
Dynamic Parameterized Problems on Unit Disk
Graphs
Shinwoo An #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Kyungjin Cho #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Leo Jang #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Byeonghyeon Jung #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Yudam Lee #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Eunjin Oh #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Donghun Shin #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Hyeonjun Shin #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Chanho Song #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Abstract
In this paper, we study fundamental parameterized problems such as k-Path/Cycle, Vertex
Cover, Triangle Hitting Set, Feedback Vertex Set, and Cycle Packing for dynamic unit
disk graphs. Given a vertex set V changing dynamically under vertex insertions and deletions, our
goal is to maintain data structures so that the aforementioned parameterized problems on the unit
disk graph induced by V can be solved efficiently. Although dynamic parameterized problems on
general graphs have been studied extensively, no previous work focuses on unit disk graphs. In this
paper, we present the first data structures for fundamental parameterized problems on dynamic unit
disk graphs. More specifically, our data structure supports 2O(

√
k) update time and O(k) query time

for k-Path/Cycle. For the other problems, our data structures support O(log n) update time and
2O(

√
k) query time, where k denotes the output size.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Unit disk graphs, dynamic parameterized algorithms, kernelization

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.6

Related Version Full Version: https://arxiv.org/abs/2409.13403

Funding This work was partly supported by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.RS-2024-00440239,
Sublinear Scalable Algorithms for Large-Scale Data Analysis) and the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT) (No.RS-2024-00358505).
Kyungjin Cho: Supported by the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (No.RS-2024-00410835).

© Shinwoo An, Kyungjin Cho, Leo Jang, Byeonghyeon Jung, Yudam Lee, Eunjin Oh, Donghun Shin,
Hyeonjun Shin, and Chanho Song;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 6; pp. 6:1–6:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shinwooan@postech.ac.kr
mailto:kyungjincho@postech.ac.kr
https://orcid.org/0000-0003-2223-4273
mailto:leo630@postech.ac.kr
mailto:bhjung@postech.ac.kr
mailto:leeyudam@postech.ac.kr
mailto:eunjin.oh@postech.ac.kr
https://orcid.org/0000-0003-0798-2580
mailto:sdh728@postech.ac.kr
mailto:hyeonjun.shin@postech.ac.kr
https://orcid.org/0009-0008-4701-7295
mailto:sch0622@postech.ac.kr
https://orcid.org/0009-0001-3522-3517
https://doi.org/10.4230/LIPIcs.ISAAC.2024.6
https://arxiv.org/abs/2409.13403
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Dynamic Parameterized Problems on Unit Disk Graphs

1 Introduction

For a set V of n points in the plane, the unit disk graph of V is the intersection graph of the
unit disks of diameter one centered at the points in V , denoted by UD(V). Unit disk graphs
serve as a powerful model for real-world applications such as broadcast networks [28, 29],
biological networks [23] and facility location [34]. Due to various applications, unit disk
graphs have gained significant attention in computational geometry. Since most of the
fundamental NP-hard problems remain NP-hard even in unit disk graphs, the study of NP-
hard problems on unit disk graphs focuses on approximation algorithms and parameterized
algorithms [4, 6, 17, 21, 37]. From the perspective of parameterized algorithms, the main
focus is to design subexponential-time parameterized algorithms for various problems on unit
disk graphs. While such algorithms do not exist for general graphs unless ETH fails, lots of
problems admit subexponential-time parameterized algorithms for unit disk graphs.

In this paper, we study fundamental graph problems on dynamic unit disk graphs. Given
a vertex set V that changes under vertex insertions and deletions, our goal is to maintain
data structures so that specific problems for UD(V) can be solved efficiently. This dynamic
setting has attracted considerable interest. For instance, the connectivity problem [11, 12],
the coloring problem [27], the independent set problem [9, 19], the set cover problem [1], and
the vertex cover problem [8] have been studied for dynamic geometric intersection graphs.
Here, all problems, except for the connectivity problem, are NP-hard. All previous work on
dynamic intersection graphs for those problems study approximation algorithms. However,
like the static setting, parameterized algorithms are also a successful approach for addressing
NP-hardness in the dynamic setting. There has been significant research on parameterized
algorithms for dynamic general graphs [2, 13, 18, 26]. Surprisingly, however, there have been
no studies on parameterized algorithms for dynamic unit disk graphs.

In this paper, we initiate the study of fundamental parameterized problems on dynamic
unit disk graphs. In particular, we study the following five fundamental problems in the
dynamic setting. All these problems are NP-hard even for unit disk graphs [14, 25].

k-Path/Cycle asks to find a path/cycle of G with exactly k vertices,
k-Vertex Cover asks to find a set S of k vertices s.t. G \ S has no edge,
k-Triangle Hitting Set asks to find a set S of k vertices s.t. G \ S has no triangle,
k-Feedback Vertex Set asks to find a set S of k vertices s.t. G \ S has no cycle, and
k-Cycle Packing asks to find k vertex-disjoint cycles of G.

In the course of vertex updates, we are asked to solve those problems as a query. Except for
k-Path/cycle, a query is given with an integer k. On the other hand, our data structure
for k-Path/Cycle uses k in the construction time.

Table 1 Summary of our results. The results marked as * support amortized update times, and
the others are worst-case update/query times. Except for k-Path/Cycle, no data structure requires
k in the construction time; The parameter k is given as a query. Additionally, the data structure for
k-Path/Cycle can answer a decision query in constant time.

Update time Query time Space Complexity
k-Path/Cycle* 2O(

√
k) O(k) O(kn)

k-Vertex Cover* O(1) 2O(
√

k) O(n)
k-Triangle Hitting Set* O(1) 2O(

√
k) O(n)

k-Feedback Vertex Set O(log n) 2O(
√

k) O(n)
k-Cycle Packing O(log n) 2O(

√
k) O(n)

S. An, K. Cho, L. Jang, B. Jung, Y. Lee, E. Oh, D. Shin, H. Shin, and C. Song 6:3

Our results. Our results are summarized in Table 1. Note that these are almost ETH-
tight. To see this, recall that no problem studied in this paper admits a 2o(

√
k)nO(1)-time

algorithm in the static setting unless ETH fails [16, 20, 22]. Thus for any data structure
for these problems on dynamic unit disk graphs with update time Tu(n, k) and query time
Tq(n, k), we must have n · Tu(n, k) + Tq(n, k) = 2Ω(

