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Abstract
Binary decision diagram (BDD) and zero-suppressed binary decision diagram (ZDD) are data
structures to represent a family of (sub)sets compactly, and it can be used as succinct indexes
for a family of sets. To build BDD/ZDD representing a desired family of sets, there are many
transformation operations that take BDDs/ZDDs as inputs and output BDD/ZDD representing the
resultant family after performing operations such as set union and intersection. However, except for
some basic operations, the worst-time complexity of taking such transformation on BDDs/ZDDs
has not been extensively studied, and some contradictory statements about it have arisen in the
literature. In this paper, we show that many transformation operations on BDDs/ZDDs, including
all operations for families of sets that appear in Knuth’s book, cannot be performed in worst-case
polynomial time in the size of input BDDs/ZDDs. This refutes some of the folklore circulated in
past literature and resolves an open problem raised by Knuth. Our results are stronger in that such
blow-up of computational time occurs even when the ordering, which has a significant impact on the
efficiency of treating BDDs/ZDDs, is chosen arbitrarily.
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1 Introduction

Combinatorial problems, i.e., the problems dealing with combinations of a set, frequently
arise in several situations such as operations research, network analysis, and LSI design.
In solving such problems, it is often convenient to consider the set of combinations, i.e.,
the family of (sub)sets. For example, many combinatorial optimization problems can be
formulated as selecting the best combination (subset) from the family of sets satisfying
constraints. However, the number of sets in a family is possibly exponential, precluding us
from explicitly retaining the family of sets.
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52:2 Single Family Algebra Operation on BDDs and ZDDs Leads to Exponential Blow-Up

To alleviate this issue, we can use binary decision diagram (BDD) [2] or zero-suppressed
binary decision diagram (ZDD) [14] that is a variant of BDD. BDD and ZDD are data
structures that compactly represent a Boolean function and a family of sets, respectively.
Since a Boolean function f can be regarded as a family of sets by considering the set of
assignments of input Boolean variables that evaluates f to true, BDD can also be regarded
as a succinct representation of a family of sets. Moreover, they support many queries about
the represented family of sets, e.g., counting the number of sets and performing linear
optimization over the family. Thus, BDD and ZDD can be used as succinct indexes for a
family of sets.

BDDs and ZDDs also support a number of transformation operations. For example, when
we have two BDDs representing two families of sets, we can construct a BDD representing the
set union of them without extracting each set from the input families. Using such operations,
we can construct a BDD or a ZDD representing the desired family of sets. By collecting
such transformation operations, Minato [15] considered an algebraic system called unate cube
set algebra, whose element is a family of sets. After that, many operations were introduced,
and now the system is widely called family algebra, whose name was given by Knuth [13].
With the algorithms performing operations on BDDs and ZDDs, every operation in the
family algebra provides a useful way to construct a BDD or a ZDD representing the desired
family of sets in many applications. Many of these operations have been implemented in
standard BDD and ZDD manipulation packages [8, 18], and they are used in a wide range of
applications, including formal verification of circuits [7, 10], analyses of power distribution
networks [9, 19], and data mining [16].

However, the complexity of performing family algebra operations on BDDs and ZDDs has
not been well studied, except for basic set operations. This is because some operations require
complicated recursion procedures that make complexity analysis difficult. In particular,
revealing worst-case time complexity is important to us. If the worst-case time complexity is
large, it takes an unexpectedly long time to carry out even a single operation for certain
kinds of input. If so, we should pay attention to the possibility of such input when we use
BDDs and ZDDs as a way to implement the manipulation of families of sets. Therefore, we
investigated the worst-case time complexity of executing a single family algebra operation on
BDDs and ZDDs. Since it is known that, as described later, the sizes of a BDD and a ZDD
representing the same family of sets differ in only a linear factor, this paper mainly focused
on the complexity of ZDDs. After that, we mention the complexity on BDDs.

1.1 Related Work
Since the invention of ZDD [14], many family algebra operations have been proposed. Table 1
lists basic operations. As related work, we first describe the origins of these operations.

The first four operations in Table 1 are the most fundamental set operations set described
by Minato [14]. The join, quotient, and remainder operations appeared in Minato’s next
paper [15], where the join operation is called “product” because a join can be considered
to be the multiplication of two families when we view the union operation as an addition
operation. These operations are peculiar to the families of sets and also fundamental in
defining other family algebra operations. Later, the disjoint join and joint join operations
were proposed by Kawahara et al. [12] through an extension of the join; their usage is to
implicitly enumerate all of the subgraphs having a particular shape.

Restrict and permit operations were originally proposed by Coudert et al. [5], where they
were called SupSet and SubSet and used for solving set cover problems or performing logic
circuit minimization. The names “restrict” and “permit” come from a study by Okuno et
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Table 1 List of operations on family algebra.

Operation Definition Is polytime in DD sizes?
Union F ∪ G {S | S ∈ F ∨ S ∈ G} Yes [14]
Intersection F ∩ G {S | S ∈ F ∧ S ∈ G} Yes [14]
Difference F \ G {S | S ∈ F ∧ S /∈ G} Yes [14]
Symmetric difference F ⊕ G (F \ G) ∪ (G \ F) Yes [14]
Join F ⊔ G {F ∪ G | F ∈ F , G ∈ G} No (Theorem 7)∗

Disjoint join F ▷̇◁ G {F ∪ G | F ∈ F , G ∈ G, F ∩ G = ∅} No (Theorem 7)
Joint join F ▷̂◁ G {F ∪ G | F ∈ F , G ∈ G, F ∩ G ̸= ∅} No (Theorem 7)
Meet F ⊓ G {F ∩ G | F ∈ F , G ∈ G} No (Theorem 7)∗

Delta F ⊞G {F ⊕ G | F ∈ F , G ∈ G} No (Theorem 7)∗

Quotient F / G {S | ∀G ∈ G : S ∪ G ∈ F ∧ S ∩ G = ∅} No (Theorem 9)
Remainder F % G F \ (G ⊔ (F / G)) No (Theorem 9)
Restrict F △ G {F ∈ F | ∃G ∈ G : G ⊆ F } No (Theorem 10)∗

Permit F ⊘ G {F ∈ F | ∃G ∈ G : F ⊆ G} No (Theorem 10)
Nonsuperset F ↘ G {F ∈ F | ∀G ∈ G : G ⊈ F } No (Theorem 10)
Nonsubset F ↗ G {F ∈ F | ∀G ∈ G : F ⊈ G} No (Theorem 10)

Maximal F↑ {F ∈ F | ∀F ′ ∈ F : F ⊆ F ′ ⇒ F = F ′} No (Theorem 11)
Minimal F↓ {F ∈ F | ∀F ′ ∈ F : F ′ ⊆ F ⇒ F = F ′} No (Theorem 11)
Minimal hitting set F♯ {S | ∀F ∈ F : S ∩ F ̸= ∅}↓ No (Theorem 12)
Closure F∩ {

⋂
S∈F′ S | F ′ ⊆ F} No (Theorem 12)

∗Previous studies [17, 13] stated that they can be performed in worst-case polynomial time.

al. [17]. Later, nonsuperset, nonsubset, maximal, and minimal operations were introduced
by Coudert [4] to solve various optimization problems on graphs. Furthermore, meet,
delta, minimal hitting set, and closure operations were introduced by Knuth [13, §7.1.4
Ex.203,236,243] to solve various graph problems. Table 1 contains all of the transformation
operations for families of sets that appeared in Knuth’s book [13, §7.1.4 Ex. 203,204,236,243].

