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Abstract
Oblivious RAM (ORAM) is a well-researched primitive to hide the memory access pattern of a
RAM computation; it has a variety of applications in trusted computing, outsourced storage, and
multiparty computation. In this paper, we study the so-called offline ORAM in which the sequence of
memory access locations to be hidden is known in advance. Apart from their theoretical significance,
offline ORAMs can be used to construct efficient oblivious algorithms.

We obtain the first optimal offline ORAM with perfect security from oblivious priority queues
via time-forward processing. For this, we present a simple construction of an oblivious priority queue
with perfect security. Our construction achieves an asymptotically optimal (amortized) runtime of
Θ(log N) per operation for a capacity of N elements and is of independent interest.

Building on our construction, we additionally present efficient external-memory instantiations of
our oblivious, perfectly-secure construction: For the cache-aware setting, we match the optimal I/O
complexity of Θ( 1

B
log N

M
) per operation (amortized), and for the cache-oblivious setting we achieve

a near-optimal I/O complexity of O( 1
B

log N
M

log logM N) per operation (amortized).
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1 Introduction

Introduced by Goldreich and Ostrovsky [16], oblivious RAM (ORAM ) conceals the memory
access pattern of any RAM computation. This prevents the leakage of confidential information
when some adversary can observe the pattern of memory accesses. We consider oblivious
RAM in the offline setting: This allows an additional pre-processing step on the access
pattern while still requiring that the access pattern is hidden from the adversary.

Offline ORAMs can be used to construct efficient oblivious algorithms in situations where
at least part of the memory access sequence is either known or can be inferred in advance. As
a motivating example, consider the classical Gale–Shapley algorithm for the stable matching
problem [15, 27]: In each round of the algorithm, up to n parties make a proposal according
to their individual preferences. The preferences must be hidden to maintain obliviousness,
and thus the memory access pattern may not depend on them. While it seems that the
standard algorithm makes online choices, in fact the preferences and the current matching
are known before each round, so the proposals can be determined in advance and an offline
ORAM can be used to hide the access pattern in each round.
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Many of the previous works on offline (and online) ORAMs focus on statistical and
computational security: While optimal offline ORAMs are known for computational and
statistical security [4, 29], the same is not true for perfect security. We close this gap and
obtain the first (asymptotically) optimal offline ORAM with perfect security. We derive our
construction from an oblivious priority queue.

For this, we discuss and analyze a construction of an oblivious priority queue simple
enough to be considered part of folklore. In fact, both the construction and its analysis can
be used in an undergraduate data structures course as an example of how to construct an
efficient oblivious data structure from simple building blocks. Our construction reduces the
problem to oblivious partitioning where an optimal oblivious algorithm [4] is known.

1.1 Oblivious Data Structures
Conceptually, (offline) ORAM and oblivious priority queues are oblivious data structures.
Oblivious data structures provide efficient means to query and modify data while not leaking
information, e. g., distribution of the data or the operations performed, via the memory
access pattern. There are three main applications:
Outsourced Storage. When storing data externally, oblivious data structures can be used

in conjunction with encryption. Encryption alone protects the confidentiality of the data
at rest, but performing operations may still leak information about queries or the data
itself via the access pattern [20].

Trusted Computing. When computing in trusted execution environments, oblivious data
structures safeguard against many memory-related side channel attacks [28].

(Secure) Multiparty Computation. In this setting, actors want to (jointly) compute a func-
tion without revealing their respective inputs to each other. Here, oblivious data structures
have been used to allow for data structure operations with sublinear runtime [32, 23].

1.1.1 Security Definition
In line with standard assumptions for oblivious algorithms [16], we assume the w-bit word
RAM model of computation. Let the random variable AddrOp(x) with

AddrOp(x) ∈ ({0, . . . , 2w − 1} × {Read, Write})∗ (1)

denote the sequence of memory probes for Op(x), i. e., the sequence of memory access
locations and memory operations performed by operation Op for input x. Access to a
constant number of registers (private memory) is excluded from the probe sequence.

For perfect oblivious security, we require that all data structure operation sequences of
length n produce the same memory access pattern:

▶ Definition 1 (Obliviousness with Perfect Security). We say that an (online) data structure
DN with capacity1 N and operations Op1, . . . , Opm is oblivious with perfect security iff, for
every two sequences of n operations

X = ⟨Opi1(x1), . . . , Opin(xn)⟩ and Y = ⟨Opj1(y1), . . . , Opjn(yn)⟩

with valid inputs xk, yk, the memory probe sequences are identically distributed, i. e.,

⟨AddrOpi1 (x1), . . . , AddrOpin (xn)⟩ ≡ ⟨AddrOpj1 (y1), . . . , AddrOpjn (yn)⟩ .

1 To hide the type of operation performed, in particular for intermixed Insert and Delete sequences, it
is assumed that the data structure has a fixed capacity N determined a priori. This assumption does
not limit any of our analyses, as the capacity can be adjusted using standard (doubling) techniques
with (amortized) constant asymptotic overhead per operation.
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Table 1 Oblivious priority queues supporting Insert, Min, and DeleteMin. Deletions are noted
as supported if an operation Delete, ModifyPriority, or DecreasePriority is available.

security runtime priv. memory deletion

perfectp O(log2 N)a O(1) no [32]
statistical O(log2 N) O(ω(1) · log N) no [33]
statistical O(log2 N) O(ω(1) · log N) yesr [23, Path ORAM variant]

perfect O(log2 N)a O(1) no [26]
statistical O(log N)a O(ω(1) · log N) yes [22]
statistical O(ω(1) · log N) O(1) yesr [29, Circuit variant]

perfect O(log2 N)a O(1) yesr [19]

perfect O(log N)a O(1) no new
p reveals the operation a amortized runtime complexity r requires an additional reference

The requirement of identical distribution in the above definition can be relaxed to
strictly weaker definitions of security by either allowing a negligible statistical distance of the
probe sequences (statistical security) or allowing a negligible distinguishing probability by a
polynomial-time adversary (computational security); see Asharov et al. [4] for more details.

