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Abstract
Given a directed graph G = (V, E) with n vertices, m edges and a designated source vertex s ∈ V ,
we consider the question of finding a sparse subgraph H of G that preserves the flow from s up to a
given threshold λ even after failure of k edges. We refer to such subgraphs as (λ, k)-fault-tolerant
bounded-flow-preserver ((λ, k)-FT-BFP). Formally, for any F ⊆ E of at most k edges and any v ∈ V ,
the (s, v)-max-flow in H \ F is equal to (s, v)-max-flow in G \ F , if the latter is bounded by λ, and
at least λ otherwise. Our contributions are summarized as follows:

1. We provide a polynomial time algorithm that given any graph G constructs a (λ, k)-FT-BFP of
G with at most λ2kn edges.

2. We also prove a matching lower bound of Ω(λ2kn) on the size of (λ, k)-FT-BFP. In particular,
we show that for every λ, k, n ⩾ 1, there exists an n-vertex directed graph whose optimal
(λ, k)-FT-BFP contains Ω(min{2kλn, n2}) edges.

3. Furthermore, we show that the problem of computing approximate (λ, k)-FT-BFP is NP-hard
for any approximation ratio that is better than O(log(λ−1n)).
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1 Introduction

We address the problem of computing single-source fault-tolerant bounded-flow-preservers
for directed graphs. The objective is to construct a sparse subgraph that preserves the flow
value up to a parameter λ from a given fixed source s, even after failure of up to k edges.

The following definition provides a precise characterization of this subgraph.

▶ Definition 1. Let G = (V, E) be a directed graph with unit edge-capacities and s ∈ V be a
designated source vertex. A (λ, k)-Fault-Tolerant Bounded-Flow-Preserver ((λ, k)-FT-BFP)
for G is a subgraph H = (V, EH ⊆ E) of G satisfying that for every F ⊆ E of at most k

edges, and every t ∈ V ,

max-flow(s, t,H− F ) =
{

max-flow(s, t,G − F ) if max-flow(s, t,G − F ) ⩽ λ,

At least λ, otherwise.
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9:2 Fault-Tolerant Bounded Flow Preservers

For the special case of λ = 1, the problem is referred to as k-Fault-Tolerant Reachability
Subgraph (k-FTRS) in the literature. Here the goal is to preserve reachability from s after k

edge failures. Baswana et al. [4] showed that there exists a k-FTRS with at most 2kn edges.
Lokshtanov et al. [17] presented an algorithm for computing a (λ, k)-FT-BFP for directed
graphs. Their algorithm runs in time O(4k+λ(k + λ)2(m + n) ·m), and each vertex of the
FT-BFP has in-degree at most 4k+λ(k + λ). They also showed that a (k + λ− 1)-FTRS
of a graph G also serves as it’s (λ, k)-FT-BFP. Using this result in conjunction with the
algorithm from [4], they obtain an alternate construction of a (k, λ)-FT-BFP with at most
2k+λn edges. However, this bound is quadratic in n for any λ larger than log n.

We consider the problem of obtaining a tight bound on (λ, k)-FT-BFP. Specifically, we
aim to answer the following question:

Given a directed graph G = (V, E) with a source s, and a flow threshold λ ⩾ log n, can we
construct a sparse (λ, k)-FT-BFP H = (V, EH ⊂ E)? If so, can we present graphs for which
the construction turns out to be tight?

In this paper, we affirmatively answer the question above. We provide construction for
FT-BFP that has a linear dependence on λ.

1.1 Upper Bound Results and Applications
We prove the following:

▶ Theorem 2. There exists an algorithm that for any directed graph G on n vertices and m

edges, and any integers λ, k ⩾ 1, computes in O(λ2kmn) time a (λ, k)-FT-BFP for G with
at most λ2kn edges.

We also present an application of our FT-BFP construction in computing an all-pairs
fault-tolerant λ-reachability oracle. We show that for any positive constants λ, k ⩾ 1, we can
compute an oracle of O(n2) size that given any query vertex-pair x, y ∈ V and any set F of
k edge failures, reports (x, y)-λ-reachability in G \ F efficiently.

▶ Theorem 3. Given any directed graph G = (V, E) on n vertices and any positive constants
λ, k ⩾ 1, we can preprocess G in polynomial time to build an O(n2) size data structure that,
given any query vertex-pair (x, y) and any set F of k edges, reports the (x, y) λ-reachability
in G \ F in O(n1+o(1)) time.

1.2 Lower Bound and Hardness Results
We show that the extremal bound of λ2kn obtained in Theorem 2 is tight. In particular, we
prove existence of n-vertex graphs whose (λ, k)-FT-BFP must contain at least Ω(min λ2kn, n2)
edges.

▶ Theorem 4. For every λ, k, n ⩾ 1 satisfying λ2k = O(n), there exists a construction of an
n-vertex directed graph whose optimal (λ, k)-FT-BFP contains Ω(λ2kn) edges.