Compared to the operations themselves, the time complexity of performing them on ZDDs
has not been well investigated. Minato [14] proved that the first four operations in Table 1
can be performed in polynomial time with respect to the size of input ZDDs. However, the
complexity of a join operation, the most basic one among the rest, has not been fully clarified.
Knuth [13, §7.1.4 Ex. 206] claimed that join, as well as meet and delta, can be performed
in worst-case polynomial time, but this claim lacks proof. Conversely, Kawahara et al. [12]
suggested that join, as well as disjoint join and joint join, take worst-case exponential time,
again without proof. In addition to those reports, Okuno et al. [17] claimed that restrict
can be performed in polynomial time, but they used the unproven proposition that join can
be performed in polynomial time. Furthermore, Knuth [13, §7.1.4 Ex. 206] stated that the
worst-case complexity of the quotient operation was an open problem.

1.2 Our Contribution

In this paper, we prove that, for the operations in Table 1 aside from the first four operations,
there exist polynomial-sized ZDDs such that after taking the operation, the ZDD size becomes
exponential. For example, for the join operation, we prove that there exist sequences of
families of sets {Fm} and {Gm} such that the ZDD sizes representing Fm and Gm are
polynomial in m, while the ZDD size representing Fm ⊔ Gm is exponential in m. This result
implies that these operations cannot be performed in worst-case polynomial time with respect
to the size of input ZDDs. Thus, we refute the statement raised by Knuth [13] and Okuno et
al. [17] that join, meet, delta, and restrict can be performed in worst-case polynomial time.
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We also resolve the worst-case complexity of the quotient operation. Moreover, we also prove
that the operations in Table 1, except for the first four operations, cannot be performed in
polynomial time even when families are represented by BDDs. Since Table 1 contains all the
family algebra operations raised by Knuth [13], this paper concludes what kind of family
algebra operations can be performed in polynomial time on BDDs and ZDDs.

Our result is stronger in that the resultant BDD/ZDD’s size remains exponential for any
order of elements. BDD/ZDD structures follow a total order of the elements in the base set,
and it is known that this element order has a significant impact on the BDD/ZDD size. For
example, it is known that a multiplexer function can be represented in linear-sized BDD by
managing the ordering while its size becomes exponential when the ordering is terrible [13,
p.235]. However, we also prove that for the sequences used in proving the above, the resultant
BDD/ZDD’s size is exponential in m regardless of the order of elements. This suggests that
we cannot shrink the BDD/ZDD size after taking an operation by managing the element
order. Some famous BDD manipulation packages such as CUDD [18] implemented dynamic
reordering, the reordering of elements after executing operations to shrink the BDD/ZDD
size and thus increase the efficiency of BDD/ZDD manipulations. Nevertheless, our results
suggest that the worst-case complexity of carrying out operations cannot be polynomial,
even if we employ dynamic reordering.

Note that this follows the research line of Bollig [1] as follows. Yoshinaka et al. [20]
refuted Bryant’s conjecture, which is about the complexity of performing operations on BDDs,
but their counterexample was somewhat weak in that the order of elements they used was
unfavorable for BDD representations. Bollig [1] later resolved this issue by proposing simpler
counterexamples. Similar to this, our results imply that the exponential blow-up in taking
an operation on BDDs/ZDDs occurs not only when the order of elements is unfavorable but
also when it is good for BDD/ZDD representations.

From the viewpoint of applications, BDDs/ZDDs are usually built by applying multiple
family algebra operations in combination with some direct construction methods such as
Simpath [13] and frontier-based search [11], which are fixed-parameter tractable algorithms
with pathwidth. However, the number of required operations stays constant in many
applications. If every operation can be performed in polynomial time, we can enjoy the
polynomial time complexity in BDD/ZDD sizes even for these applications. However, our
results suggest this is not the case except for the first four operations. In addition, although
we rely on specific input examples to prove non-polynomial lower bounds, we later discuss
that such blow-up may occur for other input; the detailed discussions are in Section 3.5.
Therefore, our theoretical results have practical importance.

2 Preliminaries

2.1 Zero-suppressed Binary Decision Diagram
A zero-suppressed binary decision diagram (ZDD) [14] is a rooted directed acyclic graph
(DAG)-shaped data structure for representing a family of sets. First, we describe the structure
of ZDD. ZDD Z consists of node set N and arc set A, where the node set contains terminal
nodes ⊤, ⊥ and other internal nodes. Terminal nodes have no outgoing arcs, while every
internal node has two outgoing arcs called lo-arc and hi-arc. The nodes pointed by the lo-arc
and the hi-arc outgoing from a node n are called lo-child lo(n) and hi-child hi(n) of n. Every
internal node n is associated with an element called label that is denoted by lb(n). ZDDs
must follow the ordered property: Given a total order of elements <, the label of the parent



K. Nakamura, M. Nishino, and S. Denzumi 52:5
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Figure 1 (a) Example of a ZDD representing the family of subsets of {x1, . . . , x5} such that the
cardinality is less than 3. (b) Schematic of node sharing. (c) Schematic of zero suppression.

node must precede that of the child node, i.e., lb(n) < lb(lo(n)) and lb(n) < lb(hi(n)) must
hold for every internal node n. Note that the child node is always allowed to be a terminal
node. Finally, the size of a ZDD is defined by its number of nodes.

Next, we describe the semantics of ZDD.

▶ Definition 1. For ZDD node n, the family Fn of sets represented by n is defined as
follows. (i) If n = ⊤, then Fn = {∅}. (ii) If n = ⊥, then Fn = ∅. (iii) Otherwise,
Fn = Flo(n) ∪ ({{lb(n)}} ⊔ Fhi(n)). Furthermore, the family of sets represented by Z is that
represented by root node r, where the root node is the only node having no incoming arcs.

Note that {∅} and ∅ are different families; the former is the family consisting of only an
empty set, while the latter is the family containing no set. For example, Figure 1a is the
ZDD representing the family of subsets of {x1, . . . , x5} whose cardinality is less than 3. Solid
and dashed lines represent hi- and lo-arcs, and the element inside a circle indicates its label.

Without restrictions on the structure, there exist many ZDDs representing the same
family of sets. However, by imposing restrictions, we can obtain a canonical ZDD, i.e., an
identical ZDD structure, for every family of subsets. This canonical form is called reduced
ZDD, and a reduced ZDD can be obtained from any ZDD by repetitively applying the
following two rules. The first rule is node sharing: If there exist two nodes n and m whose
lo-child, hi-child, and label are equal, we merge these two nodes into one (Figure 1b). The
second rule is zero suppression: If there exists a node n whose hi-child is ⊥, we eliminate n
and let all of the arcs pointed to n also point to hi(n) (Figure 1c). In the reduced ZDD, no
node can be eliminated by applying the above two rules. Since applying these rules strictly
decreases the size of ZDD, i.e., the number of nodes, we can deduce that the reduced ZDD
of a family F is the smallest ZDD representing F given the total order < of elements. The
size of the reduced ZDD of the family F , given the total order <, is denoted by Z<(F). If it
is clear from the context, we omit < and simply write it as Z(F).

