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Abstract
In the Disjoint Paths problem, one is given a graph with a set of k vertex pairs (si, ti) and
the task is to connect each si to ti with a path, so that the k paths are pairwise disjoint. In the
optimization variant, Max Disjoint Paths, the goal is to maximize the number of vertex pairs to
be connected. We study this problem on acyclic directed graphs, where Disjoint Paths is known
to be W[1]-hard when parameterized by k. We show that in this setting Max Disjoint Paths
is W[1]-hard to c-approximate for any constant c. To the best of our knowledge, this is the first
non-trivial result regarding the parameterized approximation for Max Disjoint Paths with respect
to the natural parameter k. Our proof is based on an elementary self-reduction that is guided by
a certain combinatorial object constructed by the probabilistic method.
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1 Introduction

The Disjoint Paths problem has attracted a lot of attention both from the perspective of
graph theory and applications [23, 46, 50, 52]. Both decision variants, where one requires
the paths to be either vertex-disjoint or edge-disjoint, are known to be NP-hard already on
very simple graph classes [27, 37, 44, 45]. This has motivated the study of Disjoint Paths
through the lens of parameterized complexity. Here, the aim is to develop algorithms with a
running time of the form f(k) · nO(1), where f is some computable function of a parameter k

and n is the input size. A problem admitting such an algorithm is called fixed-parameter
tractable (FPT). In our setting, k is the number of vertex pairs to be connected. On undirected
graphs, both variants of Disjoint Paths have been classified as FPT thanks to the famous
Graph Minors project by Robertson and Seymour [49] (see [32, 36] for later improvements).
This was followed by a line of research devoted to designing faster FPT algorithms on planar
graphs [1, 13, 41, 48, 54].

On directed graphs, there is a simple polynomial transformation between the vertex-
disjoint and the edge-disjoint variants, so these two problems turn out equivalent. Here, the
problem becomes significantly harder: It is already NP-hard for k = 2 [22]. The situation is
slightly better for acyclic digraphs (DAGs) where Disjoint Paths can be solved in time
nO(k) [22] but it is W[1]-hard [51] (cf. [2]) hence unlikely to be FPT. In addition, no no(k)-time
algorithm exists under the assumption of the Exponential Time Hypothesis (ETH) [12]. Very
recently, it has been announced that Disjoint Paths is FPT on Eulerian digraphs [5]. It
is also noteworthy that the vertex-disjoint and edge-disjoint variants are not equivalent on
planar digraphs as the aforementioned reduction does not preserve planarity. Indeed, here
the vertex-disjoint version is FPT [17] whereas the edge-disjoint version is W[1]-hard [12].

In the optimization variant, called Max Disjoint Paths, we want to maximize the
number of terminals pairs connected by disjoint paths. The approximation status of this
problem has been studied on various graph classes [8, 10, 15, 14, 20, 34, 35]. On acyclic

© Michał Włodarczyk;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 57; pp. 57:1–57:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michal.wloda@gmail.com
https://orcid.org/0000-0003-0968-8414
https://doi.org/10.4230/LIPIcs.ISAAC.2024.57
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


57:2 Constant Approximating Disjoint Paths on Acyclic Digraphs Is W[1]-Hard

digraphs the best approximation factor is O(
√

n) [9] and this cannot be improved unless
P=NP [7]. A different relaxation is to allow the algorithm to output a solution in which every
vertex appears in at most c paths (or to conclude that there is no vertex-disjoint solution).
Kawarabayashi, Kobayashi, and Kreutze [31] used the directed half-integral grid theorem to
design a polynomial-time algorithm for directed Disjoint Paths with congestion c = 4 for
every k. In other words, such a relaxed problem belongs to the class XP. Subsequently, the
congestion factor has been improved to c = 3 [33] and c = 2 [24].

Hardness of FPT approximation. For problems that are hard from the perspective of both
approximation and FPT algorithms, it is natural to exploit the combined power of both
paradigms and consider FPT approximation algorithms. Some prominent examples are an
FPT approximation scheme for k-Cut [43] and an FPT 2-approximation for Directed Odd
Cycle Transversal [42] parameterized by the solution size k. However, several important
problems proved to be resistant to FPT approximation as well. The first hardness results in
this paradigm have been obtained under a relatively strong hypothesis, called Gap-ETH [6].
Subsequently, an O(1)-approximation for k-Clique was shown to be W[1]-hard [39] and
later the hardness bar was raised to ko(1) [29]. In turn, k-Dominating Set is W[1]-hard to
f(k)-approximate for any function f [30] and W[2]-hard to O(1)-approximate [40]. More
results are discussed in the survey [21].

Proving approximation hardness under Gap-ETH is easier compared to the
assumption FPT̸=W[1] because Gap-ETH already assumes hardness of a problem
with a gap. Indeed, relying just on FPT ̸=W[1] requires the reduction to perform some kind
of gap amplification, alike in the PCP theorem [19]. Very recently, the so-called Parameterized
Inapproximability Hypothesis (PIH) has been proven to follow from ETH [25]. This means
that ETH implies FPT approximation hardness of Max 2-CSP parameterized by the number
of variables within some constant approximation factor c > 1, which has been previously
used as a starting point for parameterized reductions [4, 26, 42, 47]. It remains open whether
PIH can be derived from the weaker assumption FPT ̸=W[1].

