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Abstract
This paper presents a new research direction for online Multi-Level Aggregation (MLA) with delays.
Given an edge-weighted rooted tree T as input, a sequence of requests arriving at its vertices needs
to be served in an online manner. A request r is characterized by two parameters: its arrival time
t(r) > 0 and location l(r) being a vertex in tree T . Once r arrives, we can either serve it immediately
or postpone this action until any time t > t(r). A request that has not been served at its arrival
time is called pending up to the moment it gets served. We can serve several pending requests at
the same time, paying a service cost equal to the weight of the subtree containing the locations of
all the requests served and the root of T . Postponing the service of a request r to time t > t(r)
generates an additional delay cost of t − t(r). The goal is to serve all requests in an online manner
such that the total cost (i.e., the total sum of service and delay costs) is minimized. The MLA
problem is a generalization of several well-studied problems, including the TCP Acknowledgment
(trees of depth 1), Joint Replenishment (depth 2), and Multi-Level Message Aggregation (arbitrary
depth). The current best algorithm achieves a competitive ratio of O(d2), where d denotes the depth
of the tree.

Here, we consider a stochastic version of MLA where the requests follow a Poisson arrival process.
We present a deterministic online algorithm that achieves a constant ratio of expectations, meaning
that the ratio between the expected costs of the solution generated by our algorithm and the optimal
offline solution is bounded by a constant. Our algorithm is obtained by carefully combining two
strategies. In the first one, we plan periodic oblivious visits to the subset of frequent vertices, whereas,
in the second one, we greedily serve the pending requests in the remaining vertices. This problem is
complex enough to demonstrate a very rare phenomenon that “single-minded” or “sample-average”
strategies are not enough in stochastic optimization.
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1 Introduction

Imagine the manager of a factory in charge of delivering products from the factory to the
stores’ locations. Once some products are in shortage for a store, its owner informs the
factory for replenishment. From the factory’s perspective, each time a service is created to
deliver the products, a truck has to travel from the factory to the requested stores’ locations
and then return to the factory. A cost proportional to the total traveling distance is paid
for this service. For the purpose of saving delivery costs, it is beneficial to accumulate the
replenishment requests from many stores and then deliver the ordered products altogether in
one service. However, this accumulated delay in delivering products may leave the stores
unsatisfied, and the complaints will negatively influence future contracts between the stores
and the factory. Typically, for each request ordered from a store, the time gap between
ordering the products and receiving the products is known as the delay cost. The goal of the
factory manager is to plan the delivery service schedule in an online manner such that the
total service cost and the total delay cost are minimized.

The above is an example of an online problem called Multi-level Aggregation (MLA)
with linear delays. Formally, the input is an edge-weighted rooted tree T and a sequence of
requests, with each request r specified by an arrival time t(r) and a location at a particular
vertex. Once a request r arrives, its service does not have to be processed immediately but
can be delayed to any time t ≥ t(r) at a delay cost of t − t(r). The benefit of delaying
requests is that several requests can be served together to save some service costs. To serve
any set of requests R at time t, a subtree T ′ containing the tree root and locations of all the
requests in R needs to be bought at a service cost equal to the total weight of edges in T ′.
The goal is to serve all requests in an online manner such that the total cost (i.e., the total
service cost plus the total delay cost) is minimized.

Due to many real-life applications ranging from logistics, supply chain management, and
data transmission in sensor networks, the MLA problem has recently drawn considerable
attention [22, 16, 27, 13]. Besides, two classic problems in this area, TCP-acknowledgment
(also known as a lot-sizing problem) and Joint Replenishment (JRP), are special cases
of MLA with tree depths of 1 and 2, respectively. They were also extensively studied
[32, 45, 63, 1, 47, 28, 21, 3, 60, 20]. Particularly for MLA, the current best online algorithm
achieves a competitive ratio of O(d2) [13], where d denotes the depth of the given tree.

However, it is often too pessimistic to assume no stochastic information on the input
is available in practice – again, consider our delivery example. The factory knows all the
historical orders and can estimate the request frequencies from the stores of all locations. It
is reasonable to assume that the requests follow some stochastic distribution. Therefore, the
following question is natural: if the input follows some stochastic distribution, can we devise
online algorithms for MLA with better performance guarantees?

In this paper, we provide an affirmative answer to this question. We study a stochastic
online version of MLA, assuming that the requests arrive following a Poisson arrival process.
More precisely, the waiting time between any two consecutive requests arriving at the same
vertex u follows an exponential distribution Exp(λ(u)) with parameter λ(u). In this model,
the goal is to minimize the expected cost produced by an algorithm ALG for a random input
sequence generated in a long time interval [0, τ ]. To evaluate the performance of ALG on
stochastic inputs, we use the ratio of expectations (RoE) by comparing the expected cost of
ALG with the expected cost of the optimal offline solution OPT (see Definition 6).
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Our contribution. We prove that the performance guarantee obtained in the Poisson arrival
model is significantly better compared with the current best competitiveness obtained in the
adversarial model. More specifically, we propose a non-trivial deterministic online algorithm
that achieves a constant ratio of expectations.

▶ Theorem 1. For MLA with linear delays in the Poisson arrival model, there exists a
deterministic online algorithm that achieves a constant ratio of expectations.

Our algorithm is obtained by synergistically merging two carefully crafted strategies. The
first strategy incorporates periodic oblivious visits to a subset of frequently accessed vertices,
while the second strategy employs a proactive, greedy approach to handle pending requests
in the remaining vertices. The complexity of this problem unveils a rare phenomenon – the
inadequacy of “single-minded” or “sample-average” strategies in stochastic optimization. In
this paper, we not only address this challenge but also point to further complex problems
(such as facility location with delays [13] or online service with delays [9]) that require a
similar approach in stochastic environments.

Previous works. The MLA problem has been only studied in the adversarial model. Bien-
kowski et al. [16] introduced a general version of MLA, assuming that the cost of delaying a
request r by a duration t is fr(t). Here, fr(·) denotes the delay cost function of r, which
needs to be non-decreasing and satisfy fr(0) = 0. They proposed an O(d42d)-competitive
online algorithm for this general delay cost version problem, where d denotes the tree depth
[16, Theorem 4.2]. Later, the competitive ratio is further improved to O(d2) by Azar and
Touitou [13, Theorem IV.2] (for the general delay cost version). However, no matching lower
bound has been found for the delay cost version of MLA – the current best lower bound on
MLA (with delays) is 4 [16, Theorem 6.3], restricted to a path case with linear delays. Thus
far, no previous work has studied MLA in the stochastic input model.

