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Abstract
Given a set P of n points in the plane, the two-line center problem asks to find two lines that
minimize the maximum distance from each point in P to its closer one of the two resulting lines.
The currently best algorithm for the problem takes O(n2 log2 n) time by Jaromczyk and Kowaluk in
1995. In this paper, we present faster algorithms for three variants of the two-line center problem in
which the orientations of the resulting lines are constrained. Specifically, our algorithms solve the
problem in O(n log n) time when the orientations of both lines are fixed; in O(n log3 n) time when
the orientation of one line is fixed; and in O(n2α(n) log n) time when the angle between the two
lines is fixed, where α(n) denotes the inverse Ackermann function.
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1 Introduction

Given a set P of n points in the plane R2, the two-line center problem asks to find two
lines that minimize the maximum distance from each point in P to its closer one of the two
resulting lines. In 1991, Agarwal and Sharir [4] presented the first subcubic O(n2 log5 n)-time
algorithm for the two-line center problem, in which they solved the decision version in
O(n2 log3 n) time using their machinery [3] to maintain the width of a point set under a
prescribed sequence of changes and then to apply the parametric search technique. (See also
its full version [5].) In 1995, Jaromczyk and Kowaluk [24] presented an O(n2 log2 n)-time
algorithm and also discussed an O(n2 log n)-time decision algorithm. Glozman et al. [21, 22]
exhibited how any D-time decision algorithm for the two-line center problem can be converted
to an optimization algorithm of O(n2 log n + D log n) time using sorted matrices. Later,
Katz and Sharir [26] introduced an expander-based approach and showed how to solve the
problem in O(n2 log3 n + D log n) time. There was no significant progress since then and
O(n2 log2 n) still remains the best known upper bound [22,24].

This paper addresses constrained variants of the two-line center problem, and aims to
provide efficient algorithms for the constrained problems, particularly faster than O(n2 log2 n)
time, and to provide new observations and algorithmic techniques for any future breakthrough
on the problem. The currently fastest algorithm by Jaromczyk and Kowaluk [24] indeed
considers several constrained problems, tackled by different methods. Though not having
explicitly mentioned in [24], their approach yields an O(n log2 n)-time algorithm when a fixed
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5:2 Constrained Two-Line Center Problems

point in P should be the farthest to the resulting lines, after an O(n2)-time preprocessing.
Recently, Bae [10] presented an O(n2)-time algorithm for the two-parallel-line center problem,
in which the two resulting lines are supposed to be parallel.

In this paper, we solve three variants of the two-line center problem, constrained about
the orientations of the resulting two lines. Following summarizes our results and approaches:
(1) (Two fixed orientations) Given two orientations θ and ϕ, we present an O(n log n)-time

algorithm that solves the two-line center problem in which the two resulting lines are
constrained to have orientations θ and ϕ. If the input points P are given as a sorted list
in one of the specified orientations, then the running time can be reduced to O(n).

(2) (One fixed orientation) Given an orientation ϕ, we present an O(n log3 n)-time algorithm
that solves the two-line center problem in which one of the resulting lines is constrained
to have orientation ϕ. We first devise an O(n log2 n)-time decision algorithm for this
constrained problem using the data structure by Agarwal and Sharir [3]. In spite of having
such an efficient decision algorithm, it is not immediate to achieve a sub-quadratic time
optimization algorithm by applying known techniques; as introduced above, all known
techniques for the two-line center problem require at least quadratic-time additional
overhead [5, 22, 26]. To overcome this difficulty, we use our decision algorithm as a
subroutine to find an interval narrow enough to reduce the possible number of candidate
configurations to O(n) and apply the dynamic width structure by Chan [13].

(3) (Fixed angle of intersection) Given a real β, we present an O(n2α(n) log n)-time algorithm
that solves the two-line center problem in which the two resulting lines are constrained
to make angle β, where α(n) denotes the inverse Ackermann function. As in the second
problem, we start by presenting a decision algorithm and apply the known technique [22]
to obtain a favorably narrow interval that contains the optimal width value. We then
consider a sweeping process in which we rotate a strip of variable width within the
interval, and prove that if suffices to find an optimal solution by simulating the process.
To our best knowledge, the three constrained problems have not been considered in the

literature. Note that the two-parallel-line center problem studied in [10] is a more constrained
variant of our problems: In the first problem (of two fixed orientations), the special case of
θ = ϕ can be solved in O(n) time, and the third problem (of fixed angle) for β = 0 indeed
asks to find a two-parallel-line center, which can be solved in O(n2) time [10].

Due to space limit, most proofs are omitted, but can be found in the full version [7].

Related work

The two-line center problem is a special case of the k-line center problem for k ⩾ 1. For k = 1,
known as the width problem, one can solve the problem in O(n log n) time [29], or in O(n)
time if the convex hull of P is given [31]. In three dimensions, the width of n points
in R3 can be computed in O(n3/2+ϵ) expected time by Agarwal and Sharir [6]. In higher
dimensions d ⩾ 4, Chan [12] showed how to compute the width in O(n⌈d/2⌉) time. In
the plane R2, the k-line center problem is known to be NP-hard when k is part of the
input [28], while efficient approximation algorithms are known [1, 2]. Agarwal et al. [2]
presented an efficient approximation algorithm. Exact algorithms for k ⩽ 2 are presented as
aforementioned, while any nontrivial exact algorithm for k ⩾ 3 is, however, unknown. An
efficient (1 + ϵ)-approximation algorithm for k = 2 is presented by Agarwal et al. [1]. Very
recently, several constrained variants of the k-line center problem and its generalization in
high dimensions have been considered. Das et al. [16] presented an approximation algorithm
for the k-line center problem where the resulting lines are constrained to be axis-parallel.
Chung et al. [15] considered a variant of the parallel k-line center problem. Ahn et al. [8]
presented first algorithms for the problem of finding two parallel slabs in Rd for d ⩾ 3.
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Not being restricted to the line center problems, there have been an enormous amount
of results on constrained variants of those problems of finding optimal locations of one or
more geometric shapes enclosing input objects. Such results on constrained problems usually
provided more efficient solutions than those for the original (unconstrained) problems or
played important roles as stepping stones to later breakthroughs. Constrained two-square
problems [25] and the problem of covering points by two disjoint rectangles [27] are such
examples.

Some preliminaries

A strip σ is the closed region between two parallel lines and its width is the distance between
the two lines. A pair of two strips will be called a two-strip and the width of a two-strip mean
the larger width of its two members. Note that the two-line center problem is equivalent
to the problem of finding a two-strip of minimum width that enclose given points. The
orientation of a line is a real value θ ∈ [0, π) such that θ is the angle swept from a horizontal
line in counterclockwise direction to the line. Similarly, a strip is said to have an orientation θ

when its bounding lines are in orientation θ. For any set P of points and orientation θ ∈ [0, π),
we denote by σθ(P ) the minimum-width strip in orientation θ that encloses P . We denote
widthθ(P ) := width(σθ(P )). The width of point set P , denoted by width(P ), is the smallest
width of a strip that encloses P .