Lampis and Vasilakis [38] showed that undirected Max Vertex-Disjoint Paths admits
an FPT approximation scheme when parameterized by treedepth but, assuming PIH, this
is not possible under parameterization by pathwdith. See [11, 20] for more results on
approximation for Max Disjoint Paths under structural parameterizations. Bentert,
Fomin, and Golovach [3] considered the Max Vertex-Disjoint Shortest Paths problem
where we additionaly require each path in a solution to be a shortest path between its
endpoints. They ruled out FPT(k) approximation with factor ko(1) for this problem assuming
FPT̸=W[1] and with factor o(k) assuming Gap-ETH.

Our contribution. We extend the result by Slivkins [51] by showing that Max Disjoint
Paths on acyclic digraphs does not admit an FPT algorithm that is a q-approximation,
for any constant q. We formulate our hardness result as W[1]-hardness of the task of
distinguishing between instances that are fully solvable from those in which less than a
1
q -fraction of the requests can be served at once. Since a q-approximation algorithm could be
used to tell these two scenarios apart, the following result implies hardness of approximation.
We refer to a pair (si, ti) as a request that should be served by a path connecting si to ti.

▶ Theorem 1. Let q ∈ N be a constant. It is W[1]-hard to distinguish whether for a given
instance of k-Dag Disjoint Paths:
1. all the requests can be served simultaneously, or
2. no set of k/q requests can be served simultaneously.
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Our proof is elementary and does not rely on coding theory or communication complexity
as some previous W[1]-hardness of approximation proofs [30, 39]. Instead, we give a gap-
amplifying self-reduction that is guided by a certain combinatorial object constructed via
the probabilistic method.

Techniques. A similar parameterized gap amplification technique has been previously
applied to the k-Steiner Orientation problem: given a graph G with both directed and
undirected edges, together with a set of vertex pairs (s1, t1), . . . , (sk, tk), we want to orient all
the undirected edges in G to maximize the number of pairs (si, ti) for which ti is reachable
from si. The problem is W[1]-hard and the gap amplification technique can be used to
establish W[1]-hardness of constant approximation [53]. The idea is to create multiple copies
of the original instance and connect them sequentially into many layers, in such a way that the
fraction of satisfiable requests decreases as the number of layers grows. What distinguishes
k-Steiner Orientation from our setting though is that therein we do not require the
(si, ti)-paths to be disjoint. So it is allowed to make multiple copies of each request (si, ti)
and connect the ti-vertices to the si-vertices in the next layer in one-to-many fashion. Such
a construction obviously cannot work for Dag Disjoint Paths. Instead, will we construct
a combinatorial object yielding a scheme of connections between the copies of the original
instance, with just one-to-one relation between the terminals from the consecutive layers.

Imagine a following construction: given an instance I of k-Dag Disjoint Paths we
create 2k copies of I: I1

1 , . . . , I1
k and I2

1 , . . . , I2
k . Next, for each i ∈ [k] we choose some

permutation πi : [k] → [k] and for each j ∈ [k] we connect the sink tj in I1
i to the source si in

I2
πi(j). See Figure 1 on page 6. Then for each (i, j) ∈ [k]2 we request a path from the source

sj in I1
i to the sink ti in I2

πi(j). Observe that if I is a yes-instance then we can still serve all
the requests in the new instance. However, when I is a no-instance, then there is a
family F of 2k many k-tuples from [k]2 so that each tuple represents k requests
that cannot be served simultaneously. Each tuple corresponds to some k requests that
have to be routed through a single copy of I, which is impossible when I is a no-instance.

We can now iterate this argument. In the next step we repeat this construction k times
(but possibly with different permutations), place such k instances next to each other, and
create the third layer comprising now k2 copies of I. Then for each i ∈ [k] we need a
permutation πi : [k2] → [k2] describing the connections between the sinks from the second
layer to the sources from the third layer. Again, if I is a no-instance, we obtain a family F
of 3k2 many k-tuples from [k]3 corresponding to subsets of requests that cannot be served
simultaneously. We want to show that after d = f(k) many iterations no subset A of 50%
requests can be served. In other words, the family F should always contain a tuple contained
in A, certifying that A is not realizable. This will give a reduction from the exact version of
Dag Disjoint Paths to a version of Dag Disjoint Paths with gap 1

2 . The crux of the
proof is to find a collection of permutations that will guarantee the desired property of F .

It is convenient to think about this construction as a game in which the first player
chooses the permutations governing the connections between the layers (thus creating an
instance of Dag Disjoint Paths) and the second player picks a subset A of 50% requests.
The first player wins whenever the family F of forbidden k-tuples includes a tuple contained
in A. We need to show that the first player has a single winning strategy against every
possible strategy of the second player. We will prove that a good strategy for the first
player is to choose every permutation independently and uniformly at random. In fact, for a
sufficiently large d and any fixed strategy A of the second player, the probability that A wins
against a randomized strategy is smaller than 2−kd . Since the number of possible strategies

ISAAC 2024



57:4 Constant Approximating Disjoint Paths on Acyclic Digraphs Is W[1]-Hard

for the second player is at most 2kd (because there are kd requests), the union bound
implies that the first player has a positive probability of choosing a strategy that
guarantees a victory against every strategy of the second player. This translates to
the existence of a family of permutations for which the gap amplification works.

2 Preliminaries

We follow the convention [n] = {1, 2, . . . , n} and use the standard graph theoretic terminology
from Diestel’s book [18]. We begin by formalizing the problem.

