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Abstract
In the F-Deletion problem, where F is a fixed finite family of graphs, the input is a graph G and an
integer k, and the goal is to determine if there exists a set of at most k vertices whose deletion results
in a graph that does not contain any graph of F as a minor. The F-Deletion problem encapsulates
a large class of natural and interesting graph problems like Vertex Cover, Feedback Vertex
Set, Treewidth-η Deletion, Treedepth-η Deletion, Pathwidth-η Deletion, Outerplanar
Deletion, Vertex Planarization and many more. We study the F-Deletion problem from the
kernelization perspective. In a seminal work, Fomin et al. [FOCS 2012] gave a polynomial kernel
for this problem when the family F contains at least one planar graph. The asymptotic growth of
the size of the kernel is not uniform with respect to the family F : that is, the size of the kernel is
kf(F), for some function f that depends only on F . Later Giannopoulou et al. [TALG 2017] showed
that the non-uniformity in the kernel size bound is unavoidable as Treewidth-η Deletion cannot
admit a kernel of size O(k

η+1
2 −ϵ), for any ϵ > 0, unless NP ⊆ coNP/poly. On the other hand it was

also shown that Treedepth-η Deletion admits a uniform kernel of size f(F) · k6 depicting that
there are subclasses of F where the asymptotic kernel sizes do not grow as a function of the family
F . This work led to the question of determining classes of F where the problem admits uniform
polynomial kernels.

In this paper, we show that if all the graphs in F are connected and F contains K2,p (a bipartite
graph with 2 vertices on one side and p vertices on the other), then the problem admits a uniform
kernel of size f(F) · k10. The graph K2,p is one natural extension of the graph θp, where θp is a
graph on two vertices and p parallel edges. The case when F contains θp has been studied earlier
and serves as (the only) other example where the problem admits a uniform polynomial kernel.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Uniform polynomial kernel, F-minor-free deletion, complete bipartite minor-
free graphs, K2,p, protrusions

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.46

1 Introduction

For any fixed finite family of (multi-)graphs F , in the F-Deletion problem, given as input
a graph G and a positive integer k, the task is to determine whether the deletion of a set of
at most k vertices results in a graph that does not contain any graph of F as a minor. The
F-Deletion problem encompasses various natural and interesting problems such as Vertex
Cover, Feedback Vertex Set, Treewidth-η Deletion, Treedepth-η Deletion,
Pathwidth-η Deletion, Outerplanar Deletion, Vertex Planarization and much
more. As a result of the seminal work of Lewis and Yannakakis [18] the problem is known to
be NP-complete. By a celebrated result of Robertson and Seymour [22] every F-Deletion
problem is non-uniformly FPT, that is, for every integer k, there exists an algorithm that
solves the problem in f(k) · n3 time, where n is the number of vertices in the input graph.
However, when the family F is given explicitly, the problem is uniformly FPT because the
excluded minors for the graphs that are YES instances of the problem can be computed
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explicitly from the result by Adler et al. [1]. Another breakthrough result by Fomin et
al. [12] shows that the problem admits an algorithm with running time 2O(k) · nO(1) when
all the graphs in F are connected and F contains a planar graph. The class considered
by Fomin et al. seems a little restrictive at first, but it already encapsulates the classical
problems mentioned above except for Vertex Planarization. In fact, the class of problems
considered by Fomin et al. [12] are essentially about deleting k vertices to get to a graph of
constant treewidth, since graphs that exclude a planar graph H as a minor have treewidth
at most |V (H)|O(1) [3].

One of the major highlights of the result by Fomin et al. [12] is also a polynomial (in
k) kernel for the F-Deletion problem when F contains a planar graph. A noteworthy
feature of their kernelization algorithm is that the size of the kernel is f(F) · kg(F), for some
functions f, g that depend only on the family F . In particular, the exponent of the size
of the kernel depends on the family F . Such kernels are called non-uniform kernels as the
asymptotic size of the kernel varies with the family F . Such a result opens up questions
about the existence of a kernel of size f(F) · kO(1) for F-Deletion. Such a kernel is called
a uniform polynomial kernel.

Soon after the result of Fomin et al., Giannopoulou et al. [14] showed that the size of the
polynomial kernel by Fomin et al. is essentially tight in the sense that F-Deletion cannot
admit a kernel of size f(F) · kO(1), under reasonable complexity assumptions. In particular,
they showed that Treewidth-η Deletion, a special case of F-Deletion where F contains
a planar graph, cannot admit a uniform polynomial kernel unless NP ⊆ coNP/poly, even
when the parameter is the vertex cover of the graph. More specifically they showed that
Treewidth-η Deletion cannot admit a kernel on O(x

η+1
2 −ϵ) vertices, for any ϵ > 0, where

x is the size of the vertex cover in the input graph. They also complemented this result
by showing that Treedepth-η Deletion, another special case of F-Deletion when F
contains a path, admits a (uniform) kernel of size f(η) · k6 for some function f .

Other than Treedepth-η Deletion, the only other family F for which F-Deletion is
known to admit a uniform polynomial kernel (of size f(F) · k2 log3/2 k)) is when the graph
θp ∈ F [11]. Here θp is a graph with two distinct vertices and p parallel edges between them.

This contrast in the behaviour of the asymptotic size of polynomial kernels, obtained for
different specializations of F-Deletion, leads to the question- under what restrictions of F ,
does the F-Deletion problem admit uniform kernels? Our study investigates this direction
and exhibits an infinite collection of families F for which the F-Deletion problem admits
a uniform polynomial kernel.