√
k)nO(1) unless ETH fails. In particular,

n ·Tu(n, k)+Tq(n, k) is the time for solving the static problem using dynamic data structures;
we insert the vertices one by one and then answer the query. In our case, this static running
time is 2O(

√
k)n for k-Path/Cycle, 2O(

√
k) + O(n) for k-Vertex Cover and k-Triangle

Hitting Set, and 2O(
√

k)+O(n log n) for k-Feedback Vertex Set and k-Cycle Packing.
Interestingly, as by-products, we slightly improve the running times of the best-known static
algorithms in [4, 6] for k-Feedback Vertex Set and k-Cycle Packing on unit disk
graphs from 2O(

√
k)nO(1) to 2O(

√
k) + O(n log n).1

A main tool used in this paper is kernelization, a technique compressing an instance
of a problem into a small-sized equivalent instance called a kernel. Kernelization is one of
the fundamental techniques used in the field of parameterized algorithms [15]. We use the
same framework for all problems, except for k-Path/Cycle: For each update, we maintain
kernels for the current unit disk graph. Given a query, it is sufficient to solve the problem
on the kernel instead of the entire unit disk graph. Precisely, if the kernel size exceeds a
certain bound, we immediately return a correct answer. Otherwise, the kernel size is small,
say O(k), and thus we can answer the query by applying the static algorithms on the kernel.

Related work. While dynamic parameterized problems on unit disks have not been studied
before, static parameterized algorithms have been widely studied for unit disk graphs. For
instance, Fomin et al. [20] presented 2O(

√
k log k)nO(1)-time algorithms for k-Path/Cycle, k-

Vertex Cover, k-Feedback Vertex Set, and k-Cycle Packing problems on static unit
disk graphs. Subsequently, the running times were improved to 2O(

√
k)(n+m) [4, 6, 15, 16, 21],

which are all ETH-tight. Additionally, for disk graphs, subexponential time FPT algorithms
were studied for k-Vertex Cover and k-Feedback Vertex Set [3, 30].

On the other hand, there are several previous works on dynamic parameterized problems
on general graphs. Alman et al. [2] presented a dynamic algorithm for k-Vertex Cover
supporting 1.2738O(k) query time and O(1) amortized update time. They also presented
a dynamic algorithm for k-Feedback Vertex Set supporting O(k) query time and
kO(k) logO(1) n amortized update time. Korhonen et al. [26] presented a dynamic algorithm for
CMSO testing, parameterized by treewidth. Chen et al. [13] and Dvořák et al. [18] presented
a dynamic algorithm for k-Path/Cycle and for MSO testing, respectively, parameterized
by treedepth. These algorithms admit edge insertions and deletions, and Dvořák et al. [18]
also admits isolated vertex insertions and deletions, while we deal with vertex insertions and
deletions.

An alternative way for dealing with NP-hardness is using approximation. There are
numerous works on approximation algorithms for dynamic intersection graphs. For disks, one
can maintain (1 + ε)-approximation of Vertex Cover [8, 24]. Bhore et al. [9] presented a
constant-factor approximation algorithm for the maximum independent set problem for disks.
They generalized their result on comparable-sized fat object graphs with the approximation
factor depending on a given dimension and fatness parameter. For intervals and unit-squares,
Agarwal et al. [1] presented a constant-approximation algorithm for the set cover problem
and the hitting set problem.

1 Moreover, they can be improved further to take 2O(
√

k) + O(n) time with a slight modification.

ISAAC 2024

6:4 Dynamic Parameterized Problems on Unit Disk Graphs

2 Preliminaries

Throughout this paper, we let V be a set of points in the plane, and we let UD(V) be the
unit disk graph of V . We interchangeably denote v ∈ V as a point or as a vertex of UD(V) if
it is clear from the context. For an undirected graph G, we often use V (G) and E(G) to
denote the vertex set of G and the edge set of G, respectively. For convenience, we denote
the subgraph of G induced by V (G) \ U by G \ U for a subset U of V (G).

Grid. A grid ⊞ is a partition of the plane into squares (called grid cells) of diameter one.
Notice that any two points of V contained in the same grid cell of ⊞ are adjacent in G. Each
grid cell □ has its own id: (⌊a/

√
2⌋, ⌊b/

√
2⌋), where a and b are the x- and y-coordinates

of a point in □. For any two grid cells □,□′ with id (x, x′) and (y, y′), respectively, we let
d(□,□′) = max(|x−x′|, |y −y′|). For an integer ℓ > 0, a grid cell □ is called an ℓ-neighboring
cell of a grid cell □′ if d(□,□′) ≤ ℓ. See Figure 1(a) in the full version. We slightly abuse
the notation so that □ itself is an ℓ-neighboring cell of □ for all ℓ > 0. For a point v in the
plane, we use □v to denote the cell of ⊞ containing v. If it lies on the boundary of a cell, □v

denotes an arbitrary cell containing v on its boundary.
We do not construct the grid ⊞ explicitly. Instead, we maintain the grid cells containing

vertices of V only. We associate each id with a linked list that stores all the vertices of V

contained in the grid cell. Once we have the id of □, we fetch the linked list associated with
□ in amortized constant time or O(log n) worst-case time, where n is the number of points of
V . More specifically, this can be implemented in O(1) amortized time using dynamic perfect
hashing (once true randomness is available) and in O(log n) worst-case time using 1D range
search tree along the lexicographic ordering of the ids. Also, each update of the linked list
can be done in the same time bound.

In this paper, we access grid cells only for updating data structures, and then we store
the necessary grid cells explicitly in our data structures. Consequently, the update times of
our data structures are sometimes analyzed using amortized analysis while the query times
are always analyzed using worst-case analysis.

Link-cut tree. When we update data structures, we use link-cut trees. A link-cut tree is
a dynamic data structure that maintains a collection of vertex-disjoint rooted trees and
supports two kinds of operations: a link operation that combines two trees into one by adding
an edge, and a cut operation that divides one tree into two by deleting an edge [33]. See
Figure 1(b–c) in the full version. Each operation requires O(log n) time. More precisely, the
data structure supports the following query and update operations in O(log n) time.

Link(u, v): If v is the root of a tree and u is a vertex in another tree, link the trees
containing v and u by adding the edge between them, making u the parent of v.
Cut(v): If v is not a root, this removes the edge between v and its parent, so that the
tree containing v is divided two trees containing either v or not.
Evert(v): This turns the tree containing v “inside out” by making v the root of the tree.
Connected(u, v): This checks if u and v are contained in the same tree.
LCA(u, v): This returns the lowest common ancestor of u and v assuming that u and v

are contained in the same tree.
Root(u): This returns the root of the tree containing u.

