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Abstract
In the Cumulative Vehicle Routing Problem (Cu-VRP), we need to find a feasible itinerary for a
capacitated vehicle located at the depot to satisfy customers’ demand, as in the well-known Vehicle
Routing Problem (VRP), but the goal is to minimize the cumulative cost of the vehicle, which is
based on the vehicle’s load throughout the itinerary. If the demand of each customer is unknown
until the vehicle visits it, the problem is called Cu-VRP with Stochastic Demands (Cu-VRPSD).
In this paper, we propose a randomized 3.456-approximation algorithm for Cu-VRPSD, improving
the best-known approximation ratio of 6 (Discret. Appl. Math. 2020). Since VRP with Stochastic
Demands (VRPSD) is a special case of Cu-VRPSD, as a corollary, we also obtain a randomized
3.25-approximation algorithm for VRPSD, improving the best-known approximation ratio of 3.5
(Oper. Res. 2012). At last, we give a randomized 3.194-approximation algorithm for Cu-VRP,
improving the best-known approximation ratio of 4 (Oper. Res. Lett. 2013).
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1 Introduction

In the well-known Vehicle Routing Problem (VRP) [7], we are given an undirected complete
graph G = (V, E) with V = {v0, v1, . . . , vn}, where v0 denotes the depot, and the other n

vertices denote n customers. Moreover, there is a weight function w on the edges representing
the length of edges, which satisfies the triangle inequality, and a demand vector d = (d1, ..., dn)
implying that each customer vi has a demand of di. The objective is to determine an itinerary
for a vehicle with a capacity of Q, starting from and ending at the depot, that fulfills every
customer’s demand while minimizing the total weight of the edges in the itinerary.

In the Cumulative Vehicle Routing Problem (Cu-VRP) [18, 19], the goal is also to find
an itinerary for the vehicle, but with the objective of minimizing the cumulative cost of the
itinerary. Here, the cumulative cost for the vehicle traveling from u to v carrying a load
of xuv ≤ Q units of goods is defined as a · w(u, v) + b · xuv · w(u, v), where a, b ∈ R≥0 are
given parameters. Cu-VRP captures the fuel consumption in transportation and logistics, as
fuel consumption depends on both the weight of the empty vehicle and the weight of the
goods being carried by the vehicle [10]. Since fuel consumption can account for as much
as 60% of a vehicle’s operational costs [23], Cu-VRP has been studied extensively through
both experimental algorithms [27, 25, 9, 13, 22] and approximation algorithms [10, 11, 12].
A recent survey of Cu-VRP can be found in [6].
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In VRP with Stochastic Demands (VRPSD) [2], the demand of each customer is represen-
ted by an independent random variable with a known distribution, and its value is unknown
until the vehicle visits the customer. The goal is to design a policy such that the expected
weight of the itinerary is minimized. Early surveys on this topic can be found in [14, 3].
Cu-VRP with Stochastic Demands (Cu-VRPSD) was proposed in [11], and similarly, the goal
is to design a policy such that the expected cumulative cost of the itinerary is minimized. In
VRPSD, we can fully load the vehicle before it leaves the depot. However, in Cu-VRPSD,
due to the fact that both higher and lower loads can lead to higher cumulative costs, we
need to carefully consider how the vehicle is loaded. This property makes Cu-VRPSD both
more challenging and more interesting compared to VRPSD.

In each of the above problems, the splittable (resp., unsplittable) variant requires that the
demand of each customer can be satisfied partially within the vehicle’s visits (resp., must be
satisfied entirely in one of the vehicle’s visits).

In this paper, we consider approximation algorithms for the unsplittable variants. Note
that the unsplittable variants are more difficult. For example, unsplittable VRP generalizes
the bin packing problem even on a line shape graph [26], and thus cannot be approximated
with an approximation ratio of less than 1.5 unless P=NP. For Cu-VRP, an algorithm is
called a ρ-approximation algorithm if it can output a solution with a cumulative cost of at
most ρ · OPT in polynomial time, where OPT is the cumulative cost of the optimal solution.
For Cu-VRPSD, an algorithm is called a ρ-approximation algorithm if it can employ a
policy to get a solution with an expected cumulative cost of at most ρ · OPT in polynomial
time, where OPT is the cumulative cost of the minimum expected cumulative cost solution
obtained by the optimal policy.

Let α denote the approximation ratio of the metric Traveling Salesman Problem (TSP).
It is well-known that α ≤ 1.5 [5, 24], which is slightly improved to α ≤ 1.5 − 10−36 [20, 21].
The ratio α for TSP will be frequently used in VRP related problems.

For VRP, there is an (α + 1)-approximation algorithm for the splittable case [17], and
an (α + 2)-approximation algorithm for the unsplittable case [1]. Blauth et al. [4] improved
the ratio to α + 1 − ε for the splittable case, and Friggstad et al. [8] improved the ratio to
α + 1 + ln 2 − ε′ for the unsplittable case using the LP rounding method, where ε and ε′ are
small positive constants related to α. Notably, Friggstad et al. [8] also gave a combinatorial
(α + 1.75 − ε′)-approximation algorithm for the unsplittable case. For VRPSD, there is a
randomized (α + 1 + o(1))-approximation algorithm for the splittable case, and a randomized
(α + Q)-approximation algorithm for the unsplittable case. Gupta et al. [16] improved the
ratios to α + 1 and α + 2, respectively.

For Cu-VRP, Gaur et al. [10] proposed a (1 + 4α√
4α2+24α+4−2α

)-approximation algorithm
for the splittable case, and a (1+ 4α√

4α2+24α+4−(2α+2) )-approximation algorithm for the unsplit-
table case. For Cu-VRPSD, Gaur et al. [12] gave a randomized max{1+ 3

2 α, 3}-approximation
algorithm for the splittable case, and a randomized max{2 + 3

2 α, 6}-approximation algorithm
for the unsplittable case.

1.1 Our results

In this paper, we focus on the unsplittable cases of Cu-VRPSD, VRPSD, and Cu-VRP, and
design improved approximation algorithms for them.

The main idea of the most recent algorithms [16, 12] is as follows. First, we find an
α-approximate TSP tour and then the vehicle satisfies customers in the order they appear on
the TSP tour. Once the load is less than the serving customer’s demand the vehicle goes back
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to the depot to reload. Our algorithms will also use an α-approximate TSP tour and visit
the customers in the order according to the TSP tour. However, we do not strictly satisfy
the customers in the order. To reduce the cumulative cost, our vehicle may skip customers
with large demands when visiting customers according to the TSP tour (but record their
demands) and satisfy them after completing the TSP tour.

Based on the above idea, we propose two novel algorithms for Cu-VRPSD, denoted as
ALG.1(λ, δ) and ALG.2(λ, δ).

In ALG.1(λ, δ), the vehicle will skip customers in {vi | di > λ · Q} and then satisfy each
of them by using a single tour;
In ALG.2(λ, δ), the vehicle will skip customers in {vi | di > δ · Q} and then satisfy them
either by using a single tour for each or by calling an algorithm for weighted set cover.

Furthermore, in our algorithms, we set upper and lower bounds of the load of the vehicle
when traveling along the TSP tour: the load is at least δ · Q and less than λ · Q for some
parameters δ and λ. The lower bound can be regarded as the backup goods that the vehicle
carries. The idea of carrying some backup goods was inspired by a partition algorithm for
the TSP tour used for unsplittable VRP [8]. We will show that this approach can reduce the
potential cumulative cost caused by visiting customers with demands at most δ · Q at the
expense of increasing the cumulative cost of the vehicle when traveling the TSP tour. So, we
need to balance the setting of δ, e.g., we may set δ = 0 when a/b is small.

We will prove that ALG.1(λ, δ) can be used to obtain a randomized algorithm with an
expected approximation ratio of 10/3 for a/b ≤ 0.375 and 3.456 for 0.375 < a/b ≤ 1.444, and
by using both ALG.1(λ, δ) and ALG.2(λ, δ), we can get a randomized 3.456-approximation
algorithm for a/b > 1.444. Hence, we get a randomized 3.456-approximation algorithm for
Cu-VRPSD.

