
Lower Bounds for Adaptive Relaxation-Based
Algorithms for Single-Source Shortest Paths
Sunny Atalig
University of California, Riverside, CA, USA

Alexander Hickerson
University of California, Riverside, CA, USA

Arrdya Srivastav
University of California, Riverside, CA, USA

Tingting Zheng
Guangdong University of Technology, Guangzhou, China

Marek Chrobak
University of California, Riverside, CA, USA

Abstract
We consider the classical single-source shortest path problem in directed weighted graphs. D. Eppstein
proved recently an Ω(n3) lower bound for oblivious algorithms that use relaxation operations to
update the tentative distances from the source vertex. We generalize this result by extending this
Ω(n3) lower bound to adaptive algorithms that, in addition to relaxations, can perform queries
involving some simple types of linear inequalities between edge weights and tentative distances. Our
model captures as a special case the operations on tentative distances used by Dijkstra’s algorithm.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases single-source shortest paths, lower bounds, decision trees

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.8

Funding Research partially supported by National Science Foundation grant CCF-2153723.

1 Introduction

We consider the classical single-source shortest path problem in directed weighted graphs. In
the case when all edge weights are non-negative, Dijkstra’s algorithm [8], if implemented
using Fibonacci heaps, computes the shortest paths in time O(m + n log n), where n is the
number of vertices and m is the number of edges. In the general case, when negative weights
are allowed (but not negative cycles), the Bellman-Ford algorithm [20, 2, 19, 12] solves this
problem in time O(nm).

Both algorithms work by repeatedly executing operations of relaxations. (This type
of algorithms are also sometimes called label-setting algorithms [7].) Let ℓuv denote the
weight of an edge (u, v). For each vertex v, these algorithms maintain a value D[v] (that we
will refer to as the D-value at v) that represents the current upper bound on the distance
from the source vertex s to v. A relaxation operation for an edge (u, v) replaces D[v] by
min {D[v], D[u] + ℓuv}. That is, D[v] is replaced by D[u] + ℓuv if visiting v via u turns out
to give a shorter distance to v, based on the current distance estimates. When the algorithm
completes, each value D[v] is equal to the correct distance from s to v. Dijkstra’s algorithm
executes only one relaxation for each edge, while in the Bellman-Ford algorithm each edge
can be relaxed Θ(n) times.

© Sunny Atalig, Alexander Hickerson, Arrdya Srivastav, Tingting Zheng, and Marek Chrobak;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 8; pp. 8:1–8:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8673-2709
https://doi.org/10.4230/LIPIcs.ISAAC.2024.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Relaxation-Based Algorithms for Single-Source Shortest Paths

We focus on the case of complete directed graphs, in which case m = n(n − 1). For
complete graphs, the number of relaxations in Dijkstra’s algorithm is Θ(n2). In contrast,
the Bellman-Ford algorithm executes Θ(n3) relaxations. This raises the following natural
question: is it possible to solve the shortest-path problem by using asymptotically fewer than
O(n3) relaxations, even if negative weights are allowed?

To make this question meaningful, some restrictions need to be imposed on allowed
algorithms. Otherwise, an algorithm can “cheat”: it can compute the shortest paths without
any explicit use of relaxations, and then execute n − 1 relaxations on the edges in the
shortest-path tree, in order of their hop-distance from s, thus making only n− 1 relaxations.

Eppstein [9] circumvented this issue by assuming a model where the sequence of relax-
ations is independent of the weight assignment. Then the question is whether there is a
short “universal” sequence of relaxations, namely one that works for an arbitrary weight
assignment. The Bellman-Ford algorithm is essentially such a universal sequence of length
O(n3). Eppstein [9] proved that this is asymptotically best possible; that is, each universal
relaxation sequence must have Ω(n3) relaxations. This lower bound applies even in the
randomized case, when the relaxation sequence is generated randomly and the objective is to
minimize the expected number of relaxations.

The question left open in [9] is whether the Ω(n3) lower bound applies to relaxation-based
adaptive algorithms, that generate relaxations based on information collected during the
computation. (This problem is also mentioned by Hu and Kozma [15], who remark that
lower bounds for adaptive algorithms have been “elusive”.) We answer this question in the
affirmative for some natural types of adaptive algorithms.

In our computation model, an algorithm is allowed to perform two types of operations:
(i) queries, which are simple linear inequalities involving edge weights and D-values, and (ii)
relaxation updates, that modify D-values. The action at each step depends on the outcomes
of the earlier executed queries. Such algorithms can be represented as decision trees, with
queries and updates in their nodes, and with each query node having two children, one
corresponding to the “yes” outcome and the other to the “no” outcome.

Specifically, we study query/relaxation-based algorithms that can make queries of three
types:
D-comparison query: “D[u] < D[v]?”, for two vertices u, v,
Weight-comparison query: “ℓuv < ℓxy?”, for two edges (u, v), (x, y),
Edge query: “D[u] + ℓuv < D[v]?”, for an edge (u, v),
and can update D-values as follows:
Relaxation update: “D[v]← min {D[v], D[u] + ℓuv}”, for an edge (u, v).

Throughout the paper, for brevity, we will write “D-query” instead of “D-comparison
query” and “weight query” instead of “weight-comparison query”.

We assume that initially D[s] = 0 and D[v] = ℓsv for all vertices v ≠ s. This initialization
and the form of relaxation updates ensure that at all times each value D[v] represents the
length of some simple path from s to v. Thus D-queries and edge queries amount to comparing
the lengths of two paths from s. Further, the D-values induce a tentative approximation of
the shortest-path tree, where a node u is the parent of a node v if the last decrease of D[v]
resulted from a relaxation of edge (u, v). So the algorithm’s decision at each step depends on
this tentative shortest-path tree.

Our contributions. We start by considering algorithms that use only edge queries. For such
algorithms we prove the following Ω(n3) lower bound:

S. Atalig, A. Hickerson, A. Srivastav, T. Zheng, and M. Chrobak 8:3

▶ Theorem 1. (a) Let A be a deterministic query/relaxation-based algorithm for the single-
source shortest path problem that uses only edge queries. Then the running time of A is
Ω(n3), even if the weights are non-negative and symmetric (that is, the graph is undirected).
(b) If A is a randomized algorithm then the same Ω(n3) lower bound holds for A’s expected
running time.

We first give the proof of Theorem 1(a), the lower bound for deterministic algorithms. In
this proof, (in Section 3), we view the computation of A as a game against an adversary who
gradually constructs a weight assignment, consistent with the queries, on which most of the
edge queries performed by A will have negative outcomes, thus revealing little information
to A about the structure of the shortest-path tree.

Then, in Section 4, we show how to extend this lower bound to all three types of queries
if negative weights are allowed, proving Theorem 2(a) below.

▶ Theorem 2. (a) Let A be a deterministic query/relaxation algorithm for the single-source
shortest path problem that uses the three types of queries: D-queries, weight-queries, and edge
queries, as well as relaxation updates. Then the running time of A is Ω(n3). (b) If A is a
randomized algorithm then the same Ω(n3) lower bound holds for A’s expected running time.

Our query/relaxation model captures as a special case the operations on tentative distances
used by Dijkstra’s algorithm, because D-queries are sufficient to maintain the ordering of
vertices according to their D-values. More broadly, Theorem 2 may be helpful in guiding
future research on speeding up shortest-path algorithms for the general case, when negative
weights are allowed, by showing limitations of naïve approaches based on extending Dijkstra’s
algorithm.

The proof of Theorem 2(a) is essentially via a reduction, showing that the model with all
three types of queries can be reduced to the one with only edge queries, and then applying the
lower bound from Theorem 1(a). This reduction modifies the weight assignment, making it
asymmetric and introducing negative weights. As a side result, we also observe in Theorem 4
that this reduction works even for arbitrary (not necessarily complete) graphs, giving a
lower bound that generalizes the one in [9], as it applies to adaptive algorithms in our
query/relaxation model.

Finally, in Section 5 we extend both lower bounds to randomized algorithms. The
proofs are based on Yao’s principle [22]; that is, we give a probability distribution on weight
assignments on which any deterministic algorithm performs poorly.

Our lower bound results are valid even if all weights are integers of polynomial size. In the
proof of Theorem 1 all weights are non-negative integers with maximum value ℓmax = O(n).
The proof of Theorem 2 uses Golomb rulers [21, 10, 4] (also known as Sidon sets) to construct
weight assignments with maximum value ℓmax = O(n4). In the randomized case, these
bounds increase by a factor of O(n).

As explained near the end of Section 5, the lower bounds for expectation in Theorems 1(b)
and 2(b) can be quite easily extended to high-probability bounds.

Related work. As earlier mentioned, the Bellman-Ford algorithm can be thought of as a
universal relaxation sequence. It consists of n− 1 iterations with each iteration relaxing all
edges in some pre-determined order, so the length of this sequence is (1+o(1))n3. The leading
constant 1 in this bound was reduced to 1

2 by Yen [23], who designed a universal sequence
with (1

2 + o(1))n3 relaxations. Eppstein’s lower bound in [9] shows in fact a lower bound of
1
6 on the leading constant, and just recently Hu and Kozma [15] proved that constant 1

2 is in
fact optimal.

