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Abstract
We study the Boolean Satisfiability problem (SAT) in the framework of diversity, where one
asks for multiple solutions that are mutually far apart (i.e., sufficiently dissimilar from each other)
for a suitable notion of distance/dissimilarity between solutions. Interpreting assignments as bit
vectors, we take their Hamming distance to quantify dissimilarity, and we focus on the problem
of finding two solutions. Specifically, we define the problem Max Differ SAT (resp. Exact
Differ SAT) as follows: Given a Boolean formula ϕ on n variables, decide whether ϕ has two
satisfying assignments that differ on at least (resp. exactly) d variables. We study the classical and
parameterized (in parameters d and n− d) complexities of Max Differ SAT and Exact Differ
SAT, when restricted to some classes of formulas on which SAT is known to be polynomial-time
solvable. In particular, we consider affine formulas, Krom formulas (i.e., 2-CNF formulas) and
hitting formulas.

For affine formulas, we show the following: Both problems are polynomial-time solvable when
each equation has at most two variables. Exact Differ SAT is NP-hard, even when each equation
has at most three variables and each variable appears in at most four equations. Also, Max Differ
SAT is NP-hard, even when each equation has at most four variables. Both problems are W[1]-hard
in the parameter n− d. In contrast, when parameterized by d, Exact Differ SAT is W[1]-hard,
but Max Differ SAT admits a single-exponential FPT algorithm and a polynomial-kernel. For
Krom formulas, we show the following: Both problems are polynomial-time solvable when each
variable appears in at most two clauses. Also, both problems are W[1]-hard in the parameter d (and
therefore, it turns out, also NP-hard), even on monotone inputs (i.e., formulas with no negative
literals). Finally, for hitting formulas, we show that both problems can be solved in polynomial-time.
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1 Introduction

We initiate a study of the problem of finding two satisfying assignments to an instance of
SAT, with the goal of maximizing the number of variables that have different truth values
under the two assignments, in the parameterized setting. This question is motivated by
the broader framework of finding “diverse solutions” to optimization problems. When a
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50:2 On the Parameterized Complexity of Diverse SAT

real-world problem is modelled as a computational problem, some contextual side-information
is often lost. So, while two solutions may be equally good for the theoretical formulation,
one of them may be better than the other for the actual practical application. A natural
fix is to provide multiple solutions (instead of just one solution) to the user, who may then
pick the solution that best fulfills her/his need. However, if the solutions so provided are all
quite similar to each other, they may exhibit almost identical behaviours when judged on the
basis of any relevant external factor. Thus, to ensure that the user is able to meaningfully
compare the given solutions and hand-pick one of them, she/he must be provided a collection
of diverse solutions, i.e., a few solutions that are sufficiently dissimilar from each other. This
framework of diversity was proposed by Baste et. al. [3]. Since the late 2010s, several
graph-theoretic and matching problems have been studied in this setting from an algorithmic
standpoint. These include diverse variants of vertex cover [4], feedback vertex set [4], hitting
set [4], perfect/maximum matching [17], stable matching [20], weighted basis of matroid [18],
weighted common independent set of matroids [18], minimum s-t cut [11], spanning tree [22]
and non-crossing matching [33].

The Boolean Satisfiability problem (SAT) asks whether a given Boolean formula
has a satisfying assignment. This problem serves a crucial role in complexity theory [27],
cryptography [32] and artificial intelligence [37]. In the early 1970s, SAT became the
first problem proved to be NP-complete in independent works of Cook [8] and Levin [30].
Around the same time, Karp [27] built upon this result by showing NP-completeness of
twenty-one graph-theoretic and combinatorial problems via reductions from SAT. In the late
1970s, Schaefer [35] formulated the closely related Generalized Satisfiability problem
(SAT(S)), where each constraint applies on some variables, and it forces the corresponding
tuple of their truth-values to belong to a certain Boolean relation from a fixed finite set S.
His celebrated dichotomy result listed six conditions such that SAT(S) is polynomial-time
solvable if S meets one of them; otherwise, SAT(S) is NP-complete.

Since SAT is NP-complete, it is unlikely to admit a polynomial-time algorithm, unless
P = NP. Further, in the late 1990s, Impaglliazo and Paturi [25] conjectured that SAT is
unlikely to admit even sub-exponential time algorithms, often referred to as the exponential-
time hypothesis. To cope with the widely believed hardness of SAT, several special classes of
Boolean formulas have been identified for which SAT is polynomial-time solvable. In the late
1960s, Krom [29] devised a quadratic-time algorithm to solve SAT on 2-CNF formulas. In the
late 1970s, follow-up works of Even et. al. [16] and Aspvall et. al. [2] proposed linear-time
algorithms to solve SAT on 2-CNF formulas. These algorithms used limited back-tracking
and analysis of the strongly-connected components of the implication graph respectively.
In the late 1980s, Iwama [26] introduced the class of hitting formulas, for which he gave a
closed-form expression to count the number of satisfying assignments in polynomial-time. It
is also known that SAT can be solved in polynomial-time on affine formulas using Gaussian
elimination [21]. Some other polynomial-time recognizable classes of formulas for which
SAT is polynomial-time solvable include Horn formulas [12, 36], CC-balanced formulas [7],
matched formulas [19], renamable-Horn formulas [31] and q-Horn DNF formulas [5, 6].

Diverse variant of SAT. In this paper, we undertake a complexity-theoretic study of SAT
in the framework of diversity. We focus on the problem of finding a diverse pair of satisfying
assignments of a given Boolean formula, and we take the number of variables on which
the two assignments differ as a measure of dissimilarity between them. Specifically, we
define the problem Max Differ SAT (resp. Exact Differ SAT) as follows: Given a
Boolean formula ϕ on n variables and a non-negative integer d, decide whether there are
two satisfying assignments of ϕ that differ on at least d (resp. exactly d) variables. That is,
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Table 1 Classical and parameterized (in parameters d and n − d) complexities of
Exact Differ SAT, when restricted to affine formulas, 2-CNF formulas and hitting formulas.

Classical complexity Parameter d Parameter n− d

Affine formulas NP-hard, even on (3, 4)-affine formulas W[1]-hard W[1]-hard
(Theorem 1) (Theorem 4) (Theorem 7)
Polynomial-time on 2-affine formulas
(Theorem 3)

2-CNF formulas Polynomial-time on (2, 2)-CNF formulas W[1]-hard ?
(Theorem 9) (Theorem 10)

Hitting formulas Polynomial-time − −
(Theorem 11)

Table 2 Classical and parameterized (in parameters d and n− d) complexities of Max Differ
SAT, when restricted to affine formulas, 2-CNF formulas and hitting formulas.

Classical complexity Parameter d Parameter n− d

Affine formulas NP-hard, even on 4-affine formulas Single-exponential FPT W[1]-hard
(Theorem 2) (Theorem 5) (Theorem 7)
Polynomial-time on 2-affine formulas Polynomial kernel
(Theorem 3) (Theorem 6)

2-CNF formulas Polynomial-time on (2, 2)-CNF formulas W[1]-hard ?
(Theorem 8) (Theorem 10)

Hitting formulas Polynomial-time − −
(Theorem 11)

this problem asks whether there are two satisfying assignments of ϕ that overlap on at most
n− d (resp. exactly n− d) variables. Note that SAT can be reduced to its diverse variant
by setting d to 0. Thus, as SAT is NP-hard in general, so is Max/Exact Differ SAT.
So, it is natural to study the diverse variant on those classes of formulas for which SAT is
polynomial-time solvable. In particular, we consider affine formulas, 2-CNF formulas and
hitting formulas. We refer to the corresponding restrictions of Max/Exact Differ SAT as
Max/Exact Differ Affine-SAT, Max/Exact Differ 2-SAT and Max/Exact Differ
Hitting-SAT respectively. We analyze the classical and parameterized (in parameters d

and n− d) complexities of these problems.