Note that Cu-VRPSD reduces to VRPSD when b = 0, and this corresponds to a/b = ∞.
As a corollary, for VRPSD, we also obtain a randomized 3.25-approximation algorithm using
the randomized 3.456-approximation algorithm for Cu-VRPSD with a/b > 1.444.

For Cu-VRP, we also give two algorithms, denoted as ALG.3(λ, δ) and ALG.4(λ). Since
the demands of customers are known in advance, in ALG.3(λ, δ), we first obtain a set of
tours by applying the randomized rounding method to the LP of weighted set cover, and
then satisfy the remaining customers by calling ALG.1(λ, δ); in ALG.4(λ), we directly call
ALG.1(λ, 0). In the tours obtained by calling ALG.1(λ, δ) and ALG.1(λ, 0), the load of the
vehicle may be greater than the delivered units of goods. So, we also adapt a pre-optimization
step to ensure that the load of the vehicle equals the delivered units of goods.

We will show that ALG.3(λ, δ) can be used to obtain a randomized 3.194-approximation
algorithm with a running time of nO( 1

min{a/b,1} ) and thus it only works for a/b > γ0, where
γ0 > 0 is any fixed constant, and ALG.4(λ, δ) can be used to obtain a randomized 3.163-
approximation algorithm for a/b < 0.428. Hence, we get a randomized 3.194-approximation
algorithm for Cu-VRP.

A summary of our results under α = 1.5 can be found in Table 1. Although our
algorithms are simple and neat, the analysis is technically involved. Some parts also need
careful calculation. To avoid distraction from our main discussions and also due to the
limited space, the proofs of lemmas and theorems marked with “*” are omitted.

2 Notations

In Cu-VRP, we use G = (V, E) to denote the input complete graph, where V = {v0, . . . , vn}.
There is a non-negative weight function w : E → R≥0 on the edges, where w(u, v) denotes the
length of edge uv ∈ E. We assume that w is a metric, i.e., it is symmetric and satisfies the
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Table 1 A summary of the previous approximation ratios and our approximation ratios.

Previous Results Our Results
Cu-VRPSD 6 [12] 3.456

VRPSD 3.5 [16] 3.25
Cu-VRP 4 [10] 3.194

triangle inequality. Let V ′ := V \{v0}. There is also a demand vector d = (d1, ..., dn) ∈ RV ′

[0,Q],
where Q ∈ R>0 is the capacity of the vehicle, and each customer vi has a required demand
di ∈ [0, Q]. We let li := w(v0, vi) and [i] := {1, 2, ..., n}.

In Cu-VRPSD, the demand of each customer vi is represented by an independent random
variable χi ∈ [0, Q], where the distribution of χi is usually assumed to be known in advance [2].
Let χ = (χ1, ..., χn), where we assume that χi is not identically zero, as vi can be ignored in
such a case. Consequently, any feasible policy must visit every customer at least once [16].

For any random variable L, we use L ∼ U [l, r) to indicate that L is uniformly distributed
over the interval [l, r), where l < r.

A tour T = v0v1 . . . viv0 is a directed simple cycle, which always contains the depot v0.
We use E(T ) to denote the set of edges on T , and V ′(T ) to denote the set of customers on T .
Assume that the vehicle carries a load of xeT units of goods when traveling along e ∈ E(T ).
The cumulative cost of T is

Cu(T ) := a ·
∑

e∈E(T )

w(e) + b ·
∑

e∈E(T )

xeT · w(e),

where w(T ) :=
∑

e∈E(T ) w(e) is called the weight of T , Cu1(T ) := a ·
∑

e∈E(T ) w(e) is called
the vehicle cost of T , and Cu2(T ) := b ·

∑
e∈E(T ) xeT · w(e) is called the cargo cost of T . An

itinerary T is a set of tours. A TSP tour is an undirected cycle that includes all customers
and the depot exactly once. The weight of the minimum weight TSP tour is denoted by τ .

2.1 Problem Definitions
▶ Definition 1 (Cu-VRPSD). Given a complete graph G = (V, E), a metric weight function
w, a vehicle capacity Q ∈ R>0, a random demand variable vector χ = (χ1, ..., χn), and two
parameters a, b ∈ R≥0, we need to design a policy to find a feasible itinerary T such that

the vehicle carries at most Q units of goods on each tour T ∈ T ,
the vehicle delivers goods to customers only in V ′(T ) on each tour T ∈ T ,
the sum of the delivered demand over all tours for each vi ∈ V ′ equals the demand of vi,

and E[Cu(T )] is minimized.

Note that the demand of each customer is unknown until the vehicle visits it. In Cu-VRP,
we have χ = d, where d is known in advance. We assume that the deliveries are unsplittable:
each customer may be included in multiple tours, but its demand must be satisfied entirely
within exactly one of those tours. Moreover, by scaling each customer’s demand χi to χi/Q

and adjusting the parameter b to b · Q, without loss of generality, we assume that Q = 1.

2.2 The Lower bounds
To analyze approximation algorithms, we recall the following lower bound for Cu-VRPSD.

▶ Lemma 2 ([12]). For unsplittable Cu-VRPSD, it holds that E[Cu(T ∗)] ≥ a ·
max{τ,

∑
i∈[n] 2 · E[χi] · li} + b ·

∑
i∈[n] E[χi] · li.
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When a = 1 and b = 0, the lower bound in Lemma 2 becomes max{τ,
∑

i∈[n] 2 ·E[χi] · li},
and it was used in analyzing approximation algorithms for VRPSD in [16]. To analyze our
algorithms, we use a stronger lower bound that was implicitly used in the proof of Lemma 2.

▶ Lemma 3 ([12]). For unsplittable Cu-VRPSD with any demand realization vector d ∈ RV ′

[0,1],
it holds that E[Cu(T ∗) | χ = d] ≥ LB := a · max{τ, η} + b · 0.5 · η, where η :=

∑
i∈[n] 2 · di · li.

Lemma 3 is stronger than Lemma 2 since it holds that E[max{X, Y }] ≥ max{E[X],E[Y ]}
for any random variables X and Y by the property of the maximum function.

▶ Lemma 4. An algorithm is a ρ-approximation algorithm for Cu-VRPSD if, for any possible
demand realization vector d ∈ RV ′

[0,1], the algorithm conditioned on χ = d outputs a solution
T with a cumulative cost of E[Cu(T ) | χ = d] ≤ ρ · LB.

Proof. Since it holds that E[Cu(T ) | χ = d] ≤ ρ ·LB ≤ ρ ·E[Cu(T ∗) | χ = d] for any possible
demand realization vector d, we can get that E[Cu(T ) | χ] ≤ ρ · E[Cu(T ∗) | χ]. Therefore,
we have E[Cu(T )] = E[E[Cu(T ) | χ]] ≤ ρ · E[E[Cu(T ∗) | χ]] = ρ · E[Cu(T ∗)]. ◀

Hence, we may frequently analyze our algorithms conditioned on χ = d, where d ∈ RV ′

[0,1]
is any possible demand realization. For the sake of analysis, we let γ := a/b, and σ := γ/η.
Note that b = 0 corresponds to the case where γ = ∞, which turns out to be easier, as will
be shown in Theorem 14. We also define∫ r

l

xtdF (x) :=
∑

vi∈V ′:l<di≤r 2 · dt
i · li∑

vi∈V ′ 2 · di · li
, where t ∈ {0, 1, 2}. (1)

Note that
∫ 1

0 xdF (x) = 1. Moreover, for any 0 ≤ l ≤ r, we have

l ·
∫ r

l

xt−1dF (x) <

∫ r

l

xtdF (x) ≤ r ·
∫ r

l

xt−1dF (x). (2)

3 Two Algorithms for Cu-VRPSD

3.1 The first algorithm
In this section, we will introduce our first algorithm, denoted as ALG.1(λ, δ), which can be
used to get a 10/3-approximation algorithm for Cu-VRPSD with any γ ∈ (0, 0.375] and a
3.456-approximation algorithm for Cu-VRPSD with any γ ∈ [0.375, 1.444]. Here, λ ∈ (0, 1]
and δ ∈ [0, λ/2] are parameters that will be defined later.