2 Two fixed orientations

In this section, we consider the first constrained problem where the orientations of two line
centers should given values θ and ϕ. We assume that ϕ = 0 without loss of generality.

We start by sorting the n points in P in the nondecreasing order of y-coordinates and
let p1, . . . , pn ∈ P be in this order. For 0 ⩽ i ⩽ n, let Pi := {p1, . . . , pi} and P i := P \ Pi =
{pi+1, . . . , pn}. It is straightforward in O(n) time to incrementally construct the strips σθ(Pi)
and σθ(P i) in orientation θ for all 0 ⩽ i ⩽ n. We then observe the following.

▶ Lemma 1. Given P as a sorted list as above, P can be processed in O(n)-time so that
σθ(Pi ∪ P j) can be answered in O(1) time for any query pair (i, j) of indices.

Consider any minimum-width two-strip (σ1, σ2) enclosing P such that its orientations are
0 and θ, respectively. Observe that σ1 includes a contiguous sequence pi+1, . . . , pj of points
in P for some indices 0 ⩽ i ⩽ j ⩽ n, while σ2 covers the points in Pi ∪P j . Hence, the problem
can be solved by searching for O(n2) possible bipartitions of P , namely, (Pi ∪P j , P \(Pi ∪P j))
for 0 ⩽ i ⩽ j ⩽ n, and evaluating the widths of the two strips enclosing each part of desired
bipartitions.

Let w1(i, j) := width0({pi+1, . . . , pj}) be the width of the smallest horizontal strip
enclosing j − i points pi+1, . . . , pj ∈ P , that is, the difference of the y-coordinates of pi+1
and pj . Let w2(i, j) := widthθ(Pi ∪ P j) be the width of the smallest strip in orientation θ

enclosing Pi ∪ P j = {p1, . . . , pi, pj+1, . . . , pn}. Define w(i, j) := max{w1(i, j), w2(i, j)}. Our
task is to minimize w(i, j) over all 0 ⩽ i ⩽ j ⩽ n. This can be done by evaluating w1(i, j)
and w2(i, j) for at most 4n pairs (i, j) of indices due to the monotonicity of w1 and w2. More
precisely, observe that

w1(i, j) ⩽ w1(i, j + 1) and w1(i, j) ⩽ w1(i − 1, j),

while

w2(i, j) ⩾ w2(i, j + 1) and w2(i, j) ⩾ w2(i − 1, j)

ISAAC 2024



5:4 Constrained Two-Line Center Problems

by definition. Hence, our algorithm initially sets i = j = 0 and repeatedly increases j by
one until it holds that w1(0, j) ⩽ w2(0, j) and w1(0, j + 1) ⩾ w2(0, j + 1). Then for each
i = 1, . . . , n in this order, it repeatedly increases j by one until it holds that w1(i, j) ⩽ w2(i, j)
and w1(i, j + 1) ⩾ w2(i, j + 1) for the current i. This way, our algorithm probes at most 4n

pairs (i, j). For a given pair (i, j), in O(1) time we can evaluate w1(i, j) by definition and
w2(i, j) by Lemma 1. We thus conclude the following.

▶ Theorem 2. Given a set P of n points and two orientations θ, ϕ ∈ [0, π), the two-line center
problem where the resulting lines have orientations θ and ϕ can be computed in O(n log n)
time, or in O(n) time, provided P is sorted in orientation either θ or ϕ.

3 One fixed orientation

In this section, we solve the second constrained problem: given a fixed orientation ϕ, find
two strips of minimum width whose union encloses P such that one of the two strips is in
orientation ϕ. Throughout this section, a pair of two such strips (σ1, σ2), where σ1 is in
orientation ϕ, will be simply called a constrained two-strip, and assume that ϕ = 0.

To find a constrained two-strip of minimum width enclosing P , one could make use of a
data structure for the dynamic width maintenance [13, 17]. Observe that there are O(n2)
possible bipartitions of P induced by a constrained two-strip (σ1, σ2) since there are O(n2)
distinct subsets of P that can be enclosed by a horizontal strip σ1. This approach, however,
does not seem to avoid a quadratic running time, since the point set we would maintain
undergoes Θ(n2) updates. Another common approach is to apply known techniques, such
as the parametric search [5], the expander-based method [26], or the one based on a sorted
matrix [22]. These techniques also require at least quadratic time overhead.

Despite this difficulty, we present a near-linear O(n log3 n)-time algorithm based on our
O(n log2 n)-time decision algorithm and Chan’s structure of dynamic width maintenance [13].
Note that the decision problem can be solved in O(n log3 n) time by a direct application of
the machinery of Agarwal and Sharir [3]. In the following, we show how to shave another
logarithmic factor, while still using the data structure of Agarwal and Sharir.

3.1 Data structures for dynamic width decision and maintenance
Agarwal and Sharir [3] showed that in O(n log3 n) time the offline dynamic width decision
problem can be solved: Given a parameter ω > 0 and a sequence of n insert/delete operations
on a set S of points, initially consisting of at most n points, determine whether there is
any moment such that width(S) ⩽ ω during the n updates on S. Their algorithm builds a
segment tree based on the life-spans of the points, that is, the time intervals in which each
point is a member of S, and traverse it with a secondary data structure D that maintains
necessary information about the width of the current S using linear space.

The data structure D consists of two balanced binary search trees that store the edges of
the convex hull conv(S), ordered by their orientations, and maintains a certain collection of
invariants, which suffice to decide in O(1) time whether or not width(S) ⩽ ω for the current
set S. Agarwal and Sharir showed that how to update D per insertion of a point into S, and
also how to undo the latest insertion, recovering the structure D to the status before the
latest insertion. Summarizing, we have:

▶ Lemma 3 (Agarwal and Sharir [3]). Suppose the data structure D with a parameter ω has
been built on a set S of n points. Then, we can decide whether or not width(S) ⩽ ω in
O(1) time, and D can be maintained in O(log2 n) worst-case time for the following updates:
inserting a point to S and undoing the latest insertion.
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σθ2(S)σθ1(S)

conv(S)

σ[θ1,θ2](S)

q1

q2

Figure 1 Illustration of σ[θ1,θ2](S) = conv(S ∪ {q1, q2}) (shaded in light gray) when θ1 < θ2.

Chan [13] presented how to exactly maintain width(S) over fully online updates on S.
Its amortized time per update is O(

√
n log3 n), based on the following data structure.

