
Data Structures for Approximate Fréchet Distance
for Realistic Curves
Ivor van der Hoog #

DTU Compute, Technical University of Denmark, Lyngby, Denmark

Eva Rotenberg #

DTU Compute, Technical University of Denmark, Lyngby, Denmark

Sampson Wong #

Department of Computer Science, University of Copenhagen, Denmark

Abstract
The Fréchet distance is a popular distance measure between curves P and Q. Conditional lower
bounds prohibit (1 + ε)-approximate Fréchet distance computations in strongly subquadratic time,
even when preprocessing P using any polynomial amount of time and space. As a consequence, the
Fréchet distance has been studied under realistic input assumptions, for example, assuming both
curves are c-packed.

In this paper, we study c-packed curves in Euclidean space Rd and in general geodesic metrics
X . In Rd, we provide a nearly-linear time static algorithm for computing the (1 + ε)-approximate
continuous Fréchet distance between c-packed curves. Our algorithm has a linear dependence on the
dimension d, as opposed to previous algorithms which have an exponential dependence on d.

In general geodesic metric spaces X , little was previously known. We provide the first data
structure, and thereby the first algorithm, under this model. Given a c-packed input curve P with n

vertices, we preprocess it in O(n log n) time, so that given a query containing a constant ε and a
curve Q with m vertices, we can return a (1 + ε)-approximation of the discrete Fréchet distance
between P and Q in time polylogarithmic in n and linear in m, 1/ε, and the realism parameter c.

Finally, we show several extensions to our data structure; to support dynamic extend/truncate
updates on P , to answer map matching queries, and to answer Hausdorff distance queries.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Computational geometry

Keywords and phrases Fréchet distance, data structures, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.56

Related Version Full Version: https://arxiv.org/abs/2407.05114 [44]

Funding Ivor van der Hoog: Supported by Independent Research Fund Denmark grant 2020-2023
(9131-00044B) “Dynamic Network Analysis”.
Eva Rotenberg: Partially supported by Independent Research Fund Denmark grant 2020-2023 (9131-
00044B) “Dynamic Network Analysis” and the Carlsberg Young Researcher Fellowship CF21-0302
“Graph Algorithms with Geometric Applications”.

1 Introduction

The Fréchet distance is a popular metric for measuring the similarity between (polygonal)
curves P and Q. We assume that P has n vertices and Q has m vertices and that they reside
in some geodesic metric space X . The Fréchet distance is often intuitively defined through
the following metaphor: suppose that we have two curves that are traversed by a person and
their dog. Consider the length of their connecting leash, measured over the metric X . What
is the minimum length of the connecting leash over all possible traversals by the person
and the dog? The Fréchet distance has many applications; in particular in the analysis and

© Ivor van der Hoog, Eva Rotenberg, and Sampson Wong;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 56; pp. 56:1–56:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:idjva@dtu.dk
https://orcid.org/0009-0006-2624-0231
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
mailto:sampson.wong123@gmail.com
https://orcid.org/0000-0003-3803-3804
https://doi.org/10.4230/LIPIcs.ISAAC.2024.56
https://arxiv.org/abs/2407.05114
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Data Structures for Approximate Fréchet Distance for Realistic Curves

visualization of movement data [11, 14, 35, 47]. It is a versatile measure that can be used for
a variety of objects, such as handwriting [41], coastlines [37], outlines of shapes in geographic
information systems [20], trajectories of moving objects, such as vehicles, animals or sports
players [40, 42, 7, 14], air traffic [6] and protein structures [34].

Alt and Godau [2] compute the continuous Fréchet distance in R2 under the L2 metric in
O(mn log(n + m)) time. This was later improved by Buchin et al. [12] to O(nm(log log nm)2)
time. Eiter and Manila [26] showed how to compute the discrete Fréchet distance in R2 in
O(nm) time, which was later improved by Agarwal et al. [1] to O(nm(log log nm)/ log nm)
time. Typically, the quadratic O(nm) running time is considered costly. Bringmann [8]
showed that, conditioned on the Strong Exponential Time Hypothesis (SETH), one cannot
compute a (1 + ε)-approximation of the continuous Fréchet distance between curves in R2

under the L1, L2 or L∞ metric faster than Ω((nm)1−δ) time for any δ > 0. This lower
bound was extended by Buchin, Ophelders and Speckmann [13] to intersecting curves in R1.
Driemel, van der Hoog and Rotenberg [25] extended the lower bound to paths P and Q in a
weighted planar graph under the shortest path metric.

Well-behaved curves. Previous works have circumvented lower bounds by assuming that
both curves come from a well-behaved class. A curve P in a geodesic metric space X is any
sequence of points where consecutive points are connected by their shortest path in X . For a
ball B in X , let P ∩B denote all (maximal) segments of P contained in B. A curve P is:

κ-straight (by Alt, Knauer and Wenk [3]) if for every i, j the length of the subcurve
from pi to pj is ℓ(P [i, j]) ≤ κ · d(pi, pj),
c-packed (by Driemel, Har-Peled and Wenk [22]) if for every ball B in the geodesic
metric space X with radius r: the length ℓ(P ∩B) ≤ c · r.
ϕ-low-dense (by van der Stappen [45]; see also [20, 22, 39]) if for every ball B in X with
radius r, there exist at most ϕ edges of length r intersecting B.
backbone (by Aronov et al. [5]) if consecutive vertices have distance between c1 and c2
for some constants c1, c2, and if non-consecutive vertices have distance at least 1.

Any c-straight curve is also O(c)-packed. Parametrized by ε, ϕ ∈ O(1), c and κ = O(c),
Driemel, Har-Peled and Wenk [22] compute a (1+ε)-approximation of the continuous Fréchet
distance between a pair of realistic curves in Rd under the L1, L2, L∞ metric for constant d in
O(c(n+m)

ε +c(n+m) log n) time. Their result for c-packed and c-straight curves was improved
by Bringmann and Künnemann [10] to O(c(n+m)√

ε
log ε−1 +c(n+m) log n), which matches the

conditional lower bound for c-packed curves. In particular, Bringmann [8] showed that under
SETH, for dimension d ≥ 5, there is no O((c(n + m)/

√
ε)1−δ) time algorithm for computing

the Fréchet distance between c-packed curves for any δ > 0. Realistic input assumptions
have been applied to other geometric problems, e.g. for robotic navigation in ϕ-low-dense
environments [45], and map matching of ϕ-low-dense graphs [16] or c-packed graphs [30].

Deciding versus computing. We make a distinction between two problem variants: the
decision variant, the optimisation variant. For the decision variant, we are given a value ρ and
two curves P and Q and we ask whether the Fréchet distance DF (P, Q) ≤ ρ. This variant
often solved through navigating an n by m “free space diagram”. In the optimization variant,
the goal is to output the Fréchet distance DF (P, Q). To convert any decision algorithm into
a optimization algorithm, two techniques are commonly used. The first is binary search over
what we will call TADD(P, Q):

I. van der Hoog, E. Rotenberg, and S. Wong 56:3

▶ Definition 1. Given two sets of points P , Q in a geodesic metric space X , we define a
Two-Approximate Distance Decomposition of P denoted by TADD(P, Q) as a set of reals
TP Q where for every pair (pi, qj) ∈ P ×Q there exist a, b ∈ TP Q with a ≤ d(pi, qj) ≤ b ≤ 2a.

Essentially a TADD is a two-approximation of the set of all pairwise distances in P ×Q

and it can be used to determine, approximately, the (Fréchet) distance values for when the
simplification of the input curve changes, or when the reachability of the free space matrix
changes. It is known how to compute a TADD from a Well-Separated Pair Decomposition
(WSPD) in time linear in the size of the WSPD [22, Lemma 3.8]. A downside of this
approach [22] is that, it is only known how to compute a WSPD for doubling metrics [48].
Moreover, for non-constant (doubling) dimensions d, computing the WSPD (and therefore
the TADD) takes O(2dn + dn log n) time [33, 48], which dominates the running time.

The second technique, deployed when for example TADDs cannot be computed, is
parametric search [38]. For decision variants that have a sublinear running or query time of
T , the running time of parametric search is commonly O(T 2) [46, 31].

Data structures for Fréchet distance. An interesting question is whether we can store P in
a data structure, for efficient (approximate) Fréchet distance queries for any query Q. This
topic received considerable attention throughout the years [24, 31, 27, 19, 21, 15, 30]. A related
field is nearest neighbor data structures under the Fréchet distance metric [9, 23, 18, 4, 28].
Recently, Gudmundsson, Seybold and Wong [30] answer this question negatively for arbitrary
curves in R2: showing that even with polynomial preprocessing space and time, we cannot
preprocess a curve P to decide the continuous Fréchet distance between P and a query curve
Q in Ω((nm)1−δ) time for any δ > 0. Surprisingly, even in very restricted settings data
structure results are difficult to obtain. De Berg et al. [19] present an O(n2) size data structure
that restricts the orientation of the query segment to be horizontal. Queries are supported
in O(log2 n) time, and even subcurve queries are allowed (in that case, using O(n2 log2 n)
space). At ESA 2022, Buchin et al. [15] improve these result to using only O(n log2 n) space,
where queries take O(log n) time. For arbitrary query segments, they present an O(n4+δ)
size data structure that supports (subcurve) queries to arbitrary segments in O(log4 n) time.
Gudmundsson et al. [31] extend de Berg et al.’s [19] data structure to handle subcurve
queries, and to handle queries where the horizontal query segment is translated in order
to minimize its Fréchet distance. Driemel and Har-Peled [21] create a data structure to
store any curve in Rd for constant d. They preprocess P in O(n log3 n) time and O(n log n)
space. For any query (Q, ε, i, j) they can create a (3 + ε)-approximation of DF(P [i, j], Q) in
O(m2 log n log(m log n)) time.