We briefly compare ZDDs with BDDs. BDD [2] has the same structure (syntax) as ZDD,
although its semantics is slightly different. BDDs also follow the ordered property and have
the smallest canonical form called reduced BDD. Given the total order < of elements, the size
of the reduced BDD of the family F is denoted by B<(F). The following is a famous result.

▶ Lemma 2 ([13, Eq. (126)]). For any family F of subsets of a set of n elements and any
order < of elements, B<(F) = O(nZ<(F)) and Z<(F) = O(nB<(F)).

2.2 Family Algebra Operations on ZDDs
In this section, we explain how the family algebra operations are performed using ZDDs and
point out what makes the difference between the basic set operations (union, intersection,
difference, and symmetric difference) and the other operations.

ISAAC 2024
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As explained in Section 2.1, ZDD represents a family of sets in a recursive manner. Let us
consider the situation in which there are two ZDDs whose root nodes are n and m and lb(n) =
lb(m) = x. Then, the family of sets represented by them are Fn = Flo(n) ∪ ({{x}} ⊔ Fhi(n))
and Fm = Flo(m) ∪ ({{x}} ⊔ Fhi(m)). The union of them is

Fn ∪ Fm = [Flo(n) ∪ Flo(m)] ∪ [{{x}} ⊔ (Fhi(n) ∪ Fhi(m))]. (1)

This means that the ZDD representing Fn ∪ Fm can be described as follows: The root node’s
label is x, its lo-child represents Flo(n) ∪ Flo(m), and its hi-child represents Fhi(n) ∪ Fhi(m). If
lb(n) < lb(m), we have a simpler recursion:

Fn ∪ Fm = [Flo(n) ∪ Fm] ∪ [{{lb(n)}} ⊔ (Fhi(n) ∪ Fm)]. (2)

The case of lb(m) < lb(n) can be handled in the same way. By recursively expanding Fn∪Fm by
(1) and (2), we eventually reach terminal nodes where the union is trivial, e.g., F⊥ ∪F⊤ = {∅}.
Therefore, by caching the resultant ZDD nodes of Fn′ ∪ Fm′ , where n′ and m′ are the child
nodes of n and m, respectively, we can efficiently compute the ZDD representing Fn ∪ Fm.
With the cache, one can show that we can build a ZDD representing the union of two ZDDs
in a time proportional to the product of input ZDD sizes. The intersection, difference, and
symmetric difference operations can be handled in almost the same way.

The other operations can also be performed in a recursive manner. However, the
recursion becomes more complicated. Let us consider, for example, the join operation. When
lb(n) = lb(m) = x, the join becomes

Fn ⊔ Fm =[Flo(n) ∪ ({{x}} ⊔ Fhi(n))] ⊔ [Flo(m) ∪ ({{x}} ⊔ Fhi(m))]
=[Flo(n) ⊔ Flo(m)] ∪ [Flo(n) ⊔ ({{x}} ⊔ Fhi(m))]∪

[({{x}} ⊔ Fhi(n)) ⊔ Flo(m)] ∪ [({{x}} ⊔ Fhi(n)) ⊔ ({{x}} ⊔ Fhi(m))]
=[Flo(n) ⊔ Flo(m)] ∪ [{{x}} ⊔ (Flo(n) ⊔ Fhi(m))]∪

[{{x}} ⊔ (Fhi(n) ⊔ Flo(m))] ∪ [{{x}} ⊔ (Fhi(n) ⊔ Fhi(m))]
=[Flo(n)⊔Flo(m)]∪[{{x}} ⊔ ((Flo(n)⊔Fhi(m)) ∪ (Fhi(n)⊔Flo(m)) ∪ (Fhi(n)⊔Fhi(m)))].

(3)

Here, the second equality holds because join distributes over the union. This means that we
should build a ZDD where the root node’s lo-child represents Flo(n) ⊔ Flo(m) and its hi-child
represents (Flo(n) ⊔ Fhi(m)) ∪ (Fhi(n) ⊔ Flo(m)) ∪ (Fhi(n) ⊔ Fhi(m)). Thus, in the recursion, we
should also compute the union ∪ of families, which also needs a recursion like that above.
Another example is the restrict operation. Restrict can be computed as

Fn △ Fm =[Flo(n) △ Flo(m)] ∪ [{{x}} ⊔ (Fhi(n) △ (Flo(m) ∪ Fhi(m)))]. (4)

Thus, it is also necessary to compute the union of families as well as restrict.
Compared to the simple recursion for the computation of basic set operations, the

complexity of such “double recursion” procedures are difficult to analyze.

3 Blow-Up Operations

3.1 High-Level Idea
As described in Section 2.2, the ZDD size after performing union or intersection can be
bounded by the product of the sizes of operand ZDDs, i.e., Z(F ∪ G) = O(Z(F)Z(G)) and
Z(F ∩ G) = O(Z(F)Z(G)). Thus, the ZDD of the union or intersection of two ZDDs remains
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polynomial-sized when the operand ZDDs have polynomial size. However, this does not hold
for a non-constant number of ZDDs: even if Z(Fk) = O(poly(m)) for k = 1, . . . , m, both
Z(
⋃m

k=1 Fk) and Z(
⋂m

k=1 Fk) may become exponential in m.
We use such families to constitute examples of blow-up. More specifically, for each

operation, we constitute an example such that performing this operation incurs the union
or intersection of multiple families. Since we prove that the reduced ZDD representing the
result of an operation will become exponential in size, we can confirm that any algorithm for
computing the resultant ZDD incurs worst-case non-polynomial complexity. Combined with
concrete instances, we prove that the worst-case complexity of family algebra operations is
lower-bounded by an exponential factor.

We use the specific families of sets, hidden weighted bit function and permutation function,
as explained below. Note that they are called “function” because they are originally defined
as a Boolean function, but we here describe them as equivalent families of sets.

▶ Definition 3. A hidden weighted bit function Hm is a family of sets defined as {S ⊆
{y1, . . . , ym} | y|S| ∈ S}.

The hidden weighted bit function Hm can be represented as a union of elementary families.
Define Em,k := {S ⊆ {y1, . . . , ym} | |S| = k, yk ∈ S}, i.e., Em,k consists of the subsets of
{y1, . . . , ym} where the cardinality is k and yk is contained. Then, Hm =

⋃m
k=1 Em,k. It

can be easily verified that the size of the ZDD representing Z(Em,k) is O(m2) for any order
of elements (see Section 3.4). However, it is known that the ZDD representing Hm must
become exponential in size.

▶ Theorem 4 ([3]). For any order < of elements, B<(Hm) = Ω(2m/5). Thus, by Lemma 2,
Z<(Hm) = Ω(2m/5/m).

▶ Definition 5. A permutation function Pm is a family of subsets of {y1, . . . , ym2} such that
(i) there is exactly one element from ym(i−1)+1, ym(i−1)+2, . . . , ym(i−1)+m for i = 1, . . . , m, and
(ii) there is exactly one element from yj , ym+j , . . . , ym(m−1)+j for j = 1, . . . , m.