Firstly, ALG.1(λ, δ) computes an α-approximate TSP tour T ∗, which will be oriented in
either clockwise or counterclockwise direction. Assume that T ∗ = v0v1 . . . vnv0 by renumber-
ing the customers following the orientation. Then, the vehicle in ALG.1(λ, δ) tries to satisfy
the customers in the order of v1 . . . vn as they appear on T ∗, where the parameters λ and δ

ensures that the load of the vehicle during its travel on each edge of T ∗ is at least δ and less
than λ. Moreover, among its load, the δ units of goods are regarded as backup goods, and
the other units of goods are regarded as normal goods. Specifically, if the vehicle carries
Li−1 demand of normal goods during its travel from vi−1 to vi, we have 0 ≤ Li−1 < λ − δ for
each i ∈ [n + 1]. We say that the vehicle carries Si−1 = (Li−1, δ) units of goods to indicate
that it carries Li−1 demand of normal goods and δ demand of backup goods. We require
that 0 < λ ≤ 1 and 0 ≤ δ ≤ λ − δ, i.e., 0 ≤ δ ≤ λ/2. When serving a customer, the main
strategy is to prioritize using the normal goods first and then consider using the backup
goods if the normal goods are insufficient. Conditioned on χ = d, the details are as follows.

ISAAC 2024
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Initially, we load the vehicle with S0 = (L0, δ) units of goods at the depot, where L0 ∼
U [0, λ − δ). When the vehicle is about to serve vi, we assume that it carries Si−1 = (Li−1, δ)
units of goods, where 0 ≤ Li−1 < λ − δ. Then, we have the following three cases.
Case 1: di ≤ Li−1. In this case, the vehicle directly delivers (di, 0) units of goods for

vi, and then goes to the next customer. Hence, we have Si = (Li, δ), where Li :=
Li−1 + ⌈ di−Li−1

λ−δ ⌉ · (λ − δ) − di = Li−1 − di since di ≤ Li−1 < λ − δ.
Case 2: Li−1 < di ≤ Li−1 + δ. The vehicle delivers (Li−1, di − Li−1) units of goods for

vi, goes to the depot to reload (Li−1 + ⌈ di−Li−1
λ−δ ⌉ · (λ − δ) − di, di − Li−1) units of

goods, and then goes to the next customer. Hence, we have Si = (Li, δ), where Li :=
Li−1 + ⌈ di−Li−1

λ−δ ⌉ · (λ − δ) − di = Li−1 + (λ − δ) − di since 0 < di − Li−1 ≤ δ ≤ λ − δ.
Case 3: Li−1 + δ < di ≤ 1. In this case, we must have di > δ.

Case 3.1: δ < di ≤ λ. The vehicle goes to the depot to reload (di − Li−1 − δ, 0) units of
goods, goes to satisfy vi, then goes to the depot to reload (Li−1+⌈ di−Li−1

λ−δ ⌉·(λ−δ)−di, δ)
units of goods, goes to customer vi again (for the sake of analysis), and then goes to the
next customer. Hence, we have Si = (Li, δ), where Li := Li−1 + ⌈ di−Li−1

λ−δ ⌉ · (λ− δ)−di.
Case 3.2: λ < di ≤ 1. Since Li−1 < λ − δ, we must have Li−1 + δ < di. Instead of

satisfying vi by returning to the depot to reload as in Case 3.1, the vehicle records its
demand, skips it, and goes to the next customer. Hence, we have Si = (Li, δ), where
Li := Li−1.

After trying to satisfy all customers using the above strategy, due to Case 3.2, there may
be still a set of unsatisfied customers {vi | di > λ}. Then, for each unsatisfied customer vi,
since its demand has been recorded, the vehicle will load exactly di units of goods at the
depot, go to satisfy vi, and then return to the depot.

The details of ALG.1(λ, δ) is shown in Algorithm 1.
Compared to the previous strategy in [12], there are two main differences. The first is

that we specially handle each customer vi with di > λ in Case 3.2. Note that if we satisfy vi

as the method in Case 3.1, since Li−1 + δ < λ (we will prove it in Lemma 6), the vehicle
must incur two visits to the depot, which will cost too much. The second is that we ensure
that the vehicle always carries δ demand of backup goods when traveling along the TSP
tour. The advantage is that each customer vi with di ≤ δ incurs at most one visit to the
depot while if δ = 0 every customer vi with di ≤ λ has the potential to incur two visits to
the depot. However, since δ > 0 clearly increases the cumulative cost of the vehicle when it
travels along the TSP tour, we need to carefully set the value of δ.

Although we require that λ > 0 in ALG.1(λ, δ), it can be extended to the case of λ = 0.
In this scenario, the vehicle simply travels along the TSP tour with an empty carry to record
each customer’s demand, and then satisfies each customer within a single tour, as described
in Case 3.2. Interestingly, if a = 0, this algorithm becomes an exact algorithm for unsplittable
Cu-VRPSD, as the cumulative cost is b ·

∑
i∈[n] di · li, which matches the lower bound LB in

Lemma 4. The running time can reach O(n) since all TSP tours have the same performance.
However, it may be useless for a > 0. Hence, we consider λ > 0 in the following.

▶ Lemma 5. Unsplittable Cu-VRPSD with a = 0 can be solved in O(n) time.

3.1.1 The analysis

Note that ALG.1(λ, δ) carries L0 ∼ U [0, λ − δ) demand of normal goods initially. Next, we
analyze the expected cumulative cost of T conditioned on χ = d, i.e., E[Cu(T ) | χ = d].
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Algorithm 1 An algorithm for unsplittable Cu-VRPSD (ALG.1(λ, δ)).

Input: An instance of unsplittable Cu-VRPSD, and two parameters λ ∈ (0, 1] and δ ∈ [0, λ/2].
Output: A feasible solution T to unsplittable Cu-VRPSD.
1: Obtain an α-approximate TSP tour T ∗ using an α-approximation algorithm for metric TSP,

orient T ∗ in either clockwise or counterclockwise direction, and denote T ∗ = v0v1v2 . . . vnv0 by
renumbering the customers following the direction.

2: Load the vehicle with S0 := (L0, δ) units of goods, including L0 demand of normal goods and δ

demand of backup goods, where L0 ∼ U [0, λ − δ).
3: Initialize i := 1 and V ∗ := ∅.
4: while i ≤ n do
5: Go to customer vi;
6: if di ≤ Li−1 then
7: Deliver (di, 0) units of goods to vi, and update Si := (Li, δ), where Li := Li−1 +

⌈ di−Li−1
λ−δ

⌉ · (λ − δ) − di = Li−1 − di;
8: else if Li−1 < di ≤ Li−1 + δ then
9: Deliver (Li−1, di − Li−1) units of goods to vi, goes to the depot, load the vehicle

with (Li−1 + ⌈ di−Li−1
λ−δ

⌉ · (λ − δ) − di, di − Li−1) units of goods, and update Si := (Li, δ), where
Li := Li−1 + ⌈ di−Li−1

λ−δ
⌉ · (λ − δ) − di = Li−1 + (λ − δ) − di;

10: else if Li + δ < di ≤ 1 then
11: if δ < di ≤ λ then
12: Return to the depot, load the vehicle with (di − Li−1 − δ, 0) units of goods, go to

customer vi, and deliver (di − δ, δ) units of goods to vi.
13: Return to the depot, load the vehicle with (Li−1 + ⌈ di−Li−1

λ−δ
⌉ · (λ − δ) − di, δ) units

of goods, go to customer vi, and update Si := (Li, δ), where Li := Li−1 + ⌈ di−Li−1
λ−δ

⌉ · (λ − δ) − di;
▷ The vehicle returns to vi for the sake of analysis; however, it could directly proceed to vi+1.

14: else if λ < di ≤ 1 then
15: Record vi’s demand, and update V ∗ := V ∗ ∪{vi} and Si := (Li, δ), where Li := Li−1;
16: end if
17: end if
18: i := i + 1.
19: end while
20: Go to the depot.
21: for vi ∈ V ∗ do
22: Load the vehicle with di units of goods, go to customer vi, and deliver di units of goods to

vi;
23: Go to the depot.
24: end for

In ALG.1(λ, δ), the vehicle carries Si−1 = (Li−1, δ) units of goods when traveling along
the edge vi−1vi mod (n+1) of the TSP tour T ∗. For each i ∈ [n], we let hi := 1 if di ≤ λ, and
hi := 0 otherwise. We have the following lemma.

