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Abstract
The class of graph deletion problems has been extensively studied in theoretical computer science,
particularly in the field of parameterized complexity. Recently, a new notion of graph deletion
problems was introduced, called deletion to scattered graph classes, where after deletion, each
connected component of the graph should belong to at least one of the given graph classes. While
fixed-parameter algorithms were given for a wide variety of problems, little progress has been made
on the kernelization complexity of any of them. Here, we present the first non-trivial polynomial
kernel for one such deletion problem, where, after deletion, each connected component should be a
clique or a tree - that is, as dense as possible or as sparse as possible (while being connected). We
develop a kernel of O(k5) vertices for the same.
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1 Introduction

Graph modification problems form one of the most fundamental problem classes in algorithms
and graph theory. The input instance of a graph modification problem consists of an
undirected/directed graph, and a non-negative integer k, and the objective is to decide if
there exists a set of at most k vertices/edges/non-edges whose deletion/addition yields in a
graph belonging to some special graph class. A specific graph modification problem allows
to perform a specific graph operation, usually being vertex deletion or edge deletion or edge
addition or edge editing. Each of these operations, and vertex-deletion in particular, have
been extensively studied from the perspective of classical and parameterized complexity. For
example, some vertex deletion graph problems that have received intense attention in the
past three decades include Vertex Cover, Feedback Vertex Set, Cluster Vertex
Deletion Set, Interval Vertex Deletion Set, Chordal Vertex Deletion Set,
and more (see [3, 6, 7, 8, 9, 14, 17, 20, 32, 28, 38]).

A graph class Π is said to be hereditary if Π is closed under taking induced subgraphs.
There are several hereditary graph classes Π such that the corresponding Π-Vertex Dele-
tion problem is well-studied. Such examples include all of the problems listed above.
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41:2 Polynomial Kernel for Deletion to Cliques and Trees

Formally, the Π-Vertex Deletion is defined as follows: given a graph G and a non-
negative integer k, we ask whether G contains at most k vertices whose deletion results in
a graph belonging to class Π. Lewis and Yannakakis [35] proved that for every non-trivial
Π, the Π-Vertex Deletion problem is NP-complete. Later, Cai [5] has proved that if a
hereditary graph class Π can be described by a finite set of forbidden subgraphs containing all
minimal forbidden subgraphs in the class, then vertex deletion to Π becomes fixed-parameter
tractable (FPT).

Most of the computational problems that are NP-hard in general graphs can often be
solved in polynomial time when restricted to special graph classes. For example, Vertex
Cover is NP-hard on general graphs, but can be solved in polynomial time in forests,
bipartite graphs, interval graphs, chordal graphs, claw-free graphs, and bounded treewidth
graphs (see [12, 13, 23, 37]). Additionally, several other graph theoretic problems have
also been studied in special graph classes (see [2, 4, 11, 18, 22, 24, 30, 31, 33, 36] for some
examples). If your input graph is such that each of its connected components belong to one
of those special graph classes where the problem is solvable, then the problem can be solved
by solving it over each component of the graph. Therefore, such a graph where each of the
components belong to different graph classes are interesting. We say that such graphs belong
to a scattered graph class. Vertex deletion problems are useful to find a set of few vertices
whose removal results in a graph class where the problem of our interest is tractable. Since
the same problem is tractable in scattered graph classes (i.e. tractable in each of the graph
class), vertex deletion to scattered graph classes are interesting to look at as well.

Many of the graph classes can be characterized by a set of forbidden graphs [15, 34, 23, 10].
Vertex deletion problems for such graph classes boils down to hitting such forbidden subgraphs
occuring as induced subgraphs of the input graph. Unlike this, for deletion to a scattered
graph class, the deletion set X might separate the vertices of the union of the forbidden
subgraphs for each of the graph classes (instead of hitting them) so that all such graphs
do not occur in any of the connected components of the graph G − X. This ramps up the
difficulty for coming up with FPT, approximation and kernelization algorithms for deletion
to scattered graph classes. A naive approach of finding the solutions (or kernels) for each of
the deletion problems separately and “combining” them is unlikely to work.

Ganian et al. [21] studied backdoors to scattered classes of CSP problems. Subsequently,
Jacob et al. [25, 26] built on the works by Ganian et al. [21] and initiated a systematic study
of vertex deletion to scattered graph classes. They considered the (Π1, . . . , Πd)-Deletion
problem where the input instance is a graph G a parameter k with respect to d (constant)
hereditary graph classes Π1, . . . , Πd. The objective is to decide if there is a set of at most k

vertices S such that every connected component of G − S is in Πi for some i ∈ [d]. After
that, Jacob et al. [26] considered specific pairs of hereditary graph classes Π1 and Π2
and have provided singly exponential-time fixed-parameter tractable (FPT) algorithms and
approximation algorithms for (Π1, Π2)-Deletion problems. Very recently, Jansen et al. [29]
conducted a follow-up work on (Π1, . . . , Πd)-Deletion problems and have improved the
results appearing in [25]. A common theme for the FPT algorithms for deletion to scattered
graph classes is a non-trivial “unification” of the techniques used in the deletion problems of
each of the graph classes.

Our Problem and Results. To the best of our knowledge, vertex deletion to scattered graph
classes is essentially unexplored from the perspective of polynomial kernelization that is
a central subfield of parameterized complexity. The only folklore result that follows from
Jacob et al. [26] states that if there are two hereditary graph classes Π1 and Π2 such that
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both Π1 and Π2 can be described by finite forbidden families and Pd (the induced path of d

vertices) is a forbidden induced subgraph for Π1 for some fixed constant d, then the problem
(Π1, Π2)-Deletion can be formulated as a d-Hitting Set problem and hence admits a
polynomial kernel. This folklore result is very restrictive and does not capture any hereditary
graph class whose forbidden sets are not bounded by a fixed constant.

In this paper, we initiate the study of vertex deletion to scattered graph classes from
the perspective of polynomial kernelization. We consider the problem Cliques or Trees
Vertex Deletion where given a graph G and a non-negative integer k, we ask if G contains
a set S of at most k vertices, such that G−S is a simple graph and every connected component
of it is either a clique or a tree – that is, as dense as possible or as sparse as possible (while
being connected). Naturally, we are specifically interested in the case where the input graph
is already a simple graph. However, our preprocessing algorithm can produce intermediate
multigraphs. Hence, we directly consider this more general formulation. Formally, we define
our problem as follows.

Cliques or Trees Vertex Deletion (CTVD) Parameter: k

Input: An undirected (multi)graph G = (V, E) and a non-negative integer k.
Question: Does G contain a set S of at most k vertices such that G − S is a simple
graph and every connected component of G − S is either a clique or a tree?

This problem is particularly noteworthy as it captures the essence of scattered classes:
allowing the connected components to belong to vastly different graph classes and ideally
the simplest ones where various computational problems are polynomial-time solvable. Here,
we indeed consider the extremes: the simplest densest graph (cliques) and the most natural
class of sparsest connected graphs (trees). If X is a feasible solution to Cliques or Trees
Vertex Deletion for a graph G, then we call X a (clique, tree)-deletion set of G. We
consider the (upper bound on the) solution size k as the most natural parameter. Jacob et
al. [26] proved that Cliques or Trees Vertex Deletion is in FPT - specifically, that it
admits an algorithm that runs in O∗(4k)-time. In this paper, we prove the following result
on the polynomial kernelization for this problem.

▶ Theorem 1.1. Cliques or Trees Vertex Deletion (CTVD) admits a kernel with
O(k5) vertices.

Our theorem is the first non-trivial result on a polynomial kernel for vertex deletion to pairs
of graph classes. The proof of this kernelization upper bound is based on several non-trivial
insights, problem specific reduction rules, and structural properties of the solutions.

