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Abstract
To prove #P-hardness, a single-call reduction from #2SAT needs a clause gadget to have exactly
the same number of solutions for all satisfying assignments – no matter how many and which literals
satisfy the clause. In this paper, we relax this condition, making it easier to find #P-hardness
reductions. Specifically, we introduce a framework called Generalized #SAT where each clause
contributes a term to the total count of solutions based on a given function of the literals. For two-
variable clauses (a natural generalization of #2SAT), we prove a dichotomy theorem characterizing
when Generalized #SAT is in FP versus #P-complete.

Equipped with these tools, we analyze the complexity of counting solutions to Constraint Graph
Satisfiability (CGS), a framework previously used to prove NP-hardness (and PSPACE-hardness)
of many puzzles and games. We prove CGS ASP-hard, meaning that there is a parsimonious
reduction (with algorithmic bijection on solutions) from every NP search problem, which implies
#P-completeness. Then we analyze CGS restricted to various subsets of features (vertex and edge
types), and prove most of them either easy (in FP) or hard (#P-complete). Most of our results also
apply to planar constraint graphs. CGS is thus a second powerful framework for proving problems
#P-hard, with reductions requiring very few gadgets.
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51:2 Easier Ways to Prove Counting Hard: A Dichotomy for Generalized #SAT

1 Introduction

Counting solutions to NP search problems (i.e., problems in the complexity class #P) is an
algorithmic analog of the field of combinatorics. Counting (#P) is also provably harder than
deciding (NP): by a consequence of Toda’s Theorem [10], any problem in the polynomial
hierarchy has a deterministic polynomial-time reduction to a single counting problem in #P.
Already from the foundational work by Valiant in the late 1970s [13, 14], we have problems
where decision is in P yet counting is #P-hard. One notable example is 2SAT, where finding
one solution is easy, but counting the solutions (#2SAT) is #P-hard.

How do we prove a problem #P-hard? Ideally, we would find a parsimonious (single-call)
reduction that preserves the number of solutions (and provides a polynomial-time bijection
on the solutions). In addition to preserving #P-hardness, parsimonious reductions preserve
a stronger property called ASP-hardness [15], meaning that all NP search problems have a
parsimonious reduction to the problem. In addition to #P-hardness, ASP-hardness implies
NP-hardness of the decision problem as well as the 𝑘-ASP problem: given 𝑘 solutions to an
instance, find another solution. The weaker notion of 𝒄-monious reduction increases the
number of solutions by exactly a factor of 𝑐. Such a reduction implies both NP-hardness and
#P-hardness (but not ASP-hardness), as zero-solution instances are preserved and we can
recover the answer to our initial counting problem by dividing by 𝑐.

But even a 𝑐-monious reduction from #2SAT (say) can be difficult, compared to a
standard NP-hardness reduction. A 𝑐-monious reduction built from standard variable and
clause gadgets must have exactly the same number of solutions to every gadget; then 𝑐 is the
product of these counts. In particular, a clause gadget must have exactly the same number
of solutions no matter how it is satisfied – no matter whether it is satisfied by the first clause,
the second clause, or both clauses. This property often does not come without substantial
effort. For example, in Lichtenstein’s reductions from (planar) 3SAT to Hamiltonicity and
vertex cover [6], the number of solutions to each clause is equal to the number of true
literals that satisfy the clause. In this paper, we prove that such a reduction still establishes
#P-hardness.

1.1 Our Results: Generalized #SAT
Specifically, we define a framework called Generalized #SAT, where a clause can contribute
a count of not just 0 or 1. A clause type is defined by a function from literal truth values to
nonnegative integers, indicating the number of ways the clause is satisfied by that assignment.
The number of solutions to the formula is then defined to be the product of the clause
function outputs, summed over all possible assignments. In particular, if a clause function
outputs zero, then that assignment still does not contribute to the number of solutions
(similar to #SAT).

In Section 3, we present a complete complexity dichotomy of Generalized #SAT for
the case of 2 variables per clause, precisely characterizing the computational hardness of
every clause type as either in FP or #P-hard. In particular, Generalized #SAT is #P-
complete for the function 𝑓 (𝑥, 𝑦) = 𝑥 + 𝑦 counting the number of satisfying literals. Thus
Lichtenstein’s reductions [6], adapted to reduce from 2SAT instead of 3SAT, prove #P-
hardness of Hamiltonicity and vertex cover. While these results have been proved in other
ways since [9, 7],2 it is comforting to know that existing NP-hardness reductions can be

2 The first proof, by Valiant [12], seems to have never been published.
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more easily extended to #P-hardness, potentially saving time in the future. In some cases,
a 𝑐-monious clause gadget may be very difficult or even impossible to construct, while
Generalized #SAT provides the flexibility necessary for a reduction from #2SAT.