While the lower-bound in above theorem proves that the bound of λ2kn obtained in
Theorem 2 is existentially tight, it does not address the problem of computing a sparsest
(λ, k)-FT-BFP.

We next demonstrate the hardness of computing optimal (λ, k)-FT-BFP structures. We
show that unless P = NP , there is no polynomial-time algorithm to obtain an O(log(λ−1n))-
approximation to optimal (λ, k)-FT-BFP.
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▶ Theorem 5. For any λ, k, n ⩾ 1 satisfying k = Ω(log(λ−1n)), the problem of computing
an O(log(λ−1n)) approximation to optimal (λ, k)-FT-BFP for n vertex directed graphs is
NP-hard.

As a corollary, we obtain the following hardness result for the FTRS problem.

▶ Corollary 6. For any k, n ⩾ 1 satisfying k = Ω(log n), the problem of computing an
O(log n) approximation to optimal k-FTRS for n vertex directed graphs is NP-hard.

1.3 Existing Works
For undirected graphs, there exists a tight construction for (λ, k)-FT-BFP with O((k +λ) ·n)
edges that directly follows from edge connectivity certificate constructions provided by
Nagamochi and Ibaraki [19].

A closely related problem to that of graph preservers is fault-tolerant reachability oracles.
For dual failures, the work of [11] obtained an O(n) size single source reachability oracle with
constant query time for directed graphs. Brand and Saranurak [23], showed construction
of an Õ(n2) sized k-fault-tolerant all-pairs reachability oracle that has O(kω) query time,
where ω is the constant of matrix multiplication.

Recently, Baswana et al. [2] considered the problem of constructing a sensitivity oracle
for reporting the max-flow value for a single source-destination pair. They presented an
O(n2) size data-structure that after failure of any two edges, reports the max-flow value of
the surviving graph in constant time.

For the problem of computing the value of all-pairs max-flow up to λ in the static setting,
Abboud et at. [1] obtained two deterministic algorithms that work for DAGs: a combinatorial
algorithm which runs in O(2O(λ2) ·mn) time, and another algorithm that can be faster on
dense graphs which runs in O((λ log n)4λ+o(λ) · nω) time.

Some other graph theoretic problems studied in the fault-tolerant model include computing
distance preservers [12, 21, 20], depth-first-search tree [3], spanners [8, 13], approximate
single source distance preservers [5, 22, 6], approximate distance oracles [14, 9], compact
routing schemes [9, 7].

2 Preliminaries

Given a digraph G = (V, E) on n = |V | vertices and m = |E| edges with unit edge capacities,
we first define some notations used throughout the paper.

in(v,G): The set of in-neighbours of v in G.
out(v,G): The set of out-neighbours of v in G.
In-Edges(v,G): The set of all incoming edges of v in G.
Out-Edges(v,G): The set of all outgoing edges of v in G.
out(A,G): The set of all those vertices in V \A having an incoming edge from some
vertex of A in G, where A ⊆ V (G).
G(A): The subgraph of G induced by the vertices lying in a subset A of V .
G + (u, v): The graph obtained by adding an edge (u, v) to graph G.
G \ F : The graph obtained by deleting the edges lying in a set F from graph G.
max-flow(S, t,G): The value of the maximum flow in graph G from a source set S to a
destination vertex t. When the set S comprises of a single vertex, say s, we represent it
simply by max-flow(s, t,G).
path[a, b, T ]: The path from node a to b in a tree T .

ISAAC 2024



9:4 Fault-Tolerant Bounded Flow Preservers

P [a, b]: The subpath of path P lying between vertices a and b, where a precedes b on P .
P ◦Q : The path formed by concatenating paths P and Q in G. Here it is assumed that
the last edge (or vertex) of P is the same as the first edge (or vertex) of Q.

We next define the concept of farthest min-cut that was introduced by Ford and Fulkerson
in their pioneering work on flows and cuts [15]. Let S be a source set, and t be a destination
vertex. Any (S, t)-cut C is a partition of the vertex set into two sets: A(C) and B(C),
where S ⊆ A(C) and t ∈ B(C). An (S, t)-min-cut C∗ is said to be the farthest min-cut
if A(C∗) ⊋ A(C) for every (S, t)-min-cut C other than C∗. We denote the cut C∗ by
FMC(S, t,G). Similar to farthest-min-cut, we can define the nearest min-cut. An (S, t)-min-
cut C∗ is said to be the nearest min-cut if A(C∗) ⊊ A(C) for every (S, t)-min-cut C other
than C∗. We denote the cut C∗ by NMC(S, t,G).

Below we state a property of nearest and farthest (s, t)-min-cuts [15] showing that they
can be computed efficiently.

▶ Property 7. Let s be a source vertex, t be a destination vertex, and f be an s to t max-flow
in graph G. Let Gf denote the residual graph corresponding to flow f . Further let X be the
set of vertices reachable from s in Gf , and Y be the set of vertices having a path to t in Gf .
Then NMC(s, t,G) = (X, V \X) and FMC(s, t,G) = (V \ Y, Y ).