Organization. We give the notations and preliminaries in Section 2. As a warm-up, we
study a special single-edge tree instance in Section 3. We show that there are two different
situations, we call them heavy case and light case, and to achieve a constant ratio of
expectations, the ideas for the two cases are different. In Section 4, we give an overview of
our deterministic online algorithm (Theorem 1). This algorithm is the combination of two
different strategies for two different types of instances.1 In Section 5, we study the heavy
instances as a generalization of heavy single-edge trees. In Section 6, we prove the main
Theorem 1. In Section 7, we provide some extra related works in detail. We finish the paper
by discussing some future directions in Section 8.

2 Notations and preliminaries

Weighted tree. Consider an edge-weighted tree T rooted at vertex γ (T ). We refer to its
vertex set by V (T ) and its edge set by E(T ). When the context is clear, we denote the root
vertex, vertex set, and edge set by γ, V , and E, respectively. We assume that each edge
e ∈ E has a positive weight we. For any vertex u ∈ V , except for the root vertex γ, we
denote its parent vertex as par(u) ∈ V , and eu = (u, par(u)) as the edge connecting u and
its parent. We also define Tu as the subtree of T rooted at vertex u. In addition to the edge
weights, we use the term vertex weight to refer to wu := w(eu), where u ∈ V and u ̸= γ.

1 Due to the space limits, all the results for the light instances are ignored here but can be found in the
full version [57].

ISAAC 2024
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Given any two vertices u, v ∈ V (T ), we denote the path length from u to v in T by dT (u, v),
i.e., it is the total weight of the edges along this path. Finally, we use T [U ] to denote the
forest induced by vertices of U ⊆ V (T ) in T .

Problem description. An MLA instance is characterized by a tuple (T, σ), where T is a
weighted tree rooted at γ and σ is a sequence of requests. Each request r is described by
a tuple (t(r), l(r)) where t(r) ∈ R+ denotes r’s arrival time and l(r) ∈ V (T ) denotes r’s
location. Thus, denoting by m the number of requests, we can rewrite σ := (r1, . . . , rm) with
the requests sorted in increasing order of their arrival times, i.e., t(r1) ≤ t(r2) ≤ · · · ≤ t(rm).
Given a sequence of requests σ, a service s = (t(s), R(s)) is characterized by the service
time t(s) and the set of requests R(s) ⊆ σ it serves. A schedule S for σ is a sequence of
services. We call schedule S valid for σ if each request r ∈ σ is assigned a service s ∈ S that
does not precede r’s arrival. In other words, a valid S for σ satisfies (i) ∀ s ∈ S ∀ r ∈ R(s)
t(r) ≤ t(s); (ii) {R(s) : s ∈ S} forms a partition of σ. Given any MLA instance (T, σ), an
MLA algorithm ALG needs to produce a valid schedule S to serve all the requests in σ.
Particularly, for an online MLA algorithm ALG, at any time t, the decision to create a
service to serve a set of pending request(s) cannot depend on the requests arriving after
time t. For each request r ∈ σ, let S(r) denote the service in S which serves r, i.e., for each
s ∈ S, S(r) = s if and only if r ∈ R(s). Given a sequence of requests σ and a valid schedule
S, the delay cost for a request r ∈ σ is defined as delay(r) := t(S(r)) − t(r). Using this
notion, we define the delay cost for a service s ∈ S and the delay cost for the schedule S as
delay(s) :=

∑
r∈R(s) delay(r) and delay(S) :=

∑
s∈S delay(s). Besides, given any r ∈ σ,

if it is pending at time t, let delay(r, t) = t − t(r) denote its delay cost at this moment.
The weight (also called service cost) of a service s ∈ S, denoted by weight(s, T ), is

defined as the weight of the minimal subtree of T that contains root γ and all locations
of requests R(s) served by s. The weight (or service cost) of a schedule S is defined as
weight(S, T ) :=

∑
s∈S weight(s, T ). To compute the cost of a service s, we sum its delay

cost and weight, i.e., cost(s, T ) := delay(s) + weight(s, T ). Similarly, we define the cost
(or total cost) of a schedule S for σ as cost(S, T ) := delay(S) + weight(S, T ). When the
context is clear, we simply write cost(S) = cost(S, T ). Moreover, given an MLA instance
(T, σ), let ALG(σ) denote the schedule of algorithm ALG for σ and let OPT(σ) denote the
optimal schedule for σ with minimum total cost. Note that without loss of generality, we
can assume that no request in σ arrives at the tree root γ since such a request can be served
immediately at its arrival with zero cost.

Poisson arrival model. Instead of using an adversarial model, we assume that the requests
arrive according to some stochastic process. A stochastic instance is characterized by a tuple
(T, λ), where T denotes an edge-weighted rooted tree, and λ : V (T ) → R+ is a function that
assigns each vertex u ∈ V (T ) an arrival rate λ(u) ≥ 0. With no loss we assume λ(γ(T )) = 0,
i.e., no request arrives at the tree root. Formally, such a tuple defines the following process.

▶ Definition 2 (Poisson arrival model). Given any stochastic MLA instance (T, λ) and any
τ > 0, we say that a (random) requests sequence σ follows a Poisson arrival model over time
interval [0, τ ], if (i) for each vertex u ∈ V (T ) with λ(u) > 0 the waiting time between any two
consecutive requests arriving at u follows an exponential distribution with parameter λ(u); 2

(ii) variables representing waiting times are mutually independent; (iii) all the requests in σ

arrive within time interval [0, τ ]. We denote this fact by writing σ ∼ (T, λ)τ .