All missing proofs and details can be found in the full version. In particular, the data
structures and their update/query algorithms for k-Path/Cycle and Vertex Cover can
be found in the full version.

S. An, K. Cho, L. Jang, B. Jung, Y. Lee, E. Oh, D. Shin, H. Shin, and C. Song 6:5

3 Dynamic Triangle Hitting Set Problem

In this section, we describe a fully dynamic data structure on the unit disk graph of a vertex
set V dynamically changing under vertex insertions and deletions that can answer triangle
hitting set queries efficiently. Each query is given with a positive integer k and asks to return
a triangle hitting set of UD(V) of size at most k. This data structure will also be used for
Feedback Vertex Set and Cycle Packing in Sections 4 and 5.

Our strategy is to maintain a kernel of (UD(V), k). More specifically, consider the set
Vtri of vertices contained in triangles of UD(V). Then (UD(Vtri), k) is a yes-instance if and
only if (UD(V), k) is a yes-instance, i.e., it is a kernel of (UD(V), k). We can show that the
size of Vtri is O(k) if (UD(V), k) is a yes-instance. Therefore, it is sufficient to maintain Vtri
for answering queries. However, it seems unclear if Vtri can be updated in O(1) time, which
is the desired update time. In particular, imagine that a vertex v is inserted to V , and we
are to determine if v is contained in a triangle of UD(V). In the case that two neighboring
cells □1 and □2 of □v contain ω(k) vertices of V , we need to determine if there are vertices
x1 ∈ □1 and x2 ∈ □2 such that x1, x2 and v form a triangle of UD(V).

To overcome this issue, we use a superset of Vtri as a kernel. Notice that as long as a
subset of V contains Vtri, it is a kernel of (UD(V), k).

Kernel: ⊞core and Vcore. The core grid cluster, denoted by ⊞core, is defined as the union of
the 5-neighboring cells of the grid cells containing a vertex of Vtri and the 10-neighboring cells
of the grid cells containing at least three vertices of V . Then let Vcore be the set of vertices of
V contained in ⊞core. See Figure 3 in the full version. Note that the degree of every vertex
of V \ Vcore in UD(V) is O(1). We will use this property for designing the update algorithm.

▶ Lemma 1. The size of Vcore is O(k) if UD(V) has at most k vertex-disjoint triangles.

▶ Observation 2. Given a vertex v ∈ V \ Vcore, we can compute its neighbors in UD(V) in
O(1) time.

Query algorithm. Using Lemma 1, we only consider the case that the size of Vcore is O(k).
Otherwise, we return no. Then, we can compute the minimum triangle hitting set of UD(V)
in 2O(

√
k) time using the standard dynamic programming algorithm observed in [16]. See the

full version for details.

Update algorithm. Suppose that we already have Vcore for the current vertex set V . Imagine
that we aim to insert a vertex v to V . Then we need to update Vcore. For this, it suffices
to determine if □ must be contained in ⊞core for every 10-neighboring cell □ of □v. By
Observation 3, this takes O(1) time. The deletion of a vertex v from V can be handled
analogously in O(1) time.

▶ Observation 3. We can check if a grid cell □ is contained in ⊞core in O(1) time.

▶ Theorem 4. There is an O(n)-sized fully dynamic data structure on the unit disk graph
induced by a vertex set V supporting O(1) update time that allows us to compute a triangle
hitting set of size at most k in 2O(

√
k) time.

4 Dynamic Feedback Vertex Set Problem

In this section, we describe a fully dynamic data structure on the unit disk graph of a vertex
set V dynamically changing under vertex insertions and deletions that can answer feedback
vertex set queries efficiently. Each query is given with a positive integer k and asks to return

ISAAC 2024

6:6 Dynamic Parameterized Problems on Unit Disk Graphs

(a) (b) (c)

u

v

u′

v′

T

Figure 1 (a) Illustration of UD(V). The vertices of UD(V) in Vcore, the boundary vertices, and
the non-boundary vertices in M are marked by the black, red, and blue vertices, respectively. The
removed vertices and the contracted vertices in the construction of M are marked by cross vertices
and boxes, respectively. (b) Illustration of M . (c) In the construction of M , we are left with the
induced path between u and v, which will be contracted to the red edge in M . The two end edges
of the path compose the bridge set of T .

a feedback vertex set of UD(V) of size at most k. As a data structure, we use the core grid
cluster ⊞core introduced in Section 3. In addition to this, we design a new data structure,
which will also be used for Cycle Packing in Section 5.

4.1 Data Structure
Note that a cycle of UD(V) might contain a vertex lying outside of ⊞core. Thus we need to
consider the part of UD(V) lying outside of ⊞core. Since the complexity of UD(V \ Vcore) can
be Θ(n) in the worst case, we cannot afford to look at all such vertices to handle a query.
Instead, we maintain a minor M of UD(V \ Vcore) of complexity O(k), which will be called
the skeleton of UD(V \ Vcore), such that the graph obtained by gluing UD(Vcore) and M has a
feedback vertex set of size k if and only if UD(V) has a feedback vertex set of size k. Then it
suffices to look at Vcore and M to handle a query. Given an update of V , we need to update
both Vcore and M . Since M is a minor of UD(V \ Vcore), some vertices of UD(V \ Vcore) do
not appear in M . To handle the update of Vcore and M efficiently, we construct an auxiliary
data structure T , which maintains the vertices of UD(V) not appearing in M efficiently.

Skeleton M of UD(V \ Vcore). Given a query, we will glue M and UD(Vcore) together.
For this purpose, we need to keep all vertices of V \ Vcore adjacent to a vertex of Vcore in
the construction of M . We call such a vertex a boundary vertex. We let M be the graph
obtained from UD(V \ Vcore) by removing non-boundary vertices with the degree at most one
in M repeatedly, and then by contracting every maximal induced path consisting of only
non-boundary vertices into a single edge. Note that the resulting graph M is a minor of
UD(V \ Vcore). Each vertex of M corresponds to a vertex of UD(V \ Vcore) of degree at least
three or a boundary vertex. Furthermore, each edge of M corresponds to an edge of UD(V)
or an induced path of UD(V \ Vcore). See Figure 1(a–b). Note that M is planar since every
triangle-free disk graph is planar [10].