Related work. This paper is not the first one to study algorithms to determine the maximum
number of variables on which two solutions of a given SAT instance can differ. Several
exact exponential-time algorithms are known to find a pair of maximally far-apart satisfying
assignments. In the mid 2000s, Angelsmark and Thapper [1] devised an O(1.7338n) time
algorithm to solve Max Hamming Distance 2-SAT. Their algorithm involved a careful
analysis of the micro-structure graph and used a solver for weighted 2-SAT as a sub-
routine. Around the same time, Dahlöff [10] proposed an O(1.8348n) time algorithm for
Max Hamming Distance XSAT. In the late 2010s, follow-up works of Hoi et. al. [24, 23]
developed algorithms for the same problem with improved running times, i.e., O(1.4983n)
for the general case, and O(1.328n) for the case when every clause has at most three literals.

Parameterized complexity. In the 1990s, Downey and Fellows [14] laid the foundations
of parameterized algorithmics. This framework measures the running time of an algorithm
as a function of both the input size and a parameter k, i.e., a suitably chosen attribute
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of the input. Such a fine-grained analysis helps to cope with the lack of polynomial-time
algorithms for NP-hard problems by instead looking for an algorithm with running time
whose super-polynomial explosion is confined to the parameter k alone. That is, such an
algorithm has a running time of the form f(k) · nO(1), where f(·) is any computable function
(could be exponential, or even worse) and n denotes the input size. Such an algorithm is
said to be fixed-parameter tractable (FPT) because its running time is polynomially-bounded
for every fixed value of the parameter k. For more on this paradigm, see [9].

Our findings. We summarize our findings in Table 1 and Table 2. In Section 3, we show
that

Exact Differ Affine-SAT is NP-hard, even on (3, 4)-affine formulas,
Max Differ Affine-SAT is NP-hard, even on 4-affine formulas,
Exact/Max Differ Affine-SAT is polynomial-time solvable on 2-affine formulas,
Exact Differ Affine-SAT is W[1]-hard in the parameter d,
Max Differ Affine-SAT admits a single-exponential FPT algorithm in the parameter d,
Max Differ Affine-SAT admits a polynomial kernel in the parameter d, and
Exact/Max Differ Affine-SAT is W[1]-hard in the parameter n− d.

In Section 4, we show that Exact/Max Differ 2-SAT can be solved in polynomial-time
on (2, 2)-CNF formulas, and Exact/Max Differ 2-SAT is W[1]-hard in the parameter d.
In Section 5, we show that Exact/Max Differ Hitting-SAT is polynomial-time solvable.

2 Preliminaries

A Boolean variable can take one of the two truth values: 0 (False) and 1 (True). We use n

to denote the number of variables in a Boolean formula ϕ. An assignment of ϕ is a mapping
from the set of all its n variables to {0, 1}. A satisfying assignment of ϕ is an assignment
σ such that ϕ evaluates to 1 under σ, i.e., when every variable x is substituted with its
assigned truth value σ(x). We say that two assignments σ1 and σ2 differ on a variable x if
they assign different truth values to x. That is, one of them sets x to 0, and the other sets x

to 1. Otherwise, we say that σ1 and σ2 overlap on x. That is, either both of them set x to 0,
or both of them set x to 1.

A literal is either a variable x (called a positive literal) or its negation ¬x (called a negative
literal). A clause is a disjunction (denoted by ∨) of literals. A Boolean formula in conjunctive
normal form, i.e., a conjunction (denoted by ∧) of clauses, is called a CNF formula. A
2-CNF formula is a CNF formula with at most two literals per clause. A (2, 2)-CNF formula
is a 2-CNF formula in which each variable appears in at most two clauses. An affine formula
is a conjunction of linear equations over the two-element field F2. We use ⊕ to denote the
XOR operator, i.e., addition-modulo-2. A 2-affine formula is an affine formula in which
each equation has at most two variables. Similarly, a 3-affine (resp. 4-affine) formula is an
affine formula in which each equation has at most three (resp. four) variables. A (3, 4)-affine
formula is a 3-affine formula in which each variable appears in at most four equations.

The solution set of a system of linear equations can be obtained in polynomial-time using
Gaussian elimination [21]. It may have no solution, a unique solution or multiple solutions.
When it has multiple solutions, the solution set is described as follows: Some variables are
allowed to take any value; we call them free variables. The remaining variables take values
that are dependent on the values taken by the free variables; we call them forced variables.
That is, the value taken by any forced variable is a linear combination of the values taken by
some free variables. For example, consider the following system of three linear equations over
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F2: x⊕ y⊕ z = 1, u⊕ y = 1,w⊕ z = 1. This system has multiple solutions, and its solution
set can be described as

{(
x,y, z,u,w

)
| y ∈ F2, z ∈ F2, x = y⊕ z⊕ 1,u = y⊕ 1,w = z⊕ 1

}
.

Here, y and z are free variables. The remaining variables, i.e., x,u and w, are forced variables.
A hitting formula is a CNF formula such that for any pair of its clauses, there is some

variable that appears as a positive literal in one clause, and as a negative literal in the other
clause. That is, no two of its clauses can be simultaneously falsified. Note that the number
of unsatisfying assignments of a hitting formula ϕ on n variables can be expressed as follows:∑
C: C is a clause of ϕ

∣∣{σ | σ is an assignment of ϕ that falsifies C
}∣∣ = ∑

C: C is a clause of ϕ

2n−|vars(C)|

Here, we use vars(C) to denote the set of all variables that appear in the clause C.
We use the following as source problems in our reductions:
Independent Set. Given a graph G and a positive integer k, decide whether G has an
independent set of size k. This problem is known to be NP-hard on cubic graphs [34],
and W[1]-hard in the parameter k [15].
Multicolored Clique. Given a graph G whose vertex set is partitioned into k color-
classes, decide whether G has a k-sized clique that picks exactly one vertex from each
color-class. This problem is known to be NP-hard on r-regular graphs [9].
Exact Even Set. Given a universe U, a family F of subsets of U and a positive integer
k, decide whether there is a set X ⊆ U of size exactly k such that |X ∩ S| is even for all
sets S in the family F. This problem is known to be W[1]-hard in the parameter k [13].
Odd Set (resp. Exact Odd Set). Given a universe U, a family F of subsets of U and
a positive integer k, decide whether there is a set X ⊆ U of size at most k (resp. exactly
k) such that |X ∩ S| is odd for all sets S in the family F. Both these problems are known
to be W[1]-hard in the parameter k [13].

We use a polynomial-time algorithm for the following problem as a sub-routine:
Subset Sum problem. Given a multi-set of integers

{
w1, . . . ,wp

}
and a target sum k,

decide whether there exists X ⊆ [p] such that
∑

i∈X wi = k. This problem is known to
be polynomial-time solvable when the input integers are specified in unary [28].

We use the notation O⋆(·) to hide polynomial factors in running time.

3 Affine formulas

In this section, we focus on Exact Differ Affine-SAT, i.e, finding two different solutions
to affine formulas. To begin with, we show that finding two solutions that differ on exactly d

variables is hard even for (3, 4)-affine formulas: recall that these are instances where every
equation has at most three variables and every variable appears in at most four equations.

▶ Theorem 1. Exact Differ Affine-SAT is NP-hard, even on (3, 4)-affine formulas.