ISAAC 2024

8:4 Relaxation-Based Algorithms for Single-Source Shortest Paths

Bannister and Eppstein [1] showed that the leading constant can be reduced to 1
3 with

randomization, namely that there is a probability distribution on relaxation sequences for
which a sequence, drawn from this distribution, will compute correct distances in expected
time (1

3 + o(1))n3 (or even with high probability). Eppstein’s lower bound proof [9] for
randomized sequences shows that this constant is at least 1

12 .
Some of the above-mentioned papers extend the results to graphs that are not neces-

sarily complete. In particular, Eppstein [9] proved that for n-vertex graphs with m edges,
Ω(mn/ log n) relaxations are necessary.

The average-case complexity of the Bellman-Ford and Dijkstra’s algorithms has also been
studied. For example, Meyer et al. [18] show that the Bellman-Ford algorithm requires Ω(n2)
steps on average, if the weights are uniformly distributed random numbers from interval [0, 1].

Some work has been done on improving lower and upper bounds in models beyond
our query/relaxation setting. Of those, the recent breakthrough paper by Fineman [11] is
particularly relevant. It gives a randomized Õ(mn8/9)-expected-time algorithm for computing
single-source shortest paths with arbitrary weights. Fineman’s computation model is not far
from ours in the sense that the weights are arbitrary real numbers and the only arithmetic
operations on weights are additions and subtractions, but it also needs branch instructions
that cannot be expressed using our queries.

The special case when weights are integers is natural and has been extensively investigated
(see [6, 13, 3], for example). In the integer domain one can extract information about the
weight distribution, and thus about the structure of the shortest-path tree, using operations
other than linear inequalities involving weights. The state-of-the-art in this model is the
(randomized) algorithm by Bernstein et al. [3] that achieves running time O(m log8 n log W)
with high probability for weight assignments where the smallest weight is at least −W

(and W ≥ 2).
Some lower bounds have also been reported for related problems, for example for shortest

paths with restrictions on the number of hops [5, 14, 17] or k-walks [16].

2 Preliminaries

The input is a weighted complete directed graph G. The set of all vertices of G is denoted
by V , and s ∈ V is designated as the start vertex. The set of all edges of G is denoted by E

and a weight assignment is a function ℓ : E → Z. (While real-valued weights are common in
the literature, in our constructions we only need integers.) We will use notations ℓ(u, v) and
ℓuv for the weight of an edge (u, v). By ℓmax we denote the maximum absolute value of an
edge weight, that is ℓmax = max(u,v)∈E |ℓuv|.

Whenever we write “path” we mean a ”simple path”, that is a path where each vertex is
visited at most once. The distance from x to y is defined as the length of the shortest path
from x to y. We will assume that the input graph does not have negative cycles. Note that
this assumption gives an algorithm additional information that can potentially be used to
reduce the running time.

The edges in the shortest paths from s to all other vertices form a tree that is called the
shortest-path tree. The root of this tree is s. (There is a minor subtlety here related to ties.
A more precise statement is that there is a way to break ties, so that the shortest paths form
a tree.)

Formalizing query/relaxation models. We now formally define our computation model.
We assume that each vertex v has an associated value D[v], called the D-value at v. Initially
D[s] = 0 and D[v] = ℓsv for v ̸= s. A query is a boolean function whose arguments are edge

S. Atalig, A. Hickerson, A. Srivastav, T. Zheng, and M. Chrobak 8:5

weights and D-values. A query model Q is simply a set of allowed queries. For example,
the model that has only edge queries is Q =

{
1D[v]<D[u]+ℓuv

| (u, v) ∈ E
}

, where 1ξ is the
indicator function for a predicate ξ. The query/relaxation model in Theorem 1 has query
model Q consisting of all D-queries, weight-queries, and edge queries. (The reduction in
Section 4 is actually for an even more general query model.)

An algorithm A using a query/relaxation model Q is then a decision tree, where each
internal node corresponds to either a query from Q (with one “yes” and one “no” branch)
or a relaxation operation (which has one branch), and each leaf is a relaxation operation.
(These leaves have no special meaning.) With this definition, at any step of the computation,
D[v] represents the length of a path from s to v. This decision tree must correctly compute
all distances from s; that is, for each weight assignment ℓ, when the computation of A reaches
a leaf then for each vertex v the value of D[v] must be equal to the distance from s to v.

The running time of A for a weight assignment ℓ is defined as the number of steps
performed by A until each value D[v] is equal to the correct distance from s to v. Notice
that this is not the same as the depth of the decision tree, which could be greater. (This
definition matches the concept of “reduced cost” used in [9] for non-adaptive algorithms.
For deterministic algorithms we could as well define the running time as the maximum tree
depth, but this definition wouldn’t work in the randomized case.)

Edge weights using potential functions. We define a potential function as a function
ϕ : V → Z with ϕ(s) = 0. (These functions are also sometimes called price functions in the
literature.) To reduce clutter, we will sometimes write the potential value on v as ϕv instead
of ϕ(v).

A potential function induces a weight assignment ∆ϕ defined by ∆ϕ(u, v) = ϕv − ϕu,
for each (u, v) ∈ E. Such potential-induced weights satisfy the following path independence
property: For any two vertices u, v, all paths from u to v have the same length, namely
∆ϕ(u, v). Note that ∆ϕ will have some negative weights, unless ϕ is identically 0, but it does
not form negative cycles. Also, every spanning tree rooted at s is a shortest-path tree for ∆ϕ.

Any weight assignment ℓ can be combined with a potential function ϕ to obtain a new
weight assignment ℓ′ = ℓ + ∆ϕ. Such ℓ′ satisfies the following distance preservation property:
For any two vertices u, v and any path P from u to v, we have ℓ′(P) = ℓ(P) + ϕv − ϕu.

Due to the above properties, potential functions have played a key role in the most
recent single-source shortest path algorithms [3, 11], in particular being used to transform
a negative weight assignment into a non-negative one so that Dijkstra’s algorithm can be
applied. However, in this paper we will use them for an entirely different purpose, which is to
construct difficult weight assignments in Section 4. Roughly, a potential-induced assignment
∆ϕ can act as a “mask” on top of existing weights that renders D-queries and weight queries
useless.

3 Lower Bound for Deterministic Algorithms with Edge Queries

This section gives the proof of Theorem 1(a). That is, we prove that every deterministic
algorithm that uses relaxations and edge queries needs to make Ω(n3) operations to compute
correct distances. This lower bound applies even if all weights are non-negative and the
weight assignment is symmetric. (One can think of it as an undirected graph, although we
emphasize that in the proof below we use directed edges.)

For the proof, fix an algorithm A. We will show how to construct a weight assignment
such that only after Ω(n3) operations the D-values computed by A represent the correct
distances from the source vertex.

ISAAC 2024

8:6 Relaxation-Based Algorithms for Single-Source Shortest Paths

Each weight assignment considered in our construction is symmetric and is uniquely
specified by a permutation of the vertices. The weight assignment corresponding to a
permutation π = x0, x1, ..., xn−1, where x0 = s, is defined as follows: for any 0 ≤ i < j < n,

ℓπ(xi, xj) =

2 if j = i + 1
L− 5i/2 if j ≥ i + 2 and i is even
L if j ≥ i + 2 and i is odd

where L is some sufficiently large integer, say L = 5n. Then the shortest path tree is just a
Hamiltonian path x0, x1, ..., xn−1. Note that the distance between any two vertices is less
than 2n, while each edge not on this path has length larger than 2n.

The proof is by showing an adversary strategy that gradually constructs a permutation
of the vertices in response to A’s operations. The strategy consists of (n − 1)/2 phases.
(For simplicity, assume that n is odd.) When a phase k starts, for k = 1, ..., (n− 1)/2, the
adversary will have already revealed a prefix Xk−1 = x0, x1, ..., x2k−2 of the final permutation.
The goal of this phase is to extend Xk−1 by two more vertices, responding to A’s queries and
updates so as to force A to make as many operations as possible within the phase, without
revealing anything about the rest of the permutation.

To streamline the proof, we think about the initial state as following the non-existent
0′th phase, and we assume that the D-values for all vertices other than s are initialized to
L + 1, instead of L.

We now describe the adversary strategy in phase k, by specifying how the adversary
responds to each operation of A executed in this phase. Let Yk−1 = V \Xk−1, let A be set
of the edges from x2k−2 to Yk−1 and B be the set of edges inside Yk−1. The adversary will
maintain marks on the edges in A ∪B, starting with all edges unmarked. We will say that
A accesses an edge (u, v) if it executes either an edge query or a relaxation for (u, v).

The idea is this: because of the choice of edge weights and the invariants on the D-values
(to be presented soon), each edge query for an edge (x2k−2, y) ∈ A not yet relaxed in this
phase will have a positive outcome. This way, these responses will not reveal what the
next vertex x2k−1 on the path is. The adversary waits until A relaxes all these edges, and
keeps track of these relaxations by marking the relaxed edges. At the same time, A may be
accessing edges in B. The adversary waits until the last access of A to an edge (u, v) ∈ B

for which edge (x2k−2, u) is already marked. Until this point, all queries to edges in B have
negative outcomes. Only this last edge will have a positive outcome to an edge query, if
it’s made by A, and the adversary will further make sure that this edge gets relaxed, before
ending the phase.

To formalize this, let (u, v) be the edge accessed by A in the current operation. We
describe the adversary’s response by distinguishing several cases:
(s1) (u, v) = (x2k−2, v) ∈ A. If this is a relaxation, mark (u, v). If this is an edge query do

this: if (u, v) is unmarked, respond “yes”, else respond “no”.
(s2) (u, v) ∈ B. We have two sub-cases depending on the type of access.

Relaxation: If (x2k−2, u) is marked, mark (u, v). If all edges in A ∪B are marked, end
phase k.