2 For the first request r arriving at u, the waiting time from 0 to t(r) follows the distribution Exp(λ(u)).
Similarly, for the last request r′ arriving at u, denoting by Wr′ ∼ Exp(λ(u)) its waiting time, we require
that τ − t(r′) < Wr′ .
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Given any subtree T ′ of T , we use both λ|T ′ and λ|V (T ′) to denote the arrival rates
restricted to the vertices of T ′. Similarly, given a random sequence of requests σ ∼ (T, λ)τ ,
we use σ|T ′ ⊆ σ and σ|I ⊆ σ for I ⊆ [0, τ ] to denote the sequences of all requests in σ that
arrive inside the subtree T ′ and within the time interval I, respectively.

In the following, we introduce three more properties of the Poisson arrival model. To
simplify their statements, we denote the random variable representing the number of requests
in sequence σ ∼ (T, λ)τ by N(σ). The first property describes the expected value of N(σ) for
a fixed time horizon τ . The second one describes our model’s behavior under the assumption
that we are given the value of N(σ). Finally, the third one presents the value of the expected
waiting time generated by all the requests arriving before a fixed time horizon. All the proofs
can be found in [62] or the full version of this paper [57].

▶ Proposition 3. Given any stochastic MLA instance (T, λ) and a random sequence of requests
σ ∼ (T, λ)τ , it holds that: (i) N(σ) ∼ Poiss(λ(T ) · τ); (ii) E[N(σ) | σ ∼ (T, λ)τ ] = λ(T ) · τ ;
(iii) if λ(T ) · τ ≥ 1, then P(N(σ) ≥ E[N(σ)]) ≥ 1/2.

▶ Proposition 4. Given n requests arriving during time interval [0, τ ] according to Poisson
arrival model, the n arrival times (in sequence) have the same distribution as the order
statistics corresponding to n independent random variables uniformly distributed over [0, τ ].

▶ Proposition 5. Given any stochastic MLA instance (T, λ) and a random sequence of
requests σ ∼ (T, λ)τ , the expected delay cost of all the requests in σ ∼ (T, λ)τ , assuming that
no service was issued before τ , is E[

∑N(σ)
i=1 (τ − t(ri))] = E[N(σ)] · τ/2 = λ(T ) · τ2/2.

Benchmark description. To measure the performance of an online algorithm ALG in this
stochastic version of MLA, we use the ratio of expectations. Let E[cost(ALG(σ), T )] denote
the expected cost of the schedule ALG generates for a random sequence σ ∼ (T, λ)τ .

▶ Definition 6 (ratio of expectations). An online algorithm ALG has a ratio of expectations
(RoE) C ≥ 1 if lim

τ→∞
E[cost(ALG(σ),T )]
E[cost(OPT(σ),T )] ≤ C for any stochastic MLA instance (T, λ).

3 Warm-up: single edge instances

We start by considering the case of a single-edge tree in the stochastic model. That is, we
fix a tree T that consists of a single edge e = (u, γ) of weight w > 0 and denote the arrival
rate of u by λ > 0. In such a setting, the problem of finding the optimal schedule to serve
the requests arriving at vertex u is known as TCP acknowledgment. It is worth mentioning
that in the adversarial setting, a 2-competitive deterministic and a (1 − 1/e)−1-competitive
randomized algorithms are known for this problem [32, 45].

Let us stress that the goal of this section is not to improve the best-known competitive
ratio for a single-edge case but to illustrate the efficiency of two opposite strategies and
introduce some important concepts of this paper. The first strategy, called the instant
strategy, is to serve each request as soon as it arrives. Intuitively, this approach is efficient
when the requests are not so frequent so that, on average, the cost of delaying a request to
the arrival time of the next request is enough to compensate for the service cost. The second
strategy, called the periodic approach, is meant to work in the opposite case where requests
are frequent enough so that it is worth grouping several of them for the same service. In
this way, the weight cost of a service can be shared between the requests served. Assuming
that requests follow some stochastic assumptions, it makes sense to enforce that services are
ordered at regular time steps, where the time between any two consecutive services is a fixed
number p, which depends only on the instance’s parameters.

ISAAC 2024
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There are two challenges here. First, when should we use each strategy? Second, what
should be the value of p that optimizes the performance of the periodic strategy? For the
first one, we show that it depends on the value of π := wλ that we call the heaviness of the
instance. Specifically, we show that if π > 1, i.e., the instance is heavy, and the periodic
strategy is more efficient. On the other hand, if π ≤ 1, the instance is light, and the instant
strategy is essentially better. For the second one, we show that the right value for the period,
up to a constant in the ratio of expectations, is p =

√
2w/λ. With no loss, in what follows,

we assume that the time horizon τ is always a multiple of the period chosen, which simplifies
the calculation and does not affect the ratio of expectations.

▶ Lemma 7. Given a stochastic instance where the tree is a single edge of weight w and
the leaf has an arrival rate λ > 0, let π = wλ and let σ be a random sequence of requests of
duration τ > 0. Then,
1. the instant strategy on σ has an expected cost of τπ;
2. the periodic strategy on σ, with period p =

√
2w/λ, has an expected cost of τ

√
2π.

Note that the instant strategy incurs an expected cost equal to the expected number
of requests arriving within the time horizon τ multiplied by the cost of serving one. By
Proposition 3, we have that on average λτ requests arrive within the time interval [0, τ ]. Thus,
since the cost of serving one equals w, the total expected cost is λτw = τπ. For the periodic
strategy, we know that within each period p =

√
2w/λ, we generate the expected delay cost

of 1
2 · λp2 = w (Proposition 5). The service cost we pay at the end of each period equals w

as well. Thus, the total expected cost within [0, τ ] is equal to τ
p · 2w = τ ·

√
2λw = τ

√
2π,

which ends the proof.
We now compare these expected costs with the expected cost of the optimal offline

schedule. The bounds obtained imply that the instant strategy has constant RoE when
π ≤ 1, and the periodic strategy (with p =

√
2w/λ) has a constant RoE when π > 1.

