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Abstract
This paper presents a distributed algorithm in the CONGEST model that achieves a (1 + ϵ)-
approximation for row-sparse fractional covering problems (RS-FCP) and the dual column-sparse
fraction packing problems (CS-FPP). Compared with the best-known (1 + ϵ)-approximation CON-
GEST algorithm for RS-FCP/CS-FPP developed by Kuhn, Moscibroda, and Wattenhofer (SODA’06),
our algorithm is not only much simpler but also significantly improves the dependency on ϵ.
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1 Introduction

A fractional covering problem (FCP) and its dual fractional packing problem (FPP) are
positive linear programs (LP) of the canonical form:

min
x

cT x (FCP, the primal LP) max
y

bT y (FPP, the dual LP)

s.t. Ax ≥ b s.t. AT y ≤ c

x ≥ 0 y ≥ 0,

where all Aij , bi, and cj are non-negative. This paper particularly focuses on k-row-sparse
FCPs (k-RS-FCP) and k-column-sparse FPPs (k-CS-FPP). These are FCPs and FPPs in
which the matrix A contains at most k non-zero entries per row. They are still fairly general
problems and can model a broad class of basic problems in combinatorial optimization, such
as the fractional version of vertex cover, bounded-frequency weighted set cover, weighted
k-uniform hypergraph matching, stochastic matching, and stochastic k-set packing.

This paper studies distributed algorithms for FCPs and FPPs in the CONGEST model.
The CONGEST model features a network G = (V, E), where each node corresponds to a
processor and each edge (u, v) represents a bidirectional communication channel between
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processors u and v. The computation proceeds in rounds. In one round, each processor first
executes local computations and then sends messages to its neighbors. Each of the messages
is restricted to O(log |V |) bits. The algorithm complexity is measured in the number of
rounds it performs.

For an FCP/FPP instance with m primal variables and n dual variables (i.e., A has
dimensions n × m), the network is a bipartite graph G = ([m], [n], E). Each primal variable
xj is associated with a left node j ∈ [m], and each dual variable yi is associated with a right
node i ∈ [n]. An edge (i, j) exists if and only if Aij > 0. At the beginning of a CONGEST
algorithm, each left node j only knows its corresponding cost cj and the column vector
(Aij : i ∈ [n]), and each right node i only knows bi and the row vector (Aij : j ∈ [m]). At
the end of the algorithm, each left node j is required to output a number x̂j and each right
node i to output a ŷi, which together are supposed to form approximate solutions to the
FCP and FPP respectively.

Let 1k denote the k-dimensional all-ones vector. The subscript k will be dropped if it
is implicit. Without loss of generality, this paper considers FCP and FPP instances of the
following normal forms:

min
x

1T x s.t. Ax ≥ 1 and x ≥ 0 (1)

and

max
y

1T y s.t. AT y ≤ 1 and y ≥ 0 (2)

where Aij is either 0 or ≥ 1. The reduction to the normal form proceeds as follows:
First, we can assume that each bi > 0 since otherwise we can set yi to zero and delete
the i-th row of A;
similarly, we can assume each cj > 0 since otherwise we can set xj to +∞ and delete the
j-th column of A, and then set yi to zero and delete the i-th row for all i with Aij > 0.
Then, we can replace Aij by Âij = Aij

bicj
, replace b and c by all-ones vector, and work

with variables x̂j = cjxj and ŷi = biyi.
Finally, we replace Âij with Ãij = Âij

min{Âi′j′ |Âi′j′>0} and work with x̃j = x̂j · min{Âi′j′ |

Âi′j′>0} and ỹi = ŷi · min{Âi′j′ | Âi′j′>0}.

Papadimitriou and Yannakakis [12] initiated the research on approximating FCPs/FPPs in
the CONGEST model. Bartal, Byers, and Raz [3] proposed the first constant approximation
ratio algorithm with polylog(m + n) rounds. After designing a distributed algorithm for
a specific FCP/FPP scenario, namely the fractional dominating set problem [10], Kuhn,
Moscibroda, and Wattenhofer [8] finally developed an efficient (1+ϵ)-approximation algorithm
for general FCP/FPP instances, running in O(log Γp·log Γd/ϵ4) round for normalized instances
where

Γp := max
j

n∑
i=1

Aij , and Γd := max
i

m∑
j=1

Aij .