Edge query: If (x2k−2, u) is not marked, respond “no”. So suppose that (x2k−2, u) is
marked. In that case, if (u, v) is not the last unmarked edge in A ∪ B, mark it and
respond “no”. If (u, v) is the last unmarked edge, respond “yes” (without marking).

(s3) (u, v) /∈ A ∪B. If this is an edge query, respond “no”. If this is a relaxation for (u, v),
do nothing.

S. Atalig, A. Hickerson, A. Srivastav, T. Zheng, and M. Chrobak 8:7

<latexit sha1_base64="YeQtqknljTTdAxrXscbF67q4c7Y=">AAAB8HicbZC7SgNBFIbPxluMt0RLm8EgWIXdgNFGCNhYRjAXSUKYncwmQ2Zml5lZMSx5BCsbC0XETnwUKztbn8TJpdDEHwY+/v8c5pzjR5xp47pfTmppeWV1Lb2e2djc2t7J5nZrOowVoVUS8lA1fKwpZ5JWDTOcNiJFsfA5rfuD83Fev6FKs1BemWFE2wL3JAsYwcZa1xqdodtO4o462bxbcCdCi+DNIF/OvX7cfb8XK53sZ6sbklhQaQjHWjc9NzLtBCvDCKejTCvWNMJkgHu0aVFiQXU7mQw8QofW6aIgVPZJgybu744EC62HwreVApu+ns/G5n9ZMzbBaTthMooNlWT6URBzZEI03h51maLE8KEFTBSzsyLSxwoTY2+UsUfw5ldehFqx4JUKx5devlyCqdKwDwdwBB6cQBkuoAJVICDgHh7hyVHOg/PsvExLU86sZw/+yHn7AUXck8s=</latexit>s = x0
<latexit sha1_base64="odB5olW20Dwhv8bpB2WKXbjs+nI=">AAAB6nicbZC7SgNBFIbPeo3xlmhpMxgEq7ATMFoGbCwjmgskS5idzCZDZmeXmVkxLHmENBaKWGrpo1jZ2fokTi6FJv4w8PH/5zDnHD8WXBvX/XJWVtfWNzYzW9ntnd29/Vz+oK6jRFFWo5GIVNMnmgkuWc1wI1gzVoyEvmANf3A5yRt3TGkeyVszjJkXkp7kAafEWOvmvoM7uYJbdKdCy4DnUKjkXz/G3++laif32e5GNAmZNFQQrVvYjY2XEmU4FWyUbSeaxYQOSI+1LEoSMu2l01FH6MQ6XRREyj5p0NT93ZGSUOth6NvKkJi+Xswm5n9ZKzHBhZdyGSeGSTr7KEgEMhGa7I26XDFqxNACoYrbWRHtE0WosdfJ2iPgxZWXoV4q4nLx7BoXKmWYKQNHcAyngOEcKnAFVagBhR6M4RGeHOE8OM/Oy6x0xZn3HMIfOW8/fJyRqA==</latexit>x1

<latexit sha1_base64="I0w2JDb35DS2GrJrDK9DL9vnNVE=">AAAB6HicbZDLSsNAFIZPvNZ6q7p0EyyCq5IUbzsLbly2YC/QhjKZnrRjJ5MwMxFK6BO4caFIXfpI7nwM38BJ24W2/jDw8f/nMOccP+ZMacf5slZW19Y3NnNb+e2d3b39wsFhQ0WJpFinEY9kyycKORNY10xzbMUSSehzbPrD2yxvPqJULBL3ehSjF5K+YAGjRBurVu4Wik7JmcpeBncOxZvvSab3arfw2elFNAlRaMqJUm3XibWXEqkZ5TjOdxKFMaFD0se2QUFCVF46HXRsnxqnZweRNE9oe+r+7khJqNQo9E1lSPRALWaZ+V/WTnRw7aVMxIlGQWcfBQm3dWRnW9s9JpFqPjJAqGRmVpsOiCRUm9vkzRHcxZWXoVEuuZeli5pbrJzDTDk4hhM4AxeuoAJ3UIU6UEB4ghd4tR6sZ+vNmsxKV6x5zxH8kfXxA+f+kXY=</latexit>

2
<latexit sha1_base64="I0w2JDb35DS2GrJrDK9DL9vnNVE=">AAAB6HicbZDLSsNAFIZPvNZ6q7p0EyyCq5IUbzsLbly2YC/QhjKZnrRjJ5MwMxFK6BO4caFIXfpI7nwM38BJ24W2/jDw8f/nMOccP+ZMacf5slZW19Y3NnNb+e2d3b39wsFhQ0WJpFinEY9kyycKORNY10xzbMUSSehzbPrD2yxvPqJULBL3ehSjF5K+YAGjRBurVu4Wik7JmcpeBncOxZvvSab3arfw2elFNAlRaMqJUm3XibWXEqkZ5TjOdxKFMaFD0se2QUFCVF46HXRsnxqnZweRNE9oe+r+7khJqNQo9E1lSPRALWaZ+V/WTnRw7aVMxIlGQWcfBQm3dWRnW9s9JpFqPjJAqGRmVpsOiCRUm9vkzRHcxZWXoVEuuZeli5pbrJzDTDk4hhM4AxeuoAJ3UIU6UEB4ghd4tR6sZ+vNmsxKV6x5zxH8kfXxA+f+kXY=</latexit>

2

<latexit sha1_base64="6cFxsk9744m6zi34EK6jV63SEHY=">AAAB6HicdVDLSsNAFJ3UV62v+ti5GSyCqzBJim13BTcuW7APaEOZTCft2MkkzEyEEvoFblwo4tZPcuffOE0VVPTAhcM593LPvUHCmdIIvVuFtfWNza3idmlnd2//oHx41FVxKgntkJjHsh9gRTkTtKOZ5rSfSIqjgNNeMLta+r07KhWLxY2eJ9SP8ESwkBGsjdR2R+UKspFbdRseRLbj1b1a1RC3jmpeAzo2ylFpnoQ5WqPy23AckzSiQhOOlRo4KNF+hqVmhNNFaZgqmmAywxM6MFTgiCo/y4Mu4LlRxjCMpSmhYa5+n8hwpNQ8CkxnhPVU/faW4l/eINVh3c+YSFJNBVktClMOdQyXV8Mxk5RoPjcEE8lMVkimWGKizW9K5glfl8L/Sde1nUvbaTuVZhWsUASn4AxcAAfUQBNcgxboAAIouAeP4Mm6tR6sZ+tl1VqwPmeOwQ9Yrx+Mio+u</latexit>

2

<latexit sha1_base64="oSKKU229HLCcO8AoPyM70Gm8n7A=">AAAB6HicdVDLSsNAFJ3UV62v+ti5GSyCqzBJim13BTcuW7APaEOZTCft2MkkzEyEEvoFblwo4tZPcuffOE0VVPTAhcM593LPvUHCmdIIvVuFtfWNza3idmlnd2//oHx41FVxKgntkJjHsh9gRTkTtKOZ5rSfSIqjgNNeMLta+r07KhWLxY2eJ9SP8ESwkBGsjdRGo3IF2citug0PItvx6l6taohbRzWvAR0b5ag0T8IcrVH5bTiOSRpRoQnHSg0clGg/w1IzwumiNEwVTTCZ4QkdGCpwRJWf5UEX8NwoYxjG0pTQMFe/T2Q4UmoeBaYzwnqqfntL8S9vkOqw7mdMJKmmgqwWhSmHOobLq+GYSUo0nxuCiWQmKyRTLDHR5jcl84SvS+H/pOvazqXttJ1KswpWKIJTcAYugANqoAmuQQt0AAEU3INH8GTdWg/Ws/Wyai1YnzPH4Aes1w+Jgo+s</latexit>

0

<latexit sha1_base64="YqStyoaurAx96QowCO7LZ7Ba2ds=">AAAB7HicdVDLSgMxFM3UV62vqks3wSII4pCZqbZdiAVFXLioYB/QlpJJ0zY0kxmSjFBKv8GNC0Xc+gF+ijv/xIUL01ZBRQ9cOJxzL/fc60ecKY3Qq5WYmZ2bX0guppaWV1bX0usbFRXGktAyCXkoaz5WlDNBy5ppTmuRpDjwOa36/ZOxX72mUrFQXOlBRJsB7grWYQRrI5Uv9vt7TiudQTZys27Bg8h2vLyXyxri5lHOK0DHRhNkjt9Pj86e+2+lVvql0Q5JHFChCcdK1R0U6eYQS80Ip6NUI1Y0wqSPu7RuqMABVc3hJOwI7hilDTuhNCU0nKjfJ4Y4UGoQ+KYzwLqnfntj8S+vHutOvjlkIoo1FWS6qBNzqEM4vhy2maRE84EhmEhmskLSwxITbf6TMk/4uhT+Tyqu7RzaB5dOppgFUyTBFtgGu8ABOVAE56AEyoAABm7AHbi3hHVrPViP09aE9TmzCX7AevoAlX2SRw==</latexit>