▶ Lemma 4 (Chan [13]). There is a data structure W for a set S of n points that supports
deletions of points from S and queries of the following kind: given a query point set Q, report
width(S ∪ Q). The total preprocessing and deletion time is O(n log3 n) and the query time is
O(|Q| log3(n + |Q|)). The space required for maintaining the structure W is O(n log n).

Though Chan did not discuss the space requirement for his method, it is not difficult to see
it as stated above from construction [13]. Note that if the online updates are deletions only,
then this results in an O(n log3 n)-time algorithm that maintains the exact width.

3.2 Orientation-constrained width
Let S be a set of points, and let θ1 ⩽ θ2 be two orientations. Define the [θ1, θ2]-constrained
width of S to be

width[θ1,θ2](S) := min
θ∈[θ1,θ2]

widthθ(S).

Note that width(S) = width[0,π](S) and width[θ,θ](S) = widthθ(S) = width(σθ(S)). Also,
define

σ[θ1,θ2](S) :=
⋂

θ∈[θ1,θ2]

σθ(S).

Note that σ[θ1,θ2](S) is the convex hull of S and two more points from the boundary of the
intersection of two strips σθ1(S) and σθ2(S). See Figure 1 for an illustration.

▶ Lemma 5. For any finite set S of points, it holds that width[θ1,θ2](S) = width(σ[θ1,θ2](S)).

As will be seen later, we are also interested in orientation-constrained width decision
queries. More precisely, we are given a query interval [θ1, θ2] ⊆ [0, π) of orientations and
want to decide whether there exists θ ∈ [θ1, θ2] such that the width of σθ(S) is at most ω or,
equivalently, whether width[θ1,θ2](S) ⩽ ω. It turns out that the structure D of Lemma 3 by
Agarwal and Sharir is helpful for this type of queries as well, with the aid of Lemma 5.

▶ Lemma 6. Provided the data structure D on a point set S of n points with parameter ω is
available, an orientation-constrained width decision query on S for width ω can be answered
in O(log2 n) worst-case time using O(log n) additional space.

ISAAC 2024



5:6 Constrained Two-Line Center Problems

Now, consider two sets S1 and S2 of points in the plane that can be separated by a
line, that is, conv(S1) ∩ conv(S2) = ∅. Then, there are exactly two outer common tangent
lines ℓ1 and ℓ2. Let θ1 ⩽ θ2 be the orientations of ℓ1 and ℓ2. We say that S1 dominates S2 if
σ[θ1,θ2](S2) ⊆ σ[θ1,θ2](S1). By construction, note that either S1 or S2 dominates the other.
We also mean by the distance between two convex, compact sets A and B, denoted by d(A, B),
the minimum length of translation vectors τ such that A and B + τ have a common point.

▶ Lemma 7. With the above notations, suppose that S1 dominates S2. Then, it holds that:
(i) width[θ1,θ2](S1 ∪ S2) = width[θ1,θ2](S1).
(ii) If width(S1 ∪ S2) < d(conv(S1), conv(S2)), then width(S1 ∪ S2) = width[θ1,θ2](S1).

Proof. Since S1 dominates S2, we have

S2 ⊆ σ[θ1,θ2](S2) ⊆ σ[θ1,θ2](S1).

Lemma 5 implies that

σ[θ1,θ2](S1 ∪ S2) = σ[θ1,θ2](S1),

so the first statement (i) follows. See Figure 2(a).
Suppose width(S1 ∪ S2) < d(conv(S1), conv(S2)). Let σ∗ = σθ∗(S1 ∪ S2) be a minimum-

width strip enclosing S1 ∪ S2 whose orientation is θ∗. We claim that θ∗ ∈ [θ1, θ2]. If this
claim is true, then, by definition, we have

σ[θ1,θ2](S1) = σ[θ1,θ2](S1 ∪ S2) ⊆ σθ∗(S1 ∪ S2) = σ∗,

so

width(σ[θ1,θ2](S1)) ⩽ width(S1 ∪ S2),

on one hand. On the other hand, since S1 ∪ S2 is a subset of σ[θ1,θ2](S1 ∪ S2) = σ[θ1,θ2](S1),
we also have

width(σ[θ1,θ2](S1)) ⩾ width(S1 ∪ S2),

and the second statement (ii) is thus proved.
Hence, we are done by proving the claim that θ∗ ∈ [θ1, θ2]. As σ∗ is minimal among

those enclosing S1 ∪ S2, its boundary contains three points p, q, r from S1 ∪ S2 such that p

and q lie on a common bounding line ℓ of σ∗, r lies on the other bounding line ℓ′, and the
perpendicular foot r′ of r to ℓ lies in between p and q. See Figure 2(b) for an illustration.

S1

S2

p qr′

r ℓ′

ℓ
S1

S2

ℓ

ℓ′

(a) (b) (c)

Figure 2 Illustrations to the proof of Lemma 7.
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We first exclude the possibility that both p and q belong to a common set, S1 or S2, and r

to the other. Suppose for a contradiction that, say, p, q ∈ S1 and r ∈ S2. By our assumption
that d(conv(S1), conv(S2)) > width(S1 ∪ S2), the distance d from r to its perpendicular
foot r′ is strictly larger than width(S1 ∪ S2), while, however, the distance d is also the width
of σ∗, a contradiction to the assumption that the width of σ∗ determines width(S1 ∪ S2).

Now, suppose that θ∗ /∈ [θ1, θ2]. Then, observe that both bounding lines ℓ and ℓ′ of σ∗

cannot intersect a common set, S1 or S2; that is, ℓ ∩ Si ̸= ∅ if and only if ℓ′ ∩ Si = ∅, for
i = 1, 2. (See Figure 2(c).) This implies that p, q ∈ ℓ belong to one common set, S1 or S2,
and r ∈ ℓ′ belongs to the other set, which is forbidden by the above argument. Thus, we
have θ ∈ [θ1, θ2], and the claim is true. ◀

3.3 Decision algorithm
We describe our decision algorithm for a given parameter ω > 0. The points p1, . . . , pn ∈ P

are assumed to be sorted in the y-coordinates, and we let Pi = {p1, . . . , pi} and P i = P \ Pi.
Consider a horizontal strip σ0 of width ω and sweep the plane by translating σ0 upwards from
below. At any moment of this sweeping process, the points P \ σ0 outside of σ0 is partitioned
into Pi and P j for some 0 ⩽ i ⩽ j ⩽ n such that all points of Pi lies below σ0 and all points
of P j lies above σ0. Note that the indices i and j representing such a separation by σ0 do
not decrease during the process, and it always holds that d(conv(Pi), conv(P j)) > ω. Also,
by this monotonicity of i and j, observe that P j dominates Pi from the beginning until some
moment and Pi dominates P j from that moment to the end. See Figure 3.