▶ Lemma 8. Given a stochastic instance where the tree is a single edge of weight w and
the leaf has an arrival rate λ > 0, let π = wλ and let σ be a random sequence of requests of
duration τ > 0. For the lower bounds on the optimal offline schedule, OPT(σ), it holds that
1. if π ≤ 1, it has an expected cost of at least 1−e−1

2 τπ;
2. if π > 1, it has an expected cost of at least 3

16 τ
√

2π.
Due to the space limit, we only provide a proof sketch of Lemma 8 as follows. The main idea is
to partition the initial time horizon [0, τ ] into a collection of shorter intervals {I1, I2, . . . , Ik}
of length p each, for some value p that will be defined later. Denoting by σi := σ|Ii for i ∈ [k],
we know that all σi are independent and follow the same Poisson arrival model (T, λ)p. Let
D(σ1) denote the total delay cost of σ1 at time p when no services are issued during [0, p].
Note that OPT either serves some requests during [0, p] and incurs the service cost of at
least w or issues no services during [0, p] and pays the delay cost of D(σ1). The total cost of
OPT within [0, p] is thus at least min(w, D(σ1)) and hence

E
[
cost(OPT(σ))

]
≥ τ

p · E
[

min(w, D(σ1)) | σ1 ∼ (T, λ)p
]
.

Define Uj = p − t(rj) for the j-th request rj in σ1. If π ≤ 1, we choose p = 1
λ , for which

P(N(σ1) ≥ 1) = 1 − e−1 and E[min(w, U1)] ≥ w
2 . This implies that

E[cost(OPT(σ))] ≥ 1−e−1

2 · τ · λw.

If wλ > 1, we set p =
√

2w/λ and n0 = ⌈λp⌉, for which P(N(σ) ≥ n0) ≥ 1
2 and

E[min(w,

n0∑
j=1

Uj)] ≥ 1 − w

2n0p
≥ 3

4 .
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This implies

E[cost(OPT(σ))] ≥ 3
16 · τ ·

√
2wλ.

See the appendix in the full version [57] for a detailed proof.

4 Overview

We now give an overview of the following sections. Inspired by the two strategies for the
single edge instance, we define two types of stochastic instances: the light instances, for
which the strategy of serving requests instantly achieves a constant RoE, and the heavy
instances, for which the strategy of serving requests periodically achieves a constant RoE.
Heavy and light instances are defined precisely below (Definitions 9 and 13) and generalize
the notions of heavy and light single-edge trees studied in the previous section.

We define the light instances by extending the notion of heaviness for an arbitrary tree.

▶ Definition 9. A stochastic MLA instance (T, λ) is called light if π(T, λ) ≤ 1, where
π(T, λ) :=

∑
u∈V (T ) λ(u) · d(u, γ(T )) is called the heaviness of the instance.

For a light instance, serving the requests immediately at the their arrival time achieves a
constant ratio of expectations. We refer to the schedule produced with this strategy (see
Algorithm INSTANT in the full version [57]) on a sequence of requests σ by INSTANT(σ).

▶ Theorem 10. INSTANT has O(1)-RoE for light instances.

The theorem follows immediately from the following two lemmas (due to space limit, see the
full version [57] for their proofs).

▶ Lemma 11. If (T, λ) is light, then E [cost(INSTANT(σ)) | σ ∼ (T, λ)τ ] = τ · π(T, λ).

▶ Lemma 12. If (T, λ) is light, then E [cost(OPT(σ)) | σ ∼ (T, λ)τ ] = Ω(1) · τ · π(T, λ).

We now turn our attention to heavy instances. An instance (T, λ) is heavy if for every
subtree T ′ ⊆ T , we have π(T ′, λ) > 1. By monotonicity of π(·, λ), we obtain the following
equivalent definition. Recall that for a vertex u ∈ V (U), wu denotes the weight of the edge
incident to u on the path from γ(T ) to u.

▶ Definition 13. A stochastic MLA instance (T, λ) is called heavy if wu ≥ 1/λ(u) for all
u ∈ V (T ) with λ(u) > 0.

To give some intuition, suppose that u is a vertex of a heavy instance, and r and r′ are
two consecutive (random) requests located on u. Then, the expected duration between their
arrival times is 1/λ(u) < wu. This suggests that to minimize the cost, we should, on average,
gather r and r′ into the same service in order to avoid paying twice the weight cost wu. Since
we expect services to serve a group of two or more requests, our stochastic assumptions
suggest that the services must follow some form of regularity.

In Section 5, we present an algorithm called PLAN, that given a heavy instance (T, λ),
computes for each vertex u ∈ V (T ) a period pu > 0, and will serve u at every time that is a
multiple of pu. One intuitive property of these periods {pu : u ∈ V (T )} is that the longer
the distance to the root, the longer the period. While losing only a constant fraction of the
expected cost, we choose the periods to be (scaled) powers of 2. This enables us to optimize
the weights of the services in the long run. One interesting feature of our algorithm is that it
acts “blindly”: the algorithm does not need to know the requests, but only the arrival rate
of each point. Indeed, our algorithm may serve a vertex where there are no pending requests.
For the details of the PLAN algorithm, see Section 5.

ISAAC 2024
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▶ Theorem 14. PLAN has O(1)-RoE for heavy instances.

We remark that light instances and heavy instances are not complementary: there are
instances that are neither light nor heavy.3 In Section 6, we focus on the general case of
arbitrary instances. The strategy here is to partition the tree (and the sequence of requests)
into two groups of vertices (two groups of requests) so that the first group corresponds to a
light instance where we can apply the instant strategy while the second group corresponds to
a heavy instance where we can apply a periodic strategy. However, this correspondence for
the heavy group is not straightforward. For this, we need to define an augmented tree that is
a copy of the original tree, with the addition of some carefully chosen vertices. Each new
vertex is associated with a subset of vertices of the original tree called part. We then define
an arrival rate for each of these new vertices that is equal to the sum of the arrival rates of
the vertices in the corresponding part. We show that this defines a heavy instance on which
we can apply the algorithm PLAN. For each service made by PLAN on each of these new
vertices, we serve all the pending requests in the corresponding part. The full description of
this algorithm, called GEN, is given in Section 6. We show that this algorithm achieves a
constant ratio of expectations.

▶ Theorem 15. GEN has O(1)-RoE for arbitrary stochastic instances.