Organization of the Paper. In Section 2, we introduce basic terminologies and notations.
Section 3 is devoted to the proof of our main result (Theorem 1.1). Finally, in Section 4, we
conclude with some future research directions.

2 Preliminaries

We use standard graph theoretic terminologies from Diestel’s book [15]. For a vertex v in
G, let dG(v) denote the degree of v in G, which is the number of edges in G incident to v.
When we look at the number of edges incident on v, we take the multiplicity of every edge
into account. A pendant vertex in a graph G is a vertex having degree one in G. A pendant
edge in a graph G is the edge incident to a pendant vertex in G. A path P in a graph is a
sequence of distinct vertices (v1, . . . , vr) such that for every 1 ≤ i ≤ r − 1, vivi+1 is an edge.

ISAAC 2024
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A degree-2-path in G is a path P such that all its internal vertices have degree exactly 2 in
G. If a graph G has a degree-2-path P = (v1, . . . , vr) such that v1 is a pendant vertex, for
every i ∈ {2, . . . , r − 1}, dG(vi) = 2 and dG(vr) > 2, then we call P a degree-2-tail of length
r. If G has a degree-2-path P = (v1, . . . , vr) such that for all i ∈ {2, . . . , r − 1}, dG(vi) = 2,
and dG(v1), dG(vr) > 2, then we call P a degree-2-overbridge of length r. Sometimes, for
simplicity, we use P = v1 − v2 − . . . − vr to denote the same path P of r vertices. The graph
Kt for integer t ≥ 1 is the clique of t vertices. For a non-negative integer c, the graph cK1
is the collection of c isolated vertices. The graphs Ct and Pt for integer t ≥ 1 are the cycle
and path of t vertices respectively. We define a paw graph as the graph with four vertices
u1, u2, u3 and u4 where u1, u2, u3 form a triangle, and u1 alone is adjacent to u4 (thus, u4 is
a pendant vertex). We define a diamond graph as the graph with four vertices u1, u2, u3 and
u4 where u1, u2, u3 form a triangle, and u1, u2 are adjacent to u4. Note that both paw and
diamond contain a triangle as well as a 2K1 as induced subgraphs. We say that a vertex
x ∈ V (G) is adjacent to a subgraph G[Y ] for some x /∈ Y if x has a neighbor in Y in the
graph G. A cut of G is a bipartition (X, Y ) of V (G) into nonempty subsets X and Y . The set
EG(X, Y ) is denoted as the edges crossing the cut. We omit the subscript when the graph is
clear from the context. Let C be a cycle having r vertices We use C = v1 − v2 − . . . − vr − v1
to denote the cycle with edges vivi+1 for every 1 ≤ i ≤ r − 1 and the edge vrv1.

▶ Definition 2.1 (v-flower). For a graph G and a vertex v in G, a v-flower is the structure
formed by a family of ℓ cycles C1, C2, . . . Cℓ in G all containing v and no two distinct cycles
Ci and Cj sharing any vertex except v. We refer to the Cis’ as the petals and to v as the
core. The number of cycles ℓ is the order of the v-flower.

▶ Proposition 2.2 ([13], Lemma 9.6). Given a graph G with v ∈ V (G) and an integer k,
there exists a polynomial-time algorithm that either provides a v-flower of order k + 1 or
compute a set Z ⊆ V (G) \ {v} with at most 2k vertices satisfying the following properties: Z

intersects every cycle of G that passes through v, and there are at most 2k edges incident to
v and with second endpoint in Z.

Let q be a positive integer and G be a bipartite graph with vertex bipartition (A, B). For
Â ⊆ A and B̂ ⊆ B, a set M ⊆ E(G) of edges is called a q-expansion of Â into B̂ if

(i) every vertex of Â is incident to exactly q edges of M , and
(ii) exactly q|Â| vertices of B̂ are incident to the edges in M .

The vertices of Â and B̂ that are the endpoints of the edges of M are said to be saturated
by the q-expansion M . We would like to clarify that by definition of q-expansion M of Â

into B̂, all vertices of Â are saturated by M , and |B̂| ≥ q|Â|. But not all vertices of B̂ are
guaranteed to be saturated by M .

▶ Lemma 2.3 (q-Expansion Lemma [39, 13]). Let q ∈ N and G be a bipartite graph with
vertex bipartition (A, B) such that |B| ≥ q|A|, and there is no isolated vertex in B. Then,
there exist non-empty vertex sets X ⊆ A and Y ⊆ B such that

(i) there is a q-expansion M of X into Y , and
(ii) no vertex in Y has a neighbor outside X, that is, N(Y ) ⊆ X.

Furthermore, the sets X and Y can be found in time O(mn1.5).

Recently, Fomin et al. [19] have designed the following generalization of the Lemma 2.3
(q-Expansion Lemma) as follows.

▶ Lemma 2.4 (New q-Expansion Lemma [19, 1, 27]). Let q be a positive integer and G be a
bipartite graph with bipartition (A, B). Then there exists Â ⊆ A and B̂ ⊆ B such that there
is a q-expansion M of Â into B̂ in G such that
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(i) N(B̂) ⊆ Â, and
(ii) |B \ B̂| ≤ q|A \ Â|.

Furthermore, the sets Â, B̂ and the q-expansion M can be computed in polynomial-time.

Observe that the Lemma 2.4 statement does not require the two conditions that B has
no isolated vertex and |B| ≥ q|A| that were required for the Lemma 2.3. In particular, if
|B| > q|A|, then it must be that |B̂| > q|Â| and B̂ will contain some vertex that is not
saturated by the q-expansion M .

Forbidden Subgraph Characterization. Given a graph class G, any (induced) subgraph
that is not allowed to appear in any graph of G is called an obstruction for G (also known
as forbidden subgraphs or forbidden induced subgraphs). We first identify the obstructions
for Cliques or Trees Vertex Deletion. Clearly, on simple graphs, we cannot have an
obstruction for both a tree and a clique in the same connected component. If G is the class
of all cliques, then the obstruction for G is 2K1 and if G is the class of all forests, then any
cycle Ct with t ≥ 3 is an obstruction for G. Note that a cycle Ct with t ≥ 4 contains 2K1 as
an induced subgraph. Throughout the paper, we sometimes abuse the notation where an
obstruction (or a forbidden induced subgraph) is viewed as a set and sometimes it is viewed
as an (induced) subgraph.

▶ Observation 2.5. For every integer t ≥ 4, the cycles Ct contains 2K1 as induced subgraph.

Thus, we can conclude that the obstructions for Cliques or Trees Vertex Deletion
are cycles Ct with t ≥ 4 and connected graphs with both 2K1 and C3 as induced subgraphs.
For multigraphs, a vertex with a self-loop and two vertices with two (or more) edges are
obstructions as well. If a connected graph has both 2K1 and C3 as induced subgraphs, a
(clique, tree)-deletion set either intersects the union of the vertex sets of these subgraphs or
contains a subset separating them. The following lemma claims that if a connected graph
contains both 2K1 and C3 as induced subgraphs, then it contains a paw or a diamond.

▶ Lemma 2.6 (⋆).1 A connected graph G with both 2K1 and C3 as induced subgraphs
contains either a paw or a diamond as an induced subgraph.

From Lemma 2.6, we get a forbidden subgraph characterization for the class of graphs
where each connected component is a clique or a tree.

▶ Lemma 2.7 (⋆). Let G be the class of all simple graphs where each connected component
is a clique or a tree. Then, a simple graph G belongs to G if and only if G does not contain
any paw, diamond or cycle Ci with i ≥ 4 as an induced subgraph.