Max Disjoint Paths Parameter: k
Input: A digraph D, a set T of k pairs (si, ti) ∈ V (D)2.
Task: Find a largest collection P of vertex-disjoint paths so that each path P ∈ P is an
(si, ti)-path for some (si, ti) ∈ T .

We refer to the pairs from T as requests. A solution P is said to serve request (si, ti) if it
contains an (si, ti)-path. The condition of vertex-disjointedness implies that each request
can be served by at most one path in P. A yes-instance is an instance admitting a solution
serving all the k-requests. Otherwise we deal with a no-instance. (Max) Dag Disjoint
Paths is a variant of (Max) Disjoint Paths where the input digraph is assumed to be
acyclic.

Notation for trees. For a rooted tree T and v ∈ V (T ) we denote by Children(v) the set of
direct descendants of v. A vertex v in a rooted tree is a leaf if Children(v) = ∅. We refer to
the set of leaves of T as L(T ). The depth of a vertex v ∈ V (T ) is defined as its distance from
the root, measured by the number of edges. In particular, the depth of the root equals 0.
The set of vertices of depth i in T is called the i-th layer of T .

For v ∈ V (T ) we write T v to denote the subtree of T rooted at v. We can additionally
specify an integer ℓ ≥ 1 and write T v,ℓ for the tree comprising the first ℓ layers of T v. In
particular, the tree T v,1 contains only the vertex v.

For k, d ∈ N we denote by Tk,d the full k-ary rooted tree of depth d. We have |L(Tk,d)| = kd.
A subset A ⊆ L(Tk,d) is called a q-subset for q ∈ N if |A| ≥ |L(Tk,d)| / q.

Fixed parameter tractability. We provide only the necessary definitions here; more informa-
tion can be found in the book [16]. A parameterized problem can be formalized as a subset of
Σ∗ × N. We say that a problem is fixed parameter tractable (FPT) if it admits an algorithm
solving an instance (I, k) in running time f(k) · |I|O(1), where f is some computable function.

To argue that a parameterized problem is unlikely to be FPT, we employ FPT-reductions
that run in time f(k) · |I|O(1) and transform an instance (I, k) into an equivalent one (I ′, k′)
where k′ = g(k). A canonical parameterized problem that is believed to lie outside the class
FPT is k-Clique. The problems that are FPT-reducible to k-Clique form the class W[1].

Negative association. We introduce the following concept necessary for our probabilistic
argument. There are several definitions capturing negative dependence between random
variables; intuitively it means that when one variable takes a high value then a second one is
more likely to take a low value. Negative association formalizes this idea in a strong sense.
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▶ Definition 2. A collection of random variables X1, X2, . . . , Xn ∈ R is said to be negatively
associated if for every pair of disjoint subsets A1, A2 ⊆ [n] and every pair of increasing
functions f1 : R|A1| → R, f2 : R|A2| → R it holds that

E [f1(Xi | i ∈ A1) · f2(Xi | i ∈ A2)] ≤ E [f1(Xi | i ∈ A1)] · E [f2(Xi | i ∈ A2)] .

We make note of several important properties of negative association.

▶ Lemma 3 ([28, Prop. 3, 6, 7]). Consider a collection of random variables X1, X2, . . . , Xn ∈
R that is negatively associated. Then the following properties hold.
1. For every family of disjoint subsets A1, . . . , Ak ⊆ [n] and increasing functions f1, . . . , fk,

fi : R|Ai| → R, the collection of random variables

f1(Xi | i ∈ A1), f2(Xi | i ∈ A2), . . . , fk(Xi | i ∈ Ak)

is negatively associated.
2. If random variables Y1, . . . , Yn are negatively associated and independent from X1, . . . , Xn

then the collection X1, . . . , Xn, Y1, . . . , Yn is negatively associated.
3. For every sequence (x1, x2, . . . , xn) of real numbers we have

P [Xi ≤ xi | i ∈ [n]] ≤
n∏

i=1
P [Xi ≤ xi] .

▶ Lemma 4. Let n, k ∈ N. For i ∈ [k] let X i = (Xi
1, . . . , Xi

n) be a sequence of real random
variables that are negatively associated. Suppose that X 1, . . . , X k are independent from each
other. Then the random variables (

∑k
i=1 Xi

1, . . . ,
∑k

i=1 Xi
n) are negatively associated.

Proof. By Lemma 3(2) we know that the union X 1 ∪ · · · ∪ X k forms a collection of nk

random variables that are negatively associated. We divide it into n disjoint subsets of
the form ({X1

j , . . . , Xk
j })n

j=1 and apply Lemma 3(1) for the increasing function f : Rk → R,
f(x1, . . . , xk) =

∑k
i=1 xi. ◀

Negative association occurs naturally in situations like random sampling without replace-
ment. A scenario important for us is when an ordered sequence of numbers is being randomly
permuted. Intuitively, observing a high value at some index removes this value from the pool
and decreases the chances of seeing high values at the remaining indices.

▶ Theorem 5 ([28, Thm. 2.11]). Consider a sequence (x1, x2, . . . , xn) of real numbers. Let
Π: [n] → [n] be a random variable representing a permutation of the set [n] chosen uniformly
at random. For i ∈ [n] we define a random variable Xi = xΠ−1(i). Then the random variables
X1, X2, . . . , Xn are negatively associated.

