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Abstract
This paper introduces a new reconfiguration problem of matchings in a triangular grid graph. In
this problem, we are given a nearly perfect matching in which each matching edge is labeled, and
aim to transform it to a target matching by sliding edges one by one. This problem is motivated
to investigate the solvability of a sliding-block puzzle called “Gourds” on a hexagonal grid board,
introduced by Hamersma et al. [ISAAC 2020]. The main contribution of this paper is to prove that,
if a triangular grid graph is factor-critical and has a vertex of degree 6, then any two matchings
can be reconfigured to each other. Moreover, for a triangular grid graph (which may not have a
degree-6 vertex), we present another sufficient condition using the local connectivity. Both of our
results provide broad sufficient conditions for the solvability of the Gourds puzzle on a hexagonal
grid board with holes, where Hamersma et al. left it as an open question.
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1 Introduction

Combinatorial reconfiguration is a fundamental research subject that studies the solution
space of combinatorial problems. A typical example is solving sliding-block puzzles such as
the 15-puzzle. The 15-puzzle can be viewed as the transformation between the arrangement
of puzzle pieces, and the goal is to transform an initial arrangement of pieces to a given
target arrangement. Combinatorial reconfiguration has applications in a variety of fields
such as mathematical puzzles, operations research, and computational geometry. See the
surveys by Nishimura [23] and van den Heuvel [28].

Hamersma et al. [13] introduced a new sliding-block puzzle on a hexagonal grid, which
they call Gourds. The name “gourd” refers to the shape of the puzzle pieces, which are
essentially 1 × 2 pieces on a board. Like in the 15-puzzle, only one grid cell is empty. The
goal is to obtain a target configuration of pieces on the board by moving pieces one-by-one,
similar to the 15-puzzle. Here we allow a piece to make three different kinds of moves: slide,
turn, and pivot (see [13] for the details). They characterized hexagonal grid boards without
holes such that the Gourds puzzle1 is always solvable, and left it as a main open question to
characterize boards with holes.

1 In this paper, the Gourds puzzle refers to the numbered type in [13] where each piece has numbers.

© Naonori Kakimura and Yuta Mishima;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 43; pp. 43:1–43:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kakimura@math.keio.ac.jp
https://orcid.org/0000-0002-3918-3479
mailto:missymissy1104@icloud.com
https://doi.org/10.4230/LIPIcs.ISAAC.2024.43
https://arxiv.org/abs/2409.11723
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


43:2 Reconfiguration of Labeled Matchings in Triangular Grid Graphs

Motivated by the study of the Gourds puzzle, we introduce a reconfiguration problem
of matchings in a triangular grid graph. In the problem, we are given a matching that
exposes only one vertex, which is called a nearly perfect matching. Each matching edge,
which corresponds to a puzzle piece, is labeled. We are allowed to slide a matching edge
toward the exposed vertex. The goal is to move matching edges one-by-one to obtain a target
labeled matching. It should be emphasized that each edge in the given matching has to be
moved to the edge with the same label in the target matching. See Section 2 for the formal
definition. We remark that our problem can be defined on a general graph, which may be of
independent interest. The problem setting is different from the matching reconfiguration
problems studied in the literature. See Section 1.1.

In this paper, we investigate the reconfigurability of the above reconfiguration problem
of labeled matchings on a triangular grid graph. In particular, we aim to characterize a
triangular grid graph such that any two labeled matchings can be reconfigured to each other.
We call such a graph reconfigurable.

As mentioned in Section 3, it is not difficult to observe that, if a graph is reconfigurable,
then it is 2-connected and factor-critical. A graph is factor-critical if it has a nearly perfect
matching that exposes any vertex. These two conditions, however, are not sufficient, as there
exists a 2-connected factor-critical graph that is not reconfigurable.

The main contribution of this paper is to prove that, if a 2-connected factor-critical
triangular grid graph has at least one vertex of degree 6, then it is reconfigurable. Our results
can be adapted to the Gourds puzzle by taking the dual of a triangular grid graph, which
implies that the Gourds puzzle can always be solved when at least one hexagonal cell on the
board does not touch the holes or the outer face.

The key idea to prove the main result is to exploit the ear decomposition in matching
theory. A factor-critical graph is known to have a constructive characterization using
ear decomposition with odd paths and cycles. Using the ear structure, we show that, if
an ear decomposition starts from a reconfigurable subgraph, then we can recursively find
reconfiguration steps between any two labeled matchings. However, every ear decomposition
does not necessarily satisfy the above assumption. We then investigate the matching
structure of a triangular grid graph to identify simple reconfigurable subgraphs such that
every triangular grid graph with a vertex of degree 6 admits an ear decomposition starting
from one of them.

