
35th International Symposium on
Algorithms and Computation

ISAAC 2024, December 8–11, 2024, Sydney, Australia

Edited by

Julián Mestre
Anthony Wirth

LIPIcs – Vo l . 322 – ISAAC 2024 www.dagstuh l .de/ l ip i c s

Editors

Julián Mestre
School of Computer Science, The University of Sydney, Australia
julian.mestre@sydney.edu.au

Anthony Wirth
School of Computer Science, The University of Sydney, Australia
anthony.wirth@sydney.edu.au

ACM Classification 2012
Theory of computation → Design and analysis of algorithms; Theory of computation → Computational
complexity and cryptography; Theory of computation → Randomness, geometry and discrete structures

ISBN 978-3-95977-354-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-354-6.

Publication date
December, 2024

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ISAAC.2024.0

ISBN 978-3-95977-354-6 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-4948-2998
mailto:julian.mestre@sydney.edu.au
https://orcid.org/0000-0003-3746-6704
mailto:anthony.wirth@sydney.edu.au
https://www.dagstuhl.de/dagpub/978-3-95977-354-6
https://www.dagstuhl.de/dagpub/978-3-95977-354-6
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ISAAC.2024.0
https://www.dagstuhl.de/dagpub/978-3-95977-354-6
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université Paris Cité, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ISAAC 2024

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Julián Mestre and Anthony Wirth . 0:ix

Program Committee
. 0:xi

External Reviewers
. 0:xiii

Invited Talks

Algorithmic Problems in Discrete Choice
Ravi Kumar . 1:1–1:1

Data Privacy: The Land Where Average Cases Don’t Exist and Assumptions
Quickly Perish

Olga Ohrimenko . 2:1–2:1

Role of Structured Matrices in Fine-Grained Algorithm Design
Barna Saha . 3:1–3:1

Regular Papers

Minimum Plane Bichromatic Spanning Trees
Hugo A. Akitaya, Ahmad Biniaz, Erik D. Demaine, Linda Kleist, Frederick Stock,
and Csaba D. Tóth . 4:1–4:14

Constrained Two-Line Center Problems
Taehoon Ahn and Sang Won Bae . 5:1–5:17

Dynamic Parameterized Problems on Unit Disk Graphs
Shinwoo An, Kyungjin Cho, Leo Jang, Byeonghyeon Jung, Yudam Lee, Eunjin Oh,
Donghun Shin, Hyeonjun Shin, and Chanho Song . 6:1–6:15

On the Connected Minimum Sum of Radii Problem
Hyung-Chan An and Mong-Jen Kao . 7:1–7:13

Lower Bounds for Adaptive Relaxation-Based Algorithms for Single-Source
Shortest Paths

Sunny Atalig, Alexander Hickerson, Arrdya Srivastav, Tingting Zheng, and
Marek Chrobak . 8:1–8:16

Fault-Tolerant Bounded Flow Preservers
Shivam Bansal, Keerti Choudhary, Harkirat Dhanoa, and Harsh Wardhan 9:1–9:14

Optimal Sensitivity Oracle for Steiner Mincut
Koustav Bhanja . 10:1–10:18

Temporal Queries for Dynamic Temporal Forests
Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti, and
Alessandro Straziota . 11:1–11:16

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Partitioning Problems with Splittings and Interval Targets
Samuel Bismuth, Vladislav Makarov, Erel Segal-Halevi, and Dana Shapira 12:1–12:15

The Existential Theory of the Reals with Summation Operators
Markus Bläser, Julian Dörfler, Maciej Liśkiewicz, and Benito van der Zander . . . 13:1–13:19

Routing from Pentagon to Octagon Delaunay Graphs
Prosenjit Bose, Jean-Lou De Carufel, and John Stuart . 14:1–14:16

On the Spanning and Routing Ratios of the Yao-Four Graph
Prosenjit Bose, Darryl Hill, Michiel Smid, and Tyler Tuttle . 15:1–15:17

FPT Approximations for Fair k-Min-Sum-Radii
Lena Carta, Lukas Drexler, Annika Hennes, Clemens Rösner, and Melanie Schmidt 16:1–16:18

Succinct Data Structures for Baxter Permutation and Related Families
Sankardeep Chakraborty, Seungbum Jo, Geunho Kim, and Kunihiko Sadakane 17:1–17:17

Enhancing Generalized Compressed Suffix Trees, with Applications
Sankardeep Chakraborty, Kunihiko Sadakane, and Wiktor Zuba 18:1–18:15

Tight (Double) Exponential Bounds for Identification Problems:
Locating-Dominating Set and Test Cover

Dipayan Chakraborty, Florent Foucaud, Diptapriyo Majumdar, and
Prafullkumar Tale . 19:1–19:18

Revisit the Scheduling Problem with Calibrations
Lin Chen, Yixiong Gao, Minming Li, Guohui Lin, and Kai Wang 20:1–20:15

Mimicking Networks for Constrained Multicuts in Hypergraphs
Kyungjin Cho and Eunjin Oh . 21:1–21:14

On HTLC-Based Protocols for Multi-Party Cross-Chain Swaps
Emily Clark, Chloe Georgiou, Katelyn Poon, and Marek Chrobak 22:1–22:15

Simple Realizability of Abstract Topological Graphs
Giordano Da Lozzo, Walter Didimo, Fabrizio Montecchiani, Miriam Münch,
Maurizio Patrignani, and Ignaz Rutter . 23:1–23:15

Exact Algorithms for Clustered Planarity with Linear Saturators
Giordano Da Lozzo, Robert Ganian, Siddharth Gupta, Bojan Mohar,
Sebastian Ordyniak, and Meirav Zehavi . 24:1–24:16

The Complexity of Geodesic Spanners Using Steiner Points
Sarita de Berg, Tim Ophelders, Irene Parada, Frank Staals, and Jules Wulms 25:1–25:15

Constrained Boundary Labeling
Thomas Depian, Martin Nöllenburg, Soeren Terziadis, and Markus Wallinger 26:1–26:16

Knapsack with Vertex Cover, Set Cover, and Hitting Set
Palash Dey, Ashlesha Hota, Sudeshna Kolay, and Sipra Singh . 27:1–27:17

Subsequence Matching and Analysis Problems for Formal Languages
Szilárd Zsolt Fazekas, Tore Koß, Florin Manea, Robert Mercaş, and Timo Specht . 28:1–28:23

Contents 0:vii

Coordinated Motion Planning: Multi-Agent Path Finding in a Densely Packed,
Bounded Domain

Sándor P. Fekete, Ramin Kosfeld, Peter Kramer, Jonas Neutzner,
Christian Rieck, and Christian Scheffer . 29:1–29:15

On the Complexity of Establishing Hereditary Graph Properties via Vertex
Splitting

Alexander Firbas and Manuel Sorge . 30:1–30:15

From Chinese Postman to Salesman and Beyond: Shortest Tour δ-Covering All
Points on All Edges

Fabian Frei, Ahmed Ghazy, Tim A. Hartmann, Florian Hörsch, and Dániel Marx 31:1–31:16

When Can Cluster Deletion with Bounded Weights Be Solved Efficiently?
Jaroslav Garvardt, Christian Komusiewicz, and Nils Morawietz 32:1–32:17

Robust Bichromatic Classification Using Two Lines
Erwin Glazenburg, Thijs van der Horst, Tom Peters, Bettina Speckmann, and
Frank Staals . 33:1–33:14

Robust Classification of Dynamic Bichromatic Point Sets in R2

Erwin Glazenburg, Marc van Kreveld, and Frank Staals . 34:1–34:14

Generating All Invertible Matrices by Row Operations
Petr Gregor, Hung P. Hoang, Arturo Merino, and Ondřej Mička 35:1–35:14

Kernelization Complexity of Solution Discovery Problems
Mario Grobler, Stephanie Maaz, Amer E. Mouawad, Naomi Nishimura,
Vijayaragunathan Ramamoorthi, and Sebastian Siebertz . 36:1–36:17

Approximating the Fréchet Distance When Only One Curve Is c-Packed
Joachim Gudmundsson, Tiancheng Mai, and Sampson Wong . 37:1–37:14

Basis Sequence Reconfiguration in the Union of Matroids
Tesshu Hanaka, Yuni Iwamasa, Yasuaki Kobayashi, Yuto Okada, and Rin Saito . . 38:1–38:16

Core Stability in Additively Separable Hedonic Games of Low Treewidth
Tesshu Hanaka, Noleen Köhler, and Michael Lampis . 39:1–39:17

Crossing Number Is NP-Hard for Constant Path-Width (And Tree-Width)
Petr Hliněný and Liana Khazaliya . 40:1–40:15

A Polynomial Kernel for Deletion to the Scattered Class of Cliques and Trees
Ashwin Jacob, Diptapriyo Majumdar, and Meirav Zehavi . 41:1–41:17

Hardness Amplification for Dynamic Binary Search Trees
Shunhua Jiang, Victor Lecomte, Omri Weinstein, and
Sorrachai Yingchareonthawornchai . 42:1–42:19

Reconfiguration of Labeled Matchings in Triangular Grid Graphs
Naonori Kakimura and Yuta Mishima . 43:1–43:16

Composition Orderings for Linear Functions and Matrix Multiplication Orderings
Susumu Kubo, Kazuhisa Makino, and Souta Sakamoto . 44:1–44:14

ISAAC 2024

0:viii Contents

A Simple Distributed Algorithm for Sparse Fractional Covering and Packing
Problems

Qian Li, Minghui Ouyang, and Yuyi Wang . 45:1–45:8

Uniform Polynomial Kernel for Deletion to K2,p Minor-Free Graphs
William Lochet and Roohani Sharma . 46:1–46:14

Complexity Framework for Forbidden Subgraphs II: Edge Subdivision and the
“H”-Graphs

Vadim Lozin, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Mark Siggers,
Siani Smith, and Erik Jan van Leeuwen . 47:1–47:18

Complexity of Local Search for Euclidean Clustering Problems
Bodo Manthey, Nils Morawietz, Jesse van Rhijn, and Frank Sommer 48:1–48:16

Online Multi-Level Aggregation with Delays and Stochastic Arrivals
Mathieu Mari, Michał Pawłowski, Runtian Ren, and Piotr Sankowski 49:1–49:20

On the Parameterized Complexity of Diverse SAT
Neeldhara Misra, Harshil Mittal, and Ashutosh Rai . 50:1–50:18

Easier Ways to Prove Counting Hard: A Dichotomy for Generalized #SAT,
Applied to Constraint Graphs

MIT Hardness Group, Josh Brunner, Erik D. Demaine, Jenny Diomidova,
Timothy Gomez, Markus Hecher, Frederick Stock, and Zixiang Zhou 51:1–51:14

Single Family Algebra Operation on BDDs and ZDDs Leads to Exponential
Blow-Up

Kengo Nakamura, Masaaki Nishino, and Shuhei Denzumi . 52:1–52:17

A Fast Algorithm for Computing a Planar Support for Non-Piercing Rectangles
Ambar Pal, Rajiv Raman, Saurabh Ray, and Karamjeet Singh . 53:1–53:18

A Dichotomy Theorem for Linear Time Homomorphism Orbit Counting in
Bounded Degeneracy Graphs

Daniel Paul-Pena and C. Seshadhri . 54:1–54:19

Optimal Offline ORAM with Perfect Security via Simple Oblivious Priority Queues
Thore Thießen and Jan Vahrenhold . 55:1–55:18

Data Structures for Approximate Fréchet Distance for Realistic Curves
Ivor van der Hoog, Eva Rotenberg, and Sampson Wong . 56:1–56:18

Constant Approximating Disjoint Paths on Acyclic Digraphs Is W[1]-Hard
Michał Włodarczyk . 57:1–57:16

Does Subset Sum Admit Short Proofs?
Michał Włodarczyk . 58:1–58:22

Approximation Algorithms for Cumulative Vehicle Routing with Stochastic
Demands

Jingyang Zhao and Mingyu Xiao . 59:1–59:18

Preface

This volume comprises the papers presented at the 35th International Symposium on
Algorithms and Computation (ISAAC 2024), which was held in Sydney, Australia on 8–11
December 2024, organized by The University of Sydney. ISAAC 2024 provided a forum for
researchers working in the areas of algorithms, theory of computation, and computational
complexity.

Of the 193 submissions to ISAAC 2024, the 44 members of the program committee (PC),
listed below, curated a program of 56 technical papers. Each submission received at least
three reviews, with several written by external reviewers invited by the program committee,
also listed below. We are most grateful for the careful and considered reviews of the PC
members and external reviewers, as well as the attentive discussion and decisions of the PC.
We are delighted to present the technical program to you on their behalf.

The program committee selected the following papers as the recipients of the ISAAC
2024 Best Paper and Best Student Paper Awards.

Best Paper Vadim Lozin, Barnaby Martin, Sukanya Pandey, Daniel Paulusma, Mark Siggers,
Siani Smith and Erik Jan van Leeuwen. Complexity Framework for Forbidden Subgraphs II:
Edge Subdivision and the “H”-graphs.

Best Student Paper Koustav Bhanja. Optimal Sensitivity Oracle for Steiner Mincut.

The Symposium welcomed three invited presentations, by Ravi Kumar (Google), Olga
Ohrimenko (U. Melbourne), and Barna Saha (UCSD). We are very grateful to have such
quality presenters, and are pleased to include their abstracts below. The week prior to
the Symposium, The University of Sydney hosted the four-day summer school on “Recent
Trends in Algorithms” for students. We thank The University of Sydney and Google for
their support of ISAAC 2024.

December 2024
Julián Mestre and Anthony Wirth

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committee

Adi Rosén (CNRS & Université Paris Cité)

Akira Suzuki (Tohoku University)

Amit Kumar (IIT Delhi)

Anthony Wirth (University of Sydney)
[co-chair]

Catherine Greenhill (UNSW)

Chien-Chung Huang (CNRS & ENS Ulm)

Davide Bilò (University of L’Aquila)

Diptarka Chakraborty (National University
of Singapore)

Edith Elkind (University of Oxford)

Eunjin Oh (POSTECH)

Fabrizio Frati (Università Roma Tre)

Guochuan Zhang (Zhejiang University)

Hanna Sumita (Tokyo Institute of
Technology)

Ho-Lin Chen (National Taiwan University)

Holger Dell (Goethe-Universität Frankfurt)

Hyung-Chan An (Yonsei University)

Ioana O. Bercea (KTH)

Jian Li (Tsinghua University)

Jittat Fakcharoenphol (Kasetsart University)

Julián Mestre (University of Sydney)
[co-chair]

Loukas Georgiadis (University of Ioannina)

Marcos Kiwi (University of Chile)

Mark de Berg (TU Eindhoven)

Matthias Mnich (TU Hamburg)

Meng-Tsung Tsai (Academia Sinica)

Michael Lampis (Université Paris Dauphine)

Nicole Megow (University of Bremen)

Paloma T. Lima (IT University of
Copenhagen)

Paul Spirakis (University of Liverpool, UK)

Ragesh Jaiswal (IIT Delhi)

Saket Saurabh (Institute of Mathematical
Sciences)

Sampson Wong (University of Copenhagen)

Samson Zhou (Texas A&M University)

Sándor Fekete (TU Braunschweig)

Santhoshini Velusamy (TTIC)

Shi Li (Nanjing University)

Shunhua Jiang (Columbia University)

Stefan Funke (University of Stuttgart)

Takehiro Ito (Tohoku University)

Thomas Erlebach (Durham University)

Troy Lee (University of Technology Sydney)

Vaggos (Evangelos) Chatziafratis (UCSC)

Wing-Kai Hon (National Tsing Hua
University)

Yi-Jun Chang (National University of
Singapore)

Yiding Feng (HKUST IEDA)

Zhiyi Huang (University of Hong Kong)

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

External Reviewers

Aaron Putterman

Abheek Ghosh

Adam Karczmarz

Adarsh Srinivasan

Aditya Anand

Aleksandr M. Kazachkov

Aleksandr Popov

Alessandro Straziota

Alessia Di Fonso

Alessio Conte

Alexander Kulikov

Alexandra Lassota

Ameet Gadekhar

Amer Mouawad

Amir Nikabadi

André Nusser

André van Renssen

Andrea Munaro

Aniket Basu Roy

Anna Lubiw

Anna Mpanti

Antonios Symvonis

Aravind Thyagarajan

Argyrios Deligkas

Argyris Oikonomou

Arnab Ganguly

Arnold Filtser

Arsen Vasilyan

Athanasios Konstantinidis

Atul Mantri

Benedikt Kolbe

Benjamin Aram Berendsohn

Bento Natura

Biaoshuai Tao

Binghui Peng

Bingkai Lin

Blake Holman

Bo Li

Boaz Patt-Shamir

Carlos Alegría

Carlos Seara

Carolina Lucía Gonzalez

Casper Rysgaard

Ce Jin

Chen Wang

Chenyang Xu

Chetan Gupta

Ching-Chi Lin

Christian Coester

Christian Rieck

Clément Canonne

Csaba Toth

Daniel Gibney

Daniel Grier

Daniel Noble

Daniel Paul-Pena

Daniel Vaz

David Eppstein

Daya Gaur

Debajyoti Bera

Dillon Mayhew

Dimitris Christou
35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv External Reviewers

Dionysios Kefallinos

Dominik Krupke

Dong Deng

Duncan Adamson

Eric Brandwein

Erik Jan van Leeuwen

Evangelos Kosinas

Fabiano Oliveira

Fabrizio Grosso

Farbod Ekbatani

Felicia Lucke

Felix Lebrat

Flavia Bonomo

Florent Foucaud

Frederick Stock

Gabriele Di Stefano

Gaia Carenini

Giordano Da Lozzo

Giuseppe Romana

Gregory Kucherov

Grzegorz Kwasniewski

Guilherme D. Da Fonseca

Guilherme de Castro Mendes Gomes

Guillaume Ducoffe

Haoqiang Huang

Hendrik Molter

Hoa Vu

Hsiang-Hsuan Liu

Hua Chen

Hugo Gilbert

Hung Hoang

Hung Le

Hung-Lung Wang

Ignaz Rutter

Ilie Sarpe

Irfansha Shaik

Ivan Bliznets

Jack Stade

Jan Kaiser

Janani Sundaresan

Janka Chlebikova

Jatin Yadav

Jean-Lou De Carufel

Jelle Oostveen

Jie Xue

Jiehua Chen

João F. Doriguello

Joseph Mitchell

Josh Alman

Jules Wulms

Jun Kawahara

Jungho Ahn

Junichi Teruyama

Justin Ward

Karolina Okrasa

Katrin Casel

Kazuhiro Kurita

Kelin Luo

Kirill Simonov

Konstantinos Tsakalidis

Kostas Tsichlas

Kristóf Bérczi

Kushagra Chatterjee

Kyungjin Cho

László Kozma

Laure Morelle

External Reviewers 0:xv

Leah Epstein

Leszek Gasieniec

Lin Chen

Ling-Ju Hung

Liren Shan

Lorenzo Beretta

Lorenzo Carfagna

Louis Esperet

Luciano Gualà

Magnus Wahlström

Manoj Gupta

Manoj Gupta

Manolis Vasilakis

Marc Pfetsch

Marco D’Elia

Marios Mavronicolas

Markus Chimani

Markus Hecher

Markus L. Schmid

Martin Bullinger

Martin Nöllenburg

Massimo Lauria

Mathieu Mari

Matthias Bentert

Maximilian Stahlberg

Meng He

Mengqian Zhang

Michael Payne

Michael Perk

Mikhail Isaev

Mikkel Abrahamsen

Milan Mosse

Miriam Münch

Mohammad Ali Abam

Mohammad Reza Aminian

Mordecai J. Golin

Moritz Muehlenthaler

N.S. Narayanaswamy

Nairen Cao

Nate Veldt

Nathan Flaherty

Neelima Gupta

Nicholas Teh

Niclas Boehmer

Nicole Wein

Nidhi Purohit

Nikhil Balaji

Nikhil Mande

Nils Morawietz

Nina Klobas

Nitin Saurabh

Noah Fleming

Noah Singer

Noel Arteche

Noleen Köhler

Omkar Bhalerao

Ondřej Suchý

Pablo Rotondo

Pamela Fleischmann

Pascal Baßler

Pascal Kunz

Patrizio Angelini

Peiyuan Liu

Peter Davies-Peck

Peter Kramer

Petr Golovach

ISAAC 2024

0:xvi External Reviewers

Philipp Kindermann

Pierre Fraigniaud

Po-An Chen

Pooja Kulkarni

Prafullkumar Tale

Prantar Ghosh

Puping Jiang

Quanquan Liu

Rahul Shah

Rajni Dabas

Ramin Kosfeld

Razvan Barbulescu

René Sitters

Renfei Zhou

Rin Saito

Robert Andrews

Romain Cosson

Ron Safier

Ruizhe Zhang

Ryoga Mahara

Sabine Cornelsen

Sabine Storandt

Sabyasachi Basu

Sandeep Silwal

Sanjana Dey

Sarita de Berg

Sasha Rubin

Satyabrata Jana

Sebastian Brandt

Seeun William Umboh

Shang-En Huang

Shaofeng Jiang

Shayan Oveis Gharan

Shengwei Zhou

Shinwoo An

Shuai Shao

Shuichi Hirahara

Simon J. Puglisi

Simon Meierhans

Sorrachai Yingchareonthawornchai

Sriram Bhyravarapu

Stanisław Gawiejnowicz

Stefan Walzer

Stefano Leucci

Stephen Kobourov

Stoyan Dimitrov

Sudatta Bhattacharya

Sumanta Ghosh

Sungmin Kim

Susanna Caroppo

Sushmita Gupta

T-H. Hubert Chan

Ta-Wei Tu

Takahiro Suzuki

Talya Eden

Tatsuhiro Suga

Tatsuya Gima

Ted Pyne

Tesshu Hanaka

Thatchaphol Saranurak

Thekla Hamm

Théo Pierron

Thijs van der Horst

Thirupathaiah Vasantam

Tian Bai

Torsten Mütze

External Reviewers 0:xvii

Travis Gagie

Tsz Chiu Kwok

Ulrich Pferschy

Uri Zwick

Vaishali Suriyanaryanan

Valentin Polishchuk

Viktor Zamaraev

Vincent Chau

Vittorio Bilò

Vladimir Podolskii

Wei Tang

Wei Yu

Xujin Chen

Yakov Nekrich

Yaniv Sadeh

Yanlin Chen

Yasuaki Kobayashi

Yasushi Kawase

Yatong Chen

Yecheng Xue

Yican Sun

Yinzhan Xu

Yiyuan Luo

Yong Zhang

Yoshio Okamoto

Yota Otachi

Young-San Lin

Yuan Sha

Yuhao Zhang

Yuki Takeuchi

Yuma Tamura

Zack Jorquera

Zhenwei Liu

Zhihao Gavin Tang

Zihan Tan

Zijin Huang

ISAAC 2024

Algorithmic Problems in Discrete Choice
Ravi Kumar #

Google, Mountain View, CA, USA

Abstract
In discrete choice, a user selects one option from a finite set of available alternatives, a process that
is crucial for recommendation systems applications in e-commerce, social media, search engines,
etc. A popular way to model discrete choice is through Random Utility Models (RUMs). RUMs
assume that users assign values to options and choose the one with the highest value from among
the available alternatives. RUMs have become increasingly important in the Web era; they offer an
elegant mathematical framework for researchers to model user choices and predict user behavior
based on (possibly limited) observations. While RUMs have been extensively studied in behavioral
economics and social sciences, many basic algorithmic tasks remain poorly understood. In this talk,
we will discuss various algorithmic and learning questions concerning RUMs.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Mathematics of computing → Discrete mathematics; Mathematics of computing → Probability and
statistics; Information systems → Data mining

Keywords and phrases discrete choice theory, random utility models, user behavior

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.1

Category Invited Talk

© Ravi Kumar;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ravi.k53@gmail.com
https://orcid.org/0000-0002-2203-2586
https://doi.org/10.4230/LIPIcs.ISAAC.2024.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Data Privacy: The Land Where Average Cases
Don’t Exist and Assumptions Quickly Perish
Olga Ohrimenko # Ñ

The University of Melbourne, Australia

Abstract
Machine learning on personal and sensitive data raises serious privacy concerns and creates potential
for inadvertent information leakage (e.g., extraction of private messages or images from generative
models). However, incorporating analysis of such data in decision making can benefit individuals
and society at large (e.g., in healthcare). To strike a balance between these two conflicting objectives,
one must ensure that data analysis with strong confidentiality guarantees is deployed and securely
implemented.

Differential privacy (DP) is emerging as a leading framework for analyzing data while maintaining
mathematical privacy guarantees. Although it has seen some real-world deployment (e.g., by Apple,
Microsoft, and Google), such instances remain limited and are often constrained to specific scenarios.
Why?

In this talk, I argue that part of the challenge lies in the assumptions DP makes about its
deployment environment. By examining several DP systems and their assumptions, I demonstrate
how private information can be extracted using, for example, side-channel information or the ability
to rewind system’s state. I then give an overview of efficient algorithms and protocols to realize
these assumptions and ensure secure deployment of differential privacy.

2012 ACM Subject Classification Security and privacy → Systems security; Security and privacy
→ Privacy-preserving protocols; Security and privacy → Hardware attacks and countermeasures

Keywords and phrases Differential privacy, side-channel attacks, trusted execution environment,
privacy budget, state continuity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.2

Category Invited Talk

© Olga Ohrimenko;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oohrimenko@unimelb.edu.au
https://oohrimenko.github.io/
https://orcid.org/0000-0002-9735-0538
https://doi.org/10.4230/LIPIcs.ISAAC.2024.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Role of Structured Matrices in Fine-Grained
Algorithm Design
Barna Saha #

Department of Computer Science and Engineering & Data Science,
University of California San Diego, La Jolla, CA, USA

Abstract
Fine-grained complexity attempts to precisely determine the time complexity of a problem and has
emerged as a guide for algorithm design in recent times. Some of the central problems in fine-grain
complexity deals with computation of distances. For example, computing all pairs shortest paths
in a weighted graph, computing edit distance between two sequences or two trees, and computing
distance of a sequence from a context free language. Many of these problems reduce to computation
of matrix products over various algebraic structures, predominantly over the (min,+) semiring.
Obtaining a truly subcubic algorithm for (min,+) product is one of the outstanding open questions
in computer science.

Interestingly many of the aforementioned distance computation problems have some additional
structural properties. Specifically, when we perturb the inputs slightly, we do not expect a huge
change in the output. This simple yet powerful observation has led to better algorithms for many
problems for which we were able to improve the running time after several decades. This includes
problems such as the Language Edit Distance, RNA folding, and Dyck Edit Distance. Indeed,
this structure in the problem leads to matrices that have the Lipschitz property, and we gave the
first truly subcubic time algorithm for computing (min,+) product over such Lipschitz matrices.
Follow-up work by several researchers obtained improved bounds for monotone matrices, and for
(min,+) convolution under similar structures leading to improved bounds for a series of optimization
problems. These result in not just faster algorithms for exact computation but also for approximation
algorithms. In particular, we show how fast (min,+) product computation over monotone matrices
can lead to better additive approximation algorithms for computing all pairs shortest paths on
unweighted undirected graphs, leading to improvements after twenty four years.

2012 ACM Subject Classification Theory of computation → Algorithm design techniques

Keywords and phrases Fine-Grained Complexity, Fast Algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.3

Category Invited Talk

Funding Barna Saha: Partially supported by NSF grants 1652303, 1909046, 2112533, and HDR
TRIPODS Phase II grant 2217058.

© Barna Saha;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barnas@ucsd.edu
https://orcid.org/0000-0002-6494-3839
https://doi.org/10.4230/LIPIcs.ISAAC.2024.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Minimum Plane Bichromatic Spanning Trees
Hugo A. Akitaya # Ñ

Miner School of Computer & Information Sciences, University of Massachusetts, Lowell, MA, USA

Ahmad Biniaz # Ñ

School of Computer Science, University of Windsor, Canada

Erik D. Demaine # Ñ

Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology,
Cambridge, MA, USA

Linda Kleist # Ñ

Institute of Computer Science, Universität Potsdam, Germany

Frederick Stock # Ñ

Miner School of Computer & Information Sciences, University of Massachusetts, Lowell, MA, USA

Csaba D. Tóth # Ñ

Department of Mathematics, California State University Northridge, Los Angeles, CA, USA
Department of Computer Science, Tufts University, Medford, MA, USA

Abstract
For a set of red and blue points in the plane, a minimum bichromatic spanning tree (MinBST) is a
shortest spanning tree of the points such that every edge has a red and a blue endpoint. A MinBST
can be computed in O(n log n) time where n is the number of points. In contrast to the standard
Euclidean MST, which is always plane (noncrossing), a MinBST may have edges that cross each
other. However, we prove that a MinBST is quasi-plane, that is, it does not contain three pairwise
crossing edges, and we determine the maximum number of crossings.

Moreover, we study the problem of finding a minimum plane bichromatic spanning tree (MinPBST)
which is a shortest bichromatic spanning tree with pairwise noncrossing edges. This problem is
known to be NP-hard. The previous best approximation algorithm, due to Borgelt et al. (2009), has
a ratio of O(

√
n). It is also known that the optimum solution can be computed in polynomial time

in some special cases, for instance, when the points are in convex position, collinear, semi-collinear,
or when one color class has constant size. We present an O(log n)-factor approximation algorithm
for the general case.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Bichromatic Spanning Tree, Minimum Spanning Tree, Plane Tree

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.4

Funding Hugo A. Akitaya: Research supported by the NSF award CCF-2348067.
Ahmad Biniaz : Research supported by NSERC.
Csaba D. Tóth: Research supported in part by the NSF award DMS-2154347.

Acknowledgements This work was initiated at the Eleventh Annual Workshop on Geometry and
Graphs, held at the Bellairs Research Institute in Holetown, Barbados in March 2024. The authors
thank the organizers and the participants.

1 Introduction

Computing a minimum spanning tree (MST) in a graph is a well-studied problem. There exist
many algorithms for this problem, among which one can mention the celebrated Kruskal’s
algorithm [37], Prim’s algorithm [41], and Borůvka’s algorithm [22]. The running time of

© Hugo A. Akitaya, Ahmad Biniaz, Erik D. Demaine, Linda Kleist, Frederick Stock, and Csaba D.
Tóth;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 4; pp. 4:1–4:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hugo_akitaya@uml.edu
https://www.cs.uml.edu/~hakitaya/
https://orcid.org/0000-0002-6827-2200
mailto:abiniaz@uwindsor.ca
http://cglab.ca/~biniaz/
mailto:edemaine@mit.edu
https://erikdemaine.org/
https://orcid.org/0000-0003-3803-5703
mailto:kleist@cs.uni-potsdam.de
https://www.uni-potsdam.de/en/thi/index
https://orcid.org/0000-0002-3786-916X
mailto:frederick_stock@student.uml.edu
https://www.linkedin.com/in/frederickstock
mailto:csaba.toth@csun.edu
http://csabatoth.org/
https://orcid.org/0000-0002-8769-3190
https://doi.org/10.4230/LIPIcs.ISAAC.2024.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Minimum Plane Bichromatic Spanning Trees

these algorithms depends on the number of vertices and edges of the input graph. For
geometric graphs, where the vertices are points in the plane, their running time depends only
on the number of vertices.

For a set S of n points in the plane a Euclidean MST (i.e., an MST of the complete graph
on S with straight-line edges and Euclidean edge weights) can be computed in O(n log n)
time. When the points of S are colored by two colors, say red and blue, and every edge
is required to have a red and a blue endpoint, then a spanning tree is referred to as a
bichromatic spanning tree. A minimum bichromatic spanning tree (MinBST) is a bichromatic
spanning tree of minimum total edge length. A MinBST on S can be computed in O(n log n)
time [18]. When the points are collinear (all lie on a straight line) and are given in sorted
order along the line this problem can be solved in linear time [15].

We say that two line segments cross if they share an interior point; this configuration is
called a crossing. A tree is called plane if its edges are pairwise noncrossing. The standard
Euclidean MST is always plane. This property is ensured by the triangle inequality, because
the tree can be made shorter by replacing any two crossing edges with two noncrossing
edges. The noncrossing property does not necessarily hold for a MinBST, see Figure 1 for an
example. Two crossing edges in this example cannot be replaced with two noncrossing edges
because, otherwise, we would either introduce monochromatic edges (that connect points of
the same color) or disconnect the tree into two components.

Figure 1 A bicolored point set and its minimum bichromatic spanning tree (MinBST).

Edge crossings in geometric graphs are usually undesirable as they could lead to unwanted
situations such as collisions in motion planning, inconsistency in VLSI layout, and interference
in wireless networks. They are also undesirable in the context of graph drawing and network
visualization. Therefore, it is natural to ask for a minimum plane bichromatic spanning tree
(MinPBST), a bichromatic spanning tree that is noncrossing and has minimum total edge
length. Borgelt et al. [21] proved that the problem of finding a MinPBST is NP-hard. They
also present a polynomial-time approximation algorithm with approximation factor O(

√
n).

In this paper we study the MinBST and MinPBST problems from combinatorial and
computational points of view. First we present an approximation algorithm, with a better
factor, for the MinPBST problem. Then we prove some interesting structural properties of
the MinBST.

1.1 Related work
Problems related to bichromatic objects (such as points and lines) have been actively studied
in computational geometry, for instance, the problems related to bichromatic intersection
[4, 24, 25, 38], bichromatic separation [9, 11, 14, 16, 27], and noncrossing bichromatic
connection [1, 2, 17, 19, 21, 32, 34, 36]. We refer the interested reader to the survey by
Kaneko and Kano [35].

The O(
√

n)-approximation algorithm of Borgelt et al. [21] for the MinPBST problem
lays a (

√
n ×

√
n)-grid over the points, then identifies a subset of grid cells as core regions

and computes their Voronoi diagram, then builds a tree inside each Voronoi cell, and finally
combines the trees.

H. A. Akitaya, A. Biniaz, E. D. Demaine, L. Kleist, F. Stock, and C. D. Tóth 4:3

Let ρn be the supremum ratio of the length of MinPBST to the length of MinBST over
all sets of n bichromatic points. Grantson et al. [29] show that 3/2 ≤ ρn ≤ n for all n ≥ 4;
and ask whether the upper bound can be improved. It is easily seen from the algorithm
of Borgelt et al. [21] that ρn ≤ O(

√
n) because the planarity of the optimal solution is not

used in the analysis of the approximation ratio – indeed the analysis would work even with
respect to the MinBST.

Some special cases of the MinPBST problem can be solved to optimality in polynomial
time. For instance, the problem can be solved in O(n2) time when points are collinear [15],
in O(n3) time when points are in convex position [21], in O(n5) time when points are
semi-collinear (points in one color class are on a line and all other points are on one side of
the line) [17], and in nO(k5) time when one color class has k points for some constant k [21].

One might wonder if a greedy strategy could achieve a better approximation ratio. A
modified version of Kruskal’s algorithm, that successively adds a shortest bichromatic edge
that creates neither a cycle nor a crossing, is referred to as the greedy algorithm [21, 29].
This algorithm, as noted in [21, Figure 1], does not always return a planar bichromatic tree
(it does not always terminate: there may be a point of one color that cannot see any point of
the opposite color).

Abu-Affash et al. [2] studied the bottleneck version of the plane bichromatic spanning tree
problem where the goal is to minimize the length of the longest edge. They prove that this
problem is NP-hard, and present an 8

√
2-approximation algorithm.

1.2 Quasi-planarity

Quasi-planarity is a measure of the proximity of an (abstract or geometric) graph to planarity.
For an integer k ≥ 2, a graph is called k-quasi-planar if it can be drawn in the plane such
that no k edges pairwise cross. By this definition, a planar graph is 2-quasi-planar. A 3-quasi-
planar graph is also called quasi-planar. Problems on k-quasi-planarity are closely related to
Turán-type problems on the intersection graph of line segments in the plane [5, 10, 23, 28].
They are also related to the size of crossing families (pairwise crossing edges) determined
by points in the plane [12, 40]. Perhaps a most notable question on quasi-planarity is a
conjecture by Pach, Shahrokhi, and Szegedy [39] that for any fixed integer k ≥ 3, there exists
a constant ck such that every n-vertex k-quasi-planar graph has at most ckn edges. This
conjecture has been verified for k = 3 [5] and k = 4 [3].

A drawing of a graph is called k-quasi-plane if no k edges in the drawing pairwise cross,
and a drawing is quasi-plane if it is 3-quasi-plane. For example, the drawing of a tree in
Figure 1 is quasi-plane. This concept plays an important role in decompositions of geometric
graphs: Aichholzer et al. [6] showed recently that the complete geometric graph on 2n points
in the plane can always be decomposed into n quasi-plane spanning trees (but not necessarily
into n plane spanning trees).

1.3 Our contributions

In Section 2 we present a randomized approximation algorithm with factor O(log n) for the
MinPBST problem. Our algorithm computes a randomly shifted quadtree on the points, and
then builds a planar bichromatic tree in a bottom-up fashion from the leaves of the quadtree
towards the root. We then derandomize the algorithm by discretizing the random shifts.
Our weight analysis shows that |MinBST(S)| ≤ |MinPBST(S)| ≤ O(log n) · |MinBST(S)| for
every set S of n bichromatic points, which implies that ρn = O(log n).

ISAAC 2024

4:4 Minimum Plane Bichromatic Spanning Trees

In Section 3.1 we prove that every MinBST is quasi-plane, i.e., no three edges pairwise
cross in its inherited drawing (determined by the point set). In a sense, this means that
MinBST is not far from plane graphs. In Section 3.2 we determine the maximum number of
crossings in a MinBST. We conclude with a list of open problems in Section 4.

2 Approximation Algorithm for MinPBST

In this section we first present a randomized approximation algorithm for the MinPBST
problem. Then we show how to derandomize the algorithm at the expense of increasing
the running time by a quadratic factor. The following theorem summarizes our result in
this section. Throughout this section we consider point sets in the plane that are in general
position, that is, no three points lie on a straight line.

▶ Theorem 1. There is a randomized algorithm that, given a set of n red and blue points in
the plane in general position, returns a plane bichromatic spanning tree of expected weight
at most O(log n) times the optimum, and runs in O(n log2 n) time. The algorithm can be
derandomized by increasing the running time by a factor of O(n2).

Let S be a set of n red and blue points in the plane. To simplify our arguments we assume
that n is a power of 2. Let OPT denote the length of a minimum bichromatic spanning tree
on S (and note that OPT is an obvious lower bound for the length of a minimum plane
bichromatic spanning tree on S). Our algorithm computes a plane bichromatic spanning
tree of expected length O(log n) · OPT.

2.1 Preliminaries for the algorithm

The following folklore lemma, though very simple, plays an important role in our construction.

▶ Lemma 2. Every set of n red and blue points in general position in the plane, containing
at least one red and at least one blue point, admits a plane bichromatic spanning tree. Such a
tree can be computed in O(n log n) time.

A proof of Lemma 2 can be found in [17]. Essentially such a tree can be constructed by
connecting an arbitrary red point to all blue points (this partitions the plane into cones) and
then connecting red points in each cone to a blue point on its boundary.

For a connected geometric graph G and a point q in the plane, we say that q sees an edge
(a, b) of G if the interior of the triangle △qab is disjoint from vertices and edges of G. In
other words, the entirity of the edge (a, b) is visible from q. The following lemma (that is
implied from [33, Lemma 2.1]) also plays an important role in our construction.

▶ Lemma 3. Let G be a connected plane geometric graph with n vertices and q be a point
outside the convex hull of the vertices of G. Then q sees an edge of G. Such an edge can be
found in O(n log n) time.

Note that the condition that q lies outside of the convex hull of G is necessary, as otherwise
q may not see any edge of G entirely. The application of this lemma to our algorithm is that
if G is properly colored and a vertex sees an edge (a, b), then (q, a) or (q, b) is bichromatic
and does not cross any edges of G. This idea was previously used in [31, 32, 33].

H. A. Akitaya, A. Biniaz, E. D. Demaine, L. Kleist, F. Stock, and C. D. Tóth 4:5

2.2 The algorithm
After a suitable scaling, we may assume that the smallest axis-aligned square containing S

has side length 1. After a suitable translation, we may assume that the lower left corner of
this square is the point (1, 1); and so its top right corner is (2, 2) as in Figure 2(a). Observe
that

OPT ≥ 1.

Our algorithm employs a randomly shifted quadtree as in Arora’s PTAS for the Euclidean
TSP [13]. Let Q be a 2 × 2 axis-aligned square whose lower left corner is the origin – Q

contains all points of S. Subdivide Q into four congruent squares, and recurse until Q is
subdivided into squares of side length 1/n as in Figure 2(a). The depth of this recursion is
1 + log n. For the purpose of shifting, pick two real numbers x and y in the interval [0, 1]
uniformly at random. Then translate Q such that its lower left corner becomes (x, y) as
in Figure 2(b). This process is called a random shift. The points of S remain in Q after
the shift. We obtain a quadtree subdivision of S of depth at most 1 + log n with respect to
the subdivision of Q, i.e., the lines of the quadtree subdivision are chosen from the lines of
the subdivision of Q; see Figure 2(c). The resulting quadtree is called (randomly) shifted
quadtree. We stop the recursive subdivision at squares that have size 1/n × 1/n or that are
empty (disjoint from S) or monochromatic (have points of only one color). Therefore a
leaf-square of the quadtree may contain more than one point of S.

(0, 0) Qx

y

1
n

(0, 0)

Q

x

y

(a) (b) (c)

Figure 2 (a) Shaded square contains S. (b) Translated subdivision of Q. (c) Randomly shifted
quadtree on points of S with respect to the subdivision of Q.

At the root level (which we may consider as level −1) we have Q which has size 2 × 2. At
each recursive level i = 0, 1, . . . , log n we have squares of size 1/2i × 1/2i (Level 0 stands for
the first time that we subdivide Q). Thus at level 0 we have four squares of size 1 × 1, and
at level log n we have squares of size 1/n × 1/n. Our strategy is to use the shifted quadtree
and compute an approximate solution in a bottom-up fashion from the leaves towards the
root. For each square that is bichromatic (contains points of both colors) we will find a
plane bichromatic spanning tree of its points. For monochromatic squares, we do not do
anything. At the root level, we have Q which contains S and is bichromatic, so we will get
an approximate plane bichromatic spanning tree of S.

At level i = log n, we have squares of size 1/n × 1/n, and thus the length of any edge in
such squares is at most

√
2/n. For each bichromatic square we compute a plane bichromatic

tree arbitrarily, for instance by Lemma 2. For monochromatic squares we do nothing. The

ISAAC 2024

4:6 Minimum Plane Bichromatic Spanning Trees

spanning trees for all the squares have less than n edges in total. Hence the total length of
all these trees is at most

√
2

n
· n =

√
2 ≤

√
2 · OPT.

(a) (b) (c)

Figure 3 Merging two squares in the same row: (a) case 1, (b) case 2, and (c) case 3.

At each level i < log n, we have already solved the problem within squares of level i + 1.
Each square at level i has size 1/2i × 1/2i. If the square is monochromatic we do nothing.
If the square is bichromatic, then it consists of four squares at level i + 1. We merge the
solutions of the four squares to obtain a solution for the level i square as follows. First we
merge the solutions in adjacent squares in the same row (we have two such pairs), and then
merge the two solutions in the two rows. Thus each merge is performed on two solutions that
are separated by a (vertical or horizontal) line. For the merge we apply one of the following
cases:
(1) If each merge party is monochromatic but their union is bichromatic, then we construct an

arbitrary plane bichromatic tree on the union, for example by Lemma 2. See Figure 3(a).
(2) If both merge parties are bichromatic (and hence are trees), then we take a point in one

tree that is closest to the square (or rectangle) containing the other tree and merge them
using Lemma 3. See Figure 3(b).

(3) If one part is bichromatic (a tree) and the other is monochromatic, then we first sort the
points in the monochromatic square (or rectangle) in increasing order according to their
distance to the bichromatic square (or rectangle). Then we merge the points (one at a
time) with the current bichromatic tree by using Lemma 3. See Figure 3(c).

In each case, the merge produces a plane bichromatic tree in the level-i square. We
process all squares in a bottom-up traversal of the quadtree. In the end, after processing
level −1, we get a plane bichromatic spanning tree for points of S in square Q. Denote this
tree by T .

2.3 Weight analysis
We start by introducing an alternative measurement for the length of the optimal tree, i.e.,
MinBST. This new measurement, denoted by OPT′, will be used to bound the length of our
tree T . We say that a quadtree line is at level i if it contains a side of some level-i square. A
side of a level-i square (that is not a leaf) gets subdivided to yield sides of two squares at
level i + 1. Thus any quadtree line at level i is also at levels i + 1, i + 2, . . . , log n.

For each level i ∈ {0, 1, . . . , log n} we define a parameter OPT′
i. Let Topt be a MinBST

for S. For each edge e of Topt, define the indicator variable

Xi(e) =
{

1 if e intersects the boundary of a level-i square of the quadtree,
0 otherwise.

H. A. Akitaya, A. Biniaz, E. D. Demaine, L. Kleist, F. Stock, and C. D. Tóth 4:7

Now let

OPT′
i =

∑
e∈E(Topt)

1
2i

Xi(e),

that is, a weighted sum of Xi(e) over all edges of Topt, and let

OPT′ =
log n∑
i=0

OPT′
i.

The new measure OPT′ can be arbitrarily large compared to OPT in the worst case. For
example if the optimal solution is a path consisting of n − 1 edges of small length say 2/n,
such that each of them intersects the vertical line at level 0, then OPT is roughly 2 but
OPT′ is at least n − 1. However, using the random shift at the beginning of our algorithm,
we can show that the expected value of OPT′ is not very large compared to OPT.

▶ Lemma 4. E[OPT′] ≤
√

2(1 + log n) · OPT.

Proof. Consider any edge e of length ℓ in MinBST. Let ℓx denote the x-span of e, i.e.,
the difference of the x-coordinates of the two endpoints of e, and let ℓy be the y-span of e.
Observe that ℓx + ℓy ≤

√
2ℓ. The probability that e intersects a vertical line at any level i is

Pr(e intersects a vertical line at level i) ≤ ℓx2i,

because there are 2i uniformly spaced but randomly shifted vertical lines at level i. Combining
this with the probability of intersecting horizontal lines, the union bound yields

Pr(Xi(e)) = Pr(e intersects a line at level i) ≤ (ℓx + ℓy)2i ≤
√

2ℓ2i.

If e intersects a line at level i, then 1/2i is added to OPT′
i, otherwise nothing is added.

Thus the expected added value for e to OPT′
i is

E
[

1
2i

Xi(e)
]

= 1
2i

· Pr(Xi(e)) ≤ 1
2i

·
√

2ℓ2i =
√

2ℓ.

Summation over all edges of the optimal tree Topt gives E[OPT′
i] ≤

√
2 ·OPT, and summation

over all levels yields E[OPT′] ≤
√

2(1 + log n) · OPT. ◀

We already know that the total length of trees constructed in level log n is at most√
2 · OPT. Let Ei be the set of all edges that were added to T at level i < log n in the

bottom-up construction. We establish a correspondence between the edges in Ei and the
values added to OPT′. The edges of Ei were added by cases (1), (2), and (3). We consider
each case separately.
(1) Assume that the union of merge parties has k points. Then we add k − 1 edges of length

at most
√

2 · 1/2i to Ei. For these points, MinBST also needs to have at least k − 1
connections that intersect the boundaries of the squares involved in the merge, which
have side length at least 1/2i+1. For each such edge we have added a value of 1/2i+1 to
OPT′

i+1.
(2) To merge the two trees, we added just one edge of length at most

√
2 · 1/2i to Ei. For

each merge party, MinBST needs at least one edge that crosses the boundary of its
rectangle. These edges, however, need not be distinct (e.g., an edge can cross the
boundary between the two rectangles). In any case, MinBST needs at least one edge
that crosses the boundary of one of the two rectangles, for which we have added at least
1/2i+1 to OPT′

i+1.

ISAAC 2024

4:8 Minimum Plane Bichromatic Spanning Trees

(3) Assume that the monochromatic party has k points. Thus we added k edges of length at
most

√
2 · 1/2i to Ei. Again, MinBST needs at least k edges that cross the boundary of

the squares involved in the merge; and for each such edge we have added at least 1/2i+1

to OPT′
i+1.

Therefore the total length of all edges that were added to T at level i is at most |Ei| ·
√

2/2i.
Analogously, the total value that has been added to OPT′

i+1 is at least 1/2 · |Ei| · 1/2i+1 =
|Ei| · 1/2i+2. The multiplicative factor 1/2 comes from the fact that the two endpoints of an
edge of the optimal tree could be involved in two separate merge operations. By summing
the length of edges added to T in all levels and considering Lemma 4 we get

E[|T |] ≤
√

2 · OPT + E

[log n−1∑
i=0

|Ei|
√

2
2i

]
≤

√
2 · OPT + 4

√
2 · E

[log n−1∑
i=0

|Ei|
1

2i+2

]

≤
√

2 · OPT + 4
√

2 · E

[log n−1∑
i=0

OPT′
i+1

]
≤

√
2 · OPT + 4

√
2 · E[OPT′]

≤
√

2 · OPT + 4
√

2 ·
√

2(1 + log n) · OPT = O(log n) · OPT.

2.4 Derandomization
In the algorithm of Section 2.2, we shifted the 2 × 2 square Q by a real vector (x, y), where
x and y are chosen independently and uniformly at random from the interval [0, 1]. We now
discretize the random shift, and choose x and y independently and uniformly at random
from the finite set {0, 1/n, 2/n, . . . , n−1/n}. We call this process the discrete random shift. We
show that the proof of Lemma 4 can be adapted under this random experiment with a larger
constant coefficient. Therefore we can derandomize the algorithm by trying all random
choices of (x, y) for the shift and return the shortest tree over all choices. This increases the
running time by a factor of O(n2).

▶ Lemma 5. Under the discrete random shift, we have E[OPT′] ≤ (
√

2+2)(1+log n) ·OPT.

Proof. Consider any edge e = ab of length ℓ in the optimal tree Topt. The two endpoints
of e are points a = (ax, ay) and b = (bx, by). Denote the orthogonal projection of e to the
x- and y-axes by ex and ey, respectively, and observe that ex = [min{ax, bx}, max{ax, bx}]
and ey = [min{ay, by}, max{ay, by}]. We discretize these intervals as follows. Replace each
endpoint of the interval ex with the closest rationals of the form k/n + 1/2n, and let e′

x be
the resulting interval; similarly we obtain e′

y from ey. Observe that ex intersects a vertical
line of the form x = a/n, a ∈ Z, if and only if e′

x does. Let ℓ′
x and ℓ′

y denote the lengths of
intervals e′

x and e′
y, respectively. By construction, we have ℓ′

x ≤ ℓx + 1/n and ℓ′
y ≤ ℓy + 1/n.

Consequently, the probability that e intersects a vertical line at any level i is

Pr(e intersects a vertical line at level i) = Pr(e′
x intersects a vertical line at level i)

≤ ℓ′
x2i ≤ (ℓx + 1/n) 2i,

because there are 2i uniformly spaced but randomly shifted vertical lines at level i. Combining
this with the probability of intersecting horizontal lines, the union bound yields

Pr(Xi(e)) = Pr(e intersects a line at level i) ≤ (ℓx + ℓy + 2/n) 2i ≤
(√

2ℓ + 2/n

)
2i.

H. A. Akitaya, A. Biniaz, E. D. Demaine, L. Kleist, F. Stock, and C. D. Tóth 4:9

The expected added value for e to OPT′
i is

E
[

1
2i

Xi(e)
]

= 1
2i

· Pr(Xi(e)) ≤ 1
2i

·
(√

2ℓ + 2
n

)
2i =

√
2ℓ + 2

n
.

Summation over all edges of the optimal tree Topt gives E[OPT′
i] ≤

√
2 · OPT + 2 ≤

(
√

2+2) ·OPT, and summation over all levels yields E[OPT′] ≤ (
√

2+2)(1+log n) ·OPT. ◀

The initial shifted quadtree has depth O(log n) and has O(n) leaves. Thus it can be
computed in O(n log n) time by a divide-and-conquer sorting-based algorithm [26]. From a
result of [17] (cf. Lemma 2) it follows that the bichromatic trees at the leaves of the quadtree
can be computed in total O(n log n) time. From a result of [30] and [33] (cf. Lemma 3) it
follows that the total merge time in each level of the quadtree is O(n log n). Summing over
all levels, the running time of our algorithm is O(n log2 n).

2.5 Generalization to more colors
Our approximation algorithm for the MinPBST (minimum plane two-colored spanning tree)
can be generalized to more colors. In this general setting, we are given a colorful point set S

and we want to find a spanning tree on S with properly colored edges, i.e., the two endpoints
of every edge should be of different colors. The same quadtree approach would give a plane
properly-colored spanning tree. The analysis and the approximation ratio would be the same
mainly because whenever we introduce some edges to merge two squares, the optimal solution
must have the same number of edges that cross the boundaries of the squares. Also the
running time remains the same because Lemma 2 and Lemma 3 carry over to multicolored
point sets.

3 Crossing Patterns in MinBST

In this section, we prove that MinBST is quasi-plane for every 2-colored point set in general
position (Section 3.1), and then use this result to determine the maximum number of crossings
in MinBST for a set of n bichromatic points in the plane (Section 3.2).

3.1 Quasi-planarity
Let S be a set of red and blue points in the plane. To differentiate between the points we
denote the red points by r1, r2, . . . and the blue points by b1, b2, Let T be a MinBST for
S. For two distinct edges e1 and e2 of T we denote the unique shortest path between e1 and
e2 in T by δ(e1, e2). This path contains exactly one endpoint of e1 and one endpoint of e2.

δ(e1, e2)

r1 r2

b1b2
e1e2

Figure 4 Illustration of the proof of Lemma 6. Uncrossing a pair of crossing edges.

▶ Lemma 6. Let e1 and e2 be two edges of T that cross each other. Then the endpoints of
δ(e1, e2) have different colors.

ISAAC 2024

4:10 Minimum Plane Bichromatic Spanning Trees

Proof. Let e1 = (r1, b1) and e2 = (r2, b2). Suppose, for the sake of contradiction, that the
endpoints of δ(e1, e2) are of the same color, w.l.o.g. red. Then the endpoints of δ(e1, e2)
are r1 and r2 as in Figure 4. In this case, we can replace edges (r1, b1) and (r2, b2) of T by
two new edges (r1, b2) and (r2, b1) and obtain a new bichromatic spanning tree T ′. By the
triangle inequality (applied to each of the two triangles induced by the crossing), the total
length of the two new edges is smaller than the total length of the two orginal edges. Hence
T ′ is shorter than T , contradicting the minimality of T . ◀

r1

r2

r3

b1

b2

b3

δ(e2, e3)

δ(e1, e3)

e1 e2

e3

b2

δ(e2, e3)

δ(e1, e2)
b1

r2

b3

r3 r1

e1 e2

e3

(a) (b)

Figure 5 (a) Replacing e1, e2, e3 by (r1, b3), (r3, b2), (r2, b1); the highlighted path is δ(e1, e2). (b)
Getting a cycle in the union of δ(e1, e2), δ(e2, e3), δ(e1, e3), together with e1 or e3. Gray paths
represent the two possible choices for δ(e1, e3).

▶ Theorem 7. Every Euclidean minimum bichromatic spanning tree is quasi-plane.

Proof. Let T be a Euclidean minimum bichromatic spanning tree. We prove that no three
edges of T can pairwise cross each other. This will imply that T is quasi-plane. The proof
proceeds by contradiction. Suppose that three edges of T , say e1 = (r1, b1), e2 = (r2, b2) and
e3 = (r3, b3), pairwise cross each other as in Figure 5. We consider the following two cases:

1. δ(ei, ej) contains ek for some permutation of the indices with {i, j, k} = {1, 2, 3}.
After a suitable relabeling assume that δ(e1, e2) contains e3. Then δ(e1, e3) and δ(e2, e3)
are sub-paths of δ(e1, e2) and they do not contain e2 and e1 respectively. Assume without
loss of generality (and by Lemma 6) that the endpoints of δ(e1, e2) are r2 and b1 as
in Figure 5(a); δ(e1, e2) is highlighted in the figure. For the rest of our argument we
will use a result of [20] that for an even number of (monochromatic) points in the
plane, a perfect matching with pairwise crossing edges is the unique maximum-weight
matching (without considering the colors). This means that M = {e1, e2, e3} is the
maximum matching for the point set {r1, r2, r3, b1, b2, b3}. Therefore M is longer than
R = {(r1, b3), (r2, b1), (r3, b2)}, which is a (bichromatic) matching for the same points.
By replacing the edges of M in T with the edges of R, we obtain a shorter tree T ′,
contradicting the minimality of T . To verify that T ′ is a tree imagine replacing the edges
one at a time. If we add (r1, b3) first, then we create a cycle that contains e1, and thus
by removing e1 we obtain a valid tree. Similarly we can replace e2 by (r3, b2) and e3 by
(r2, b1).

2. δ(ei, ej) does not contain ek for any permutation of the indices with {i, j, k} = {1, 2, 3}.
Consider the path δ(e1, e2) and assume without loss of generality (and by Lemma 6) that
its endpoints are r2 and b1 as in Figure 5(b). Now consider δ(e2, e3). This path cannot

H. A. Akitaya, A. Biniaz, E. D. Demaine, L. Kleist, F. Stock, and C. D. Tóth 4:11

have r3 and b2 as its endpoints because otherwise the path δ(e1, e3) would contain e2,
contradicting the assumption of the current case. Therefore the endpoints of δ(e2, e3) are
r2 and b3. Now consider the path δ(e1, e3). If its endpoints are r1 and b3, then the union
of δ(e1, e2), δ(e2, e3), and δ(e1, e3) contains a path between r1 and b1 that does not go
through e1; the union of this path and e1 is a cycle in T . Similarly, if the endpoints of
δ(e1, e3) are r3 and b1, then the union of δ(e1, e2), δ(e2, e3), δ(e1, e3), and e3 contains a
cycle. Both cases lead to a contradiction as T has no cycle. ◀

3.2 Maximum number of crossings
Given that a MinBST is quasi-plane (Theorem 7), one wonders how many crossings it can
have. As illustrated in Figure 1, the number of crossings per edge can be linear in the number
of points, and the total number of crossings can be quadratic. We give tight upper bounds for
both quantities (Propositions 9–10), and also show that MinBST always has a crossing-free
edge (Proposition 8).

▶ Proposition 8. For every finite set of bichromatic points in the plane in general position,
every MinBST contains a closest bichromatic pair as an edge. Moreover, no such edge is
intersected by other edges of the MinBST.

Proof. We prove both parts by contradiction. For the first part assume that the MinBST
does not contain an edge between any closest bichromatic pair. Let {r1, b1} be a closest
bichromatic pair. By adding (r1, b1) to the tree we obtain a cycle in which (r1, b1) is the
shortest edge. By removing any other edge from the cycle we obtain a bichromatic spanning
tree of a shorter length. This contradicts the minimality of the original MinBST.

For the second part let {r1, b1} be a closest bichromatic pair that appears as an edge in
the MinBST. Hence e1 = (r1, b1) crosses some edge e2 = (r2, b2). Without loss of generality
(and by Lemma 6), assume that the endpoints of δ(e1, e2) are r1 and b2. If |r2b1| < |r2b2|,
then by replacing (r2, b2) with (r2, b1) we obtain a shorter bichromatic spanning tree, a
contradiction. Assume that |r2b1| ≥ |r2b2|. Since {r1, b1} is a closest bichromatic pair we
have |r1b2| ≥ |r1b1|. Adding the two inequalities yields |r1b2| + |r2b1| ≥ |r1b1| + |r2b2|. Note,
however, that the vertices of any two crossing edges form a convex quadrilateral. By the
triangle inequality, the total length of the two diagonals of a convex quadrilateral is strictly
more than the total length of any pair of opposite edges, yielding |r1b2|+|r2b1| < |r1b1|+|r2b2|,
a contradiction. ◀

▶ Proposition 9. For every set of n ≥ 2 bichromatic points in the plane in general position,
every MinBST has at most ⌊n2

/4⌋ − n + 1 crossings, and this bound is the best possible.

Proof. To verify that the claimed bound can be attained, consider the construction in
Figure 1 where the two top clusters have ⌊n/2⌋−1 and ⌈n/2⌉−1 points. Then the total
number of crossings in MinBST(S) is (⌊n/2⌋−1) · (⌈n/2⌉−1), which is equal to ⌊n2

/4⌋ − n + 1
because n is an integer.

For an upper bound, let S be a set of n bichromatic points in general position. Define
the crossing graph Gcr of MinBST(S), where the vertices of Gcr correspond to the edges of
MinBST(S) and edges of Gcr represent crossings between the edges of MinBST(S). Note
that Gcr has n − 1 vertices where one of them is of degree 0 by Proposition 8. By Theorem 7,
Gcr is triangle-free. Therefore, by Turán’s theorem [7], Gcr has at most (⌊n/2⌋−1) ·(⌈n/2⌉−1)
edges. Consequently, MinBST(S) has at most this many crossings. ◀

ISAAC 2024

4:12 Minimum Plane Bichromatic Spanning Trees

▶ Proposition 10. For every set of n ≥ 3 bichromatic points in the plane in general position,
every edge of a MinBST crosses at most n − 3 other edges, and this bound is the best possible.

Proof. To verify that the claimed bound can be attained, consider the construction in
Figure 1 and replace one of the top clusters by a single point and the other by n − 3 points.
Then all points in this cluster have degree 1 in MinBST(S), these n − 3 leaves all cross one
edge of MinBST.

For the upper bound, notice that a MinBST has n − 1 edges, one of which is crossing-free
by Proposition 8. Consequently, an edge in a MinBST can cross at most n−3 other edges. ◀

4 Conclusions and Open Problems

We conclude with a collection of open problems raised by our results. We have presented
a O(log n)-approximation algorithm for the MinPBST problem for a set of n bichromatic
points in the plane, and showed that ρn ≤ O(log n). Recall that the current best lower bound
is ρn ≥ 3/2 for all n ≥ 4 [29]. It remains open whether a constant-factor approximation is
possible, whether the problem is APX-hard, and whether ρn is bounded by a constant.

It is also natural to investigate whether there is an (approximation) algorithm that,
given a bichromatic point set and an integer d, finds a minimum plane bichromatic tree of
maximum degree at most d (or reports that none exists). It is known that any set of n red
and n blue points in general position admits a plane bichromatic spanning tree of maximum
degree at most three [34]; but there are n red and n blue points in convex position that do
not admit a bichromatic plane spanning path [8]. For the general case of n red and m blue
points, with n ≥ m, there exists a plane bichromatic spanning tree of maximum degree at
most max{3, ⌈n−1/m⌉ + 1} and this is the best upper bound [19].

We have shown that MinBST is quasi-plane, which means that the crossing graph Gcr of
MinBST is triangle-free. Figure 1 shows that Gcr can have 4-cycles (and even cycles of any
lengths). Can the crossing graph Gcr of MinBST contain an odd cycle (e.g., a 5-cycle)? Can
every MinBST be decomposed into a constant number of planar straight-line graphs?

References
1 Manuel Abellanas, Jesus García-Lopez, Gregorio Hernández-Peñalver, Marc Noy, and Pedro A.

Ramos. Bipartite embeddings of trees in the plane. Discret. Appl. Math., 93(2-3):141–148,
1999. doi:10.1016/S0166-218X(99)00042-6.

2 A. Karim Abu-Affash, Sujoy Bhore, Paz Carmi, and Joseph S. B. Mitchell. Planar bichromatic
bottleneck spanning trees. J. Comput. Geom., 12(1):109–127, 2021. doi:10.20382/JOCG.
V12I1A5.

3 Eyal Ackerman. On the maximum number of edges in topological graphs with no four
pairwise crossing edges. Discret. Comput. Geom., 41(3):365–375, 2009. doi:10.1007/
S00454-009-9143-9.

4 Pankaj K. Agarwal. Partitioning arrangements of lines I: An efficient deterministic algorithm.
Discret. Comput. Geom., 5:449–483, 1990. doi:10.1007/BF02187805.

5 Pankaj K. Agarwal, Boris Aronov, János Pach, Richard Pollack, and Micha Sharir. Quasi-
planar graphs have a linear number of edges. Combinatorica, 17(1):1–9, 1997. doi:10.1007/
BF01196127.