3 The reduction

Our main objects of interest are collections of functions associated with the nodes of the full
k-ary rooted tree. Such a function for a node v gives an ordering of leaves in the subtree of v.

▶ Definition 6. A scheme for Tk,d is a collection of functions, one for each node in Tk,d,
such that the function fv associated with v ∈ V (Tk,d) is a bijection from L(T v

k,d) to [|L(T v
k,d)|].

Let Schemes(k, d) denote the family of all schemes for Tk,d.

ISAAC 2024
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

A B C D E F G H I

J K L M N O P Q R

J K L N O M P R Q M Q L N O J P R K P K L N M O J R Q
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

A C B B A C C A B E F D D E F E F D H G I H G I G H I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 1 An illustration for Definition 7 with k = d = 3. The boxes represent copies of an
instance I with |T | = 3, the large instance is J3,3(I, β) for the scheme β listed at the bottom, and
the dashed rectangle surrounds the instance J3 = J3,2(I, β3) where β3 is a truncation of β to the
right subtree of T3,3. The hollow disks represent the sinks and sources on the large instance. All the
arcs are oriented upwards. The leaves of T3,3 are numbered as 1, 2, . . . , 27. For the sake of legibility,
most of the arcs in the last layer are omitted and the copies of the original instance within layers
2, 3 are marked with letters. The letters are also used in the representation of the scheme β which
contains 9 bijections between sets of size 3 and 3 bijections between sets of size 9 (and one bijection
for size 27, which is immaterial here). The blue lines exemplify vertex pairs which belong to the
request set of the large instance; the sources (in the layer 1) indexed by 6, 10, 23 are mapped to the
sinks in the copy M (in the layer 3). If a subset Γ ⊆ [27] includes 6, 10, 23 then it has a collision
with respect to the scheme β. If we work with a no-instance then such a subset Γ of requests cannot
be served as this would require routing three of them through the copy M .

We will now formalize the idea of connecting multiple copies of an instance. On an
intuitive level, we construct a d-layered instance by taking k many (d − 1)-layered instances
and adding a new layer comprising kd−1 copies of the original instance I. Then we map the
sinks in the layer (d − 1) to the sources in the layer d according to k bijections read from a
scheme. These mappings govern how we place the arcs towards the layer d and which vertex
pairs form the new request set. We need a scheme β ∈ Schemes(k, d) to arrange all the arcs
between the layers.

In order to simplify the notation we introduce the following convention. Suppose that an
instance J is being build with multiple disjoint copies of an instance I = (D, k, T ), referred
to as I1, I2, . . . . Then we refer to the copy of the vertex si ∈ V (D) (resp. ti) in Ij as Ij [si]
(resp. Ij [ti]).

▶ Definition 7. Given an instance I = (D, k, T ) of Dag Disjoint Paths and a scheme
β = (fv)v∈V (Tk,d) ∈ Schemes(k, d) we construct an instance Jk,d(I, β) = (D′, kd, T ′) of Dag
Disjoint Paths. The elements of T ′ will be indexed by the leaves of Tk,d as (sv, tv)v∈L(Tk,d)
while the elements of T (in the instance I) are indexed by 1, . . . , k as (si, ti)i∈[k].

If d = 1, we simply set Jk,1(I, β) = I, ignoring β. We index T by L(Tk,1) in an arbitrary
order.

Consider d > 1. Let r be the root of Tk,d with Children(r) = {u1, . . . , uk}. For i ∈ [k]
let βi be the truncation of β to the nodes in the subtree T ui

k,d and Ji = (Di, kd−1, Ti) be the
instance Jk,d−1(I, βi). We take a disjoint union of J1, . . . , Jk and kd−1 copies of I referred
to as I1, I2, . . . (see Figure 1). These kd−1 copies of I form layer d.
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Recall that for i ∈ [k] the bijection fui maps L(T ui

k,d) to [kd−1]. For each i ∈ [k] and
v ∈ L(T ui

k,d) we insert an arc from Ji[tv] to Ifui
(v)[si]. Then we add the pair (Ji[sv], Ifui

(v)[ti])
to T ′. This pair is assigned index ι(v) in T ′ where ι is the natural embedding L(T ui

k,d) →
L(Tk,d).

Note that whenever D is acyclic then D′ is acyclic as well so the procedure indeed outputs
an instance of Dag Disjoint Paths. It is also clear that when I admits a solution serving
all the k requests, it can be used to serve all the requests in Jk,d(I, β).

▶ Observation 8. Let k, d ∈ N and β ∈ Schemes(k, d). If I = (D, k, T ) is a yes-instance of
Dag Disjoint Paths then Jk,d(I, β) is a yes-instance as well.

The case when I is a no-instance requires a more careful analysis. We introduce the
notion of a collision that certifies that some subset of requests cannot be served.

▶ Definition 9. Let k, d ∈ N, A ⊆ L(Tk,d), and β = (fv)v∈V (Tk,d) ∈ Schemes(k, d). We say
that u ∈ V (Tk,d) forms a collision with respect to (A, β) if A contains elements a1, . . . , ak

such that:
1. for each i ∈ [k] the node ai is a descendant of ui ∈ Children(u) where u1, . . . , uk are

distinct,
2. fu1(a1) = fu2(a2) = · · · = fuk

(ak).

