Data Structures for Approximate Fréchet Distance
for Realistic Curves

Ivor van der Hoog &
DTU Compute, Technical University of Denmark, Lyngby, Denmark

Eva Rotenberg &
DTU Compute, Technical University of Denmark, Lyngby, Denmark

Sampson Wong &

Department of Computer Science, University of Copenhagen, Denmark

—— Abstract

The Fréchet distance is a popular distance measure between curves P and (). Conditional lower
bounds prohibit (1 4 €)-approximate Fréchet distance computations in strongly subquadratic time,
even when preprocessing P using any polynomial amount of time and space. As a consequence, the
Fréchet distance has been studied under realistic input assumptions, for example, assuming both
curves are c-packed.

In this paper, we study c-packed curves in Euclidean space R? and in general geodesic metrics
X. In R, we provide a nearly-linear time static algorithm for computing the (1 + e)-approximate
continuous Fréchet distance between c-packed curves. Our algorithm has a linear dependence on the
dimension d, as opposed to previous algorithms which have an exponential dependence on d.

In general geodesic metric spaces X, little was previously known. We provide the first data
structure, and thereby the first algorithm, under this model. Given a c-packed input curve P with n
vertices, we preprocess it in O(nlogn) time, so that given a query containing a constant € and a
curve @ with m vertices, we can return a (1 + ¢)-approximation of the discrete Fréchet distance
between P and @ in time polylogarithmic in n and linear in m, 1/e, and the realism parameter c.

Finally, we show several extensions to our data structure; to support dynamic extend/truncate
updates on P, to answer map matching queries, and to answer Hausdorff distance queries.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms;
Theory of computation — Computational geometry

Keywords and phrases Fréchet distance, data structures, approximation algorithms
Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.56
Related Version Full Version: https://arxiv.org/abs/2407.05114 [44]

Funding Ivor van der Hoog: Supported by Independent Research Fund Denmark grant 2020-2023
(9131-00044B) “Dynamic Network Analysis”.

Fva Rotenberg: Partially supported by Independent Research Fund Denmark grant 2020-2023 (9131-
00044B) “Dynamic Network Analysis” and the Carlsberg Young Researcher Fellowship CF21-0302
“Graph Algorithms with Geometric Applications”.

1 Introduction

The Fréchet distance is a popular metric for measuring the similarity between (polygonal)
curves P and). We assume that P has n vertices and) has m vertices and that they reside
in some geodesic metric space X. The Fréchet distance is often intuitively defined through
the following metaphor: suppose that we have two curves that are traversed by a person and
their dog. Consider the length of their connecting leash, measured over the metric X. What
is the minimum length of the connecting leash over all possible traversals by the person
and the dog? The Fréchet distance has many applications; in particular in the analysis and
© Ivor van der Hoog, Eva Rotenberg, and Sampson Wong;

licensed under Creative Commons License CC-BY 4.0
35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julidn Mestre and Anthony Wirth; Article No. 56; pp. 56:1-56:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:idjva@dtu.dk
https://orcid.org/0009-0006-2624-0231
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
mailto:sampson.wong123@gmail.com
https://orcid.org/0000-0003-3803-3804
https://doi.org/10.4230/LIPIcs.ISAAC.2024.56
https://arxiv.org/abs/2407.05114
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2

Data Structures for Approximate Fréchet Distance for Realistic Curves

visualization of movement data [11, 14, 35, 47]. It is a versatile measure that can be used for
a variety of objects, such as handwriting [41], coastlines [37], outlines of shapes in geographic
information systems [20], trajectories of moving objects, such as vehicles, animals or sports
players [40, 42, 7, 14], air traffic [6] and protein structures [34].

Alt and Godau [2] compute the continuous Fréchet distance in R? under the Ly metric in
O(mnlog(n+m)) time. This was later improved by Buchin et al. [12] to O(nm(loglognm)?)
time. Eiter and Manila [26] showed how to compute the discrete Fréchet distance in R? in
O(nm) time, which was later improved by Agarwal et al. [1] to O(nm(loglognm)/lognm)
time. Typically, the quadratic O(nm) running time is considered costly. Bringmann [§]
showed that, conditioned on the Strong Exponential Time Hypothesis (SETH), one cannot
compute a (1 + €)-approximation of the continuous Fréchet distance between curves in R?
under the Lj, Ly or Lo, metric faster than Q((nm)'~?) time for any 6 > 0. This lower
bound was extended by Buchin, Ophelders and Speckmann [13] to intersecting curves in R!.
Driemel, van der Hoog and Rotenberg [25] extended the lower bound to paths P and @ in a
weighted planar graph under the shortest path metric.

Well-behaved curves. Previous works have circumvented lower bounds by assuming that
both curves come from a well-behaved class. A curve P in a geodesic metric space X is any
sequence of points where consecutive points are connected by their shortest path in X'. For a
ball B in X, let P N B denote all (maximal) segments of P contained in B. A curve P is:
k-straight (by Alt, Knauer and Wenk [3]) if for every i,j the length of the subcurve
from p; to p; is £(Pi,j]) < k- d(pi,pj),
c-packed (by Driemel, Har-Peled and Wenk [22]) if for every ball B in the geodesic
metric space X with radius r: the length /(PN B) <c-r.

¢-low-dense (by van der Stappen [45]; see also [20, 22, 39]) if for every ball B in X with
radius r, there exist at most ¢ edges of length r intersecting B.

backbone (by Aronov et al. [5]) if consecutive vertices have distance between ¢; and ¢z

for some constants c1, ca, and if non-consecutive vertices have distance at least 1.
Any c-straight curve is also O(c¢)-packed. Parametrized by €, ¢ € O(1), ¢ and k = O(c),
Driemel, Har-Peled and Wenk [22] compute a (1 +¢)-approximation of the continuous Fréchet
distance between a pair of realistic curves in R? under the Ly, Lo, Lo, metric for constant d in
O(M +c(n+m)logn) time. Their result for c-packed and c-straight curves was improved
by Bringmann and Kiinnemann [10] to O(L\;%m) log et +c¢(n+m)logn), which matches the
conditional lower bound for c-packed curves. In particular, Bringmann [8] showed that under
SETH, for dimension d > 5, there is no O((c(n +m)//2)!~?) time algorithm for computing
the Fréchet distance between c-packed curves for any § > 0. Realistic input assumptions
have been applied to other geometric problems, e.g. for robotic navigation in ¢-low-dense
environments [45], and map matching of ¢-low-dense graphs [16] or c-packed graphs [30].

Deciding versus computing. We make a distinction between two problem variants: the
decision variant, the optimisation variant. For the decision variant, we are given a value p and
two curves P and @ and we ask whether the Fréchet distance D (P, Q) < p. This variant
often solved through navigating an n by m “free space diagram”. In the optimization variant,
the goal is to output the Fréchet distance Dz(P, Q). To convert any decision algorithm into
a optimization algorithm, two techniques are commonly used. The first is binary search over
what we will call TADD(P, Q):

l. van der Hoog, E. Rotenberg, and S. Wong

» Definition 1. Given two sets of points P, Q in a geodesic metric space X, we define a
Two-Approzimate Distance Decomposition of P denoted by TADD(P, Q) as a set of reals
Tpqo where for every pair (p;,q;) € P x Q there exist a,b € Tpg with a < d(p;,q;) < b < 2a.

Essentially a TADD is a two-approximation of the set of all pairwise distances in P x Q)
and it can be used to determine, approximately, the (Fréchet) distance values for when the
simplification of the input curve changes, or when the reachability of the free space matrix
changes. It is known how to compute a TADD from a Well-Separated Pair Decomposition
(WSPD) in time linear in the size of the WSPD [22, Lemma 3.8]. A downside of this
approach [22] is that, it is only known how to compute a WSPD for doubling metrics [48].
Moreover, for non-constant (doubling) dimensions d, computing the WSPD (and therefore
the TADD) takes O(29n + dnlogn) time [33, 48], which dominates the running time.

The second technique, deployed when for example TADDs cannot be computed, is
parametric search [38]. For decision variants that have a sublinear running or query time of
T, the running time of parametric search is commonly O(T?) [46, 31].