Parameterized Complexity and Kernelization. A parameterized problem L is a set of
instances (x, k) ∈ Σ∗ × N where Σ is a finite alphabet and k ∈ N is a parameter. The notion
of “tractability” in parameterized complexity is defined as follows.

▶ Definition 2.8 (Fixed-Parameter Tractability). A parameterized problem L is said to be
fixed-parameter tractable (or FPT) if given (x, k) ∈ Σ∗ × N, there is an algorithm A that
correctly decides if (x, k) ∈ L in f(k)|x|O(1)-time for some computable function f : N → N.
This algorithm A is called fixed-parameter algorithm (or FPT algorithm) for the problem L.

1 Due to lack of space, the proofs that are omitted or marked ⋆ can be found in the full version.
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Observe in the above definition that we allow combinatorial explosion with respect to the
parameter k while the algorithm runs in polynomial-time with respect to |x|. We say that
two instances (x, k) of L and (x′, k′) of L are equivalent if (x, k) ∈ L if and only if (x′, k′) ∈ L.
The notion of kernelization (also known as parameterized preprocessing) is defined as follows.

▶ Definition 2.9 (Kernelization). A kernelization for a parameterized problem L ⊆ Σ∗ × N
is an algorithm that given an instance (x, k) of L, outputs an equivalent instance (x′, k′)
(called kernel) of L in time polynomial in |x| + k such that |x′| + k′ ≤ g(k) for some function
g : N → N. If g(k) is kO(1), then L is said to admit a polynomial kernel.

A kernelization algorithm usually consists of a collection of reduction rules that have
to be applied exhaustively in sequence. A reduction rule is safe if given an instance (x, k)
of L, one application of the reduction rule outputs an equivalent instance (x′, k′) of L. It
is well known that “a decidable parameterized problem is FPT if and only if it admits a
kernelization”. For more details, we refer to [13, 16, 19] for more formal definitions about
parameterized complexity and kernelization.

3 A Polynomial Kernel for Cliques and Trees

This section is devoted to a polynomial kernel for Cliques or Trees Vertex Deletion.
As the first step, we invoke the following proposition by Jacob et al. [26] that computes a
(clique, tree)-deletion set S ⊆ V (G) with at most 4k vertices.

▶ Proposition 3.1 ([26], Theorem 6). Cliques or Trees Vertex Deletion admits a
4-approximation algorithm.

We begin with the following observation, whose proof is trivial.

▶ Observation 3.2. For any subset Z ⊆ V (G), if (G, k) is a yes-instance for Cliques or
Trees Vertex Deletion with solution X, then (G − Z, k) is a yes-instance for Cliques
or Trees Vertex Deletion with solution X \ Z.

Overview of the Kernelization Algorithm. We start with invoking the 4-approximation
algorithm for Cliques or Trees Vertex Deletion(Proposition 3.1) to get a (clique,
tree)-deletion set S of size at most 4k. In Section 3.1, we provide some reduction rules that
guarantee that every connected component of G − S has a neighbor in S, and the graph has
no degree-2-path of G has more than four vertices. Subsequently, in Section 3.2, we provide
some reduction rules and prove that the number of vertices in the connected components of
G − S that are cliques is O(k5). Finally, in Section 3.3, we reduce the number of vertices in
the connected components of G − S that are trees to O(k2). For this, we prove a variant of
Proposition 2.2 and use reduction rules related to that using New q-Expansion Lemma (i.e.
Lemma 2.4).

3.1 Initial Preprocessing Rules
Let S be a 4-approximate (clique, tree)-deletion set of G obtained from Proposition 3.1.
If |S| > 4k, we conclude that (G, k) is a no-instance and return a trivial constant sized
no-instance. Hence, we can assume without loss of generality that |S| ≤ 4k. We also assume
without loss of generality that G has no connected component that is a clique or a tree.
If such components are there, we can delete those components. Hence, we can naturally
assume from now onwards, that every connected component of G − S (that is either a clique
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or a tree) has some neighbor in S. But some of our subsequent reduction rules can create
some component in G − S that is neither a clique nor a tree. So, we state the following
reduction rule for the sake of completeness. In this following reduction rule, we delete isolated
connected components C in G − S, whose safeness easily follows. All the obstructions for
Cliques or Trees Vertex Deletion are connected graphs and intersect with S. Thus,
no obstruction can be part of isolated component C, and also S.

▶ Reduction Rule 3.3. If there exists a connected component C in G − S such that no vertex
in C has a neighbor in S, then remove C from G. The new instance is (G − C, k).

Since one of our subsequent reduction rules can create parallel edges. As parallel edges
are also obstructions, we state the following reduction rule whose safeness is also trivial.

▶ Reduction Rule 3.4. If there is an edge with multiplicity more than two, reduce the
multiplicity of that edge to exactly two.

We also have the following reduction rule that helps us to bound the number of pendant
vertices attached to any vertex.

▶ Reduction Rule 3.5. If there exists a vertex u in G adjacent to vertices v and v′ that are
pendants in G, then remove v from G. The new instance is (G − v, k).

▶ Lemma 3.6 (⋆). Reduction Rule 3.5 is safe.

We can conclude that if Reduction Rule 3.5 is not applicable, then every vertex in G is
adjacent to at most one pendant vertex in G. From now, we assume that every vertex in G

is adjacent to at most one pendant vertex. Our next two reduction rules help us to reduce
the length (the number of vertices) of a degree-2-path in G. Note that a degree-2-path can
be of two types, either a degree-2-tail or a degree-2-overbridge. The following two reduction
rules handle both such types.

▶ Reduction Rule 3.7. Let P = (v1, v2, . . . , vℓ) be degree-2-tail of length ℓ such that dG(v1) >

2, dG(vℓ) = 1 and Z = {v3, v4, . . . , vℓ}. Then, remove Z from G. The new instance is
(G − Z, k).

▶ Lemma 3.8 (⋆). Reduction Rule 3.7 is safe.

Our previous reduction rule has illustrated that we can shorten a long degree-2-tail to
length at most two. Now, we consider a degree-2-overbridge P of length ℓ. Our next lemma
gives us a structural characterization that if we delete all but a few vertices of P , then the
set of all paws and diamonds remain the same even after deleting those vertices.

▶ Lemma 3.9 (⋆). Let P = (v1, v2, . . . , vℓ) be a degree-2-overbridge of length ℓ in G and
Z = {v3, v4, . . . , vℓ−2}. Consider the graph G′ obtained from G by deleting the vertices of Z

and then adding the edge v2vℓ−1. Then the following statements hold true.
(i) Every paw and every diamond of G is disjoint from Z.
(ii) Every paw and every diamond of G′ is disjoint from {v2, vℓ−1}.
(iii) The set of paws and diamonds in both G and G − Z are the same.

Our next reduction rule exploits the above lemma and reduces the length of a degree-2-
overbridge to at most four.

▶ Reduction Rule 3.10. Let P = (v1, v2, . . . , vℓ) be a degree-2-overbridge of length ℓ in G

and Z = {v3, v4, . . . , vℓ−2}. Let G′ be the graph obtained from G by removing Z and adding
the edge v2vℓ−1. The new instance is (G′, k). We refer to Figure 1 for an illustration.

▶ Lemma 3.11 (⋆). Reduction Rule 3.10 is safe.

ISAAC 2024
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v1

v2

v3 vℓ−2

vℓ−1

vℓ vℓ

vℓ−1

v1 v2

Figure 1 An illustration of applying Reduction Rule 3.10.