5 Heavy instances

In this section, we analyze heavy MLA instances. Recall that an instance (T, λ) is called
heavy if wu ≥ 1/λ(u) for all u ∈ V (T ) with λ(u) > 0. To serve this type of MLA instances,
we devise an algorithm PLAN and prove that it achieves a constant ratio of expectations.
Our approach can be seen as a generalization of the periodical strategy for a single-edge case.
Once again, we serve the requests periodically, although this time, we may assign different
periods for different vertices. Intuitively, vertices closer to the root and having a greater
arrival rate should be served more frequently. For this reason, PLAN generates a partition
P of a given tree T into a family of subtrees (clusters) and assigns them specific periods.

The partition procedure allows us to analyze each cluster separately. Thus, it is sufficient
to estimate the performance of PLAN algorithm when restricted to a given subtree T ′ ∈ P .
To lower bound the cost generated by OPT on T ′, we split the weight of T ′ among its vertices
using a saturation procedure. Then we say that for each vertex v, the optimal algorithm
either covers the delay cost of all the requests arriving at v within a given time horizon or it
pays some share of the service cost. The last step is to round the periods assigned to the
subtrees in P to minimize the cost of PLAN. In what follows, we present the details.

Periodical algorithm PLAN

As mentioned before, the main idea is to split tree T rooted at vertex γ into a family of
subtrees and serve each of them periodically. In other words, we aim to find a partition
P = {T1, T2, . . . , Tk} of T where each subtree Ti besides the one containing γ is rooted at the
leaf vertex of another subtree. At the same time, we assign each subtree Ti some period pi.
To decide how to choose the values of pis, recall how we picked the period for a single-edge
case. In that setting, for the period p, we had an equality between the expected delay cost
λ/2 · p2 at the leaf u and the weight w of the edge. Thus, the intuition behind the PLAN
algorithm is as follows.

3 There exists a stochastic MLA instance where the ratio of expectations are both unbounded if INSTANT
or PLAN is directed applied to deal with. See the appendix in the full version [57] for details.
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We start by assigning each vertex v ∈ T a process that saturates the edge connecting it
to the parent at the pace of λ(v)/2 · t2, i.e., within the time interval [t, t + ϵ] it saturates the
weight of λ(v)/2 · ((t + ϵ)2 − t2). By saturation, here we mean assigning a part of the edge
weight to the vertex. In other words, at time t each vertex v has a budget that is equal to
its expected delay cost, i.e., λ(v)/2 · t2, and uses it to cover some part of the edge weight.
Whenever an edge gets saturated, the processes that contributed to this outcome start
working together with the processes that are still saturating the closest ancestor edge. As the
saturation procedure within the whole tree T reaches the root γ, we cluster all the vertices
corresponding to the processes that made it possible into the first subtree T1. Moreover, we
set the period of T1 to the time it got saturated. After this action, we are left with a partially
saturated forest having the leaves of T1 as the root vertices. The procedure, however, follows
the same rules, splitting the forest further into subtrees T2, . . . , Tk.

To simplify the formal description of our algorithm, we first introduce some new notations.
Let p(v) denote the saturation process defined for a given vertex v. As mentioned before, we
define it to saturate the parent edge at the pace of λ(v)/2 · t2. Moreover, we extend this
notation to the subsets of vertices, i.e., we say that p(S) is the saturation process where all the
vertices in S cooperate to cover the cost of an edge. The pace this time is equal to λ(S)/2 · t2.
To trace which vertices cooperate at a given moment and which edge they saturate, we
denote the subset of vertices that v works with by S(v) and the edge they saturate by e(v).
We also define a method join(u, v) that takes as the arguments two vertices and joins the
subsets they belong to. It can be called only when the saturation process of S(u) reaches v.
Formally, at this moment, the join method merges subset S(u) with S(v) and sets e(v) as
the outcome of the function e on all the vertices in the new set. It also updates the saturation
pace of the new set. We present the pseudo-code for PLAN as Algorithm 1 and an example
as a visual support shown in Figure 1, followed by some properties of the partition generated
by this algorithm (see the appendix in the full version [57] for the detailed proof) and the
lower bounding scheme (Lemma 17).

▶ Proposition 16. Let (T, λ) be a heavy instance and let P = {T1, T2, . . . , Tk} be the
partition generated on it by Algorithm 1. We denote the period corresponding to Ti by pi.
Assuming that Tis are listed in the order they were added to P , it holds that:
1. each Ti is a rooted subtree of T ;
2. the periods are increasing, i.e., 1 ≤ p1 ≤ p2 ≤ . . . ≤ pk;
3. each vertex v ∈ Ti saturated exactly λ(v)/2 · p2

i along the path to the root of Ti.

▶ Lemma 17. Let (T, λ) be a heavy instance. We denote the partition generated for it by
Algorithm 1 by P = {T1, T2, . . . , Tk} and the period corresponding to Ti by pi for all i ∈ [k].
Let Ti be any subtree in P , and let us define σi as a random sequence of requests arriving
within the MLA instance restricted to Ti over a time horizon τ . We assume that τ is a
multiple of pi. It holds that E[cost(OPT(σi), Ti) | σi ∼ (Ti, λ|Ti

)τ ] ≥ 3
16 · w(Ti) · τ

pi
.

The main idea is to use the same approach as in Section 3 and lower bound the cost incurred
by OPT within a shorter time interval. The proof of Lemma 17 can be found in the full
version [57].

PLAN has RoE ≤ 64/3 = 21.34 for heavy instances

In Algorithm 1, each subtree Ti is served periodically with periods pi. In this setting, to serve
any cluster besides the one containing the root vertex γ, not only do we need to cover the
service cost of the cluster vertices but also the cost of the path connecting them to γ. Since
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Algorithm 1 PLAN (part I).