Data structures for Fréchet distance. An interesting question is whether we can store P in
a data structure, for efficient (approximate) Fréchet distance queries for any query Q. This
topic received considerable attention throughout the years [24, 31, 27, 19, 21, 15, 30]. A related
field is nearest neighbor data structures under the Fréchet distance metric [9, 23, 18, 4, 28].
Recently, Gudmundsson, Seybold and Wong [30] answer this question negatively for arbitrary
curves in R?: showing that even with polynomial preprocessing space and time, we cannot
preprocess a curve P to decide the continuous Fréchet distance between P and a query curve
Q in Q((nm)'~°%) time for any § > 0. Surprisingly, even in very restricted settings data
structure results are difficult to obtain. De Berg et al. [19] present an O(n?) size data structure
that restricts the orientation of the query segment to be horizontal. Queries are supported
in O(log® n) time, and even subcurve queries are allowed (in that case, using O(n?log? n)
space). At ESA 2022, Buchin et al. [15] improve these result to using only O(nlog? n) space,
where queries take O(logn) time. For arbitrary query segments, they present an O(n**9)

size data structure that supports (subcurve) queries to arbitrary segments in O(log*n) time.

Gudmundsson et al. [31] extend de Berg et al.’s [19] data structure to handle subcurve
queries, and to handle queries where the horizontal query segment is translated in order
to minimize its Fréchet distance. Driemel and Har-Peled [21] create a data structure to
store any curve in R? for constant d. They preprocess P in O(nlog®n) time and O(nlogn)
space. For any query (Q,¢,1,j) they can create a (3 + ¢)-approximation of Dy(P[i,j],Q) in
O(m?lognlog(mlogn)) time.

We state existing data structures for the discrete Fréchet distance. Driemel, Psarros and
Schmidt [24] fix € and an upper bound M beforehand where for all queries @, they demand
that |Q| < M. They store any curve P in R? for constant d using O((M log 1)) space
and preprocessing, to answer (1 + ¢)-approximate Fréchet distance queries in O(m? + log %)

time. Filtser [29] gives the corresponding data structure for the discrete Fréchet distance.

At SODA 2022, Filtser and Filtser [27] study the same setting: storing P in O((%)dM log 1)
space, to answer (1 + ¢)-approximate Fréchet distance queries in O(m - d) time.

Contributions. We provide four contributions.

(1) A 1-TADD technique. A crucial step in computing the Fréchet distance is to turn a
decision algorithm into an optimization algorithm. TADD(P, Q) is commonly used when
approximating the Fréchet distance. Our 1-TADD technique shows a new argument where
we map P and @ to curves in A C R! and compute only TADD(A, A) in O(nlogn) time.

56:3

ISAAC 2024

56:4

Data Structures for Approximate Fréchet Distance for Realistic Curves

Table 1 Our results for computing a (1 4 €)-approximation of the Fréchet distance between P
and Q. All settings assume that P is a realistic curve, except for [27] who assume an upper bound on
|Q|. T: denotes the query time of a (1 + ¢)-approximate oracle. The tilde hides lower order factors
in terms of n, m and . Under the continuous Fréchet distance, we require that @ is also realistic.

Previous result Our result
Domain
Preprocess Query time Ref. Preprocess Query time Ref.
d (24, 4 gntm) o
R . static ol 277 +d= [10] static O(delntm)y Thm. 2
L, metric +d* - c(n +m)) °
Discrete Fréchet distance only:
R? A (1ydM 3 A
1yan 1 em 3
10 < M o((2)*") O(md) [27] O(nlogn) O(d<* logn) Cor. 7
Planar G = (V, E) static O(|v| 1o 4 clvdmdy | [a5] | O(|V|*Hom) O(< log n) Cor. 7
3(VIHD 4 Elloe | E B B
Graph G = (V, E) static olvl +C(,jm‘>)l %BIEL | 15y | Gviem) O(<2 log n) Cor. 7
Simple Polygon P static O(nmlog(n +m)) 2] O(|P| +n) O(% log | P]) Cor. 7
Any geodesic X e (T e
with (1 + £)-oracle static O(T. - nmlogn) [26] O(nlogn) O(T-< log n) Thm. 5
Map Matching 5 0 _4 9 O(mlogm- . 5.0 _4 9o O(m(logn + loge™)-
> > 44
G=(V,E) Oe’e™n’) (log*n + c*e~®log®n)) [30] | O(c%e™n%) (log®n + c*c~*logn)) [44]

In Euclidean R? this allows us to approximate the discrete and continuous Fréchet
distances in time that is linear in d, whereas previous approaches required an exponential
dependence on d. In general geodesic metric spaces X, our 1-TADD technique allows us to
approximate the discrete Fréchet distance when TADD(P, Q) cannot be efficiently computed.

(2) Allowing approximate oracles under the discrete Fréchet distance. Many ambient
spaces (e.g., Euclidean spaces under floating point arithmetic, and X" as a weighted graph
under the shortest path metric.) do not allow for efficient exact distance computations. Thus,
we revisit and simplify the argument by Driemel, Har-Peled and Wenk [22]. We assume
access to a (1 + «)-approximate distance oracle with T, query time. We generalize the
previous argument to approximate the discrete Fréchet distance between two curves in any
geodesic metric space with approximate distance oracles. For contributions (1) and (2), we
do not require the curves P and @) to be c-packed.

(3) A data structure under the discrete Fréchet distance. Under the discrete Fréchet
distance, we show how to store a c-packed or c-straight curve P with n vertices in any
geodesic ambient space X. Our solution uses O(n) space and O(nlogn) preprocessing time.
For any query curve @, any 0 < € < 1, and any subcurve P* of P, we can compute a (1 + ¢)-
approximation the discrete Fréchet distance Dg(P*, Q) using O(<2* log n(T +log < +logn))
time. Here, T is the time required to perform a distance query in the ambient space (e.g.,
O(logn) for geodesic distances in a polygon). All times are deterministic and worst-case.
This is the Fréchet distance first data structure for realistic curves that avoids spending query
time linear in n. Our solution improves various recent results [10, 25, 27, 30] (see Table 1).

l. van der Hoog, E. Rotenberg, and S. Wong

(4) Extensions. In the full version of this paper [44], we provide several extensions to
our results. We modify our data structure to support updates that truncate the curve P,
or extend P, we apply our algorithmic skeleton to map matching queries, and we study
Hausdorff distance queries.

2 Preliminaries

Let X denote some geodesic metric space (e.g., X is some weighted graph). For any a,b € X
we denote by d(a,b) their distance in X'. A curve P in X is any ordered sequence of points
in X', where consecutive points are connected by their shortest path in X. We refer to such
points as vertices. For any curve P with n vertices, for any integers i, j € [n] with i < j we
denote by P[i, j] the subcurve from p; to p;. We denote by |P[i, j]| = (j — i + 1) the size of
the subcurve and by ¢(PJi, j]) := fc;i d(pk, pr+1) its length. We receive as preprocessing
input a curve P where for each pair (p;, p;+1) we are given d(p;, pit1)-

Distance and distance oracles. Throughout this paper, we assume that for any a > 0 we
have access to some (1 + «)-approximate distance oracle. This is a data structure D% that
for any two a,b € X can report a value d°(a,b) € [(1 — a)d(a,b), (1 + a)d(a,b)] in O(T,)
time. To distinguish between inaccuracy as a result of our algorithm and as a result of our
oracle, we refer to d°(a,b) as the perceived value (as opposed to an approximate value).

Discrete Fréchet distance. Given two curves P and @ in X', we denote by [n] x [m] the n by
m integer lattice. We say that an ordered sequence F of points in [n] X [m] is a discrete walk if
for every consecutive pair (,7), (k,1) € F, we have k € {i—1,4,i+1}and l € {j —1,7,7+1}.
It is furthermore xy-monotone when we restrict to k € {i,i +1} and Il € {j,j + 1}. Let F
be a discrete walk from (1,1) to (n,m). The cost of F' is the maximum over (i,5) € F of
d(pi, q;). The discrete Fréchet distance is the minimum over all zy-monotone walks F' from
(1,1) to (n,m) of its associated cost: Dg(P, Q) := ming cost(F) = minp max; jyer d(pi, ¢;)-
In this paper we, given a (1 + a)-approximate distance oracle, define the perceived discrete
Fréchet distance as Dy°, obtained by replacing in the above definition d(p;, g;) by d°(pi, ;).