L� k + 1

<latexit sha1_base64="YqStyoaurAx96QowCO7LZ7Ba2ds=">AAAB7HicdVDLSgMxFM3UV62vqks3wSII4pCZqbZdiAVFXLioYB/QlpJJ0zY0kxmSjFBKv8GNC0Xc+gF+ijv/xIUL01ZBRQ9cOJxzL/fc60ecKY3Qq5WYmZ2bX0guppaWV1bX0usbFRXGktAyCXkoaz5WlDNBy5ppTmuRpDjwOa36/ZOxX72mUrFQXOlBRJsB7grWYQRrI5Uv9vt7TiudQTZys27Bg8h2vLyXyxri5lHOK0DHRhNkjt9Pj86e+2+lVvql0Q5JHFChCcdK1R0U6eYQS80Ip6NUI1Y0wqSPu7RuqMABVc3hJOwI7hilDTuhNCU0nKjfJ4Y4UGoQ+KYzwLqnfntj8S+vHutOvjlkIoo1FWS6qBNzqEM4vhy2maRE84EhmEhmskLSwxITbf6TMk/4uhT+Tyqu7RzaB5dOppgFUyTBFtgGu8ABOVAE56AEyoAABm7AHbi3hHVrPViP09aE9TmzCX7AevoAlX2SRw==</latexit>

L� k + 1

<latexit sha1_base64="YqStyoaurAx96QowCO7LZ7Ba2ds=">AAAB7HicdVDLSgMxFM3UV62vqks3wSII4pCZqbZdiAVFXLioYB/QlpJJ0zY0kxmSjFBKv8GNC0Xc+gF+ijv/xIUL01ZBRQ9cOJxzL/fc60ecKY3Qq5WYmZ2bX0guppaWV1bX0usbFRXGktAyCXkoaz5WlDNBy5ppTmuRpDjwOa36/ZOxX72mUrFQXOlBRJsB7grWYQRrI5Uv9vt7TiudQTZys27Bg8h2vLyXyxri5lHOK0DHRhNkjt9Pj86e+2+lVvql0Q5JHFChCcdK1R0U6eYQS80Ip6NUI1Y0wqSPu7RuqMABVc3hJOwI7hilDTuhNCU0nKjfJ4Y4UGoQ+KYzwLqnfntj8S+vHutOvjlkIoo1FWS6qBNzqEM4vhy2maRE84EhmEhmskLSwxITbf6TMk/4uhT+Tyqu7RzaB5dOppgFUyTBFtgGu8ABOVAE56AEyoAABm7AHbi3hHVrPViP09aE9TmzCX7AevoAlX2SRw==</latexit>

L� k + 1
<latexit sha1_base64="GqOgBwx5UvlLADz/Majd3geOztw=">AAAB73icbZDLSgMxFIbP1Futt3rZuQkOghvLTMHqsuDGZQV7gXYomTTThmYyY5JRy9CXcCNoEXHn67jzUdyZXhba+kPg4//PIeccP+ZMacf5sjJLyyura9n13Mbm1vZOfnevpqJEElolEY9kw8eKciZoVTPNaSOWFIc+p3W/fznO63dUKhaJGz2IqRfirmABI1gbq/HQTov9U3fYzttOwZkILYI7A7t88G2/j+6fK+38Z6sTkSSkQhOOlWq6Tqy9FEvNCKfDXCtRNMakj7u0aVDgkCovncw7RMfG6aAgkuYJjSbu744Uh0oNQt9Uhlj31Hw2Nv/LmokOLryUiTjRVJDpR0HCkY7QeHnUYZISzQcGMJHMzIpID0tMtDlRzhzBnV95EWrFglsqnF27drkEU2XhEI7gBFw4hzJcQQWqQIDDI7zAyLq1nqxX621amrFmPfvwR9bHD39Pk04=</latexit>x2k�1

<latexit sha1_base64="BD/QwiBXu+lTlxjbWN21EeStPwc=">AAAB7XicbZDLSgMxFIbP1FttvVRddhMsgqsyU7C6LLjQZQV7gXYomUzaxmaSIcmIZeg7uHFREbc+iS/gzrcxvSy09YfAx/+fQ845QcyZNq777WQ2Nre2d7K7ufze/sFh4ei4qWWiCG0QyaVqB1hTzgRtGGY4bceK4ijgtBWMrmd565EqzaS4N+OY+hEeCNZnBBtrNZ96aWU06RVKbtmdC62Dt4RSLX8zLX62w3qv8NUNJUkiKgzhWOuO58bGT7EyjHA6yXUTTWNMRnhAOxYFjqj20/m0E3RmnRD1pbJPGDR3f3ekONJ6HAW2MsJmqFezmflf1klM/8pPmYgTQwVZfNRPODISzVZHIVOUGD62gIlidlZEhlhhYuyBcvYI3urK69CslL1q+eLOK9WqsFAWinAK5+DBJdTgFurQAAIP8AxTeHWk8+K8Oe+L0oyz7DmBP3I+fgBU4JHk</latexit>x2k

<latexit sha1_base64="L9GrjMNXJ6pGSO0t1DSTiyIQFU4=">AAAB63icbZDLSgMxFIbP1Futt6pLN8EiuLHMlHrZiAVFXFawF2iHkkkzbZhMZkgyQil9BTcuFHHrC/go7nwTFy7MtF1o6w+Bj/8/h5xzvJgzpW3708osLC4tr2RXc2vrG5tb+e2duooSSWiNRDySTQ8rypmgNc00p81YUhx6nDa84DLNG/dUKhaJOz2IqRvinmA+I1inVjk4KnXyBbtoj4XmwZlC4eL76vz6PfiqdvIf7W5EkpAKTThWquXYsXaHWGpGOB3l2omiMSYB7tGWQYFDqtzheNYROjBOF/mRNE9oNHZ/dwxxqNQg9ExliHVfzWap+V/WSrR/5g6ZiBNNBZl85Ccc6Qili6Muk5RoPjCAiWRmVkT6WGKizXly5gjO7MrzUC8VnZPi8a1TqJRhoizswT4cggOnUIEbqEINCPThAZ7g2QqtR+vFep2UZqxpzy78kfX2A59SkbA=</latexit>

4k � 2
<latexit sha1_base64="4+47qwHXBIHSwHlqSQVuKz7BjSA=">AAAB6XicbZDLSsNAFIZP6q3WW9Wlm8EiuCqJ1MvOghuXVewF2lAm00k7ZDIJMxOhhL6BGxeKdutT+BrufBsnaRfa+sPAx/+fw5xzvJgzpW372yqsrK6tbxQ3S1vbO7t75f2DlooSSWiTRDySHQ8rypmgTc00p51YUhx6nLa94CbL249UKhaJBz2OqRvioWA+I1gb674W9MsVu2rnQsvgzKFy/fmeadrol796g4gkIRWacKxU17Fj7aZYakY4nZR6iaIxJgEe0q5BgUOq3DSfdIJOjDNAfiTNExrl7u+OFIdKjUPPVIZYj9Rilpn/Zd1E+1duykScaCrI7CM/4UhHKFsbDZikRPOxAUwkM7MiMsISE22OUzJHcBZXXobWWdW5qJ7fOZV6DWYqwhEcwyk4cAl1uIUGNIGAD0/wAq9WYD1bb9Z0Vlqw5j2H8EfWxw9mcZG1</latexit>

4k

<latexit sha1_base64="JWMo258ZgE3Dq8sSygzuXK8FpYg=">AAACAXicbVC7SgNBFJ31GeMraiPYDAbBxrAbjApBDChiYRHBPCAbwuxkkgw7+2DmrhiW2PgrNhaKpPUv7PwTCwsnj0ITD1w4nHMv997jhIIrMM1PY2Z2bn5hMbGUXF5ZXVtPbWyWVRBJyko0EIGsOkQxwX1WAg6CVUPJiOcIVnHc84FfuWNS8cC/hW7I6h5p+7zFKQEtNVLb1/gA51xs521g9yC9OJA9O4+zjVTazJhD4GlijUn67Pvi9LLvfhUbqQ+7GdDIYz5QQZSqWWYI9ZhI4FSwXtKOFAsJdUmb1TT1icdUPR5+0MN7WmniViB1+YCH6u+JmHhKdT1Hd3oEOmrSG4j/ebUIWif1mPthBMyno0WtSGAI8CAO3OSSURBdTQiVXN+KaYdIQkGHltQhWJMvT5NyNmMdZXI3VrpwiEZIoB20i/aRhY5RAV2hIiohih7QE3pBr8aj8Wy8Gf1R64wxntlCf2C8/wCnhZl9</latexit>

L� 5k or 2

<latexit sha1_base64="JWMo258ZgE3Dq8sSygzuXK8FpYg=">AAACAXicbVC7SgNBFJ31GeMraiPYDAbBxrAbjApBDChiYRHBPCAbwuxkkgw7+2DmrhiW2PgrNhaKpPUv7PwTCwsnj0ITD1w4nHMv997jhIIrMM1PY2Z2bn5hMbGUXF5ZXVtPbWyWVRBJyko0EIGsOkQxwX1WAg6CVUPJiOcIVnHc84FfuWNS8cC/hW7I6h5p+7zFKQEtNVLb1/gA51xs521g9yC9OJA9O4+zjVTazJhD4GlijUn67Pvi9LLvfhUbqQ+7GdDIYz5QQZSqWWYI9ZhI4FSwXtKOFAsJdUmb1TT1icdUPR5+0MN7WmniViB1+YCH6u+JmHhKdT1Hd3oEOmrSG4j/ebUIWif1mPthBMyno0WtSGAI8CAO3OSSURBdTQiVXN+KaYdIQkGHltQhWJMvT5NyNmMdZXI3VrpwiEZIoB20i/aRhY5RAV2hIiohih7QE3pBr8aj8Wy8Gf1R64wxntlCf2C8/wCnhZl9</latexit>

L� 5k or 2

<latexit sha1_base64="JWMo258ZgE3Dq8sSygzuXK8FpYg=">AAACAXicbVC7SgNBFJ31GeMraiPYDAbBxrAbjApBDChiYRHBPCAbwuxkkgw7+2DmrhiW2PgrNhaKpPUv7PwTCwsnj0ITD1w4nHMv997jhIIrMM1PY2Z2bn5hMbGUXF5ZXVtPbWyWVRBJyko0EIGsOkQxwX1WAg6CVUPJiOcIVnHc84FfuWNS8cC/hW7I6h5p+7zFKQEtNVLb1/gA51xs521g9yC9OJA9O4+zjVTazJhD4GlijUn67Pvi9LLvfhUbqQ+7GdDIYz5QQZSqWWYI9ZhI4FSwXtKOFAsJdUmb1TT1icdUPR5+0MN7WmniViB1+YCH6u+JmHhKdT1Hd3oEOmrSG4j/ebUIWif1mPthBMyno0WtSGAI8CAO3OSSURBdTQiVXN+KaYdIQkGHltQhWJMvT5NyNmMdZXI3VrpwiEZIoB20i/aRhY5RAV2hIiohih7QE3pBr8aj8Wy8Gf1R64wxntlCf2C8/wCnhZl9</latexit> L
�
5k

or
2

Figure 1 The state of the game right after phase k ends. Framed numbers next to vertices
represent their D-values.