In addition, for a triangular grid graph (which may not have a vertex of degree 6), we
present another sufficient condition for the reconfigurability using the local connectivity. A
graph is said to be locally-connected if the neighbor vertices of any vertex induce a connected
graph. We prove that, if a triangular grid graph is locally-connected, but not isomorphic to
the Star of David graph (Figure 1), then it is reconfigurable. Moreover, we show that, for a
graph with 2n + 1 vertices, we can find in polynomial time reconfiguration steps with length
O(n3).

The characterization for the Gourds puzzle by Hamersma et al. [13] implies that a
triangular grid graph is reconfigurable if it is 2-connected, but not isomorphic to the Star of
David graph, and has no holes, where a hole is a face with boundary length at least 6. Our
conditions, which allow to have a hole, are much broader than theirs, as the local connectivity
and the 2-connectivity are equivalent for a graph with no holes.

Due to the space limitation, we omit the proofs of statements with the symbol ⋆ marks,
which may be found in the full version of this paper [19].
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Figure 1 The Star of David graph. Figure 2 A triangular grid graph with 2 holes.

1.1 Related Work

A factor-critical graph plays an important role in matching theory. It is known that any
non-bipartite graph can be decomposed in terms of maximum matching, called the Gallai-
Edmonds decomposition. It essentially decomposes a given graph into factor-critical graphs,
graphs with perfect matchings, and bipartite graphs. Also, factor-critical graphs are used to
describe facets of the matching polytope of a given graph. See [21, 26] for the details.

Sliding-block puzzles have been investigated in both recreational mathematics and al-
gorithms research. The 15-puzzle was introduced as a prize problem by Sam Loyd in 1878 [27].
In the 15-puzzle, it is characterized by odd/even permutations whether any configuration
can be realized or not [18]. However, it is NP-complete for n × n boards to compute the
smallest number of steps to reach a given configuration [10, 24]. There are many variants of
the 15-puzzle such as Rush Hour [6, 11] and rolling-block puzzles [7]. Many puzzles have
been shown NP-hard or PSPACE-hard (see e.g., [15]).

In the literature of combinatorial reconfiguration, the reconfiguration of matchings has
been studied extensively. Ito et al. [16] initiated to study a reconfiguration problem of
matchings. The aim is to decide whether a given matching can be transformed to a target
matching by adding/removing a matching edge in each step. They showed that the problem
can be solved in polynomial time with the aid of the Gallai-Edmonds decomposition. On
reconfigurating perfect matchings, Ito et al. [17] studied the shortest transformation of perfect
matchings by taking the symmetric difference along an alternating cycle, motivated by the
study of a diameter of the matching polytope (see also [8, 25]). Bonamy et al. [3] restricts
the length of alternating cycles used in the transformations to be 4. We remark that all the
above mentioned problems aim to transform an initial (perfect) matching to a target one in
which their matching edges are not labeled.

By taking the line graph of a given graph, reconfiguration problems of matchings can be
viewed as reconfiguration problems of independents sets. Our problem setting is related to its
variant known as the token sliding problem. The token sliding problem is PSPACE-complete,
even on restricted graph classes such as planar graphs [14]. On the other hand, the problem
can be solved in linear time on trees [9], and it is fixed-parameter tractable on bounded
degree graphs [2]. See also [5] for the survey on the independent set and dominating set
reconfiguration problems. Another related problem is the token swapping problem. In the
problem, we are given tokens on each vertex of a graph, and we want to move every token to
its target position by swapping two adjacent tokens. See e.g., [1, 4, 20, 22] and references
therein.

ISAAC 2024



43:4 Reconfiguration of Labeled Matchings in Triangular Grid Graphs

Figure 3 Slide operations. The colored, thick edges correspond to pieces.

2 Preliminaries

Let G = (V, E) be an undirected graph with 2n + 1 vertices. For a vertex u, we denote by
N(u) the set of vertices adjacent to u. For a vertex subset X, the subgraph induced by X in
G is denoted by G[X]. A path or a cycle is odd if it has an odd number of edges.

A matching is a subset of edges that have no common end vertices. A matching is nearly
perfect if its size is n. A vertex is covered by a matching M if it is the end vertex of some
edge in M , and exposed by M if it is not covered by M . A cycle is M -alternating if edges in
M and E \ M appear alternatively along C, except for one vertex (when the cycle is odd).

Reconfiguration of Labeled Matching in Triangular Grid Graphs

Consider the 2-dimensional triangular lattice of infinite size. A triangular grid graph is a
subgraph induced by a finite number of points in the triangular lattice. See Figure 2 for
example. In this paper, we also assume that a triangular grid graph is always connected. A
hole of a triangular grid graph is a face of the graph whose boundary is a cycle of length at
least 6.

We here formally define our reconfiguration problem. Let G = (V, E) be a triangular grid
graph with 2n + 1 vertices. We denote V = [2n + 1], where, for a positive integer x, we write
[x] = {1, 2, . . . , x}.

A placement is a mapping p : [n] → E such that p(i) and p(j) have no common end
vertices for every distinct i, j. We call each p(i) a piece. Then {p(i) | i ∈ [n]} ⊆ E forms a
nearly perfect matching in G, which is denoted by Mp. Let vp be the unique vertex exposed
by Mp. We also say that a mapping p exposes vp.

