn,ℓ(ω1)

(B’) Stairs connecting within Var-gadgets (horizontal) ω3

Cyan (C) Clauses Encoding within Var-gadgets ω2

Green (G) (Global) Clause Edges ω0 = 1

each clause, see the green edges in Figure 2) with minimum crossing cost across the whole
picture. This is an idea similar to the one used in [3]. The crucial point of the construction,
however, is how to enforce the unique right crossing pattern between the frame components
as in Figure 1, and for this we build upon an idea originally introduced in [12] and now
detailed within Section 3.4.

3.2 Auxiliary Graphs
To facilitate the presentation, we use colors, i.e. heavy-brown (HB), light-black (LB), red (R),
blue (B), cyan (C), green (G), to encode the future order of the weights of the corresponding
edges (see in Section 3.2). The weights of the edges will play a crucial role in the future
description of possible drawings of the constructing graph. The weight values are assigned with
respect to a sufficiently large (still polynomial in |C| + |V|) edge weight ω, e.g., ω = |E(G)|2.
Then, informally, even one crossing of weight ωt+1 “outweighs” all crossings of G of weight ωt.
Observe that, importantly, all weights used in our construction will be bounded by a
polynomial in |I|.

Further, we present auxiliary graphs for use as building blocks (Figure 1), before describing
the whole construction of the crossing number instance G.

Variable gadgets. We start by defining Var-gadgets. For each i ∈ [n], we construct a
Vari-gadget of height h ∈ Z>0 (see an example of Vari for h = 4 in Figure 1a, the value of h

to be defined later).
First, we introduce the vertex set of Vari as

V (Vari) = {bi
j,P , bi

j,N , vi
j,P , vi

j,N }j∈[h+2] ∪ {ri
j,L, ri

j,R}j∈[h+3] ∪ {wi
0, ui

0, wi
1, ui

1}.

We add 6 paths as follows:
two B-paths (constructed on B-edges) go through vertices {bi

j,P }j∈[h+2] and
{bi

j,N }j∈[h+2], and we will refer to the paths as B-pos and B-neg respectively;
two LB-paths go through vertices {vi

j,P }j∈[h+2] (LB-pos) and {vi
j,N }j∈[h+2] (LB-neg);

two R-paths go through vertices {ri
j,L}j∈[h+3] (R-left) and {ri

j,R}j∈[h+3] (R-right).
We make these paths adjacent (with HB-edges) to the vertices wi

0, ui
0, wi

1, ui
1 as follows:

both B-pos and B-neg paths by their corner vertices to wi
0 and ui

0;

ISAAC 2024
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ri
2,L ri

2,R

ri
3,L ri

3,R

ri
4,L ri

4,R

ri
5,L ri

5,R

ri
6,L ri

6,R

bi
1,P bi

1,N

bi
6,P bi

6,N

ri
1,L ri

1,R

ri
7,L ri

7,R

bi
2,P bi

2,N

bi
3,P bi

3,N

bi
4,P bi

4,N

bi
5,P bi

5,N

vi
2,P vi

2,N

vi
3,P vi

3,N

vi
4,P vi

4,N

vi
5,P vi

5,N

ui
0

wi
0

ui
1

wi
1

(a) The variable gadget Vari, h = 4.

r0
2,R r4

2,L

r0
3,R r4

3,L

r0
4,R r4

4,L

r0
5,R r4

5,L

r0
6,R r4

6,L

x1
0 = u1

0

x1
1 = w1

0

x2
0 = u2

0

x2
1 = w2

0

x3
0 = u3

0

x3
1 = w3

0

uBL uBR

uT RuT L

(b) The frame with n variable gadgets for n = 3, h = 4.