▶ Lemma 5. If (UD(V), k) is a yes-instance of Feedback Vertex Set, |V (M)| = O(k).

Contracted forest T concerning M . We will see that it suffices to maintain Vcore and M

for the query algorithm. However, to update M efficiently, we need a data structure for the
subgraph of UD(V) induced by V \ (Vcore ∪ V (M)). Note that the subgraph is a forest. We

S. An, K. Cho, L. Jang, B. Jung, Y. Lee, E. Oh, D. Shin, H. Shin, and C. Song 6:7

maintain the trees of this forest using the link-cut tree data structure. Let T denote the
link-cut tree data structure. If it is clear from the context, we sometimes use T to denote the
forest itself. Along with the link-cut trees, we associate each tree T of T with a bridge set.
An edge of UD(V) incident to both V (M) and V \ (Vcore ∪ V (M)) is called a bridge. Then
the bridge set of T is the set of bridges incident to T . See Figure 1(c).

▶ Observation 6. Each tree of T is incident to at most two bridges.

4.2 Query Algorithm
In this subsection, we show how to compute a feedback vertex set of size k of UD(V) in
2O(

√
k) time using Vcore and M only. Let G be the graph obtained by gluing UD(Vcore) and

M . More precisely, the vertex set of G is the union of Vcore and V (M). There is an edge
uv in G if and only if uv is either an edge of UD(Vcore), an edge of M , or an edge of UD(V)
between u ∈ Vcore and v ∈ V (M). Notice that v is a boundary vertex of M in the third case.

We use the algorithm proposed by An and Oh [4]. The algorithm of [4] computes a
feedback vertex set of size k of a unit disk graph with n vertices in 2O(

√
k)nO(1) time. In our

case, G is not necessarily a unit disk graph. Thus we need to modify the algorithm of [4]
slightly. The details of our algorithm can be found in the full version, and it concludes the
following theorem.

▶ Theorem 7. Given M and Vcore, we can compute a feedback vertex set of UD(V) of size k

in 2O(
√

k) time if it exists.

4.3 Update Algorithm
In this subsection, we illustrate how to update data structures Vcore, M , and T with respect
to vertex insertions and deletions. We call UD(V \ Vcore) the shell of UD(V). Here, we
slightly abuse the notion of the skeleton so that we can define additional special vertices other
than the boundary vertices. Imagine that several vertices of V are predetermined as special
vertices. The other vertices are called ordinary vertices. The skeleton M of the shell of
UD(V) with predetermined special vertices is defined as the minor of UD(V \ Vcore) obtained
by removing all degree-1 ordinary vertices of UD(V \ Vcore) repeatedly and then contracting
each maximal induced path consisting of ordinary vertices. Notice that if only the boundary
vertices of UD(V) are set to the special vertices, the two definitions of the skeleton coincide.

Given an update of V , we first update Vcore accordingly using the update algorithm in
Section 3. Recall that the number of vertices newly added to Vcore or removed from Vcore is
O(1). We are to add the vertices removed from Vcore to the shell of UD(V), and remove the
vertices newly added to Vcore from the shell of UD(V). Additionally, O(1) vertices of V \ Vcore
become boundary vertices (when we handle the deletion operation), and O(1) vertices of
V \ Vcore become non-boundary vertices (when we handle the insertion operation.) These
are the only changes in the shell of UD(V) due to the update of V . Note that we just need
to add v to the shell of UD(V) if v is not in Vcore. Let S be the shell of UD(V) before the
update. Let M be the skeleton of S we currently maintain, and let T be the contracted
forest concerning M we currently maintain.

In the following, we show how to update M and T for the change of S. The update
algorithm consists of two steps: push-pop step and cleaning step. In the push-pop step, we
set several vertices of S as special vertices. Specifically, the new vertices to be added to S are
set as special vertices. The neighbors in S of the vertices to be added to S or to be removed
from S are set to special vertices. Then we update M and T to the skeleton of the new set

ISAAC 2024

6:8 Dynamic Parameterized Problems on Unit Disk Graphs

(a) (b) (c)

vu
tt′

t′ t

u
s

s′ s′

s
u

t′ t

v
p

Figure 2 (a) The case that T has exactly one bridge. By the insertion of uv, the path from t′ to
v, highlighted in yellow, is contracted. (b) The case that T has exactly two bridges before inserting
uv. (c) The same case after inserting uv. The vertex p and the edges pv, pt′, and ps′ are inserted
into M .

S and the contracted forest concerning the new skeleton, respectively. In the cleaning step,
we make the non-boundary vertices ordinary vertices. Note that this changes the structure
of the skeleton as well, and thus we need to update M and T .

4.3.1 Push-Pop Step

Recall that S is the shell of UD(V) before the update. Notice that the complexity of the new
shell of UD(V) can be Θ(n) in the worst case. However, the update algorithm in Section 3
determines the vertices and edges added to S and removed from S to obtain the new shell.
By construction, the number of such vertices and edges is O(1). Moreover, we can determine
the vertices set to the special vertices of S in O(1) time by Observation 2. To update M and
T , we add (or remove) the special vertices and their incident edges one by one to (or from)
S until S becomes the desired set. Precisely, we add each special vertex v using the push
subroutine, which adds v into M and updates M and T accordingly. In the push subroutine,
we assume that v was not contained in S. Recall that M is the skeleton of S obtained by
removing and contracting some ordinary vertices, not special vertices. And, we remove v

using the pop subroutine, which removes v from S and update M and T . Note that some
special vertices v are already in S. In this case, we cannot make v special using the push
subroutine as it assumes that v is not contained in S. For such special vertices v, we first
pop v from S and then push it back to S. In this way, we can obtain the skeleton of the new
shell and the contracted forest correctly.

Push subroutine. Given the current shell S, we are to add v and its incident edges to S.
Let Ev be the set of edges incident to v to be added to S. We can ensure that the other
endpoints of the edges of Ev are in S. We first add v and the edges of Ev incident to vertices
of M into S. At this moment, it suffices to add v and these edges to M . We do not need to
update T . After that, we insert the remaining edges of Ev into S one by one as follows. Note
that those edges are incident to vertices of T . Let T be the tree in T containing another
endpoint u of an edge of Ev. Before the insertion of uv, T has its bridge set. There are
three cases: T has either exactly zero, one, or two bridges. In particular, in the case that T

has exactly one or two bridges we modify M . If T has exactly one bridge, we add an edge
into M . And, if T has exactly two bridges, we delete a contracted edge corresponding to an
induced path in T and add one vertex and three edges into M . See Figure 2. The details
of the procedure for inserting an edge uv of Ev with u ∈ T into S are described in the full
version.