Input: an heavy instance (T, λ) with tree T rooted at γ

Output: a partition P = {T1, T2, . . . , Tk} of T , each subtree Ti assigned a period pi

1 let R be the set of roots, initially R = {γ}
2 for each vertex v ∈ V (T ) do
3 define the saturation process p(v) as described before
4 set S(v) := {v} and e(v) := par(v)
5 end
6 start the clock at time 0
7 while there exist some unclustered vertices in T do
8 wait until the first time te when an edge e = (u, v) gets saturated
9 if v ̸∈ R then

10 join(u, v)
11 end
12 else
13 add cluster C := S(u) ∪ {v} to partition P

14 set the period p for C to be equal to te

15 set the saturation pace for C to 0
16 extend R by the leaves in C

17 end
18 end

w1

w2
w3
w4

w5 w6
w7

λ1

λ2
λ3

λ4

λ5
λ6 λ7

γ

p1

p4p2 p3

t

Figure 1 Here is an example to show how Algorithm 1 works on an heavy instance. Given the
tree consisting of 7 vertices (with wi ≥ 1/λi for each vertex i ∈ [7] marked in different color), we use
the length of the colored line to denote the saturated amount (i.e., λi/2 · t2) of a vertex i at any time
t. At time p1, the subtree T1 including vertices 1 and 3 is determined; similarly, T2 includes vertices
2 and 5 at time t2; T3 includes vertices 4 and 6 at time p3; and T4 includes vertex 7 at time p4.
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we only know how to lower bound the cost incurred by OPT on the clusters, we improve the
PLAN algorithm to get rid of this issue. The idea is to round the periods pis to be of form
2eip1 for some positive integers ei. Thus, whenever we need to serve some cluster Si, we
know that we get to serve all the clusters generated before it as well. Due to the space limits,
the formal pseudo-codes of the rounding procedures (Algorithm PLAN, part 2) and serving a
random sequence of requests (Algorithm PLAN, part 3) can be found in the full version [57].

Let (T, λ) be a heavy instance and let P = {T1, . . . , Tk} be the partition generated for it
by Algorithm 1. Let (p1, . . . , pk) and (p̂1, . . . , p̂k) denote the periods obtained from Algorithm
1 and rounded periods (by Algorithm PLAN, part 2), respectively. Now we analyze the cost
of PLAN on σ ∼ (T, λ)τ , where the time horizon τ is a multiple of 2p̂k. Since we align the
periods to be of form 2lp̂1 for some positive integer l, whenever PLAN serves some tree Ti,
it serves all the trees containing the path from Ti to γ at the same time. Thus, the service
cost can be estimated on the subtree level. Moreover, since for each i ∈ [k] we round pi such
that p̂i ≤ pi, the expected delay cost incurred within [0, p̂i] does not exceed w(Ti). Denoting
by σi ∼ (Ti, λ|Ti)p̂i for i ∈ [k], we have

E[cost(PLAN(σ), T )] =
∑k

i=1
τ
p̂i

· E[cost(PLAN(σi), Ti)] =
∑k

i=1
τ
p̂i

· 2w(Ti).

On the other hand, the expected cost of OPT for σ, i.e., E[cost(OPT(σ), T )], is at least∑k
i=1 E[cost(OPT(σ|Ti

), Ti)] ≥
∑k

i=1
τ
pi

3
16 w(Ti).

By definition, it holds that pi < 2p̂i for i ∈ [k]. We can rewrite the above as

E[cost(OPT(σ), T )] >
∑k

i=1
τ

2p̂i

3
16 w(Ti) = 3

32
∑k

i=1
τ
p̂i

w(Ti),

and hence establishing RoE(PLAN) = 64/3.

6 General instances

Now we devise an algorithm GEN for an arbitrary stochastic instance (T, λ), which achieves
a constant ratio of expectations. The main idea is to distinguish two types of requests and
apply a different strategy for each type. The first type is the requests that are located
close to the root. These requests will be served immediately at their arrival times, i.e., we
apply INSTANT to the corresponding sub-sequence. The second type includes all remaining
requests, and they are served in a periodic manner. To determine the period of these vertices,
we will use the algorithm PLAN on a specific heavy instance (T ′, λh). The construction of
this heavy instance relies on a partition of the vertices of T into balanced parts. Intuitively, a
part is balanced when it is light (or close to being light), but if we merge all vertices of the
part into a single vertex whose weight corresponds to the average distance to the root of the
part, then we obtain a heavy edge. This “merging” process is captured by the construction of
the augmented tree T ′, which is part of the heavy instance. The augmented tree is essentially
a copy of T with the addition of one (or two) new vertices for each balanced part.

Once determining the corresponding heavy instance, we can compute the periods of each
vertex of the heavy instance using PLAN. The vertex period in the original instance is equal
to the corresponding vertex period in the heavy instance. For the full description of GEN,
see Algorithm 2 in the appendix of the full version [57]. The main challenge is to analyze the
ratio of expectations and in particular, to establish good lower bounds on the expected cost
of the optimal offline schedule. Due to the space limits, check the full version [57], where we
prove two lower bounds that depend on the heaviness of each part of the balanced partition.
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Notations and additional assumptions. Given the edge-weighted tree T rooted at γ and
a set of vertices U ⊆ V (T ), T [U ] denotes the forest induced on U in T . We say that a
subset U ⊆ V (T ) is connected if T [U ] is connected (i.e., T [U ] is a subtree of T but not a
forest). If U ⊆ V (T ) is connected, we write γ(U) = γ(T [U ]) to denote the root vertex of
T [U ], i.e., the vertex in U which has the shortest path length to γ in the original tree T .
Given any vertex u ∈ V (T ), let Vu ⊆ V (T ) denote all the descendant vertices of u in T

(including u). For simplicity, set wγ(T ) = ∞. Given T = (V, E), λ : V (T ) → R+ and U ⊆ V ,
we denote λ|U : U → R+ such that λ|U (u) = λ(u) for each u ∈ U . For a sequence of requests
σ ∼ (T, λ), we use σ|U = {r ∈ σ | ℓ(r) ∈ U} to denote the corresponding sequence for T [U ].
In this section, we assume λ(γ) = 0 and γ has only one child.

Balanced partition of V (T ). Recall that π(T, λ) =
∑

u∈V (T ) λ(u) · d(u, γ(T )). When the
context is clear we simply write π(T ) = π(T, λ), and for a connected subset U ⊆ V (T ) we
simply write π(U) := π(T [U ], λ|U ).

▶ Definition 18. Given a stochastic instance (T, λ), we say that U ⊆ V (T ) is balanced if U

is connected and if one of the following conditions holds:
(1) U is of type-I: π(U) ≤ 1, and either γ(U) = γ(T ) or π(U ∪ {par(γ(U))}) > 1;
(2) U is of type-II: π(U) > 1, and for each child vertex y of γ(U) in T [U ], we have

π({γ(U)} ∪ (U ∩ Vy)) < 1.
Remark that the root γ(U) of a balanced type-II part U must have at least two children in
T [U ].

