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—— Abstract

We show that the simplest local search heuristics for two natural Euclidean clustering problems are
PLS-hard. First, we show that the Hartigan—Wong method, which is essentially the FLIP heuristic,
for k-MEANS clustering is PLS-hard, even when k = 2. Second, we show the same result for the FLip
heuristic for MAX CuUT, even when the edge weights are given by the (squared) Euclidean distances
between the points in some set X C R?; a problem which is equivalent to MIN SUM 2-CLUSTERING.
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1 Introduction

Clustering problems arise frequently in various fields of application. In these problems, one is
given a set of objects, often represented as points in R¢, and is asked to partition the set into
clusters, such that the objects within a cluster are similar to one another by some measure.
For points in R?, a natural measure is the (squared) Euclidean distance between two objects.
In this paper, we consider two Euclidean clustering problems that use this similarity measure:
k-MEANS clustering and SQUARED EUCLIDEAN MAX CUT.

k-Means. One well-studied clustering problem is k-MEANS [10, 23]. In this problem, one is
given a set of points X C R? and an integer k. The goal is to partition X into exactly k
clusters such that the total squared distance of each point to the centroid of its cluster is
minimized. Formally, one seeks to minimize the clustering cost

k
Z Z |z —cm(Cy)||> where cm(C;) = ﬁ Z x.

i=1x€C;
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Being NP-hard even when k = 2 [3] or when X C R? [31], k-MEANS has been extensively
studied from the perspective of approximation algorithms [8, 21, 26, 34]. Nevertheless, local
search remains the method of choice for practitioners [10, 23].

The most well-known local search algorithm for k-MEANS is Lloyd’s method [30]. Here,
one alternates between two steps in each iteration. In the first step, each point is assigned to
its closest cluster center, and in the second step the cluster centers are recalculated from the
newly formed clusters.

This algorithm was shown to have worst-case super-polynomial running time by Arthur
and Vassilvitskii [7], with the result later improved to exponential running time even in
the plane by Vattani [45]. Moreover, Roughgarden and Wang [39] showed it can implicitly
solve PSPACE-complete problems. On the other hand, Arthur et al. [6] proved that Lloyd’s
method has smoothed polynomial running time on Gaussian-perturbed point sets, providing
a degree of explanation for its effectiveness in practice.

Recently Telgarsky and Vattani [44] revived interest in another, older local search method
for k-MEANS due to Hartigan and Wong [20]. This algorithm, the Hartigan-Wong method,
is much simpler: one searches for a single point that can be reassigned to some other cluster
for a strict improvement in the clustering cost. In other words, the Hartigan—-Wong method
is the FLIP heuristic. In the following, we always use FLIP instead of Hartigan—-Wong to
indicate that this is the most simple heuristic for this problem and to keep the name for
the used heuristic consistent. Despite this simplicity, Telgarsky and Vattani [44] show that
the FLIP heuristic is more powerful than Lloyd’s method, in the sense that the former can
sometimes improve clusterings produced by the latter, while the converse does not hold.

A similar construction to that of Vattani for Lloyd’s method shows that there exist
instances on which the FLIP heuristic can take exponentially many iterations to find a local
optimum, even when all points lie on a line [33]. However, this example follows a contrived
sequence of iterations. Moreover, k-MEANS can be solved optimally for instances in which
all points lie on a line. Thus, the question remains whether stronger worst-case examples
exist, and what the complexity of finding locally optimal clusterings is.

Squared Euclidean Max Cut. Another clustering problem similar to k-MEANS is SQUARED
EucLiDEAN MAX CuT. Recall that MAx CuUT asks for a subset of vertices S of a weighted
graph G = (V, E), such that the total weight of the edges with one endpoint in S and one
in '\ S is maximized. This problem emerges in numerous applications, from graph clustering
to circuit design to statistical physics [9, 12].

In SQUARED EUCLIDEAN Max CuT, one identifies the vertices of G with a set X C R?,
and assigns each edge a weight equal to the squared Euclidean distance between its endpoints.
This problem is equivalent to MIN SuM 2-CLUSTERING (although not in approximation),
where one seeks to minimize

Yolle—ulP+ > lle—ul?

z,yeX z,yeY
over all partitions (X,Y’) of X. Also this special case of Max CuT is NP-hard [2]. In a
clustering context, the problem was studied by Schulman [42] and Hasegawa et al. [21],
leading to exact and approximation algorithms.