1.2 Our Results: Constraint Graph Satisfiability
We show the applicability of our Generalized #SAT framework by using it to solve another
open problem: analyzing the complexity of counting solutions to the Constraint Graph
Satisfiability (CGS) problem [3]. A constraint graph is a graph, usually 3-regular, together
with edge weights of 1 and 2, also referred to as edge colors red and blue respectively. Given
such a constraint graph, the goal in CGS is to find an orientation of the graph (direction
of the edges) such that every vertex has a total incoming weight of at least 2. Constraint
graphs are the foundation of Nondeterministic Constraint Logic (the reconfiguration version
of CGS according to edge reversals), which is a popular framework for proving puzzles and
games PSPACE-hard [3]. CGS was shown NP-complete over 15 years ago [3, Section 5.1.3],
but the complexity of its counting problem remained unsolved.

In Section 4, we prove that CGS is ASP-complete in general, implying #P-completeness
of #CGS. Then we analyze subproblems of #CGS, where the graph is restricted to only
certain vertex and edge types, providing an almost-complete complexity characterization for
these various subproblems, as summarized in Table 1. Specifically, there are three interesting
degree-3 vertices in CGS:
1. maj (majority) vertices have three incident red edges (at least two of which must point

in to reach an incoming weight of 2);
2. or vertices have three incident blue edges (at least one of which must point in); and
3. and vertices have two incident red edges and one incident blue edge (where the blue edge

can point out only if both red edges point in).
The original NP-completeness proof of CGS [3, Theorem 5.4] uses just and and or vertices
(while other Constraint Logic proofs in [3] use maj vertices, under the name “choice”). In
addition to restricting to an arbitrary subset of these vertex types, we can consider two types
of edges. In matching edge weights, each edge is uniformly red or blue, so both endpoints
view the edge as having the same weight. In arbitrary edge weights, we allow an edge to
have red/weight 1 at one endpoint and blue/weight 2 at the other endpoint. In [3], the latter
type of edge is called a “red-blue conversion”. While red-blue conversion can be simulated
with matching edge weights [3, Figure 2.4] this simulation is not parsimonious, so for our
analysis the problems differ.

▶ Conjecture 1. There exists no 𝑐-monious red-blue conversion gadget unless #P = FP.

Fortunately, most reductions from Constraint Logic or CGS do not care whether edge
weights are matching. Only vertex gadgets depend on their incident edge colors, while there
is only one distinct edge gadget independent of color. Thus, arbitrary edge weights are of
primary interest, and in this case, we provide a complete characterization of complexity. We
start by showing that CGS with only and vertices can be reduced from Generalized #SAT
to show #P-hardness, while the decision problem is easy. If we have only maj vertices, then
even counting is easy. (We leave open the case of only or vertices.) Next, we show that
when allowing all three vertex types, we can design a parsimonious reduction from Exactly
1-in-3 SAT, proving ASP- and #P-completeness. By a slight modification, the reduction
can be made 𝑐-monious with only ands and ors, achieving #P-completeness in this case.
Finally, for all pairs of vertex types, we show that counting is easy.

ISAAC 2024
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Table 1 Known and new results for Constraint Graph Satisfiability (CGS). The first three
columns indicate allowed gadgets (✓). The fourth column specifies whether edge weights must be
matching at either endpoint, or whether they can be arbitrary on either end (equivalently, allowing
red-blue conversions). ASP-c(omplete) means that the reduction is parsimonious, which implies
#P-c(ompleteness) as well. All hardness results except Theorem 19 can be encoded as planar graphs.

and or maj Edge Weights CGS #CGS

✓ ✓ ✓ Arbitrary NP-c [3] ASP-c (Thm. 15)
✓ ✓ ✓ Matching NP-c [3] (open)
✓ ✓ × Arbitrary NP-c [3] #P-c (Thm. 11)
✓ ✓ × Matching NP-c [3] (open)
× ✓ ✓ Arbitrary P (Thm. 17) #P-c (Thm. 19)
× ✓ ✓ Matching P (Thm. 17) (open)
✓ × ✓ Arbitrary P (Thm. 18) #P-c (Thm. 11)
✓ × ✓ Matching P (Thm. 18) FP (Thm. 21)
✓ × × Arbitrary P (Thm. 18) #P-c (Thm. 11)
✓ × × Matching P (Thm. 18) FP (Thm. 12)
× ✓ × (Matching) P (Thm. 17) #P-c [1]
× × ✓ (Matching) P (Thm. 17) FP (Thm. 13)

Most of our hardness results hold when restricted to planar constraint graphs, making
them particularly amenable for reductions to games and puzzles. The only exception is the
case of or and maj vertices with arbitrary edge weights, for which we have been unable to
build a crossover gadget.