Let (u∗, v∗) be the edge marked last in this phase. This is the edge (u, v) ∈ B from rule (s2)
that becomes marked when it gets relaxed with all other edges in B already marked, ending
the phase. At this point the adversary lets x2k−1 = u∗ and x2k = v∗, and (if k < (n− 1)/2)
starts phase k + 1.

For any permutation π of V starting with s, through the rest of the proof we denote
by Dπ the variable D-values produced by A when processing weight assignment ℓπ. For
each k = 0, 1, ..., (n− 1)/2, the (2k + 1)-permutation x0, x1, ..., x2k chosen by the adversary
following the strategy above will be called the kth cruel prefix.

Invariant (I). We claim that the following invariant holds for each k = 0, 1, ..., (n− 1)/2.
Let x0, x1, ..., x2k be the adversary’s kth cruel prefix. Then for each permutation π starting
with x0, x1, ..., x2k, the following properties hold when phase k of the adversary strategy ends
(see Figure 1 for illustration):
(I0) All adversary’s answers to A’s queries in phases 1, 2, ..., k are correct for weight assign-

ment ℓπ.
(I1) Dπ[xj] = 2j for j = 0, 1,, 2k.
(I2) If w ∈ V \ {x0, x1, ..., x2k} then Dπ[w] = L− k + 1.

We postpone the proof of this invariant, and show first that it implies the Ω(n3) lower
bound. Indeed, from Invariant (I2) we conclude that the D-values will not represent the
correct distances until after the last step of phase (n− 1)/2. Since in each phase k all edges
in the set A∪B for phase k will end up marked, the number of edge accesses in this phase is
at least |A ∪B| = |A|+ |A|(|A| − 1) = |A|2 = (n− 2k + 1)2. Thus, adding up the numbers
of edge accesses in all phases k = 1, 2, ..., (n− 1)/2, we obtain that the total number of steps
in algorithm A is at least (n− 1)2 + (n− 3)2 + ... + 22 = 1

6 n(n2 − 1) = Ω(n3), giving us the
desired lower bound.

It remains to prove Invariant (I). The invariant is true for k = 0, by the way the D-values
are initialized. To argue that the invariant is preserved after each phase k ≥ 1, we show that
within this phase a more general invariant (J) holds, below.

Invariant (J). Let π be a permutation with prefix x0, x1, ..., x2k, let Xk−1 = x0, x1, ..., x2k−2,
and Yk−1 = V \Xk−1. We claim that the following properties are satisfied during the phase,
including right before and right after the phase.
(J0) All adversary’s answers to A’s queries up to the current step are correct for ℓπ.
(J1) Dπ[xj] = 2j for j = 0, 1, ..., 2k − 2.

(J2.1) If w ∈ Yk−1 \ {u∗, v∗} then Dπ[w] =
{

L− k + 2 if (x2k−2, w) unmarked
L− k + 1 if (x2k−2, w) marked

ISAAC 2024

8:8 Relaxation-Based Algorithms for Single-Source Shortest Paths

(J2.2) If w = u∗ then Dπ[u∗]=
{

L− k + 2 if (x2k−2, u∗) unmarked
4k − 2 if (x2k−2, u∗) marked

(J2.3) If w = v∗ then Dπ[v∗]=

L− k + 2 if (x2k−2, v∗) unmarked
L− k + 1 if (x2k−2, v∗) marked and (u∗, v∗) unmarked
4k if (u∗, v∗) marked

When phase k starts, these properties are identical to Invariant (I) applied to the ending of
phase k− 1. We now show that these invariants are preserved within a phase k. Assume that
the invariants hold up to some step, and consider the next operation when A accesses an
edge (u, v). If w ̸= v then Dπ[w] is not affected, so assume that w = v. In the case analysis
below, if the current step is a relaxation, we will use notation Dπ[v] for the D-value at v

before this step and D′
π[v] for the D-value at v after the step.

Case (s1). (u, v) = (x2k−2, v) ∈ A. We consider separately the cases when this step is a
relaxation or an edge query.
Relaxation: Suppose first that v ̸= u∗. Then we have Dπ[x2k−2] + ℓ(x2k−2, v) = (4k −

4) + (L− 5k + 5) = L− k + 1. Thus, using (J2.1) and (J2.3), if (x2k−2, v) was already
marked then nothing changes, and if (x2k−2, v) wasn’t marked then D′

π[v] = L− k + 1,
preserving (J2) because (x2k−2, v) gets marked. (Note that in the special case v = v∗,
edge (u∗, v∗) is not marked yet.)
For v = u∗ the argument is similar, except that now we use (J2.2): We have Dπ[x2k−2] +
ℓ(x2k−2, u∗) = (4k − 4) + 2 = 4k − 2, so either (x2k−2, u∗) is already marked and nothing
changes, or D′

π[u∗] = 4k − 2 and (x2k−2, u∗) gets marked.
Edge query: The reasoning here is analogous to the case of relaxation above. If v ̸= u∗, then

Dπ[x2k−2] + ℓ(x2k−2, v) = L−k + 1 and the correctness of the adversary’s answers follows
from (J2.1) and (J2.3), If v = u∗, then Dπ[x2k−2] + ℓ(x2k−2, u∗) = (4k − 4) + 2 = 4k − 2,
and the correctness of the adversary’s answers follows from (J2.2).

Case (s2). (u, v) ∈ B. We consider separately the cases when this step is a relaxation or
an edge query.
Relaxation: Suppose first that u ̸= u∗. Then Dπ[u] ≥ L − k + 1, by (J2.1) and (J2.3).

(This is true for the special case u = v∗, because (u∗, v∗) is not yet marked.) Since also
ℓ(u, v) ≥ 2, this relaxation will not change the value of Dπ[v].
Next, consider the case u = u∗. If (x2k−2, u∗) is unmarked then (J2.2) also implies (as
in the previous sub-case) that the value of Dπ[v] will not change. So assume now that
(x2k−2, u∗) is marked, in which case Dπ[u∗] = 4k − 2. If v ̸= v∗ then the relaxation
will not change the value of Dπ[v] because ℓ(u∗, v) = L. For v = v∗, we have D′

π[v∗] =
Dπ[u∗] + ℓ(u∗, v∗) = (4k − 2) + 2 = 4k, preserving (J2.3), because this relaxation will
mark (u∗, v∗).

Edge query: If (x2k−2, u) is not marked then, by (J2.1)-(J2.3) we have Dπ[u] = L− k + 2,
and ℓ(u, v) ≥ 2, so the “no” answer by the adversary is correct.
Next, assume that (x2k−2, u) is marked and u ≠ u∗. Then Dπ[u] = L − k + 1, by
conditions (J2.1) and (J2.3) (since (u∗, v∗) is still not marked). So in this case the answer
“no” is also correct.
The final case is when u = u∗ and (x2k−2, u∗) is marked, so Dπ[u∗] = 4k − 2. Now, if
v ̸= v∗ then the adversary responds “no”, and since ℓ(u∗, v) = L, this is correct. For
v = v∗ we have Dπ[u∗] + ℓ(u∗, v∗) = (4k− 2) + 2 = 4k < Dπ[v∗], where the last inequality
is true because (u∗, v∗) is not marked. So the “yes” answer is also correct.

S. Atalig, A. Hickerson, A. Srivastav, T. Zheng, and M. Chrobak 8:9

Case (s3). (u, v) /∈ A∪B. In this case we claim that Dπ[u] + ℓ(u, v) ≥ Dπ[v], which implies
the correctness for both cases, when this operation is a relaxation and edge update. The
argument involves a few cases.

The first case is when u ∈ Yk−1 and v ∈ Xk−1. Then we have Dπ[u]+ℓuv ≥ (4k−2)+2 >

Dπ[v], applying (J1)-(J2.3).
If u ∈ Xk−1 \ {x2k−2} and v ∈ Yk−1 then there are two sub-cases, and in both we

apply (J1) and (J2.1)-(J2.3). If u = x2k−3 in which case ℓ(x2k−3, v) = L, the claim
is trivial. If u = xj for j ≤ 2k − 4, then Dπ[xj] = 2j and ℓ(xj , v) ≥ L − 5j/2, so
Dπ[u] + ℓ(u, v) ≥ (2j) + (L− 5j/2) = L− j/2 ≥ L− k + 2 ≥ Dπ[v].