Proof. We describe a reduction from Independent Set on Cubic graphs. Consider an
instance (G,k) of Independent Set, where G is a cubic graph. We construct an affine
formula ϕ as follows: For every vertex v ∈ V(G), introduce a variable xv, its 3k copies (say
x1
v, . . . , x3k

v ), and 3k equations: xv⊕x1
v = 0, x1

v⊕x2
v = 0, . . . , x3k−1

v ⊕x3k
v = 0. For every edge

e = uv ∈ E(G), introduce variable ye and equation xu ⊕ xv ⊕ye = 0. We set d = k · (3k+ 4).
For every vertex v ∈ V(G), the variable xv appears in four equations (i.e., xv⊕x1

v = 0 and the
three equations corresponding to the three edges incident to v in G), each of x1

v, . . . , x3k−1
v

appears in two equations, and x3k
v appears in one equation. For every edge e ∈ E(G), the

variable ye appears in one equation. So, overall, every variable appears in at most four
equations. Also, the equation corresponding to any edge contains three variables, and the
remaining equations contain two variables each. Therefore, ϕ is a (3, 4)-affine formula.

ISAAC 2024



50:6 On the Parameterized Complexity of Diverse SAT

Now, we prove that (G,k) is a YES instance of Independent Set if and only if (ϕ,d) is
a YES instance of Exact Differ Affine-SAT. At a high level, we argue this equivalence
as follows: In the forward direction, we show that the two desired satisfying assignments
are the all 0 assignment, and the assignment that i) assigns 1 to every x variable (and also,
its 3k copies) that corresponds to a vertex of the independent set, ii) assigns 1 to every y

variable that corresponds to an edge that has one endpoint inside the independent set and
the other endpoint outside it, iii) assigns 0 to every x variable (and also, its 3k copies) that
corresponds to a vertex outside the independent set, and iv) assigns 0 to every y variable
that corresponds to an edge that has both its endpoints outside the independent set. In the
reverse direction, we show that the desired k-sized independent set consists of those vertices
that correspond to the x variables on which the two assignments differ. We now turn to a
proof of equivalence.

Forward direction. Suppose that G has a k-sized independent set, say S. Let σ1 and σ2
be assignments of ϕ defined as follows: For every vertex v ∈ V(G) \ S, both σ1 and σ2
set xv, x1

v, . . . , x3k
v to 0. For every vertex v ∈ S, σ1 sets xv, x1

v, . . . , x3k
v to 0, and σ2 sets

xv, x1
v, . . . , x3k

v to 1. For every edge e ∈ E(G) that has both its endpoints in V(G) \ S, both
σ1 and σ2 set ye to 0. For every edge e ∈ E(G) that has one endpoint in S and the other
endpoint in V(G) \ S, σ1 sets ye to 0, and σ2 sets ye to 1.

As σ1 sets all variables to 0, it is clear that it satisfies ϕ. Now, we show that σ2 satisfies ϕ.
Consider any edge e = uv ∈ E(G) and its corresponding equation xu ⊕ xv ⊕ ye = 0. If both
endpoints of e belong to V(G)\S, then σ2 sets xu, xv and ye to 0. Also, if e has one endpoint
(say u) in S, and the other endpoint in V(G) \ S, then σ2 sets xu to 1, xv to 0 and ye to 1.
Therefore, in both cases, xu ⊕ xv ⊕ ye takes the truth value 0 under σ2. Also, for any vertex
v ∈ V(G), since σ2 gives the same truth value to xv, x1

v, . . . , x3k
v (i.e., all 1 if v ∈ S, and all 0

if v ∈ V(G) \ S), it also satisfies the equations xv ⊕ x1
v = 0, x1

v ⊕ x2
v = 0, . . . , x3k−1

v ⊕ x3k
v = 0.

Thus, σ2 is a satisfying assignment of ϕ.
As G is a cubic graph, every vertex in S is incident to three edges in G. Also, as S is an

independent set, none of these edges has both endpoints in S. Therefore, there are 3 · |S| edges
that have one endpoint in S and the other endpoint in V(G)\S. Note that σ1 and σ2 differ on
the y variables that correspond to these 3 · |S| edges. Also, they differ on |S| many x variables,
and their 3k · |S| copies. Therefore, overall, they differ on (3k+ 1) · |S|+ 3 · |S| = k · (3k+ 4)
variables. Hence, (ϕ,d) is a YES instance of Exact Differ Affine SAT.

Reverse direction. Suppose that (ϕ,d) is a YES instance of Exact Differ Affine-SAT.
That is, there exist satisfying assignments σ1 and σ2 of ϕ that differ on k · (3k+ 4) variables.
Let S :=

{
v ∈ V(G) | σ1 and σ2 differ on xv

}
. We show that S is a k-sized independent set

of G. Let e(S, S̄) denote the number of edges in G that have one endpoint in S and the other
endpoint in V(G) \ S. Now, let us express the number of variables on which σ1 and σ2 differ
in terms of |S| and e(S, S̄).

Consider any edge e = uv ∈ E(G). First, suppose that e has both its endpoints in S.
Then, as σ1 and σ2 differ on both xu and xv, the expression xu ⊕ xv takes the same truth
value under σ1 and σ2. So, as both of them satisfy the equation xu ⊕ xv ⊕ ye = 0, it follows
that σ1 and σ2 must overlap on ye. Next, suppose that e has both its endpoints in V(G) \ S.
Then, as σ1 and σ2 overlap on both xu and xv, the expression xu ⊕ xv takes the same truth
value under σ1 and σ2. So, again, σ1 and σ2 must overlap on ye. Next, suppose that e has
one endpoint (say u) in S and the other endpoint in V(G) \ S. Then, as σ1 and σ2 differ on
xu and overlap on xv, the expression xu ⊕ xv takes different truth values under σ1 and σ2.
So, as both σ1 and σ2 satisfy the equation xu ⊕ xv ⊕ ye = 0, it follows that σ1 and σ2 must
differ on ye. So, overall, σ1 and σ2 differ on e(S, S̄) many y variables.
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For any vertex v ∈ V(G), since any satisfying assignment satisfies the equations xv⊕x1
v =

0, x1
v ⊕ x2

v = 0, . . . , x3k−1
v ⊕ x3k

v = 0, it must assign the same truth value to xv, x1
v, . . . , x3k

v .
So, for any v ∈ S, as σ1 and σ2 differ on xv, they also differ on x1

v, . . . , x3k
v . Similarly, for any

v ∈ V(G) \ S, as σ1 and σ2 overlap on xv, they also overlap on x1
v, . . . x3k

v . So, overall, σ1 and
σ2 differ on |S| many x variables and their 3k · |S| copies. Now, summing up the numbers of
y variables and x variables (and their copies) on which σ1 and σ2 differ, we get

e(S, S̄) + (3k+ 1) · |S| = k · (3k+ 4) (1)

Let e(S,S) denote the number of edges in G that have both endpoints in S. Note that∑
v∈S

degreeG(v) = 2 · e(S,S) + e(S, S̄)

Also, as G is a cubic graph, we know that degreeG(v) = 3 for all v ∈ S. Therefore, we get
e(S, S̄) = 3 · |S|− 2 · e(S,S). Putting this expression for e(S, S̄) in Equation (1), we have

(3k+ 4) ·
(
|S|− k

)
= 2 · e(S,S) (2)

If |S| ⩾ k + 1, then LHS of Equation (1) becomes ⩾ (3k + 1) · (k + 1) = k · (3k + 4) + 1,
which is greater than its RHS. So, we must have |S| ⩽ k. Also, as RHS of Equation (2) is
non-negative, so must be its LHS. This gives us |S| ⩾ k. Therefore, it follows that |S| = k.
Putting |S| = k in Equation (2), we also get e(S,S) = 0. That is, S is an independent set of
G. Hence, (G,k) is a YES instance of Independent Set.

This proves Theorem 1. ◀

We now turn to Max Differ Affine-SAT, i.e, finding two solutions that differ on at
least d variables. We show that this is hard for affine formulas of bounded arity.