2 Preliminaries

2.1 Generalized #SAT
We define Generalized #SAT as follows. Each version of Generalized #SAT is specified
by a clause type, a nonnegative integer function 𝑓 : {0, 1}𝑘 → Z≥0, which describes the
number of ways a given assignment of 𝑘 literals satisfies the clause. We allow negations of
variables, denoted with a bar (like 𝑥), to be used freely in clauses. An input to Generalized
#SAT consists of a number 𝑛, the number of variables (denoted 𝑥 = (𝑥1, . . . , 𝑥𝑛)), and a set
of 𝑚 clauses 𝐶 = {𝜙1, . . . , 𝜙𝑚}. Each 𝜙𝑖 is a 𝑘-tuple of literals, like (𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘 ). Let 𝑥𝜙

denote the restriction of a variable assignment 𝑥 to the variables in a clause 𝜙. The goal is
to compute the number of ways to satisfy all clauses:∑︁

(𝑥1 ,...,𝑥𝑛 ) ∈{0,1}𝑛

∏
𝜙∈𝐶

𝑓 (𝑥𝜙). (1)

Previous work has proved that #2SAT [13] and #Max Cut [8] are #P-complete.

2.2 Constraint Graph Satisfiability
A constraint graph node (𝐸,𝑊, 𝑐) consists of a set 𝐸 of incident edges, an assignment
𝑊 of nonnegative weights to the edges, and a lower bound 𝑐 on the total incoming weight.
Usually we restrict edge weights to either 1, which we call red, or 2, which we call blue. A
constraint graph 𝐺 is a set of constraint graph nodes and edges, where each edge appears
in exactly two nodes. A configuration of 𝐺 is an assignment of directions to the edges such
that, for each node (𝐸,𝑊, 𝑐), the total weight of incoming edges among 𝐸 is at least 𝑐.
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AND: 

OR: 

MAJ :

AND:

OR:

RED-BLUE conversion :

RED-RED crossover (gadget, see Figure 5 ):

Figure 1 Overview of the Constraint Graph Satisfiability node types and, or, maj, and red-blue
conversion, as well as their allowed edge orientations. Thereby the total in-weight has to be at
least 2 (except for red-blue conversion), achievable by a single blue in-edge (weight 2) or two red
in-edges (two times weight 1). The crossover gadget internally uses and, or, maj, and red-blue
conversion, as depicted in Figure 5.

▶ Problem 1 (Constraint Graph Satisfiability (CGS)). Given a constraint graph 𝐺 does there
exists a legal configuration?

▶ Problem 2 (Counting Constraint Graph Satisfiability (#CGS)). Given a constraint graph 𝐺,
how many legal configurations of 𝐺 exist?

The definitions above are more general than the standard definitions [3]. In particular,
they allow the notion of edge weight to be local to a vertex, instead of being specified at the
graph level. If an edge can have different weights at each end, we call the problem arbitrary
edge weights, while if an edge is required to have the same weight at both ends, we call
the problem matching edge weights. Equivalently, we can think of arbitrary edge weights
as equivalently allowing for a red-blue conversion gadget – an edge that is red on one end
and blue on the other.

In the standard formulation of constraint graph satisfiability, three types of degree-3
vertices: and, or, and maj. Figure 1 gives an overview of these types and all allowed edge
orientations. An and vertex has two red edges and one blue edge, so it is satisfied only when
both red edges are in-edges or the blue edge is an in-edge. Therefore, it mimics a boolean
and, where if both red edges are inward, then the vertex is “true” (the blue edge can be
outward) and otherwise, it is “false” (the blue edge must be inward). An or vertex has three
blue edges, so it is satisfied as along at least one edge is inward, similar to a boolean or. A
maj vertex has only red edges, so it is only satisfied if at least two (the majority) of its three
edges are inward.

CGS is also a special case of Graph Orientation [4] where the valid configurations are
shown in Figure 1.

In many cases, we would like the constraint graph to be planar. A useful tool for this is
a crossing vertex allows us to build non-planar graph out of planar graphs. If two edges
cross, we put a crossing vertex at their intersection point. This vertex mimics the standard
crossover gadget used in graph reductions.

3 Generalized #SAT Dichotomy

In this section we outline our size-2 dichotomy results. We begin with some definitions that
help describe the easy cases. Throughout this section, we let 𝑓 : {0, 1}2 → Z≥0 be a 2-variable
clause type.

ISAAC 2024



51:6 Easier Ways to Prove Counting Hard: A Dichotomy for Generalized #SAT

▶ Definition 2. 𝑓 is factorable if there exist functions 𝑔 and ℎ such that 𝑓 (𝑥, 𝑦) = 𝑔(𝑥)ℎ(𝑦)
for all (𝑥, 𝑦) ∈ {0, 1}2.

▶ Definition 3. 𝑓 is 2-color if either 𝑓 (0, 0) = 𝑓 (1, 1) = 0 or 𝑓 (0, 1) = 𝑓 (1, 0) = 0.

Our main theorem of this section is the following dichotomy result.

▶ Theorem 4 (Dichotomy Theorem). Generalized #SAT with a single 2-variable clause type
𝑓 is in FP if 𝑓 is either factorable or 2-color. Otherwise, it is #P-complete.