Free space matrix (FSM). The FSM for a fixed p* > 0 is a |P| x |Q], (0, 1)-matrix where
the cell (4, 7) is zero if and only if the distance between the ’th point in P and the j’th point
in @ is at most p*. Per definition, Dp(P, Q) < p* if and only if there exists an zy-monotone
discrete walk F' from (1,1) to (n,m) where for all (i,5) € F: the cell (¢,) is zero.

Continuous Fréchet distance and Free Space Diagram (FSD). We define the continuous
Fréchet distance in a geodesic metric space. Given a curve P, we consider P as a continuous
function mapping at time ¢ € [0,1] to a point P(t) in X. The continuous Fréchet distance
is Dr(P,Q) := inf, gmaxeco1)d(P(a(t)), Q(8(t)), where o, : [0,1] — [0,1] are non-
decreasing surjections. For a fixed p*, we can define the Free Space Diagram of (P, Q, p*)
to be a [0,1] x [0, 1], (0,1)-matrix where the point (¢,t¢') is zero if and only if the distance
between P(t) and Q(t') is at most p*. The diagram consists of nm cells corresponding to all
pairs of edges of P and Q. A cell is reachable if there exists an xy-monotone curve from (0, 0)
to a point in the cell where all points (¢,t') on the curve are zero. The continuous Fréchet
distance is at most p* if and only if there exists an zy-monotone curve from (0,0) to (1,1)
where all points (¢,¢') on the curve are zero.

56:5

ISAAC 2024

56:6

Data Structures for Approximate Fréchet Distance for Realistic Curves

Defining discrete queries. Our data structure input is a curve P = (p1,pa2,...,pn). The
number of vertices m of @ is part of the query input and may vary. Let Dg(P, Q) denote
the discrete Fréchet distance between P and). We distinguish between four types of
(approximate) queries. The input pararmeters are given at query time:
A-decision(Q, e, p): for p > 0 and 0 < ¢ < 1 outputs a Boolean concluding either
Dy(P,Q) > p, or Dp(P,Q) < (14 ¢)p (these two options are not mutually exclusive).
A-value(Q,e): for 0 < e < 1 outputs a value in [(1 — &) Dr(P, Q), (1 4+ €)Dr(P, Q)]
Subcurve-decision(Q, e, p, i, j): for p > 0 and 0 < € < 1 outputs a Boolean concluding
either Dp(P[i, j],Q) > p, or Dp(PJi,j],Q) < (1 +¢)p.
Subcurve-value(Q, ¢, i, j): for 0 < £ < 1 outputs a value in
[(1 - 6)DF(P[Z.’.]'L Q)’ (1 + 6)D]}?(P[i,j], Q)]
We want a solution that is efficient in time and space, where time and space is measured in
units of £,n, m, p and the distance oracle query time T,.

Previous works: p-simplifications. Driemel, Har-Peled and Wenk [22] , for a parameter
i € R, construct a curve P* as follows. Start with the initial vertex p;, and set this as
the current vertex p;. Next, scan the polygonal curve to find the first vertex p; such that
d(ps,pj) > p. Add p; to P*, and set p; as the current vertex. Continue this process until
we reach the end of the curve. Finally, add the last vertex p, to P*. Driemel, Har-Peled
and Wenk [22] observe any p-simplified curve P* can be computed in linear time and
Dz (P*, P) < . This leads to the following approximate decision algorithm:
1. Given P,e,Q and p, construct P% and Q7 in O(n + m) time.
2. Denote by X the reachable cells in the FSD of (PT, Q% p* = (14 ¢/2)p).
3. Tterating over X, doing O(|X|) distance computations, test if Dr(P%,Q7T) < p*.
They prove that: if yes then Dz (P, Q) < (1 +¢€)p. If no then Dx(P,Q) > p.
If P and Q are c-packed, they upper bound | X| by O(@)
This scheme is broadly applicable to various domains, see [25, 17]. In this paper, we apply
this technique to answer value queries at the cost of a factor O(logn + loge™!). Under the
discrete Fréchet distance, we extend the analysis to work with approximate distance oracles.
Finally, we show a data structure to execute step 3 in time independent of |P| = n. We also
show that under the discrete Fréchet distance, it suffices to assume that only P is c-packed.

2.1 Results

(1) A 1-TADD technique for the Fréchet distance. For any p > 0, we denote by P*
and Q" their u-simplified curves according to our new definition of u-simplification. We
show in Section 4 that our new definition allows us to efficiently transform existing decision
algorithms into approximation algorithms in RY [22]. We assume access to exact O(d)-time
distance oracle in R? and prove:

» Theorem 2. We can preprocess a pair of c-packed curves (P, Q) in R? under any L, metric
with |P| =n > |Q| = m in O(nlogn) time s.t.: given any € and an exact distance oracle, we
can compute a (1 + €)-approzimation of Dr(P,Q) in O(d@ - (logn +loge™1)) time.

(2) Allowing approximate oracles under the discrete Fréchet distance. In Section 5,
we show that (for computing the discrete Fréchet distance) it suffices to have access to a
(1 + «)-approximate distance oracle. This will enable us to approximate Dg(P, @) in ambient
spaces such as planar graphs and simple polygons. Formally, we show:

l. van der Hoog, E. Rotenberg, and S. Wong

» Lemma 3. For any p >0 and 0 < & < 1, choose p* = (1 + 3¢)p and p < tep. Let X be
any geodesic metric space and DZG be a (1+ %6)-approximate distance oracle. For any curve
P=(p1,...,pn) in X and any curve Q = (q1,...,qm) in X:

If for the discrete Fréchet distance, Dy°(P*,Q) < p* then Dy(P,Q) < (1+¢)p.

If for the discrete Fréchet distance, Dg°(P*,Q) > p* then Dp(P,Q) > p.

We note that for ambient spaces such as planar graphs and simple polygons, there is no clear
way to define a continuous p-simplification (or even continuous Fréchet distance).

(3) An efficient data structure under the discrete Fréchet distance. Finally, in Section 6,
we study computing the discrete Fréchet distance in a data structure setting. We show that
under the discrete Fréchet distance, it suffices to assume that only P is c-packed or c-straight.
Moreover, we can store P in a data structure such that we can answer approximate Fréchet
value queries Dp(P, @) in time linear in m and polylogarithmic in n:

» Theorem 4. Let X be any geodesic space and D% be a (14 «)-approximate distance oracle
with O(T,,) query time. Let P = (p1,...,pn) be any c-packed curve in X. We can store P
using O(n) space and preprocessing, such that for any curve Q = (q1,...,qm) in X and any
p>0and0<e <1, we can answer A-decision(Q,e, p) for the discrete Fréchet distance in:

O (C -Em - (TE/G + logn)> time.

We may apply the proof of Theorem 2 to Theorem 4 to answer A-value(Q,e) in any
geodesic metric space by increasing the running time by a factor O(logn +1loge~1!). However,
under the discrete Fréchet distance we can be more efficient:

» Theorem 5. Let X' be a geodesic metric space and DS be a (1 + «)-approzimate distance
with O(T,,) query time. Let P = (p1,...,pn) be any c-packed curve in X. We can store P
using O(n) space and O(nlogn) preprocessing time, such that for any curve Q = (q1,- .., ¢m)
in X and any 0 < e < 1, we can answer A-Value(Q,¢e) for the discrete Fréchet distance in:

O (% -logmn - (TE/G + log % + logn)) time.

The advantage of our result is that it applies to a variety of metric spaces X, while also
improving upon previous static algorithms in those spaces. Here, static refers to solutions
that do not require preprocessing or building a data structure. For a complete overview of
the improvements we make to the state-of-the-art, we refer to Table 1.

Our result does not rely upon complicated techniques such parametric search [31, 30],

higher-dimensional envelopes [15], or advanced path-simplification structures [21, 24, 27].

Our techniques are not only generally applicable, but also appear implementable (e.g., the
authors of [15] mention that their result is un-implementable).