Given the computational hardness of MAX CuT, practitioners often turn to heuristics.
Some of the resulting algorithms are very successful, such as the Kernighan-Lin heuristic [27]
and the Fiduccia-Mattheyses algorithm [19]. Johnson et al. [24] note that the simple FLIP
heuristic, where one moves a single vertex from one side of the cut to the other, tends
to converge quickly in practice. Schéffer and Yannakakis [40] later showed that it has
exponential running time in the worst case.
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One may wonder whether FLIP performs better for SQUARED EUCLIDEAN MAX CUT.
Etscheid and Roglin [17, 16] performed a smoothed analysis of FLIP in this context, showing
a smoothed running time of 20(4) . poly(n,1/0) for Gaussian-perturbed instances, where
o denotes the standard deviation of the Gaussian noise. On the other hand, they also
exhibited an instance in R? on which there exists an exponential-length improving sequence
of iterations, with the caveat that not all edges are present in the instance. Like for k-MEANS,
one may ask whether stronger examples exist (e.g. on complete graphs), and what the
complexity of finding FLIP-optimal solutions is.

Complexity of Local Search. The existence of instances with worst-case exponential running
time is common for local search heuristics. To investigate this phenomenon, and local search
heuristics in general, Johnson et al. [24] defined a complexity class PLS, for polynomial
local search. The class is designed to capture the properties of commonly used local search
heuristics and contains pairs consisting of an optimization problem P and a local search
heuristic M. In the following we denote such a pair as P/N. PLS-complete problems have the
property that their natural local search algorithms have worst-case exponential running
time. Johnson et al. [24] showed that the Kernighan-Lin heuristic for the MAX BISECTION
problem (a variant of MAX CUT, where the parts of the partition must be of equal size) is
PLS-complete. This stands in contrast to the empirical success of this algorithm [27].

Building on this work, Schéiffer and Yannakakis [40] later proved that a host of very
simple local search heuristics are PLS-complete, including the FLIP heuristic for MAX CUT.
This refuted a conjecture by Johnson et al., who doubted that such simple heuristics could
be PLS-complete. Elsdsser and Tscheuschner [15] later showed that this remains true even in
the very restricted variant where the input graph has maximum degree five, which we will
refer to as Max CuT-5.

Schéffer and Yannakakis defined a new type of PLS-reduction called a tight reduction.
In addition to showing completeness for PLS, this type of reduction also transfers stronger
properties on the running time of local search heuristics between PLS problems.

Since the introduction of PLS, many local search problems have been shown to be PLS-
complete, including such successful heuristics as Lin-Kernighan’s algorithm for the TSP [38]
or the k-SwaP-neighborhood heuristic for WEIGHTED INDEPENDENT SET [28] for k > 3. For
a non-exhaustive list, see Michiels, Korst and Aarts [36, Appendix C].

Our Contribution. Given the existence of k-MEANS instances where the FLIP heuristic has
worst-case exponential running time, one may ask whether this heuristic is PLS-hard. In this
work, we answer this question in the affirmative.

» Theorem 1.1. For each k > 2, k-MEANS/FLIP is PLS-hard.

Just as with k-MEANS/FLIP, we ask whether SQUARED EUCLIDEAN MAX CUT with the
FrLip heuristic is PLS-hard. Again, we answer this question affirmatively. In addition, we
show the same result for EUCLIDEAN MAX CuT, where the distances between the points are
not squared.

» Theorem 1.2. EUCLIDEAN MAx CuT/FLIP and SQUARED EUCLIDEAN Max Cur/FLiP
are PLS-hard.

We note that PLS-hardness results for Euclidean local optimization problems are rather
uncommon. We are only aware of one earlier result by Brauer [13], who proved PLS-
completeness of a local search heuristic for a discrete variant of k-MEANS. This variant
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chooses k cluster centers among the set of input points, after which points are assigned to
their closest center. The heuristic they consider removes one point from the set of cluster
centers and adds another. In their approach, they first construct a metric instance, and then
show that this instance can be embedded into R? using a theorem by Schoenberg [41]. In
contrast, we directly construct instances in R<.

In addition to showing PLS-hardness of k-MEANS/FLIP and SQUARED EUCLIDEAN MAX
Cut/FLIP, we also show that there exist specific hard instances of these problems, as well as
all other problems considered in this paper.

» Theorem 1.3. Each local search problem L considered in this work (see Section 2.2) fulfills

the following properties:

1. L is PLS-hard.

2. For each n, one can compute in polynomial time an instance of L of size n®Y) with an
initial solution that is exponentially far away from any local optimum.

3. The problem of computing the locally optimal solution obtained from performing a standard

local search algorithm based on the neighborhood of L is PSPACE-hard for L.

A formal definition of Property 3 is given in Section 2.1. In particular, this result shows
that there exists an instance of k-MEANS such that there exists an initial solution to this
instance that is exponentially many iterations away from all local optima [40]. By contrast,
the earlier result [33] only exhibits an instance with a starting solution that is exponentially
many iterations away from some local optimum. Moreover, Theorem 1.3 yields instances
where FLIP has exponential running time in SQUARED EUCLIDEAN MAX CUT on complete
geometric graphs, unlike the older construction which omitted some edges [16].

2 Preliminaries and Notation

Throughout this paper, we will consider all graphs to be undirected unless explicitly stated
otherwise. Let G = (V, E) be a graph. For v € V| we denote by d(v) the degree of v in G,
and by N (v) the set of neighbors of v.