3.1 Easy Cases
First, we describe polynomial-time algorithms for the factorable and 2-color cases.

▶ Lemma 5. If 𝑓 is factorable, Generalized #SAT can be solved in polynomial time.

Proof. Let 𝑓 (𝑥, 𝑦) = 𝑔(𝑥)ℎ(𝑦). The product
∏

𝜙∈𝐶 𝑓 (𝑥𝜙) can be expanded as a prod-
uct of 𝑔s and ℎs,

∏
𝜙∈𝐶 𝑓 (𝑥𝜙) =

∏𝑛
𝑖=1 𝑔(𝑥𝑖)𝑎𝑖𝑔(𝑥𝑖)𝑏𝑖 ℎ(𝑥𝑖)𝑐𝑖 ℎ(𝑥𝑖)𝑑𝑖 , for some exponents

𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖. The sum of this expression over all (𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 is equal to∏𝑛
𝑖=1

∑
𝑥𝑖∈{0,1} 𝑔(𝑥𝑖)𝑎𝑖𝑔(𝑥𝑖)𝑏𝑖 ℎ(𝑥𝑖)𝑐𝑖 ℎ(𝑥𝑖)𝑑𝑖 , which can be evaluated in polynomial time. ◀

▶ Lemma 6. If 𝑓 is 2-color, Generalized #SAT can be solved in polynomial time.

Proof. Each clause 𝜙 = 𝑓 (𝑥, 𝑦) ∈ 𝐶 forces 𝑥 and 𝑦 to be either equal to each or not
equal to each other. Consider a graph on 𝑛 nodes one for each variable, and add an edge
between 𝑥 and 𝑦 for all 𝜙 ∈ 𝐶. Within each connected component of this graph, fixing an
assignment to any one variable forces all the others. There are at most 2 ways to satisfy each
connected component, and the answer is the product of the answers for each component
independently. ◀

3.2 Hardness
Next, we prove that all remaining cases are #P-complete, we will show that all hard clause
types reduce to one of the two following cases.

▶ Definition 7 (2SAT-like). 𝑓 is 2SAT-like if 𝑓 (0, 0) = 0, 𝑓 (0, 1) = 𝑓 (1, 0) = 𝑎 > 0,
𝑓 (1, 1) = 𝑏 > 0.

▶ Definition 8 (Max-Cut-like). 𝑓 is Max-Cut-like if 𝑓 (0, 0) = 𝑓 (1, 1) = 𝑎 > 0, 𝑓 (0, 1) =
𝑓 (1, 0) = 𝑏 > 0, 𝑎 ≠ 𝑏

▶ Lemma 9. If 𝑓 is 2SAT-like, then Generalized #SAT is #P-complete.

Proof. We reduce from #2SAT. For each clause 𝜑 = 𝑥∨𝑦 in the #2SAT instance (where 𝑥 and
𝑦 are literals), add a unique new variable 𝑧 and three clauses 𝜙1, 𝜙2, 𝜙3 = 𝑓 (𝑥, 𝑦), 𝑓 (𝑥, 𝑧), 𝑓 (𝑦, 𝑧)
to the generalized #SAT formula. The number of ways to satisfy the clause is 0 if 𝑥 ∨ 𝑦 is
false and 𝑎2𝑏 otherwise:

If (𝑥, 𝑦) = (0, 0), 𝑓 (0, 0) = 0, so 𝑓 (𝑥, 𝑦) 𝑓 (𝑥, 𝑧) 𝑓 (𝑦, 𝑧) = 0.
If (𝑥, 𝑦) = (0, 1) or (1, 0), then

∑
𝑧∈{0,1} 𝑓 (𝑥, 𝑦) 𝑓 (𝑥, 𝑧) 𝑓 (𝑦, 𝑧) = 𝑓 (𝑥, 𝑦)∑𝑧∈{0,1} 𝑓 (0, 𝑧) 𝑓 (1, 𝑧)

= 𝑎2𝑏.
If (𝑥, 𝑦) = (1, 1), then

∑
𝑧∈{0,1} 𝑓 (𝑥, 𝑦) 𝑓 (𝑥, 𝑧) 𝑓 (𝑦, 𝑧) = 𝑓 (𝑥, 𝑦)∑𝑧∈{0,1} 𝑓 (0, 𝑧) 𝑓 (0, 𝑧) = 𝑎2𝑏.

Therefore, this reduction is (𝑎2𝑏)𝑚-monious, where there are 𝑚 clauses in the #2SAT instance,
so Generalized #SAT is #P-complete. ◀
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▶ Lemma 10 (Max-Cut-like). If 𝑓 is Max-Cut-like, Then Generalized #SAT is #P-complete.