Figure 1 Auxiliary graphs. Note that for each i ∈ [n], the 8-tuple {ui
0, ui

1, ri
1,L, ri

1,R,

wi
0, wi

1, ri
h+3,L, ri

h+3,R} is a vertex cut in the frame graph.

both LB-pos and LB-neg, analogously, to wi
1 and ui

1; and
both R-left and R-right paths to both wi

0, ui
0 and wi

1, ui
1

(see Figure 1a).
Lastly, for each j ∈ [2, h + 1], we add stairs between pairs of -pos and -neg paths, i.e.,
pairwise connecting B-/LB-pos and B-/LB-neg paths with B’-edges bi

j,P vi
j,P and bi

j,N vi
j,N

respectively.
The weight of each edge of Vari is as specified in Section 3.2; in particular, for the R-paths,
the weight of the edges ri

j,Lri
j+1,L and ri

j,Rri
j+1,R is exactly ω4 + j(j + 1)ω, and for the

B-paths, the weight of the edges bi
j,P bi

j+1,P and bi
j,N bi

j+1,N is exactly ω4 + j(j + 2)ω.

The frame. We construct the frame for n Var-gadgets of height h, where n, h ∈ Z>0.
First, we introduce the HB-cycle (with HB-edges) on 4 vertices uBL (bottom-left), uT L

(top-left), uT R (top-right), uBR (bottom-right) in the specified order.
Then, we subdivide (n times) the edge between uBL and uBR by adding vertices {xi

0}i∈[n];
analogously we subdivide the edge between uT L and uT R by adding {xi

1}i∈[n].
Further, we add another HB-edge between uBL and uT L (resp., between uT R and uBR) and
subdivide it h times by adding vertices {r0

j,R}j∈[2,h+2] (resp., by adding {rn+1
j,L }j∈[2,h+2]).

We call the resulting graph of this construction (see Figure 1b) the frame F .
Now, we attach n Var-gadgets to the frame F .
For each i ∈ [n], we introduce a Vari-gadget (as described in Section 3.2) and pairwise
identify vertices ui

0, wi
0 of Vari with vertices xi

0, xi
1 of the frame respectively.

Lastly, we add stairs (interconnections) between R-paths of the neighboring Var-gadgets
and the frame, i.e. for each i ∈ [n + 1] and j ∈ [2, h + 2], we add R’-edge ri−1

j,R ri
j,L. Thus,

for each i ∈ [n + 1], we make stairs between the R-right path of Vari−1 (or, if i = n + 1,
with a subdivision of the frame’s side uT RuBR) and the R-left path of Vari (or, if i = 1,
with a subdivision of the frame’s side uT LuBL).

The weights of all new edges are again as specified in Section 3.2.
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This finishes the construction of our frame with n Var-gadgets G′ (see G′ for h = 4, n = 3
in Figure 1b). Note that G′ still lacks the clause edges (see in further Figure 2) and an
interpretation of variable occurrences in clauses (the cells of further Figure 3).

So far, for simplicity, we allow ourselves to refer to Figure 1b to illustrate the defined
graph G′. Observe the natural meaning the R-left and R-right paths in each gadget Vari;
in order to facilitate their connections to Vari−1 and to Vari+1, R-left is naturally drawn
to the left of R-right. On the other hand, the B-/LB-pos and B-/LB-neg paths of Vari

are symmetric and not adjacent outside of Vari, and hence they can be flexibly drawn –
B-/LB-pos to the left or to the right of B-/LB-neg; this is what will later define the truth
value of the variable represented by Vari.

3.3 The Full Reduction
Consider an instance (C, V) of Satisfiability (with |C| = ℓ, |V| = n). We construct an
instance (G, k) of Crossing Number as follows. See Figure 2 for a schematic representation.

First, we introduce G′, the frame with n Var-gadgets of height h = 4ℓ + n − 2.
Then, for each i ∈ [n], we encode the occurrence of the variable xi in clauses C. For that
purpose, for each j ∈ [ℓ], between LB-pos and LB-neg paths of the existing Vari-gadget we
add a cell. Each cell is defined by two horizontal LB-edges and 3 edges inside, depending
on the type (pos, neg, neut) of the cell: pos if x ∈ C; neg if x ∈ C; neut if neither x nor
x is in C. A cell of each type is shown in Figure 3.