Definition 1 immediately implies that the memory probe sequence is independent of
the operation arguments – and, by extension, the data structure contents – as well as the
operations performed (operation-hiding security). As a technical remark, we note that for
perfectly-secure data structure operations with determined outputs, the joint distributions of
output and memory probe sequence are also identically distributed. This implies that data
structures satisfying Definition 1 are universally composable [4].

1.1.2 Offline ORAM

The (online) ORAM is essentially an oblivious array data structure [24]. By using an ORAM
as the main memory, any RAM program can generically be transformed into an oblivious
program at the cost of an overhead per memory access.

The offline ORAM we are considering here, however, is given the sequence I of access
locations in advance. While this allows pre-computations on I, the probe sequence must still
hide the operations and indices in I. In anticipation of the offline ORAM construction in
Section 3, we take a similar approach as Mitchell and Zimmerman [26] and define an offline
ORAM as an online oblivious data structure with additional information:

▶ Definition 2 (Offline ORAM). An offline ORAM is an oblivious data structure DN that
maintains an array of length N under an annotated online sequence of read and write
operations:
Read(i, τ ) Return the value stored at index i in the array.
Write(i, v′, τ ) Store the value v′ in the array at index i.
The annotation τ indicates the time-stamp of the next operation accessing index i.

Note that this definition implies that DN can also be used in an online manner if the
time-stamps τ of the next operation accessing the index i are known. When discussing the
offline ORAM construction in Section 3, we show how to use sorting and linear scans to
compute the annotations τ from the sequence I of access locations given in advance.

ISAAC 2024
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Table 2 Best known overhead bounds for online and offline ORAMs with N memory cells, a
constant number of private memory cells, and standard parameters [24].

perfect security statistical security comput. security

online Ω(log N) [24] Ω(log N) [24] Ω(log N) [24]
O(log3 N/ log log N) [11] O(log2 N) [10] O(log N)p [5]

offline
Ω(log N)i [16] Ω(log N)i [16, 8] Ω(1) trivial [8]

O(log2 N)a e. g., via [26] O(ω(1) · log N) [29] O(log N)p [5]
O(log N)a new

p assuming a pseudo-random function family i assuming indivisibility [8] a amortized

1.2 Previous Work
Oblivious Priority Queues. Because of their many algorithmic applications, oblivious
priority queues have been considered in a number of previous works. We provide an overview
of previous oblivious priority queue constructions in Table 1.

Jacob et al. [21] show that a runtime of Ω(log N) per operation is necessary for oblivious
priority queues. Their lower bound holds even when allowing a constant failure probability
and relaxing the obliviousness to statistical or computational security.

The first oblivious priority queue construction due to Toft [32] is perfectly-secure and has
an amortized runtime of O(log2 N), but reveals the operation performed and lacks operations
to delete or modify arbitrary elements. Subsequent perfectly-secure constructions [26, 19]
offer operation-hiding security or support additional operations, but do not improve the
suboptimal O(log2 N) runtime. A different line of work considers oblivious priority queues
with statistical security. Jafargholi et al. [22] and, subsequently, Shi [29] both present
constructions with an optimal Θ(log N) runtime. All statistically secure priority queue
constructions [33, 23, 22, 29] are randomized; many [33, 23, 29] also rely on tree-based
ORAMs (e. g., Path ORAM [30] or Circuit ORAM [10]) in a non–black-box manner.

Offline ORAMs. Though much of the research focuses on online ORAMs, offline ORAMs
have been explicitly considered in some previous works [26, 8, 22, 29]. We provide an overview
of the best known upper and lower bounds for both online and offline ORAM constructions
with perfect, statistical, or computational security in Table 2.

Goldreich and Ostrovsky [16] prove a lower bound on the overhead of Ω(log N) for (online)
ORAMs with perfect security (assuming indivisibility). This bound also applies to offline
ORAMs and constructions with statistical security [8].

There is a generic way to construct offline ORAMs from oblivious priority queues (see
Section 3). Via their priority queue construction, Shi [29] obtains an optimal offline ORAM
with statistical security for a private memory of constant size. For computational security,
the state-of-the-art online ORAM construction [5] is simultaneously the best known offline
construction (asymptotically). While the upper bounds for statistical and computational
security match the (conjectured) Ω(log N) lower bound, prior to our work there remained a
gap for perfect security.2

2 Boyle and Naor [8] show how to construct an offline ORAM with overhead O(log N): In addition to the
access locations, their construction must be given the operands of the write operations in advance, i. e.,
the sequence of values to be written. It thus does not fit our more restrictive Definition 2.
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Figure 1 Structure of the oblivious priority queue: Each level i ∈ {0, . . . , ℓ − 1} consists of a
down-buffer Di and an up-buffer Ui half the size of Di.

1.3 Contributions
Our work provides several contributions to a better understanding of the upper bounds of
perfectly-secure oblivious data structures:

As a main contribution, we present and analyze an oblivious priority queue construction
with perfect security. This construction is conceptually simple and achieves the optimal
Θ(log N) runtime per operation amortized.
In particular, our construction improves over the previous statistically-secure construc-
tions [22, 29] in that we eliminate the failure probability (perfect security with perfect
correctness) and achieve a strictly-logarithmic runtime for O(1) private memory cells.3
The priority queue implies an optimal Θ(log N)-overhead offline ORAM with perfect
security, closing the gap to statistical and computational security in the offline setting.
We show that these bounds hold even for a large number n of operations, i. e., n = Nω(1).
We also provide improved external-memory oblivious priority queues: Compared to the
I/O-optimal state-of-the-art [22], our cache-aware construction achieves perfect security
and only requires a private memory of constant size.
In the cache-oblivious setting, our construction achieves near-optimal I/O-complexity for
perfect security and a private memory of constant size. We are not aware of any previous
oblivious priority queues in the cache-oblivious setting.