3.2 Bounding the Clique Vertices in G − S

Let V1 ⊆ V (G) \ S denote the set of vertices of the connected components of G − S that
form cliques of size at least 3. We now bound the number of connected components in G[V1]
(which are cliques). Let us create an auxiliary bipartite graph H = (S, C) with S on one side
and C having a vertex set corresponding to each of the clique connected components in V1
on the other side. We add an edge (s, C) with s ∈ S and C ∈ C if s is adjacent to at least
one vertex in C. We now show how to ensure that |C| ≤ 2|S|. Note that by Reduction Rule
3.3, no component in C is an isolated vertex in H. So, we have the following reduction rule,
where we rely on the Expansion Lemma.

▶ Reduction Rule 3.12. If |C| ≥ 2|S|, then call the algorithm provided by the q-Expansion
Lemma with q = 2 (Lemma 2.3) to compute sets X ⊆ S and Y ⊆ C such that there is a
2-expansion M of X into Y in H and NH(Y) ⊆ X. The new instance is (G − X, k − |X|).

▶ Lemma 3.13 (⋆). Reduction Rule 3.12 is safe.

Thus, we have the following observation.

▶ Observation 3.14. After exhaustive applications of Reduction Rules 3.3- 3.12, |C| ≤ 8k.

We now give one of the most crucial reduction rules that gives us an upper bound the
size of every clique in G[V1]. We have the following marking scheme for each of the cliques
in G[V1].

Procedure 1 Mark-Clique-K.

For every non-empty subset Z of size at most 3 of S, for every function f : Z → {0, 1}, let
KZ,f be the set of vertices v in K such that for each z ∈ Z,

if f(z) = 1, then v is adjacent to z.
if f(z) = 0, then v is not adjacent to z.

We arbitrarily mark min{|KZ,f |, k + 4} vertices of KZ,f . Note that we have marked at
most ε(k) = (23(4k

3
)

+ 22(4k
2

)
+ 2

(4k
1

)
)(k + 4) vertices in K. Let v ∈ K be a vertex that is

not marked by the above procedure Mark-Clique-K. The following set of lemmas illustrate
that v is an irrelevant vertex of G.

▶ Lemma 3.15 (⋆). Let S be a (clique, tree)-deletion set of at most 4k vertices and K be a
connected component of G − S that is a clique. Moreover, let v ∈ K be a vertex that is not
marked by the procedure Mark-Clique-K and X ⊆ V (G) \ {v} be a set of at most k vertices.
If G − X has a vertex subset O and G[O] is isomorphic to C4, or a diamond or a paw then
G − (X ∪ {v}) also contains a C4, or a diamond, or a paw as an induced subgraph.

Our previous lemma has illustrated that if G − X has a paw or a diamond or a C4 as an
induced subgraph, then G − (X ∪ {v}) also has a paw or a diamond or a C4 respectively.
We will now illustrate and prove an analogous statement when G − X has an induced cycle
of length larger than 4. We begin with the following observation.
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▶ Observation 3.16 (⋆). Let C = v − u − u1 − u2 − . . . − u′ − v be a cycle of length at least
5 in G where the path P = u − u1 − u2 − . . . − u′ is an induced path in G. Then there exists
a cycle of length at least 4 or a diamond as an induced subgraph in G.

Using the above observation, we can prove the following lemma.

▶ Lemma 3.17. Let S be a (clique, tree)-deletion set set of at most 4k vertices and K be a
connected component of G − S that is a clique. Moreover, let v ∈ K be a vertex that is not
marked by the procedure Mark-Clique-K and X ⊆ V (G) \ {v} be a set of at most k vertices.
If G − X has an induced cycle of length at least 5, then there exists a cycle of length at least
4 or a diamond as an induced subgraph in G − (X ∪ {v}).

Proof. Suppose that the premise of the statement is true but for the sake of contradiction,
we assume that G − (X ∪ {v}) does not have cycles of length at least 4 and diamonds as
induced subgraphs. Since v is the only vertex that is in G but not in G − {v}, it follows
that there is an induced cycle C of length at least 5 in G − X such that v ∈ C. Note that
C has at most two vertices from K including v as K is a clique. Furthermore, it must
have two non-adjacent vertices from S as otherwise C contains a triangle or an induced C4,
contradicting that C is an induced cycle of length at least 5. Let z1, z2 ∈ C ∩ S that are
non-adjacent. There are two cases.
Case (i): The first case is |C ∩ K| = 1 and let C ∩ K = {v}. Then, both z1 and z2 are

adjacent to v ∈ C. Let us define a function f : {z1, z2} → {0, 1} with f(z1) = 1 and
f(z2) = 1. For the set {z1, z2} and the function f , the vertex v is unmarked by the
procedure Mark-Clique-K. Hence, there are k +4 vertices that are adjacent to both z1 and
z2 and are marked by the procedure. All the marked vertices are in K \ {v} out of which
at most k vertices are in X. Hence, there is v′ ∈ K \ X such that v′ is adjacent to both
z1 and z2 and is marked by the procedure. Let us look at the cycle C ′ = (C \ {v}) ∪ {v′}.
Note that C ′ is a cycle where the path from z1 to z2 is an induced path in G − X. There
could be edges from v′ to other vertices of C ′. By Observation 3.16, C ′ is either an
induced cycle of length at least 4 in G or it induces a diamond. Since C ′ ∩ (X ∪ {v}) = ∅,
this contradicts our initial assumption that G − (X ∪ {v}) does not have cycles of length
at least 4 and diamonds as induced subgraphs.

Case (ii): The second and last case is |C ∩ K| = 2. Let v, x ∈ C ∩ K. Observe that v and x

are two consecutive vertices in C. Since vx ∈ E(G), it must be that v is adjacent to z1
and x is adjacent to z2. As C is an induced cycle of length at least 5, it must be that z1
is not adjacent to x and z2 is not adjacent to v.
Let us define a function f : {z1, z2} → {0, 1} with f(z1) = 1 and f(z2) = 0. For the set
{z1, z2} and the function f , the vertex v is unmarked by the procedure Mark-Clique-K.
Hence, there are k + 4 vertices that is adjacent to z1 and not adjacent to z2 that are
marked by the procedure. All the marked vertices are in K \ {v} out of which at most
k vertices are in X. Hence, there is v′ ∈ K \ X such that v′ is adjacent to z1 and not
adjacent to z2 that is marked by the procedure.
We replace v in C by v′ to get a new cycle C ′ that has the same number of vertices as C

(see Figure 2 for an illustration). Note that C ′ is a cycle where the path from z1 to x

is an induced path in G − X. There could be edges from v′ to other vertices of C ′. By
Observation 3.16, C ′ is either an induced cycle of length at least 4 in G or it induces
a diamond. This contradicts our initial assumption that G − (X ∪ {v}) does not have
cycles of length at least 4 and diamonds as induced subgraphs.

Since the above cases are mutually exhaustive, this completes the proof. ◀
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v

v
′

x

C \ (K ∪ {z1, z2}) C \ (K ∪ {z1, z2})v v
′

z1 z2 z1 z2

Figure 2 An illustration of C5.

Consider a connected component K of G − S such that S is a (clique, tree)-deletion set
of G with at most 4k vertices and K is a clique. Lemma 3.15 and Lemma 3.17 illustrate
that if a vertex v ∈ K is not marked by the procedure Mark-Clique-K, then deleting v from
the graph is safe. As a consequence of this, we have the following reduction rule the safeness
of which follows from the above two lemmas.

▶ Reduction Rule 3.18. Let K be a connected component in G[V1]. If v ∈ K is an unmarked
vertex after invoking the procedure Mark-Clique-K, then remove v from G. The new instance
is (G − v, k).

▶ Lemma 3.19. Reduction Rule 3.18 is safe.