2.2 Corollaries

Theorems 4+5 are the first data structures for computing the Fréchet distance between
c-packed curves. Our construction has two novelties: first, we consider c-packed curves in
any metric space X, and only require access to perceived distances (distance oracles that
can report a (1 + «)-approximation in O(T,) time). Second, we propose a new 1-TADD
technique that can be used to compute the discrete Fréchet distance independently of the
geodesic ambient space X. These two novelties imply improvements to previous results, even
static results for computing the Fréchet distance:

56:7

ISAAC 2024

56:8

Data Structures for Approximate Fréchet Distance for Realistic Curves

Applying perceived distances. Our analysis allows us to answer the decision variant for
the discrete Fréchet distance for any geodesic metric space for which there exist efficient
(14 «)-approximate distance oracles (See Oracles 12). Combining Theorem 4 with Oracles 12
we obtain:

» Corollary 6. Let P be a c-packed curve in a metric space X .
For X = R® under L, Lo, Loo metric in the real-RAM model, we can store P using O(n)
space and preprocessing, to answer A-decision(Q, e, p) in O (% - (d + log n)) time.
Improving the static O(~%—|—d~cn logn) algorithm by Bringmann and Kinnemann [10,
IJCGA’17]: making it faster when n > m and making it a data structure.
For X = R? under Ly in word-RAM, we can store P using O(n) space and O(nlogn)
preprocessing, to answer A-decision(Q,¢e,p) in O (% - (dlog et +log n)) worst case
timlanproving the static expected O(d? - C—\/’é +d? - enlogn) algorithm by Bringmann and
Kiinnemann [10, IICGA’17]: saving a factor d and obtaining deterministic guarantees.
For X an N-vertex planar graph under the shortest path metric, we can store P using
O(N'°M) space and preprocessing, to answer A-decision(Q, e, p) in O (% . log2+o(1) N)
time.
Generalizing the static O (NHO(D + < log2+o(1) N) algorithm by Driemel, van der
Hoog and Rotenberg [25, SoCG’22] to a data structure.
For X an N-vertexr graph wunder the shortest path metric, we can fix € and
store P using O(glogN) space and preprocessing, to answer A-decision(Q,e,p) in
O (<. (e7t +logn)) time.
Generalizing the static O <N1+0(1) + <= log2+°(1) N) algorithm by Driemel, van der
Hoog and Rotenberg [25, SoCG’22] to a data structure.

Applying the 1-TADD. We can transform the decision variant of the Fréchet distance to
the optimization variant, by using only a well-separated pair decomposition of P (mapped to
R') with itself. This allows us to answer the optimization variant for the discrete Fréchet
distance without an exponential dependence on the dimension (speeding up even static
algorithms). In full generality, combining Theorem 4 with Oracles 12 implies:

» Corollary 7. Let P be a c-packed curve in a metric space X .

For X = R? in the real-RAM model, we can store P using O(n) space and O(nlogn)

preprocessing, to answer A-value(Q,¢e) in O (% log n(d + log “* + log n) time.
Improving the static O(2%n + d - C—\/’é + d? - enlogn) algorithm by Bringmann and
Kiinnemann [10, IJCGA’17]: removing the exponential dependency on the dimension.
Improving the dynamic O((O(%))dm log 1) space solution with O(m - d) query time
by Filtser and Filtser [27, SODA’21]: allowing @ to have arbitrary length, and using
linear as opposed to exponential space and preprocessing time. This applies only when
P is c-packed.

For X = R% under the Ly metric in word-RAM, we can store P using O(n) space and

O (TSt HIAS iR the W@@%q@»%ma@- LR Tddositnit WeB i
and Kiinnemann [10, [JCGA’17]: saving a factor d2¢ with deterministic guarantees.

For X an N -vertex planar graph under the SP metric, we can store P using O(N1+°(1))

space and preprocessing, to answer A-value(Q,) in O (% logn - (10g2+0(1) N +log %))

time.
Improving the static O (NH“’(U + |E|log |E| + €2 log?t°™ N log |E|) algorithm by
Driemel, van der Hoog and Rotenberg [25, SoCG’22]: making it a data structure.

l. van der Hoog, E. Rotenberg, and S. Wong

For X an N -vertex graph under the SP metric, we can fiz € and store P using O(% log N)
space and preprocessing, to answer A-value(Q,) in O (% “logn - (671 + log < +log n))
time.

Same improvement as above, except that this result is not adaptive to .
For X an N-vertex simple polygon wunder geodesics, we can store P wus-
ing O(NlogN + n) space and preprocessing, to answer A-value(Q,e) in
O (<2 -logn - (log N + log < + logn)) time.

No realism-parameter algorithm was known in this setting, because no TADD can be

computed in this setting.

We briefly note that all our results are also immediately applicable to subcurve queries:

» Corollary 8. All results obtained in Section 6 can answer the subcurve variants of the
A-decision and A-value queries for any i,j € [n] at no additional cost.

3 Simplification and a data structure

To facilitate computations in arbitrary geodesic metric spaces, we modify the definition
of p-simplifications. Our modified definition has the same theoretical guarantees as the
previous definition, but works in arbitrary metrics. Formally, we say that henceforth the
p-simplification is a curve obtained by starting with p;, and recursively adding the first p;
such that the length of the subtrajectory ¢(PJi, j]) > p, where p; is the last vertex added to
the simplified curve. This way, our p-simplifications (and their computation) are independent
of the ambient space and only depend on the edge lengths.

We construct a data structure such that for any value u, we can efficiently obtain P*:

» Definition 9. For any curve P in X with n vertices, for each 1 < i < n we create a
half-open interval (¢(P[1,i — 1]),£(P[1,4])] in R'. This results in an ordered set of O(n)
disjoint intervals on which we build a balanced binary tree in O(n) time.

Our new definition and data structure allow us to obtain P* at query time:

» Lemma 10. Let P = (p1,...,pn) be a curve in X stored in the data structure of Definition 9.
For any value p > 0, any pair (i,j) with i < j, and any integer N we can report the first N
vertices of the discrete p-simplification P[i, j]* in O(N logn) time.

Proof. The first vertex of P[i, j]* is p;. We inductively add subsequent vertices. Suppose that
we just added p, to our output. We choose the value a = £(P[1,z]) + . We binary search in
O(logn) time for the point p, where the interval (¢/(P[1,y — 1]),£(P[1,y])] contains a. Per
definition: the length ¢(P[z,y]) > u. Moreover, for all z € (z,y) the length ¢(P[z, z]) < pu.
Thus, p, is the successor of p, and we recurse if necessary. |

4 The 1-TADD technique

Let P and Q be curves in R? under the Euclidean metric. In [22], they show an algorithm
that (given the p-simplified curves P* and Q" for p = ep/4) they can decide whether
Dz(P,Q) >por Dr(P,Q) < (1+¢€)pin O(d@) time. They then compute a (1 + ¢)-
approximation of Dz(P,Q) through a binary search over TADD(P, Q). This approach
scales poorly with the dimension d because computing TADD(P, @) has an exponential
dependency on d. We alleviate this through our 1-TADD definiton:

56:9

ISAAC 2024

56:10

Data Structures for Approximate Fréchet Distance for Realistic Curves

» Definition 11. Given P, map each vertex p; to \; = {(P[1,1]). Denote by A = {\;}I;.
We define 1-TADD(P) as TADD(A, A).

Our 1-TADD can be computed in O(nlogn) time using O(n) space [22].

» Theorem 2. We can preprocess a pair of c-packed curves (P, Q) in R under any L, metric
with |P| =n > |Q] = m in O(nlogn) time s.t.: given any & and an ezxact distance oracle, we
can compute a (1 + €)-approzimation of D (P, Q) in O(d@ -(logn +loge™1)) time.

Proof. With slight abuse of notation, we say that A(P,Q, ¢, p) is an algorithm that takes as
input P#/* and Q=*/* and outputs either Dx(P,Q) > p or D£(P,Q) < (14 ¢)p. We briefly
note given our new definition of u-simplification, [22] present an A(P, @, ¢, p) algorithm with
a runtime of O(dw)
our simplification definition). We use A(P, @, ¢, p) to approximate Dz(P, Q).

We preprocess P and @ by computing Tp = 1-TADD(P) and Ty = 1-TADD(Q). We
denote by I the set of intervals obtained by taking for each a € Tp UTg the interval
[4e71a,8c71a] (we add the interval [0,0] to I). Given A(P,Q, ¢, p) that runs in O(d@)
time, we do binary search over I. Specifically, we iteratively select an interval [a,b] € I and
run A(P,Q,¢, p) for p equal to either endpoint.

Note that for each p, we may use Lemma 10 to obtain both the ep/4-simplifications of P
and @ in O((n + m)log(n + m)) time — which are required as input for A(P,Q, e, p). We
need to do this procedure at most O(logn) times before we reach one of two cases:

Case 1: There exists [a,b] € I, such that Dz(P,Q) > a and Dx(P,Q) < (1 +¢)b. We

note that by definition of I, the values a and b differ by a factor 2. Thus, we may

discretize the interval [a, b] into O(e~!) points that are each at most 5 apart (note that
we implicitly discretize this interval, as an explicit discretization takes e~! time). By
performing binary search over this discretized set, we report a (1 + €)-approximation of

Dx(P,Q) by using A(P,Q, ¢, p) at most O(loge™!) times.