S. An, K. Cho, L. Jang, B. Jung, Y. Lee, E. Oh, D. Shin, H. Shin, and C. Song 6:9

(a) (b)

v

t t

ss

t′ t′

s′s′

Figure 3 (a) Illustration of pop subroutine in the case that the t-s path contains v. (b) Illustration
of the tree T after v is deleted.

Pop subroutine. We are to delete a vertex v and all of its incident edges in S from S.
We consider two cases separately: v is in M or T . For the case that v is in M , we simply
remove it and its incident edges from M and the bridge sets of T . Specifically, for each edge
e incident to v in S, we remove it from M if it is in M . If it is not in M , it is in a bridge set
of a tree of T . We remove it from every bridge set. If a bridge set containing e has another
edge, then there is a contracted edge of M , and thus we remove it. Then we are done.

Now consider the case that v is in a tree T of T . In this case, the deletion of v from
S changes M if and only if T has two bridges tt′, ss′ with t, s ∈ V (T) and t′, s′ ∈ V (M)
such that the t-s path in T contains v. In particular, M has the edge t′s′, and t′s′ must be
removed from M by the deletion of v from S. See Figure 3. We can check if the t-s path in
T contains v by applying Evert(v) and LCA(t, s). Then we are to remove v and it incident
edges from T and the bridge set of T . Observe that an edge incident to v is in T or the
bridge set of T . We rotate T in a way that v becomes the root of T by using Evert(v), and
remove v from T by applying Cut(·) operations. Then we are given a constant number of
child subtrees of v since v is in V \ Vcore. For a child subtree T ′ of T at v, we insert the
bridges of T incident to T ′ into the bridge set of T ′. Note that, given T ′ and a bridge of T ,
we can check if T ′ contains a vertex incident to the bridge using Connected(·). In this way,
we can remove v from T and the bridge sets, and we can update M accordingly in O(log |V |)
time.

4.3.2 Cleaning Step
So far, we have treated all vertices that can cause some changes due to the update of V and
special vertices, and we have computed the skeleton of UD(V \ Vcore). However, some special
vertices should not be considered as special vertices if they are not boundary vertices. To
handle this, we need a cleaning process to maintain the degree of every vertex in M is at
least three except the boundary vertices.

We handle the vertices of M of degree at most two one by one and set each of them as
an ordinary vertex if it is a special vertex, as follows. Let v be a vertex we are to handle.
First, we can check in O(1) time if v is a boundary vertex using Observation 2. If v is a
boundary vertex, we are done. Otherwise, it suffices to handle the case that the degree of v

in M is less than three. The update of M is simple: we remove v from M if its degree is
one in M , and contract a maximal induced path containing v in M if the degree of v is two
in M . Then we need to update T accordingly as follows. It suffices to merge all trees in T
incident to v together with their bridges incident to v using Link(·) sequentially. Then the
bridge set of the resulting tree is the union of all bridges of merged trees except the ones
incident to v. We can handle v in O(log |V |) time. However, this process might decrease the
degree of some other vertex of M of degree in M to less than three. For each such vertex,
we remove it or contract a maximal induced path containing it as we did for v.

ISAAC 2024

6:10 Dynamic Parameterized Problems on Unit Disk Graphs

▶ Lemma 8. The cleaning step takes O(log |V |) time in total.

Since both steps can be done in O(log |V |) time, we have the following lemma.

▶ Lemma 9. Given a vertex update of V , we can update Vcore, M and T in O(log |V |) time.

▶ Theorem 10. There is an O(n)-sized fully dynamic data structure on the unit disk graph
induced by a vertex set V supporting O(log |V |) update time that allows us to compute a
feedback vertex set of size at most k in 2O(

√
k) time.

5 Dynamic Cycle Packing Problem

In this section, we describe a fully dynamic data structure on the unit disk graph of a vertex
set V dynamically changing under vertex insertions and deletions that can answer cycle
packing queries efficiently. Each query is given with a positive integer k and asks to return
a set of k vertex-disjoint cycles of UD(V) if it exists. Here, we use the core grid cluster
⊞core, the set Vcore of vertices contained in ⊞core, the skeleton M of UD(V \ Vcore), and the
contracted forest T along with the bridge sets. They can be maintained in O(log |V |) time
as shown in Section 4.3. Note that T and the bridges are the auxiliary data structures for
updating M efficiently. In this section, we present a query algorithm for Cycle Packing
assuming that we have ⊞core, Vcore, and M . The following lemma was given by An and Oh [6].

▶ Lemma 11. If (UD(V), k) is a no-instance for Cycle Packing, then |V (M)| = O(k).

As in Section 4.2, we first compute the graph G by gluing UD(Vcore) and M . More
precisely, the vertex set of G is the union of Vcore and V (M). There is an edge uv in G if
and only if uv is either an edge of UD(Vcore), an edge of M , or an edge of UD(V) between
u ∈ Vcore and v ∈ V (M). Notice that v is a boundary vertex of M in the third case.

We use the algorithm proposed by An and Oh [6]. The algorithm of [6] computes a
cycle packing of size k of a unit disk graph with n vertices in 2O(

√
k)nO(1) time. This

algorithm uses the geometric representation of a given graph, and thus the drawing of G is
needed. Specifically, we need a drawing of G such that every vertex of G is on its geometric
representation and every edge of M does not intersect ⊞core. For the desired running time,
we consider a drawing of G of complexity poly(k). Since the number of vertices of Vcore is
O(k), it suffices to draw M and the edges between V (M) and Vcore properly. In Section 5.1,
we will see that we can compute a desired drawing of such subgraph of G of complexity
poly(k) in poly(k) time. Then, we can draw G by merging this drawing with the drawing of
G \ M . Furthermore, in our case, G is not necessarily a unit disk graph. Thus we need to
modify the algorithm of [4] slightly. The details of our algorithm can be found in the full
version, and it concludes the following theorem.

▶ Theorem 12. Given the core grid cluster ⊞core and the skeleton M , Cycle Packing can
be solved in 2O(

√
k) time.