C1

C2

C3

C1

C2

C3

x1 x2 x3 x4 x5

Figure 2 For an example instance of Satisfiability, given by V = {x1, x2, x3, x4, x5} and
C = {(x1 ∨ x2 ∨ x4 ∨ x5), (x1 ∨ x3 ∨ x5), (x2 ∨ x3 ∨ x4)}; the depicted graph G is constructed as an
input of the sought reduction to Crossing Number of G. Notice, in particular, the addition of the
clause edges (drawn in green from left to right across the frame) and the shaded areas in which the
clause edges will presumably be drawn.

ISAAC 2024
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LB-pos LB-neg

(a) Cpos: x ∈ C.

LB-pos LB-neg

(b) Cneg: x ∈ C.

LB-pos LB-neg

(c) Cneut: neither x nor x is in C.

Figure 3 Cell types; for cases of variable x occurrence in clause C.

Cells inside the same Vari-gadget are separated with additional LB-edges as shown in
Figure 2. For a formal description, we start with LB-edges (again, all weights are as
specified in Section 3.2) inside Var-gadgets which separate cells. For each i ∈ [n], we add

an LB-path from vi
1,N to vi

1+i,P (below all cells of this Vari-gadget), precisely on vertices
vi

1,N , vi
2,P , vi

2,N , . . . , vi
i,N , vi

1+i,P in this order;
another LB-path from vi

4ℓ+i−1,N to vi
h+2,P (above all cells in Vari), precisely on vertices

vi
4ℓ+i−1,N , vi

4ℓ+i,P , vi
4ℓ+i,N , . . . , vi

h+1,N , vi
h+2,P ; and

for each j ∈ [ℓ − 1], a LB-path on vertices vi
4j+i−1,N , vi

4j+i,P , vi
4j+i,N , vi

4j+i+1,P

(between cells number j and j + 1).
After that, we add cells themselves in the bottom-up order. For all j ∈ [ℓ], we introduce
two LB-edges vi

4j+i−3,P vi
4j+i−3,N and vi

4j+i−1,P vi
4j+i−1,N , and then we proceed with

encoding of our Satisfiability instance (C, V) it the following way:
if xi ∈ Cj , we introduce a Cpos cell (Figure 3a), i.e. we add three C-edges as a path
through vi

4j+i−3,P , vi
4j+i−2,N , vi

4j+i−2,P , vi
4j+i−1,N ;

in case xi ∈ Cj , we introduce a Cneg cell (Figure 3b), i.e. we add three C-edges as a
path through vi

4j+i−3,N , vi
4j+i−2,P , vi

4j+i−2,N , vi
4j+i−1,P ;

lastly, if neither xi nor xi is in Cj , we introduce a Cneut cell (Figure 3c),
formed by one LB-edge vi

4j+i−2,P vi
4j+i−2,N and two C-edges vi

4j+i−3,P vi
4j+i−2,N and

vi
4j+i−2,N vi

4j+i−1,P .
Finally, for each j ∈ [ℓ], we add a G-edge that corresponds to the clause Cj itself. Here,
we subdivide two vertical HB-edges of the frame and connect these newly added vertices.
Precisely, for each j ∈ [ℓ], we subdivide the edge between r0

4j−2,R, r0
4j−1,R (on the left

vertical side uBLuT L of the frame, cf. Figure 1b) and the edge between rn+1
4j+n−1,L, rn+1

4j+n,L

(on the right vertical side uBRuT R). Note the shift in the indices of the subdivided edges,
up by n + 1 from left to right.