▶ Definition 19. Given a stochastic instance (T, λ) and a partition P of the vertices V (T ),
we say that P is a balanced partition of tree T if every part U ∈ P is balanced.

See Figure 2 for an example of a balanced partition. If P is a balanced partition of T , then
the part U ∈ P containing γ(T ) is called the root part in P . Since we assume that γ(T ) has
only one child vertex, we deduce from the previous remark that the root part is necessarily
of type-I. Given a balanced partition P, we denote P∗ := P \ {γ(P)}; P1 ⊆ P the set of
type-I parts; P∗

1 := P1 ∩ P∗ and P2 ⊆ P the set of type-II parts.

▶ Lemma 20. Given any stochastic instance (T, λ), there exists a balanced partition of T .
Moreover, such a partition can be computed in O(|V (T )|2) time.

The algorithm to construct a partition P works as follows. We order the vertices u1, . . . , un

by decreasing distances from the root, i.e., for 1 ≤ i < j, d(ui, γ(T )) ≥ d(uj , γ(T )). Let
P(0) = ∅. For each i ∈ [n], let Ci ⊆ {1, . . . , n − 1} be the subset of indexes j s.t. (i) uj is a
child of ui; (ii) uj /∈

⋃
U∈P(i−1) U . Define Ui := (

⋃
j∈Ci

Uj)
⋃

{ui} recursively. If i = n (i.e.,
if ui is the root of T ) or π(Ui ∪ {par(ui)}) > 1, then define P(i) := P(i−1) ∪ {Ui}. Otherwise,
define P(i) := P(i−1). See Figure 3 for a visual support.

The heavy instance. Given a stochastic instance (T, λ), and a balanced partition P of T ,
we construct a tree T ′ that we call the augmented tree of T . This tree is essentially a copy of
T with additional one or two vertices for each part of P∗.4 Then, we define arrival rates λh

on T ′ in a way that the stochastic instance (T ′, λh) is heavy. Finally, we construct from a
request sequence σ, the corresponding heavy sequence σh for the augmented tree.

4 Recall that P∗ = P \ {γ(P)}, where γ(P) denotes the particular part in P including the tree root γ(T ).
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Figure 2 An example of a balanced partition (Definition 19). The weight of each edge is shown
in black, and the arrival rate of each vertex is shown in red. Green subsets corresponds to parts of
type-I while purple ones correspond to parts of type-II. Some value of π are shown for the top-left
type-I part and for the top-right type-II part.
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Figure 3 Construction of a balanced partition in the proof of Lemma 20. The weights of the
edges and the arrival rates of the vertices are the same as in Figure 2. The numbers represent an
ordering of the vertices. The gray sets corresponds to Ui, for i ∈ [40]. We illustrate the step i = 30
of the algorithm. We have C30 = {24, 26} and U30 = {u30} ∪ U24 ∪ U30 = {u30, u24, u19, u20, u26}.
Since π(U30 ∪ {u25}) = 2.65 > 1, we add U30 into P(29) to create P(30) (red stoke). We remark
that U30 is a balanced subset of type-II and U27 is a balanced subset of type-II, while U25 is not a
balanced subset.
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Figure 4 The construction of the augmented tree associated with the instance and the balanced
partition of Figure 2. The new edges and vertices are shown in red. The illustrate the calculation of
the length of these edges for a part U1 of type-I and for a part U2 of type-II. For each part U of the
partition, we indicate the values of λ(U) and π(U). For simplicity, we have rounded the values to
their second decimal.

To construct the augmented tree, define T ′ = (V ′, E′) where V ′ = V (T ) ∪ {zU , z′
U :

U ∈ P∗}, and the edge set E′ is constructed based on E(T ) as follows. First, for each
U ∈ P∗

1 , replace the edge (γ(U), par(γ(U))) of length wγ(U) by two edges (γ(U), z′
U ) and

(z′
U , par(γ(U))) of respective lengths (1 − π(U))/λ(U) and wγ(U) − (1 − π(U))/λ(U), where

par(γ(U)) denotes the parent of γ(U) in T . Then, add an edge (zU , z′
U ) of weight 1/λ(U).

Finally, for each U ∈ P2, set z′
U = γ(U), and add an edge (zU , z′

U ) of weight π(U)/λ(U).
This completes the construction of the augmented tree (see Figure 4 for visual support).

Note that if a part U = {u} in P contains only one vertex, then we have π(U) = 0, and thus
part U is necessarily of type-I. To simplify, in the following, we identify vertices in T with
their copy in T ′ and consider that V (T ) is a subset of V (T ′). For the arrival rates of the
heavy instance, recall that P∗ = P \ {γ(P)}, where γ(P) denotes the part in P containing
the root γ(T ). We define λh : V (T ′) → R+ as follows: for each U ∈ P∗, set λh(zU ) = λ(U);
and λh(u) = 0 otherwise.5

▶ Definition 21. Given a stochastic instance (T, λ), a balanced partition P of tree T , the
corresponding augmented tree T ′, and a sequence of request σ ∼ (T, λ)τ , we construct the
heavy sequence associated with σ for T ′ and denoted by σh as follows: for each request
r = (u, t) ∈ σ located on some part U ∈ P∗ (i.e., u ∈ U), there is a request (zU , t) in σh.

The algorithm GEN. The input is a stochastic instance (T, λ), known in advance, and a
sequence of requests σ for T , revealed over time. In the pre-processing step, GEN computes
a balanced partition P of T (Lemma 20), a light instance (T [γ(P)], σ|γ(P)), and the heavy
instance (T ′, σh). At each request arrival, GEN updates the sequences of requests σ|γ(P) and
σh. The algorithm runs PLAN (Algorithm 1) on input (T ′, σh). Suppose that PLAN serves
at time t a set of vertices {zU , U ∈ P ′} ⊆ V (T ′) for some subset P ′ ⊆ P∗. Then, GEN serves
at time t all pending requests on vertices

(⋃
U∈P′ U

)
⊆ V (T ).