We maintain convex hulls, conv(Pi) and conv(P j), and the data structure D with
parameter ω on set Pi. Maintaining the convex hulls conv(Pi) and conv(P j) can be done in
O(n log n) total time [11,23]; in our case, updates on Pi and P j are offline. Initially, we have
i = j = 0, so conv(Pi) = ∅, conv(P j) = conv(P ), and D is initialized for an empty set P0.

In the main loop of our decision algorithm, as σ0 moves upwards, we do nothing until Pi

becomes dominating P j while we maintain the data structure D by inserting relevant points.
For each pair (i, j) such that Pi dominates P j , we decide whether width(Pi ∪ P j) ⩽ ω or not.
If it is the case, we stop the algorithm and report YES; otherwise, we proceed the algorithm.
The decision is made as follows: We first compute the outer common tangents of conv(Pi)
and conv(P j) in O(log2 n) time using conv(Pi) and conv(P j). (See Figure 3.) Let θ1 ⩽ θ2
be the orientations of the two common tangents. We then perform an orientation-constrained
width decision query on Pi with query interval [θ1, θ2]. This can be done in O(log2 n)
time by Lemma 6 using D. If the answer to this query is positive, then we conclude that
width(Pi ∪ P j) ⩽ ω; otherwise, we conclude that width(Pi ∪ P j) > ω. The correctness of this
decision is guaranteed by the following lemma, which is a direct application of Lemma 7.

(b)

Pi′

P j′

σ0pi′+1

pj′

(a)

Pi

P j

σ0pi+1

pj

ω

Figure 3 Snapshots of the sweeping process: (a) P j dominates Pi and (b) Pi′ dominates P j′ .
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5:8 Constrained Two-Line Center Problems

▶ Lemma 8. For (i, j) such that Pi dominates P j and d(conv(Pi), conv(P j)) > ω, we have
width(Pi ∪ P j) ⩽ ω if and only if width[θ1,θ2](Pi) ⩽ ω.

This way, we check all the pairs (i, j) such that Pi dominates P j during the sweeping
process. The other pairs (i, j) such that P j dominates Pi can be handled in a symmetric
way by moving the horizontal strip σ0 downwards. Therefore, we conclude the following.

▶ Theorem 9. Given a set P of n points, ϕ ∈ [0, π), and ω > 0, we can decide in O(n log2 n)
time and O(n) space whether there is a constrained two-strip of width ω.

3.4 Optimization algorithm
Let w∗ be our target optimal width, that is, the minimum width of a constrained two-strip
enclosing P . As above, suppose that p1, . . . , pn ∈ P are sorted in their y-coordinates. Let
W1 be the set of all differences of y-coordinates between two points in P . Since W1 can be
represented by a sorted matrix [19], we can find two consecutive values w0, w1 ∈ W1 such
that w0 < w∗ ⩽ w1 in O(n log3 n) time using our decision algorithm (Theorem 9) and an
efficient selection algorithm for a sorted matrix [20].

At this stage, observe that, for any w0 < w < w1, the sequence of changes on the sets
Pi and P j of points below and above σ0 is the same as the horizontal strip σ0 of width w

moves upwards. Let X be the set of those pairs (i, j) of indices such that Pi and P j appear
as the sets of points below and above σ0, respectively.

▶ Lemma 10. It holds that

w∗ = min{w1, min
(i,j)∈X

{width(Pi ∪ P j)}}.

Thus, we are done by computing the width of Pi ∪ P j for (i, j) ∈ X. Even better, to
compute w∗ and an optimal two-strip, it suffices to evaluate the exact value of width(Pi ∪P j)
only for those (i, j) ∈ X such that width(Pi ∪ P j) < w1. Let W be the set of values
of width(Pi ∪ P j) that are less than w1. Below, we show how to compute the set W .

For the purpose, we take any value w with w0 < w < w1 and simulate the translational
sweeping process with the horizontal strip σ0 of width w in a similar way as done for the
decision algorithm. Here, we sweep the plane by moving σ0 downwards from above. We
initialize the data structure D with parameter ω = w1 on point set Pn = P by inserting
n points p1, . . . , pn in this order, and maintain D by deleting points in the reversed order to
represent Pi, as σ0 moves downwards. In addition, we initialize the structure W of Lemma 4
for point set Pn = P , and maintain it to store Pi by deleting points in the same order. We
also maintain the convex hulls conv(Pi) and conv(P j).

During the sweeping process, we only handle those (i, j) ∈ X such that Pi dominates
P j , so we stop the process as soon as P j dominates Pi. (Those (i, j) ∈ X such that P j

dominates Pi can be handled in a symmetric way by moving σ0 upwards.) Consider such
a pair (i, j). Our goal is to compute width(Pi ∪ P j) only when it is less than w1. Note
that d(conv(Pi), conv(P j)) ⩾ w1. We compute the outer common tangents of conv(Pi) and
conv(P j) and let θ1 ⩽ θ2 be their orientations. As in the decision algorithm, we test whether
or not width[θ1,θ2](Pi) ⩽ w1 by Lemma 6 using D. Lemma 7 implies the following.

▶ Lemma 11. Provided Pi dominates P j, width(Pi ∪ P j) ⩾ w1 if width[θ1,θ2](Pi) > w1.

If it turns out that width[θ1,θ2](Pi) > w1, then we can discard the pair (i, j) and proceed the
algorithm by Lemma 11. Otherwise, we compute the exact value of width[θ1,θ2](Pi). If θ1 = θ2,
this can be done in O(log n) time using convex hulls conv(Pi) and conv(P j); if θ1 < θ2,
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by Lemma 5, we have width[θ1,θ2](Pi) = width(σ[θ1,θ2](Pi)) and σ[θ1,θ2](Pi) = conv(Pi ∪ Q)
where Q = {q1, q2} consists of two points as described above. (See also Figure 1.) Hence,
in this case, we can compute width[θ1,θ2](Pi) in O(log3 n) time by Lemma 4 with a query
set Q = {q1, q2} to W. Again, Lemma 7 implies the following.

▶ Lemma 12. width[θ1,θ2](Pi) < w1 if and only if width(Pi ∪ P j) < w1. Moreover, if
width[θ1,θ2](Pi) < w1, then width(Pi ∪ P j) = width[θ1,θ2](Pi).

By Lemma 12, we have width(Pi ∪ P j) = width[θ1,θ2](Pi) and it is a member of W if and
only if the computed value of width[θ1,θ2](Pi) is strictly smaller than w1.