We state existing data structures for the discrete Fréchet distance. Driemel, Psarros and
Schmidt [24] fix ε and an upper bound M beforehand where for all queries Q, they demand
that |Q| ≤ M . They store any curve P in Rd for constant d using O((M log 1

ε)M) space
and preprocessing, to answer (1 + ε)-approximate Fréchet distance queries in O(m2 + log 1

ε)
time. Filtser [29] gives the corresponding data structure for the discrete Fréchet distance.
At SODA 2022, Filtser and Filtser [27] study the same setting: storing P in O(

(1
ε

)dM log 1
ε)

space, to answer (1 + ε)-approximate Fréchet distance queries in Õ(m · d) time.

Contributions. We provide four contributions.

(1) A 1-TADD technique. A crucial step in computing the Fréchet distance is to turn a
decision algorithm into an optimization algorithm. TADD(P, Q) is commonly used when
approximating the Fréchet distance. Our 1-TADD technique shows a new argument where
we map P and Q to curves in Λ ⊂ R1 and compute only TADD(Λ, Λ) in O(n log n) time.

ISAAC 2024

56:4 Data Structures for Approximate Fréchet Distance for Realistic Curves

Table 1 Our results for computing a (1 + ε)-approximation of the Fréchet distance between P

and Q. All settings assume that P is a realistic curve, except for [27] who assume an upper bound on
|Q|. Tε denotes the query time of a (1 + ε)-approximate oracle. The tilde hides lower order factors
in terms of n, m and ε. Under the continuous Fréchet distance, we require that Q is also realistic.

Domain
Previous result Our result

Preprocess Query time Ref. Preprocess Query time Ref.

Rd

Lp metric static Õ(2dn + d c(n+m)√
ε

+d2 · c(n + m))
[10] static Õ(d c(n+m)

ε
) Thm. 2

Discrete Fréchet distance only:

Rd

|Q| ≤ M
Õ((1

ε
)dM) Õ(md) [27] O(n log n) Õ(d cm

ε
log n) Cor. 7

Planar G = (V, E) static Õ(|V |1+o(1) + c(n+m)
ε

) [25] Õ(|V |1+o(1)) Õ(cm
ε

log n) Cor. 7

Graph G = (V, E) static Õ(|V |1+o(1) + |E| log |E|
+ c(n+m)

ε
)

[25] Õ(|V |1+o(1)) Õ(cm
ε

log n) Cor. 7

Simple Polygon P static O(nm log(n + m)) [2] Õ(|P | + n) Õ(cm
ε

log |P |) Cor. 7

Any geodesic X
with (1 + ε)-oracle static O(Tε · nm log n) [26] O(n log n) Õ(Tε

cm
ε

log n) Thm. 5

Map Matching
G = (V, E) Õ(c2ε−4n2) O(m log m·

(log4 n + c4ε−8 log2 n)) [30] Õ(c2ε−4n2) O(m(log n + log ε−1)·
(log2 n + c2ε−4 log n)) [44]

In Euclidean Rd this allows us to approximate the discrete and continuous Fréchet
distances in time that is linear in d, whereas previous approaches required an exponential
dependence on d. In general geodesic metric spaces X , our 1-TADD technique allows us to
approximate the discrete Fréchet distance when TADD(P, Q) cannot be efficiently computed.

(2) Allowing approximate oracles under the discrete Fréchet distance. Many ambient
spaces (e.g., Euclidean spaces under floating point arithmetic, and X as a weighted graph
under the shortest path metric.) do not allow for efficient exact distance computations. Thus,
we revisit and simplify the argument by Driemel, Har-Peled and Wenk [22]. We assume
access to a (1 + α)-approximate distance oracle with Tα query time. We generalize the
previous argument to approximate the discrete Fréchet distance between two curves in any
geodesic metric space with approximate distance oracles. For contributions (1) and (2), we
do not require the curves P and Q to be c-packed.

(3) A data structure under the discrete Fréchet distance. Under the discrete Fréchet
distance, we show how to store a c-packed or c-straight curve P with n vertices in any
geodesic ambient space X . Our solution uses O(n) space and O(n log n) preprocessing time.
For any query curve Q, any 0 < ε < 1, and any subcurve P ∗ of P , we can compute a (1 + ε)-
approximation the discrete Fréchet distance DF(P ∗, Q) using O(c·m

ε log n(T +log c·m
ε +log n))

time. Here, T is the time required to perform a distance query in the ambient space (e.g.,
O(log n) for geodesic distances in a polygon). All times are deterministic and worst-case.
This is the Fréchet distance first data structure for realistic curves that avoids spending query
time linear in n. Our solution improves various recent results [10, 25, 27, 30] (see Table 1).

I. van der Hoog, E. Rotenberg, and S. Wong 56:5

(4) Extensions. In the full version of this paper [44], we provide several extensions to
our results. We modify our data structure to support updates that truncate the curve P ,
or extend P , we apply our algorithmic skeleton to map matching queries, and we study
Hausdorff distance queries.

2 Preliminaries

Let X denote some geodesic metric space (e.g., X is some weighted graph). For any a, b ∈ X
we denote by d(a, b) their distance in X . A curve P in X is any ordered sequence of points
in X , where consecutive points are connected by their shortest path in X . We refer to such
points as vertices. For any curve P with n vertices, for any integers i, j ∈ [n] with i < j we
denote by P [i, j] the subcurve from pi to pj . We denote by |P [i, j]| = (j − i + 1) the size of
the subcurve and by ℓ(P [i, j]) :=

∑j−1
k=i d(pk, pk+1) its length. We receive as preprocessing

input a curve P where for each pair (pi, pi+1) we are given d(pi, pi+1).

Distance and distance oracles. Throughout this paper, we assume that for any α > 0 we
have access to some (1 + α)-approximate distance oracle. This is a data structure Dα

X that
for any two a, b ∈ X can report a value d◦(a, b) ∈ [(1− α)d(a, b), (1 + α)d(a, b)] in O(Tα)
time. To distinguish between inaccuracy as a result of our algorithm and as a result of our
oracle, we refer to d◦(a, b) as the perceived value (as opposed to an approximate value).

Discrete Fréchet distance. Given two curves P and Q in X , we denote by [n]×[m] the n by
m integer lattice. We say that an ordered sequence F of points in [n]× [m] is a discrete walk if
for every consecutive pair (i, j), (k, l) ∈ F , we have k ∈ {i−1, i, i + 1} and l ∈ {j−1, j, j + 1}.
It is furthermore xy-monotone when we restrict to k ∈ {i, i + 1} and l ∈ {j, j + 1}. Let F

be a discrete walk from (1, 1) to (n, m). The cost of F is the maximum over (i, j) ∈ F of
d(pi, qj). The discrete Fréchet distance is the minimum over all xy-monotone walks F from
(1, 1) to (n, m) of its associated cost: DF(P, Q) := minF cost(F) = minF max(i,j)∈F d(pi, qj).
In this paper we, given a (1 + α)-approximate distance oracle, define the perceived discrete
Fréchet distance as DF

◦, obtained by replacing in the above definition d(pi, qj) by d◦(pi, qj).

Free space matrix (FSM). The FSM for a fixed ρ∗ ≥ 0 is a |P | × |Q|, (0, 1)-matrix where
the cell (i, j) is zero if and only if the distance between the i’th point in P and the j’th point
in Q is at most ρ∗. Per definition, DF(P, Q) ≤ ρ∗ if and only if there exists an xy-monotone
discrete walk F from (1, 1) to (n, m) where for all (i, j) ∈ F : the cell (i, j) is zero.

Continuous Fréchet distance and Free Space Diagram (FSD). We define the continuous
Fréchet distance in a geodesic metric space. Given a curve P , we consider P as a continuous
function mapping at time t ∈ [0, 1] to a point P (t) in X . The continuous Fréchet distance
is DF (P, Q) := infα,β maxt∈[0,1] d(P (α(t)), Q(β(t)), where α, β : [0, 1] → [0, 1] are non-
decreasing surjections. For a fixed ρ∗, we can define the Free Space Diagram of (P, Q, ρ∗)
to be a [0, 1]× [0, 1], (0,1)-matrix where the point (t, t′) is zero if and only if the distance
between P (t) and Q(t′) is at most ρ∗. The diagram consists of nm cells corresponding to all
pairs of edges of P and Q. A cell is reachable if there exists an xy-monotone curve from (0, 0)
to a point in the cell where all points (t, t′) on the curve are zero. The continuous Fréchet
distance is at most ρ∗ if and only if there exists an xy-monotone curve from (0, 0) to (1, 1)
where all points (t, t′) on the curve are zero.