Case 2: There exists no [z,y] € I such that Dz(P,Q) > x and Dx(P, Q) < (1 + ¢)y.
Denote by [@maz, bmaz] the right-most interval in I. Consider the special case where
Dz(P,Q) > bpmaz. Since byar > €(P),4(Q) it follows that all p > bye,, P* and Q¥
for u = ep/4 are an edge. Computing Dz(P*, Q") can therefore be done in O(d) time

under any L, metric (as Lemma 4.4 in [22] immediately works for

which gives a (1 + €)-approximation of Dz(P, Q).
If the special case does not apply then there exist two intervals [a,b], [e, f] € I such that
Dz(P,Q) > band Dr(P,Q) < (1+ ¢)e, such that there exists no interval [z, y] € I that
intersects [b,e]. We claim that all py, ps € [b,e]: PeP1/% = Per2/% and Q=P1/4 = Q=r2/4,
Indeed, suppose for the sake of contradiction that PeP1/4 £ Per2/4 Let p; < py and
choose without loss of generality the smallest ps for which this is the case. Then there
must exist a pair p;, p; € P where {(P[i, j|) = epa/4. However, the distance ¢(P[i, j])
is the distance between \; and A; in the curve A and so there exist a’,b' € Tp with
a’ < U(P[i,j]) <V < 2d. Tt follows that py = 4e=14(P[i, j]) lies in an interval in I
which is a contradiction with the assumption that pq, p2 € [b, €].
We choose p = e. Denote by X the set of reachable cells the Free Space Diagram of
(Per/% QP! p*). The set X contains O(M) cells [22, Lemma 4.4]. Tt follows that
there are O(C(%ﬂn)) values p’ for which the reachability of X changes. We compute and
sort these to get a sorted set R.
Suppose for some p’ € [b, p| that Dx(P'Q) < p’. Denote by F an xzy-monotone path in
the Free Space Diagram of (P¢'/4,Q=¢'/4 p/) = (Per/4 Q=r/* p'). Per definition, F lies
within X. Thus, we may binary search over the set RN b, p] (applying the e-approximate
decider at every step) to compute a (1 + €)-approximation of Dx(P, Q). <

l. van der Hoog, E. Rotenberg, and S. Wong

5 Approximate distance oracles under the discrete Fréchet distance

We want to approximate Dp(P, @) for curves P and @ that live in any geodesic ambient space
X. In most ambient spaces we do not have access to efficient exact distance oracles. In many
ambient spaces however, it is possible to compute for any a > 0 some (1 + «)-approximate
distance oracle. This is a data structure D4 that for any two a,b € X can report a value
d°(a,b) € [(1 — a)d(a,b), (1 + a)d(a,b)] in O(T,) time. To distinguish between inaccuracy
as a result of our algorithm and as a result of our oracle, we refer to d°(a,b) as the perceived
value (as opposed to an approximate value).

» Oracles 12. We present some examples of approzimate distance oracles:
For X C R? under the Ly, Ly, Lo metric in real-RAM we can compute the exact d(a,b)
in O(d) time. Thus, for any o, we have an oracle D% with T, = O(d) query time.
For X C R% under the Ly metric evecuted in word-RAM, we can compute d(a,b) in O(d?)
expected time. Thus, we have an oracle DS with O(d?) expected query time.
For any X C R?* under the Lo metric in word-RAM, we can (1 + o)-approzimate the
distance between two points in T, = O(dloga™') worst case time using Taylor expansions.
For X a planar weighted graph, Long and Pettie [36] store X with N wvertices using
O (N'+°M) space, to answer exact distance queries in O ((log(N))>T°M)) time.
For X as an arbitrary weighted graph, Thorup [43] compute a (1+ «)-approzimate distance
oracle in O(N/alog N) time and space, and with a query-time of O(1/«).
For X a simple N-vertex polygon, Guibas and Hershberger [32] store X in O(N log N)
time in linear space, and answer exact geodesic distance queries in O((log N) time.
We prove that we may approximately decide the Fréchet distance between P and @ using a
(14 a)-approximate distance oracle (for the discrete Fréchet distance).

» Lemma 3. For any p >0 and 0 < & < 1, choose p* = (1 + 3¢)p and p < gep. Let X be

any geodesic metric space and DEX/G be a (1+ %6)—appr01:z’mate distance oracle. For any curve
P=(p1,...,pn) in X and any curve Q = (q1,...,qm) in X:

If for the discrete Fréchet distance, Dg°(PH*,Q) < p* then Dp(P,Q) < (1+¢€)p.

If for the discrete Fréchet distance, Dp°(P*,Q) > p* then Dp(P,Q) > p.

Proof. Per definition of Dif/ﬁz Y(p,q) € P x Q, d°(p,q) € [(1 - ge)d(p,q), (1 +)d(p,q)]-
It follows from 0 < ¢ < 1 that:

W) ePxQ: dpa) < (145) @) A P < (14 o) o),

Suppose that Dp°(P*,Q) < p*. There exists a (monotone) discrete walk F through
P x @ such that for each (i,j) € F: d°(P*[i],q;) < p* = (1 + 3¢)p. It follows that:

d(P*[i],q;) < <1 + 1616) d°(P"[i], q;) < (1 + 1616) (1 + ;s> p < <1 + 25) p.

We will prove that this implies Dy(P, Q) < (1 4 ¢)p. We use F to construct a discrete
walk F” through P x Q. For each consecutive pair (a,b), (¢,d) € F note that since F' is a
discrete walk, P*[a] and P*[c]| are either the same vertex or incident vertices on P*. Denote
by P,. the vertices of P in between PH[a] and P*[c|. It follows that:

5 1
Vp' € Pac: d(p, @) < d(PMal,@) +p < (1+ ge)p+ gep = (L+€)p.

Now consider the following sequence of pairs of points:

56:11

ISAAC 2024

56:12

Data Structures for Approximate Fréchet Distance for Realistic Curves

Loe = (P*[a), qp) U{(®, @) | P’ € Pac}U (P*[c],qa). We add the lattice points correspond-
ing to Lg. to F’. Tt follows that we create a discrete walk F’ in the lattice |P| X |@Q| where
for each (i, j) € F': d(pi,q;) < (1 +¢€)p. Thus, Dr(P,Q) < (1+¢)p.

Suppose otherwise that Dr(P,Q) < p. We will prove that Dp°(P*,Q) < p*. Indeed,
consider a discrete walk F’ in the lattice |P| x |Q| where for each (i,7) € F': d(pi,q;) < p.
We construct a discrete walk F' in |P*| x |Q|. Counsider each (i,7) € F', If p; = P*[a]
for some integer a, we add (a,j) to F. Otherwise, denote by P*[a] the last vertex on
P# that precedes p;: we add (a,j) to F. Note that per definition of p-simplification,
d(P"[a), q;) < d(pi,q;) + 1 < (14 %¢)p. It follows from the definition of our approximate
distance oracle that d°(P*[a],q;) < (1 + #¢)(1 + 2e)p < (1 + 3e)p = p*. Thus, we may
conclude that Dy°(P*,Q) < p*. <

6 Approximate Discrete Fréchet distance

We denote by D% a (1 + a)-approximate distance oracle over the geodesic metric space X.
Our input is some curve P = (p1,...,p,) in X which is e-packed in X'. We preprocess P to:
answer A-decision(Q, ¢, p) for any curve @ = (q1,...,q¢m), p>0and 0 < e < 1,
answer A-value(Q, ¢) for any curve Q = (q1,...,¢m) and 0 < e < 1.

We obtain this result in four steps. In Section 5, we showed that we can answer A-
decision(Q, ¢, p) through comparing if the perceived Fréchet distance Dy°(P*,Q) < p* for
conveniently chosen p and p*. In Section 6.1 we define what we call the perceived free-space
matrix. This is a (0, 1)-matrix M;ixQ for any two curves A and @ and any p* > 0. We show

that if A is the p-simplified curve P* for some convenient u, then the number of zeroes in
P¥xQ
M,.
In Section 6.2, we show a data structure that stores P to answer A-decision(Q,¢, p). We
show how to cleverly navigate M f; @ for conveniently chosen p and p*. The key insight in
this new technique, is that we may steadily increase p* whilst navigating the matrix. Finally,

we extend this solution to answer A-value(Q, €).

is bounded.