▶ Theorem 2. Max Differ Affine-SAT is NP-hard, even on 4-affine formulas.

Proof. We describe a reduction from Multicolored Clique on Regular graphs.
Consider an instance (G,k) of Multicolored Clique, where G is a r-regular graph. We
assume that each color-class of G has size N := 2 · 3q. It can be argued that a suitably-sized
r-regular graph exists whose addition to the color-class makes this assumption hold true. We
construct an affine formula ϕ as follows: For every vertex v ∈ V(G), introduce a variable xv
and its ℓ copies

(
say x1

v, x2
v, . . . xℓv

)
, where ℓ := k · (r− k+ 1) + k · q. We force these copies to

take the same truth value as xv via the equations xv ⊕ x1
v = 0, x1

v ⊕ x2
v = 0, . . . , xℓ−1

v ⊕ xℓv =

0. For every edge e = uv ∈ E(G), we add variables ye and ze, and also the equation
xu ⊕ xv ⊕ ye ⊕ ze = 1.

For any 1 ⩽ i ⩽ k, consider the ith color-class, say Vi = {v1
i , v2

i , . . . , vNi }. First, we
add N/3 many Stage 1 dummy variables

(
say d1

i,1, d2
i,1,. . .,dN/3

i,1
)
, group the x variables

corresponding to the vertices of Vi into N/3 triplets, and add N/3 equations that equate the
xor of a triplet’s variables and a dummy variable to 0. More precisely, we add the following
N/3 equations:(
xv1

i
⊕xv2

i
⊕xv3

i

)
⊕d1

i,1 = 0,
(
xv4

i
⊕xv5

i
⊕xv6

i

)
⊕d2

i,1 = 0, . . . ,
(
xvN−2

i
⊕xvN−1

i
⊕xvN

i

)
⊕d

N/3
i,1 = 0

Next, we repeat the same process as follows: We introduce N/32 many Stage 2 dummy
variables

(
say d1

i,2, d2
i,2, . . ., dN/32

i,2
)
, group the N/3 many Stage 1 dummy variables into

N/32 triplets, and add N/32 equations that equate the xor of a triplet’s Stage 1 dummy
variables and a Stage 2 dummy variable to 0. More precisely, we add the following N/32

equations:
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(
d1
i,1 ⊕ d2

i,1 ⊕ d3
i,1

)
⊕ d1

i,2 = 0,
(
d4
i,1 ⊕ d5

i,1 ⊕ d6
i,1

)
⊕ d2

i,2 = 0, . . . ,
(
d
N/3−2
i,1 ⊕ d

N/3−1
i,1 ⊕ d

N/3
i,1

)
⊕ d

N/32

i,2 = 0

Repeating the same procedure, we add the following N/33, N/34, . . ., N/3q = 2 equations:(
d1
i,2 ⊕ d2

i,2 ⊕ d3
i,2

)
⊕ d1

i,3 = 0,
(
d4
i,2 ⊕ d5

i,2 ⊕ d6
i,2

)
⊕ d2

i,3 = 0, . . . ,
(
d
N/32−2
i,2 ⊕ d

N/32−1
i,2 ⊕ d

N/32

i,2
)
⊕ d

N/33

i,3 = 0(
d1
i,3 ⊕ d2

i,3 ⊕ d3
i,3

)
⊕ d1

i,4 = 0,
(
d4
i,3 ⊕ d5

i,3 ⊕ d6
i,3

)
⊕ d2

i,4 = 0, . . . ,
(
d
N/33−2
i,3 ⊕ d

N/33−1
i,3 ⊕ d

N/33

i,3
)
⊕ d

N/34

i,4 = 0

...(
d1
i,q−1 ⊕ d2

i,q−1 ⊕ d3
i,q−1

)
⊕ d1

i,q = 0,
(
d4
i,q−1 ⊕ d5

i,q−1 ⊕ d6
i,q−1

)
⊕ d2

i,q = 0

Next, we add B+ 1 auxiliary variables
(
say D1

i , . . . ,DB+1
i

)
and the following equations:(

d1
i,q ⊕ d2

i,q
)
⊕D1

i = 0,
(
d1
i,q ⊕ d2

i,q
)
⊕D2

i = 0, . . . ,
(
d1
i,q ⊕ d2

i,q
)
⊕DB+1

i = 0,

where B := k · (ℓ+ 1) + k · (r− k+ 1) + k · q is the budget that we set on the total number of
overlaps. That is, we set d = n − B, where n denotes the number of variables in ϕ. Now,
we prove that (G,k) is a YES instance of Multicolored Clique if and only if (ϕ,d) is a
YES instance of Max Differ Affine-SAT.

We first argue the forward direction. In the first assignment, we set i) all x and y variables
to 0, ii) all z variables to 1, and iii) all dummy and auxiliary variables to 0. In the second
assignment, we assign i) 0 to the k many x variables that correspond to the multi-colored
clique’s vertices, ii) 1 to the remaining x variables, iii) 0 to all z variables, iv) 0 to the
k · (r − k + 1) many y variables that correspond to those edges that have one endpoint
inside the multi-colored clique and the other endpoint outside it, v) 1 to the remaining
y variables, and vi) 1 to all auxiliary variables. Also, in the second assignment, for each
1 ⩽ i ⩽ k, we assign i) 0 to that Stage 1 dummy variable which was grouped with the x

variable corresponding to the multi-colored clique’s vertex from the ith color-class, 0 to that
Stage 2 dummy variable which was grouped with this Stage 1 dummy variable, 0 to that
Stage 3 dummy variable which was grouped with this Stage 2 dummy variable, and so on . . .,
and ii) 1 to the remaining dummy variables. It can be verified that these two assignments
satisfy ϕ, and they overlap on B many variables.

We argue the reverse direction of the equivalence. First, we show that each of the k

color-classes has at least one vertex on whose corresponding x variable the two assignments
overlap. Consider any 1 ⩽ i ⩽ k. Since the B+ 1 auxiliary variables are forced to take the
same truth value and there are only at most B overlaps, the two assignments must differ on
them. This forces the two assignments to overlap on one of the two Stage q dummy variables.
Further, this forces at least one overlap amongst the three Stage q− 1 dummy variables that
were grouped with this Stage q dummy variable. This effect propagates to lower-indexed
stages, and eventually forces at least one overlap amongst the x variables corresponding to
the vertices of the ith color-class.

Next, we show that each of the k color-classes has at most one vertex on whose corres-
ponding x variable the two assignments overlap. Suppose not. Then, there are at least two
overlaps amongst the x variables corresponding to the vertices of some color class. Also, based
on the previous paragraph, we know that there is at least one overlap amongst the x variables
corresponding to the vertices of each of the remaining k− 1 color classes. Therefore, overall,
there are at least k+ 1 many overlaps amongst the x variables. So, the contribution of these
x variables and their copies to the total number of overlaps becomes ⩾ (k+1) · (ℓ+1) = B+1.
However, this exceeds the budget B on the number of overlaps, which is a contradiction.
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Based on the previous two paragraphs, we know that for each 1 ⩽ i ⩽ k, there is exactly
one overlap amongst the x variables corresponding to the vertices of the ith color class.
Finally, we show that the set, say S, formed by these k vertices is the desired multi-colored
clique. Suppose not. Then, there are > k · (r− k+ 1) edges that have one endpoint in S and
the other endpoint outside S. Also, for each such edge, the two assignments must overlap
on one of its corresponding y and z variables. Therefore, we have > k · (r− k+ 1) overlaps
on the y and z variables. Also, k · q overlaps are forced on the dummy variables via the
equations added in the grouping procedure. Thus, overall, the total number of overlaps
exceeds B, which is a contradiction. This concludes a proof sketch of Theorem 2. ◀

If, on the other hand, all equations in the formula have at most two variables, then both
problems turn out to be tractable. We describe this algorithm next.