▶ Lemma 10. Let k, d ∈ N, A ⊆ L(Tk,d), and β = (fv)v∈V (Tk,d) ∈ Schemes(k, d). Suppose
that there exists a collision with respect to (A, β). Let I = (D, k, T ) be a no-instance of
Dag Disjoint Paths. Then no solution to the instance (D′, kd, T ′) = Jk,d(I, β) can
simultaneously serve all the requests {(sv, tv)v∈A}.

Proof. We will prove the lemma by induction on d. In the case d = 1 we have Jk,1(I, β) = I

and the only possibility of a collision is when A = L(Tk,1) so {(sv, tv)v∈A} is the set of all
the requests. By definition, we cannot serve all the requests in a no-instance. Let us assume
d > 1 from now on.

First suppose that the collision occurs at the root r ∈ V (Tk,d). Let Children(r) =
{u1, . . . , uk}. Then there exists A′ = {a1, . . . , ak} ⊆ A such that ai is a descendant of ui and
fu1(a1) = fu2(a2) = · · · = fuk

(ak). We refer to this common value as x = fui
(ai). We will

also utilize the notation from Definition 7.
Observe that in order to serve the request (sai

, tai
) in D′ the path Pi starting at sai

=
Ji[sai ] must traverse the arc from Ji[tai ] to Ix[si] as every other arc leaving Di leads to some
Iy with y ̸= x having no connection to tai

= Ix[ti]. Furthermore, the path Pi must contain a
subpath connecting Ix[si] to Ix[ti] in Ix. Since the same argument applies to every i ∈ [k],
we would have to serve all the k requests in Ix. But this is impossible because Ix is a copy
of I which is a no-instance.

Now suppose that the collision does not occur at the root. Then it must occur in the
subtree T ui

k,d for some i ∈ [k]. For every v ∈ A being a descendant of ui, any path Pv serving
the request (sv, tv) in D′ must contain a subpath P ′

v in Di from Ji[sv] to Ji[tv] as again it
must leave Di through the vertex Ji[tv]. By the inductive assumption, we know that we
cannot simultaneously serve all the requests (sv, tv)v∈A∩L(T

ui
k,d

) in the smaller instance Ji.
The lemma follows. ◀

We can now state our main technical theorem. Recall that a subset A ⊆ L(Tk,d) is called
a q-subset if |A| ≥ |L(Tk,d)|/q = kd/q.

▶ Theorem 11. Let k, d, q ∈ N satisfy d ≥ k · (4q)4k log k. Then there exists β ∈ Schemes(k, d)
such that for every q-subset A ⊆ L(Tk,d) there is a collision with respect to (A, β).

ISAAC 2024
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The proof is postponed to Section 4 which abstracts from the Disjoint Paths problem
and focuses on random permutations. With Theorem 11 at hand, the proof of the main
result is easy.

▶ Theorem 1. Let q ∈ N be a constant. It is W[1]-hard to distinguish whether for a given
instance of k-Dag Disjoint Paths:
1. all the requests can be served simultaneously, or
2. no set of k/q requests can be served simultaneously.

Proof. We are going to give an FPT-reduction from the exact variant of k-Dag Disjoint
Paths, which is W[1]-hard [51], to the variant with a sufficiently large gap. To this end,
we present an algorithm that, given an instance I = (D, k, T ), runs in time f(k, q) · |I| and
outputs an instance J = (D′, k′, T ′) such that:
1. k′ depends only on k and q,
2. if I is a yes-instance then J is a yes-instance, and
3. if I is a no-instance then no solution to J can simultaneously serve at least k′/q requests.
Obviously, being able to separate these two cases for J (all requests vs. at most 1

q -fraction of
requests) is sufficient to determine whether I is a yes-instance.

We set d = k · (4q)4k log(k) accordingly to Theorem 11. It guarantees that there exists a
scheme β ∈ Schemes(k, d) such that for every q-subset A ⊆ L(Tk,d) there is a collision with
respect to (A, β). Observe that such a scheme can be computed in time f(k, q) because d is
a function of (k, q) and the size of the family Schemes(k, d) is a function of (k, d). The same
holds for the number of all q-subsets A ⊆ L(Tk,d). Therefore, we can simply iterate over all
β ∈ Schemes(k, d) and check for each q-subset A whether there is a collision or not.

The instance J is defined as Jk,d(I, β). A direct implementation of Definition 7 takes time
f(k, d) · |I|. Observation 8 says that if I is a yes-instance, then J is as well, whereas Lemma 10
ensures that if I is a no-instance, then for each set of k′/q requests (corresponding to some
q-subset A ⊆ L(Tk,d) which must have a collision with β) no solution can simultaneously
serve all of them. This concludes the correctness proof of the reduction. ◀

We remark that Theorem 1 works in a more general setting, where q is not necessarily a
constant, but a function of k. This enables us to rule out not only an O(1)-approximation
in FPT time, but also an α(k)-approximation for some slowly growing function α(k) → ∞.
However, the value of the parameter k′ becomes kd for d = Ω(qk log k) so q ends up very
small compared to the new parameter k′. This is only sufficient to rule out approximation
factors of the form α(k) = (log k)o(1). A detailed analysis of how to adjust such parameters
is performed in [53].

4 Constructing the scheme

This section is devoted to the proof of Theorem 11. Before delving into the rigorous analysis,
we sketch the main ideas behind the proof.