5.1 Planar Drawing of the Closure of M

In this subsection, we illustrate how to compute a planar drawing of the closure of M into the
plane such that the vertices are drawn on their corresponding points in V , and the drawing
does not intersect the boundary of ⊞core. Here, it suffices to prove the following lemma.
In our case, each vertex of the closure of M is prespecified, and each connected region of
R2 \ ⊞core is a polygonal domain Σ. By applying the following lemma for each connected
region of R2 \ ⊞core, we can compute a planar drawing of the closure of M of complexity
poly(k) with the desired properties in poly(k) time.

S. An, K. Cho, L. Jang, B. Jung, Y. Lee, E. Oh, D. Shin, H. Shin, and C. Song 6:11

(a) (b)

e1
e2

e3
e4

e1 e2

e3e4

Figure 4 (a) The blue vertices denote the vertices of L on the boundary of a hole. (b) The
vertices on a hole are contracted into one blue vertex on the boundary of the hole. And, the black
boxes denote the vertices of gadgets. Each edge is copied into three edges. For clarity, the edges
corresponding to e2 are colored in red.

▶ Lemma 13. Any planar graph L admits a planar drawing on a polygonal domain Σ
that maps each vertex to its prespecified location and each edge to a polygonal curve with
O(|Σ| · |E(L)|3) bends, where |Σ| denotes the total complexity of boundaries of Σ. Moreover,
we can draw such one in O(|Σ| · |E(L)|4) time if we know the proper ordering of edges incident
to each vertex.

We demonstrate Lemma 13 by Witney’s theorem [36, 35] along with the algorithm
in [32]. Specifically, Witney’s theorem guarantees that a 3-connected planar graph admits a
topologically unique planar embedding.

For clarity, we assume that L is connected, and we demonstrate how to draw a planar
drawing of L that maps each vertex to its prespecified location and each edge to a polygonal
curve with O(|Σ| · |E(L)|) bends in O(|Σ| · |E(L)2|) time. When L is not connected, we
can draw the desired planar drawing of L by drawing each component of L using the
aforementioned algorithm, sequentially. Precisely, after we compute a drawing of a connected
component of L, we add the region containing the drawing into Σ as a hole. We can compute
such region in time O(|Σ| · |E(L)|2) time by unifying all faces of the drawing except the outer
face. Note that the total complexity of the boundaries of such regions is O(|Σ| · |E(L)|2).
Thus we can compute the desired planar drawing of L in O(|Σ| · |E(L)|4) time.

▶ Lemma 14 (Theorem 1 in [32]). Every planar graph L admits a planar drawing that maps
each vertex to an arbitrarily prespecified distinct location and each edge to a polygonal curve
with O(|V (L)|) bends. Moreover, such a drawing can be constructed in O(|V (L)|2) time.

We first contract each hole in Σ into a single point and compute the planar drawing of
L in a plane without holes using Lemma 14. After that, we recover the holes in L at the
prespecified locations. In the recovering step, we want to ensure that the given topological
ordering is maintained in the planar drawing of L. To do this, we use Witney’s theorem.
However, L is not necessarily 3-connected. For this reason, we slightly modify L so that it
becomes 3-connected.

Modification for Ltc and drawing Dtc. To utilize Witney’s theorem and Lemma 14, we
obtain a 3-connected planar graph Ltc by modifying L with respect to the holes in the
polygonal domain Σ, and we compute a polygonal drawing Dtc of Ltc using Lemma 14. We
assume that each vertex in L is the distance at least 0 < ε < 1 from any other vertex in L.

We first contract each hole into a single point in the plane. In this way, all vertices of
L lying on the boundary of the same hole or the outer boundary of Σ are contracted to a
single vertex on the boundary accordingly. Next, we add a wheel graph centered on v for
each vertex v of L as a gadget. Specifically, the gadget is formed by connecting a single

ISAAC 2024

6:12 Dynamic Parameterized Problems on Unit Disk Graphs

(a) (b) (c)

vi vi vi

Figure 5 (a) A part of Dtc after removing paths. The gray region is a hole Ai, and the blue
vertex is vi. and (b) The pink region is A′

i. While blowing A′
i, we push subcurves on its boundary

as the red curves if they intersect Ai. (c) After blowing up A′
i, we perturb the drawing of D without

crossing.

universal vertex to the vertices of a cycle with 3dv vertices of diameter ε/100, where dv is
the degree of v in L. Then we replace each edge uv of L with three edges: we choose three
consecutive vertices from the gadget for u and three consecutive vertices from the gadget for
v, then we connect them. See Figure 4. We can do this for all edges of L without crossing by
maintaining the proper ordering of the edges around each vertex of L. Recall that we have
the proper ordering of incident edges at each vertex in L. We denote the result graph as Ltc.
Note that Ltc is a 3-connected planar graph since a wheel graph with at least four vertices is
3-connected.

The number of vertices in Ltc is at most 6|E(H)| + |V (H)|. By Lemma 14, we can
compute a planar drawing of Ltc in the plane where each edge has at most O(|E(H)|) bends.
Furthermore, it is the unique topological embedding by Witney’s theorem since Ltc is a
3-connected planar graph. We denote the drawing by Dtc. In the following, we recover a
polygonal drawing D of L in Σ.

Recovering D from Dtc. We recover a drawing D of L in Σ from Dtc. For each edge uv in
L, it corresponds to three paths of length three in Ltc connecting the universal vertices of
the gadgets for u and v. Among them, except the middle one, we remove two paths from Dtc.
While keeping the drawing of Dtc of the remaining path between the universal vertices for
u and v as the drawing of uv of L, we remove the vertices in Ltc which are not in L. This
process increases the number of bends of each edge by a factor of at least three compared to
Dtc. We refer to the obtained drawing as D.

In the following, we recover the boundaries of Σ. Let A1, A2, . . . , and Aℓ be holes of Σ,
Note that the vertices of L on the boundary of Ai are contracted into one vertex in Ltc. We
refer to the contracted vertex as vi for each Ai.

For each Ai, we modify D so that the resulting drawing avoids Ai. Precisely, we blow
up a region A′

i, which is initially the point vi, within a face adjacent to vi until it becomes
Ai. While blowing up A′

i, we push the subcurves of the curves of D which intersect A′
i onto

the boundary of A′
i. Notice that we push such subcurves, avoiding vi, except the boundary

curves of the face containing A′
i. See Figure 5(b). By repeating such a process, we make the

interior of Ai empty. Then, by perturbing the drawing D, we can modify the drawing to
avoid Ai and crossing. See Figure 5(c). This process increases the bends by a factor of |Σ|
compared to Dtc.