Proof. We reduce from #Max Cut. Let the input of a #Max Cut instance be a graph
𝐺 = (𝑉, 𝐸), and calculate the number 𝑀 := 1 + ⌈logmax(𝑎/𝑏,𝑏/𝑎) (2 |𝑉 | )⌉ ∈ 𝑂 ( |𝑉 |). Associate a
boolean variable to each vertex in 𝑉 . For each edge (𝑥, 𝑦) ∈ 𝐸, add 𝑀 clauses of the form
𝑓 (𝑥, 𝑦) 𝑓 (𝑥, 𝑦). The answer to this Generalized #SAT instance is

𝑁 :=
∑︁

𝑆⊔𝑇=𝑉
𝑏𝑀cut(𝑆,𝑇 )𝑎𝑀 ( |𝐸 |−cut(𝑆,𝑇 ) ) =

|𝐸 |∑︁
𝑐=0

𝑘𝑐𝑏
𝑀𝑐𝑎𝑀 ( |𝐸 |−𝑐) ,

where cut(𝑆, 𝑇) := #{(𝑢, 𝑣) ∈ 𝐸 | 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇} and 𝑘𝑐 := #{(𝑆, 𝑇) | 𝑆 ⊔ 𝑇 = 𝑉, cut(𝑆, 𝑇) = 𝑐}.
Note that 0 ≤ 𝑘𝑐 ≤ 2 |𝑉 | and the ratios of adjacent coefficients 𝑏𝑀𝑐𝑎𝑀 ( |𝐸 |−𝑐)

𝑏𝑀 (𝑐+1) 𝑎𝑀 ( |𝐸 |− (𝑐+1) ) =
(
𝑎
𝑏

)𝑀 differ
by more than 2 |𝑉 | . Therefore, it is possible to exactly extract all the numbers {𝑘𝑐}0≤𝑐≤ |𝐸 |
from 𝑁, and the answer to #Max Cut is 𝑘max(𝑐 : 𝑘𝑐>0) . ◀

3.3 Main Dichotomy Result
We now present the complete proof of our size-2 dichotomy, based on our four clause types
each defined in relevant theorems, factorable, 2-colorable for easy cases, and #2SAT-like and
Max-Cut-like for the hard cases.

Proof of Theorem 4. If 𝑓 is factorable or 2-colorable, Generalized #SAT is in FP by Lemma
5 or Lemma 6. Suppose 𝑓 is not one of these cases. Then at most one of the values 𝑓 (𝑥, 𝑦)
for (𝑥, 𝑦) ∈ {0, 1}2 can be 0.

If one of these values is 0, we reduce from Lemma 9. By negating one or both arguments
of 𝑓 , without loss of generality we let 𝑓 (0, 0) = 0 and 𝑓 (0, 1), 𝑓 (1, 0), 𝑓 (1, 1) > 0. Replace
each 2SAT-like clause 𝑓2 (𝑥, 𝑦) with two clauses, 𝑓 (𝑥, 𝑦) 𝑓 (𝑦, 𝑥).

If none of these values is 0, we reduce from Lemma 10. Replace each Max-Cut-like clause
with two clauses, 𝑓 (𝑥, 𝑦) 𝑓 (𝑥, 𝑦). ◀

4 Counting Constraint Graph Configurations (#CGS)

Having established the generalized #SAT dichotomy, we now use these results as a tool to
prove hardness of #CGS. Specifically, we establish the many results of Table 1, which we hope
will enable further use of CGS for many puzzles and games. First, we establish easy cases with
single vertex types and also prove that this problem is already #P-complete on graphs using
and nodes with general edge weights. Then, in Section 4.2 we prove ASP-hardness when
allowed all three vertex types – and, or, and maj– and general edge weights. Finally we
restrict the set of allowed vertex types, and present bounds and complexity characterizations
when counting solutions is hard.

4.1 Constraint Graphs with a Single Vertex Type
We show that #CGS on graphs with just and vertices in #P-complete with general edge
weights. But if we enforce matching edge weights, then #CGS is in FP. We also show that
for just maj vertices, #CGS is in FP. (Because maj vertices have just one edge type, the
notion of matching or general edge weights is irrelevant.)

To show that and vertices with general edge weights is #P-complete, we reduce from
#SAT. In the following, we design a (parsimonious) variable gadget for every variable 𝑥, as
depicted in Figure 2. The gadget uses 𝑂 (𝑘) nodes where 𝑘 is the number of times 𝑥 appears,
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Figure 2 Variable gadget (left) showing an equal number of positive and negative variable
occurrences. Using red-blue conversion vertex types, we can construct an odd number of out-going
edges (right). Note that at most one red-blue conversion is needed (in case of different parity of 𝑥
and ¬𝑥 occurrences), as 𝑥’s and ¬𝑥’s can be linked by a red edge (depicted above).

thus each vertex functions as a literal, with the edge orientation propagating the value. Every
variable occurrence is thereby connected to an and node such that if the edge is directed
towards 𝑥 (¬𝑥) the literal 𝑥 (¬𝑥) evaluates to true. By construction, the variable gadget has
only two legal edge orientations. One of which is shown in Figure 2 (𝑥 is true), the other
configuration is its complement, where all edges are inverted (𝑥 is false).