▶ Lemma 6. For any i ∈ [n+1], it holds Li−1 = L0 +⌈
∑i−1

j=1
hj ·dj−L0

λ−δ ⌉ ·(λ−δ)−
∑i−1

j=1 hj ·dj ,
and moreover, Li−1 ∼ U [0, λ − δ), conditioned on χ = d.

Proof. Since L0 ∼ U [0, λ − δ), the lemma holds for i = 1. Assume that the equality holds

for i = i′ ≥ 1, i.e., Li′−1 = L0 + ⌈
∑i′−1

j=1
hj ·dj−L0

λ−δ ⌉ · (λ − δ) −
∑i′−1

j=1 hj · dj . Note that we have
0 ≤ Li′−1 < λ − δ. Next, we consider Li′ .
Case 1: di′ ≤ λ. We have hi′ = 1. By Lines 7, 9, and 13, we have Li′ = Li′−1 +

⌈ di′ −Li′−1
λ−δ ⌉ · (λ − δ) − di′ . Hence, we have Li′ ≥ 0 and Li′ < λ − δ. Therefore, we

have L0 + ⌈
∑i′−1

j=1
hj ·dj−L0

λ−δ ⌉ · (λ − δ) −
∑i′

j=1 hj · dj + ⌈ di′ −Li′−1
λ−δ ⌉ · (λ − δ) ≥ 0 and
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L0+⌈
∑i′−1

j=1
hj ·dj−L0

λ−δ ⌉·(λ−δ)−
∑i′

j=1 hj ·dj +⌈ di′ −Li′−1
λ−δ ⌉·(λ−δ) < λ−δ. Alternatively, we

have ⌈
∑i′−1

j=1
hj ·dj−L0

λ−δ ⌉+⌈ di′ −Li′−1
λ−δ ⌉−1 <

∑i′

j=1
hj ·dj−L0

λ−δ ≤ ⌈
∑i′−1

j=1
hj ·dj−L0

λ−δ ⌉+⌈ di′ −Li′−1
λ−δ ⌉,

and hence ⌈
∑i′

j=1
hj ·dj−L0

λ−δ ⌉ = ⌈
∑i′−1

j=1
hj ·dj−L0

λ−δ ⌉ + ⌈ di′ −Li′−1
λ−δ ⌉. Therefore, we have

Li′ = Li′−1 + ⌈ di′ −Li′−1
λ−δ ⌉ · (λ − δ) − di′ = L0 + ⌈

∑i′−1
j=1

hj ·dj−L0

λ−δ ⌉ · (λ − δ) −
∑i′

j=1 hj · dj +

⌈ di′ −Li′−1
λ−δ ⌉ · (λ − δ) = L0 + ⌈

∑i′

j=1
hj ·dj−L0

λ−δ ⌉ · (λ − δ) −
∑i′

j=1 hj · dj .
Case 2: di > λ. We have hi = 0, and hence

∑i′−1
j=1 hj · dj =

∑i′

j=1 hj · dj . By Line 15, we

have Li′ = Li′−1 = L0 +⌈
∑i′−1

j=1
hj ·dj−L0

λ−δ ⌉ · (λ−δ)−
∑i′−1

j=1 hj ·dj = L0 +⌈
∑i′

j=1
hj ·dj−L0

λ−δ ⌉ ·
(λ − δ) −

∑i′

j=1 hj · dj .

In both cases, we have Li′ = L0 + ⌈
∑i′

j=1
hj ·dj−L0

λ−δ ⌉ · (λ − δ) −
∑i′

j=1 hj · dj . By induction,
the equality holds for any i ∈ [n + 1].

For any i ∈ [n + 1], we have Li−1 = L0 + ⌈
∑i−1

j=1
hj ·dj−L0

λ−δ ⌉ · (λ − δ) −
∑i−1

j=1 hj · dj . Assume
that (

∑i−1
j=1 hj · dj) mod (λ − δ) = L′, which is fixed conditioned on χ = d. We have Li−1 =

λ−δ+L0 −L′ ∈ [λ−δ−L′, λ−δ) when L0 ∈ [0, L′), and Li−1 = L0 −L′ ∈ [0, λ−δ−L′) when
L0 ∈ [L′, λ − δ). The relationship between L0 and Li−1 is bijective. Since L0 ∼ U [0, λ − δ),
we can also get Li−1 ∼ U [0, λ − δ), conditioned on χ = d. ◀

Lemma 6 also implies that 0 ≤ Li−1 < λ − δ for any i ∈ [n + 1].

▶ Lemma 7. In ALG.1(λ, δ), the expected cumulative cost conditioned on χ = d during the
vehicle’s travel from vi−1 to vi is a · w(vi−1, vi) + b · λ+δ

2 · w(vi−1, vi).

Proof. By Lemma 6, the vehicle carries (Li−1, δ) units of goods during the vehicle’s travel
from vi−1 to vi, where Li−1 ∼ U [0, λ − δ). So, E[Li−1 + δ | χ = d] =

∫ λ−δ

0
x+δ
λ−δ dx = λ+δ

2 .
Hence, the expected cumulative cost of the vehicle’s travel from vi−1 to vi conditioned on χ = d

is a ·w(vi−1, vi)+ b ·E[Li−1 + δ | χ = d] ·w(vi−1, vi) = a ·w(vi−1, vi)+ b · λ+δ
2 ·w(vi−1, vi). ◀

By Line 9 in ALG.1(λ, δ), if the vehicle visits vi carrying Si−1 = (Li−1, δ) units of goods,
where Li−1 < di ≤ Li−1 + δ, it will first satisfy vi, then proceed to the depot to reload some
units of goods, and finally return to the place of vi. We refer to this process as one additional
visit to v0.

By Lines 12 and 13 in ALG.1(λ, δ), if the vehicle visits vi with di ≤ λ carrying Si−1 =
(Li−1, δ) units of goods, where Li−1 + δ < di, it will first go to the depot to reload some
units of goods, then go to the place of vi to satisfy vi, proceed to the depot to reload some
units of goods, and finally return to the place of vi again. We refer to this process as two
additional visits to v0.

When the vehicle is about to serve vi with di ≤ λ, it may incur one additional visit or two
additional visits to v0, resulting in some cumulative cost. For each customer vi with di > λ,
By Line 22, the vehicle satisfies vi using a single tour, which will also be regarded as one
additional visit to v0 for the sake of presentation. Next, we analyze the expected cumulative
cost conditioned on χ = d due to the possible additional visit(s) for each customer vi.

▶ Lemma 8. Conditioned on χ = d, when serving each customer vi in ALG.1(λ, δ), the
expected cumulative cost of the vehicle due to the possible additional visit(s) to v0 is

a · 2di

λ−δ · li + b · (λ+δ)·di−d2
i

λ−δ · li if di ≤ δ;
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a · 4di−2δ
λ−δ · li + b · d2

i +(λ−δ)·di

λ−δ · li if δ < di ≤ λ − δ;
a · 2di+2λ−4δ

λ−δ · li + b · 2d2
i −(λ+δ)·di+λ2−δ2

λ−δ · li if λ − δ < di ≤ λ;
a · 2 · li + b · di · li if λ < di ≤ 1.

Proof. If di > λ, By Lines 15 and 22, the vehicle incurs one additional visit to v0, where the
vehicle carries di units of goods from v0 to vi and 0 units of goods from vi to v0. So, the
expected cumulative cost is a · 2 · li + b · di · li. Next, we consider di ≤ λ.

By Lemma 6, the vehicle carries (Li−1, δ) units of goods when traveling along vi−1vi in
ALG.1(λ, δ), and it holds that Li−1 ∼ U [0, λ − δ). Hence, the vehicle incurs one additional
visits to v0 with a probability of Pr[di − δ ≤ Li−1 = x < di], and incurs two additional visits
to v0 with a probability of Pr[0 ≤ Li−1 = x < di − δ]. We consider the following three cases.
Case 1: di ≤ δ. The vehicle incurs at most one additional visit to v0. If the vehicle incurs

one additional visit to v0, By Line 9, the vehicle carries (0, δ − (di − Li−1)) units of goods
from vi to v0, and (Li−1 +⌈ di−Li−1

λ−δ ⌉·(λ−δ)−di, δ) = (Li−1 +(λ−δ)−di, δ) units of goods
from v0 to vi. So, the cumulative cost is a·2·li+b·(δ−(di−Li−1)+Li−1+(λ−δ)−di+δ)·li =
a · 2 · li + b · (2Li−1 − 2di + λ + δ) · li. Since Li−1 ∼ U [0, λ − δ) and di ≤ δ ≤ λ − δ, the
expected cumulative cost is∫ min{di,λ−δ}

0

a · 2 · li + b · (2x − 2di + λ + δ) · li
λ − δ

dx

=
∫ di

0

a · 2 · li + b · (2x − 2di + λ + δ) · li
λ − δ

dx = a · 2di

λ − δ
· li + b · (λ + δ) · di − d2

i

λ − δ
· li.