The final case is when u, v ∈ Xk−1, say u = xi and v = xj . Here we use condition (J1).
If i > j then Dπ[xi] > Dπ[xj]. If i < j − 1 then ℓ(xi, xj) ≥ 2n. If i = j − 1 then
Dπ[xj−1] = 2j − 2, Dπ[xj] = 2j and ℓ(xj−1, xj) = 2. In each of these sub-cases, the claim
holds.
The case analysis above completes the proof of invariants (J0)-(J2.3). By applying these
invariants to the end of the phase, when all edges in A ∪ B are marked, gives us that
invariant (I) holds after the phase, as needed – providing that the phase ends at all.

To complete the analysis of the adversary strategy we need to argue that phase k must
actually end, in order for the D-values to represent correct distances from s. This follows
directly from invariants (J1)-(J2.3), because they imply that before the very last step of the
phase there is at least one vertex in Yn−1 with D-value at least L− k + 1, which is larger
than its distance from s.

It now only remains to remove the assumption that the D-values are initialized to L + 1.
According to our model, they need to be initialized to edge lengths from s, which are:
ℓ(s, x1) = 2 and ℓ(s, v) = L for v ̸= x1 (since s = x0). With this initialization, we only need
to modify the first phase by marking all edges of the form (x0, v) immediately. Invariant (J)
then applies without further modification.

4 Lower Bound for Deterministic Algorithms with Three Types of
Queries

In this section, we prove Theorem 2(a), an Ω(n3) lower bound for deterministic algorithms
using all three types of queries. Our argument is essentially a reduction – we show that any
algorithm A that uses D-queries, weight queries, edge queries and relaxation updates can be
converted into an algorithm B that has the same time complexity as A and uses only edge
queries and relaxations. Our lower bound will then follow from Theorem 1(a).

We start with some initial observations that, although not needed for the proof, contain
some useful insights. Since edge weights do not change, an algorithm can use weight queries
to pre-sort all edges in time O(n2 log n), and then it doesn’t need to make any more weight
queries during the computation. This way, the algorithm’s running time is not affected
as long as it’s at least Ω(n2 log n). Similarly, the algorithm can use D-queries to maintain
the total order of the D-values using, say, a binary search tree, paying a small overhead
of O(log n) for each update operation. Then the algorithm’s decisions at each step can as
well depend on the total ordering of the vertices according to their current D-values. These
changes will add at most an O(log n) factor to the running time.

Potential-oblivious model. Instead of working just with edge queries, we generalize our
argument to potential-oblivious query models. We say that a query model Q is potential-
oblivious if it satisfies the following property for each weight assignment ℓ and potential ϕ:

ISAAC 2024

8:10 Relaxation-Based Algorithms for Single-Source Shortest Paths

for any sequence of relaxations and queries from Q (with the D-values initialized as described
in Section 2), the outcomes of the queries for weight assignments ℓ and ℓ + ∆ϕ are the same.
By routine induction, any algorithm using a potential-oblivious model will perform the same
sequence of queries and relaxations on assignments ℓ and ℓ + ∆ϕ. Also, it will compute
the correct distances on ℓ if and only if it will compute them for ℓ + ∆ϕ, and in the same
number of steps. (To see this, note that for each vertex v the invariant D′[v] = D[v] + ϕ(v)
is preserved, where we use notations D and D′ to distinguish between the D-values in the
computations for ℓ and ℓ′. The respective distances ℓ(s, v) and ℓ′(s, v) satisfy the same
equation.)

For example, the edge query only model is potential-oblivious. Due to our initialization
and properties of relaxations, each value D[v] always corresponds to the length of some path
from s to v. Then the query is equivalent to comparing the length of two paths with the same
start and end points, and the query outcome is the same after adding ∆ϕ, by the distance
preservation property. Using these facts, potential-obliviousness follows from induction on
the number of operations performed.

Golomb-ruler potential. For our proof, we need a potential function ϕ for which in the
induced weight assignment ∆ϕ all edge weights are different. (This naturally implies that
all values of ϕ are also different.) Such an assignment is equivalent to a Golomb ruler
(also known as a Sidon set), which is a set of non-negative integers with unique pair-wise
differences. A simple Golomb ruler can be constructed using fast growing sequences, such as{

2i − 1
}n−1

i=0 , but we are interested in sets contained in a small polynomial-in-n range. The
asymptotic growth of Golomb rulers is well studied; it is known that there are n-element
Golomb rulers that are subsets of {1, 2, ..., N}, for N = n2(1 + o(1)) [10, 21], and that this
bound on N is essentially optimal. Since the Golomb-ruler property is invariant under shifts,
we can assume that a Golomb ruler contains number 0. For our purposes, this means that
there exists a potential function ϕ that induces distinct edge weights with absolute maximum
weight O(n2). ([4] shows that it is possible to obtain smaller maximum weights for certain
classes of non-complete graphs, but this is not relevant to our constructions.) We will call
this function a Golomb-ruler potential.

▶ Theorem 3. Let A be a query/relaxation-based algorithm that uses relaxation updates,
D-queries, weight queries and any queries from a potential-oblivious model Q, and let T (n)
be the running time of A. Then there is an algorithm B with running time O(T (n)) that uses
only relaxation updates and queries from Q.

The idea of the proof is to convert a given weight assignment ℓ into another assignment
ℓ′ such that, if only queries from Q (and relaxations) are used, then (i) ℓ′ is indistinguishable
from ℓ using the queries from Q, and (ii) in ℓ′ the ordering of weights and the ordering of all
D-values are independent of ℓ and, further, the ordering of the D-values is fixed throughout
the computation, even though the D-values themselves may vary. B can do this conversion
“internally” and simulate A on ℓ′, and then it doesn’t need to make any D-queries and weight
queries, because their outcomes are predetermined.

Proof. Let A be a query/relaxation algorithm for that uses D-queries, weight queries, queries
from Q, and relaxation updates. We construct B that uses only queries from Q and relaxation
updates. Let ϕ be the Golomb-ruler potential defined before the theorem. When run on a
weight assignment ℓ, B will internally simulate A on weight assignment ℓ′ = ℓ + c∆ϕ, for
c = 2ℓmaxn + 1. We use notation D′ for the D-values computed by A. The actions of B
depend on the execution of A on ℓ′, as follows:

S. Atalig, A. Hickerson, A. Srivastav, T. Zheng, and M. Chrobak 8:11

When A executes a weight query “ℓ′
uv < ℓ′

xy?”, B directly executes the “yes” branch from
the query if ∆ϕ(u, v) < ∆ϕ(x, y), or the “no” branch otherwise.
When A executes a D-query “D′[u] < D′[v]?”, then B executes the “yes” branch if
ϕu < ϕv, else it executes the “no” branch.

This simulation can be more formally described as converting the decision tree of A into
the decision tree of B. The tree of B is obtained by splicing out each node q representing a
D-query or weight query. This splicing consists of connecting the parent of q to either the
“yes” or “no” child of q, determined by the appropriate inequality involving ϕ, as explained
above.

It remains to prove the correctness of B. We argue first that B will produce correct
distances if run on ℓ′ instead of ℓ. For this, we observe that ℓ′ satisfies the following properties:
(p1) For any two edges e, f , we have ℓ′

e < ℓ′
f if and only if ∆ϕ(e) < ∆ϕ(f).

(p2) For any three vertices u, x, y, any u-to-x path Px and any u-to-y path Py, we have
ℓ′(Px) < ℓ′(Py) if and only if ϕx < ϕy.

Indeed, both properties follow from the choice of c and straighforward calculation. For (p1),
ℓ′

e < ℓ′
f if and only if ℓe − ℓf < c[∆ϕ(f)−∆ϕ(e)], and because |ℓe − ℓf | < c this inequality is

determined by the sign of ∆ϕ(f)−∆ϕ(e), which is always non-zero, by the Golomb-ruler
property. (Note that here we only use that c > 2ℓmax.) The justification for (p2) is similar:
we have ℓ′(Px) = ℓ(Px) + c(ϕx − ϕu) and ℓ′(Py) = ℓ(Py) + c(ϕy − ϕu), so ℓ′(Px) < ℓ′(Py)
if and only if ℓ(Px) − ℓ(Py) < c[ϕy − ϕx], and since |ℓ(Px) − ℓ(Py| < c this inequality is
determined by the sign of ϕy − ϕx.

Properties (p1) and (p2) imply that when we run A on ℓ′, in each weight query we can
equivalently use assignment ∆ϕ instead of ℓ′, and instead of using a D-query we can compare
the corresponding potential values. Therefore B works correctly for ℓ′. But since now B uses
only relaxations and queries from Q, that are potential-oblivious, and ℓ′ is obtained from ℓ

by adding a weight assignment induced by potential cϕ, B’s computation on ℓ will also be
correct. ◀

Theorem 3, together with Theorem 1 implies the Ω(n3) lower bound for query/update-
based algorithms that use D-queries, weight queries, any set of potential-oblivious queries,
and relaxation updates. Since the edge update is potential oblivious, Theorem 2(a) follows.

Further, using the construction from Theorem 2(a), where a weight assignment with
maximum weight O(n) was used, the proof of Theorem 3 shows that Theorem 2(a) holds
even if all weights are bounded by O(n4).