We define the following operations on a placement, which we call slide (see Figure 3).
Suppose that there exists an integer j ∈ [n] such that p(j) = (u, v) and (v, vp) ∈ E. Then we
transform p to a placement ps defined as

ps(i) =
{

p(i) (i ̸= j)
(v, vp) (i = j).

The obtained placement ps exposes the vertex u. In this case, we write p⇝ ps.
Let p, q be two distinct placements. If there exists a sequence of placements µ0, µ1, . . . , µℓ

such that (1) µ0 = p, µℓ = q, (2) µt ⇝ µt+1 for every integer t ∈ {0, 1, . . . , ℓ − 1}, then
we say that p is reconfigured to q. A graph is reconfigurable if any two placements can be
reconfigured to each other.

We remark that, in the Gourds puzzle, a piece has a pair of labels (numbers), meaning
that each piece has an orientation. That is, a mapping is defined from [n] to {(u, v), (v, u) |
(u, v) ∈ E}. This requires us to define another operation to change the orientation of pieces.
Specifically, when a piece with the exposed vertex induces a triangle, we are allowed to
change the orientation of the piece. Our problem does not distinguish (u, v) and (v, u), and
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Figure 4 Rotation operations for a placement aligned with an odd cycle when k = 3.

a placement is defined on a mapping from [n] to E. It should be noted, however, that our
results can be adapted to the Gourds puzzle case with orientation. See Sections 3.1 and 4 for
the details.

Rotation along a Cycle

We define a sequence of slide operations, called rotation, which will be used in the subsequent
sections. Let C be an odd cycle. We say that a placement p is aligned with C if C is an odd
Mp-alternating cycle and C has the exposed vertex vp.

Let p be a placement aligned with C. In what follows, we assume for simplicity that
V (C) = [2k + 1] for some integer k ∈ [n], and that the vertices of C are aligned in the
anti-clockwise order along C. We also assume that the first k pieces p(1), p(2), . . . , p(k) of p

are located on the cycle C.
For an odd integer j ∈ [2k + 1], we define a placement pj as, for i ∈ [k],

pj(i) =
{

(2i − 1, 2i) (2i < j)
(2i, 2i + 1) (j < 2i),

and pj(i) = p(i) for i ≥ k + 1. Thus pj exposes the vertex j. Moreover, for two integers
h, j ∈ [2k + 1] such that h ≡ j (mod 2), define pj,h as, for i ∈ [k],

pj,h(i) =
{

(h + 2i − 2, h + 2i − 1) (h + 2i − 1 < j)
(h + 2i − 1, h + 2i) (j < h + 2i − 1),

where these vertex labels are defined on Z2k+1 (i.e., modulo 2k + 1), and pj,h(i) = p(i) for
i ≥ k + 1.

Figure 4 is an example when k = 3. The left-most figure depicts a placement p3,1 = p3
where (p3,1(1), p3,1(2), p3,1(3)) = ((1, 2), (4, 5), (6, 7)). By applying slide to p3,1 once, we
obtain p1,1 = p1, that is, (p1,1(1), p1,1(2), p1,1(3)) = ((2, 3), (4, 5), (6, 7)). The right-most
figure depicts a placement p6,4, which is (p6,4(1), p6,4(2), p6,4(3)) = ((4, 5), (7, 1), (2, 3)).

The following observation asserts that pj,h’s can be reconfigured to each other in O(k2)
slide operations along C. Such a sequence of slide operations is called rotation along C, or
we say that we rotate p along C.

▶ Observation 2.1. For any two odd integers j, j′ ∈ [2k + 1], we can reconfigure pj to
pj′ using at most k slide operations. Moreover, for any four integers j, j′ ∈ [2k + 1] and
h, h′ ∈ [2k + 1] such that j ≡ h and j′ ≡ h′ (mod 2), we can reconfigure pj,h to pj′,h′ using
at most k2 + k slide operations.

Proof. Observe that, applying slide to pj along C, the exposed vertex j is moved to j − 2 or
j + 2 (mod 2k + 1). This means that pj ⇝ pj−2 and pj ⇝ pj+2 hold. Hence, by repeating
slide operations at most k times, pj can be reconfigured to pj′ . We next show the second

ISAAC 2024
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Figure 5 A factor-critical graph that is not
reconfigurable. We cannot change the ordering
of the pieces by slide.

Figure 6 A factor-critical graph that is re-
configurable.

statement. Similarly to the first statement, we can reconfigure pj,h to ph,h in at most k slide
operations. Applying slide to ph,h along C, we obtain a placement ph−2,h+1. Repeating this
procedure at most k times, we can reconfigure pj,h to ph′−3,h′ . Since we can reconfigure
ph′−3,h′ to pj′,h′ in at most k slide operations, the total number of slide operations is at most
k2 + k. ◀

3 Reconfiguration on Factor-Critical Graphs

In this section, we discuss the reconfigurability of a factor-critical graph. Recall that a graph
is factor-critical if, for any vertex v, G has a nearly perfect matching that does not cover v.