Let S, T C V. We write E(S,T) for the set of edges with one endpoint in S and one
endpoint in T. For S C V, we write §(S) = E(S,V \ S) for the cut induced by S. We will
also refer to the partition (S,V '\ S) as a cut; which meaning we intend will be clear from
the context. If | |S| — |V \ S|| < 1, we will call the cut (S, V' \ S) a bisection. Given v € V
we will also write d(v) = §({v}), which is the set of edges incident to v.

Let F' C E. Given a function f : £ — R, we denote by f(F) = .5 f(e) the total value
of f on the set of edges F. If F'= E(X,Y) for some sets X,Y C V, we will abuse notation
to write f(X,Y) = f(F).

2.1 The Class PLS

For convenience, we summarize the formal definitions of local search problems and the
associated complexity class PLS, as devised by Johnson et al. [24].

A local search problem P is defined by a set of instances I, a set of feasible solutions Fr(z)
for each instance x € I, a cost function ¢ that maps pairs of a solution of Fj(z) and an
instance = to Z, and a neighborhood function N that maps a solution of Fr(z) and an
instance z to a subset of Fr(x). Typically, the neighborhood function is constructed so that
it is easy to compute some s’ € N (s,z) for any given s € Fy(z).

This characterization of local search problems gives rise to the transition graph defined
by an instance of such a problem.
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» Definition 2.1. Given an instance x € I of a local search problem P, we define the
transition graph T'(x) as the directed graph with vertex set Fr(x), with an edge from s to s
if and only if s € N(s,x) and c(s,x) < c¢(s',x) (assuming P is a mazimization problem;
otherwise, we reverse the inequality). The height of a vertex s in T(x) is the length of the
shortest path from s to a sink of T(x).

The class PLS is defined to capture the properties of local search problems that typically
arise in practical applications. Formally, P is contained in PLS if the following are all true:
1. There exists a deterministic polynomial-time algorithm A that, given an instance = € I,

computes some solution s € Fr(z).

2. There exists a deterministic polynomial-time algorithm B that, given « € I and s € Fj(z),

computes the value of ¢(s, z).

3. There exists a deterministic polynomial-time algorithm C' that, given = € I and s €

Fy(x), either computes a solution s’ € N (s,z) with ¢(s’,2) > ¢(s,z) (in the case of a

maximization problem), or outputs that such a solution does not exist.

Intuitively, algorithm A gives us some initial solution from which to start an optimization
process, algorithm B ensures that we can evaluate the quality of solutions efficiently, and
algorithm C' drives the local optimization process by either determining that a solution is
locally optimal or otherwise giving us an improving neighbor. Based on the algorithms A
and C, one can define the “standard algorithm problem” for P as follows.

» Definition 2.2. Let P be a local search problem and let I be an instance of P. Moreover,
let s*(I) be the unique local optimum obtained by starting with the solution outputted by
algorithm A and replacing the current solution by the better solution outputted by C, until
reaching a local optimum. The standard algorithm problem for P asks for a given instance I
of P and a locally optimal solution s’ for I with respect to N, whether s’ is exactly the
solution s*(I).

It was shown that for many local search problems the standard algorithm problem
is PSPACE-complete [13, 36, 37, 40].

Given problems P, Q € PLS, we say that P is PLS-reducible to Q (written P <p s Q) if
the following is true.
1. There exist polynomial-time computable functions f, g, such that f maps instances x of P

to instances f(x) of @, and g maps pairs (solution s of f(z),x) to feasible solutions of P.

2. If a solution s of f(z) is locally optimal for f(x), then g(s,z) is locally optimal for x.

The idea is that, if @ € PLS is efficiently solvable, then P is also efficiently solvable:
simply convert an instance of P to @ using f, solve @), and convert the resulting solution
back to a solution of P using g. As usual in complexity theory, if P is complete for PLS
and P <prs @, then Q is also complete for PLS.

In addition to this standard notion of a PLS-reduction, Schéffer and Yannakakis [40]
defined so-called tight reductions. Given PLS problems P and @ and a PLS-reduction (f,g)
from P to @, the reduction is called tight if for any instance x of P we can choose a subset R
of the feasible solutions of f(z) of @ such that:

1. R contains all local optima of f(z).
2. For every feasible solution s of z, we can construct a feasible solution ¢ € R of f(x) such

that g(q,z) = s.

3. Suppose the transition graph T'(f(z)) of f(x) contains a directed path from s to s’ such

that s, s’ € R, but all internal vertices lie outside of R, and let ¢ = g(s,x) and ¢’ = g(¢', ).

Then either ¢ = ¢/, or the transition graph T'(z) of x contains an edge from ¢ to ¢'.
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The set R is typically called the set of reasonable solutions to f(z). Here, the intuition is
that tight reductions make sure that the height of a vertex s of T'(f(z)) is not smaller than
that of g(s,z) in T'(z). Note that a reduction (f,g) is trivially tight if 7'(f(x)) is isomorphic
to T'(x).