Outline. We use the probabilistic method to prove the existence of a scheme having a
collision with every q-subset of leaves in Tk,d. We will show that for a sufficiently large d

choosing each bijection at random yields a very high probability of a collision with any fixed
q-subset. Specifically, the probability that a collision does not occur should be less than 2−kd .
Since the number of all q-subsets of a kd-size set is bounded by 2kd , the union bound will
imply that the probability that a collision does not occur for at least one q-subset is strictly
less than one, implying the existence of the desired scheme.
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Let us fix a q-subset A ⊆ L(Tk,d). Suppose there is a vertex u ∈ V (Tk,d) such that
for every child y of u the fraction of leaves in T y

k,d belonging to A is at least 1/q. Let ℓ

denote [|L(T y
k,d)|]. For each such child we choose a random bijection from L(T y

k,d) to [ℓ]. The
probability that each of these k bijections maps an element of A to a fixed index x ∈ [ℓ] is
at least q−k. Such events are not independent for distinct x but we will see that they are
negatively associated, which still allows us to upper bound the probability of no such event
happening by (1 − q−k)ℓ (see Lemma 12).

How to identify such a vertex u? First, it is sufficient for us to relax the bound 1/q

assumed above to 1/(4q). Observe that for each layer in Tk,d there must be many vertices
v satisfying |A ∩ L(T v

k,d)| ≥ 1
2q |L(T v

k,d)|. Suppose that v does not meet our criterion: this
means that it has a child v′ with less than 1/(4q)-fraction of the A-leaves in its subtree.
But then the average fraction of the A-leaves among the remaining children is higher than
the fraction for v. Consequently, we can choose a child of v with a higher fraction and
repeat this argument inductively. We show that after O(k log(q)) many steps this process
must terminate so we are guaranteed to find a vertex for which every child has at least a
1/(4q)-fraction of the A-leaves. This is proven in Lemma 13.

Finally, to obtain a large probability of a collision we must show that there many such
vertices u with a large sum of their subtrees’ sizes. This will allows us to multiply the
aforementioned bounds of the form (1 − q−k)ℓ with a large sum of the exponents ℓ. By
applying the argument above to a single layer in Tk,d we can find such a collection with the
sum of their subtrees’ sizes being kd divided by some function of k and q. But we can also
apply it to multiple layers as long as they are sufficiently far from each other (so that the
vertices found by the inductive procedure are all distinct). Therefore, it suffices to take d

large enough so that the number of available layers surpasses the factors in the denominator,
which depend only on k and q. This is analyzed in Lemma 15.

We begin with a probabilistic lemma stating that randomly permuting k large subsets of
a common universe yields a large chance of creating a non-empty intersection of these sets.

▶ Lemma 12. Let k, z, ℓ ∈ N and X1, . . . , Xk be subsets of [ℓ] of size at least ℓ/z each. Next,
let Π1, . . . , Πk : [ℓ] → [ℓ] be independent random variables with a uniform distribution on the
family of all permutations over the set [ℓ]. Then

P [Π1(X1) ∩ Π2(X2) ∩ · · · ∩ Πk(Xk) = ∅] ≤ exp(−ℓ/zk).

Proof. For i ∈ [k] and j ∈ [ℓ] let Y i
j = 1 if j ∈ Πi(Xi) and Y i

j = 0 otherwise. By Theorem 5
the variables (Y i

1 , . . . , Y i
ℓ ) have negative association for each i ∈ [k]. Note that EY i

j ≥ 1/z.
Next, let Zj =

∑k
i=1 Y i

j for j ∈ [ℓ]. Lemma 4 ensures that the variables Z1, . . . , Zℓ also
enjoy negative association. Condition Π1(X1) ∩ Π2(X2) ∩ · · · ∩ Πk(Xk) = ∅ is equivalent to
max(Zj)ℓ

j=1 ≤ k − 1. We have

P [Zj ≤ k − 1] = 1 − P [Zj = k] = 1 −
k∏

i=1

P [j ∈ Πi(Xi)] ≤ 1 − 1/zk.

P
[
max(Zj)ℓ

j=1 ≤ k − 1
]

≤
ℓ∏

j=1

P [Zj ≤ k − 1] ≤ (1 − 1/zk)ℓ = (1 − 1/zk)zk·(ℓ/zk) ≤ exp(−ℓ/zk).

In the first inequality we used Lemma 3(3). The last one holds because (1 − 1
m )m < 1

e for all
m ≥ 2. ◀
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Notation. We introduce some additional notation to work with the tree Tk,d. For a vertex
v ∈ V (Tk,d) let Leaves(v) denote the size of the set L(T v

k,d). Note that Leaves(v) = kd−h

where h is the depth of v. Next, for a set A ⊆ L(Tk,d), we will write FracA(v) = |A ∩
L(T v

k,d)| / Leaves(v). When A is clear from the context, we will omit the subscript.

▶ Lemma 13. Let k, d, q, τ ∈ N satisfy k, q ≥ 2 and d ≥ τ ≥ 2k · log(q). Next, let v ∈ V (Tk,d)
be of depth at most d − τ and A ⊆ L(Tk,d) satisfy FracA(v) ≥ 1

q . Then there exists a vertex
u ∈ V (T v,τ

k,d ) such that for each y ∈ Children(u) it holds that FracA(y) ≥ 1
2q .