Our Result. We show that F-Deletion admits a kernel of size f(F) · k10, when all the
graphs in F are connected and K2,p ∈ F , where K2,p is a complete bipartite graph on 2
vertices on one side and p vertices on the other. Henceforth, for any positive integer p,
let Fp denote an arbitrary finite family of connected graphs such that K2,p ∈ Fp. The
Fp-Deletion problem is formally defined as follows: given a graph G and an integer k, does
there exist X ⊆ V (G), |X| ≤ k such that G − X has no graph of Fp as a minor?

In the remaining paper we subsume the factors depending on Fp in the O(·) notation.
Also, a polynomial running time refers to a running time that is polynomial in the input size
where the exponent of the polynomial is an absolute constant (and hence does not depend
on Fp or k). Thus, our kernelization algorithm runs in “purely” polynomial time.

▶ Theorem 1.1. Fp-Deletion admits a kernel of size O(k10).
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K2,p-free graphs. The class Fp-Deletion that we consider is, and has to be, more restrict-
ive than what is considered by Fomin et al. [12], given the hardness result by Giannopoulou
et al. [14]. In the following points we motivate our interests in the study of the chosen
family Fp.
(1) Generalizes outerplanarity. A graph is called outerplanar if there exists a planar em-
bedding of it where all the vertices lie on the outer face. In the Outerplanar Deletion
problem, given as input a graph G and an integer k the goal is to decide if the deletion of
at most k vertices results in an outerplanar graph. A well-known consequence of Wagner’s
characterization of planar graphs implies that the Outerplanar Deletion problem is
equivalent to the F-Deletion problem where F = {K2,3, K4}, where K4 is a complete
graph on 4 vertices. Clearly, Fp-Deletion encapsulates and generalizes the Outerplanar
Deletion problem.
(2) Challenge in extension from θp. As mentioned earlier, prior to the polynomial kerneliza-
tion result of Fomin et al. [12] for general families F containing some planar graph, Fomin
et al. [11] gave a uniform polynomial kernel for F-Deletion when θp ∈ F . Such families
already encapsulate classical problems like Vertex Cover, Feedback Vertex Set and
Diamond Hitting [11].

Observe that K2,p is a natural extension of θp as it can be obtained from θp by subdividing
each of its edges once. This seemingly simple extension of θp already poses great technical
challenges, thereby disallowing to lift the kernelization techniques used in the θp case to the
K2,p case. As we describe in detail later (see Section 3), the challenge in making a uniform
polynomial kernel for special cases of F-Deletion lie in what we call the degree reduction
phase of [12]. We elaborate on this later but let us give some overview of it already here.
Let S be some approximate solution to the problem of size kO(1). Let C be some connected
component of G − S. If one can bound the degree of each vertex of x ∈ S in the set C by
f(F) · kO(1) (where the degree of k is independent of F), then following the approach of [12],
one can get a uniform polynomial kernel for the F-Deletion problem.

Using the above, a uniform polynomial kernel for F-Deletion when θp ∈ F follows very
easily: let S be a 1-redundant solution to the problem of size O(k2), that is for each x ∈ S,
S \ x is a solution to the problem. As we will see later such sets of O(k2) size can be found
easily. Let C be a connected component of G − S. Then for any x ∈ S, the degree of x in C

is at most p − 1, as otherwise there would be θp as a minor in G[C ∪ {x}], contradicting that
S \ {x} is a solution. Thus, in this case one can in fact, bound the degree of x in C by O(1).

The above simple argument for bounding the degree of x fails completely when the
forbidden minor is a subdivided θp, that is a K2,p. For example, consider a graph containing
n + 1 vertices, where one vertex is adjacent to all the other n vertices and these n vertices
are connected to form a path. This graph has θn as a minor but no K2,3 as a minor.
(3) Interesting structural graph properties of K2,p-free graphs. From a graph theoretic
viewpoint, excluding certain classes of graphs as minors seem to give close connections
to some interesting graph properties. One of the most interesting conjectures at present
demonstrating this is the Hadwiger’s Conjecture which states that the chromatic number
of any graph that avoids Kt as a minor is at most t − 1. Following this line of work, graph
theorists have developed a special interest in the class of graphs that exclude a complete
bipartite graph as a minor [10, 7, 23, 5, 20, 6, 9]. Together with connectivity requirements, and
possibly other assumptions, graphs with no Kq,p as a minor can be shown to have interesting
properties relating to toughness, hamiltonicity, and other traversability properties [4, 5, 21].
Particular attention has been given to the case when q = 2, as most of these properties
appear to hold for this special case too. Note that any graph avoiding K2,p as a minor is at
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most p − 1-connected. Results in the literature show that 3-connected K2,4-free graphs are
Hamiltonian and the 2-connected K2,4-free graphs have a Hamiltonian Path [10]. Also [7]
shows that every 2-connected K2,4-free graph contains two vertices whose deletion results in
an outerplanar graph. Graphs on n vertices that are K2,p-free are known to have long cycles,
in particular, cycles of length at least n/pp−1 [5]. Another result shows that the number
of edges in an n-vertex K2,p-free graph, for p ≥ 2, is at most (1/2)(p + 1)(n − 1) [6]. This
literature thus suggests that the class of K2,p-free graphs exhibit interesting graph theoretic
properties and hence, it could be worth to study this graph class algorithmically.
(4) Extremal limit before encapsulating planarization. In continuation of the above point, at
the front of avoiding a Kq,p as a minor, it must be noted that the case when q = 3 already
encompasses the classical and notorious Vertex Planarization problem. In this problem,
the goal is to delete at most k vertices such that the resulting graph is a planar graph.
This problem is equivalent to F-Deletion when F = {K3,3, K5} because of Wagner’s
characterization of planar graphs. Note that none of the graphs in F are planar. The first
constructive FPT algorithm for this problem was given by Marx and Schlotter in 2007 [19],
which was followed by an improved algorithm by Kawarabayashi [17]. This was followed by
the current best known algorithm for the problem by Jansen et al. [16] in 2014 that runs in
time 2O(k log k) · n. Over this long period of improvements, one important open question that
has intrigued the community is the question about the existence of a polynomial kernel for
the problem. Recently Jansen and Wlodarczyk [15] gave a lossy polynomial kernel for this
problem. But it seems for now that getting a (non-lossy) polynomial kernel for this problem
may require more novel ideas. Thus, on the front of avoiding complete bipartite minors,
avoiding anything beyond K2,p must first confront the Vertex Planarization problem.