2 Oblivious Priority Queue from Oblivious Partitioning

An oblivious priority queue data structure maintains up to N elements and must support at
least three non-trivial operations prescribed by the abstract data type PriorityQueue:
Insert(k, p). Insert the element ⟨k, p⟩ with priority p.
Min(). Return the element ⟨k, pmin⟩ with the minimal priority pmin.
DeleteMin(). Remove the element ⟨k, pmin⟩ with minimal priority pmin.
We assume that both the key k and the priority p fit in a constant number of memory cells
and that the relative order of two priorities p, p′ can be determined obliviously in constant
time; larger elements introduce an overhead factor in the runtime. To keep the exposition
simple, we assume distinct priorities. This assumption can be removed easily, see Section 2.2.

Figure 1 shows the structure of our solution: In a standard data structure layout, it has
ℓ ∈ Θ(log N) levels of geometrically increasing size. Each level i consists of a down-buffer Di

and an up-buffer Ui, both of size Θ(2i). Insert inserts into the up-buffer U0 and DeleteMin
removes from the down-buffer D0. Each level i is rebuilt after 2i operations, moving elements
up through the up-buffers and back down through the down-buffers. The main idea guiding
the rebuilding is to ensure that all levels j < i can support the next operations until level i

is rebuilt; we later formalize this as an invariant for the priority queue (see Lemma 4).

3 For a private memory of constant size, the construction of Shi [29] requires an additional ω(1)-factor in
runtime to achieve a negligible failure probability.

ISAAC 2024
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Oblivious Building Blocks. For our construction, we need an algorithm to obliviously
permute a given array A of n elements such that the k smallest elements are swapped to the
front, followed by the remaining n− k elements. We refer to this problem as k-selection.

To obtain an efficient algorithm for k-selection, we use an oblivious modification of the
classical (RAM) linear-time selection algorithm [7] as sketched by Lin et al. [25, full version,
Appendix E.2]. This reduces k-selection to the partitioning problem (also called 1-bit sorting).
The oblivious k-selection deviates from the classical algorithm in two respects [25]:

First, it is necessary to ensure that the partitioning step is oblivious. For this, instead of
the algorithms proposed by Lin et al., we use the optimal oblivious partitioning algorithm
of Asharov et al. [4, Theorem 5.1].4 This allows us to obtain a linear-time algorithm for
k-selection.
Second, the relative position of the median of medians among the elements cannot be
revealed as this would leak information about the input. To address this, Lin et al. propose
over-approximating the number of elements and always recursing with approximately 7n

10
elements.

▶ Corollary 3 (Oblivious k-Selection via [25, 4]). There is a deterministic, perfectly-secure
oblivious algorithm for the k-selection problem with runtime O(n) for n elements.

We describe the algorithm in detail and prove its correctness in the full version [31].

Comparison with Jafargholi et al. [22]. Conceptually, our construction is similar to that
of Jafargholi et al. [22]: In both constructions, the priority queue consists of levels of
geometrically increasing size with lower-priority elements moving towards the smaller levels.
Structuring the construction so that larger levels are rebuilt less frequently is a standard
data structure technique to amortize the cost of rebuilding.

The main difference lies in the rebuilding itself: In the construction of Jafargholi et al.,
level i is split into 2i nodes; overall, the levels form a binary tree. The elements are then
assigned to paths in the tree based on their key [22]. While this allows deleting elements by
their key efficiently, this inherently introduces the probability of “overloading” certain nodes,
reducing the construction to statistical security (with a negligible failure probability).

We instead use k-selection for rebuilding; this allows us to maintain both perfect cor-
rectness and security. Unfortunately, this comes at the cost of a more expensive Delete
operation: Since we maintain no order on the keys within each level, it is not possible to
efficiently delete arbitrary elements by their key. We note that deleting arbitrary elements is
not required for our offline ORAM construction.

2.1 Details of the Construction
The priority queue consists of ℓ := ⌈log2 N⌉ levels, each with a down-buffer Di of 2max{1,i}

elements and an up-buffer Ui of 2max{0,i−1} = |Di|
2 elements. An element is a pair ⟨k, p⟩ of

key k and priority p; each buffer is padded with dummy elements to hide the number of
“real” elements. Initially, all elements in the priority queue are dummy elements. We refer to
a buffer containing only dummy elements as empty.

The elements are distributed over the levels via a rebuilding procedure: Level i is rebuilt
after exactly 2i operations. Let ∆i be the remaining number of operations until level i is
rebuilt (with ∆i = 2i initially). After each operation, all counters ∆i are decremented by

4 Note that Asharov et al. refer to the partitioning problem as compaction. We use the term partitioning
to stress that all elements of the input are preserved which is necessary for our definition of k-selection.
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< Dm
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< Dm+1

Um+1

· · ·
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elements with ranks 0 . . . 2m+1 − 1

rem. elements

Figure 2 Distribution of the elements when rebuilding level m: The up to 2m+1 smallest elements
in the levels 0, . . . , m are distributed over the down-buffers of the first m levels. The up to 2m

remaining elements are inserted into the (empty) up-buffer Um+1 of level m + 1.

one and all levels i with ∆i = 0 are rebuilt with Rebuild(m) for m := max{i < ℓ |∆i = 0};
note that ∆i = 0 if and only if i ≤ m. The counter ∆i of each rebuilt level i ≤ m is reset to
2i, so ∆i > 0 for every level i after each operation.

We will show the correctness of the construction with three invariants (a)–(c):

▶ Lemma 4 (Invariants). Before each operation of the priority queue, the following holds:
(a) The priority queue contains the correct elements, i. e., E =

⋃
i<ℓ(Ui∪Di) where E denotes

the elements that should be contained in the priority queue (with standard semantics).
(b) The up-buffer U0 is empty, i. e., contains exactly one dummy element.
(c) For all elements e := ⟨k, p⟩ ∈ Di ∪ Ui with i ≥ 1, it holds that ∆i ≤ rank(e) where

rank(⟨ · , p⟩) := |{⟨ · , p′⟩ ∈ E | p′ < p}| is the (unique) rank of p in the priority queue.

