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Abstract
In this paper, we consider the study for the connected minimum sum of radii problem. In this
problem, we are given as input a metric defined on a set of facilities and clients, along with some
cost parameters. The objective is to open a subset of facilities, assign every client to an open facilitiy,
and connect open facilities using a Steiner tree so that the weighted (by cost parameters) sum of
the maximum assignment distance of each facility and the Steiner tree cost is minimized. This
problem introduces the min-sum radii objective, an objective function that is widely considered
in the clustering literature, to the connected facility location problem, a well-studied network
design/clustering problem. This problem is useful in communication network design on a shared
medium, or energy optimization of mobile wireless chargers.

We present both a constant-factor approximation algorithm and hardness results for this problem.
Our algorithm is based on rounding an LP relaxation that jointly models the min-sum of radii problem
and the rooted Steiner tree problem. To round the solution we use a careful clustering procedure
that guarantees that every open facility has a proxy client nearby. This allows a reinterpretation for
part of the LP solution as a fractional rooted Steiner tree. Combined with a cost filtering technique,
this yields a 5.542-approximation algorithm.
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1 Introduction

Connected facility location is a joint optimization problem that combines network design with
clustering, and it has wide applications in the design of communication networks [1,8,23].
In this problem, we are given as input a metric on a set of nodes (some of which are called
facilities and some clients) in addition to the opening cost of each facility and a connectivity
cost parameter M . The goal is to open some facilities, assign every client to an open facility,
and finally connect the open facilities with a Steiner tree whose terminals are the open
facilities. The cost of a solution is defined as the total assignment distance between each
client and the facility it is assigned to, plus the total opening costs of the open facilities
and the cost of the Steiner tree scaled by M . This problem is particularly useful in the
design of a communication network where a central core is formed by connecting core nodes
together and individual endnodes are assigned to one of the core nodes [1, 8, 23]. There
exists an extensive volume of research on this problem: in addition to the problem described
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7:2 On the Connected Minimum Sum of Radii Problem

above [8, 10, 14, 23], a variant where opening a facility itself does not incur opening cost has
also been investigated [15, 23]. In addition to the facility location problem, connectivity
constraints have been introduced in other classical problems including dominating set (see,
e.g., [7, 13,21,22]).

The facility location problem is a min-sum optimization problem, in that it minimizes the
sum of the assignment distances. Yet, this is not always the objective one is most interested
in in practice. For example, when the endnodes are connected via broadcasting on a shared
medium, one may be more interested in the longest assignment distance [11]. On the extreme
in this direction is the k-center problem [17], which minimizes the maximum assignment
distance in the entire solution. This unfortunately tends to yield a less desirable clustering
since the maximum assignment distance by itself determines the objective. In order to avoid
the dissection effect [16], we can use the sum of radii in lieu of maximum radii as the objective
function [6]. Under this objective, however, there exists a trivial optimal solution when there
is no distinction between facilities and clients – one can open and assign every node to itself,
resulting in the zero sum of radii – and therefore the min-sum radii problem was previously
studied usually under a cardinality constraint on the number of open facilities [2, 3, 6, 9, 11].

However, the connected facility location problem was little studied under this min-sum
radii objective. This paper proposes to study the connected minimum sum of radii problem,
aiming at addressing this gap. Our problem takes as input the assignment cost parameter of
each facility in addition to the connectivity cost parameter M and a metric on facilities and
clients. The goal still is to open some facilities, assign every client to an open facility, and
connect the open facilities. The problem however differs from connected facility location in
its objective function, which is now defined as the sum of radii, i.e., the sum of the longest
assignment distance of each facility, plus the Steiner tree cost connecting the open facilities.
The radii and the Steiner tree cost are respectively scaled by the assignment cost parameters
and the connectivity cost parameter.