Proof. The forward direction (⇒) is trivial as if X is a solution of size at most k in G, then
by Observation 3.2, X \ {v} is a solution of size at most k in G − v.

For the backward direction (⇐), let X be a solution of size at most k in G − v. Targeting
a contradiction, suppose X is not a solution in G. Then, there exists an obstruction O of
Cliques or Trees Vertex Deletion in G − X containing v that is a diamond, or a paw,
or Ci where i ≥ 4 due to Lemma 2.7. If O is isomorphic to a C4, or a diamond, or a paw,
then by Lemma 3.15, G − (X ∪ {v}) also contains a C4, or a diamond, or a paw as induced
subgraph. It contradicts Lemma 2.7 that X is a solution to G − {v}. Else, O is isomorphic
to Ci where i ≥ 5. By Lemma 3.17, G − (X ∪ {v}) contains a Cj , where j ≥ 4, or a diamond
as induced subgraph. This contradicts Lemma 2.7 as X is a solution to G − {v}. Hence X is
a solution to G. ◀

We have the following lemma that bounds |V1|, i.e. the number of vertices that are part
of cliques of size at least 3 in G − S.

▶ Lemma 3.20. Let G be the graph obtained after exhaustive application of Reduction Rules
3.3 to 3.18. Then |V1| ≤ 8kε(k) where ε(k) = (k + 4)(8

(4k
3

)
+ 4

(4k
2

)
+ 2

(4k
1

)
).

Proof. Since Reduction Rules 3.3-3.12 are not applicable, it follows from Observation 3.14
that the number of connected components in G[V1] is at most 8k. Every connected component
of G[V1] is a clique. For every connected component K of G[V1], observe that the procedure
Mark-Clique-K marks at most ε(k) vertices from K. Since Reduction Rule 3.18 is not
applicable, G[V1] has no unmarked vertices. As G[V1] has at most 8k connected components,
it follows that |V1| ≤ 8kε(k). ◀

3.3 Bounding the Tree Vertices in G − S

In this section, we describe the set of reduction rules that we use to reduce the number of
vertices that participate in the forests of G − S. Let V2 = V \ (S ∪ V1). Note that G[V2] is
the collection of trees in G − S.



A. Jacob, D. Majumdar, and M. Zehavi 41:11

▶ Reduction Rule 3.21. Let v be a leaf in a connected component C of G[V2] such that
neither v nor its neighbor in C is adjacent to any vertex of S. Then, delete v from G and
the new instance is (G − v, k′) with k′ = k.

▶ Lemma 3.22 (⋆). Reduction Rule 3.21 is safe.

Let C be a connected component of G[V2]. We say that C is a pendant tree of G[V2] if
either C consists of pendant vertex of G or has a unique vertex u that has a unique neighbour
in S and no other vertex of C has any neighbor in S. We have the following observation.

▶ Observation 3.23 (⋆). Let C be a connected component of G[V2]. Then, C is a pendant
tree if and only if E(C, V (G) \ C) contains a single edge.

Given a pendant tree C of G[V2], we call x ∈ S the unique S-neighbor of C if NG(C) = {x}
and |NG(x) ∩ C| = 1. Furthermore, given a vertex x ∈ S, we call C a pendant tree-neighbor
of x if C is a pendant tree of G[V2] and x is the unique S-neighbor of C.

▶ Reduction Rule 3.24. Let C be a pendant tree in G[V2] such that x ∈ S is a unique
S-neighbor of C. Then, delete all the vertices of C except for the vertex u that has the unique
S-neighbor x ∈ S in C to obtain the graph G′. Let (G′, k′) be the output instance such that
k′ = k.

▶ Lemma 3.25 (⋆). Reduction Rule 3.24 is safe.

▶ Lemma 3.26 (⋆). If Reduction Rule 3.24 is not applicable to the input instance (G, k),
then any pendant tree of G[V2] is a pendant vertex of G.

Recall from Definition 2.1 that a v-flower of order r is a collection of r cycles that pairwise
intersect at v and are pairwise disjoint otherwise. Our next reduction rule uses the concept
of v-flower and Proposition 2.2 as follows.

▶ Reduction Rule 3.27. For v ∈ S, we invoke Proposition 2.2 in G[V2 ∪ {v}]. If this gives a
v-flower of order 3k + 2, then delete v from G and the new instance is (G − v, k − 1).

▶ Lemma 3.28 (⋆). Reduction Rule 3.27 is safe.

Since Reduction Rule 3.27 is not applicable, invoking Proposition 2.2 of order (3k + 2)
at G[{v} ∪ V2] gives us a set Hv ⊆ V2 of at most 6k + 4 vertices that intersects all cycles of
G[{v} ∪ V2] that passes through v. Our following lemma proves that the same vertex subset
Hv also intersects all paws and diamonds of G[{v} ∪ V2] passing through v.

▶ Lemma 3.29 (⋆). If Reduction Rule 3.27 is not applicable, then polynomial time, we can
obtain a vertex subset Hv ⊆ V2 with |Hv| ≤ 6k + 4 such that Hv intersects every cycle, every
paw, and every diamond in G[{v} ∪ V2] that passes through v.

When the above mentioned reduction rules are not applicable, we have the following
lemma which bounds the number of connected components of the graph G[V2 \ Hv] that is
adjacent to only v.

Construction of Auxiliary Bipartite Graph. If none of the above reduction rules are
applicable, we exploit the structural properties of the graph using the above mentioned
lemmas and construct an auxiliary bipartite graph that we use in some reduction rules later.
Let C denote the connected components of G[V2 \ (Hv ∪ {v})] that are adjacent to v. In
other words, if D ∈ C, then D is a connected component of G[V2 \ (Hv ∪ {v})] such that v is
adjacent to D.
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▶ Definition 3.30. Given v ∈ S, let Hv denote the set of at most 6k + 4 vertices obtained
by Lemma 3.29 for the graph G[{v} ∪ V2]. Consider the graph G[V2 \ (Hv ∪ {v})] that is a
forest. We define an auxiliary bipartite graph H = (Hv ∪ (S \ {v}), C) where Hv ∪ (S \ {v})
is on one side, and C on the other side. The set C contains a vertex for each connected
component C of G[V2 \ (Hv ∪ {v})] that has a vertex adjacent to v. We add an edge between
h ∈ Hv ∪ (S \ {v}), and connected component C ∈ C if h is adjacent to a vertex in component
C ∈ C.

We prove the following observation that is crucial to the next reduction rule which reduces
the number of edges incident to a vertex v ∈ S with other endpoint being V2.

▶ Observation 3.31 (⋆). Let H = (Hv ∪ (S \ {v}), C) be the auxiliary bipartite graph as
defined in Definition 3.30. If v has degree more than 60(k + 1) in G[{v} ∪ V2], then C has
more than 4(|S| + |Hv|) components.

Applying the New Expansion Lemma. If there is a vertex v ∈ S such that there are at
least 60(k + 1) edges incident to v with the other endpoints being in V2, then Observation
3.31 implies that |C| > 4(|S|+ |Hv|). Suppose that we apply new 4-expansion lemma (Lemma
2.4 with q = 4) on H to obtain A ⊆ (S \ {v}) ∪ Hv, B ⊆ C with a 4-expansion M̂ of A into B.
Then, it satisfies that (i) |C \B| ≤ 4|(S ∪Hv)\A| and NH(B) ⊆ A. As |C \B| ≤ 4|(S ∪Hv)\A|
and |C| > 4(|S| + |Hv|), it must be that |B| > 4|A|. Then, there must be a component
C∗ ∈ B such that C∗ is not an endpoint of M̂ (or not saturated by M̂). Let B̂ ⊆ B denote
the components of B that are saturated by M̂ . As some component of B is not in B̂, it must
be that B̂ ⊂ B. We use these characteristics crucially to prove that our next reduction rule
is safe.