▶ Theorem 3. Both Exact Differ Affine-SAT and Max Differ Affine-SAT are
polynomial-time solvable on 2-affine formulas.

Proof. Consider an instance (ϕ,d) of Exact Differ Affine-SAT, where ϕ is a 2-affine
formula. First, we construct a graph G0 as follows: Introduce a vertex for every variable
of ϕ. For every equation of the form x ⊕ y = 0 in ϕ, add the edge xy. We compute the
connected components of G0. Observe that for each component C of G0, the equations of
ϕ corresponding to the edges of C are simultaneously satisfied if and only if all variables
of C take the same truth value. So, any pair of satisfying assignments of ϕ either overlap
on all variables in C, or differ on all variables in C. Thus, we replace all variables in C by
a single variable, and set its weight to be the size of C. More precisely, i) we remove all
but one variable (say z) of C from the variable-set of ϕ, ii) we remove all those equations
from ϕ that correspond to the edges of C, iii) for every variable v ∈ C \ {z}, we replace the
remaining appearances of v in ϕ (i.e., in equations of the form v⊕ = 1) with z, and iv) we
set the weight of z to be the number of variables in C. Let ϕ ′ denote the variable-weighted
affine formula so obtained. Then, our goal is to decide whether ϕ ′ has a pair of satisfying
assignments such that the weights of the variables at which they differ add up to exactly d.

Note that all equations in ϕ ′ are of the form x ⊕ y = 1. Next, we construct a vertex-
weighted graph G1 as follows: Introduce a vertex for every variable of ϕ ′, and assign it
the same weight as that of its corresponding variable. For every equation x ⊕ y = 1 of
ϕ ′, add the edge xy. We compute the connected components of G1. Then, we run a
bipartiteness-testing algorithm on each component of G1. Suppose that there is a component
C of G1 that is not bipartite. Then, there is an odd-length cycle in C, say with vertices
x1, x2, . . . , x2ℓ, x2ℓ+1 (in that order). Note that the edges of this cycle correspond to the
equations x1 ⊕ x2 = 1, x2 ⊕ x3 = 1, . . . , x2ℓ ⊕ x2ℓ+1 = 1, x2ℓ+1 ⊕ x1 = 1 in ϕ ′. Adding
(modulo 2) these 2ℓ+ 1 equations, we get LHS = (2 · x1 + 2 · x2 + . . . + 2 · x2ℓ+1) mod 2 = 0,
and RHS = (2ℓ+ 1) mod 2 = 1. So, these 2ℓ+ 1 equations of ϕ ′ cannot be simultaneously
satisfied. Thus, we return NO. Now, assume that all components of G1 are bipartite. See
Figure 1 for an example.

Let C1, . . . ,Cp denote the connected components of G1. Consider any 1 ⩽ i ⩽ p. Let
A and B denote the parts of the bipartite component Ci. Observe that the equations of
ϕ ′ corresponding to the edges of Ci are simultaneously satisfied if and only if either i) all
variables in A are set to 1, and all variables in B are set to 0, or ii) all variables in A are set
to 0, and all variables in B are set to 1. So, any pair of satisfying assignments of ϕ ′ either
overlap on all variables in Ci, or differ on all variables in Ci. Thus, our problem amounts to
deciding whether there is a subset of components of G1 whose collective weight is exactly d.
That is, our goal is to decide whether there exists X ⊆ [p] such that

∑
i∈X weight(Ci) = d,
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Figure 1 This figure shows the bipartite components of the graph G1 constructed in the proof of
Theorem 3, when the 2-affine formula ϕ ′ consists of the following equations: u⊕ a = 1, u⊕ b = 1,
u ⊕ c = 1, v ⊕ a = 1, v ⊕ b = 1, v ⊕ c = 1, s ⊕ p = 1, s ⊕ q = 1, t ⊕ p = 1, t ⊕ q = 1, r ⊕ f = 1,
g⊕w = 1, g⊕ f = 1, g⊕ z = 1, h⊕ f = 1, h⊕ z = 1.

where weight(Ci) denotes the sum of the weights of the variables in Ci. To do so, we use the
algorithm for Subset Sum problem with

{
weight(C1), . . . ,weight(Cp)

}
as the multi-set

of integers and d as the target sum. This proves Theorem 3. The algorithm described here
works almost as it is for Max Differ Affine-SAT too. In the last step, instead of reducing
to Subset Sum problem, we simply check whether the collective weight of all components
of G1 is at least d. That is, if

∑p
i=1 weight(Ci) ⩾ d, we return YES; otherwise, we return

NO. Thus, Max Differ Affine-SAT is polynomial-time solvable on 2-affine formulas. ◀

We now turn to the parameterized complexity of Exact Differ Affine-SAT and Max
Differ Affine-SAT when parameterized by the number of variables that differ in the
two solutions. It turns out that the exact version of the problem is W[1]-hard, while the
maximization question is FPT. We first show the hardness of Exact Differ Affine-SAT
by a reduction from Exact Even Set.

▶ Theorem 4. Exact Differ Affine-SAT is W[1]-hard in the parameter d.

Proof. We describe a reduction from Exact Even Set. Consider an instance (U,F,k) of
Exact Even Set. We construct an affine formula ϕ as follows: For every element u in the
universe U, introduce a variable xu. For every set S in the family F, introduce the equation
⊕
u∈S

xu = 0. We set d = k. We prove that (U,F,k) is a YES instance of Exact Even Set if

and only if (ϕ,d) is a YES instance of Exact Differ Affine-SAT. At a high level, we
argue this equivalence as follows: In the forward direction, we show that the two desired
satisfying assignments are i) the all 0 assignment, and ii) the assignment that assigns 1 to
the variables that correspond to the elements of the given even set, and assigns 0 to the
remaining variables. In the reverse direction, we show that the desired even set consists
of those elements of the universe that correspond to the variables on which the two given
satisfying assignments differ. We now argue the equivalence.

Forward direction. Suppose that (U,F,k) is a YES instance of Exact Even Set. That is,
there is a set X ⊆ U of size exactly k such that |X ∩ S| is even for all sets S in the family F.
Let σ1 and σ2 be assignments of ϕ defined as follows: For every u ∈ X, σ1 sets xu to 0, and
σ2 sets xu to 1. For every u ∈ U \X, both σ1 and σ2 set xu to 0. Note that σ1 and σ2 differ
on exactly |X| = k variables. Consider any set S in the family F. The equation corresponding
to S in the formula ϕ is ⊕

u∈S

xu = 0. All variables in the left-hand side are set to 0 by σ1.

Also, the number of variables in the left-hand side that are set to 1 by σ2 is |X ∩ S|, which is
an even number. Therefore, the left-hand side evaluates to 0 under both σ1 and σ2. So, σ1
and σ2 are satisfying assignments of ϕ. Hence, (ϕ,k) is a YES instance of Exact Differ
Affine-SAT.
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Reverse direction. Suppose that (ϕ,k) is a YES instance of Exact Differ Affine-SAT.
That is, there are satisfying assignments σ1 and σ2 of ϕ that differ on exactly k variables.
Let X denote the k-sized set

{
u ∈ U | σ1 and σ2 differ on xu

}
. Consider any set S in the

family F. The equation corresponding to S in the formula ϕ is ⊕
u∈S

xu = 0. We split the

left-hand side into two parts to express this equation as ⊕
u∈S\X

xu

A

⊕ ⊕
u∈X∩S

xu

B

= 0. Note that

σ1 and σ2 overlap on all variables in the first part, i.e., A. So, A evaluates to the same truth
value under both assignments. Thus, as both σ1 and σ2 satisfy this equation, they must
assign the same truth value to the second part, i.e., B, as well. Also, σ1 and σ2 differ on all
variables in B. So, for its truth value to be same under both assignments, B must have an
even number of variables. That is, |X ∩ S| must be even. Hence, (U,F,k) is a YES instance
of Exact Even Set.