The permutation function Pm is equivalent to the set of permutations: For S ⊆ {y1, . . . , ym2},
we associate a binary m × m matrix where the (i, j)-element is 1 if and only if ym(i−1)+j ∈ S.
Then, S ∈ Pm if and only if the associated matrix is a permutation matrix.

For k = 1, . . . , m, let Qm,k be the family of subsets of {y1, . . . , ym2} such that there is
exactly one element from ym(k−1)+1, ym(k−1)+2, . . . , ym(k−1)+m, and let Qm,m+k be those such
that there is exactly one element from yk, ym+k, . . . , ym(m−1)+k. Then, Pm =

⋂2m
k=1 Qm,k.

Here, Z(Qm,k) = O(m2) for any order of elements, as proved in Section 3.4. However, it is
again proved that the ZDD representing Pm must become exponential in size.

▶ Theorem 6 ([13, Theorem K]). For any order < of elements, B<(Pm) = Ω(m2m). Thus,
by Lemma 2, Z<(Pm) = Ω(2m/m).

We first show the exponential blow-up cases for a specific order of elements in Section 3.2.
However, we see that the size of ZDD representing the hidden weighted bit function or
the permutation function is exponential regardless of the order of elements. Therefore, in
Section 3.3, we prove that for each family generated by the operation in Section 3.2, the
ZDD size representing it remains exponential regardless of the order of elements. This
means that for each operation, there exists an instance in which the input ZDD size can be
polynomial by managing the element order but the output ZDD size must be exponential for
any order. Section 3.4 completes the proof by showing that some families can be represented
by polynomial-sized ZDDs. Finally, Section 3.5 gives some discussions on the obtained result.

ISAAC 2024
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Figure 2 Example of blow-up for join (left) and quotient (right) operations. Blue triangles mean
that the ZDD size representing this family is polynomial in m, while red triangle means that its size
is exponential in m. Arcs going to ⊥ terminal are omitted.

3.2 Proofs with Specific Element Order
3.2.1 Join, Disjoint Join, Joint Join, Meet, and Delta
For these operations, we constitute a pair of families that incur the union of O(m) subfamilies.
Combined with Em,k, the result after taking an operation contains

⋃
k Em,k = Hm, which is

the hidden weighted bit function for which the ZDD size is exponential in m.

▶ Theorem 7. Let ⋄ be a binary operator chosen from join (⊔), disjoint join (▷̇◁), joint join
(▷̂◁), meet (⊓), and delta (⊞). Then, there exists a sequence of families Fm and Gm such that
(i) Fm and Gm are families of subsets of a set of O(m) elements, (ii) Z(Fm)+Z(Gm) = O(m3),
and (iii) Z(Fm ⋄ Gm) = Ω(2m/5/m).

Proof. Let us consider the families of subsets of X ∪ Y , where X := {x1, . . . , xm} and
Y := {y1, . . . , ym}. We determine the order of elements as x1, . . . , xm, y1, . . . , ym. We define
Fm as

Fm :=
m⋃

k=1
({{xk}} ⊔ Em,k).

Since Z(Em,k) = O(m2) and the ZDD representing Fm becomes the left one of Figure 2
according to this order, Z(Fm) = O(m3).

For the join operation, we let Gm := {X}, where Z(Gm) = O(m). Then,

Fm ⊔ Gm = (
⋃m

k=1({{xk}} ⊔ Em,k)) ⊔ {X} =
⋃m

k=1(({{xk}} ⊔ Em,k) ⊔ {X})
=
⋃m

k=1({X} ⊔ Em,k) = {X} ⊔ (
⋃m

k=1 Em,k) = {X} ⊔ Hm,

where the second and fourth equalities hold because join distributes over union and the third
equality holds because {{xk}} ⊔ {X} = {X}. Thus, the ZDD representing Fm ⊔ Gm becomes
the right one of Figure 2, meaning that the ZDD size is at least Z(Hm) = Ω(2m/5/m). Since
every subset in Fm has at least one element from X, the result of joint join Fm ▷̂◁ Gm also
becomes {X} ⊔ Hm, leading to an exponential-sized ZDD.

For the disjoint join operation, we let Gm :=
⋃m

k=1{X \{xk}}, where again Z(Gm) = O(m).
Then, every subset in {{xk}} ⊔ Em,k has intersection with all of the subsets in Gm, except
for X \ {xk}. Then,

Fm ▷̇◁ Gm =
⋃m

k=1(({xk} ∪ (X \ {xk})) ⊔ Em,k) = {X} ⊔ (
⋃m

k=1 Em,k) = {X} ⊔ Hm,

meaning that Z(Fm ▷̇◁ Gm) = Ω(2m/5/m).
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For the meet operation, we let Gm := {Y }, where Z(Gm) = O(m). Similar to join, we
have Fm ⊓ Gm = Hm, meaning that Z(Fm ⊓ Gm) = Ω(2m/5/m).

For the delta operation, we let Gm = 2X . Since {{xk}}⊞ 2X = 2X for any k, we have

Fm ⊞Gm =
⋃m

k=1(({{xk}}⊞ 2X) ⊔ Em,k) = 2X ⊔ (
⋃m

k=1 Em,k) = 2X ⊔ Hm.

The ZDD size of Fm ⊞Gm is at least Z(Hm) = Ω(2m/5/m). ◀

3.2.2 Quotient and Remainder
For the quotient operation, we constitute a pair of families such that performing an operation
incurs the intersection of O(m) subfamilies. Here, let E ′

m,k := 2Y \ Em,k be the complement
of Em,k regarding the family of subsets of Y . By De Morgan’s laws, we have

⋂
k E ′

m,k =
2Y \ (

⋃
k Em,k) = 2Y \ Hm =: H′

m. The ZDD size representing H′
m can be lower bounded by

the following lemma.

▶ Lemma 8. Suppose that two families F , G of subsets of the same set satisfy Z(F) =
O(f(m)), Z(G) = Ω(g(m)), and F ⊇ G. Then, Z(F \ G) = Ω(g(m)/f(m)).

Proof of Lemma 8. F ⊇ G implies F \ (F \ G) = G. Since the ZDD size after taking
the difference can be bounded by the product of the sizes of operand ZDDs, we have
Z(G) = O(Z(F)Z(F \ G)). Suppose Z(F \ G) = o(g(m)/f(m)). Then, Z(G) = o(f(m) ·
(g(m)/f(m))) = o(g(m)), refuting the assumption Z(G) = Ω(g(m)). Therefore, Z(F \ G) =
Ω(g(m)/f(m)). ◀

Since Z(2Y ) = O(m) and Z(Hm) = Ω(2m/5/m), we have Z(H′
m) = Ω(2m/5/m2).

▶ Theorem 9. Let ⋄ be a binary operator chosen from quotient (/) and remainder (%).
Then, there exists a sequence of families Fm and Gm such that (i) Fm and Gm are families
of subsets of a set of O(m) elements, (ii) Z(Fm) + Z(Gm) = O(m3), and (iii) Z(Fm ⋄ Gm) =
Ω(2m/5/poly(m)).