This gadget and Section 3 are sufficient ingredients to establish the following tight result.

▶ Theorem 11 (#P-Hardness). Counting with just and is #P-complete if we do not enforce
matching edge weights.

Proof. We reduce from 2SAT-like Generalized #SAT with clause type 𝑓 (𝑥, 𝑦) = 𝑥 + 𝑦 (see
Lemma 9) and construct a #CGS instance as follows. We reuse the variable gadget of
Figure 2. However, the clause gadget for a binary clause 𝑐 = (ℓ ∨ ℓ′) (ℓ, ℓ′ are two distinct
literals) is simply a red edge connecting literal ℓ to literal ℓ′. Indeed, by construction, the
clause gadget requires that the edge is directed either to ℓ (i.e. ℓ is true) or to ℓ′ (i.e. ℓ′ is
true). Consequently, if both ℓ and ℓ′ are true, clause 𝑐 is considered with weight 2, as we can
always direct the edge from ℓ to ℓ′ or from ℓ′ to ℓ. This is as required by Equation (1), which
coincides with the number of CGS solutions of the constructed instance and establishes the
result. ◀

This result immediately works for planar graphs as well, as in Lemma 9 we can alternatively
reduce from planar (monotone) #2SAT, which is #P-complete [11]. This result is tight, as
the counting problem #CGS is easy for just and nodes if we enforce matching edge weights.

   

Figure 3 and vertices must pair along blue edges if matching edge weights are enforced.

▶ Theorem 12. #CGS with just and with matching edge weights is in FP.

Proof. Note that since matching edge weights is enforced, each and vertex must pair off
with exactly one other and vertex. They connect to each other via their blue input and form
a “super-vertex” with four red inputs/outputs (Figure 3). For any such pair of and vertices,
𝐴 and 𝐵, clearly, their shared blue edge can only be directed into one of them. Without
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loss of generality, assume it is directed into 𝐴. Then, for 𝐵 to be satisfied, the red edges
of 𝐵 must point into itself. Note that this implies each degree 4 super-vertex must have
in-degree at least 2. Our assumption of the blue edge pointing into 𝐴 fixes the direction of
the red edges of 𝐵. It also forces that the red edges of 𝐴 must point outwards. Assume one
of 𝐴’s red edges points inwards; this super vertex has in-degree 3. This implies there must be
some other corresponding super vertex with an in-degree of exactly 1, which is unsatisfied.
Therefore, for any pair of and vertices, if we set the direction of their shared blue edge, the
direction of their red edges is forced, and those edges then force the direction of the edges
of other pairs of ands, and so forth. Therefore, a connected graph of and vertices with
matching edge weights has either no solutions or two solutions (we can reverse the edges of
one solution to get a second). Hence, for a graph of and vertices with matching edge weights
with 𝑘 connected components, the number of solutions is either 0 or 2𝑘 . ◀

Additionally, #CGS on a graph of just maj vertices is also in P, by a relatively simple
proof that such a graph is never satisfied.

▶ Theorem 13. #CGS with just maj is in FP.

Proof. maj vertices require an in-degree of 2 to be satisfied. However, a graph of only maj
vertices is 3-regular. Therefore, the average in-degree is exactly 1.5 so at least one vertex
must have in-degree less than two. Therefore, there are always 0 solutions. ◀

For the case of only ORs, an equivalent version of #3SAT was shown to be #P-complete [1].
We can view each OR vertex as a 3CNF clause and each edge as a variable that appears
once with each sign, i.e., for each variable 𝑥, there exists exactly one 𝑥 literal and exactly
one 𝑥 literal in the formula.3

▶ Theorem 14 ([1]). #CGS with just or is #P-complete even when restricted to planar
graphs.

4.2 Parsimonious Reduction from #1-in-3SAT to #CGS
First, we discuss a parsimonious reduction that uses and, or, maj, and red-blue conversion
vertex types. This reduction then yields ASP-hardness for CGS, which makes this formalism
a perfect tool to prove that for puzzles and games, finding a second solution is still hard. To
this end, we directly reuse the variable gadget of Figure 2. Figure 4 (left) depicts the clause
gadget for the clause 𝑥 ∨ ¬𝑦 ∨ 𝑧, which works via the three 1-in-3SAT cases. Both gadgets
are then used in the reduction below.

▶ Theorem 15 (ASP-hardness). The another-solution problem for CGS is ASP-hard, even if
restricted to the vertex types and, or, and maj.