This way, we can collect the values in W in O(n log3 n) time. By Lemma 10, the minimum
value in W is w∗, if W is nonempty; or w∗ = w1, if W = ∅. The corresponding two-strip
of width w∗ can be computed and stored during the execution of the algorithm. Hence, we
finally conclude the following.

▶ Theorem 13. Given a set P of n points in the plane and an orientation ϕ, a two-line center
for P in which one of the two lines is constrained to be in orientation ϕ can be computed in
O(n log3 n) time and O(n log n) space.

4 Fixed angle of intersection

In this section, we solve the third constrained two-line center problem in which, given a real
value 0 ⩽ β ⩽ π/2, the difference of the orientations of the two resulting lines is exactly β.
Throughout this section, for convenience, a constrained two-strip denotes a pair of strips
whose orientations differ by β. Let w∗ be the minimum width of a constrained two-strip
enclosing P . We start by describing optimal configurations.

▶ Lemma 14. There exists a minimum-width constrained two-strip (σ1, σ2) enclosing P that
falls into one of the following cases:

(i) Either w∗ = width(σ1) > width(σ2) or w∗ = width(σ2) > width(σ1), and one of the
four bounding lines of σ1 and σ2 contains two points in P .

(ii) It holds that w∗ = width(σ1) = width(σ2), and each of the four bounding lines of σ1
and σ2 contains a point in P .

In the following, we present an algorithm that runs in O(n2α(n) log n) time using O(n2)
space. Our algorithm follows a similar flow as for the second problem, consisting of two
phases: (1) find a favorably narrow interval (w0, w1] that includes our target width w∗, and
(2) proceed the search for w∗ with the aid of (w0, w1]. We first present an efficient decision
algorithm, and then describe each of the two phases.

4.1 Decision algorithm
Let ω > 0 be a given parameter, and our goal is to decide whether or not ω ⩾ w∗. Throughout
this section, we regard θ as a direction from the range [0, 2π), taken by modulo 2π, and
assume that no three points in P are collinear.

We consider a rotational sweeping process with fixed width ω described as follows: Take
any point p ∈ P as a pivot. For direction θ ∈ [0, 2π), let ℓ(θ) and ℓ+(θ) be two directed
lines in θ such that ℓ(θ) is through p and ℓ+(θ) is at distance ω to the left of ℓ(θ). We
simultaneously rotate both lines ℓ(θ) and ℓ+(θ) counterclockwise by increasing θ, and consider
the strip σ(θ) bounded by the two lines. Taking the second strip σ(θ) := σθ+β(P \ σ(θ)) as
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p

ℓ(θ)

ℓ+(θ)

σ(θ)

σ(θ)
ω

β

q−(θ)

q+(θ)

Figure 4 A snapshot at θ of the rotational sweeping process with fixed width ω and pivot p.

the minimum-width strip in orientation θ + β enclosing the rest of points in P , our goal is to
decide if there exists θ ∈ [0, 2π) such that width(σ(θ)) ⩽ ω for some p ∈ P . See Figure 4, in
which points in P ∩ σ(θ) are depicted by dots and those in P \ σ(θ) by small circles.

This sweeping process can be simulated by maintaining the dynamic convex hull conv(P \
σ(θ)) and its two extreme points q−(θ) and q+(θ) that define σ(θ). Since the number of
updates on P \ σ(θ) is O(n), it can be done in O((n + E) log n) time [11], where E denotes
the number of changes of the two extreme points q−(θ) and q+(θ). As will be seen later,
E = O(nα(n)) and hence the decision can be made in O(n2α(n) log n) time.

In order to see why E = O(nα(n)) and even to improve the running time, we find
it more useful and convenient to discuss the problem in the dual setting. Consider the
standard dual transformation that maps each point r = (a, b) ∈ R2 into a non-vertical line
r⋆ : {y = ax − b}, and vice versa. Let L := {p⋆ | p ∈ P} be the set of n lines dual to each
point in P . For a fixed pivot p = (a, b) ∈ P , the trace of ℓ+(θ) in the dual environment
draws a hyperbola {y = ax − b ± ω

√
1 + x2} [5]. We take the upper branch of the hyperbola,

denoted by

hp : {y = ax − b + ω
√

1 + x2},

and let H := {hp | p ∈ P}. By this choice, we restrict ourselves to considering half the domain
of directions, namely [π/2, 3π/2); the other case can be handled symmetrically by considering
the lower branches of the hyperbolas. Note that the dual of ℓ+(θ) for θ ∈ (π/2, 3π/2) is
the intersection point between hp and vertical line {x = tan(θ)}. Hence, the first strip σ(θ)
appears as a vertical segment between p∗ and hp at x = tan(θ). Similarly, the dual of the
second strip σ(θ) is a vertical segment at x = tan(θ + β) that crosses all but those lines in L

intersected by (σ(θ))⋆.
For better exposition, we consider an operation that rotates a given line around a given

point by angle β. In the dual setting, such a rotation can be performed by the following
mapping: for any non-vertical line ℓ and a point ζ ∈ ℓ, we define τβ(ζ; ℓ) to be the intersection

x = xζ x = tan(tan−1 xζ + β)

ℓ

ζ τβ(ζ; ℓ)

ζ⋆

ℓ⋆

(τβ(ζ; ℓ))
⋆

β

(a) (b)

Figure 5 (a) Illustration for the mapping τβ(·; ℓ) on line ℓ and (b) its dual representation.
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point between ℓ and the vertical line {x = tan(tan−1(xζ) + β)}, where xζ is the x-coordinate
of ζ. See Figure 5. For a line segment s on ℓ, let τβ(s) be the segment of ℓ obtained by
applying the β-shifting map τβ to all points on s along ℓ, that is, τβ(s) =

⋃
ζ∈s τβ(ζ; ℓ). Note

that τβ(s) may consist of two half-lines, if the x-coordinates of s are large enough.
Now, consider the pieces of lines in L below p⋆ or above hp. Let S be the set of these

segments and half-lines, and T := {τβ(s) | s ∈ S} be the set of shifted segments. We then
observe that the two lines bounding σ(θ) correspond to the highest and lowest points of
the intersection T ∩ {x = tan(θ + β)}. Thus, σ(θ) and its width over θ ∈ (π/2, 3π/2) are
determined by the lower and upper envelopes, L(T ) and U(T ), of T . This implies that the
number E of changes of the two extreme points q−(θ) and q+(θ) indeed counts the number
of vertices in L(T ) and U(T ), so E = O(nα(n)) [30] and the decision problem can be solved
in O(n2α(n) log n) time. In the following, we improve it to O(n2α(n)) time.