This concludes the construction of G.
The reduction returns (G, k) as an instance of Crossing Number where, for h = 4ℓ+n−2,

k = 2n(2h+1)ω7 +2nℓω6 +4nℓω4 +2n

h+1∑
j=2

j(j +1)ω4 +2n

h+1∑
j=1

j(j +2)ω4 +nℓω2 +(ω2 −1).

3.4 Drawings Claims
Until this point, all Figures were provided as an illustration without arguing why a certain
drawing of the corresponding graph was selected. This subsection is dedicated to shed light
on the conditions that necessarily have to be satisfied for a drawing G of the previously
constructed instance (G, k) of the Crossing Number unless G is not a solution.

So, we are considering the constructed instance (G, k) of Crossing Number from
Section 3.3. Following the way the graph G was introduced, we begin to formulate observations
and claims that every drawing of the graph with at most k crossings has to satisfy. Naturally,



P. Hliněný and L. Khazaliya 40:9

C1

C2

C3

C1

C2

C3

x1 = True x2 = True x3 = False x4 = False x5 = False

Figure 4 A drawing of the graph G from Figure 2, constructed from an instance of Satisfiability
given by V = {x1, x2, x3, x4, x5} and C = {(x1 ∨ x2 ∨ x4 ∨ x5), (x1 ∨ x3 ∨ x5), (x2 ∨ x3 ∨ x4)}.
The depicted drawing G of G corresponds to the satisfying assignment x1 = x2 = True, x3 = x4 =
x5 = False. The clause C1 = (x1 ∨ x2 ∨ x4 ∨ x5) is satisfied by the variable x5 (observe that the
G-edge of C1 makes an extra jump-up in the drawing area of Var5 to the right, yet crossing only one
C-edge there – same as in other gadgets), C2 = (x1 ∨x3 ∨x5) is satisfied by x3 and C3 = (x2 ∨x3 ∨x4)
is satisfied by x2. See Figure 5 for a drawing representing an unsatisfying assignment.

we start with conditions for the heaviest edges, for the frame and Var-gadgets, and after
that we argue about the clauses encoding. Due to space restrictions, we leave proofs of the
(*)-marked statements to the full arXiv version of the paper.

▶ Observation 3.3. (*) If there exists a drawing G of G such that cr(G) ≤ k, then G has no
crossing that involves any of HB-edges.

▶ Observation 3.4. (*) Let H is a subgraph of G. If (H, k) is a no-instance of the Crossing
Number, then (G, k) is a no-instance of the Crossing Number.

Based on Theorem 3.4, we now show some claims that speak only about a subgraph of G.
As in Section 3.2, let F be the frame and G′ be the frame with n Var-gadgets (Figure 1) of
the graph G; so, we are going to speak about properties which hold regardless of our clauses
encoding in G. However, both next claims still follow from the same type of argument,
namely, any crossing between the considered edges would be more costly than the selected
value of k allows.

▶ Claim 3.5. (*) If there exists a drawing G′ of G′ such that cr(G′) ≤ k, then there are no
other crossings than crossings between R- or B-edges with R’- or B’-edges in G′.
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C1

C2

C3

C1

C2

C3

x1 = True x2 = True x3 = True x4 = False x5 = False

Figure 5 Another drawing of the graph G from Figure 2, constructed from an instance of
Satisfiability given by V = {x1, x2, x3, x4, x5} and C = {(x1 ∨ x2 ∨ x4 ∨ x5), (x1 ∨ x3 ∨ x5), (x2 ∨
x3 ∨ x4)}, for comparison with the drawing in Figure 4.
The depicted drawing G′ of G corresponds to the unsatisfying assignment x1 = x2 = x3 = True,
x4 = x5 = False. The clause C1 = (x1 ∨ x2 ∨ x4 ∨ x5) is satisfied by the variable x5 and
C3 = (x2 ∨ x3 ∨ x4) is satisfied by x2, same as in Figure 4. The difference for the unsatisfied clause
C2 = (x1 ∨ x3 ∨ x5) is that here the G-edge of C2 has no way to make the required extra jump-up
without crossing more than one C-edge inside one of Var-gadgets (or other heavier edges). Hence,
here the G-edge of C2 makes extra crossing with two C-edges in the drawing area of Var3, and this
unavoidably leads to cr(G′) > k.