3 Hardness of logarithmic approximation

We prove in this section the following hardness result for approximating optimal FT-BFP.

▶ Theorem 8. For any λ, k, n ⩾ 1 satisfying k = Ω(log(λ−1n)), the problem of computing
an O(log(λ−1n)) approximate (λ, k)-FT-BFP for n vertex digraphs is NP-hard.

We prove the above theorem by showing a reduction from the SET-COVER problem
to the optimal FT-BFP.

▶ Problem 9 ([18], Definition 1). The input to SET-COVER consists of base set U , |U | = n

and a family F = (S1, ..., Sm) of m subsets of U satisfying ∪m
j=1Sj = U , m ⩽ poly(n). The

goal is to find as few sets Si1 , ..., Sik
as possible that cover U , that is, ∪k

j=1Sij
= U

▶ Lemma 10 ([18], Theorem 2). For every 0 < α < 1 (exact) SAT on inputs of size n can
be reduced in polynomial time to approximating SET-COVER to within (1− α) ln N on
inputs of size N = nO(1/α).

From Lemma 10, we can also deduce that it is NP-Complete to approximate SET-
COVER up to a multiplicative factor of c1 log max(n, m) for some c1 > 0 as m ⩽ poly(n).

Transformation. Given a SET-COVER instance ⟨U,F⟩, we will construct a (λ, k)-FT-
BFP instance ⟨G, s⟩. The transformation is as follows (also see Figure 1).

1. Round up the number for elements in U to nearest power of 2 (let this be 2u) by adding
2u − |U | new elements to U and all these new elements to every set in F.

2. Initialize G to be the graph with N +1 vertices, namely, s, v1, . . . , vN where N = 4λ(m+n).
3. Next construct the following subgraph Gi, for each i ∈ [1, λ].

a. Construct a complete binary tree Bi rooted at a vertex ri of height u and 2u leaf nodes.
The leaf nodes of Bi will correspond to elements in the universe U . From each leaf
node xi in Bi, add out-edges to two new vertices, namely, ℓ(xi) and r(xi).
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b. For each set W ∈ F, add a vertex yi,W to graph Gi. Let Yi denote the resulting set
which consists of |F| vertices. For each x ∈ U and W ∈ F, add an edge from ℓ(xi) to
yi,W if and only if x ∈W .

c. Add a set Zi of u + 1 additional vertices. For each leaf xi in Bi, add an edge from
r(xi) to each vertex in the set Zi.

4. Finally, we add an edge from s to the roots r1, . . . , rλ. Also for each i ∈ [1, λ], we add an
edge from each vertex in Yi ∪ Zi to each of the vertices v1, . . . , vN .

We set k = u + 1 for this (λ, k)-FT-BFP instance.

…

vj

ri

…

xi

…

…
Yi

ℓ(xi)

yi,W Zi
…

s

r(xi)

Figure 1 Depiction of a (λ, k)-FT-BFP instance obtained from a SET-COVER instance ⟨U,F⟩.

▶ Lemma 11. Any (λ, k)-FT-BFP H of the graph instance ⟨G, s⟩, can be used to construct
a solution of the SET-COVER instance of size at most λ−1(minN

j=1 |in(vj ,H)|).

Proof. Consider a vertex vj inH that minimizes |in(vj ,H)|. Consider the following candidate
solutions

Si = {W ∈ F | (yi,W , vj) ∈ E(H)}.

Out of the λ sets, namely S1, . . . , Sλ, let Si0 be the set with least cardinality. The cardinality
of Si0 is at most |in(vj ,H)|/λ as minimum value is upper-bounded by the average value.

Now in order to prove that Si0 is a valid solution, consider an element x ∈ U . Let
P be the unique path from ri0 to leaf node xi0 in Bi0 , and let F1 be the set of all those
edges (u, v) ∈ Bi0 such that u ∈ P and v is the child of u not lying on P . Observe that
xi0 is the unique leaf in Bi0 that is reachable from s in H \ F1. Let F2 be a singleton
set comprising of the edge (xi0 , r(xi0)). Consider the set F = F1 ∪ F2 of size k. Since
max-flow(s, vj ,G \ F ) = λ, there must exists a path, say Q, from s to vj in H \ F passing
through ri0 . Such a path Q must pass through ℓ(xi0) as well as a vertex in Yi0 , say yi0,W .
This implies that the edge (yi0,W , vj) lies in H, and so by definition of Si0 , the set W

lies in Si0 . Moreover W contains the element x as (ℓ(xi0), yi0,W ) is an edge in G. This proves
that element x ∈ U is covered by Si0 , and thus Si0 is a valid solution to ⟨U,F⟩. ◀

▶ Lemma 12. Any solution S of the SET-COVER instance ⟨U,F⟩, can be used to construct
a solution H of (λ, k)-FT-BFP instance satisfying |in(vj ,H)| = λ(|S|+k), for each j ∈ [1, N ].