We start with the directed line ℓ(π/2) through any p ∈ P , and rotate it around the pivot p

by increasing θ until it hits another point p′ ∈ P . Whenever ℓ(θ) hits another point p′, we
switch the pivot to p′ and continue the rotation around the new pivot p′. Observe that
this motion of ℓ(θ) preserves the number k of points in P that lie on ℓ(θ) or on its right
side, except some moments when ℓ(θ) contains two points. In the dual setting, the trace
of ℓ(θ) is well known as the k-level of the arrangement A(L) of lines in L. More precisely,
for k = 1, . . . , n, the k-level of A(L), denoted by Lk, is the monotone chain consisting of
all edges e of A(L) such that there are exactly k − 1 lines strictly below any point in the
relative interior of e. Similarly, the trace of line ℓ+(θ) at distance ω from ℓ(θ) is the k-level
of the arrangement A(H) of n hyperbolas in H, denoted by Hk.

Let L−
k be the region strictly below Lk and H+

k be that strictly above Hk. For each r ∈ P

and 1 ⩽ k ⩽ n, define

S+
k,r := r⋆ ∩ H+

k , S−
k,r := r⋆ ∩ L−

k , T +
k,r := τβ(S+

k,r), and T −
k,r := τβ(S−

k,r),

and let T +
k and T −

k be the collections of segments and half-lines in T +
k,r and T −

k,r, respectively,
over all r ∈ P . Our goal is then to compute the envelopes L(T +

k ∪ T −
k ) and U(T +

k ∪ T −
k ) for

all k. As discussed above, these envelopes explicitly describe the changes of the extreme
points defining the second strip σ(θ) whose orientation is θ + β, so we can decide whether
width(σ(θ)) ⩽ ω for some θ in time linear to the total complexity of the envelopes.

Let L+
k := L(T +

k ), U+
k := U(T +

k ), L−
k := L(T −

k ), and U−
k := U(T −

k ). We compute these
four families of envelopes separately for all k. Then, L(T +

k ∪ T −
k ) and U(T +

k ∪ T −
k ) can be

obtained by merging two envelopes. For our purpose, the following observation is essential.

▶ Lemma 15. For any 1 ⩽ k ⩽ n − 1 and r ∈ P ,

T +
k+1,r ⊂ T +

k,r and T −
k,r ⊂ T −

k+1,r.

Therefore, every point on L+
k is below or on L+

k+1; every point on U+
k is above or on U+

k+1;
every point on L−

k is above or on L−
k+1; every point on U−

k is below or on U−
k+1.

This naturally suggests us computing each family of envelopes in an incremental way. In
the following, we describe how to compute L+

n , L+
n−1, . . . , L+

1 in this order. The other three
families can also be handled symmetrically and analogously.

Initially, we compute A(L) and A(L ∪ H), and for each vertex v of A(L ∪ H), we collect
its images under τβ into a set Ξ. More precisely, we use a dictionary structure for Ξ indexed
by pairs in L × (L ∪ H), such as an array-based n × 2n matrix. For each pair (ℓ, ℓ′) with
ℓ, ℓ′ ∈ L such that v = ℓ ∩ ℓ′ is a vertex of A(L ∪ H), we store τβ(v; ℓ); for (ℓ, h) with ℓ ∈ L

and h ∈ H, we store τβ(v; ℓ) for each v ∈ ℓ ∩ h. We also associate each point ξ ∈ Ξ with the
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5:12 Constrained Two-Line Center Problems

edge e of A(L) such that ξ ∈ e, so that given a pair in L × (L ∪ H) we can locate in O(1)
time on which edges of A(L) its relevant points ξ ∈ Ξ lie. Note that at most two points are
stored at each entry of Ξ. The initialization can be done in O(n2) time using O(n2) space.

Let T +
n+1 = L+

n+1 = ∅, and suppose L+
k+1 has been correctly computed. Let T ∗ be the

set of segments obtained from T +
k,r \ T +

k+1,r for all r ∈ P . We then have L+
k = L(L+

k+1 ∪ T ∗)
by Lemma 15, so can be computed by merging L+

k+1 and L(T ∗). Computing L(T ∗) is done
in three steps: specify T ∗, compute the arrangement A(T ∗), and extract L(T ∗) from A(T ∗).

To specift T ∗, we walk along Hk and Hk+1 in A(L∪H) and find out all intersections Hk∩r⋆

and Hk+1 ∩ r⋆ for each r ∈ P . We are then able to extract all segments of r⋆ that lie in
between Hk and Hk+1. For each such segment s, τβ(s) is a member of T ∗. This can be done
in O(mk + mk+1 + n) time, where mi denotes the number of vertices of A(L ∪ H) along Hi.
Note that the number of segments in T ∗ is at most mk + mk+1, since the endpoints of their
preimages under the β-shifting map τβ are all from the vertices along Hk and Hk+1.

Note that every t ∈ T ∗ is a segment of a line in L, so A(T ∗) is a clipped portion of the
entire arrangement A(L). In addition, the endpoints of t are members of Ξ, so we can find
out their exact locations in A(L) in O(1) time per each. Thus, we can construct A(T ∗)
by tracing segments t ∈ T ∗ in A(L) in O(|T ∗| + vk) = O(mk + mk+1 + vk) time, where vk

denotes the number of vertices of A(L) we encounter. Note that A(T ∗) consists of exactly
mk + mk+1 + vk vertices and at most mk + mk+1 + 2vk edges.

As A(T ∗) forms a plane graph, possibly being disconnected, it turns out that its lower
envelope L(T ∗) can be obtained in time linear to its complexity. Here, we make use of the
following two algorithmic tools: First, a linear-time algorithm for computing the vertical
decomposition (or the trapezoidation) of a simple polygon [14,18] can be applied for computing
the lower envelope of a connected plane graph.

▶ Lemma 16. Given a connected plane graph G, consisting of m line segments, its lower
envelope L(G) can be computed in O(m) time.

Second, Asano et al. [9] presented a linear-time algorithm for computing the lower envelope
of disjoint line segments, provided their endpoints are sorted. It is not difficult to see that
their algorithm also works even if we replace “segments” by “monotone chains.”

▶ Lemma 17 (Asano et al. [9]). Let C1, C2, . . . , Cl be mutually disjoint monotone chains
with m line segments in total. If a sorted list of their endpoints is given, then their lower
envelope L(

⋃
i Ci) can be computed in O(m) time.

Back to our problem, we apply Lemma 16 to each connected component of A(T ∗),
resulting in disjoint monotone chains C1, C2, . . ., whose lower envelope is L(T ∗). Recall
that we already have the sorted list of endpoints of T ∗, since those endpoints have been
obtained by walking along Hk and Hk+1 in A(L ∪ H) and applying the β-shifting map τβ ,
and the map τβ preserves the order along Hk and Hk+1. Hence, we can extract a sorted list
of endpoints of the chains Ci in additional O(mk + mk+1) time, which allows us to apply
Lemma 17 to obtain L(T ∗). The total time for this third step is proportional to the number
of edges in A(T ∗), so O(mk + mk+1 + vk) time.