6 Oswin Aichholzer, Johannes Obenaus, Joachim Orthaber, Rosna Paul, Patrick Schnider,
Raphael Steiner, Tim Taubner, and Birgit Vogtenhuber. Edge partitions of complete geometric
graphs. In Proc. 38th Symposium on Computational Geometry (SoCG), volume 224 of LIPIcs,
pages 6:1–6:16. Schloss Dagstuhl, 2022. doi:10.4230/LIPICS.SOCG.2022.6.

https://doi.org/10.1016/S0166-218X(99)00042-6
https://doi.org/10.20382/JOCG.V12I1A5
https://doi.org/10.20382/JOCG.V12I1A5
https://doi.org/10.1007/S00454-009-9143-9
https://doi.org/10.1007/S00454-009-9143-9
https://doi.org/10.1007/BF02187805
https://doi.org/10.1007/BF01196127
https://doi.org/10.1007/BF01196127
https://doi.org/10.4230/LIPICS.SOCG.2022.6

H. A. Akitaya, A. Biniaz, E. D. Demaine, L. Kleist, F. Stock, and C. D. Tóth 4:13

7 Martin Aigner and Günter M. Ziegler. Turán’s graph theorem. In Proofs from THE
BOOK, chapter 41, pages 285–289. Springer-Verlag, 6th edition, 2018. doi:10.1007/
978-3-662-57265-8_41.

8 Jin Akiyama and Jorge Urrutia. Simple alternating path problem. Discret. Math., 84(1):101–
103, 1990. doi:10.1016/0012-365X(90)90276-N.

9 Carlos Alegría, David Orden, Carlos Seara, and Jorge Urrutia. Separating bichromatic point
sets in the plane by restricted orientation convex hulls. J. Glob. Optim., 85(4):1003–1036,
2023. doi:10.1007/S10898-022-01238-9.

10 Patrizio Angelini, Michael A. Bekos, Franz J. Brandenburg, Giordano Da Lozzo, Giuseppe Di
Battista, Walter Didimo, Michael Hoffmann, Giuseppe Liotta, Fabrizio Montecchiani, Ignaz
Rutter, and Csaba D. Tóth. Simple k-planar graphs are simple (k + 1)-quasiplanar. J. Comb.
Theory B, 142:1–35, 2020. doi:10.1016/J.JCTB.2019.08.006.

11 Bogdan Armaselu and Ovidiu Daescu. Dynamic minimum bichromatic separating circle. Theor.
Comput. Sci., 774:133–142, 2019. doi:10.1016/J.TCS.2016.11.036.

12 Boris Aronov, Paul Erdős, Wayne Goddard, Daniel J. Kleitman, Michael Klugerman, János
Pach, and Leonard J. Schulman. Crossing families. Combinatorica, 14(2):127–134, 1994.
doi:10.1007/BF01215345.

13 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. J. ACM, 45(5):753–782, 1998. doi:10.1145/290179.290180.

14 Sanjeev Arora and Kevin L. Chang. Approximation schemes for degree-restricted MST
and red-blue separation problems. Algorithmica, 40(3):189–210, 2004. doi:10.1007/
s00453-004-1103-4.

15 Sayan Bandyapadhyay, Aritra Banik, Sujoy Bhore, and Martin Nöllenburg. Geometric
planar networks on bichromatic collinear points. Theor. Comput. Sci., 895:124–136, 2021.
doi:10.1016/J.TCS.2021.09.035.

16 Sergei Bespamyatnikh, David G. Kirkpatrick, and Jack Snoeyink. Generalizing ham sandwich
cuts to equitable subdivisions. Discret. Comput. Geom., 24(4):605–622, 2000. doi:10.1007/
s004540010065.

17 Ahmad Biniaz, Prosenjit Bose, Kimberly Crosbie, Jean-Lou De Carufel, David Eppstein, Anil
Maheshwari, and Michiel H. M. Smid. Maximum plane trees in multipartite geometric graphs.
Algorithmica, 81(4):1512–1534, 2019. doi:10.1007/S00453-018-0482-X.

18 Ahmad Biniaz, Prosenjit Bose, David Eppstein, Anil Maheshwari, Pat Morin, and Michiel
H. M. Smid. Spanning trees in multipartite geometric graphs. Algorithmica, 80(11):3177–3191,
2018. doi:10.1007/S00453-017-0375-4.

19 Ahmad Biniaz, Prosenjit Bose, Anil Maheshwari, and Michiel H. M. Smid. Plane bichro-
matic trees of low degree. Discret. Comput. Geom., 59(4):864–885, 2018. doi:10.1007/
S00454-017-9881-Z.

20 Ahmad Biniaz, Anil Maheshwari, and Michiel Smid. Euclidean maximum matchings in the
plane—local to global. In Proceedings of the 17th International Symposium on Algorithms
and Data Structures (WADS), volume 12808 of LNCS, pages 186–199. Springer, 2021. doi:
10.1007/978-3-030-83508-8_14.

21 Magdalene G. Borgelt, Marc J. van Kreveld, Maarten Löffler, Jun Luo, Damian Merrick,
Rodrigo I. Silveira, and Mostafa Vahedi. Planar bichromatic minimum spanning trees. J.
Discrete Algorithms, 7(4):469–478, 2009. doi:10.1016/J.JDA.2008.08.001.

22 Otakar Borůvka. O jistém problému minimálním. Praca Moravske Prirodovedecke Spolecnosti,
3(3):37–58, 1926.

23 Vasilis Capoyleas and János Pach. A Turán-type theorem on chords of a convex polygon. J.
Comb. Theory B, 56(1):9–15, 1992. doi:10.1016/0095-8956(92)90003-G.

24 Timothy M. Chan. On the bichromatic k-set problem. ACM Trans. Algorithms, 6(4):62:1–62:20,
2010. doi:10.1145/1824777.1824782.

25 Timothy M. Chan and Bryan T. Wilkinson. Bichromatic line segment intersection counting in
O(n

√
log n) time. In Proceedings of the 23rd Annual Canadian Conference on Computational

Geometry (CCCG), Toronto, ON, 2011. URL: https://cccg.ca/proceedings/2011/papers/
paper83.pdf.

ISAAC 2024

https://doi.org/10.1007/978-3-662-57265-8_41
https://doi.org/10.1007/978-3-662-57265-8_41
https://doi.org/10.1016/0012-365X(90)90276-N
https://doi.org/10.1007/S10898-022-01238-9
https://doi.org/10.1016/J.JCTB.2019.08.006
https://doi.org/10.1016/J.TCS.2016.11.036
https://doi.org/10.1007/BF01215345
https://doi.org/10.1145/290179.290180
https://doi.org/10.1007/s00453-004-1103-4
https://doi.org/10.1007/s00453-004-1103-4
https://doi.org/10.1016/J.TCS.2021.09.035
https://doi.org/10.1007/s004540010065
https://doi.org/10.1007/s004540010065
https://doi.org/10.1007/S00453-018-0482-X
https://doi.org/10.1007/S00453-017-0375-4
https://doi.org/10.1007/S00454-017-9881-Z
https://doi.org/10.1007/S00454-017-9881-Z
https://doi.org/10.1007/978-3-030-83508-8_14
https://doi.org/10.1007/978-3-030-83508-8_14
https://doi.org/10.1016/J.JDA.2008.08.001
https://doi.org/10.1016/0095-8956(92)90003-G
https://doi.org/10.1145/1824777.1824782
https://cccg.ca/proceedings/2011/papers/paper83.pdf
https://cccg.ca/proceedings/2011/papers/paper83.pdf

4:14 Minimum Plane Bichromatic Spanning Trees

26 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Quadtrees. In
Computational Geometry: Algorithms and Applications, chapter 14, pages 307–322. Springer,
Berlin, 2008. doi:10.1007/978-3-540-77974-2_14.

27 Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John Iacono, Stefan Langerman, Henk Meijer,
Mark H. Overmars, and Sue Whitesides. Separating point sets in polygonal environments.
Int. J. Comp. Geom. Appl., 15(4):403–420, 2005. doi:10.1142/S0218195905001762.

28 Jacob Fox, János Pach, and Andrew Suk. Quasiplanar graphs, string graphs, and the Erdős-
Gallai problem. In Proceedings of the 30th International Symposium on Graph Drawing and
Network Visualization (GD), pages 219–231, 2022. doi:10.1007/978-3-031-22203-0_16.

29 Magdalene Grantson, Henk Meijer, and David Rappaport. Bi-chromatic minimum spanning
trees. In Proceedings of the 21st European Workshop on Computational Geometry (EwCG),
pages 199–202, Eindhoven, 2005. URL: https://www.win.tue.nl/EWCG2005/Proceedings/
51.pdf.

30 John Hershberger and Subhash Suri. Applications of a semi-dynamic convex hull algorithm.
BIT, 32(2):249–267, 1992. doi:10.1007/BF01994880.

31 Michael Hoffmann, Bettina Speckmann, and Csaba D. Tóth. Pointed binary encompassing
trees: Simple and optimal. Comput. Geom., 43(1):35–41, 2010. doi:10.1016/j.comgeo.2006.
12.005.

32 Michael Hoffmann and Csaba D. Tóth. Vertex-colored encompassing graphs. Graphs and
Combinatorics, 30(4):933–947, 2014. doi:10.1007/s00373-013-1320-1.

33 Ferran Hurtado, Mikio Kano, David Rappaport, and Csaba D. Tóth. Encompassing colored
planar straight line graphs. Comput. Geom., 39(1):14–23, 2008. doi:10.1016/J.COMGEO.2007.
05.006.

34 Atsushi Kaneko. On the maximum degree of bipartite embeddings of trees in the plane.
In Discrete and Computational Geometry (JCDCG), volume 1763 of LNCS, pages 166–171,
Heidelberg, 1998. Springer. doi:10.1007/978-3-540-46515-7_13.

35 Atsushi Kaneko and Mikio Kano. Discrete geometry on red and blue points in the plane —
a survey. In Boris Aronov, Saugata Basu, János Pach, and Micha Sharir, editors, Discrete
and Computational Geometry, volume 25 of Algorithms and Combinatorics, pages 551–570.
Springer Berlin Heidelberg, 2003. doi:10.1007/978-3-642-55566-4_25.

36 Mikio Kano, Kazuhiro Suzuki, and Miyuki Uno. Properly colored geometric matchings and
3-trees without crossings on multicolored points in the plane. In Discrete and Computational
Geometry and Graphs (JCDCGG), LNCS, pages 96–111, Cham, 2013. Springer. doi:10.1007/
978-3-319-13287-7_9.

37 Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956. doi:10.1090/
S0002-9939-1956-0078686-7.

38 Harry G. Mairson and Jorge Stolfi. Reporting and counting intersections between two
sets of line segments. In Rae A. Earnshaw, editor, Theoretical Foundations of Computer
Graphics and CAD, volume 40 of NATO ASI Series, pages 307–325. Springer, Heidelberg,
1988. doi:10.1007/978-3-642-83539-1_11.

39 János Pach, Farhad Shahrokhi, and Mario Szegedy. Applications of the crossing number.
Algorithmica, 16(1):111–117, 1996. doi:10.1007/BF02086610.

40 János Pach, Natan Rubin, and Gábor Tardos. Planar point sets determine many pairwise
crossing segments. Advances in Mathematics, 386:107779, 2021. doi:10.1016/j.aim.2021.
107779.

41 Robert C. Prim. Shortest connection networks and some generalizations. Bell System Technical
Journal, 36, 1957.

https://doi.org/10.1007/978-3-540-77974-2_14
https://doi.org/10.1142/S0218195905001762
https://doi.org/10.1007/978-3-031-22203-0_16
https://www.win.tue.nl/EWCG2005/Proceedings/51.pdf
https://www.win.tue.nl/EWCG2005/Proceedings/51.pdf
https://doi.org/10.1007/BF01994880
https://doi.org/10.1016/j.comgeo.2006.12.005
https://doi.org/10.1016/j.comgeo.2006.12.005
https://doi.org/10.1007/s00373-013-1320-1
https://doi.org/10.1016/J.COMGEO.2007.05.006
https://doi.org/10.1016/J.COMGEO.2007.05.006
https://doi.org/10.1007/978-3-540-46515-7_13
https://doi.org/10.1007/978-3-642-55566-4_25
https://doi.org/10.1007/978-3-319-13287-7_9
https://doi.org/10.1007/978-3-319-13287-7_9
https://doi.org/10.1090/S0002-9939-1956-0078686-7
https://doi.org/10.1090/S0002-9939-1956-0078686-7
https://doi.org/10.1007/978-3-642-83539-1_11
https://doi.org/10.1007/BF02086610
https://doi.org/10.1016/j.aim.2021.107779
https://doi.org/10.1016/j.aim.2021.107779

Constrained Two-Line Center Problems
Taehoon Ahn #

Graduate School of Artificial Intelligence,
Pohang University of Science and Technology, Republic of Korea

Sang Won Bae #

Division of Artificial Intelligence and Computer Science,
Kyonggi University, Suwon, Republic of Korea

Abstract
Given a set P of n points in the plane, the two-line center problem asks to find two lines that
minimize the maximum distance from each point in P to its closer one of the two resulting lines.
The currently best algorithm for the problem takes O(n2 log2 n) time by Jaromczyk and Kowaluk in
1995. In this paper, we present faster algorithms for three variants of the two-line center problem in
which the orientations of the resulting lines are constrained. Specifically, our algorithms solve the
problem in O(n log n) time when the orientations of both lines are fixed; in O(n log3 n) time when
the orientation of one line is fixed; and in O(n2α(n) log n) time when the angle between the two
lines is fixed, where α(n) denotes the inverse Ackermann function.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases two-line center problem, geometric location problem, geometric optimization

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.5

Related Version Full Version: https://arxiv.org/abs/2409.13304 [7]

Funding Taehoon Ahn: Supported by the Institute of Information & communications Technology
Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No. 2019-0-01906).
Sang Won Bae: Supported by the National Research Foundation of Korea(NRF) grant funded by
the Korea government(MSIT) (No. RS-2023-00251168).

1 Introduction

Given a set P of n points in the plane R2, the two-line center problem asks to find two
lines that minimize the maximum distance from each point in P to its closer one of the two
resulting lines. In 1991, Agarwal and Sharir [4] presented the first subcubic O(n2 log5 n)-time
algorithm for the two-line center problem, in which they solved the decision version in
O(n2 log3 n) time using their machinery [3] to maintain the width of a point set under a
prescribed sequence of changes and then to apply the parametric search technique. (See also
its full version [5].) In 1995, Jaromczyk and Kowaluk [24] presented an O(n2 log2 n)-time
algorithm and also discussed an O(n2 log n)-time decision algorithm. Glozman et al. [21, 22]
exhibited how any D-time decision algorithm for the two-line center problem can be converted
to an optimization algorithm of O(n2 log n + D log n) time using sorted matrices. Later,
Katz and Sharir [26] introduced an expander-based approach and showed how to solve the
problem in O(n2 log3 n + D log n) time. There was no significant progress since then and
O(n2 log2 n) still remains the best known upper bound [22,24].

This paper addresses constrained variants of the two-line center problem, and aims to
provide efficient algorithms for the constrained problems, particularly faster than O(n2 log2 n)
time, and to provide new observations and algorithmic techniques for any future breakthrough
on the problem. The currently fastest algorithm by Jaromczyk and Kowaluk [24] indeed
considers several constrained problems, tackled by different methods. Though not having
explicitly mentioned in [24], their approach yields an O(n log2 n)-time algorithm when a fixed

© Taehoon Ahn and Sang Won Bae;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 5; pp. 5:1–5:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sloth@postech.ac.kr
https://orcid.org/0000-0001-6588-4431
mailto:swbae@kgu.ac.kr
https://orcid.org/0000-0002-8802-4247
https://doi.org/10.4230/LIPIcs.ISAAC.2024.5
https://arxiv.org/abs/2409.13304
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Constrained Two-Line Center Problems

point in P should be the farthest to the resulting lines, after an O(n2)-time preprocessing.
Recently, Bae [10] presented an O(n2)-time algorithm for the two-parallel-line center problem,
in which the two resulting lines are supposed to be parallel.

In this paper, we solve three variants of the two-line center problem, constrained about
the orientations of the resulting two lines. Following summarizes our results and approaches:
(1) (Two fixed orientations) Given two orientations θ and ϕ, we present an O(n log n)-time

algorithm that solves the two-line center problem in which the two resulting lines are
constrained to have orientations θ and ϕ. If the input points P are given as a sorted list
in one of the specified orientations, then the running time can be reduced to O(n).

(2) (One fixed orientation) Given an orientation ϕ, we present an O(n log3 n)-time algorithm
that solves the two-line center problem in which one of the resulting lines is constrained
to have orientation ϕ. We first devise an O(n log2 n)-time decision algorithm for this
constrained problem using the data structure by Agarwal and Sharir [3]. In spite of having
such an efficient decision algorithm, it is not immediate to achieve a sub-quadratic time
optimization algorithm by applying known techniques; as introduced above, all known
techniques for the two-line center problem require at least quadratic-time additional
overhead [5, 22, 26]. To overcome this difficulty, we use our decision algorithm as a
subroutine to find an interval narrow enough to reduce the possible number of candidate
configurations to O(n) and apply the dynamic width structure by Chan [13].

(3) (Fixed angle of intersection) Given a real β, we present an O(n2α(n) log n)-time algorithm
that solves the two-line center problem in which the two resulting lines are constrained
to make angle β, where α(n) denotes the inverse Ackermann function. As in the second
problem, we start by presenting a decision algorithm and apply the known technique [22]
to obtain a favorably narrow interval that contains the optimal width value. We then
consider a sweeping process in which we rotate a strip of variable width within the
interval, and prove that if suffices to find an optimal solution by simulating the process.
To our best knowledge, the three constrained problems have not been considered in the

literature. Note that the two-parallel-line center problem studied in [10] is a more constrained
variant of our problems: In the first problem (of two fixed orientations), the special case of
θ = ϕ can be solved in O(n) time, and the third problem (of fixed angle) for β = 0 indeed
asks to find a two-parallel-line center, which can be solved in O(n2) time [10].

Due to space limit, most proofs are omitted, but can be found in the full version [7].

Related work

The two-line center problem is a special case of the k-line center problem for k ⩾ 1. For k = 1,
known as the width problem, one can solve the problem in O(n log n) time [29], or in O(n)
time if the convex hull of P is given [31]. In three dimensions, the width of n points
in R3 can be computed in O(n3/2+ϵ) expected time by Agarwal and Sharir [6]. In higher
dimensions d ⩾ 4, Chan [12] showed how to compute the width in O(n⌈d/2⌉) time. In
the plane R2, the k-line center problem is known to be NP-hard when k is part of the
input [28], while efficient approximation algorithms are known [1, 2]. Agarwal et al. [2]
presented an efficient approximation algorithm. Exact algorithms for k ⩽ 2 are presented as
aforementioned, while any nontrivial exact algorithm for k ⩾ 3 is, however, unknown. An
efficient (1 + ϵ)-approximation algorithm for k = 2 is presented by Agarwal et al. [1]. Very
recently, several constrained variants of the k-line center problem and its generalization in
high dimensions have been considered. Das et al. [16] presented an approximation algorithm
for the k-line center problem where the resulting lines are constrained to be axis-parallel.
Chung et al. [15] considered a variant of the parallel k-line center problem. Ahn et al. [8]
presented first algorithms for the problem of finding two parallel slabs in Rd for d ⩾ 3.

T. Ahn and S. W. Bae 5:3

Not being restricted to the line center problems, there have been an enormous amount
of results on constrained variants of those problems of finding optimal locations of one or
more geometric shapes enclosing input objects. Such results on constrained problems usually
provided more efficient solutions than those for the original (unconstrained) problems or
played important roles as stepping stones to later breakthroughs. Constrained two-square
problems [25] and the problem of covering points by two disjoint rectangles [27] are such
examples.

Some preliminaries

A strip σ is the closed region between two parallel lines and its width is the distance between
the two lines. A pair of two strips will be called a two-strip and the width of a two-strip mean
the larger width of its two members. Note that the two-line center problem is equivalent
to the problem of finding a two-strip of minimum width that enclose given points. The
orientation of a line is a real value θ ∈ [0, π) such that θ is the angle swept from a horizontal
line in counterclockwise direction to the line. Similarly, a strip is said to have an orientation θ

when its bounding lines are in orientation θ. For any set P of points and orientation θ ∈ [0, π),
we denote by σθ(P) the minimum-width strip in orientation θ that encloses P . We denote
widthθ(P) := width(σθ(P)). The width of point set P , denoted by width(P), is the smallest
width of a strip that encloses P .

2 Two fixed orientations

In this section, we consider the first constrained problem where the orientations of two line
centers should given values θ and ϕ. We assume that ϕ = 0 without loss of generality.

We start by sorting the n points in P in the nondecreasing order of y-coordinates and
let p1, . . . , pn ∈ P be in this order. For 0 ⩽ i ⩽ n, let Pi := {p1, . . . , pi} and P i := P \ Pi =
{pi+1, . . . , pn}. It is straightforward in O(n) time to incrementally construct the strips σθ(Pi)
and σθ(P i) in orientation θ for all 0 ⩽ i ⩽ n. We then observe the following.

▶ Lemma 1. Given P as a sorted list as above, P can be processed in O(n)-time so that
σθ(Pi ∪ P j) can be answered in O(1) time for any query pair (i, j) of indices.

Consider any minimum-width two-strip (σ1, σ2) enclosing P such that its orientations are
0 and θ, respectively. Observe that σ1 includes a contiguous sequence pi+1, . . . , pj of points
in P for some indices 0 ⩽ i ⩽ j ⩽ n, while σ2 covers the points in Pi ∪P j . Hence, the problem
can be solved by searching for O(n2) possible bipartitions of P , namely, (Pi ∪P j , P \(Pi ∪P j))
for 0 ⩽ i ⩽ j ⩽ n, and evaluating the widths of the two strips enclosing each part of desired
bipartitions.

Let w1(i, j) := width0({pi+1, . . . , pj}) be the width of the smallest horizontal strip
enclosing j − i points pi+1, . . . , pj ∈ P , that is, the difference of the y-coordinates of pi+1
and pj . Let w2(i, j) := widthθ(Pi ∪ P j) be the width of the smallest strip in orientation θ

enclosing Pi ∪ P j = {p1, . . . , pi, pj+1, . . . , pn}. Define w(i, j) := max{w1(i, j), w2(i, j)}. Our
task is to minimize w(i, j) over all 0 ⩽ i ⩽ j ⩽ n. This can be done by evaluating w1(i, j)
and w2(i, j) for at most 4n pairs (i, j) of indices due to the monotonicity of w1 and w2. More
precisely, observe that

w1(i, j) ⩽ w1(i, j + 1) and w1(i, j) ⩽ w1(i − 1, j),

while

w2(i, j) ⩾ w2(i, j + 1) and w2(i, j) ⩾ w2(i − 1, j)

ISAAC 2024

5:4 Constrained Two-Line Center Problems

by definition. Hence, our algorithm initially sets i = j = 0 and repeatedly increases j by
one until it holds that w1(0, j) ⩽ w2(0, j) and w1(0, j + 1) ⩾ w2(0, j + 1). Then for each
i = 1, . . . , n in this order, it repeatedly increases j by one until it holds that w1(i, j) ⩽ w2(i, j)
and w1(i, j + 1) ⩾ w2(i, j + 1) for the current i. This way, our algorithm probes at most 4n

pairs (i, j). For a given pair (i, j), in O(1) time we can evaluate w1(i, j) by definition and
w2(i, j) by Lemma 1. We thus conclude the following.

▶ Theorem 2. Given a set P of n points and two orientations θ, ϕ ∈ [0, π), the two-line center
problem where the resulting lines have orientations θ and ϕ can be computed in O(n log n)
time, or in O(n) time, provided P is sorted in orientation either θ or ϕ.

3 One fixed orientation

In this section, we solve the second constrained problem: given a fixed orientation ϕ, find
two strips of minimum width whose union encloses P such that one of the two strips is in
orientation ϕ. Throughout this section, a pair of two such strips (σ1, σ2), where σ1 is in
orientation ϕ, will be simply called a constrained two-strip, and assume that ϕ = 0.

To find a constrained two-strip of minimum width enclosing P , one could make use of a
data structure for the dynamic width maintenance [13, 17]. Observe that there are O(n2)
possible bipartitions of P induced by a constrained two-strip (σ1, σ2) since there are O(n2)
distinct subsets of P that can be enclosed by a horizontal strip σ1. This approach, however,
does not seem to avoid a quadratic running time, since the point set we would maintain
undergoes Θ(n2) updates. Another common approach is to apply known techniques, such
as the parametric search [5], the expander-based method [26], or the one based on a sorted
matrix [22]. These techniques also require at least quadratic time overhead.

Despite this difficulty, we present a near-linear O(n log3 n)-time algorithm based on our
O(n log2 n)-time decision algorithm and Chan’s structure of dynamic width maintenance [13].
Note that the decision problem can be solved in O(n log3 n) time by a direct application of
the machinery of Agarwal and Sharir [3]. In the following, we show how to shave another
logarithmic factor, while still using the data structure of Agarwal and Sharir.

3.1 Data structures for dynamic width decision and maintenance
Agarwal and Sharir [3] showed that in O(n log3 n) time the offline dynamic width decision
problem can be solved: Given a parameter ω > 0 and a sequence of n insert/delete operations
on a set S of points, initially consisting of at most n points, determine whether there is
any moment such that width(S) ⩽ ω during the n updates on S. Their algorithm builds a
segment tree based on the life-spans of the points, that is, the time intervals in which each
point is a member of S, and traverse it with a secondary data structure D that maintains
necessary information about the width of the current S using linear space.

The data structure D consists of two balanced binary search trees that store the edges of
the convex hull conv(S), ordered by their orientations, and maintains a certain collection of
invariants, which suffice to decide in O(1) time whether or not width(S) ⩽ ω for the current
set S. Agarwal and Sharir showed that how to update D per insertion of a point into S, and
also how to undo the latest insertion, recovering the structure D to the status before the
latest insertion. Summarizing, we have:

▶ Lemma 3 (Agarwal and Sharir [3]). Suppose the data structure D with a parameter ω has
been built on a set S of n points. Then, we can decide whether or not width(S) ⩽ ω in
O(1) time, and D can be maintained in O(log2 n) worst-case time for the following updates:
inserting a point to S and undoing the latest insertion.

T. Ahn and S. W. Bae 5:5

σθ2(S)σθ1(S)

conv(S)

σ[θ1,θ2](S)

q1

q2

Figure 1 Illustration of σ[θ1,θ2](S) = conv(S ∪ {q1, q2}) (shaded in light gray) when θ1 < θ2.

Chan [13] presented how to exactly maintain width(S) over fully online updates on S.
Its amortized time per update is O(

√
n log3 n), based on the following data structure.

▶ Lemma 4 (Chan [13]). There is a data structure W for a set S of n points that supports
deletions of points from S and queries of the following kind: given a query point set Q, report
width(S ∪ Q). The total preprocessing and deletion time is O(n log3 n) and the query time is
O(|Q| log3(n + |Q|)). The space required for maintaining the structure W is O(n log n).

Though Chan did not discuss the space requirement for his method, it is not difficult to see
it as stated above from construction [13]. Note that if the online updates are deletions only,
then this results in an O(n log3 n)-time algorithm that maintains the exact width.

3.2 Orientation-constrained width
Let S be a set of points, and let θ1 ⩽ θ2 be two orientations. Define the [θ1, θ2]-constrained
width of S to be

width[θ1,θ2](S) := min
θ∈[θ1,θ2]

widthθ(S).

Note that width(S) = width[0,π](S) and width[θ,θ](S) = widthθ(S) = width(σθ(S)). Also,
define

σ[θ1,θ2](S) :=
⋂

θ∈[θ1,θ2]

σθ(S).

Note that σ[θ1,θ2](S) is the convex hull of S and two more points from the boundary of the
intersection of two strips σθ1(S) and σθ2(S). See Figure 1 for an illustration.

▶ Lemma 5. For any finite set S of points, it holds that width[θ1,θ2](S) = width(σ[θ1,θ2](S)).

As will be seen later, we are also interested in orientation-constrained width decision
queries. More precisely, we are given a query interval [θ1, θ2] ⊆ [0, π) of orientations and
want to decide whether there exists θ ∈ [θ1, θ2] such that the width of σθ(S) is at most ω or,
equivalently, whether width[θ1,θ2](S) ⩽ ω. It turns out that the structure D of Lemma 3 by
Agarwal and Sharir is helpful for this type of queries as well, with the aid of Lemma 5.

▶ Lemma 6. Provided the data structure D on a point set S of n points with parameter ω is
available, an orientation-constrained width decision query on S for width ω can be answered
in O(log2 n) worst-case time using O(log n) additional space.

ISAAC 2024

5:6 Constrained Two-Line Center Problems

Now, consider two sets S1 and S2 of points in the plane that can be separated by a
line, that is, conv(S1) ∩ conv(S2) = ∅. Then, there are exactly two outer common tangent
lines ℓ1 and ℓ2. Let θ1 ⩽ θ2 be the orientations of ℓ1 and ℓ2. We say that S1 dominates S2 if
σ[θ1,θ2](S2) ⊆ σ[θ1,θ2](S1). By construction, note that either S1 or S2 dominates the other.
We also mean by the distance between two convex, compact sets A and B, denoted by d(A, B),
the minimum length of translation vectors τ such that A and B + τ have a common point.

▶ Lemma 7. With the above notations, suppose that S1 dominates S2. Then, it holds that:
(i) width[θ1,θ2](S1 ∪ S2) = width[θ1,θ2](S1).
(ii) If width(S1 ∪ S2) < d(conv(S1), conv(S2)), then width(S1 ∪ S2) = width[θ1,θ2](S1).

Proof. Since S1 dominates S2, we have

S2 ⊆ σ[θ1,θ2](S2) ⊆ σ[θ1,θ2](S1).

Lemma 5 implies that

σ[θ1,θ2](S1 ∪ S2) = σ[θ1,θ2](S1),

so the first statement (i) follows. See Figure 2(a).
Suppose width(S1 ∪ S2) < d(conv(S1), conv(S2)). Let σ∗ = σθ∗(S1 ∪ S2) be a minimum-

width strip enclosing S1 ∪ S2 whose orientation is θ∗. We claim that θ∗ ∈ [θ1, θ2]. If this
claim is true, then, by definition, we have

σ[θ1,θ2](S1) = σ[θ1,θ2](S1 ∪ S2) ⊆ σθ∗(S1 ∪ S2) = σ∗,

so

width(σ[θ1,θ2](S1)) ⩽ width(S1 ∪ S2),

on one hand. On the other hand, since S1 ∪ S2 is a subset of σ[θ1,θ2](S1 ∪ S2) = σ[θ1,θ2](S1),
we also have

width(σ[θ1,θ2](S1)) ⩾ width(S1 ∪ S2),

and the second statement (ii) is thus proved.
Hence, we are done by proving the claim that θ∗ ∈ [θ1, θ2]. As σ∗ is minimal among

those enclosing S1 ∪ S2, its boundary contains three points p, q, r from S1 ∪ S2 such that p

and q lie on a common bounding line ℓ of σ∗, r lies on the other bounding line ℓ′, and the
perpendicular foot r′ of r to ℓ lies in between p and q. See Figure 2(b) for an illustration.

S1

S2

p qr′

r ℓ′

ℓ
S1

S2

ℓ

ℓ′

(a) (b) (c)

Figure 2 Illustrations to the proof of Lemma 7.

T. Ahn and S. W. Bae 5:7

We first exclude the possibility that both p and q belong to a common set, S1 or S2, and r

to the other. Suppose for a contradiction that, say, p, q ∈ S1 and r ∈ S2. By our assumption
that d(conv(S1), conv(S2)) > width(S1 ∪ S2), the distance d from r to its perpendicular
foot r′ is strictly larger than width(S1 ∪ S2), while, however, the distance d is also the width
of σ∗, a contradiction to the assumption that the width of σ∗ determines width(S1 ∪ S2).

Now, suppose that θ∗ /∈ [θ1, θ2]. Then, observe that both bounding lines ℓ and ℓ′ of σ∗

cannot intersect a common set, S1 or S2; that is, ℓ ∩ Si ̸= ∅ if and only if ℓ′ ∩ Si = ∅, for
i = 1, 2. (See Figure 2(c).) This implies that p, q ∈ ℓ belong to one common set, S1 or S2,
and r ∈ ℓ′ belongs to the other set, which is forbidden by the above argument. Thus, we
have θ ∈ [θ1, θ2], and the claim is true. ◀

3.3 Decision algorithm
We describe our decision algorithm for a given parameter ω > 0. The points p1, . . . , pn ∈ P

are assumed to be sorted in the y-coordinates, and we let Pi = {p1, . . . , pi} and P i = P \ Pi.
Consider a horizontal strip σ0 of width ω and sweep the plane by translating σ0 upwards from
below. At any moment of this sweeping process, the points P \ σ0 outside of σ0 is partitioned
into Pi and P j for some 0 ⩽ i ⩽ j ⩽ n such that all points of Pi lies below σ0 and all points
of P j lies above σ0. Note that the indices i and j representing such a separation by σ0 do
not decrease during the process, and it always holds that d(conv(Pi), conv(P j)) > ω. Also,
by this monotonicity of i and j, observe that P j dominates Pi from the beginning until some
moment and Pi dominates P j from that moment to the end. See Figure 3.

We maintain convex hulls, conv(Pi) and conv(P j), and the data structure D with
parameter ω on set Pi. Maintaining the convex hulls conv(Pi) and conv(P j) can be done in
O(n log n) total time [11,23]; in our case, updates on Pi and P j are offline. Initially, we have
i = j = 0, so conv(Pi) = ∅, conv(P j) = conv(P), and D is initialized for an empty set P0.

In the main loop of our decision algorithm, as σ0 moves upwards, we do nothing until Pi

becomes dominating P j while we maintain the data structure D by inserting relevant points.
For each pair (i, j) such that Pi dominates P j , we decide whether width(Pi ∪ P j) ⩽ ω or not.
If it is the case, we stop the algorithm and report YES; otherwise, we proceed the algorithm.
The decision is made as follows: We first compute the outer common tangents of conv(Pi)
and conv(P j) in O(log2 n) time using conv(Pi) and conv(P j). (See Figure 3.) Let θ1 ⩽ θ2
be the orientations of the two common tangents. We then perform an orientation-constrained
width decision query on Pi with query interval [θ1, θ2]. This can be done in O(log2 n)
time by Lemma 6 using D. If the answer to this query is positive, then we conclude that
width(Pi ∪ P j) ⩽ ω; otherwise, we conclude that width(Pi ∪ P j) > ω. The correctness of this
decision is guaranteed by the following lemma, which is a direct application of Lemma 7.

(b)

Pi′

P j′

σ0pi′+1

pj′

(a)

Pi

P j

σ0pi+1

pj

ω

Figure 3 Snapshots of the sweeping process: (a) P j dominates Pi and (b) Pi′ dominates P j′ .

ISAAC 2024

5:8 Constrained Two-Line Center Problems

▶ Lemma 8. For (i, j) such that Pi dominates P j and d(conv(Pi), conv(P j)) > ω, we have
width(Pi ∪ P j) ⩽ ω if and only if width[θ1,θ2](Pi) ⩽ ω.

This way, we check all the pairs (i, j) such that Pi dominates P j during the sweeping
process. The other pairs (i, j) such that P j dominates Pi can be handled in a symmetric
way by moving the horizontal strip σ0 downwards. Therefore, we conclude the following.

▶ Theorem 9. Given a set P of n points, ϕ ∈ [0, π), and ω > 0, we can decide in O(n log2 n)
time and O(n) space whether there is a constrained two-strip of width ω.

3.4 Optimization algorithm
Let w∗ be our target optimal width, that is, the minimum width of a constrained two-strip
enclosing P . As above, suppose that p1, . . . , pn ∈ P are sorted in their y-coordinates. Let
W1 be the set of all differences of y-coordinates between two points in P . Since W1 can be
represented by a sorted matrix [19], we can find two consecutive values w0, w1 ∈ W1 such
that w0 < w∗ ⩽ w1 in O(n log3 n) time using our decision algorithm (Theorem 9) and an
efficient selection algorithm for a sorted matrix [20].

At this stage, observe that, for any w0 < w < w1, the sequence of changes on the sets
Pi and P j of points below and above σ0 is the same as the horizontal strip σ0 of width w

moves upwards. Let X be the set of those pairs (i, j) of indices such that Pi and P j appear
as the sets of points below and above σ0, respectively.

▶ Lemma 10. It holds that

w∗ = min{w1, min
(i,j)∈X

{width(Pi ∪ P j)}}.

Thus, we are done by computing the width of Pi ∪ P j for (i, j) ∈ X. Even better, to
compute w∗ and an optimal two-strip, it suffices to evaluate the exact value of width(Pi ∪P j)
only for those (i, j) ∈ X such that width(Pi ∪ P j) < w1. Let W be the set of values
of width(Pi ∪ P j) that are less than w1. Below, we show how to compute the set W .

For the purpose, we take any value w with w0 < w < w1 and simulate the translational
sweeping process with the horizontal strip σ0 of width w in a similar way as done for the
decision algorithm. Here, we sweep the plane by moving σ0 downwards from above. We
initialize the data structure D with parameter ω = w1 on point set Pn = P by inserting
n points p1, . . . , pn in this order, and maintain D by deleting points in the reversed order to
represent Pi, as σ0 moves downwards. In addition, we initialize the structure W of Lemma 4
for point set Pn = P , and maintain it to store Pi by deleting points in the same order. We
also maintain the convex hulls conv(Pi) and conv(P j).

During the sweeping process, we only handle those (i, j) ∈ X such that Pi dominates
P j , so we stop the process as soon as P j dominates Pi. (Those (i, j) ∈ X such that P j

dominates Pi can be handled in a symmetric way by moving σ0 upwards.) Consider such
a pair (i, j). Our goal is to compute width(Pi ∪ P j) only when it is less than w1. Note
that d(conv(Pi), conv(P j)) ⩾ w1. We compute the outer common tangents of conv(Pi) and
conv(P j) and let θ1 ⩽ θ2 be their orientations. As in the decision algorithm, we test whether
or not width[θ1,θ2](Pi) ⩽ w1 by Lemma 6 using D. Lemma 7 implies the following.

▶ Lemma 11. Provided Pi dominates P j, width(Pi ∪ P j) ⩾ w1 if width[θ1,θ2](Pi) > w1.

If it turns out that width[θ1,θ2](Pi) > w1, then we can discard the pair (i, j) and proceed the
algorithm by Lemma 11. Otherwise, we compute the exact value of width[θ1,θ2](Pi). If θ1 = θ2,
this can be done in O(log n) time using convex hulls conv(Pi) and conv(P j); if θ1 < θ2,

T. Ahn and S. W. Bae 5:9

by Lemma 5, we have width[θ1,θ2](Pi) = width(σ[θ1,θ2](Pi)) and σ[θ1,θ2](Pi) = conv(Pi ∪ Q)
where Q = {q1, q2} consists of two points as described above. (See also Figure 1.) Hence,
in this case, we can compute width[θ1,θ2](Pi) in O(log3 n) time by Lemma 4 with a query
set Q = {q1, q2} to W. Again, Lemma 7 implies the following.

▶ Lemma 12. width[θ1,θ2](Pi) < w1 if and only if width(Pi ∪ P j) < w1. Moreover, if
width[θ1,θ2](Pi) < w1, then width(Pi ∪ P j) = width[θ1,θ2](Pi).

By Lemma 12, we have width(Pi ∪ P j) = width[θ1,θ2](Pi) and it is a member of W if and
only if the computed value of width[θ1,θ2](Pi) is strictly smaller than w1.

This way, we can collect the values in W in O(n log3 n) time. By Lemma 10, the minimum
value in W is w∗, if W is nonempty; or w∗ = w1, if W = ∅. The corresponding two-strip
of width w∗ can be computed and stored during the execution of the algorithm. Hence, we
finally conclude the following.

▶ Theorem 13. Given a set P of n points in the plane and an orientation ϕ, a two-line center
for P in which one of the two lines is constrained to be in orientation ϕ can be computed in
O(n log3 n) time and O(n log n) space.

4 Fixed angle of intersection

In this section, we solve the third constrained two-line center problem in which, given a real
value 0 ⩽ β ⩽ π/2, the difference of the orientations of the two resulting lines is exactly β.
Throughout this section, for convenience, a constrained two-strip denotes a pair of strips
whose orientations differ by β. Let w∗ be the minimum width of a constrained two-strip
enclosing P . We start by describing optimal configurations.

▶ Lemma 14. There exists a minimum-width constrained two-strip (σ1, σ2) enclosing P that
falls into one of the following cases:

(i) Either w∗ = width(σ1) > width(σ2) or w∗ = width(σ2) > width(σ1), and one of the
four bounding lines of σ1 and σ2 contains two points in P .

(ii) It holds that w∗ = width(σ1) = width(σ2), and each of the four bounding lines of σ1
and σ2 contains a point in P .

In the following, we present an algorithm that runs in O(n2α(n) log n) time using O(n2)
space. Our algorithm follows a similar flow as for the second problem, consisting of two
phases: (1) find a favorably narrow interval (w0, w1] that includes our target width w∗, and
(2) proceed the search for w∗ with the aid of (w0, w1]. We first present an efficient decision
algorithm, and then describe each of the two phases.

4.1 Decision algorithm
Let ω > 0 be a given parameter, and our goal is to decide whether or not ω ⩾ w∗. Throughout
this section, we regard θ as a direction from the range [0, 2π), taken by modulo 2π, and
assume that no three points in P are collinear.

We consider a rotational sweeping process with fixed width ω described as follows: Take
any point p ∈ P as a pivot. For direction θ ∈ [0, 2π), let ℓ(θ) and ℓ+(θ) be two directed
lines in θ such that ℓ(θ) is through p and ℓ+(θ) is at distance ω to the left of ℓ(θ). We
simultaneously rotate both lines ℓ(θ) and ℓ+(θ) counterclockwise by increasing θ, and consider
the strip σ(θ) bounded by the two lines. Taking the second strip σ(θ) := σθ+β(P \ σ(θ)) as

ISAAC 2024

5:10 Constrained Two-Line Center Problems

p

ℓ(θ)

ℓ+(θ)

σ(θ)

σ(θ)
ω

β

q−(θ)

q+(θ)

Figure 4 A snapshot at θ of the rotational sweeping process with fixed width ω and pivot p.

the minimum-width strip in orientation θ + β enclosing the rest of points in P , our goal is to
decide if there exists θ ∈ [0, 2π) such that width(σ(θ)) ⩽ ω for some p ∈ P . See Figure 4, in
which points in P ∩ σ(θ) are depicted by dots and those in P \ σ(θ) by small circles.

This sweeping process can be simulated by maintaining the dynamic convex hull conv(P \
σ(θ)) and its two extreme points q−(θ) and q+(θ) that define σ(θ). Since the number of
updates on P \ σ(θ) is O(n), it can be done in O((n + E) log n) time [11], where E denotes
the number of changes of the two extreme points q−(θ) and q+(θ). As will be seen later,
E = O(nα(n)) and hence the decision can be made in O(n2α(n) log n) time.

In order to see why E = O(nα(n)) and even to improve the running time, we find
it more useful and convenient to discuss the problem in the dual setting. Consider the
standard dual transformation that maps each point r = (a, b) ∈ R2 into a non-vertical line
r⋆ : {y = ax − b}, and vice versa. Let L := {p⋆ | p ∈ P} be the set of n lines dual to each
point in P . For a fixed pivot p = (a, b) ∈ P , the trace of ℓ+(θ) in the dual environment
draws a hyperbola {y = ax − b ± ω

√
1 + x2} [5]. We take the upper branch of the hyperbola,

denoted by

hp : {y = ax − b + ω
√

1 + x2},

and let H := {hp | p ∈ P}. By this choice, we restrict ourselves to considering half the domain
of directions, namely [π/2, 3π/2); the other case can be handled symmetrically by considering
the lower branches of the hyperbolas. Note that the dual of ℓ+(θ) for θ ∈ (π/2, 3π/2) is
the intersection point between hp and vertical line {x = tan(θ)}. Hence, the first strip σ(θ)
appears as a vertical segment between p∗ and hp at x = tan(θ). Similarly, the dual of the
second strip σ(θ) is a vertical segment at x = tan(θ + β) that crosses all but those lines in L

intersected by (σ(θ))⋆.
For better exposition, we consider an operation that rotates a given line around a given

point by angle β. In the dual setting, such a rotation can be performed by the following
mapping: for any non-vertical line ℓ and a point ζ ∈ ℓ, we define τβ(ζ; ℓ) to be the intersection

x = xζ x = tan(tan−1 xζ + β)

ℓ

ζ τβ(ζ; ℓ)

ζ⋆

ℓ⋆

(τβ(ζ; ℓ))
⋆

β

(a) (b)

Figure 5 (a) Illustration for the mapping τβ(·; ℓ) on line ℓ and (b) its dual representation.

T. Ahn and S. W. Bae 5:11

point between ℓ and the vertical line {x = tan(tan−1(xζ) + β)}, where xζ is the x-coordinate
of ζ. See Figure 5. For a line segment s on ℓ, let τβ(s) be the segment of ℓ obtained by
applying the β-shifting map τβ to all points on s along ℓ, that is, τβ(s) =

⋃
ζ∈s τβ(ζ; ℓ). Note

that τβ(s) may consist of two half-lines, if the x-coordinates of s are large enough.
Now, consider the pieces of lines in L below p⋆ or above hp. Let S be the set of these

segments and half-lines, and T := {τβ(s) | s ∈ S} be the set of shifted segments. We then
observe that the two lines bounding σ(θ) correspond to the highest and lowest points of
the intersection T ∩ {x = tan(θ + β)}. Thus, σ(θ) and its width over θ ∈ (π/2, 3π/2) are
determined by the lower and upper envelopes, L(T) and U(T), of T . This implies that the
number E of changes of the two extreme points q−(θ) and q+(θ) indeed counts the number
of vertices in L(T) and U(T), so E = O(nα(n)) [30] and the decision problem can be solved
in O(n2α(n) log n) time. In the following, we improve it to O(n2α(n)) time.

We start with the directed line ℓ(π/2) through any p ∈ P , and rotate it around the pivot p

by increasing θ until it hits another point p′ ∈ P . Whenever ℓ(θ) hits another point p′, we
switch the pivot to p′ and continue the rotation around the new pivot p′. Observe that
this motion of ℓ(θ) preserves the number k of points in P that lie on ℓ(θ) or on its right
side, except some moments when ℓ(θ) contains two points. In the dual setting, the trace
of ℓ(θ) is well known as the k-level of the arrangement A(L) of lines in L. More precisely,
for k = 1, . . . , n, the k-level of A(L), denoted by Lk, is the monotone chain consisting of
all edges e of A(L) such that there are exactly k − 1 lines strictly below any point in the
relative interior of e. Similarly, the trace of line ℓ+(θ) at distance ω from ℓ(θ) is the k-level
of the arrangement A(H) of n hyperbolas in H, denoted by Hk.

Let L−
k be the region strictly below Lk and H+

k be that strictly above Hk. For each r ∈ P

and 1 ⩽ k ⩽ n, define

S+
k,r := r⋆ ∩ H+

k , S−
k,r := r⋆ ∩ L−

k , T +
k,r := τβ(S+

k,r), and T −
k,r := τβ(S−

k,r),

and let T +
k and T −

k be the collections of segments and half-lines in T +
k,r and T −

k,r, respectively,
over all r ∈ P . Our goal is then to compute the envelopes L(T +

k ∪ T −
k) and U(T +

k ∪ T −
k) for

all k. As discussed above, these envelopes explicitly describe the changes of the extreme
points defining the second strip σ(θ) whose orientation is θ + β, so we can decide whether
width(σ(θ)) ⩽ ω for some θ in time linear to the total complexity of the envelopes.

Let L+
k := L(T +

k), U+
k := U(T +

k), L−
k := L(T −

k), and U−
k := U(T −

k). We compute these
four families of envelopes separately for all k. Then, L(T +

k ∪ T −
k) and U(T +

k ∪ T −
k) can be

obtained by merging two envelopes. For our purpose, the following observation is essential.

▶ Lemma 15. For any 1 ⩽ k ⩽ n − 1 and r ∈ P ,

T +
k+1,r ⊂ T +

k,r and T −
k,r ⊂ T −

k+1,r.

Therefore, every point on L+
k is below or on L+

k+1; every point on U+
k is above or on U+

k+1;
every point on L−

k is above or on L−
k+1; every point on U−

k is below or on U−
k+1.

This naturally suggests us computing each family of envelopes in an incremental way. In
the following, we describe how to compute L+

n , L+
n−1, . . . , L+

1 in this order. The other three
families can also be handled symmetrically and analogously.

Initially, we compute A(L) and A(L ∪ H), and for each vertex v of A(L ∪ H), we collect
its images under τβ into a set Ξ. More precisely, we use a dictionary structure for Ξ indexed
by pairs in L × (L ∪ H), such as an array-based n × 2n matrix. For each pair (ℓ, ℓ′) with
ℓ, ℓ′ ∈ L such that v = ℓ ∩ ℓ′ is a vertex of A(L ∪ H), we store τβ(v; ℓ); for (ℓ, h) with ℓ ∈ L

and h ∈ H, we store τβ(v; ℓ) for each v ∈ ℓ ∩ h. We also associate each point ξ ∈ Ξ with the

ISAAC 2024

5:12 Constrained Two-Line Center Problems

edge e of A(L) such that ξ ∈ e, so that given a pair in L × (L ∪ H) we can locate in O(1)
time on which edges of A(L) its relevant points ξ ∈ Ξ lie. Note that at most two points are
stored at each entry of Ξ. The initialization can be done in O(n2) time using O(n2) space.

Let T +
n+1 = L+

n+1 = ∅, and suppose L+
k+1 has been correctly computed. Let T ∗ be the

set of segments obtained from T +
k,r \ T +

k+1,r for all r ∈ P . We then have L+
k = L(L+

k+1 ∪ T ∗)
by Lemma 15, so can be computed by merging L+

k+1 and L(T ∗). Computing L(T ∗) is done
in three steps: specify T ∗, compute the arrangement A(T ∗), and extract L(T ∗) from A(T ∗).

To specift T ∗, we walk along Hk and Hk+1 in A(L∪H) and find out all intersections Hk∩r⋆

and Hk+1 ∩ r⋆ for each r ∈ P . We are then able to extract all segments of r⋆ that lie in
between Hk and Hk+1. For each such segment s, τβ(s) is a member of T ∗. This can be done
in O(mk + mk+1 + n) time, where mi denotes the number of vertices of A(L ∪ H) along Hi.
Note that the number of segments in T ∗ is at most mk + mk+1, since the endpoints of their
preimages under the β-shifting map τβ are all from the vertices along Hk and Hk+1.

Note that every t ∈ T ∗ is a segment of a line in L, so A(T ∗) is a clipped portion of the
entire arrangement A(L). In addition, the endpoints of t are members of Ξ, so we can find
out their exact locations in A(L) in O(1) time per each. Thus, we can construct A(T ∗)
by tracing segments t ∈ T ∗ in A(L) in O(|T ∗| + vk) = O(mk + mk+1 + vk) time, where vk

denotes the number of vertices of A(L) we encounter. Note that A(T ∗) consists of exactly
mk + mk+1 + vk vertices and at most mk + mk+1 + 2vk edges.

As A(T ∗) forms a plane graph, possibly being disconnected, it turns out that its lower
envelope L(T ∗) can be obtained in time linear to its complexity. Here, we make use of the
following two algorithmic tools: First, a linear-time algorithm for computing the vertical
decomposition (or the trapezoidation) of a simple polygon [14,18] can be applied for computing
the lower envelope of a connected plane graph.

▶ Lemma 16. Given a connected plane graph G, consisting of m line segments, its lower
envelope L(G) can be computed in O(m) time.

Second, Asano et al. [9] presented a linear-time algorithm for computing the lower envelope
of disjoint line segments, provided their endpoints are sorted. It is not difficult to see that
their algorithm also works even if we replace “segments” by “monotone chains.”

▶ Lemma 17 (Asano et al. [9]). Let C1, C2, . . . , Cl be mutually disjoint monotone chains
with m line segments in total. If a sorted list of their endpoints is given, then their lower
envelope L(

⋃
i Ci) can be computed in O(m) time.

Back to our problem, we apply Lemma 16 to each connected component of A(T ∗),
resulting in disjoint monotone chains C1, C2, . . ., whose lower envelope is L(T ∗). Recall
that we already have the sorted list of endpoints of T ∗, since those endpoints have been
obtained by walking along Hk and Hk+1 in A(L ∪ H) and applying the β-shifting map τβ ,
and the map τβ preserves the order along Hk and Hk+1. Hence, we can extract a sorted list
of endpoints of the chains Ci in additional O(mk + mk+1) time, which allows us to apply
Lemma 17 to obtain L(T ∗). The total time for this third step is proportional to the number
of edges in A(T ∗), so O(mk + mk+1 + vk) time.

Finally, to compute L+
k , we linearly scan L+

k+1 and L(T ∗), simultaneously. This takes
time linear to the total complexity of L+

k+1 and L(T ∗). Note that L+
k+1 consists of

O(|T +
k+1|α(|T +

k+1|)) = O(mk+1α(mk+1)) edges since it is the lower envelope of line seg-
ments [30]. So, the total time we spend to incrementally construct L+

k from L+
k+1 for

each 1 ⩽ k ⩽ n is bounded by O(n + mk + mk+1α(mk+1) + vk).
By iterating k from n down to 1, we conclude our decision algorithm.

T. Ahn and S. W. Bae 5:13

▶ Theorem 18. Given a set P of n points, an angle β, and a parameter ω, we can decide
whether or not ω ⩾ w∗ in O(n2α(n)) time and O(n2) space.

4.2 First phase of the optimization algorithm
From now on, we describe our optimization algorithm. Its first phase is done as follows.

Let W2 be the set of all pairwise distances among points in P . We first obtain two consec-
utive values w′

0 < w′
1 ∈ W2 such that w∗ ∈ (w′

0, w′
1]. This is easily done in O(n2α(n) log n)

time by sorting W2 and performing a binary search on W2 using our decision algorithm
presented in Theorem 18. Next, let W3 be the set of n

(
n
2
)

values obtained as follows: for
any pair p, q ∈ P with p ̸= q, collect the distances from each r ∈ P to the line through p

and q. We then find two consecutive values w′′
0 < w′′

1 ∈ W3 such that w∗ ∈ (w′′
0 , w′′

1]. This
can be done in O(n2α(n) log n) time by the technique of Glozman et al. [22], again using our
decision algorithm. Note that the two-strip of width w′′

1 is the best solution of case (i) of
Lemma 14. We then choose w0 := max{w′

0, w′′
0 } and w1 := min{w′

1, w′′
1 }, and obtain:

▶ Lemma 19. In O(n2α(n) log n) time, we can find two values w0 ⩽ w1 such that w0 <

w∗ ⩽ w1 and no member in W2 ∪ W3 lies in (w0, w1).

4.3 Second phase of the optimization algorithm
For each p ∈ P , let w∗

p be the minimum possible width of constrained two-strips (σ1, σ2) such
that p lies on the boundary of σ1. It is obvious that w∗ = minp∈P w∗

p. The second phase of
our algorithm computes the exact value of w∗

p, if w∗
p < w1; or reports w∗

p ⩾ w1, otherwise.
Note that, if w∗

p < w1, then the corresponding optimal two-strip falls in case (ii) described in
Lemma 14 by Lemma 19. In the following, let p ∈ P be fixed and called the pivot.

Updates in the sweeping process with fixed width

Before describing the algorithm, we discuss essential ingredients of its correctness, based on
Lemma 19. Let w ∈ (w0, w1) be any value. We consider the sweeping process with fixed
width w and fixed pivot p, as described at the beginning of Section 4.1. (See Figure 4.)
Recall that the first strip σ(θ) is determined by two directed lines ℓ(θ) and ℓ+(θ) such that
ℓ(θ) goes through p and ℓ+(θ) is at distance w to the left of ℓ(θ), and the second strip σ(θ) in
orientation θ + β encloses the rest of points in P \ σ(θ). Let P (θ) := P ∩ σ(θ). Then, during
this sweeping process as θ increases, P (θ) undergoes a sequence of updates. We identify
each update by a pair of its involved point r ∈ P and its type determined by one of the four
combinations of the following:

An update is right if it happens when ℓ(θ) hits r; or left when ℓ+(θ) hits r

An update is leaving if r is being deleted from P (θ); or approaching, otherwise.
Thus, two updates are the same if their involved points and their types are equal.

Let Υw be the set of those updates occurred on P (θ) during the sweeping process with
fixed width w over θ ∈ [0, 2π). Observe that there are two possibilities for each r ∈ P \ {p}:
By Lemma 19, the distance between r and the pivot p is either at most w0 or at least w1.
Thus, if r falls in the former case, there are exactly two updates for r in Υw whose types are
right leaving and right approaching; in the latter case, there are exactly four updates for r

in Υw with each of the four possible types. This implies that the set Υw is invariant under
the choice of w ∈ (w0, w1), so we write Υ = Υw for any w ∈ (w0, w1).

Fix an arbitrary right leaving update υ0 ∈ Υ in which r0 ∈ P \ {p} is involved, and
assume that both p and r0 lie along ℓ(0) in this order, that is, p and r0 lie on the horizontal
line ℓ(0) and r0 is to the right of p; this can be easily achieved by a proper rotation of the

ISAAC 2024

5:14 Constrained Two-Line Center Problems

axes. For υ ∈ Υ and w ∈ (w0, w1), let ϕυ(w) ∈ [0, 2π) be the direction at which υ occurs
during the sweeping process with fixed width w. From the above discussion, we know that
ϕυ is a well-defined function from (w0, w1) to [0, 2π). Lemma 19 implies the following.

▶ Lemma 20. There is no w ∈ (w0, w1) such that ϕυ(w) = ϕυ′(w) for any two distinct
υ, υ′ ∈ Υ. Moreover, for each υ ∈ Υ, ϕυ(w) is either constant if υ is right, continuously
increasing if υ is left leaving, or continuously decreasing if υ is left approaching.

For w ∈ (w0, w1), we consider a total order ≺w on Υ such that υ ≺w υ′ if and only
if ϕυ(w) < ϕυ′(w). Note that its totality is guaranteed by Lemma 20 and υ0 is the least
element in Υ under ≺w. Lemma 20 further implies that the ordering ≺w on Υ remains the
same over all w ∈ (w0, w1): assuming any swap between ≺w and ≺w′ for w0 < w < w′ < w1,
one can face with some w′′ ∈ (w, w′) and υ, υ′ ∈ Υ such that ϕυ(w′′) = ϕυ′(w′′), due to the
continuity of functions ϕυ and ϕυ, so a contradiction.

Hence, we have a universal total ordering ≺ on Υ such that ≺ = ≺w for any w ∈ (w0, w1).
Let υ0, υ1, . . . , υm−1 ∈ Υ be the updates in Υ listed in this order ≺, where m := |Υ|. For
each 0 ⩽ i ⩽ m − 1, let Ii := {ϕυi

(w) | w0 < w < w1}. Lemma 20 implies that Ii consists of
a single element if υi is a right update; otherwise, Ii forms an open interval if υi is a left
update. The following summarizes more implications of Lemma 20 about the intervals Ii.
Two intervals I and I ′ are said to be properly nested if one includes the other, say I ′ ⊂ I, in
such a way that both endpoints of I ′ lie in the relative interior of I.

▶ Lemma 21. Two intervals Ii and Ij are never properly nested. If Ii and Ij overlap, then
either both of υi and υj are left leaving or both are left approaching.

For 0 ⩽ i ⩽ m−1, let Pi be the resulting set after executing the first i+1 updates υ0, . . . , υi

on the subset of points in P lying on or to the left of ℓ(0) whose distances to ℓ(0) are at
most w0. Note that P0 = (σ0 ∩ P) \ {r0} where σ0 denotes the horizontal strip of width w0
such that ℓ(0) bounds σ0 from below. Let Qi := P \ Pi, and define

ωi(θ) := widthθ(Pi) and ωi(θ) := widthθ+β(Qi)

for θ ∈ [0, 2π). Let ri ∈ P \ {p} be the point involved in υi.

▶ Lemma 22. For any left leaving update υi ∈ Υ, ωi−1(θ) = widthθ({p, ri}) over θ ∈ Ii, and
is an increasing function over Ii whose infimum and supremum are w0 and w1, respectively.

Description of algorithm

The second phase of our algorithm simulates a similar sweeping process as before, but with
the first strip σ(θ) having variable width: Let ω : [0, 2π) → R be a function, which will be
specified later. We redefine ℓ+(θ) to be the line at distance ω(θ) to the left of ℓ(θ), and thus
σ(θ) to have width ω(θ). The second strip σ(θ) in orientation θ + β is determined as before
to tightly enclose the rest of points in P \ σ(θ). Let ω(θ) := width(σ(θ)). This way, the
process is completely determined by the width function ω(θ).

Our width function ω(θ) will be fully determined by when to execute each update υi ∈ Υ.
For 0 ⩽ i ⩽ m − 1, let ϕi be the direction at which the i-th update υi ∈ Υ is executed in our
algorithm. We choose the ϕi’s by the following rules:

If υi is a right update, ϕi is the only direction in Ii, that is, Ii = {ϕi}.
If υi is a left approaching update, ϕi is chosen to be the larger endpoint of Ii.
If υi is a left leaving update, ϕi is chosen to be the smallest direction θ such that
ωi−1(θ) = ωi−1(θ) over θ ∈ Ii, if exists; otherwise, ϕi is the larger endpoint of Ii.

Note that ϕ0 = 0 and let ϕm := 2π. It is obvious that either ϕi ∈ Ii or ϕi is the larger
endpoint of Ii. Less obvious is that the resulting ϕi’s indeed obey the ordering ≺ of Υ.

T. Ahn and S. W. Bae 5:15

▶ Lemma 23. It holds that 0 = ϕ0 < ϕ1 ⩽ ϕ2 ⩽ · · · ⩽ ϕm−1 ⩽ ϕm = 2π.

The function ω(θ) is then set up as follows: ω(0) := w0 and ω(θ) := max{w0, ωi(θ)} for
θ ∈ (ϕi, ϕi+1] and 0 ⩽ i ⩽ m − 1. We then obtain a conditional correctness of our algorithm.

▶ Lemma 24. Suppose w∗
p < w1, and let θ∗ and θ∗ + β be the directions of the bounding lines

of a corresponding two-strip of width w∗
p such that the pivot p lies on the right bounding line

of direction θ∗. If θ∗ /∈ Ii for all left approaching updates υi ∈ Υ, then there is a left leaving
update υj ∈ Υ such that θ∗ = ϕj ∈ Ij and w∗

p = ω(θ∗) = ωj−1(θ∗) = ωj−1(θ∗) = ω(θ∗).

Thus, we can compute w∗
p and its corresponding two-strip by checking each ϕi such that

ϕi ∈ Ii and υi ∈ Υ is a left leaving update, provided the condition of Lemma 24 is satisfied.
The other case, where w∗

p is not determined by left leaving updates, can be handled by a
reversed sweeping process that rotates σ(θ) clockwise by decreasing θ from 2π to 0; note that
in this reversed process each approaching update becomes a leaving update, and vice versa.

Now, the detailed implementation is presented. Simulating the sweeping process with
function ω(θ) can be done by maintaining a dynamic set Q, representing P \ σ(θ), and its
convex hull conv(Q). First, we compute the updates υ0, υ1, . . . , υm−1 ∈ Υ together with their
intervals Ii, and also precompute ϕi for all right updates and left approaching updates υi ∈ Υ.
Initially, Q = Q0 and Q = Qi while we are in θ ∈ (ϕi, ϕi+1] for each 0 ⩽ i ⩽ m. We also
maintain the two extreme points of Q that determine σ(θ): this can be done by two types of
queries on conv(Q), finding two tangents of conv(Q) in a given direction and finding the next
extreme point of conv(Q) neighboring the current one. Each of these convex hull queries can
be answered in O(log n) amortized time [11].