▶ Claim 3.6. (*) If a drawing G′ of G′ is a solution of the instance (G′, k), then, for all
u, v ∈ V (G′ \ F ), both u and v are lying in the same face of the frame F in G′, and the
selection of such a face is uniquely predetermined.

Theorem 3.6 allows us, without loss of generality, fix a drawing of the frame F as it is
shown in Figure 1b. So, we define a positioning of left and right sides. This way, the fixed
drawing of the frame determines a linear order of gadgets Vari (from left to right following
increasing order of i ∈ [n]).

Furthermore, we already almost fixed a drawing of Var-gadgets inside the frame. Still,
the fact that we have not enough budget for any other crossing (namely, crossings between
R’- and B’-edges of weight ω3 have not been covered yet) needs some proper counting that
we will provide further. By now, according to Theorem 3.5, the R/B/LB-paths of Var-gadgets
are not allowed to cross each other in any solution if such a one exists.

Lastly, let us notice that the positioning of the vertical R-paths is also fixed.
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▶ Claim 3.7. (*) If a drawing G′ of G′ is a solution of the instance (G′, k), then, for all
i ∈ [n], the R-left path of the Vari is drawn to the left from both LB-paths of Vari, while the
R-right path is to the right.

Now, let us check how crossings of R- and B-edges with R’- and B’-edges behave. Briefly
saying, by the following Theorem 3.8, we show that crossings between the R- and B-edges
are also predefined by a construction. For this purpose, while constructing the graph G, we
played a bit with additional adjustment weight of order ω1 for the vertical R- and B-edges.
This adjustment weight selection forces the unique alternation of crossings exactly as shown
in Figure 1b and subsequent figures.

▶ Lemma 3.8. (*) If a drawing G′ of G′ is a solution of the instance (G′, k), then each B-edge
(R-edge) crosses exactly one R’-edge (B’-edge). The total weight of all crossings between B(R)-

and R’(B’)-edges adds 2n

(
(2h + 1)ω7 +

h+1∑
j=2

j(j + 1)ω4 +
h+1∑
j=1

j(j + 2)ω4

)
to the count cr(G′).

Next, we return back to the full reduction graph G, and investigate properties of its
admissible drawings.

▶ Lemma 3.9. (*) If the crossing number of a drawing G of G does not exceed k, then the
G-edges add at least 2nℓω6 + 4nℓω4 + nℓω2 more crossings. In particular, every G-edge in G
crosses precisely one C-edge of every Vari-gadget.

For each G-edge, we define its cells area as a connected region (union) of faces in a
drawing G of G as it is shown in Figure 4 with a grey fill, i.e. for each j ∈ [ℓ], there is a
single connected horizontal block of faces that includes all cells of the clause Cj and will
correspond to the cells area for the G-edge which is jth in bottom-up order. For each such a
cells area we furthermore define its up- and down-level as the subsets of faces that are higher
and lower, respectively, by subscripts of their vertices. To clarify the last point, by the next
lemma we show that for each j ∈ [ℓ], if the crossing number of the drawing G of the graph G

does not exceed k, then the jth G-edge does not leave its cells area. Now, we proceed with
that formally.

▶ Lemma 3.10. (*) If the crossing number of a drawing G of G does not exceed k, then any
G-edge cannot be drawn (even partially) outside of its cells area (see Figure 4).