▶ Reduction Rule 3.32. Let v ∈ S be a vertex with degree at least 60(k + 1) in G[{v} ∪ V2]
and let H be the auxiliary bipartite graph as illustrated in Definition 3.30. We invoke the
algorithm provided by Lemma 2.4 (i.e. new q-expansion lemma with q = 4) to compute sets
A ⊆ Hv ∪(S \{v}) and B ⊆ C such that A has a 4-expansion M̂ into B in H and NH(B) ⊆ A.
Let B̂ ⊆ B denotes the vertices of B that are saturated by M̂ (endpoints of M̂ in B). Remove
the edges between v and the connected components in B̂ in G and create a double edge between
v and every vertex in A to obtain the graph G′. The new instance is (G′, k′) with k = k′.
We refer to the Figure 3 for an illustration.

Before we prove the safeness of the above reduction rule, we prove the following lemma.

▶ Lemma 3.33. Let X be an optimal (clique, tree)-deletion set of G of size at most k and
A, B, B̂ denote the vertex subsets obtained from Reduction Rule 3.32. Then, v ∈ X or A ⊆ X.

Proof. Let X be an optimal (clique, tree)-deletion set of G of size at most k. As the Lemma
2.4 (new q-expansion lemma) with q = 4 has been already applied in Reduction Rule 3.32
and the obtained sets are A ⊆ (S ∪ Hv) \ {v} and B ⊆ C such that NH(B) ⊆ A (due to item
(ii) of Lemma 2.4), any connected component C ∈ B can have neighbors only in A ∪ Hv ∪ {v}
in G. By Definition 3.30, every connected component C ∈ C has a vertex that is adjacent to
v. If some component C∗ ∈ C has two vertices adjacent to v, then there is a cycle that passes
through v and the vertices of C∗ but avoids Hv. This contradicts with Lemma 3.29 that Hv

intersects all cycles passing through v. Hence, for every connected component C ∈ C, there
is exactly one vertex that is adjacent to v.

Suppose for the sake of contradiction that there is an optimal (clique, tree)-deletion
set X∗ of G of size at most k such that v /∈ X∗ and A ̸⊂ X∗. Let X∗

B denotes the
intersection of X∗ with the vertices that are in the connected components in B. We set
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v ∈ S v ∈ S

A ∩ S

A ∩Hv

A ∩ S A ∩Hv

B B

Figure 3 An illustration of Reduction Rule 3.32. The blue components are the components of
B and the red component is the chosen component C for which the edge between u and C is not
deleted. The blue components of B are the ones that are the endpoints of expansion M̂ .

X̂ = (X∗ \ X∗
B) ∪ (A \ X∗) ∪ {v}. We claim that X̂ is a (clique, tree)-deletion set of G and

|X̂| < |X∗|. For the first part, note that the cycles hit by X∗ but not X̂ must contain a vertex
from X∗

B. Such cycles must contain a vertex in NH(B) as each component of B is a forest. It
follows from the item (i) of Lemma 2.4 that NH(B) ⊆ A and A ⊆ Hv ∪ (S \ {v}). Therefore,
the neighbors of all vertices spanned by the connected components of B are contained in
A ∪ {v}. By construction of X̂, as A ∪ {v} ⊆ X̂, it follows that X̂ is a (clique, tree)-deletion
set of G.

Now, we claim that |X̂| < |X∗|. Since A ̸⊂ X∗ and v /∈ X∗, there is x ∈ A \ X∗.
Due to Lemma 2.4, there are four connected components C1, C2, C3, C4 in B̂ such that v is
adjacent to one vertex from each of C1, C2, C3, C4 and x is adjacent to some vertex in each
of C1, C2, C3, C4. If v is adjacent to x, then G[{v, x} ∪ C1 ∪ C2 ∪ C3 ∪ C4] has several cycles
with a chord (or subdivision of diamonds) that contains {x, v} and vertices from exactly two
connected components from {C1, C2, C3, C4}. In particular for every pair i, j ∈ {1, 2, 3, 4},
there is a cycle with a chord containing v, x and vertices from Ci and Cj . Since v, x /∈ X∗,
it must be that X∗ must have at least one vertex from at least three of these connected
components {C1, C2, C3, C4}. As our updating procedure removes the vertices of B from
X∗ and adding vertices of A \ X∗, it follows that for every x ∈ A \ X∗, one vertex is added
and at least three additional vertices appearing in the components of {C1, C2, C3, C4} are
removed from X∗. This ensures that X̂ has strictly lesser vertices than X∗ contradicting the
optimality of X∗. This completes the proof. ◀

We use the above lemma to prove that Reduction Rule 3.32 is safe.

▶ Lemma 3.34. Reduction Rule 3.32 is safe.

Proof. For the forward direction (⇒), let X be a (clique, tree)-deletion set of G with at most
k vertices. We assume without loss of generality that X is an optimal (clique, tree)-deletion
set of G. Due to Lemma 3.33, it follows that either v ∈ X or A ⊆ X. For both the cases,
observe that G′ − X is a subgraph of G − X. Hence, X is a (clique, tree)-deletion set of G′

of size at most k′.
For the backward direction (⇐), let X ′ be a (clique, tree)-deletion set of G′ of size at

most k′(= k). Note that in G′, we have double edge between v and every vertex in A. Thus,
v ∈ X ′ or A ⊆ X ′ to hit the cycles formed by these double edges. In case v ∈ X ′, then the
graphs G − X ′ and G′ − X ′ are precisely the same. Therefore, X ′ is a (clique, tree)-deletion
set of G as well. For the other case, we have that A ⊆ X ′ but v /∈ X ′. Suppose for the
sake of contradiction that some component of G − X ′ is neither a clique, nor a tree. Then,
G − X ′ has an obstruction O. Since for any connected component C ′ ∈ B, it must be that
NH(C ′) ⊆ A, it follows that NG(C ′) ⊆ A ∪ {v}. By construction of G′, an edge uv ∈ E(G)
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is not an edge of G′ if u ∈ C ′ for some connected component C ′ ∈ B̂. The obstruction
O must contain an edge uv ∈ E(G) such that uv /∈ E(G′). Such an edge is possible only
for some C ′′ ∈ B̂. As v can have at most one neighbor in every component C ′′ ∈ B and
the vertices of C ′′ are adjacent to only A ∪ {v} with A ⊆ X ′, the only possible way uv

edge can be part of an obstruction in G − X ′ is a paw. Then, this obstruction O is a paw
containing u and v. Since |C| > 4(|S| + |Hv|), and due to the condition (ii) of Proposition
2.4, |C \ B| ≤ 4|(S ∪ Hv) \ A|, it must be that |B| > 4|A|. Therefore, there is at least one
connected component C ∈ B \ B̂. Furthermore, Reduction Rule 3.32 has chosen not to delete
the edge vu∗ such that u∗ ∈ C and vu∗ ∈ E(G). But by construction of G′, vu∗ ∈ E(G′).
Observe that O∗ = (O \ {u}) ∪ {u∗}) also induces a paw in the graph G. Then, u∗ must
be in the set X ′ as otherwise it would contradict that X ′ is a (clique, tree)-deletion set of
X ′. So, we set X∗ = (X ′ \ {u∗}) ∪ {v} and clearly by construction |X∗| = |X ′|. Since the
neighrborhood of any connected component of B is contained in A ∪ {v}, this ensures us that
X∗ is a (clique, tree)-deletion set of G. This completes the proof of the lemma. ◀

Observe that the above mentioned reduction rules do not increase the degree of v. When
none of the above mentioned reduction rules are applicable, no connected component C

(with at least three vertices) of G[V2] can have two leaves u and v both of which are pendant
vertices in G. But, it is possible that C has one leaf u that is a pendant vertex of the whole
graph G.