The most important invariant (c) guarantees that each level i ≥ 1 is rebuilt before any
of its elements are required for Min/DeleteMin in D0. In turn, this implies that the ∆i

smallest elements potentially required before rebuilding level i are stored in the buffers on
levels 0, . . . , i− 1. Formally, this follows since ∆j ≤ ∆i for all j < i.

For simplicity of exposition, we ignore the details of the rebuilding step for the time being
and discuss how the three priority queue operations can be implemented while maintaining
the invariants (a) and (c) of Lemma 4:
Insert(k, p). The dummy in U0 is replaced with the new element ⟨k, p⟩. After the operation,

the priority queue contains the elements E ′ = E ∪ {⟨k, p⟩} =
⋃

i<ℓ(Ui ∪Di). Inserting a
new element does not decrease the rank of any element while all counters ∆i decrease;
this implies that invariant (c) is maintained.

Min(). The minimal element emin with rank(emin) = 0 must be contained in level 0 since
∆i > 0 for all i > 0 before each operation. Since U0 is empty, emin is one of the two
elements in D0. After the operation, the elements E ′ = E =

⋃
i<ℓ(Ui ∪Di) remain the

same. Invariant (c) is maintained since the ranks of all elements e ∈ E remain unchanged.
DeleteMin(). For this operation, we replace the minimal element emin ∈ D0 with a

dummy element. After the operation, the priority queue contains the elements E ′ =
E \{emin} =

⋃
i<ℓ(Ui∪Di). Removing the minimum reduces the rank of all other elements

by one, but invariant (c) is maintained since all counters ∆i also decrease.

For the operation-hiding security, we access memory locations for all three operations but
only perform updates for the intended operation. For example, DeleteMin will access both
U0 and D0, but only actually overwrite the minimal element in D0 with a dummy element.
We provide pseudocode for the operations in the full version [31].

We now turn to describing Rebuild(m) (Algorithm 1). As shown in Figure 2, this
procedure processes all elements in the levels 0, . . . , m: The non-dummy elements are
distributed into D0, . . . , Dm, Um+1 and the up-buffers U0, . . . , Um are emptied, i. e., filled

ISAAC 2024
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Algorithm 1 Rebuild the levels 0, . . . , m in the oblivious priority queue. Let A ∥ B denote the
concatenation of two buffers A and B; A0...i denotes the concatenation A0 ∥ · · · ∥ Ai.

1: procedure Rebuild(m)
2: KSelect(2m+1, D0...m ∥ U0...m) ▷ move 2m+1 smallest elements to D0...m

3: if m is not the last level then
4: Um+1 ← U0...m ▷ copy the elements in U0...m to Um+1
5: U0...m ← ⟨⊥, . . . ,⊥⟩ ▷ overwrite U0...m with dummy elements
6: for i← m− 1, . . . , 0 do
7: KSelect(2i+1, D0...i+1) ▷ move 2i+1 smallest elements to D0...i

8: for i← 0, . . . , m do
9: ∆i ← 2i ▷ reset counters

with dummy elements. The down-buffers D0, . . . , Dm collectively contain up to 2m+1 non-
dummy elements. Additionally, the up-buffers U0, . . . , Um collectively contain up to 2m

non-dummy elements. All these elements are distributed over the buffers D0, . . . , Dm and
Um+1 such that

D0 contains the two smallest elements (with ranks 0 and 1),
the other Di (for i ≤ m) each contain the elements with ranks 2i, . . . , 2i+1 − 1,5 and
Um+1 contains all remaining elements.

For this, we order the elements by their priority p; dummy elements have no priority and are
ordered after non-dummy elements.

We can now prove that the overall construction is correct by showing that Rebuild(m)
with m := max{i < ℓ |∆i = 0} maintains the invariants (a)–(c):

Proof of Lemma 4. All invariants trivially hold for the empty priority queue. As described
above, the operations Insert, Min, and DeleteMin maintain invariants (a) and (c). After
each operation, all counters ∆i are decremented and the levels i with ∆i = 0 are rebuilt. We
now show that all invariants hold after rebuilding.

Invariants (a) and (b): E =
⋃

i<ℓ(Ui ∪ Di) and U0 is empty. We first show that prior
to Rebuild(m) in each operation where m is not the last level, the up-buffer Um+1 is empty.
This can be seen by considering the two possible cases:

If no more than 2m operation have been performed overall, the level m + 1 has never
been accessed. In this case Um+1 is empty since it was empty initially.
Otherwise, if more than 2m operations have been performed, the up-buffer Um+1 was
emptied 2m operations before by Rebuild(m′) for some m′ > m (and not accessed since).

This means that by copying the elements in U0...m into Um+1 (Line 4), only dummy elements
are being overwritten and invariant (a) is maintained.

In case m is the last level (m = ℓ− 1), after Line 2 the up-buffers U0, . . . , Um are empty
iff there no more than 2m+1 = 2ℓ ≥ N elements in the data structure. This is guaranteed by
the capacity bound N . Thus, the up-buffer U0 is empty after each operation.