Finally, to compute L+
k , we linearly scan L+

k+1 and L(T ∗), simultaneously. This takes
time linear to the total complexity of L+

k+1 and L(T ∗). Note that L+
k+1 consists of

O(|T +
k+1|α(|T +

k+1|)) = O(mk+1α(mk+1)) edges since it is the lower envelope of line seg-
ments [30]. So, the total time we spend to incrementally construct L+

k from L+
k+1 for

each 1 ⩽ k ⩽ n is bounded by O(n + mk + mk+1α(mk+1) + vk).
By iterating k from n down to 1, we conclude our decision algorithm.
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▶ Theorem 18. Given a set P of n points, an angle β, and a parameter ω, we can decide
whether or not ω ⩾ w∗ in O(n2α(n)) time and O(n2) space.

4.2 First phase of the optimization algorithm
From now on, we describe our optimization algorithm. Its first phase is done as follows.

Let W2 be the set of all pairwise distances among points in P . We first obtain two consec-
utive values w′

0 < w′
1 ∈ W2 such that w∗ ∈ (w′

0, w′
1]. This is easily done in O(n2α(n) log n)

time by sorting W2 and performing a binary search on W2 using our decision algorithm
presented in Theorem 18. Next, let W3 be the set of n

(
n
2
)

values obtained as follows: for
any pair p, q ∈ P with p ̸= q, collect the distances from each r ∈ P to the line through p

and q. We then find two consecutive values w′′
0 < w′′

1 ∈ W3 such that w∗ ∈ (w′′
0 , w′′

1 ]. This
can be done in O(n2α(n) log n) time by the technique of Glozman et al. [22], again using our
decision algorithm. Note that the two-strip of width w′′

1 is the best solution of case (i) of
Lemma 14. We then choose w0 := max{w′

0, w′′
0 } and w1 := min{w′

1, w′′
1 }, and obtain:

▶ Lemma 19. In O(n2α(n) log n) time, we can find two values w0 ⩽ w1 such that w0 <

w∗ ⩽ w1 and no member in W2 ∪ W3 lies in (w0, w1).

4.3 Second phase of the optimization algorithm
For each p ∈ P , let w∗

p be the minimum possible width of constrained two-strips (σ1, σ2) such
that p lies on the boundary of σ1. It is obvious that w∗ = minp∈P w∗

p. The second phase of
our algorithm computes the exact value of w∗

p, if w∗
p < w1; or reports w∗

p ⩾ w1, otherwise.
Note that, if w∗

p < w1, then the corresponding optimal two-strip falls in case (ii) described in
Lemma 14 by Lemma 19. In the following, let p ∈ P be fixed and called the pivot.

Updates in the sweeping process with fixed width

Before describing the algorithm, we discuss essential ingredients of its correctness, based on
Lemma 19. Let w ∈ (w0, w1) be any value. We consider the sweeping process with fixed
width w and fixed pivot p, as described at the beginning of Section 4.1. (See Figure 4.)
Recall that the first strip σ(θ) is determined by two directed lines ℓ(θ) and ℓ+(θ) such that
ℓ(θ) goes through p and ℓ+(θ) is at distance w to the left of ℓ(θ), and the second strip σ(θ) in
orientation θ + β encloses the rest of points in P \ σ(θ). Let P (θ) := P ∩ σ(θ). Then, during
this sweeping process as θ increases, P (θ) undergoes a sequence of updates. We identify
each update by a pair of its involved point r ∈ P and its type determined by one of the four
combinations of the following:

An update is right if it happens when ℓ(θ) hits r; or left when ℓ+(θ) hits r

An update is leaving if r is being deleted from P (θ); or approaching, otherwise.
Thus, two updates are the same if their involved points and their types are equal.

Let Υw be the set of those updates occurred on P (θ) during the sweeping process with
fixed width w over θ ∈ [0, 2π). Observe that there are two possibilities for each r ∈ P \ {p}:
By Lemma 19, the distance between r and the pivot p is either at most w0 or at least w1.
Thus, if r falls in the former case, there are exactly two updates for r in Υw whose types are
right leaving and right approaching; in the latter case, there are exactly four updates for r

in Υw with each of the four possible types. This implies that the set Υw is invariant under
the choice of w ∈ (w0, w1), so we write Υ = Υw for any w ∈ (w0, w1).

Fix an arbitrary right leaving update υ0 ∈ Υ in which r0 ∈ P \ {p} is involved, and
assume that both p and r0 lie along ℓ(0) in this order, that is, p and r0 lie on the horizontal
line ℓ(0) and r0 is to the right of p; this can be easily achieved by a proper rotation of the
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axes. For υ ∈ Υ and w ∈ (w0, w1), let ϕυ(w) ∈ [0, 2π) be the direction at which υ occurs
during the sweeping process with fixed width w. From the above discussion, we know that
ϕυ is a well-defined function from (w0, w1) to [0, 2π). Lemma 19 implies the following.

▶ Lemma 20. There is no w ∈ (w0, w1) such that ϕυ(w) = ϕυ′(w) for any two distinct
υ, υ′ ∈ Υ. Moreover, for each υ ∈ Υ, ϕυ(w) is either constant if υ is right, continuously
increasing if υ is left leaving, or continuously decreasing if υ is left approaching.

For w ∈ (w0, w1), we consider a total order ≺w on Υ such that υ ≺w υ′ if and only
if ϕυ(w) < ϕυ′(w). Note that its totality is guaranteed by Lemma 20 and υ0 is the least
element in Υ under ≺w. Lemma 20 further implies that the ordering ≺w on Υ remains the
same over all w ∈ (w0, w1): assuming any swap between ≺w and ≺w′ for w0 < w < w′ < w1,
one can face with some w′′ ∈ (w, w′) and υ, υ′ ∈ Υ such that ϕυ(w′′) = ϕυ′(w′′), due to the
continuity of functions ϕυ and ϕυ, so a contradiction.

Hence, we have a universal total ordering ≺ on Υ such that ≺ = ≺w for any w ∈ (w0, w1).
Let υ0, υ1, . . . , υm−1 ∈ Υ be the updates in Υ listed in this order ≺, where m := |Υ|. For
each 0 ⩽ i ⩽ m − 1, let Ii := {ϕυi

(w) | w0 < w < w1}. Lemma 20 implies that Ii consists of
a single element if υi is a right update; otherwise, Ii forms an open interval if υi is a left
update. The following summarizes more implications of Lemma 20 about the intervals Ii.
Two intervals I and I ′ are said to be properly nested if one includes the other, say I ′ ⊂ I, in
such a way that both endpoints of I ′ lie in the relative interior of I.