A sample application that well illustrates this problem is wireless charging of sensors.
Consider a set of sensors distributed over a region, which are charged by a wireless charger
that moves between charging spots to charge near sensors [19, 24]. The wireless charging
energy is proportional to the maximum distance to a sensor being charged, and the proposed
problem well reflects this setting. The connected minimum sum of radii problem also arises
when we want to broadcast messages to a set of sensors. Suppose we install a set of mutually
connected stations each of which broadcasts messages over the air to nearby sensors. The
total communication cost will then depend on the over-the-air broadcast range of each station
and their mutual connection cost.

Our results and techniques

In this paper, we propose to study the connected minimum sum of radii problem, present an
approximation algorithm for it, and show its NP-hardness. Our main result is the following
theorem. While this paper primarily considers the version of the problem that opening a
facility itself does not incur a fixed opening cost, Theorem 1 immediately extends to the
version with opening cost as well, without affecting the final approximation ratio.

▶ Theorem 1. There is a polynomial-time algorithm that computes a 5.542-approximation
solution for the connected minimum sum of radii problem.

The algorithm we present is an LP-rounding algorithm that is partially based on a greedy
clustering of fractionally open facilities. Greedy clustering approach was previously used to
handle the (non-connected) minimum sum of radii problem [9]. In this paper, we propose
that we use a carefully designed new clustering procedure to ensure that each open facility
always has a “proxy client” nearby.
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After clustering, the LP solution can be reinterpreted as a fractional solution to a rooted
Steiner tree instance whose terminals are the proxy clients, at the expense of a slight increase
in the cost. This fractional solution is then rounded using any LP-based algorithm with a
good approximation ratio for the Steiner tree problem, such as the LP-rounding algorithm of
Jain [18] or the primal-dual algorithm of Goemans and Williamson [12]. Finally, to obtain
the desired approximation ratio, we compare this solution against a trivial solution that
opens a single guessed facility, and output the better between the two solutions.

We will complement the above result by showing that the problem is NP-hard.

▶ Theorem 2. The connected minimum sum of radii problem is NP-hard.

Organization of this paper

The rest of this paper is organized as follows. In Section 2 we provide a formal definition of the
connected minimum sum of radii problem and the notation we will be using throughout this
paper. In Section 3 we present our approximation algorithm. We establish the approximation
guarantee in Section 4 and present the hardness results in Section 5.

2 Preliminaries

We begin with a formal definition on the connected minimum sum of radii problem. In this
problem, we are given a set F of facilities, a set D of clients, a distance metric d defined over
F ∪D and two additional parameters m : F → Q≥0 and M ∈ Q≥0.

A feasible solution consists of a tuple (S, ρ, T ), where S ⊆ F is a subset of facilities,
ρ : S → Q≥0 is the set of respective radii for the facilities in S such that all clients in D are
covered, i.e., for any j ∈ D, there always exists some i ∈ S such that d(j, i) ≤ ρi, and T is a
Steiner tree with terminal set S and Steiner nodes F ∪D.

The objective is to minimize the sum of radii of the clusters in S, each weighted by the
parameters mi |i∈S , plus the total length of the Steiner tree weighted by M , i.e.,∑

i∈S

mi · ρi +
∑
e∈T

M · de.

Note that, provided that M ̸= 0, we may assume without loss of generality that M = 1,
for otherwise we can scale mi for all i ∈ F uniformly. For the rest of this paper we will take
this assumption that M = 1.

We also note that, our algorithm and the analysis can be modified in a straightforward
way to work for the extreme case that M = 0.

Notations

We additionally use the following notation in this paper. We use V := F ∪D to denote the
set of vertices in the given metric space and E := { (u, v) | u, v ∈ V } to denote the set of
possible edges when considering the corresponding metric graph. For any U ⊆ V , we use
δ(U) to denote the set of edges in the cut (U, Ū) with respect to the metric graph.

For any i ∈ F and any r ∈ Q≥0, we use B(i, r) to denote the set of clients that belong in
the ball centered at i with radius r, i.e,

B(i, r) := { j ∈ D | d(i, j) ≤ r }.

For each i ∈ F , we use Ri := {d(i, j) | j ∈ D} to denote the set of “meaningful” radii for i.