Proof. The reduction consisting of variables gadgets (Figure 2) and clause gadgets (Figure 4)
is correct. By construction, the variable gadget for a variable 𝑥 in Figure 2, which is attached
at the bottom, prevents that there are both outgoing 𝑥 and ¬𝑥 edges (simultaneously).
The clause gadget for a clause 𝑐 shown in Figure 4 ensures that precisely one of the cases
𝑐1, 𝑐2, 𝑐3 holds. Indeed, each pairwise combination of the three cases is by construction
contradicting. However, in a solution every edge direction is pinned down as either the
case 𝑐𝑖 holds (outgoing blue edge, which requires all outgoing red edges towards 𝑐𝑖), or

3 This version of #3SAT is named #Pl-Rtw-Opp-3CNF.
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Figure 4 Clause gadget (left), where for a 1-in-3SAT clause of the form 𝑐 = 𝑥 ∨ ¬𝑦 ∨ 𝑧 we
parsimoniously preserve solutions by expressing three cases (terms) 𝑐1 = (𝑥 ∧ (𝑦 ∧ ¬𝑧)), 𝑐2 =

(¬𝑦 ∧ (¬𝑥 ∧ ¬𝑧)), 𝑐3 = (𝑧 ∧ (¬𝑥 ∧ 𝑦)), where the first literal of each 𝑐𝑖 is the one from 𝑐 being true
(and the two remaining literals occur negated in 𝑐). Indeed these three cases allow us to preserve a
bijective relationship between 1-in-3SAT solutions and satisfying edge orientations. However, it is
crucial that the brackets are precisely as above, as this pins down edge orientations for maj vertex
types connected to 𝑐𝑖 . Roughly, in 𝑐𝑖 the literals of 𝑐 that are supposed to be false are connected by
a maj vertex. If we replace the maj vertices by and vertices (right), the orientation of the dark red
edges is free. While this does not preserve parsimony, for 𝑚 clauses the reduction is still 4𝑚-monious.

there is precisely one outgoing edge of the maj vertex. Indeed, by construction the pairwise
intersections of literals in 𝑐𝑖, 𝑐 𝑗 for 𝑖 ≠ 𝑗 are of size 1. Hence, if 𝑐 𝑗 does not hold then
exactly one of the two literals of 𝑐 𝑗 that are negated in 𝑐 are true. This literal therefore is a
predecessor of the maj vertex attached to 𝑐 𝑗 .

Since this reduction is parsimonious and 1-in-3SAT is ASP-hard [15], we conclude the
result. ◀

Observe from the variable gadget in Figure 2 that if for every variable 𝑥, the number
of occurrences of 𝑥 and ¬𝑥 are identical, red-blue conversion vertex types are not needed.
However, if we do not use maj vertex types, we need red-blue conversion in the clause
gadget, as depicted in Figure 4 (right). Further, this leaves 2 free edges per clause, resulting
in a reduction that is 22𝑚 = 4𝑚-monious.

Crossover Gadget for Planarity. Theorem 15 immediately works for planar graphs, since
we can construct a parsimonious crossover gadget as depicted in Figure 5 and eliminate all
crossings with a gadget.

▶ Corollary 16 (ASP-hardness for Planar CGS). The another-solution problem for CGS is
ASP-hard, even if restricted to planar graphs over the vertex types and, or, and maj.

Proof. Figure 5 depicts a planar red-red crossing gadget. Indeed we only need to eliminate
red-red crossings as there is no face completely built out of blue edges (see Figures 2 and 4).
Observe further that the gadget in Figure 5 is parsimonious, i.e., there is no free edge,
assuming the original north/south and east/west edges are fixed as well. Therefore the result
follows from Theorem 15. ◀

4.3 Constraint Graphs with Two Vertex Types
We now discuss what happens when our graph consists of exactly two vertex types. First,
we establish easiness for the decision problems. Then, we consider counting.
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Figure 5 Parsimonious red-red crossover gadget that consists of a leaky main part (left) that is
leaky in the sense that it still allows the case where both north/south vertices are directed inward and
east/west are directed outward. In order to fix this, one can add a degree-4-vertex type simulation
gadget (right), as shown. This gadget simulates a degree-4-vertex requiring a total in-flow of weight
at least 2 if there shall be out-flow (as depicted).

4.3.1 Decision Easiness
For the decision problem CGS we obtain the following easiness results.

▶ Theorem 17. CGS with or and maj is in P.

Proof. We may reduce from CGS over or and maj vertices to the Max Flow problem, which
is known to be in P. Each or vertex will be replaced by sink of weight 1 and each maj will
be replaced by a sink of weight 2. At the center of each edge add a source of weight 1.

A flow which satisfies all the sinks can be used to assign orientations on the edges of the
constraint graph. The direction taken by edges out of the source is in the direction of the
edge in the CGS solution. Since each sink has a weight equal to the number of incoming
edges needed by the constraint node each node will be satisfied. A set of edge orientation
which satisfy each edge can be used to assign the flow of each edge in the same way. ◀

▶ Theorem 18. CGS for and and maj is in P.