This proves Theorem 4. ◀

We now turn to the FPT algorithm for Max Differ Affine-SAT, which is based on
obtaining solutions using Gaussian elimination and working with the free variables: if the
set of free variables F is “large”, we can simply set them differently and force the dependent
variables, and guarantee ourselves a distinction on at least |F| variables. Note that this is the
step that would not work as-is for the exact version of the problem. If the number of free
variables is bounded, we can proceed by guessing the subset of free variables on which the
two assignments differ. We make these ideas precise in the proof of Theorem 5. Also, in the
proof of Theorem 6, we show that Max Differ Affine-SAT has a polynomial kernel in
the parameter d.

▶ Theorem 5. Max Differ Affine-SAT admits an algorithm with running time O⋆(2d).

Proof. Consider an instance (ϕ,d) of Max Differ Affine-SAT. We use Gaussian elimin-
ation to find the solution set of ϕ in polynomial-time. If ϕ has no solution, we return NO. If
ϕ has a unique solution and d = 0, we return YES. If ϕ has a unique solution and d ⩾ 1,
we return NO. Now, assume that ϕ has multiple solutions. Let F denote the set of all free
variables. Suppose that |F| ⩾ d. Let σ1 denote the solution of ϕ obtained by setting all free
variables to 0, and then setting the forced variables to take values as per their dependence
on the free variables. Similarly, let σ2 denote the solution of ϕ obtained by setting all free
variables to 1, and then setting the forced variables to take values as per their dependence on
the free variables. Note that σ1 and σ2 differ on all free variables (and possibly some forced
variables too). So, overall, they differ on at least |F| ⩾ d variables. Thus, we return YES.
Now, assume that |F| ⩽ d − 1. We guess the subset D ⊆ F of free variables on which two
desired solutions (say σ1 and σ2) differ. Note that there are 2|F| ⩽ 2d−1 such guesses.

First, consider any forced variable x that depends on an odd number of free variables
from D. That is, the expression for its value is the XOR of an odd number of free variables
from D (possibly along with the constant 1 and/or some free variables from F \D). Then,
note that this expression takes different truth values under σ1 and σ2. That is, σ1 and σ2
differ on x. Next, consider any forced variable x that depends on an even number of free
variables from D. That is, the expression for its value is the XOR of an even number of free
variables from D (possibly along with the constant 1 and/or some free variables from F \D).
Then, note that this expression takes the same truth value under σ1 and σ2. That is, σ1 and
σ2 overlap on x. Thus, overall, these two solutions differ on i) all free variables from D, and
ii) all those forced variables that depend upon an odd number of free variables from D. If
the total count of such variables is ⩾ d for some guess D, we return YES. Otherwise, we
return NO. This concludes the proof. ◀
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▶ Theorem 6. Max Differ Affine-SAT admits a kernel with O(d2) variables and O(d2)

equations.

Proof. Consider an instance (ϕ,d) of Max Differ Affine-SAT. We use Gaussian elimin-
ation to find the solution set of ϕ in polynomial-time. Then, as in the proof of Theorem 5, i)
we return NO if ϕ has no solution, or if ϕ has a unique solution and d ⩾ 1, ii) we return
YES if ϕ has a unique solution and d = 0, or if ϕ has multiple solutions with at least d

free variables. Now, assume that ϕ has multiple solutions with at most d− 1 free variables.
Note that the system of linear equations formed by the expressions for the values of forced
variables is an affine formula (say ϕ ′) that is equivalent to ϕ. That is, ϕ ′ and ϕ have the
same solution sets. So, we work with the instance (ϕ ′,d) in the remaining proof.

Suppose that there is a free variable, say x, such that at least d − 1 forced variables
depend on x. That is, there are at least d− 1 forced variables such that the expressions for
their values are the XOR of x (possibly along with the constant 1 and/or some other free
variables). Let σ1 denote the solution of ϕ ′ obtained by setting all free variables to 0, and
then setting the forced variables to take values as per their dependence on the free variables.
Let σ2 denote the solution of ϕ ′ obtained by setting x to 1 and the remaining free variables
to 0, and then setting the forced variables to take values as per their dependence on the free
variables. Note that σ1 and σ2 differ on x, and also on each of the ⩾ d− 1 forced variables
that depend on x. So, overall, σ1 and σ2 differ on at least d variables. Thus, we return YES.

Now, assume that for every free variable x, there are at most d− 2 forced variables that
depend on x. So, as there are at most d− 1 free variables, it follows that there are at most
(d− 1) · (d− 2) forced variables that depend on at least one free variable. The remaining
forced variables are the ones that do not depend on any free variable. That is, any such
forced variable y is set to a constant (i.e., 0 or 1) as per the expression for its value. We
remove the variable y and its corresponding equation (i.e., y = 0 or y = 1) from ϕ ′, and we
leave d unchanged. This is safe because y takes the same truth value under all solutions of
ϕ ′. Note that the affine formula so obtained has at most d− 1 free variables and at most
(d− 1) · (d− 2) forced variables. So, overall, it has at most (d− 1)2 variables. Also, it has at
most (d− 1) · (d− 2) equations. This concludes the proof. ◀

We finally turn to the “dual” parameter, n− d: the number of variables on which the
two assignments sought overlap. We show that both the exact and maximization variants for
affine formulas are W[1]-hard in this parameter by reductions from Exact Odd Set and
Odd Set, respectively.

▶ Theorem 7. The problems Exact Differ Affine-SAT and Max Differ Affine-SAT
are W[1]-hard in the parameter n− d.

Proof. We describe a reduction from Exact Odd Set. Consider an instance (U,F,k)
of Exact Odd Set. We construct an affine formula ϕ as follows: For every element
u in the universe U, introduce a variable xu. For every odd-sized set S in the family F,
introduce the equation ⊕

u∈S

xu = 1. For every even-sized set S in the family F, introduce k+ 1

variables yS, z1
S, z2

S, . . . , zkS, and the equations yS ⊕ z1
S = 0,yS ⊕ z2

S = 0, . . . ,yS ⊕ zkS = 0 and
⊕
u∈S

xu ⊕ yS = 0. The number of variables in ϕ is n = |U| + (k+ 1)·
∣∣{S ∈ F

∣∣ |S| is even
}∣∣.

We set d = n − k. We prove that (U,F,k) is a YES instance of Exact Odd Set if and
only if (ϕ,d) is a YES instance of Exact Differ Affine-SAT. At a high level, we argue
this equivalence as follows: In the forward direction, we show that the two desired satisfying
assignments are i) the assignment that sets all y and z variables to 0 and all x variables
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to 1, and ii) the assignment that sets all y and z variables to 1, assigns 1 to all those x

variables that correspond to the elements of the given odd set, and assigns 0 to the remaining
x variables. In the reverse direction, we show that the two assignments must differ on all y
and z variables (and so, all k overlaps are restricted to occur at x variables), and the desired
odd set consists of those elements of the universe that correspond to the x variables on which
the two assignments overlap. We present a full proof of this equivalence in Theorem 7. This
reduction also works with Odd Set as the source problem and Max Differ Affine-SAT
as the target problem. So, Max Differ Affine-SAT is also W[1]-hard in the parameter
n− d.