ISAAC 2024

56:6 Data Structures for Approximate Fréchet Distance for Realistic Curves

Defining discrete queries. Our data structure input is a curve P = (p1, p2, . . . , pn). The
number of vertices m of Q is part of the query input and may vary. Let DF(P, Q) denote
the discrete Fréchet distance between P and Q. We distinguish between four types of
(approximate) queries. The input pararmeters are given at query time:

A-decision(Q, ε, ρ): for ρ ≥ 0 and 0 < ε < 1 outputs a Boolean concluding either
DF(P, Q) > ρ, or DF(P, Q) ≤ (1 + ε)ρ (these two options are not mutually exclusive).
A-value(Q, ε): for 0 < ε < 1 outputs a value in [(1− ε)DF(P, Q), (1 + ε)DF(P, Q)].
Subcurve-decision(Q, ε, ρ, i, j): for ρ ≥ 0 and 0 < ε < 1 outputs a Boolean concluding
either DF(P [i, j], Q) > ρ, or DF(P [i, j], Q) ≤ (1 + ε)ρ.
Subcurve-value(Q, ε, i, j): for 0 < ε < 1 outputs a value in
[(1− ε)DF(P [i, j], Q), (1 + ε)DF(P [i, j], Q)].

We want a solution that is efficient in time and space, where time and space is measured in
units of ε, n, m, ρ and the distance oracle query time Tα.

Previous works: µ-simplifications. Driemel, Har-Peled and Wenk [22] , for a parameter
µ ∈ R, construct a curve P µ as follows. Start with the initial vertex p1, and set this as
the current vertex pi. Next, scan the polygonal curve to find the first vertex pj such that
d(pi, pj) > µ. Add pj to P µ, and set pj as the current vertex. Continue this process until
we reach the end of the curve. Finally, add the last vertex pn to P µ. Driemel, Har-Peled
and Wenk [22] observe any µ-simplified curve P µ can be computed in linear time and
DF (P µ, P) ≤ µ. This leads to the following approximate decision algorithm:
1. Given P, ε, Q and ρ, construct P

ερ
4 and Q

ερ
4 in O(n + m) time.

2. Denote by X the reachable cells in the FSD of (P
ερ
4 , Q

ερ
4 , ρ∗ = (1 + ε/2)ρ).

3. Iterating over X, doing O(|X|) distance computations, test if DF (P
ερ
4 , Q

ερ
4) ≤ ρ∗.

They prove that: if yes then DF (P, Q) ≤ (1 + ε)ρ. If no then DF (P, Q) > ρ.
If P and Q are c-packed, they upper bound |X| by O(c(n+m)

ε).
This scheme is broadly applicable to various domains, see [25, 17]. In this paper, we apply
this technique to answer value queries at the cost of a factor O(log n + log ε−1). Under the
discrete Fréchet distance, we extend the analysis to work with approximate distance oracles.
Finally, we show a data structure to execute step 3 in time independent of |P | = n. We also
show that under the discrete Fréchet distance, it suffices to assume that only P is c-packed.

2.1 Results
(1) A 1-TADD technique for the Fréchet distance. For any µ > 0, we denote by P µ

and Qµ their µ-simplified curves according to our new definition of µ-simplification. We
show in Section 4 that our new definition allows us to efficiently transform existing decision
algorithms into approximation algorithms in Rd [22]. We assume access to exact O(d)-time
distance oracle in Rd and prove:

▶ Theorem 2. We can preprocess a pair of c-packed curves (P, Q) in Rd under any Lp metric
with |P | = n ≥ |Q| = m in O(n log n) time s.t.: given any ε and an exact distance oracle, we
can compute a (1 + ε)-approximation of DF (P, Q) in O(d c(n+m)

ε · (log n + log ε−1)) time.

(2) Allowing approximate oracles under the discrete Fréchet distance. In Section 5,
we show that (for computing the discrete Fréchet distance) it suffices to have access to a
(1 + α)-approximate distance oracle. This will enable us to approximate DF(P, Q) in ambient
spaces such as planar graphs and simple polygons. Formally, we show:

I. van der Hoog, E. Rotenberg, and S. Wong 56:7

▶ Lemma 3. For any ρ > 0 and 0 < ε < 1, choose ρ∗ = (1 + 1
2 ε)ρ and µ ≤ 1

6 ερ. Let X be
any geodesic metric space and Dε/6

X be a (1 + 1
6 ε)-approximate distance oracle. For any curve

P = (p1, . . . , pn) in X and any curve Q = (q1, . . . , qm) in X :
If for the discrete Fréchet distance, DF

◦(P µ, Q) ≤ ρ∗ then DF(P, Q) ≤ (1 + ε)ρ.
If for the discrete Fréchet distance, DF

◦(P µ, Q) > ρ∗ then DF(P, Q) > ρ.

We note that for ambient spaces such as planar graphs and simple polygons, there is no clear
way to define a continuous µ-simplification (or even continuous Fréchet distance).

(3) An efficient data structure under the discrete Fréchet distance. Finally, in Section 6,
we study computing the discrete Fréchet distance in a data structure setting. We show that
under the discrete Fréchet distance, it suffices to assume that only P is c-packed or c-straight.
Moreover, we can store P in a data structure such that we can answer approximate Fréchet
value queries DF(P, Q) in time linear in m and polylogarithmic in n:

▶ Theorem 4. Let X be any geodesic space and Dα
X be a (1 + α)-approximate distance oracle

with O(Tα) query time. Let P = (p1, . . . , pn) be any c-packed curve in X . We can store P

using O(n) space and preprocessing, such that for any curve Q = (q1, . . . , qm) in X and any
ρ > 0 and 0 < ε < 1, we can answer A-decision(Q, ε, ρ) for the discrete Fréchet distance in:

O
(c ·m

ε
·
(
Tε/6 + log n

))
time.

We may apply the proof of Theorem 2 to Theorem 4 to answer A-value(Q, ε) in any
geodesic metric space by increasing the running time by a factor O(log n + log ε−1). However,
under the discrete Fréchet distance we can be more efficient:

▶ Theorem 5. Let X be a geodesic metric space and Dα
X be a (1 + α)-approximate distance

with O(Tα) query time. Let P = (p1, . . . , pn) be any c-packed curve in X . We can store P

using O(n) space and O(n log n) preprocessing time, such that for any curve Q = (q1, . . . , qm)
in X and any 0 < ε < 1, we can answer A-Value(Q, ε) for the discrete Fréchet distance in:

O
(c ·m

ε
· log n ·

(
Tε/6 + log c ·m

ε
+ log n

))
time.

The advantage of our result is that it applies to a variety of metric spaces X , while also
improving upon previous static algorithms in those spaces. Here, static refers to solutions
that do not require preprocessing or building a data structure. For a complete overview of
the improvements we make to the state-of-the-art, we refer to Table 1.

Our result does not rely upon complicated techniques such parametric search [31, 30],
higher-dimensional envelopes [15], or advanced path-simplification structures [21, 24, 27].
Our techniques are not only generally applicable, but also appear implementable (e.g., the
authors of [15] mention that their result is un-implementable).

2.2 Corollaries
Theorems 4+5 are the first data structures for computing the Fréchet distance between
c-packed curves. Our construction has two novelties: first, we consider c-packed curves in
any metric space X , and only require access to perceived distances (distance oracles that
can report a (1 + α)-approximation in O(Tα) time). Second, we propose a new 1-TADD
technique that can be used to compute the discrete Fréchet distance independently of the
geodesic ambient space X . These two novelties imply improvements to previous results, even
static results for computing the Fréchet distance:

ISAAC 2024

56:8 Data Structures for Approximate Fréchet Distance for Realistic Curves

Applying perceived distances. Our analysis allows us to answer the decision variant for
the discrete Fréchet distance for any geodesic metric space for which there exist efficient
(1 + α)-approximate distance oracles (See Oracles 12). Combining Theorem 4 with Oracles 12
we obtain:

▶ Corollary 6. Let P be a c-packed curve in a metric space X .
For X = Rd under L1, L2, L∞ metric in the real-RAM model, we can store P using O(n)
space and preprocessing, to answer A-decision(Q, ε, ρ) in O

(
cm
ε · (d + log n)

)
time.

Improving the static O(d· cn√
ε
+d·cn log n) algorithm by Bringmann and Künnemann [10,

IJCGA’17]: making it faster when n > m and making it a data structure.
For X = Rd under L2 in word-RAM, we can store P using O(n) space and O(n log n)
preprocessing, to answer A-decision(Q, ε, ρ) in O

(
cm
ε ·

(
d log ε−1 + log n

))
worst case

time.Improving the static expected O(d2 · cn√
ε

+ d2 · cn log n) algorithm by Bringmann and
Künnemann [10, IJCGA’17]: saving a factor d and obtaining deterministic guarantees.