6.1 Perceived free space matrix and free space complexity

We define the perceived free space matrix to help answer A-decision queries. Given two
curves (A, Q) and some p, we construct an |A| x |Q| matrix which we call the perceived free
space matrix M:‘XQ. The #’th column corresponds to the i’th element A[i] in A. We assign
to each matrix cell M"*<[i, j] the integer 0 if d°(A[i], ¢;) < p and integer 1 otherwise.

» Observation 13. For all p* > 0, and curves A and Q, the perceived discrete Fréchet distance
Dr°(A, Q) between A and Q is at most p* if and only if there exists an (zy-monotone) discrete
walk F' from (1,1) to (|A],|Q]) where ¥(i,j) € F, M;ﬁXQ[i,j] =0.

Computing Dy°(P*,Q). Previous results upper bound, for any choice of p, the number
of zeroes in the FSM between P” and Q°°. We instead consider the perceived FSM, and
introduce a new parameter k > 1 to enable approximate distance oracles. For any value p
and some simplification value > £, we upper bound the number of zeroes in the perceived
FSM MPIZHXQ for the conveniently chosen p* = (1 + §)p:

» Lemma 14. Let P = (p1,...,pn) be a c-packed discrete curve in X. For any p > 0 and
0 <e <1, denote p* = (1 + 5)p. For any k > 1, denote by P" its u-simplified curve for
1 %p' For any curve Q = (q1,---,qm) C X the matriz M,ﬁuXQ contains at most 8 - %
zeroes per row.

l. van der Hoog, E. Rotenberg, and S. Wong

olofo|1]o]o
11111]0]01]1
olofo]1]1]1

PH . P1 Ps P6 D27 Pn
(&) b 1Bil=01+a)p ()

Figure 1 (a) For some value of u, the u-simplified curve is (p1, ps, e, - - . , P27, Pn). We show the
matrix M;D*“XQ. (b) For the point g3, we claim that there are more than Z = 8% zeroes in its
corresponding row. Thus, the ball By with radius (1 4+ a)p* contains more than Z points. (c) For

each of these points, there is a unique segment along P contained in the ball Bs.

Proof. The proof is by contradiction. Suppose that the j’th row of M;ZMXQ contains strictly
more than 8- % zeroes. Let Py C P* be the vertices corresponding to these zeroes. Consider
the ball By centered at ¢; with radius |Bi| = (1 + «)p* and the ball By with radius 2|B]|
(Figure 1). Each p; € P, must be contained in By and thus d(p;, ;) < (1 4+ a)p*. For each

pi € Py denote by S; the contiguous sequence of vertices of P* starting at p; of length u.

Observe that since ¢ < 1: S; C By. Per definition of simplification, each .S; are non-coinciding
subcurves. This lower bounds ¢(P N Bs):
e, c-k
(PN By)> Z £0(S;) = Z p>21+a)(1+=)- — -u>22(14+a)-c-p* >c-|Ba,
2 €
re€P, pEP,

where 2(14+a)(1+5)- <% < 8. <k (since @ < 1 and € < 1) — contradicting c-packedness. <«

€

6.2 A data structure for answering A-decision(Q, ¢, p)

We showed in Sections 5 and 6.1 that for any c-packed curve P, p > 0 and 0 < e < 1 we

can choose suitable values 22 < p < <2 to upper bound the number of zeroes in M ;;LLXQ.

Moreover, for p* = (1 + é)p we know that comparing Dr°(P*, Q) < p* implies an answer to
A-decision(Q, ¢, p).

We now define a data structure, so that for any p and any (i,5) we can report the
p-simplification of P[i, j] in O(|PJi, j]|) time. We use this to answer the decision variant.

» Theorem 4. Let X be any geodesic space and DS be a (1+ «)-approximate distance oracle
with O(Ty,) query time. Let P = (p1,...,pn) be any c-packed curve in X. We can store P
using O(n) space and preprocessing, such that for any curve Q = (q1,...,qm) in X and any

p>0and0<e <1, we can answer A-decision(Q,e, p) for the discrete Fréchet distance in:

O (C ;;_m . (TE/G + logn)) time.

Proof. We store P in the data structure of Definition 9 using O(n) space and preprocessing
time. Given a query A-decision(Q, ¢, p) we choose a = 3¢, p* = (1+ 3¢) and p = £. We
test if D£°(P*,Q) < p*. By Lemma 3, if Dp°(P*,Q) < p* then Dp(P,Q) < (1 +¢)p and
otherwise Dp(P, Q) > p. We consider the matrix M::LXQ.

By Observation 13, Dp° (P, Q) < p* if and only if there exists a discrete walk F' from
(1,1) to (|P*],|Q|) where for each (i,7) € F: M;ZNXQ[Z',]'] = 0. We will traverse this matrix

in a depth-first manner as follows: starting from the cell (1, 1), we test if M,f:“XQ[l, 1] =0.

If so, we push (1, 1) onto a stack. Each time we pop a tuple (i, j) from the stack, we inspect
m
their O(1) neighbors {(i+1,5), (4,5 + 1), (i + 1,5 + 1)}. If M1 *9[, 5] = 0, we push (i', ')

56:13

ISAAC 2024

56:14

Data Structures for Approximate Fréchet Distance for Realistic Curves

onto our stack. It takes O(logn) time to obtain the i 4 1’th vertex of P*, and O(T./s) to
MP”XQ

determine the value of e.g., M .

O((T/6) + logn) time.

By Lemma 14 (noting ¢ < 1 and setting k = 6), we push at most O(“Z*) tuples
onto our stack. Therefore, we spend O(“** (T, + logn)) total time. By Observation 13,
Dp°(P*,Q) < p* if and only if we push (|P*|,|Q|) onto our stack. We test this in O(1)
additional time per operation. Thus, the theorem follows. |

[i + 1,7]. Thus each time we pop the stack, we spend

6.3 A data structure for answering A-value(Q, ¢)

Finally, we show how to answer the A-value(Q, €, p) query. At this point, we could immediately
apply Theorem 2 to answer A-value(Q, ¢) at the cost of a factor O(logn + loge~1t). However,
for the discrete Fréchet distance we show that the factor O(loge™!) can be avoided. To this
end, we leverage the variable k > 1 introduced in the definition of y > <£:

» Theorem 5. Let X be a geodesic metric space and D% be a (1 + «)-approzimate distance
with O(Ty,) query time. Let P = (p1,...,pn) be any c-packed curve in X. We can store P
using O(n) space and O(nlogn) preprocessing time, such that for any curve Q = (q1,- - -, Gm)
in X and any 0 < e < 1, we can answer A-Value(Q,) for the discrete Fréchet distance in:

C-

0] (C.m -logn - (TS/GJrlog mn +10gn)) time.
€

3

Proof. We preprocess P using Lemma 10 in O(n) space and time. We store P in the data
structure of Definition 11. This way, we obtain 7' = TADD(A, A) where A is the curve P
mapped to R'. We denote for all s € T by Iy = [cs,2 - ¢s] the corresponding interval and
obtain a sorted set of intervals 7 = {I}.

Given a query (Q, €), we set o <— €/6 and obtain D%. We (implicitly) rescale each interval
I; € T by a factor &, creating for I, the interval IS = [®¢ 1] This creates a sorted set
Z¢ of pairwise disjoint intervals. Intuitively, these are the intervals over R' where for p € I¢,
the p-simplification P* for y = <€ may change.

We binary search over Z°. For each boundary point A of an interval I we query
A-decision(Q, e, A): discarding half of the remaining intervals in Z¢. It follows that in
O(<* -logn - (T, /6 +1ogn)) time, we obtain one of two things:

a) an interval IS where 3p* € IS that is a (1 + ¢)-approximation of Dy(P,Q), or
b) a maximal interval I* disjoint of the intervals in Z¢ where Jp* € I* that is a (1 + ¢)-

approximation of Dy(P, Q).

Denote by A the left boundary of IZ or I*: it lower bounds Dg(P, Q). Note that if I* precedes
all of Z¢, A = 0. We now compute a (1 + ¢)-approximation of Dr(P, Q) as follows:

FindApproximation().