While we rotate σ(θ) as increasing θ, we execute updates υi ∈ Υ at θ = ϕi if ϕi has
already been computed. Recall that only the execution times ϕi of left leaving update υi are
not precomputed, so they are evaluated during the sweeping process: Suppose the current
direction θ lies in Ii for a left leaving update υi and the first j ⩽ i updates υ0, . . . , υj−1
have already been executed, that is, Q = Qj−1 currently at θ and ω(θ) = ωj−1(θ). At this
moment θ, note that θ ∈ Ij ∩ Ii and υj is also a left leaving update by Lemma 21. Hence,
Lemma 22 implies that ω(θ) = ωj−1(θ) = widthθ({p, rj}). We then solve the equation
ωj−1(φ) = ωj−1(φ). Since the two functions ωj−1 and ωj−1 are sinusoidal over a range in
which the two extreme points of Qj−1 do not change [10], this can be done in time proportional
to the number of such changes while Q = Qj−1. As soon as we find a solution ϕ ∈ Ij such
that ωj−1(ϕ) = ωj−1(ϕ), we know that ϕj = ϕ by our rules; otherwise, ϕj is chosen to be
the larger endpoint of Ij .

Since m = O(n), the overall time we spend is bounded by O(n log n + E log n), where E

denotes the number of changes of the extreme points of Q that define the second strip σ(θ). In
the dual setting, as done for the decision algorithm, those changes correspond to the vertices
of the lower and upper envelopes of O(n) line segments, so we have E = O(nα(n)) [30].
By iterating pivots p ∈ P , the second phase of the algorithm can be implemented in
O(n2α(n) log n) total time.

Therefore, we conclude the following result.

▶ Theorem 25. Given a set P of n points and a parameter β ∈ [0, π/2], the two-line center
problem with a constraint that the resulting two lines should make an angle of β can be solved
in O(n2α(n) log n) time using O(n2) space.

ISAAC 2024

5:16 Constrained Two-Line Center Problems

References

1 Pankaj K. Agarwal, Cecilia M. Procopiuc, and Kasturi R. Varadarajan. A (1+ε)-approximation
algorithm for 2-line-center. Computational Geometry: Theory and Applications, 26:119–128,
2003. doi:10.1016/S0925-7721(03)00017-8.

2 Pankaj K. Agarwal, Cecilia M. Procopiuc, and Kasturi R. Varadarajan. Approxima-
tion algorithms for a k-line center. Algorithmica, 42(3):221–230, 2005. doi:10.1007/
s00453-005-1166-x.

3 Pankaj K. Agarwal and Micha Sharir. Off-line dynamic maintenance of the width of a
planar point set. Computational Geometry: Theory and Applications, 1:65–78, 1991. doi:
10.1016/0925-7721(91)90001-U.

4 Pankaj K. Agarwal and Micha Sharir. Planar geometric location problems and maintaining
the width of a planar set. In Proceedings of the 2nd Annuual ACM-SIAM Symposium on
Discrete Algorithms (SODA 1991), pages 449–458. SIAM, 1991. URL: http://dl.acm.org/
citation.cfm?id=127787.127865.

5 Pankaj K. Agarwal and Micha Sharir. Planar geometric location problems. Algorithmica,
11(2):185–195, 1994. doi:10.1007/BF01182774.

6 Pankaj K. Agarwal and Micha Sharir. Efficient randomized algorithms for some geometric
optimization problems. Discrete & Computational Geometry, 16(4):317–337, 1996. doi:
10.1007/BF02712871.

7 Taehoon Ahn and Sang Won Bae. Constrained two-line center problems, 2024. arXiv:
2409.13304.

8 Taehoon Ahn, Chaeyoon Chung, Hee-Kap Ahn, Sang Won Bae, Otfried Cheong, and
Sang Duk Yoon. Minimum-width double-slabs and widest empty slabs in high dimen-
sions. In J.A. Soto and A. Wiese, editors, Proceedings of the 16th Latin American The-
oretical Informatics (LATIN 2024), Part I, volume 14578 of LNCS, pages 303–317, 2024.
doi:10.1007/978-3-031-55598-5_20.

9 Takao Asano, Tetsuo Asano, Leonidas Guibas, John Hershberger, and Hiroshi Imai. Visibility
of dijoint polygons. Algorithmica, 1:49–63, 1986. doi:10.1007/BF01840436.

10 Sang Won Bae. Minimum-width double-strip and parallelogram annulus. Theoretical Computer
Science, 833:133–146, 2020. doi:10.1016/j.tcs.2020.05.045.

11 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In Proceedings of the
43rd Symposium on Foundations of Compututer Science (FOCS 2002), pages 617–626, 2002.
doi:10.1109/SFCS.2002.1181985.

12 T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-
width annulus. International Journal of Computational Geometry and Applications, 12(1-2):67–
85, 2002. doi:10.1142/S0218195902000748.

13 Thimothy M. Chan. A fully dynamic algorithm for planar width. Discrete & Computational
Geometry, 30:17–24, 2003. doi:10.1007/s00454-003-2923-8.

14 Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational
Geometry, 6(3):485–524, 1991. doi:10.1007/BF02574703.

15 Chayoon Chung, Taehoon Ahn, Sang Won Bae, and Hee-Kap Ahn. Parallel line centers with
guaranteed separation. In Proceedings of the 35th Canadian Conference on Computational
Geometry (CCCG 2023), pages 153–160, 2023.

16 Arun Kumar Das, Sandip Das, and Joydeep Mukherjee. Approximation algorithms for
orthogonal line centers. Discrete Applied Mathematics, 338:69–76, 2023. doi:10.1016/j.dam.
2023.05.014.

17 David Eppstein. Incremental and decremental maintenance of planar width. Journal of
Algorithms, 37:570–577, 2000. doi:10.1006/jagm.2000.1107.

18 Alain Fournier and Delfin Y. Montuno. Triangulating simple polygons and equivalent problems.
ACM Transactions on Graphics, 3:153–174, 1984. doi:10.1145/357337.357341.

https://doi.org/10.1016/S0925-7721(03)00017-8
https://doi.org/10.1007/s00453-005-1166-x
https://doi.org/10.1007/s00453-005-1166-x
https://doi.org/10.1016/0925-7721(91)90001-U
https://doi.org/10.1016/0925-7721(91)90001-U
http://dl.acm.org/citation.cfm?id=127787.127865
http://dl.acm.org/citation.cfm?id=127787.127865
https://doi.org/10.1007/BF01182774
https://doi.org/10.1007/BF02712871
https://doi.org/10.1007/BF02712871
https://arxiv.org/abs/2409.13304
https://arxiv.org/abs/2409.13304
https://doi.org/10.1007/978-3-031-55598-5_20
https://doi.org/10.1007/BF01840436
https://doi.org/10.1016/j.tcs.2020.05.045
https://doi.org/10.1109/SFCS.2002.1181985
https://doi.org/10.1142/S0218195902000748
https://doi.org/10.1007/s00454-003-2923-8
https://doi.org/10.1007/BF02574703
https://doi.org/10.1016/j.dam.2023.05.014
https://doi.org/10.1016/j.dam.2023.05.014
https://doi.org/10.1006/jagm.2000.1107
https://doi.org/10.1145/357337.357341

T. Ahn and S. W. Bae 5:17

19 Greg N. Frederickson and Donald B. Johnson. The complexity of selection and ranking in
X +Y and matrices with sorted columns. Journal of Computer and System Science, 24:197–208,
1982. doi:10.1016/0022-0000(82)90048-4.

20 Greg N. Frederickson and Donald B. Johnson. Generalized selection and ranking: Sorted
matrices. SIAM Journal on Computing, 13(1):14–30, 1984. doi:10.1137/0213002.

21 Alex Glozman, Klara Kedem, and Gregory Shpitalnik. On some geometric selection and
optimization problems via sorted matrices. In Proceedings of the 4th International Workshop
on Algorithms and Data Structures (WADS 1995), volume 955 of LNCS, pages 26–37, 1995.
doi:10.1007/3-540-60220-8_48.

22 Alex Glozman, Klara Kedem, and Gregory Shpitalnik. On some geometric selection and
optimization problems via sorted matrices. Computational Geometry: Theory and Applications,
11(1):17–28, 1998. doi:10.1016/S0925-7721(98)00017-0.

23 John Hershberger and Subhash Suri. Off-line maintenance of planar configurations. Journal
of Algorithms, 21:453–475, 1991. doi:10.1006/jagm.1996.0054.

24 Jerzy Jaromczyk and Miroslaw Kowaluk. The two-line center problem from a polar view:
A new algorithm and data structure. In Proceedings of the 4th International Workshop on
Algorithms and Data Structures (WADS 1995), volume 955 of LNCS, pages 13–25, 1995.
doi:10.1007/3-540-60220-8_47.

25 Matthew J. Katz, Klara Kedem, and Michael Segal. Constrained square-center problems. In
Proceedings of the 6th Scandinavian Workshop on Algorithm Theory (SWAT 1998), volume
1432, pages 95–106. Springer, 1998. doi:10.1007/BFb0054358.

26 Matthew J. Katz and Micha Sharir. An expander-based approach to geometric optimization.
SIAM Journal on Computing, 26(5):1384–1408, 1997. doi:10.1137/S0097539794268649.

27 Sang-Sub Kim, Sang Won Bae, and Hee-Kap Ahn. Covering a point set by two disjoint
rectangles. International Journal of Computational Geometry & Applications, 21(3):313–330,
2011. doi:10.1142/S0218195911003676.

28 Nimrod Megiddo and Arie Tamir. On the complexity of locating linear facilities in the plane.
Operations Research Letters, 1(5):194–197, 1982. doi:10.1016/0167-6377(82)90039-6.

29 Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An Introduction.
Springer Verlag, 1985. doi:10.1007/978-1-4612-1098-6.

30 Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel Sequences and Their Geometric
Applications. Cambridge University Press, New York, 1995.

31 Godfried T. Toussaint. Solving geometric problems with the rotating calipers. In Proceedings
of the 2nd Mediterranean Electrotechnical Conference (IEEE MELECON 1983), 1983.

ISAAC 2024

https://doi.org/10.1016/0022-0000(82)90048-4
https://doi.org/10.1137/0213002
https://doi.org/10.1007/3-540-60220-8_48
https://doi.org/10.1016/S0925-7721(98)00017-0
https://doi.org/10.1006/jagm.1996.0054
https://doi.org/10.1007/3-540-60220-8_47
https://doi.org/10.1007/BFb0054358
https://doi.org/10.1137/S0097539794268649
https://doi.org/10.1142/S0218195911003676
https://doi.org/10.1016/0167-6377(82)90039-6
https://doi.org/10.1007/978-1-4612-1098-6

Dynamic Parameterized Problems on Unit Disk
Graphs
Shinwoo An #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Kyungjin Cho #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Leo Jang #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Byeonghyeon Jung #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Yudam Lee #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Eunjin Oh #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Donghun Shin #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Hyeonjun Shin #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Chanho Song #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Abstract
In this paper, we study fundamental parameterized problems such as k-Path/Cycle, Vertex
Cover, Triangle Hitting Set, Feedback Vertex Set, and Cycle Packing for dynamic unit
disk graphs. Given a vertex set V changing dynamically under vertex insertions and deletions, our
goal is to maintain data structures so that the aforementioned parameterized problems on the unit
disk graph induced by V can be solved efficiently. Although dynamic parameterized problems on
general graphs have been studied extensively, no previous work focuses on unit disk graphs. In this
paper, we present the first data structures for fundamental parameterized problems on dynamic unit
disk graphs. More specifically, our data structure supports 2O(

√
k) update time and O(k) query time

for k-Path/Cycle. For the other problems, our data structures support O(log n) update time and
2O(

√
k) query time, where k denotes the output size.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Unit disk graphs, dynamic parameterized algorithms, kernelization

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.6

Related Version Full Version: https://arxiv.org/abs/2409.13403

Funding This work was partly supported by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.RS-2024-00440239,
Sublinear Scalable Algorithms for Large-Scale Data Analysis) and the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT) (No.RS-2024-00358505).
Kyungjin Cho: Supported by the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (No.RS-2024-00410835).

© Shinwoo An, Kyungjin Cho, Leo Jang, Byeonghyeon Jung, Yudam Lee, Eunjin Oh, Donghun Shin,
Hyeonjun Shin, and Chanho Song;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 6; pp. 6:1–6:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shinwooan@postech.ac.kr
mailto:kyungjincho@postech.ac.kr
https://orcid.org/0000-0003-2223-4273
mailto:leo630@postech.ac.kr
mailto:bhjung@postech.ac.kr
mailto:leeyudam@postech.ac.kr
mailto:eunjin.oh@postech.ac.kr
https://orcid.org/0000-0003-0798-2580
mailto:sdh728@postech.ac.kr
mailto:hyeonjun.shin@postech.ac.kr
https://orcid.org/0009-0008-4701-7295
mailto:sch0622@postech.ac.kr
https://orcid.org/0009-0001-3522-3517
https://doi.org/10.4230/LIPIcs.ISAAC.2024.6
https://arxiv.org/abs/2409.13403
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Dynamic Parameterized Problems on Unit Disk Graphs

1 Introduction

For a set V of n points in the plane, the unit disk graph of V is the intersection graph of the
unit disks of diameter one centered at the points in V , denoted by UD(V). Unit disk graphs
serve as a powerful model for real-world applications such as broadcast networks [28, 29],
biological networks [23] and facility location [34]. Due to various applications, unit disk
graphs have gained significant attention in computational geometry. Since most of the
fundamental NP-hard problems remain NP-hard even in unit disk graphs, the study of NP-
hard problems on unit disk graphs focuses on approximation algorithms and parameterized
algorithms [4, 6, 17, 21, 37]. From the perspective of parameterized algorithms, the main
focus is to design subexponential-time parameterized algorithms for various problems on unit
disk graphs. While such algorithms do not exist for general graphs unless ETH fails, lots of
problems admit subexponential-time parameterized algorithms for unit disk graphs.

In this paper, we study fundamental graph problems on dynamic unit disk graphs. Given
a vertex set V that changes under vertex insertions and deletions, our goal is to maintain
data structures so that specific problems for UD(V) can be solved efficiently. This dynamic
setting has attracted considerable interest. For instance, the connectivity problem [11, 12],
the coloring problem [27], the independent set problem [9, 19], the set cover problem [1], and
the vertex cover problem [8] have been studied for dynamic geometric intersection graphs.
Here, all problems, except for the connectivity problem, are NP-hard. All previous work on
dynamic intersection graphs for those problems study approximation algorithms. However,
like the static setting, parameterized algorithms are also a successful approach for addressing
NP-hardness in the dynamic setting. There has been significant research on parameterized
algorithms for dynamic general graphs [2, 13, 18, 26]. Surprisingly, however, there have been
no studies on parameterized algorithms for dynamic unit disk graphs.

In this paper, we initiate the study of fundamental parameterized problems on dynamic
unit disk graphs. In particular, we study the following five fundamental problems in the
dynamic setting. All these problems are NP-hard even for unit disk graphs [14, 25].

k-Path/Cycle asks to find a path/cycle of G with exactly k vertices,
k-Vertex Cover asks to find a set S of k vertices s.t. G \ S has no edge,
k-Triangle Hitting Set asks to find a set S of k vertices s.t. G \ S has no triangle,
k-Feedback Vertex Set asks to find a set S of k vertices s.t. G \ S has no cycle, and
k-Cycle Packing asks to find k vertex-disjoint cycles of G.

In the course of vertex updates, we are asked to solve those problems as a query. Except for
k-Path/cycle, a query is given with an integer k. On the other hand, our data structure
for k-Path/Cycle uses k in the construction time.

Table 1 Summary of our results. The results marked as * support amortized update times, and
the others are worst-case update/query times. Except for k-Path/Cycle, no data structure requires
k in the construction time; The parameter k is given as a query. Additionally, the data structure for
k-Path/Cycle can answer a decision query in constant time.

Update time Query time Space Complexity
k-Path/Cycle* 2O(

√
k) O(k) O(kn)

k-Vertex Cover* O(1) 2O(
√

k) O(n)
k-Triangle Hitting Set* O(1) 2O(

√
k) O(n)

k-Feedback Vertex Set O(log n) 2O(
√

k) O(n)
k-Cycle Packing O(log n) 2O(

√
k) O(n)

S. An, K. Cho, L. Jang, B. Jung, Y. Lee, E. Oh, D. Shin, H. Shin, and C. Song 6:3

Our results. Our results are summarized in Table 1. Note that these are almost ETH-
tight. To see this, recall that no problem studied in this paper admits a 2o(

√
k)nO(1)-time

algorithm in the static setting unless ETH fails [16, 20, 22]. Thus for any data structure
for these problems on dynamic unit disk graphs with update time Tu(n, k) and query time
Tq(n, k), we must have n · Tu(n, k) + Tq(n, k) = 2Ω(

√
k)nO(1) unless ETH fails. In particular,

n ·Tu(n, k)+Tq(n, k) is the time for solving the static problem using dynamic data structures;
we insert the vertices one by one and then answer the query. In our case, this static running
time is 2O(

√
k)n for k-Path/Cycle, 2O(

√
k) + O(n) for k-Vertex Cover and k-Triangle

Hitting Set, and 2O(
√

k)+O(n log n) for k-Feedback Vertex Set and k-Cycle Packing.
Interestingly, as by-products, we slightly improve the running times of the best-known static
algorithms in [4, 6] for k-Feedback Vertex Set and k-Cycle Packing on unit disk
graphs from 2O(

√
k)nO(1) to 2O(

√
k) + O(n log n).1

A main tool used in this paper is kernelization, a technique compressing an instance
of a problem into a small-sized equivalent instance called a kernel. Kernelization is one of
the fundamental techniques used in the field of parameterized algorithms [15]. We use the
same framework for all problems, except for k-Path/Cycle: For each update, we maintain
kernels for the current unit disk graph. Given a query, it is sufficient to solve the problem
on the kernel instead of the entire unit disk graph. Precisely, if the kernel size exceeds a
certain bound, we immediately return a correct answer. Otherwise, the kernel size is small,
say O(k), and thus we can answer the query by applying the static algorithms on the kernel.

Related work. While dynamic parameterized problems on unit disks have not been studied
before, static parameterized algorithms have been widely studied for unit disk graphs. For
instance, Fomin et al. [20] presented 2O(

√
k log k)nO(1)-time algorithms for k-Path/Cycle, k-

Vertex Cover, k-Feedback Vertex Set, and k-Cycle Packing problems on static unit
disk graphs. Subsequently, the running times were improved to 2O(

√
k)(n+m) [4, 6, 15, 16, 21],

which are all ETH-tight. Additionally, for disk graphs, subexponential time FPT algorithms
were studied for k-Vertex Cover and k-Feedback Vertex Set [3, 30].

On the other hand, there are several previous works on dynamic parameterized problems
on general graphs. Alman et al. [2] presented a dynamic algorithm for k-Vertex Cover
supporting 1.2738O(k) query time and O(1) amortized update time. They also presented
a dynamic algorithm for k-Feedback Vertex Set supporting O(k) query time and
kO(k) logO(1) n amortized update time. Korhonen et al. [26] presented a dynamic algorithm for
CMSO testing, parameterized by treewidth. Chen et al. [13] and Dvořák et al. [18] presented
a dynamic algorithm for k-Path/Cycle and for MSO testing, respectively, parameterized
by treedepth. These algorithms admit edge insertions and deletions, and Dvořák et al. [18]
also admits isolated vertex insertions and deletions, while we deal with vertex insertions and
deletions.

An alternative way for dealing with NP-hardness is using approximation. There are
numerous works on approximation algorithms for dynamic intersection graphs. For disks, one
can maintain (1 + ε)-approximation of Vertex Cover [8, 24]. Bhore et al. [9] presented a
constant-factor approximation algorithm for the maximum independent set problem for disks.
They generalized their result on comparable-sized fat object graphs with the approximation
factor depending on a given dimension and fatness parameter. For intervals and unit-squares,
Agarwal et al. [1] presented a constant-approximation algorithm for the set cover problem
and the hitting set problem.

1 Moreover, they can be improved further to take 2O(
√

k) + O(n) time with a slight modification.

ISAAC 2024

6:4 Dynamic Parameterized Problems on Unit Disk Graphs

2 Preliminaries

Throughout this paper, we let V be a set of points in the plane, and we let UD(V) be the
unit disk graph of V . We interchangeably denote v ∈ V as a point or as a vertex of UD(V) if
it is clear from the context. For an undirected graph G, we often use V (G) and E(G) to
denote the vertex set of G and the edge set of G, respectively. For convenience, we denote
the subgraph of G induced by V (G) \ U by G \ U for a subset U of V (G).

Grid. A grid ⊞ is a partition of the plane into squares (called grid cells) of diameter one.
Notice that any two points of V contained in the same grid cell of ⊞ are adjacent in G. Each
grid cell □ has its own id: (⌊a/

√
2⌋, ⌊b/

√
2⌋), where a and b are the x- and y-coordinates

of a point in □. For any two grid cells □,□′ with id (x, x′) and (y, y′), respectively, we let
d(□,□′) = max(|x−x′|, |y −y′|). For an integer ℓ > 0, a grid cell □ is called an ℓ-neighboring
cell of a grid cell □′ if d(□,□′) ≤ ℓ. See Figure 1(a) in the full version. We slightly abuse
the notation so that □ itself is an ℓ-neighboring cell of □ for all ℓ > 0. For a point v in the
plane, we use □v to denote the cell of ⊞ containing v. If it lies on the boundary of a cell, □v

denotes an arbitrary cell containing v on its boundary.
We do not construct the grid ⊞ explicitly. Instead, we maintain the grid cells containing

vertices of V only. We associate each id with a linked list that stores all the vertices of V

contained in the grid cell. Once we have the id of □, we fetch the linked list associated with
□ in amortized constant time or O(log n) worst-case time, where n is the number of points of
V . More specifically, this can be implemented in O(1) amortized time using dynamic perfect
hashing (once true randomness is available) and in O(log n) worst-case time using 1D range
search tree along the lexicographic ordering of the ids. Also, each update of the linked list
can be done in the same time bound.

In this paper, we access grid cells only for updating data structures, and then we store
the necessary grid cells explicitly in our data structures. Consequently, the update times of
our data structures are sometimes analyzed using amortized analysis while the query times
are always analyzed using worst-case analysis.

Link-cut tree. When we update data structures, we use link-cut trees. A link-cut tree is
a dynamic data structure that maintains a collection of vertex-disjoint rooted trees and
supports two kinds of operations: a link operation that combines two trees into one by adding
an edge, and a cut operation that divides one tree into two by deleting an edge [33]. See
Figure 1(b–c) in the full version. Each operation requires O(log n) time. More precisely, the
data structure supports the following query and update operations in O(log n) time.

Link(u, v): If v is the root of a tree and u is a vertex in another tree, link the trees
containing v and u by adding the edge between them, making u the parent of v.
Cut(v): If v is not a root, this removes the edge between v and its parent, so that the
tree containing v is divided two trees containing either v or not.
Evert(v): This turns the tree containing v “inside out” by making v the root of the tree.
Connected(u, v): This checks if u and v are contained in the same tree.
LCA(u, v): This returns the lowest common ancestor of u and v assuming that u and v

are contained in the same tree.
Root(u): This returns the root of the tree containing u.

All missing proofs and details can be found in the full version. In particular, the data
structures and their update/query algorithms for k-Path/Cycle and Vertex Cover can
be found in the full version.

S. An, K. Cho, L. Jang, B. Jung, Y. Lee, E. Oh, D. Shin, H. Shin, and C. Song 6:5

3 Dynamic Triangle Hitting Set Problem

In this section, we describe a fully dynamic data structure on the unit disk graph of a vertex
set V dynamically changing under vertex insertions and deletions that can answer triangle
hitting set queries efficiently. Each query is given with a positive integer k and asks to return
a triangle hitting set of UD(V) of size at most k. This data structure will also be used for
Feedback Vertex Set and Cycle Packing in Sections 4 and 5.

Our strategy is to maintain a kernel of (UD(V), k). More specifically, consider the set
Vtri of vertices contained in triangles of UD(V). Then (UD(Vtri), k) is a yes-instance if and
only if (UD(V), k) is a yes-instance, i.e., it is a kernel of (UD(V), k). We can show that the
size of Vtri is O(k) if (UD(V), k) is a yes-instance. Therefore, it is sufficient to maintain Vtri
for answering queries. However, it seems unclear if Vtri can be updated in O(1) time, which
is the desired update time. In particular, imagine that a vertex v is inserted to V , and we
are to determine if v is contained in a triangle of UD(V). In the case that two neighboring
cells □1 and □2 of □v contain ω(k) vertices of V , we need to determine if there are vertices
x1 ∈ □1 and x2 ∈ □2 such that x1, x2 and v form a triangle of UD(V).

To overcome this issue, we use a superset of Vtri as a kernel. Notice that as long as a
subset of V contains Vtri, it is a kernel of (UD(V), k).

Kernel: ⊞core and Vcore. The core grid cluster, denoted by ⊞core, is defined as the union of
the 5-neighboring cells of the grid cells containing a vertex of Vtri and the 10-neighboring cells
of the grid cells containing at least three vertices of V . Then let Vcore be the set of vertices of
V contained in ⊞core. See Figure 3 in the full version. Note that the degree of every vertex
of V \ Vcore in UD(V) is O(1). We will use this property for designing the update algorithm.

▶ Lemma 1. The size of Vcore is O(k) if UD(V) has at most k vertex-disjoint triangles.

▶ Observation 2. Given a vertex v ∈ V \ Vcore, we can compute its neighbors in UD(V) in
O(1) time.

Query algorithm. Using Lemma 1, we only consider the case that the size of Vcore is O(k).
Otherwise, we return no. Then, we can compute the minimum triangle hitting set of UD(V)
in 2O(

√
k) time using the standard dynamic programming algorithm observed in [16]. See the

full version for details.

Update algorithm. Suppose that we already have Vcore for the current vertex set V . Imagine
that we aim to insert a vertex v to V . Then we need to update Vcore. For this, it suffices
to determine if □ must be contained in ⊞core for every 10-neighboring cell □ of □v. By
Observation 3, this takes O(1) time. The deletion of a vertex v from V can be handled
analogously in O(1) time.

▶ Observation 3. We can check if a grid cell □ is contained in ⊞core in O(1) time.

▶ Theorem 4. There is an O(n)-sized fully dynamic data structure on the unit disk graph
induced by a vertex set V supporting O(1) update time that allows us to compute a triangle
hitting set of size at most k in 2O(

√
k) time.

4 Dynamic Feedback Vertex Set Problem

In this section, we describe a fully dynamic data structure on the unit disk graph of a vertex
set V dynamically changing under vertex insertions and deletions that can answer feedback
vertex set queries efficiently. Each query is given with a positive integer k and asks to return

ISAAC 2024

6:6 Dynamic Parameterized Problems on Unit Disk Graphs

(a) (b) (c)

u

v

u′

v′

T

Figure 1 (a) Illustration of UD(V). The vertices of UD(V) in Vcore, the boundary vertices, and
the non-boundary vertices in M are marked by the black, red, and blue vertices, respectively. The
removed vertices and the contracted vertices in the construction of M are marked by cross vertices
and boxes, respectively. (b) Illustration of M . (c) In the construction of M , we are left with the
induced path between u and v, which will be contracted to the red edge in M . The two end edges
of the path compose the bridge set of T .

a feedback vertex set of UD(V) of size at most k. As a data structure, we use the core grid
cluster ⊞core introduced in Section 3. In addition to this, we design a new data structure,
which will also be used for Cycle Packing in Section 5.

4.1 Data Structure
Note that a cycle of UD(V) might contain a vertex lying outside of ⊞core. Thus we need to
consider the part of UD(V) lying outside of ⊞core. Since the complexity of UD(V \ Vcore) can
be Θ(n) in the worst case, we cannot afford to look at all such vertices to handle a query.
Instead, we maintain a minor M of UD(V \ Vcore) of complexity O(k), which will be called
the skeleton of UD(V \ Vcore), such that the graph obtained by gluing UD(Vcore) and M has a
feedback vertex set of size k if and only if UD(V) has a feedback vertex set of size k. Then it
suffices to look at Vcore and M to handle a query. Given an update of V , we need to update
both Vcore and M . Since M is a minor of UD(V \ Vcore), some vertices of UD(V \ Vcore) do
not appear in M . To handle the update of Vcore and M efficiently, we construct an auxiliary
data structure T , which maintains the vertices of UD(V) not appearing in M efficiently.

Skeleton M of UD(V \ Vcore). Given a query, we will glue M and UD(Vcore) together.
For this purpose, we need to keep all vertices of V \ Vcore adjacent to a vertex of Vcore in
the construction of M . We call such a vertex a boundary vertex. We let M be the graph
obtained from UD(V \ Vcore) by removing non-boundary vertices with the degree at most one
in M repeatedly, and then by contracting every maximal induced path consisting of only
non-boundary vertices into a single edge. Note that the resulting graph M is a minor of
UD(V \ Vcore). Each vertex of M corresponds to a vertex of UD(V \ Vcore) of degree at least
three or a boundary vertex. Furthermore, each edge of M corresponds to an edge of UD(V)
or an induced path of UD(V \ Vcore). See Figure 1(a–b). Note that M is planar since every
triangle-free disk graph is planar [10].

▶ Lemma 5. If (UD(V), k) is a yes-instance of Feedback Vertex Set, |V (M)| = O(k).

Contracted forest T concerning M . We will see that it suffices to maintain Vcore and M

for the query algorithm. However, to update M efficiently, we need a data structure for the
subgraph of UD(V) induced by V \ (Vcore ∪ V (M)). Note that the subgraph is a forest. We

S. An, K. Cho, L. Jang, B. Jung, Y. Lee, E. Oh, D. Shin, H. Shin, and C. Song 6:7

maintain the trees of this forest using the link-cut tree data structure. Let T denote the
link-cut tree data structure. If it is clear from the context, we sometimes use T to denote the
forest itself. Along with the link-cut trees, we associate each tree T of T with a bridge set.
An edge of UD(V) incident to both V (M) and V \ (Vcore ∪ V (M)) is called a bridge. Then
the bridge set of T is the set of bridges incident to T . See Figure 1(c).

▶ Observation 6. Each tree of T is incident to at most two bridges.

4.2 Query Algorithm
In this subsection, we show how to compute a feedback vertex set of size k of UD(V) in
2O(

√
k) time using Vcore and M only. Let G be the graph obtained by gluing UD(Vcore) and

M . More precisely, the vertex set of G is the union of Vcore and V (M). There is an edge
uv in G if and only if uv is either an edge of UD(Vcore), an edge of M , or an edge of UD(V)
between u ∈ Vcore and v ∈ V (M). Notice that v is a boundary vertex of M in the third case.

We use the algorithm proposed by An and Oh [4]. The algorithm of [4] computes a
feedback vertex set of size k of a unit disk graph with n vertices in 2O(

√
k)nO(1) time. In our

case, G is not necessarily a unit disk graph. Thus we need to modify the algorithm of [4]
slightly. The details of our algorithm can be found in the full version, and it concludes the
following theorem.

▶ Theorem 7. Given M and Vcore, we can compute a feedback vertex set of UD(V) of size k

in 2O(
√

k) time if it exists.

4.3 Update Algorithm
In this subsection, we illustrate how to update data structures Vcore, M , and T with respect
to vertex insertions and deletions. We call UD(V \ Vcore) the shell of UD(V). Here, we
slightly abuse the notion of the skeleton so that we can define additional special vertices other
than the boundary vertices. Imagine that several vertices of V are predetermined as special
vertices. The other vertices are called ordinary vertices. The skeleton M of the shell of
UD(V) with predetermined special vertices is defined as the minor of UD(V \ Vcore) obtained
by removing all degree-1 ordinary vertices of UD(V \ Vcore) repeatedly and then contracting
each maximal induced path consisting of ordinary vertices. Notice that if only the boundary
vertices of UD(V) are set to the special vertices, the two definitions of the skeleton coincide.

Given an update of V , we first update Vcore accordingly using the update algorithm in
Section 3. Recall that the number of vertices newly added to Vcore or removed from Vcore is
O(1). We are to add the vertices removed from Vcore to the shell of UD(V), and remove the
vertices newly added to Vcore from the shell of UD(V). Additionally, O(1) vertices of V \ Vcore
become boundary vertices (when we handle the deletion operation), and O(1) vertices of
V \ Vcore become non-boundary vertices (when we handle the insertion operation.) These
are the only changes in the shell of UD(V) due to the update of V . Note that we just need
to add v to the shell of UD(V) if v is not in Vcore. Let S be the shell of UD(V) before the
update. Let M be the skeleton of S we currently maintain, and let T be the contracted
forest concerning M we currently maintain.

In the following, we show how to update M and T for the change of S. The update
algorithm consists of two steps: push-pop step and cleaning step. In the push-pop step, we
set several vertices of S as special vertices. Specifically, the new vertices to be added to S are
set as special vertices. The neighbors in S of the vertices to be added to S or to be removed
from S are set to special vertices. Then we update M and T to the skeleton of the new set

ISAAC 2024

6:8 Dynamic Parameterized Problems on Unit Disk Graphs

(a) (b) (c)

vu
tt′

t′ t

u
s

s′ s′

s
u

t′ t

v
p

Figure 2 (a) The case that T has exactly one bridge. By the insertion of uv, the path from t′ to
v, highlighted in yellow, is contracted. (b) The case that T has exactly two bridges before inserting
uv. (c) The same case after inserting uv. The vertex p and the edges pv, pt′, and ps′ are inserted
into M .

S and the contracted forest concerning the new skeleton, respectively. In the cleaning step,
we make the non-boundary vertices ordinary vertices. Note that this changes the structure
of the skeleton as well, and thus we need to update M and T .

4.3.1 Push-Pop Step

Recall that S is the shell of UD(V) before the update. Notice that the complexity of the new
shell of UD(V) can be Θ(n) in the worst case. However, the update algorithm in Section 3
determines the vertices and edges added to S and removed from S to obtain the new shell.
By construction, the number of such vertices and edges is O(1). Moreover, we can determine
the vertices set to the special vertices of S in O(1) time by Observation 2. To update M and
T , we add (or remove) the special vertices and their incident edges one by one to (or from)
S until S becomes the desired set. Precisely, we add each special vertex v using the push
subroutine, which adds v into M and updates M and T accordingly. In the push subroutine,
we assume that v was not contained in S. Recall that M is the skeleton of S obtained by
removing and contracting some ordinary vertices, not special vertices. And, we remove v

using the pop subroutine, which removes v from S and update M and T . Note that some
special vertices v are already in S. In this case, we cannot make v special using the push
subroutine as it assumes that v is not contained in S. For such special vertices v, we first
pop v from S and then push it back to S. In this way, we can obtain the skeleton of the new
shell and the contracted forest correctly.

Push subroutine. Given the current shell S, we are to add v and its incident edges to S.
Let Ev be the set of edges incident to v to be added to S. We can ensure that the other
endpoints of the edges of Ev are in S. We first add v and the edges of Ev incident to vertices
of M into S. At this moment, it suffices to add v and these edges to M . We do not need to
update T . After that, we insert the remaining edges of Ev into S one by one as follows. Note
that those edges are incident to vertices of T . Let T be the tree in T containing another
endpoint u of an edge of Ev. Before the insertion of uv, T has its bridge set. There are
three cases: T has either exactly zero, one, or two bridges. In particular, in the case that T

has exactly one or two bridges we modify M . If T has exactly one bridge, we add an edge
into M . And, if T has exactly two bridges, we delete a contracted edge corresponding to an
induced path in T and add one vertex and three edges into M . See Figure 2. The details
of the procedure for inserting an edge uv of Ev with u ∈ T into S are described in the full
version.

S. An, K. Cho, L. Jang, B. Jung, Y. Lee, E. Oh, D. Shin, H. Shin, and C. Song 6:9

(a) (b)

v

t t

ss

t′ t′

s′s′

Figure 3 (a) Illustration of pop subroutine in the case that the t-s path contains v. (b) Illustration
of the tree T after v is deleted.

Pop subroutine. We are to delete a vertex v and all of its incident edges in S from S.
We consider two cases separately: v is in M or T . For the case that v is in M , we simply
remove it and its incident edges from M and the bridge sets of T . Specifically, for each edge
e incident to v in S, we remove it from M if it is in M . If it is not in M , it is in a bridge set
of a tree of T . We remove it from every bridge set. If a bridge set containing e has another
edge, then there is a contracted edge of M , and thus we remove it. Then we are done.

Now consider the case that v is in a tree T of T . In this case, the deletion of v from
S changes M if and only if T has two bridges tt′, ss′ with t, s ∈ V (T) and t′, s′ ∈ V (M)
such that the t-s path in T contains v. In particular, M has the edge t′s′, and t′s′ must be
removed from M by the deletion of v from S. See Figure 3. We can check if the t-s path in
T contains v by applying Evert(v) and LCA(t, s). Then we are to remove v and it incident
edges from T and the bridge set of T . Observe that an edge incident to v is in T or the
bridge set of T . We rotate T in a way that v becomes the root of T by using Evert(v), and
remove v from T by applying Cut(·) operations. Then we are given a constant number of
child subtrees of v since v is in V \ Vcore. For a child subtree T ′ of T at v, we insert the
bridges of T incident to T ′ into the bridge set of T ′. Note that, given T ′ and a bridge of T ,
we can check if T ′ contains a vertex incident to the bridge using Connected(·). In this way,
we can remove v from T and the bridge sets, and we can update M accordingly in O(log |V |)
time.

4.3.2 Cleaning Step
So far, we have treated all vertices that can cause some changes due to the update of V and
special vertices, and we have computed the skeleton of UD(V \ Vcore). However, some special
vertices should not be considered as special vertices if they are not boundary vertices. To
handle this, we need a cleaning process to maintain the degree of every vertex in M is at
least three except the boundary vertices.

We handle the vertices of M of degree at most two one by one and set each of them as
an ordinary vertex if it is a special vertex, as follows. Let v be a vertex we are to handle.
First, we can check in O(1) time if v is a boundary vertex using Observation 2. If v is a
boundary vertex, we are done. Otherwise, it suffices to handle the case that the degree of v

in M is less than three. The update of M is simple: we remove v from M if its degree is
one in M , and contract a maximal induced path containing v in M if the degree of v is two
in M . Then we need to update T accordingly as follows. It suffices to merge all trees in T
incident to v together with their bridges incident to v using Link(·) sequentially. Then the
bridge set of the resulting tree is the union of all bridges of merged trees except the ones
incident to v. We can handle v in O(log |V |) time. However, this process might decrease the
degree of some other vertex of M of degree in M to less than three. For each such vertex,
we remove it or contract a maximal induced path containing it as we did for v.

ISAAC 2024

6:10 Dynamic Parameterized Problems on Unit Disk Graphs

▶ Lemma 8. The cleaning step takes O(log |V |) time in total.

Since both steps can be done in O(log |V |) time, we have the following lemma.

▶ Lemma 9. Given a vertex update of V , we can update Vcore, M and T in O(log |V |) time.

▶ Theorem 10. There is an O(n)-sized fully dynamic data structure on the unit disk graph
induced by a vertex set V supporting O(log |V |) update time that allows us to compute a
feedback vertex set of size at most k in 2O(

√
k) time.

5 Dynamic Cycle Packing Problem

In this section, we describe a fully dynamic data structure on the unit disk graph of a vertex
set V dynamically changing under vertex insertions and deletions that can answer cycle
packing queries efficiently. Each query is given with a positive integer k and asks to return
a set of k vertex-disjoint cycles of UD(V) if it exists. Here, we use the core grid cluster
⊞core, the set Vcore of vertices contained in ⊞core, the skeleton M of UD(V \ Vcore), and the
contracted forest T along with the bridge sets. They can be maintained in O(log |V |) time
as shown in Section 4.3. Note that T and the bridges are the auxiliary data structures for
updating M efficiently. In this section, we present a query algorithm for Cycle Packing
assuming that we have ⊞core, Vcore, and M . The following lemma was given by An and Oh [6].

▶ Lemma 11. If (UD(V), k) is a no-instance for Cycle Packing, then |V (M)| = O(k).

As in Section 4.2, we first compute the graph G by gluing UD(Vcore) and M . More
precisely, the vertex set of G is the union of Vcore and V (M). There is an edge uv in G if
and only if uv is either an edge of UD(Vcore), an edge of M , or an edge of UD(V) between
u ∈ Vcore and v ∈ V (M). Notice that v is a boundary vertex of M in the third case.

We use the algorithm proposed by An and Oh [6]. The algorithm of [6] computes a
cycle packing of size k of a unit disk graph with n vertices in 2O(

√
k)nO(1) time. This

algorithm uses the geometric representation of a given graph, and thus the drawing of G is
needed. Specifically, we need a drawing of G such that every vertex of G is on its geometric
representation and every edge of M does not intersect ⊞core. For the desired running time,
we consider a drawing of G of complexity poly(k). Since the number of vertices of Vcore is
O(k), it suffices to draw M and the edges between V (M) and Vcore properly. In Section 5.1,
we will see that we can compute a desired drawing of such subgraph of G of complexity
poly(k) in poly(k) time. Then, we can draw G by merging this drawing with the drawing of
G \ M . Furthermore, in our case, G is not necessarily a unit disk graph. Thus we need to
modify the algorithm of [4] slightly. The details of our algorithm can be found in the full
version, and it concludes the following theorem.

▶ Theorem 12. Given the core grid cluster ⊞core and the skeleton M , Cycle Packing can
be solved in 2O(

√
k) time.

5.1 Planar Drawing of the Closure of M

In this subsection, we illustrate how to compute a planar drawing of the closure of M into the
plane such that the vertices are drawn on their corresponding points in V , and the drawing
does not intersect the boundary of ⊞core. Here, it suffices to prove the following lemma.
In our case, each vertex of the closure of M is prespecified, and each connected region of
R2 \ ⊞core is a polygonal domain Σ. By applying the following lemma for each connected
region of R2 \ ⊞core, we can compute a planar drawing of the closure of M of complexity
poly(k) with the desired properties in poly(k) time.

S. An, K. Cho, L. Jang, B. Jung, Y. Lee, E. Oh, D. Shin, H. Shin, and C. Song 6:11

(a) (b)

e1
e2

e3
e4

e1 e2

e3e4

Figure 4 (a) The blue vertices denote the vertices of L on the boundary of a hole. (b) The
vertices on a hole are contracted into one blue vertex on the boundary of the hole. And, the black
boxes denote the vertices of gadgets. Each edge is copied into three edges. For clarity, the edges
corresponding to e2 are colored in red.

▶ Lemma 13. Any planar graph L admits a planar drawing on a polygonal domain Σ
that maps each vertex to its prespecified location and each edge to a polygonal curve with
O(|Σ| · |E(L)|3) bends, where |Σ| denotes the total complexity of boundaries of Σ. Moreover,
we can draw such one in O(|Σ| · |E(L)|4) time if we know the proper ordering of edges incident
to each vertex.

We demonstrate Lemma 13 by Witney’s theorem [36, 35] along with the algorithm
in [32]. Specifically, Witney’s theorem guarantees that a 3-connected planar graph admits a
topologically unique planar embedding.

For clarity, we assume that L is connected, and we demonstrate how to draw a planar
drawing of L that maps each vertex to its prespecified location and each edge to a polygonal
curve with O(|Σ| · |E(L)|) bends in O(|Σ| · |E(L)2|) time. When L is not connected, we
can draw the desired planar drawing of L by drawing each component of L using the
aforementioned algorithm, sequentially. Precisely, after we compute a drawing of a connected
component of L, we add the region containing the drawing into Σ as a hole. We can compute
such region in time O(|Σ| · |E(L)|2) time by unifying all faces of the drawing except the outer
face. Note that the total complexity of the boundaries of such regions is O(|Σ| · |E(L)|2).
Thus we can compute the desired planar drawing of L in O(|Σ| · |E(L)|4) time.

▶ Lemma 14 (Theorem 1 in [32]). Every planar graph L admits a planar drawing that maps
each vertex to an arbitrarily prespecified distinct location and each edge to a polygonal curve
with O(|V (L)|) bends. Moreover, such a drawing can be constructed in O(|V (L)|2) time.

We first contract each hole in Σ into a single point and compute the planar drawing of
L in a plane without holes using Lemma 14. After that, we recover the holes in L at the
prespecified locations. In the recovering step, we want to ensure that the given topological
ordering is maintained in the planar drawing of L. To do this, we use Witney’s theorem.
However, L is not necessarily 3-connected. For this reason, we slightly modify L so that it
becomes 3-connected.

Modification for Ltc and drawing Dtc. To utilize Witney’s theorem and Lemma 14, we
obtain a 3-connected planar graph Ltc by modifying L with respect to the holes in the
polygonal domain Σ, and we compute a polygonal drawing Dtc of Ltc using Lemma 14. We
assume that each vertex in L is the distance at least 0 < ε < 1 from any other vertex in L.

We first contract each hole into a single point in the plane. In this way, all vertices of
L lying on the boundary of the same hole or the outer boundary of Σ are contracted to a
single vertex on the boundary accordingly. Next, we add a wheel graph centered on v for
each vertex v of L as a gadget. Specifically, the gadget is formed by connecting a single

ISAAC 2024

6:12 Dynamic Parameterized Problems on Unit Disk Graphs

(a) (b) (c)

vi vi vi

Figure 5 (a) A part of Dtc after removing paths. The gray region is a hole Ai, and the blue
vertex is vi. and (b) The pink region is A′

i. While blowing A′
i, we push subcurves on its boundary

as the red curves if they intersect Ai. (c) After blowing up A′
i, we perturb the drawing of D without

crossing.

universal vertex to the vertices of a cycle with 3dv vertices of diameter ε/100, where dv is
the degree of v in L. Then we replace each edge uv of L with three edges: we choose three
consecutive vertices from the gadget for u and three consecutive vertices from the gadget for
v, then we connect them. See Figure 4. We can do this for all edges of L without crossing by
maintaining the proper ordering of the edges around each vertex of L. Recall that we have
the proper ordering of incident edges at each vertex in L. We denote the result graph as Ltc.
Note that Ltc is a 3-connected planar graph since a wheel graph with at least four vertices is
3-connected.

The number of vertices in Ltc is at most 6|E(H)| + |V (H)|. By Lemma 14, we can
compute a planar drawing of Ltc in the plane where each edge has at most O(|E(H)|) bends.
Furthermore, it is the unique topological embedding by Witney’s theorem since Ltc is a
3-connected planar graph. We denote the drawing by Dtc. In the following, we recover a
polygonal drawing D of L in Σ.

Recovering D from Dtc. We recover a drawing D of L in Σ from Dtc. For each edge uv in
L, it corresponds to three paths of length three in Ltc connecting the universal vertices of
the gadgets for u and v. Among them, except the middle one, we remove two paths from Dtc.
While keeping the drawing of Dtc of the remaining path between the universal vertices for
u and v as the drawing of uv of L, we remove the vertices in Ltc which are not in L. This
process increases the number of bends of each edge by a factor of at least three compared to
Dtc. We refer to the obtained drawing as D.

In the following, we recover the boundaries of Σ. Let A1, A2, . . . , and Aℓ be holes of Σ,
Note that the vertices of L on the boundary of Ai are contracted into one vertex in Ltc. We
refer to the contracted vertex as vi for each Ai.

For each Ai, we modify D so that the resulting drawing avoids Ai. Precisely, we blow
up a region A′

i, which is initially the point vi, within a face adjacent to vi until it becomes
Ai. While blowing up A′

i, we push the subcurves of the curves of D which intersect A′
i onto

the boundary of A′
i. Notice that we push such subcurves, avoiding vi, except the boundary

curves of the face containing A′
i. See Figure 5(b). By repeating such a process, we make the

interior of Ai empty. Then, by perturbing the drawing D, we can modify the drawing to
avoid Ai and crossing. See Figure 5(c). This process increases the bends by a factor of |Σ|
compared to Dtc.

In the following, we uncontract the vertices vi’s for each Ai’s. Let ℓ and ℓ′ be short line
segments incident to vi drawn in opposite directions within the face containing Ai so that
they intersect D and Ai only at vi. See Figure 6(b). Note that the edges in D incident

S. An, K. Cho, L. Jang, B. Jung, Y. Lee, E. Oh, D. Shin, H. Shin, and C. Song 6:13

(a) (b) (c)

vi

ℓ′

ℓ

Figure 6 (a) A part of L. The gray region is a hole Ai, and the blue vertices are the vertices of
L on the boundary of Ai. (b) A part of drawing D after making Ai empty. The blue vertex is vi,
and the red lines are l and l′, respectively. (c) We uncontract vi into the four blue vertices of L.

to vi have an endpoint on the boundary of Ai in L, and the ordering is the same as the
prespecified ordering along the boundary of Ai in L due to Witney’s theorem. We choose
the closest incident edge e of vi to the boundary of Ai, and we uncontract an endpoint u of
the edge e′ in L corresponding to e contracted into vi. Precisely, when there is no incident
edge of vi between e and ℓ (or ℓ′), we extend the drawing of e along the boundary of Ai in
the counterclockwise direction (or clockwise direction) until u is located at its prespecified
location. If both endpoints of e′ are contracted into vi, we uncontract the endpoint preceding
in the clockwise order (or counterclockwise order). By repeating such a process, we uncontract
all the vertices in L on the boundary Ai at the prespecified location. See Figure 6(c). This
process increases the bends of each edge by a factor of at most |Σ|.

In conclusion, the obtained D is a polygonal drawing of L in Σ each of which edge has
at most O(|Σ| · |E(H)|) bends, where |Σ| denotes the complexity of the boundary of Σ.
Furthermore, the above processes take O(|Σ| · |E(H)|2) time in total. This completes the
proof of Lemma 13.

6 Conclusion

In this paper, we initiate the study of fundamental parameterized problems for dynamic
unit disk graphs. including k-Path/Cycle, Vertex Cover, Triangle Hitting Set,
Feedback Vertex Set, and Cycle Packing. Our data structure supports 2O(

√
k) update

time and O(k) query time for k-Path/Cycle. For the other problems, our data structures
support O(log n) update time and 2O(

√
k) query time, where k denotes the output size.

Despite the progress made in this work, there remain numerous open problems. First, can we
obtain a trade-off between query times and update times? Second, one might consider other
classes of geometric intersection graphs in the dynamic setting such as disk graphs [3, 30],
outerstring graphs [7], transmission graphs [5] and hyperbolic unit disk graphs [31]. To the
best of our knowledge, there have been no known results on parameterized algorithms for
those graph classes.

References
1 Pankaj Agarwal, Hsien-Chih Chang, Subhash Suri, Allen Xiao, and Jie Xue. Dynamic

geometric set cover and hitting set. ACM Transactions on Algorithms (TALG), 18(4):1–37,
2022. doi:10.1145/3551639.

2 Josh Alman, Matthias Mnich, and Virginia Vassilevska Williams. Dynamic parameterized
problems and algorithms. ACM Transactions on Algorithms (TALG), 16(4):1–46, 2020.
doi:10.1145/3395037.

ISAAC 2024

https://doi.org/10.1145/3551639
https://doi.org/10.1145/3395037

6:14 Dynamic Parameterized Problems on Unit Disk Graphs

3 Shinwoo An, Kyungjin Cho, and Eunjin Oh. Faster algorithms for cycle hitting problems on
disk graphs. In Proceedings of the 18th Algorithms and Data Structures Symposium (WADS
2023), pages 29–42, 2023. doi:10.1007/978-3-031-38906-1_3.

4 Shinwoo An and Eunjin Oh. Feedback vertex set on geometric intersection graphs. In
Proceedings of the 32nd International Symposium on Algorithms and Computation (ISAAC
2021), pages 47:1–47:12, 2021. doi:10.4230/LIPICS.ISAAC.2021.47.

5 Shinwoo An and Eunjin Oh. Reachability problems for transmission graphs. Algorithmica,
84(10):2820–2841, 2022. doi:10.1007/S00453-022-00985-1.

6 Shinwoo An and Eunjin Oh. ETH-tight algorithm for cycle packing on unit disk graphs. In
Proceedings of the 40th International Symposium on Computational Geometry (SoCG 2024),
pages 7:1–7:15, 2024. doi:10.4230/LIPICS.SOCG.2024.7.

7 Shinwoo An, Eunjin Oh, and Jie Xue. Sparse outerstring graphs have logarithmic treewidth.
In 32nd Annual European Symposium on Algorithms (ESA 2024), pages 10:1–10:18, 2024.
doi:10.4230/LIPICS.ESA.2024.10.

8 Sujoy Bhore and Timothy M. Chan. Fully dynamic geometric vertex cover and matching.
arXiv preprint, 2024. doi:10.48550/arXiv.2402.07441.

9 Sujoy Bhore, Martin Nöllenburg, Csaba D. Tóth, and Jules Wulms. Fully dynamic max-
imum independent sets of disks in polylogarithmic update time. In Proceedings of the 40th
International Symposium on Computational Geometry (SoCG 2024), pages 19:1–19:16, 2024.
doi:10.4230/LIPICS.SOCG.2024.19.

10 Heinz Breu. Algorithmic aspects of constrained unit disk graphs. PhD thesis, University of
British Columbia, 1996.

11 Timothy M. Chan and Zhengcheng Huang. Dynamic geometric connectivity in the plane with
constant query time. In Proceedings of the 40th International Symposium on Computational
Geometry (SoCG 2024), pages 36:1–36:13, 2024. doi:10.4230/LIPICS.SOCG.2024.36.

12 Timothy M. Chan, Mihai Pǎtraşcu, and Liam Roditty. Dynamic connectivity: Connecting to
networks and geometry. SIAM Journal on Computing, 40(2):333–349, 2011. doi:10.1137/
090751670.

13 Jiehua Chen, Wojciech Czerwiński, Yann Disser, Andreas Emil Feldmann, Danny Hermelin,
Wojciech Nadara, Marcin Pilipczuk, Michał Pilipczuk, Manuel Sorge, Bartłomiej Wróblewski,
et al. Efficient fully dynamic elimination forests with applications to detecting long paths and
cycles. In Proceedings of the 32th ACM-SIAM Symposium on Discrete Algorithms (SODA
2021), pages 796–809. SIAM, 2021.

14 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86(1-3):165–177, 1990. doi:10.1016/0012-365X(90)90358-O.

15 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,
2015. doi:10.1007/978-3-319-21275-3.

16 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A framework for exponential-time-hypothesis–tight algorithms and lower bounds in
geometric intersection graphs. SIAM Journal on Computing, 49(6):1291–1331, 2020. doi:
10.1137/20M1320870.

17 Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs.
Journal of the ACM (JACM), 52(6):866–893, 2005. doi:10.1145/1101821.1101823.

18 Zdeněk Dvořák, Martin Kupec, and Vojtěch Tůma. A dynamic data structure for MSO
properties in graphs with bounded tree-depth. In Proceedings of the 22th Annual European
Symposium (ESA 2014), pages 334–345, 2014.

19 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes
for geometric intersection graphs. SIAM Journal on Computing, 34(6):1302–1323, 2005.
doi:10.1137/S0097539702402676.

https://doi.org/10.1007/978-3-031-38906-1_3
https://doi.org/10.4230/LIPICS.ISAAC.2021.47
https://doi.org/10.1007/S00453-022-00985-1
https://doi.org/10.4230/LIPICS.SOCG.2024.7
https://doi.org/10.4230/LIPICS.ESA.2024.10
https://doi.org/10.48550/arXiv.2402.07441
https://doi.org/10.4230/LIPICS.SOCG.2024.19
https://doi.org/10.4230/LIPICS.SOCG.2024.36
https://doi.org/10.1137/090751670
https://doi.org/10.1137/090751670
https://doi.org/10.1016/0012-365X(90)90358-O
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/20M1320870
https://doi.org/10.1137/20M1320870
https://doi.org/10.1145/1101821.1101823
https://doi.org/10.1137/S0097539702402676

S. An, K. Cho, L. Jang, B. Jung, Y. Lee, E. Oh, D. Shin, H. Shin, and C. Song 6:15

20 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discrete &
Computational Geometry, 62:879–911, 2019. doi:10.1007/S00454-018-00054-X.

21 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
ETH-tight algorithms for long path and cycle on unit disk graphs. Journal of Computational
Geometry, 12(2):126–148, 2021. doi:10.20382/JOCG.V12I2A6.

22 Fedor V Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric
graphs. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2012), pages 1563–1575, 2012. doi:10.1137/1.9781611973099.124.

23 Timothy F. Havel, Gordon M. Crippen, Irwin D. Kuntz, and Jeffrey M. Blaney. The com-
binatorial distance geometry method for the calculation of molecular conformation ii. sample
problems and computational statistics. Journal of Theoretical Biology, 104(3):383–400, 1983.

24 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM (JACM), 32(1):130–136, 1985.
doi:10.1145/2455.214106.

25 Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid
graphs. SIAM Journal on Computing, 11(4):676–686, 1982. doi:10.1137/0211056.

26 Tuukka Korhonen, Konrad Majewski, Wojciech Nadara, Michał Pilipczuk, and Marek
Sokołowski. Dynamic treewidth. In Proceedings of the 64th Annual Symposium on Foundations
of Computer Science (FOCS 2023), pages 1734–1744, 2023.

27 Tomasz Krawczyk and Bartosz Walczak. On-line approach to off-line coloring problems
on graphs with geometric representations. Combinatorica, 37(6):1139–1179, 2017. doi:
10.1007/S00493-016-3414-X.

28 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Unit disk graph approximation.
In Proceedings of the 2004 joint workshop on Foundations of mobile computing, pages 17–23,
2004. doi:10.1145/1022630.1022634.

29 Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Ad-hoc networks beyond unit disk
graphs. In Proceedings of the 2003 joint workshop on Foundations of mobile computing, pages
69–78, 2003.

30 Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. Subexponen-
tial parameterized algorithms on disk graphs (extended abstract)*. In Proceedings of the 33rd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), pages 2005–2031, 2022.
doi:10.1137/1.9781611977073.80.

31 Eunjin Oh and Seunghyeok Oh. Algorithms for Computing Maximum Cliques in Hyperbolic
Random Graphs. In 31st Annual European Symposium on Algorithms (ESA 2023), pages
85:1–85:15, 2023. doi:10.4230/LIPICS.ESA.2023.85.

32 János Pach and Rephael Wenger. Embedding planar graphs at fixed vertex locations. Graphs
and Combinatorics, 17:717–728, 2001. doi:10.1007/PL00007258.

33 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. In Proceedings
of the 13th Annual ACM Symposium on Theory of Computing (STOC 1981), pages 114–122,
1981.

34 Da-Wei Wang and Yue-Sun Kuo. A study on two geometric location problems. Information
processing letters, 28(6):281–286, 1988. doi:10.1016/0020-0190(88)90174-3.

35 Hassler Whitney. Congruent graphs and the connectivity of graphs. American Journal of
Mathematics, 54(1):150–168, 1932.

36 Hassler Whitney. 2-isomorphic graphs. American Journal of Mathematics, 55(1):245–254,
1933.

37 Weili Wu, Hongwei Du, Xiaohua Jia, Yingshu Li, and Scott C.-H. Huang. Minimum connected
dominating sets and maximal independent sets in unit disk graphs. Theoretical Computer
Science, 352(1-3):1–7, 2006. doi:10.1016/J.TCS.2005.08.037.

ISAAC 2024

https://doi.org/10.1007/S00454-018-00054-X
https://doi.org/10.20382/JOCG.V12I2A6
https://doi.org/10.1137/1.9781611973099.124
https://doi.org/10.1145/2455.214106
https://doi.org/10.1137/0211056
https://doi.org/10.1007/S00493-016-3414-X
https://doi.org/10.1007/S00493-016-3414-X
https://doi.org/10.1145/1022630.1022634
https://doi.org/10.1137/1.9781611977073.80
https://doi.org/10.4230/LIPICS.ESA.2023.85
https://doi.org/10.1007/PL00007258
https://doi.org/10.1016/0020-0190(88)90174-3
https://doi.org/10.1016/J.TCS.2005.08.037

On the Connected Minimum Sum of Radii Problem
Hyung-Chan An #

Yonsei University, Seoul, Republic of Korea

Mong-Jen Kao #

National Yang-Ming Chiao-Tung University, Hsinchu, Taiwan

Abstract
In this paper, we consider the study for the connected minimum sum of radii problem. In this
problem, we are given as input a metric defined on a set of facilities and clients, along with some
cost parameters. The objective is to open a subset of facilities, assign every client to an open facilitiy,
and connect open facilities using a Steiner tree so that the weighted (by cost parameters) sum of
the maximum assignment distance of each facility and the Steiner tree cost is minimized. This
problem introduces the min-sum radii objective, an objective function that is widely considered
in the clustering literature, to the connected facility location problem, a well-studied network
design/clustering problem. This problem is useful in communication network design on a shared
medium, or energy optimization of mobile wireless chargers.

We present both a constant-factor approximation algorithm and hardness results for this problem.
Our algorithm is based on rounding an LP relaxation that jointly models the min-sum of radii problem
and the rooted Steiner tree problem. To round the solution we use a careful clustering procedure
that guarantees that every open facility has a proxy client nearby. This allows a reinterpretation for
part of the LP solution as a fractional rooted Steiner tree. Combined with a cost filtering technique,
this yields a 5.542-approximation algorithm.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases connected minimum sum of radii, minimum sum of radii, connected facility
location, approximation algorithms, Steiner trees

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.7

Funding This work was supported by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No. RS-2021-
II212068, Artificial Intelligence Innovation Hub). This work was supported by the National Science
and Technology Council (NSTC), Taiwan, grants 112-2628-E-A49-017-MY3, 113-2628-E-A49-017-
MY3, and 113-2634-F-A49-001-MBK.

Acknowledgements The authors made equal contributions. We thank the anonymous reviewers for
their helpful comments.

1 Introduction

Connected facility location is a joint optimization problem that combines network design with
clustering, and it has wide applications in the design of communication networks [1,8,23].
In this problem, we are given as input a metric on a set of nodes (some of which are called
facilities and some clients) in addition to the opening cost of each facility and a connectivity
cost parameter M . The goal is to open some facilities, assign every client to an open facility,
and finally connect the open facilities with a Steiner tree whose terminals are the open
facilities. The cost of a solution is defined as the total assignment distance between each
client and the facility it is assigned to, plus the total opening costs of the open facilities
and the cost of the Steiner tree scaled by M . This problem is particularly useful in the
design of a communication network where a central core is formed by connecting core nodes
together and individual endnodes are assigned to one of the core nodes [1, 8, 23]. There
exists an extensive volume of research on this problem: in addition to the problem described

© Hyung-Chan An and Mong-Jen Kao;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 7; pp. 7:1–7:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hyung-chan.an@yonsei.ac.kr
https://orcid.org/0000-0002-3690-4621
mailto:mjkao@nycu.edu.tw
https://orcid.org/0000-0002-7238-3093
https://doi.org/10.4230/LIPIcs.ISAAC.2024.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 On the Connected Minimum Sum of Radii Problem

above [8, 10, 14, 23], a variant where opening a facility itself does not incur opening cost has
also been investigated [15, 23]. In addition to the facility location problem, connectivity
constraints have been introduced in other classical problems including dominating set (see,
e.g., [7, 13,21,22]).

The facility location problem is a min-sum optimization problem, in that it minimizes the
sum of the assignment distances. Yet, this is not always the objective one is most interested
in in practice. For example, when the endnodes are connected via broadcasting on a shared
medium, one may be more interested in the longest assignment distance [11]. On the extreme
in this direction is the k-center problem [17], which minimizes the maximum assignment
distance in the entire solution. This unfortunately tends to yield a less desirable clustering
since the maximum assignment distance by itself determines the objective. In order to avoid
the dissection effect [16], we can use the sum of radii in lieu of maximum radii as the objective
function [6]. Under this objective, however, there exists a trivial optimal solution when there
is no distinction between facilities and clients – one can open and assign every node to itself,
resulting in the zero sum of radii – and therefore the min-sum radii problem was previously
studied usually under a cardinality constraint on the number of open facilities [2, 3, 6, 9, 11].

However, the connected facility location problem was little studied under this min-sum
radii objective. This paper proposes to study the connected minimum sum of radii problem,
aiming at addressing this gap. Our problem takes as input the assignment cost parameter of
each facility in addition to the connectivity cost parameter M and a metric on facilities and
clients. The goal still is to open some facilities, assign every client to an open facility, and
connect the open facilities. The problem however differs from connected facility location in
its objective function, which is now defined as the sum of radii, i.e., the sum of the longest
assignment distance of each facility, plus the Steiner tree cost connecting the open facilities.
The radii and the Steiner tree cost are respectively scaled by the assignment cost parameters
and the connectivity cost parameter.