3.5 Correctness
Before proceeding with the correctness arguments, let us look back and see that, indeed, all
drawing claims imply that if some drawing G of G with cr(G) ≤ k exists, then almost all
possible crossings are predefined. Practically the only freedom still left is the possibility to
flip (independently of others) each Var-gadget. By flips of the Var-gadget we mean its two
possible embeddings, which differ only by the order of B- and LB-paths, e.g. going from left
to right in our Figures. As an example, let us consider Figure 4: here, we meet first from left

either a pair of B-pos, LB-pos paths and then call such an embedding a pos-side flip
(see Var3-gadget in the middle in Figure 5);
or a pair of B-neg, LB-neg paths and then call such an embedding a neg-side flip (see
Var3-gadget in the middle in Figure 4).

And this is exactly the intuition behind transferring a possible variable assignment from
Satisfiability instance to a possible drawing of the Crossing Number instance, and back.

Suppose, given an instance (C, V) of Satisfiability, that the reduction from the previous
subsection returns (G, k) as an instance of Crossing Number.
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▶ Lemma 3.11. If (C, V) is a satisfiable instance of Satisfiability, then the graph G of
the constructed instance (G, k) admits a drawing G such that cr(G) ≤ k.

Proof. Again, let G′ be the frame with n Var-gadgets which is a subgraph of G. We start
with the drawing of G′ as specified by Figure 1, which actually corresponds to the “minimal
drawing” investigated in Theorem 3.8. We are going to show that this drawing has exactly
the same number of crossings as claimed in Theorem 3.8.

Indeed, for every i ∈ [n], the R-left and R-right paths of the Vari-gadget each are
crossed by h B’-edges in our drawing, and the B-pos and B-neg paths of the Vari-gadget each
are crossed by (h + 1) R’-edges. Taking into account the alternating order of these crossings
and the exact weights of the edges of these paths (see in Section 3.2), we count exactly

2ω3

(
hω4 + (h + 1)ω4 +

h+1∑
j=2

j(j + 1)ω1 +
h+1∑
j=1

j(j + 2)ω1

)
crossings on Vari. Summing over

all i ∈ [n], we get 2n

(
(2h + 1)ω7 +

h+1∑
j=2

j(j + 1)ω4 +
h+1∑
j=1

j(j + 2)ω4

)
crossings. There are

no more crossings in our drawing of G′.
Now we add the cell gadgets of G to every Var-gadget, without additional crossings, and

the G-edges denoted by ej of all clauses Cj ∈ C. The goal is to show that G is (can be)
drawn with at most k crossings. Each G-edge ej crosses every Var-gadget in total weight of
2ω6 + 4ω4 + Θn,ℓ(ω1) crossings, together giving another 2nℓω6 + 4nℓω4 + Θn,ℓ(ω1) crossings
in our drawing. It only remains to estimate the weight of crossings of the G-edges ej with
the cell gadgets. If we can achieve the state that each G-edge ej additionally crosses only one
C-edge (of weight ω2) of cell gadgets in every Var-gadget, then, comparing the full count to
the reduction parameter definition

k = 2n(2h+1)ω7 +2nℓω6 +4nℓω4 +2n

h+1∑
j=2

j(j +1)ω4 +2n

h+1∑
j=1

j(j +2)ω4 +nℓω2 +(ω2 −1),

we see that it is enough to have Θn,ℓ(ω1) ≤ ω2 − 1. The latter holds true by our (sufficiently
large) choice of the base weight ω.

It thus remains to show that aforementioned desired drawings of the G-edges ej are
simultaneously possible. Since the given Satisfiability instance is satisfiable, there is a
truth assignment τ of V such that for every clause Cj ∈ C, an occurrence of some variable
xi ∈ V in Cj satisfies Cj in τ . If the variable xi ∈ V, i ∈ [n], is valued True, then the
Vari-gadget is pos-side flipped in our drawing of G′, i.e., that the LB-pos path of Vari is to
the left of the LB-neg path of Vari. If xi is False, then the Vari-gadget is neg-side flipped,
i.e., with LB-pos to the right.