ISAAC 2024



9:6 Fault-Tolerant Bounded Flow Preservers

Proof. Let S be a solution of the SET-COVER instance ⟨U,F⟩. Consider the sets

Ai = {yi,W | W ∈ S} ∪ Zi, for i ⩽ λ, and A =
λ⋃

i=1
Ai.

We will show that

H = G \ ∪N
j=1In-Edges(vj) + ∪N

j=1(A× vj).

is a (λ, k)-FT-BFP of G.

Let us assume, to the contrary, that H is not a (λ, k)-FT-BFP of G. Then there must
exist an edge set F of size at most k and an index j ∈ [1, N ] satisfying max-flow(s, vj ,G \F )
is greater than max-flow(s, vj ,H \ F ). Observe that each path from s to vj must pass
through a vertex ri, for some i ∈ [1, λ], and each ri only allows a unit flow to pass through it.

Since max-flow(s, vj ,G \ F ) > max-flow(s, vj ,H \ F ), there must exist an index
i ∈ [1, λ] satisfying that there exists a path from s to vj in G \ F passing through ri, but no
such corresponding path exists in H \ F .

Let R = {x0
i , x1

i , . . . , xα
i } be the set of leaf nodes in tree Bi reachable from s in G \ F .

There exist at least min(k + 1, |R|) vertex-disjoint paths from R to vj in H, namely,
({x0

i , ℓ(x0
i ), yi,W , vj), where W ∈ F is the set in S that contains the element x0 ∈ U .

({xc
i , r(xc

i ), zc
i , vj), for c = 1 to min(k, |R| − 1).

Thus even after k faults atleast one path from ri to vj will exist in H \ F . This
contradicts the assumption that there is no s to vj path in G \ F passing through ri. Hence,
max-flow(s, vj ,G \ F ) must be identical to max-flow(s, vj ,H \ F ). ◀

The proof of Theorem 8 now directly follows from Lemma 10, Lemma 11, and Lemma 12,
along with the fact that for every integer n ⩾ 1, there exist hard instances of the SET-
COVER problem (U,F) satisfying |U | = n, where the size of the optimal solution is
significantly larger than log |U |.

4 Upper bound of λ2kn Edges

In this section we will provide construction of a sparse (λ, k)-FT-BFP.

4.1 Locality Property for Flow Preservers
▶ Lemma 13. Let G = (V, E) be a graph with a source s ∈ V , λ ⩾ 1 be an integer, and
v be a fixed vertex in V . Let α = min

(
λ, max-flow(s, v,G)

)
. Let Ev be the set of in-edges

of v corresponding to any arbitrary set of α-edge-disjoint paths from s to v in G. Further, let
H be a subgraph of G obtained by restricting the in-edges of the given node v to those present
in Ev. Then, for each t ∈ V , we have

max-flow(s, t,H) ⩾ min
(
λ, max-flow(s, t,G)

)
.

Proof. We first observe that α = max-flow(s, v,H). Indeed, by construction there are at
least α edge-disjoint paths from s to v in H, additionally, the in-degree of v in H is exactly
α which proves that the (s, v)-max-flow in H can not be larger than α.

Now consider a vertex t ∈ V , and let β = max-flow(s, t,H). Consider an (s, t)-min-cut
(A, B) in H. If v ∈ A then, by construction of H, the (s, t)-cut (A, B) has value β also in G,
so β ⩾ max-flow(s, t,G) and we are done. Assume next v ∈ B. Then (A, B) is an (s, v)-cut
of value β in H. Since α = max-flow(s, v,H), we have β ⩾ α. If α = λ we are done. We
next study the non-trivial case of α = max-flow(s, v,G) < λ.
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Let f be an (s, t)-max-flow in H. Let us assume on contrary that β < max-flow(s, t,G).
Then the residual graph Gf must have an augmenting path, say P , containing some edges
present in G but not in H. Such edges must be all incoming to v. Thus, P = P [s, w]◦ (w, v)◦
P [w, t] where (w, v) ∈ E(G) \E(H), and P [s, w], P [v, t] are present in the residual graph Hf .
Adding P to f gives an (s, t)-flow of in H+ (w, v), implying that

(i) max-flow(s, t,H+ (w, v)) = β + 1
(ii) (w, v) ∈ A×B

(iii) (A, B) is an (s, t)-min-cut in H+ (w, v)

Let {Qi ◦ ei ◦ Q′
i}α

i=1 be α edge-disjoint s-to-v paths in H, where the edge ei of each
such path is its last edge crossing the (s, v)-cut (A, B), so V (Q′

i) ⊆ B. Such exist as
α = max-flow(s, v,H). Let eα+1, . . . , eβ be the other edges crossing (A, B) in H. Let
e0 = (w, v), crossing (A, B) by (ii). Let {Pj ◦ ej ◦ P ′

j}
β
j=0 be β + 1 edge-disjoint s-to-t paths

in H + (w, v), each crossing the cut (A, B) exactly once, at ej , so V (Pj) ⊆ A. Such exist
by (i) and (iii). Then, {P0 ◦ e0} ∪ {Pi ◦ ei ◦Q′

i}α
i=1 are α + 1 edge-disjoint s-to-v paths in G,

contradicting α = max-flow(s, v,G). ◀

In the next lemma we show that in order to compute a sparse (λ, k)-FT-BFP it suffices
to focus on a single destination node.