ISAAC 2024



7:4 On the Connected Minimum Sum of Radii Problem

3 Approximation Algorithm

In this section, we present our algorithm for the connected minimum sum of radii problem.
Let µ ≥ 1 be a parameter to be determined.

Our algorithm starts by guessing a facility t ∈ F that is opened in an optimal solution
(Sopt, ρopt, T opt) with the minimum mt value, i.e., t = argmini∈Sopt mi. For each candidate
guess t, the algorithm generates two solutions (SI

t , ρI
t, T I

t ) and (SII
t , ρII

t , T II
t ). When this

process ends, the one with the smallest cost is output as the approximation solution. In the
following we describe how the solutions are generated for each guess t ∈ F . To simplify the
notations, the dependency on t will be omitted when there is no ambiguity in the context.

The first solution (SI, ρI, T I) is a trivial one with SI := {t}, i.e., t is the only open facility.
Naturally, T I = ∅ and ρI

t = maxj∈D d(t, j) in this solution. The cost of this solution is hence
mt ·maxj∈D d(t, j).

To obtain the second solution (SII, ρII, T II), let Fµ := {i ∈ F | mi ≥ µ}. We use
the following LP relaxation for a further restricted scenario for which Sopt ⊆ Fµ, i.e., the
(unknown) referenced optimal solution only uses facilities in Fµ. This unusual setting will
become clear in the analysis.

minimize
∑

i∈Fµ,r∈Ri

mi · r · xi,r +
∑
e∈E

de · ye

subject to
∑
i∈Fµ

zi,j ≥ 1, ∀j ∈ D,

∑
r∈Ri:j∈B(i,r)

xi,r ≥ zi,j , ∀i ∈ Fµ, j ∈ D,

∑
e∈δ(U)

ye ≥
∑

i∈Fµ∩U

zi,j , ∀j ∈ D, U ⊆ V \ {t}, (1)

x, y, z ≥ 0.

We have three sets of indicator variables in the above LP.
xi,r for each (i, r) pair with i ∈ Fµ and r ∈ Ri.
ye for each edge e ∈ E.
zi,j for the assignment of client j ∈ D to the facility i ∈ Fµ.

The first constraint requires that any client in D has to be assigned to at least one facility in
Fµ. The second constraint demands that, in order for a client j to be assigned to facility
i, j must be contained in an opened ball centered at i. The third constraint models the
connectivity requirement between the opened facilities via the assignment variables zi,j and
the predetermined sink t. Note that the constraints of this LP does not require that t is
opened but rather use it to ensure the connectivity between the opened facilities.

Note that the last set of inequalities can be separated by finding a minimum j-t cut. We
solve the LP in polynomial time to obtain an optimal fractional solution (x⋆, y⋆, z⋆). In the
following we describe our rounding procedure to obtain the second solution (SII, ρII, T II).
The rounding procedure consists of two parts. In the first part, we select a set of facilities
along with their respective radii to be opened. In the second part, we compute a Steiner tree
for the opened facilities.
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Opening facilities

Let B0 := {(i, r) | x⋆
i,r > 0} be the support of x⋆. Let G be a bipartite graph with partite

sets B0 and D, where (i, r) ∈ B0 and j ∈ D are adjacent if and only if j ∈ B(i, r). For any
j ∈ D and any B⋆ ⊆ B0, let ∆B⋆(j) denote the minimum distance between j and any vertex
in B⋆: i.e.,

∆B⋆(j) := min{|P | | P is a path in G between j and some y ∈ B⋆},

where |P | denotes the number of edges on P . Note that we define ∆∅(j) := +∞ for all
j ∈ D.

Algorithm 1 Determining open facilities and their proxy clients.