A side result for general graphs. The reduction in the proof of Theorem 3 extends naturally
to arbitrary graphs. In particular, we can extend a result from Eppstein [9]:

▶ Theorem 4. For any n and m where n ≤ m ≤ n(n − 1), there exists a graph with n

nodes and m edges where any deterministic algorithm A using D-queries, weight queries,
and relaxation updates has worst-case running time Ω(nm/ log n). If m = Ω(n1+ε) for some
ε > 0, the lower bound can be improved to Ω(nm).

Proof sketch. We focus on the case where m is arbitrary. First note that the model using
no queries and relaxation updates is equivalent to non-adaptive algorithms (that is, universal
relaxation sequences) described in [9]. (It’s also obvious that the query model using no
queries is potential-oblivious.) Let G be the graph construction described in the proof of [9,
Theorem 3]. In particular, G has n nodes and m edges, and for every non-adaptive algorithm
on G, there is weight assignment that forces Ω(nm/ log n) relaxations. If there exists an

ISAAC 2024

8:12 Relaxation-Based Algorithms for Single-Source Shortest Paths

algorithm A for G using D-queries, weight queries, and relaxation updates that runs in T (n)
time, then by the same construction as in Theorem 3, there also exists an algorithm B using
only relaxation updates that runs in time O(T (n)). Then an o(nm/ log n) running time on
G would contradict the lower-bound on non-adaptive algorithms. The proof for the case
m = Ω(n1+ε) is identical. ◀

As explained in Section 5, the reduction also applies to randomized algorithms, and
because [9] proves the same lower bounds for expected running time for randomized non-
adaptive algorithms, the above bounds also apply to the randomized case.

5 Lower Bounds for Randomized Algorithms

In this section, we extend the proofs in Sections 3 and 4 to obtain Ω(n3) lower bounds for
randomized algorithms, proving Theorem 1(b) and Theorem 2(b). The proofs are based on
Yao’s principle [22]: we give a probability distribution on weight assignments for which the
expectation of each deterministic algorithm’s running time is Ω(n3).

We fix the value of n. Let ℓmax be the maximum absolute value of weights used in the
proof, whose value will be specified later. Let L be the family of all weight assignments
ℓ : E → [−ℓmax, ℓmax]. Denote by A the (finite) set of all deterministic query/relaxation-based
algorithms with running time at most 2n3. We only need to consider algorithms in A, because
any other algorithm in our model can be modified to run in time at most 2n3. To see why,
consider this algorithm’s decision tree. For any node at depth n3, replace its subtree by the
Bellman-Ford relaxation sequence. The resulting tree remains correct, and its depth is at
most 2n3.

For a deterministic algorithm A ∈ A and weight assignment ℓ ∈ L, denote by T (A, ℓ) the
running time of A on assignment ℓ. Let Π(A) be the set of all probability distributions on A
and Π(L) be the set of all probability distributions on L. Any randomized algorithm R is
simply a probability distribution on A, so R ∈ Π(A). Denote by Expx∼θf(x) the expected
value of f(x), for a random variable x from distribution θ. The lemma below is a restatement
of Yao’s principle [22] in our context:

▶ Lemma 5. The following equality holds:

min
R∈Π(A)

max
ℓ∈L

ExpA∼RT (A, ℓ) = max
σ∈Π(L)

min
A∈A

Expℓ∼σT (A, ℓ).

In this lemma, both sides involve the expected running time, with the difference being
that on the left-hand side we consider randomized algorithms and their worst-case inputs,
while the right-hand side involves the probability distribution on input permutations that is
worst for deterministic algorit hms.

Proof of Theorem 1(b) (Sketch).1 We give a probability distribution σ on weight assign-
ments ℓ for which every deterministic algorithm needs Ω(n3) steps in expectation to compute
correct distances. This is sufficient, as then Lemma 5 implies that each randomized algorithm
R makes Ω(n3) steps in expectation on some weight assignment.

1 A detailed proof will appear in the full version of this paper.

S. Atalig, A. Hickerson, A. Srivastav, T. Zheng, and M. Chrobak 8:13

Recall that in the proof of Theorem 1(a) in Section 3 we used weight assignments associated
with permutations of vertices. This is also the case here, although this assignment needs
to be modified. For any permutation π = x0, x1, ..., xn−1 of the vertices, the corresponding
weight assignment is

ℓπ(xi, xj) =

n if j = i + 1
L− (n + 1

2)i if j ≥ i + 2 and i is even
L if j ≥ i + 2 and i is odd

where L is sufficiently large, say 5n2. (We explain later why larger weights are necessary.)
In our argument here, the adversary chooses the uniform distribution σ on all (n − 1)!
permutations π starting with s.

In a certain sense, our goal now is simpler than in Section 3, as the adversary’s job, which
is to choose σ, is already done. We “only” need to lower bound the expected running time of
algorithms from A if the weights are distributed according to σ. The challenge is that this
argument needs to work for an arbitrary algorithm from A.

So fix any deterministic algorithm A ∈ A. We need to prove that Expℓ∼σT (A, ℓ) = Ω(n3).
A high-level approach in our proof is similar to the proof in Section 3: we partition the
computation of A into (n− 1)/2 phases, and show that the expected length of each phase
k = 1, 2, ..., (n− 1)/2 is Ω((n− 2k)2).

For a specific permutation π = x0, x1, ..., xn−1 with x0 = s and k = 1, 2, ..., (n− 1)/2, let
tk(π) be the first time step such that in steps 1, 2, ..., tk(π) the edges (x0, x1), ..., (x2k−1, x2k)
have been accessed by A (that is, relaxed or queried) in this particular order. We refer to
the time interval (tk−1(π), tk(π)] as phase k for permutation π.

The proof idea is this: In each phase k of the strategy in Section 3 the adversary was able
to force the algorithm to relax all edges from x2k−2 to Y before revealing edge (x2k−1, x2k),
thus ensuring that at all times all D-values differ at most by 1. This is not possible anymore,
because now the algorithm can get “lucky” and relax edges (x2k−2, x2k−1) and (x2k−1, x2k)
before all edges (x2k−2, u) for u ∈ Y are relaxed, and then the D-values for such vertices
u will reflect the relaxations that occurred in some earlier phases. But we can still bound
the differences between D-values. Namely, by our choice of the length function above, any
two D-values will differ by at most n/2. Thus, since all edge lengths are at least n, the
negative answers to all edge queries inside Y are still correct, independently of the suffix
x2k−1, ..., xn−1 of π.

More specifically, the analysis is based on establishing two invariants, captured by the
claim below (formal proof omitted here).

▷ Claim 6. The following invariants are satisfied when each phase k starts:
(R1) The computation of A up until phase k starts is independent of the suffix

x2k−1, x2k, ..., xn−1 of π.
(R2) The D-values have the following form: D[xj] = jn for j ≤ 2k − 2, and D[xj] ∈

[L− k + 1, L] for j ≥ 2k − 1.

Next, define t̃k to be a random variable whose values are tk(π) for permutations π

distributed randomly according to σ. We refer to the time interval (t̃k−1, t̃k] as phase k, and
let ∂tk = t̃k − t̃k−1 be the random variable equal to the length of this phase.

We then prove the following claim:

▷ Claim 7. Expℓ∼σ[∂tk] ≥ 1
2 (n− 2k + 1)(n− 2k + 2).

ISAAC 2024

8:14 Relaxation-Based Algorithms for Single-Source Shortest Paths

Let z̄ = z0, z1, ...z2k−2 be some fixed (2k − 1)-permutation of V with z0 = s. Let H be
the event that π starts with z̄. It is sufficient to prove the inequality in Claim 7 for the
conditional expectation Expℓ∼σ[∂tk|H].

So assume that event H is true. Let Y = V \ {z0, ..., z2k−2}. Now the argument is this:
The suffix x2k−1, ..., xn−1 of π is a random permutation of Y and the edge (x2k−1, x2k) is
uniformly distributed among the edges in Y . Algorithm A is deterministic and all edge
queries for edges inside Y , except for edge (x2k−1, x2k) (and only if (x2k−2, x2k−1) has already
been relaxed), will have negative answers. Similarly, all queries to edges from x2k−2 to Y

will have positive answers. So A will be accessing these edges in some order that is uniquely
determined by the state of A when phase k starts. Since there are (n− 2k + 1)(n− 2k + 2)
edges in Y , this implies that on average it will take 1

2 (n− 2k + 1)(n− 2k + 2) steps for A
to access (x2k−1, x2k), even if we don’t take into account that (x2k−2, x2k−1) needs to be
accessed first. This will imply Claim 7.

We now continue the proof of Theorem 1(b). For the algorithm to be correct, if the
chosen permutation π is x0, x1, ..., xn−1, then the algorithm needs to relax the edges on this
path in order as they appear on the path. So its running time is at least t(n−1)/2(π). Since
t̃(n−1)/2 =

∑(n−1)/2
k=1 ∂tk, using Claim 7 and applying the linearity of expectation we obtain

that Expℓ∼σT (A, ℓ) ≥ Expℓ∼σ[t̃(n−1)/2] =
∑(n−1)/2

k=1 Expℓ∼σ[∂tk] = Ω(n3), completing the
proof. ◀

Proof of Theorem 2(b). There is not much to prove here, because the reduction described
in Section 4 applies with virtually no changes to randomized algorithms. Indeed, just like in
the proof of Theorem 2(a) (or more specifically the proof of Theorem 3), suppose that R is
a randomized algorithm that uses all three types of queries: D-queries, weight-queries, the
queries from model Q, as well as relaxation updates, and let T (n) be R’s expected running
time. We can convert R into a randomized algorithm R′ with running time O(T (n)) that
uses only the queries from Q and relaxation updates. With this, Theorem 2(b) follows from
Theorem 1(b). ◀

High-probability bounds. Using standard reasoning (see [9], for example), our lower bound
results for expectation imply respective high-probability bounds, namely that there are no
randomized algorithms in the models from Theorems 1 and 2 that compute correct distance
values in time o(n3) with probability at least 1− o(1).