Case 2: δ < di ≤ λ − δ. The vehicle incurs at most two additional visits to v0. Similarly, if
the vehicle incurs one additional visit to v0, By Line 9, the vehicle carries (0, δ−(di−Li−1))
units of goods from vi to v0, and (Li−1 +⌈ di−Li−1

λ−δ ⌉·(λ−δ)−di, δ) = (Li−1 +(λ−δ)−di, δ)
units of goods from v0 to vi, and the cumulative cost is a · 2 · li + b · (δ − (di − Li−1) +
Li−1 + (λ − δ) − di + δ) · li = a · 2 · li + b · (2Li−1 − 2di + λ + δ) · li. If the vehicle incurs two
additional visits to v0, By Lines 12 and 13, the vehicle carries (Li−1, δ) units of goods
from vi to v0, (di − δ, δ) units of goods from v0 to vi, (0, 0) units of goods from vi to v0,
and (Li−1 + ⌈ di−Li−1

λ−δ ⌉ · (λ − δ) − di, δ) = (Li−1 + (λ − δ) − di, δ) units of goods from v0 to
vi, and the cumulative cost is a · 4 · li + b · (Li−1 + δ + di + 0 + Li−1 + (λ − δ) − di + δ) · li =
a · 4 · li + b · (2Li−1 + λ + δ) · li. Hence, the expected cumulative cost is∫ min{di,λ−δ}

di−δ

a · 2 · li + b · (2x − 2di + λ + δ) · li

λ − δ
dx +

∫ di−δ

0

a · 4 · li + b · (2x + λ + δ) · li

λ − δ
dx

=
∫ di

di−δ

a · 2 · li + b · (2x − 2di + λ + δ) · li

λ − δ
dx +

∫ di−δ

0

a · 4 · li + b · (2x + λ + δ) · li

λ − δ
dx

= a · 2 · δ · li + b · λ · δ · li

λ − δ
+ a · 4 · (di − δ) · li + b · (d2

i + (λ − δ) · di − δ · λ) · li

λ − δ

= a · 4di − 2δ

λ − δ
· li + b · d2

i + (λ − δ) · di

λ − δ
· li.

Case 3: λ − δ < di ≤ λ. The vehicle incurs at most two additional visits to v0. If the
vehicle incurs one additional visit to v0, By Line 9, the vehicle carries (0, δ − (di − Li−1))
units of goods from vi to v0, and (Li−1+⌈ di−Li−1

λ−δ ⌉·(λ−δ)−di, δ) units of goods from v0 to
vi, and the cumulative cost is a·2·li+b·(δ−(di−Li−1)+Li−1+⌈ di−Li−1

λ−δ ⌉·(λ−δ)−di+δ)·li =
a · 2 · li + b · (2Li−1 − 2di + 2δ + ⌈ di−Li−1

λ−δ ⌉ · (λ − δ)) · li. If the vehicle incurs two additional
visits to v0, By Lines 12 and 13, the vehicle carries (Li−1, δ) units of goods from vi

to v0, (di − δ, δ) units of goods from v0 to vi, (0, 0) units of goods from vi to v0, and
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(Li−1 + ⌈ di−Li−1
λ−δ ⌉ · (λ − δ) − di, δ) units of goods from v0 to vi, and the cumulative

cost is a · 4 · li + b · (Li−1 + δ + di + 0 + Li−1 + ⌈ di−Li−1
λ−δ ⌉ · (λ − δ) − di + δ) · li =

a · 4 · li + b · (2Li−1 + 2δ + ⌈ di−Li−1
λ−δ ⌉ · (λ − δ)) · li. Hence, the expected cumulative cost is∫ min{di,λ−δ}

di−δ

a · 2 · li + b · (2x − 2di + 2δ + ⌈ di−x
λ−δ ⌉ · (λ − δ)) · li

λ − δ
dx

+
∫ di−δ

0

a · 4 · li + b · (2x + 2δ + ⌈ di−x
λ−δ ⌉ · (λ − δ)) · li

λ − δ
dx

=
∫ λ−δ

di−δ

a · 2 · li + b · (2x − 2di + 2δ + 1 · (λ − δ)) · li
λ − δ

dx

+
∫ di+δ−λ

0

a · 4 · li + b · (2x + 2δ + 2 · (λ − δ)) · li
λ − δ

dx

+
∫ di−δ

di+δ−λ

a · 4 · li + b · (2x + 2δ + 1 · (λ − δ)) · li
λ − δ

dx

= a · 2 · (λ − di) · li + b · (d2
i + (δ − 3λ) · di + (2λ2 − λ · δ))
λ − δ

+ a · 4 · (di + δ − λ) · li + b · (d2
i + 2δ · di + δ2 − λ2)

λ − δ

+ a · 4 · (λ − 2δ) · li + b · ((2λ − 4δ) · di + δ · λ − 2δ2)
λ − δ

= a · 2di + 2λ − 4δ

λ − δ
· li + b · 2d2

i − (λ + δ) · di + λ2 − δ2

λ − δ
· li,

where the first equality follows from that ⌈ di−x
λ−δ ⌉ = 1 if di + δ − λ ≤ x ≤ λ − δ and

⌈ di−x
λ−δ ⌉ = 2 if 0 ≤ x < di + δ − λ since in our setting δ ≤ λ − δ and in this case

λ − δ < di ≤ λ. ◀

▶ Theorem 9 (*). For Cu-VRPSD with any λ ∈ (0, 1] and δ ∈ [0, λ/2], conditioned on χ = d,
ALG.1(λ, δ) generates a solution T with an expected cumulative cost of

A + B

γ · max {σ, 1} + 0.5 · LB,

where A := γ ·(α ·σ +
∫ δ

0
x

λ−δ dF (x)+
∫ λ−δ

δ
2x−δ
λ−δ dF (x)+

∫ λ

λ−δ
x+λ−2δ

λ−δ dF (x)+
∫ 1

λ
1dF (x)), and

B := ( λ+δ
2 ·α·σ+

∫ δ

0
(λ+δ)x−x2

2(λ−δ) dF (x)+
∫ λ−δ

δ
x2+(λ−δ)x

2(λ−δ) dF (x)+
∫ λ

λ−δ
2x2−(λ+δ)·x+λ2−δ2

2(λ−δ) dF (x)+∫ 1
λ

x
2 dF (x)).

3.1.2 The application
Next, we use ALG.1(λ, δ) to deign approximation algorithms for a, b > 0, i.e., γ > 0.

When the vehicle traveling along each edge of the TSP tour in ALG.1(λ, δ), it always
carries at least δ units of goods in total, resulting in a large cumulative cost for the case
where γ is small. Hence, intuitively, if γ is small, we simply set δ = 0.

If we call ALG.1(λ, δ) with δ = 0 and λ being a unique value, in the worst case we may
have

∫ λ

0 x2dF (x) =
∫ λ

0 λ · xdF (x), i.e., almost all customers vi with li > 0 and di ≤ λ have a
demand of di = λ. Consequently, we may get

∫ θ·λ
0 xdF (x) = 0 for any fixed θ ∈ (0, 1), as

will be shown in Lemma 10, and then ALG.1(θ · λ, δ) with δ = 0 and some θ ∈ (0, 1) may
generate a better solution. This suggests the approximation algorithm for Cu-VRPSD shown
in Algorithm 2, denoted as APPROX.1(λ, θ, p).



J. Zhao and M. Xiao 59:11

Algorithm 2 An approximation algorithm for unsplittable Cu-VRPSD (AP P ROX.1(λ, θ, p)).