In the following, we uncontract the vertices vi’s for each Ai’s. Let ℓ and ℓ′ be short line
segments incident to vi drawn in opposite directions within the face containing Ai so that
they intersect D and Ai only at vi. See Figure 6(b). Note that the edges in D incident

S. An, K. Cho, L. Jang, B. Jung, Y. Lee, E. Oh, D. Shin, H. Shin, and C. Song 6:13

(a) (b) (c)

vi

ℓ′

ℓ

Figure 6 (a) A part of L. The gray region is a hole Ai, and the blue vertices are the vertices of
L on the boundary of Ai. (b) A part of drawing D after making Ai empty. The blue vertex is vi,
and the red lines are l and l′, respectively. (c) We uncontract vi into the four blue vertices of L.

to vi have an endpoint on the boundary of Ai in L, and the ordering is the same as the
prespecified ordering along the boundary of Ai in L due to Witney’s theorem. We choose
the closest incident edge e of vi to the boundary of Ai, and we uncontract an endpoint u of
the edge e′ in L corresponding to e contracted into vi. Precisely, when there is no incident
edge of vi between e and ℓ (or ℓ′), we extend the drawing of e along the boundary of Ai in
the counterclockwise direction (or clockwise direction) until u is located at its prespecified
location. If both endpoints of e′ are contracted into vi, we uncontract the endpoint preceding
in the clockwise order (or counterclockwise order). By repeating such a process, we uncontract
all the vertices in L on the boundary Ai at the prespecified location. See Figure 6(c). This
process increases the bends of each edge by a factor of at most |Σ|.

In conclusion, the obtained D is a polygonal drawing of L in Σ each of which edge has
at most O(|Σ| · |E(H)|) bends, where |Σ| denotes the complexity of the boundary of Σ.
Furthermore, the above processes take O(|Σ| · |E(H)|2) time in total. This completes the
proof of Lemma 13.

6 Conclusion

In this paper, we initiate the study of fundamental parameterized problems for dynamic
unit disk graphs. including k-Path/Cycle, Vertex Cover, Triangle Hitting Set,
Feedback Vertex Set, and Cycle Packing. Our data structure supports 2O(

√
k) update

time and O(k) query time for k-Path/Cycle. For the other problems, our data structures
support O(log n) update time and 2O(

√
k) query time, where k denotes the output size.

Despite the progress made in this work, there remain numerous open problems. First, can we
obtain a trade-off between query times and update times? Second, one might consider other
classes of geometric intersection graphs in the dynamic setting such as disk graphs [3, 30],
outerstring graphs [7], transmission graphs [5] and hyperbolic unit disk graphs [31]. To the
best of our knowledge, there have been no known results on parameterized algorithms for
those graph classes.

References
1 Pankaj Agarwal, Hsien-Chih Chang, Subhash Suri, Allen Xiao, and Jie Xue. Dynamic

geometric set cover and hitting set. ACM Transactions on Algorithms (TALG), 18(4):1–37,
2022. doi:10.1145/3551639.

2 Josh Alman, Matthias Mnich, and Virginia Vassilevska Williams. Dynamic parameterized
problems and algorithms. ACM Transactions on Algorithms (TALG), 16(4):1–46, 2020.
doi:10.1145/3395037.

ISAAC 2024

https://doi.org/10.1145/3551639
https://doi.org/10.1145/3395037

6:14 Dynamic Parameterized Problems on Unit Disk Graphs

3 Shinwoo An, Kyungjin Cho, and Eunjin Oh. Faster algorithms for cycle hitting problems on
disk graphs. In Proceedings of the 18th Algorithms and Data Structures Symposium (WADS
2023), pages 29–42, 2023. doi:10.1007/978-3-031-38906-1_3.

4 Shinwoo An and Eunjin Oh. Feedback vertex set on geometric intersection graphs. In
Proceedings of the 32nd International Symposium on Algorithms and Computation (ISAAC
2021), pages 47:1–47:12, 2021. doi:10.4230/LIPICS.ISAAC.2021.47.

5 Shinwoo An and Eunjin Oh. Reachability problems for transmission graphs. Algorithmica,
84(10):2820–2841, 2022. doi:10.1007/S00453-022-00985-1.

6 Shinwoo An and Eunjin Oh. ETH-tight algorithm for cycle packing on unit disk graphs. In
Proceedings of the 40th International Symposium on Computational Geometry (SoCG 2024),
pages 7:1–7:15, 2024. doi:10.4230/LIPICS.SOCG.2024.7.

7 Shinwoo An, Eunjin Oh, and Jie Xue. Sparse outerstring graphs have logarithmic treewidth.
In 32nd Annual European Symposium on Algorithms (ESA 2024), pages 10:1–10:18, 2024.
doi:10.4230/LIPICS.ESA.2024.10.

8 Sujoy Bhore and Timothy M. Chan. Fully dynamic geometric vertex cover and matching.
arXiv preprint, 2024. doi:10.48550/arXiv.2402.07441.

9 Sujoy Bhore, Martin Nöllenburg, Csaba D. Tóth, and Jules Wulms. Fully dynamic max-
imum independent sets of disks in polylogarithmic update time. In Proceedings of the 40th
International Symposium on Computational Geometry (SoCG 2024), pages 19:1–19:16, 2024.
doi:10.4230/LIPICS.SOCG.2024.19.

10 Heinz Breu. Algorithmic aspects of constrained unit disk graphs. PhD thesis, University of
British Columbia, 1996.

11 Timothy M. Chan and Zhengcheng Huang. Dynamic geometric connectivity in the plane with
constant query time. In Proceedings of the 40th International Symposium on Computational
Geometry (SoCG 2024), pages 36:1–36:13, 2024. doi:10.4230/LIPICS.SOCG.2024.36.

12 Timothy M. Chan, Mihai Pǎtraşcu, and Liam Roditty. Dynamic connectivity: Connecting to
networks and geometry. SIAM Journal on Computing, 40(2):333–349, 2011. doi:10.1137/
090751670.

13 Jiehua Chen, Wojciech Czerwiński, Yann Disser, Andreas Emil Feldmann, Danny Hermelin,
Wojciech Nadara, Marcin Pilipczuk, Michał Pilipczuk, Manuel Sorge, Bartłomiej Wróblewski,
et al. Efficient fully dynamic elimination forests with applications to detecting long paths and
cycles. In Proceedings of the 32th ACM-SIAM Symposium on Discrete Algorithms (SODA
2021), pages 796–809. SIAM, 2021.