Tight PLS-reductions have two desired properties [1, Chapter 2]. Suppose P reduces to Q
via a tight reduction. First, if the standard algorithm problem for P is PSPACE-complete,
then the standard algorithm problem for @ is PSPACE-complete as well. Second, if there
exists an instance x of P such that there exists a solution of x that is exponentially far away
from any local optimum, then such an instance exists for @@ as well. Note that this first
property holds irrespective of the choices made by the algorithm C' for @ [40].

2.2 Definitions of Local Search Problems

We will be concerned with various local search problems. In the following we provide a
summary of the problems that appear in this paper, and provide definitions for each. Some
of the problems considered in this paper are not the most natural ones, but we need them as
intermediate problems for our reductions. Moreover, these problems might be useful to show
PLS-hardness of other problems having cardinality constraints.

Before introducing the problems themselves, we first provide a more abstract view of the
problems, since they have many important aspects in common. Each problem in the list
below is a type of partitioning problem, where we are given a finite set .S and are asked to
find the “best” partition of S into k sets (indeed, for all but one problem, we have k = 2).
What determines whether some partition is better than another varies; this is determined by
the cost function of the problem in question.

» Definition 2.3. Given a partition P = {S1,...,Sk} of S, a partition P’ is a neighbor
of P in the FLIP neighborhood if P’ can be obtained by moving exactly one element from
some S; € P to some other Sj € P. In other words, if P' = {S1,...,8},...,5},..., Sk}
where for some v € S; we have S; = S; \ {v} and S} = S; U {v}.

The FLIP neighborhood as defined above is perhaps the simplest neighborhood structure
for a partitioning problem. For each problem in the list below, we consider only the FLIP
neighborhood in this paper. Recall that the FLIP heuristic for k-MEANS is also referred to
as the HARTIGAN—-WONG method [20].

Max Cut

Input: A graph G = (V, E)) with non-negative edge weights w : E — Z>o.
Output: A partition (X,Y") of V such that w(X,Y) is maximal.

We will mainly be concerned with several variants of MAX CUT. For some fixed integer d,
by Max CuT-d we denote the restriction of the problem to graphs with maximum degree d.
In DENSEST CUT, one aims to maximize w)(<)|(|2//\) rather than just w(X,Y’). The minimization
version of this problem is called SPARSEST CuT. The problem ODD MAX BISECTION is
identical to MAX CuT, with the added restrictions that the number of vertices must be odd
and that the two halves of the cut differ in size by exactly one. The minimization version of
the problem is called ODD MIN BISECTION.

The definitions of ODD MAX/MIN BISECTION are somewhat unconventional, as one
usually considers these problem with an even number of vertices and with the SWAP neighbor-
hood, where two solutions are neighbors if one can be obtained from the other by swapping
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a pair of vertices between parts of the partition. Hardness of MAX BISECTION/SWAP was
shown by Schéffer and Yannakakis [40] in a short reduction from Max CuT/FLIP, providing
as a corollary also a simple hardness proof for the Kernighan-Lin heuristic [27]. The reason
we require the FLIP neighborhood is that we aim to reduce this problem to SQUARED Eu-
CLIDEAN MAX CUT/FLIP, where we run into trouble when we use the SWAP neighborhood
(see Section 3 for details).

SQUARED EucLIDEAN Max CuT

Input: A set of n points X C R?.
Output: A partition (X,Y) of X' such that >0 v > cy [lz — y||? is maximal.

EucLIDEAN MAX CuT is defined similarly; the only difference is that the actual distances
between points enter the objective function, rather than the squared distances.

k-MEANS

Input: A set of n points X C R? and an integer k > 2.

Output: A partition (C1,...,Ck) of X such that Zle > wec; T — em(Cy)||? is
minimal.

The sets {Ci,...,Cy} are called clusters. Note that in this formulation, both k-
MEANS/FLIP and SQUARED EUCLIDEAN MAX CUT/FLIP are not contained in PLS, as their
cost functions can take non-integer values. However, we still obtain PLS-hardness for each of
these problems, and the existence of specific hard instances (cf. Theorem 1.3). Moreover,
this hardness still holds for restricted versions of the problems which do belong to PLS. More
technical details are given in the full version.

PosITIVE NOT-ALL-EQUAL k-SATISFIABILITY (Pos NAE k-SAT)

Input: A boolean formula with clauses of the form NAE(xq,...,z,) with £ <k,
where each clause is satisfied if its constituents, all of which are positive,
are neither all true nor all false. Each clause C has a weight w(C) € Z.

Output: A truth assignment of the variables such that the sum of the weights of
the satisfied clauses is maximized.

In Opp HALF Pos NAE k-SAT, additionally the number of variables is odd and it
is required that the number of true variables and the number of false variables in any
solution differ by exactly one. This is analogous to the relationship between MAX CUT and
ODD MAX BISECTION.