Proof. Suppose the claim does not hold. We will show that under this assumption for each
i ∈ [τ ] there exists vi ∈ V (T v,i

k,d) with Frac(vi) ≥ 1
q · (1 + 1

2k−2 )i−1. Then by substituting
i = τ > (2k − 2) · log(q) and estimating (1 + 1

m )m > 2 (for all m ≥ 2) we will arrive at a
contradiction:

Frac(vτ ) ≥ 1
q

·
(

1 + 1
2k − 2

)(2k−2)·log(q)
>

1
q

· 2log(q) ≥ 1.

We now construct the promised sequence (vi) inductively. For i = 1 we set v1 = v

which obviously belongs to T v,1
k,d and satisfies Frac(v) ≥ 1

q . To identify vi+1 we consider
Children(vi) = u1, u2, . . . , uk. We have Frac(vi) = 1

k ·
∑k

j=1 Frac(uj). We define vi+1 as the
child of vi that maximizes the value of Frac (see Figure 2). By the assumption, one of the
children satisfies Frac(uj) < 1

2q . Then Frac(vi+1) is lower bounded by the average value of

Frac among the remaining k − 1 children, which is at least 1
k−1

(
Frac(vi) · k − 1

2q

)
. We have

Frac(vi) ≥ Frac(v1) ≥ 1
q so

(
Frac(vi) · k − 1

2q

)
≥

(
Frac(vi) · k − Frac(vi)

2

)
. We check that

vi+1 meets the specification:

Frac(vi+1) ≥ Frac(vi)
k − 1 ·

(
k − 1

2

)
= Frac(vi) ·

(
1 + 1

2k − 2

)
≥ 1

q
·
(

1 + 1
2k − 2

)i

In the last inequality we have plugged in the inductive assumption. The lemma follows. ◀

To apply Lemma 13 we need to identify many vertices satisfying FracA(v) ≥ 1
2q . To this

end, we will utilize the following simple fact.

▶ Lemma 14. Let a1, a2, . . . , aℓ ∈ [0, 1] be a sequence with mean at least x for some x ∈ [0, 1].
Then at least xℓ

2 elements in the sequence are lower bounded by x
2 .

Proof. Suppose that |{ai ≥ x
2 | i ∈ [ℓ]}| < xℓ

2 . This leads to a contradiction:

ℓ∑
i=1

ai < 1 · xℓ

2 + x

2 · ℓ = xℓ. ◀

We will use the lemmas above for a fixed layer in the tree Tk,d to identify multiple vertices
v meeting the requirements of Lemma 13. For each such v we can find a close descendant
u of v for which we are likely to observe a collision. The value ℓ in Lemma 12, governing
the probability of a collision, corresponds to the number of leaves in the subtree of u, i.e.,
Leaves(u). Since this value appears in the exponent of the formula, we need a collection of
such vertices u in which the total sum of Leaves(u) is large.

▶ Lemma 15. Let k, d, q ∈ N satisfy k, q ≥ 2, d ≥ 4kq. If A ⊆ L(Tk,d) is a q-subset then
there exists a set F ⊆ V (Tk,d) with the following properties.
1. For each v ∈ F and u ∈ Children(v) it holds that FracA(u) ≥ 1

4q .
2. The sum

∑
v∈F Leaves(v) equals at least d · kd · (4q)−3k log(k).
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F0

Fτ

F1

F2

F3

Fτ+1

Fτ+2

Fτ+3

Figure 2 An illustration for Lemma 15. We consider layers F0, Fτ , F2τ , . . . The vertices from
F +

0 and F +
τ are marked by black disks and their subtrees F v,τ

k,d are depicted as gray triangles. For
each vertex v ∈ F + we apply Lemma 13 to identify a vertex γ(v) ∈ F : the red square inside the
corresponding triangle. The root also illustrates the argument from Lemma 13. We start with
a vertex v satisfying Frac(v) ≥ 1

2q
and while one of its children v′ has Frac(v′) < 1

4q
we can find

another child v′′ of v with Frac(v′′) > Frac(v). This process terminates within τ steps.

Proof. Let Fi ⊆ V (Tk,d) be i-th layer of Tk,d, i.e., the set of vertices of depth i; we have
|Fi| = ki and Leaves(v) = kd−i for each v ∈ Fi. Since their subtrees are disjoint, we can see
that

∑
v∈Fi

|A ∩ L(T v
k,d)| = |A|. Therefore

∑
v∈Fi

Frac(v)/|Fi| ≥ 1
q . By Lemma 14 at least

1
2q fraction of the vertices in Fi must satisfy Frac(v) ≥ 1

2q . Let us denote this subset as F +
i .

Let τ = ⌈2k · log(2q)⌉ and M = ⌊d/τ⌋. We define F + = F +
0 ∪ F +

τ ∪ F +
2τ ∪ · · · ∪ F +

(M−1)τ .
Observe that for each pair u, v ∈ F + the trees T u,τ

k,d , T v,τ
k,d are disjoint. We apply Lemma 13

with q′ = 2q to each v ∈ F + to obtain a vertex γ(v) ∈ V (T v,τ
k,d ) satisfying condition (1). The

disjointedness of these subtrees ensures that the vertices γ(v)v∈F + are distinct. We define
F = {γ(v) | v ∈ F +}.