For X an N-vertex planar graph under the shortest path metric, we can store P using
O(N1+o(1)) space and preprocessing, to answer A-decision(Q, ε, ρ) in O

(
cm
ε · log2+o(1) N

)
time.

Generalizing the static O
(

N1+o(1) + c·m
ε log2+o(1) N

)
algorithm by Driemel, van der

Hoog and Rotenberg [25, SoCG’22] to a data structure.
For X an N-vertex graph under the shortest path metric, we can fix ε and
store P using O(N

ε log N) space and preprocessing, to answer A-decision(Q, ε, ρ) in
O

(
cm
ε · (ε

−1 + log n)
)

time.
Generalizing the static O

(
N1+o(1) + c·m

ε log2+o(1) N
)

algorithm by Driemel, van der
Hoog and Rotenberg [25, SoCG’22] to a data structure.

Applying the 1-TADD. We can transform the decision variant of the Fréchet distance to
the optimization variant, by using only a well-separated pair decomposition of P (mapped to
R1) with itself. This allows us to answer the optimization variant for the discrete Fréchet
distance without an exponential dependence on the dimension (speeding up even static
algorithms). In full generality, combining Theorem 4 with Oracles 12 implies:

▶ Corollary 7. Let P be a c-packed curve in a metric space X .
For X = Rd in the real-RAM model, we can store P using O(n) space and O(n log n)
preprocessing, to answer A-value(Q, ε) in O

(
cm
ε log n(d + log c·m

ε + log n
)

time.
Improving the static O(2dn + d · cn√

ε
+ d2 · cn log n) algorithm by Bringmann and

Künnemann [10, IJCGA’17]: removing the exponential dependency on the dimension.
Improving the dynamic O(

(
O(1

ε)
)dm log 1

ε) space solution with Õ(m · d) query time
by Filtser and Filtser [27, SODA’21]: allowing Q to have arbitrary length, and using
linear as opposed to exponential space and preprocessing time. This applies only when
P is c-packed.

For X = Rd under the L2 metric in word-RAM, we can store P using O(n) space and
O(n log n) preprocessing, to answer A-value(Q, ε) in O

(
cm
ε log n(d log n + log c·m

ε

)
time.Improving upon the static expected O(2dn+d2· cn√

ε
+d3·cn log n) algorithm by Bringmann

and Künnemann [10, IJCGA’17]: saving a factor d2d with deterministic guarantees.
For X an N -vertex planar graph under the SP metric, we can store P using O(N1+o(1))
space and preprocessing, to answer A-value(Q, ε) in O

(
c·m

ε log n · (log2+o(1) N + log c·m
ε)

)
time.

Improving the static O
(

N1+o(1) + |E| log |E|+ c·m
ε log2+o(1) N log |E|

)
algorithm by

Driemel, van der Hoog and Rotenberg [25, SoCG’22]: making it a data structure.

I. van der Hoog, E. Rotenberg, and S. Wong 56:9

For X an N -vertex graph under the SP metric, we can fix ε and store P using O(N
ε log N)

space and preprocessing, to answer A-value(Q, ε) in O
(

cm
ε · log n · (ε−1 + log c·m

ε + log n)
)

time.
Same improvement as above, except that this result is not adaptive to ε.

For X an N-vertex simple polygon under geodesics, we can store P us-
ing O(N log N + n) space and preprocessing, to answer A-value(Q, ε) in
O

(
cm
ε · log n · (log N + log c·m

ε + log n)
)

time.
No realism-parameter algorithm was known in this setting, because no TADD can be
computed in this setting.

We briefly note that all our results are also immediately applicable to subcurve queries:

▶ Corollary 8. All results obtained in Section 6 can answer the subcurve variants of the
A-decision and A-value queries for any i, j ∈ [n] at no additional cost.

3 Simplification and a data structure

To facilitate computations in arbitrary geodesic metric spaces, we modify the definition
of µ-simplifications. Our modified definition has the same theoretical guarantees as the
previous definition, but works in arbitrary metrics. Formally, we say that henceforth the
µ-simplification is a curve obtained by starting with p1, and recursively adding the first pj

such that the length of the subtrajectory ℓ(P [i, j]) > µ, where pi is the last vertex added to
the simplified curve. This way, our µ-simplifications (and their computation) are independent
of the ambient space and only depend on the edge lengths.
We construct a data structure such that for any value µ, we can efficiently obtain P µ:

▶ Definition 9. For any curve P in X with n vertices, for each 1 < i ≤ n we create a
half-open interval (ℓ(P [1, i − 1]), ℓ(P [1, i])] in R1. This results in an ordered set of O(n)
disjoint intervals on which we build a balanced binary tree in O(n) time.

Our new definition and data structure allow us to obtain P µ at query time:

▶ Lemma 10. Let P = (p1, . . . , pn) be a curve in X stored in the data structure of Definition 9.
For any value µ ≥ 0, any pair (i, j) with i < j, and any integer N we can report the first N

vertices of the discrete µ-simplification P [i, j]µ in O(N log n) time.

Proof. The first vertex of P [i, j]µ is pi. We inductively add subsequent vertices. Suppose that
we just added px to our output. We choose the value a = ℓ(P [1, x]) + µ. We binary search in
O(log n) time for the point py where the interval (ℓ(P [1, y − 1]), ℓ(P [1, y])] contains a. Per
definition: the length ℓ(P [x, y]) ≥ µ. Moreover, for all z ∈ (x, y) the length ℓ(P [x, z]) < µ.
Thus, py is the successor of px and we recurse if necessary. ◀

4 The 1-TADD technique

Let P and Q be curves in Rd under the Euclidean metric. In [22], they show an algorithm
that (given the µ-simplified curves P µ and Qµ for µ = ερ/4) they can decide whether
DF (P, Q) > ρ or DF (P, Q) ≤ (1 + ε)ρ in O(d c(n+m)

ε) time. They then compute a (1 + ε)-
approximation of DF (P, Q) through a binary search over TADD(P , Q). This approach
scales poorly with the dimension d because computing TADD(P , Q) has an exponential
dependency on d. We alleviate this through our 1-TADD definiton:

ISAAC 2024

56:10 Data Structures for Approximate Fréchet Distance for Realistic Curves

▶ Definition 11. Given P , map each vertex pi to λi = ℓ(P [1, i]). Denote by Λ = {λi}n
i=1.

We define 1-TADD(P) as TADD(Λ, Λ).

Our 1-TADD can be computed in O(n log n) time using O(n) space [22].

▶ Theorem 2. We can preprocess a pair of c-packed curves (P, Q) in Rd under any Lp metric
with |P | = n ≥ |Q| = m in O(n log n) time s.t.: given any ε and an exact distance oracle, we
can compute a (1 + ε)-approximation of DF (P, Q) in O(d c(n+m)

ε · (log n + log ε−1)) time.

Proof. With slight abuse of notation, we say that A(P, Q, ε, ρ) is an algorithm that takes as
input P ερ/4 and Qερ/4 and outputs either DF (P, Q) > ρ or DF (P, Q) ≤ (1 + ε)ρ. We briefly
note given our new definition of µ-simplification, [22] present an A(P, Q, ε, ρ) algorithm with
a runtime of O(d c(n+m)

ε) under any Lp metric (as Lemma 4.4 in [22] immediately works for
our simplification definition). We use A(P, Q, ε, ρ) to approximate DF (P, Q).

We preprocess P and Q by computing TP = 1-TADD(P) and TQ = 1-TADD(Q). We
denote by I the set of intervals obtained by taking for each a ∈ TP ∪ TQ the interval
[4ε−1a, 8ε−1a] (we add the interval [0, 0] to I). Given A(P, Q, ε, ρ) that runs in O(d c(n+m)

ε)
time, we do binary search over I. Specifically, we iteratively select an interval [a, b] ∈ I and
run A(P, Q, ε, ρ) for ρ equal to either endpoint.

Note that for each ρ, we may use Lemma 10 to obtain both the ερ/4-simplifications of P

and Q in O((n + m) log(n + m)) time – which are required as input for A(P, Q, ε, ρ). We
need to do this procedure at most O(log n) times before we reach one of two cases:

Case 1: There exists [a, b] ∈ I, such that DF (P, Q) > a and DF (P, Q) < (1 + ε)b. We
note that by definition of I, the values a and b differ by a factor 2. Thus, we may
discretize the interval [a, b] into O(ε−1) points that are each at most ε·a

2 apart (note that
we implicitly discretize this interval, as an explicit discretization takes ε−1 time). By
performing binary search over this discretized set, we report a (1 + ε)-approximation of
DF (P, Q) by using A(P, Q, ε, ρ) at most O(log ε−1) times.
Case 2: There exists no [x, y] ∈ I such that DF (P, Q) > x and DF (P, Q) < (1 + ε)y.