To justify this, suppose that R is a randomized algorithm that computes correct distance
values in time T (n) = o(n3) with probability 1− o(1). Consider the algorithm R′ obtained
from R by switching to the Bellman-Ford relaxation sequence right after step T (n). The
expected running time of R′ is then at most T (n)+o(1)n3 = o(n3), but this would contradict
our lower bounds in Theorems 1(b) and 2(b).

6 Final Comments and Open Problems

Our reduction in Section 4 introduces negative weights, raising a natural question: Is it
possible to use o(n3) relaxations with only weight-queries for instances with non-negative
weights? (This question is of purely theoretical interest, because O(n2) relaxations can be
achieved, using Dijkstra’s algorithm, if D-queries are used instead.) Our proof techniques do
not work for this variant. The reason is, in the instances we construct the shortest-path tree
is a Hamiltonian path, and for such instances this path can be uniquely determined by the
weight ordering: start from s, and at each step follow the shortest outgoing edge from the

S. Atalig, A. Hickerson, A. Srivastav, T. Zheng, and M. Chrobak 8:15

current vertex to a yet non-visited vertex. So only n− 1 relaxations are needed. It is unclear
what is the “hard” weight ordering in this case. It can be shown that in the two extreme
cases: (i) if the weight orderings of outgoing edges from each vertex are agreeable (that is,
they are determined by a permutation of the vertices), or (ii) if they are random, then there
is a relaxation sequence of length only O(n2.5) (and this likely can be improved further).

A natural extension of our query/relaxation model would be to allow unconditional edge
updates of the form D[v]←D[u] + ℓuv. A combination of such edge updates and D-queries
allows an algorithm to check for properties that are impossible to test if only relaxation
updates are used. For example, by applying edge updates repeatedly around cycles, such an
algorithm would be able to determine, for any given rational number c, whether one cycle is
at least c times longer than some other cycle.

A more open-ended question is to determine if there are simple types of queries, say some
linear inequalities involving weights and the D-values (with a constant number of variables),
that would be sufficient to yield an adaptive algorithm (possibly randomized) that makes
o(n3) relaxations.

The case of random universal sequences is also not fully resolved. While it is known that
the asymptotic bound is Θ(n3), there is a factor-of-4 gap for the leading constant, between
1

12 and 1
3 [9, 1].

We remark that our proofs are somewhat sensitive to the initialization of the D-values.
Recall that in our model we assume that initially D[v] = ℓsv for v ̸= s. This is natural, and
it guarantees that at all times the D-values represent lengths of paths from s. It also has
the property of being language- and platform-independent. However, some descriptions of
shortest-path algorithms initialize the D-values to infinity, or some very large number. The
proof of Theorem 1 in Section 3 can be modified to work if the D-values were initialized
to some sufficiently large value M (the adversary can then use L = M − 1 in her strategy).
However, then the edge lengths are no longer polynomial, and the proof of Theorem 2 in
Section 4 does not apply in its current form. Initializing to infinity would also affect the
proofs. The reduction in Section 4 can be modified to account for infinite D-values, but we
don’t know how to adapt the proof in Section 3 to this model. We leave open the problem of
finding a more “robust” lower bound proof, that works for an arbitrary valid initialization
and uses only polynomial weights.

References
1 Michael J. Bannister and David Eppstein. Randomized speedup of the Bellman-Ford algorithm.

In Proceedings of the 9th Meeting on Analytic Algorithmics and Combinatorics, ANALCO
2012, pages 41–47. SIAM, 2012. doi:10.1137/1.9781611973020.6.

2 Richard Bellman. On a routing problem. Quart. Appl. Math., 16:87–90, 1958.
3 Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-weight single-

source shortest paths in near-linear time. In Proceedings of the 63rd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2022, pages 600–611, 2022. doi:10.1109/
FOCS54457.2022.00063.

4 Béla Bollobás and Oleg Pikhurko. Integer sets with prescribed pairwise differences being distinct.
European Journal of Combinatorics, 26(5):607–616, 2005. doi:10.1016/J.EJC.2004.04.008.

5 Gang Cheng and Nirwan Ansari. Finding all hops shortest paths. IEEE Commun. Lett.,
8(2):122–124, 2004. doi:10.1109/LCOMM.2004.823365.

6 Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. Negative-weight
shortest paths and unit capacity minimum cost flow in Õ(m10/7 log W) time (extended abstract).
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, pages 752–771, 2017. doi:10.1137/1.9781611974782.48.

ISAAC 2024

https://doi.org/10.1137/1.9781611973020.6
https://doi.org/10.1109/FOCS54457.2022.00063
https://doi.org/10.1109/FOCS54457.2022.00063
https://doi.org/10.1016/J.EJC.2004.04.008
https://doi.org/10.1109/LCOMM.2004.823365
https://doi.org/10.1137/1.9781611974782.48

8:16 Relaxation-Based Algorithms for Single-Source Shortest Paths

7 Narsingh Deo and Chi-Yin Pang. Shortest-path algorithms: Taxonomy and annotation.
Networks, 14(2):275–323, 1984. doi:10.1002/NET.3230140208.

8 Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271, 1959. doi:10.1007/BF01386390.

9 David Eppstein. Lower bounds for non-adaptive shortest path relaxation. In Proceedings of
the 18th International Symposium on Algorithms and Data Structures, WADS 2023, pages
416–429, 2023. doi:10.1007/978-3-031-38906-1_27.

10 P. Erdös and P. Turán. On a problem of Sidon in additive number theory, and on some related
problems. Journal of the London Mathematical Society, s1-16(4):212–215, 1941.

11 Jeremy T. Fineman. Single-source shortest paths with negative real weights in Õ(mn8/9) time.
In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024,
pages 3–14, 2024. doi:10.1145/3618260.3649614.

12 L. R. Ford. Network Flow Theory. RAND Corporation, Santa Monica, CA, 1956.
13 Andrew V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM Journal on

Computing, 24(3):494–504, 1995. doi:10.1137/S0097539792231179.
14 Roch Guérin and Ariel Orda. Computing shortest paths for any number of hops. IEEE/ACM

Trans. Netw., 10(5):613–620, 2002. doi:10.1109/TNET.2002.803917.
15 Jialu Hu and László Kozma. Non-adaptive Bellman-Ford: Yen’s improvement is optimal.

CoRR, abs/2402.10343, 2024. arXiv:2402.10343, doi:10.48550/arXiv.2402.10343.
16 Stasys Jukna and Georg Schnitger. On the optimality of Bellman-Ford-Moore shortest path

algorithm. Theor. Comput. Sci., 628:101–109, 2016. doi:10.1016/J.TCS.2016.03.014.
17 Tomasz Kociumaka and Adam Polak. Bellman-Ford is optimal for shortest hop-bounded

paths. In Proceedings of the 31st Annual European Symposium on Algorithms, ESA 2023,
pages 72:1–72:10, 2023. doi:10.4230/LIPICS.ESA.2023.72.

18 Ulrich Meyer, Andrei Negoescu, and Volker Weichert. New bounds for old algorithms: On the
average-case behavior of classic single-source shortest-paths approaches. In Proceedings of the
First International ICST Conference on Theory and Practice of Algorithms in (Computer)
Systems, TAPAS 2011, pages 217–228, 2011. doi:10.1007/978-3-642-19754-3_22.

19 E. F. Moore. The shortest path through a maze. In Proceedings of an International Symposium
on the Theory of Switching, Part II, pages 285–292, 1959.

20 A. Shimbel. Structure in communication nets. In Proceedings of the Symposium on Information
Networks, pages 199–203. Polytechnic Press of the Polytechnic Institute of Brooklyn, 1955.

21 James Singer. A theorem in finite projective geometry and some applications to number theory.
Trans. Amer. Math. Soc., 43(3):377–385, 1938.

22 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In Proceedings of the 18th Annual Symposium on Foundations of Computer
Science, pages 222–227, 1977. doi:10.1109/SFCS.1977.24.

23 Y. Yen. Shortest Path Network Problems, volume 18 of Mathematical Systems in Economics.
Verlag Anton Hain, Meisenheim am Glan, 1975.

https://doi.org/10.1002/NET.3230140208
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/978-3-031-38906-1_27
https://doi.org/10.1145/3618260.3649614
https://doi.org/10.1137/S0097539792231179
https://doi.org/10.1109/TNET.2002.803917
https://arxiv.org/abs/2402.10343
https://doi.org/10.48550/arXiv.2402.10343
https://doi.org/10.1016/J.TCS.2016.03.014
https://doi.org/10.4230/LIPICS.ESA.2023.72
https://doi.org/10.1007/978-3-642-19754-3_22
https://doi.org/10.1109/SFCS.1977.24

	1 Introduction
	2 Preliminaries
	3 Lower Bound for Deterministic Algorithms with Edge Queries
	4 Lower Bound for Deterministic Algorithms with Three Types of Queries
	5 Lower Bounds for Randomized Algorithms
	6 Final Comments and Open Problems