Particularly, for RS-FCPs/CS-FPPs, the round complexity becomes O
(
log Amax · log Γp/ϵ4)

.
Later, Awerbuch and Khandekar [2] proposed another (1 + ϵ)-approximation algorithm for
general normalized FCP/FPP instances running in Õ(log2(nAmax) log2(nmAmax)/ϵ5) rounds,
which has worse bound than [8] but enjoys the features of simplicity and statelessness.

Several works studied the lower bound for CONGEST algorithms to approximate linear
programming. Bartal, Byers, and Raz [3] showed that (1 + ϵ)-approximation algorithms for
general FCPs/FPPs require at least Ω(1/ϵ) rounds. Kuhn, Moscibroda, and Wattenhofer
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proved that [5, 6, 7, 8, 11] no constant round, constant-factor approximation CONGEST
algorithms exist for the LP relaxation of minimum vertex cover, minimum dominating set,
or maximum matching in general graphs. Later, they improved this lower bound by showing
that [9] no o(

√
log(m + n)/ log log(m + n)) rounds CONGEST algorithms can constant-

factor approximate the LP relaxation of minimum vertex cover, maximum matching, or by
extension, the general binary RS-FCPs or CS-FPPs (i.e., Aij ∈ {0, 1}) as well.

In this paper, we propose a CONGEST algorithm (Algorithm 1) for approximating general
RS-FCP/CS-FPP instances, which is much simpler than the algorithm of [8]. Moreover,
our algorithm exhibits a worse dependency on Amax but improves the dependency on ϵ.
In particular, for the binary RS-FCPs or CS-FPPs, which include LP relaxations of many
combinatorial problems such as minimum vertex cover, minimum dominating set, maximum
matching, and maximum independent set, our algorithm runs in O(log Γp/ϵ2) rounds, which
is a 1/ϵ2 factor improvement over the algorithm of [8].

▶ Theorem 1 (Main Theorem). For any ϵ > 0, Algorithm 1 computes (1 + ϵ)-approximate
solutions to RS-FCP and CS-FPP at the same time, running in O(Amax · log Γp/ϵ2) rounds.

▶ Remark 2. In 2018, Ahmadi et al. [1] proposed a simple (1 + ϵ)-approximation distributed
algorithm for the LP relaxation of minimum vertex cover and maximum weighted matching
problems, which are special classes of 2-RS-FCPs and 2-CS-FPPs. They claimed the algorithm
runs in O(log Γp/ϵ2) rounds, an O(Amax) factor faster than our algorithm. Unfortunately,
there is a flaw in their proof1, and we do not know how to correct the proof to achieve the
claimed bound.

2 Algorithms

In this section, we present our algorithm (Algorithm 1) and the analysis. Indeed, our
algorithm applies to general FCP/FPP instances, and we will prove the following theorem:

▶ Theorem 3. For any ϵ > 0, Algorithm 1 computes (1 + ϵ)-approximate solutions to (1)
and (2) at the same time, running in O

(
Γd · log Γp/ϵ2)

rounds.

Our algorithm is based on the sequential fractional set cover algorithm by Eisenbrand et
al. [4] and the fractional weighted bipartite matching by Ahmadi et al. [1]. It will be helpful
to view (1) as a generalization of the fractional set cover problem. Specficially, there is a
universe U = {e1, · · · , en} of n elements, a collection S = {S1, S2, · · · , Sm} of subsets of U ,
and a matrix {AeS : e ∈ U, S ∈ S} indicating the covering efficiency of S on e. We say e ∈ S

if AeS > 0. Then (1) can be recast as the following generalization of the fractional set cover
problem:

min
x≥0

∑
S∈S

xS s.t.
∑
S∋e

AeS · xS ≥ 1 for any e. (3)

The dual (2) can be recast as:

max
y≥0

∑
e∈U

ye s.t.
∑
e∈S

AeS · ye ≤ 1 for any S. (4)

1 In the proof of Lemma 5.2 in the full version, Y +
v should be defined as y+

e /we rather than y+
e ;

α1/we

α1/we −1 ≤ α
α−1 seems doubtful since 1

we
> 1 in their setting.
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Algorithm 1 An (1 + ϵ)-approximation algorithm for the normalized FCP/FPP.