Denote by [amax, bmax] the right-most interval in I. Consider the special case where
DF (P, Q) > bmax. Since bmax ≥ ℓ(P), ℓ(Q) it follows that all ρ > bmax, P µ and Qµ

for µ = ερ/4 are an edge. Computing DF (P µ, Qµ) can therefore be done in O(d) time
which gives a (1 + ε)-approximation of DF (P, Q).

If the special case does not apply then there exist two intervals [a, b], [e, f] ∈ I such that
DF (P, Q) > b and DF (P, Q) ≤ (1 + ε)e, such that there exists no interval [x, y] ∈ I that
intersects [b, e]. We claim that all ρ1, ρ2 ∈ [b, e]: P ερ1/4 = P ερ2/4 and Qερ1/4 = Qερ2/4.

Indeed, suppose for the sake of contradiction that P ερ1/4 ̸= P ερ2/4. Let ρ1 < ρ2 and
choose without loss of generality the smallest ρ2 for which this is the case. Then there
must exist a pair pi, pj ∈ P where ℓ(P [i, j]) = ερ2/4. However, the distance ℓ(P [i, j])
is the distance between λi and λj in the curve Λ and so there exist a′, b′ ∈ TP with
a′ ≤ ℓ(P [i, j]) ≤ b′ ≤ 2a′. It follows that ρ2 = 4ε−1ℓ(P [i, j]) lies in an interval in I

which is a contradiction with the assumption that ρ1, ρ2 ∈ [b, e].
We choose ρ = e. Denote by X the set of reachable cells the Free Space Diagram of
(P ερ/4, Qερ/4, ρ∗). The set X contains O(c(n+m)

ε) cells [22, Lemma 4.4]. It follows that
there are O(c(n+m)

ε) values ρ′ for which the reachability of X changes. We compute and
sort these to get a sorted set R.
Suppose for some ρ′ ∈ [b, ρ] that DF (P ,Q) ≤ ρ′. Denote by F an xy-monotone path in
the Free Space Diagram of (P ερ′/4, Qερ′/4, ρ′) = (P ερ/4, Qερ/4, ρ′). Per definition, F lies
within X. Thus, we may binary search over the set R∩ [b, ρ] (applying the ε-approximate
decider at every step) to compute a (1 + ε)-approximation of DF (P, Q). ◀

I. van der Hoog, E. Rotenberg, and S. Wong 56:11

5 Approximate distance oracles under the discrete Fréchet distance

We want to approximate DF(P, Q) for curves P and Q that live in any geodesic ambient space
X . In most ambient spaces we do not have access to efficient exact distance oracles. In many
ambient spaces however, it is possible to compute for any α > 0 some (1 + α)-approximate
distance oracle. This is a data structure Dα

X that for any two a, b ∈ X can report a value
d◦(a, b) ∈ [(1− α)d(a, b), (1 + α)d(a, b)] in O(Tα) time. To distinguish between inaccuracy
as a result of our algorithm and as a result of our oracle, we refer to d◦(a, b) as the perceived
value (as opposed to an approximate value).

▶ Oracles 12. We present some examples of approximate distance oracles:
For X ⊆ Rd under the L1, L2, L∞ metric in real-RAM we can compute the exact d(a, b)
in O(d) time. Thus, for any α, we have an oracle Dα

X with Tα = O(d) query time.
For X ⊆ Rd under the L2 metric executed in word-RAM, we can compute d(a, b) in O(d2)
expected time. Thus, we have an oracle Dα

X with O(d2) expected query time.
For any X ⊆ Rd under the L2 metric in word-RAM, we can (1 + α)-approximate the
distance between two points in Tα = O(d log α−1) worst case time using Taylor expansions.
For X a planar weighted graph, Long and Pettie [36] store X with N vertices using
O

(
N1+o(1)) space, to answer exact distance queries in O

(
(log(N))2+o(1)) time.

For X as an arbitrary weighted graph, Thorup [43] compute a (1+α)-approximate distance
oracle in O(N/α log N) time and space, and with a query-time of O(1/α).
For X a simple N-vertex polygon, Guibas and Hershberger [32] store X in O(N log N)
time in linear space, and answer exact geodesic distance queries in O((log N) time.

We prove that we may approximately decide the Fréchet distance between P and Q using a
(1 + α)-approximate distance oracle (for the discrete Fréchet distance).

▶ Lemma 3. For any ρ > 0 and 0 < ε < 1, choose ρ∗ = (1 + 1
2 ε)ρ and µ ≤ 1

6 ερ. Let X be
any geodesic metric space and Dε/6

X be a (1 + 1
6 ε)-approximate distance oracle. For any curve

P = (p1, . . . , pn) in X and any curve Q = (q1, . . . , qm) in X :
If for the discrete Fréchet distance, DF

◦(P µ, Q) ≤ ρ∗ then DF(P, Q) ≤ (1 + ε)ρ.
If for the discrete Fréchet distance, DF

◦(P µ, Q) > ρ∗ then DF(P, Q) > ρ.

Proof. Per definition of Dε/6
X : ∀(p, q) ∈ P ×Q, d◦(p, q) ∈ [(1− 1

6 ε)d(p, q), (1 + 1
6 ε)d(p, q)].

It follows from 0 < ε < 1 that:

∀(p, q) ∈ P ×Q : d(p, q) ≤
(

1 + 1.1
6 ε

)
d◦(p, q) ∧ d◦(p, q) ≤

(
1 + 1

6ε

)
d(p, q).

Suppose that DF
◦(P µ, Q) ≤ ρ∗. There exists a (monotone) discrete walk F through

P µ ×Q such that for each (i, j) ∈ F : d◦(P µ[i], qj) ≤ ρ∗ = (1 + 1
2 ε)ρ. It follows that:

d(P µ[i], qj) ≤
(

1 + 1.1
6 ε

)
d◦(P µ[i], qj) ≤

(
1 + 1.1

6 ε

) (
1 + 1

2ε

)
ρ ≤

(
1 + 5

6ε

)
ρ.

We will prove that this implies DF(P, Q) ≤ (1 + ε)ρ. We use F to construct a discrete
walk F ′ through P ×Q. For each consecutive pair (a, b), (c, d) ∈ F note that since F is a
discrete walk, P µ[a] and P µ[c] are either the same vertex or incident vertices on P µ. Denote
by Pac the vertices of P in between P µ[a] and P µ[c]. It follows that:

∀p′ ∈ Pac : d(p′, qb) ≤ d (P µ[a], qb) + µ ≤ (1 + 5
6ε)ρ + 1

6ερ = (1 + ε)ρ.

Now consider the following sequence of pairs of points:

ISAAC 2024

56:12 Data Structures for Approximate Fréchet Distance for Realistic Curves

Lac = (P µ[a], qb)∪{(p′, qb) | p′ ∈ Pac}∪ (P µ[c], qd). We add the lattice points correspond-
ing to Lac to F ′. It follows that we create a discrete walk F ′ in the lattice |P | × |Q| where
for each (i, j) ∈ F ′: d(pi, qj) ≤ (1 + ε)ρ. Thus, DF(P, Q) ≤ (1 + ε)ρ.

Suppose otherwise that DF(P, Q) ≤ ρ. We will prove that DF
◦(P µ, Q) ≤ ρ∗. Indeed,

consider a discrete walk F ′ in the lattice |P | × |Q| where for each (i, j) ∈ F ′: d(pi, qj) ≤ ρ.
We construct a discrete walk F in |P µ| × |Q|. Consider each (i, j) ∈ F ′, If pi = P µ[a]
for some integer a, we add (a, j) to F . Otherwise, denote by P µ[a] the last vertex on
P µ that precedes pi: we add (a, j) to F . Note that per definition of µ-simplification,
d(P µ[a], qj) ≤ d(pi, qj) + µ ≤ (1 + 1

6 ε)ρ. It follows from the definition of our approximate
distance oracle that d◦(P µ[a], qj) ≤ (1 + 1

6 ε)(1 + 1
6 ε)ρ < (1 + 1

2 ε)ρ = ρ∗. Thus, we may
conclude that DF

◦(P µ, Q) ≤ ρ∗. ◀

6 Approximate Discrete Fréchet distance

We denote by Dα
X a (1 + α)-approximate distance oracle over the geodesic metric space X .

Our input is some curve P = (p1, . . . , pn) in X which is c-packed in X . We preprocess P to:
answer A-decision(Q, ε, ρ) for any curve Q = (q1, . . . , qm), ρ > 0 and 0 < ε < 1,
answer A-value(Q, ε) for any curve Q = (q1, . . . , qm) and 0 < ε < 1.

We obtain this result in four steps. In Section 5, we showed that we can answer A-
decision(Q, ε, ρ) through comparing if the perceived Fréchet distance DF

◦(P µ, Q) ≤ ρ∗ for
conveniently chosen µ and ρ∗. In Section 6.1 we define what we call the perceived free-space
matrix. This is a (0, 1)-matrix MA×Q

ρ∗ for any two curves A and Q and any ρ∗ > 0. We show
that if A is the µ-simplified curve P µ for some convenient µ, then the number of zeroes in
MP µ×Q

ρ∗ is bounded.
In Section 6.2, we show a data structure that stores P to answer A-decision(Q, ε, ρ). We

show how to cleverly navigate MP µ×Q
ρ∗ for conveniently chosen µ and ρ∗. The key insight in

this new technique, is that we may steadily increase ρ∗ whilst navigating the matrix. Finally,
we extend this solution to answer A-value(Q, ε).