Input: An instance of unsplittable Cu-VRPSD, and three parameters λ ∈ (0, 1], θ ∈ (0, 1) and
p ∈ (0, 1).
Output: A feasible solution to Cu-VRPSD.
1: Call ALG.1(λ, 0) with a probability of p and call ALG.1(θ · λ, 0) with a probability of 1 − p.

Then, our goal is to find (λ, θ, p) minimizing the approximation ratio of
APPROX.1(λ, θ, p).

▶ Lemma 10. For any θ ∈ (0, 1), we have
∫ θ·λ

0 xdF (x) ≤ 1
λ−θ·λ (

∫ λ

0 λ ·xdF (x)−
∫ λ

0 x2dF (x)).

Proof. By (1) and (2), we have
∫ λ

0 x2dF (x) =
∫ θ·λ

0 x2dF (x) +
∫ λ

θ·λ x2dF (x) ≤ θ · λ ·∫ θ·λ
0 xdF (x) + λ ·

∫ λ

θ·λ xdF (x) = λ ·
∫ λ

0 xdF (x) − (λ − θ · λ) ·
∫ θ·λ

0 xdF (x). Hence, we have∫ θ·λ
0 xdF (x) ≤ 1

λ−θ·λ (
∫ λ

0 λ · xdF (x) −
∫ λ

0 x2dF (x)). ◀

▶ Theorem 11. For unsplittable Cu-VRPSD, we can find (λ, θ, p) such that the approximation
ratio of APPROX.1(λ, θ, p) is bounded by 10/3 for any γ ∈ (0, 0.375] and 3.456 for any
γ ∈ (0.375, 1.444].

Proof. If we call ALG.1(λ, δ) with δ = 0 and λ being a unique value, one may check that a
good choice for λ is min{1, 4γ/α}. For the sake of analysis, we directly set λ = min{1, 4γ/α}.

If
∫ λ

0 xdF (x) = 0, we can get
∫ λ

0 x2dF (x) ≤ λ ·
∫ λ

0 xdF (x) = 0. Hence, we define µ := 0

if
∫ λ

0 xdF (x) = 0, and µ :=
∫ λ

0
x2dF (x)∫ λ

0
xdF (x)

otherwise.

By Lemma 4 and Theorem 9, the approximation ratio of ALG.1(λ, 0) is at most

max
σ≥0

γ ·
(

α · σ +
∫ λ

0
2x
λ dF (x) +

∫ 1
λ

1dF (x)
)

+
(

λ
2 · α · σ +

∫ λ

0
x2+λ·x

2λ dF (x) +
∫ 1

λ
x
2 dF (x)

)
γ · max {σ, 1} + 0.5

= max
σ≥0

γ ·
(

α · σ + 2
λ ·
∫ λ

0 xdF (x) +
∫ 1

λ
1dF (x)

)
+
(

λ
2 · α · σ + 1+µ/λ

2 ·
∫ λ

0 xdF (x) + 1
2 ·
∫ 1

λ
xdF (x)

)
γ · max {σ, 1} + 0.5

≤ max
σ≥0

γ ·
(

α · σ + 2
λ ·
∫ λ

0 xdF (x) + 1
λ ·
∫ 1

λ
xdF (x)

)
+
(

λ
2 · α · σ + 1+µ/λ

2 ·
∫ λ

0 xdF (x) + 1
2 ·
∫ 1

λ
xdF (x)

)
γ · max {σ, 1} + 0.5

= max
σ≥0

γ ·
(

α · σ + 1
λ ·
∫ λ

0 xdF (x) + 1
λ

)
+
(

λ
2 · α · σ + µ/λ

2 ·
∫ λ

0 xdF (x) + 1
2

)
γ · max {σ, 1} + 0.5

≤ max
σ≥0

γ ·
(
α · σ + 2

λ

)
+
(

λ
2 · α · σ + µ/λ+1

2

)
γ · max {σ, 1} + 0.5 ,

where the first equality follows from the definition of µ, the second equality from
∫ 1

0 xdF (x) = 1
by (1), the first inequality from

∫ 1
λ

1dF (x) ≤ 1
λ ·
∫ 1

λ
xdF (x) by (2), and the second inequality

from
∫ λ

0 xdF (x) ≤
∫ 1

0 xdF (x) = 1.
Since

∫ λ

0 xdF (x) ≤
∫ 1

0 xdF (x) = 1, by Lemma 10, we have∫ θ·λ

0
xdF (x) ≤ 1

λ − θ · λ
·

(∫ λ

0
λ · xdF (x) −

∫ λ

0
x2dF (x)

)

= λ − µ

λ − θ · λ
·
∫ λ

0
xdF (x) ≤ λ − µ

λ − θ · λ
(3)

Similarly, the approximation ratio of ALG.1(θ · λ, 0) is at most
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max
σ≥0

γ ·
(

α · σ +
∫ θ·λ

0
2x
θ·λ dF (x) +

∫ 1
θ·λ 1dF (x)

)
+
(

θ·λ
2 · α · σ +

∫ θ·λ
0

x2+θ·λ·x
2·θ·λ dF (x) +

∫ 1
θ·λ

x
2 dF (x)

)
γ · max {σ, 1} + 0.5

≤ max
σ≥0

γ ·
(

α · σ + 2
θ·λ ·

∫ θ·λ
0 xdF (x) + 1

θ·λ ·
∫ 1

θ·λ xdF (x)
)

+
(

θ·λ
2 · α · σ +

∫ θ·λ
0 xdF (x) + 1

2 ·
∫ 1

θ·λ xdF (x)
)

γ · max {σ, 1} + 0.5

= max
σ≥0

γ ·
(

α · σ + 1
θ·λ ·

∫ θ·λ
0 xdF (x) + 1

θ·λ

)
+
(

θ·λ
2 · α · σ + 1

2 ·
∫ θ·λ

0 xdF (x) + 1
2

)
γ · max {σ, 1} + 0.5

≤ max
σ≥0

γ ·
(

α · σ + 1
θ·λ · λ−µ

λ−θ·λ + 1
θ·λ

)
+
(

θ·λ
2 · α · σ + 1

2 · λ−µ
λ−θ·λ + 1

2

)
γ · max {σ, 1} + 0.5

= max
σ≥0

γ ·
(

α · σ + 1
θ·λ · 2λ−µ−θ·λ

λ−θ·λ

)
+
(

θ·λ
2 · α · σ + 1

2 · 2λ−µ−θ·λ
λ−θ·λ

)
γ · max {σ, 1} + 0.5 ,

where the first inequality follows from (2), the second inequality from (3), and the first
equality from

∫ 1
0 xdF (x) = 1 by (1).

Recall that in APPROX.1(λ, θ, p) we call ALG.1(λ, 0) (resp., ALG.1(θ · λ, 0)) with a
probability of p (resp., 1 − p). Hence, to erase the items related to µ in the numerators of
the approximation ratios of ALG.1(λ, 0) and ALG.1(θ · λ, 0), we need to set p such that
p · 1

2 · 1
λ + (1 − p) · (γ · 1

θ·λ · −1
λ−θ·λ + 1

2 · −1
λ−θ·λ ) = 0. Then, we can get p =

1
2(λ−θ·λ) + γ

θ·λ(λ−θ·λ)
1

2λ + 1
2(λ−θ·λ) + γ

θ·λ(λ−θ·λ)
.

Clearly, we have p ∈ [0, 1]. Hence, the approximation ratio is maxσ≥0 R(σ), where

R(σ) :=
γ ·
(

α · σ + p · 2
λ + (1 − p) · 1

θ·λ · 2λ−θ·λ
λ−θ·λ

)
+
(

p·λ+(1−p)·θ·λ
2 · α · σ + p · 1

2 + (1 − p) · 1
2 · 2λ−θ·λ

λ−θ·λ

)
γ · max {σ, 1} + 0.5 .