As mentioned in Introduction, being a factor-critical graph is a necessary condition for
reconfigurability.

▶ Observation 3.1. If a triangular grid graph G is reconfigurable, then it is factor-critical.

Proof. If G is not factor-critical, then G has some vertex u such that every nearly perfect
matching covers u. Then we cannot move the piece covering u in an initial placement so that
u becomes exposed. Hence there exist two placements such that one cannot be reconfigured
to the other. Thus the observation holds. ◀

Moreover, as observed in Hamersma et al. [13], the 2-connectivity is necessary for a graph
to be reconfigurable. We remark that, even if a graph is 2-connected and factor-critical, it
may not be reconfigurable. See Figure 5.

The main theorem of this section is the following. We show that a graph is reconfigurable
if it has a vertex of degree 6, which corresponds to a vertex not on the boundary cycles of
the holes or the outer face.

▶ Theorem 3.2. Let G = (V, E) be a 2-connected factor-critical triangular grid graph. If G

has a vertex of degree 6, then G is reconfigurable.

We remark that our condition is not necessary, as there exists a 2-connected factor-critical
graph such that it does not have a vertex of degree 6, but it is reconfigurable. See Figure 6 (see
also Lemma 3.14 and Section 5).

3.1 Proof Overview
In this section, we present the proof overview of Theorem 3.2. The proof makes use of the
ear decomposition of a factor-critical graph to design a reconfiguration sequence.

An ear decomposition of a graph G is a sequence of subgraphs G1, G2, . . . , Gk = G starting
from a subgraph G1 such that Gi+1 is obtained from Gi by adding an ear Pi for each i ≥ 1,
where an ear P of a subgraph G′ is a path of G with end vertices in G′ such that P is
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Figure 7 An ear decomposition and a matching aligned with the ear decomposition.

internally disjoint from G′. We denote by G′ + P the subgraph obtained from G′ by adding
the ear P . Thus, in the ear decomposition, it holds that Gi+1 = Gi + Pi for each i ∈ [k − 1].
See Figure 7 for an example.

An ear decomposition is proper if the end vertices of each ear are distinct, and odd if each
ear is of odd length. It is known that a 2-connected factor-critical graph is characterized by
odd and proper ear decomposition.

▶ Proposition 3.3 (Theorem 5.5.2 in Lovász–Plummer [21]). A graph G is 2-connected and
factor-critical if and only if G has an odd and proper ear decomposition starting from an odd
cycle.

Let p be a placement of G. Recall that Mp denotes a nearly perfect matching {p(i) ∈ E |
i ∈ [n]}, and vp is the vertex exposed by Mp. We say that a placement p is aligned with an
ear decomposition G1, . . . , Gk if it satisfies the following two conditions (Figure 7).
(a) G1 is an odd Mp-alternating cycle with the exposed vertex vp.
(b) For each i ∈ [k − 1], the ear Pi is Mp-alternating and its end vertices are not covered by

Mp ∩ E(Pi).

We show that any placement p can be reconfigured so that the obtained placement p′ is
aligned with a given ear decomposition G1, . . . , Gk. See Section 3.2 for the proof.

▶ Lemma 3.4. Let G be a 2-connected factor-critical triangular grid graph with 2n+1 vertices.
Let G1, . . . , Gk be an odd and proper ear decomposition of G. Then we can reconfigure any
placement p to a placement aligned with G1, . . . , Gk in O(kn) slide operations.

Let q be a target placement of G. Applying Lemma 3.4 to q as well, we can reconfigure
q so that the obtained placement q′ is aligned with G1, . . . , Gk. By taking the inverse of
the reconfiguration steps, we see that q′ can be reconfigured to q in O(kn) slide operations.
Therefore, in order to reconfigure p to q, it suffices to reconfigure p′ to q′.

We now present how to find a reconfiguration sequence between two placements aligned
with G1, . . . , Gk. Since Gi is factor-critical for any i ∈ [k], the ear structure suggests to design
a reconfiguration sequence recursively. In fact, we will show in Lemma 3.9 (Section 3.3) that,
if Gj is a reconfigurable graph with at least 5 vertices for some j < k, then so is Gk = G.
Note that the lemma holds even if a graph is not a triangular grid graph. However, Gj ’s
may not necessarily be reconfigurable, as there exists a factor-critical graph which is not
reconfigurable. To overcome the difficulty, we introduce a special kind of ear decomposition
starting from simple reconfigurable subgraphs.

We say that an odd and proper ear decomposition G1, G2, . . . , Gk is admissible if it
satisfies either

(i) G1 is a cycle of length 5 (Figure 8), or
(ii) P1 is of length 3 and has the end vertices u, v which are adjacent in G1 (Figure 9).