▶ Lemma 14 (Locality Lemma for Flow Preservers). Let A be an algorithm that given any
graph G and any vertex v ∈ V (G), computes a (λ, k)-FT-BFP of G with at most cλ,k in-edges
to v. Then using A, one can construct for any n vertex digraph a (λ, k)-FT-BFP with at
most cλ,k · n edges.

Proof. Consider a graph G with n vertices, namely, v1, . . . , vn. We will provide a construction
of (λ, k)-FT-BFP of G using black-box access to algorithm A. We compute a sequence of
graphs G0,G1, . . . ,Gn as follows:
1. Initialize G0 = G.
2. For i ⩾ 1, compute Gi in two steps:

a. First use A to compute a (λ, k)-FT-BFP of Gi−1 in which the in-degree of vi is
bounded by cλ,k, let this graph be Hi−1.

b. Obtain Gi from Gi−1 by restricting the incoming edges of vi to those present in Hi−1.

It is easy to verify that the in-degree of each vertex in Gn is at most cλ,k.
To show that Gn is a (λ, k)-FT-BFP of G, it suffices to show that Gi is a (λ, k)-FT-BFP of

Gi−1, for each i ⩾ 1.
Let us fix an index i in the range [1, n]. Consider a set F of at most k edges in Gi−1, and

let

α = min
(
λ, max-flow(s, vi,Gi−1 \ F )

)
.

By construction, Hi−1 is a (λ, k)-FT-BFP of Gi−1, so there exists at least α edge-disjoint
paths from s to vi in the graph Hi−1 \ F . Let Ei be the set of in-edges of vi corresponding
to these α edge-disjoint paths. Observe that the edges in Ei lie in graph Gi \ F . Moreover,
graphs Gi \ F and Gi−1 \ F differ only at in-edges of vi. Therefore, by Lemma 13 it follows
that for any vertex t ∈ V (G), max-flow(s, t,Gi \ F ) ⩾ min

(
λ, max-flow(s, t,Gi−1 \ F )

)
.

This proves that Gi is a (λ, k)-FT-BFP of Gi−1. ◀
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9:8 Fault-Tolerant Bounded Flow Preservers

4.2 Construction of an Improved FTRS
We present here an improved bound on the in-degree of a node t in an FTRS when the node
t satisfies that (s, t)-max-flow in G is larger than one. In particular, we prove the following
theorem.

▶ Theorem 15. Let G be an n vertex, m edges directed graph with a designated source node s.
Let t be a vertex satisfying max-flow(s, t,G) = f , for some positive integer f . Then for
every k ⩾ 1, we can compute in O(2kfm) time a (k + f − 1)-FTRS for G in which the
in-degree of node t is at most 2kf .

Let us focus on a single destination node t. We first show that it suffices to provide
construction of (k + f − 1)-FTRS for a graph in which out-degree of each vertex other than s

is bounded by 2. In order to prove this we will transform the graph G = (V, E) into another
graph H = (VH , EH) satisfying that (i) the value of (s, t)-max-flow in graphs G and H is
identical; (ii) the out-degree of every vertex in H other than s is bounded by two. The steps
to transform G into graph H are as follows:
1. Initialize H to be the graph G.
2. Split each edge e = (x, y) ∈ E by inserting two new vertices ℓx,y and rx,y between the

endpoints x and y, so that edge (x, y) is translated into the path (x, ℓx,y, rx,y, y).
3. For every node y ∈ V \ {s, t} if x1, . . . , xp are in-neighbours of y in G and z1, . . . , zq are

out-neighbours of y in G, then we replace vertex y (in current H) by p binary trees as
follows. First we remove node y from H. Next for each xi ∈ in(y,G) insert a binary
tree Bxi,y to graph H (along with new internal nodes and edges) whose root is rxi,y and
leaves are ℓy,z1 , . . . , ℓy,zq .

Notice thatH has O(mn) edges and vertices. Indeed for every vertex v (other than s and t)
in G, |in(v,G)| binary trees have been added to H, each of size O(|out(v,G)|). So the number
of edges and vertices in the transformed graph is O(

∑
v∈V |in(v,G)| · |out(v,G)|)) = O(mn).

Also, observe that the out-degree of each vertex in H other than s bounded by two.