6.1 Perceived free space matrix and free space complexity
We define the perceived free space matrix to help answer A-decision queries. Given two
curves (A, Q) and some ρ, we construct an |A| × |Q| matrix which we call the perceived free
space matrix MA×Q

ρ . The i’th column corresponds to the i’th element A[i] in A. We assign
to each matrix cell MP ×Q

ρ [i, j] the integer 0 if d◦(A[i], qj) ≤ ρ and integer 1 otherwise.

▶ Observation 13. For all ρ∗ ≥ 0, and curves A and Q, the perceived discrete Fréchet distance
DF

◦(A, Q) between A and Q is at most ρ∗ if and only if there exists an (xy-monotone) discrete
walk F from (1, 1) to (|A|, |Q|) where ∀(i, j) ∈ F , MA×Q

ρ∗ [i, j] = 0.

Computing DF
◦(P µ, Q). Previous results upper bound, for any choice of ρ, the number

of zeroes in the FSM between P ερ and Qερ. We instead consider the perceived FSM, and
introduce a new parameter k ≥ 1 to enable approximate distance oracles. For any value ρ

and some simplification value µ ≥ ερ
k , we upper bound the number of zeroes in the perceived

FSM MP µ×Q
ρ∗ for the conveniently chosen ρ∗ = (1 + ε

2)ρ:

▶ Lemma 14. Let P = (p1, . . . , pn) be a c-packed discrete curve in X . For any ρ > 0 and
0 < ε < 1, denote ρ∗ = (1 + ε

2)ρ. For any k ≥ 1, denote by P µ its µ-simplified curve for
µ ≥ ερ

k . For any curve Q = (q1, . . . , qm) ⊂ X the matrix MP µ×Q
ρ∗ contains at most 8 · c·k

ε

zeroes per row.

I. van der Hoog, E. Rotenberg, and S. Wong 56:13

(a) (b)

q1

q3

q2

p1

0

p5 p6 . . . p27 pnPµ ::

0

1 1

10 0 0

00

0 1 1

1

1

1

00

|B1| = (1 + α)ρ∗ (c)

Figure 1 (a) For some value of µ, the µ-simplified curve is (p1, p5, p6, . . . , p27, pn). We show the
matrix MP µ×Q

ρ∗ . (b) For the point q3, we claim that there are more than Z = 8 ck
ε

zeroes in its
corresponding row. Thus, the ball B1 with radius (1 + α)ρ∗ contains more than Z points. (c) For
each of these points, there is a unique segment along P contained in the ball B2.

Proof. The proof is by contradiction. Suppose that the j’th row of MP µ×Q
ρ∗ contains strictly

more than 8 · c·k
ε zeroes. Let P0 ⊂ P µ be the vertices corresponding to these zeroes. Consider

the ball B1 centered at qj with radius |B1| = (1 + α)ρ∗ and the ball B2 with radius 2|B1|
(Figure 1). Each pi ∈ P0 must be contained in B1 and thus d(pi, qj) ≤ (1 + α)ρ∗. For each
pi ∈ P0 denote by Si the contiguous sequence of vertices of P µ starting at pi of length µ.
Observe that since ε < 1: Si ⊂ B2. Per definition of simplification, each Si are non-coinciding
subcurves. This lower bounds ℓ(P ∩B2):

ℓ(P ∩B2) ≥
∑

p∈P0

ℓ(Si) =
∑

p∈P0

µ > 2(1 + α)(1 + ε

2) · c · k
ε
· µ ≥ 2(1 + α) · c · ρ∗ ≥ c · |B2|,

where 2(1 + α)(1 + ε
2) · c·k

ε < 8 · c·k
ε (since α < 1 and ε < 1) – contradicting c-packedness. ◀

6.2 A data structure for answering A-decision(Q, ε, ρ)
We showed in Sections 5 and 6.1 that for any c-packed curve P , ρ > 0 and 0 < ε < 1 we
can choose suitable values ερ

k ≤ µ ≤ ερ
6 to upper bound the number of zeroes in MP µ×Q

ρ∗ .
Moreover, for ρ∗ = (1 + 1

ε)ρ we know that comparing DF
◦(P µ, Q) ≤ ρ∗ implies an answer to

A-decision(Q, ε, ρ).
We now define a data structure, so that for any µ and any (i, j) we can report the

µ-simplification of P [i, j] in O(|P [i, j]|) time. We use this to answer the decision variant.

▶ Theorem 4. Let X be any geodesic space and Dα
X be a (1 + α)-approximate distance oracle

with O(Tα) query time. Let P = (p1, . . . , pn) be any c-packed curve in X . We can store P

using O(n) space and preprocessing, such that for any curve Q = (q1, . . . , qm) in X and any
ρ > 0 and 0 < ε < 1, we can answer A-decision(Q, ε, ρ) for the discrete Fréchet distance in:

O
(c ·m

ε
·
(
Tε/6 + log n

))
time.

Proof. We store P in the data structure of Definition 9 using O(n) space and preprocessing
time. Given a query A-decision(Q, ε, ρ) we choose α = 1

6 ε, ρ∗ = (1 + 1
2 ε) and µ = ερ

6 . We
test if DF

◦(P µ, Q) ≤ ρ∗. By Lemma 3, if DF
◦(P µ, Q) ≤ ρ∗ then DF(P, Q) ≤ (1 + ε)ρ and

otherwise DF(P, Q) > ρ. We consider the matrix MP µ×Q
ρ∗ .

By Observation 13, DF
◦(P µ, Q) ≤ ρ∗ if and only if there exists a discrete walk F from

(1, 1) to (|P µ|, |Q|) where for each (i, j) ∈ F : MP µ×Q
ρ∗ [i, j] = 0. We will traverse this matrix

in a depth-first manner as follows: starting from the cell (1, 1), we test if MP µ×Q
ρ∗ [1, 1] = 0.

If so, we push (1, 1) onto a stack. Each time we pop a tuple (i, j) from the stack, we inspect
their O(1) neighbors {(i + 1, j), (i, j + 1), (i + 1, j + 1)}. If MP µ×Q

ρ∗ [i′, j′] = 0, we push (i′, j′)

ISAAC 2024

56:14 Data Structures for Approximate Fréchet Distance for Realistic Curves

onto our stack. It takes O(log n) time to obtain the i + 1’th vertex of P µ, and O(Tε/6) to
determine the value of e.g., MP µ×Q

ρ∗ [i + 1, j]. Thus each time we pop the stack, we spend
O((Tε/6) + log n) time.

By Lemma 14 (noting ε < 1 and setting k = 6), we push at most O(cm
ε) tuples

onto our stack. Therefore, we spend O(cm
ε (Tε/6 + log n)) total time. By Observation 13,

DF
◦(P µ, Q) ≤ ρ∗ if and only if we push (|P µ|, |Q|) onto our stack. We test this in O(1)

additional time per operation. Thus, the theorem follows. ◀

6.3 A data structure for answering A-value(Q, ε)
Finally, we show how to answer the A-value(Q, ε, ρ) query. At this point, we could immediately
apply Theorem 2 to answer A-value(Q, ε) at the cost of a factor O(log n + log ε−1). However,
for the discrete Fréchet distance we show that the factor O(log ε−1) can be avoided. To this
end, we leverage the variable k ≥ 1 introduced in the definition of µ ≥ ερ

k :

▶ Theorem 5. Let X be a geodesic metric space and Dα
X be a (1 + α)-approximate distance

with O(Tα) query time. Let P = (p1, . . . , pn) be any c-packed curve in X . We can store P

using O(n) space and O(n log n) preprocessing time, such that for any curve Q = (q1, . . . , qm)
in X and any 0 < ε < 1, we can answer A-Value(Q, ε) for the discrete Fréchet distance in:

O
(c ·m

ε
· log n ·

(
Tε/6 + log c ·m

ε
+ log n

))
time.

Proof. We preprocess P using Lemma 10 in O(n) space and time. We store P in the data
structure of Definition 11. This way, we obtain T = TADD(Λ, Λ) where Λ is the curve P

mapped to R1. We denote for all s ∈ T by Is = [cs, 2 · cs] the corresponding interval and
obtain a sorted set of intervals I = {Is}.