A sample application that well illustrates this problem is wireless charging of sensors.
Consider a set of sensors distributed over a region, which are charged by a wireless charger
that moves between charging spots to charge near sensors [19, 24]. The wireless charging
energy is proportional to the maximum distance to a sensor being charged, and the proposed
problem well reflects this setting. The connected minimum sum of radii problem also arises
when we want to broadcast messages to a set of sensors. Suppose we install a set of mutually
connected stations each of which broadcasts messages over the air to nearby sensors. The
total communication cost will then depend on the over-the-air broadcast range of each station
and their mutual connection cost.

Our results and techniques

In this paper, we propose to study the connected minimum sum of radii problem, present an
approximation algorithm for it, and show its NP-hardness. Our main result is the following
theorem. While this paper primarily considers the version of the problem that opening a
facility itself does not incur a fixed opening cost, Theorem 1 immediately extends to the
version with opening cost as well, without affecting the final approximation ratio.

▶ Theorem 1. There is a polynomial-time algorithm that computes a 5.542-approximation
solution for the connected minimum sum of radii problem.

The algorithm we present is an LP-rounding algorithm that is partially based on a greedy
clustering of fractionally open facilities. Greedy clustering approach was previously used to
handle the (non-connected) minimum sum of radii problem [9]. In this paper, we propose
that we use a carefully designed new clustering procedure to ensure that each open facility
always has a “proxy client” nearby.

H.-C. An and M.-J. Kao 7:3

After clustering, the LP solution can be reinterpreted as a fractional solution to a rooted
Steiner tree instance whose terminals are the proxy clients, at the expense of a slight increase
in the cost. This fractional solution is then rounded using any LP-based algorithm with a
good approximation ratio for the Steiner tree problem, such as the LP-rounding algorithm of
Jain [18] or the primal-dual algorithm of Goemans and Williamson [12]. Finally, to obtain
the desired approximation ratio, we compare this solution against a trivial solution that
opens a single guessed facility, and output the better between the two solutions.

We will complement the above result by showing that the problem is NP-hard.

▶ Theorem 2. The connected minimum sum of radii problem is NP-hard.

Organization of this paper

The rest of this paper is organized as follows. In Section 2 we provide a formal definition of the
connected minimum sum of radii problem and the notation we will be using throughout this
paper. In Section 3 we present our approximation algorithm. We establish the approximation
guarantee in Section 4 and present the hardness results in Section 5.

2 Preliminaries

We begin with a formal definition on the connected minimum sum of radii problem. In this
problem, we are given a set F of facilities, a set D of clients, a distance metric d defined over
F ∪D and two additional parameters m : F → Q≥0 and M ∈ Q≥0.

A feasible solution consists of a tuple (S, ρ, T), where S ⊆ F is a subset of facilities,
ρ : S → Q≥0 is the set of respective radii for the facilities in S such that all clients in D are
covered, i.e., for any j ∈ D, there always exists some i ∈ S such that d(j, i) ≤ ρi, and T is a
Steiner tree with terminal set S and Steiner nodes F ∪D.

The objective is to minimize the sum of radii of the clusters in S, each weighted by the
parameters mi |i∈S , plus the total length of the Steiner tree weighted by M , i.e.,∑

i∈S

mi · ρi +
∑
e∈T

M · de.

Note that, provided that M ̸= 0, we may assume without loss of generality that M = 1,
for otherwise we can scale mi for all i ∈ F uniformly. For the rest of this paper we will take
this assumption that M = 1.

We also note that, our algorithm and the analysis can be modified in a straightforward
way to work for the extreme case that M = 0.

Notations

We additionally use the following notation in this paper. We use V := F ∪D to denote the
set of vertices in the given metric space and E := { (u, v) | u, v ∈ V } to denote the set of
possible edges when considering the corresponding metric graph. For any U ⊆ V , we use
δ(U) to denote the set of edges in the cut (U, Ū) with respect to the metric graph.

For any i ∈ F and any r ∈ Q≥0, we use B(i, r) to denote the set of clients that belong in
the ball centered at i with radius r, i.e,

B(i, r) := { j ∈ D | d(i, j) ≤ r }.

For each i ∈ F , we use Ri := {d(i, j) | j ∈ D} to denote the set of “meaningful” radii for i.

ISAAC 2024

7:4 On the Connected Minimum Sum of Radii Problem

3 Approximation Algorithm

In this section, we present our algorithm for the connected minimum sum of radii problem.
Let µ ≥ 1 be a parameter to be determined.

Our algorithm starts by guessing a facility t ∈ F that is opened in an optimal solution
(Sopt, ρopt, T opt) with the minimum mt value, i.e., t = argmini∈Sopt mi. For each candidate
guess t, the algorithm generates two solutions (SI

t , ρI
t, T I

t) and (SII
t , ρII

t , T II
t). When this

process ends, the one with the smallest cost is output as the approximation solution. In the
following we describe how the solutions are generated for each guess t ∈ F . To simplify the
notations, the dependency on t will be omitted when there is no ambiguity in the context.

The first solution (SI, ρI, T I) is a trivial one with SI := {t}, i.e., t is the only open facility.
Naturally, T I = ∅ and ρI

t = maxj∈D d(t, j) in this solution. The cost of this solution is hence
mt ·maxj∈D d(t, j).

To obtain the second solution (SII, ρII, T II), let Fµ := {i ∈ F | mi ≥ µ}. We use
the following LP relaxation for a further restricted scenario for which Sopt ⊆ Fµ, i.e., the
(unknown) referenced optimal solution only uses facilities in Fµ. This unusual setting will
become clear in the analysis.

minimize
∑

i∈Fµ,r∈Ri

mi · r · xi,r +
∑
e∈E

de · ye

subject to
∑
i∈Fµ

zi,j ≥ 1, ∀j ∈ D,

∑
r∈Ri:j∈B(i,r)

xi,r ≥ zi,j , ∀i ∈ Fµ, j ∈ D,

∑
e∈δ(U)

ye ≥
∑

i∈Fµ∩U

zi,j , ∀j ∈ D, U ⊆ V \ {t}, (1)

x, y, z ≥ 0.

We have three sets of indicator variables in the above LP.
xi,r for each (i, r) pair with i ∈ Fµ and r ∈ Ri.
ye for each edge e ∈ E.
zi,j for the assignment of client j ∈ D to the facility i ∈ Fµ.

The first constraint requires that any client in D has to be assigned to at least one facility in
Fµ. The second constraint demands that, in order for a client j to be assigned to facility
i, j must be contained in an opened ball centered at i. The third constraint models the
connectivity requirement between the opened facilities via the assignment variables zi,j and
the predetermined sink t. Note that the constraints of this LP does not require that t is
opened but rather use it to ensure the connectivity between the opened facilities.

Note that the last set of inequalities can be separated by finding a minimum j-t cut. We
solve the LP in polynomial time to obtain an optimal fractional solution (x⋆, y⋆, z⋆). In the
following we describe our rounding procedure to obtain the second solution (SII, ρII, T II).
The rounding procedure consists of two parts. In the first part, we select a set of facilities
along with their respective radii to be opened. In the second part, we compute a Steiner tree
for the opened facilities.

H.-C. An and M.-J. Kao 7:5

Opening facilities

Let B0 := {(i, r) | x⋆
i,r > 0} be the support of x⋆. Let G be a bipartite graph with partite

sets B0 and D, where (i, r) ∈ B0 and j ∈ D are adjacent if and only if j ∈ B(i, r). For any
j ∈ D and any B⋆ ⊆ B0, let ∆B⋆(j) denote the minimum distance between j and any vertex
in B⋆: i.e.,

∆B⋆(j) := min{|P | | P is a path in G between j and some y ∈ B⋆},

where |P | denotes the number of edges on P . Note that we define ∆∅(j) := +∞ for all
j ∈ D.

Algorithm 1 Determining open facilities and their proxy clients.

1: SII ← ∅; B⋆ ← ∅
2: while ∃j ∈ D with ∆B⋆(j) ≥ 5 do
3: B̄ := {(i, r) ∈ B0 | there exists some j that is adjacent to (i, r) and ∆B⋆(j) ≥ 5}
4: (i⋆, r⋆) ∈ arg max(i,r)∈B̄ r

5: let πi⋆ be some j ∈ D such that (i, r) and j are adjacent and ∆B⋆(j) ≥ 5
6: B⋆ ← B⋆ ∪ {(i⋆, r⋆)}; SII ← SII ∪ {i⋆}; ρII

i⋆ = 3r⋆

Consider Algorithm 1 that returns SII, ρII, and {πi}i∈SII . It additionally maintains B⋆,
which denotes the set of (i, r) pairs to be rounded up, and πi for each i ∈ SII which denotes
the representative proxy client we pick for facility i. It is to ensure the existence of these
proxy clients why we use Algorithm 1 as opposed to a simple greedy clustering.

Initially, SII := ∅ and B⋆ := ∅. In each iteration, the algorithm considers the set of (i, r)
pairs in B0 that are adjacent to some client j ∈ D in G with ∆B⋆(j) ≥ 5. Among all such
(i, r) pairs, the algorithm picks the one with the largest r. Let the pair be (i∗, r∗) and let πi∗

be the witness client with j ∈ D with ∆B⋆(j) ≥ 5.
The algorithm puts i∗ in SII, sets ρII

i⋆ to be 3r⋆, and adds (i∗, r∗) to B0. Then the
algorithm iterates until ∆B⋆(j) < 5 holds for all j ∈ D.

The following two observations show that this algorithm is well-defined. First, Observa-
tion 3 shows that the set B̄ at Step 3 of Algorithm 1 is always nonempty.

▶ Observation 3. For all j ∈ D, there exists some (i, r) ∈ B0 such that j ∈ B(i, r).

Proof. From the feasibility of (x⋆, y⋆, z⋆), there exists some i ∈ Fµ such that z⋆
i,j > 0, and

this in turn implies that there exists some r ∈ Ri such that j ∈ B(i, r) and x⋆
i,r > 0. ◀

The following observation shows that ρII is unambiguously defined by Algorithm 1.

▶ Observation 4. Step 4 of Algorithm 1 never chooses the same facility more than once.

Proof. Suppose towards contradiction that Step 4 chooses (i, r1) at some point and (i, r2)
at a later point during the execution of Algorithm 1 for some r1 ̸= r2.

Suppose r1 < r2. Consider the moment the algorithm chooses (i, r1). This implies that
there exists some j ∈ B(i, r1) such that ∆B⋆(j) ≥ 5; since B(i, r1) ⊆ B(i, r2), this implies
(i, r2) ∈ B̄, a contradiction to the design of the algorithm.

Suppose r1 > r2. Consider the moment the algorithm chooses (i, r2). Since B(i, r2) ⊆
B(i, r1) and (i, r1) ∈ B⋆, we have ∆B⋆(j) ≤ 1. Hence (i, r2) /∈ B̄ and cannot be picked in
Step 4. ◀

The following lemma summarizes one of the key properties our algorithm aims to have.

ISAAC 2024

7:6 On the Connected Minimum Sum of Radii Problem

▶ Lemma 5. For any (i⋆, r⋆) ∈ B⋆ and any (i′, r′) ∈ B0 such that πi⋆ and (i′, r′) are adjacent
in G, we have r′ ≤ r⋆.

Proof. Consider the moment the algorithm chooses (i⋆, r⋆). Step 5 of the algorithm guar-
antees that ∆B⋆(πi⋆) ≥ 5 and therefore (i′, r′) ∈ B̄. Since the algorithm chose (i⋆, r⋆) over
(i′, r′), it shows that r′ ≤ r⋆. ◀

Connecting the opened facilities

To obtain the second solution (SII, ρII, T II), it remains to build the Steiner tree T II. Consider
the following LP relaxation for the Steiner tree problem with vertex set V := F ∪D, edge
set E, terminal set W ⊆ V , and a given root t ∈W .

minimize
∑
e∈E

de · he

subject to
∑

e∈δ(U)

he ≥ 1, ∀U ⊆ V \ {t} with U ∩W ̸= ∅, (2)

h ≥ 0.

Note that the costs of the edges in this relaxation are defined by de. In the following we
construct a feasible solution for the above LP relaxation, where the set of terminals W is
chosen as the set of proxy clients {πi | i ∈ SII}.

We can assume without loss of generality on the variables z⋆ that, for all j ∈ D,∑
i∈Fµ

z⋆
i,j = 1 for otherwise we can scale down z⋆

i,j for all i ∈ Fµ simultaneously to make
it so without losing the feasibility of the resulting solution. Construct a vector p ∈ RE by
setting

p(πi,i′) :=
{

z⋆
i′,πi

, for all i ∈ SII and i′ ∈ Fµ,
0, otherwise.

Intuitively, in the above construction we fractionally wire πi for each i ∈ SII to all the
facilities that fractionally covers πi in z⋆. Since all the facilities are fractionally connected to
the sink t in y⋆ by the LP constraint (1), it follows by the above construction that y⋆ + p

fractionally connects the representative proxy client πi to t for all i ∈ SII. Hence y⋆ + p is a
feasible solution to (2).

Although we can use any LP-based algorithm for the Steiner tree problem at this point,
let us assume that we use the LP-rounding algorithm of Jain [18] on this solution to construct
a Steiner tree Tpre for the set of representative proxy clients in W := {πi | i ∈ SII}. To obtain
the desired Steiner tree T II, we add edges (i, πi) for all i ∈ SII to Tpre.

The following lemma, which formally verifies the feasibility of y⋆ + p for (2), shows that
the algorithm for this part is also well-defined, and a valid Steiner tree for W is produced.

▶ Lemma 6. y⋆ + p is a feasible with respect to the constraint (2).

Proof. Consider an arbitrary terminal πi⋆ ∈W and an arbitrary set U ⊆ V \ {t} such that
πi⋆ ∈ U . We have∑

e∈δ(U)

(y⋆
e + pe) ≥

∑
e∈δ(U)

y⋆
e +

∑
i′∈Fµ\U

p(πi⋆ ,i′)

≥
∑

i′∈Fµ∩U

z⋆
i′,πi⋆ +

∑
i′∈Fµ\U

z⋆
i′,πi⋆ =

∑
i′∈Fµ

z⋆
i′,πi⋆ = 1,

where the second inequality follows from the feasibility of y⋆ and the construction of p and
the last equality follows from the construction of the above algorithm. ◀

H.-C. An and M.-J. Kao 7:7

4 Analysis

In this section, we show that our algorithm is an approximation algorithm for the connected
minimum sum of radii problem and establish the approximation guarantee.

Feasibility of the solutions

Consider each guess t ∈ F . It is clear that (SI
t , ρI

t, T I
t) is a feasible solution. In the following

we show that (SII
t , ρII

t , T II
t) is also feasible.

By Lemma 6 and the correctness of Jain’s rounding algorithm [18], T II
t is indeed a Steiner

tree for SII
t . Hence, it suffices to prove the following lemma, which implies that, for all j ∈ D,

there always exists some opened facility i ∈ SII such that d(i, j) ≤ ρII
i .

▶ Lemma 7. For all j ∈ D, there exists some (i⋆, r⋆) ∈ B⋆ such that d(i⋆, j) ≤ 3r⋆.

Proof. Note that we have ∆B⋆(j) = +∞ at the beginning and ∆B⋆(j) < 5 at the end of
the execution of Algorithm 1. Consider the iteration at which ∆B⋆(j) becomes smaller
than 5 for the first time and let (i⋆, r⋆) be the ball chosen at Step 4 during this iteration.
Since G is bipartite, ∆B⋆(j) becomes 1 or 3 at this iteration. If it becomes 1, this implies
j ∈ B(i⋆, r⋆) and there is nothing to prove. If ∆B⋆(j) becomes 3, this implies that there
exists a path of length three between (i⋆, r⋆) and j in G; let (i⋆, r⋆) − j′ − (i′, r′) − j

denote this path. At the beginning of this iteration, ∆B⋆(j) was no smaller than 5 and
therefore (i′, r′) ∈ B̄. Since the algorithm chose (i⋆, r⋆) over (i′, r′), we have r⋆ ≥ r′, yielding
d(i⋆, j) ≤ d(i⋆, j′) + d(j′, i′) + d(i′, j) ≤ r⋆ + r′ + r′ ≤ 3r⋆. ◀

Approximation Guarantee

In the following we establish the approximation guarantee. Let (Sopt, ropt, T opt) be an optimal
solution and OPT denote its cost.

If |Sopt| = 1, then the facility in Sopt will be iterated by the algorithm. Denote this
facility by t∗. Then (SI

t∗ , ρI
t∗ , T I

t∗) is an optimal solution and there is nothing to prove.

In the following we assume that |Sopt| ≥ 2. Since the algorithm iterates over all possible
guesses, we assume without loss of generality that t is the facility with the smallest mt value
in Sopt, i.e.,

t ∈ Sopt and t = argmini∈Sopt mi.

Depending on whether or not t ∈ Fµ, we further consider two cases. The following lemma
shows that (SI

t , ρI
t, T I

t) is a µ-approximation solution if t /∈ Fµ.

▶ Lemma 8. If t ∈ Sopt and t /∈ Fµ, then

OPT ≥ 1
µ
·mt ·max

j∈D
d(t, j).

Proof. We have mt < µ by the assumption. Let jo := arg maxj∈D d(t, j) be the client that
defines the radius ρI

t. Let i′ be a facility in Sopt with d(i′, jo) ≤ ρopt
i′ . We have

ISAAC 2024

7:8 On the Connected Minimum Sum of Radii Problem

OPT =
∑

i∈Sopt

mi · ρopt
i +

∑
e∈T opt

de

≥ mi′ · ρopt
i′ + d(t, i′)

≥ mt · d(i′, jo) + 1
µ

mt · d(t, i′)

≥ 1
µ
·mt · d(t, jo) = 1

µ
·mt ·max

j∈D
d(t, j),

where in the last inequality we apply the triangle inequality and the fact that µ ≥ 1. ◀

It remains to consider the case that t ∈ Fµ, which in particular implies that Sopt ⊆ Fµ.
We prove in the following that (SII

t , ρII
t , T II

t) is a (5 + 3
µ)-approximation solution in this case.

Since Sopt ⊆ Fµ, it follows that the LP (1) admits (Sopt, ropt, T opt) as a feasible solution.
Hence the cost of the fractional solution (x⋆, y⋆, z⋆) provides a lower-bound for OPT. Similarly
to the facility location problem [4] and the minimum sum of radii problem [9], we use the
dual optimal solution to bound the cost of the rounded solution via complementary slackness.
Consider the dual LP of the LP (1), which we provide below, and let (α⋆, β⋆, γ⋆, λ⋆) be an
optimal solution for it.

maximize
∑
j∈D

αj

subject to
∑

j∈B(i,r)

γi,j ≤ mi · r, ∀i ∈ Fµ, r ∈ Ri,

αj −
∑

U⊆V \{t}:i∈U

βj,U ≤ γi,j , ∀i ∈ Fµ, j ∈ D, (3)

∑
j∈D

∑
U⊆V \{t}:e∈δ(U)

βj,U ≤ de, ∀e ∈ E,

α, β, γ ≥ 0.

The following lemma bounds the weighted cost of a facility in term of the dual values of
the clients contained within. Intuitively, it follows from standard complementary slackness
conditions between (x⋆, y⋆, z⋆) and (α⋆, β⋆, γ⋆, λ⋆).

▶ Lemma 9. For any i ∈ Fµ and any r ∈ Ri, we have x⋆
i,r > 0 implies that mi · r ≤∑

j∈B(i,r) α⋆
j .

Proof. From the complementary slackness condition, x⋆
i,r > 0 implies∑

j∈B(i,r)

γ⋆
i,j = mi · r. (4)

Consider an arbitrary j ∈ B(i, r). If γ⋆
i,j > 0, we have from the complementary slackness

that

z⋆
i,j =

∑
r′∈Ri:j∈B(i,r′)

x⋆
i,r′ > x⋆

i,r > 0.

H.-C. An and M.-J. Kao 7:9

By complementary slackness condition again this implies

γ⋆
i,j = α⋆

j −
∑

U⊆V \{t}:i∈U

β⋆
j,U ≤ α⋆

j . (5)

On the other hand, if γ⋆
i,j = 0, it trivially holds that

γ⋆
i,j ≤ α⋆

j . (6)

Combining (5) and (6) with (4) yields mi · r ≤
∑

j∈B(i,r) α⋆
j . ◀

Consider any (i1, r1), (i2, r2) ∈ B⋆ such that i1 ̸= i2. By the design of the rounding
procedure in the first part of the algorithm, we always have that B(i1, r1) and B(i2, r2) are
disjoint. Hence, combining this fact with Lemma 9, the total weighted facility cost can be
bounded as∑

i∈SII
t

mi · ρII
i =

∑
(i⋆,r⋆)∈B⋆

3 ·mi · r⋆

≤
∑

(i⋆,r⋆)∈B⋆

3 ·
∑

j∈B(i⋆,r⋆)

α⋆
j

 = 3 ·
∑
j∈D

α⋆
j ≤ 3 · OPT. (7)

In the following we consider the cost incurred by the Steiner tree T II
t . We have the

following lemma regarding the value of the solution y⋆ + p with respect to LP (2).

▶ Lemma 10.∑
e∈E

de · (y⋆
e + pe) ≤

(
1 + 1

µ

)
· OPT.

Proof. By the construction of p we have∑
e∈E

de · y⋆
e +

∑
e∈E

de · pe ≤ OPT +
∑

i⋆∈SII

∑
i′∈Fµ

d(i′, πi⋆) · z⋆
i′,πi⋆ . (8)

For any (i, j) such that z⋆
i,j > 0, the feasibility of (x⋆, y⋆, z⋆) implies that there must exist

some r ∈ Ri such that j ∈ B(i, r) and x⋆
i,r > 0. This yields∑

i⋆∈SII

∑
i′∈Fµ

d(i′, πi⋆) · z⋆
i′,πi⋆ =

∑
(i⋆,r⋆)∈B⋆

∑
i′∈Fµ

d(i′, πi⋆) · z⋆
i′,πi⋆

≤
∑

(i⋆,r⋆)∈B⋆

∑
i′∈Fµ

r⋆ · z⋆
i′,πi⋆

=
∑

(i⋆,r⋆)∈B⋆

r⋆ ≤
∑

i⋆∈SII

mi⋆

µ
· r⋆ ≤ 1

µ
· OPT,

where the first inequality follows from Lemma 5 and the fact that z⋆
i′πi⋆

> 0 implies that there
exists some r′ ∈ Ri′ such that πi⋆ ∈ B(i′, r′) and x⋆

i′,r′ > 0, the second equality follows from
the construction in the second part of the algorithm, the second inequality from SII ⊆ Fµ

which implies that mi ≥ µ for all i ∈ Fµ, and the last inequality follows from (7). ◀

ISAAC 2024

7:10 On the Connected Minimum Sum of Radii Problem

By the design of the algorithm for constructing T II
t , the bound in Lemma 10, and the

fact that Jain’s rounding algorithm gives a 2-approximation [18], we have∑
e∈T II

t

de =
∑

e∈Tpre

de +
∑

i⋆∈SII
t

d(i⋆, πi⋆)

≤
(

2 + 2
µ

)
· OPT +

∑
(i⋆,r⋆)∈B⋆

r⋆

≤
(

2 + 2
µ

)
· OPT +

∑
(i⋆,r⋆)∈B⋆

mi⋆

µ
· r⋆ ≤

(
2 + 3

µ

)
· OPT, (9)

where in the second last inequality we use the fact that mi⋆ ≥ µ for all i⋆ ∈ SII
t and in last

inequality we apply Inequality (7). Combining Inequalities (7) and (9), we obtain

∑
i∈SII

t

mi · ρII
i +

∑
e∈T II

t

de ≤
(

5 + 3
µ

)
· OPT.

This proves the following theorem. Choosing µ := 5+
√

37
2 < 5.542 yields a µ-approximation

algorithm.

▶ Theorem 11. The given algorithm is a max
(

µ, 5 + 3
µ

)
-approximation algorithm.

5 NP-hardness Results

In this section, we prove Theorem 2 by showing that the problem remains NP-hard even for
two special cases. First, the following theorem shows that this problem remains NP-hard
even when we only allow clusters with zero radii.

▶ Theorem 12. The connected minimum sum of radii problem is NP-hard when mi = +∞
for all i ∈ F and M = 1.

Proof. We give a reduction from the Metric Steiner Tree problem, which is known to
be NP-complete [20]. Construct an instance of the connected minimum sum of radii problem
where the terminals in the Steiner tree instance become facilities and clients at the same
time. Observe that an optimal solution to this instance opens all terminals, set their radii to
zeroes, and takes a Steiner tree connecting them. ◀

On the other hand, the following theorem shows that the NP-hardness remain true even
when no connection between opened facilities is required. The proof closely follows the
NP-hardness proof of the (non-connected) minimum sum of radii problem [11]; but we present
the full proof here for the sake of completeness.

▶ Theorem 13. The connected minimum sum of radii problem is NP-hard when mi = 1 for
all i ∈ F and M = 0.

Proof. We give a reduction from 3SAT [5]. Consider an instance of 3SAT with n variables
x1, . . . , xn and k clauses C1, . . . , Ck. We construct an instance of the connected minimum
sum of radii problem as follows.

Let F := {x1, x̄1, x2, x̄2, . . . , xn, x̄n} and D := {C1, . . . , Ck, v1, . . . , vn}. To define a metric
on V := F ∪ D, consider a weighted graph on the vertex set V , where we have an edge
(xi, Cj) (or (x̄i, Cj), respectively) of weight 2i−1 if and only if Cj contains xi (or x̄i). We also

H.-C. An and M.-J. Kao 7:11

add edges (xi, vi) and (x̄i, vi) of weight 2i−1 for all i = 1, . . . , n. The metric d is then defined
as the shortest path metric on this weighted graph. We claim that the optimal solution value
to this constructed instance is at most

∑n
i=1 2i−1 = 2n − 1 if and only if the 3SAT instance

is satisfiable.
Suppose that the 3SAT instance is satisfiable. Fix a satisfying assignment. For each

variable xi, we open xi (or x̄i, respectively) if xi is true (or false) under the fixed assignment
and set its radius to 2i−1. This yields a solution of value 2n − 1 in which every client can be
assigned.

Conversely, suppose that there exists a solution to the constructed instance of the
connected minimum sum of radii problem whose value is at most 2n − 1. Fix such a solution.
Suppose towards contradiction that there exists some k such that neither xk nor x̄k is open
with radius at least 2k−1. Let k⋆ be the largest such k. Then there must exist some ℓ such
that vk⋆ is assigned to xℓ or x̄ℓ. Note that d(vk⋆ , xℓ) = d(vk⋆ , x̄ℓ) ≥ 2 · 2k⋆−1 + 2ℓ−1 since
every edge incident with xk⋆ or x̄k⋆ is of weight 2k⋆−1 and every edge incident with xℓ or x̄ℓ

is of weight 2ℓ−1. If ℓ > k⋆, the total cost of the solution must be at least∑
i∈{k⋆+1,...,n}\{ℓ}

2i−1 + (2 · 2k⋆−1 + 2ℓ−1) > 2n − 1,

which leads to contradiction. If ℓ < k⋆, the total cost of the solution must be at least∑
i∈{k⋆+1,...,n}

2i−1 + (2 · 2k⋆−1 + 2ℓ−1) > 2n − 1,

leading to contradiction again.
We thus have that, for all i = 1, . . . , n, xi or x̄i (or both) is open with radius at least 2i−1.

Since 2n − 1 =
∑n

i=1 2i−1, this implies that exactly one of xi and x̄i is open with radius
exactly 2i−1 for all i = 1, . . . , n. (Note that opening with zero radius is useless.) Consider a
truth value assignment that sets xi to true if xi is open, and false otherwise. Observe that
this is a satisfying assignment. ◀

References
1 Matthew Andrews and Lisa Zhang. The access network design problem. In 39th Annual

Symposium on Foundations of Computer Science, FOCS ’98, November 8-11, 1998, Palo
Alto, California, USA, pages 40–59. IEEE Computer Society, 1998. doi:10.1109/SFCS.1998.
743427.

2 Moritz Buchem, Katja Ettmayr, Hugo K. K. Rosado, and Andreas Wiese. A (3 + ε)-
approximation algorithm for the minimum sum of radii problem with outliers and extensions
for generalized lower bounds. In David P. Woodruff, editor, Proceedings of the 2024 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10,
2024, pages 1738–1765. SIAM, 2024. doi:10.1137/1.9781611977912.69.

3 Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diameters. In
Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd
Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece,
pages 1–10. ACM, 2001. doi:10.1145/380752.380753.

4 Fabián A. Chudak and David B. Shmoys. Improved approximation algorithms for the
uncapacitated facility location problem. SIAM Journal on Computing, 33(1):1–25, 2003.
doi:10.1137/S0097539703405754.

5 Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A. Harrison,
Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA, pages
151–158. ACM, 1971. doi:10.1145/800157.805047.

ISAAC 2024

https://doi.org/10.1109/SFCS.1998.743427
https://doi.org/10.1109/SFCS.1998.743427
https://doi.org/10.1137/1.9781611977912.69
https://doi.org/10.1145/380752.380753
https://doi.org/10.1137/S0097539703405754
https://doi.org/10.1145/800157.805047

7:12 On the Connected Minimum Sum of Radii Problem

6 Srinivas Doddi, Madhav V. Marathe, S. S. Ravi, David Scot Taylor, and Peter Widmayer.
Approximation algorithms for clustering to minimize the sum of diameters. In Magnús M.
Halldórsson, editor, Algorithm Theory - SWAT 2000, 7th Scandinavian Workshop on Algorithm
Theory, Bergen, Norway, July 5-7, 2000, Proceedings, volume 1851 of Lecture Notes in
Computer Science, pages 237–250. Springer, 2000. doi:10.1007/3-540-44985-X_22.

7 Ding-Zhu Du and Peng-Jun Wan. Connected Dominating Set: Theory and Applications.
Springer Publishing Company, Incorporated, 2012.

8 Friedrich Eisenbrand, Fabrizio Grandoni, Thomas Rothvoß, and Guido Schäfer. Approximating
connected facility location problems via random facility sampling and core detouring. In
Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages
1174–1183. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347210.

9 Zachary Friggstad and Mahya Jamshidian. Improved polynomial-time approximations for
clustering with minimum sum of radii or diameters. In Shiri Chechik, Gonzalo Navarro, Eva
Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms,
ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages
56:1–56:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.
ESA.2022.56.

10 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Approximating
connected facility location with lower and upper bounds via LP rounding. In Rasmus Pagh,
editor, 15th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2016,
June 22-24, 2016, Reykjavik, Iceland, volume 53 of LIPIcs, pages 1:1–1:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPICS.SWAT.2016.1.

11 Matt Gibson, Gaurav Kanade, Erik Krohn, Imran A. Pirwani, and Kasturi R. Varadarajan.
On metric clustering to minimize the sum of radii. Algorithmica, 57(3):484–498, 2010. doi:
10.1007/S00453-009-9282-7.

12 Michel X. Goemans and David P. Williamson. A general approximation technique for
constrained forest problems. SIAM J. Comput., 24(2):296–317, 1995. doi:10.1137/
S0097539793242618.

13 Sudipto Guha and Samir Khuller. Approximation algorithms for connected dominating sets.
Algorithmica, 20(4):374–387, 1998. doi:10.1007/PL00009201.

14 Anupam Gupta, Jon M. Kleinberg, Amit Kumar, Rajeev Rastogi, and Bülent Yener. Pro-
visioning a virtual private network: a network design problem for multicommodity flow. In
Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd
Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece,
pages 389–398. ACM, 2001. doi:10.1145/380752.380830.

15 Anupam Gupta, Amit Kumar, and Tim Roughgarden. Simpler and better approximation
algorithms for network design. In Lawrence L. Larmore and Michel X. Goemans, editors,
Proceedings of the 35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003,
San Diego, CA, USA, pages 365–372. ACM, 2003. doi:10.1145/780542.780597.

16 Pierre Hansen and Brigitte Jaumard. Cluster analysis and mathematical programming. Math.
Program., 79:191–215, 1997. doi:10.1007/BF02614317.

17 D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-center problem.
Mathematics of Operations Research, 10:180–184, 1985. doi:10.1287/MOOR.10.2.180.

18 Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Comb., 21(1):39–60, 2001. doi:10.1007/S004930170004.

19 Riheng Jia, Jinhao Wu, Jianfeng Lu, Minglu Li, Feilong Lin, and Zhonglong Zheng. Energy
saving in heterogeneous wireless rechargeable sensor networks. In IEEE INFOCOM 2022 -
IEEE Conference on Computer Communications, London, United Kingdom, May 2-5, 2022,
pages 1838–1847. IEEE, 2022. doi:10.1109/INFOCOM48880.2022.9796770.

https://doi.org/10.1007/3-540-44985-X_22
http://dl.acm.org/citation.cfm?id=1347082.1347210
https://doi.org/10.4230/LIPICS.ESA.2022.56
https://doi.org/10.4230/LIPICS.ESA.2022.56
https://doi.org/10.4230/LIPICS.SWAT.2016.1
https://doi.org/10.1007/S00453-009-9282-7
https://doi.org/10.1007/S00453-009-9282-7
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1007/PL00009201
https://doi.org/10.1145/380752.380830
https://doi.org/10.1145/780542.780597
https://doi.org/10.1007/BF02614317
https://doi.org/10.1287/MOOR.10.2.180
https://doi.org/10.1007/S004930170004
https://doi.org/10.1109/INFOCOM48880.2022.9796770

H.-C. An and M.-J. Kao 7:13

20 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

21 Samir Khuller, Manish Purohit, and Kanthi K. Sarpatwar. Analyzing the optimal neighborhood:
Algorithms for budgeted and partial connected dominating set problems. In Chandra Chekuri,
editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1702–1713. SIAM, 2014.
doi:10.1137/1.9781611973402.123.

22 Samir Khuller and Sheng Yang. Revisiting connected dominating sets: An almost op-
timal local information algorithm. Algorithmica, 81(6):2592–2605, 2019. doi:10.1007/
S00453-019-00545-0.

23 Chaitanya Swamy and Amit Kumar. Primal-dual algorithms for connected facility location
problems. Algorithmica, 40(4):245–269, 2004. doi:10.1007/S00453-004-1112-3.

24 Wenzheng Xu, Weifa Liang, Xiaohua Jia, Haibin Kan, Yinlong Xu, and Xinming Zhang.
Minimizing the maximum charging delay of multiple mobile chargers under the multi-node
energy charging scheme. IEEE Trans. Mob. Comput., 20(5):1846–1861, 2021. doi:10.1109/
TMC.2020.2973979.

ISAAC 2024

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/1.9781611973402.123
https://doi.org/10.1007/S00453-019-00545-0
https://doi.org/10.1007/S00453-019-00545-0
https://doi.org/10.1007/S00453-004-1112-3
https://doi.org/10.1109/TMC.2020.2973979
https://doi.org/10.1109/TMC.2020.2973979

Lower Bounds for Adaptive Relaxation-Based
Algorithms for Single-Source Shortest Paths
Sunny Atalig
University of California, Riverside, CA, USA

Alexander Hickerson
University of California, Riverside, CA, USA

Arrdya Srivastav
University of California, Riverside, CA, USA

Tingting Zheng
Guangdong University of Technology, Guangzhou, China

Marek Chrobak
University of California, Riverside, CA, USA

Abstract
We consider the classical single-source shortest path problem in directed weighted graphs. D. Eppstein
proved recently an Ω(n3) lower bound for oblivious algorithms that use relaxation operations to
update the tentative distances from the source vertex. We generalize this result by extending this
Ω(n3) lower bound to adaptive algorithms that, in addition to relaxations, can perform queries
involving some simple types of linear inequalities between edge weights and tentative distances. Our
model captures as a special case the operations on tentative distances used by Dijkstra’s algorithm.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases single-source shortest paths, lower bounds, decision trees

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.8

Funding Research partially supported by National Science Foundation grant CCF-2153723.

1 Introduction

We consider the classical single-source shortest path problem in directed weighted graphs. In
the case when all edge weights are non-negative, Dijkstra’s algorithm [8], if implemented
using Fibonacci heaps, computes the shortest paths in time O(m + n log n), where n is the
number of vertices and m is the number of edges. In the general case, when negative weights
are allowed (but not negative cycles), the Bellman-Ford algorithm [20, 2, 19, 12] solves this
problem in time O(nm).

Both algorithms work by repeatedly executing operations of relaxations. (This type
of algorithms are also sometimes called label-setting algorithms [7].) Let ℓuv denote the
weight of an edge (u, v). For each vertex v, these algorithms maintain a value D[v] (that we
will refer to as the D-value at v) that represents the current upper bound on the distance
from the source vertex s to v. A relaxation operation for an edge (u, v) replaces D[v] by
min {D[v], D[u] + ℓuv}. That is, D[v] is replaced by D[u] + ℓuv if visiting v via u turns out
to give a shorter distance to v, based on the current distance estimates. When the algorithm
completes, each value D[v] is equal to the correct distance from s to v. Dijkstra’s algorithm
executes only one relaxation for each edge, while in the Bellman-Ford algorithm each edge
can be relaxed Θ(n) times.

© Sunny Atalig, Alexander Hickerson, Arrdya Srivastav, Tingting Zheng, and Marek Chrobak;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 8; pp. 8:1–8:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8673-2709
https://doi.org/10.4230/LIPIcs.ISAAC.2024.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Relaxation-Based Algorithms for Single-Source Shortest Paths

We focus on the case of complete directed graphs, in which case m = n(n − 1). For
complete graphs, the number of relaxations in Dijkstra’s algorithm is Θ(n2). In contrast,
the Bellman-Ford algorithm executes Θ(n3) relaxations. This raises the following natural
question: is it possible to solve the shortest-path problem by using asymptotically fewer than
O(n3) relaxations, even if negative weights are allowed?

To make this question meaningful, some restrictions need to be imposed on allowed
algorithms. Otherwise, an algorithm can “cheat”: it can compute the shortest paths without
any explicit use of relaxations, and then execute n − 1 relaxations on the edges in the
shortest-path tree, in order of their hop-distance from s, thus making only n− 1 relaxations.

Eppstein [9] circumvented this issue by assuming a model where the sequence of relax-
ations is independent of the weight assignment. Then the question is whether there is a
short “universal” sequence of relaxations, namely one that works for an arbitrary weight
assignment. The Bellman-Ford algorithm is essentially such a universal sequence of length
O(n3). Eppstein [9] proved that this is asymptotically best possible; that is, each universal
relaxation sequence must have Ω(n3) relaxations. This lower bound applies even in the
randomized case, when the relaxation sequence is generated randomly and the objective is to
minimize the expected number of relaxations.

The question left open in [9] is whether the Ω(n3) lower bound applies to relaxation-based
adaptive algorithms, that generate relaxations based on information collected during the
computation. (This problem is also mentioned by Hu and Kozma [15], who remark that
lower bounds for adaptive algorithms have been “elusive”.) We answer this question in the
affirmative for some natural types of adaptive algorithms.

In our computation model, an algorithm is allowed to perform two types of operations:
(i) queries, which are simple linear inequalities involving edge weights and D-values, and (ii)
relaxation updates, that modify D-values. The action at each step depends on the outcomes
of the earlier executed queries. Such algorithms can be represented as decision trees, with
queries and updates in their nodes, and with each query node having two children, one
corresponding to the “yes” outcome and the other to the “no” outcome.

Specifically, we study query/relaxation-based algorithms that can make queries of three
types:
D-comparison query: “D[u] < D[v]?”, for two vertices u, v,
Weight-comparison query: “ℓuv < ℓxy?”, for two edges (u, v), (x, y),
Edge query: “D[u] + ℓuv < D[v]?”, for an edge (u, v),
and can update D-values as follows:
Relaxation update: “D[v]← min {D[v], D[u] + ℓuv}”, for an edge (u, v).

Throughout the paper, for brevity, we will write “D-query” instead of “D-comparison
query” and “weight query” instead of “weight-comparison query”.

We assume that initially D[s] = 0 and D[v] = ℓsv for all vertices v ≠ s. This initialization
and the form of relaxation updates ensure that at all times each value D[v] represents the
length of some simple path from s to v. Thus D-queries and edge queries amount to comparing
the lengths of two paths from s. Further, the D-values induce a tentative approximation of
the shortest-path tree, where a node u is the parent of a node v if the last decrease of D[v]
resulted from a relaxation of edge (u, v). So the algorithm’s decision at each step depends on
this tentative shortest-path tree.

Our contributions. We start by considering algorithms that use only edge queries. For such
algorithms we prove the following Ω(n3) lower bound:

S. Atalig, A. Hickerson, A. Srivastav, T. Zheng, and M. Chrobak 8:3

▶ Theorem 1. (a) Let A be a deterministic query/relaxation-based algorithm for the single-
source shortest path problem that uses only edge queries. Then the running time of A is
Ω(n3), even if the weights are non-negative and symmetric (that is, the graph is undirected).
(b) If A is a randomized algorithm then the same Ω(n3) lower bound holds for A’s expected
running time.

We first give the proof of Theorem 1(a), the lower bound for deterministic algorithms. In
this proof, (in Section 3), we view the computation of A as a game against an adversary who
gradually constructs a weight assignment, consistent with the queries, on which most of the
edge queries performed by A will have negative outcomes, thus revealing little information
to A about the structure of the shortest-path tree.

Then, in Section 4, we show how to extend this lower bound to all three types of queries
if negative weights are allowed, proving Theorem 2(a) below.

▶ Theorem 2. (a) Let A be a deterministic query/relaxation algorithm for the single-source
shortest path problem that uses the three types of queries: D-queries, weight-queries, and edge
queries, as well as relaxation updates. Then the running time of A is Ω(n3). (b) If A is a
randomized algorithm then the same Ω(n3) lower bound holds for A’s expected running time.

Our query/relaxation model captures as a special case the operations on tentative distances
used by Dijkstra’s algorithm, because D-queries are sufficient to maintain the ordering of
vertices according to their D-values. More broadly, Theorem 2 may be helpful in guiding
future research on speeding up shortest-path algorithms for the general case, when negative
weights are allowed, by showing limitations of naïve approaches based on extending Dijkstra’s
algorithm.

The proof of Theorem 2(a) is essentially via a reduction, showing that the model with all
three types of queries can be reduced to the one with only edge queries, and then applying the
lower bound from Theorem 1(a). This reduction modifies the weight assignment, making it
asymmetric and introducing negative weights. As a side result, we also observe in Theorem 4
that this reduction works even for arbitrary (not necessarily complete) graphs, giving a
lower bound that generalizes the one in [9], as it applies to adaptive algorithms in our
query/relaxation model.

Finally, in Section 5 we extend both lower bounds to randomized algorithms. The
proofs are based on Yao’s principle [22]; that is, we give a probability distribution on weight
assignments on which any deterministic algorithm performs poorly.

Our lower bound results are valid even if all weights are integers of polynomial size. In the
proof of Theorem 1 all weights are non-negative integers with maximum value ℓmax = O(n).
The proof of Theorem 2 uses Golomb rulers [21, 10, 4] (also known as Sidon sets) to construct
weight assignments with maximum value ℓmax = O(n4). In the randomized case, these
bounds increase by a factor of O(n).

As explained near the end of Section 5, the lower bounds for expectation in Theorems 1(b)
and 2(b) can be quite easily extended to high-probability bounds.

Related work. As earlier mentioned, the Bellman-Ford algorithm can be thought of as a
universal relaxation sequence. It consists of n− 1 iterations with each iteration relaxing all
edges in some pre-determined order, so the length of this sequence is (1+o(1))n3. The leading
constant 1 in this bound was reduced to 1

2 by Yen [23], who designed a universal sequence
with (1

2 + o(1))n3 relaxations. Eppstein’s lower bound in [9] shows in fact a lower bound of
1
6 on the leading constant, and just recently Hu and Kozma [15] proved that constant 1

2 is in
fact optimal.

ISAAC 2024

8:4 Relaxation-Based Algorithms for Single-Source Shortest Paths

Bannister and Eppstein [1] showed that the leading constant can be reduced to 1
3 with

randomization, namely that there is a probability distribution on relaxation sequences for
which a sequence, drawn from this distribution, will compute correct distances in expected
time (1

3 + o(1))n3 (or even with high probability). Eppstein’s lower bound proof [9] for
randomized sequences shows that this constant is at least 1

12 .
Some of the above-mentioned papers extend the results to graphs that are not neces-

sarily complete. In particular, Eppstein [9] proved that for n-vertex graphs with m edges,
Ω(mn/ log n) relaxations are necessary.

The average-case complexity of the Bellman-Ford and Dijkstra’s algorithms has also been
studied. For example, Meyer et al. [18] show that the Bellman-Ford algorithm requires Ω(n2)
steps on average, if the weights are uniformly distributed random numbers from interval [0, 1].

Some work has been done on improving lower and upper bounds in models beyond
our query/relaxation setting. Of those, the recent breakthrough paper by Fineman [11] is
particularly relevant. It gives a randomized Õ(mn8/9)-expected-time algorithm for computing
single-source shortest paths with arbitrary weights. Fineman’s computation model is not far
from ours in the sense that the weights are arbitrary real numbers and the only arithmetic
operations on weights are additions and subtractions, but it also needs branch instructions
that cannot be expressed using our queries.

The special case when weights are integers is natural and has been extensively investigated
(see [6, 13, 3], for example). In the integer domain one can extract information about the
weight distribution, and thus about the structure of the shortest-path tree, using operations
other than linear inequalities involving weights. The state-of-the-art in this model is the
(randomized) algorithm by Bernstein et al. [3] that achieves running time O(m log8 n log W)
with high probability for weight assignments where the smallest weight is at least −W

(and W ≥ 2).
Some lower bounds have also been reported for related problems, for example for shortest

paths with restrictions on the number of hops [5, 14, 17] or k-walks [16].

2 Preliminaries

The input is a weighted complete directed graph G. The set of all vertices of G is denoted
by V , and s ∈ V is designated as the start vertex. The set of all edges of G is denoted by E

and a weight assignment is a function ℓ : E → Z. (While real-valued weights are common in
the literature, in our constructions we only need integers.) We will use notations ℓ(u, v) and
ℓuv for the weight of an edge (u, v). By ℓmax we denote the maximum absolute value of an
edge weight, that is ℓmax = max(u,v)∈E |ℓuv|.

Whenever we write “path” we mean a ”simple path”, that is a path where each vertex is
visited at most once. The distance from x to y is defined as the length of the shortest path
from x to y. We will assume that the input graph does not have negative cycles. Note that
this assumption gives an algorithm additional information that can potentially be used to
reduce the running time.

The edges in the shortest paths from s to all other vertices form a tree that is called the
shortest-path tree. The root of this tree is s. (There is a minor subtlety here related to ties.
A more precise statement is that there is a way to break ties, so that the shortest paths form
a tree.)

Formalizing query/relaxation models. We now formally define our computation model.
We assume that each vertex v has an associated value D[v], called the D-value at v. Initially
D[s] = 0 and D[v] = ℓsv for v ̸= s. A query is a boolean function whose arguments are edge

S. Atalig, A. Hickerson, A. Srivastav, T. Zheng, and M. Chrobak 8:5

weights and D-values. A query model Q is simply a set of allowed queries. For example,
the model that has only edge queries is Q =

{
1D[v]<D[u]+ℓuv

| (u, v) ∈ E
}

, where 1ξ is the
indicator function for a predicate ξ. The query/relaxation model in Theorem 1 has query
model Q consisting of all D-queries, weight-queries, and edge queries. (The reduction in
Section 4 is actually for an even more general query model.)

An algorithm A using a query/relaxation model Q is then a decision tree, where each
internal node corresponds to either a query from Q (with one “yes” and one “no” branch)
or a relaxation operation (which has one branch), and each leaf is a relaxation operation.
(These leaves have no special meaning.) With this definition, at any step of the computation,
D[v] represents the length of a path from s to v. This decision tree must correctly compute
all distances from s; that is, for each weight assignment ℓ, when the computation of A reaches
a leaf then for each vertex v the value of D[v] must be equal to the distance from s to v.

The running time of A for a weight assignment ℓ is defined as the number of steps
performed by A until each value D[v] is equal to the correct distance from s to v. Notice
that this is not the same as the depth of the decision tree, which could be greater. (This
definition matches the concept of “reduced cost” used in [9] for non-adaptive algorithms.
For deterministic algorithms we could as well define the running time as the maximum tree
depth, but this definition wouldn’t work in the randomized case.)

Edge weights using potential functions. We define a potential function as a function
ϕ : V → Z with ϕ(s) = 0. (These functions are also sometimes called price functions in the
literature.) To reduce clutter, we will sometimes write the potential value on v as ϕv instead
of ϕ(v).

A potential function induces a weight assignment ∆ϕ defined by ∆ϕ(u, v) = ϕv − ϕu,
for each (u, v) ∈ E. Such potential-induced weights satisfy the following path independence
property: For any two vertices u, v, all paths from u to v have the same length, namely
∆ϕ(u, v). Note that ∆ϕ will have some negative weights, unless ϕ is identically 0, but it does
not form negative cycles. Also, every spanning tree rooted at s is a shortest-path tree for ∆ϕ.

Any weight assignment ℓ can be combined with a potential function ϕ to obtain a new
weight assignment ℓ′ = ℓ + ∆ϕ. Such ℓ′ satisfies the following distance preservation property:
For any two vertices u, v and any path P from u to v, we have ℓ′(P) = ℓ(P) + ϕv − ϕu.

Due to the above properties, potential functions have played a key role in the most
recent single-source shortest path algorithms [3, 11], in particular being used to transform
a negative weight assignment into a non-negative one so that Dijkstra’s algorithm can be
applied. However, in this paper we will use them for an entirely different purpose, which is to
construct difficult weight assignments in Section 4. Roughly, a potential-induced assignment
∆ϕ can act as a “mask” on top of existing weights that renders D-queries and weight queries
useless.

3 Lower Bound for Deterministic Algorithms with Edge Queries

This section gives the proof of Theorem 1(a). That is, we prove that every deterministic
algorithm that uses relaxations and edge queries needs to make Ω(n3) operations to compute
correct distances. This lower bound applies even if all weights are non-negative and the
weight assignment is symmetric. (One can think of it as an undirected graph, although we
emphasize that in the proof below we use directed edges.)

For the proof, fix an algorithm A. We will show how to construct a weight assignment
such that only after Ω(n3) operations the D-values computed by A represent the correct
distances from the source vertex.

ISAAC 2024

8:6 Relaxation-Based Algorithms for Single-Source Shortest Paths

Each weight assignment considered in our construction is symmetric and is uniquely
specified by a permutation of the vertices. The weight assignment corresponding to a
permutation π = x0, x1, ..., xn−1, where x0 = s, is defined as follows: for any 0 ≤ i < j < n,

ℓπ(xi, xj) =

2 if j = i + 1
L− 5i/2 if j ≥ i + 2 and i is even
L if j ≥ i + 2 and i is odd

where L is some sufficiently large integer, say L = 5n. Then the shortest path tree is just a
Hamiltonian path x0, x1, ..., xn−1. Note that the distance between any two vertices is less
than 2n, while each edge not on this path has length larger than 2n.

The proof is by showing an adversary strategy that gradually constructs a permutation
of the vertices in response to A’s operations. The strategy consists of (n − 1)/2 phases.
(For simplicity, assume that n is odd.) When a phase k starts, for k = 1, ..., (n− 1)/2, the
adversary will have already revealed a prefix Xk−1 = x0, x1, ..., x2k−2 of the final permutation.
The goal of this phase is to extend Xk−1 by two more vertices, responding to A’s queries and
updates so as to force A to make as many operations as possible within the phase, without
revealing anything about the rest of the permutation.

To streamline the proof, we think about the initial state as following the non-existent
0′th phase, and we assume that the D-values for all vertices other than s are initialized to
L + 1, instead of L.

We now describe the adversary strategy in phase k, by specifying how the adversary
responds to each operation of A executed in this phase. Let Yk−1 = V \Xk−1, let A be set
of the edges from x2k−2 to Yk−1 and B be the set of edges inside Yk−1. The adversary will
maintain marks on the edges in A ∪B, starting with all edges unmarked. We will say that
A accesses an edge (u, v) if it executes either an edge query or a relaxation for (u, v).

The idea is this: because of the choice of edge weights and the invariants on the D-values
(to be presented soon), each edge query for an edge (x2k−2, y) ∈ A not yet relaxed in this
phase will have a positive outcome. This way, these responses will not reveal what the
next vertex x2k−1 on the path is. The adversary waits until A relaxes all these edges, and
keeps track of these relaxations by marking the relaxed edges. At the same time, A may be
accessing edges in B. The adversary waits until the last access of A to an edge (u, v) ∈ B

for which edge (x2k−2, u) is already marked. Until this point, all queries to edges in B have
negative outcomes. Only this last edge will have a positive outcome to an edge query, if
it’s made by A, and the adversary will further make sure that this edge gets relaxed, before
ending the phase.

To formalize this, let (u, v) be the edge accessed by A in the current operation. We
describe the adversary’s response by distinguishing several cases:
(s1) (u, v) = (x2k−2, v) ∈ A. If this is a relaxation, mark (u, v). If this is an edge query do

this: if (u, v) is unmarked, respond “yes”, else respond “no”.
(s2) (u, v) ∈ B. We have two sub-cases depending on the type of access.

Relaxation: If (x2k−2, u) is marked, mark (u, v). If all edges in A ∪B are marked, end
phase k.

Edge query: If (x2k−2, u) is not marked, respond “no”. So suppose that (x2k−2, u) is
marked. In that case, if (u, v) is not the last unmarked edge in A ∪ B, mark it and
respond “no”. If (u, v) is the last unmarked edge, respond “yes” (without marking).

(s3) (u, v) /∈ A ∪B. If this is an edge query, respond “no”. If this is a relaxation for (u, v),
do nothing.

S. Atalig, A. Hickerson, A. Srivastav, T. Zheng, and M. Chrobak 8:7

<latexit sha1_base64="YeQtqknljTTdAxrXscbF67q4c7Y=">AAAB8HicbZC7SgNBFIbPxluMt0RLm8EgWIXdgNFGCNhYRjAXSUKYncwmQ2Zml5lZMSx5BCsbC0XETnwUKztbn8TJpdDEHwY+/v8c5pzjR5xp47pfTmppeWV1Lb2e2djc2t7J5nZrOowVoVUS8lA1fKwpZ5JWDTOcNiJFsfA5rfuD83Fev6FKs1BemWFE2wL3JAsYwcZa1xqdodtO4o462bxbcCdCi+DNIF/OvX7cfb8XK53sZ6sbklhQaQjHWjc9NzLtBCvDCKejTCvWNMJkgHu0aVFiQXU7mQw8QofW6aIgVPZJgybu744EC62HwreVApu+ns/G5n9ZMzbBaTthMooNlWT6URBzZEI03h51maLE8KEFTBSzsyLSxwoTY2+UsUfw5ldehFqx4JUKx5devlyCqdKwDwdwBB6cQBkuoAJVICDgHh7hyVHOg/PsvExLU86sZw/+yHn7AUXck8s=</latexit>s = x0
<latexit sha1_base64="odB5olW20Dwhv8bpB2WKXbjs+nI=">AAAB6nicbZC7SgNBFIbPeo3xlmhpMxgEq7ATMFoGbCwjmgskS5idzCZDZmeXmVkxLHmENBaKWGrpo1jZ2fokTi6FJv4w8PH/5zDnHD8WXBvX/XJWVtfWNzYzW9ntnd29/Vz+oK6jRFFWo5GIVNMnmgkuWc1wI1gzVoyEvmANf3A5yRt3TGkeyVszjJkXkp7kAafEWOvmvoM7uYJbdKdCy4DnUKjkXz/G3++laif32e5GNAmZNFQQrVvYjY2XEmU4FWyUbSeaxYQOSI+1LEoSMu2l01FH6MQ6XRREyj5p0NT93ZGSUOth6NvKkJi+Xswm5n9ZKzHBhZdyGSeGSTr7KEgEMhGa7I26XDFqxNACoYrbWRHtE0WosdfJ2iPgxZWXoV4q4nLx7BoXKmWYKQNHcAyngOEcKnAFVagBhR6M4RGeHOE8OM/Oy6x0xZn3HMIfOW8/fJyRqA==</latexit>x1

<latexit sha1_base64="I0w2JDb35DS2GrJrDK9DL9vnNVE=">AAAB6HicbZDLSsNAFIZPvNZ6q7p0EyyCq5IUbzsLbly2YC/QhjKZnrRjJ5MwMxFK6BO4caFIXfpI7nwM38BJ24W2/jDw8f/nMOccP+ZMacf5slZW19Y3NnNb+e2d3b39wsFhQ0WJpFinEY9kyycKORNY10xzbMUSSehzbPrD2yxvPqJULBL3ehSjF5K+YAGjRBurVu4Wik7JmcpeBncOxZvvSab3arfw2elFNAlRaMqJUm3XibWXEqkZ5TjOdxKFMaFD0se2QUFCVF46HXRsnxqnZweRNE9oe+r+7khJqNQo9E1lSPRALWaZ+V/WTnRw7aVMxIlGQWcfBQm3dWRnW9s9JpFqPjJAqGRmVpsOiCRUm9vkzRHcxZWXoVEuuZeli5pbrJzDTDk4hhM4AxeuoAJ3UIU6UEB4ghd4tR6sZ+vNmsxKV6x5zxH8kfXxA+f+kXY=</latexit>

2
<latexit sha1_base64="I0w2JDb35DS2GrJrDK9DL9vnNVE=">AAAB6HicbZDLSsNAFIZPvNZ6q7p0EyyCq5IUbzsLbly2YC/QhjKZnrRjJ5MwMxFK6BO4caFIXfpI7nwM38BJ24W2/jDw8f/nMOccP+ZMacf5slZW19Y3NnNb+e2d3b39wsFhQ0WJpFinEY9kyycKORNY10xzbMUSSehzbPrD2yxvPqJULBL3ehSjF5K+YAGjRBurVu4Wik7JmcpeBncOxZvvSab3arfw2elFNAlRaMqJUm3XibWXEqkZ5TjOdxKFMaFD0se2QUFCVF46HXRsnxqnZweRNE9oe+r+7khJqNQo9E1lSPRALWaZ+V/WTnRw7aVMxIlGQWcfBQm3dWRnW9s9JpFqPjJAqGRmVpsOiCRUm9vkzRHcxZWXoVEuuZeli5pbrJzDTDk4hhM4AxeuoAJ3UIU6UEB4ghd4tR6sZ+vNmsxKV6x5zxH8kfXxA+f+kXY=</latexit>

2

<latexit sha1_base64="6cFxsk9744m6zi34EK6jV63SEHY=">AAAB6HicdVDLSsNAFJ3UV62v+ti5GSyCqzBJim13BTcuW7APaEOZTCft2MkkzEyEEvoFblwo4tZPcuffOE0VVPTAhcM593LPvUHCmdIIvVuFtfWNza3idmlnd2//oHx41FVxKgntkJjHsh9gRTkTtKOZ5rSfSIqjgNNeMLta+r07KhWLxY2eJ9SP8ESwkBGsjdR2R+UKspFbdRseRLbj1b1a1RC3jmpeAzo2ylFpnoQ5WqPy23AckzSiQhOOlRo4KNF+hqVmhNNFaZgqmmAywxM6MFTgiCo/y4Mu4LlRxjCMpSmhYa5+n8hwpNQ8CkxnhPVU/faW4l/eINVh3c+YSFJNBVktClMOdQyXV8Mxk5RoPjcEE8lMVkimWGKizW9K5glfl8L/Sde1nUvbaTuVZhWsUASn4AxcAAfUQBNcgxboAAIouAeP4Mm6tR6sZ+tl1VqwPmeOwQ9Yrx+Mio+u</latexit>

2

<latexit sha1_base64="oSKKU229HLCcO8AoPyM70Gm8n7A=">AAAB6HicdVDLSsNAFJ3UV62v+ti5GSyCqzBJim13BTcuW7APaEOZTCft2MkkzEyEEvoFblwo4tZPcuffOE0VVPTAhcM593LPvUHCmdIIvVuFtfWNza3idmlnd2//oHx41FVxKgntkJjHsh9gRTkTtKOZ5rSfSIqjgNNeMLta+r07KhWLxY2eJ9SP8ESwkBGsjdRGo3IF2citug0PItvx6l6taohbRzWvAR0b5ag0T8IcrVH5bTiOSRpRoQnHSg0clGg/w1IzwumiNEwVTTCZ4QkdGCpwRJWf5UEX8NwoYxjG0pTQMFe/T2Q4UmoeBaYzwnqqfntL8S9vkOqw7mdMJKmmgqwWhSmHOobLq+GYSUo0nxuCiWQmKyRTLDHR5jcl84SvS+H/pOvazqXttJ1KswpWKIJTcAYugANqoAmuQQt0AAEU3INH8GTdWg/Ws/Wyai1YnzPH4Aes1w+Jgo+s</latexit>

0

<latexit sha1_base64="YqStyoaurAx96QowCO7LZ7Ba2ds=">AAAB7HicdVDLSgMxFM3UV62vqks3wSII4pCZqbZdiAVFXLioYB/QlpJJ0zY0kxmSjFBKv8GNC0Xc+gF+ijv/xIUL01ZBRQ9cOJxzL/fc60ecKY3Qq5WYmZ2bX0guppaWV1bX0usbFRXGktAyCXkoaz5WlDNBy5ppTmuRpDjwOa36/ZOxX72mUrFQXOlBRJsB7grWYQRrI5Uv9vt7TiudQTZys27Bg8h2vLyXyxri5lHOK0DHRhNkjt9Pj86e+2+lVvql0Q5JHFChCcdK1R0U6eYQS80Ip6NUI1Y0wqSPu7RuqMABVc3hJOwI7hilDTuhNCU0nKjfJ4Y4UGoQ+KYzwLqnfntj8S+vHutOvjlkIoo1FWS6qBNzqEM4vhy2maRE84EhmEhmskLSwxITbf6TMk/4uhT+Tyqu7RzaB5dOppgFUyTBFtgGu8ABOVAE56AEyoAABm7AHbi3hHVrPViP09aE9TmzCX7AevoAlX2SRw==</latexit>

L� k + 1

<latexit sha1_base64="YqStyoaurAx96QowCO7LZ7Ba2ds=">AAAB7HicdVDLSgMxFM3UV62vqks3wSII4pCZqbZdiAVFXLioYB/QlpJJ0zY0kxmSjFBKv8GNC0Xc+gF+ijv/xIUL01ZBRQ9cOJxzL/fc60ecKY3Qq5WYmZ2bX0guppaWV1bX0usbFRXGktAyCXkoaz5WlDNBy5ppTmuRpDjwOa36/ZOxX72mUrFQXOlBRJsB7grWYQRrI5Uv9vt7TiudQTZys27Bg8h2vLyXyxri5lHOK0DHRhNkjt9Pj86e+2+lVvql0Q5JHFChCcdK1R0U6eYQS80Ip6NUI1Y0wqSPu7RuqMABVc3hJOwI7hilDTuhNCU0nKjfJ4Y4UGoQ+KYzwLqnfntj8S+vHutOvjlkIoo1FWS6qBNzqEM4vhy2maRE84EhmEhmskLSwxITbf6TMk/4uhT+Tyqu7RzaB5dOppgFUyTBFtgGu8ABOVAE56AEyoAABm7AHbi3hHVrPViP09aE9TmzCX7AevoAlX2SRw==</latexit>

L� k + 1

<latexit sha1_base64="YqStyoaurAx96QowCO7LZ7Ba2ds=">AAAB7HicdVDLSgMxFM3UV62vqks3wSII4pCZqbZdiAVFXLioYB/QlpJJ0zY0kxmSjFBKv8GNC0Xc+gF+ijv/xIUL01ZBRQ9cOJxzL/fc60ecKY3Qq5WYmZ2bX0guppaWV1bX0usbFRXGktAyCXkoaz5WlDNBy5ppTmuRpDjwOa36/ZOxX72mUrFQXOlBRJsB7grWYQRrI5Uv9vt7TiudQTZys27Bg8h2vLyXyxri5lHOK0DHRhNkjt9Pj86e+2+lVvql0Q5JHFChCcdK1R0U6eYQS80Ip6NUI1Y0wqSPu7RuqMABVc3hJOwI7hilDTuhNCU0nKjfJ4Y4UGoQ+KYzwLqnfntj8S+vHutOvjlkIoo1FWS6qBNzqEM4vhy2maRE84EhmEhmskLSwxITbf6TMk/4uhT+Tyqu7RzaB5dOppgFUyTBFtgGu8ABOVAE56AEyoAABm7AHbi3hHVrPViP09aE9TmzCX7AevoAlX2SRw==</latexit>

L� k + 1
<latexit sha1_base64="GqOgBwx5UvlLADz/Majd3geOztw=">AAAB73icbZDLSgMxFIbP1Futt3rZuQkOghvLTMHqsuDGZQV7gXYomTTThmYyY5JRy9CXcCNoEXHn67jzUdyZXhba+kPg4//PIeccP+ZMacf5sjJLyyura9n13Mbm1vZOfnevpqJEElolEY9kw8eKciZoVTPNaSOWFIc+p3W/fznO63dUKhaJGz2IqRfirmABI1gbq/HQTov9U3fYzttOwZkILYI7A7t88G2/j+6fK+38Z6sTkSSkQhOOlWq6Tqy9FEvNCKfDXCtRNMakj7u0aVDgkCovncw7RMfG6aAgkuYJjSbu744Uh0oNQt9Uhlj31Hw2Nv/LmokOLryUiTjRVJDpR0HCkY7QeHnUYZISzQcGMJHMzIpID0tMtDlRzhzBnV95EWrFglsqnF27drkEU2XhEI7gBFw4hzJcQQWqQIDDI7zAyLq1nqxX621amrFmPfvwR9bHD39Pk04=</latexit>x2k�1

<latexit sha1_base64="BD/QwiBXu+lTlxjbWN21EeStPwc=">AAAB7XicbZDLSgMxFIbP1FttvVRddhMsgqsyU7C6LLjQZQV7gXYomUzaxmaSIcmIZeg7uHFREbc+iS/gzrcxvSy09YfAx/+fQ845QcyZNq777WQ2Nre2d7K7ufze/sFh4ei4qWWiCG0QyaVqB1hTzgRtGGY4bceK4ijgtBWMrmd565EqzaS4N+OY+hEeCNZnBBtrNZ96aWU06RVKbtmdC62Dt4RSLX8zLX62w3qv8NUNJUkiKgzhWOuO58bGT7EyjHA6yXUTTWNMRnhAOxYFjqj20/m0E3RmnRD1pbJPGDR3f3ekONJ6HAW2MsJmqFezmflf1klM/8pPmYgTQwVZfNRPODISzVZHIVOUGD62gIlidlZEhlhhYuyBcvYI3urK69CslL1q+eLOK9WqsFAWinAK5+DBJdTgFurQAAIP8AxTeHWk8+K8Oe+L0oyz7DmBP3I+fgBU4JHk</latexit>x2k

<latexit sha1_base64="L9GrjMNXJ6pGSO0t1DSTiyIQFU4=">AAAB63icbZDLSgMxFIbP1Futt6pLN8EiuLHMlHrZiAVFXFawF2iHkkkzbZhMZkgyQil9BTcuFHHrC/go7nwTFy7MtF1o6w+Bj/8/h5xzvJgzpW3708osLC4tr2RXc2vrG5tb+e2duooSSWiNRDySTQ8rypmgNc00p81YUhx6nDa84DLNG/dUKhaJOz2IqRvinmA+I1inVjk4KnXyBbtoj4XmwZlC4eL76vz6PfiqdvIf7W5EkpAKTThWquXYsXaHWGpGOB3l2omiMSYB7tGWQYFDqtzheNYROjBOF/mRNE9oNHZ/dwxxqNQg9ExliHVfzWap+V/WSrR/5g6ZiBNNBZl85Ccc6Qili6Muk5RoPjCAiWRmVkT6WGKizXly5gjO7MrzUC8VnZPi8a1TqJRhoizswT4cggOnUIEbqEINCPThAZ7g2QqtR+vFep2UZqxpzy78kfX2A59SkbA=</latexit>

4k � 2
<latexit sha1_base64="4+47qwHXBIHSwHlqSQVuKz7BjSA=">AAAB6XicbZDLSsNAFIZP6q3WW9Wlm8EiuCqJ1MvOghuXVewF2lAm00k7ZDIJMxOhhL6BGxeKdutT+BrufBsnaRfa+sPAx/+fw5xzvJgzpW372yqsrK6tbxQ3S1vbO7t75f2DlooSSWiTRDySHQ8rypmgTc00p51YUhx6nLa94CbL249UKhaJBz2OqRvioWA+I1gb674W9MsVu2rnQsvgzKFy/fmeadrol796g4gkIRWacKxU17Fj7aZYakY4nZR6iaIxJgEe0q5BgUOq3DSfdIJOjDNAfiTNExrl7u+OFIdKjUPPVIZYj9Rilpn/Zd1E+1duykScaCrI7CM/4UhHKFsbDZikRPOxAUwkM7MiMsISE22OUzJHcBZXXobWWdW5qJ7fOZV6DWYqwhEcwyk4cAl1uIUGNIGAD0/wAq9WYD1bb9Z0Vlqw5j2H8EfWxw9mcZG1</latexit>

4k

<latexit sha1_base64="JWMo258ZgE3Dq8sSygzuXK8FpYg=">AAACAXicbVC7SgNBFJ31GeMraiPYDAbBxrAbjApBDChiYRHBPCAbwuxkkgw7+2DmrhiW2PgrNhaKpPUv7PwTCwsnj0ITD1w4nHMv997jhIIrMM1PY2Z2bn5hMbGUXF5ZXVtPbWyWVRBJyko0EIGsOkQxwX1WAg6CVUPJiOcIVnHc84FfuWNS8cC/hW7I6h5p+7zFKQEtNVLb1/gA51xs521g9yC9OJA9O4+zjVTazJhD4GlijUn67Pvi9LLvfhUbqQ+7GdDIYz5QQZSqWWYI9ZhI4FSwXtKOFAsJdUmb1TT1icdUPR5+0MN7WmniViB1+YCH6u+JmHhKdT1Hd3oEOmrSG4j/ebUIWif1mPthBMyno0WtSGAI8CAO3OSSURBdTQiVXN+KaYdIQkGHltQhWJMvT5NyNmMdZXI3VrpwiEZIoB20i/aRhY5RAV2hIiohih7QE3pBr8aj8Wy8Gf1R64wxntlCf2C8/wCnhZl9</latexit>

L� 5k or 2

<latexit sha1_base64="JWMo258ZgE3Dq8sSygzuXK8FpYg=">AAACAXicbVC7SgNBFJ31GeMraiPYDAbBxrAbjApBDChiYRHBPCAbwuxkkgw7+2DmrhiW2PgrNhaKpPUv7PwTCwsnj0ITD1w4nHMv997jhIIrMM1PY2Z2bn5hMbGUXF5ZXVtPbWyWVRBJyko0EIGsOkQxwX1WAg6CVUPJiOcIVnHc84FfuWNS8cC/hW7I6h5p+7zFKQEtNVLb1/gA51xs521g9yC9OJA9O4+zjVTazJhD4GlijUn67Pvi9LLvfhUbqQ+7GdDIYz5QQZSqWWYI9ZhI4FSwXtKOFAsJdUmb1TT1icdUPR5+0MN7WmniViB1+YCH6u+JmHhKdT1Hd3oEOmrSG4j/ebUIWif1mPthBMyno0WtSGAI8CAO3OSSURBdTQiVXN+KaYdIQkGHltQhWJMvT5NyNmMdZXI3VrpwiEZIoB20i/aRhY5RAV2hIiohih7QE3pBr8aj8Wy8Gf1R64wxntlCf2C8/wCnhZl9</latexit>

L� 5k or 2

<latexit sha1_base64="JWMo258ZgE3Dq8sSygzuXK8FpYg=">AAACAXicbVC7SgNBFJ31GeMraiPYDAbBxrAbjApBDChiYRHBPCAbwuxkkgw7+2DmrhiW2PgrNhaKpPUv7PwTCwsnj0ITD1w4nHMv997jhIIrMM1PY2Z2bn5hMbGUXF5ZXVtPbWyWVRBJyko0EIGsOkQxwX1WAg6CVUPJiOcIVnHc84FfuWNS8cC/hW7I6h5p+7zFKQEtNVLb1/gA51xs521g9yC9OJA9O4+zjVTazJhD4GlijUn67Pvi9LLvfhUbqQ+7GdDIYz5QQZSqWWYI9ZhI4FSwXtKOFAsJdUmb1TT1icdUPR5+0MN7WmniViB1+YCH6u+JmHhKdT1Hd3oEOmrSG4j/ebUIWif1mPthBMyno0WtSGAI8CAO3OSSURBdTQiVXN+KaYdIQkGHltQhWJMvT5NyNmMdZXI3VrpwiEZIoB20i/aRhY5RAV2hIiohih7QE3pBr8aj8Wy8Gf1R64wxntlCf2C8/wCnhZl9</latexit> L
�
5k

or
2

Figure 1 The state of the game right after phase k ends. Framed numbers next to vertices
represent their D-values.