▶ Lemma 3.35. Let G be the graph obtained after applying Reduction Rules 3.3-3.32
exhaustively. Then the number of vertices in V2 is at most 1525k|S|.

Proof. We use N to denote the vertices of V2 that are adjacent to some vertex of S. As
Reduction Rule 3.32 is not applicable, for every v ∈ S, there are at most 60(k + 1)(≤ 61k)
edges incident to v with the other endpoint being in V2 (hence in N). Hence, the number of
vertices of N is at most 61k|S|.

Let us bound the number of leaves in the forest G[V2] that is not in N . Since Reduction
Rule 3.21 is exhaustively applied, such a leaf is adjacent to a vertex that is adjacent to some
vertex in S (therefore, such vertices are in N). Since Reduction Rule 3.5 is exhaustively
applied, two such leaves are not adjacent to the same vertex. Hence, we can define an
injective function from the leaves of G[V2 \ N ] to the internal vertices in the forest G[V2]
that is in N .

Thus, the total number leaves in G[V2] is at most 2|N |. Since, the number of vertices
with degree at least 3 in G[V2] is at most the number of leaves in G[V2], the number of
vertices of G[V2] with degree at least three is at most 2|N |. Therefore, the sum of the number
leaves in G[V2], and the number of vertices with degree at least 3 of G[V2] is at most 4|N |.
Additionally, there are some vertices of N that are neither counted as a leaf of G[V2] nor is
counted as a vertex of degree at least three in G[V2]. Number of such vertices is at most |N |.

It remains to bound the number of degree 2 vertices in the forest G[V2] that is not in N .
Note that such vertices are also degree 2 vertices in G. Since Reduction Rules 3.7 and 3.10
are exhaustively applied, any degree-2-overbridge of G[V2] has size at most four. Each such
degree-2-overbridge connects two vertices of G[V2] such that those two vertices are leaves, or
vertices from N . We replace all such degree-2-overbridges by edges to get a forest H with at
most 5|N | vertices, and thus edges. Since each edge of H corresponds to at most 4 vertices,
we have at most 20|N | vertices of V2 each of which have degree exactly two in G.

Thus the total number of vertices in G[V2] is bounded by 25|N |. Since |N | ≤ 61k|S|, the
the total number of vertices in the forest G[V2] is bounded by 1525k|S|. ◀
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Combining Lemma 3.20 and Lemma 3.35, we are ready to prove our final result that we
restate below.

▶ Theorem 1.1. Cliques or Trees Vertex Deletion (CTVD) admits a kernel with
O(k5) vertices.

Proof. Given the input instance (G, k), the kernelization algorithm invokes Reduction Rules
3.3-3.32 exhaustively. Let (G′, k′) denotes the output instance such that S′ is a (clique, tree)-
deletion set of G′ with at most 4k vertices. Suppose that V1 ⊆ G′ − S′ denotes the vertices
such that every connected component of G[V1] is a clique and V2 ⊆ G′−S′ denotes the vertices
such that every connected component of G[V2] is a tree. Since Reduction Rules 3.3-3.18 are
not applicable, it follows from Lemma 3.20 that |V1| is O(k5). Additionally, as Reduction
Rules 3.3-3.32 are not applicable, it follows from Lemma 3.35 that |V2| ≤ 1525k|S′| = 6100k2.
Therefore, the total number of vertices in G′ is |S′| + |V1| + |V2| which is O(k5). ◀

4 Conclusions and Future Research

Our paper initiates a study of polynomial kernelization for vertex deletion to pairs of scattered
graph classes. One natural open question is to improve the size of our kernel, e.g. to O(k3)
vertices. We believe that such a result is possible to achieve, but we suspect that it would
require new techniques to develop such results. Jacob et al. [26] have provided an O∗(4k)-time
algorithm for Cliques or Trees Vertex Deletion. It would also be interesting to design
an FPT algorithm where the base of the exponent is (substantially) improved from 4. On a
broader level, it would be interesting to explore the possibility of getting a polynomial kernel
for problems where the objective is to delete a set of at most k vertices so that the connected
components would belong to other interesting pairs of graph classes, such as (interval graph,
trees), and (chordal graph, bipartite permutation). In addition, vertex/edge deletion to
scattered graph classes are also interesting from approximation algorithms perspective. In
fact, it would be interesting to improve the approximation guarantee of Proposition 3.1
that is also an open problem. Additionally, the dual version of this problem, i.e. “packing
vertex-disjoint obstructions to the scattered class of cliques and trees” is also interesting
from the perspective of parameterized complexity. The same problem can be considered as
packing vertex-disjoint induced subgraphs that are paws or diamonds or cycles of length at
least 4. A natural approach to solve this problem requires to design an Erdos-Posa style
theorem for packing obstructions for scattered class of cliques and trees. Finally, a more
general open problem is to identify pairs of graph classes (Π1, Π2) for which vertex deletion
to Π1 as well as vertex deletion to Π2 admits polynomial sized kernels, but (Π1, Π2)-Deletion
does not admit a polynomial kernel.

References
1 Jasine Babu, R. Krithika, and Deepak Rajendraprasad. Packing arc-disjoint 4-cycles in oriented

graphs. In Anuj Dawar and Venkatesan Guruswami, editors, 42nd IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2022,
December 18-20, 2022, IIT Madras, Chennai, India, volume 250 of LIPIcs, pages 5:1–5:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.FSTTCS.2022.
5.

2 Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, and Daniël Paulusma.
Independent feedback vertex set for P5-free graphs. Algorithmica, 81(4):1342–1369, 2019.
doi:10.1007/S00453-018-0474-X.

ISAAC 2024

https://doi.org/10.4230/LIPICS.FSTTCS.2022.5
https://doi.org/10.4230/LIPICS.FSTTCS.2022.5
https://doi.org/10.1007/S00453-018-0474-X


41:16 Polynomial Kernel for Deletion to Cliques and Trees

3 Anudhyan Boral, Marek Cygan, Tomasz Kociumaka, and Marcin Pilipczuk. A fast branching
algorithm for cluster vertex deletion. Theory Comput. Syst., 58(2):357–376, 2016. doi:
10.1007/S00224-015-9631-7.

4 Hajo Broersma, Jirí Fiala, Petr A. Golovach, Tomás Kaiser, Daniël Paulusma, and Andrzej
Proskurowski. Linear-time algorithms for scattering number and hamilton-connectivity of
interval graphs. J. Graph Theory, 79(4):282–299, 2015. doi:10.1002/JGT.21832.

5 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett., 58(4):171–176, 1996. doi:10.1016/0020-0190(96)00050-6.

6 Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM Trans.
Algorithms, 11(3):21:1–21:35, 2015. doi:10.1145/2629595.

7 Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. Algorithmica,
75(1):118–137, 2016. doi:10.1007/S00453-015-0014-X.

8 Jianer Chen. Vertex cover kernelization. In Encyclopedia of Algorithms, pages 2327–2330.
Springer, 2016. doi:10.1007/978-1-4939-2864-4_460.

9 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor.
Comput. Sci., 411(40-42):3736–3756, 2010. doi:10.1016/J.TCS.2010.06.026.

10 Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect
graph theorem. Annals of mathematics, pages 51–229, 2006.

11 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

12 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

13 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

14 Jan Derbisz, Lawqueen Kanesh, Jayakrishnan Madathil, Abhishek Sahu, Saket Saurabh, and
Shaily Verma. A polynomial kernel for bipartite permutation vertex deletion. Algorithmica,
84(11):3246–3275, 2022. doi:10.1007/S00453-022-01040-9.