ISAAC 2024
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Figure 8 A pentagon. Figure 9 An odd cycle with a diamond.

Consider the case when (i) is satisfied. Since the ordering of ears with length 1 may be
changed in the ear decomposition, we may assume that the first 2 ears P1 and P2 are the
inner edges of G1. Then G3 = G1 + P1 + P2 induces a pentagon in G, where a pentagon is a
subgraph induced by three adjacent triangles. It is not difficult to see that the pentagon is
reconfigurable in a constant number of slide operations. On the other hand, consider the
case when (ii) is satisfied. Similarly to the case (i), we may assume that the second ear P2 is
the inner edge of P1. The subgraph G3 = G1 + P1 + P2 induces an odd cycle attached to a
diamond, where a diamond is a subgraph induced by two adjacent triangles. The subgraph
is shown to be reconfigurable in Lemma 3.14.

Therefore, G3 in an admissible ear decomposition is reconfigurable. Hence, if there exists
an admissible ear decomposition, we can find a reconfiguration sequence as below. See
Section 3.3 for the details.

▶ Lemma 3.5. Let G1, . . . , Gk = G be an admissible ear decomposition of G. Then any two
placements aligned with the ear decomposition can be reconfigured to each other.

We remark that the length of a reconfiguration sequence obtained in the above lemma is
at most n2n for a graph with 2n + 1 vertices, which is not bounded by a polynomial in n. It
may be interesting to find the optimal bound on the length of reconfiguration sequences. It
is known in [13] that the length is Ω(n2).

Finally, we show that there always exists an admissible ear decomposition in a triangular
grid graph with a vertex of degree 6.

▶ Theorem 3.6 (⋆). Let G be a 2-connected factor-critical triangular grid graph such that it
has a vertex of degree 6. Then G has an admissible ear decomposition.

Theorem 3.6 is a graph-theoretical result independent of designing a reconfiguration
sequence. Theorem 3.6 can be proved by investigating the matching structure of factor-critical
triangular grid graphs.

In summary, a reconfiguration sequence from an initial placement p to a target placement
q can be realized as below, which completes the proof of Theorem 3.2.

1. Reconfigure p to a placement aligned with an admissible ear decomposition G1, . . . , Gk,
denoted by p′, by Lemma 3.4.

2. Using Lemma 3.5, reconfigure p′ to another placement q′ aligned with G1, . . . , Gk, where
q′ is a placement obtained from q by Lemma 3.4.

3. Reconfigure q′ to the target placement q.

We remark that the proof of Theorem 3.2 above can be adapted to the Gourds puzzle in
which a piece has an orientation. This is because the structures (i) and (ii) in an admissible
ear decomposition can also be used to change the orientation of pieces in an arbitrary way.
Thus we have the following corollary.
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▶ Corollary 3.7. Let B be a hexagonal grid such that the dual triangular grid graph is a
2-connected factor-critical graph with a vertex of degree 6. Then any two configurations of
the same set of pieces on B can be reconfigured to each other.

3.2 Reconfiguration to a Placement Aligned with Ear Decomposition
In this subsection, we will show Lemma 3.4, that is, we will show that we can reconfigure an
initial placement p to a placement aligned with a given odd and proper ear decomposition
G1, . . . , Gk.

We first prove that we can reconfigure so that any vertex is exposed.

▶ Lemma 3.8. Let G be a 2-connected factor-critical triangular grid graph with 2n + 1
vertices. For any vertex v, we can reconfigure a placement p so that v is the exposed vertex,
in O(n) slide operations.

Proof. Since G is factor-critical, G has a nearly perfect matching Mv that exposes v. The
symmetric difference Mp∆Mv contains an Mp-alternating path P from vp to v, which is of
even length. We reconfigure p by sliding the pieces on the path P one-by-one. The resulting
placement exposes v. The number of slide operations is |P |/2, which is O(n). ◀

To obtain a placement aligned with the ear decomposition, we first reconfigure so that an
end vertex of the last ear Pk−1 is exposed using Lemma 3.8. Then, since each inner vertex
of the last ear Pk−1 is of degree 2 in G, the obtained placement is aligned with Pk−1. By
applying this procedure repeatedly for each ear, we can obtain a placement aligned with
G1, . . . , Gk. This implies Lemma 3.4 as below.

Proof of Lemma 3.4. Let vi be an end vertex of ear Pi for i ∈ [k −1]. The basic observation
is that, each inner vertex of the last ear Pk−1 is of degree 2, and hence, if a nearly perfect
matching M exposes vk−1, the last ear Pk−1 is an M -alternating path such that the end
vertices are not covered by edges of M ∩ E(Pk−1).