Roadmap. In Section 2 we define basic notations and definitions. In Section 3 we describe
all the (five) steps of our kernelization algorithm. In particular, we state formally the five
main lemmas that we prove to give the complete proof of Theorem 1.1. In Section 4 we focus
on our main technical contribution of this work which is what we call the degree reduction
phase of the kernelization algorithm (step 2 of the 5 steps). We give an overview of the key
ideas of this phase, followed by formal proofs. In Section 5 we conclude with some open
questions. The details of the 4 other phases of the algorithm that are described in Section 3
have been omitted because of space constraints. Also the proofs of lemmas marked with ⋆

have been omitted due to space constraints.

2 Preliminaries

For standard notations and terminology that is not defined here, we refer to [8]. For the
definition of kernelization and related terminology we refer to the book [13]. Throughout the
paper, h = maxH∈Fp |V (H)|.

General. For positive integers i < j, [i] denotes the set {1, . . . , i} and [i, j] denote the set
{i, i + 1, . . . , j}. Given a sequence, an interval is a set of consecutive entries of the sequence.
The length of the interval is the number of entries in it.

Graphs. For u, v ∈ V (G) a (u, v)-path in G is a path from u to v. The internal vertices of a
path are the vertices of the path that are not its end-points. For X ⊆ V (G), a path is called
X-free if none of the vertices of X appear as internal vertices of the path. For X, Y ⊆ V (G),
Z ⊆ V (G) is called an (X, Y )-cut if G − Z has no path from a vertex of X to a vertex of Y .
When X or Y are singletons we drop the braces around them in this notation.
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Boundaried graphs and boundaried minors. For any positive integer t, a t-boundaried
graph is a graph G together with a specially assigned vertex set of size at most t called the
boundary of G. Also each vertex in the boundary is labelled with a distinct integer from [t].
A t-boundaried graph H is a minor of a t-boundaried graph G if H can be obtained from G

by deleting vertices or edges or contracting edges, but never contracting edges with both
endpoints being the vertices in the boundary. If we contract an edge between a boundary
vertex u and a non-boundary vertex v, the resulting vertex is a boundary vertex with the
same label as that of u. For a t-boundaried graph G, for any positive integer δ, the δ-folio(G)
is the set of all t-boundaried graphs of size at most δ that can be obtained as boundaried
minors in G.

3 The steps of the kernelization algorithm

The kernelization algorithm of Theorem 1.1 has five phases which we term as (1) redundant
solution, (2) degree reduction, (3) component reduction, (4) protrusion decomposition, and
(5) protrusion replacement. We emphasize here that the degree reduction phase is our main
technical contribution of this work and our special choice of starting with a redundant
solution in phase one is key for the second phase. Other than this, the overall structure
of our kernelization algorithm follows the footprints of that of [12]. For any graph G,
let cc(G) denote the set of connected components of G. Throughout the presentation,
h := maxF ∈Fp

|V (F )|. Let (G, k) be an instance of Fp-Deletion problem.

Redundant solution. In the first phase, we find a 1-redundant solution S in G of size
O(k2). A 1-redundant solution in G is a set of vertices S such that for every x ∈ S, S \ {x}
is a solution of Fp-Deletion. This step is different from that of [12] where any solution
modulator (for example, any approximate solution) works. Formally, we prove the following
lemma.

▶ Lemma 3.1 (⋆, Redundant solution). Given an instance (G, k) of Fp-Deletion, there is
a polynomial-time algorithm that either outputs x ∈ V (G) such that (G − {x}, k − 1) is an
equivalent instance of (G, k), or outputs a 1-redundant solution of (G, k) of size O(k2), or
concludes correctly that (G, k) is a NO instance of Fp-Deletion.

If Lemma 3.1 outputs x ∈ V (G) then we apply a reduction rule and output the instance
(G−{x}, k −1) as an equivalent instance. If it outputs NO, then we output a trivial constant
sized NO instance of Fp-Deletion. Otherwise, we have a 1-redundant solution of size
O(k2), that we denote by S in all the subsequent phases.

Degree reduction. The input to this phase is the instance (G, k) together with a 1-redundant
solution S. The goal is to design a reduction rule that bounds the size of the set of neighbours
of x in C, for each x ∈ S and C ∈ cc(G − S), by kO(1). An edge uv in G is called irrelevant
if the instance (G, k) is equivalent to the instance (G − uv, k).