2.3 Strategy

Both SQUARED EUCLIDEAN MAX CUT and k-MEANS are NP-hard [2, 3]. The reductions
used to prove this are quite similar, and can be straightforwardly adapted into PLS-reductions:
In the case of SQUARED EUCLIDEAN Max CuT/FLIP, we obtain a reduction from ODD MIN

BisecTION/FLIP, while for k-MEANS/FLIP we obtain a reduction from DENSEST CuT/FLIP.

The latter reduction even works for k = 2. These results are given in Lemma 4.3 (k-MEANS),
and Lemmas 4.5 and 4.6 ((SQUARED) EUCLIDEAN MaXx CuT).

What remains then is to show that the problems we reduce from are also PLS-complete,
which takes up the bulk of the work. Figure 1 shows the reduction paths we use.
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Max Cut-5/FLIp
1
: Lemma 3.1

DistiNcT l\lA:( Cur-5/FLIP
Lemma 3.2

ObpDp HALF Pos NAE 3-SAT/FLip
Lemma 3.3

Opp HALF Pos NAE 2-SAT /FLip

Lemma 3.5

OpD MAX BISECTION/FLIP

Lemma 3.5 Lemma 4.1
ObpD MIN BISECTION/FLIP DENSEST CuT/FLIP
chmmas 4.5 and 4.6 Lemmay w"ollary 42
(SQUARED) EucCLIDEAN Max Cut/FLIp 2-MEaNs/FLip SPARSEST CuT/FLIP

lLemma 4.4
k-MEANs/FLip

Figure 1 Graph of the PLS-reductions used in this paper. Reductions represented by solid lines
are tight, reductions represented by dashed lines are not.

The starting point will be the PLS-completeness of Max CuT-5/FLIP, which was shown
by Elsésser and Tscheuschner [15]. An obvious next step might then be to reduce from this
problem to MAX BISECTION/SWAP, and then further reduce to ODD MAX BISECTION/FLIP.
Unfortunately, this turns out to be rather difficult, as the extra power afforded by the SwaAp
neighborhood is not so easily reduced back to the FLIP neighborhood. Using this strategy,
we can only obtain PLS-hardness of the 2-FLIP neighborhood for SQUARED EUCLIDEAN
Max Cut, where two points may flip in a single iteration.

We thus take a detour through Opp HALF Pos NAE 3-SAT /FLIP in Lemma 3.2, which
then reduces down to Opp HALF Pos NAE 2-SAT/FLIP in Lemma 3.3 and finally to ODD
Max BISECTION/FLIP in Lemma 3.5, using a reduction by Schéaffer and Yannakakis [40].

From this point, hardness of SQUARED EUCLIDEAN MaAX CuT/FLIP (and with a little
extra work, EUCLIDEAN MAX CuUT/FLIP) is easily obtained. For k-MEANS/FLIP, we need
some more effort, as we still need to show hardness of DENSEST CuT/FLIP. Luckily, this
can be done by reducing from OpD MaX BISECTION/FLIP as well, as proved in Lemma 4.1.

Due to space constraints, our proofs are deferred to the full version.

3 Reduction to Odd Min/Max Bisection

The goal of this section is to obtain PLS-completeness of OpDD MIN/MAX BISECTION/FLIP,
from which we can reduce further to our target problems; see Figure 1. We will first
construct a PLS-reduction from Max Cut-5/FLIP to ODD HALF Pos NAE 3-SAT/FLip
in Lemma 3.2.

A subtlety is that the reduction only works when we assume that the Max CuT-5
instance we reduce from has distinct costs for any two neighboring solutions. The following
lemma ensures that we can make this assumption.
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» Lemma 3.1. DisTiNcT MAX CUT-5/FLIP is PLS-complete. More precisely, there exists a
PLS-reduction from Max CuT-5/FLIP to DISTINCT MAXx CuT-5/FLIP.

Unfortunately, this reduction is not tight. Hence, to prove the last two items of Theo-
rem 1.3, simply applying the reductions from Figure 1 is not sufficient, as these properties
(viz. PSPACE-completeness of the standard algorithm problem and the existence of certain
hard instances) do not necessarily hold for DisTINCT Max CuT-5/FLIP. We must instead
separately prove that they hold for this problem. To accomplish this, we recall a construction
by Monien and Tscheuschner [37] that shows these properties for Max Cut-4/FLip. It
can be verified straightforwardly that the construction they use is already an instance of
DistincT MAX Cut-4/FLIP.

In the remainder of this work, we present a sequence of tight reductions starting from
DistincT Max Cut-5/FLIP to all of our other considered problems. First, we reduce from
DisTiNcT Max Cut-5/FLIP to ODD HALF Pos NAE 3-SAT/FLip.