Now we take care of condition (2). Let us fix j ∈ [0, M − 1]. Since γ(v) ∈ V (T v,τ
k,d ) for v

with the depth jτ , we infer that the depth of γ(v) is at most (j + 1)τ − 1 so |Leaves(γ(v))| ≥
kd+1−(j+1)τ . We have established already that |F +

jτ | ≥ |Fjτ |
2q = kjτ

2q . The assumption d ≥ 4kq

implies d ≥ τ so we can simplify M = ⌊d/τ⌋ ≥ d/(2τ). We estimate the sum within each
layer F +

jτ and then multiply it by M .

∑
v∈F +

jτ

Leaves(γ(v)) ≥ kjτ

2q
· kd+1−(j+1)τ = kd+1−τ

2q

∑
v∈F

Leaves(v) =
M−1∑
j=0

∑
v∈F +

jτ

Leaves(γ(v)) ≥ d · kd+1−τ

2τ · 2q

To get rid of the ceiling, we estimate τ ≤ 2k · log(4q). Then kτ ≤ k2k log(4q) = (4q)2k log(k).
We also use a trivial bound τ ≤ 4kq. We can summarize the analysis by∑

v∈F

Leaves(v) ≥ d · kd+1−τ

2τ · 2q
= d · kd+1

kτ · 4qτ
≥ d · kd+1

(4q)2k log(k) · 16kq2 ≥ d · kd

(4q)3k log(k) ◀

Now we combine the gathered ingredients to show that a random scheme yields a high
probability of a collision with any fixed q-subset. At this point we also adjust d to be larger
then the factors depending on k and q.

ISAAC 2024
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▶ Lemma 16. Let k, d, q ∈ N satisfy d ≥ k · (4q)4k log k. Consider some q-subset A ⊆ L(Tk,d).
Suppose that we choose the scheme β = (fv)v∈V (Tk,d) ∈ Schemes(k, d) by picking each bijection
fv : L(T v

k,d) → [|L(T v
k,d)|] uniformly and independently at random. Then the probability that

(A, β) has no collision is at most exp(−kd).

Proof. We apply Lemma 15 and use the obtained set F ⊆ V (Tk,d) to analyze the probability
of getting a collision. Consider u ∈ F with Children(u) = {u1, . . . , uk} and let Cu denote the
event that (A, β) has a collision at u. For each i ∈ [k] we have Leaves(ui) = Leaves(u)/k and
we know from Lemma 15(1) that FracA(ui) ≥ 1/(4q). For each i ∈ [k] a random bijection
fui is chosen between L(T ui

k,d) and [Leaves(ui)]. This can be interpreted as first picking an
arbitrary bijection to [Leaves(ui)] and then combining it with a random permutation over
[Leaves(ui)]. We apply Lemma 12 with z = 4q to infer that the probability of getting no
collision at u is upper bounded by

P [¬Cu] ≤ exp
(

−Leaves(ui)
zk

)
= exp

(
−Leaves(u)

k · (4q)k

)
.

Since the sets (Children(u))u∈F are pairwise disjoint, the corresponding events Cu are in-
dependent. We can thus upper bound the probability of getting no collision at all by the
product

∏
u∈F P [¬Cu]. Next, by Lemma 15(2) and the assumption on d we know that∑

u∈F

Leaves(u) ≥ d · kd · (4q)−3k log k ≥ kd+1 · (4q)k.

We combine this with the previous formula to obtain

P

[
¬

⋃
u∈F

Cu

]
= P

[ ⋂
u∈F

¬Cu

]
=

∏
u∈F

P [¬Cu] ≤ exp
(−

∑
u∈F Leaves(u)
k · (4q)k

)
≤ exp(−kd).◀

We are ready to prove Theorem 11 (restated below) and thus finish the proof of the
reduction.

▶ Theorem 11. Let k, d, q ∈ N satisfy d ≥ k · (4q)4k log k. Then there exists β ∈ Schemes(k, d)
such that for every q-subset A ⊆ L(Tk,d) there is a collision with respect to (A, β).

Proof. We choose the scheme β by picking each bijection uniformly and independently at
random. For a fixed q-subset A let CA denote the event that (A, β) witnesses a collision. In
these terms, Lemma 16 says that P [¬CA] ≤ exp(−kd). Let A be the family of all q-subsets
A ⊆ L(Tk,d); we have |A| ≤ 2kd . By the union bound, the probability that there exists a
q-subset with no collision with β is

P

[ ⋃
A∈A

¬CA

]
≤

∑
A∈A

P [¬CA] ≤ 2kd

· (1/e)kd

< 1.

Consequently, there is a positive probability of choosing a scheme β having a collision with
every q-subset. In particular, this means that such a scheme exists. ◀

5 Conclusion

We have shown that no FPT algorithm can achieve an O(1)-approximation for Max Disjoint
Paths on acyclic digraphs. However, our reduction blows up the parameter significantly so
it does not preserve a running time of the form f(k)no(k). It is known that such a running
time is unlikely for the exact variant of the problem [12]. This leads to a question whether
Max Dag Disjoint Paths admits an O(1)-approximation that is faster than nO(k).
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Our proof yields an alternative technique for gap amplification in a parameterized re-
duction based on the probabilistic method (extending the restricted version appearing
in [53]), compared to reductions relying on coding theory [39, 25] or communication complex-
ity [30]. Can this approach come in useful for proving that Parameterized Inapproximability
Hypothesis (PIH) follows from FPT̸=W[1]?
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