14 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86(1-3):165–177, 1990. doi:10.1016/0012-365X(90)90358-O.

15 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,
2015. doi:10.1007/978-3-319-21275-3.

16 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A framework for exponential-time-hypothesis–tight algorithms and lower bounds in
geometric intersection graphs. SIAM Journal on Computing, 49(6):1291–1331, 2020. doi:
10.1137/20M1320870.

17 Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs.
Journal of the ACM (JACM), 52(6):866–893, 2005. doi:10.1145/1101821.1101823.

18 Zdeněk Dvořák, Martin Kupec, and Vojtěch Tůma. A dynamic data structure for MSO
properties in graphs with bounded tree-depth. In Proceedings of the 22th Annual European
Symposium (ESA 2014), pages 334–345, 2014.

19 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes
for geometric intersection graphs. SIAM Journal on Computing, 34(6):1302–1323, 2005.
doi:10.1137/S0097539702402676.

https://doi.org/10.1007/978-3-031-38906-1_3
https://doi.org/10.4230/LIPICS.ISAAC.2021.47
https://doi.org/10.1007/S00453-022-00985-1
https://doi.org/10.4230/LIPICS.SOCG.2024.7
https://doi.org/10.4230/LIPICS.ESA.2024.10
https://doi.org/10.48550/arXiv.2402.07441
https://doi.org/10.4230/LIPICS.SOCG.2024.19
https://doi.org/10.4230/LIPICS.SOCG.2024.36
https://doi.org/10.1137/090751670
https://doi.org/10.1137/090751670
https://doi.org/10.1016/0012-365X(90)90358-O
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/20M1320870
https://doi.org/10.1137/20M1320870
https://doi.org/10.1145/1101821.1101823
https://doi.org/10.1137/S0097539702402676

S. An, K. Cho, L. Jang, B. Jung, Y. Lee, E. Oh, D. Shin, H. Shin, and C. Song 6:15

20 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discrete &
Computational Geometry, 62:879–911, 2019. doi:10.1007/S00454-018-00054-X.

21 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
ETH-tight algorithms for long path and cycle on unit disk graphs. Journal of Computational
Geometry, 12(2):126–148, 2021. doi:10.20382/JOCG.V12I2A6.

22 Fedor V Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric
graphs. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2012), pages 1563–1575, 2012. doi:10.1137/1.9781611973099.124.

23 Timothy F. Havel, Gordon M. Crippen, Irwin D. Kuntz, and Jeffrey M. Blaney. The com-
binatorial distance geometry method for the calculation of molecular conformation ii. sample
problems and computational statistics. Journal of Theoretical Biology, 104(3):383–400, 1983.

24 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM (JACM), 32(1):130–136, 1985.
doi:10.1145/2455.214106.

25 Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid
graphs. SIAM Journal on Computing, 11(4):676–686, 1982. doi:10.1137/0211056.

26 Tuukka Korhonen, Konrad Majewski, Wojciech Nadara, Michał Pilipczuk, and Marek
Sokołowski. Dynamic treewidth. In Proceedings of the 64th Annual Symposium on Foundations
of Computer Science (FOCS 2023), pages 1734–1744, 2023.

27 Tomasz Krawczyk and Bartosz Walczak. On-line approach to off-line coloring problems
on graphs with geometric representations. Combinatorica, 37(6):1139–1179, 2017. doi:
10.1007/S00493-016-3414-X.

28 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Unit disk graph approximation.
In Proceedings of the 2004 joint workshop on Foundations of mobile computing, pages 17–23,
2004. doi:10.1145/1022630.1022634.

29 Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Ad-hoc networks beyond unit disk
graphs. In Proceedings of the 2003 joint workshop on Foundations of mobile computing, pages
69–78, 2003.

30 Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. Subexponen-
tial parameterized algorithms on disk graphs (extended abstract)*. In Proceedings of the 33rd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), pages 2005–2031, 2022.
doi:10.1137/1.9781611977073.80.

31 Eunjin Oh and Seunghyeok Oh. Algorithms for Computing Maximum Cliques in Hyperbolic
Random Graphs. In 31st Annual European Symposium on Algorithms (ESA 2023), pages
85:1–85:15, 2023. doi:10.4230/LIPICS.ESA.2023.85.

32 János Pach and Rephael Wenger. Embedding planar graphs at fixed vertex locations. Graphs
and Combinatorics, 17:717–728, 2001. doi:10.1007/PL00007258.

33 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. In Proceedings
of the 13th Annual ACM Symposium on Theory of Computing (STOC 1981), pages 114–122,
1981.

34 Da-Wei Wang and Yue-Sun Kuo. A study on two geometric location problems. Information
processing letters, 28(6):281–286, 1988. doi:10.1016/0020-0190(88)90174-3.

35 Hassler Whitney. Congruent graphs and the connectivity of graphs. American Journal of
Mathematics, 54(1):150–168, 1932.

36 Hassler Whitney. 2-isomorphic graphs. American Journal of Mathematics, 55(1):245–254,
1933.

37 Weili Wu, Hongwei Du, Xiaohua Jia, Yingshu Li, and Scott C.-H. Huang. Minimum connected
dominating sets and maximal independent sets in unit disk graphs. Theoretical Computer
Science, 352(1-3):1–7, 2006. doi:10.1016/J.TCS.2005.08.037.

ISAAC 2024

https://doi.org/10.1007/S00454-018-00054-X
https://doi.org/10.20382/JOCG.V12I2A6
https://doi.org/10.1137/1.9781611973099.124
https://doi.org/10.1145/2455.214106
https://doi.org/10.1137/0211056
https://doi.org/10.1007/S00493-016-3414-X
https://doi.org/10.1007/S00493-016-3414-X
https://doi.org/10.1145/1022630.1022634
https://doi.org/10.1137/1.9781611977073.80
https://doi.org/10.4230/LIPICS.ESA.2023.85
https://doi.org/10.1007/PL00007258
https://doi.org/10.1016/0020-0190(88)90174-3
https://doi.org/10.1016/J.TCS.2005.08.037

	1 Introduction
	2 Preliminaries
	3 Dynamic Triangle Hitting Set Problem
	4 Dynamic Feedback Vertex Set Problem
	4.1 Data Structure
	4.2 Query Algorithm
	4.3 Update Algorithm
	4.3.1 Push-Pop Step
	4.3.2 Cleaning Step

	5 Dynamic Cycle Packing Problem
	5.1 Planar Drawing of the Closure of M

	6 Conclusion