Proof. We again consider the families of subsets of X ∪ Y , where X := {x1, . . . , xm} and
Y := {y1, . . . , ym}. We use the same order of elements: x1, . . . , xm, y1, . . . , ym. We define
Fm as

Fm :=
m⋃

k=1
({{xk}} ⊔ E ′

m,k).

We have Z(E ′
m,k) = O(m2) as proved in Section 3.4, and thus Z(Fm) = O(m3). We also

define Gm := {{x1}, . . . , {xm}}, where Z(Gm) = O(m).
Let us consider Fm / Gm. By definition, Y ′ ∈ Fm / Gm if and only if Y ′ ⊆ Y and

{xk} ∪ Y ′ ∈ Fm for k = 1, . . . , m. From the definition of Fm, it is equivalent to Y ′ ∈⋂m
k=1 E ′

m,k. Thus, Fm / Gm =
⋂m

k=1 E ′
m,k = H′

m. This means Z(Fm / Gm) = Ω(2m/5/m2).
The ZDDs involved are depicted in Figure 2.

For the remainder operation, we prepared the same families. Since Gm ⊔ (Fm / Gm) =
{{x1}, . . . , {xm}} ⊔ H′

m, Z(Gm ⊔ (Fm / Gm)) = Ω(2m/5/m2). Also, since S ∈ Fm / Gm if
and only if S ∪ G ∈ Fm for all G ∈ Gm, all of the subsets in Gm ⊔ (Fm / Gm) are also
contained in Fm. In other words, Fm ⊇ Gm ⊔ (Fm / Gm). Therefore, by using Lemma 8,
Z(Fm % Gm) = Ω((2m/5/m2)/m3) = Ω(2m/5/m5). ◀
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Fm

Cm
�

Gm
x1

x2

· · ·
x2m

Tm,1 Tm,2 · · ·Tm,2m

= ⋃
k Tm,k = Cm \ Pm

Fm

w
Gm
x1

x2

· · ·
x2m

Cm Tm,1 Tm,2 · · ·Tm,2m

↑

=

w

x1

x2

· · ·
x2m

Cm ↗ Gm = Pm Tm,1 Tm,2 · · ·Tm,2m

Figure 3 Example of blow-up for permit (left) and maximal (right) operations.

3.2.3 Restrict, Permit, Nonsuperset, and Nonsubset
These operations include inclusion relations of subsets in their definitions, which makes it
difficult to generate a hidden weighted bit function as a result of the operation. This is due
to the fact that Hm includes the universal set Y as well as a singleton {y1}. For example, if
F is the family of subsets of Y and the universal set Y is included in the result of F ⊘ G, all
of the subsets in F must be included in F ⊘ G due to the definition of the permit operation.

Instead, we use the permutation function. Because every set in Pm has cardinality m, the
above issue can be alleviated. More specifically, we prepared the complement of the families:

Cm := {S ⊆ {y1, . . . , ym2} | |S| = m}, Tm,k := Cm \ Qm,k(= Cm ∩ (2Y \ Qm,k)).

Here, Cm is the family of subsets with cardinality m, and thus Tm,k also contains only the
subsets with cardinality m. Moreover, by De Morgan’s laws,

2m⋃
k=1

Tm,k = Cm ∩

( 2m⋃
k=1

(2Y \ Qm,k)
)

= Cm ∩

(
2Y \

( 2m⋂
k=1

Qm,k

))
= Cm \ Pm.

We use these families Tm,k to prove the following.

▶ Theorem 10. Let ⋄ be a binary operator chosen from restrict (△), permit (⊘), nonsuperset
(↘), and nonsubset (↗). Then, there exists a sequence of families Fm and Gm such that (i)
Fm and Gm are families of subsets of a set of O(m2) elements, (ii) Z(Fm)+Z(Gm) = O(m4),
and (iii) Z(Fm ⋄ Gm) = Ω(2m/poly(m)).

Proof. Let us consider the families of subsets of X ∪ Y , where X := {x1, . . . , x2m} and
Y := {y1, . . . , ym2}. The order of elements is x1, . . . , x2m followed by y1, . . . , ym2 .

We first consider the permit operation. We define Fm := Cm and

Gm :=
2m⋃
k=1

({{xk}} ⊔ Tm,k).

As proved in Section 3.4, Z(Cm) = O(m3) and Z(Tm,k) = O(m3). Thus, Z(Fm) = O(m3)
and Z(Gm) = O(m4). Any set in Fm = Cm consists of m elements chosen from y1, . . . , ym2 ,
and any set in Gm consists of m elements from y1, . . . , ym2 plus one element from x1, . . . , x2m.
Thus, set S ∈ Fm is a subset of some set in Gm if and only if {xk} ∪ S ∈ Gm for some
k. In other words, S ∈ Fm ⊘ Gm if and only if S is included in Tm,k for some k. Since
Cm ⊃ Tm,k for any k by definition, this means Fm ⊘ Gm =

⋃2m
k=1 Tm,k = Cm \ Pm. Since

Z(Cm) = O(m3) and Z(Pm) = Ω(2m/m), we have Z(Fm ⊘ Gm) = Ω(2m/m4) by Lemma 8.
The ZDDs involved are depicted in Figure 3.
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The nonsubset operation can be treated with the same families. Since Fm ↗ Gm =
Fm \ (Fm ⊘ Gm) by definition, we have Fm ↗ Gm = Cm \ (Cm \ Pm) = Pm, where the last
equality holds due to Cm ⊃ Pm. Thus, Z(Fm ↗ Gm) = Ω(2m/m).

The restrict and nonsuperset operations can be handled by nearly the same families. We
define the same Gm and let Fm := {X}⊔Cm. Similar to the proof of the permit operation, set
X ∪S ∈ Fm (S ⊆ Y ) is a superset of some sets in Gm if and only if {xk}∪S ∈ Gm for some k.
This means Fm △Gm = {X}⊔(

⋃2m
k=1 Tm,k) = {X}⊔(Cm \Pm), whose ZDD size is Ω(2m/m4).

For the nonsuperset operation, we have Fm ↘ Gm = Fm \ (Fm △ Gm) = {X} ⊔ Pm, yielding
Z(Fm ↘ Gm) = Ω(2m/m). ◀

3.2.4 Maximal and Minimal
For these operations, we use the close relationship with the nonsuperset and nonsubset
operations. We prepare a family having Fm and Gm appearing in the proof of Theorem 10
as a subfamily.

▶ Theorem 11. Let ⋄ be a unary operator chosen from maximal (↑) and minimal (↓). Then,
there exists a sequence of families Fm such that (i) Fm is a family of subsets of a set of
O(m2) elements, (ii) Z(Fm) = O(m4), and (iii) Z(F⋄

m) = Ω(2m/poly(m)).

Proof. Let us consider the family of subsets of {w} ∪ X ∪ Y , where X := {x1, . . . , x2m} and
Y := {y1, . . . , ym2}. The order of elements is w, x1, . . . , x2m followed by y1, . . . , ym2 .

We first consider the maximal operation. We define Fm as

Fm := Cm ∪ [{{w}} ⊔ Gm] , where Gm :=
2m⋃
k=1

({{xk}} ⊔ Tm,k).