1: SII ← ∅; B⋆ ← ∅
2: while ∃j ∈ D with ∆B⋆(j) ≥ 5 do
3: B̄ := {(i, r) ∈ B0 | there exists some j that is adjacent to (i, r) and ∆B⋆(j) ≥ 5}
4: (i⋆, r⋆) ∈ arg max(i,r)∈B̄ r

5: let πi⋆ be some j ∈ D such that (i, r) and j are adjacent and ∆B⋆(j) ≥ 5
6: B⋆ ← B⋆ ∪ {(i⋆, r⋆)}; SII ← SII ∪ {i⋆}; ρII

i⋆ = 3r⋆

Consider Algorithm 1 that returns SII, ρII, and {πi}i∈SII . It additionally maintains B⋆,
which denotes the set of (i, r) pairs to be rounded up, and πi for each i ∈ SII which denotes
the representative proxy client we pick for facility i. It is to ensure the existence of these
proxy clients why we use Algorithm 1 as opposed to a simple greedy clustering.

Initially, SII := ∅ and B⋆ := ∅. In each iteration, the algorithm considers the set of (i, r)
pairs in B0 that are adjacent to some client j ∈ D in G with ∆B⋆(j) ≥ 5. Among all such
(i, r) pairs, the algorithm picks the one with the largest r. Let the pair be (i∗, r∗) and let πi∗

be the witness client with j ∈ D with ∆B⋆(j) ≥ 5.
The algorithm puts i∗ in SII, sets ρII

i⋆ to be 3r⋆, and adds (i∗, r∗) to B0. Then the
algorithm iterates until ∆B⋆(j) < 5 holds for all j ∈ D.

The following two observations show that this algorithm is well-defined. First, Observa-
tion 3 shows that the set B̄ at Step 3 of Algorithm 1 is always nonempty.

▶ Observation 3. For all j ∈ D, there exists some (i, r) ∈ B0 such that j ∈ B(i, r).

Proof. From the feasibility of (x⋆, y⋆, z⋆), there exists some i ∈ Fµ such that z⋆
i,j > 0, and

this in turn implies that there exists some r ∈ Ri such that j ∈ B(i, r) and x⋆
i,r > 0. ◀

The following observation shows that ρII is unambiguously defined by Algorithm 1.

▶ Observation 4. Step 4 of Algorithm 1 never chooses the same facility more than once.

Proof. Suppose towards contradiction that Step 4 chooses (i, r1) at some point and (i, r2)
at a later point during the execution of Algorithm 1 for some r1 ̸= r2.

Suppose r1 < r2. Consider the moment the algorithm chooses (i, r1). This implies that
there exists some j ∈ B(i, r1) such that ∆B⋆(j) ≥ 5; since B(i, r1) ⊆ B(i, r2), this implies
(i, r2) ∈ B̄, a contradiction to the design of the algorithm.

Suppose r1 > r2. Consider the moment the algorithm chooses (i, r2). Since B(i, r2) ⊆
B(i, r1) and (i, r1) ∈ B⋆, we have ∆B⋆(j) ≤ 1. Hence (i, r2) /∈ B̄ and cannot be picked in
Step 4. ◀

The following lemma summarizes one of the key properties our algorithm aims to have.

ISAAC 2024



7:6 On the Connected Minimum Sum of Radii Problem

▶ Lemma 5. For any (i⋆, r⋆) ∈ B⋆ and any (i′, r′) ∈ B0 such that πi⋆ and (i′, r′) are adjacent
in G, we have r′ ≤ r⋆.

Proof. Consider the moment the algorithm chooses (i⋆, r⋆). Step 5 of the algorithm guar-
antees that ∆B⋆(πi⋆) ≥ 5 and therefore (i′, r′) ∈ B̄. Since the algorithm chose (i⋆, r⋆) over
(i′, r′), it shows that r′ ≤ r⋆. ◀

Connecting the opened facilities

To obtain the second solution (SII, ρII, T II), it remains to build the Steiner tree T II. Consider
the following LP relaxation for the Steiner tree problem with vertex set V := F ∪D, edge
set E, terminal set W ⊆ V , and a given root t ∈W .

minimize
∑
e∈E

de · he

subject to
∑

e∈δ(U)

he ≥ 1, ∀U ⊆ V \ {t} with U ∩W ̸= ∅, (2)

h ≥ 0.

Note that the costs of the edges in this relaxation are defined by de. In the following we
construct a feasible solution for the above LP relaxation, where the set of terminals W is
chosen as the set of proxy clients {πi | i ∈ SII}.