Given a query (Q, ε), we set α← ε/6 and obtain Dα
X . We (implicitly) rescale each interval

Ii ∈ I by a factor 6
ε , creating for Is the interval Iε

s = [6·cs

ε , 12·cs

ε]. This creates a sorted set
Iε of pairwise disjoint intervals. Intuitively, these are the intervals over R1 where for ρ ∈ Iε

s ,
the µ-simplification P µ for µ = ερ

6 may change.
We binary search over Iε. For each boundary point λ of an interval Iε

s we query
A-decision(Q, ε, λ): discarding half of the remaining intervals in Iε. It follows that in
O(c·m

ε · log n · (Tε/6 + log n)) time, we obtain one of two things:
a) an interval Iε

s where ∃ρ∗ ∈ Iε
s that is a (1 + ε)-approximation of DF(P, Q), or

b) a maximal interval I∗ disjoint of the intervals in Iε where ∃ρ∗ ∈ I∗ that is a (1 + ε)-
approximation of DF(P, Q).

Denote by λ the left boundary of Iε
s or I∗: it lower bounds DF(P, Q). Note that if I∗ precedes

all of Iε, λ = 0. We now compute a (1 + ε)-approximation of DF(P, Q) as follows:

FindApproximation(λ).
1. Compute C = d◦(p1,q1)

(1+ 1
2 ε) .

2. Initialize ρ∗ ← (1 + 1
2 ε) ·max{C, λ} and set a constant µ← ε

6 · λ.
3. Push the lattice point (1, 1) onto a stack.
4. Whilst the stack is not empty do:

Pop a point (i, j) and consider the O(1) neighbors (pa, qb) of (pi, qj) in MP µ×Q
ρ∗ :

If d◦(pa, qb) ≤ ρ∗, push (a, b) onto the stack.
Else, store d◦(pa, qb) in a min-heap.

If we push (pn, qm) onto the stack do:
Output ν = ρ∗

(1+ 1
2 ε) .

5. If the stack is empty, we extract the minimal d◦(pa, pb) from the min-heap.
Update ρ∗ ← (1 + 1

2 ε) · d◦(pa, qb), push (a, b) onto the stack and go to line 4.

I. van der Hoog, E. Rotenberg, and S. Wong 56:15

Correctness. Suppose that our algorithm pushes (pn, qm) onto the stack and let at this
time of the algorithm, ρ∗ = (1 + 1

2 ε)ν. Per definition of the algorithm, ν ≥ λ is the minimal
value for which the matrix MP µ×Q

ρ∗ contains a walk F from (1, 1) to (n, m) where for each
(i, j) ∈ F : MP µ×Q

ρ∗ [i, j] = 0. Indeed, each time we increment ρ∗ by the minimal value
required to extend any walk in MP µ×Q

ρ∗ . Moreover, we fixed µ← ε
6 λ and thus µ ≤ ε

6 ν. Thus
we may apply Lemma 3 to defer that ν is the minimal value for which DF(P, Q) ≤ (1 + ε)ν.

Running time. We established that the binary search over Iε took O(c·m
ε ·log n·(Tε/6+log n))

time. We upper bound the running time of our final routine. For each pair (pi, qj) that we
push onto the stack we spend at most O(Tε/6 + log c·m

ε + log n) time as we:
Obtain the O(1) neighbors of (pi, qj) through our data structure in O(log n) time,
Perform O(1) distance oracle queries in O(Tε/6) time, and
Possibly insert O(1) neighbors into a min-heap. The min-heap has size at most K: the
number of elements we push onto the stack. Thus, this takes O(log K) insertion time.

What remains is to upper bound the number of items we push onto the stack. Note that we
only push an element onto the stack, if for the current value ρ∗ the matrix MP µ×Q

ρ∗ contains
a zero in the corresponding cell. We now refer to our earlier case distinction.

Case (a): Since ε < 1 we know that ρ∗ ∈ [λ, 4 · λ]. We set µ = ε
6 λ. So µ ≥ 1

k ερ∗ for
k = 24. Thus, we may immediately apply Lemma 14 to conclude that we push at most
O(c·m

ε) elements onto the stack.
Case (b): Denote by γ = ε

6 ν. Per definition of our re-scaled intervals, the open interval
(µ, γ) does not intersect with any interval in the non-scaled set I. It follows that P µ = P γ

and that for two consecutive vertices pi, pl ∈ P µ: ℓ(P [i, l]) > γ. From here, we essentially
redo Lemma 14 for this highly specialized setting. The proof is by contradiction, where
we assume that for ρ∗ = (1 + ε

2)ν there are more than 8 · 6 · c
ε zeroes in the j’th row of

MP µ×Q
ρ∗ . Denote by P0 ⊂ P µ the vertices corresponding to these zeroes. We construct a ball

B1 centered at qj with radius 2ρ∗ and a ball B2 with radius 2|B1|. We construct a subcurve
Si of P starting at pi ∈ P0 of length γ. The critical observation is, that our above analysis
implies that all the subcurves Si do not coincide (since each of them start with a vertex in
P µ). Since ε < 1, each segment Si is contained in B2. However, this implies that B2 is not
c-packed since: ℓ(P ∩ B2) ≥

∑
i ℓ(Si) =

∑
i γ > 8 · 6 c

ε γ ≥ 4 · c · ρ∗ ≥ 2 · c · |B2|. Thus, we
always push at most O(c·m

ε) elements onto our stack and this implies our running time. ◀

References
1 Pankaj K Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the

discrete fréchet distance in subquadratic time. SIAM Journal on Computing, 43(2):429–449,
2014. doi:10.1137/130920526.

2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(01n02):75–91,
1995. doi:10.1142/S0218195995000064.

3 Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for planar
curves. Algorithmica, 38(1):45–58, 2004. doi:10.1007/S00453-003-1042-5.

4 Boris Aronov, Omrit Filtser, Michael Horton, Matthew J. Katz, and Khadijeh Sheikhan.
Efficient nearest-neighbor query and clustering of planar curves. In Zachary Friggstad, Jörg-
Rüdiger Sack, and Mohammad R Salavatipour, editors, Algorithms and Data Structures, pages
28–42, Cham, 2019. Springer International Publishing. doi:10.1007/978-3-030-24766-9_3.

5 Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola Wenk. Fréchet
distance for curves, revisited. In Yossi Azar and Thomas Erlebach, editors, Algorithms -
ESA 2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006,
Proceedings, volume 4168 of Lecture Notes in Computer Science, pages 52–63. Springer, 2006.
doi:10.1007/11841036_8.

ISAAC 2024

https://doi.org/10.1137/130920526
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1007/S00453-003-1042-5
https://doi.org/10.1007/978-3-030-24766-9_3
https://doi.org/10.1007/11841036_8

56:16 Data Structures for Approximate Fréchet Distance for Realistic Curves

6 Alessandro Bombelli, Lluis Soler, Eric Trumbauer, and Kenneth D Mease. Strategic air traffic
planning with Fréchet distance aggregation and rerouting. Journal of Guidance, Control, and
Dynamics, 40(5):1117–1129, 2017.

7 Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching
vehicle tracking data. In Proceedings of the 31st international conference on Very large data
bases, pages 853–864, 2005. URL: http://www.vldb.org/archives/website/2005/program/
paper/fri/p853-brakatsoulas.pdf.

8 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly sub-
quadratic algorithms unless SETH fails. In 2014 IEEE 55th Annual Symposium on Foundations
of Computer Science, pages 661–670. IEEE, 2014. doi:10.1109/FOCS.2014.76.

9 Karl Bringmann, Anne Driemel, André Nusser, and Ioannis Psarros. Tight bounds for
approximate near neighbor searching for time series under the fréchet distance. In Joseph (Seffi)
Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022,
pages 517–550. SIAM, 2022. doi:10.1137/1.9781611977073.25.

10 Karl Bringmann and Marvin Künnemann. Improved approximation for Fréchet distance on
c-packed curves matching conditional lower bounds. International Journal of Computational
Geometry & Applications, 27(01n02):85–119, 2017. doi:10.1142/S0218195917600056.

11 Kevin Buchin, Maike Buchin, David Duran, Brittany Terese Fasy, Roel Jacobs, Vera Sacristan,
Rodrigo I Silveira, Frank Staals, and Carola Wenk. Clustering trajectories for map construction.
In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 1–10, 2017. doi:10.1145/3139958.3139964.

12 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four Soviets walk
the dog: Improved bounds for computing the Fréchet distance. Discrete & Computational
Geometry, 58(1):180–216, 2017. doi:10.1007/S00454-017-9878-7.

13 Kevin Buchin, Tim Ophelders, and Bettina Speckmann. Seth says: Weak Fréchet distance
is faster, but only if it is continuous and in one dimension. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2887–2901. SIAM, 2019. doi:
10.1137/1.9781611975482.179.

14 Maike Buchin, Bernhard Kilgus, and Andrea Kölzsch. Group diagrams for representing
trajectories. International Journal of Geographical Information Science, 34(12):2401–2433,
2020. doi:10.1080/13658816.2019.1684498.

15 Maike Buchin, Ivor van der Hoog, Tim Ophelders, Lena Schlipf, Rodrigo I Silveira, and Frank
Staals. Efficient Fréchet distance queries for segments. European Symposium on Algorithms,
2022.