Let (u∗, v∗) be the edge marked last in this phase. This is the edge (u, v) ∈ B from rule (s2)
that becomes marked when it gets relaxed with all other edges in B already marked, ending
the phase. At this point the adversary lets x2k−1 = u∗ and x2k = v∗, and (if k < (n− 1)/2)
starts phase k + 1.

For any permutation π of V starting with s, through the rest of the proof we denote
by Dπ the variable D-values produced by A when processing weight assignment ℓπ. For
each k = 0, 1, ..., (n− 1)/2, the (2k + 1)-permutation x0, x1, ..., x2k chosen by the adversary
following the strategy above will be called the kth cruel prefix.

Invariant (I). We claim that the following invariant holds for each k = 0, 1, ..., (n− 1)/2.
Let x0, x1, ..., x2k be the adversary’s kth cruel prefix. Then for each permutation π starting
with x0, x1, ..., x2k, the following properties hold when phase k of the adversary strategy ends
(see Figure 1 for illustration):
(I0) All adversary’s answers to A’s queries in phases 1, 2, ..., k are correct for weight assign-

ment ℓπ.
(I1) Dπ[xj] = 2j for j = 0, 1,, 2k.
(I2) If w ∈ V \ {x0, x1, ..., x2k} then Dπ[w] = L− k + 1.

We postpone the proof of this invariant, and show first that it implies the Ω(n3) lower
bound. Indeed, from Invariant (I2) we conclude that the D-values will not represent the
correct distances until after the last step of phase (n− 1)/2. Since in each phase k all edges
in the set A∪B for phase k will end up marked, the number of edge accesses in this phase is
at least |A ∪B| = |A|+ |A|(|A| − 1) = |A|2 = (n− 2k + 1)2. Thus, adding up the numbers
of edge accesses in all phases k = 1, 2, ..., (n− 1)/2, we obtain that the total number of steps
in algorithm A is at least (n− 1)2 + (n− 3)2 + ... + 22 = 1

6 n(n2 − 1) = Ω(n3), giving us the
desired lower bound.

It remains to prove Invariant (I). The invariant is true for k = 0, by the way the D-values
are initialized. To argue that the invariant is preserved after each phase k ≥ 1, we show that
within this phase a more general invariant (J) holds, below.

Invariant (J). Let π be a permutation with prefix x0, x1, ..., x2k, let Xk−1 = x0, x1, ..., x2k−2,
and Yk−1 = V \Xk−1. We claim that the following properties are satisfied during the phase,
including right before and right after the phase.
(J0) All adversary’s answers to A’s queries up to the current step are correct for ℓπ.
(J1) Dπ[xj] = 2j for j = 0, 1, ..., 2k − 2.

(J2.1) If w ∈ Yk−1 \ {u∗, v∗} then Dπ[w] =
{

L− k + 2 if (x2k−2, w) unmarked
L− k + 1 if (x2k−2, w) marked

ISAAC 2024

8:8 Relaxation-Based Algorithms for Single-Source Shortest Paths

(J2.2) If w = u∗ then Dπ[u∗]=
{

L− k + 2 if (x2k−2, u∗) unmarked
4k − 2 if (x2k−2, u∗) marked

(J2.3) If w = v∗ then Dπ[v∗]=

L− k + 2 if (x2k−2, v∗) unmarked
L− k + 1 if (x2k−2, v∗) marked and (u∗, v∗) unmarked
4k if (u∗, v∗) marked

When phase k starts, these properties are identical to Invariant (I) applied to the ending of
phase k− 1. We now show that these invariants are preserved within a phase k. Assume that
the invariants hold up to some step, and consider the next operation when A accesses an
edge (u, v). If w ̸= v then Dπ[w] is not affected, so assume that w = v. In the case analysis
below, if the current step is a relaxation, we will use notation Dπ[v] for the D-value at v

before this step and D′
π[v] for the D-value at v after the step.

Case (s1). (u, v) = (x2k−2, v) ∈ A. We consider separately the cases when this step is a
relaxation or an edge query.
Relaxation: Suppose first that v ̸= u∗. Then we have Dπ[x2k−2] + ℓ(x2k−2, v) = (4k −

4) + (L− 5k + 5) = L− k + 1. Thus, using (J2.1) and (J2.3), if (x2k−2, v) was already
marked then nothing changes, and if (x2k−2, v) wasn’t marked then D′

π[v] = L− k + 1,
preserving (J2) because (x2k−2, v) gets marked. (Note that in the special case v = v∗,
edge (u∗, v∗) is not marked yet.)
For v = u∗ the argument is similar, except that now we use (J2.2): We have Dπ[x2k−2] +
ℓ(x2k−2, u∗) = (4k − 4) + 2 = 4k − 2, so either (x2k−2, u∗) is already marked and nothing
changes, or D′

π[u∗] = 4k − 2 and (x2k−2, u∗) gets marked.
Edge query: The reasoning here is analogous to the case of relaxation above. If v ̸= u∗, then

Dπ[x2k−2] + ℓ(x2k−2, v) = L−k + 1 and the correctness of the adversary’s answers follows
from (J2.1) and (J2.3), If v = u∗, then Dπ[x2k−2] + ℓ(x2k−2, u∗) = (4k − 4) + 2 = 4k − 2,
and the correctness of the adversary’s answers follows from (J2.2).

Case (s2). (u, v) ∈ B. We consider separately the cases when this step is a relaxation or
an edge query.
Relaxation: Suppose first that u ̸= u∗. Then Dπ[u] ≥ L − k + 1, by (J2.1) and (J2.3).

(This is true for the special case u = v∗, because (u∗, v∗) is not yet marked.) Since also
ℓ(u, v) ≥ 2, this relaxation will not change the value of Dπ[v].
Next, consider the case u = u∗. If (x2k−2, u∗) is unmarked then (J2.2) also implies (as
in the previous sub-case) that the value of Dπ[v] will not change. So assume now that
(x2k−2, u∗) is marked, in which case Dπ[u∗] = 4k − 2. If v ̸= v∗ then the relaxation
will not change the value of Dπ[v] because ℓ(u∗, v) = L. For v = v∗, we have D′

π[v∗] =
Dπ[u∗] + ℓ(u∗, v∗) = (4k − 2) + 2 = 4k, preserving (J2.3), because this relaxation will
mark (u∗, v∗).

Edge query: If (x2k−2, u) is not marked then, by (J2.1)-(J2.3) we have Dπ[u] = L− k + 2,
and ℓ(u, v) ≥ 2, so the “no” answer by the adversary is correct.
Next, assume that (x2k−2, u) is marked and u ≠ u∗. Then Dπ[u] = L − k + 1, by
conditions (J2.1) and (J2.3) (since (u∗, v∗) is still not marked). So in this case the answer
“no” is also correct.
The final case is when u = u∗ and (x2k−2, u∗) is marked, so Dπ[u∗] = 4k − 2. Now, if
v ̸= v∗ then the adversary responds “no”, and since ℓ(u∗, v) = L, this is correct. For
v = v∗ we have Dπ[u∗] + ℓ(u∗, v∗) = (4k− 2) + 2 = 4k < Dπ[v∗], where the last inequality
is true because (u∗, v∗) is not marked. So the “yes” answer is also correct.

S. Atalig, A. Hickerson, A. Srivastav, T. Zheng, and M. Chrobak 8:9

Case (s3). (u, v) /∈ A∪B. In this case we claim that Dπ[u] + ℓ(u, v) ≥ Dπ[v], which implies
the correctness for both cases, when this operation is a relaxation and edge update. The
argument involves a few cases.

The first case is when u ∈ Yk−1 and v ∈ Xk−1. Then we have Dπ[u]+ℓuv ≥ (4k−2)+2 >

Dπ[v], applying (J1)-(J2.3).
If u ∈ Xk−1 \ {x2k−2} and v ∈ Yk−1 then there are two sub-cases, and in both we

apply (J1) and (J2.1)-(J2.3). If u = x2k−3 in which case ℓ(x2k−3, v) = L, the claim
is trivial. If u = xj for j ≤ 2k − 4, then Dπ[xj] = 2j and ℓ(xj , v) ≥ L − 5j/2, so
Dπ[u] + ℓ(u, v) ≥ (2j) + (L− 5j/2) = L− j/2 ≥ L− k + 2 ≥ Dπ[v].

The final case is when u, v ∈ Xk−1, say u = xi and v = xj . Here we use condition (J1).
If i > j then Dπ[xi] > Dπ[xj]. If i < j − 1 then ℓ(xi, xj) ≥ 2n. If i = j − 1 then
Dπ[xj−1] = 2j − 2, Dπ[xj] = 2j and ℓ(xj−1, xj) = 2. In each of these sub-cases, the claim
holds.
The case analysis above completes the proof of invariants (J0)-(J2.3). By applying these
invariants to the end of the phase, when all edges in A ∪ B are marked, gives us that
invariant (I) holds after the phase, as needed – providing that the phase ends at all.

To complete the analysis of the adversary strategy we need to argue that phase k must
actually end, in order for the D-values to represent correct distances from s. This follows
directly from invariants (J1)-(J2.3), because they imply that before the very last step of the
phase there is at least one vertex in Yn−1 with D-value at least L− k + 1, which is larger
than its distance from s.

It now only remains to remove the assumption that the D-values are initialized to L + 1.
According to our model, they need to be initialized to edge lengths from s, which are:
ℓ(s, x1) = 2 and ℓ(s, v) = L for v ̸= x1 (since s = x0). With this initialization, we only need
to modify the first phase by marking all edges of the form (x0, v) immediately. Invariant (J)
then applies without further modification.

4 Lower Bound for Deterministic Algorithms with Three Types of
Queries

In this section, we prove Theorem 2(a), an Ω(n3) lower bound for deterministic algorithms
using all three types of queries. Our argument is essentially a reduction – we show that any
algorithm A that uses D-queries, weight queries, edge queries and relaxation updates can be
converted into an algorithm B that has the same time complexity as A and uses only edge
queries and relaxations. Our lower bound will then follow from Theorem 1(a).

We start with some initial observations that, although not needed for the proof, contain
some useful insights. Since edge weights do not change, an algorithm can use weight queries
to pre-sort all edges in time O(n2 log n), and then it doesn’t need to make any more weight
queries during the computation. This way, the algorithm’s running time is not affected
as long as it’s at least Ω(n2 log n). Similarly, the algorithm can use D-queries to maintain
the total order of the D-values using, say, a binary search tree, paying a small overhead
of O(log n) for each update operation. Then the algorithm’s decisions at each step can as
well depend on the total ordering of the vertices according to their current D-values. These
changes will add at most an O(log n) factor to the running time.

Potential-oblivious model. Instead of working just with edge queries, we generalize our
argument to potential-oblivious query models. We say that a query model Q is potential-
oblivious if it satisfies the following property for each weight assignment ℓ and potential ϕ:

ISAAC 2024

8:10 Relaxation-Based Algorithms for Single-Source Shortest Paths

for any sequence of relaxations and queries from Q (with the D-values initialized as described
in Section 2), the outcomes of the queries for weight assignments ℓ and ℓ + ∆ϕ are the same.
By routine induction, any algorithm using a potential-oblivious model will perform the same
sequence of queries and relaxations on assignments ℓ and ℓ + ∆ϕ. Also, it will compute
the correct distances on ℓ if and only if it will compute them for ℓ + ∆ϕ, and in the same
number of steps. (To see this, note that for each vertex v the invariant D′[v] = D[v] + ϕ(v)
is preserved, where we use notations D and D′ to distinguish between the D-values in the
computations for ℓ and ℓ′. The respective distances ℓ(s, v) and ℓ′(s, v) satisfy the same
equation.)

For example, the edge query only model is potential-oblivious. Due to our initialization
and properties of relaxations, each value D[v] always corresponds to the length of some path
from s to v. Then the query is equivalent to comparing the length of two paths with the same
start and end points, and the query outcome is the same after adding ∆ϕ, by the distance
preservation property. Using these facts, potential-obliviousness follows from induction on
the number of operations performed.

Golomb-ruler potential. For our proof, we need a potential function ϕ for which in the
induced weight assignment ∆ϕ all edge weights are different. (This naturally implies that
all values of ϕ are also different.) Such an assignment is equivalent to a Golomb ruler
(also known as a Sidon set), which is a set of non-negative integers with unique pair-wise
differences. A simple Golomb ruler can be constructed using fast growing sequences, such as{

2i − 1
}n−1

i=0 , but we are interested in sets contained in a small polynomial-in-n range. The
asymptotic growth of Golomb rulers is well studied; it is known that there are n-element
Golomb rulers that are subsets of {1, 2, ..., N}, for N = n2(1 + o(1)) [10, 21], and that this
bound on N is essentially optimal. Since the Golomb-ruler property is invariant under shifts,
we can assume that a Golomb ruler contains number 0. For our purposes, this means that
there exists a potential function ϕ that induces distinct edge weights with absolute maximum
weight O(n2). ([4] shows that it is possible to obtain smaller maximum weights for certain
classes of non-complete graphs, but this is not relevant to our constructions.) We will call
this function a Golomb-ruler potential.

▶ Theorem 3. Let A be a query/relaxation-based algorithm that uses relaxation updates,
D-queries, weight queries and any queries from a potential-oblivious model Q, and let T (n)
be the running time of A. Then there is an algorithm B with running time O(T (n)) that uses
only relaxation updates and queries from Q.

The idea of the proof is to convert a given weight assignment ℓ into another assignment
ℓ′ such that, if only queries from Q (and relaxations) are used, then (i) ℓ′ is indistinguishable
from ℓ using the queries from Q, and (ii) in ℓ′ the ordering of weights and the ordering of all
D-values are independent of ℓ and, further, the ordering of the D-values is fixed throughout
the computation, even though the D-values themselves may vary. B can do this conversion
“internally” and simulate A on ℓ′, and then it doesn’t need to make any D-queries and weight
queries, because their outcomes are predetermined.

Proof. Let A be a query/relaxation algorithm for that uses D-queries, weight queries, queries
from Q, and relaxation updates. We construct B that uses only queries from Q and relaxation
updates. Let ϕ be the Golomb-ruler potential defined before the theorem. When run on a
weight assignment ℓ, B will internally simulate A on weight assignment ℓ′ = ℓ + c∆ϕ, for
c = 2ℓmaxn + 1. We use notation D′ for the D-values computed by A. The actions of B
depend on the execution of A on ℓ′, as follows:

S. Atalig, A. Hickerson, A. Srivastav, T. Zheng, and M. Chrobak 8:11

When A executes a weight query “ℓ′
uv < ℓ′

xy?”, B directly executes the “yes” branch from
the query if ∆ϕ(u, v) < ∆ϕ(x, y), or the “no” branch otherwise.
When A executes a D-query “D′[u] < D′[v]?”, then B executes the “yes” branch if
ϕu < ϕv, else it executes the “no” branch.

This simulation can be more formally described as converting the decision tree of A into
the decision tree of B. The tree of B is obtained by splicing out each node q representing a
D-query or weight query. This splicing consists of connecting the parent of q to either the
“yes” or “no” child of q, determined by the appropriate inequality involving ϕ, as explained
above.

It remains to prove the correctness of B. We argue first that B will produce correct
distances if run on ℓ′ instead of ℓ. For this, we observe that ℓ′ satisfies the following properties:
(p1) For any two edges e, f , we have ℓ′

e < ℓ′
f if and only if ∆ϕ(e) < ∆ϕ(f).

(p2) For any three vertices u, x, y, any u-to-x path Px and any u-to-y path Py, we have
ℓ′(Px) < ℓ′(Py) if and only if ϕx < ϕy.

Indeed, both properties follow from the choice of c and straighforward calculation. For (p1),
ℓ′

e < ℓ′
f if and only if ℓe − ℓf < c[∆ϕ(f)−∆ϕ(e)], and because |ℓe − ℓf | < c this inequality is

determined by the sign of ∆ϕ(f)−∆ϕ(e), which is always non-zero, by the Golomb-ruler
property. (Note that here we only use that c > 2ℓmax.) The justification for (p2) is similar:
we have ℓ′(Px) = ℓ(Px) + c(ϕx − ϕu) and ℓ′(Py) = ℓ(Py) + c(ϕy − ϕu), so ℓ′(Px) < ℓ′(Py)
if and only if ℓ(Px) − ℓ(Py) < c[ϕy − ϕx], and since |ℓ(Px) − ℓ(Py| < c this inequality is
determined by the sign of ϕy − ϕx.

Properties (p1) and (p2) imply that when we run A on ℓ′, in each weight query we can
equivalently use assignment ∆ϕ instead of ℓ′, and instead of using a D-query we can compare
the corresponding potential values. Therefore B works correctly for ℓ′. But since now B uses
only relaxations and queries from Q, that are potential-oblivious, and ℓ′ is obtained from ℓ

by adding a weight assignment induced by potential cϕ, B’s computation on ℓ will also be
correct. ◀

Theorem 3, together with Theorem 1 implies the Ω(n3) lower bound for query/update-
based algorithms that use D-queries, weight queries, any set of potential-oblivious queries,
and relaxation updates. Since the edge update is potential oblivious, Theorem 2(a) follows.

Further, using the construction from Theorem 2(a), where a weight assignment with
maximum weight O(n) was used, the proof of Theorem 3 shows that Theorem 2(a) holds
even if all weights are bounded by O(n4).

A side result for general graphs. The reduction in the proof of Theorem 3 extends naturally
to arbitrary graphs. In particular, we can extend a result from Eppstein [9]:

▶ Theorem 4. For any n and m where n ≤ m ≤ n(n − 1), there exists a graph with n

nodes and m edges where any deterministic algorithm A using D-queries, weight queries,
and relaxation updates has worst-case running time Ω(nm/ log n). If m = Ω(n1+ε) for some
ε > 0, the lower bound can be improved to Ω(nm).

Proof sketch. We focus on the case where m is arbitrary. First note that the model using
no queries and relaxation updates is equivalent to non-adaptive algorithms (that is, universal
relaxation sequences) described in [9]. (It’s also obvious that the query model using no
queries is potential-oblivious.) Let G be the graph construction described in the proof of [9,
Theorem 3]. In particular, G has n nodes and m edges, and for every non-adaptive algorithm
on G, there is weight assignment that forces Ω(nm/ log n) relaxations. If there exists an

ISAAC 2024

8:12 Relaxation-Based Algorithms for Single-Source Shortest Paths

algorithm A for G using D-queries, weight queries, and relaxation updates that runs in T (n)
time, then by the same construction as in Theorem 3, there also exists an algorithm B using
only relaxation updates that runs in time O(T (n)). Then an o(nm/ log n) running time on
G would contradict the lower-bound on non-adaptive algorithms. The proof for the case
m = Ω(n1+ε) is identical. ◀

As explained in Section 5, the reduction also applies to randomized algorithms, and
because [9] proves the same lower bounds for expected running time for randomized non-
adaptive algorithms, the above bounds also apply to the randomized case.

5 Lower Bounds for Randomized Algorithms

In this section, we extend the proofs in Sections 3 and 4 to obtain Ω(n3) lower bounds for
randomized algorithms, proving Theorem 1(b) and Theorem 2(b). The proofs are based on
Yao’s principle [22]: we give a probability distribution on weight assignments for which the
expectation of each deterministic algorithm’s running time is Ω(n3).

We fix the value of n. Let ℓmax be the maximum absolute value of weights used in the
proof, whose value will be specified later. Let L be the family of all weight assignments
ℓ : E → [−ℓmax, ℓmax]. Denote by A the (finite) set of all deterministic query/relaxation-based
algorithms with running time at most 2n3. We only need to consider algorithms in A, because
any other algorithm in our model can be modified to run in time at most 2n3. To see why,
consider this algorithm’s decision tree. For any node at depth n3, replace its subtree by the
Bellman-Ford relaxation sequence. The resulting tree remains correct, and its depth is at
most 2n3.

For a deterministic algorithm A ∈ A and weight assignment ℓ ∈ L, denote by T (A, ℓ) the
running time of A on assignment ℓ. Let Π(A) be the set of all probability distributions on A
and Π(L) be the set of all probability distributions on L. Any randomized algorithm R is
simply a probability distribution on A, so R ∈ Π(A). Denote by Expx∼θf(x) the expected
value of f(x), for a random variable x from distribution θ. The lemma below is a restatement
of Yao’s principle [22] in our context:

▶ Lemma 5. The following equality holds:

min
R∈Π(A)

max
ℓ∈L

ExpA∼RT (A, ℓ) = max
σ∈Π(L)

min
A∈A

Expℓ∼σT (A, ℓ).

In this lemma, both sides involve the expected running time, with the difference being
that on the left-hand side we consider randomized algorithms and their worst-case inputs,
while the right-hand side involves the probability distribution on input permutations that is
worst for deterministic algorit hms.

Proof of Theorem 1(b) (Sketch).1 We give a probability distribution σ on weight assign-
ments ℓ for which every deterministic algorithm needs Ω(n3) steps in expectation to compute
correct distances. This is sufficient, as then Lemma 5 implies that each randomized algorithm
R makes Ω(n3) steps in expectation on some weight assignment.

1 A detailed proof will appear in the full version of this paper.

S. Atalig, A. Hickerson, A. Srivastav, T. Zheng, and M. Chrobak 8:13

Recall that in the proof of Theorem 1(a) in Section 3 we used weight assignments associated
with permutations of vertices. This is also the case here, although this assignment needs
to be modified. For any permutation π = x0, x1, ..., xn−1 of the vertices, the corresponding
weight assignment is

ℓπ(xi, xj) =

n if j = i + 1
L− (n + 1

2)i if j ≥ i + 2 and i is even
L if j ≥ i + 2 and i is odd

where L is sufficiently large, say 5n2. (We explain later why larger weights are necessary.)
In our argument here, the adversary chooses the uniform distribution σ on all (n − 1)!
permutations π starting with s.

In a certain sense, our goal now is simpler than in Section 3, as the adversary’s job, which
is to choose σ, is already done. We “only” need to lower bound the expected running time of
algorithms from A if the weights are distributed according to σ. The challenge is that this
argument needs to work for an arbitrary algorithm from A.

So fix any deterministic algorithm A ∈ A. We need to prove that Expℓ∼σT (A, ℓ) = Ω(n3).
A high-level approach in our proof is similar to the proof in Section 3: we partition the
computation of A into (n− 1)/2 phases, and show that the expected length of each phase
k = 1, 2, ..., (n− 1)/2 is Ω((n− 2k)2).

For a specific permutation π = x0, x1, ..., xn−1 with x0 = s and k = 1, 2, ..., (n− 1)/2, let
tk(π) be the first time step such that in steps 1, 2, ..., tk(π) the edges (x0, x1), ..., (x2k−1, x2k)
have been accessed by A (that is, relaxed or queried) in this particular order. We refer to
the time interval (tk−1(π), tk(π)] as phase k for permutation π.

The proof idea is this: In each phase k of the strategy in Section 3 the adversary was able
to force the algorithm to relax all edges from x2k−2 to Y before revealing edge (x2k−1, x2k),
thus ensuring that at all times all D-values differ at most by 1. This is not possible anymore,
because now the algorithm can get “lucky” and relax edges (x2k−2, x2k−1) and (x2k−1, x2k)
before all edges (x2k−2, u) for u ∈ Y are relaxed, and then the D-values for such vertices
u will reflect the relaxations that occurred in some earlier phases. But we can still bound
the differences between D-values. Namely, by our choice of the length function above, any
two D-values will differ by at most n/2. Thus, since all edge lengths are at least n, the
negative answers to all edge queries inside Y are still correct, independently of the suffix
x2k−1, ..., xn−1 of π.

More specifically, the analysis is based on establishing two invariants, captured by the
claim below (formal proof omitted here).

▷ Claim 6. The following invariants are satisfied when each phase k starts:
(R1) The computation of A up until phase k starts is independent of the suffix

x2k−1, x2k, ..., xn−1 of π.
(R2) The D-values have the following form: D[xj] = jn for j ≤ 2k − 2, and D[xj] ∈

[L− k + 1, L] for j ≥ 2k − 1.

Next, define t̃k to be a random variable whose values are tk(π) for permutations π

distributed randomly according to σ. We refer to the time interval (t̃k−1, t̃k] as phase k, and
let ∂tk = t̃k − t̃k−1 be the random variable equal to the length of this phase.

We then prove the following claim:

▷ Claim 7. Expℓ∼σ[∂tk] ≥ 1
2 (n− 2k + 1)(n− 2k + 2).

ISAAC 2024

8:14 Relaxation-Based Algorithms for Single-Source Shortest Paths

Let z̄ = z0, z1, ...z2k−2 be some fixed (2k − 1)-permutation of V with z0 = s. Let H be
the event that π starts with z̄. It is sufficient to prove the inequality in Claim 7 for the
conditional expectation Expℓ∼σ[∂tk|H].

So assume that event H is true. Let Y = V \ {z0, ..., z2k−2}. Now the argument is this:
The suffix x2k−1, ..., xn−1 of π is a random permutation of Y and the edge (x2k−1, x2k) is
uniformly distributed among the edges in Y . Algorithm A is deterministic and all edge
queries for edges inside Y , except for edge (x2k−1, x2k) (and only if (x2k−2, x2k−1) has already
been relaxed), will have negative answers. Similarly, all queries to edges from x2k−2 to Y

will have positive answers. So A will be accessing these edges in some order that is uniquely
determined by the state of A when phase k starts. Since there are (n− 2k + 1)(n− 2k + 2)
edges in Y , this implies that on average it will take 1

2 (n− 2k + 1)(n− 2k + 2) steps for A
to access (x2k−1, x2k), even if we don’t take into account that (x2k−2, x2k−1) needs to be
accessed first. This will imply Claim 7.

We now continue the proof of Theorem 1(b). For the algorithm to be correct, if the
chosen permutation π is x0, x1, ..., xn−1, then the algorithm needs to relax the edges on this
path in order as they appear on the path. So its running time is at least t(n−1)/2(π). Since
t̃(n−1)/2 =

∑(n−1)/2
k=1 ∂tk, using Claim 7 and applying the linearity of expectation we obtain

that Expℓ∼σT (A, ℓ) ≥ Expℓ∼σ[t̃(n−1)/2] =
∑(n−1)/2

k=1 Expℓ∼σ[∂tk] = Ω(n3), completing the
proof. ◀

Proof of Theorem 2(b). There is not much to prove here, because the reduction described
in Section 4 applies with virtually no changes to randomized algorithms. Indeed, just like in
the proof of Theorem 2(a) (or more specifically the proof of Theorem 3), suppose that R is
a randomized algorithm that uses all three types of queries: D-queries, weight-queries, the
queries from model Q, as well as relaxation updates, and let T (n) be R’s expected running
time. We can convert R into a randomized algorithm R′ with running time O(T (n)) that
uses only the queries from Q and relaxation updates. With this, Theorem 2(b) follows from
Theorem 1(b). ◀

High-probability bounds. Using standard reasoning (see [9], for example), our lower bound
results for expectation imply respective high-probability bounds, namely that there are no
randomized algorithms in the models from Theorems 1 and 2 that compute correct distance
values in time o(n3) with probability at least 1− o(1).

To justify this, suppose that R is a randomized algorithm that computes correct distance
values in time T (n) = o(n3) with probability 1− o(1). Consider the algorithm R′ obtained
from R by switching to the Bellman-Ford relaxation sequence right after step T (n). The
expected running time of R′ is then at most T (n)+o(1)n3 = o(n3), but this would contradict
our lower bounds in Theorems 1(b) and 2(b).

6 Final Comments and Open Problems

Our reduction in Section 4 introduces negative weights, raising a natural question: Is it
possible to use o(n3) relaxations with only weight-queries for instances with non-negative
weights? (This question is of purely theoretical interest, because O(n2) relaxations can be
achieved, using Dijkstra’s algorithm, if D-queries are used instead.) Our proof techniques do
not work for this variant. The reason is, in the instances we construct the shortest-path tree
is a Hamiltonian path, and for such instances this path can be uniquely determined by the
weight ordering: start from s, and at each step follow the shortest outgoing edge from the

S. Atalig, A. Hickerson, A. Srivastav, T. Zheng, and M. Chrobak 8:15

current vertex to a yet non-visited vertex. So only n− 1 relaxations are needed. It is unclear
what is the “hard” weight ordering in this case. It can be shown that in the two extreme
cases: (i) if the weight orderings of outgoing edges from each vertex are agreeable (that is,
they are determined by a permutation of the vertices), or (ii) if they are random, then there
is a relaxation sequence of length only O(n2.5) (and this likely can be improved further).

A natural extension of our query/relaxation model would be to allow unconditional edge
updates of the form D[v]←D[u] + ℓuv. A combination of such edge updates and D-queries
allows an algorithm to check for properties that are impossible to test if only relaxation
updates are used. For example, by applying edge updates repeatedly around cycles, such an
algorithm would be able to determine, for any given rational number c, whether one cycle is
at least c times longer than some other cycle.

A more open-ended question is to determine if there are simple types of queries, say some
linear inequalities involving weights and the D-values (with a constant number of variables),
that would be sufficient to yield an adaptive algorithm (possibly randomized) that makes
o(n3) relaxations.

The case of random universal sequences is also not fully resolved. While it is known that
the asymptotic bound is Θ(n3), there is a factor-of-4 gap for the leading constant, between
1

12 and 1
3 [9, 1].

We remark that our proofs are somewhat sensitive to the initialization of the D-values.
Recall that in our model we assume that initially D[v] = ℓsv for v ̸= s. This is natural, and
it guarantees that at all times the D-values represent lengths of paths from s. It also has
the property of being language- and platform-independent. However, some descriptions of
shortest-path algorithms initialize the D-values to infinity, or some very large number. The
proof of Theorem 1 in Section 3 can be modified to work if the D-values were initialized
to some sufficiently large value M (the adversary can then use L = M − 1 in her strategy).
However, then the edge lengths are no longer polynomial, and the proof of Theorem 2 in
Section 4 does not apply in its current form. Initializing to infinity would also affect the
proofs. The reduction in Section 4 can be modified to account for infinite D-values, but we
don’t know how to adapt the proof in Section 3 to this model. We leave open the problem of
finding a more “robust” lower bound proof, that works for an arbitrary valid initialization
and uses only polynomial weights.

References
1 Michael J. Bannister and David Eppstein. Randomized speedup of the Bellman-Ford algorithm.

In Proceedings of the 9th Meeting on Analytic Algorithmics and Combinatorics, ANALCO
2012, pages 41–47. SIAM, 2012. doi:10.1137/1.9781611973020.6.

2 Richard Bellman. On a routing problem. Quart. Appl. Math., 16:87–90, 1958.
3 Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-weight single-

source shortest paths in near-linear time. In Proceedings of the 63rd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2022, pages 600–611, 2022. doi:10.1109/
FOCS54457.2022.00063.

4 Béla Bollobás and Oleg Pikhurko. Integer sets with prescribed pairwise differences being distinct.
European Journal of Combinatorics, 26(5):607–616, 2005. doi:10.1016/J.EJC.2004.04.008.

5 Gang Cheng and Nirwan Ansari. Finding all hops shortest paths. IEEE Commun. Lett.,
8(2):122–124, 2004. doi:10.1109/LCOMM.2004.823365.

6 Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. Negative-weight
shortest paths and unit capacity minimum cost flow in Õ(m10/7 log W) time (extended abstract).
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, pages 752–771, 2017. doi:10.1137/1.9781611974782.48.

ISAAC 2024

https://doi.org/10.1137/1.9781611973020.6
https://doi.org/10.1109/FOCS54457.2022.00063
https://doi.org/10.1109/FOCS54457.2022.00063
https://doi.org/10.1016/J.EJC.2004.04.008
https://doi.org/10.1109/LCOMM.2004.823365
https://doi.org/10.1137/1.9781611974782.48

8:16 Relaxation-Based Algorithms for Single-Source Shortest Paths

7 Narsingh Deo and Chi-Yin Pang. Shortest-path algorithms: Taxonomy and annotation.
Networks, 14(2):275–323, 1984. doi:10.1002/NET.3230140208.

8 Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271, 1959. doi:10.1007/BF01386390.

9 David Eppstein. Lower bounds for non-adaptive shortest path relaxation. In Proceedings of
the 18th International Symposium on Algorithms and Data Structures, WADS 2023, pages
416–429, 2023. doi:10.1007/978-3-031-38906-1_27.

10 P. Erdös and P. Turán. On a problem of Sidon in additive number theory, and on some related
problems. Journal of the London Mathematical Society, s1-16(4):212–215, 1941.

11 Jeremy T. Fineman. Single-source shortest paths with negative real weights in Õ(mn8/9) time.
In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024,
pages 3–14, 2024. doi:10.1145/3618260.3649614.

12 L. R. Ford. Network Flow Theory. RAND Corporation, Santa Monica, CA, 1956.
13 Andrew V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM Journal on

Computing, 24(3):494–504, 1995. doi:10.1137/S0097539792231179.
14 Roch Guérin and Ariel Orda. Computing shortest paths for any number of hops. IEEE/ACM

Trans. Netw., 10(5):613–620, 2002. doi:10.1109/TNET.2002.803917.
15 Jialu Hu and László Kozma. Non-adaptive Bellman-Ford: Yen’s improvement is optimal.

CoRR, abs/2402.10343, 2024. arXiv:2402.10343, doi:10.48550/arXiv.2402.10343.
16 Stasys Jukna and Georg Schnitger. On the optimality of Bellman-Ford-Moore shortest path

algorithm. Theor. Comput. Sci., 628:101–109, 2016. doi:10.1016/J.TCS.2016.03.014.
17 Tomasz Kociumaka and Adam Polak. Bellman-Ford is optimal for shortest hop-bounded

paths. In Proceedings of the 31st Annual European Symposium on Algorithms, ESA 2023,
pages 72:1–72:10, 2023. doi:10.4230/LIPICS.ESA.2023.72.

18 Ulrich Meyer, Andrei Negoescu, and Volker Weichert. New bounds for old algorithms: On the
average-case behavior of classic single-source shortest-paths approaches. In Proceedings of the
First International ICST Conference on Theory and Practice of Algorithms in (Computer)
Systems, TAPAS 2011, pages 217–228, 2011. doi:10.1007/978-3-642-19754-3_22.

19 E. F. Moore. The shortest path through a maze. In Proceedings of an International Symposium
on the Theory of Switching, Part II, pages 285–292, 1959.

20 A. Shimbel. Structure in communication nets. In Proceedings of the Symposium on Information
Networks, pages 199–203. Polytechnic Press of the Polytechnic Institute of Brooklyn, 1955.

21 James Singer. A theorem in finite projective geometry and some applications to number theory.
Trans. Amer. Math. Soc., 43(3):377–385, 1938.

22 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In Proceedings of the 18th Annual Symposium on Foundations of Computer
Science, pages 222–227, 1977. doi:10.1109/SFCS.1977.24.

23 Y. Yen. Shortest Path Network Problems, volume 18 of Mathematical Systems in Economics.
Verlag Anton Hain, Meisenheim am Glan, 1975.

https://doi.org/10.1002/NET.3230140208
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/978-3-031-38906-1_27
https://doi.org/10.1145/3618260.3649614
https://doi.org/10.1137/S0097539792231179
https://doi.org/10.1109/TNET.2002.803917
https://arxiv.org/abs/2402.10343
https://doi.org/10.48550/arXiv.2402.10343
https://doi.org/10.1016/J.TCS.2016.03.014
https://doi.org/10.4230/LIPICS.ESA.2023.72
https://doi.org/10.1007/978-3-642-19754-3_22
https://doi.org/10.1109/SFCS.1977.24

Fault-Tolerant Bounded Flow Preservers
Shivam Bansal #

Department of Computer Science and Engineering, IIT Delhi, India

Keerti Choudhary #

Department of Computer Science and Engineering, IIT Delhi, India

Harkirat Dhanoa #

Department of Computer Science and Engineering, IIT Delhi, India

Harsh Wardhan #

Department of Electrical Engineering, IIT Delhi, India

Abstract
Given a directed graph G = (V, E) with n vertices, m edges and a designated source vertex s ∈ V ,
we consider the question of finding a sparse subgraph H of G that preserves the flow from s up to a
given threshold λ even after failure of k edges. We refer to such subgraphs as (λ, k)-fault-tolerant
bounded-flow-preserver ((λ, k)-FT-BFP). Formally, for any F ⊆ E of at most k edges and any v ∈ V ,
the (s, v)-max-flow in H \ F is equal to (s, v)-max-flow in G \ F , if the latter is bounded by λ, and
at least λ otherwise. Our contributions are summarized as follows:

1. We provide a polynomial time algorithm that given any graph G constructs a (λ, k)-FT-BFP of
G with at most λ2kn edges.

2. We also prove a matching lower bound of Ω(λ2kn) on the size of (λ, k)-FT-BFP. In particular,
we show that for every λ, k, n ⩾ 1, there exists an n-vertex directed graph whose optimal
(λ, k)-FT-BFP contains Ω(min{2kλn, n2}) edges.

3. Furthermore, we show that the problem of computing approximate (λ, k)-FT-BFP is NP-hard
for any approximation ratio that is better than O(log(λ−1n)).

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Mathematics of computing → Graph algorithms

Keywords and phrases Fault-tolerant Data-structures, Max-flow, Bounded Flow Preservers

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.9

Related Version Full Version: https://arxiv.org/abs/2404.16217

Funding Keerti Choudhary: The author is supported in part by Google India Algorithms Research
grant 2021.

1 Introduction

We address the problem of computing single-source fault-tolerant bounded-flow-preservers
for directed graphs. The objective is to construct a sparse subgraph that preserves the flow
value up to a parameter λ from a given fixed source s, even after failure of up to k edges.

The following definition provides a precise characterization of this subgraph.

▶ Definition 1. Let G = (V, E) be a directed graph with unit edge-capacities and s ∈ V be a
designated source vertex. A (λ, k)-Fault-Tolerant Bounded-Flow-Preserver ((λ, k)-FT-BFP)
for G is a subgraph H = (V, EH ⊆ E) of G satisfying that for every F ⊆ E of at most k

edges, and every t ∈ V ,

max-flow(s, t,H− F) =
{

max-flow(s, t,G − F) if max-flow(s, t,G − F) ⩽ λ,

At least λ, otherwise.

© Shivam Bansal, Keerti Choudhary, Harkirat Dhanoa, and Harsh Wardhan;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shivam0bansal@gmail.com
mailto:keerti@iitd.ac.in
https://orcid.org/0000-0002-8289-5930
mailto:harkirat2016@gmail.com
mailto:hwardhan337@gmail.com
https://doi.org/10.4230/LIPIcs.ISAAC.2024.9
https://arxiv.org/abs/2404.16217
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Fault-Tolerant Bounded Flow Preservers

For the special case of λ = 1, the problem is referred to as k-Fault-Tolerant Reachability
Subgraph (k-FTRS) in the literature. Here the goal is to preserve reachability from s after k

edge failures. Baswana et al. [4] showed that there exists a k-FTRS with at most 2kn edges.
Lokshtanov et al. [17] presented an algorithm for computing a (λ, k)-FT-BFP for directed
graphs. Their algorithm runs in time O(4k+λ(k + λ)2(m + n) ·m), and each vertex of the
FT-BFP has in-degree at most 4k+λ(k + λ). They also showed that a (k + λ− 1)-FTRS
of a graph G also serves as it’s (λ, k)-FT-BFP. Using this result in conjunction with the
algorithm from [4], they obtain an alternate construction of a (k, λ)-FT-BFP with at most
2k+λn edges. However, this bound is quadratic in n for any λ larger than log n.

We consider the problem of obtaining a tight bound on (λ, k)-FT-BFP. Specifically, we
aim to answer the following question:

Given a directed graph G = (V, E) with a source s, and a flow threshold λ ⩾ log n, can we
construct a sparse (λ, k)-FT-BFP H = (V, EH ⊂ E)? If so, can we present graphs for which
the construction turns out to be tight?

In this paper, we affirmatively answer the question above. We provide construction for
FT-BFP that has a linear dependence on λ.

1.1 Upper Bound Results and Applications
We prove the following:

▶ Theorem 2. There exists an algorithm that for any directed graph G on n vertices and m

edges, and any integers λ, k ⩾ 1, computes in O(λ2kmn) time a (λ, k)-FT-BFP for G with
at most λ2kn edges.

We also present an application of our FT-BFP construction in computing an all-pairs
fault-tolerant λ-reachability oracle. We show that for any positive constants λ, k ⩾ 1, we can
compute an oracle of O(n2) size that given any query vertex-pair x, y ∈ V and any set F of
k edge failures, reports (x, y)-λ-reachability in G \ F efficiently.

▶ Theorem 3. Given any directed graph G = (V, E) on n vertices and any positive constants
λ, k ⩾ 1, we can preprocess G in polynomial time to build an O(n2) size data structure that,
given any query vertex-pair (x, y) and any set F of k edges, reports the (x, y) λ-reachability
in G \ F in O(n1+o(1)) time.

1.2 Lower Bound and Hardness Results
We show that the extremal bound of λ2kn obtained in Theorem 2 is tight. In particular, we
prove existence of n-vertex graphs whose (λ, k)-FT-BFP must contain at least Ω(min λ2kn, n2)
edges.

▶ Theorem 4. For every λ, k, n ⩾ 1 satisfying λ2k = O(n), there exists a construction of an
n-vertex directed graph whose optimal (λ, k)-FT-BFP contains Ω(λ2kn) edges.

While the lower-bound in above theorem proves that the bound of λ2kn obtained in
Theorem 2 is existentially tight, it does not address the problem of computing a sparsest
(λ, k)-FT-BFP.

We next demonstrate the hardness of computing optimal (λ, k)-FT-BFP structures. We
show that unless P = NP , there is no polynomial-time algorithm to obtain an O(log(λ−1n))-
approximation to optimal (λ, k)-FT-BFP.

S. Bansal, K. Choudhary, H. Dhanoa, and H. Wardhan 9:3

▶ Theorem 5. For any λ, k, n ⩾ 1 satisfying k = Ω(log(λ−1n)), the problem of computing
an O(log(λ−1n)) approximation to optimal (λ, k)-FT-BFP for n vertex directed graphs is
NP-hard.

As a corollary, we obtain the following hardness result for the FTRS problem.

▶ Corollary 6. For any k, n ⩾ 1 satisfying k = Ω(log n), the problem of computing an
O(log n) approximation to optimal k-FTRS for n vertex directed graphs is NP-hard.

1.3 Existing Works
For undirected graphs, there exists a tight construction for (λ, k)-FT-BFP with O((k +λ) ·n)
edges that directly follows from edge connectivity certificate constructions provided by
Nagamochi and Ibaraki [19].

A closely related problem to that of graph preservers is fault-tolerant reachability oracles.
For dual failures, the work of [11] obtained an O(n) size single source reachability oracle with
constant query time for directed graphs. Brand and Saranurak [23], showed construction
of an Õ(n2) sized k-fault-tolerant all-pairs reachability oracle that has O(kω) query time,
where ω is the constant of matrix multiplication.

Recently, Baswana et al. [2] considered the problem of constructing a sensitivity oracle
for reporting the max-flow value for a single source-destination pair. They presented an
O(n2) size data-structure that after failure of any two edges, reports the max-flow value of
the surviving graph in constant time.

For the problem of computing the value of all-pairs max-flow up to λ in the static setting,
Abboud et at. [1] obtained two deterministic algorithms that work for DAGs: a combinatorial
algorithm which runs in O(2O(λ2) ·mn) time, and another algorithm that can be faster on
dense graphs which runs in O((λ log n)4λ+o(λ) · nω) time.

Some other graph theoretic problems studied in the fault-tolerant model include computing
distance preservers [12, 21, 20], depth-first-search tree [3], spanners [8, 13], approximate
single source distance preservers [5, 22, 6], approximate distance oracles [14, 9], compact
routing schemes [9, 7].

2 Preliminaries

Given a digraph G = (V, E) on n = |V | vertices and m = |E| edges with unit edge capacities,
we first define some notations used throughout the paper.

in(v,G): The set of in-neighbours of v in G.
out(v,G): The set of out-neighbours of v in G.
In-Edges(v,G): The set of all incoming edges of v in G.
Out-Edges(v,G): The set of all outgoing edges of v in G.
out(A,G): The set of all those vertices in V \A having an incoming edge from some
vertex of A in G, where A ⊆ V (G).
G(A): The subgraph of G induced by the vertices lying in a subset A of V .
G + (u, v): The graph obtained by adding an edge (u, v) to graph G.
G \ F : The graph obtained by deleting the edges lying in a set F from graph G.
max-flow(S, t,G): The value of the maximum flow in graph G from a source set S to a
destination vertex t. When the set S comprises of a single vertex, say s, we represent it
simply by max-flow(s, t,G).
path[a, b, T]: The path from node a to b in a tree T .

ISAAC 2024

9:4 Fault-Tolerant Bounded Flow Preservers

P [a, b]: The subpath of path P lying between vertices a and b, where a precedes b on P .
P ◦Q : The path formed by concatenating paths P and Q in G. Here it is assumed that
the last edge (or vertex) of P is the same as the first edge (or vertex) of Q.

We next define the concept of farthest min-cut that was introduced by Ford and Fulkerson
in their pioneering work on flows and cuts [15]. Let S be a source set, and t be a destination
vertex. Any (S, t)-cut C is a partition of the vertex set into two sets: A(C) and B(C),
where S ⊆ A(C) and t ∈ B(C). An (S, t)-min-cut C∗ is said to be the farthest min-cut
if A(C∗) ⊋ A(C) for every (S, t)-min-cut C other than C∗. We denote the cut C∗ by
FMC(S, t,G). Similar to farthest-min-cut, we can define the nearest min-cut. An (S, t)-min-
cut C∗ is said to be the nearest min-cut if A(C∗) ⊊ A(C) for every (S, t)-min-cut C other
than C∗. We denote the cut C∗ by NMC(S, t,G).

Below we state a property of nearest and farthest (s, t)-min-cuts [15] showing that they
can be computed efficiently.

▶ Property 7. Let s be a source vertex, t be a destination vertex, and f be an s to t max-flow
in graph G. Let Gf denote the residual graph corresponding to flow f . Further let X be the
set of vertices reachable from s in Gf , and Y be the set of vertices having a path to t in Gf .
Then NMC(s, t,G) = (X, V \X) and FMC(s, t,G) = (V \ Y, Y).

3 Hardness of logarithmic approximation

We prove in this section the following hardness result for approximating optimal FT-BFP.

▶ Theorem 8. For any λ, k, n ⩾ 1 satisfying k = Ω(log(λ−1n)), the problem of computing
an O(log(λ−1n)) approximate (λ, k)-FT-BFP for n vertex digraphs is NP-hard.

We prove the above theorem by showing a reduction from the SET-COVER problem
to the optimal FT-BFP.

▶ Problem 9 ([18], Definition 1). The input to SET-COVER consists of base set U , |U | = n

and a family F = (S1, ..., Sm) of m subsets of U satisfying ∪m
j=1Sj = U , m ⩽ poly(n). The

goal is to find as few sets Si1 , ..., Sik
as possible that cover U , that is, ∪k

j=1Sij
= U

▶ Lemma 10 ([18], Theorem 2). For every 0 < α < 1 (exact) SAT on inputs of size n can
be reduced in polynomial time to approximating SET-COVER to within (1− α) ln N on
inputs of size N = nO(1/α).

From Lemma 10, we can also deduce that it is NP-Complete to approximate SET-
COVER up to a multiplicative factor of c1 log max(n, m) for some c1 > 0 as m ⩽ poly(n).

Transformation. Given a SET-COVER instance ⟨U,F⟩, we will construct a (λ, k)-FT-
BFP instance ⟨G, s⟩. The transformation is as follows (also see Figure 1).

1. Round up the number for elements in U to nearest power of 2 (let this be 2u) by adding
2u − |U | new elements to U and all these new elements to every set in F.

2. Initialize G to be the graph with N +1 vertices, namely, s, v1, . . . , vN where N = 4λ(m+n).
3. Next construct the following subgraph Gi, for each i ∈ [1, λ].

a. Construct a complete binary tree Bi rooted at a vertex ri of height u and 2u leaf nodes.
The leaf nodes of Bi will correspond to elements in the universe U . From each leaf
node xi in Bi, add out-edges to two new vertices, namely, ℓ(xi) and r(xi).

S. Bansal, K. Choudhary, H. Dhanoa, and H. Wardhan 9:5

b. For each set W ∈ F, add a vertex yi,W to graph Gi. Let Yi denote the resulting set
which consists of |F| vertices. For each x ∈ U and W ∈ F, add an edge from ℓ(xi) to
yi,W if and only if x ∈W .

c. Add a set Zi of u + 1 additional vertices. For each leaf xi in Bi, add an edge from
r(xi) to each vertex in the set Zi.

4. Finally, we add an edge from s to the roots r1, . . . , rλ. Also for each i ∈ [1, λ], we add an
edge from each vertex in Yi ∪ Zi to each of the vertices v1, . . . , vN .

We set k = u + 1 for this (λ, k)-FT-BFP instance.

…

vj

ri

…

xi

…

…
Yi

ℓ(xi)

yi,W Zi
…

s

r(xi)

Figure 1 Depiction of a (λ, k)-FT-BFP instance obtained from a SET-COVER instance ⟨U,F⟩.

▶ Lemma 11. Any (λ, k)-FT-BFP H of the graph instance ⟨G, s⟩, can be used to construct
a solution of the SET-COVER instance of size at most λ−1(minN

j=1 |in(vj ,H)|).

Proof. Consider a vertex vj inH that minimizes |in(vj ,H)|. Consider the following candidate
solutions

Si = {W ∈ F | (yi,W , vj) ∈ E(H)}.

Out of the λ sets, namely S1, . . . , Sλ, let Si0 be the set with least cardinality. The cardinality
of Si0 is at most |in(vj ,H)|/λ as minimum value is upper-bounded by the average value.

Now in order to prove that Si0 is a valid solution, consider an element x ∈ U . Let
P be the unique path from ri0 to leaf node xi0 in Bi0 , and let F1 be the set of all those
edges (u, v) ∈ Bi0 such that u ∈ P and v is the child of u not lying on P . Observe that
xi0 is the unique leaf in Bi0 that is reachable from s in H \ F1. Let F2 be a singleton
set comprising of the edge (xi0 , r(xi0)). Consider the set F = F1 ∪ F2 of size k. Since
max-flow(s, vj ,G \ F) = λ, there must exists a path, say Q, from s to vj in H \ F passing
through ri0 . Such a path Q must pass through ℓ(xi0) as well as a vertex in Yi0 , say yi0,W .
This implies that the edge (yi0,W , vj) lies in H, and so by definition of Si0 , the set W

lies in Si0 . Moreover W contains the element x as (ℓ(xi0), yi0,W) is an edge in G. This proves
that element x ∈ U is covered by Si0 , and thus Si0 is a valid solution to ⟨U,F⟩. ◀

▶ Lemma 12. Any solution S of the SET-COVER instance ⟨U,F⟩, can be used to construct
a solution H of (λ, k)-FT-BFP instance satisfying |in(vj ,H)| = λ(|S|+k), for each j ∈ [1, N].

ISAAC 2024

9:6 Fault-Tolerant Bounded Flow Preservers

Proof. Let S be a solution of the SET-COVER instance ⟨U,F⟩. Consider the sets

Ai = {yi,W | W ∈ S} ∪ Zi, for i ⩽ λ, and A =
λ⋃

i=1
Ai.

We will show that

H = G \ ∪N
j=1In-Edges(vj) + ∪N

j=1(A× vj).

is a (λ, k)-FT-BFP of G.

Let us assume, to the contrary, that H is not a (λ, k)-FT-BFP of G. Then there must
exist an edge set F of size at most k and an index j ∈ [1, N] satisfying max-flow(s, vj ,G \F)
is greater than max-flow(s, vj ,H \ F). Observe that each path from s to vj must pass
through a vertex ri, for some i ∈ [1, λ], and each ri only allows a unit flow to pass through it.

Since max-flow(s, vj ,G \ F) > max-flow(s, vj ,H \ F), there must exist an index
i ∈ [1, λ] satisfying that there exists a path from s to vj in G \ F passing through ri, but no
such corresponding path exists in H \ F .

Let R = {x0
i , x1

i , . . . , xα
i } be the set of leaf nodes in tree Bi reachable from s in G \ F .

There exist at least min(k + 1, |R|) vertex-disjoint paths from R to vj in H, namely,
({x0

i , ℓ(x0
i), yi,W , vj), where W ∈ F is the set in S that contains the element x0 ∈ U .

({xc
i , r(xc

i), zc
i , vj), for c = 1 to min(k, |R| − 1).

Thus even after k faults atleast one path from ri to vj will exist in H \ F . This
contradicts the assumption that there is no s to vj path in G \ F passing through ri. Hence,
max-flow(s, vj ,G \ F) must be identical to max-flow(s, vj ,H \ F). ◀

The proof of Theorem 8 now directly follows from Lemma 10, Lemma 11, and Lemma 12,
along with the fact that for every integer n ⩾ 1, there exist hard instances of the SET-
COVER problem (U,F) satisfying |U | = n, where the size of the optimal solution is
significantly larger than log |U |.

4 Upper bound of λ2kn Edges

In this section we will provide construction of a sparse (λ, k)-FT-BFP.

4.1 Locality Property for Flow Preservers
▶ Lemma 13. Let G = (V, E) be a graph with a source s ∈ V , λ ⩾ 1 be an integer, and
v be a fixed vertex in V . Let α = min

(
λ, max-flow(s, v,G)

)
. Let Ev be the set of in-edges

of v corresponding to any arbitrary set of α-edge-disjoint paths from s to v in G. Further, let
H be a subgraph of G obtained by restricting the in-edges of the given node v to those present
in Ev. Then, for each t ∈ V , we have

max-flow(s, t,H) ⩾ min
(
λ, max-flow(s, t,G)

)
.

Proof. We first observe that α = max-flow(s, v,H). Indeed, by construction there are at
least α edge-disjoint paths from s to v in H, additionally, the in-degree of v in H is exactly
α which proves that the (s, v)-max-flow in H can not be larger than α.

Now consider a vertex t ∈ V , and let β = max-flow(s, t,H). Consider an (s, t)-min-cut
(A, B) in H. If v ∈ A then, by construction of H, the (s, t)-cut (A, B) has value β also in G,
so β ⩾ max-flow(s, t,G) and we are done. Assume next v ∈ B. Then (A, B) is an (s, v)-cut
of value β in H. Since α = max-flow(s, v,H), we have β ⩾ α. If α = λ we are done. We
next study the non-trivial case of α = max-flow(s, v,G) < λ.