We perform the following procedure for each i = k − 1, k − 2, . . . , 1. Note that Gi is
factor-critical for any i ∈ [k].
1. Applying Lemma 3.8 to Gi+1, we reconfigure the current placement of Gi+1 so that vi is

exposed. Then the resulting placement is aligned with Pi by the above observation.
In the end of the above procedure, the obtained placement of the original graph G is
aligned with Pk−1, . . . , P1. Moreover, the exposed vertex is on G1. Thus this is a desired
placement. The necessary number of slide operations is O(kn), since we repeat the procedure
of Lemma 3.8 k − 1 times. ◀

3.3 Reconfiguration using Ear Decomposition
We next present how to reconfigure a placement aligned with an ear decomposition. Using the
ear structure, we can find a reconfiguration sequence if the subgraph Gk−1 is reconfigurable.

▶ Lemma 3.9. Let G1, . . . , Gk be an odd and proper ear decomposition of a graph G with
2n + 1 vertices. Suppose that Gk−1 has at least 5 vertices, and that, in Gk−1, any placement
aligned with the ear decomposition G1, . . . , Gk−1 can be reconfigured to another placement
aligned with G1, . . . , Gk−1, using t slide operations. Then there exists a reconfiguration
sequence between any two placements along with G1, . . . , Gk in G, which requires O(n2(t+n))
slide operations.

ISAAC 2024
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Figure 10 Proof of Claim 3.11: An example when j = 2.

Proof. For simplicity, we denote Gk−1 = G′ and Pk−1 = Q in the proof. Let u, v be the end
vertices of Q. Let p be an initial placement of G and q be a target placement of G, both
of which are aligned with the ear decomposition. It follows from Lemma 3.8 that we can
reconfigure p (and q, resp.) so that v is exposed. Hence we may assume that both p and q

expose v. Moreover, by changing the indices of the pieces if necessary, we may assume that
the pieces q(1), . . . , g(ℓ) are placed on the ear Q in the order from v to u.

▷ Claim 3.10. There exists an Mp-alternating path P of even length from v to u in G′.

Proof. Since G′ is factor-critical, there exists a nearly perfect matching Mu that exposes u.
Taking Mp△Mu, we see that there exists an even Mp-alternating path P from v to u in G′.

◁

Let C be the cycle consisting of P and Q. Then C is an odd M -alternating cycle in G.
We will show that we can reconfigure p so that the first ℓ pieces are on the ear Q, using the
cycle C. We consider the following two cases, depending on whether C is a Hamilton cycle
or not.

▷ Claim 3.11. Suppose that C is not a Hamilton cycle of G. Then we can reconfigure p

to a placement p′ so that p′(1), . . . , p′(ℓ) are placed on Q in this order from v to u, using
O(ℓ(t + n2)) slide operations.

Proof. In this case, the graph G′ has an edge e ̸∈ E(P ) such that e ∈ Mp. Let e1 be the
edge of Mp covering u, and e2 be the edge of of Mp covering the vertex adjacent to u on Q.
See Figure 10.

We may assume that p(1) is on the cycle C, as otherwise p(1) is contained in G′, and
hence we can reconfigure the current placement in G′ so that p(1) is on P , keeping v exposed,
using t slide operations by the assumption.

We reconfigure p by the following 4 steps for j = 2, . . . , ℓ. Initially, we set p̃ = p.
1. We move the piece p̃(j) so that p̃(j) is on P as follows.

a. If p̃(j) is on Q, we rotate the current placement p̃ along C so that p̃(j) is located on P .
b. If p̃(j) is contained in G′ but not on P , then we reconfigure the current placement p̃

on G′ so that p̃(j) is located on P , keeping that p̃(1), . . . , p̃(j − 1) are on C.
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2. We reconfigure the current placement p̃ on G′ to swap p̃(j) and the piece on e. Thus
p̃(j) = e.

3. We rotate the current placement p̃ along C so that p̃(j − 1) is e2.
4. We reconfigure the current placement p̃ on G′ to swap p̃(j) and the piece on e1. Thus

p̃(j) has been changed to e1.
In the end of the j-th iteration, p̃(1), . . . , p̃(j) are located on C in this order from v to u.

Therefore, in the end of the above procedure, the pieces p̃(1), . . . , p̃(ℓ) are located on C in
this order from v to u. Thus we can rotate p̃ along C so that they are on Q.

In the above procedure, for each j, we reconfigure the placement restricted on G′ in a
constant number of times, and we rotate the placement along C at most twice. Therefore,
the total number of slide operations is O(ℓ(t + n2)) by Observation 2.1. ◁

▷ Claim 3.12. Suppose that C is a Hamilton cycle of G. Then we can reconfigure p to
a placement p′ so that p′(1), . . . , p′(ℓ) are placed on Q in this order from v to u, using
O(ℓn(t + n)) slide operations.