1 Parameter: α, f ∈ R≥0 and L ∈ N defined as in (5);
2 Initialize xS := 0 for any S, and ye := 0 and re := 1 for any e;
3 for ℓ = 1 to L do
4 for each all S in parallel do
5 if ρS ≥ 1

α · maxS′∩S ̸=∅ ρS′ then
6 xS := xS + 1;
7 for all e ∈ S do
8 ye := ye + AeS · re/

(∑
e∈S AeS · re

)
and re := re/αAeS ;

9 if re ≤ α−f then re := 0;

10 Return: x/f and y/(f · (1 + ϵ)) as the approximate solutions to (3) and (4)
respectively.

Our algorithm maintains a variable xS for each subset S, and two variables ye and re

for each element e. xS and ye are initially 0 and their values can only increase throughout
the algorithm; the variable re is initially 1 and its value can only decreases. Intuitively,
re denotes the “requirement” of element e. Furthermore, we define the efficiency of S as
ρS :=

∑
e∈S AeS · re.

Our algorithm consists of L phases. α and f are two other algorithmic parameters. The
values of L, α, f will be determined later. In the ℓ-th phase, the algorithm picks all subsets
S with

ρS ≥ 1
α

· max
S′∩S ̸=∅

ρ′
S .

and update the primal variable

xS := xS + 1,

as well as: for each e ∈ S,

ye := ye + AeS · re∑
e∈S AeS · re

, and re := re/αAeS .

In other words, let Ξℓ(e) := {S ∋ e | S is selected in the ℓ-th phase}, then after the ℓ-th
phase, we have

ye := ye + ∆ye = ye +
∑

S∈Ξℓ(e)

AeS · re∑
e∈S AeS · re

, and re := re/α

∑
S∈Ξℓ(e)

AeS
.

Besides, we set re = 0 as soon as re ≤ α−f . Finally, the algorithm returns x/f and
y/ ((1 + ϵ) · f) as the approximation solutions. See Algorithm 1 for a formal description.
▶ Remark 4. The two algorithms in [8] and [1] both have a similar greedy fashion: it
starts with all xS set to 0, always increases the xS whose “efficiency” is maximum up to a
certain factor, and then distributes the increment of xS among its elements and decreases
the requirements re. Our algorithm and the two algorithms of [8] and [1] differ in specific
implementations: the definition of efficiency, the distribution of increments, and the reduction
of requirements. In particular, the algorithm of [8] consists of two levels of loops: the goal of
the first-level loop is to reduce the maximum “weighted primal degree”, and one complete
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run of the second-level loop can be seen as one parallel greedy step. This two-level structure
complicates the algorithm of [8]. The algorithm of [1] only works for the LP relaxation
of minimum vertex cover and maximum weighted matching problems, which are special
classes of 2-RS-FCPs and 2-CS-FPPs. The distribution of increments and the reduction of
requirements in our implementation is similar to [1], and the main difference is the definition
of efficiency.

Before analyzing the correctness and efficiency of the algorithm, we present some helpful
observations about its behavior.

▶ Proposition 5. Throughout the algorithm, we always have
(a)

∑
S xS =

∑
e ye.

(b) For any S, the value of ρS is non-increasing, and lies within
(
α−f , Γp

]
∪ {0}.

(c) After each phase, maxS ρS decreases by a factor of at least α.

Proof.

Part (a). Initially,
∑

S xS =
∑

e ye = 0. Then, whenever we increase xS by 1, we increase∑
e ye by

∑
e∈S

AeS ·re∑
e∈S

AeS ·re
= 1.

Part (b). Since re is non-increasing, so is ρS :=
∑

e∈S AeS · re. Besides, the initial value
of ρS is

∑
e∈S AeS , which is upper-bounded by Γp. Furthermore, for any non-zero re where

e ∈ S, it should be strictly greater than α−f , since otherwise it will be set to 0. Recalling
that AeS ≥ 1, we have ρS > α−f or ρS = 0.

Part (c). Define ρmax := maxS ρS . Note that every S with ρS ≥ ρmax/α will be picked.
Then for any such S, re will decrease by a factor of α

∑
S′∈Ξℓ(e)

AeS ≥ αAeS ≥ α for any e ∈ S,
so ρS =

∑
e∈S AeS · re decreases by a factor of at least α as well. ◀

By Proposition 5 (b) and (c), it is easy to see that after ⌈logα Γp + f⌉ phases, all ρS and
re will become zero. We choose 2

α := 1 + ϵ

c · Γd
, and f := 2

ϵ · ln α
· ln Γp, and L := ⌈logα Γp + f⌉. (5)

where c is a sufficiently large constant. Note that each phase can be implemented in constant
rounds. So the following lemma holds.

▶ Lemma 6. Algorithm 1 runs in O(Γd · log Γp/ϵ2) rounds. When it terminates, all re = 0
and all ρS = 0.

What remains is to prove its correctness. Let xL and yL denote the values of x and y right
after the L-th phase. We first prove the feasibility.