Let a denote the number of 2-boundaried graphs on at most 2h+6 vertices. Let g : [a] → N
be a function such that g(1) := 18 · (2h + 6) and for each i > 1, g(i) := 18 · (2h + 6) · g(i − 1).
Also let degree-bound := p3 · (|S| · (p + k + 1) + 1) · g(a). We prove the following lemma.

▶ Lemma 3.2 (Irrelevant edge). Let (G, k) be an instance of Fp-Deletion and S be a
1-redundant solution in G. Let x ∈ S and C ∈ cc(G − S). If |N(x) ∩ C| ≥ degree-bound,
then there exists u ∈ N(x) ∩ C, such that xu is irrelevant. Moreover, such a vertex u can be
found in polynomial time.
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The key insights and the proof of Lemma 3.2 are delegated to Section 4. We use Lemma 3.2
as long as there exists x ∈ S and C ∈ cc(G − S) such that |N(x) ∩ C| ≥ degree-bound.
If u is the vertex reported by Lemma 3.2, then we apply a reduction rule and output an
equivalent instance (G − uv, k). Therefore at the end of this stage we can assume that for
each x ∈ S and C ∈ cc(G − S), |N(x) ∩ C| < degree-bound = O(k3). It is crucial to note
here that the exponent of k in degree-bound is independent of F .

Component reduction. In this phase, we design a reduction rule whose exhaustive applica-
tion guarantees that |cc(G − S)| = O(|S|2 · k) = O(k5). Formally we prove the following
lemma. Let comp-boundh := (10 + p) · (h + 1)2 · 2(h+1

2 ). Note that comp-boundh depends
only on h, p (and therefore only on Fp).

▶ Lemma 3.3 (⋆, Component reduction). Let (G, k) be an instance of Fp-Deletion and S

be some solution of Fp-Deletion (not necessarily optimal). If |cc(G − S)| ≥ comp-boundh ·
|S|2 · k 1, then there exists C ∈ cc(G − S) such that the instance (G, k) is equivalent to
(G − C, k). Moreover, such a component C can be found in polynomial time.

Apply Lemma 3.3 on the instance (G, k) and the set S from phase 1 until |cc(G − S)| =
O(k5).

Protrusion decomposition. Note that at the end of phase three, we can bound the size
of the set of neighbours of S (|N(S)|) by O(k10): indeed from phase three (Lemma 3.3)
|cc(G − S)| = O(k5), from phase 2, for each x ∈ S, |N(x) ∩ C| = O(k3) and |S| = O(k2).
We use this to obtain a protrusion decomposition of G with O(k10) protrusions. This is
defined below.

For a graph G, let tw(G) denote the treewidth (see [8] for the definition) of G. For a
positive integer a, an a-protrusion in G is a set of vertices X ⊆ V (G) such that tw(G[X]) ≤ a

and |NG(X)| ≤ a. For positive integers a, b, c, an (a, b, c)-protrusion decomposition of G is a
partition of V (G) = V0 ⊎ V1 ⊎ . . . ⊎ Vr such that the following holds: (1) |V0| ≤ a, (2) r ≤ b,
(3) for each i ∈ [c], N(Vi) ⊆ V0, and, (4) for each i ∈ [c], Vi is a c-protrusion in G.

In this phase, we prove the following lemma.

▶ Lemma 3.4 (⋆, Protrusion decomposition). Let G be a graph and S ⊆ V (D) such that
tw(G − S) ≤ η and G − S has at most ζ connected components. If |N(S) ∩ C| ≤ α for every
connected component of G−S, then G admits a (|S|+2αηζ, 6αζ, 2η)-protrusion decomposition
and can be computed in polynomial time.

We use Lemma 3.4 on G and the set S from phase 1. Since S is a solution to Fp-Deletion,
K2,p ∈ Fp and K2,p is planar, tw(G − S) = O((p + 2)9) [3]. Thus, in Lemma 3.4, on input
G, S, η = O((p + 2)9), from phase 3 ζ = O(k5) and, from phase 2 α = O(k3) · |S| = O(k5).
Thus, we get an (O(k10), O(k10), O(1))-protrusion decomposition of G.

Protrusion replacement. Let V0 ⊎ V1 ⊎ . . . Vr be the (O(k10), O(k10), O(1))-protrusion
decomposition of G obtained from the previous phase. Note that in order to bound the size
of the whole graph G, it remains to bound the size of protrusion Vi for each i ∈ {1, . . . , r}.
This is done in this final phase. To reduce the size of the protrusions, we use the fact that the
Fp-Deletion problem has Finite Integer Index. This allows one to “replace” each protrusion
Vi with a vertex set whose size depends only on Fp.

1 The bound on comp-boundh has not been optimized.
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Recall η, ζ, α from Lemma 3.4. The following proposition from [2, 12] implies a reduction
rule if the size of any Vi, i ∈ {1, . . . , r}, is larger than a fixed constant q that depends only
on Fp.

▶ Proposition 3.5 (Protrusion replacer, [2, 12]). Let (G, k) be an instance of Fp-Deletion
and let Vi ⊆ V (G) be a 2η-protrusion in G of size at least q, where q is a fixed constant that
depends only on Fp. Then there exists a polynomial-time algorithm that outputs an equivalent
instance (G′, k′) such that |V (G′)| < |V (G)| and k′ ≤ k.

Finally this implies the following corollary. Again recall η, ζ, α from Lemma 3.4 and q

from Proposition 3.5.