▶ Lemma 21. Two intervals Ii and Ij are never properly nested. If Ii and Ij overlap, then
either both of υi and υj are left leaving or both are left approaching.

For 0 ⩽ i ⩽ m−1, let Pi be the resulting set after executing the first i+1 updates υ0, . . . , υi

on the subset of points in P lying on or to the left of ℓ(0) whose distances to ℓ(0) are at
most w0. Note that P0 = (σ0 ∩ P ) \ {r0} where σ0 denotes the horizontal strip of width w0
such that ℓ(0) bounds σ0 from below. Let Qi := P \ Pi, and define

ωi(θ) := widthθ(Pi) and ωi(θ) := widthθ+β(Qi)

for θ ∈ [0, 2π). Let ri ∈ P \ {p} be the point involved in υi.

▶ Lemma 22. For any left leaving update υi ∈ Υ, ωi−1(θ) = widthθ({p, ri}) over θ ∈ Ii, and
is an increasing function over Ii whose infimum and supremum are w0 and w1, respectively.

Description of algorithm

The second phase of our algorithm simulates a similar sweeping process as before, but with
the first strip σ(θ) having variable width: Let ω : [0, 2π) → R be a function, which will be
specified later. We redefine ℓ+(θ) to be the line at distance ω(θ) to the left of ℓ(θ), and thus
σ(θ) to have width ω(θ). The second strip σ(θ) in orientation θ + β is determined as before
to tightly enclose the rest of points in P \ σ(θ). Let ω(θ) := width(σ(θ)). This way, the
process is completely determined by the width function ω(θ).

Our width function ω(θ) will be fully determined by when to execute each update υi ∈ Υ.
For 0 ⩽ i ⩽ m − 1, let ϕi be the direction at which the i-th update υi ∈ Υ is executed in our
algorithm. We choose the ϕi’s by the following rules:

If υi is a right update, ϕi is the only direction in Ii, that is, Ii = {ϕi}.
If υi is a left approaching update, ϕi is chosen to be the larger endpoint of Ii.
If υi is a left leaving update, ϕi is chosen to be the smallest direction θ such that
ωi−1(θ) = ωi−1(θ) over θ ∈ Ii, if exists; otherwise, ϕi is the larger endpoint of Ii.

Note that ϕ0 = 0 and let ϕm := 2π. It is obvious that either ϕi ∈ Ii or ϕi is the larger
endpoint of Ii. Less obvious is that the resulting ϕi’s indeed obey the ordering ≺ of Υ.
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▶ Lemma 23. It holds that 0 = ϕ0 < ϕ1 ⩽ ϕ2 ⩽ · · · ⩽ ϕm−1 ⩽ ϕm = 2π.

The function ω(θ) is then set up as follows: ω(0) := w0 and ω(θ) := max{w0, ωi(θ)} for
θ ∈ (ϕi, ϕi+1] and 0 ⩽ i ⩽ m − 1. We then obtain a conditional correctness of our algorithm.

▶ Lemma 24. Suppose w∗
p < w1, and let θ∗ and θ∗ + β be the directions of the bounding lines

of a corresponding two-strip of width w∗
p such that the pivot p lies on the right bounding line

of direction θ∗. If θ∗ /∈ Ii for all left approaching updates υi ∈ Υ, then there is a left leaving
update υj ∈ Υ such that θ∗ = ϕj ∈ Ij and w∗

p = ω(θ∗) = ωj−1(θ∗) = ωj−1(θ∗) = ω(θ∗).

Thus, we can compute w∗
p and its corresponding two-strip by checking each ϕi such that

ϕi ∈ Ii and υi ∈ Υ is a left leaving update, provided the condition of Lemma 24 is satisfied.
The other case, where w∗

p is not determined by left leaving updates, can be handled by a
reversed sweeping process that rotates σ(θ) clockwise by decreasing θ from 2π to 0; note that
in this reversed process each approaching update becomes a leaving update, and vice versa.

Now, the detailed implementation is presented. Simulating the sweeping process with
function ω(θ) can be done by maintaining a dynamic set Q, representing P \ σ(θ), and its
convex hull conv(Q). First, we compute the updates υ0, υ1, . . . , υm−1 ∈ Υ together with their
intervals Ii, and also precompute ϕi for all right updates and left approaching updates υi ∈ Υ.
Initially, Q = Q0 and Q = Qi while we are in θ ∈ (ϕi, ϕi+1] for each 0 ⩽ i ⩽ m. We also
maintain the two extreme points of Q that determine σ(θ): this can be done by two types of
queries on conv(Q), finding two tangents of conv(Q) in a given direction and finding the next
extreme point of conv(Q) neighboring the current one. Each of these convex hull queries can
be answered in O(log n) amortized time [11].

While we rotate σ(θ) as increasing θ, we execute updates υi ∈ Υ at θ = ϕi if ϕi has
already been computed. Recall that only the execution times ϕi of left leaving update υi are
not precomputed, so they are evaluated during the sweeping process: Suppose the current
direction θ lies in Ii for a left leaving update υi and the first j ⩽ i updates υ0, . . . , υj−1
have already been executed, that is, Q = Qj−1 currently at θ and ω(θ) = ωj−1(θ). At this
moment θ, note that θ ∈ Ij ∩ Ii and υj is also a left leaving update by Lemma 21. Hence,
Lemma 22 implies that ω(θ) = ωj−1(θ) = widthθ({p, rj}). We then solve the equation
ωj−1(φ) = ωj−1(φ). Since the two functions ωj−1 and ωj−1 are sinusoidal over a range in
which the two extreme points of Qj−1 do not change [10], this can be done in time proportional
to the number of such changes while Q = Qj−1. As soon as we find a solution ϕ ∈ Ij such
that ωj−1(ϕ) = ωj−1(ϕ), we know that ϕj = ϕ by our rules; otherwise, ϕj is chosen to be
the larger endpoint of Ij .

Since m = O(n), the overall time we spend is bounded by O(n log n + E log n), where E

denotes the number of changes of the extreme points of Q that define the second strip σ(θ). In
the dual setting, as done for the decision algorithm, those changes correspond to the vertices
of the lower and upper envelopes of O(n) line segments, so we have E = O(nα(n)) [30].
By iterating pivots p ∈ P , the second phase of the algorithm can be implemented in
O(n2α(n) log n) total time.

Therefore, we conclude the following result.

▶ Theorem 25. Given a set P of n points and a parameter β ∈ [0, π/2], the two-line center
problem with a constraint that the resulting two lines should make an angle of β can be solved
in O(n2α(n) log n) time using O(n2) space.
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