5 Even if there are more than 2m+1 elements in the priority queue overall, the buffer Dm may still end
up (partially) empty after rebuilding. This is no threat to the correctness, since invariant (c) guarantees
that level m + 1 will be rebuilt before requiring the elements with ranks ≥ 2m.
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Invariant (c): ∆i ≤ rank(e) for all e ∈ Ui ∪ Di with i ≥ 1. Next, we show that
rebuilding maintains the rank invariant for all redistributed elements. Using k-selections to
redistribute the elements makes sure that a buffer in level i receives non-dummy elements
only if all D0, . . . , Di−1 have been filled to capacity. Consider any level i ≥ 1: If an element
e := ⟨k, p⟩ is redistributed into level i, exactly 2i =

∑
j<i|Dj | elements ⟨ · , p′⟩ with p′ < p

must have been redistributed into lower levels, so 2i ≤ rank(e). Thus, for all non-dummy
elements e inserted into a level i ≥ 1, it holds that ∆i ≤ 2i ≤ rank(e). For elements that
remain in a level i > m, invariant (c) is trivially maintained. ◀

With this, we obtain our perfectly-secure priority queue construction:

▶ Theorem 5 (Optimal Oblivious Priority Queue). There is a deterministic, perfectly-secure
oblivious priority queue with capacity N that supports each operation in amortized O(log N)
time and uses O(N) space.

Proof. Apart from the rebuilding, the runtime for Insert, Min, and DeleteMin is constant.
The amortized runtime per operation for Rebuild is bounded by

ℓ−1∑
m=0

TKSelect(2m+1 + 2m) +
∑m−1

i=0 TKSelect(2i+2) + c · 2m

2m

≤
ℓ−1∑
m=0

O(2m)
2m

∈ O(ℓ) = O(log N) .

The space bound follows immediately since all algorithmic building blocks have a linear
runtime and the combined size of all up- and down-buffers is linear in N .

By using the deterministic, perfectly-secure algorithm for k-selection (Corollary 3), the
obliviousness follows since the access pattern for each operation is a deterministic function of
the capacity N and the number of operations performed so far. ◀

Due to the lower bound for oblivious priority queues [21], this runtime is optimal. If the
type of operation does not need to be hidden, Min can be performed in constant time since
rebuilding is only required for correctness when adding or removing an element. By applying
Rebuild(ℓ− 1) directly, the priority queue can be initialized from up to N elements in O(N)
time.

2.2 Non-Distinct Priorities
For non-distinct priorities, we want to ensure that ties are broken such that the order of
insertion is preserved, i. e., that elements inserted earlier are extracted first. For this, we
augment each element with the time-stamp t of the Insert operation and order the elements
lexicographically by priority and time-stamp. This only increases the size of each element by
a constant number of memory cells and thus does not affect the runtime complexity.

It remains to bound the size of the time-stamp for a super-polynomial number of
operations:6 Here we note that when rebuilding the last level (Rebuild(ℓ − 1)), we can
additionally sort all elements by time-stamp and compress the time-stamps to the range
{0, . . . , N−1} (preserving their order). We then assign time-stamps starting with t = N until

6 Shi [29, Section III.E] also address this issue, but for our amortized construction we can use a simpler
approach based on oblivious sorting.

ISAAC 2024



55:10 Optimal Offline ORAM with Perfect Security via Simple Oblivious Priority Queues

Algorithm 2 Algorithm to perform an operation Op ∈ {Read, Write} in the offline ORAM at
the access location i; v′ is the value to be written (v′ = ⊥ for Op = Read). The time-stamp t is
incremented after each access (with t = 1 initially).

1: procedure Access(Op, i, v′)
2: ⟨v, tnext⟩ ← Q.Min()
3: Q.DeleteMin() iff tnext = t; perform a dummy operation iff tnext ̸= t

4: v ←


v iff Op = Read ∧ tnext = t,
vdefault iff Op = Read ∧ tnext ̸= t,
v′ iff Op = Write

5: Q.Insert(v, T [t− 1]); t← t + 1 ▷ T [t− 1] = τt

6: return v

the last level is rebuilt again. This ensures that 2N is an upper bound for the time-stamps,
so O(log N) bits suffice for each time-stamp. With an (optimal) oblivious O(n log n)-time
sorting algorithm [2], the additional amortized runtime for sorting is bounded by

1
2ℓ−1 · TSort(N) ∈ Θ(log N) (2)

and does not affect the overall runtime complexity.

3 Offline ORAM from Oblivious Priority Queues

As mentioned in the introduction, an offline ORAM is an oblivious array data structure given
the sequence I = ⟨i1, . . . , in⟩ of access locations in advance. While an offline ORAM may
pre-process I to perform the operations more efficiently afterward, the data structure must
still adhere to Definition 1, i. e., the memory probes must be independent of the values in I.

An offline ORAM can be constructed from any oblivious priority queue using a technique
similar to time-forward processing [12]. We describe our construction for N memory cells
below: In Section 3.1 we show how to realize Read(it) and Write(it, v′

t); there we assume
that the time τt at which the index it is accessed next is known. In Section 3.2 we then show
how to pre-process I to derive these values τt.

Jafargholi et al. [22] describe an alternative offline ORAM construction. We simplify the
construction by decoupling the information τt from the values written to the offline ORAM.

3.1 Online Phase: Processing the Operations
For the offline ORAM with N cells, initialize a priority queue Q with capacity N ; the
annotations T = ⟨τ1, . . . , τn⟩ as well as the current time t are stored alongside the priority
queue. The procedure for processing the t-th operation Read(it) or Write(it, v′

t) is shown
in Algorithm 2. Some fixed value vdefault is used as the initial value of all ORAM cells.

It is easy to verify that the resulting construction is correct given T and oblivious given
a perfectly-secure priority queue Q. For the array access T [t− 1] in Line 5, note that t is the
number of the current operation, so the access can be performed “in the clear” without a
linear scan; this simplifies the construction w. r. t. Jafargholi et al. [22].

3.2 Offline Phase: Pre-Processing
To obtain the annotations T = ⟨τ1, . . . , τn⟩ we now describe how to pre-process the sequence
I = ⟨i1, . . . , in⟩ ∈ {0, . . . , N − 1}n of memory access locations.
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· · · · · · · · · · · ·⟨i1, 1⟩ ⟨iN , N⟩ ⟨i2N , 2N⟩ ⟨in, n⟩I =
block 1 block 2 block m := ⌈ n

N ⌉

⟨0, n + 1⟩
⟨1, n + 1⟩
⟨2, n + 1⟩

...