▶ Theorem 7. xL/f and yL/ ((1 + ϵ) · f) are feasible solutions to (3) and (4) respectively.

Proof. We first show the feasibility of xL/f . Obviously, xL/f are non-negative. Given
any e, whenever we increase xS by 1 for some S ∋ e, we divide re by a factor αAeS . The

2 The reason behind the choices of parameters is that α should sufficiently close to 1 and f should
sufficiently large, such that αΓd+1 = 1 + O(ϵ) and ln Γp

ln α ≪ f . See the proof of Theorem 7 for details.

ISAAC 2024
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initial value of re is 1; and by Lemma 6, finally re becomes ≤ α−f , and then is set to 0. We
therefore have∑

S∋e

AeS · xL
S ≥ f,

and then conclude the feasibility of xL/f .
In the following, we prove the feasibility of yL/f . Obviously, yL/((1 + ϵ) · f) are

non-negative. What remains is to show that for any S∑
e∈S

AeS · yL
e ≤ (1 + ϵ) · f.

For the convenience of presentation, define YS :=
∑

e∈S AeS · ye, which only increases during
the algorithm’s execution. The idea is to upper bound the increment ∆YS of YS in terms of
the decrement ∆ρS of ρS in each phase.

On the one hand, recalling that the increment of ye is

∆ye =
∑

S′∈Ξℓ(e)

AeS′ · re∑
e∈S′ AeS′ · re

=
∑

S′∈Ξℓ(e)

1
ρS′

· AeS′ · re,

we have

∆YS =
∑
e∈S

AeS · ∆ye =
∑
e∈S

∑
S′∈Ξℓ(e)

1
ρS′

· AeS · AeS′ · re ≤
∑
e∈S

∑
S′∈Ξℓ(e)

α

ρS
· AeS · AeS′ · re

= α

ρS

∑
e∈S

∑
S′∈Ξℓ(e)

AeS · AeS′ · re.

On the other hand,

∆ρS =
∑
e∈S

AeS · ∆re =
∑
e∈S

AeS · re ·
(

1 − 1/α

∑
S′∈Ξℓ(e)

AeS′
)

=
∑
e∈S

AeS · re · 1

α

∑
S′∈Ξℓ(e)

AeS′

(
α

∑
S′∈Ξℓ(e)

AeS′ − 1
)

≥
∑
e∈S

AeS · re · 1

α

∑
S′∈Ξℓ(e)

AeS′

 ∑
S′∈Ξℓ(e)

ln α · AeS′


≥ ln α

αΓd

∑
e∈S

∑
S′∈Ξℓ(e)

AeS · AeS′ · re

Combining the two inequalities above, we get

∆YS ≤ αΓd+1

ln α
· ∆ρS

ρS
.

Then, summing this inequality up over all phases, we have

Y end
S =

∑
each phase

∆YS ≤ αΓd+1

ln α

∑
each phase

∆ρS

ρS
≤ αΓd+1

ln α

∫ ρinitial
S

ρend
S

1
ρ

dρ

= αΓd+1

ln α
·
(
ln ρinitial

S − ln ρend
S

)
≤ αΓd+1

ln α
· (ln α · f + ln Γp)

= αΓd+1f + αΓd+1 ln Γp

ln α
≤ (1 + ϵ)f. ◀
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By Proposition 5 (a), we have
∑

S xL
S =

∑
e yL

e , which means∑
e

yL
e / ((1 + ϵ) · f) ≤ (1 + ϵ)

∑
S

xL
S/f.

We therefore conclude that xL/f and yL/ ((1 + ϵ) · f) are (1 + ϵ)-approximate solutions
to (3) and (4) respectively. By putting it and Lemma 6 together, we finish the proof of
Theorem 3.

3 Conclusion

This paper proposes a simple (1 + ϵ)-approximation CONGEST algorithm for row-sparse
fractional covering problems and column-sparse fractional packing problems. It runs in
O

(
Amax · log Γp/ϵ2)

rounds, where Γp = maxj

∑
i Aij and Γd = maxi

∑
j Aij . Our algorithm

is simpler than the algorithm of [8], worsens the Amax-dependency, but improves the ϵ-
dependency. For future work, it is an intriguing open problem, proposed by Suomela [13],
whether constant round, constant-factor approximation CONGEST algorithms exist for
row-sparse, column-sparse FCP/FPP instances – a special kind of RS-FCP/CS-FPP where
the number of nonzero entries in each column of A is also bounded. Our algorithm and the
algorithm of [8] are both such algorithms for instances where Amax is bounded.
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