Proof. Since G′ has at least 5 vertices, P has at least 2 edges of Mp. Let e1, e2 be two edges
in Mp ∩ E(P ) such that e1, e2 appear consecutively along P . We can swap the 2 pieces on
e1 and e2 by reconfiguring on G′, using t slide operations. By using the strategy similar to
the bubble sort algorithm, we can obtain a placement p′ such that p′(1), . . . , p′(ℓ) are on C

in this order from v to u. This requires O(ℓn) swaps. Since each swap takes O(t + n) slide
operations, it takes O(ℓn(t + n)) slide operations in total. ◁

In each case, we can reconfigure p to a placement p′ so that the pieces p′(1), . . . , p′(ℓ)
are located on Q in this order from v to u. Since we can reconfigure the placement on
G′ to any placement, we can reconfigure p′ to q. The total number of slide operations is
O(ℓn(t + n)) = O(n2(t + n)). ◀

By applying Lemma 3.9 recursively, we see that, if Gj is a reconfigurable subgraph with
at least 5 vertices for some j < k, then Gk = G is reconfigurable. In particular, if a given ear
decomposition is admissible, then G is shown to be reconfigurable.

Below we upper-bound the number of operations to reconfigure two placements aligned
with an admissible ear decomposition. We will show each case of the definition of an
admissible ear decomposition separately. We assume that a graph has 2n + 1 vertices for
n ≥ 2.

▶ Lemma 3.13 (⋆). Let G1, . . . , Gk be an admissible ear decomposition such that G1 is a
cycle of length 5 (Figure 8). Then we can reconfigure an arbitrary placement p aligned with
G1, . . . , Gk to another placement aligned with G1, . . . , Gk in at most n2n slide operations.

We next discuss the second case of an admissible ear decomposition. The following lemma
says that the base case is reconfigurable.

Let G̃ = (V, E) be a triangular grid graph with 2n + 1 vertices for n ≥ 3 as in Figure 11.
More specifically, V = [2n + 1], and it consists of an odd cycle C of length 2n − 1 with vertex
set [2n − 1], attached to a diamond D with vertex set {2n − 2, 2n − 1, 2n, 2n + 1}.

▶ Lemma 3.14. The graph G̃ defined above with 2n + 1 vertices (n ≥ 3) is reconfigurable in
at most n3 + n2 operations.

Proof. Let p and q be an initial and target placements of G̃, respectively. We may assume
that the target pieces q(1), . . . , q(n − 1) are located in the anti-clockwise order along C, and
that D has pieces q(n − 1) and q(n). Let C ′ be the Hamilton cycle of length 2n + 1 in G̃.
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1 2

3

Figure 11 A factor-critical graph that is reconfigurable.

We present a reconfiguration sequence as follows: Initially, we set p̃ = p. For j = 1, 2, . . . , n,
we do the following 2 steps.
1. We rotate the current placement p̃ along C ′ so that p̃(j) is equal to the edge (2n, 2n + 1).
2. We rotate the current placement p̃ along C so that p̃(j − 1) is equal to the edge (2n − 1, 1).

Then p̃(1), . . . , p̃(j) are located on C ′ in the anti-clockwise order.

In the end of the procedure, p̃(1), . . . , p̃(n) are located on C ′ in the anti-clockwise order,
which is the desired placement q. In each iteration, we rotate the current placement along C

or C ′. By choosing the shorter one between the clockwise rotation and the anti-clockwise
rotation, it requires at most n2 + n slide operations by Observation 2.1. Hence the total
number of slide operations is at most n3 + n2. ◀

We next show the case when an admissible ear decomposition satisfies the second case.
This, together with Lemma 3.13, proves Lemma 3.5.

▶ Lemma 3.15 (⋆). Let G1, . . . , Gk be an admissible ear decomposition such that P1 is of
length 3 and has the end vertices u, v which are adjacent in G1 (Figures 9 and 11). Then we
can reconfigure an arbitrary placement p aligned with G1, . . . , Gk to another placement in at
most n2n slide operations.

4 Reconfiguration on Locally-Connected Graphs

In this section, we consider a triangular grid graph which is locally-connected. A vertex u

in a graph G is said to be locally-connected if the subgraph G[N(u)] is connected. A graph
G is called locally-connected if every vertex is locally-connected. It is observed that, if G is
locally-connected, then it is 2-connected, since, for a cut vertex u, the subgraph G[N(u)] is
disconnected.

The following theorem says that a locally-connected triangular grid graph, except for
the Star of David graph (Figure 1), is Hamiltonian. We note that, since their proof is
constructive, a Hamilton cycle can be found in polynomial time.

▶ Theorem 4.1 (Gordon, Orlovich, and Werner [12]). Let G be a triangular grid graph. If G

is locally-connected, but not isomorphic to the Star of David graph, then it has a Hamilton
cycle.

It follows from the above theorem that a locally-connected triangular grid graph, except
for the Star of David graph, is factor-critical, as it has an odd and proper ear decomposition
starting from a Hamilton cycle such that all the ears are single edges. On the other hand, the
Star of David graph is not factor-critical, and hence it is not reconfigurable (see also [13]).

The main theorem of this section is the following.
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Figure 12 Diamonds and Hamilton cycles satisfying the condition in Lemma 4.5.