5 It is important to notice that σh can be constructed in an online fashion: for any time t, the restriction
of the σh to the requests that arrives before t only depends on the requests that arrives before t in σ.
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In parallel, the algorithm runs INSTANT on input (T [γ(P)], σ|γ(P)), and performs the
same services. This finishes the description of the algorithm GEN see the formal pseudo-code
of GEN (Algorithm 2) and a visual support in Figures 2, 3 and 4. The detailed proof of
GEN achieving a constant ratio of expectations can be found in the appendix of the full
version [57].

Algorithm 2 GEN.

Input: stochastic instance (T, λ) and σ ∼ (T, λ)τ

Output: a valid schedule of σ

1 – – pre-processing the given instance —–
2 produce a balanced partition P for T (see Lemma 20);
3 construct the heavy instance (T ′, λh);
4 use PLAN (Algorithm 1) to determine the period of the vertices of T ′;
5 —– Serve the requests —–
6 for each request r ∈ σ do
7 if r arrives in γ(P) then
8 serve r immediately.
9 end

10 if r arrives in a vertex of U ∈ P∗ then
11 serve r at time t(r′) where r′ ∈ σh is the corresponding request located on zU

and t(r′) is the time at which r′ is served by PLAN(σh).
12 end
13 end

7 Other related works

The MLA problem was first introduced by Bienkowski et al. [16] and they study a more
general version in their paper, where the cost of delaying a request r by a duration t is
fr(t). Bienkowski et al. proposed an O(d42d)-competitive online algorithm for this general
delay cost version problem, where d denotes the depth of the given tree. A deadline version
of MLA is also considered in [16], where each request r has a time window (between its
arrival and its deadline) and it has to be served no later than its deadline. The target is
to minimize the total service cost for serving all the requests. For this deadline version
problem, they proposed an online algorithm with a better competitive ratio of d22d. Later,
the competitiveness of MLA was further improved to O(d2) [13] for the general delay cost
version and to O(d) [27, 58] for the deadline version. However, for the delay cost version,
no matching lower bound has been found thus far – the current best lower bound on MLA
with delays is only 4 [16, 17, 18], restricted to a path case with linear delays. In the offline
setting, MLA is NP-hard in both delay and deadline versions [3, 15], and a 2-approximation
algorithm was proposed by Becchetti et al. [15] for the deadline version. For a special path
case of MLA with the linear delay, Bienkowski et al. [22] proved that the competitiveness is
between 3.618 and 5, improving on an earlier 8-competitive algorithm given by Brito et al.
[26]. Thus far, no previous work has studied MLA in the stochastic input model, no matter
the delay or deadline versions.

Two special cases of MLA with linear delays, one called TCP-acknowledgment (d = 1)
and one called Joint Replenishment (abbr. JRP, d = 2) are of particular interests: TCP-
acknowledgment (a.k.a. single item lot-sizing problem, [25, 41, 61, 29, 44]) models the data
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transmission issue from sensor networks [68, 51], while JRP models the inventory control issue
from supply chain management [5, 37, 42, 64, 48]. For TCP-acknowledgment, in the online
setting there exists an optimal 2-competitive deterministic algorithm [32] and an optimal
e/(e−1)-competitive randomized algorithm [45, 63]; in the offline setting, the problem can be
solved in O(n log n) time, n denoting the number of requests [1]. For JRP, the competitiveness
is between 3 [28] and 2.754 [21]; in the offline setting, JRP is NP-hard [3] and also APX-hard
[60, 20]. The current best approximation ratio for JRP is 1.791 [53, 54, 52, 21]. For a deadline
version of JRP, Bienkowski et al. [21] proposed an optimal 2-competitive algorithm.

Another problem, called online service with delays (OSD), first introduced by Azar et
al. [9], is closely related to MLA (with linear delays). In this OSD problem, a n-points
metric space is given as input. The requests arrive at metric points over time, and a server
is available to serve the requests. The target is to serve all the requests in an online manner
such that their total delay cost plus the total distance traveled by the server is minimized.
Note that MLA can be seen as a special case of OSD when the given metric is a tree, and
the server has to always come back to a particular tree vertex immediately after serving
some requests elsewhere. For OSD, Azar et al. [9] proposed an O(log4 n)-competitive online
algorithm in their paper. Later, the competitive ratio for OSD is improved from O(log2 n)
(by Azar and Touitou [13]) to O(log n) (by Touitou [67]).

Recently, many other online problems with delays/deadline have also drawn a lot of
attention besides MLA, such as online matching with delays [33, 6, 4, 24, 23, 34, 10, 31, 55,
12, 59, 56, 49], online service with delays [9, 13, 66, 67], facility location with delays/deadline
[19, 13, 14], Steiner tree with delays/deadline [14], bin packing with delays [8, 35, 36, 2],
set cover with delays [7, 65, 50], paging with delays/deadline [38, 39], list update with
delays/deadline [11], and many others [59, 30, 66, 40, 43, 46].

8 Concluding remarks

In this paper, we studied MLA with additional stochastic assumptions on the sequence of
the input requests. In the following, we briefly discuss some potential future directions.

Does the greedy algorithm achieve a constant ratio of expectations? An intuitive
heuristic algorithm for MLA is Greedy, which works as follows: each time when a set of
requests R arriving at vertices U ⊆ V (T ) have the total delay cost equal to the weight of the
minimal subtree of T including γ and U , serve all the requests R. Does this greedy algorithm
achieve a constant ratio of expectations?

Is it possible to generalize MLA with edge capacity and k tree roots? One practical
scenario on MLA is that each edge has a capacity on the maximum number of requests
served in one service if this edge is used, such as [61, 44, 64]. We conjecture that some
O(1)-RoE online algorithm can be proposed for this generalized MLA with edge capacity.
Another generalized version of MLA is to assume k tree roots available for serving requests
concurrently. That is, a set of pending requests can be served together by connecting to any
of k servers. The question is, how to design an online algorithm for this k-MLA problem?
Does there exist O(1)-RoE algorithm still?

What about the other online network design problems with delays in the Poisson arrival
model? Recall that the online problems of service with delays (and its generalization called
k-services with delays), facility location with delays, Steiner tree/forest with delays are all
closely related to MLA. Does there exist online algorithm with O(1)-RoE for each problem?
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