Now, for every Cj ∈ C, the edge ej is drawn in the down-level of its cells area (as defined
in Section 3.4), until we reach the cell in the Vari-gadget where i is the least index such that
an occurrence of xi satisfies Cj in τ . Then, inside this Vari-gadget, the edge ej jumps up to
the up-level of its cells area, as depicted in Figure 3a if xi ∈ Cj , resp. in Figure 3b if xi ∈ Cj .
The Figure shows that this jump-up is also possible with crossing only one C-edge in the cells
gadget of Vari. For the rest, the edge ej is drawn in the up-level of its cells area. This is the
sought solution to a drawing of the reduction graph G with at most k crossings; indeed, the
edge ej arrives to the right side of the frame by n + 1 levels higher that its beginning on the
left side. ◀

▶ Lemma 3.12. If G admits a drawing G such that cr(G) ≤ k, then the original Satisfiab-
ility instance (C, V) is satisfiable.
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Proof. If cr(G) ≤ k, then G satisfies the drawings claims of Section 3.4 and, in particular,
Theorem 3.9 and Theorem 3.10. We define a valuation τ : V → {True, False} as follows;
xi ∈ V is set True if Vari pos-side flipped in G (the LB-pos path of Vari is drawn to the left
of the LB-neg path of Vari), and xi is set False otherwise.

Now, for every clause Cj ∈ C, the edge ej in G starts in the down-level of its cells area
and ends in the up-level. By Theorem 3.10, there has to be a Vari-gadget, i ∈ [n], such
that ej jumps up to the up-level of its cells area within the subdrawing of Vari in G. By
the definition of the cell types in the construction of G, see in Figure 3, this is possible in
accordance with Theorem 3.9 (only one crossing with a C-edge) only if xi ∈ Cj and xi is set
to True, or if xi ∈ Cj and xi is set to False. In other words, if every Cj ∈ C is satisfied by
our valuation τ . And this completes the proof. ◀

3.6 On Path-width of the Resulting Instance
The last missing ingredient in the proof of Theorem 3.1 (and hence, of Theorem 1.1) is an
estimate of the path-width and tree-width of the constructed instance G. To obtain it, we
will use the cops-and-robber game characterization from Theorem 2.1.

We start with an auxiliary technical claim.

▶ Lemma 3.13. (*) Let H be a graph whose vertex set is partitioned into m disjoint parts
V (H) = A1 ∪ . . . ∪ Am, and for some ai ≤ bi, i ∈ {1, . . . , m}, let Ai = {vi,j : ai ≤ j ≤ bi}.
Assume that
a) each Ai induces a path in H in the natural order of vertices, i.e. vi,ai

, vi,ai+1, . . . , vi,bi
;

b) if an edge vi,jvi′,j′ exists in H for i ̸= i′, then |i − i′| = 1 and |j − j′| ≤ 1; and
c) there are no indices i ̸= i′, j ̸= j′ such that both vi,jvi′,j′ ∈ E(H) and vi,j′vi′,j ∈ E(H).1
Then there exists a valid monotone search strategy for the cop player on H using m + 1 cops
against an invisible robber. Furthermore, this strategy can be assumed to start with the cop
player occupying the vertex subset {v1,a1 , . . . , vm,am

}.

▶ Proposition 3.14. For any given Satisfiability instance, the graph G constructed in
Section 3.3 (for the proof of Theorem 3.1) is of path-width at most 12 and of tree-width at
most 9.

Proof. The proof would be finished if we find a monotone search strategy for the cop player
on G using 13 cops against an invisible robber (implies path-width at most 12), and one
using 10 cops against a visible robber (implies tree-width at most 9). We start with the
former.