Proof. We reduce to 2-SAT, which is in P [5]. Note that an and vertex with inputs labeled
𝑏, 𝑟1, 𝑟2, where 𝑏 is its blue input, and 𝑟1, 𝑟2 are its red inputs, can be represented by
the boolean equation (𝑏) ∨ (𝑟1 ∧ 𝑟2) = (𝑟1 ∨ 𝑏) ∧ (𝑟2 ∨ 𝑏), where a variable is true if its
corresponding edge is directed into the vertex. Additionally, a maj vertex with inputs 𝑎, 𝑏, 𝑐

can be represented by (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐) ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) ∧ (𝑏 ∨ 𝑐). So each
vertex can be represented with a set of 2-SAT clauses. Note that each variable represents an
edge that connects two vertices. Therefore, each variable will only appear in sets of clauses
corresponding to the two vertices it is incident to. We negate a set of these literals so that
only one may be true to simulate the edge only pointing in one direction. Therefore we can
write any constraint graph of and and maj vertices as a 2-SAT formula. ◀

4.3.2 #CGS Hardness
In this section we show that, if we have exactly two vertex types (and/or, and/maj, or
or/maj) and do not enforce matching edge weights, then #CGS is hard.
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▶ Theorem 19 (#P-Hardness for Two Vertex Types). #CGS is #P-hard if we do not enforce
matching edge weights and are restricted to and/or vertices, and/maj vertices, or or/maj
vertices, with at least one vertex of each of the two types.

Note that #P-hardness for the cases including and vertices follows already from Theorem 11.
Consequently, it suffices to establish the following lemma.

▶ Lemma 20. #CGS with or and maj is #P-complete, even when there exists a connected
component which contains both vertex types.

Proof. We reduce from counting the number of perfect matchings in a 3-regular bipartite
graph (𝑉 = {𝑂⋃

𝑀}, 𝐸), which has been shown to be #P-hard [2]. We will replace one
partition of vertices 𝑂 with or vertices and the other 𝑀 with maj.

The set of edges in the matching correspond to edges directed from a node in 𝑀 to a
node in 𝑂. Each 𝑂 node requires edge pointed in to satisfy its inflow. Each 𝑀 node can only
be used in a single matching as it requires 2 edges pointed in. ◀

4.3.3 #CGS Easiness
However, with matching edge weights #CGS is in FP if we have two vertex types, one of
which must be maj. This further strengthens Theorems 17 and 18.

▶ Theorem 21 (Counting is easy maj). #CGS can be solved in polynomial time if we enforce
matching edge weights and are restricted to two vertex types, one of which is maj (either
maj/or or maj/and).

Each pair of vertices has a separate proof, hence we prove this theorem via the following
lemmas.

▶ Lemma 22. #CGS can be done in polynomial time if we enforce matching edge weights
and are restricted to only maj and or vertices, and there is a nonzero number of maj vertices.

Proof. Since we enforce matching edge weights, or and maj vertices cannot connect to each
other as or vertices only take blue inputs, and maj vertices only take red inputs. Therefore,
any constraint graph with or and maj will have multiple components, ones made up of only
or vertices and ones made up of only maj vertices. By Theorem 13, we know each maj
component can never be satisfied; hence, the number of solutions to CGS with only maj and
or vertices with matching edge weights is always 0. ◀

Note that in Lemma 22 we require the number of maj vertices to be nonzero as otherwise
the graph has only or vertices, which we leave an open problem, as discussed in section 4.1.

▶ Lemma 23. #CGS can be done in polynomial time if we enforce matching edge weights
and are restricted to only maj and and vertices.

Proof. By enforcing matching edge weights, an argument similar to Theorem 12 applies, as
maj vertices have no blue inputs; therefore, each and vertex must pair with another and
through a blue edge. Note that the average in-degree in each of these and pairs is ≥ 1.5.
Further, each maj vertex requires in-degree > 2 to be satisfied. Therefore, if a constraint
graph contains and and maj vertices, the average in-degree must be > 1.5, or else it is
not satisfied. But this is impossible; if the graph is 3-regular, the average in-degree is 1.5.
Hence, if there is a nonzero number of maj vertices, the number of solutions is 0. Otherwise
Theorem 12 applies and else the number of solutions is either again 0 or 2𝑘 where 𝑘 is the
number of components of the graph. ◀
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5 Conclusion and Future Work

In this work we presented a novel generalized #SAT framework as well as a dichotomy for
two variables. These results then serve as the basis for novel insights into the counting
complexity of graph orientation problems (constraint graph satisfiability), where we discuss
an almost-complete classification (see also Table 1). We expect that counting solutions to
constraint graph satisfiability (#CGS) is an interesting source to support the development
and characterization of challenging puzzles, riddles, and games. Indeed, given our insights we
expect many further insights into counting solutions and solving another-solution problems.

Based on our dichotomy result for 2-variable clauses, we conjecture that Generalized
#SAT is in FP if 𝑓 factors into a product of single-variable and 2-color functions, or it is a
multiple of an affine function, and is #P-complete in all other cases. Our understanding is
that for any given 𝑓 , it is probably not difficult to prove this via taking “slices” with fewer
variables, but we lack a systematic method to prove the dichotomy for all 𝑓 that does not
rely on ad-hoc casework.
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