It is easy to check maxσ≥0 R(σ) = maxσ≥1 R(σ). Moreover, since the function a′x+b′

c′x+d′ with
x ≥ 1 and a′, b′, c′, d′ > 0 attains the maximum value only if x = 1 or x = ∞, we know that
the approximation ratio is bounded by max{R(1), R(∞)}. Recall that λ = min{1, 4γ/α} and
p =

1
2(λ−θ·λ) + γ

θ·λ(λ−θ·λ)
1

2λ + 1
2(λ−θ·λ) + γ

θ·λ(λ−θ·λ)
. Assume α = 1.5, and then we have α/4 = 0.375. By calculation,

we have the following results.
When γ ∈ (0, 0.375], setting θ = 0.5, we have max{R(1), R(∞)} ≡ 10/3;
When γ ∈ [0.375, 1.444], setting θ = 0.6677, we have max{R(1), R(∞)} ≤ 3.456.

The result for γ ∈ (0, 0.375] may be surprising. We give the details of its proof.

▷ Claim 12. When γ ∈ (0, 0.375], setting θ = 0.5, we have max{R(1), R(∞)} ≡ 10/3.

Proof. Note that λ = min{1, 4γ/α} = 4γ/α and α = 1.5. Setting θ = 0.5, we can get
p =

1
2(λ−θ·λ) + γ

θ·λ(λ−θ·λ)
1

2λ + 1
2(λ−θ·λ) + γ

θ·λ(λ−θ·λ)
= 5

6 . Hence, under σ ≥ 1, we have

R(σ) = 3/2 · γ · σ + 5/8 + 3/8 + 11/6 · γ · σ + 2/3
γ · σ + 0.5 = 10

3 · γ · σ + 0.5
γ · σ + 0.5 = 10

3 .

Hence, we have max{R(1), R(∞)} ≡ 10/3. ◁

This finishes the proof. ◀

We mention that the approximation ratio of APPROX.1 may achieve α + 2 = 3.5 when
γ = ∞. Hence, it can not improve the current best approximation algorithm for VRPSD [16].
Additionally, a more careful design than APPROX.1 could yield improved approximations;
however, the optimal design remains unknown.
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3.2 The second algorithm
In this section, we will introduce our second algorithm, denoted as ALG.2(λ, δ), which can
be used to get a 3.456-approximation algorithm for Cu-VRPSD with any γ ∈ (1.444, ∞), and
an (α + 1.75 = 3.25)-approximation algorithm for VRPSD. Here, we may require λ ∈ (0, 1],
δ ∈ (0, λ/2], and 1/δ ∈ N.

ALG.2(λ, δ) is based on ALG.1(λ, δ). The vehicle will skip customers vi with di > λ

when it travels along the TSP tour in ALG.1(λ, δ), and then satisfy each of them using a
single tour at last. In ALG.2(λ, δ), the main difference is that the vehicle will skip customers
vi with di > δ, and at last use the better method from either satisfying each of them using a
single tour or solving the weighted (1 − δ)/δ-set cover problem as shown below.

Given a feasible set of unsatisfied customers S such that the total demand of all customers
in S is at most 1, we know that the number of customers |S| is at most (1 − δ)/δ since each
unsatisfied customer vi has a demand of di > δ. Then, we can optimally compute a tour
with a minimum cumulative cost Cu(S) for all customers in S in O(|S|!) time. There are at
most nO(1/δ) number of feasible sets since |S| ≤ (1 − δ)/δ. Therefore, to satisfy customers vi

with di > δ, we can get an instance of weighted (1 − δ)/δ-set cover by taking each unsatisfied
customer as an element, and each feasible set S of unsatisfied customers as a set with a
weight of Cu(S) in polynomial time. By calling a ρ-approximation algorithm for weighted
(1 − δ)/δ-set cover [15], we can get a set of tours satisfying all customers vi with di > δ.

According to the two methods, there are two set of tours T1 and T2, and their cumulative
cost can be computed in polynomial time. Hence, we route the vehicle according to the tours
in T ′, where T ′ := T1 if Cu(T1) ≤ Cu(T2) and T ′ := T2 otherwise.

The details of ALG.2(λ, δ) is shown in Algorithm 3.

▶ Theorem 13 (*). For Cu-VRPSD with any λ ∈ (0, 1], δ ∈ (0, λ/2], and 1/δ ∈ N,
conditioned on χ = d, ALG.2(λ, δ) outputs a solution T with an expected cumulative cost of

γ ·
(

α · σ +
∫ δ

0
x

λ−δ dF (x)
)

+
(

λ+δ
2 · α · σ +

∫ δ

0
(λ+δ)x−x2

2(λ−δ) dF (x)
)

γ · max {σ, 1} + 0.5 · LB + Cu(T ′),

where

Cu(T ′) ≤ min
{ ∫ 1

δ
2γ+x

2 dF (x)
γ · max {σ, 1} + 0.5 · LB, ρ · Cu(T ∗)

}
.

3.2.1 The applications
Our goal is to obtain a 3.456-approximation algorithm for Cu-VRPSD with any γ ∈ (1.444, ∞).
As a byproduct, we will also get a 3.25-approximation algorithm for VRPSD.

Since in APPROX.1(λ, θ, p) ALG.1(λ, δ) sets λ = 1 for any γ > 0.375, we also set λ = 1
in ALG.2(λ, δ) for the sake of analysis. Moreover, since weighted 2-set cover [15] can be
solved optimally in polynomial time, i.e., ρ = 1 when δ = 1/3, we set δ = 1/3 in ALG.2(λ, δ).

According to Theorems 9 and 13, we will show that ALG.2(λ, δ) can be used to make a
trade-off with ALG.1(λ, δ). We use the approximation algorithm for Cu-VRPSD shown in
Algorithm 4, denoted as APPROX.2.

▶ Theorem 14 (*). For unsplittable Cu-VRPSD, APPROX.2 is a randomized 3.456-
approximation algorithm for any γ ∈ (1.444, ∞). Moreover, for unsplittable VRPSD,
APPROX.2 is a randomized 3.25-approximation algorithm.

Combining the results in Lemma 5, Theorems 11 and 14, we get the following result.
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Algorithm 3 An algorithm for unsplittable Cu-VRPSD (ALG.2(λ, δ)).

Input: An instance of unsplittable Cu-VRPSD, and two parameters λ ∈ (0, 1], δ ∈ (0, λ/2], and
1/δ ∈ N.
Output: A feasible solution T to unsplittable Cu-VRPSD.
1: Obtain an α-approximate TSP tour T ∗ = v0v1v2 . . . vnv0, as Step 1 in ALG.1(λ, δ).
2: Load the vehicle with S0 := (L0, δ) units of goods, including L0 demand of normal goods and δ

demand of backup goods, where L0 ∼ U [0, λ − δ).
3: Initialize i := 1 and V ∗ := ∅.
4: while i ≤ n do
5: Go to customer vi;
6: if δ < di ≤ 1 then
7: Record vi’s demand, and let V ∗ := V ∗ ∪ {vi} and Si := (Li, δ), where Li := Li−1;
8: else if di ≤ Li−1 then
9: Deliver (di, 0) units of goods to vi, and update Si := (Li, δ), where Li := Li−1+⌈ di−Li−1

λ−δ
⌉·

(λ − δ) − di = Li−1 − di;
10: else ▷ Since di ≤ δ, we must have Li−1 < di ≤ Li−1 + δ

11: Deliver (Li−1, di − Li−1) units of goods to vi, goes to the depot, load the vehicle with
(Li−1 + ⌈ di−Li−1

λ−δ
⌉ · (λ − δ) − di, di − Li−1) units of goods, and update Si := (Li, δ), where

Li := Li−1 + ⌈ di−Li−1
λ−δ

⌉ · (λ − δ) − di = Li−1 + (λ − δ) − di;
12: end if
13: i := i + 1.
14: end while
15: Go to the depot.
16: Consider a set of tours T1 by obtaining a single tour as in Step 22 for each vi ∈ V ∗.
17: Consider a set of tours T2 by calling a ρ-approximation algorithm for weighted 1−δ

δ
-set cover [15],

where the instance is constructed as follows:
1. Obtain all possible feasible sets S of customers in V ∗ such that the total demand of all

customers in S is at most 1;
2. For each feasible set S, compute a tour with a minimum cumulative cost Cu(S) for all

customers in S;
3. Get an instance of weighted 1−δ

δ
-set cover by taking each customer in V ∗ as an element, and

each feasible set S as a weighted set with a weight of Cu(S).
18: Let T ′ := T1 if Cu(T1) ≤ Cu(T2) and T ′ := T2 otherwise.
19: Route the vehicle according to the tours in T ′.