▶ Corollary 3.6. If |V (G)| ≥ |S| + 2αηζ + 6qαζk, then the reduction rule implied by
Proposition 3.5 is applicable.

This implies that when the reduction rule of Lemma 3.5 is not applicable, |V (G)| = O(k10).
The proof of Theorem 1.1 follows from Lemmas 3.1,3.2,3.3,3.4 and Corollary 3.6.

4 The degree reduction phase

In this section we elaborate on the degree reduction phase that we described in Section 3.
Recall that (G, k) is an instance of Fp-Deletion and S ⊆ V (G) is a 1-redundant solution,
that is for each x ∈ S, S \ {x} is a solution. Fix x ∈ S and C ∈ cc(G − S) such that
|N(x) ∩ C| ≥ degree-bound. Because S is 1-redundant, G[C ∪ {x}] is K2,p-free. Set
X := N(x) ∩ C. The goal is to design a reduction rule that bounds the size of X by kO(1).

4.1 Overview and key insights

We give an overview of the key insights in the proof of Lemma 3.2. The degree reduction
phase has two main steps. In this first step we find a subset of C that has a very nice
structure and in the second step we exploit this structure to “re-build” minor models of small
graphs so that they avoid an irrelevant edge.

A nicely structured set Cσ ⊆ C. As a first step, we exploit the fact that G[C ∪ {x}] is
K2,p-free to obtain a subset Cσ ⊆ C containing g(a) (recall a, g from Section 3) neighbours
of x such that Cσ has a very nice “chain-like” structure. The definition of the structure
is formalized in Definition 4.1 as an x-good sequence. Also see Figure 1. The proof of its
existence is given in Lemma 4.3. Below we state informally the nice structure of Cσ that we
achieve.

The chain structure: The set Cσ contains g(a) vertices of X, say ordered (u1, . . . , ug(a)).
For each other vertex v ∈ Cσ, v is on some X-free (ui, ui+1)-walk in C. For each i ∈ [g(a)−1],
let V σ

i be the set of vertices on some X-free (ui, ui+1)-walk in C. Then V σ
i ̸= ∅. For each

i, j ∈ [g(a) − 1], i ̸= j, V σ
i ∩ V σ

j = ∅. The set {ui, ui+1} ∪ V σ
i is called a block of Cσ.

The boundary to C: The vertices u1, ug(a) are the boundary vertices of Cσ in C. That is,
no vertex of Cσ \ {u1, ur} has any neighbour in C \ Cσ.

Neighbours in S after removing a solution: Lastly, for any Fp-Deletion solution T of
size at most k + 1, in G − T , the N(Cσ) ∩ S ⊆ {x}.

ISAAC 2024
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Figure 1 The structure of Cσ: The part with the grey background is a connected component C

of G − S. The blue edges connect x to its neighbours in C.

The structure of minors of small graphs in Fp restricted to Cσ. In the second step, we
exploit this structure of Cσ to find a vertex u ∈ Cσ ∩ X such that xu is an irrelevant edge.
To show that xu is irrelevant, we want to show that if there is a set of at most k vertices T

in G − xu such that (G − xu) − T is Fp-free, then G − T is also Fp-free. In particular we
will show that if G − T has any graph H on at most h vertices as a minor, and there is a
minor model of H in G − T that uses the edge xu, then there is also a minor model of H in
G − T that does not use the edge xu (Lemmas 4.14 and 4.16).

For doing the above, the key insight is to focus on the minor model of H restricted to
Cσ ∪ {x}.

4.2 Proof of Lemma 3.2 (Irrelevant edge)
The goal of this section is to prove Lemma 3.2.

▶ Lemma 3.2 (Irrelevant edge). Let (G, k) be an instance of Fp-Deletion and S be a
1-redundant solution in G. Let x ∈ S and C ∈ cc(G − S). If |N(x) ∩ C| ≥ degree-bound,
then there exists u ∈ N(x) ∩ C, such that xu is irrelevant. Moreover, such a vertex u can be
found in polynomial time.

An x-sequence is a sequence σ of a subset of vertices of X. If σ = (u1, . . . , ur) is an
x-sequence, for each i ∈ [r − 1], the set V σ

i contains each vertex that appears on some X-free
(ui, ui+1)-walk in C. An i-block of σ refers to the set {ui, ui+1} ∪ V σ

i . An r-block is simply
the vertex ur. By a block of σ we simply refer to some i-block of σ. By the endpoints of
an i-block, we refer to the vertices ui and ui+1. Further Cσ :=

⋃r−1
i=1 V σ

i ∪
⋃r

i=1{ui}. The
length of the x-good sequence σ is r.

▶ Definition 4.1 (x-good sequence). An x-sequence σ = (u1, . . . , ur) is called an x-good
sequence if the following holds.
1. For every i ∈ [r − 1], there is an X-free (ui, ui+1)-walk in C.
2. For every i ∈ [2, r − 1], {ui−1, ui+1} is a (ui, X)-cut.
3. For any Fp-Deletion set T in G of size at most k + 1, if x ̸∈ T , N(Cσ) ∩ (S \ T ) = {x}.
4. No vertex of Cσ \ {u1, ur} has a neighbour in C \ Cσ.
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▶ Lemma 4.2 (⋆). If σ = (u1, . . . , ur) is an x-good sequence then, for any minimal
Fp-Deletion solution T in G of size at most k + 1 that does not contain x, {x} ⊆
N(Cσ \ {u1, ur}) \ T ⊆ {x, u1, ur}. Also, there exists a minimum Fp-Deletion solution T ∗

in G such that |T ∗ ∩ Cσ| ≤ 3.