S. Bansal, K. Choudhary, H. Dhanoa, and H. Wardhan 9:7

Let f be an (s, t)-max-flow in H. Let us assume on contrary that β < max-flow(s, t,G).
Then the residual graph Gf must have an augmenting path, say P , containing some edges
present in G but not in H. Such edges must be all incoming to v. Thus, P = P [s, w]◦ (w, v)◦
P [w, t] where (w, v) ∈ E(G) \E(H), and P [s, w], P [v, t] are present in the residual graph Hf .
Adding P to f gives an (s, t)-flow of in H+ (w, v), implying that

(i) max-flow(s, t,H+ (w, v)) = β + 1
(ii) (w, v) ∈ A×B

(iii) (A, B) is an (s, t)-min-cut in H+ (w, v)

Let {Qi ◦ ei ◦ Q′
i}α

i=1 be α edge-disjoint s-to-v paths in H, where the edge ei of each
such path is its last edge crossing the (s, v)-cut (A, B), so V (Q′

i) ⊆ B. Such exist as
α = max-flow(s, v,H). Let eα+1, . . . , eβ be the other edges crossing (A, B) in H. Let
e0 = (w, v), crossing (A, B) by (ii). Let {Pj ◦ ej ◦ P ′

j}
β
j=0 be β + 1 edge-disjoint s-to-t paths

in H + (w, v), each crossing the cut (A, B) exactly once, at ej , so V (Pj) ⊆ A. Such exist
by (i) and (iii). Then, {P0 ◦ e0} ∪ {Pi ◦ ei ◦Q′

i}α
i=1 are α + 1 edge-disjoint s-to-v paths in G,

contradicting α = max-flow(s, v,G). ◀

In the next lemma we show that in order to compute a sparse (λ, k)-FT-BFP it suffices
to focus on a single destination node.

▶ Lemma 14 (Locality Lemma for Flow Preservers). Let A be an algorithm that given any
graph G and any vertex v ∈ V (G), computes a (λ, k)-FT-BFP of G with at most cλ,k in-edges
to v. Then using A, one can construct for any n vertex digraph a (λ, k)-FT-BFP with at
most cλ,k · n edges.

Proof. Consider a graph G with n vertices, namely, v1, . . . , vn. We will provide a construction
of (λ, k)-FT-BFP of G using black-box access to algorithm A. We compute a sequence of
graphs G0,G1, . . . ,Gn as follows:
1. Initialize G0 = G.
2. For i ⩾ 1, compute Gi in two steps:

a. First use A to compute a (λ, k)-FT-BFP of Gi−1 in which the in-degree of vi is
bounded by cλ,k, let this graph be Hi−1.

b. Obtain Gi from Gi−1 by restricting the incoming edges of vi to those present in Hi−1.

It is easy to verify that the in-degree of each vertex in Gn is at most cλ,k.
To show that Gn is a (λ, k)-FT-BFP of G, it suffices to show that Gi is a (λ, k)-FT-BFP of

Gi−1, for each i ⩾ 1.
Let us fix an index i in the range [1, n]. Consider a set F of at most k edges in Gi−1, and

let

α = min
(
λ, max-flow(s, vi,Gi−1 \ F)

)
.

By construction, Hi−1 is a (λ, k)-FT-BFP of Gi−1, so there exists at least α edge-disjoint
paths from s to vi in the graph Hi−1 \ F . Let Ei be the set of in-edges of vi corresponding
to these α edge-disjoint paths. Observe that the edges in Ei lie in graph Gi \ F . Moreover,
graphs Gi \ F and Gi−1 \ F differ only at in-edges of vi. Therefore, by Lemma 13 it follows
that for any vertex t ∈ V (G), max-flow(s, t,Gi \ F) ⩾ min

(
λ, max-flow(s, t,Gi−1 \ F)

)
.

This proves that Gi is a (λ, k)-FT-BFP of Gi−1. ◀

ISAAC 2024

9:8 Fault-Tolerant Bounded Flow Preservers

4.2 Construction of an Improved FTRS
We present here an improved bound on the in-degree of a node t in an FTRS when the node
t satisfies that (s, t)-max-flow in G is larger than one. In particular, we prove the following
theorem.

▶ Theorem 15. Let G be an n vertex, m edges directed graph with a designated source node s.
Let t be a vertex satisfying max-flow(s, t,G) = f , for some positive integer f . Then for
every k ⩾ 1, we can compute in O(2kfm) time a (k + f − 1)-FTRS for G in which the
in-degree of node t is at most 2kf .

Let us focus on a single destination node t. We first show that it suffices to provide
construction of (k + f − 1)-FTRS for a graph in which out-degree of each vertex other than s

is bounded by 2. In order to prove this we will transform the graph G = (V, E) into another
graph H = (VH , EH) satisfying that (i) the value of (s, t)-max-flow in graphs G and H is
identical; (ii) the out-degree of every vertex in H other than s is bounded by two. The steps
to transform G into graph H are as follows:
1. Initialize H to be the graph G.
2. Split each edge e = (x, y) ∈ E by inserting two new vertices ℓx,y and rx,y between the

endpoints x and y, so that edge (x, y) is translated into the path (x, ℓx,y, rx,y, y).
3. For every node y ∈ V \ {s, t} if x1, . . . , xp are in-neighbours of y in G and z1, . . . , zq are

out-neighbours of y in G, then we replace vertex y (in current H) by p binary trees as
follows. First we remove node y from H. Next for each xi ∈ in(y,G) insert a binary
tree Bxi,y to graph H (along with new internal nodes and edges) whose root is rxi,y and
leaves are ℓy,z1 , . . . , ℓy,zq .

Notice that H has O(mn) edges and vertices. Indeed for every vertex v (other than s and t)
in G, |in(v,G)| binary trees have been added to H, each of size O(|out(v,G)|). So the number
of edges and vertices in the transformed graph is O(

∑
v∈V |in(v,G)| · |out(v,G)|)) = O(mn).

Also, observe that the out-degree of each vertex in H other than s bounded by two.

▶ Lemma 16. max-flow(s, t,G) = max-flow(s, t,H)

Proof. We will show that each s to t path in G now corresponds to a unique s to t path
in H. Suppose there exists a path (s = u0, u1, u2, . . . , uk = t) in G. Then we will have an
equivalent path in H as

(s, ℓu0,u1 , ru0,u1)◦path(ru0,u1 , ℓu1,u2 , Bu0,u1) ◦ (ℓu1,u2 , ru1,u2) ◦ ℓ · · · ◦
path(ruk−2,uk−1 , ℓuk−1,uk

, Buk−1,uk
) ◦ ℓuk−1,uk

, ruk−1,uk
) ◦ (ruk−1,uk

, t)

where path(r, ℓ, B) denotes the path from r to ℓ using edges in binary tree B. Therefore,
the (s, t)-max-flow values in graphs G and H are identical. ◀

We will now justify the significance of our transformation by providing a way to construct
a (k + f − 1)-FTRS of G if we know a (k + f − 1)-FTRS for H such that the in-degree of t

in both the FTRSs is identical.

▶ Lemma 17. A (k+f−1)-FTRS for G can be constructed by knowing a (k+f−1)-FTRS of
H, that preserves the in-degree of node t.

Proof. Let H∗ be a (k+f−1)-FTRS of H. We want to construct G∗, a (k+f−1)-FTRS for
G satisfying the condition that in-degree of t in graphs G∗ and H∗ is identical.

S. Bansal, K. Choudhary, H. Dhanoa, and H. Wardhan 9:9

The construction of G∗ is as follows: For each in-neighbour w of the vertex t in G, include
edge (w, t) in G∗ if and only if edge (rw,t, t) is present in H∗. Thus, the in-degree of t in
graphs G∗ and H∗ is identical. For vertices v other than t, we include all in-neighbours of v

in G∗.
We will now prove that G∗ is a (k + f − 1)-FTRS of G. Consider any set F of at most

k failed edges in G. Define a set F0 of failed edges in H by including edge (ℓu,v, ru,v) in
F0 for every (u, v) ∈ F . From the path correspondence above and the fact that H∗ is a
(k + f − 1)-FTRS of H, it is evident that for any r ⩽ λ, there are r-edge-disjoint paths from
s to t in G∗ \F if and only if there are r-edge-disjoint paths from s to t in H∗ \F0. Therefore,
G∗ is a (k + f − 1)-FTRS of G. ◀

It was shown in [4] that if out-degree of s is one, and out-degree of all other vertices is
bounded by two, then Algorithm 1 computes a k-FTRS for G in which in-degree of t is at
most 2k. We will prove in the next lemma that if max-flow(s, t,G) = f , and out-degree
of every vertex other than s is bounded by two, then Algorithm 1 in fact computes a
(k + f − 1)-FTRS for G in which the in-degree of t is at most 2kf .

▶ Lemma 18. Let G be a directed graph satisfying that the out-degree of every vertex other
than the designated source s is bounded by 2, and k ⩾ 1 be an integer parameter. Let t ∈ V (G)
satisfy max-flow(s, t,G) = f , for some positive integer f . Then Algorithm 1 computes a
(k + f − 1)-FTRS for G in which the in-degree of node t is at most 2kf .

Proof. Consider the following algorithm from [4] for computing k-FTRS that bounds in-
degree of an input node t.

Algorithm 1 Algorithm for computing k-FTRS.

1 S1 ← {s};
2 for i = 1 to k do
3 Ci ← FMC(Si, t,G);
4 (Ai, Bi)← Partition(Ci);
5 Si+1 ← (Ai ∪ out(Ai,G)) \ {t};
6 end
7 f0 ← max-flow from Sk+1 to t;
8 E(t)← Incoming edges of t present in E(f0);
9 Return G∗ = (G \ In-Edges(t,G)

)
+ E(t);

We will now show G∗ is a (k + f − 1)-FTRS of G. Let F be any set of k + f − 1 failed
edges. If there exists a path R from s to t in G \ F then we shall prove the existence of a
path R̂ from s to t in G∗ \ F . Observe that R must pass through each (s, t)-cut Ci, for each
i ∈ [1, k], through an edge, say (ui, vi). If vi = t then (ui, vi) ∈ E(t) and thus R is intact in
the graph G∗. Now we need to prove for the case when the edge (ui, vi) /∈ E(t).

To prove that a path R̂ exists in G∗, we will construct a sequence of auxiliary graphs as
done in [4], say Hi’s, for each i ∈ [1, k + 1], as follows:

H1 = G, Hi = G + (s, v1) + ... + (s, vi−1), i ∈ [2, k + 1].

From the induction proof of Lemma 18 of [4], we get max-flow(s, t,Hi+1) = 1 +
max-flow(s, t,Hi) and since max-flow(s, t,H1) = max-flow(s, t,G) = f , we get that
max-flow(s, t,Hk+1) = k + f . Let H∗ = (Hk+1 \ In-Edges(t)) + E(t) i.e. the incoming

ISAAC 2024

9:10 Fault-Tolerant Bounded Flow Preservers

edges of t are restricted in Hk+1 to those present in the set E(t). In Lemma 19 of [4] it is
shown that max-flow(s, t,H∗) = max-flow(s, t,Hk+1) = k + f . Since the flow in H∗ is
greater than |F | or the number of faults, we can directly use the Lemma 20 of [4] to see that
there exists a path R̂ in G∗ \ F .

The bound on the number of edges also follows from [4]. Lemma 21 of [4] states that
|Ci+1| ⩽ 2|Ci| where Ck+1 = FMC(Sk+1, t,G). Since |C1| = f , we get the bound on
E(t) = Ck+1 as 2kf . Note that the proof of Lemma 21 of [4] assumes that every vertex has
out-degree bounded by two but it can be shown that the Lemma will hold true even when
the out-degree of all vertices except the source vertex is bounded by two by using the fact
that in the proof of Lemma 21, out(Ai) will never contain the source vertex for any i. ◀

4.3 Computing sparse (λ, k)-FT-BFP
In this subsection, we will show how to construct a (λ, k)-FT-BFP of G from a (k + f − 1)-
FTRS of G. We will start by introducing a lemma from [17], followed by additional lemmas
that will help us to obtain a tight construction for FT-BFP.

▶ Lemma 19 ([17]). Let G be a directed graph with a designated source node s, and let H be
a (k + λ− 1)-FTRS of G. Then, H is also a (λ, k)-FT-BFP of G.

To strengthen the above lemma, we present a method for constructing a (λ, k)-FT-
BFP from a (min{f, λ} + k − 1)-FTRS, where f represents the maximum flow from the
source node s to a destination node t in the graph.

▶ Lemma 20. Let G be a directed graph with a designated source node s, and let t be a vertex
satisfying max-flow(s, t,G) = f , for some positive integer f . Then a (min{f, λ}+ k − 1)-
FTRS of G that differs from G only at in-edges of t is a (λ, k)-FT-BFP for G.

Proof. Let H be a (min{f, λ}+ k − 1)-FTRS of G that deviates from G only at in-edges
of t. It follows from Lemma 19 that the subgraph H is a (min{f, λ}, k)-FT-BFP for G.

The claim trivially holds true if f ⩾ λ, so let us consider the scenario f < λ. Consider a
set F of at most k edge failures in G, and let p be max-flow(s, t,G \ F). Since p ⩽ f < λ

and H is a (f, k)-FT-BFP, the max-flow from s to t in H \ F must be exactly p.
Since G and H only differs at in-edges of t, it follows from Lemma 13 that for each

v ∈ V (G), max-flow(s, v,H \ F) ⩾ min(λ, max-flow(s, v,G \ F)). This proves that H is a
(λ, k)-FT-BFP for G. ◀

We now provide construction of a (λ, k)-FT-BFP that bounds the in-degree of a single
destination node t.

▶ Lemma 21. Let G be an n vertex, m edges directed graph with a designated source node s,
and t be any arbitrary vertex in G. Then for any λ, k ⩾ 1, we can compute in O(λ2km) time
a (λ, k)-FT-BFP for G in which the in-degree of t is bounded above by λ2k.

Proof. Let f be the value of (s, t)-max-flow in G. We present a construction of a (λ, k)-FT-
BFP, say H, by considering the following two cases.

Case 1. max-flow(s, t, G) ⩾ λ + k:
Let us start by taking a look at the scenario f ⩾ λ + k. In this case we can choose any λ + k

incoming edges of t which carry a flow of λ + k from s to t and discard all other incoming
edges of t to construct H. The resulting graph H will be a (λ, k)-FT-BFP of G due to
Lemma 20, and the in-degree of t in H will be λ + k ⩽ λ2k.

S. Bansal, K. Choudhary, H. Dhanoa, and H. Wardhan 9:11

Case 2. max-flow(s, t, G) < λ + k:
We next consider the case f < λ + k. In this case we use Theorem 15 to compute a
(min{f, λ} + k − 1)-FTRS of G, say H0, such that the in-degree of t in H0 is at most
2k min{f, λ}. We obtain the graph H from G by limiting the incoming edges of t to those
present in H0. The resulting graph H will be a (λ, k)-FT-BFP of G due to Lemma 20. ◀

We conclude with the following theorem that directly follows by combining together
Lemma 14 and Lemma 21.

▶ Theorem 22. Let G be an n vertex, m edges directed graph with a designated source node s.
Then for any λ, k ⩾ 1, we can compute in O(λ2kmn) time a (λ, k)-FT-BFP for G with at
most λ2kn edges. Moreover, the in-degree of each vertex in this (λ, k)-FT-BFP is bounded
above by λ2k.

5 Matching Lower Bound

We shall now show that for each λ, k, n (n ⩾ 3λ2k+1), there exists a directed graph G with
O(n) vertices whose (λ, k)-FT-BFP must have Ω(2kλn) edges.

The construction of graph G is as follows. Let B1, . . . , Bλ be vertex-disjoint complete
binary trees of height k rooted at vertices r1, . . . , rk, and let s be a new vertex have an
edge to each of the ri’s. Let X denote the set of leaf nodes of these λ trees, and let Y be
another set containing n − (1 +

∑λ
i=1 |V (Bi)|) vertices. Note that |Y | ⩾ n/3. The graph

G is obtained by adding an edge from each x ∈ X to each y ∈ Y . In other words, V (G) =
{s}∪V (B1)∪· · ·∪V (Bλ)∪Y and E(G) = {(s, ri) | 1 ⩽ i ⩽ λ}∪E(B1)∪· · ·∪ (Bλ)∪ (X×Y).

…

y

… …

r2r1 rλ

s

…

x

Y

X

Figure 2 Depiction of lower bound on the size of (λ, k)-FT-BFP when k = 3.

We prove in the following lemma that any (λ, k)-FT-BFP of the above constructed graph
contains at least Ω(2kλn) edges.

▶ Lemma 23. Any (λ, k)-FT-BFP of G must contain Ω(2kλn) edges.

Proof. It is easy to see that the out-edges of s, and the edges of each of the binary tree Bi’s
must be present in a (λ, k)-FT-BFP of G. Thus, let us consider an edge (x, y) ∈ X × Y ,
where x is the leaf node of some binary tree Bi.

ISAAC 2024

9:12 Fault-Tolerant Bounded Flow Preservers

Let P be the unique path from ri to x in Bi, and let F be the set of all those edges
(u, v) ∈ Bi such that u ∈ P and v is the child of u not lying on P . On failure of set
F , there remains a unique path from s to y that passes through edge (s, ri). Moreover,
max-flow(s, y,G \ F) = λ. So, any subgraph H of G not containing (x, y) edge would not
be a (λ, k)-FT-BFP as on failure set F , H would not preserve (s, y)-max-flow.

Hence, any (λ, k)-FT-BFP of G contains at least |X × Y | = 2kλ|Y | ⩾ 2kλn/3 edges. ◀

6 Applications

In this section we present applications of FT-BFP structure.

6.1 Fault-tolerant All-Pairs λ-reachability oracle
Georgiadis et al. [16] showed that for any n vertex directed graph G = (V, E) we can compute
2-reachability information for all pairs of vertices in O(nω log n) time, where ω is the matrix
multiplication exponent. Abboud et at. [1] extended this result to all-pairs λ-reachability by
presenting an algorithm that takes O((λ log n)4λ+o(λ) · nω) time. One of the interesting open
questions is if for any constants λ, k ⩾ 1, we can compute an oracle that given any query
vertex-pair x, y ∈ V and any set F of k edge failures, reports (x, y)-λ-reachability in G \ F

efficiently.
For any vertex x ∈ V , let Hx denote a (λ, k)-FT-BFP of G with x as the source. Our data

structure simply stores the graph family {Hx | x ∈ V }. Given any query vertex-pair (x, y)
and any set F of k edges, we compute the (x, y)-max-flow in Hx by employing the max-flow
algorithm of Chen et al. [10]. The time to compute the max-flow is O(|E(Hx)|1+o(1)), which
is just O(2kλn1+o(1)). Note that the total space used is bounded by O(2kλn2). Therefore,
we have the following theorem.

▶ Theorem 24. Given any directed graph G = (V, E) on n vertices, and any positive
constants λ, k ⩾ 1, we can preprocess G in polynomial time to build an O(n2) size data
structure that, given any query vertex-pair (x, y) and any set F of k edges, can determine
the (x, y)-λ-reachability in G \ F in O(n1+o(1)) time.

6.2 FT-BFPs for graphs with non-unit capacities
We have shown till now that for any digraph G with unit capacities, one can compute a
(λ, k)-FT-BFP with O(2kλn) edges. We shall now show how to extend this result to a
digraph with integer edge capacities such that flow values up to λ are preserved under
bounded capacity decrement.

Let us first formalize the notion of FT-BFP under capacity decrement function.

▶ Definition 25. Let G = (V, E, c) be a directed flow graph such that capacity of any edge is a
positive integer, and let s ∈ V be a designated source vertex. A subgraph H = (V, E0 ⊆ E) of
G is said to be a (λ, k)-Fault-Tolerant Bounded-Flow-Preserver if for any capacity decrement
function I : E(G) → N satisfying

∑
e∈E(G) I(e) ⩽ k, the following holds for the capacity

function c∗ defined as c∗(e) = c(e)− I(e), for e ∈ E:
For every t ∈ V ,

max-flow(s, t,H|c∗) =
{

max-flow(s, t,G|c∗) if max-flow(s, t,G|c∗) ⩽ λ,

At least λ, otherwise;

where, H|c∗ and G|c∗ are respectively the graphs H and G with capacity function c∗.

S. Bansal, K. Choudhary, H. Dhanoa, and H. Wardhan 9:13

Let us now discuss the construction of (λ, k)-FT-BFPs. Let G = (V, E, c) be a digraph
with integer edge capacities. We first transform G into a multigraph G∗ by replacing an edge
(x, y) of capacity c(x, y) by exactly c(x, y) copies of edge (x, y) of unit-capacity. Thus, for
vertex v ∈ V , the s to v max-flow in graphs G and G∗ are identical.

Now, let H∗ be a (λ, k)-FT-BFP of multigraph G∗. Then, a (λ, k)-FT-BFP of G, say
H = (V, E0, c), can be obtained by simply retaining all those edges whose multiplicity in H∗

is non-zero. The graph H will indeed be a (λ, k)-FT-BFP of G since a bounded capacity
decrement in G corresponds to k-edge failures in G∗.

References
1 Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer, Nikos Parotsidis,

Ohad Trabelsi, Przemyslaw Uznanski, and Daniel Wolleb-Graf. Faster algorithms for all-
pairs bounded min-cuts. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and
Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, volume 132 of LIPIcs, pages 7:1–7:15, 2019.
doi:10.4230/LIPICS.ICALP.2019.7.

2 Surender Baswana, Koustav Bhanja, and Abhyuday Pandey. Minimum+1 (s, t)-cuts and
dual edge sensitivity oracle. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff,
editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP
2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 15:1–15:20. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ICALP.2022.15.

3 Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz Khan. Dynamic
DFS in undirected graphs: Breaking the o(m) barrier. SIAM J. Comput., 48(4):1335–1363,
2019. doi:10.1137/17M114306X.

4 Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault-tolerant subgraph for single-
source reachability: General and optimal. SIAM Journal on Computing, 47(1):80–95, 2018.
doi:10.1137/16M1087643.

5 Surender Baswana and Neelesh Khanna. Approximate shortest paths avoiding a failed vertex:
Near optimal data structures for undirected unweighted graphs. Algorithmica, 66(1):18–50,
2013. doi:10.1007/S00453-012-9621-Y.

6 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-edge-fault-tolerant
approximate shortest-path trees. In 33rd Symposium on Theoretical Aspects of Computer
Science, STACS 2016, pages 18:1–18:14, 2016. doi:10.4230/LIPICS.STACS.2016.18.

7 Shiri Chechik. Fault-tolerant compact routing schemes for general graphs. Inf. Comput.,
222:36–44, 2013. doi:10.1016/J.IC.2012.10.009.

8 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault-tolerant spanners for
general graphs. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, pages 435–444, 2009. doi:10.1145/1536414.1536475.

9 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f-sensitivity distance oracles
and routing schemes. In 18th Annual European Symposium on Algorithms - ESA (1), pages
84–96, 2010. doi:10.1007/978-3-642-15775-2_8.

10 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31
- November 3, 2022, pages 612–623. IEEE, 2022. doi:10.1109/FOCS54457.2022.00064.

11 Keerti Choudhary. An optimal dual fault tolerant reachability oracle. In 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, pages 130:1–130:13,
2016. doi:10.4230/LIPICS.ICALP.2016.130.

12 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318, 2008.
doi:10.1137/S0097539705429847.

ISAAC 2024

https://doi.org/10.4230/LIPICS.ICALP.2019.7
https://doi.org/10.4230/LIPICS.ICALP.2022.15
https://doi.org/10.1137/17M114306X
https://doi.org/10.1137/16M1087643
https://doi.org/10.1007/S00453-012-9621-Y
https://doi.org/10.4230/LIPICS.STACS.2016.18
https://doi.org/10.1016/J.IC.2012.10.009
https://doi.org/10.1145/1536414.1536475
https://doi.org/10.1007/978-3-642-15775-2_8
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.4230/LIPICS.ICALP.2016.130
https://doi.org/10.1137/S0097539705429847

9:14 Fault-Tolerant Bounded Flow Preservers

13 Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In
Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing,
PODC 2011, pages 169–178, 2011. doi:10.1145/1993806.1993830.

14 Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Proceedings of
the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pages 506–515,
2009. doi:10.1137/1.9781611973068.56.

15 D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 2010.
16 Loukas Georgiadis, Daniel Graf, Giuseppe F. Italiano, Nikos Parotsidis, and Przemyslaw

Uznanski. All-pairs 2-reachability in o(nˆw log n) time. In Ioannis Chatzigiannakis, Piotr
Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata,
Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80
of LIPIcs, pages 74:1–74:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.ICALP.2017.74.

17 Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. A brief note on
single source fault tolerant reachability, 2019. arXiv:1904.08150.

18 Dana Moshkovitz. The projection games conjecture and the np-hardness of ln n-approximating
set-cover. In Anupam Gupta, Klaus Jansen, José Rolim, and Rocco Servedio, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, pages 276–287, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. doi:10.1007/
978-3-642-32512-0_24.

19 Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583–596, 1992.
doi:10.1007/BF01758778.

20 Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing, PODC 2015, pages 481–490, 2015. doi:10.1145/
2767386.2767408.

21 Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In Algorithms - ESA
2013 - 21st Annual European Symposium, Proceedings, pages 779–790, 2013. doi:10.1007/
978-3-642-40450-4_66.

22 Merav Parter and David Peleg. Fault tolerant approximate BFS structures. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pages
1073–1092, 2014. doi:10.1137/1.9781611973402.80.

23 Jan van den Brand and Thatchaphol Saranurak. Sensitive distance and reachability oracles
for large batch updates. In 60th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 424–435, 2019.
doi:10.1109/FOCS.2019.00034.

https://doi.org/10.1145/1993806.1993830
https://doi.org/10.1137/1.9781611973068.56
https://doi.org/10.4230/LIPIcs.ICALP.2017.74
https://doi.org/10.4230/LIPIcs.ICALP.2017.74
https://arxiv.org/abs/1904.08150
https://doi.org/10.1007/978-3-642-32512-0_24
https://doi.org/10.1007/978-3-642-32512-0_24
https://doi.org/10.1007/BF01758778
https://doi.org/10.1145/2767386.2767408
https://doi.org/10.1145/2767386.2767408
https://doi.org/10.1007/978-3-642-40450-4_66
https://doi.org/10.1007/978-3-642-40450-4_66
https://doi.org/10.1137/1.9781611973402.80
https://doi.org/10.1109/FOCS.2019.00034

Optimal Sensitivity Oracle for Steiner Mincut
Koustav Bhanja # Ñ

Department of CSE, IIT Kanpur, India

Abstract
Let G = (V, E) be an undirected weighted graph on n = |V | vertices and S ⊆ V be a Steiner set.
Steiner mincut is a well-studied concept, which also provides a generalization to both (s, t)-mincut
(when |S| = 2) and global mincut (when |S| = n). Here, we address the problem of designing a
compact data structure that can efficiently report a Steiner mincut and its capacity after the failure
of any edge in G; such a data structure is known as a Sensitivity Oracle for Steiner mincut.

In the area of minimum cuts, although many Sensitivity Oracles have been designed in unweighted
graphs, however, in weighted graphs, Sensitivity Oracles exist only for (s, t)-mincut [Annals of
Operations Research 1991, NETWORKS 2019, ICALP 2024], which is just a special case of Steiner
mincut. Here, we generalize this result from |S| = 2 to any arbitrary set S ⊆ V , that is, 2 ≤ |S| ≤ n.

We first design an O(n2) space Sensitivity Oracle for Steiner mincut by suitably generalizing the
approach used for (s, t)-mincuts [Annals of Operations Research 1991, NETWORKS 2019]. However,
the main question that arises quite naturally is the following.

Can we design a Sensitivity Oracle for Steiner mincut that breaks the O(n2) bound on space?

In this article, we present the following two results that provide an answer to this question.
1. Sensitivity Oracle: Assuming the capacity of every edge is known,

a. there is an O(n) space data structure that can report the capacity of Steiner mincut in O(1)
time and

b. there is an O(n(n − |S| + 1)) space data structure that can report a Steiner mincut in O(n)
time

after the failure of any edge in G.
2. Lower Bound: We show that any data structure that, after the failure of any edge in G,

can report a Steiner mincut or its capacity must occupy Ω(n2) bits of space in the worst case,
irrespective of the size of the Steiner set.

The lower bound in (2) shows that the assumption in (1) is essential to break the Ω(n2) lower
bound on space. Sensitivity Oracle in (1.b) occupies only subquadratic, that is O(n1+ϵ), space if
|S| = n − nϵ + 1, for every ϵ ∈ [0, 1). For |S| = n − k for any constant k ≥ 0, it occupies only O(n)
space. So, we also present the first Sensitivity Oracle occupying O(n) space for global mincut. In
addition, we are able to match the existing best-known bounds on both space and query time for
(s, t)-mincut [Annals of Operations Research 1991, NETWORKS 2019] in undirected graphs.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms; Theory of
computation → Network flows

Keywords and phrases mincut, (s, t)-mincut, Steiner mincut, fault tolerant structures, data structure,
vital edges, vitality, sensitivity oracle

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.10

Related Version Full Version: https://arxiv.org/abs/2409.17715

Funding This research work is partially funded by Research-I Foundation of the Department of
CSE, IIT Kanpur, India.

Acknowledgements I am grateful to my doctoral advisor Prof. Surender Baswana for reviewing
this article and providing valuable feedback on improving its readability. I also want to thank an
anonymous reviewer for his/her insightful comments on this article.

© Koustav Bhanja;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 10; pp. 10:1–10:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kbhanja@cse.iitk.ac.in
https://sites.google.com/view/koustav-bhanja/home
https://orcid.org/0000-0003-0902-0916
https://doi.org/10.4230/LIPIcs.ISAAC.2024.10
https://arxiv.org/abs/2409.17715
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Optimal Sensitivity Oracle for Steiner Mincut

1 Introduction

In the real world, networks (graphs) are often subject to the failure of edges and vertices due
to a variety of factors, such as physical damage, interference, or other disruptions. This can
lead to changes in the solution to several graph problems. While these failures can happen
at any location in the network at any time, they are typically short-lived. Naturally, it
requires us to have compact data structures that can efficiently report the solution to the
given graph problem (without computing from scratch) once any failure has occurred. Such
data structures are known as Sensitivity Oracles for several graph problems. There exist
elegant Sensitivity Oracles for many fundamental graph problems, such as shortest paths
[6, 10], reachability [22, 13], traversals [25, 5], etc.

The minimum cut of a graph is also a fundamental concept of graph theory. Moreover, it
has a variety of practical applications in the real world [1]. Designing Sensitivity Oracles
for various minimum cuts of a graph has been an emerging field of research for the past few
decades [4, 12, 19, 17, 7, 9, 8, 3]. There are two well-known mincuts of a graph. They are
global mincut and (s,t)-mincut. Here, we design the first Sensitivity Oracle for global mincut
in undirected weighted graphs that can handle the failure of any edge. The concept of Steiner
mincut is also well-studied in the area of minimum cuts [18, 16, 19, 8, 14, 21, 23]; moreover,
it has global mincut, as well as (s, t)-mincut, as just a special corner case. In this article, as
our main result, we present the first Sensitivity Oracle for Steiner mincut for handling the
failure of any edge in undirected weighted graphs. Interestingly, our result bridges the gap
between the two extreme scenarios of Steiner mincut while matching their bounds, namely,
(s, t)-mincut [2, 12] and global mincut (designed in this article). In addition, it also provides
the first generalization from unweighted graphs [8, 18, 16, 19] to weighted graphs.

Let G = (V, E) be an undirected graph on n = |V | vertices and m = |E| edges with
non-negative real values assigned as the capacity to edges. We denote the capacity of an
edge e by w(e). Let S ⊆ V be a Steiner set of G such that |S| ≥ 2. A vertex s is called a
Steiner vertex if s ∈ S; otherwise, s is called a nonSteiner vertex.

▶ Definition 1 (Steiner cut). A nonempty set C ⊂ V is said to be a Steiner cut if there is at
least one pair of Steiner vertices s, s′ such that s ∈ C and s′ /∈ C.

For S = V , a Steiner cut is a (global) cut. Similarly, for S = {s, t}, a Steiner cut is an
(s, t)-cut. A cut C is said to separate a pair of vertices u, v if u ∈ C and v ∈ C = V \ C or
vice versa. An edge e = (u, v) is said to contribute to a cut C if C separates endpoints u, v

of e. The capacity of a cut C, denoted by c(C), is the sum of capacities of all contributing
edges of C. A Steiner cut of the least capacity is known as the Steiner mincut, denoted
by S-mincut. Let λS be the capacity of S-mincut. The problem of designing a Sensitivity
Oracle for S-mincut for handling the failure of any edge is defined as follows.

▶ Definition 2 (single edge Sensitivity Oracle for Steiner mincut). For any graph G, a single
edge Sensitivity Oracle for Steiner mincut is a compact data structure that can efficiently
report a Steiner mincut and its capacity after the failure of any edge in G.

For unweighed graphs, there exist single edge Sensitivity Oracles for global mincut [15],
(s, t)-mincut [26, 4], and Steiner mincut [18, 16, 8]. Unfortunately, for weighted graphs, in
the area of minimum cuts, the only existing results are single edge Sensitivity Oracles for
(s, t)-mincut [2, 12, 3]. For undirected weighted graphs, Ausiello et al. [2], exploiting the
Ancestor tree data structure of Cheng and Hu [12], designed the first single edge Sensitivity
Oracle for (s, t)-mincut. Their Sensitivity Oracle occupies O(n2) space. After the failure

K. Bhanja 10:3

of any edge, it can report an (s, t)-mincut C and its capacity in O(|C|) and O(1) time,
respectively. Recently, Baswana and Bhanja [3] complemented this result by showing that
Ω(n2 log n) bits of space is required in the worst case, irrespective of the query time.

For Steiner mincuts, it follows from the above discussion that the existing Sensitivity
Oracles are either for undirected unweighted graphs or only for a special case, when |S| = 2,
in weighted graphs. Therefore, to provide a generalization of these results to any Steiner set,
the following is an important question to raise.

Does there exist a single edge Sensitivity Oracle for S-mincut in undirected weighted graphs?

We show that the approach taken by Ausiello et al. [2] can be generalized from S = {s, t} to
any set S ⊆ V . This answers the above-mentioned question in the affirmative and leads to
the following result.

▶ Theorem 3. For any undirected weighted graph G on n = |V | vertices, for every Steiner
set S, there exists an O(n2) space data structure that, after the failure of any edge in G, can
report an S-mincut C and its capacity in O(|C|) time and O(1) time respectively.

The space and query time of the Sensitivity Oracle in Theorem 3 match with the existing
optimal results for (s, t)-mincut [12, 2, 3]. The lower bound of Ω(n2 log n) bits of space in [3]
is only for |S| = 2. To the best of our knowledge, no lower bound is known for any |S| > 2.
Therefore, the main question that we address in this article arises quite naturally as follows.

▶ Question 1. For undirected weighted graphs, does there exist a single edge Sensitivity
Oracle for S-mincut that breaks the quadratic bound on space and still achieves optimal query
time if |S| > 2?

1.1 Our Results
A Sensitivity Oracle in a weighted graph addresses queries in a more generic way [3]. Given
any edge e and any value ∆ satisfying ∆ ≥ 0, the aim is to efficiently report the solution of
a given problem after reducing the capacity of edge e by ∆. In this generic setting, using
the well-known Gomory and Hu Tree data structure [20], we design the first single edge
Sensitivity Oracle for global mincut in weighted graphs that achieves optimal query time.

▶ Theorem 4 (Sensitivity Oracle for Global Mincut). For any undirected weighted graph
G = (V, E) on n = |V | vertices, there is an O(n) space data structure that, given any edge e

in G and any value ∆ satisfying 0 ≤ ∆ ≤ w(e), can report the capacity of global mincut in
O(1) time and a global mincut C in O(|C|) time after reducing the capacity of edge e by ∆.

The result in Theorem 4 matches the bounds on both space and query time with the
best-known single edge Sensitivity Oracles for global mincut in unweighted graphs [15].

Now, in order to bridge the gap between the two extreme scenarios of Steiner set (|S| = n

and |S| = 2) while matching their bounds, we present our main result that breaks the O(n2)
space bound of Theorem 3, and answers Question 1 in the affirmative.

▶ Theorem 5 (Sensitivity Oracle for Steiner Mincut). Let G = (V, E) be an undirected weighted
graph on n = |V | vertices and m = |E| edges. For any Steiner set S of G,
1. there is an O(n) space rooted tree T (G) that, given any edge e ∈ E and any value ∆

satisfying 0 ≤ ∆ ≤ w(e), can report the capacity of S-mincut in O(1) time after reducing
the capacity of edge e by ∆ and

ISAAC 2024

10:4 Optimal Sensitivity Oracle for Steiner Mincut

2. there is an O(n(n− |S|+ 1)) space data structure F(G) that, given any edge e ∈ E and
any value ∆ satisfying 0 ≤ ∆ ≤ w(e), can report an S-mincut C in O(|C|) time after
reducing the capacity of edge e by ∆.

For any ϵ ∈ [0, 1), the space occupied by the single edge Sensitivity Oracle for S-mincut in
Theorem 5(2) is subquadratic, that is O(n1+ϵ), for |S| = n− nϵ + 1. Moreover, it approaches
to O(n) as |S| tends to n. In particular, for |S| = n− k, for any constant k ≥ 0, it occupies
only O(n) space.

Observe that our results in Theorem 5 interestingly match the bounds on both space and
query time for the two extreme scenarios of the Steiner set. On one extreme (|S| = n), it
occupies O(n) space for global mincut. On the other extreme (|S| = 2), it occupies O(n2)
space, which match the best-known existing results for (s, t)-mincut [2, 12, 3]. Finally, the
time taken by our Sensitivity Oracle to answer any query is also worst-case optimal.

We also provide lower bounds on both space and query time of Sensitivity Oracles for
S-mincut. Our first lower bound is for reporting the capacity of S-mincut and our second
lower bound is for reporting an S-mincut.

▶ Theorem 6 (Lower Bound for Reporting Capacity). Let D be any data structure that can
report the capacity of Steiner mincut after the failure of any edge for undirected weighted
graphs on n vertices. Data structure D must occupy Ω(n2 log n) bits of space in the worst
case, irrespective of the query time and the size of the Steiner set.

For reporting the capacity of S-mincut, Theorem 6 provides a generalization of the existing
lower bound on both space and time for (s, t)-mincut by Baswana and Bhanja [3]. However,
for reporting an S-mincut, no lower bound on space or query time for single edge Sensitivity
Oracle was known till date, even for the two extreme scenarios of Steiner set. So, the following
theorem is the first lower bound for reporting an S-mincut after the failure of any edge.

▶ Theorem 7 (Lower Bound for Reporting Cut). Let D be any data structure that can report
a Steiner mincut C in O(|C|) time after the failure of any edge for undirected weighted
graphs on n vertices. Data structure D must occupy Ω(n2) bits of space in the worst case,
irrespective of the size of the Steiner set.

▶ Remark 8. It is assumed in Theorem 5 that the query edge e is present in G and the change
in capacity (that is, ∆) provided with the query is at most w(e). So, the lower bounds of
Ω(n2) bits of space in Theorem 6 and Theorem 7 do not violate the sub-quadratic space data
structures in Theorem 5. Moreover, the assumption in Theorem 5 seems practically justified.
This is because, as discussed in [3], in the real world, the capacity of an edge reduces only if
the edge actually exists in the graph, and furthermore, it can reduce by a value at most the
capacity of the edge.

1.2 Related Works
In the seminal works by Dinitz and Vainshtein [18, 16, 19], they designed an O(min{nλS , m})
space data structure, known as Connectivity Carcass, for storing all S-mincuts of an un-
weighted undirected graph. It can report an S-mincut in O(m) time and its capacity in O(1)
time. Baswana and Pandey [8], using Connectivity Carcass as the foundation, designed an
O(n) space single edge Sensitivity Oracle for S-mincut in undirected unweighted graphs that
also reports an S-mincut in O(n) time. Their result matches the bounds on both space and
time for the existing result on the two extreme scenarios of S-mincut, namely, (s, t)-mincut
[26] and global mincut [15]. The result on S-mincut in [8] also acts as the foundation of
single edge Sensitivity Oracles for all-pairs mincut [8]

K. Bhanja 10:5

For directed weighted graphs, Baswana and Bhanja [3] presented a single edge Sensitivity
Oracle for (s, t)-mincut that matches both space and query time of the undirected weighted
graph results [12, 2].
Providing a generalization from the two extreme scenarios of the Steiner set (|S| = n

and |S| = 2) is also addressed for various problems, namely, computing Steiner mincut
[18, 19, 14, 21, 23], Steiner connectivity augmentation and splitting-off [11], construction of
a cactus graph for Steiner mincuts [19, 21].

1.3 Organization of the Article

This article is organized as follows. Section 2 contains the basic preliminaries. We first
construct an O(n2) space single edge Sensitivity Oracle for Steiner mincut in Section 3. In
Section 4, we design an O(n) space single edge Sensitivity Oracle for reporting only the
capacity of Steiner mincut. A linear space single edge Sensitivity Oracle for global mincut
is designed in Section 5. Our main result on the subquadratic space single edge Sensitivity
Oracle for Steiner mincut is developed in Section 6. Finally, we conclude in Section 7. The
proofs of the lower bounds are provided in the full version of this article.

2 Preliminaries

In this section, we define a set of basic notations and properties of cuts. Let G \ {e} denote
the graph obtained from G after the removal of edge e. We now define the concept of crossing
cuts, introduced by Dinitz, Karzanov, and Lomonosov [15].

▶ Definition 9 (crossing cuts). A pair of cuts C and C ′ in G is said to be crossing if each of
the four sets C ∩ C ′, C \ C ′, C ′ \ C, and C ∪ C ′ is nonempty.

The following concept of mincut for an edge and vital edges are to be used crucially in the
construction of our data structure.

▶ Definition 10 (Mincut for an edge). A Steiner cut C is said to be a mincut for an edge e

if e contributes to C and c(C) ≤ c(C ′) for every Steiner cut C ′ in which e contributes.

▶ Definition 11 (Vital Edge). Let e be an edge and C be a mincut for edge e. Edge e is said to
be a vital edge if its removal reduces the capacity of Steiner mincut, that is, c(C)−w(e) < λS.

We now define a special mincut for an edge.

▶ Definition 12 (Nearest mincut for an edge). A mincut C for an edge e = (x, y) ∈ E with
x ∈ C is said to be a nearest mincut for e if there is no mincut C ′ for e such that x ∈ C ′

and C ′ ⊂ C. The set of all nearest mincuts for an edge e is denoted by N(e).

▶ Lemma 13 (Sub-modularity of Cuts (Problem 48(a,b) in [24])). For any two sets A, B ⊂ V ,
1. c(A) + c(B) ≥ c(A ∩B) + c(A ∪B) and
2. c(A) + c(B) ≥ c(A \B) + c(B \A).

▶ Definition 14 (Laminar family of cuts). A set of cuts L is said to form a laminar family if,
for any pair of cuts C1, C2 ∈ L, exactly one of the three is true – C1 ∩ C2 is an empty set,
C1 ⊆ C2, and C2 ⊆ C1.

ISAAC 2024

10:6 Optimal Sensitivity Oracle for Steiner Mincut

A rooted tree TL representing a laminar family L. For any given laminar family L of
cuts in G, we can construct an O(n) space rooted tree TL that stores every cut belonging
to L as follows. Every vertex x of G is mapped to a unique node in TL, denoted by ϕL(x).
Every node µ in TL represents a unique cut C in L as follows. Cut C is the set of vertices
mapped to the subtree rooted at µ (including µ). For any pair of nodes µ and ν in TL, µ is
a child of ν if and only if the cut represented by µ is a maximal proper subset of the cut
represented by ν. The minimal cuts of L are represented by leaf nodes of TL. For any vertex
x in G, let SubTree(x) denote the set of all vertices mapped to the subtree rooted at ϕL(x)
(including ϕL(x)) in TL. This leads to the following lemma.

▶ Lemma 15. For any laminar family L of cuts in G, there exists an O(n) space rooted tree
TL such that a cut C ∈ L if and only if there exists a node µ (except root node) of TL and C

is the set of vertices mapped to the subtree rooted at µ (including node µ).

3 An O(n2) Space Sensitivity Oracle for Steiner Mincut

In this section, we first provide the limitations of the previous results in unweighted graphs.
Later, we design an O(n2) space single edge Sensitivity Oracle for S-mincut.

Limitations of the existing results. For unweighted graphs, the following property is used
crucially to design every existing single edge Sensitivity Oracle.
Property P1: Failure of an edge e reduces the capacity of S-mincut if and only if edge e

contributes to an S-mincut.
Dinitz and Vainshtein [18, 16, 19] designed the following quotient graph, known as the flesh
graph, of G. Flesh graph is obtained by contracting every pair of vertices in G that are
not separated by any S-mincut. The construction ensures that every pair of vertices in
flesh is separated by an S-mincut of G. Every vertex in G is mapped to a unique vertex in
flesh. Therefore, the endpoints of any edge e are mapped to different vertices in flesh if and
only if failure of e reduces capacity of S-mincut. Thus, by Property P1, storing the O(n)
space mapping of vertices of G to the vertices of flesh is sufficient to answer the capacity of
S-mincut in O(1) time after the failure of any edge. In addition, flesh graph can be used to
report an S-mincut after the failure of any edge in G in O(m) time.
Flesh graph is one of the three components of Connectivity Carcass designed by Dinitz
and Vainshtein [18, 16, 19]; the other two components are Skeleton and Projection mapping.
Recently, Baswana and Pandey [8], exploiting the properties of all the three components of
Connectivity Carcass established an ordering among the vertices of flesh graph. By using
Property P1, they showed that this ordering, along with Skeleton and Projection mapping,
can be used to design an O(n) space single edge Sensitivity Oracle for S-mincut in unweighted
graphs. This single edge Sensitivity Oracle can report an S-mincut in O(n) time.

Unfortunately, for weighted graphs, it is easy to observe that multiple edges can exist
that do not contribute to any S-mincut but failure of each of them reduces the capacity
of S-mincut. Hence, in weighted graphs, Property P1 no longer holds. So, the existing
structures are not suitable for handling the failure of weighted edges. It requires us to explore
the structure of mincuts for every edge whose both endpoints belong to the same node of
flesh graph. Moreover, the capacity of mincut for these edges can be quite large compared to
the capacity of S-mincut.

K. Bhanja 10:7

Sensitivity Oracle for Steiner Mincut: O(n2) Space
We now give a proof of Theorem 3 by designing an O(n2) space single edge Sensitivity Oracle
for S-mincut. Let F be any arbitrary real-valued function defined on cuts. Cheng and
Hu [12] presented the following result. There is an O(n2) space data structure, known as
Ancestor tree, that, given any pair of vertices u and v, reports a cut C of the least capacity
(F -value) separating u, v in O(|C|) time and the capacity of C in O(1) time.

In order to design Ancestor tree for Steiner cuts, similar to (s, t)-mincuts given by Ausiello
et al. [2], we define function F for Steiner cuts as follows.

For a set C ⊂ V , F (C) =
{

c(C), if C is a Steiner cut
∞, otherwise.

(1)

Let e = (x, y) be any failed edge. Ancestor tree can report a cut C of the least capacity
separating x and y in O(|C|) time and its capacity in O(1) time. By Equation 1, C is also a
Steiner cut separating x and y. Therefore, by Definition 10, C is a mincut for edge e. Hence,
the new capacity of S-mincut is either c(C)− w(e) or remains λS if c(C)− w(e) ≥ λS . By
storing the capacities of all edges of G, we can determine whether c(C)− w(e) < λS in O(1)
time. If the capacity of S-mincut reduces, then we can report C in O(|C|) time; otherwise
report an S-mincut Cm in O(|Cm|) time. This completes the proof of Theorem 3.

4 A Sensitivity Oracle for Reporting Capacity of Steiner Mincut

In this section, we address the problem of reporting the capacity of S-mincut after reducing
the capacity of an edge e ∈ E by a value ∆ satisfying 0 ≤ ∆ ≤ w(e). We denote this
query by cap(e, ∆). Observe that a trivial data structure for answering query cap occupies
O(m) space if we store the capacity of mincut for each vital edge in G. For |S| = 2 in
directed weighted graphs, Baswana and Bhanja [3] designed an O(n) space data structure
that implicitly stores all vital edges for (s, t)-mincut and the capacity of their mincuts. We
extend their approach from vital edges to any set of edges in undirected weighted graphs
in order to establish the following. For any Steiner set S, with 2 ≤ |S| ≤ n, there exists an
O(n) space data structure that can answer query cap in O(1) time.

Let E ⊆ E and V (E) denote the smallest set of vertices such that, for each edge (u, v) ∈ E ,
both u and v belongs to V (E). We first design an O(|V (E)|) space rooted full binary tree for
answering query cap for all edges in E . In Section 6, this construction also helps in designing
a compact structure for reporting mincuts for a special subset of edges. Later in this section,
we show an extension to O(n) space rooted full binary tree for answering query cap for all
edges in E.

Let C(e) denote a mincut for an edge e. Note that C(e) is a Steiner cut as well
(Definition 10). We say that an edge e belongs to a set U ⊂ V if both endpoints of e belong
to U . Suppose C(e) is a mincut for an edge e belonging to V (E) such that, for every other
edge e′ ∈ V (E), c(C(e)) ≤ c(C(e′)). Let e′ be an edge from V (E). If e′ contributes to C(e),
it follows from the selection of edge e that C(e) is a Steiner cut of the least capacity to
which e′ contributes. Hence, C(e) is a mincut for edge e′ as well. This ensures that C(e)
partitions the set of all edges belonging to V (E) into three sets – edges of V (E) belonging to
C(e) ∩ V (E), edges of V (E) belonging to C(e) ∩ V (E), and edges of V (E) that contribute
to C(e). This leads to a recursive procedure (Algorithm 1) for the construction of a tree T .
Each internal node µ of tree T has three fields – (i) µ.cap stores the capacity of mincut for
the selected edge at µ, (ii) µ.left points to the left child of µ, and (iii) µ.right points to
the right child of µ. Each vertex u ∈ V (E) is mapped to a leaf node of T , denoted by L(u).
We invoke Algorithm 1 with U = V (E).

ISAAC 2024

10:8 Optimal Sensitivity Oracle for Steiner Mincut

Algorithm 1 Construction of Tree T .

1: procedure SteinerTreeConstruction(U)
2: Create a node ν;
3: For any set U ⊆ V , let E(U) denote the edges whose both endpoints belong to U ;
4: if there is no edge in E(U) then
5: for each vertex x ∈ U do L(x)← ν;
6: end for
7: else
8: Select an edge e ∈ E(U) such that c(C(e)) ≤ c(C(e′)), ∀ edge e′ ∈ E(U);
9: Assign ν.cap← c(C(e));

10: ν.left← SteinerTreeConstruction(U ∩ C(e));
11: ν.right← SteinerTreeConstruction(U ∩ C(e));
12: end if
13: return ν;
14: end procedure

Observe that tree T resulting from Algorithm 1 is a full binary tree. There are O(|V (E)|)
leaf nodes. So, the space occupied by the tree is O(|V (E)|).

Answering Query cap(e = (x, y), ∆). Suppose edge e belongs to E . Let µ be the lowest
common ancestor (lca) of L(x) and L(y) in T . It follows from the construction of tree
T that field µ.cap at node µ in T stores the capacity of mincut for edge e. Therefore, if
µ.cap − ∆ < λS , then we report µ.cap as the new capacity of S-mincut; otherwise, the
capacity of S-mincut does not change. It leads to the following lemma.

▶ Lemma 16. Let G = (V, E) be an undirected weighted graph on n = |V | vertices. For any
Steiner set S ⊆ V and a set of edges E ⊆ E, there is an O(|V (E)|) space full binary tree TE
that, given any edge e ∈ E and any value ∆ satisfying 0 ≤ ∆ ≤ w(e), can report the capacity
of S-mincut in O(1) time after reducing the capacity of edge e by ∆.

We now answer query cap(e, ∆) where edge e ∈ E. Observe that edge e in query cap can
be either a vital or a nonvital edge. In order to determine whether an edge is vital or not,
we design a full binary tree TE by invoking Algorithm 1 with U = V since E = E. Let us
denote the tree by T (G). By Lemma 16, the size of tree T (G) is O(n). It is now easy to
observe that an edge e is a vital edge in graph G if and only if the capacity of the Steiner
mincut in graph G \ {e} is µ.cap− w(e) < λS , where node µ is the lca(L(x),L(y)). This
leads to the following lemma.

▶ Lemma 17. Let G = (V, E) be an undirected weighted graph on n = |V | vertices. For any
Steiner set S ⊆ V , there is an O(n) space full binary tree T (G) that, given any edge e ∈ E

and any value ∆ satisfying 0 ≤ ∆ ≤ w(e), can report the capacity of S-mincut in O(1) time
after reducing the capacity of edge e by ∆.

Lemma 17 completes the proof of Theorem 5(1).

▶ Remark 18. Ancestor tree of Cheng and Hu [12] can also be used to design an O(n) space
data structure for answering query cap in O(1) time. However, Ancestor tree alone does not
seem sufficient to establish Lemma 16, which is used crucially to achieve the subquadratic
space single edge Sensitivity Oracle for S-mincut stated in Theorem 5.

K. Bhanja 10:9

5 An O(n) Space Sensitivity Oracle for Global Mincut

The well-known (s, t)-mincut is one extreme scenario of S-mincut when |S| = 2. In weighted
graphs, designing a single edge Sensitivity Oracle for (s, t)-mincut has been addressed quite
extensively [2, 12, 3]. Moreover, each of them occupies O(n2) space. However, to this day, no
nontrivial single edge Sensitivity Oracle exists for global mincut, which is the other extreme
scenario of S-mincut when |S| = n. We now present the first single edge Sensitivity Oracle
for global mincut that occupies only O(n) space and achieves optimal query time.

Let λV be the capacity of global mincut. Given any edge e, we want to determine the
capacity of mincut for edge e for Steiner set S = V . Observe that, for S = V , every cut in
the graph is a Steiner cut (or global cut). Exploiting this insight, we can state the following
interesting relation between global mincut and all-pairs mincuts (or (u, v)-mincut, for every
u, v ∈ V).

▶ Lemma 19. For an edge (u, v), C is a cut of the least capacity that separates u, v if and
only if C is a mincut for edge (u, v).

Gomory and Hu [20] designed the following tree data structure for all-pairs mincuts, which
is widely known as Gomory Hu Tree.

▶ Theorem 20 (Gomory Hu Tree [20]). For any undirected weighted graph G = (V, E)
on n = |V | vertices, there is an O(n) space undirected weighted tree TGH on vertex set V

that satisfies the following property. Let u, v be any pair of vertices in G. A cut of the
least capacity separating u, v in TGH is also a cut of the least capacity separating u, v in G.
Moreover, TGH can report a cut C of the least capacity separating u, v in O(|C|) time and
its capacity in O(1) time.

Let TGH be a Gomory Hu Tree of G. By Theorem 20, for every pair of vertices u, v in
G, TGH stores a cut of the least capacity separating u, v. By Lemma 19, it follows that, for
S = V , TGH stores a mincut for every edge in G. Hence, it acts as a single edge Sensitivity
Oracle for global mincut and can report a mincut C for any given edge e in O(|C|) time and
its capacity in O(1) time. Therefore, after reducing w(e) by a value ∆, if c(C)−∆ < λV , we
can report a global mincut and its capacity optimally using O(n) space. This establishes the
results in Theorem 4.

Now, for both extreme scenarios of Steiner mincuts, we have a single edge Sensitivity
Oracle. Interestingly, the Sensitivity Oracle for global mincut achieves better than quadratic
space. The question that arises is how to generalize these results to any Steiner set.

6 A Sensitivity Oracle for Steiner Mincut: Breaking Quadratic Bound

In this section, we address the problem of reporting an S-mincut after reducing the capacity
of any given edge e ∈ E by any given value ∆ satisfying 0 < ∆ ≤ w(e). We denote this
query by cut(e, ∆). Our objective is to design a data structure that breaks O(n2) bound
on space for efficiently answering query cut. A simple data structure can be designed by
augmenting tree T (G) in Theorem 5(1) as follows. For each internal node µ of tree T (G),
Algorithm 1 selects an edge e in Step 7 and stores the capacity of mincut C(e) for edge e in
µ.cap. Observe that if we augment node µ with C(e), then it helps in answering query cut
as well. However, the augmented tree occupies O(n2) space, which defeats our objective.

ISAAC 2024

10:10 Optimal Sensitivity Oracle for Steiner Mincut

For global mincut (S = V), observe that Gomory Hu Tree essentially acts as a data
structure that stores at least one mincut for every edge quite compactly. To design a more
compact data structure for answering query cut for S-mincut compared to Theorem 3, we
take an approach of designing a data structure that can compactly store at least one mincut
for every edge.

We begin by a classification of all edges of graph G. This classification not only helps in
combining the approaches taken for (s, t)-mincut and global mincut but also provides a way
to design a compact data structure for efficiently answering query cut for any Steiner set S.

A Classification of All Edges. An edge e1 in G belongs to
Type-1 if both endpoints of e1 belong to V \ S.
Type-2 if both endpoints of e1 belong to S.
Type-3 if exactly one endpoint of e1 belongs to S.

Given any edge e1, we can classify e1 into one of the above-mentioned three types in O(1)
time using sets V and S. We can take care of edges from Type-1 by extending an approach
for (s, t)-mincut given by Baswana and Bhanja [3]. Similarly, we can handle edges from
Type-2 by extending the approach used for global mincut (Theorem 4). However, the main
challenge arises in designing a data structure for compactly storing a mincut for all edges
from Type-3. We now design a compact data structure for efficiently answering query cut
for each type of edges separately.

6.1 An O((n − |S|)n) Space Data Structure for All Edges from Type-1
We aim to design a data structure for answering query cut for all edges from Type-1. Each
edge from Type-1 has both endpoints in set V \S. The number of vertices in V \S is n− |S|.
Therefore, trivially storing a mincut for every edge would occupy O((n−|S|)2n) space, which
is O(n3) for |S| = k for any constant k ≥ 2. Exploiting the fact that the number of distinct
endpoints of all edges from Type-1 is at most n− |S|, we design an O(n(n− |S|)) space data
structure for all edges from Type-1 using Algorithm 1 and Lemma 16 as follows.

Let E1 be the set of all edges from Type-1. It follows from Lemma 16 that, using
Algorithm 1, it is possible to design a rooted full binary tree TE1 occupying O(n− |S|) space
for answering query cap(e, ∆) when edge e is from Type-1. We augment each internal node
µ of TE1 with a mincut for the edge selected by Algorithm 1 (in Step 7) while processing
node µ. The resulting structure occupies O((n− |S|)n) space and acts as a data structure
for answering query cut for all edges from Type-1. Hence the following lemma holds.

▶ Lemma 21 (Sensitivity Oracle for Type-1 Edges). For any Steiner set S ⊆ V , there is
an O((n − |S|)n) space data structure that, given any edge e from Type-1 and any value
∆ satisfying 0 ≤ ∆ ≤ w(e), can report an S-mincut C in O(|C|) time after reducing the
capacity of edge e by ∆.

6.2 An O(n) Space Data Structure for All Edges from Type-2
In this section, we design a data structure for answering query cut for all edges from Type-2.
For each edge from Type-2, both endpoints are Steiner vertices. So, the number of distinct
endpoints of edges from Type-2 can be at most |S|. Trivially, storing a mincut for every edge
from Type-2 would occupy O(|S|2n) space, which is O(n3) if |S| = O(n). In a similar way as
designing TE1 for all edges from Type-1 (Lemma 21), by using Lemma 16 and Algorithm 1,
it is possible to design an O(|S|n) space data structure for answering query cut for all edges

K. Bhanja 10:11

from Type-2. Unfortunately, it defeats our objective because, for |S| = n or global mincuts,
it occupies O(n2) space. Interestingly, by exploiting the fact that both the endpoints of every
edge from Type-2 are Steiner vertices, we are able to show that a Gomory Hu Tree of
graph G is sufficient for answering query cut for all edges from Type-2.

▶ Lemma 22. Let TGH be a Gomory Hu Tree of G. Then, for any edge e = (u, v) from
Type-2, a cut of the least capacity separating u and v in TGH is a mincut for edge e in G.

Proof. Let TGH be a Gomory Hu Tree of G. By Theorem 20, TGH stores a cut of the least
capacity separating every pair of vertices in G. Let (u, v) be any edge from Type-2. Suppose
C is a cut of the least capacity separating u and v in TGH . So, edge (u, v) is contributing to
C in G. By definition of Type-2 edges, both u and v are Steiner vertices. Therefore, C is a
Steiner cut of G in which edge (u, v) is contributing. It follows from Theorem 20 that C is
also a cut of the least capacity in G that separates u and v. So, C is also a Steiner cut of the
least capacity in which edge (u, v) is contributing in G. Hence, C is a mincut for (u, v). ◀

Let e = (u, v) be any edge from Type-2 and TGH be a Gomory Hu Tree of G. By Theorem
20, TGH can report in O(|C|) time a cut C of the least capacity in TGH that separates u and
v. By Lemma 22, C is a mincut for edge e in G. This establishes the following lemma.

▶ Lemma 23 (Sensitivity Oracle for Type-2 Edges). For any Steiner set S ⊆ V , there is an
O(n) space data structure that, given any edge e from Type-2 and any value ∆ satisfying
0 ≤ ∆ ≤ w(e), can report an S-mincut C in O(|C|) time after reducing the capacity of edge
e by ∆.

For global mincut or S = V , both endpoints of every edge are Steiner vertices. Therefore,
Theorem 4 can also be seen as a corollary of Lemma 23.

6.3 An O((n − |S|)n) Space Data Structure for All Edges from Type-3
The objective is to design a data structure for answering query cut for all edges from Type-3.
Observe that the size of the smallest set of vertices that contains all the endpoints of all edges
from Type-3 can be Ω(n). Therefore, using Lemma 16 and Algorithm 1, we can have an O(n2)
space data structure, which is no way better than the trivial data structure for answering
query cut (Theorem 3). Now, each edge from Type-3 has exactly one nonSteiner endpoint.
So, unlike edges from Type-2, Lemma 22 no longer holds for edges from Type-3. This shows
the limitations of the approaches taken so far in designing a data structure for answering
query cut. Trivially storing a mincut for every edge from Type-3 requires O((n− |S|)n|S|)
space. For |S| = n

k , any constant k ≥ 2, it occupies O(n3) space. Interestingly, we present
a data structure occupying only O((n− |S|)n) space for answering query cut for all edges
from Type-3.

For any edge e1 = (x, u) from Type-3 with x ∈ S, without loss of generality, we assume
that any mincut C for edge e1 contains the Steiner vertex x, otherwise consider C. Note
that the set of global mincuts and (s, t)-mincuts are closed under both intersection and
union. This property was crucially exploited in designing a compact structure for storing
them [15, 26]. To design a compact structure for storing a mincut for every edge from Type-3,
we also explore the relation between a pair of mincuts for edges from Type-3. Let A and B

be mincuts for edges e1 and e2 from Type-3, respectively. Unfortunately, it turns out that if
A crosses B, then it is quite possible that neither A ∩B nor A ∪B is a mincut for e1 or e2
even if both are Steiner cuts (refer to Figure 1(i)). This shows that mincuts for edges from
Type-3 are not closed under intersection or union. To overcome this hurdle, we first present
a partitioning of the set of edges from Type-3 based on the nonSteiner vertices as follows.

ISAAC 2024

10:12 Optimal Sensitivity Oracle for Steiner Mincut

Figure 1 Yellow vertices are Steiner vertices. A mincut for an edge is represented by the same
color. (i) Mincuts A, B are for edges e1 = (s1, a) and e2 = (s2, b). Observe that A ∩ B and A ∪ B

are Steiner cuts but not mincuts for edges e1, e2. Moreover, cuts A \ B and B \ A, in which edges e1

and e2 are contributing, are not even Steiner cuts. (ii) Edges e1 and e2 are vital and from Type-3(u).
Mincuts A and B for edges e1 and e2 are crossing, but A ∩ B and A ∪ B are not Steiner cuts. (iii)
Edge (s, u) is from Type-3 and N((s, u)) = {A, B}.

Let V ′ ⊆ V \ S be the smallest set of nonSteiner vertices such that every edge from
Type-3 has endpoint in V ′. Let u be any vertex from V ′. Let Type-3(u) be the set that
contains all edges from Type-3 having u as one of the two endpoints. We aim to design an
O(n) space data structure that can report a mincut for each edge from Type-3(u). This is
because storing an O(n) space data structure for every nonSteiner vertex of G would lead to
an O((n− |S|)n) space data structure.

In order to design an O(n) space data structure for edges from Type-3(u), we consider
the set of nearest mincuts (Definition 12) for edges from Type-3(u). The following lemma
provides a strong reason behind the use of nearest mincuts for edges from Type-3(u).

▶ Lemma 24 (Disjoint Property). Let C ∈ N(e1) and C ′ ∈ N(e2) such that e1 = (x, u),
e2 = (x′, u) are edges from Type-3(u). Then, x′ /∈ C and x /∈ C ′ if and only if C ∩ C ′ = ∅.