» Lemma 3.2. There exists a tight PLS-reduction from DISTINCT Max CuUT-5/FLIP to
Obp HALF Pos NAE 3-SAT/FLIp.

As mentioned in Section 2.3, it may seem more straightforward to reduce from MIN
BISECTION/SWAP to ODD MIN BISECTION/FLIP. The problem with this approach is that
a solution to ODD MIN BISECTION/FLIP can be locally optimal for two reasons: either
no vertex can flip to obtain a cut of larger weight, or the vertices that could are in the
smaller part of the partition. This makes the FLIP neighborhood much less powerful than
SWAP in this problem variant; we were thus not able to find a direct reduction from MIN
BISECTION/SWAP. Instead, we apply a new technique that allows us to prove PLS-hardness
for this very restricted problem.

We first prove PLS-hardness of ODD HALF Pos NAE 3-SAT /FLIP, and subsequently use
existing reductions to obtain hardness of ODD MIN BISECTION/FLIP. With the expressiveness
of this SAT variant we gain a great deal of freedom to handle the problem restrictions. The
main challenge is in encoding the restriction that the number of true and false variables must
differ by exactly one without weakening the neighborhood.

Next, we briefly sketch and motivate some of the ideas in the reduction in more detail.
See also Figure 2.

Sketch of Proof for Lemma 3.2. We first embed the DisTINCT MAX CUT-5 instance, given
by a weighted graph G = (V, E), in Pos NAE SAT. This can be done rather straightforwardly,
by a reduction used by Schéffer and Yannakakis [40]: each vertex becomes a variable, and
an edge uv becomes a clause NAE(u, v). This instance is directly equivalent to the original
DistincT MAxX CuT-5 instance. We call these variables the level 1 variables, and the clauses
the level 1 clauses. A level 1 clause NAE(u,v) gets a weight M - w(uv) for some large
integer M.

A solution to the original DisTINCT MAX CuUT-5 instance is obtained by placing the
true level 1 variables in a feasible truth assignment on one side of the cut, and the false
level 1 variables on the other side.

Given the reduction so far, suppose we have some locally optimal feasible truth assign-
ment s. We partition the variables into the sets T and F of true and false variables; thus,
(T, F) is the cut induced by s. Suppose |T'| = |F| + 1. If no level 1 variable can flip from T’
to F, then also no vertex can flip from 7" to F' in the induced cut. However, we run into
trouble when there exists some v € F that can flip in the cut. Since |F| < |T'|, we are not
allowed to flip the level 1 variable v, and so the truth assignment may be locally optimal
even though the induced cut is not.
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NAE(v,u1) weight: M =
NAE(v, uz2) weight: 8M ﬁ;
NAE(v, us) weight: 3M =
NAE(qy,u1) weight: —L e
NAE(qy, uz) weight: —8L ‘i
NAE(qu, us3) weight: —3L | ™
NAE(v, gy, a;) {u1, uz,usz} weight: —1
NAE(v, qv, a;) {uy,uz} weight: —1
NAE(v, ¢y, a;) {uy,us} weight: 0
NAE(v, ¢v, a;) {ug,us} weight: —1 5
NAE(v, qv, a;) {u1} weight: 0 i
NAE(v, ¢v, a;) {ug} weight: —1
NAE(v, qv, ;) {us} weight: 0
NAE(v, gy, a;) 0 weight: 0

Figure 2 Schematic overview of the reduction used in the proof of Lemma 3.2. On the left we
have a vertex v € V and its neighbors {u1, u2,us} in a MAX CUT instance, with weights on the edges
between v and its neighbors. The NAE clauses on the right are the clauses constructed from v. In
the actual reduction, these clauses are added for all level 3 variables. The right-most column shows
the weights assigned to the clauses. The middle column shows for the level 3 clauses which subset
of N(v) corresponds to which clause. The constants L and M are chosen so that 1 < L < M.

To deal with this situation, we will introduce two more levels of variables and clauses.
The weights of the clauses at level ¢ will be scaled so that they are much larger than those
at level ¢ + 1. In this way, changes at level ¢ dominate changes at level ¢ + 1, so that the
DisTincT MAX CuUT-5 instance can exist independently at level 1.

For each vertex v € V, we add a variable ¢, to the instance, and for each u € N(v), we
add a clause NAE(q,,u) with weight proportional to —w(uv). We call these variables the
level 2 variables, and these clauses the level 2 clauses.