Firstly, let us place 8 cops (see Figure 1) on vertices r1
1,L, r1

h+3,L, uBL, uT L (left side of G)
and rn

1,R, rn
h+3,R, uBR, uT R (right side of G). Note (see Figure 4) that such a placement of

cops separates the set U0 ⊆ V (G) formed by the vertices of the left and right HB-paths of the
frame, and of the R-left path of Var1 and the R-right path of Varn from the rest of the
graph G. We can now use additional 4 + 1 = 5 cops to search the subgraph induced by U0
by using Theorem 3.13. Notice, however, that in this application the levels dealt with in
Theorem 3.13 are shifted against the natural indexing from the construction of G.

After the previous initial phase, we continue the search by induction on i = 1, 2, . . . , n.
We assume 8 cops placed on vertices ri

1,L, ri
h+3,L, ui−1

0 , wi−1
0 (the latter two being uBL, uT L

if i = 1) and, again, rn
1,R, rn

h+3,R, uBR, uT R. Further, we assume that V (Vari−1) (if i > 1)

1 The graph H can be easily pictured as having a planar drawing with the paths on A1, . . . , Am drawn
vertically in order from left to right, and other edges joining only neighboring verticals on the same
horizontal level or between two consecutive levels.
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is already robber-free. We place 4 of the remaining cops onto vertices ui
0, ui

1, wi
1, wi

0, and
subsequently lift the cops from ri

1,L, ri
h+3,L, ui−1

0 , wi−1
0 . We now have 5 free cops which can

be used to search the B-/LB-pos and B-/LB-neg paths of Vari by using Theorem 3.13. Then,
we place 2 of the free cops onto ri+1

1,L , ri+1
h+3,L, and use the remaining 3 cops to search the

R-right path of Vari and the R-left path of Vari+1, again by Theorem 3.13. After finishing
previous, we may lift the cops from ui

1 and wi
1, and we are back in the induction assumption

with i + 1 instead of i.
It is easy to verify that the described procedure is a valid monotone search strategy

against an invisible robber.

Regarding the tree-width subcase, we use knowledge of robber’s position for a slight
improvement of the previous search strategy. At the beginning, after placing cops on r1

1,L,
r1

h+3,L, uBL, uT L and rn
1,R, rn

h+3,R, uBR, uT R, we look at whether the robber is trapped
inside the set U0 and if this is the case, we throw in 9-th cop to catch the robber in U0 by
Theorem 3.13 while using also the 4 cops starting on r1

1,L, uBL, rn
1,R, uBR.

In the induction phase, whenever the robber is trapped inside the B-/LB-pos and
B-/LB-neg paths of Vari, we may instead use the 4 cops from rn

1,R, rn
h+3,R, uBR, uT R to

perform the catch by Theorem 3.13. We do likewise in the other subcase of the R-right
path of Vari and the R-left path of Vari+1. When moving cops from the position on ri

1,L,
ri

h+3,L, ui−1
0 , wi−1

0 to next ui
0, ui

1, wi
1, wi

0, we now move cops in pairs – place onto ui
0, ui

1
and lift from ri

1,L, ui−1
0 , and then do the other pairs. We observe that the maximum number

of cops needed in this strategy is 4 + 4 + 2 = 10, and this is tight at the moment just before
trapping the robber in the R-right/R-left paths. ◀

4 Conclusion

We have shown that the Crossing Number problem is NP-hard for graphs of path-width 12
(and as a result, even of tree-width 9). It is worth to remark that, since the measures
clique-width and rank-width are bounded by O(2tw), their width decompositions are also too
much general to help deal with the Crossing Number problem. On the other hand, there
are more restrictive parameterizations worth trying, e.g. treedepth, distance to linear forest
(distance to disjoint paths), feedback vertex set number (distance to a forest), or cut-width
or bandwidth.

Barely any of the existing results could be extended for the parameters above. Thus,
investigation whether any of them could yield fixed-parameter tractability (or W-hardness)
of Crossing Number is an interesting venue to explore. However, as it is known that
Crossing Number is in FPT when parameterized by the solution value (k) [4, 9], it only
makes sense to investigate those parameters which do not bound the crossing number itself.
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