▶ Lemma 16. max-flow(s, t,G) = max-flow(s, t,H)

Proof. We will show that each s to t path in G now corresponds to a unique s to t path
in H. Suppose there exists a path (s = u0, u1, u2, . . . , uk = t) in G. Then we will have an
equivalent path in H as

(s, ℓu0,u1 , ru0,u1)◦path(ru0,u1 , ℓu1,u2 , Bu0,u1) ◦ (ℓu1,u2 , ru1,u2) ◦ ℓ · · · ◦
path(ruk−2,uk−1 , ℓuk−1,uk

, Buk−1,uk
) ◦ ℓuk−1,uk

, ruk−1,uk
) ◦ (ruk−1,uk

, t)

where path(r, ℓ, B) denotes the path from r to ℓ using edges in binary tree B. Therefore,
the (s, t)-max-flow values in graphs G and H are identical. ◀

We will now justify the significance of our transformation by providing a way to construct
a (k + f − 1)-FTRS of G if we know a (k + f − 1)-FTRS for H such that the in-degree of t

in both the FTRSs is identical.

▶ Lemma 17. A (k+f−1)-FTRS for G can be constructed by knowing a (k+f−1)-FTRS of
H, that preserves the in-degree of node t.

Proof. Let H∗ be a (k+f−1)-FTRS of H. We want to construct G∗, a (k+f−1)-FTRS for
G satisfying the condition that in-degree of t in graphs G∗ and H∗ is identical.



S. Bansal, K. Choudhary, H. Dhanoa, and H. Wardhan 9:9

The construction of G∗ is as follows: For each in-neighbour w of the vertex t in G, include
edge (w, t) in G∗ if and only if edge (rw,t, t) is present in H∗. Thus, the in-degree of t in
graphs G∗ and H∗ is identical. For vertices v other than t, we include all in-neighbours of v

in G∗.
We will now prove that G∗ is a (k + f − 1)-FTRS of G. Consider any set F of at most

k failed edges in G. Define a set F0 of failed edges in H by including edge (ℓu,v, ru,v) in
F0 for every (u, v) ∈ F . From the path correspondence above and the fact that H∗ is a
(k + f − 1)-FTRS of H, it is evident that for any r ⩽ λ, there are r-edge-disjoint paths from
s to t in G∗ \F if and only if there are r-edge-disjoint paths from s to t in H∗ \F0. Therefore,
G∗ is a (k + f − 1)-FTRS of G. ◀

It was shown in [4] that if out-degree of s is one, and out-degree of all other vertices is
bounded by two, then Algorithm 1 computes a k-FTRS for G in which in-degree of t is at
most 2k. We will prove in the next lemma that if max-flow(s, t,G) = f , and out-degree
of every vertex other than s is bounded by two, then Algorithm 1 in fact computes a
(k + f − 1)-FTRS for G in which the in-degree of t is at most 2kf .

▶ Lemma 18. Let G be a directed graph satisfying that the out-degree of every vertex other
than the designated source s is bounded by 2, and k ⩾ 1 be an integer parameter. Let t ∈ V (G)
satisfy max-flow(s, t,G) = f , for some positive integer f . Then Algorithm 1 computes a
(k + f − 1)-FTRS for G in which the in-degree of node t is at most 2kf .

Proof. Consider the following algorithm from [4] for computing k-FTRS that bounds in-
degree of an input node t.

Algorithm 1 Algorithm for computing k-FTRS.

1 S1 ← {s};
2 for i = 1 to k do
3 Ci ← FMC(Si, t,G);
4 (Ai, Bi)← Partition(Ci);
5 Si+1 ← (Ai ∪ out(Ai,G)) \ {t};
6 end
7 f0 ← max-flow from Sk+1 to t;
8 E(t)← Incoming edges of t present in E(f0);
9 Return G∗ = (G \ In-Edges(t,G)

)
+ E(t);

We will now show G∗ is a (k + f − 1)-FTRS of G. Let F be any set of k + f − 1 failed
edges. If there exists a path R from s to t in G \ F then we shall prove the existence of a
path R̂ from s to t in G∗ \ F . Observe that R must pass through each (s, t)-cut Ci, for each
i ∈ [1, k], through an edge, say (ui, vi). If vi = t then (ui, vi) ∈ E(t) and thus R is intact in
the graph G∗. Now we need to prove for the case when the edge (ui, vi) /∈ E(t).

To prove that a path R̂ exists in G∗, we will construct a sequence of auxiliary graphs as
done in [4], say Hi’s, for each i ∈ [1, k + 1], as follows:

H1 = G, Hi = G + (s, v1) + ... + (s, vi−1), i ∈ [2, k + 1].

From the induction proof of Lemma 18 of [4], we get max-flow(s, t,Hi+1) = 1 +
max-flow(s, t,Hi) and since max-flow(s, t,H1) = max-flow(s, t,G) = f , we get that
max-flow(s, t,Hk+1) = k + f . Let H∗ = (Hk+1 \ In-Edges(t)) + E(t) i.e. the incoming
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edges of t are restricted in Hk+1 to those present in the set E(t). In Lemma 19 of [4] it is
shown that max-flow(s, t,H∗) = max-flow(s, t,Hk+1) = k + f . Since the flow in H∗ is
greater than |F | or the number of faults, we can directly use the Lemma 20 of [4] to see that
there exists a path R̂ in G∗ \ F .