Algorithm 4 An approximation algorithm for unsplittable Cu-VRPSD (AP P ROX.2).

Input: An instance of unsplittable Cu-VRPSD.
Output: A feasible solution to Cu-VRPSD.
1: Call ALG.1(1, 1/3) with a probability of 0.5 and call ALG.2(1, 1/3) with a probability of 0.5.

▶ Corollary 15. There is a randomized 3.456-approximation for unsplittable Cu-VRPSD.

▶ Remark 16. We believe that our analysis is not tight. One one hand, it would be interesting
to sharpen our analysis to get a better result; on the other hand, we may use ALG.1 and
ALG.2 to design better approximation algorithms, e.g., with a probability of pγ to run
ALG.1, and of (1 − pγ) to run ALG.2, where pγ is a function related to γ. Moreover, when
running ALG.1 or ALG.2, the parameters λ and δ may follow a distribution related to γ.

4 Two Algorithms for Cu-VRP

In this section, we give a 3.194-approximation algorithm for Cu-VRP.
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4.1 The first algorithm
Based on the well-known randomized rounding method for weighted k-set cover, we propose
a 3.194-approximation algorithm, denoted as ALG.3(λ, δ), for Cu-VRP with any γ > γ0,
where γ0 > 0 is any fixed constant.

Recall that ALG.2(λ, δ) first satisfies customers vi with di ≤ δ by traveling along the TSP
tour and then customers vi with di > δ by possibly solving weighted 1−δ

δ -set cover. However,
it may only be used for δ = 1/3 since the best-known approximation ratio of weighted 3-set
cover is about 1.79 [15], which is already too large.

In ALG.3(λ, δ), since the demands of customers are known in advance for Cu-VRP, we
first try to satisfy customers in V ∗ := {vi ∈ V ′ | di > δ} by solving weighted 1−δ

δ -set cover
using the randomized rounding method. Due to the randomness, some customers in V ∗ may
still be unsatisfied. Then, we satisfy all remaining customers by calling ALG.1(λ, δ). This
method was used to get an (α + 1 + ln 2 + ε)-approximation algorithm with any constant
ε > 0 for unsplittable VRP [8]. The details are shown as follows.

To get an instance of weighted 1−δ
δ -set cover, we use the method in Step 17 of ALG.2(λ, δ).

Now, we have obtained a set of feasible sets S, and each S ∈ S has a weight of Cu(S). Then,
we get the linear relaxation of weighted set cover as shown in (4), and it can be solved in
nO(1/δ) since |S| = nO(1/δ). In the randomized rounding method, we select each S ∈ S with a
probability of min{ln 2 · xS , 1}. Denote the set of selected sets by S ′, which corresponds to a
set of tours T ′ satisfying a subset of customers V ∗∗ ⊆ V ∗. Note that Cu(T ′) ≤ Cu(S ′) since
we may perform shortcutting to ensure that each customer appears in only one tour and it
does not increase the cumulative cost by the triangle inequality. At last, we call ALG.1(λ, δ)
to obtain a set of tours T ′′ to satisfy the left customers in V ′ \ V ∗∗. Due to the stochastic
demands in Cu-VRPSD the load of the vehicle may be greater than the delivered units of
goods in each tour of T ′′. In Cu-VRP, we can optimize the tours in T ′′ so that the load
equals the delivered units of goods. Moreover, for each tour T = v0vi1 . . . viT

v0 ∈ T ′′, we
consider another tour with the opposite direction, i.e., v0viT

. . . vi1v0, and choose the better
one into our final solution.

minimize
∑
S∈S

Cu(S) · xS

subject to
∑

S∈S:v∈S

xS ≥ 1, ∀ v ∈ V ∗, (4)

xS ≥ 0, ∀ S ∈ S.

The details of ALG.3(λ, δ) is shown in Algorithm 5.

▶ Theorem 17 (*). For Cu-VRP with any λ ∈ (0, 1], δ ∈ (0, λ/2], and 1/δ ∈ N, ALG.3(λ, δ)
generates a solution T with an expected cumulative cost of

ln 2 · Cu(T ∗) +
γ ·
(

α · σ + 1
λ−δ

)
+ λ

2 ·
(

α · σ + 1
λ−δ

)
γ · max {σ, 1} + 0.5 · LB.

▶ Theorem 18 (*). For unsplittable Cu-VRP with any constants γ0 > 0 and ε > 0, there is
a randomized (α + 1 + ln 2 + ε < 3.194)-approximation algorithm for γ > γ0.

4.2 The second algorithm
In this section, we propose a 3.163-approximation algorithm for Cu-VRP with γ ∈ (0, 0.428],
denoted as ALG.4(λ). Combing with Lemma 5 and Theorem 18, ALG.4(λ) implies a
3.194-approximation algorithm for Cu-VRP.
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Algorithm 5 An algorithm for unsplittable Cu-VRPSD (ALG.3(λ, δ)).

Input: An instance of unsplittable Cu-VRPSD, and two parameters λ ∈ (0, 1], δ ∈ (0, λ/2], and
1/δ ∈ N.
Output: A feasible solution T to unsplittable Cu-VRPSD.
1: Get an instance (V ∗, S) of weighted 1−δ

δ
-set cover using Step 17 in ALG.2(λ, δ).

2: Solve the linear program of weighted set cover in (4).
3: Select each S ∈ S with a probability of min{ln 2 · xS , 1}. Denote the set of selected sets by S ′,

corresponding tours by T ′, and satisfied customers by V ∗∗.
4: Call ALG.1(λ, δ) to obtain a set of tours T ′′ to satisfy the customers in V ′ \ V ∗∗.
5: For each tour in T ′′, ensure the load of the vehicle is the delivered units of goods, obtain

another tour with the opposite direction, and choose the better one into T ′′′.
6: Return T ′ ∪ T ′′′.

Algorithm 6 An algorithm for unsplittable Cu-VRPSD (ALG.4(λ)).

Input: An instance of unsplittable Cu-VRPSD, and two parameters λ ∈ (0, 1], δ ∈ (0, λ/2], and
1/δ ∈ N.
Output: A feasible solution T to unsplittable Cu-VRPSD.
1: Call ALG.1(λ, 0) to obtain a set of tours T ′ to satisfy all customers.
2: For each tour in T ′, ensure the load of the vehicle is the delivered units of goods, obtain

another tour with the opposite direction, and choose the better one into T .
3: Return T .

Algorithm 7 An approximation algorithm for unsplittable Cu-VRPSD (AP P ROX.4(λ, θ, p)).

Input: An instance of unsplittable Cu-VRP, and three parameters λ ∈ (0, 1], θ ∈ (0, 1) and
p ∈ (0, 1).
Output: A feasible solution to Cu-VRPSD.
1: Call ALG.4(λ) with a probability of p and call ALG.4(θ · λ) with a probability of 1 − p.

In ALG.4(λ), we call ALG.1(λ, 0) to obtain a set of tours T ′ to satisfy all customers,
and then we optimize each tour in T ′ as Step 5 in ALG.3.

▶ Theorem 19 (*). For Cu-VRP with any λ ∈ (0, 1], ALG.4(λ) generates a solution T with
an expected cumulative cost of

γ ·
(

α · σ +
∫ λ

0
2x
λ dF (x) +

∫ 1
λ

1dF (x)
)

+
(

λ
2 · α · σ +

∫ λ

0
x2/2+λ·x

2λ dF (x) +
∫ 1

λ
x
2 dF (x)

)
γ · max {σ, 1} + 0.5 ·LB.

Similarly, we use ALG.4(λ) to design an algorithm for Cu-VRP shown in Algorithm 7.

▶ Theorem 20 (*). For unsplittable Cu-VRP, we can find (λ, θ, p) such that the approximation
ratio of APPROX.4(λ, θ, p) is bounded by 3.163 for any γ ∈ (0, 0.428].

5 Conclusion

By using the idea of skipping customers with large demands during the TSP tour and
satisfying them later, combined with careful analysis, we can improve the approximation
ratio for Cu-VRPSD, VRPSD, and Cu-VRP. Whether this idea is also useful in designing
practical algorithms for these problems is worthy of further study.
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