In Section 4.2.1 we show that if X is large then there is a large x-good sequence
(Lemma 4.3). In Section 4.2.2 we show how to find an irrelevant edge xu, where u ∈ σ, given
a large x-good sequence σ.

4.2.1 Finding a large x-good sequence
The goal of this section is to prove the following lemma.

▶ Lemma 4.3. If |X| ≥ p3 · (|S| · (p + k + 1) + 1) · g(a), then there exists an x-good sequence
of length g(a). In fact, such a sequence can be found in polynomial time.

We start by taking some natural steps towards the construction of some x-sequence
that has Property 1 of Definition 4.1. We later perform more steps towards proving other
properties of Definition 4.1. Let us define an ordered partition of X = (L0, . . . , Ll) inductively
as follows. Fix an arbitrary vertex x0 ∈ X and let L0 be {x0}. Now suppose L0, . . . , Li

are defined, we define Li+1 as the set of vertices of X \ {
⋃

j∈[0..i] Lj} that are reachable
from Li by X-free paths in G[C]. We next prove a series of claims about this partition
X = (L0, . . . , Ll). Observe that each vertex of C is on some X-free (Li, Li+1)-walk.

▶ Lemma 4.4 (⋆). For every i ∈ [0, l], |Li| ≤ p − 1.

Observe that, if |X| ≥ p3 · (|S| · (p + k + 1) + 1) · g(a), then l ≥ p2(|S| · (p + k + 1) + 1)g(a).
The next definition and the upcoming steps help to ensure Property 2 of Definition 4.1

(this is formally proved in Lemma 4.11). For every i ∈ [0, l − 1], we say that a vertex v ∈ Li

is dangerous if the set of vertices in X that are reachable from Li \ v by paths whose internal
vertex set is disjoint from (X \ Li+1), is exactly Li+1. Observe that for any vertex v ∈ Li

which is not dangerous, there is a vertex v′ in Li+1 such that v′ is not reachable from Li \ v

by an (X \ Li+1)-free path. Such a vertex v′ is called a witness of a non dangerous vertex v.

▶ Lemma 4.5 (⋆). The number of indices i ∈ [0, l] such that Li contains a dangerous vertex
is at most p − 1.

▶ Lemma 4.6 (⋆). For every i ∈ [0, l − 1], if no vertex of Li is dangerous, then |Li| ≤ |Li+1|.

▶ Lemma 4.7 (⋆). Let t = (|S| · (p + k + 1) + 1)g(a). There exists i ∈ [l − t] such that none
of Li, . . . , Li+t contains dangerous vertices and |Li| = |Li+s| for all s ∈ [t].

Without loss of generality, let L1, . . . , Lt denote the interval of (L0, . . . , Ll) from
Lemma 4.7 that do not contain a dangerous vertex, where t = (|S| · (p + k + 1) + 1)g(a).
Using this consecutive sequence of t sets, we will now define an x-sequence σ⋆ = (u1, . . . , ut)
of length t. The vertices uj in this sequence are defined inductively as follows. Let u1 be
any vertex of L1. Then for any j ∈ [t − 1], uj+1 is the witness for the non dangerous vertex
uj . Note that σ⋆ might not be an x-good sequence. In what follows, we prove some nice
properties of σ⋆ and then use them to refine σ⋆ to obtain an x-good sequence. We would like
to remark that this refinement procedure is required to prove Property 3 of Definition 4.1.
We begin by proving a claim which will lead to the refinement. We will first show that these
sets are disjoint.
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▶ Lemma 4.8. For every j ∈ [t − 1], (uj , uj+1) is a (V σ⋆

j , X)-cut in G[C].

Proof. For the sake of contradiction, suppose that this is not the case and let P be a minimal
(V σ⋆

j , u)-path for some u ∈ X, in G[C] − {uj , uj+1}. If u ∈ Ls for s ≤ j − 1, then this
contradicts the fact that uj+1 is in Lj+1, and if u ∈ Ls for s ≥ j + 2, then this contradicts
the fact that u is not in Lj+1. If u ∈ Lj , then this contradicts the fact that uj is the witness
of uj−1 and if u ∈ Lj+1, this contradicts the fact that uj+1 is the witness of uj . ◀

As a corollary of Lemma 4.8, we conclude the following.

▶ Lemma 4.9. For each i, j ∈ [t], where i ̸= j, we have V σ⋆

i ∩ V σ⋆

j = ∅.

Let S1 ⊆ S be the set of all those vertices s of S such that there exists I ⊆ [t] of size at
least k + p + 2 and for each b ∈ I, s is adjacent to some vertex of V σ⋆

b ∪ ub (or to ub when
b = t). Let S2 = (S \ S1) \ x. An index b ∈ [t] is called affected if there exists s ∈ S2 such
that s is adjacent to V σ⋆

b ∪ ub (or to ub when b = t). By the definition of S2, the number
of affected indices is at most |S2| · (k + p + 1) ≤ |S| · (k + p + 1). Since the length of σ⋆ is
t = (|S| · (p+k +1)+1)g(a) and the number of affected indices is at most |S|(p+k +1), there
exists an interval σ of σ⋆ of length g(a) such that none of the indices corresponding to the
subscripts of the vertices in σ are affected. Without loss of generality, let σ = (u1, . . . , ug(a)).
We will now show that σ has Property 3 of Definition 4.1.