We can assume without loss of generality on the variables z⋆ that, for all j ∈ D,∑
i∈Fµ

z⋆
i,j = 1 for otherwise we can scale down z⋆

i,j for all i ∈ Fµ simultaneously to make
it so without losing the feasibility of the resulting solution. Construct a vector p ∈ RE by
setting

p(πi,i′) :=
{

z⋆
i′,πi

, for all i ∈ SII and i′ ∈ Fµ,
0, otherwise.

Intuitively, in the above construction we fractionally wire πi for each i ∈ SII to all the
facilities that fractionally covers πi in z⋆. Since all the facilities are fractionally connected to
the sink t in y⋆ by the LP constraint (1), it follows by the above construction that y⋆ + p

fractionally connects the representative proxy client πi to t for all i ∈ SII. Hence y⋆ + p is a
feasible solution to (2).

Although we can use any LP-based algorithm for the Steiner tree problem at this point,
let us assume that we use the LP-rounding algorithm of Jain [18] on this solution to construct
a Steiner tree Tpre for the set of representative proxy clients in W := {πi | i ∈ SII}. To obtain
the desired Steiner tree T II, we add edges (i, πi) for all i ∈ SII to Tpre.

The following lemma, which formally verifies the feasibility of y⋆ + p for (2), shows that
the algorithm for this part is also well-defined, and a valid Steiner tree for W is produced.

▶ Lemma 6. y⋆ + p is a feasible with respect to the constraint (2).

Proof. Consider an arbitrary terminal πi⋆ ∈W and an arbitrary set U ⊆ V \ {t} such that
πi⋆ ∈ U . We have∑

e∈δ(U)

(y⋆
e + pe) ≥

∑
e∈δ(U)

y⋆
e +

∑
i′∈Fµ\U

p(πi⋆ ,i′)

≥
∑

i′∈Fµ∩U

z⋆
i′,πi⋆ +

∑
i′∈Fµ\U

z⋆
i′,πi⋆ =

∑
i′∈Fµ

z⋆
i′,πi⋆ = 1,

where the second inequality follows from the feasibility of y⋆ and the construction of p and
the last equality follows from the construction of the above algorithm. ◀
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4 Analysis

In this section, we show that our algorithm is an approximation algorithm for the connected
minimum sum of radii problem and establish the approximation guarantee.

Feasibility of the solutions

Consider each guess t ∈ F . It is clear that (SI
t , ρI

t, T I
t ) is a feasible solution. In the following

we show that (SII
t , ρII

t , T II
t ) is also feasible.

By Lemma 6 and the correctness of Jain’s rounding algorithm [18], T II
t is indeed a Steiner

tree for SII
t . Hence, it suffices to prove the following lemma, which implies that, for all j ∈ D,

there always exists some opened facility i ∈ SII such that d(i, j) ≤ ρII
i .

▶ Lemma 7. For all j ∈ D, there exists some (i⋆, r⋆) ∈ B⋆ such that d(i⋆, j) ≤ 3r⋆.

Proof. Note that we have ∆B⋆(j) = +∞ at the beginning and ∆B⋆(j) < 5 at the end of
the execution of Algorithm 1. Consider the iteration at which ∆B⋆(j) becomes smaller
than 5 for the first time and let (i⋆, r⋆) be the ball chosen at Step 4 during this iteration.
Since G is bipartite, ∆B⋆(j) becomes 1 or 3 at this iteration. If it becomes 1, this implies
j ∈ B(i⋆, r⋆) and there is nothing to prove. If ∆B⋆(j) becomes 3, this implies that there
exists a path of length three between (i⋆, r⋆) and j in G; let (i⋆, r⋆) − j′ − (i′, r′) − j

denote this path. At the beginning of this iteration, ∆B⋆(j) was no smaller than 5 and
therefore (i′, r′) ∈ B̄. Since the algorithm chose (i⋆, r⋆) over (i′, r′), we have r⋆ ≥ r′, yielding
d(i⋆, j) ≤ d(i⋆, j′) + d(j′, i′) + d(i′, j) ≤ r⋆ + r′ + r′ ≤ 3r⋆. ◀

Approximation Guarantee

In the following we establish the approximation guarantee. Let (Sopt, ropt, T opt) be an optimal
solution and OPT denote its cost.