τm(0)
τm(1)
τm(2)

...

⟨0, τ3(1)⟩
⟨1, τ3(2)⟩
⟨2, τ3(2)⟩

...

· · ·

τ2(0)
τ2(1)
τ2(2)

...

⟨0, τ2(1)⟩
⟨1, τ2(2)⟩
⟨2, τ2(2)⟩

...

A :

processing in reverse

Figure 3 Pre-processing the sequence of memory access locations I when n is super-polynomial
in N . In this figure, ⟨i, t⟩ denotes a tuple of index i and time-stamp t while τj(i) denotes the
time-stamp at which the index i is accessed next in block j.

The basic pre-processing proceeds as follows:
1. Annotate each index it with the time-stamp t.
2. Obliviously sort the indices I lexicographically by it and t.
3. Scan over indices in reverse, keeping track of the index i and the time-stamp t, and

annotate each index it with the time-stamp τt it is accessed next (or some value larger
than n if there is no next access).

4. Obliviously sort the indices I by t and discard everything but the annotations τ .
This can be done in amortized O(log n) time per index with an O(n log n)-time oblivious
sorting algorithm [2] and results in the annotations T = ⟨τ1, . . . , τn⟩.

However, when the number of operations n is super-polynomial in the capacity N , i. e.,
when n ∈ ω(N c) for all constants c, the time per index exceeds the optimal runtime of
O(log N). In this case, the pre-processing needs to be performed more carefully as shown
in Figure 3 to maintain the amortized runtime of O(log N): We divide the sequence I into
blocks of size N . Additionally, we maintain an auxiliary block A with – for each index
i ∈ {1, . . . , N} – the time-stamp τ at which index i is accessed next. Initially (for the last
block), we initialize the time-stamp τ for each index i to some value greater than n.

The time-stamps τt are then determined block by block, from the last to the first. When
processing each block, we update the time-stamps τ in A for the block processed next. For
this, we can process the O(N) elements of each block (and A) as described above.

Since we process O(N) elements for each of the O(⌈ n
N ⌉) blocks by sorting and scanning,

the pre-processing has a runtime of O(n log N) overall. This maintains the desired runtime
of O(log N) per operation amortized.

With our priority queue construction from Section 2, we obtain the following:

▶ Theorem 6 (Optimal Offline ORAM). There is a deterministic, perfectly-secure offline
ORAM with capacity N that has amortized O(log N) overhead and uses O(N + n) space.

Note that in contrast to the optimal statistically-secure constructions [22, 29], our offline
ORAM maintains security and correctness for operation sequences of arbitrary length, e. g.,
when n is super-polynomial in N .

4 External-Memory Oblivious Priority Queue

In many applications of oblivious algorithms and data structures, e. g., for outsourced
storage and for trusted computing in the presence of cache hierarchies, access to the main
memory incurs high latencies. In these applications, the complexity of an algorithm is more
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Table 3 Best known I/O upper bounds for obliviously partitioning n elements.

cache-aware cache-agnostic

statistical security O(
⌈

n
B

⌉
)t, w [17] O(

⌈
n
B

⌉
)t, w [25]

perfect security O(
⌈

n
B

⌉
logM n) [25] O(

⌈
n
B

⌉
logM n) [25]

O(
⌈

n
B

⌉
) new, via [4] O(

⌈
n
B

⌉
log logM n)t new, via [4]

t assuming a tall cache (M ≥ B1+ε) w assuming a wide cache-line (B ≥ logε n)

appropriately captured by the number of cache misses. This motivates the study of oblivious
algorithms in the external-memory [1] and cache-oblivious [14] models; in this section we
refer to these as cache-aware and cache-agnostic algorithms.

In this section, we instantiate I/O-efficient variants of our priority queue construction
with perfect security and a private memory of constant size. For this, we sketch how to
obtain I/O-efficient partitioning algorithms with perfect security in Section 4.1. We then
analyze the I/O-efficiency of our priority queue construction in Section 4.2.

External-Memory Oblivious Algorithms. In cache-aware and cache-agnostic models, the
CPU operates on the data stored in an internal memory (cache) of M memory words. Blocks
(cache-lines) of B memory words can be transferred between the internal and a large external
memory (I/O operations). The number of these I/O operations, depending on the problem
size n as well as M and B, is the primary performance metric for external algorithms [1].

Cache-aware algorithms depend on the parameters M and B and explicitly issue the I/O
operations. In contrast, cache-agnostic algorithms are unaware of the parameters M and B;
here the internal memory is managed “automatically” through a replacement policy [14]. We
assume an optimal replacement policy and a tall cache, i. e., M ≥ B1+ε for a constant ε > 0;
both are standard assumptions [14, 9].

For oblivious external-memory algorithms, we apply the Definition 1 to cache-aware
and cache-agnostic algorithms. In both cases we assume that the internal memory is
conceptually distinct from the constant-size private memory. That is, we guarantee that
memory words both in the internal memory and within a block are accessed in an oblivious
manner (strong obliviousness [9]). For this reason, our security definition remains unchanged.
Note that this implies that the block access pattern is also oblivious, i. e., independent of the
operations/inputs as in Definition 1.

Previous Work. While there is a line of research explicitly considering cache-aware [17, 18]
and cache-agnostic [9, 25] oblivious algorithms, most works on oblivious algorithms consider
internal algorithms with runtime and bandwidth overhead as performance metrics. To the
best of our knowledge, cache-agnostic oblivious priority queues have not been explicitly
considered in the literature. Implicitly, I/O-efficiency is sometimes [21, 22] treated through
parameters: An oblivious algorithm with (B · w)-width memory words and M · w bits of
private memory can equivalently be stated as an oblivious external-memory algorithm with
M words of internal memory and blocks of size B. We note that this re-parameterization
does not allow distinguishing internal and private memory and that the resulting algorithms
are inherently cache-aware.
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Algorithm 3 Cache-aware oblivious partitioning algorithm. For simplicity, we assume m ≥ 2.