▶ Lemma 4.10 (Property 3). Let T be some Fp-Deletion set of size at most k + 1 such
that x ̸∈ T . Then N(Cσ) ∩ (S \ T ) = {x}.

Proof. By the definition of Cσ, N(Cσ) ∩ (S \ T ) contains x. For the sake of contradiction,
say s ∈ S \ x belongs to N(Cσ) ∩ (S \ T ). Since none of the indices corresponding to the
vertices in σ are affected, we conclude that s ∈ S1 \ T . Since |T | ≤ k + 1, σ is an interval of
σ⋆ and from Lemma 4.9, there exists at least p indices in [t] such that for each of these p

indices, say b, T ∩ (V σ⋆

b ∪ ub) = ∅ (or ub ̸∈ T , if b = t) and s is a neighbour of each of these p

sets V σ⋆

b ∪ ub. Then the graph induced by G − T on x, s and p of these sets contains K2,p as
a minor in G − T , which is a contradiction as T is an Fp-Deletion set. ◀

▶ Lemma 4.11 (Property 2). For every j ∈ [2, t − 1], {uj−1, uj+1} is a (uj , X)-cut in C.

Proof. Suppose there is a path in C between uj and some vertex u ∈ X different from
{uj−1, uj+1}. By definition of the Li’s, u belongs to either Lj−1, Lj or Lj+1. If u belongs
to Lj−1 or Lj , this contradicts the fact that uj is the witness of uj−1. If u belongs to Lj+1,
this contradicts the fact that u is the witness of a vertex different from uj in Lj , so we reach
a contradiction. ◀

▶ Lemma 4.12 (Property 4). (N(Cσ) \ {u1, ug(a)}) ∩ C ⊆ {u1, ug(a)}.

Proof. Fix i ∈ [g(a) − 1]. We will first show that no vertex of V σ
i has a neighbour in C \ Cσ.

For the sake of contradiction say v ∈ V σ
i is a neighbour of w ∈ C \ Cσ. Since w is on some

walk between two vertices of X \ {u1, . . . , ug(a)}, this implies that there is a path from v to
a vertex in X that does not intersect {u1, . . . , ug(a)}. This contradicts Lemma 4.8.

It remains to show that none of the vertices in {u2, . . . , ug(a)−1} have a neighbour in
C \ Cσ. We show this in two parts. Note from the construction of the sets Li, that for
any ui ∈ Li, its neighbours in X are either in Li−1, Li or Li+1. Because no vertex of Li

is dangerous and |Li−1| = |Li|, Li is an independent set and the only potential neighbour
of ui in Li−1 and Li+1 is ui−1 and ui+1 respectively. Thus we conclude that no vertex in
{u2, . . . , ug(a)−1} has a neighbour in (C \ Cσ) ∩ X.
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To finish the proof we need to show that no vertex of {u2, . . . , ug(a)−1} has a neighbour
in (C \ Cσ) \ X. For the sake of contradiction, say ui, for i ∈ [2, g(a) − 1], has a neighbour
w ∈ (C \ Cσ) \ X. Since w is on some walk between two vertices of X \ {u1, . . . , ug(a)}, this
would imply a walk from a vertex of X \ {u2, . . . , ug(a)−1} to ui, i ∈ [2, g(a) − 1]. This either
contradicts that ui ∈ Li or that w ̸∈ Cσ. ◀

From the construction of the sequence (L0, . . . , Ll), observe that σ satisfies Property 1 of
Definition 4.1. This together with Lemmas 4.10, 4.11 and 4.12 and the fact that the length
of σ is g(a), proves Lemma 4.3.

4.2.2 Finding an irrelevant edge
The goal of this section is to complete the proof of Lemma 3.2 using Lemma 4.3. Let
σ = (u1, . . . , ur) be an x-good sequence. The graph induced by σ, denoted by G[σ], is a
2-boundaried graph G[Cσ] with boundary u1, ur. By G[σi] we denote the 2-boundaried graph
induced by the i-block of σ, with boundary ui, ui+1. Let Ĝ = G[σ] ∪ x be a boundaried
graph with boundary that is a subset of {x, u1, ur}. Let h′ = 2(h + 3). The folio-set of G[σ],
denoted by folio-set(G[σ]), is the collection of {∪i∈[r]{h′-folio(G[σi])}}, where r is the length
of σ.

In order to prove Lemma 3.2, it is enough to show that there is a vertex ured ∈ X, such
that for any T ⊆ V (G) of size at most k, if there exists a graph H on h vertices that is
a minor of G − T and whose minor model uses the edge xured, then there exists a minor
model of H in G − T that does not use the edge xu. From Lemma 4.2 and Lemma 23 of [12]
(stated below) this will follow from Lemma 4.14.

▶ Proposition 4.13 (Lemma 23, [12]). Let G1 and G2 be t-boundaried graphs and G = G1⊕G2.
A graph H is a minor of G if and only if there exist H1 ≤m G1 and H2 ≤m G2 such that
|V (H1)| ≤ |V (H)| + t, |V (H2)| ≤ |V (H)| + t and H ≤m H1 ⊕ H2.

▶ Lemma 4.14. If the length of σ is g(a), then one can find a vertex ured ∈ σ in polynomial
time such that the following holds. Let H be a 3-boundaried graph with boundary {x} ⊆ B ⊆
{x, u1, ur} of size at most h + 3 that is present as a (boundaried) minor in Ĝ − T , where
T ⊆ V (Ĝ) \ x and |T | ≤ 3. Then there exists a minor model of H in Ĝ − T that does not
use the edge xured.