The bound on the number of edges also follows from [4]. Lemma 21 of [4] states that
|Ci+1| ⩽ 2|Ci| where Ck+1 = FMC(Sk+1, t,G). Since |C1| = f , we get the bound on
E(t) = Ck+1 as 2kf . Note that the proof of Lemma 21 of [4] assumes that every vertex has
out-degree bounded by two but it can be shown that the Lemma will hold true even when
the out-degree of all vertices except the source vertex is bounded by two by using the fact
that in the proof of Lemma 21, out(Ai) will never contain the source vertex for any i. ◀

4.3 Computing sparse (λ, k)-FT-BFP
In this subsection, we will show how to construct a (λ, k)-FT-BFP of G from a (k + f − 1)-
FTRS of G. We will start by introducing a lemma from [17], followed by additional lemmas
that will help us to obtain a tight construction for FT-BFP.

▶ Lemma 19 ([17]). Let G be a directed graph with a designated source node s, and let H be
a (k + λ− 1)-FTRS of G. Then, H is also a (λ, k)-FT-BFP of G.

To strengthen the above lemma, we present a method for constructing a (λ, k)-FT-
BFP from a (min{f, λ} + k − 1)-FTRS, where f represents the maximum flow from the
source node s to a destination node t in the graph.

▶ Lemma 20. Let G be a directed graph with a designated source node s, and let t be a vertex
satisfying max-flow(s, t,G) = f , for some positive integer f . Then a (min{f, λ}+ k − 1)-
FTRS of G that differs from G only at in-edges of t is a (λ, k)-FT-BFP for G.

Proof. Let H be a (min{f, λ}+ k − 1)-FTRS of G that deviates from G only at in-edges
of t. It follows from Lemma 19 that the subgraph H is a (min{f, λ}, k)-FT-BFP for G.

The claim trivially holds true if f ⩾ λ, so let us consider the scenario f < λ. Consider a
set F of at most k edge failures in G, and let p be max-flow(s, t,G \ F ). Since p ⩽ f < λ

and H is a (f, k)-FT-BFP, the max-flow from s to t in H \ F must be exactly p.
Since G and H only differs at in-edges of t, it follows from Lemma 13 that for each

v ∈ V (G), max-flow(s, v,H \ F ) ⩾ min(λ, max-flow(s, v,G \ F )). This proves that H is a
(λ, k)-FT-BFP for G. ◀

We now provide construction of a (λ, k)-FT-BFP that bounds the in-degree of a single
destination node t.

▶ Lemma 21. Let G be an n vertex, m edges directed graph with a designated source node s,
and t be any arbitrary vertex in G. Then for any λ, k ⩾ 1, we can compute in O(λ2km) time
a (λ, k)-FT-BFP for G in which the in-degree of t is bounded above by λ2k.

Proof. Let f be the value of (s, t)-max-flow in G. We present a construction of a (λ, k)-FT-
BFP, say H, by considering the following two cases.

Case 1. max-flow(s, t, G) ⩾ λ + k:
Let us start by taking a look at the scenario f ⩾ λ + k. In this case we can choose any λ + k

incoming edges of t which carry a flow of λ + k from s to t and discard all other incoming
edges of t to construct H. The resulting graph H will be a (λ, k)-FT-BFP of G due to
Lemma 20, and the in-degree of t in H will be λ + k ⩽ λ2k.
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Case 2. max-flow(s, t, G) < λ + k:
We next consider the case f < λ + k. In this case we use Theorem 15 to compute a
(min{f, λ} + k − 1)-FTRS of G, say H0, such that the in-degree of t in H0 is at most
2k min{f, λ}. We obtain the graph H from G by limiting the incoming edges of t to those
present in H0. The resulting graph H will be a (λ, k)-FT-BFP of G due to Lemma 20. ◀

We conclude with the following theorem that directly follows by combining together
Lemma 14 and Lemma 21.

▶ Theorem 22. Let G be an n vertex, m edges directed graph with a designated source node s.
Then for any λ, k ⩾ 1, we can compute in O(λ2kmn) time a (λ, k)-FT-BFP for G with at
most λ2kn edges. Moreover, the in-degree of each vertex in this (λ, k)-FT-BFP is bounded
above by λ2k.

5 Matching Lower Bound

We shall now show that for each λ, k, n (n ⩾ 3λ2k+1), there exists a directed graph G with
O(n) vertices whose (λ, k)-FT-BFP must have Ω(2kλn) edges.

The construction of graph G is as follows. Let B1, . . . , Bλ be vertex-disjoint complete
binary trees of height k rooted at vertices r1, . . . , rk, and let s be a new vertex have an
edge to each of the ri’s. Let X denote the set of leaf nodes of these λ trees, and let Y be
another set containing n − (1 +

∑λ
i=1 |V (Bi)|) vertices. Note that |Y | ⩾ n/3. The graph

G is obtained by adding an edge from each x ∈ X to each y ∈ Y . In other words, V (G) =
{s}∪V (B1)∪· · ·∪V (Bλ)∪Y and E(G) = {(s, ri) | 1 ⩽ i ⩽ λ}∪E(B1)∪· · ·∪ (Bλ)∪ (X×Y ).