Forward direction. Suppose that (U,F,k) is a YES instance of Exact Differ Affine-
SAT. That is, there is a set X ⊆ U of size exactly k such that |X ∩ S| is odd for all sets S in
the family F. Let σ1 and σ2 be assignments of ϕ defined as follows: For every even-sized
set S in the family F, σ1 sets yS, z1

S, z2
S, . . . , zkS to 0, and σ2 sets yS, z1

S, z2
S, . . . , zkS to 1. For

every u ∈ X, both σ1 and σ2 set xu to 1. For every u ∈ U \ X, σ1 sets xu to 1, and σ2 sets
xu to 0. Note that σ1 and σ2 overlap on exactly |X| = k variables (and so, they differ on
exactly n− k variables). Now, we show that σ1 and σ2 are satisfying assignments of ϕ.

First, we argue that σ1 and σ2 satisfy the equations of ϕ that were added corresponding
to odd-sized sets of the family F. Consider any odd-sized set S in the family F. The equation
corresponding to S in the formula ϕ is ⊕

u∈S

xu = 1. The number of variables in the left-hand

side that are set to 1 by σ2 is |X ∩ S|, which is an odd number. Also, all |S| (again, which is
an odd number) variables in the left-hand side are set to 1 by σ1. Therefore, the left-hand
side evaluates to 1 under both σ1 and σ2. So, both these assignments satisfy the equation
⊕
u∈S

xu = 1.

Next, we argue that σ1 and σ2 satisfy the equations of ϕ that were added corresponding
to even-sized sets of the family F. Consider any even-sized set S in the family F. The k+ 1
equations corresponding to S in the formula ϕ are yS ⊕ z1

S = 0,yS ⊕ z2
S = 0, . . . ,yS ⊕ zkS = 0

and ⊕
u∈S

xu ⊕yS = 0. Consider any of the first k equations, say yS ⊕ ziS = 0, where 1 ⩽ i ⩽ k.

Both variables on the left-hand side, i.e., yS and ziS, are assigned the same truth value, i.e.,
both 0 by σ1 and both 1 by σ2. So, both these assignments satisfy the equation yS ⊕ ziS = 0.
Next, consider the last equation, i.e., ⊕

u∈S

xu ⊕ yS = 0. The number of variables amongst

xu
∣∣
u∈S

that are set to 1 by σ2 is |X∩ S|, which is an odd number. Also, the variable yS is set
to 1 by σ2. Therefore, overall, the number of variables in the left-hand side that are set to 1
by σ2 is even. Also, σ1 sets all variables on the left-hand side to 1 except yS. That is, it sets
all the |S| (again, which is an even number) variables xu

∣∣
u∈S

to 1. Therefore, the left-hand
side evaluates to 0 under both σ1 and σ2. So, both these assignments satisfy the equation
⊕
u∈S

xu ⊕ yS = 0.

Hence, (ϕ,n− k) is a YES instance of Exact Differ Affine-SAT.

Reverse direction. Suppose that (ϕ,n− k) is a YES instance of Exact Differ Affine-
SAT. That is, there are satisfying assignments σ1 and σ2 of ϕ that overlap on exactly k

variables. Consider any even-sized set S in the family F. As σ1 satisfies the equations
yS ⊕ z1

S = 0,yS ⊕ z2
S = 0, . . . ,yS ⊕ zkS = 0, it must assign the same truth value to all

the k + 1 variables yS, z1
S, z2

S, . . . , zkS. Similarly, σ2 must assign the same truth value to
yS, z1

S, z2
S, . . . , zkS. Therefore, either σ1 and σ2 overlap on all these k+ 1 variables, or they

differ on all these k+ 1 variables. So, as there are only k overlaps, σ1 and σ2 must differ on
yS, z1

S, z2
S, . . . , zkS. Thus, all the k overlaps occur at x variables. Let X denote the k-sized set{

u ∈ U | σ1 and σ2 differ on xu
}

. Now, we show that |X ∩ S| is odd for all sets S in F.
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First, we argue that X has odd-sized intersection with all odd-sized sets of the family
F. Consider any odd-sized set S in the family F. The equation corresponding to S in the
formula ϕ is ⊕

u∈S

xu = 1. We split the left-hand side into two parts to express this equation

as ⊕
u∈X∩S

xu

A

⊕ ⊕
u∈S\X

xu

B

= 1. Note that σ1 and σ2 overlap on all variables in the first part,

i.e., A. So, A evaluates to the same truth value under both assignments. Thus, as both σ1
and σ2 satisfy this equation, they must assign the same truth value to the second part, i.e.,
B, as well. Also, σ1 and σ2 differ on all variables in B. So, for its truth value to be same
under both assignments, B must have an even number of variables. That is, |S \ X| must be
even. Now, as |S| is odd and |S \ X| is even, we infer that |X ∩ S| = |S|− |S \ X| is odd.

Next, we argue that X has odd-sized intersection with all even-sized sets of the family F.
Consider any even-sized set S in the family F. Amongst the k+ 1 equations corresponding to
S in the formula ϕ, consider the last equation, i.e., ⊕

u∈S

xu ⊕ yS = 0. We split the left-hand

side into two parts to express this equation as ⊕
u∈X∩S

xu

A

⊕ ⊕
u∈S\X

xu ⊕ yS

B

= 0. Note that σ1

and σ2 overlap on all variables in the first part, i.e., A. So, A evaluates to the same truth
value under both assignments. Thus, as both σ1 and σ2 satisfy this equation, they must
assign the same truth value to the second part, i.e., B. Also, σ1 and σ2 differ on all variables
in B. So, for its truth value to be same under both assignments, B must have an even number
of variables. That is, |S \ X|+ 1 must be even. Now, as |S| is even and |S \ X| is odd, we infer
that |X∩S| = |S|− |S \X| is odd. Hence, (U,F,k) is a YES instance of Exact Odd Set. ◀

4 2-CNF formulas

In this section, we explore the classical and parameterized complexity of Max Differ 2-SAT
and Exact Differ 2-SAT. We first show that these problems are polynomial time solvable
on (2, 2)-CNF formulas by constructing a graph corresponding to the instance and observing
some structural properties of that graph. Then we show that both of these problems are
W[1]-hard with respect to the parameter d. We begin by proving the following theorem.

▶ Theorem 8. Max Differ 2-SAT is polynomial-time solvable on (2, 2)-CNF formulas.

We use similar ideas in the proof of Theorem 8 to show that Exact Differ 2-SAT
can also be solved in polynomial time on (2, 2)-CNF formulas. This requires more careful
analysis of the graph constructed and a reduction to Subset Sum problem, as we want the
individual contributions, in terms of number of variables where the assignments differ, to
sum up to an exact value. We show the result in the following theorem.

▶ Theorem 9. Exact Differ 2-SAT is polynomial-time solvable on (2, 2)-CNF formulas.

Due to lack of space, the proofs of these results are deferred to a full version of the paper.
Looking at the parameterized complexity of Exact Differ 2-SAT and Max Differ 2-SAT
with respect to the parameter d, we establish the following hardness result.

▶ Theorem 10. Exact/Max Differ 2-SAT is W[1]-hard in the parameter d.

We describe a reduction from Independent Set. Consider an instance (G,k) of Independ-
ent Set. We construct a 2-CNF formula ϕ as follows: For every vertex v ∈ V(G), introduce
two variables xv and yv; we refer to them as x-variable and y-variable respectively. For every
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edge uv ∈ E(G), i) we add a clause that consists of the x-variables corresponding to the
vertices u and v, i.e., xu ∨ xv, and ii) we add a clause that consists of the y-variables corres-
ponding to the vertices u and v, i.e., yu ∨ yv. For every pair of vertices u, v ∈ V(G), we add
a clause that consists of the x-variable corresponding to u and the y-variable corresponding
to v, i.e., xu ∨ yv. We set d = 2k. We prove that (G,k) is a YES instance of Independent
Set if and only if (ϕ,d) is a YES instance of Exact Differ 2-SAT.