Proof. Suppose x′ /∈ C and x /∈ C ′. Assume to the contrary that C ∩ C ′ ̸= ∅. Observe that
x ∈ C \C ′ and x′ ∈ C ′\C. As a result, C \C ′ as well as C ′\C is a Steiner cut. It is given that
C is the nearest mincut for edge (x, u) and x ∈ C \ C ′. This implies that c(C \ C ′) > c(C).
It follows from sub-modularity of cuts (Lemma 13(2)) that c(C ′ \ C) < c(C ′). Therefore, we
get a Steiner cut C ′ \ C of capacity strictly less than c(C ′) and edge (x′, u) is a contributing
edge of Steiner cut C ′ \ C, a contradiction.

The proof of the converse part is immediate. ◀

Let e1 = (x, u) and e2 = (x′, u) be any pair of edges from Type-3(u). Let C be a nearest
mincut for e1 and C ′ be a nearest mincut for e2. Lemma 24 essentially states that if e2
contributes to C ′ \ C and e1 contributes to C \ C ′, then C must not cross C ′. Now, the
problem arises when one of the two edges e1, e2 is contributing to a nearest mincut for
the other edge. Firstly, there might exist multiple nearest mincuts for an edge (refer to
Figure 1(iii)). It seems quite possible that an edge, say e2, is contributing to one nearest
mincut for e1 and is not contributing to another nearest mincut for e1. Secondly, the union
of a pair of nearest mincuts for an edge e1 from Type-3(u) might not even be a Steiner cut
if they cross (refer to Figure 1(iii)). Hence, the union of them can have a capacity strictly
less than the capacity of mincut for e. So, it seems that the nearest mincuts for edges from
Type-3(u) appear quite arbitrarily. It might not be possible to have an O(n) space structure
for storing them. Interestingly, we are able to circumvent all the above challenges as follows.

K. Bhanja 10:13

Figure 2 Illustration of the proof of Lemma 25. (i) There is a Steiner vertex z in C1 ∪ C2. The
red dashed cut shows cut C1 ∪ C2 and the blue dashed cut (blue region) shows cut C1 ∩ C2. (ii)
There is a Steiner vertex z in C2 \ C1. Blue dashed cut (blue region) is C1 \ C2. Similarly, red
dashed cut (light green region) is C2 \ C1.

Observe that we are interested in only those edges from Type-3(u) whose failure reduces
S-mincut. They are the set of all vital edges that belong to Type-3(u), denoted by VitType-
3(u). By exploiting vitality of edges from VitType-3(u), we establish the following crucial
result for any pair of crossing mincuts for edges from VitType-3(u). Interestingly, this result
holds even if the union of a pair of mincuts for a pair of edges from VitType-3(u) is not
always a Steiner cut (refer to Figure 1(ii)).

▶ Lemma 25 (Property of Intersection). Let C1 and C2 be mincuts for edges e1 =
(x1, u) and e2 = (x2, u) from VitType-3(u) respectively. Steiner vertex x2 is present in C1 if
and only if C1 ∩ C2 is a mincut for edge e2.

Proof. Suppose Steiner vertex x2 is present in C1. Since u is a common endpoint of both
edges e1, e2, we have u /∈ C1 ∪ C2. C1 is a mincut for edge e1, so, x1 ∈ C1. Now, there are
two possibilities – either (1) x1 /∈ C2 or (2) x1 ∈ C2. We now establish each case separately.

Case 1. Suppose x1 /∈ C2, in other words, x1 ∈ C1 \C2. It implies that C1 \C2 is nonempty.
Observe that C2 is not a subset of C1; otherwise, C1 ∩ C2 = C2 is a mincut for e2 and
the lemma holds. So, C2 \ C1 is also nonempty. Let c(C1) = λ1 and c(C2) = λ2. Since
x2 ∈ C1 ∩ C2, edge e2 is contributing to C1. Therefore, c(C2) ≤ c(C1); otherwise, C2 is not
a mincut for edge e2. Since C1 is a Steiner cut, there must be a Steiner vertex z such that
z /∈ C1. Based on the position of z with respect to cut C2, observe that z appears either
(1.1) in C1 ∪ C2 or (1.2) in C2 \ C1 (refer to Figure 2).

Case 1.1. Suppose z ∈ C1 ∪ C2 (refer to Figure 2(i)). Observe that C1 ∪ C2 is a Steiner
cut in which edge e1 is contributing. So, the capacity of C1 ∪ C2 has to be at least λ1. By
sub-modularity of cuts (Lemma 13(1)), c(C1 ∩ C2) + c(C1 ∪ C2) ≤ λ1 + λ2. It follows that
c(C1 ∩ C2) ≤ λ2. Since C1 ∩ C2 is a Steiner cut in which edge e2 is contributing, therefore,
the capacity of C1 ∩ C2 is exactly λ2. Hence C1 ∩ C2 is a mincut for edge e2.

Case 1.2. We show that this case does not arise. Assume to the contrary that z ∈ C2 \ C1
(refer to Figure 2(ii)). Here, we crucially exploit the fact that edge e2 is a vital edge from
Type-3(u). Let us now consider graph G\{e2}. Since, in graph G, edge e2 is a vital edge and
c(C2) ≤ c(C1), therefore, in graph G \ {e2}, the capacity of S-mincut is λ2−w(e2) and C2 is
an S-mincut. In G, edge e2 is also a contributing edge of C1. Therefore, the capacity of C1
in G \ {e2} is λ1 − w(e2). Without causing any ambiguity, let us denote the capacity of any
cut A in G \ {e2} by c(A). By sub-modularity of cuts (Lemma 13(2)), in graph G \ {e2}, we

ISAAC 2024

10:14 Optimal Sensitivity Oracle for Steiner Mincut

have c(C1 \ C2) + c(C2 \ C1) ≤ λ1 + λ2 − 2w(e2). Recall that x1 ∈ C1 \ C2 and z ∈ C2 \ C1.
So, both C1 \ C2 and C2 \ C1 are Steiner cuts in graph G \ {e2}. Therefore, the capacity of
C2 \ C1 is at least λ2 − w(e2). It follows that the capacity of C1 \ C2 in G \ {e2} is at most
λ1−w(e2). We now obtain graph G by adding edge e2 to graph G \ {e2}. Observe that edge
e2 does not contribute to Steiner cut C1 \C2. Therefore, the capacity of cut C1 \C2 remains
the same in graph G, which is at most λ1 − w(e2). Since e2 is a vital edge, so, w(e2) > 0.
This implies that we have λ1 − w(e2) < λ1. Therefore, for cut C1 \ C2 in G, C1 \ C2 is a
Steiner cut and has a capacity that is strictly less than λ1. Moreover, edge e1 is contributing
to C1 \ C2. So, C1 is not a mincut for edge e1, a contradiction.

Case 2. In this case, we have x1 ∈ C2. Since C1 and C2 both are Steiner cuts, observe that
either (2.1) there is at least one Steiner vertex z in C1 ∪ C2 or (2.2) there exists a pair of
Steiner vertices z1, z2 such that z1 ∈ C1 \ C2 and z2 ∈ C2 \ C1. The proof of case (2.1) is
along similar lines to the proof of case (1.1). So, let us consider case (2.2). Edges e1 and e2
are contributing to both C1 and C2. It implies that c(C1) = c(C2). Let c(C1) (or c(C2)) be λ.
Let us consider graph G\{e2}. Since e2 is a vital edge, the capacity of S-mincut is λ−w(e2).
The capacity of cuts C1 and C2 in G \ {e2} is λ−w(e2) since e2 contributes to both of them.
Without causing any ambiguity, let us denote the capacity of any cut A in G \ {e2} by c(A).
By sub-modularity of cuts (Lemma 13(2)), c(C1 \ C2) + c(C2 \ C1) ≤ 2λ− 2w(e2). Now, it
is given that z1 ∈ C1 \ C2 and z2 ∈ C2 \ C1. Therefore, in G \ {e2}, C1 \ C2 and C2 \ C1
are Steiner cuts. It follows that c(C1 \ C2), as well as c(C2 \ C1), is exactly λ− w(e2). Let
us obtain graph G from G \ {e2}. Observe that e2 contributes neither to C1 \ C2 nor to
C2 \ C1. Therefore, the capacity of cuts C1 \ C2 and C2 \ C1 remains the same in G, which
is λ− w(e2). Since e2 is vital, w(e2) > 0. So, λ− w(e2) < λS < λ, where λS is the capacity
of S-mincut in G. Hence, we have a Steiner cut of capacity strictly smaller than S-mincut, a
contradiction.

We now prove the converse part. Suppose C1 ∩ C2 is a mincut for edge e2. Since x2 is
a Steiner vertex, by Definition 10, x2 is in C1 ∩ C2. Since C1 ∩ C2 ⊆ C1, x2 is in C1. This
completes the proof. ◀

For any pair of nonSteiner vertices a, b ∈ V ′, it turns out that Lemma 25 does not necessarily
hold as follows. As shown in Figure 1(i), s2 is present in nearest mincut A of edge (s1, a)
but nearest mincut B for edge (s2, b) crosses A.

Recall that our objective is to design an O(n) space structure for storing a mincut for
every edge from VitType-3(u). By Lemma 24, the set of nearest mincuts for all edges from
VitType-3(u) satisfies Disjoint property. By exploiting Lemma 25, we now establish two
interesting properties satisfied by the nearest mincuts for all edges from VitType-3(u) –
Uniqueness Property (Lemma 26) and Subset Property (Lemma 27). These properties
help in designing an O(n) space data structure for storing them. We first establish the
uniqueness property in the following lemma.

▶ Lemma 26 (Uniqueness Property). For any edge e = (x, u) from VitType-3(u), the
nearest mincut for edge e is unique.

Proof. Suppose C1 and C2 are a pair of distinct nearest mincuts for edge e. It follows from
Lemma 25 that C = C1 ∩C2 is a mincut for edge e. So, C is a proper subset of both C1 and
C2, which contradicts that C1 and C2 are nearest mincuts for edge e. ◀

Although the nearest mincut for each edge from VitType-3(u) is unique (Lemma 26), the
Uniqueness Property alone can only guarantee a data structure occupying O(n|S|) space
for all edges from VitType-3(u). To achieve a better space, we now explore the relation

K. Bhanja 10:15

between the nearest mincuts for a pair of edges from VitType-3(u). Since nearest mincut
for an edge from VitType-3(u) is unique (Lemma 26), without causing any ambiguity, we
consider N(e) to denote the unique nearest mincut for an edge e from VitType-3(u).

Let e1 = (x1, u) and e2 = (x2, u) be a pair of edges from VitType-3(u). If neither
x1 ∈ N(e2) nor x2 ∈ N(e1), then, by Lemma 24, N(e1) is disjoint from N(e2). The other
cases are when x1 ∈ N(e2) or x2 ∈ N(e1). We exploit Lemma 25 to establish the following
property. This property states that N(e1) is either identical to N(e2) or one of {N(e1),
N(e2)} contains the other.

▶ Lemma 27 (Subset Property). Let (x, u) and (x′, u) be a pair of edges from VitType-
3(u). Then, x′ ∈ N((x, u)) if and only if N((x′, u)) ⊆ N((x, u)).

Proof. Let C = N((x, u)) and C ′ = N((x′, u)). Let us assume to the contrary that C ′ ⊈ C.
It is given that x′ ∈ C. Therefore, by Lemma 25, C ∩ C ′ is also a mincut for edge (x′, u).
This contradicts that C ′ is a nearest mincut for edge (x′, u).

Since N((x′, u)) ⊆ N((x, u)) and (x′, u) is a contributing edge of N((x′, u)) with x′ ∈
N((x′, u)), therefore, x′ also belong to N((x, u)). This completes the proof. ◀

Let (x1, u) and (x2, u) be edges from VitType-3(u), where x1, x2 ∈ S. Let C1 and C2 be
nearest mincuts for edges (x1, u) and (x2, u), respectively. It follows from Lemma 27 and
Lemma 24 that there are three possibilities for C1 and C2 – C1 is the same as C2, one of C1
and C2 is a proper subset of the other, and C1 is disjoint from C2. Therefore, for any vertex
u ∈ V ′, the set containing the nearest mincuts for every edge from VitType-3(u) forms a
Laminar family L(u) (Definition 14) on set V . This inference, along with Lemma 15, leads
to the following result.

▶ Lemma 28. There is an O(n) space tree TL(u) that satisfies the following property. For
each edge (x, u) from VitType-3(u) with x ∈ S, SubTree(x) of tree TL(u) is the nearest
mincut for edge (x, u).

Data Structure F3 for all vital edges from Type-3. For each nonSteiner vertex u ∈ V ′,
we construct a tree TL(u) based on the laminar family L(u) consisting of the nearest mincuts
for all edges from VitType-3(u). Since V ′ contains nonSteiner vertices of G only, there can
be at most n− |S| vertices in V ′. Therefore, by Lemma 28, the overall space occupied by
the data structure is O(n(n− |S|)).

Reporting a mincut for a vital edge from Type-3 using F3. Given any vital edge e = (x, u)
from Type-3, where x ∈ S and u ∈ V \ S, by following Lemma 28, we report the set of
vertices stored in SubTree(x) of tree TL(u) as the nearest mincut for edge (x, u).

Note that given any edge e from Type-3 and any value ∆ satisfying 0 ≤ ∆ ≤ w(e), by
using the data structure of Lemma 17, we can determine in O(1) time whether the capacity of
S-mincut reduces after reducing w(e) by ∆. This leads to the following lemma for answering
query cut for all edges from Type-3.

▶ Lemma 29 (Sensitivity Oracle for Type-3 Edges). For any Steiner set S ⊆ V , there is
an O((n − |S|)n) space data structure that, given any edge e from Type-3 and any value
∆ satisfying 0 ≤ ∆ ≤ w(e), can report an S-mincut C in O(|C|) time after reducing the
capacity of edge e by ∆.

ISAAC 2024

10:16 Optimal Sensitivity Oracle for Steiner Mincut

Algorithm 2 Answering Query cut.

1: procedure cut(e = (x, y), ∆)
2: Let C be a Steiner mincut of G;
3: Assign mincut← C;
4: type← the type of edge e determined using the endpoints {x, y};
5: if type == 1 then
6: Assign mincut← a mincut for edge e using data structure of Lemma 21;
7: else if type == 2 then
8: Assign mincut← a mincut for edge e using data structure of Lemma 23;
9: else if type == 3 then

10: Verify using the data structure in Lemma 17 whether e is vital;
11: if e is a vital edge then
12: Assign mincut← a mincut for edge e using data structure of Lemma 29;
13: else
14: do nothing;
15: end if
16: end if
17: return mincut;
18: end procedure

Lemma 21, Lemma 23, and Lemma 29 complete the proof of Theorem 5(2).
The pseudo-code for answering query cut is provided in Algorithm 2. Algorithm 2 is

invoked with the failed edge e and the change in capacity ∆ of edge e satisfying 0 ≤ ∆ ≤ w(e).
In Step 10 of Algorithm 2, the change in capacity (∆) is required to determine if edge e is
a vital edge. Otherwise, Algorithm 2 fails to report the valid S-mincut after reducing the
capacity of edge e.

7 Conclusion

We have designed the first Sensitivity Oracle for Steiner mincuts in weighted graphs. It also
includes the first Sensitivity Oracle for global mincut in weighted graphs. Interestingly, our
Sensitivity Oracle occupies space subquadratic in n when |S| approaches n and also achieves
optimal query time. On the other hand, it matches the bounds on both space and query
time with the existing best-known results for (s, t)-mincut [12, 2].

Our quadratic space single edge Sensitivity Oracle does not assume that the capacity of
the failed edge is known. We have also complemented this result with matching lower bounds.
Now, it would be great to see whether there is any single edge Sensitivity Oracle for Steiner
mincut that occupies only O(n) space assuming the capacity of the failed edge is known.

Finally, our obtained structure that breaks the quadratic bound is quite simple as it is a
forest of O(n − |S|) trees. We strongly believe that our techniques and structures will be
quite useful for addressing several problems in the future, including the problem of designing
a Sensitivity Oracle for S-mincut that can handle failure of multiple edges.

References

1 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows - theory,
algorithms and applications. Prentice Hall, 1993.

K. Bhanja 10:17

2 Giorgio Ausiello, Paolo Giulio Franciosa, Isabella Lari, and Andrea Ribichini. Max flow vitality
in general and st-planar graphs. Networks, 74(1):70–78, 2019. doi:10.1002/net.21878.

3 Surender Baswana and Koustav Bhanja. Vital edges for (s, t)-mincut: Efficient algorithms,
compact structures, & optimal sensitivity oracles. In Karl Bringmann, Martin Grohe, Gabriele
Puppis, and Ola Svensson, editors, 51st International Colloquium on Automata, Languages,
and Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs,
pages 17:1–17:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/
LIPICS.ICALP.2024.17.

4 Surender Baswana, Koustav Bhanja, and Abhyuday Pandey. Minimum+1 (s, t)-cuts and dual-
edge sensitivity oracle. ACM Trans. Algorithms, 19(4):38:1–38:41, 2023. doi:10.1145/3623271.

5 Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz Khan. Dynamic
dfs in undirected graphs: Breaking the o(m) barrier. SIAM Journal on Computing, 48(4):1335–
1363, 2019. doi:10.1137/17M114306X.

6 Surender Baswana, Keerti Choudhary, Moazzam Hussain, and Liam Roditty. Approximate
single-source fault tolerant shortest path. ACM Transactions on Algorithms (TALG), 16(4):1–
22, 2020. doi:10.1145/3397532.

7 Surender Baswana, Shiv Gupta, and Till Knollmann. Mincut sensitivity data structures for the
insertion of an edge. Algorithmica, 84(9):2702–2734, 2022. doi:10.1007/S00453-022-00978-0.

8 Surender Baswana and Abhyuday Pandey. Sensitivity oracles for all-pairs mincuts. In
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 581–609. SIAM, 2022. doi:10.1137/1.9781611977073.27.

9 Koustav Bhanja. Minimum+ 1 steiner cuts and dual edge sensitivity oracle: Bridging the gap
between global cut and (s, t)-cut. arXiv preprint, 2024. doi:10.48550/arXiv.2406.15129.

10 Davide Bilò, Shiri Chechik, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, Simon Krogmann,
and Martin Schirneck. Approximate distance sensitivity oracles in subquadratic space. In
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, pages 1396–1409,
2023. doi:10.1145/3564246.3585251.

11 Ruoxu Cen, William He, Jason Li, and Debmalya Panigrahi. Steiner connectivity augmentation
and splitting-off in poly-logarithmic maximum flows. In Proceedings of the 2023 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2449–2488. SIAM, 2023.
doi:10.1137/1.9781611977554.CH95.

12 Chung-Kuan Cheng and T. C. Hu. Ancestor tree for arbitrary multi-terminal cut functions.
Ann. Oper. Res., 33(3):199–213, 1991. doi:10.1007/BF02115755.

13 Keerti Choudhary. An optimal dual fault tolerant reachability oracle. In 43rd International
Colloquium on Automata, Languages, and Programming (ICALP 2016). Schloss-Dagstuhl-
Leibniz Zentrum für Informatik, 2016.

14 Richard Cole and Ramesh Hariharan. A fast algorithm for computing steiner edge connectivity.
In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages
167–176, 2003. doi:10.1145/780542.780568.

15 Efim A Dinitz, Alexander V Karzanov, and Michael V Lomonosov. On the structure of the
system of minimum edge cuts in a graph. Issledovaniya po Diskretnoi Optimizatsii, pages
290–306, 1976.

16 Ye Dinitz and Alek Vainshtein. Locally orientable graphs, cell structures, and a new algorithm
for the incremental maintenance of connectivity carcasses. In Proceedings of the sixth annual
ACM-SIAM symposium on Discrete algorithms, pages 302–311, 1995.

17 Yefim Dinitz and Zeev Nutov. A 2-level cactus model for the system of minimum and
minimum+ 1 edge-cuts in a graph and its incremental maintenance. In Proceedings of
the twenty-seventh annual ACM symposium on Theory of computing, pages 509–518, 1995.
doi:10.1145/225058.225268.

18 Yefim Dinitz and Alek Vainshtein. The connectivity carcass of a vertex subset in a graph and
its incremental maintenance. In Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, pages 716–725, 1994. doi:10.1145/195058.195442.

ISAAC 2024

https://doi.org/10.1002/net.21878
https://doi.org/10.4230/LIPICS.ICALP.2024.17
https://doi.org/10.4230/LIPICS.ICALP.2024.17
https://doi.org/10.1145/3623271
https://doi.org/10.1137/17M114306X
https://doi.org/10.1145/3397532
https://doi.org/10.1007/S00453-022-00978-0
https://doi.org/10.1137/1.9781611977073.27
https://doi.org/10.48550/arXiv.2406.15129
https://doi.org/10.1145/3564246.3585251
https://doi.org/10.1137/1.9781611977554.CH95
https://doi.org/10.1007/BF02115755
https://doi.org/10.1145/780542.780568
https://doi.org/10.1145/225058.225268
https://doi.org/10.1145/195058.195442

10:18 Optimal Sensitivity Oracle for Steiner Mincut

19 Yefim Dinitz and Alek Vainshtein. The general structure of edge-connectivity of a vertex
subset in a graph and its incremental maintenance. odd case. SIAM J. Comput., 30(3):753–808,
2000. doi:10.1137/S0097539797330045.

20 Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society
for Industrial and Applied Mathematics, 9(4):551–570, 1961.

21 Zhongtian He, Shang-En Huang, and Thatchaphol Saranurak. Cactus representations in
polylogarithmic max-flow via maximal isolating mincuts. In Proceedings of the 2024 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1465–1502. SIAM, 2024.
doi:10.1137/1.9781611977912.60.

22 Giuseppe F Italiano, Adam Karczmarz, and Nikos Parotsidis. Planar reachability under
single vertex or edge failures. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2739–2758. SIAM, 2021. doi:10.1137/1.9781611976465.163.

23 Stephen Jue and Philip N. Klein. A near-linear time minimum steiner cut algorithm for planar
graphs. CoRR, abs/1912.11103, 2019. arXiv:1912.11103.

24 L. Lovász. Combinatorial problems and exercises. North-Holland Publishing Co., Amsterdam-
New York, 1979.

25 Merav Parter. Dual failure resilient BFS structure. In Chryssis Georgiou and Paul G. Spirakis,
editors, Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015, pages 481–490. ACM, 2015.
doi:10.1145/2767386.2767408.

26 Jean-Claude Picard and Maurice Queyranne. On the structure of all minimum cuts in a network
and applications. In Rayward-Smith V.J. (eds) Combinatorial Optimization II. Mathematical
Programming Studies, 13(1):8–16, 1980. doi:10.1007/BFb0120902.

https://doi.org/10.1137/S0097539797330045
https://doi.org/10.1137/1.9781611977912.60
https://doi.org/10.1137/1.9781611976465.163
https://arxiv.org/abs/1912.11103
https://doi.org/10.1145/2767386.2767408
https://doi.org/10.1007/BFb0120902

Temporal Queries for Dynamic Temporal Forests
Davide Bilò #

Department of Information Engineering, Computer Science, and Mathematics,
University of L’Aquila, Italy

Luciano Gualà #

Department of Enterprise Engineering, University of Rome “Tor Vergata”, Italy

Stefano Leucci #

Department of Information Engineering, Computer Science, and Mathematics,
University of L’Aquila, Italy

Guido Proietti #

Department of Information Engineering, Computer Science, and Mathematics,
University of L’Aquila, Italy

Alessandro Straziota #

Department of Enterprise Engineering, University of Rome “Tor Vergata”, Italy

Abstract
In a temporal forest each edge has an associated set of time labels that specify the time instants in
which the edges are available. A temporal path from vertex u to vertex v in the forest is a selection
of a label for each edge in the unique path from u to v, assuming it exists, such that the labels
selected for any two consecutive edges are non-decreasing.

We design linear-size data structures that maintain a temporal forest of rooted trees under
addition and deletion of both edge labels and singleton vertices, insertion of root-to-node edges, and
removal of edges with no labels. Such data structures can answer temporal reachability, earliest arrival,
and latest departure queries. All queries and updates are handled in polylogarithmic worst-case time.
Our results can be adapted to deal with latencies. More precisely, all the worst-case time bounds
are asymptotically unaffected when latencies are uniform. For arbitrary latencies, the update time
becomes amortized in the incremental case where only label additions and edge/singleton insertions
are allowed as well as in the decremental case in which only label deletions and edge/singleton
removals are allowed.

To the best of our knowledge, the only previously known data structure supporting temporal
reachability queries is due to Brito, Albertini, Casteigts, and Travençolo [Social Network Analysis
and Mining, 2021], which can handle general temporal graphs, answers queries in logarithmic time
in the worst case, but requires an amortized update time that is quadratic in the number of vertices,
up to polylogarithmic factors.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Dynamic graph algorithms

Keywords and phrases temporal graphs, temporal reachability, earliest arrival, latest departure,
dynamic forests

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.11

Related Version Full Version: https://arxiv.org/abs/2409.18750

1 Introduction

Temporal graphs, a.k.a. time-varying graphs, are graphs in which each edge is only available
in specific time instants. These graphs are crucial for modeling and analyzing a variety of
complex systems such as social networks, communication networks, transportation systems,
and biological networks, where relationships and interactions evolve.

© Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti, and Alessandro Straziota;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 11; pp. 11:1–11:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davide.bilo@univaq.it
https://orcid.org/0000-0003-3169-4300
mailto:guala@mat.uniroma2.it
https://orcid.org/0000-0001-6976-5579
mailto:stefano.leucci@univaq.it
https://orcid.org/0000-0002-8848-7006
mailto:guido.proietti@univaq.it
https://orcid.org/0000-0003-1009-5552
mailto:alessandro.straziota@uniroma2.it
https://orcid.org/0009-0008-4543-786X
https://doi.org/10.4230/LIPIcs.ISAAC.2024.11
https://arxiv.org/abs/2409.18750
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Temporal Queries for Dynamic Temporal Forests

A simple and widely-adopted model of temporal graphs is the one of Kempe, Kleinberg,
and Kumar [19] in which a temporal graph is modeled as a graph G where each edge has an
assigned integral temporal label representing a time instant in which the edge is available.
Temporal paths are time-respecting walks on G, i.e., walks in which any two consecutive
traversed edges have non-decreasing labels. This model naturally generalizes to the case
in which an edge may be traversed in multiple time instants, i.e., when each edge of G

is associated with a set of integer labels, and many other generalizations have also been
proposed (see, e.g., [17]).

Due to their generality, many algorithmic problems regarding temporal graphs have been
considered in the literature, including the computation of good temporal paths [1, 10, 22]
w.r.t. several quality measures, sparsification [7, 8, 11, 12, 19], exploration [13, 14], a temporal
version of the classical vertex cover problem [2, 15], and network creation games [6], to
mention a few. Perhaps surprisingly, the problem of designing dynamic data structures
maintaining information on temporal connectivity has only been addressed quite recently,
despite the vast amount of literature for the non-temporal case (see, e.g., [16, 18] and the
references therein). In this regard, Brito, Albertini, Casteigts, and Travençolo [9] provide
a data structure that can answer temporal reachability queries in the incremental setting,
i.e., under the addition of new edges or of new labels to already existing edges. This data
structure has size O(n2τ), and an amortized update time of O(n2 log τ), where n is the
number of vertices of the temporal graph and τ is its lifetime, i.e., the number of distinct
labels. Given two vertices u, v and two time instants t, t′, it can report whether there exists
a temporal path from u to v that departs from u no earlier than t and arrives in v no later
than t′. The worst-case time required by such a query is O(log τ) and the corresponding
path can be retrieved in O(log τ) worst-case time per edge.

In [4] the authors consider the problem of maintaining a directed graph in which edge
(u, v) exists if there is a temporal path from u to v in G, and show how to efficiently update
the time-transitive closure in the restricted chronological incremental case, where the inserted
labels must be monotonically non decreasing.

Our results. We focus on the case in which the temporal graph of interest is acyclic, i.e., it
is a temporal forest F , and we design data structures that support insertions and deletions of
edge labels and can answer temporal reachability queries along with the more general earliest
arrival (EA) and latest departure (LD) queries. Given two distinct vertices u, v and time
instant t, an EA (resp. LD) query reports the smallest arrival time (reps. largest departure
time) among those of all temporal paths from u to v that depart no earlier than t (resp.
arrive no later than t).

Our main data structure is dynamic also w.r.t. a second aspect. In addition of being able
to add and remove labels from the edges of F , it also supports the addition and deletion of
singleton vertices along with link and cut operations in a temporal forest of rooted trees.
The link operation adds a new edge (u, v) with label ℓ in F from the root u of any tree to
any other vertex v in a different tree, thus merging the two trees into one. The cut operation
deletes the last label of an edge e and removes e from F , thus splitting the tree T that
contained e into two trees T1, T2, where the root of T1 coincides with that of T and T2 is
rooted in the unique endvertex of e in T2.

Our data structure has linear size, and can be updated in O(log M) worst-case time per
operation, where M is the total number of (not necessarily distinct) labels in the forest at the
time of the operation. EA and LD queries require O(log L · log M) worst-case time, where
L is the maximum number of labels on a single edge at the time of the operation, and a
temporal reachability query can be answered in O(log M) worst-case time (see Theorem 3).

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and A. Straziota 11:3

In the special case of temporal paths with fixed topology (i.e., when only insertions and
deletions of edge labels are allowed), we can improve the worst-case time complexity of EA
and LD queries to O(log M), thus shaving a O(log L) factor (see Theorem 2).

Our data structure can also be adapted to the more general case of temporal forests
with latencies, in which the labels on a generic edge are pairs (ℓ, d), with d ≥ 0, encoding
the fact that the edge can be traversed at time ℓ from any endvertex to reach the other
endvertex at time ℓ+d. The data structure retains the same worst-case asymptotic guarantees
when latencies are uniform (see Corollary 7). For arbitrary latencies, we consider both the
incremental and the decremental scenarios. In the incremental scenario we support the
addition of new labels to existing edges, the addition of singleton vertices, and the above
link operation, while the decremental scenario only involves label/singleton deletions and cut
operations. In both cases, the above O(log M) upper bound on the update time becomes
amortized (see Theorem 6).

2 Preliminaries

A temporal forest is an undirected forest F = (V (F), E(F)) paired with a function λ :
E(F) → P(Z) that associates a set λ(e) ⊆ Z of labels to each edge e ∈ E(F). A temporal
path π from vertex u ∈ V (F) to vertex v ∈ V (F) \ {u} in F is a sequence of pairs
⟨(e1, ℓ1), (e2, ℓ2), . . . , (ek, ℓk)⟩ such that ⟨e1, e2, . . . , ek⟩ is a path from u to v in F , ℓi ∈ λ(ei)
for all i = 1, . . . , k, and ℓi ≤ ℓi+1 for all i = 1, . . . , k − 1. The departure time departure(π)
and the arrival time arrival(π) of π are ℓ1 and ℓk, respectively.

Given two distinct vertices u, v ∈ V (F), and ta, td ∈ Z ∪ {−∞, +∞}, ΠF (u, v, td, ta) is
the set of all temporal paths from u to v in F having a departure time of at least td and an
arrival time of at most ta. For a time t ∈ Z ∪ {−∞}, the earliest arrival time of a temporal
path from u to v with departure time at least t is denoted by EA(u, v, t) and is defined as
minπ∈Π(u,v,t,+∞) arrival(π). If no temporal path from u to v with departure time at least t

exists in F , i.e., if Π(u, v, t, +∞) = ∅, we define EA(u, v, t) = +∞. A path π ∈ Π(u, v, t, +∞)
such that arrival(π) = EA(u, v, t) is called an earliest arrival path.

Similarly, we denote the latest departure time of a temporal path from u to v having
an arrival time of at most t ∈ Z ∪ {+∞} as LD(u, v, t) = maxπ∈Π(u,v,−∞,t) departure(π).
If Π(u, v, −∞, t) = ∅, then we let LD(u, v, t) = −∞. A path π ∈ Π(u, v, t, +∞) such
that arrival(π) = LD(u, v, t) is called a latest departure path. As an edge case, we define
EA(u, u, t) = LD(u, u, t) = t for all u ∈ V (F).

We design a data structure for maintaining information on a dynamic temporal forest of
rooted trees. The data structure must efficiently answer to the following queries:

Earliest arrival time (EA query): Given two vertices u, v ∈ V (F) with u ̸= v, and a time
t ∈ Z ∪ {−∞}, report EA(u, v, t);

Latest departure time (LD query): Given two vertices u, v ∈ V (F) with u ̸= v, and a time
t ∈ Z ∪ {+∞}, report LD(u, v, t);

Temporal reachability: Given two vertices u, v ∈ V (F) with u ̸= v, and two times ta, td ∈
Z ∈ {−∞, +∞} with ta ≤ td, report whether there exists a temporal path π from u to v

in F with departure(π) ≥ ta and arrival(π) ≤ td.

Clearly, a data structure that supports EA queries or LD queries also supports temporal
reachability queries with the same worst-case query time. The update operations we consider
are the following:

ISAAC 2024

11:4 Temporal Queries for Dynamic Temporal Forests

Label addition: Given an edge e ∈ E(F) and a value ℓ ∈ Z \ λ(e), add ℓ to λ(e);
Label deletion: Given an edge e ∈ E(F) with |λ(e)| ≥ 2 and some ℓ ∈ λ(e), delete ℓ

from λ(e);
Link: Given two vertices u, v where u is the root of some tree T in F and v is some vertex

of a tree T ′ of F with T ′ ̸= T , and a label ℓ ∈ Z, add the edge (u, v) to F and set
λ((u, v)) = {ℓ}. The new tree resulting from merging T with T ′ retains the root of T ′;

Cut: Given an edge e ∈ E(F) with |λ(e)| = 1, remove the edge e from the tree T of F

containing e, thus splitting T into two new trees T1, T2 where T1 retains the root of T

and T2 is rooted in the unique endvertex of e in T2;
Singleton addition/deletion: Add a new (resp. remove an existing) singleton vertex to (resp.

from) F .

If u, v, w are vertices of F such that w lies on the unique path between u and v in F we
have that EA(u, v, t) = EA(w, v, EA(u, w, t)) and LD(u, v, t) = LD(u, w, LD(w, v, t)).

Let −F be the temporal forest such that V (F) = V (−F), E(F) = E(−F), and for every
e ∈ E(F), the set of labels of e in −F is {−ℓ | ℓ ∈ λ(e)}. One can observe that:

▶ Lemma 1. The value of LD(u, v, t) in F coincides with −EA(v, u, −t) in −F .

Finally, given a subset X of a universe possessing a strict total order, and an element x

of the universe, we define the successor succ(x, X) (resp. predecessor pred(x, X)) of x w.r.t.
X as the minimum element y ∈ X s.t. y ≥ x (resp. the maximum element y ∈ X s.t. y ≤ x).
If such an element y does not exist, succ(x, X) = +∞. Similarly, the strict successor (resp.
strict predecessor) is defined as succ(x, X \ {x}) (resp. pred(x, X \ {x})).

3 Warm up: a data structure for temporal paths

As a warm up, in this section we consider the simpler case in which the forest F is actually a
fixed path, and the only supported operations are label additions and deletions to/from the
edges of F . We use this section to introduce some of the ideas of our construction, which
we generalize to the case of dynamic temporal forests in Section 4 that also contains the
correctness proofs. More precisely, we establish the following result:

▶ Theorem 2. Given a temporal path with n vertices, it is possible to build in O(n+M log L)
time, a data structure of linear size supporting EA and LD queries under label insertions
and deletions in O(log M) worst-case time per operation, where L is the maximum number
of labels on the same temporal edge, and M is the total number of (not necessarily distinct)
labels in the path at the time of the operation.

Fix an arbitrary endvertex v0 of the path F , and let vi be the unique vertex at hop-
distance i from v0 in F . We think of F as a tree rooted in vn−1. With this interpretation,
the main technical difficulty lies in designing a data structure capable of answering upward
EA queries, i.e., EA queries from some vertex vi to some vertex vj with j > i. The cases of
downward EA queries can be managed by a similar data structure rooted in v0. LD queries
and reachability queries can be recast as EA queries as already discussed in the preliminaries
and in Lemma 1.

The naive solution to represent all possible upward earliest arrival paths in F is that of
building a forest of rooted trees similar to the one shown on the top-left of Figure 1. This forest
represents each label ℓ of each edge e = (vi, vi+1) in F as a node whose parent corresponds
to the first label of (vi+1, vi+2) that is larger than or equal to ℓ (if any). Intuitively, moving
upwards in F along an earliest arrival path corresponds to moving upwards in a tree of such

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and A. Straziota 11:5

5 4 4 2 4

e0 e1 e2 e3 e4 e5
v0 v1 v2 v3 v4 v5 v6

8

1

189

15

57

8 6

12

6

9

13 16

2017

5 4 4 2 4

e0 e1 e2 e3 e4 e5
v0 v1 v2 v3 v4 v5 v6

8

1

189

15

57

8 6

12

6

9

13 16

2017

5 4 4 2 4

e0 e1 e2 e3 e4 e5
v0 v1 v2 v3 v4 v5 v6

8

1

189

6

57

8 6

129

13 16

2015

17

5

5 4 4 2 4

e0 e1 e2 e3 e4 e5
v0 v1 v2 v3 v4 v5 v6

8

1

18957

8 6

12

5

9

13 16

2015

17

6

Figure 1 Top left: a forest representing all possible upward earliest arrival paths. Top right: the
corresponding weighted forest F . Red edges have weight 0, while blue ones have weight 1. Here, a
label ℓ ∈ λ(ei) is shown above edge ei and models the node (ℓ, i). Bottom left and bottom right:
the forests F obtained after adding label 5 to λ(e3) and then deleting label 6 from λe3. New edges
are shown in bold while removed ones are dashed.

a forest. Unfortunately, explicitly maintaining this forest would be costly since even a single
label insertion/deletion could cause a large number of edges to be rewired. We circumvent
this problem by maintaining a different edge-weighted forest F(λ) that still represents all
possible upward earliest arrival paths while guaranteeing that each node has constant degree.

Let ei be the edge (vi, vi+1). Our forest F(λ) contains a node (ℓ, i) for each edge ei in
F , and for each ℓ ∈ λ(ei). To aid readability we use the term vertex to refer to vertices
in F , and the term node for those in F(λ). To describe the edges of F(λ), we first define
a partial function σi(ℓ, λ) that maps the labels ℓ ∈ λ(ei) to a “successor” node, which is
either the one corresponding to the smallest label strictly larger than ℓ on the same edge
ei, or the one corresponding to the successor of ℓ among the labels of edge ei+1. More
precisely, given i ∈ {0, . . . , n − 2} and ℓ ∈ λ(ei), we consider ℓ+ = succ(ℓ + 1, λ(ei)). For
i = n − 2, σi(ℓ, λ) is defined as (ei, ℓ+) if ℓ+ < +∞, and is undefined if ℓ+ = +∞. For
i ∈ {0, . . . , n − 3}, we compare ℓ+ with ℓ′ = succ(ℓ, λ(ei+1)). If ℓ+ = ℓ′ = +∞, then σi(ℓ, λ)

is undefined. Otherwise σi(ℓ, λ) =
{

(ℓ+, i) if ℓ+ ≤ ℓ′;
(ℓ′, i + 1) if ℓ′ < ℓ+.

All the nodes (ℓ, i) for which σi(ℓ, λ) is undefined are the roots of their respective trees in
F(λ). Whenever λ is clear from context we write F in place of F(λ) and σi(ℓ) in place of
σi(ℓ, λ). See Figure 1 (top-right) for an example.

The weights of all edges of the form ((·, i), (·, i + 1)) are set to 1, while those of the
remaining edges, of the form ((·, i), (·, i)), are set to 0. Our definition of σi ensures that
different children of the same node v in F must be linked to v using edges of different weights.
As a consequence, each vertex has at most 2 children in F .

Our data structure stores:
A top tree [3] representing F . A top-tree is a data structure capable of maintaining
an edge-weighted forest under insertion of new nodes, deletion of singleton nodes, and
under link and cut operations, i.e., addition and deletion of edges. Moreover, it supports

ISAAC 2024

11:6 Temporal Queries for Dynamic Temporal Forests

weighted level ancestor queries: given a vertex v and w ∈ N, it reports the w-th weighted
level ancestor LA(v, w) of v in F , i.e., the deepest ancestor of v at distance at least w

from v (if any). Each of the above operations requires O(log η) worst-case time, where η

is the number of nodes in the forest. A top tree with η nodes can be built in O(η) time.
Whenever a node/edge is added removed from F , we perform the corresponding update
operation on the backing top tree.
A dictionary Di for each edge ei that supports insertions, deletions, and
predecessor/successor queries in O(log η) worst-case time per operation, where η is
the number of keys in Di. The dictionary can be build in O(η log η) time. The keys in Di

are the labels in λ(ei) and each label ℓ is associated with a pointer to vertex (ℓ, i) in F .
Such a dictionary can be implemented using any dynamic balanced binary search tree.

Answering EA queries. To report EA(vi, vj , t) with j > i, we first find ℓ = succ(t, λ(ei))
using Di, then we query F for the (j − i − 1)-th weighted level ancestor (ej−1, ℓ∗) of (ei, ℓ).
If such ancestor exist, we answer with ℓ∗. Otherwise we answer with +∞. Finding ℓ requires
time O(log L) in the worst case, while querying F can be done in worst-case O(log M) time.
Hence the overall worst-case time required to answer the query is O(log M).

An auxiliary procedure. A label insertion causes the addition of a new node into F , while
a label deletion causes the deletion of the corresponding node from F . This may result in
some nodes in F that have an incorrect parent (or lack of thereof) from the one that would
be expected according to the construction discussed above.

To address this problem, we define an auxiliary procedure FixParent(ℓ, i) that will be
helpful in restoring the correct state of F . Such procedure takes the index i of some edge ei

in F and a label ℓ ∈ λ(ei), and ensures that the edge from node (ℓ, i) to its parent in F (if
any) is properly set (or unset) by only considering Di and Di+1.

To implement FixParent(ℓ, i) we first cut the current edge from (ℓ, i) to its parent in F
(if any). Then, we compute σi(ℓ) in O(log L) time by searching for the needed successors in
Di and Di+1, according to the definition of σi. Finally, we link vertex (ℓ, i) with σi(ℓ), if
any, in F . Since link and cut operations also require time O(log M), the overall worst-case
time spent by FixParent is O(log M).

Label addition. To add label ℓ on edge ei, we first insert node (ℓ, ei) into F , and ℓ into
Di. Then, if i ≥ 1 and ℓ′ = pred(ℓ, λ(ei−1)) exists, we perform FixParent(ℓ, i − 1). Next, we
perform FixParent(ℓ, i). Finally, if ℓ− = pred(ℓ−1, λ(ei)) exists, we perform FixParent(ℓ−, i).
See Figure 1 for an example.

The overall worst-case time required is O(log M) since we only perform a constant number
of predecessor/successor lookups, node insertions into F , and calls to FixParent.

Label deletion. To remove label ℓ from edge ei, we first delete ℓ from Di and remove node
(ei, ℓ), along with all its incident edges, from F . Then, if i ≥ 1 and ℓ′ = pred(ℓ, λ(ei−1))
exists, we perform FixParent(ℓ′, i − 1). Finally, if ℓ− = pred(ℓ − 1, λ(ei)) exists, we perform
FixParent(ℓ−, i). The overall worst-case time required is O(log M) since we only perform a
constant number of predecessor/successor lookups, edge/node deletions from F , and calls to
FixParent.

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and A. Straziota 11:7

4 Our data structure for temporal forests

In this section we discuss how our data structure for temporal paths with static topology
can be generalized to temporal forests of rooted trees while also supporting link and cut
operations as well as insertions and deletions of singleton vertices. More precisely, we prove
the following result.

▶ Theorem 3. Given a temporal forest of rooted trees, it is possible to build, in O(n+M log L)
time, a data structure of linear size, where n is the number of vertices, L is the maximum
number of labels on the same temporal edge, and M is the total number of (not necessarily
distinct) labels in the forest at the time of the operation. The data structure supports label
additions, label deletions, link, and cut operations, and addition/deletion of singleton vertices
in O(log M) worst-case time per operation, EA and LD queries in O(log L · log M) worst-case
time per operation, and reachability queries in O(log M) worst-case time per operation.

We observe that it is easy to extend Theorem 2 to fixed temporal forests where one only
needs to support label additions and deletions and aims for a query time of O(log n · log M),
where n is the number of vertices in F . Indeed, it suffices to construct the data structure for
temporal paths on each path of a heavy-light decomposition [21] of (each tree of) F . Details
are given in the full version of the paper.

This section is organized as follows: we first discuss a data structure that only supports
updates are label additions and deletions, and then we show how to handle link and cut
operations as well as insertions and deletions of singleton vertices.

4.1 A data structure supporting only label additions and deletions
While the natural generalization of our construction for temporal paths of Section 3 to the
case of trees would already provide a data structure supporting fast upward EA queries, such
a solution runs into a similar problem as the one discussed for the naive approach. Indeed,
in a tree of degree ∆ a node of F may have Ω(∆) children, and its removal may cause the
rewiring of Ω(∆) edges.

Our construction avoids this problem by further grouping the (nodes in F corresponding
to the) edges from sibling vertices to their common parent v in F into a block Bv (see
Figure 2).

For a non-root vertex v ∈ V (F), we denote by p(v) the parent of v in F , and by ev the
edge (v, p(v)). The forest F(λ) contains a node (ℓ, v) for each non-root vertex v ∈ V (F) and
for each ℓ ∈ λ(ev). Moreover, for every non-leaf vertex v ∈ V (F), we define the block of v as
the set Bv(λ) containing all nodes (ℓ, u) where u is a child of v in F . We fix an arbitrary
strict total ordering of the vertices of V (F) and we think of the nodes of F as being ordered
w.r.t. the order relation that compares nodes lexicographically, i.e., (ℓ, u) precedes (ℓ′, v) if
either ℓ < ℓ′, or if ℓ = ℓ′ and u precedes v in the chosen ordering of the vertices.

Similarly to the case of temporal paths, the edges of F(λ) are defined by making use of
a partial function σu(ℓ, λ) that associates the nodes of F to their parents. More precisely,
given a non-root vertex u ∈ V (F) and ℓ ∈ λ(eu), we let v = p(u) so that (ℓ, u) ∈ Bv. If v is
a root in F , σu(ℓ, λ) is defined as the strict successor of (ℓ, u) in Bv, if it exists, otherwise
σu(ℓ, λ) is undefined.

To define σu(ℓ, λ) when v is not a root of F , let ℓ′ = succ(ℓ, λ(ev)). We distinguish two
cases depending on whether the strict successor (ℓ+, u+) of (ℓ, u) in Bv exists. If (ℓ+, u+)

exists we define σu(ℓ, λ) =
{

(ℓ+, u+) if ℓ+ ≤ ℓ′;
(ℓ′, v) if ℓ+ > ℓ′.

ISAAC 2024

11:8 Temporal Queries for Dynamic Temporal Forests

5

2, 5

2

6

9

3, 9

1

2, 4, 8

7 3, 4, 83, 5

2, 5, 6 2, 7, 8, 9

r

a b

c d e f

g h i j k

l m

(9, b)

Br

Ba Bb

Bc Be Bf

Bj

(5, a)

(6, d)(5, c)(2, c)

(2, g) (1, h) (8, k)(7, j)(5, i)(4, k)(3, k)(3, i)

(7,m)(6, l)(5, l)(2,m)(2, l)

(9, e)(8, f)(4, f)(3, e)(2, f)

(8,m) (9,m)

Figure 2 Left: a sample rooted temporal tree. Right: a representation of the forest F maintained
by the data structure for temporal forests of Section 4.

If (ℓ+, u+) does not exist, then σu(ℓ, λ) = (ℓ′, v) when ℓ′ < +∞ and σu(ℓ, λ) is undefined when
ℓ′ = +∞. The nodes (ℓ, u) such that σu(ℓ, λ) is undefined are the roots of the corresponding
trees in F(λ). Whenever λ is clear from context, we write F in place of F(λ), Bv in place of
Bv(λ), and σu(ℓ) in place of σu(ℓ, λ).

We say that an edge in F between nodes in the same block is red, while inter-block edges
are blue. We assign weight 0 to red edges, and weight 1 to blue edges. See Figure 2 for an
example.
Our data structure stores:

A top tree representing F . In addition to the operations discussed in Section 3, a top
tree also supports lowest common ancestor (LCA) queries, i.e., given two nodes u, v of
F , it either reports that u and v belong to different trees in F , or it answers with the
deepest vertex w in the unique tree T containing both u and v such that w is an ancestor
of both u and v. An LCA query requires O(log η) worst-case time, where η is the number
of nodes in F .

A dictionary Dv for each non-root vertex v ∈ V (F) that stores a key for each label in
λ(ev) and that supports insertions, deletions and predecessor/successor queries. Each key
ℓ stores, as satellite data, a pointer to node (ℓ, v) in F .

A dictionary for each block Bv, where v is a non-leaf vertex in F . Such a dictionary stores
all elements in Bv and supports insertions, deletions and predecessor/successor queries
w.r.t. our order relation on the nodes.

The depth d(v) of each vertex v in the (unique) rooted tree T containing v in F , i.e., the
hop distance between v and the root of T .

Adapting FixParent. FixParent(ℓ, v) takes a non-root vertex v ∈ V (F) and a label ℓ ∈ λ(ev),
and ensures that the edge from node (ℓ, v) to its parent in F , if any, is properly set.

To implement FixParent(ℓ, v) we first cut the current edge from (ℓ, v) to its parent in F
(if any). Then we compute σv(ℓ) in O(log L) worst-case time by searching for the needed
successors in Bp(v) and Dp(v) (if p(v) exists), according to the definition of σv. Notice that
σv(ℓ) might be undefined. Finally, if σv(ℓ) is defined, we link vertex (ℓ, v) with σv(ℓ). Since
link and cut operations require time O(log M), the overall worst-case time spent by FixParent
is O(log M).

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and A. Straziota 11:9

Label addition. To add label ℓ on edge ev, we first insert node (ℓ, v) into F , ℓ into Dv,
and (ℓ, v) into Bp(v). Then, if v is not a leaf in F and (ℓ′, u) = pred((ℓ, +∞), Bv) exists, we
perform FixParent(ℓ′, u).1 Next, we perform FixParent(ℓ, v). Finally, if the strict predecessor
(ℓ−, v−) of (ℓ, v) in Bp(v) exists, we perform FixParent(ℓ−, v−).2

Label deletion. To delete label ℓ from edge ev, we remove the node (ℓ, v) from F along
with all its incident edges, we delete ℓ from Dv, and we delete (ℓ, v) from Bp(v). Then, if v is
not a leaf in F and (ℓ′, u) = pred((ℓ, +∞), Bv) exists, we perform FixParent(ℓ′, u). Finally,
if the strict predecessor (ℓ−, v−) of (ℓ, v) in Bp(v) exists, we perform FixParent(ℓ−, v−).

To prove the correctness of our label addition deletion procedures we need the following
lemma, whose proof is given in the full version of the paper, which captures the changes to
F following an update:

▶ Lemma 4. Consider a forest F , two functions λ′, λ : E(F) → P(Z) and an edge ev ∈ E(F)
such that, for each e′ ∈ E(F)\{ev}, λ(e′) = λ′(e′) and λ(ev) = λ′(ev)\{ℓ} with ℓ ∈ λ′(ev). Let
F ′ = F(λ′) and F = F(λ). Let U be the set containing (ℓ, v), (ℓ′, u) = pred((ℓ, +∞), Bv(λ))
(if it exists), and the strict predecessor (ℓ−, v−) of (ℓ, v) in Bp(v)(λ) (if it exists).

We have that V (F) = V (F ′) \ {(ℓ, v)} and that all nodes in V (F) \ U have the same
parent (or lack of thereof) in both F and F ′.

Then, the correctness of the label addition procedure follows from Lemma 4 with λ (resp.
λ′) chosen as the function that maps each edge to its labels before (resp. after) the addition,
once one observe that FixParent is invoked on all vertices of the set U defined by the lemma.
Symmetrically, the correctness of the label deletion procedure follows from Lemma 4 when
the roles of λ and λ′ are reversed.

The overall worst-case time required per update is O(log M) since we only perform a
constant number of (strict) predecessor lookups, edge/node deletions from F , and calls to
FixParent. Observe that Lemma 4 implies that, when node (ℓ, v) is deleted, its degree in F
is constant (since each child of (ℓ, v) changes its parent following the deletion).

Answering upward EA queries and downward LD queries. We first discuss how to report
EA(u, v, t) when u is a proper descendent of v in F .3 To do so, we start by finding
ℓ = succ(t, λ(eu)). If ℓ = +∞, we answer with +∞, otherwise we query F for the (dv −du−1)-
th weighted level ancestor of (ℓ, u). If such an ancestor (ℓ∗, w) exists we answer with ℓ∗,
otherwise we answer with +∞. This requires O(log M) worst-case time since it only involves
a successor lookup in Du and a weighted level ancestor query on the top tree representing F .

The correctness of our query procedure stems by a structural property of F captured by
the following lemma, whose proof is given in the full version of the paper.

▶ Lemma 5. Let u, v ∈ V (F) where v is a proper ancestor of v, let t ∈ Z ∪ {−∞}, and
define ℓ = succ(t, λ(eu)). If (i) ℓ = +∞ or (ii) ℓ < +∞ and LA((ℓ, u), dv − du − 1) does not
exist, then EA(u, v, t) = +∞. Otherwise, LA((ℓ, u), dv − du − 1) = (ℓ∗, w) where w is the
unique ancestor of u such that p(w) = v and ℓ∗ = EA(u, v, t).

1 Notice that the set of nodes in Bv does not change following the label addition.
2 Notice that the insertion of (ℓ, v) into Bp(v) does not affect the value (nor the existence) of the strict

predecessor of (ℓ, v) in Bp(v).
3 Since the topology of F does not change, checking whether u is a proper descendent of v can be done in

constant time after O(n)-time preprocessing, where n is the number of vertices in F .

ISAAC 2024

11:10 Temporal Queries for Dynamic Temporal Forests

To answer downward LD queries, we maintain a mirrored data structure for −F , in which
each original label ℓ is replaced with −ℓ. Lemma 1 allows us to answer downward LD queries
in O(log M) worst-case time by performing upward EA queries on the data structure for −F .

Answering upward LD queries and downward EA queries. To report LD(u, v, t) when u is
a proper descendent of v in F , we binary search for the largest label ℓ∗ ∈ λ(eu) such that
EA(u, v, ℓ∗) ≤ t. Then, we report ℓ∗. The correctness of our query immediately follows from
the fact that the values EA(u, v, ℓ) are monotonically non decreasing w.r.t. ℓ. This requires a
worst-case time of O(log L · log M). To report EA(w, v, t) when v is a proper descendant of w

in F , we compute LD(v, w, −t) on the data structure for −F and answer with −LD(v, w, −t).
The worst-case time required is O(log L · log M).

Answering general EA and LD queries. To answer a general EA(u, v, t) query we compute
the lowest common ancestor w of u and v in F in constant time using the data structure in [5],
and we return EA(w, v, EA(u, v, t)) where EA(w, v, ·) is a downward query, and EA(u, v, ·) is
an upward query. General LD queries can similarly be answered by using the data structure
for −F . The worst-case time required to answer such queries is O(log L · log M).

Answering temporal reachability queries. To report whether a vertex v is reachable from
a vertex u using a temporal path in F that departs no earlier than td and arrives no later
ta, we compute the lowest common ancestors w of u and v in F in constant time and we
answer affirmatively iff EA(u, w, td) ≤ LD(w, v, ta). The overall worst-case time required is
O(log M) since we only need to perform an upward EA query and a downward LD query.

4.2 Supporting link and cut operations
To support general link and cut operations we additionally maintain F using a top tree.4
Each time that an edge is added/removed from F , we perform the corresponding operation
on the backing top tree. Moreover, we no longer explicitly maintain the depths dv, but rather
we query the top tree of F every time any such depth is needed.5 Similarly, all LCA queries
on F are now performed using the backing top tree.

Insertions and deletion of singleton vertices are straightforward, therefore we only discuss
how to handle link and cut operations.

Link operations. To implement a link operation where u is the root of some tree T in F

and v is some vertex of a tree T ′ of F with T ′ ̸= T , and a label ℓ ∈ Z, we first link u and v

in F by adding edge (u, v), so that the parent of u becomes v, and we add label ℓ to (u, v)
as explained in Section 4.1. The worst-case time required is O(log M).

Cut operations. To cut an edge (u, v) of F with a single label ℓ ∈ λ((u, v)), where u is a
child of v w.l.o.g., we first remove the only label ℓ (corresponding to the only key in Du)
from (u, v) as explained in Section 4.1. Then, we cut (u, v) from F , thus creating a new tree
rooted in u. The worst-case time required is O(log M).

4 Some technical care is needed to obtain the stated bounds, which only depend on M , when M = o(n).
This can be achieved by not actually storing singleton vertices in the top tree, so that the number of
vertices in the top tree is always O(M). The operations of our data structure are easy to adapt to
handle this edge case. E.g., whenever a link operation on F involves some singleton vertex v, we can
add v to the top tree immediately before performing the link.

5 Indeed, the top tree can report the root of the tree in F that contains v and the hop-distance between
any two nodes in F in logarithmic time.

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and A. Straziota 11:11

5 Our data structure for temporal forests with latencies

Our model of temporal graphs can be generalized by introducing latencies. In temporal
graphs with latencies, each edge e is associated with a collection of pairs (ℓ, d) encoding that
edge e can be traversed at the departure time ℓ stating from one of its endvertices in order
to reach the other endvertex at time ℓ + d. The value d is called a latency.

Equivalently, each (activation time, latency) pair (ℓ, d) can be expressed as (ℓ, α), where
α = ℓ + d is the arrival time. These two representations are clearly equivalent, but the latter
one results in a lighter notation for our purposes. Therefore, in the rest of the section we
will adopt the (departure time, arrival time) convention and we accordingly define λ(e) as
the set of all (departure time, arrival time) pairs (ℓ, α) associated with edge e.6

A temporal path π from vertex u ∈ V (F) to vertex v ∈ V (F) \ {u} in F is a sequence
of triples ⟨(e1, ℓ1, α1), (e2, ℓ2, α2), . . . , (ek, ℓk, αk)⟩ such that ⟨e1, e2, . . . , ek⟩ is a path from u

to v in F , (ℓi, αi) ∈ λ(ei) for all i = 1, . . . , k, and αi ≤ ℓi+1 for all i = 1, . . . , k − 1. The
departure time of π is ℓ1 and its arrival time is αk. The notions of earliest arrival paths,
latest departure paths, reachability, and the corresponding queries extend naturally.

In this section we argue that our data structure for temporal forests can be adapted to
additionally support latencies. This comes at the cost of turning our worst-case bounds on
the time complexities of the link and cut operations into amortized bounds that hold for the
incremental case, in which only link operations are allowed, and in the decremental case, in
which only cut operations are allowed.7

▶ Theorem 6. Given a temporal forest of rooted trees with latencies, it is possible to build a
data structure of linear size that supports EA and LD queries in O(log L · log M) worst-case
time per operation, and reachability queries in O(log M) worst-case time per operation, where
L is the maximum number of labels on the same temporal edge, and M is the total number of
(not necessarily distinct) labels in the forest at the time of the operation. In the incremental
case, the data structure also supports insertions of singleton vertices, label insertions, and
link operations in amortized time O(log M). In the decremental case, the data structure
also supports deletions of singleton vertices, label deletions, and cut operations in amortized
O(log M) time and amortized building time of O(M log L).8

As before, we consider a temporal forest with latencies F containing rooted temporal
trees and, for a non-root vertex v, we define ev as the edge from v to its parent p(v) in the
unique tree of F containing v. We define F(λ) as the forest containing a node (α, ℓ, v) for
each non-root vertex v and for each (ℓ, α) ∈ λ(ev). For each non-leaf vertex v ∈ V (F), we
also define the block of v as the set Bv(λ) containing all nodes (α, ℓ, u) such that p(u) = v.
We fix an arbitrary order of the vertices of V (F) and we think of the nodes of F as being
ordered w.r.t. the order relation that compares nodes lexicographically, i.e., (α, ℓ, u) precedes
(α′, ℓ′, v) if (i) α < α′, or (ii) α = α′ and ℓ < ℓ′, or (iii) α = α′, ℓ = ℓ′, and u precedes v in
the chosen ordering of the vertices. Informally, we first order the nodes in a block by arrival
time, then by departure time, and finally by their corresponding vertex in F .

6 The special case in which all labels (ℓ, α) have α = ℓ corresponds to the model used in the previous
sections.

7 Our data structure can still handle arbitrary sequences of link and cut operations, but the amortized
bounds do not hold for this case.

8 In the decremental case, we can naturally assume that the initial number of vertices n in F satisfies
n = Ω(M).

ISAAC 2024

11:12 Temporal Queries for Dynamic Temporal Forests

(16, 4, b)

e

(8, 15), (4, 16), (9, 18)

(4, 4), (3, 12), (10, 12)
(4, 5), (3, 8), (7, 9)

a

b

c d

(4, 4), (5, 6) (3, 4), (1, 5), (2, 7)

f g

(1, 5)

r

(16, 17), (8, 18) (17, 16, a) (18, 8, a)

(15, 8, b) (18, 9, b)

(4, 4, c) (5, 4, d) (8, 3, d) (9, 7, d) (12, 3, c) (12, 10, c)

(4, 3, g) (4, 4, f) (5, 1, g) (6, 5, f) (7, 2, g)(5, 1, e)

Br

Ba

Bb

BdBc

Figure 3 Left: a sample rooted temporal tree with latencies. Right: a representation of the forest
F maintained by the data structure for temporal forests with latencies of Section 5.

We now define the analogue of the function σ for temporal forests with latencies. More
precisely, given a non root vertex u in F with parent v = p(u) and (ℓ, α) ∈ λ(eu), we let
(α+, ℓ+, u+) be the strict successor of (α, ℓ, u) in Bv(λ), if any. If v is a root of a tree in F ,
then σu(α, ℓ, λ) = (t+, ℓ+, u+) if (t+, ℓ+, u+) exists, otherwise σu(α, ℓ, λ) is undefined. When
v is not a root of any tree in F , we define NextHop(α, ℓ, u) as the node (α′, ℓ′, v) such that
(ℓ′, α′) ∈ λ(ev), ℓ′ ≥ α, and α′ is minimized, breaking ties in favor of labels with the largest
departure time (such a node might not exists).

We observe that if NextHop(α+, ℓ+, u+) exists, if it exists, either coincides with (α′, ℓ′, v)
or it follows (α′, ℓ′, v) in Bp(v) w.r.t. our ordering. Thus, if both (α+, ℓ+, u+) and (α′, ℓ′, v)

exist, we define: σu(α, ℓ, λ) =
{

(α+, ℓ+, u+) if α+ ≤ ℓ′;
(α′, ℓ′, v) if ℓ′ < α+.

Here the condition α+ ≤ ℓ′ is equivalent to the following: NextHop(α+, ℓ+, u+) exists
and coincides with (α′, ℓ′, v). If neither (α+, ℓ+, u+) nor (α′, ℓ′, v) exist, then σu(α, ℓ, λ) is
undefined and thus (α, ℓ, λ) is a root. Otherwise, σu(α, ℓ, λ) is defined as the only node that
exists among (α+, ℓ+, u+) and (α′, ℓ′, v). As usual, we drop the parameter λ from F(λ),
σu(α, ℓ, λ), and B(λ) whenever λ is clear from context.
Our data structure is analogous to that of Section 4, with the following exceptions:

each dictionary Dv storing the pairs in λ(ev) now supports queries of the following form:
given a range of values of interest for ℓ (resp. α), return the minimum/maximum value
of α (resp. ℓ) w.r.t. all labels (ℓ, α) ∈ λ(ev) such that ℓ (resp. α) is in the sought range
(notice that value might not exist). This can be done in time O(log |λ(ev)|) using, e.g.,
priority search trees [20], which require space O(|λ(ev)|).
for each non-leaf node v we say that a node (α, ℓ, u) ∈ Bv is a head of Bv if (α, ℓ, u) either
has no parent in F or it is linked to its parent with a blue edge. We store a dictionary
Hv that contains all heads of Bv.