1: procedure CacheAwarePartitionP (A)
2: conceptually partition A into m := ⌈ |A|

B ⌉ blocks Gi of B consecutive elements each
(where the last block may have fewer elements)

3: for i← 0, . . . , m− 1 do PartitionP (Gi)
4: for i← 1, . . . , m− 2 do PurifyHalfP (Gi−1, Gi) ▷ consolidate the blocks
5: PartitionP ′ : X 7→ P (X[0])(⟨G0, . . . , Gm−3⟩) ▷ apply Partition to the blocks
6: Reverse(Gm−1); PartBitonicP (Gm−2 ∥Gm−1)
7: Reverse(Gm−2 ∥Gm−1); PartBitonicP (G0 ∥ · · · ∥Gm−1)

This equivalence allows us to restate upper and lower bounds in terms of external-memory
algorithms: Jacob et al. [21] show that Ω( 1

B log N
M ) I/O operations amortized are necessary

for a cache-aware oblivious priority queue; this also applies to cache-agnostic oblivious priority
queues.7 This bound is matched by Jafargholi et al. [22], but the construction is cache-aware,
requires Ω(log N) words of private memory, and is randomized with statistical security.

The optimal internal partitioning algorithm [4] has – due to the use of expander graphs
– an oblivious, but highly irregular access pattern and is thus not I/O-efficient. There are
external oblivious partitioning algorithms [17, 25], but they are either only statistically secure
or inefficient. We provide an overview of existing partitioning algorithms in Table 3.

4.1 External-Memory Oblivious Partitioning

For I/O-efficient instantiations of our priority queue, we need I/O-efficient partitioning
algorithms. For this reason, we show how to construct an optimal cache-aware and a near-
optimal cache-agnostic oblivious partitioning algorithm, respectively, with perfect security.
Remember that for partitioning with a predicate P , we need to permute the elements such
that all elements x with P (x) = 0 precede those with P (x) = 1.

We mainly rely on the optimal (internal) oblivious partitioning algorithm [4, Theorem 5.1]
(Partition) and standard external-memory techniques. We also use oblivious building
blocks from the previous work by Lin et al. [25, full version, Appendix C.1.2]:
PurifyHalfP (A, B). This procedure is given two partitioned blocks A and B with
|A| = |B| and permutes the elements such that A is pure, i. e., either only consists of
elements x with P (x) = 0 or only consists of elements with P (x) = 1, and B is again
partitioned.

PartBitonicP (A). This procedure is given a bitonically partitioned [25] array A, i. e., an
array where all elements x with P (x) = 1 or all elements with P (x) = 0 are consecutive,
and partitions A.

Both building blocks are deterministic with perfect security, cache-agnostic, and have a linear
runtime of O(⌈ n

B ⌉) [25].
Our cache-aware partitioning algorithm is shown in Algorithm 3. The idea is to split A

into blocks of size B, partition each block, and then apply the internal partitioning algorithm
to the blocks.

7 In contrast, Θ( 1
B log M

B

N
B ) I/O operations amortized are sufficient for non-oblivious priority queues [3].

Here, the base of the logarithm is not constant but depends on the parameters M , B.
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Algorithm 4 Cache-agnostic oblivious partitioning algorithm for M ≥ B1+ε. We assume m ≥ 2.

1: procedure CacheAgnosticPartitionP (A)
2: if n ≤ 4 then
3: compact A via oblivious sorting
4: else
5: conceptually partition A into m := ⌈ |A|

k ⌉ groups Gi of k := ⌈ 1+ε
√
|A|⌉ consecutive

elements (where the last group may have fewer elements)
6: for i← 0, . . . , m− 1 do CacheAgnosticPartitionP (Gi)
7: for i← 1, . . . , m− 2 do PurifyHalfP (Gi−1, Gi) ▷ consolidate the groups
8: PartitionP ′ : X 7→ P (X[0])(⟨G0, . . . , Gm−3⟩) ▷ apply Partition to the groups
9: Reverse(Gm−1); PartBitonicP (Gm−2 ∥Gm−1)

10: Reverse(Gm−2 ∥Gm−1); PartBitonicP (G0 ∥ · · · ∥Gm−1)

▶ Corollary 7 (Optimal Cache-Aware Oblivious Partitioning via [4, 25]). There is a cache-aware,
deterministic, perfectly-secure oblivious partitioning algorithm that requires O(⌈ n

B ⌉) I/O
operations for n elements.

Proof. For the correctness, note that after Line 4 all blocks except Gm−2 and Gm−1 are
pure. By applying the internal partitioning algorithm to the blocks in Line 5, all 0-blocks are
swapped to the front. The partitioning is completed by first merging the partitions Gm−2
and Gm−1 in Line 6 and then merging both with the rest of the blocks in A.

The partitioning of each individual block is performed in internal memory and thus
requires O(⌈ n

B ⌉) I/O operations overall. The consolidation and merging of the partitions
can also be performed with O(⌈ n

B ⌉) I/O operations [25]. For the partitioning in Line 5,
the I/O-efficiency follows from the construction of the internal partitioning algorithm [4,
Theorem 5.1]: The algorithm operates in a “balls-in-bins”-manner, i. e., the elements are
treated as indivisible. The algorithm performs a linear number of operations on ⌊ n

B ⌋ elements,
where each element has size O(B). This leads to an I/O complexity of O(⌈ n

B ⌉) overall.
The obliviousness follows since the access pattern for each operation is a deterministic

function of the input size n := |A|. ◀

For the cache-agnostic partitioning algorithm, the elements can be processed similarly.
Here the parameter B is unknown, so the idea is to recursively divide into smaller groups
until a group has size ≤ B. The resulting algorithm is shown in Algorithm 4.