Finally, we add N = 2n + 1 more variables {a;}~_,, which we call the level & variables.
The number N is chosen so that for any truth assignment such that the number of true
and false variables differ by one, there must exist a level 3 variable in the larger of the two
sets. We then add more clauses as follows: for each level 3 variable a;, for each v € V', for
each @ C N(v), we add a clause C;(v,Q) = NAE(v, g,,a;). We give this clause a weight
of —1 if and only if v can flip when each of the vertices in @) are present in the same half of
the cut as v. We call these the level 3 clauses

Now consider the aforementioned situation, where a truth assignment s is locally optimal,
but there exists some v € V N F that can flip in the induced cut. Carefully investigating
the structure of such a locally optimal truth assignment shows that some level 2 or level 3
variable can flip for a strict improvement in the cost. This contradicts local optimality, and
so we must conclude that locally optimal truth assignments induce locally optimal cuts,
satisfying the essential property of PLS-reductions. |

As far as we are aware, this technique for overcoming size constraints in local search
problems is novel. We believe that it may be useful to prove PLS-hardness results for simple
heuristics for other size-constrained problems, such as balanced clustering problems.
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A reduction from Pos NAE 3-SAT/Frip to Max Cut/FLIP was provided by Schéffer
and Yannakakis [40]. Since Max CUT is equivalent to Pos NAE 2-SAT, we can use the
same reduction to reduce from ODD HALF Pos NAE 3-SAT/FLip to ODD HALF Pos NAE
2-SAT /FL1pP.

» Lemma 3.3 (Schéffer and Yannakakis [40]). There exists a tight PLS-reduction from ODD
HALF Pos NAE 3-SAT/FLiP to ODD HALF Pos NAE 2-SAT/FLIp.

While our reductions so far have used negative-weight clauses in ODD HALF Pos NAE
k-SAT/FLIP, it may be of interest to have a PLS-completeness result also when all clauses
have non-negative weight.

» Corollary 3.4. Opp HALF Pos NAE 2-SAT/FLIP is PLS-complete even when all clauses
have non-negative weight. More precisely, there exists a tight PLS-reduction from ODD HALF
Pos NAE 2-SAT/FLip to Opp HALF Pos NAE 2-SAT/FLIP where all clauses have
non-negative weight.

Finally, we reduce from ODD HALF Pos NAE 2-SAT/FLiP to ODD MIN BISEC-
TION/FLIP.

» Lemma 3.5. There exists a tight PLS-reduction from OpD HALF Pos NAE 2-SAT/FLip
to both ODD MAX BISECTION/FLIP and ODD MIN BISECTION/FLIP.

A reduction from Pos NAE 2-SAT/FLIP to MAax CuT/FLIP is given by Schéffer and
Yannakakis [40]. It is easy to see that this reduction also works with our constraint on the
number of true and false variables, which yields a reduction to ObDD MAX BISECTION/FLIP.

4 Reduction to Clustering Problems

Armed with the PLS-completeness of ODD MIN BISECTION/FLIP (see Lemma 3.5), we now
proceed to prove hardness of the Euclidean clustering problems of interest.

k-Means. We provide a tight PLS-reduction from ODpD MIN BISECTION/FLIP to k-
MEANS/FLIP. This is done in three steps (see Figure 1). First, we show PLS-completeness
of DENSEST CUT/FLIP. The construction of the proof of our PLS-completeness of DENSEST
CuT/FLIP is rather simple (we only add a large set of isolated edges), but the analysis
of the correctness is quite technical. Second, we show PLS-hardness of 2-MEANS/FLIP by
slightly adapting an NP-hardness reduction of 2-MEANS [3]. Finally, we extend this result to
k-MEANS/FLIP.

Now, we show PLS-completeness of DENSEST CuUT/FLIP. We impose the additional con-
straint that there are no isolated vertices in the reduced instance. This is a technical condition
which is utilized in Lemma 4.3 for the PLS-hardness of k-MEANS/FLIP.

For an illustration of the reduction of Lemma 4.1 we refer to Figure 3.

» Lemma 4.1. There exists a tight PLS-reduction from ODD MAX BISECTION/FLIP to
DENSEST Cut/FLIP without isolated vertices.

Next, we show that also the closely related SPARSEST CUT is PLS-complete under the
FLIP neighborhood. Note that DENSEST CUT and SPARSEST CUT are both NP-hard [35].
SPARSEST CUT is studied intensively in terms of approximation algorithms [5] and integrality
gaps [25], and is used to reveal the hierarchical community structure of social networks [32]
and in image segmentation [43].
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n
O O O A o o o O O 0
G > G vl M| - M
O O O O Bllo o 0 © O O O]

Figure 3 Schematic overview of the reduction used in the proof of Lemma 4.1. On the left side
we have an instance of ODD MAX BISECTION/FLIP and on the right side we have the corresponding
instance of DENSEST CuT/FLIP. The edges inside of G together with their weights are not depicted
but are identical in both instances. Let (A, B) be the partition corresponding to some locally optimal
solution of the DENSEST CUT/FLIP instance. Then, A contains exactly one endpoint of each of the
n* isolated edges and | |[ANV(G)| - |[BNV(G)|| = 1.

» Corollary 4.2. There exists a tight PLS-reduction from DENSEST CUT/FLIP to SPARSEST
Cut/FLIP.

The penultimate step is to show that 2-MEANS/FLIP is PLS-hard. We achieve this by
modifying a proof of NP-hardness of 2-MEANS by Alois et al. [3].