▶ Theorem 4.2. Let G = (V, E) be a triangular grid graph with 2n + 1 vertices. If G is
locally-connected, but not isomorphic to the Star of David graph, then G is reconfigurable.
Moreover, a reconfiguration sequence using O(n3) slide operations can be found in polynomial
time.

The proof for Theorem 4.2 exploits a Hamilton cycle in G to design a reconfiguration
sequence. We note that the proof for 2-connected graphs with no holes by Hamersma et
al. [13] also uses a Hamilton cycle. Our proof refines their proof so that we can deal with
holes.

Suppose that we are given two placements p and q. The proposed algorithm to reconfigure
p to q consists of the following three phases.
1. Reconfigure p to a placement aligned with a Hamilton cycle H, denoted by p′.
2. Reconfigure p′ to another placement q′ aligned with H.
3. Reconfigure q′ to the target placement q.

In Phase 1, we first reconfigure the initial placement p to a placement aligned with the
Hamilton cycle H, which is denoted by p′. Applying the same procedure to the target
placement q, we obtain a placement aligned with H, denoted by q′. We then reconfigure p′

to q′ in Phase 2. In Phase 3, the placement q′ can be reconfigured to the target placement q

by taking the inverse of Phase 1 operations for q.
It was shown in Hamersma et al. [13] that we can reconfigure a placement to a placement

aligned with a Hamilton cycle. We recall that a locally-connected graph is 2-connected.

▶ Theorem 4.3 (Hamersma et al. [13]). Let G be a 2-connected triangular grid graph with
2n + 1 vertices. Then we can reconfigure any placement to a placement aligned with a
Hamilton cycle H, using O(n2) slide operations.

Therefore, Phases 1 and 3 can be implemented in O(n2) slide operations. Thus it suffices
to implement Phase 2 to reconfigure any placement aligned with H to another placement
aligned with H. This step is realized by the following theorem.

▶ Theorem 4.4. Let G be a triangular grid graph with 2n + 1 vertices, which is locally-
connected, but not isomorphic to the Star of David graph. Let H be a Hamilton cycle. For a
pair of placements p, q aligned with H, we can reconfigure p to q in O(n3) slide operations.

The proof of Theorem 4.4 adopts a similar strategy to that of Theorem 3.2, where we
employs a Hamilton cycle instead of an ear decomposition. We identify a small subgraph
that can be used to reconfigure placements aligned with H.

▶ Lemma 4.5 (⋆). Let G be a triangular grid graph with 2n + 1 vertices. Let H be a
Hamilton cycle of G. Suppose that G has a diamond, whose vertices are a, b, c, d aligned in
the anti-clockwise order (Figure 12), such that either

(i) H contains the edges (a, b) and (c, d), but does not contain (a, c), or
(ii) H contains the edges (a, b) and (b, c).

Then we can reconfigure any placement aligned with H to another placement aligned with H

in O(n3) slide operations.
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Figure 13 An odd cycle with one chord.

We then show that such a diamond with a Hamilton cycle always exists if G is a locally-
connected triangular grid graph, which is not isomorphic to the Star of David graph. This
shows Theorem 4.4.

▶ Lemma 4.6 (⋆). Let G be a triangular grid graph with 2n + 1 vertices. If G is a locally-
connected triangular grid graph, which is not isomorphic to the Star of David graph, then there
exist a Hamilton cycle H and a diamond, whose vertices are denoted by a, b, c, d (Figure 12),
that satisfy either (i) or (ii) in Lemma 4.5.

This section is concluded with stating our results on the Gourds puzzle.

▶ Corollary 4.7. Let B be a hexagonal grid such that the dual graph is locally-connected, but
not isomorphic to the Star of David graph. Then any two configurations of the same set of n

pieces on B can be reconfigured to each other, using O(n3) moves.

5 Concluding Remarks

In this paper, we introduced a new reconfiguration problem of labeled matchings in a
triangular grid graph. We provided sufficient conditions for a graph to be reconfigurable
using a factor-critical graphs and a locally-connected graphs. It remains open to characterize
a reconfigurable triangular grid graph, when it is a factor-critical graph with no vertex
of degree 6, but not locally-connected. Let us here discuss the difficulty to obtain the
characterization. For example, consider a graph G consisting of an odd cycle C of length
2n + 1 with one chord (u, v) (Figure 13). Let C ′ be the odd cycle of G with the edge (u, v).
The length of C ′ is denoted by 2m + 1. Then we can observe that the reconfigurability of
G depends on m and n. Specifically, G is reconfigurable if and only if n − 1 and m − 1
are mutually prime. Indeed, since we can only rotate a placement along C ′ and C, which
correspond to cyclic permutations on [m] and [n], respectively, any permutation can be
realized if and only if n − 1 and m − 1 are mutually prime. This observation would imply
that it requires algebraic conditions to characterize a reconfigurable graph, like the 15-puzzle.
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