▶ Corollary 8 (Cache-Agnostic Oblivious Partitioning via [4, 25]). Assuming a tall cache of
size M ≥ B1+ε for a constant ε > 0, there is a cache-agnostic, deterministic, perfectly-
secure oblivious partitioning algorithm that requires O(

⌈
n
B

⌉
log logM n) I/O operations for n

elements.

Proof. The correctness of the base case is obvious. For the recursive case, the algorithm
proceeds as the cache-aware Algorithm 3 above, so the correctness can be seen as in
Corollary 7.

For the I/O complexity of Line 8, we distinguish two cases:
k ≤ B. In this case B ≥ k ≥ 1+ε

√
n, so n ≤ B1+ε ≤M with the tall cache assumption. This

means that the problem instance fits in the internal memory, and the step thus has an
I/O complexity of O(

⌈
n
B

⌉
).

k > B. Here we can rely on the same insight as for the cache-aware partitioning, i. e., that
the internal algorithm performs O( n

k ) operations on elements of size k ≥ B. This leads
to an I/O complexity of O( n

k ·
⌈

k
B

⌉
) = O( n

B ).
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The other steps have an I/O complexity of O(
⌈

n
B

⌉
) as in the cache-aware algorithm.

On depth i of the recursion tree, the instance size is

ni := (1+ε)i√
n so that on depth i ≥ log1+ε

log n

log M
∈ Θ(log logM n)

the instances fit in the internal memory and no further I/O operations are required for the
recursion. This leads to an I/O complexity of O(

⌈
n
B

⌉
log logM n) overall.

As in Corollary 7, the obliviousness follows since the access pattern for each operation is
a deterministic function of the input size n := |A|. ◀

4.2 Analysis of the External-Memory Oblivious Priority Queue
As for the internal algorithm introduced in Section 2, we can obtain efficient external
oblivious algorithms for k-selection via partitioning [25, full version, Appendix E.2]. We thus
obtain cache-aware and cache-agnostic algorithms for k-selection with the same asymptotic
complexities as the partitioning algorithms described above.

With these external algorithms, we can analyze the construction described in Section 2
in the cache-aware and cache-agnostic settings:

▶ Theorem 9 (External-Memory Oblivious Priority Queues). There are deterministic, perfectly-
secure oblivious priority queues with capacity N that support each operation with I/O com-
plexity O( 1

B log N
M ) amortized (cache-aware) or O( 1

B log N
M log logM N) amortized (cache-

agnostic), respectively.

Proof. We prove the theorem via a slightly more general statement: Assuming the existence
of a deterministic, perfectly-secure k-selection algorithm with I/O complexity OKSelect(n) ∈
Ω( n

B ), there is a deterministic, perfectly-secure priority queue with capacity N that supports
each operation with I/O complexity O( OKSelect(3N)

N log N
M ) amortized.

Since the external k-selection algorithms are functionally equivalent to the internal
algorithm and oblivious, the correctness and obliviousness follows from Theorem 5. For the
I/O complexity, note that the first j := log2 M −O(1) levels of the priority queue fit into
the M cells of the internal memory. The operations Insert, Min, and DeleteMin only
operate on D0 and U0, so they do not require additional I/O operations.

It remains to analyze the I/O complexity of rebuilding the data structure. For this, we
only need to consider rebuilding the levels m ≥ j since rebuilding levels m < j only operates
on the internal memory. When rebuilding a level m ≥ j, the levels i < j can be stored to and
afterward retrieved from the external memory with O( M

B ) I/O operations. Assuming optimal
page replacement, the amortized number of I/O operations for rebuilding is bounded by

ℓ−1∑
m=j

OKSelect(2m+1 + 2m) +
∑m−1

i=0 OKSelect(2i+2) + c · 2m

B

2m
+O

(
M

B · 2j

)
︸ ︷︷ ︸

levels < j

≤
ℓ−1∑
m=j

O(OKSelect(3 · 2m))
2m

+O
(

1
B

)
∈ O

(
(ℓ− j) · OKSelect(3N)

N

)

= O
(

OKSelect(3N)
N

log N

M

)
.

With the cache-aware k-selection via Corollary 7 and the cache-agnostic k-selection via
Corollary 8, we obtain the claimed I/O complexities. ◀
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With this, we obtain an optimal cache-aware oblivious priority queue and a near-optimal
cache-agnostic oblivious priority queue, both deterministic and with perfect security. Using a
cache-agnostic, perfectly-secure oblivious sorting algorithm with (expected) I/O complexity
O( n

B log M
B

n
B ) [9]8, we can apply the same construction as in Section 3 to obtain external

offline ORAMs with the same (expected) I/O complexities as in Theorem 9. We exploit that
the construction is a combination of sorting, linear scans, and time-forward processing.

5 Conclusion and Future Work

In this paper, we show how to construct an oblivious priority queue with perfect security
and (amortized) logarithmic runtime. While the construction is simple, it improves the
state-of-the-art for perfectly-secure priority queues, achieving the optimal runtime. The
construction immediately implies an optimal offline ORAM with perfect security. We
extend our construction to the external-memory model, obtaining optimal cache-aware and
near-optimal cache-agnostic I/O complexities.

Future Work. The optimal perfectly-secure partitioning algorithm [4] has enormous constant
runtime factors (in the order of≫ 2111 [13]) due to the reliance on bipartite expander graphs.9
Nevertheless, our construction can also be implemented efficiently in practice – albeit at the
cost of an O(log N)-factor in runtime – by relying on merging [6] (instead of k-selection via
linear-time partitioning). We leave comparing such a practical variant to previous protocols
as a future work.

On the theoretical side, a main open problem is to obtain a perfectly-secure oblivious
priority queue supporting deletions (of arbitrary elements) in optimal O(log N) time. An
additional open problem is the de-amortization of the runtime complexity. Considering
external oblivious algorithms, an open problem is to close the gap on cache-oblivious
partitioning, i. e., remove the remaining O(log logM n) factor in I/O complexity for perfectly-
secure algorithms. We consider all of these interesting problems for future works.
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