_ d°(p1,q1)
1. Compute C = Q+le) -

2. Initialize p* <— (14 3¢) - max{C, A} and set a constant p < £ - \.
3. Push the lattice point (1,1) onto a stack.
4. Whilst the stack is not empty do:
Pop a point (4, j) and consider the O(1) neighbors (pa,gs) of (ps,¢;) in MPIzHXQ:
If d°(pa, qp) < p*, push (a,b) onto the stack.
Else, store d°(pq, ¢») in a min-heap.
If we push (pn, ¢m) onto the stack do:
Output v = (1‘5%?)‘
5. If the stack is empty, we extract the minimal d°(p,,py) from the min-heap.
Update p* — (14 %¢) - d°(pa, av), push (a,b) onto the stack and go to line 4.

l. van der Hoog, E. Rotenberg, and S. Wong

Correctness. Suppose that our algorithm pushes (py, g,,) onto the stack and let at this
time of the algorithm, p* = (1 + %E)I/. Per definition of the algorithm, v > X\ is the minimal

value for which the matrix M:i“XQ

(i,j) € F: MPP*MXQ[i,j] = 0. Indeed, each time we increment p* by the minimal value

contains a walk F from (1,1) to (n,m) where for each

required to extend any walk in M;ZM *@_ Moreover, we fixed p < A and thus p < gv. Thus
we may apply Lemma 3 to defer that v is the minimal value for which Dp(P, Q) < (1 + ¢)v.

Running time. We established that the binary search over Z¢ took O(<*-log n-(T; /¢+logn))
time. We upper bound the running time of our final routine. For each pair (p;, q;) that we
push onto the stack we spend at most O(T /¢ + log “I* + logn) time as we:

Obtain the O(1) neighbors of (p;, ¢;) through our data structure in O(logn) time,

Perform O(1) distance oracle queries in O(T /) time, and

Possibly insert O(1) neighbors into a min-heap. The min-heap has size at most K: the

number of elements we push onto the stack. Thus, this takes O(log K') insertion time.
What remains is to upper bound the number of items we push onto the stack. Note that we
only push an element onto the stack, if for the current value p* the matrix M ;Z“XQ
a zero in the corresponding cell. We now refer to our earlier case distinction.

Case (a): Since € < 1 we know that p* € [\, 4-A]. We set p = £X. So p > 1ep* for
k = 24. Thus, we may immediately apply Lemma 14 to conclude that we push at most
O(<™) elements onto the stack.

£
Case (b): Denote by v = £v. Per definition of our re-scaled intervals, the open interval

contains

(1,7) does not intersect with any interval in the non-scaled set Z. It follows that P* = P
and that for two consecutive vertices p;,p; € P*: ¢(PJi,l]) > 7. From here, we essentially
redo Lemma 14 for this highly specialized setting. The proof is by contradiction, where
we assume that for p* = (1 + 5)v there are more than 8 -6 - £ zeroes in the j'th row of
M ;Z“XQ. Denote by Py C P* the vertices corresponding to these zeroes. We construct a ball
By centered at ¢; with radius 2p* and a ball By with radius 2|B;|. We construct a subcurve
S; of P starting at p; € Py of length . The critical observation is, that our above analysis
implies that all the subcurves S; do not coincide (since each of them start with a vertex in
PH). Since € < 1, each segment S; is contained in By. However, this implies that Bs is not
c-packed since: £(P N By) > > 4(S;) = ;7 >8-65y >4-c-p* >2-c-|By|]. Thus, we
always push at most O(“*) elements onto our stack and this implies our running time. <

—— References

1 Pankaj K Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the
discrete fréchet distance in subquadratic time. SIAM Journal on Computing, 43(2):429-449,
2014. doi:10.1137/130920526.

2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(01n02):75-91,
1995. doi:10.1142/50218195995000064.

3 Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for planar
curves. Algorithmica, 38(1):45-58, 2004. doi:10.1007/500453-003-1042-5.

4 Boris Aronov, Omrit Filtser, Michael Horton, Matthew J. Katz, and Khadijeh Sheikhan.
Efficient nearest-neighbor query and clustering of planar curves. In Zachary Friggstad, Jorg-
Ridiger Sack, and Mohammad R Salavatipour, editors, Algorithms and Data Structures, pages
28-42, Cham, 2019. Springer International Publishing. doi:10.1007/978-3-030-24766-9_3.

5 Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola Wenk. Fréchet
distance for curves, revisited. In Yossi Azar and Thomas Erlebach, editors, Algorithms -
ESA 2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-18, 2006,
Proceedings, volume 4168 of Lecture Notes in Computer Science, pages 52—63. Springer, 2006.
doi:10.1007/11841036_8.

56:15

ISAAC 2024

https://doi.org/10.1137/130920526
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1007/S00453-003-1042-5
https://doi.org/10.1007/978-3-030-24766-9_3
https://doi.org/10.1007/11841036_8

56:16

Data Structures for Approximate Fréchet Distance for Realistic Curves

10

11

12

13

14

15

16

17

18

19

20

Alessandro Bombelli, Lluis Soler, Eric Trumbauer, and Kenneth D Mease. Strategic air traffic
planning with Fréchet distance aggregation and rerouting. Journal of Guidance, Control, and
Dynamics, 40(5):1117-1129, 2017.

Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching
vehicle tracking data. In Proceedings of the 31st international conference on Very large data
bases, pages 853-864, 2005. URL: http://www.vldb.org/archives/website/2005/program/
paper/fri/p853-brakatsoulas.pdf.

Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly sub-
quadratic algorithms unless SETH fails. In 201/ IEEE 55th Annual Symposium on Foundations
of Computer Science, pages 661-670. IEEE, 2014. doi:10.1109/F0CS.2014.76.

Karl Bringmann, Anne Driemel, André Nusser, and Ioannis Psarros. Tight bounds for
approximate near neighbor searching for time series under the fréchet distance. In Joseph (Seffi)
Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference / Alezandria, VA, USA, January 9 - 12, 2022,
pages 517-550. STAM, 2022. doi:10.1137/1.9781611977073.25.

Karl Bringmann and Marvin Kiinnemann. Improved approximation for Fréchet distance on
c-packed curves matching conditional lower bounds. International Journal of Computational
Geometry € Applications, 27(01n02):85-119, 2017. doi:10.1142/80218195917600056.

Kevin Buchin, Maike Buchin, David Duran, Brittany Terese Fasy, Roel Jacobs, Vera Sacristan,
Rodrigo I Silveira, Frank Staals, and Carola Wenk. Clustering trajectories for map construction.
In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 1-10, 2017. doi:10.1145/3139958.3139964.

Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four Soviets walk
the dog: Improved bounds for computing the Fréchet distance. Discrete & Computational
Geometry, 58(1):180-216, 2017. doi:10.1007/500454-017-9878-7.

Kevin Buchin, Tim Ophelders, and Bettina Speckmann. Seth says: Weak Fréchet distance
is faster, but only if it is continuous and in one dimension. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2887—2901. STAM, 2019. doi:
10.1137/1.9781611975482.179.

Maike Buchin, Bernhard Kilgus, and Andrea Koélzsch. Group diagrams for representing
trajectories. International Journal of Geographical Information Science, 34(12):2401-2433,
2020. doi:10.1080/13658816.2019.1684498.

Maike Buchin, Ivor van der Hoog, Tim Ophelders, Lena Schlipf, Rodrigo I Silveira, and Frank
Staals. Efficient Fréchet distance queries for segments. European Symposium on Algorithms,
2022.

Daniel Chen, Anne Driemel, Leonidas J. Guibas, Andy Nguyen, and Carola Wenk. Approximate
map matching with respect to the fréchet distance. In Matthias Miiller-Hannemann and
Renato Fonseca F. Werneck, editors, Proceedings of the Thirteenth Workshop on Algorithm
Engineering and Experiments, ALENEX 2011, Holiday Inn San Francisco Golden Gateway,
San Francisco, California, USA, January 22, 2011, pages 75-83. STAM, 2011. doi:10.1137/
1.9781611972917.8.

Jacobus Conradi, Anne Driemel, and Benedikt Kolbe. Revisiting the fr\’echet distance between
piecewise smooth curves. arXiv preprint arXiv:2401.03339, 2024. doi:10.48550/arXiv.2401.
03339.