» Lemma 4.3. There exists a tight PLS-reduction from DENSEST CUT/FLIP without isolated
vertices to 2-MEANS/FLIP.

Finally, we provide a generic reduction to show PLS-hardness for general k.

» Lemma 4.4. For each k > 2, there exists a tight PLS-reduction from k-MEANS/FLIP to
(k+1)-MEANS/FLIP.

Now, Theorem 1.1 follows by applying the tight PLS-reductions according to Figure 1.

Squared Euclidean Max Cut. We construct a PLS-reduction from ODbD MIN BISEC-
TION/FLIP to SQUARED EUCLIDEAN MAX CuT/FLIP. The reduction is largely based on the
NP-hardness proof of EUCLIDEAN MaX CUT of Ageev et al. [2]. The main difference is that
we must incorporate the weights of the edges of the ODD MIN BISECTION/FLIP instance
into the reduction.

» Lemma 4.5. There exists a tight PLS-reduction from ObD MIN BISECTION/FLIP to
SQUARED EUCLIDEAN Max Cut/FLIP.

With a few modifications, the proof can be adapted to a reduction to EUCLIDEAN MAX
Cut/FLIP. The main challenge in adapting the proof is that the objective function is now of
the form )7 [z — yl|, rather than ) || — y||>. However, by suitably modifying the coordinates
of the points, the distances ||z — y|| in the EUCLIDEAN MAX CUT instance can take the same
value as ||z — y||? in the SQUARED EUCLIDEAN MAX CUT instance.

» Lemma 4.6. There exists a tight PLS-reduction from ObD MIN BISECTION/FLIP to
EuvcLIibEAN Max Cut/FLIP.
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5 Discussion

Theorems 1.1 and 1.3 show that no local improvement algorithm using the FLIP heuristic
can find locally optimal clusterings efficiently, even when k£ = 2. This result augments an
earlier worst-case construction [33]. Theorem 1.2 demonstrates that finding local optima in
SQUARED EUCLIDEAN MAX CUT is no easier than for general MAX CUT under the FLIP
neighborhood. Thus, the Euclidean structure of the problem yields no benefits with respect
to the computational complexity of local optimization.

Smoothed Analysis. Other PLS-hard problems have yielded under smoothed analysis.
Chiefly, Max CutT/FLIP has polynomial smoothed complexity in complete graphs [4, 11]
and quasi-polynomial smoothed complexity in general graphs [14, 18]. We hope that our
results here serve to motivate research into the smoothed complexity of k-MEANs/FLIP and
SQUARED EucLIDEAN Max Cut/FLip, with the goal of adding them to the list of hard
local search problems that become easy under perturbations.

Reducing the Dimensionality. Our reductions yield instances of k-MEANS and (SQUARED)
EUCLIDEAN MAX CuT in ©(n) dimensions. Seeing as our reductions cannot be obviously
adapted for d = o(n), we raise the question of whether the hardness of SQUARED EUCLIDEAN
Max Cut/Frip and k-MEANS/FLIP is preserved for d = o(n). This seems unlikely for
SQUARED EucLIDEAN Max Cut/FLip for d = O(1), since there exists an O(n9*t1)-time
exact algorithm due to Schulman [42]. A direct consequence of PLS-hardness for d = f(n)
would thus be an O(nf ("))—time general-purpose local optimization algorithm. Concretely,
PLS-hardness for d = polylog n would yield a quasi-polynomial time algorithm for all problems
in PLS.

For k-MEANS/FLIP, the situation is similar: For d = 1, k-MEANS is polynomial-time

solvable for any k. However, already for d = 2, the problem is NP-hard [31] when k is arbitrary.

When both k and d are constants, the problem is again polynomial-time solvable, as an
algorithm exists that finds an optimal clustering in time n©*® [21]. Thus, PLS-hardness for
kd € O(f(n)) would yield an n®(™)_time algorithm for all PLS problems in this case.

Euclidean Local Search. There appear to be very few PLS-hardness results for Euclidean
local optimization problems, barring the result of Brauer [13] and now Theorem 1.1 and
Theorem 1.2. A major challenge in obtaining such results is that Euclidean space is very
restrictive; edge weights cannot be independently set, so the intricacy often required for
PLS-reductions is hard to achieve. Even in the present work, most of the work is done in a
purely combinatorial setting. It is then useful to get rid of the Euclidean structure of the
problem as quickly as possible, which we achieved by modifying the reductions of Ageev et
al. [2] and Alois et al. [3].

With this insight, we pose the question of what other local search problems remain
PLS-hard for Euclidean instances. Specifically, is TSP with the k-opt neighborhood still
PLS-hard in Euclidean (or squared Euclidean) instances, for sufficiently large k? This is
known to be the case for general metric instances for some large constant k [29] (recently
improved to all & > 17 [22]), but Euclidean instances are still a good deal more restricted.
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