At a high level, we argue this equivalence as follows: In the forward direction, we show that
the two desired satisfying assignments are i) the assignment that assigns 0 to all x-variables
corresponding to the vertices of the given independent set, and 1 to the remaining variables,
and ii) the assignment that assigns 0 to all y-variables corresponding to the vertices of the
given independent set, and 1 to the remaining variables. In the reverse direction, we partition
the set of variables on which the two given assignments differ into two parts: i) one part
consists of those variables that are set to 1 by the first assignment, and 0 by the second
assignment, and ii) the other part consists of those variables that are set to 0 by the first
assignment, and 1 by the second assignment. Then, we show that at least one of these two
parts has the desired size, and it is not a mix of x-variables and y-variables. That is, either
it has only x-variables, or it has only y-variables. Finally, we show that the vertices that
correspond to the variables in this part form the desired independent set. A detailed proof
of equivalence is deferred to a full version of the paper.

5 Hitting formulas

In this section, we consider hitting formulas, and we show that both its diverse variants,
i.e., Exact Differ Hitting-SAT and Max Differ Hitting-SAT, are polynomial-time
solvable.

▶ Theorem 11. Exact Differ Hitting-SAT admits a polynomial-time algorithm.

Proof. Consider an instance (ϕ,d) of Exact Differ Hitting-SAT, where ϕ is a hitting
formula with m clauses (say C1, . . . ,Cm) on n variables. For every 1 ⩽ i ⩽ m, let vars(Ci)

denote the set of all variables that appear in the clause Ci. For every 1 ⩽ i, j ⩽ m, let λ(i, j)
denote the number of variables x ∈ vars(Ci) ∩ vars(Cj) such that x appears as a positive
literal in one clause, and as a negative literal in the other clause. Note that∣∣{(σ1,σ2) | σ1 and σ2 differ on d variables, and both σ1 and σ2 satisfy ϕ

}∣∣
=

∣∣{(σ1,σ2) | σ1 and σ2 differ on d variables
}∣∣

−
∣∣{(σ1,σ2) | σ1 and σ2 differ on d variables, and σ1 falsifies ϕ

}∣∣
−
∣∣{(σ1,σ2) | σ1 and σ2 differ on d variables, and σ2 falsifies ϕ

}∣∣
+
∣∣{(σ1,σ2) | σ1 and σ2 differ on d variables, and both σ1 and σ2 falsify ϕ

}∣∣
= 2n ·

(
n

d

)
−
∣∣{σ1 | σ1 falsifies ϕ

}∣∣ · (n
d

)
−
∣∣{σ2 | σ2 falsifies ϕ

}∣∣ · (n
d

)
+

m∑
i=1

m∑
j=1

∣∣{(σ1,σ2) | σ1 and σ2 differ on d variables, σ1 falsifies Ci, and σ2 falsifies Cj

}∣∣︸ ︷︷ ︸
α(i,j)

=
(

2n − 2 ·
m∑
i=1

2n−|vars(Ci)|
)
·
(
n

d

)
+

m∑
i=1

m∑
j=1

α(i, j)

Consider any 1 ⩽ i, j ⩽ m. Let us find an expression for α(i, j). That is, let us count the
number of pairs (σ1,σ2) of assignments of ϕ such that σ1 and σ2 differ on d variables, σ1
falsifies Ci, and σ2 falsifies Cj. Since σ1 falsifies Ci, it must set every variable in vars(Ci)
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such that its corresponding literal in the clause Ci is falsified. That is, for every x ∈ vars(Ci),
if x appears as a positive literal in Ci, then σ1 must set x to 0; otherwise, it must set x

to 1. Similarly, since σ2 falsifies Cj, it must set every variable in vars(Cj) such that its
corresponding literal in the clause Cj is falsified.

There is just one choice for the truth values assigned to the variables in vars(Ci)∩vars(Cj)

by σ1 and σ2. Also, note that for every variable x in vars(Ci) ∩ vars(Cj), if x appears as a
positive literal in one clause and as a negative literal in the other clause, then σ1 and σ2
differ on x; otherwise, they overlap on x. So, overall, σ1 and σ2 differ on λ(i, j) variables
amongst the variables in vars(Ci) ∩ vars(Cj).

We go over all possible choices for the numbers of variables on which σ1 and σ2 differ
(say d1,d2 and d3 many variables) amongst the variables in vars(Ci) \ vars(Cj), vars(Cj) \

vars(Ci) and vars(ϕ) \ (vars(Ci)∪ vars(Cj)) respectively, where vars(ϕ) denotes the set of
all variables of ϕ. As σ1 and σ2 differ on d variables in total, we have λ(i, j)+d1+d2+d3 = d.

There is just one choice for the truth values assigned to the variables in vars(Ci)\vars(Cj)

by σ1, and there are
(
|vars(Ci)\vars(Cj)|

d1

)
choices for the truth values assigned to the variables

in vars(Ci) \ vars(Cj) by σ2. Similarly, there is just one choice for the truth values assigned
to the variables in vars(Cj) \ vars(Ci) by σ2, and there are

(
|vars(Cj)\vars(Ci)|

d2

)
choices for

the truth values assigned to the variables in vars(Cj) \ vars(Ci) by σ1.
There are

(
n−|vars(Ci)∪vars(Cj)|

d3

)
choices for the d3 variables on which σ1 and σ2 differ

amongst the variables in vars(ϕ) \ (vars(Ci)∪ vars(Cj)). For each variable x amongst these
d3 variables, there are two ways in which σ1 and σ2 can assign truth values to x. That
is, either i) σ1 sets x to 0 and σ2 sets x to 1, or ii) σ1 sets x to 1 and σ2 sets x to 0. For
each variable x amongst the remaining n − |vars(Ci) ∪ vars(Cj)| − d3 variables, there are
again two ways in which σ1 and σ2 can assign truth values to x. That is, either i) both
σ1 and σ2 set x to 1, or ii) both σ1 and σ2 set x to 0. So, overall, the number of ways in
which σ1 and σ2 can assign truth values to the variables in vars(ϕ) \ (vars(Ci) ∪ vars(Cj))

is
(
n−|vars(Ci)∪vars(Cj)|

d3

)
· 2d3 · 2n−|vars(Ci)∪vars(Cj)|−d3 .

Thus, we get the following expression for α(i, j):

2n−|vars(Ci)∪vars(Cj)| ·
∑

d1,d2,d3⩾0:
d1+d2+d3=d−λ(i,j)

(
|vars(Ci)\vars(Cj)|

d1

)(
|vars(Cj)\vars(Ci)|

d2

)(
n−|vars(Ci)∪vars(Cj)|

d3

)

Plugging this into the previously obtained equality, we get an expression to count
the number of pairs (σ1,σ2) of satisfying assignments of ϕ that differ on d variables. This
expression can be evaluated in polynomial-time. If the count so obtained is non-zero, we return
YES; otherwise, we return NO. This proves Theorem 11. Note that (ϕ,d) is a YES instance
of Max Differ Hitting-SAT if and only if at least one of (ϕ,d), (ϕ,d+ 1), . . . , (ϕ,n) is a
YES instance of Exact Differ Hitting-SAT. Thus, as Exact Differ Hitting-SAT is
polynomial-time solvable, so is Max Differ Hitting-SAT. ◀

6 Concluding remarks

In this work, we undertook a complexity-theoretic study of the problem of finding a diverse
pair of satisfying assignments of a given Boolean formula, when restricted to affine, 2-CNF
and hitting formulas. This problem can also be studied for i) other classes of formulas on
which SAT is polynomial-time solvable, ii) more than two solutions, and iii) other notions of
distance between assignments. An immediate open problem is to resolve the parameterized
complexities of Exact Differ 2-SAT and Max Differ 2-SAT in the parameter n− d.
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