Mark De Berg, Atlas F Cook IV, and Joachim Gudmundsson. Fast Fréchet queries. Computa-
tional Geometry, 46(6):747-755, 2013. doi:10.1016/J.COMGEQ.2012.11.006.

Mark de Berg, Ali D Mehrabi, and Tim Ophelders. Data structures for Fréchet queries in
trajectory data. In 29th Canadian Conference on Computational Geometry (CCCG’17), pages
214-219, 2017.

Thomas Devogele. A new merging process for data integration based on the discrete Fréchet
distance. In Advances in spatial data handling, pages 167-181. Springer, 2002.

http://www.vldb.org/archives/website/2005/program/paper/fri/p853-brakatsoulas.pdf
http://www.vldb.org/archives/website/2005/program/paper/fri/p853-brakatsoulas.pdf
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1137/1.9781611977073.25
https://doi.org/10.1142/S0218195917600056
https://doi.org/10.1145/3139958.3139964
https://doi.org/10.1007/S00454-017-9878-7
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1080/13658816.2019.1684498
https://doi.org/10.1137/1.9781611972917.8
https://doi.org/10.1137/1.9781611972917.8
https://doi.org/10.48550/arXiv.2401.03339
https://doi.org/10.48550/arXiv.2401.03339
https://doi.org/10.1016/J.COMGEO.2012.11.006

l. van der Hoog, E. Rotenberg, and S. Wong

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Anne Driemel and Sariel Har-Peled. Jaywalking your dog: computing the Fréchet distance with
shortcuts. SIAM Journal on Computing, 42(5):1830-1866, 2013. doi:10.1137/120865112.
Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance
for realistic curves in near linear time. Discret. Comput. Geom., 48(1):94-127, 2012. doi:
10.1007/s00454-012-9402-z.

Anne Driemel and Ioannis Psarros. (2 + ¢)-ANN for time series under the Fréchet distance.

Workshop on Algorithms and Data structures (WADS), 2021.

Anne Driemel, loannis Psarros, and Melanie Schmidt. Sublinear data structures for short
Fréchet queries. CoRR, abs/1907.04420, 2019. arXiv:1907.04420.

Anne Driemel, Ivor van der Hoog, and Eva Rotenberg. On the discrete Fréchet distance
in a graph. In International Symposium on Computational Geometry (SoCG 2022). Schloss
Dagstuhl — Leibniz-Zentrum fir Informatik, 2022.

Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical Report

CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.

Arnold Filtser and Omrit Filtser. Static and streaming data structures for fréchet distance
queries. In Déniel Marx, editor, Symposium on Discrete Algorithms (SODA) 2021, pages
1150-1170. SIAM, 2021. doi:10.1137/1.9781611976465.71.

Arnold Filtser, Omrit Filtser, and Matthew J. Katz. Approximate nearest neighbor for
curves — simple, efficient, and deterministic. In 47th International Colloguium on Automata,
Languages, and Programming (ICALP 2020), volume 168 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 48:1-48:19, 2020. doi:10.4230/LIPIcs.ICALP.2020.48.
Omrit Filtser. Universal approximate simplification under the discrete fréchet distance. Inf.
Process. Lett., 132:22-27, 2018. doi:10.1016/j.ipl1.2017.10.002.

Joachim Gudmundsson, Martin P. Seybold, and Sampson Wong. Map matching queries on
realistic input graphs under the fréchet distance. Symposium on Discrete Algorithms (SODA),
2023.

Joachim Gudmundsson, André van Renssen, Zeinab Saeidi, and Sampson Wong. Fréchet
distance queries in trajectory data. In The Third Iranian Conference on Computational
Geometry (ICCG 2020), pages 29-32, 2020.

Leonidas J Guibas and John Hershberger. Optimal shortest path queries in a simple polygon.

In Symposium on Computational geometry (SoCG), 1987.
Sariel Har-Peled. Geometric approzimation algorithms, volume 173 of Mathematical Surveys
and Monographs. American Mathematical Soc., 2011.

Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure—structure alignment with discrete

Fréchet distance. Journal of bioinformatics and computational biology, 6(01):51-64, 2008.

do0i:10.1142/50219720008003278.

Maximilian Konzack, Thomas McKetterick, Tim Ophelders, Maike Buchin, Luca Giuggioli,
Jed Long, Trisalyn Nelson, Michel A Westenberg, and Kevin Buchin. Visual analytics of delays
and interaction in movement data. International Journal of Geographical Information Science,
31(2):320-345, 2017. doi:10.1080/13658816.2016.1199806.

Yaowei Long and Seth Pettie. Planar distance oracles with better time-space tradeoffs. In
Déniel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,

SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2517-2537. SIAM, 2021.

doi:10.1137/1.9781611976465.149.
Ariane Mascret, Thomas Devogele, Iwan Le Berre, and Alain Hénaff. Coastline matching

process based on the discrete Fréchet distance. In Progress in Spatial Data Handling, pages
383-400. Springer, 2006.

Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algorithms.

J. ACM, 30(4):852-865, 1983. doi:10.1145/2157.322410.
Otfried Schwarzkopf and Jules Vleugels. Range searching in low-density environments. Inf.
Process. Lett., 60(3):121-127, 1996. doi:10.1016/S0020-0190(96)00154-8.

56:17

ISAAC 2024

https://doi.org/10.1137/120865112
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1007/s00454-012-9402-z
https://arxiv.org/abs/1907.04420
https://doi.org/10.1137/1.9781611976465.71
https://doi.org/10.4230/LIPIcs.ICALP.2020.48
https://doi.org/10.1016/j.ipl.2017.10.002
https://doi.org/10.1142/S0219720008003278
https://doi.org/10.1080/13658816.2016.1199806
https://doi.org/10.1137/1.9781611976465.149
https://doi.org/10.1145/2157.322410
https://doi.org/10.1016/S0020-0190(96)00154-8

56:18

Data Structures for Approximate Fréchet Distance for Realistic Curves

40

41

42

43

44

45
46

47

48

Roniel S. De Sousa, Azzedine Boukerche, and Antonio A. F. Loureiro. Vehicle trajectory
similarity: Models, methods, and applications. ACM Comput. Surv., 53(5), September 2020.
doi:10.1145/3406096.

E Sriraghavendra, K Karthik, and Chiranjib Bhattacharyya. Fréchet distance based approach
for searching online handwritten documents. In Ninth International Conference on Document
Analysis and Recognition (ICDAR 2007), volume 1, pages 461-465. IEEE, 2007. doi:10.1109/
ICDAR.2007.4378752.

Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. A survey of trajectory
distance measures and performance evaluation. The VLDB Journal, 29(1):3-32, 2020. doi:
10.1007/800778-019-00574-9.

Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs.
Journal of the ACM (JACM), 51(6):993-1024, 2004. doi:10.1145/1039488.1039493.

Ivor van der Hoog, Eva Rotenberg, and Sampson Wong. Data structures for approximate
discrete Fréchet distance. CoRR, abs/2212.07124, 2022. doi:10.48550/arXiv.2212.07124.
A. Frank van der Stappen. Motion planning amidst fat obstacles. University Utrecht, 1994.
Rene Van Oostrum and Remco Veltkamp. Parametric search made practical. In Symposium
on Computational Geometry (C), pages 1-9, 2002.

Dong Xie, Feifei Li, and Jeff M Phillips. Distributed trajectory similarity search. Proceedings
of the VLDB Endowment, 10(11):1478-1489, 2017. doi:10.14778/3137628.3137655.
Daming Xu. Well-separated pair decompositions for doubling metric spaces. PhD thesis,
Carleton University, 2005.

https://doi.org/10.1145/3406096
https://doi.org/10.1109/ICDAR.2007.4378752
https://doi.org/10.1109/ICDAR.2007.4378752
https://doi.org/10.1007/S00778-019-00574-9
https://doi.org/10.1007/S00778-019-00574-9
https://doi.org/10.1145/1039488.1039493
https://doi.org/10.48550/arXiv.2212.07124
https://doi.org/10.14778/3137628.3137655

	1 Introduction
	2 Preliminaries
	2.1 Results
	2.2 Corollaries

	3 Simplification and a data structure
	4 The 1-TADD technique
	5 Approximate distance oracles under the discrete Fréchet distance
	6 Approximate Discrete Fréchet distance
	6.1 Perceived free space matrix and free space complexity
	6.2 A data structure for answering A-decision(Q, e, r)
	6.3 A data structure for answering A-value(Q, e)