If |Sopt| = 1, then the facility in Sopt will be iterated by the algorithm. Denote this
facility by t∗. Then (SI

t∗ , ρI
t∗ , T I

t∗) is an optimal solution and there is nothing to prove.

In the following we assume that |Sopt| ≥ 2. Since the algorithm iterates over all possible
guesses, we assume without loss of generality that t is the facility with the smallest mt value
in Sopt, i.e.,

t ∈ Sopt and t = argmini∈Sopt mi.

Depending on whether or not t ∈ Fµ, we further consider two cases. The following lemma
shows that (SI

t , ρI
t, T I

t ) is a µ-approximation solution if t /∈ Fµ.

▶ Lemma 8. If t ∈ Sopt and t /∈ Fµ, then

OPT ≥ 1
µ
·mt ·max

j∈D
d(t, j).

Proof. We have mt < µ by the assumption. Let jo := arg maxj∈D d(t, j) be the client that
defines the radius ρI

t. Let i′ be a facility in Sopt with d(i′, jo) ≤ ρopt
i′ . We have

ISAAC 2024



7:8 On the Connected Minimum Sum of Radii Problem

OPT =
∑

i∈Sopt

mi · ρopt
i +

∑
e∈T opt

de

≥ mi′ · ρopt
i′ + d(t, i′)

≥ mt · d(i′, jo) + 1
µ

mt · d(t, i′)

≥ 1
µ
·mt · d(t, jo) = 1

µ
·mt ·max

j∈D
d(t, j),

where in the last inequality we apply the triangle inequality and the fact that µ ≥ 1. ◀

It remains to consider the case that t ∈ Fµ, which in particular implies that Sopt ⊆ Fµ.
We prove in the following that (SII

t , ρII
t , T II

t ) is a (5 + 3
µ )-approximation solution in this case.

Since Sopt ⊆ Fµ, it follows that the LP (1) admits (Sopt, ropt, T opt) as a feasible solution.
Hence the cost of the fractional solution (x⋆, y⋆, z⋆) provides a lower-bound for OPT. Similarly
to the facility location problem [4] and the minimum sum of radii problem [9], we use the
dual optimal solution to bound the cost of the rounded solution via complementary slackness.
Consider the dual LP of the LP (1), which we provide below, and let (α⋆, β⋆, γ⋆, λ⋆) be an
optimal solution for it.

maximize
∑
j∈D

αj

subject to
∑

j∈B(i,r)

γi,j ≤ mi · r, ∀i ∈ Fµ, r ∈ Ri,

αj −
∑

U⊆V \{t}:i∈U

βj,U ≤ γi,j , ∀i ∈ Fµ, j ∈ D, (3)

∑
j∈D

∑
U⊆V \{t}:e∈δ(U)

βj,U ≤ de, ∀e ∈ E,

α, β, γ ≥ 0.

The following lemma bounds the weighted cost of a facility in term of the dual values of
the clients contained within. Intuitively, it follows from standard complementary slackness
conditions between (x⋆, y⋆, z⋆) and (α⋆, β⋆, γ⋆, λ⋆).

▶ Lemma 9. For any i ∈ Fµ and any r ∈ Ri, we have x⋆
i,r > 0 implies that mi · r ≤∑

j∈B(i,r) α⋆
j .