15 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

16 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

17 Maël Dumas and Anthony Perez. An improved kernelization algorithm for trivially perfect
editing. In Neeldhara Misra and Magnus Wahlström, editors, 18th International Symposium
on Parameterized and Exact Computation, IPEC 2023, September 6-8, 2023, Amsterdam, The
Netherlands, volume 285 of LIPIcs, pages 15:1–15:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPICS.IPEC.2023.15.

18 Bruno Escoffier, Laurent Gourvès, and Jérôme Monnot. Complexity and approximation results
for the connected vertex cover problem in graphs and hypergraphs. J. Discrete Algorithms,
8(1):36–49, 2010. doi:10.1016/J.JDA.2009.01.005.

19 Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and
Meirav Zehavi. Subquadratic kernels for implicit 3-hitting set and 3-set packing problems.
ACM Trans. Algorithms, 15(1):13:1–13:44, 2019. doi:10.1145/3293466.

20 Fedor V Fomin, Saket Saurabh, and Yngve Villanger. A polynomial kernel for proper
interval vertex deletion. SIAM Journal on Discrete Mathematics, 27(4):1964–1976, 2013.
doi:10.1137/12089051X.

21 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Discovering archipelagos of tractability
for constraint satisfaction and counting. ACM Trans. Algorithms, 13(2):29:1–29:32, 2017.
doi:10.1145/3014587.

22 Petr A. Golovach, Daniël Paulusma, and Erik Jan van Leeuwen. Induced disjoint paths in
claw-free graphs. SIAM J. Discret. Math., 29(1):348–375, 2015. doi:10.1137/140963200.

https://doi.org/10.1007/S00224-015-9631-7
https://doi.org/10.1007/S00224-015-9631-7
https://doi.org/10.1002/JGT.21832
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1145/2629595
https://doi.org/10.1007/S00453-015-0014-X
https://doi.org/10.1007/978-1-4939-2864-4_460
https://doi.org/10.1016/J.TCS.2010.06.026
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/S00453-022-01040-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.4230/LIPICS.IPEC.2023.15
https://doi.org/10.1016/J.JDA.2009.01.005
https://doi.org/10.1145/3293466
https://doi.org/10.1137/12089051X
https://doi.org/10.1145/3014587
https://doi.org/10.1137/140963200


A. Jacob, D. Majumdar, and M. Zehavi 41:17

23 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs, volume 57. Elsevier,
2004.

24 Pinar Heggernes, Dieter Kratsch, and Daniel Meister. Bandwidth of bipartite permutation
graphs in polynomial time. J. Discrete Algorithms, 7(4):533–544, 2009. doi:10.1016/J.JDA.
2008.11.001.

25 Ashwin Jacob, Jari J. H. de Kroon, Diptapriyo Majumdar, and Venkatesh Raman. Deletion
to scattered graph classes I - case of finite number of graph classes. J. Comput. Syst. Sci.,
138:103460, 2023. doi:10.1016/J.JCSS.2023.05.005.

26 Ashwin Jacob, Diptapriyo Majumdar, and Venkatesh Raman. Deletion to scattered graph
classes II - improved FPT algorithms for deletion to pairs of graph classes. J. Comput. Syst.
Sci., 136:280–301, 2023. doi:10.1016/J.JCSS.2023.03.004.

27 Ashwin Jacob, Diptapriyo Majumdar, and Venkatesh Raman. Expansion lemma - variations
and applications to polynomial-time preprocessing. Algorithms, 16(3):144, 2023. doi:10.3390/
A16030144.

28 Hugo Jacob, Thomas Bellitto, Oscar Defrain, and Marcin Pilipczuk. Close relatives (of feedback
vertex set), revisited. In Petr A. Golovach and Meirav Zehavi, editors, 16th International
Symposium on Parameterized and Exact Computation, IPEC 2021, September 8-10, 2021,
Lisbon, Portugal, volume 214 of LIPIcs, pages 21:1–21:15. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPICS.IPEC.2021.21.

29 Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Wlodarczyk. Single-exponential FPT
algorithms for enumerating secluded f-free subgraphs and deleting to scattered graph classes.
In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms
and Computation, ISAAC 2023, December 3-6, 2023, Kyoto, Japan, volume 283 of LIPIcs,
pages 42:1–42:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/
LIPICS.ISAAC.2023.42.

30 Matthew Johnson, Giacomo Paesani, and Daniël Paulusma. Connected vertex cover for
(sP1 + P5)-free graphs. Algorithmica, 82(1):20–40, 2020. doi:10.1007/S00453-019-00601-9.

31 Tereza Klimosová, Josef Malík, Tomás Masarík, Jana Novotná, Daniël Paulusma, and Veronika
Slívová. Colouring (Pr + Ps)-free graphs. Algorithmica, 82(7):1833–1858, 2020. doi:10.1007/
S00453-020-00675-W.

32 Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set. Inf.
Process. Lett., 114(10):556–560, 2014. doi:10.1016/J.IPL.2014.05.001.

33 Dieter Kratsch, Haiko Müller, and Ioan Todinca. Feedback vertex set on at-free graphs.
Discret. Appl. Math., 156(10):1936–1947, 2008. doi:10.1016/J.DAM.2007.10.006.

34 Cornelis Lekkeikerker and Johan Boland. Representation of a finite graph by a set of intervals
on the real line. Fundamenta Mathematicae, 51(1):45–64, 1962.

35 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is np-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

36 Barnaby Martin, Daniël Paulusma, and Erik Jan van Leeuwen. Disconnected cuts in claw-free
graphs. J. Comput. Syst. Sci., 113:60–75, 2020. doi:10.1016/J.JCSS.2020.04.005.

37 George J Minty. On maximal independent sets of vertices in claw-free graphs. Journal of
Combinatorial Theory, Series B, 28(3):284–304, 1980. doi:10.1016/0095-8956(80)90074-X.

38 Venkatesh Raman, Saket Saurabh, and C. R. Subramanian. Faster fixed parameter tractable
algorithms for finding feedback vertex sets. ACM Trans. Algorithms, 2(3):403–415, 2006.
doi:10.1145/1159892.1159898.

39 Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms, 6(2):32:1–
32:8, 2010. doi:10.1145/1721837.1721848.

ISAAC 2024

https://doi.org/10.1016/J.JDA.2008.11.001
https://doi.org/10.1016/J.JDA.2008.11.001
https://doi.org/10.1016/J.JCSS.2023.05.005
https://doi.org/10.1016/J.JCSS.2023.03.004
https://doi.org/10.3390/A16030144
https://doi.org/10.3390/A16030144
https://doi.org/10.4230/LIPICS.IPEC.2021.21
https://doi.org/10.4230/LIPICS.ISAAC.2023.42
https://doi.org/10.4230/LIPICS.ISAAC.2023.42
https://doi.org/10.1007/S00453-019-00601-9
https://doi.org/10.1007/S00453-020-00675-W
https://doi.org/10.1007/S00453-020-00675-W
https://doi.org/10.1016/J.IPL.2014.05.001
https://doi.org/10.1016/J.DAM.2007.10.006
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/J.JCSS.2020.04.005
https://doi.org/10.1016/0095-8956(80)90074-X
https://doi.org/10.1145/1159892.1159898
https://doi.org/10.1145/1721837.1721848

	1 Introduction
	2 Preliminaries
	3 A Polynomial Kernel for Cliques and Trees
	3.1 Initial Preprocessing Rules
	3.2 Bounding the Clique Vertices in G - S
	3.3 Bounding the Tree Vertices in G - S

	4 Conclusions and Future Research