Here, we observe that this Gm is the same as that appearing in the proof of Theorem 10.
The ZDD size is bounded as Z(Fm) = O(Z(Cm) + Z(Gm)) = O(m4). Every set in Cm has
m elements and every set in {{w}} ⊔ Gm has m + 2 elements. Thus, every set in the latter
family is maximal, while a set in the former family is maximal if and only if it is not a subset
of any set included in the latter family. Therefore, we have

F↑
m = [Cm ↗({{w}} ⊔ Gm)]∪[{{w}} ⊔ Gm] = [Cm ↗ Gm]∪[{{w}} ⊔ Gm] = Pm ∪ [{{w}} ⊔ Gm] ,

where the second equality holds because all of the sets in Cm do not include w and the last
equality follows from the proof of Theorem 10. The resultant ZDD is like the right one in
Figure 3, which implies Z(F↑

m) ≥ Z(Pm) = Ω(2m/m).
The minimal can be treated in a similar way. We define

Fm := Gm ∪ [{{w}} ⊔ {{x1, . . . , x2m}} ⊔ Cm] ,

where Gm is the same family as that above. We again have Z(Fm) = O(m4). Every set in
Gm has m + 1 elements and every set in {{w}} ⊔ {X} ⊔ Cm has 3m + 1 elements. Thus, every
set in the former family is minimal, while a set in the latter family is minimal if and only if
it is not a superset of any set included in the former family. Now we have

F↓
m = Gm ∪ [({{w}} ⊔ {X} ⊔ Cm) ↘ Gm]

= Gm ∪ [{{w}} ⊔ (({X} ⊔ Cm) ↘ Gm)] = Gm ∪ [{{w}} ⊔ {X} ⊔ Pm] ,

where the second equality holds because none of the sets in Gm includes w and the last equality
follows from the proof of Theorem 10. This again implies Z(F↓

m) ≥ Z(Pm) = Ω(2m/m). ◀
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3.2.5 Minimal Hitting Set and Closure
For these operations, we can constitute much simpler examples.

▶ Theorem 12. Let ⋄ be a unary operator chosen from minimal hitting set (♯) and closure
(∩). Then, there exists a sequence of families Fm such that (i) Fm is a family of subsets of a
set of O(m2) elements, (ii) Z(Fm) = O(m4), and (iii) Z(F⋄

m) = Ω(2m/poly(m)).

Proof. Let X := {x1, . . . , x2m} and Y := {y1, . . . , ym2}. For k = 1, . . . , m, we set Sk :=
{ym(k−1)+1, ym(k−1)+2, . . . , ym(k−1)+m}, and Sm+k := {yk, ym+k, . . . , ym(m−1)+k}.

For minimal hitting set operation, we consider a family of subsets of Y . We define
Fm := {S1, . . . , S2m}. Since the ZDD size can be bounded by the sum of cardinality of a set
in the family [16], Z(Fm) ≤

∑
i |Si| = O(m2). For S ⊆ {y1, . . . , ym2}, we associate a binary

m × m matrix, where the (i, j)-element is 1 if and only if ym(i−1)+j ∈ S. Then, S ∩ Sk ̸= ∅
means that the k-th row of the matrix has at least one 1 and S ∩ Sm+k ̸= ∅ means that the
k-th column of the matrix has at least one 1. Thus, S ∈ F ♯

m if and only if the corresponding
matrix has at least one 1 for any column or row and no proper subset of S satisfies this
property. The minimal matrix having this property is the permutation matrix, and thus
F ♯

m = Pm, that is, the permutation function. This implies Z(F ♯
m) = Ω(2m/m).

For closure operation, we consider a family of subsets of X ∪ Y . For k = 1, . . . , m

and ℓ = 1, . . . , m, we define Rk,ℓ := (X \ {xk, xm+ℓ}) ∪ ((Y \ Sk \ Sm+ℓ) ∪ {ym(k−1)+ℓ}). We
define Fm := {Rk,ℓ | k, ℓ = 1, . . . , m}. Again, since the ZDD size can be bounded by
the sum of cardinality of a set in the family [16], Z(Fm) ≤

∑
k,ℓ |Rk,ℓ| = O(m4). Then,

we show that F∩
m ∩ Cm = Pm, where Pm is the permutation function. If it is shown,

Z(F∩
m ∩ Cm) = Z(Pm) = Ω(2m/m). On the other hand, Z(F∩

m ∩ Cm) = O(Z(F∩
m)Z(Cm)).

Since Z(Cm) = O(m3), we can deduce that Z(F∩
m) = Ω(2m/poly(m)).

We now prove F∩
m ∩ Cm = Pm. First, we show that F∩

m ∩ Cm ⊆ Pm. Rk,ℓ does not contain
any element in Sk and Sm+ℓ except for ym(k−1)+ℓ. By fixing k, if F ′ ⊆ F contains at least one
Rk,ℓ for some ℓ, S =

⋂
S′∈F ′ S′ contains at most one element from Sk. Moreover, S does

not contain xk if and only if F ′ contains at least one Rk,ℓ for some ℓ. Similarly, by fixing ℓ,
if F ′ contains at least one Rk,ℓ for some k, which is equivalent to that S does not contain
xm+ℓ, S contains at most one element from Sm+ℓ. Now we can say that when S contains
no element in X, S contains at most one element in Sk for any k = 1, . . . , 2m. This means
that if S contains no element in X and m elements in Y , S ∈ Pm. Thus, F∩

m ∩ Cm ⊆ Pm.
Next, we show that F∩

m ∩ Cm ⊇ Pm. Let σ be an arbitrary permutation of 1, . . . , m. Then,
{yσ(1), ym+σ(2), . . . , y(m−1)m+σ(m)} = R1,σ(1) ∩ R2,σ(2) ∩ · · · ∩ Rm,σ(m). This means that any
set in Pm is in F∩

m. Thus, F∩
m ∩ Cm ⊇ Pm. This concludes F∩

m ∩ Cm = Pm. ◀

3.3 Consideration for Element Order
The above proofs fix the order of elements for each operation. Thus, there is still a possibility
that the resultant ZDD size becomes smaller by managing the order of elements. However, it
seems that the size of resultant ZDD remains exponential regardless of the order of elements,
since every resultant family contains a hidden weighted bit function, a permutation function,
or similar families as a subfamily. In the following, we prove that every resultant family has
an exponential ZDD size regardless of the order of elements.

▶ Definition 13. Let F be a family of subsets of set X, and let Y, Y ′ be the subsets of X

satisfying Y ∩ Y ′ = ∅. We define F|Y,Y ′ as the family of subsets of X \ (Y ∪ Y ′) such that
S ∈ F|Y,Y ′ if and only if S ∪ Y ∈ F .
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In other words, F|Y,Y ′ is the family of sets generated from F by first extracting the sets
containing every element of Y , but no element of Y ′, and then eliminating all of the elements
of Y from every set. This operation is called conditioning and it is a famous result that this
can be performed in polynomial time with BDDs [6]. For the sake of completeness, we show
this can also be performed in polynomial time with ZDDs, and then we prove the following.