▶ Proposition 4.15 ([12]). If ϕ is a minimal minor model of H in G, then every vertex in
the minor model has degree at most |V (H)| in the minor model.

Let H be a 3-boundaried graph with boundary {x} ⊆ B ⊆ {x, u1, ur} in G. Let ϕ be a
minimal minor model of H in G. Let ϕ′ = ϕ \ x and H ′ be the (boundaried) graph witnessed
by ϕ′. By Proposition 4.15, |V (H ′)| ≤ 2|V (H)|. Let ϕ1 and ϕ2 be two minor models of
some 2-boundaried graph H in G[σ]. Then ϕ2 is said to be σ-compatible with ϕ1, if for every
branch set of ϕ1 that has a vertex of σ, the corresponding branch set of ϕ2 also has a vertex
of σ. Recall that all the vertices of σ are the vertices of X and hence they are neighbours of
x. With the discussion above, it is not difficult to see that to prove Lemma 4.14, it is enough
to prove Lemma 4.16.

▶ Lemma 4.16. If the length of σ is g(a), then one can find a vertex ured ∈ σ in polynomial
time such that the following holds. Let H be a 2-boundaried graph with boundary B ⊆ {u1, ur}
of size at most h′ that is present as a (boundaried) minor in Ĝ − T , where T ⊆ V (G[σ]) and
|T | ≤ 3. Let ϕ be a minor model of H in Ĝ − T . Then there exists a minor model ϕ′ of H

in Ĝ − T that does not use the edge xured and is σ-compatible with ϕ.
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The following lemma will be crucially used in the arguments that follow. It depicts the
structure of minors in G[σ]. Let H be a 2-boundaried minor in G[σ]. Let ϕ be a minor model
of H in G[σ]. The blocks of σ used by ϕ refers to the collection of blocks of σ that have a
non-empty intersection with the vertices of the minor model ϕ. The crucial blocks used by
ϕ refers to those blocks which have a branch set of ϕ fully contained in it. Note that the
number of crucial blocks of ϕ is at most |V (H)|.

▶ Lemma 4.17 (⋆). Let H be a connected 2-boundaried minor in G[σ]. Let ϕ be some minor
model of H in G[σ]. Then there exists a minor model ϕ′ of H in G[σ] obtained from ϕ by
replacing the vertices in the non-crucial blocks used by ϕ with any arbitrary path between the
endpoints of the block.

▶ Definition 4.18 (Chunk partition of σ). Let σ be an x-good sequence. A chunk of σ is an
interval of σ. A chunk partition of σ is a partition of the blocks of σ into intervals. Let σ′

be a chunk of σ. Then folio-set(σ′) is a set containing the h′- folio(G[σi]), for each i-block in
σ′. A chunk partition of σ is called uniform if the folio-sets of all chunks in the partition
are same. In particular, for any j ∈ [a], a chunk partition of σ is called j-uniform if it is
uniform and the size of the folio-set of each chunk is exactly j.

▶ Lemma 4.19 (⋆, Finding an i-uniform chunk partition). Let σ be an x-good sequence and let
the size of the folio-set(σ) be exactly i. If the length of σ is g(i) then there exists an interval
of σ, say σ′, which admits a j-uniform chunk partition of length 18h′, for some j ∈ [i].

▶ Lemma 4.20 (⋆, Replacement Lemma). Let σ be an x-good sequence and χ = (χ1, . . . , χs)
be an i-uniform chunk partition of σ, for some i ∈ [a]. Let s ≥ h′. Let H be a 2-boundaried
minor in G[σ] of size at most h′. Then H is present as a 2-boundaried minor in every
graph that is induced on any h′ sized interval of χ. Moreover, the later minor model of H is
σ-compatible with the former minor model of H.

▶ Lemma 4.21 (⋆). Let σ be an x-good sequence of length g(a) that admits an i-uniform
chunk partition, for some i ∈ [a], of length 18h′. Then Lemma 4.16 holds.

From Lemmas 4.21 and 4.19, Lemma 4.16 follows. Lemma 4.16 together with Lemma 4.3
finishes the proof of Lemma 3.2.

5 Conclusion

In this article we showed that F-Deletion where all graphs in F are connected and F
contains K2,p admits a uniform polynomial kernel of size O(k10). This result is the third
example where F-Deletion admits a uniform polynomial kernel; the first two being the
Treedepth-η Deletion and the case when F contains θp. The most interesting aspect of
our result is defining and obtaining an extremely structured set of vertices that have a small
effective boundary. This structure is exploited to reduce the degree of the vertices to kO(1).

We conclude with some intriguing open questions. Our result does not extend to the case
when F is allowed to contain disconnected graphs. The first question is: can one obtain a
uniform polynomial kernel when F contains K2,p and other possibly disconnected graphs? In
fact, handling disconnected graphs in the kernelization algorithm of [12] is one point which
introduces non-uniform bounds. Can this step of the kernelization algorithm of [12] be made
to work without introducing non-uniformity? Or even more specifically, can we find some
non-trivial families F which contain disconnected graphs but admit uniform polynomial
kernels? Lastly, can we characterize the families F that admit a uniform polynomial kernel?
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As long as we do not resolve the last question completely, one would be interested in finding
more and more non-trivial families for which the problem admits a uniform polynomial
kernel.
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