…

y

… …

r2r1 rλ

s

…

x

Y

X

Figure 2 Depiction of lower bound on the size of (λ, k)-FT-BFP when k = 3.

We prove in the following lemma that any (λ, k)-FT-BFP of the above constructed graph
contains at least Ω(2kλn) edges.

▶ Lemma 23. Any (λ, k)-FT-BFP of G must contain Ω(2kλn) edges.

Proof. It is easy to see that the out-edges of s, and the edges of each of the binary tree Bi’s
must be present in a (λ, k)-FT-BFP of G. Thus, let us consider an edge (x, y) ∈ X × Y ,
where x is the leaf node of some binary tree Bi.
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Let P be the unique path from ri to x in Bi, and let F be the set of all those edges
(u, v) ∈ Bi such that u ∈ P and v is the child of u not lying on P . On failure of set
F , there remains a unique path from s to y that passes through edge (s, ri). Moreover,
max-flow(s, y,G \ F ) = λ. So, any subgraph H of G not containing (x, y) edge would not
be a (λ, k)-FT-BFP as on failure set F , H would not preserve (s, y)-max-flow.

Hence, any (λ, k)-FT-BFP of G contains at least |X × Y | = 2kλ|Y | ⩾ 2kλn/3 edges. ◀

6 Applications

In this section we present applications of FT-BFP structure.

6.1 Fault-tolerant All-Pairs λ-reachability oracle
Georgiadis et al. [16] showed that for any n vertex directed graph G = (V, E) we can compute
2-reachability information for all pairs of vertices in O(nω log n) time, where ω is the matrix
multiplication exponent. Abboud et at. [1] extended this result to all-pairs λ-reachability by
presenting an algorithm that takes O((λ log n)4λ+o(λ) · nω) time. One of the interesting open
questions is if for any constants λ, k ⩾ 1, we can compute an oracle that given any query
vertex-pair x, y ∈ V and any set F of k edge failures, reports (x, y)-λ-reachability in G \ F

efficiently.
For any vertex x ∈ V , let Hx denote a (λ, k)-FT-BFP of G with x as the source. Our data

structure simply stores the graph family {Hx | x ∈ V }. Given any query vertex-pair (x, y)
and any set F of k edges, we compute the (x, y)-max-flow in Hx by employing the max-flow
algorithm of Chen et al. [10]. The time to compute the max-flow is O(|E(Hx)|1+o(1)), which
is just O(2kλn1+o(1)). Note that the total space used is bounded by O(2kλn2). Therefore,
we have the following theorem.

▶ Theorem 24. Given any directed graph G = (V, E) on n vertices, and any positive
constants λ, k ⩾ 1, we can preprocess G in polynomial time to build an O(n2) size data
structure that, given any query vertex-pair (x, y) and any set F of k edges, can determine
the (x, y)-λ-reachability in G \ F in O(n1+o(1)) time.

6.2 FT-BFPs for graphs with non-unit capacities
We have shown till now that for any digraph G with unit capacities, one can compute a
(λ, k)-FT-BFP with O(2kλn) edges. We shall now show how to extend this result to a
digraph with integer edge capacities such that flow values up to λ are preserved under
bounded capacity decrement.

Let us first formalize the notion of FT-BFP under capacity decrement function.

▶ Definition 25. Let G = (V, E, c) be a directed flow graph such that capacity of any edge is a
positive integer, and let s ∈ V be a designated source vertex. A subgraph H = (V, E0 ⊆ E) of
G is said to be a (λ, k)-Fault-Tolerant Bounded-Flow-Preserver if for any capacity decrement
function I : E(G) → N satisfying

∑
e∈E(G) I(e) ⩽ k, the following holds for the capacity

function c∗ defined as c∗(e) = c(e)− I(e), for e ∈ E:
For every t ∈ V ,

max-flow(s, t,H|c∗) =
{

max-flow(s, t,G|c∗) if max-flow(s, t,G|c∗) ⩽ λ,

At least λ, otherwise;

where, H|c∗ and G|c∗ are respectively the graphs H and G with capacity function c∗.



S. Bansal, K. Choudhary, H. Dhanoa, and H. Wardhan 9:13

Let us now discuss the construction of (λ, k)-FT-BFPs. Let G = (V, E, c) be a digraph
with integer edge capacities. We first transform G into a multigraph G∗ by replacing an edge
(x, y) of capacity c(x, y) by exactly c(x, y) copies of edge (x, y) of unit-capacity. Thus, for
vertex v ∈ V , the s to v max-flow in graphs G and G∗ are identical.

Now, let H∗ be a (λ, k)-FT-BFP of multigraph G∗. Then, a (λ, k)-FT-BFP of G, say
H = (V, E0, c), can be obtained by simply retaining all those edges whose multiplicity in H∗

is non-zero. The graph H will indeed be a (λ, k)-FT-BFP of G since a bounded capacity
decrement in G corresponds to k-edge failures in G∗.
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