▶ Lemma 14. Let F be a family of subsets of a set X of O(f(m)) elements. If there
exist Y, Y ′ ⊆ X such that Z<(F|Y,Y ′) = Ω(g(m)) for any order < of elements, we have
Z<(F) = Ω(g(m)/f(m)) for any order < of elements.

If this lemma holds, we can show that the resultant families in Section 3.2 all have an
exponential ZDD size regardless of the order of elements. This is because the resultant
families in Section 3.2 all have a hidden weighted bit function, a permutation function, or its
complements as a subfamily and all of them have an exponential ZDD size regardless of the
order of elements; a detailed discussion is given later.

Proof of Lemma 14. If we can show Z<(F|Y,Y ′) = O(Z<(F)f(m)) for any Y, Y ′ ⊆ X and
any order < of elements, Lemma 14 can be proved as follows: Suppose that there is an
order < of elements satisfying Z<(F) = o(g(m)/f(m)). Then, by the above equation, we
have Z<(F|Y,Y ′) = o((g(m)/f(m)) · f(m)) = o(g(m)). This contradicts the assumption that
Z<(F|Y,Y ′) = Ω(g(m)) for any order < of elements.

Next, we fix an arbitrary order < of elements and show Z<(F|Y,Y ′) = O(Z<(F)f(m)).
Here, we consider the operations for constructing a ZDD representing F|Y,Y ′ from the ZDD
of F . We first extract the sets that contain every element of Y but do not contain any
element of Y ′. Then, we eliminate all elements of Y .

The former step can be achieved by the intersection operation. Let G be the family of
subsets of X such that S ∈ G if and only if S contains all of the elements in Y but does
not contain any element in Y ′. In other words, G := {S ⊆ X | S ∩ Y = Y ∧ S ∩ Y ′ = ∅}.
Then, F ∩ G is the desired family. The ZDD representing G has the following form: (i) For
any x ∈ Y , there is only one ZDD node labeled x whose lo-child is ⊥ while its hi-child is
the next-level node. (ii) For any x ∈ Y ′, there is no node labeled x by the reduction rule of
ZDD. (iii) for any x ∈ X \ (Y ∪ Y ′), there is only one ZDD node labeled x whose lo-child and
hi-child are both the next-level node. Thus, we have Z<(G) = O(f(m)) because the base
set X of F has O(f(m)) elements and, for any element x ∈ X, there is at most one node
labeled x. Finally, Z<(F ∩ G) = O(Z<(F)f(m)).

The latter can be achieved by eliminating the nodes labeled x ∈ Y and replacing the
branches heading it. For a node labeled x ∈ Y , its lo-child must be ⊥, since the ZDD is
reduced and every set in F ∩ G must contain x. For this node, we first make all of the
arcs heading to it point to its hi-child. Then, we eliminate this node. By performing this
operation for every node labeled x ∈ Y , we finally obtain the ZDD of F|Y,Y ′ . Since this
operation does not increase the size of ZDD, we have Z<(F|Y,Y ′) = O(Z<(F)f(m)). ◀

Now we can show that the resultant families in the proof of Section 3.2 have exponential
ZDD size regardless of the order of elements. For example, for the join operation, ({X} ⊔
Hm)|X,∅ = Hm and Z(Hm) = Ω(2m/5/m) for any order of elements of Y (and thus that of
X ∪ Y ). Therefore, by Lemma 14, Z(Fm ⊔ Gm) = Ω(2m/5/m2) for any order of elements of
X ∪ Y . Similar arguments hold for the other operations. We here show that all the resultant
families in the proof of Section 3.2 have exponential ZDD size regardless of the order of
elements.
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Disjoint join ▷̇◁ and joint join ▷̂◁: The resultant family of these operations in the proof of
Theorem 7 is ({X} ⊔ Hm). Here, ({X} ⊔ Hm)|X,∅ = Hm.

Meet ⊓: In the proof of Theorem 7, we already have Fm ⊓ Gm = Hm. Thus, Z(Fm ⊓ Gm) =
Ω(2m/5/m) for any order of elements.

Delta ⊞: In the proof of Theorem 7, we have Fm ⊞Gm = 2X ⊔ Hm. Since (2X ⊔ Hm)|X,∅ =
Hm, Z(Fm ⊞Gm) = Ω(2m/5/poly(m)) for any order of elements.

Quotient /: Z(2Y ) = O(m) and Z(Hm) = Ω(2m/5/m) for any order of elements, and
Z(H′

m) = Ω(2m/5/m2) for any order of elements by Lemma 8. This also holds for
Fm / Gm in the proof of Theorem 9 since it equals H′

m.
Remainder %: Since Fm =

⋃
k({{xk}}⊔E ′

m,k) and Gm⊔(Fm / Gm) = {{x1}, . . . , {xm}}⊔H′
m,

Fm % Gm =
⋃

k({{xk}} ⊔ (E ′
m,k \ H′

m)). Thus, (Fm % Gm)|{x1},X\{x1} = E ′
m,1 \ H′

m.
Here, Z(E ′

m,1) = O(m2) and Z(H′
m) = Ω(2m/5/m2) for any order of elements, and

Z(E ′
m,1 \ H′

m) = Ω(2m/5/m4) for any order of elements by Lemma 8. Thus, by Lemma 14,
Z(Fm % Gm) = Ω(2m/5/m6) for any order of elements because it is a family of subsets of
a set with O(m2) elements.

Permit ⊘ and nonsubset ↗: We already have Fm ⊘ Gm = Cm \ Pm and Fm ↗ Gm = Pm

in the proof of Theorem 10. Since Z(Cm) = O(m3) and Pm = Ω(2m/m) for any order of
elements, Z(Cm \ Pm) = Ω(2m/m4) for any order of elements by Lemma 8.

Restrict △ and nonsuperset ↘: We have ({X} ⊔ (Cm \ Pm))|X,∅ = Cm \ Pm and ({X} ⊔
Pm)|X,∅ = Pm; see the proof of Theorem 10.

Maximal ↑ : In the proof of Theorem 11, we have F↑
m|∅,{w}∪X = Pm.

Minimal ↓: In the proof of Theorem 11, we have F↓
m|{w}∪X,∅ = Pm.

Minimal hitting set ♯: In the proof of Theorem 12, we already have F ♯
m = Pm.

Closure ∩: In the proof of Theorem 12, we have F∩
m ∩ Cm = Pm. Since Z(Cm) = O(m3) for

any order of elements, Z(F∩
m) = Ω(2m/poly(m)) for any order of elements.

3.4 Polynomially Bounded ZDDs
We complete the proof of this section by showing that the ZDD sizes of some families
appearing in the previous proofs are bounded by a polynomial of m. To prove the size bound,
we consider the following linear network model to distinguish whether a set is contained in
the family F . Note that the idea of a linear network model comes from Knuth’s book [13,
Theorem M], where it was used to prove the bound of BDD size. Suppose that the order of
elements is x1 < x2 < · · · < xn. There are n computational modules M1, . . . , Mn. Module
Mi receives an input of one bit indicating whether xi is included in the set. Module Mi

sends ai+1 bits of information to module Mi+1. Overall, every module Mi receives an input
xi and ai bits of information from Mi−1 and sends ai+1 bits of information to Mi+1. Since
module M1 has no preceding module, we set a1 = 0. The final module, Mn, outputs one bit
indicating whether the set is included in the family F . An overview of the linear network
model is drawn in Figure 4. The following lemma suggests that if we can construct a small
linear network for the family F , the ZDD size of F can be bounded.