Proof. From the complementary slackness condition, x⋆
i,r > 0 implies∑

j∈B(i,r)

γ⋆
i,j = mi · r. (4)

Consider an arbitrary j ∈ B(i, r). If γ⋆
i,j > 0, we have from the complementary slackness

that

z⋆
i,j =

∑
r′∈Ri:j∈B(i,r′)

x⋆
i,r′ > x⋆

i,r > 0.
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By complementary slackness condition again this implies

γ⋆
i,j = α⋆

j −
∑

U⊆V \{t}:i∈U

β⋆
j,U ≤ α⋆

j . (5)

On the other hand, if γ⋆
i,j = 0, it trivially holds that

γ⋆
i,j ≤ α⋆

j . (6)

Combining (5) and (6) with (4) yields mi · r ≤
∑

j∈B(i,r) α⋆
j . ◀

Consider any (i1, r1), (i2, r2) ∈ B⋆ such that i1 ̸= i2. By the design of the rounding
procedure in the first part of the algorithm, we always have that B(i1, r1) and B(i2, r2) are
disjoint. Hence, combining this fact with Lemma 9, the total weighted facility cost can be
bounded as∑

i∈SII
t

mi · ρII
i =

∑
(i⋆,r⋆)∈B⋆

3 ·mi · r⋆

≤
∑

(i⋆,r⋆)∈B⋆

3 ·
∑

j∈B(i⋆,r⋆)

α⋆
j

 = 3 ·
∑
j∈D

α⋆
j ≤ 3 · OPT. (7)

In the following we consider the cost incurred by the Steiner tree T II
t . We have the

following lemma regarding the value of the solution y⋆ + p with respect to LP (2).

▶ Lemma 10.∑
e∈E

de · (y⋆
e + pe) ≤

(
1 + 1

µ

)
· OPT.

Proof. By the construction of p we have∑
e∈E

de · y⋆
e +

∑
e∈E

de · pe ≤ OPT +
∑

i⋆∈SII

∑
i′∈Fµ

d(i′, πi⋆) · z⋆
i′,πi⋆ . (8)

For any (i, j) such that z⋆
i,j > 0, the feasibility of (x⋆, y⋆, z⋆) implies that there must exist

some r ∈ Ri such that j ∈ B(i, r) and x⋆
i,r > 0. This yields∑

i⋆∈SII

∑
i′∈Fµ

d(i′, πi⋆) · z⋆
i′,πi⋆ =

∑
(i⋆,r⋆)∈B⋆

∑
i′∈Fµ

d(i′, πi⋆) · z⋆
i′,πi⋆

≤
∑

(i⋆,r⋆)∈B⋆

∑
i′∈Fµ

r⋆ · z⋆
i′,πi⋆

=
∑

(i⋆,r⋆)∈B⋆

r⋆ ≤
∑

i⋆∈SII

mi⋆

µ
· r⋆ ≤ 1

µ
· OPT,

where the first inequality follows from Lemma 5 and the fact that z⋆
i′πi⋆

> 0 implies that there
exists some r′ ∈ Ri′ such that πi⋆ ∈ B(i′, r′) and x⋆

i′,r′ > 0, the second equality follows from
the construction in the second part of the algorithm, the second inequality from SII ⊆ Fµ

which implies that mi ≥ µ for all i ∈ Fµ, and the last inequality follows from (7). ◀
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By the design of the algorithm for constructing T II
t , the bound in Lemma 10, and the

fact that Jain’s rounding algorithm gives a 2-approximation [18], we have∑
e∈T II

t

de =
∑

e∈Tpre

de +
∑

i⋆∈SII
t

d(i⋆, πi⋆)

≤
(

2 + 2
µ

)
· OPT +

∑
(i⋆,r⋆)∈B⋆

r⋆

≤
(

2 + 2
µ

)
· OPT +

∑
(i⋆,r⋆)∈B⋆

mi⋆

µ
· r⋆ ≤

(
2 + 3

µ

)
· OPT, (9)

where in the second last inequality we use the fact that mi⋆ ≥ µ for all i⋆ ∈ SII
t and in last

inequality we apply Inequality (7). Combining Inequalities (7) and (9), we obtain

∑
i∈SII

t

mi · ρII
i +

∑
e∈T II

t

de ≤
(

5 + 3
µ

)
· OPT.

This proves the following theorem. Choosing µ := 5+
√

37
2 < 5.542 yields a µ-approximation

algorithm.