16 Daniel Chen, Anne Driemel, Leonidas J. Guibas, Andy Nguyen, and Carola Wenk. Approximate
map matching with respect to the fréchet distance. In Matthias Müller-Hannemann and
Renato Fonseca F. Werneck, editors, Proceedings of the Thirteenth Workshop on Algorithm
Engineering and Experiments, ALENEX 2011, Holiday Inn San Francisco Golden Gateway,
San Francisco, California, USA, January 22, 2011, pages 75–83. SIAM, 2011. doi:10.1137/
1.9781611972917.8.

17 Jacobus Conradi, Anne Driemel, and Benedikt Kolbe. Revisiting the fr\’echet distance between
piecewise smooth curves. arXiv preprint arXiv:2401.03339, 2024. doi:10.48550/arXiv.2401.
03339.

18 Mark De Berg, Atlas F Cook IV, and Joachim Gudmundsson. Fast Fréchet queries. Computa-
tional Geometry, 46(6):747–755, 2013. doi:10.1016/J.COMGEO.2012.11.006.

19 Mark de Berg, Ali D Mehrabi, and Tim Ophelders. Data structures for Fréchet queries in
trajectory data. In 29th Canadian Conference on Computational Geometry (CCCG’17), pages
214–219, 2017.

20 Thomas Devogele. A new merging process for data integration based on the discrete Fréchet
distance. In Advances in spatial data handling, pages 167–181. Springer, 2002.

http://www.vldb.org/archives/website/2005/program/paper/fri/p853-brakatsoulas.pdf
http://www.vldb.org/archives/website/2005/program/paper/fri/p853-brakatsoulas.pdf
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1137/1.9781611977073.25
https://doi.org/10.1142/S0218195917600056
https://doi.org/10.1145/3139958.3139964
https://doi.org/10.1007/S00454-017-9878-7
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1080/13658816.2019.1684498
https://doi.org/10.1137/1.9781611972917.8
https://doi.org/10.1137/1.9781611972917.8
https://doi.org/10.48550/arXiv.2401.03339
https://doi.org/10.48550/arXiv.2401.03339
https://doi.org/10.1016/J.COMGEO.2012.11.006

I. van der Hoog, E. Rotenberg, and S. Wong 56:17

21 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: computing the Fréchet distance with
shortcuts. SIAM Journal on Computing, 42(5):1830–1866, 2013. doi:10.1137/120865112.

22 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance
for realistic curves in near linear time. Discret. Comput. Geom., 48(1):94–127, 2012. doi:
10.1007/s00454-012-9402-z.

23 Anne Driemel and Ioannis Psarros. (2 + ϵ)-ANN for time series under the Fréchet distance.
Workshop on Algorithms and Data structures (WADS), 2021.

24 Anne Driemel, Ioannis Psarros, and Melanie Schmidt. Sublinear data structures for short
Fréchet queries. CoRR, abs/1907.04420, 2019. arXiv:1907.04420.

25 Anne Driemel, Ivor van der Hoog, and Eva Rotenberg. On the discrete Fréchet distance
in a graph. In International Symposium on Computational Geometry (SoCG 2022). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

26 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical Report
CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.

27 Arnold Filtser and Omrit Filtser. Static and streaming data structures for fréchet distance
queries. In Dániel Marx, editor, Symposium on Discrete Algorithms (SODA) 2021, pages
1150–1170. SIAM, 2021. doi:10.1137/1.9781611976465.71.

28 Arnold Filtser, Omrit Filtser, and Matthew J. Katz. Approximate nearest neighbor for
curves – simple, efficient, and deterministic. In 47th International Colloquium on Automata,
Languages, and Programming (ICALP 2020), volume 168 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 48:1–48:19, 2020. doi:10.4230/LIPIcs.ICALP.2020.48.

29 Omrit Filtser. Universal approximate simplification under the discrete fréchet distance. Inf.
Process. Lett., 132:22–27, 2018. doi:10.1016/j.ipl.2017.10.002.

30 Joachim Gudmundsson, Martin P. Seybold, and Sampson Wong. Map matching queries on
realistic input graphs under the fréchet distance. Symposium on Discrete Algorithms (SODA),
2023.

31 Joachim Gudmundsson, André van Renssen, Zeinab Saeidi, and Sampson Wong. Fréchet
distance queries in trajectory data. In The Third Iranian Conference on Computational
Geometry (ICCG 2020), pages 29–32, 2020.

32 Leonidas J Guibas and John Hershberger. Optimal shortest path queries in a simple polygon.
In Symposium on Computational geometry (SoCG), 1987.

33 Sariel Har-Peled. Geometric approximation algorithms, volume 173 of Mathematical Surveys
and Monographs. American Mathematical Soc., 2011.

34 Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure–structure alignment with discrete
Fréchet distance. Journal of bioinformatics and computational biology, 6(01):51–64, 2008.
doi:10.1142/S0219720008003278.

35 Maximilian Konzack, Thomas McKetterick, Tim Ophelders, Maike Buchin, Luca Giuggioli,
Jed Long, Trisalyn Nelson, Michel A Westenberg, and Kevin Buchin. Visual analytics of delays
and interaction in movement data. International Journal of Geographical Information Science,
31(2):320–345, 2017. doi:10.1080/13658816.2016.1199806.

36 Yaowei Long and Seth Pettie. Planar distance oracles with better time-space tradeoffs. In
Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2517–2537. SIAM, 2021.
doi:10.1137/1.9781611976465.149.

37 Ariane Mascret, Thomas Devogele, Iwan Le Berre, and Alain Hénaff. Coastline matching
process based on the discrete Fréchet distance. In Progress in Spatial Data Handling, pages
383–400. Springer, 2006.

38 Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
J. ACM, 30(4):852–865, 1983. doi:10.1145/2157.322410.

39 Otfried Schwarzkopf and Jules Vleugels. Range searching in low-density environments. Inf.
Process. Lett., 60(3):121–127, 1996. doi:10.1016/S0020-0190(96)00154-8.

ISAAC 2024

https://doi.org/10.1137/120865112
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1007/s00454-012-9402-z
https://arxiv.org/abs/1907.04420
https://doi.org/10.1137/1.9781611976465.71
https://doi.org/10.4230/LIPIcs.ICALP.2020.48
https://doi.org/10.1016/j.ipl.2017.10.002
https://doi.org/10.1142/S0219720008003278
https://doi.org/10.1080/13658816.2016.1199806
https://doi.org/10.1137/1.9781611976465.149
https://doi.org/10.1145/2157.322410
https://doi.org/10.1016/S0020-0190(96)00154-8

56:18 Data Structures for Approximate Fréchet Distance for Realistic Curves

40 Roniel S. De Sousa, Azzedine Boukerche, and Antonio A. F. Loureiro. Vehicle trajectory
similarity: Models, methods, and applications. ACM Comput. Surv., 53(5), September 2020.
doi:10.1145/3406096.

41 E Sriraghavendra, K Karthik, and Chiranjib Bhattacharyya. Fréchet distance based approach
for searching online handwritten documents. In Ninth International Conference on Document
Analysis and Recognition (ICDAR 2007), volume 1, pages 461–465. IEEE, 2007. doi:10.1109/
ICDAR.2007.4378752.

42 Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. A survey of trajectory
distance measures and performance evaluation. The VLDB Journal, 29(1):3–32, 2020. doi:
10.1007/S00778-019-00574-9.

43 Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs.
Journal of the ACM (JACM), 51(6):993–1024, 2004. doi:10.1145/1039488.1039493.

44 Ivor van der Hoog, Eva Rotenberg, and Sampson Wong. Data structures for approximate
discrete Fréchet distance. CoRR, abs/2212.07124, 2022. doi:10.48550/arXiv.2212.07124.

45 A. Frank van der Stappen. Motion planning amidst fat obstacles. University Utrecht, 1994.
46 Rene Van Oostrum and Remco Veltkamp. Parametric search made practical. In Symposium

on Computational Geometry (C), pages 1–9, 2002.
47 Dong Xie, Feifei Li, and Jeff M Phillips. Distributed trajectory similarity search. Proceedings

of the VLDB Endowment, 10(11):1478–1489, 2017. doi:10.14778/3137628.3137655.
48 Daming Xu. Well-separated pair decompositions for doubling metric spaces. PhD thesis,

Carleton University, 2005.

https://doi.org/10.1145/3406096
https://doi.org/10.1109/ICDAR.2007.4378752
https://doi.org/10.1109/ICDAR.2007.4378752
https://doi.org/10.1007/S00778-019-00574-9
https://doi.org/10.1007/S00778-019-00574-9
https://doi.org/10.1145/1039488.1039493
https://doi.org/10.48550/arXiv.2212.07124
https://doi.org/10.14778/3137628.3137655

	1 Introduction
	2 Preliminaries
	2.1 Results
	2.2 Corollaries

	3 Simplification and a data structure
	4 The 1-TADD technique
	5 Approximate distance oracles under the discrete Fréchet distance
	6 Approximate Discrete Fréchet distance
	6.1 Perceived free space matrix and free space complexity
	6.2 A data structure for answering A-decision(Q, e, r)
	6.3 A data structure for answering A-value(Q, e)