▶ Lemma 15. For family F of subsets of {x1, . . . , xn}, assume that we can construct the
linear network model described above to distinguish whether a set is contained in F . Then,
the size of ZDD representing F is bounded by Z(F) ≤ 2 +

∑n
i=1 2ai .

Proof. For k = 1, . . . , n, we consider the number of distinct subfamilies F|X,Y , where
X ∪ Y = {x1, . . . , xk−1}. This is because by the node sharing rule, the number of nodes
labeled xk is upper-bounded by the number of possible distinct subfamilies.
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x1 x2 xn

M1

a2 bits

M2

a3 bits

· · ·
an bits

Mn Output

Figure 4 Schematic overview of linear network model.

We observe that the input to module Mi is ai bits. This means that, regardless of the
inclusion of x1, . . . , xk−1, the subfamily F|X,Y is completely determined by the information
of ai bits. Therefore, there are at most 2ai distinct subfamilies, yielding the result that the
number of nodes labeled xk is upper-bounded by 2ai . Since there are two terminal nodes ⊤
and ⊥, the overall ZDD size is bounded by Z(F) ≤ 2 +

∑n
i=1 2ai . ◀

By Lemma 15, we only have to consider a small linear network for every family.
Em,k in Section 3.1: The family Em,k is defined as {S ⊆ {y1, . . . , ym} | |S| = k, yk ∈ S}.

In judging whether S ∈ Em,k with a linear network, the module Mt is only concerned
with the number of elements from y1, . . . , yt in S and whether yk is in S. The former
information can be represented with ⌈log(m + 1)⌉ bits and the latter can be represented
with 1 bit. Thus, we can construct a linear network with at = ⌈log(m + 1)⌉ + 1 bits. By
Lemma 15, we have Z(Em,k) ≤ 2 + m2⌈log(m+1)⌉+1 = O(m2).

Qm,k in Section 3.1: Each of the families Qm,k (k = 1, . . . , 2m) is the family of subsets of
{y1, . . . , ym2} such that there is exactly one element from a set of m selected elements.
In constructing a linear network, the module Mt is only concerned with the number of
selected elements in S: zero, one, or more than one. This information can be represented
with 2 bits. Thus, we have Z(Qm,k) ≤ 2 + m222 = O(m2).

E ′
m,k in Section 3.2.2: The linear network for E ′

m,k = 2Y \ Em,k can be the same as that for
Em,k, except that the output is inverted. Thus, Z(E ′

m,k) = O(m2).
Cm in Section 3.2.3: The family Cm is defined as {S ⊆ {y1, . . . , ym2} | |S| = m}. Similar

to the case of Qm,k, every module only retains the number of elements from y1, . . . , yt in
S. Moreover, we should only count this number until m; if the count exceeds m, we can
immediately determine that S is not in Cm. This count value can be represented with
⌈log(m + 2)⌉ bits. Thus, we have Z(Cm) ≤ 2 + m22⌈log(m+2)⌉ = O(m3).

Tm,k in Section 3.2.3: For Tm,k = Cm \ Qm,k, we can construct a linear network by com-
bining the networks for Cm and Qm,k. We have ⌈log(m + 2)⌉ bits for Cm and 2 bits for
Qm,k. Thus, we have Z(Tm,k) ≤ 2 + m22⌈log(m+2)⌉+2 = O(m3).

We finally note that the ZDD sizes of the above families remain polynomial in m even if
the order of elements is different from y1 < y2 < · · · < ym < · · · < ym2 . Since the cardinality
constraint is symmetric, we can reuse the same linear network for different orders of elements.
The existence of specific elements can also be treated by changing the input that is watched.

3.5 Discussion
Finally, we give some discussions for the presented results. First, we argue theoretical results
for BDDs. As stated in Lemma 2, the sizes of BDD and ZDD differ only by a linear factor
of the size of the base item set. All the results in Section 3.2 have the same form that the
number of elements is O(poly(m)), the input ZDD sizes are O(poly(m)), and the output
ZDD size is exponential in m. Therefore, even if these families are represented by BDDs,
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the input BDD sizes are all O(poly(m)), and the output BDD sizes are all exponential in
m. Moreover, the output BDD sizes remain exponential in m for any order < of elements
since Lemma 2 holds for any order < of elements. This constitutes the theoretical result
that the family algebra operations in Table 1, except for the first four operations, cannot be
performed in polynomial time in the input BDD sizes.

Second, we discuss how often such exponential blow-up occurs. Although we rely on
specific families, the hidden weighted bit function Hm and the permutation function Pm, the
heart of the above proofs is that even a single operation may cause us to compute the union
or intersection of multiple subfamilies. Apart from these families, it is usual that taking the
union or intersection of multiple families leads to exponential blow-up. To imagine this, we
consider encoding a family described by polynomial-sized conjunctive normal form (CNF)
into BDD/ZDD. Every clause can be encoded into a polynomial-sized BDD/ZDD. Moreover,
if the entire CNF is encoded into BDD/ZDD, we can solve SAT, or even more difficult
#SAT, in linear time with respect to the size of BDD/ZDD [13]. However, it is a famous
fact that SAT and #SAT are in NP-complete and #P-complete, respectively, meaning that
they are believed not to be solved in polynomial time. This means that for many CNFs, the
BDD/ZDD after taking intersection of clauses does not remain polynomial-sized. Therefore,
apart from the specific examples used in the proof, there are many cases yielding the blow-up
of BDD/ZDD size after single family algebra operation.

Finally, we argue the limitation of some of the above results that the permutation function
is not such a “devilish” example. The permutation function is a family of subsets of a set with
O(m2) elements and its ZDD size can only be lower bounded by Ω(2m/poly(m)). Since the
ZDD size of the family of subsets of a set with O(m2) can be at most Ω(2m2

/poly(m)), it is far
from being the worst-case. We should investigate whether there is a family of sets generated
by restrict or similar operations whose ZDD size is lower bounded by Ω(αn/poly(n)), where
α > 1 and n is the number of elements in the base set.

4 Conclusion

We proved that the worst-case complexity of carrying out certain kinds of a family algebra
operation on BDDs/ZDDs once is lower bounded by an exponential factor. These include
all of the operations raised by Knuth [13, §7.1.4 Ex. 203,204,236,243] except for the basic
set operations. In particular, we resolved the controversy over the complexity of the join
operation, which had arisen prominently in past literature. We also resolved the open problem
regarding the worst-case complexity of the quotient operation.

Future directions include the followings. First, we only prove the lower-bound of the
complexity of carrying out a single operation. It should be investigated whether we can
obtain a non-trivial upper-bound of the complexity. Second, it is unknown whether a “double
recursion” procedure like those in Section 2.2 always leads to an exponential worst-case
complexity. It is important to investigate whether there are non-trivial operations that should
require a double recursion procedure even though the worst-case complexity is polynomial.
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