▶ Theorem 11. The given algorithm is a max
(

µ, 5 + 3
µ

)
-approximation algorithm.

5 NP-hardness Results

In this section, we prove Theorem 2 by showing that the problem remains NP-hard even for
two special cases. First, the following theorem shows that this problem remains NP-hard
even when we only allow clusters with zero radii.

▶ Theorem 12. The connected minimum sum of radii problem is NP-hard when mi = +∞
for all i ∈ F and M = 1.

Proof. We give a reduction from the Metric Steiner Tree problem, which is known to
be NP-complete [20]. Construct an instance of the connected minimum sum of radii problem
where the terminals in the Steiner tree instance become facilities and clients at the same
time. Observe that an optimal solution to this instance opens all terminals, set their radii to
zeroes, and takes a Steiner tree connecting them. ◀

On the other hand, the following theorem shows that the NP-hardness remain true even
when no connection between opened facilities is required. The proof closely follows the
NP-hardness proof of the (non-connected) minimum sum of radii problem [11]; but we present
the full proof here for the sake of completeness.

▶ Theorem 13. The connected minimum sum of radii problem is NP-hard when mi = 1 for
all i ∈ F and M = 0.

Proof. We give a reduction from 3SAT [5]. Consider an instance of 3SAT with n variables
x1, . . . , xn and k clauses C1, . . . , Ck. We construct an instance of the connected minimum
sum of radii problem as follows.

Let F := {x1, x̄1, x2, x̄2, . . . , xn, x̄n} and D := {C1, . . . , Ck, v1, . . . , vn}. To define a metric
on V := F ∪ D, consider a weighted graph on the vertex set V , where we have an edge
(xi, Cj) (or (x̄i, Cj), respectively) of weight 2i−1 if and only if Cj contains xi (or x̄i). We also
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add edges (xi, vi) and (x̄i, vi) of weight 2i−1 for all i = 1, . . . , n. The metric d is then defined
as the shortest path metric on this weighted graph. We claim that the optimal solution value
to this constructed instance is at most

∑n
i=1 2i−1 = 2n − 1 if and only if the 3SAT instance

is satisfiable.
Suppose that the 3SAT instance is satisfiable. Fix a satisfying assignment. For each

variable xi, we open xi (or x̄i, respectively) if xi is true (or false) under the fixed assignment
and set its radius to 2i−1. This yields a solution of value 2n − 1 in which every client can be
assigned.

Conversely, suppose that there exists a solution to the constructed instance of the
connected minimum sum of radii problem whose value is at most 2n − 1. Fix such a solution.
Suppose towards contradiction that there exists some k such that neither xk nor x̄k is open
with radius at least 2k−1. Let k⋆ be the largest such k. Then there must exist some ℓ such
that vk⋆ is assigned to xℓ or x̄ℓ. Note that d(vk⋆ , xℓ) = d(vk⋆ , x̄ℓ) ≥ 2 · 2k⋆−1 + 2ℓ−1 since
every edge incident with xk⋆ or x̄k⋆ is of weight 2k⋆−1 and every edge incident with xℓ or x̄ℓ

is of weight 2ℓ−1. If ℓ > k⋆, the total cost of the solution must be at least∑
i∈{k⋆+1,...,n}\{ℓ}

2i−1 + (2 · 2k⋆−1 + 2ℓ−1) > 2n − 1,

which leads to contradiction. If ℓ < k⋆, the total cost of the solution must be at least∑
i∈{k⋆+1,...,n}

2i−1 + (2 · 2k⋆−1 + 2ℓ−1) > 2n − 1,

leading to contradiction again.
We thus have that, for all i = 1, . . . , n, xi or x̄i (or both) is open with radius at least 2i−1.

Since 2n − 1 =
∑n

i=1 2i−1, this implies that exactly one of xi and x̄i is open with radius
exactly 2i−1 for all i = 1, . . . , n. (Note that opening with zero radius is useless.) Consider a
truth value assignment that sets xi to true if xi is open, and false otherwise. Observe that
this is a satisfying assignment. ◀
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