Since queries are analogous to the latency-free case, we only focus on label additions/deletions.

An auxiliary procedure. The auxiliary procedure FixParent(ℓ, α, v) for the case with laten-
cies is similar to FixParent in the case without latencies, since it only uses the definition
of σv as before. The only difference is that that the execution of FixParent also needs to
update Hp(v) taking into account the new parent of (ℓ, α, v).

Label addition. To add label (ℓ, α) on edge ev, we first insert node (α, ℓ, v) into F , (ℓ, α)
into Dv, and (α, ℓ, v) into Bp(v). We find the maximum value ℓ− of ℓ′′ among all pairs
(ℓ′′, α′′) ∈ λ(ev) with α′′ < α using Dv.

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and A. Straziota 11:13

Let (α1, ℓ1, u1), . . . , (αk, ℓk, uk) be all the nodes in Bv such that ℓ− < αi ≤ ℓ sorted w.r.t.
our order (see Figure 4). We observe that all these nodes are consecutive in Bv. The parent
of (αk, ℓk, uk) becomes (α, ℓ, v), while the parent of all (αi, ℓi, ui) becomes (αi+1, ℓi+1, ui+1).
This requires updating all heads in Hv between (α1, ℓ1, u1) and (αk−1, ℓk−1, uk−1), and can
be in time O(h log M), where h is the number of such heads. This causes all the updated
heads to be removed from Hv, and (αk, ℓk, uk) to become a new head (if that was not already
the case). Next, we perform FixParent(α, ℓ, v). Finally, if the strict predecessor (α∗, ℓ∗, v∗)
of (α, ℓ, v) in Bp(v) exists, we perform FixParent(α∗, ℓ∗, v∗).

We now argue that the amortized time complexity of each label insertion is O(log M) in
the incremental case using the accounting method. Let c > 0 be a sufficiently large constant.
We keep a coin of value at least c · HM , where Hi =

∑i
j=1

1
j denotes the i-th harmonic

number, on each node of F that is either a root or is linked to its parent with a blue edge.
When a new label is inserted, we pay up to cM · 1

M+1 for the increase in value of the existing
coins so that each coin has value cHM+1, and cHM+1 for the coin on the new node (α, ℓ, v)
in F . We also add a coin of value cHM+1 on each of (α, ℓ, v) and (αk, ℓk, uk). Notice that
each node of (α1, ℓ1, u1), . . . , (αk−1, ℓk−1, uk−1) that changes the edge towards its parent
either had no parent, or it was linked to its previous parent with a blue edge. Moreover,
the new edges towards its parent must be red. This means that such a node had a coin of
value cHM+1 that we can use to pay for the cost of the rewiring. All the other operations
performed during a label addition cost O(log M) worst-case time.

Label deletion. To delete the label (ℓ, α) from edge ev, we remove the node (α, ℓ, v) from
F along with all its incident edges, we delete (ℓ, α) from Dv, and we delete (α, ℓ, v) from
Bp(v), and possibly from Hp(v).

If v is not a leaf in F , let (α1, ℓ1, u1), . . . , (αk, ℓk, uk) be the nodes, in order, that had
the NextHop equal to (α, ℓ, v). Notice that such nodes induce a red path in F , and that
(αk, ℓk, uk) was the unique blue child of (α, ℓ, v) before the deletion.

As a consequence of the deletion, some of the nodes in (α1, ℓ1, u1), . . . , (αk, ℓk, uk) will
become heads of Bv, and hence will have a blue edge towards their new parent in Bp(v). We
find (αk, ℓk, uk) in O(log M) worst-case time via binary search in Bv and we use it discover
such heads as follows: Initially (α∗, ℓ∗, u∗) = (αk, ℓk, uk), and z = NextHop(αk, ℓk, uk).
We binary search Bv for the rightmost node (α′, ℓ′, u′) (w.r.t. our ordering) that precedes
(αk, ℓk, uk) and is such that NextHop(α′, ℓ′, u′) ̸= z. We mark node (α′, ℓ′, u′) as a head, and
repeat the above procedure using (α∗, ℓ∗, u∗) = (α′, ℓ′, u′), and z = NextHop(α′, ℓ′, u′). We
stop the above procedure as soon as z precedes (α, ℓ, v) in Bp(v). Then this requires O(log M)
time, plus and additional O(log M) time per discovered head since we can check whether
NextHop(α′, ℓ′, u′) ̸= z in constant time. Indeed, calling z = (αz, ℓz, v), we can define ℓ−

z as
the largest value of ℓ′′ among the pairs (ℓ′′, α′′) ∈ λ(ev) with α′′ < αz (such ℓ−

z can be found
by querying Dv). Then NextHop(α′, ℓ′, u′) ̸= z iff ℓ′ < ℓ−

z .
We run FixParent on (αk, ℓk, uk) and on all the marked heads, which also updates Hv.
Finally, if the strict predecessor (α−, ℓ−, v−) of (α, ℓ, v) in Bp(v) exists, we perform

FixParent(α−, ℓ−, v−).
We now argue that the amortized time complexity of each label deletion is O(log M) in

the decremental case using the accounting method. Let c be sufficiently large constant. We
keep a coin of value at least c · HM on each node of F that is either a root or is linked to its
parent with a red edge. Hence, we pay an amortized cost of O(M log M) at construction
time. When a label is deleted, we pay 2cHM to add a coin on each of (α−, ℓ−, v−), and

ISAAC 2024

11:14 Temporal Queries for Dynamic Temporal Forests

(α−, `−, v)

(α1, `1, u1) (αh, `k, uk)

(α∗, `∗, v∗). . .Bp(v)

Bv

. . .

(α−, `−, v)

(α1, `1, u1) (αh, `k, uk)

(α, `, v). . .Bp(v)

Bv

. . .

(α∗, `∗, v∗)

Figure 4 A qualitative representation of the changes resulting from the addition of label (ℓ, α)
on edge ev. On the top: the blocks Bp(v) and Bv before inserting node (α, ℓ, v). On the bottom: the
new state of Bp(v) and Bv. Bold lines represent new edges, while dashed lines represent removed
ones.

(αk, ℓk, uk). Moreover, since each marked head (α′, ℓ′, u′) had a red edge towards its parent
before the deletion, we spend such a coin to pay for the execution of FixParent on (α′, ℓ′, u′).
All the other operations performed during a label deletion cost O(log M) worst-case time.

Uniform latencies. A special case of temporal graphs with latencies is the one with uniform
latencies, where all time labels have the same latency. In this case, the ordering defined on
the nodes of F is exactly the same as the one used in Section 4, for the case without latencies.
For this reason, the data structure we presented in this section guarantees a worst-case
update time of O(log M) because only a constant number of nodes in F can change their
parents.

▶ Corollary 7. Given a temporal forest of rooted trees with uniform latencies, it is possible to
build in O(n + M log L) time, a data structure of linear size, n is the number of vertices, L

is the maximum number of labels on the same temporal edge, and M is the total number of
(not necessarily distinct) labels in the forest at the time of the operation. The data structure
supports label additions/deletions, link/cut operations and addition/deletion of singleton
vertices in O(log M) worst-case time per operation, EA and LD queries in O(log L · log M)
worst-case time per operation, and reachability queries in O(log M) worst-case time per
operation.

References
1 Eleni C. Akrida, George B. Mertzios, Sotiris E. Nikoletseas, Christoforos L. Raptopoulos,

Paul G. Spirakis, and Viktor Zamaraev. How fast can we reach a target vertex in stochastic
temporal graphs? J. Comput. Syst. Sci., 114:65–83, 2020. doi:10.1016/J.JCSS.2020.05.005.

2 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal
vertex cover with a sliding time window. J. Comput. Syst. Sci., 107:108–123, 2020. doi:
10.1016/J.JCSS.2019.08.002.

3 Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Maintaining
information in fully dynamic trees with top trees. ACM Trans. Algorithms, 1(2):243–264, 2005.
doi:10.1145/1103963.1103966.

4 Matthieu Barjon, Arnaud Casteigts, Serge Chaumette, Colette Johnen, and Yessin M. Neggaz.
Testing temporal connectivity in sparse dynamic graphs. CoRR, abs/1404.7634, 2014. arXiv:
1404.7634.

https://doi.org/10.1016/J.JCSS.2020.05.005
https://doi.org/10.1016/J.JCSS.2019.08.002
https://doi.org/10.1016/J.JCSS.2019.08.002
https://doi.org/10.1145/1103963.1103966
https://arxiv.org/abs/1404.7634
https://arxiv.org/abs/1404.7634

D. Bilò, L. Gualà, S. Leucci, G. Proietti, and A. Straziota 11:15

5 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.
Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer, 2000. doi:
10.1007/10719839_9.

6 Davide Bilò, Sarel Cohen, Tobias Friedrich, Hans Gawendowicz, Nicolas Klodt, Pascal Lenzner,
and George Skretas. Temporal network creation games. In Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023,
Macao, SAR, China, pages 2511–2519. ijcai.org, 2023. doi:10.24963/IJCAI.2023/279.

7 Davide Bilò, Gianlorenzo D’Angelo, Luciano Gualà, Stefano Leucci, and Mirko Rossi. Sparse
temporal spanners with low stretch. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg,
and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms, ESA 2022,
September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 19:1–19:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ESA.2022.19.

8 Davide Bilò, Gianlorenzo D’Angelo, Luciano Gualà, Stefano Leucci, and Mirko Rossi. Blackout-
tolerant temporal spanners. J. Comput. Syst. Sci., 141:103495, 2024. doi:10.1016/J.JCSS.
2023.103495.

9 Luiz F. Afra Brito, Marcelo Keese Albertini, Arnaud Casteigts, and Bruno Augusto Nassif
Travençolo. A dynamic data structure for temporal reachability with unsorted contact insertions.
Social Network Analysis and Mining, 12, 2021. URL: https://api.semanticscholar.org/
CorpusID:231847148.

10 Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding
temporal paths under waiting time constraints. Algorithmica, 83(9):2754–2802, 2021. doi:
10.1007/S00453-021-00831-W.

11 Arnaud Casteigts, Joseph G. Peters, and Jason Schoeters. Temporal cliques admit sparse
spanners. J. Comput. Syst. Sci., 121:1–17, 2021. doi:10.1016/J.JCSS.2021.04.004.

12 Arnaud Casteigts, Michael Raskin, Malte Renken, and Viktor Zamaraev. Sharp thresholds
in random simple temporal graphs. SIAM J. Comput., 53(2):346–388, 2024. doi:10.1137/
22M1511916.

13 Thomas Erlebach, Frank Kammer, Kelin Luo, Andrej Sajenko, and Jakob T. Spooner.
Two moves per time step make a difference. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132
of LIPIcs, pages 141:1–141:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPICS.ICALP.2019.141.

14 Thomas Erlebach and Jakob T. Spooner. Parameterised temporal exploration problems. J.
Comput. Syst. Sci., 135:73–88, 2023. doi:10.1016/J.JCSS.2023.01.003.

15 Thekla Hamm, Nina Klobas, George B. Mertzios, and Paul G. Spirakis. The complexity of
temporal vertex cover in small-degree graphs. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 10193–10201.
AAAI Press, 2022. doi:10.1609/AAAI.V36I9.21259.

16 Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Recent advances in fully dynamic
graph algorithms - A quick reference guide. ACM J. Exp. Algorithmics, 27:1.11:1–1.11:45,
2022. doi:10.1145/3555806.

17 Petter Holme. Temporal networks. In Encyclopedia of Social Network Analysis and Mining,
pages 2119–2129. Springer, 2014. doi:10.1007/978-1-4614-6170-8_42.

18 Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Fully
dynamic connectivity in o(log n(loglog n)2) amortized expected time. TheoretiCS, 2, 2023.
doi:10.46298/THEORETICS.23.6.

ISAAC 2024

https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/10719839_9
https://doi.org/10.24963/IJCAI.2023/279
https://doi.org/10.4230/LIPICS.ESA.2022.19
https://doi.org/10.1016/J.JCSS.2023.103495
https://doi.org/10.1016/J.JCSS.2023.103495
https://api.semanticscholar.org/CorpusID:231847148
https://api.semanticscholar.org/CorpusID:231847148
https://doi.org/10.1007/S00453-021-00831-W
https://doi.org/10.1007/S00453-021-00831-W
https://doi.org/10.1016/J.JCSS.2021.04.004
https://doi.org/10.1137/22M1511916
https://doi.org/10.1137/22M1511916
https://doi.org/10.4230/LIPICS.ICALP.2019.141
https://doi.org/10.1016/J.JCSS.2023.01.003
https://doi.org/10.1609/AAAI.V36I9.21259
https://doi.org/10.1145/3555806
https://doi.org/10.1007/978-1-4614-6170-8_42
https://doi.org/10.46298/THEORETICS.23.6

11:16 Temporal Queries for Dynamic Temporal Forests

19 David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems
for temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.
doi:10.1006/jcss.2002.1829.

20 Edward M. McCreight. Priority search trees. SIAM J. Comput., 14(2):257–276, 1985. doi:
10.1137/0214021.

21 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

22 Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. Path problems in
temporal graphs. Proc. VLDB Endow., 7(9):721–732, 2014. doi:10.14778/2732939.2732945.

https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1137/0214021
https://doi.org/10.1137/0214021
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.14778/2732939.2732945

Partitioning Problems with Splittings and Interval
Targets
Samuel Bismuth #

Department of Computer Science, Ariel University, Israel

Vladislav Makarov #

Department of Mathematics and Computer Science, St. Petersburg State University, Russia

Erel Segal-Halevi #

Department of Computer Science, Ariel University, Israel

Dana Shapira #

Department of Computer Science, Ariel University, Israel

Abstract
The n-way number partitioning problem is a classic problem in combinatorial optimization, with
applications to diverse settings such as fair allocation and machine scheduling. All these problems
are NP-hard, but various approximation algorithms are known. We consider three closely related
kinds of approximations.

The first two variants optimize the partition such that: in the first variant some fixed number s

of items can be split between two or more bins and in the second variant we allow at most a fixed
number t of splittings. The third variant is a decision problem: the largest bin sum must be within
a pre-specified interval, parameterized by a fixed rational number u times the largest item size.

When the number of bins n is unbounded, we show that every variant is strongly NP-complete.
When the number of bins n is fixed, the running time depends on the fixed parameters s, t, u. For
each variant, we give a complete picture of its running time.

For n = 2, the running time is easy to identify. Our main results consider any fixed integer
n ≥ 3. Using a two-way polynomial-time reduction between the first and the third variant, we show
that n-way number-partitioning with s split items can be solved in polynomial time if s ≥ n − 2,
and it is NP-complete otherwise. Also, n-way number-partitioning with t splittings can be solved
in polynomial time if t ≥ n − 1, and it is NP-complete otherwise. Finally, we show that the third
variant can be solved in polynomial time if u ≥ (n − 2)/n, and it is NP-complete otherwise. Our
positive results for the optimization problems consider both min-max and max-min versions.

Using the same reduction, we provide a fully polynomial-time approximation scheme for the case
where the number of split items is lower than n − 2.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms

Keywords and phrases Number Partitioning, Fair Division, Identical Machine Scheduling

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.12

Related Version Full Version: https://arxiv.org/pdf/2204.11753 [4]

Funding Samuel Bismuth: Israel Science Foundation grant no. 712/20.
Erel Segal-Halevi: Israel Science Foundation grant no. 712/20.

Acknowledgements The paper started from discussions in the stack exchange network:
(1) https://cstheory.stackexchange.com/q/42275;
(2) https://cs.stackexchange.com/a/141322.
Dec-SplitItem[3, 1](X) was first solved by Mikhail Rudoy using case analysis. The relation to FPTAS
was raised by Chao Xu. We are also grateful to John L. https://cs.stackexchange.com/a/149567.

© Samuel Bismuth, Vladislav Makarov, Erel Segal-Halevi, and Dana Shapira;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 12; pp. 12:1–12:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:samuelbismuth101@gmail.com
https://orcid.org/0000-0003-3471-5402
mailto:vm450@yandex.ru
mailto:erelsgl@gmail.com
https://orcid.org/0000-0002-7497-5834
mailto:shapird@g.ariel.ac.il
https://orcid.org/0000-0002-2320-9064
https://doi.org/10.4230/LIPIcs.ISAAC.2024.12
https://arxiv.org/pdf/2204.11753
https://cstheory.stackexchange.com/q/42275
https://cs.stackexchange.com/a/141322
https://cs.stackexchange.com/a/149567
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Partitioning Problems with Splittings and Interval Targets

1 Introduction

In the classic setting of the n-way number partitioning problem, the inputs are a list
X = (x1, . . . , xm) of m non-negative integers and a number of bins n, and the required
output is an n-way partition (a partition of the integers into n bins) that attains some
pre-determined objective. In the decision version of the problem, the objective is to decide
whether there exists an n-way partition of X such that every bin sum is exactly equal
to

∑
xi∈X xi/n (we call it a perfect partition). In the min-max optimization version, the

objective is to find an n-way partition of X such that the maximum bin sum is minimized,
while in the max-min optimization version, the goal is to maximize the smallest bin sum.

For each problem of this paper, the problem objective is mentioned first, the fixed
parameters in square brackets, and the problem input in parenthesis. Let us formally define
the min-max version of the n-way number partitioning problem, where n is a fixed parameter:

MinMax-Part[n](X): Minimize max(b1, . . . , bn), where b1, . . . , bn are sums of bins
in an n-way partition of X .

When n is unbounded, Dec-Part(n,X) (the decision version of the n-way number partitioning
problem) is known to be strongly NP-hard (it is equivalent to 3-partition) [8]. And for every
fixed n ≥ 2 Dec-Part[n](X) is known to be NP-hard [9]. In addition, many instances of the
decision version are negative (there is no perfect partition). The latter reasons give us a
good motivation to investigate variants of the n-way number partitioning problem, for which
the running time complexity is better, and the number of positive instances (admitting a
perfect partition) will significantly grow. We present three variants, that relax the initial
problem to solve our concerns. The first two variants allow “divisible” items, bounded by
some natural numbers s and t. We define the decision and the min-max versions as follows:

Dec-SplitItem[n, s](X): Decide if there exists a partition of X among n bins with
at most s split items, such that max(b1, . . . , bn) ≤ S.
MinMax-SplitItem[n, s](X): Minimize max(b1, . . . , bn), where b1, . . . , bn are sums
of bins in an n-way partition of X in which at most s items are split.
Dec-Splitting[n, t](X): Decide if there exists a partition of X among n bins with
at most t splittings, such that max(b1, . . . , bn) ≤ S.
MinMax-Splitting[n, t](X): Minimize max(b1, . . . , bn), where b1, . . . , bn are sums
of bins in an n-way partition of X in which at most t splittings are allowed.

The number of splittings is at least the number of split items but might be larger. For
example, a single item split into 10 different bins counts as 9 splittings. Note that the
problem definitions do not determine in advance which items will be split, but only bound
their number, or bound the number of splittings. The solver may decide which items to split
after receiving the input.

Our motivating application for the variants comes from fair division and machine schedul-
ing. For fair division, some m items with market values x1, . . . , xm have to be divided among
n agents. A perfect partition is one in which each partner receives a total value of exactly∑

i xi/n. When the original instance does not admit a perfect partition, we may want to split
one or more items among two or more agents. Or, we can allow some splittings. Divisible
items are widespread in fair division applications – the ownership of one or more items may
be split to attain a perfectly fair partition. However, divisible items may be inconvenient or
expensive. Therefore, the number of split items or splittings should be bounded. The same
is true for machine scheduling, in which agents are considered as machines, and items as jobs.
It is possible for a job to be divided and be processed by two machines simultaneously. The
following examples tackle real-life fair division or machine scheduling problems.

S. Bismuth, V. Makarov, E. Segal-Halevi, and D. Shapira 12:3

(1) Consider n = 2 heirs who inherited m = 3 houses and have to divide them fairly. The
house values are X = (100, 200, 400). If all houses are considered discrete, then an equal
division is not possible. If all houses can be split, then an equal division is easy to attain by
giving each heir 50% of every house, but it is inconvenient since it requires all houses to be
jointly managed. A solution often used in practice is to decide in advance that a single house
can be split (or only one splitting is allowed). In this case, after receiving the input, we can
determine that splitting the house with a value of 400 lets us attain a division in which each
heir receives the same value of 350. 1

(2) Consider a food factory with n = 3 identical chopping machines, who has to cut
m = 4 vegetables with processing times X = (10, 7, 5, 5) minutes. Each job is divisible as
one vegetable may be cut in different machines, but splitting a job is inconvenient since
it requires washing more dishes. Without splitting, the minimum total processing time is
10 minutes: (10), (7), (5, 5). By splitting the vegetable with processing time 10 into three
different machines, the processing time is 9 minutes: (7, 2), (5, 4), (5, 4).
The third variant only admits a decision version, parameterized by a rational number u ≥ 0:

Dec-Inter[n, u](X): Decide if there exists a partition of X into n bins with sums
b1, . . . , bn such that S ≤ max(b1, . . . , bn) ≤ S + u ·M , where S := (

∑
i xi)/n and

M := (maxi xi)/n.
We will also use another definition of this variant, parameterized by a rational number v ≥ 0:

Dec-Inter[n, v](X): Decide if there exists a partition of X into n bins with sums
b1, . . . , bn such that S ≤ max(b1, . . . , bn) ≤ (1 + v) · S, where S := (

∑
i xi)/n.

Note that when u = vS/M , both definitions are the same. In general, the runtime complexity
of this problem depends on the size of the allowed interval (i.e., the interval [S, S + u ·M]):
the problem is NP-complete when the interval is “small” and in P when the interval is “large”.
Specifically, when n = 2, the runtime complexity depends on the ratio of the allowed interval
to the bin sum, while when n ≥ 3 it depends on the ratio of the allowed interval to the largest
item. We notice that, if we can solve Inter for any interval length in polynomial-time, then
by binary search we can solve Part in polynomial-time; which is not possible unless P=NP.
So in Inter, we look for the smallest interval for which we can decide in polynomial-time
whether it contains a solution.

As an application example, consider the fair allocation of indivisible items among two
agents. Suppose there is a small amount of money, that can be used to compensate for a
small deviation from equality in the allocation. But if the deviation is too big, the agents
prefer to find another solution. We can check the feasibility using Inter such that the
interval is the amount of money available.

The Inter variant is similar to the Fully Polynomial-Time Approximation Scheme
(FPTAS) definition:

▶ Definition 1. An FPTAS for MinMax-Part[n](X) is an algorithm that finds, for each
rational ϵ > 0, an n-way partition of X with OPT ≤ max(b1, . . . , bn) ≤ (1 + ϵ) · OPT ,
where OPT is the smallest possible value of max(b1, . . . , bn) in the given instance, in time
O(poly(m, 1/ϵ, log S)).

An FPTAS finds a solution for which the relative deviation from optimality depends on the
optimal integral solution. In contrast, in the Dec-Inter[n, u](X) problem, we look for a
solution for which the relative deviation from optimality depends on the optimal fractional
solution.

1 Split the house worth 400 such that one heir gets 7/8 of it, and the other gets 1/8 of it plus both the
100 and 200 houses.

ISAAC 2024

12:4 Partitioning Problems with Splittings and Interval Targets

Table 1 Run-time complexity of the n-way number partitioning variants. In SplitItem, s (an
integer) is the number of items the algorithm is allowed to split. In Splitting, t (an integer) is the
number of splittings the algorithm is allowed to make. In Inter, u (a rational number) is the ratio
between the allowed interval length and M .

Problem Objective Num of bins Bound Run-time complexity
Part Dec Unbounded s = t Strongly NP-hard [[8]]

Constant n = u = 0 NP-complete [[9]]
SplitItem Dec Unbounded s (any) Strongly NP-hard [[4]Corollary 19]

Constant n ≥ 3 s < n − 2 NP-complete [Theorem 14]
MinMax s ≥ n − 2 O(poly(m, log S)) [Theorem 16]
MaxMin s ≥ n − 2 O(poly(m, log S)) [[4]Theorem 22]
All Constant n ≥ 2 s ≥ n − 1 O(m + n) [cut-the-line]

Splitting Dec Unbounded t (any) Strongly NP-hard [[4]Theorem 20]
Constant n t < n − 1 NP-complete [Theorem 17]

All t ≥ n − 1 O(m + n) [cut-the-line]
Inter Dec Unbounded u (any) Strongly NP-hard [[4]Theorem 17]

Constant n ≥ 3 u < n − 2 NP-complete [Theorem 11]
Dec u ≥ n − 2 O(poly(m, log S)) [Theorem 10]

Constant n ≥ 2 u ≥ n − 1 O(m + n) [cut-the-line+Thm 13]
n = 2 u > 0 O(poly(m, log S, 1/u)) [Theorem 6]

Contribution

When s, t, u = 0, SplitItem, Splitting and Inter decision versions are equivalent to the
NP-hard Part decision version. In contrast, when s, t ≥ n− 1 the problem is easily solvable
by the following algorithm: put the items on a line, cut the line into n pieces with an equal
total value, and put each piece in a bin. Since n − 1 cuts are made, at most n − 1 items
need to be split. So for n = 2, the runtime complexity of the Dec-SplitItem[n, s](X) and
Dec-Splitting[n, t](X) problem is well-understood (assuming P ̸= NP): it is polynomial-
time solvable if and only if s, t ≥ 1. The case for Inter is slightly different since u, v are
rational numbers. We summarize all our results in Table 1.

In Section 4 we show a two-way polynomial-time reduction between problems SplitItem
and Inter. This reduction is the key for many of our results. We use it to handle the
case where the number of split items is smaller than n − 2. First, we design an FPTAS
in [4][Appendix A.3]. Second, we develop a practical (not polynomial-time) algorithm, for
solving MinMax-SplitItem[n, s](X) for any s ≥ 0. The algorithm can use any practical
algorithm for solving the MinMax-Part[n](X) problem. The latest helps us in [4][Appendix
A.4] to conduct some experiences to various randomly generated instances and analyze the
effect of s on the quality of the attained solution. The supplement provides complementary
results and technical proof details omitted from the main text.

2 Related Work

In most combinatorial optimization problems, there is a clear distinction between discrete
and continuous variables. E.g., when a problem is modeled by a mixed-integer program,
each variable in the program is determined in advance to be either discrete (must get an
integer value) or continuous (can get any real value). The problems we study belong to a
much smaller class of problems, in which all variables are potentially continuous, but there is
an upper bound on the number of variables that can be non-discrete. We describe some such
problems below.

S. Bismuth, V. Makarov, E. Segal-Halevi, and D. Shapira 12:5

Bounded splitting in fair division. The idea of finding fair allocations with a bounded number
of split items originated from [5, 6]. They presented the Adjusted Winner (AW) procedure for
allocating items among two agents with possibly different valuations. AW finds an allocation
that is envy-free (no agent prefers the bundle of another agent), equitable (both agents receive
the same subjective value), and Pareto-optimal (there is no other allocation where some
agent gains and no agent loses), and in addition, at most a single item is split between the
agents. Hence, AW solves a problem that is similar to Dec-SplitItem[n = 2, s = 1](X) but
more general, since AW allows the agents to have different valuations to the same items.

Most similar to our paper is the recent work of [15]. Their goal is to find an allocation
among n agents with different valuations, which is both fair and fractionally Pareto-optimal
(fPO), a property stronger than Pareto-optimality (there is no other discrete or fractional
allocation where some agent gains and no agent loses). This is a very strong requirement:
when n is fixed, and the valuations are non-degenerate (i.e., for every two agents, no two
items have the same value-ratio), the number of fPO allocations is polynomial in m, and it is
possible to enumerate all such allocations in polynomial time. Based on this observation,
they present an algorithm that finds an allocation with the smallest number of split items,
among all allocations that are fair and fPO. In contrast, in our paper, we do not require fPO,
which may allow allocations with fewer split items or splittings. However, the number of
potential allocations becomes exponential, so enumerating them all is no longer feasible.

Another paper [3] studies the same problems, but, whereas our paper focuses on identical
valuations, they give new results on binary valuations (i.e., each agent values each item as 0
or 1), generalized binary valuations (i.e., each agent values each item as 0 or xi, which can
be considered as the price of the item) and negative results on non-degenerate valuations,
complementing the results given by [15].

Recently, [1, 2] studied an allocation problem where some items are divisible and some are
indivisible. In contrast to our setting, in [1] the distinction between divisible and indivisible
items is given in advance, that is, the algorithm can only divide items that are pre-determined
as divisible. In [2], for each good, some agents may regard it as indivisible, while other
agents may regard the good as divisible. In our setting, only the number of divisible items
(splittings) is given in advance, but the algorithm is free to choose which items to split after
receiving the input.

Splitting in job scheduling. There are several variants of job scheduling problems in which
it is allowed to break jobs apart. They can be broadly classified into preemption and splitting.
In the preemption variants, different parts of a job must be processed at different times.
In the three-field notation, they are denoted by “pmtn” and were first studied by [13]. In
the splitting variants, different parts of a job may be processed simultaneously on different
machines. They are denoted by “split” and were introduced by [18].

Various problems have been studied in job scheduling with preemption. The most closely
related to our problem is the generalized multiprocessor scheduling (GMS). It has two variants.
In the first variant, the total number of preemptions is bounded by some fixed integer. In
the second variant, each job j has an associated parameter that bounds the number of times
j can be preempted. In both variants, the goal is to find a schedule that minimizes the
makespan subject to the preemption constraints. For identical machines, [16] prove that with
the bound of n− 2 on the total number of preemptions, the problem is NP-hard, whereas [13]
shows a linear-time algorithm with n− 1 preemptions. In Theorem 17 we prove an analogous
result where the bound is on the total number of splittings.

In all the works we surveyed, there is no global bound on the number of splitting jobs.
As far as we know, bounding the number of splittings or split jobs was not studied before.

ISAAC 2024

12:6 Partitioning Problems with Splittings and Interval Targets

Fractional bin-packing. Another problem, in which splitting was studied, is the classical
bin-packing problem. Bin-packing with fragmented items are first introduced by [12]. They
called the problem fragmentable object bin-packing problem and prove that the problem is
NP-hard. It is later split into two variants. In the first variant called bin-packing with size-
increasing fragmentation (BP-SIF), each item may be fragmented; overhead units are added
to the size of every fragment. In the second variant called bin-packing with size-preserving
fragmentation (BP-SPF) each item has a size and a cost; fragmenting an item increases its
cost but does not change its size. Menakerman and Rom [14] show that BP-SIF and BP-SPF
are NP-hard in the strong sense. Despite the hardness, they present several algorithms and
investigate their performance. Their algorithms use classic algorithms for bin-packing, like
next-fit and first-fit decreasing, as a base for their algorithms.

Finally, the fractional knapsack problem with penalties is recently introduced by [11].
They develop an FPTAS and a dynamic program for the problem, and they show an extensive
computational study comparing the performance of their models.

3 Partition with Interval Target

In this section we analyze the problems Dec-Inter[n, v](X) and Dec-Inter[n, u](X).

3.1 The Dec-Inter[n, v](X) problem
Given an instance of Dec-Inter[n, v](X), we say that a partition of X is v-feasible if
S ≤ max(b1, . . . , bn) ≤ (1+v) ·S, where b1, . . . , bn are the bin sums and S is the sum of items
divided by n. The Dec-Inter[n, v](X) problem is to decide whether a v-feasible partition
exists.

▶ Lemma 2. When v ≥ 1, the problem Dec-Inter[n, v](X) can be decided in linear time by
a greedy algorithm.

The proof is in [4][Appendix B.3]. We focus below on the case v < 1.

▶ Definition 3. Given an instance of Dec-Inter[n, v](X), a rational number ϵ > 0, and a
partition of X among n bins, an almost-full bin is a bin with sum larger than (1+v) ·S/(1+ϵ).

A known FPTAS for the MinMax-Part[n](X) problem [17] gives us valuable information
since we can easily verify that if the output of this FPTAS is smaller than (1 + v) · S then in
any n-way partition of X , at least one bin is almost-full. To gain more information on the
instance, we apply an FPTAS for a constrained variant of Part, with a Critical Coordinate.
For an integer n ≥ 2, a list X , and a rational number v > 0, we define the following problem:

MinMax-Part[n, v, i](X)2: Minimize max(b1, . . . , bi−1, bi+1, . . . , bn) subject to bi ≤
(1 + v) · S where b1, . . . , bn are bin sums in an n-way partition of X .

The general technique developed by [17] for converting a dynamic program to an FPTAS can
be used to design an FPTAS for MinMax-Part[n, v, i](X); we give the details in [4][Appendix
C.1]. We denote by FPTAS(MinMax-Part[n, v, i](X), ϵ) the largest bin sum in the solution
obtained by the FPTAS.

▶ Lemma 4. For any n ≥ 2, v > 0, ϵ > 0, if, for all i ∈ [n], FPTAS(MinMax-Part[n, v, i](X),
ϵ) > (1 + v) · S, then in any v-feasible n-way partition of X , at least two bins are almost-full.

2 The critical coordinate is parameterized by i. In this work, we do not use this parameter, but other
results may iterate over every critical coordinate possible.

S. Bismuth, V. Makarov, E. Segal-Halevi, and D. Shapira 12:7

Proof. Suppose by contradiction that there exists a v-feasible partition of X with at most
one almost-full bin. Let i be the index of the bin with the largest sum in that partition. Since
bin i has the largest sum, if there is one almost-full bin, it must be bin i. Hence, bins that
are not i are not almost-full, so max(b1, . . . , bi−1, bi+1, . . . , bn) ≤ (1 + v) ·S/(1 + ϵ). Moreover,
bi ≤ (1 + v) · S since the partition is v-feasible. Therefore, FPTAS(MinMax-Part[n, v, i](X),
ϵ) ≤ (1 + v) · S by the definition of FPTAS. This contradicts the lemma assumption. ◀

Using Theorem 4, we can now derive a complete algorithm for Dec-Inter[n = 2, v](X).

Algorithm 1 Dec-Inter[n = 2, v](X).

1: b2 ←− FPTAS(MinMax-Part[n = 2, v, i](X), ϵ = v/2).
2: If b2 ≤ (1 + v) · S, return “yes”.
3: Else, return “no”.

▶ Theorem 5. For any rational v > 0, Algorithm 1 solves the Dec-Inter[n = 2, v](X)
problem in time O(poly(m, log S, 1/v)), where m is the number of items in X and S =
(
∑

i xi)/n is the perfect bin sum.

Proof. The run-time of Algorithm 1 is dominated by the run-time of the FPTAS for
MinMax-Part[n = 2, v, i](X), which is O(poly(m, log S, 1/ϵ)) = O(poly(m, log S, 1/v)) (we
show in [4][Appendix C.3.1] that the exact run-time is O(m

v log S)). It remains to prove that
Algorithm 1 indeed solves Dec-Inter[n = 2, v](X) correctly.

If b2, the returned bin sum of FPTAS(MinMax-Part[n = 2, v, i](X), ϵ = v/2), is at most
(1 + v) · S, then the partition found by the FPTAS is v-feasible, so Algorithm 1 answers “yes”
correctly. Otherwise, by Theorem 4, in any v-feasible partition of X into two bins, both bins
are almost-full. This means that, in any v-feasible partition, both bin sums b1 and b2 are
larger than (1 + v) ·S/(1 + ϵ), which is larger than S since ϵ = v/2. So b1 + b2 > 2S. But this
is impossible since the sum of the items is 2S by assumption. Hence, no v-feasible partition
exists, and Algorithm 1 answers “no” correctly. 3 ◀

▶ Corollary 6. For any rational u > 0, Algorithm 1 solves the Dec-Inter[n = 2, u](X)
problem in time O(poly(m, log S, 1/u)).

Proof. For any rational u > 0, let v := uM/S, that is v > 0. Algorithm 1 solves the
Dec-Inter[n = 2, v = uM/S](X) problem in time O(poly(m, log S, S/uM))), where m is
the number of items in X and S = (

∑
i xi)/n is the perfect bin sum. Since S ≤ mM , the

algorithm runs in time O(poly(m, log S, 1/u)) for any u > 0. ◀

▶ Remark 7. The reader may wonder why we cannot use a similar algorithm for n ≥ 3. For
example, we could have considered a variant of MinMax-Part[n, v, i](X) with two critical
coordinates:

Minimize max(b3, . . . , bn) subject to b1 ≤ (1 + v) · S and b2 ≤ (1 + v) · S, where
b1, b2, b3, . . . , bn are bin sums in an n-way partition of X .

3 Instead of an FTPAS for MinMax-Part[n = 2, v, i](X), we could use an FTPAS for the Subset Sum
problem [10], using the same arguments. The critical coordinate is not needed in the Subset Sum FPTAS,
since the output is always smaller than the target. We prefer to use the FTPAS for MinMax-Part[n =
2, v, i](X), since it is based on the general technique of [17], that we use later for solving other problems.

ISAAC 2024

12:8 Partitioning Problems with Splittings and Interval Targets

If the FPTAS for this problem does not find a v-feasible partition, then any v-feasible partition
must have at least three almost-full bins. Since not all bins can be almost-full, one could
have concluded that there is no v-feasible partition into n = 3 bins.

Unfortunately, the problem with two critical coordinates probably does not have an
FPTAS even for n = 3, since it is equivalent to the Multiple Subset Sum problem, which does
not have an FPTAS unless P=NP [7]. In the next subsection we handle the case n ≥ 3 in a
different way.

3.2 Dec-Inter[n, u](X): an algorithm for n ≥ 3 and u ≥ n − 2
The case when u ≥ n− 1 is solved by the cut-the-line algorithm combined with Theorem 13.
Here, we prove a more general case where u ≥ n−2. Given an instance of Dec-Inter[n, u](X),
where the sum of the items is n · S and the largest item is n ·M , where S, M ∈ Q, we say
that a partition of X is u-possible if S ≤ max(b1, . . . , bn) ≤ S + u ·M , where b1, . . . , bn are
the bin sums. The Dec-Inter[n, u](X) problem is to decide whether a u-possible partition
exists. Given an instance of Dec-Inter[n, u](X), we let v := uM/S, so that a partition is
u-possible if and only if it is v-feasible.

The algorithm starts by running FPTAS(MinMax-Part[n, v, i](X), ϵ = v/(4m2)). If the
FPTAS find a v-feasible partition, we return “yes”. Otherwise, by Theorem 4, any v-feasible
partition must have at least two almost-full bins.

We take a detour from the algorithm and prove some existential results about partitions
with two or more almost-full bins. We assume that there are more items than bins, that is,
m > n. This assumption is because if m ≤ n, one can compute all the combinations using
brute force (note that the running time is polynomial since 2m ≤ 2n = O(1) since n is a
fixed parameter).

3.2.1 Structure of partitions with two or more almost-full bins
We distinguish between big, medium, and small items defined as follows. A small item
is an item with length smaller than 2ϵnS; a big item is an item with length greater than
(v

n−2 − 2ϵ)nS. All other items are called medium items. Our main structural Lemma is the
following.

▶ Lemma 8. Suppose that u ≥ n−2, v = uM/S < 1, ϵ = v/4m2 and the following properties
hold.

(1) There is no v-feasible partition with at most 1 almost-full bin;
(2) There is a v-feasible partition with at least 2 almost-full bins.

Then, there is a v-feasible partition with the following properties.
(a) Exactly two bins (w.l.o.g. bins 1 and 2) are almost-full.
(b) The sum of every not-almost-full bin i ∈ {3, . . . , n} satisfies(

1− 2
n− 2v − 2ϵ

)
· S ≤ bi ≤

(
1− 2

n− 2v + (n− 1)2ϵ

)
· S.

(c) Every item in an almost-full bin is a big-item.
(d) Every item in a not-almost-full bin is either a small-item, or a big-item larger or equal

to every item in bins 1,2.
(e) There are no medium-items at all.
(f) Every not-almost-full bin contains the same number of big-items, say ℓ, where ℓ is an

integer (it may contain, in addition, any number of small-items).
(g) Every almost-full bin contains ℓ + 1 big-items (and no small-items).

S. Bismuth, V. Makarov, E. Segal-Halevi, and D. Shapira 12:9

As an example of this situation, consider an instance with 7 items, all of which have
size 1, with n = 5 and u = 3. Then, there is a u-possible partition with two almost-
full bins: (1, 1), (1, 1), (1), (1), (1), and no u-possible partition with 1 or 0 almost-full bins.
See [4][Appendix B.4.1] for details. A full proof ([4][Appendix B.4.2]) of the Lemma appears
in the appendix, here we provide a sketch proof.

Proof Sketch. We start with an arbitrary v-feasible partition with some r ≥ 2 almost-full
bins 1, . . . , r, and convert it using a sequence of transformations to another v-feasible partition
satisfying properties (a)–(g), as explained below. Note that the transformations are not part
of our algorithm and are only used to prove the lemma. First, we note that there must be
at least one bin that is not almost-full, since the sum of an almost-full bin is larger than S

whereas the sum of all n bins is n · S.
For (a), if there are r ≥ 3 almost-full bins, we move any item from one of the almost-full

bins 3, . . . , r to some not-almost-full bin. We prove that, as long as r ≥ 3, the target bin
remains not-almost-full. This transformation is repeated until r = 2 and only bins 1 and 2
remain almost-full.

For (b), for the lower bound, if there is i ∈ {3, . . . , n} for which bi is smaller than
the lower bound, we move an item from bins 1, 2 to bin i. We prove that bin i remains
not-almost-full, so by assumption (1), bins 1, 2 must remain almost-full. We repeat until bi

satisfies the lower bound. Once all bins satisfy the lower bound, we prove that the upper
bound is satisfied too.

For (c), if bin 1 or 2 contains an item that is not big, we move it to some bin i ∈ {3, . . . , n}.
We prove that bin i remains not-almost-full, so by assumption (1), bins 1, 2 must remain
almost-full. We repeat until bins 1 and 2 contain only big-items.

For (d), if some bin i ∈ {3, . . . , n} contains an item bigger than 2nSϵ and smaller than
any item in bin 1 or bin 2, we exchange it with an item from bin 1 or 2. We prove that, after
the exchange, bi remains not-almost-full, so bins 1, 2 must remain almost-full. We repeat
until bins 1,2 contain only the smallest big-items. Note that transformations (b), (c), (d)
increase the sum in the not-almost-full bins 3, . . . , n, so the process must end.

For (e), it follows logically from properties (d) and (c): if bins 1,2 contain only big items
and the other bins contain only big and small items, then the instance cannot contain any
medium items (that are neither big nor small). For clarity and verification, we provide a
stand-alone proof.

For (f), we use the fact that the difference between two not-almost-full bins is at most
2nSϵ by property (b), and show that it is too small to allow a difference of a whole big-item.

For (g), because by (d) bins 1 and 2 contain the smallest big-items, whereas their sum
is larger than bins 3, . . . , n, they must contain at least ℓ + 1 big-items. We prove that,
if they contain ℓ + 2 big-items, then their sum is larger than (1 + v)S, which contradicts
v-feasibility. ◀

Properties (f) and (g) imply:

▶ Corollary 9. Suppose that u ≥ n− 2, v = uM/S and ϵ = v/4m2. Let B ⊆ X be the set of
big items in X . If there is a v-feasible partition with at least two almost-full bins, and no
v-feasible partition with at most one almost-full bin, then |B| = nℓ + 2 for ℓ ∈ N.

ISAAC 2024

12:10 Partitioning Problems with Splittings and Interval Targets

3.2.2 Back to the algorithm
We have left the algorithm at the point when FPTAS(MinMax-Part[n = 2, v, i](X), ϵ =
v/4m2) > (1 + v) · S that is the FPTAS did not return a v-feasible partition. Theorem 4
implies that if a v-feasible partition exists, then there exists a v-feasible partition satisfying
all properties of Theorem 8 and Theorem 9. We can find such a partition (if it exists) in two
steps:

For bins 1, 2: Find a v-feasible partition of the 2ℓ + 2 smallest items in B into two bins
with ℓ + 1 items in each bin.
For bins 3, . . . , n: Find a v-feasible partition of the remaining items in X into n − 2
bins.

For bins 3, . . . , n, we use the FPTAS for the problem MinMax-Part[n = n − 2](X). If it
returns a v-feasible partition, we are done. Otherwise, by FPTAS definition, every partition
into (n − 2) bins must have at least one almost-full bin. But by Theorem 8(a), all bins
3, . . . , n are not almost-full which is a contradiction. Therefore, if the FPTAS does not find a
v-feasible partition, we answer “no”. Bins 1 and 2 require a more complicated algorithm that
is explained in [4][Appendix B.2]. We are now ready to present the complete algorithm for
Dec-Inter[n, u](X), presented in Algorithm 2.

Algorithm 2 Dec-Inter[n, u](X) (complete algorithm).

1: v ←− uM/S and ϵ←− v/(4m2).
2: If FPTAS(MinMax-Part[n, v, i](X), ϵ) ≤ (1 + v) · S, return “yes”.
3: B ←−

{
xi ∈ X | xi > nS(v

n−2 − 2ϵ)
}

▷ big items

4: If |B| is not of the form nℓ + 2 for some integer ℓ, return “no”.
5: B1:2 ←− the 2ℓ + 2 smallest items in B. ▷ break ties arbitrarily

6: B3..n ←− X \B1:2. ▷ big and small items

7: b3 ←− FPTAS(MinMax-Part[n = n− 2](B3..n), ϵ) ▷ Computes an approximately-optimal

(n − 2)−way partition of B3..n and returns the maximum bin sum in the partition.

8: If b3 > (1 + v)S, return “no”. ▷ The FTPAS did not find a v-feasible partition.

9: B1:2 ←− {nM1:2 − x | x ∈ B1:2} and v ←− (S + vS − S1:2)/S1:2.

10: Look for a v-feasible partition of B1:2 into two subsets of ℓ + 1 items (see [4][Appendix
B.2]).

11: If a v-feasible partition is found, return “yes”. Else, return “no”.

▶ Theorem 10. For any fixed integer n ≥ 3 and rational number u ≥ n− 2, Algorithm 2
solves Dec-Inter[n, u](X) in O(poly(m, log S)) time, where m is the number of items in X ,
and S is the average bin size.

Proof. If Algorithm 2 answers “yes”, then clearly a v-feasible partition exists. To complete
the correctness proof, we have to show that the opposite is true as well.

Suppose there exists a v-feasible partition. If the partition has at most one almost-full
bin, then by Theorem 4, it is found by the FPTAS in step 2. Otherwise, the partition
must have at least two almost-full bins, and there exists a v-feasible partition satisfying the
properties of Theorem 8. By Theorem 9, the algorithm does not return “no” in step 4. By
properties (a) and (b), there exists a partition of B3..n into n − 2 bins 3, . . . , n which are
not almost-full. By definition, the FPTAS in step 7 finds a partition with max(b3, . . . , bn) ≤
(1 + v)S. The final steps, regarding the partition of B1:2, are justified by the discussion
at [4][Appendix B.2]. The complete running time O(poly(m, log S)) of Algorithm 2 is
justified by the running time of the FPTAS for FPTAS(MinMax-Part[n = 2, v, i](X), ϵ)

S. Bismuth, V. Makarov, E. Segal-Halevi, and D. Shapira 12:11

and for FPTAS(MinMax-Part[n = n − 2](B3..n), ϵ). Note that 1/v is polynomial in m

since 1/v = S/uM ≤ mM/uM = m/u = O(m) since u is fixed. The exact running time,
O(m4 log S), is detailed in [4][Appendix C.3.2]. ◀

3.3 Hardness for n ≥ 3 bins and u < n − 2
The following theorem complements the previous subsection.

▶ Theorem 11. Given a fixed integer n ≥ 3 and a positive rational number u < n− 2, the
problem Dec-Inter[n, u](X) is NP-complete.

Proof. Given an n-way partition of m items, summing the sizes of all elements in each bin
allows us to check whether the partition is u-possible in linear time. So, the problem is in NP.
To prove that Dec-Inter[n, u](X) is NP-Hard, we reduce from the equal-cardinality partition
problem, proved to be NP-hard in [9]: given a list with an even number of integers, decide if
they can be partitioned into two subsets with the same sum and the same cardinality.

Given an instance X1 of equal-cardinality partition, denote the number of items in X1 by
2m′. Define M to be the sum of numbers in X1 divided by 2n(1− u

n−2), so that the sum of
items in X1 is 2n(1− u

n−2)M (where n and u are the parameters in the theorem statement).
We can assume w.l.o.g. that all items in X1 are at most n(1− u

n−2)M , since if some item is
larger than half of the sum, the answer is necessarily “no”.

Construct an instance X2 of the equal-cardinality partition problem by replacing each
item x in X1 by nM − x. So X2 contains 2m′ items between n(u

n−2)M and nM . Their sum,
which we denote by 2S′, satisfies 2S′ = 2m′ ·nM−2n

(
1− u

n−2

)
M = 2n

(
m′ − 1 + u

n−2

)
M.

Clearly, X1 has an equal-sum equal-cardinality partition (with bin sums n
(

1− u
n−2

)
M) iff

X2 has an equal-sum equal-cardinality partition (with bin sums S′ = n
(

m′ − 1 + u
n−2

)
M).

Construct an instance (X3, u) of Dec-Inter[n, u](X) by adding (n− 2)(m′ − 1) items of
size nM . Note that nM is indeed the largest item size in X3. Denote the sum of item sizes
in X3 by nS. Then

nS = 2S′ + (n− 2)(m′ − 1) · nM = n

(
2(m′ − 1) + 2u

n− 2 + (n− 2)(m′ − 1)
)
·M

= n

(
n(m′ − 1) + 2u

n− 2

)
M ;

S + uM =
(

n(m′ − 1) + 2u

n− 2 + u

)
M =

(
n(m′ − 1) + nu

n− 2

)
M = S′,

so a partition of X3 is u-possible if and only if the sum of each of the n bins in the partition
is at most S + uM = S′.

We now prove that if X2 has an equal-sum equal-cardinality partition, then the instance
(X3, u) has a u-possible partition, and vice versa. If X2 has an equal-sum partition, then the
items of X2 can be partitioned into two bins of sum S′, and the additional (n− 2)(m′ − 1)
items can be divided into n− 2 bins of m′ − 1 items each. The sum of these items is

(m′ − 1) · nM = n(m′ − 1)M = S − 2
n− 2uM < S + uM = S′, (1)

so the resulting partition is a u-possible partition of X3. Conversely, suppose X3 has a
u-possible partition. Let us analyze its structure.

ISAAC 2024

12:12 Partitioning Problems with Splittings and Interval Targets

Since the partition is u-possible, the sum of every two bins is at most 2(S + uM). So the
sum of every n − 2 bins is at least nS − 2(S + uM) = (n − 2)S − 2uM . Since the largest
(n− 2)(m′ − 1) items in X3 sum up to exactly (n− 2)S − 2uM by (1), every n− 2 bins must
contain at least (n − 2)(m′ − 1) items. Since X3 has (n − 2)(m′ − 1) + 2m′ items overall,
n− 2 bins must contain exactly (n− 2)(m′ − 1) items, such that each item size must be nM ,
and their sum must be (n − 2)S − 2uM . The other two bins contain together 2m′ items
with a sum of 2(S + uM), so each of these bins must have a sum of exactly S + uM . Since
(m′− 1) ·nM < S + uM by (1), each of these two bins must contain exactly m′ items. These
latter two bins are an equal-sum equal-cardinality partition for X2. This construction is done
in polynomial time, completing the reduction. ◀

4 Partition with Split Items

We now deal with the problem SplitItem. We redefine the Dec-SplitItem[n, s](X) problem.
For a fixed number n ≥ 2 of bins, given a list X , the number of split items s ∈ {0, . . . , m}
and a rational number v ≥ 0, define:

Dec-SplitItem[n, s, v](X): Decide if there exists a partition of X among n bins
with at most s split items, such that max(b1, . . . , bn) ≤ (1 + v)S.

The special case v = 0 corresponds to the Dec-SplitItem[n, s](X) problem. The following
Lemma shows that, w.l.o.g., we can consider only the longest items for splitting.

▶ Lemma 12. For every partition with s ∈ N split items and bin sums b1, . . . , bn, there exists
a partition with the same bin sums b1, . . . , bn in which only the s largest items are split.

Proof. Consider a partition in which some item with length x is split between two or more
bins, whereas some item with length y > x is allocated entirely to some bin i. Construct a
new partition as follows: first move item x to bin i; second remove from bin i, a fraction x

y of
item y; and finally split that fraction of item y among the other bins, in the same proportions
as the previous split of item x. All bin sums remain the same. Repeat the argument until
only the longest items are split. ◀

▶ Theorem 13. For any fixed integers n ≥ 2 and u ≥ 0, there is a polynomial-time reduction
from Dec-Inter[n, u](X) to Dec-SplitItem[n, s = u, v = 0](X).

Proof. Given an instance X of Dec-Inter[n, u](X), we add u items of size nM , where nM

is the size of the biggest item in X to construct an instance X ′ of Dec-SplitItem[n, s =
u, v = 0](X ′).

First, assume that X has a u-possible partition. Then there are n bins with a sum at most
S + uM . Take the u added items of size nM and add them to the bins, possibly splitting
some items between bins, such that the sum of each bin becomes exactly S + uM . This is
possible because the sum of the items in X ′ is nS + unM = n(S + uM). The result is a
0-feasible partition of X ′ with at most u split items.

Second, assume that X ′ has a 0-feasible partition with at most u split items. Then there
are n bins with a sum of exactly S + uM . By Theorem 12, we can assume the split items
are the largest ones, which are the u added items of size nM . Remove these items to get a
partition of X . The sum in each bin is now at most S + uM , so the partition is u-possible.
This construction is done in polynomial time, which completes the proof. ◀

▶ Corollary 14. For every fixed integers n ≥ 3 and s ∈ {0, . . . , n − 3}, the problem
Dec-SplitItem[n, s](X) is NP-complete.

S. Bismuth, V. Makarov, E. Segal-Halevi, and D. Shapira 12:13

Proof. Theorem 11 and Theorem 13 imply that Dec-SplitItem[n, s](X) is NP-hard. The
problem Dec-SplitItem[n, s](X) is in NP since given a partition, summing the sizes of the
items (or items fractions) in each bin let us check in linear time whether the partition has
equal bin sums. ◀

▶ Theorem 15. For any fixed integers n ≥ 2, s ≥ 0 and rational v ≥ 0, there is a polynomial-
time reduction from Dec-SplitItem[n, s, v](X), to Dec-Inter[n, u](X) for some rational
number u ≥ s.

Proof. Given an instance X of Dec-SplitItem[n, s, v](X), denote the sum of all items in
X by nS and the largest item size by nM where S, M ∈ Q. Construct an instance X ′ of
Dec-Inter[n, u](X ′) by removing the s largest items from X . Denote the sum of remaining
items by nS′ for some S′ ≤ S, and the largest remaining item size by nM ′ for some M ′ ≤M .
Note that the size of every removed item is between nM ′ and nM , so sM ′ ≤ S − S′ ≤ sM .
Set u := (S + vS − S′)/M ′, so S′ + uM ′ = S + vS. Note that u ≥ (S − S′)/M ′ ≥ s.

First, assume that X has a v-feasible partition with s split items. By Theorem 12,
we can assume that only the s largest items are split. Therefore, removing the s largest
items results in a partition of X ′ with no split items, where the sum in each bin is at most
S + vS = S′ + uM ′. This is a u-possible partition of X ′.

Second, assume that X ′ has a u-possible partition. In this partition, each bin sum is at
most S′ + uM ′ = S + vS, so it is a v-feasible partition of X ′. To get a v-feasible partition of
X , take the s previously removed items and add them to the bins, possibly splitting some
items between bins, such that the sum in each bin remains at most S + vS. This is possible
since the items sum is nS ≤ n(S + vS). This construction is done in polynomial time. ◀

Combining Theorem 15 with Theorem 10 provides a polynomial time algorithm to solve
Dec-SplitItem[n, s, v](X) for any fixed n ≥ 3, s ≥ n− 2 and rational v ≥ 0. The latter is
used to solve the MinMax-SplitItem[n, s](X) optimization problem by using binary search
on the parameter v of the Dec-SplitItem[n, s, v](X) problem. The details are given in
[4][Appendix B.1]. The binary search procedure needs to solve at most log2(nS) instances of
Dec-SplitItem[n, s, v](X).

▶ Corollary 16. For any fixed integers n ≥ 3 and s ≥ n− 2, MinMax-SplitItem[n, s](X)
can be solved in O(poly(m, log S)) time.

We complete this result by providing a polynomial-time algorithm for the max-min version:
MaxMin-SplitItem[n, s](X) for s ≥ n− 2 in [4][Appendix A.1].

5 Partition with Splittings

In this section, we analyze the Splitting variant.

▶ Theorem 17. For any fixed integer n ≥ 2 and fixed t ∈ N such that t ≤ n− 2, the problem
Dec-Splitting[n, t](X) is NP-complete.

Proof. Given a partition with n bins, m items, and t splittings, summing the size of each
item (or fraction of item) in each bin allows us to check whether or not the partition is
perfect in linear time. So, the problem is in NP.

To prove that Dec-Splitting[n, t](X) is NP-Hard, we apply a reduction from the Subset
Sum problem. We are given an instance X1 of Subset Sum with m items summing up to S

and target sum T < S. We build an instance X2 of Dec-Splitting[n, t](X2) by adding two
items, x1, x2, such that x1 = S + T and x2 = 2S(t + 1)− T and n− 2− t auxiliary items of
size 2S. Notice that the sum of the items in X2 equals

ISAAC 2024

12:14 Partitioning Problems with Splittings and Interval Targets

S + (S + T) + 2S(t + 1)− T + 2S(n− 2− t) = 2S + 2S(t + 1) + 2S(n− 2− t)
= 2S · (1 + t + 1 + n− 2− t) = 2Sn.

The goal is to partition items into n bins with a sum of 2S per bin, and at most t splittings.
First, assume that there is a subset of items W1 in X1 with a sum equal to T . Define

a set, W2, of items that contains all items in X1 that are not in W1, plus x1. The sum of
W2 is (S − T) + x1 = S + T + S − T = 2S. Assign the items of W2 to the first bin. Assign
each auxiliary item to a different bin. There are n− (n− 2− t + 1) = t + 1 bins left. The
sum of the remaining items is 2S(t + 1). Using the “cut-the-line” algorithm described in the
introduction, these items can be partitioned into t + 1 bins of equal sum 2S, with at most t

splittings. All in all, there are n bins with a sum of 2S per bin, and the total number of
splittings is at most t.

Second, assume that there exists an equal partition for n bins with t splittings. Since
x2 = 2S(t + 1)− T = 2S · t + (2S − T) > 2S · t, this item must be split between t + 1 bins,
which makes the total number of splittings at least t. Also, the auxiliary items must be
assigned without splittings into n− 2− t different bins. There is n− t− 1− n + 2 + t = 1
bin remaining, say bin i, containing only whole items, not containing any part of x2, and
not containing any auxiliary item. Bin i must contain x1, otherwise its sum is at most S

(sum of items in X1). Let W1 be the items of X1 that are not in bin i. The sum of W1 is
S − (2S − x1) = x1 − S = T , so it is a solution to X1. ◀

6 Conclusion and Future Directions

We presented three variants of the n-way number partitioning problem.
In the language of fair item allocation, we have solved the problem of finding a fair

allocation among n agents with identical valuations, when the ownership of some s items
may be split between agents. When agents may have different valuations, there are various
fairness notions, such as proportionality, envy-freeness or equitability. A future research
direction is to develop algorithms for finding such allocations with a bounded number of
shared items. We already have preliminary results for proportional allocation among three
agents with different valuations, which are based on the algorithms in the present paper.

In the language of machine scheduling, MinMax-SplitItem[n, s](X) corresponds to
finding a schedule that minimizes the makespan on n identical machines when s jobs can be
split between the machines; Dec-Inter[n, u](X) corresponds to find a schedule in which the
makespan is in a given interval. In a separate technical report, we have replicated the results
in the present paper for the more general case of uniform machines in which machines may
have different speeds rj , such that a job with length xi runs on machine j in time xi/rj . It
may be interesting to study the more general setting of unrelated machines.

Our analysis shows the similarities and differences between these variants and the more
common notion of FPTAS. One may view our results as introducing a new kind of approxim-
ation that approximates a decision problem by returning “yes” if and only if there exists
a solution between PER and (1 + v) · PER, where PER represents the value of a perfect
solution. For the n-way number partitioning problem, a perfect solution is easy to define: it
is a partition with equal bin sums. A more general definition of PER could be the solution
to the fractional relaxation of an integer linear program representing the problem. As shown,
NP-hard decision problems may become tractable when v is sufficiently large.

S. Bismuth, V. Makarov, E. Segal-Halevi, and D. Shapira 12:15

References
1 Xiaohui Bei, Zihao Li, Jinyan Liu, Shengxin Liu, and Xinhang Lu. Fair division of mixed

divisible and indivisible goods. Artif. Intell., 293:103436, 2021. doi:10.1016/J.ARTINT.2020.
103436.

2 Xiaohui Bei, Shengxin Liu, and Xinhang Lu. Fair division with subjective divisibility. CoRR,
abs/2310.00976, 2023. doi:10.48550/arXiv.2310.00976.

3 Samuel Bismuth, Ivan Bliznets, and Erel Segal-Halevi. Fair division with bounded shar-
ing: Binary and non-degenerate valuations. In Guido Schäfer and Carmine Ventre, edit-
ors, Algorithmic Game Theory, pages 89–107, Cham, 2024. Springer Nature Switzerland.
doi:10.1007/978-3-031-71033-9_6.

4 Samuel Bismuth, Vladislav Makarov, Erel Segal-Halevi, and Dana Shapira. Partitioning
problems with splittings and interval targets, 2024. arXiv:2204.11753.

5 Steven J. Brams and Alan D. Taylor. Fair Division: From Cake Cutting to Dispute Resolution.
Cambridge University Press, Cambridge UK, February 1996.

6 Steven J. Brams and Alan D. Taylor. The win-win solution - guaranteeing fair shares to
everybody. W. W. Norton & Company, New York, 2000.

7 Alberto Caprara, Hans Kellerer, and Ulrich Pferschy. The multiple subset sum problem. SIAM
Journal on Optimization, 11(2):308–319, 2000. doi:10.1137/S1052623498348481.

8 M. R. Garey and David S. Johnson. Complexity results for multiprocessor scheduling under
resource constraints. SIAM J. Comput., 4(4):397–411, 1975. doi:10.1137/0204035.

9 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York, 1979.

10 Hans Kellerer, Renata Mansini, Ulrich Pferschy, and Maria Grazia Speranza. An efficient
fully polynomial approximation scheme for the subset-sum problem. Journal of Computer and
System Sciences, 66(2):349–370, 2003. doi:10.1016/S0022-0000(03)00006-0.

11 Enrico Malaguti, Michele Monaci, Paolo Paronuzzi, and Ulrich Pferschy. Integer optimization
with penalized fractional values: The knapsack case. Eur. J. Oper. Res., 273(3):874–888, 2019.
doi:10.1016/j.ejor.2018.09.020.

12 C.A. Mandal, P.P. Chakrabarti, and S. Ghose. Complexity of fragmentable object bin packing
and an application. Computers and Mathematics with Applications, 35(11):91–97, 1998.
doi:10.1016/S0898-1221(98)00087-X.

13 Robert McNaughton. Scheduling with deadlines and loss functions. Management Science,
6(1):1–12, 1959. URL: http://www.jstor.org/stable/2627472.

14 Nir Menakerman and Raphael Rom. Bin packing with item fragmentation. In Frank K.
H. A. Dehne, Jörg-Rüdiger Sack, and Roberto Tamassia, editors, Algorithms and Data
Structures, 7th International Workshop, WADS 2001, Providence, RI, USA, August 8-10, 2001,
Proceedings, volume 2125 of Lecture Notes in Computer Science, pages 313–324. Springer,
2001. doi:10.1007/3-540-44634-6_29.

15 Fedor Sandomirskiy and Erel Segal-Halevi. Efficient fair division with minimal sharing. Oper.
Res., 70(3):1762–1782, 2022. doi:10.1287/opre.2022.2279.

16 Evgeny Shchepin and Nodari Vakhania. New tight np-hardness of preemptive multiprocessor
and open-shop scheduling. In Proceedings of 2nd multidisciplinary international conference on
scheduling: theory and applications MISTA 2005, pages 606–629, 2005.

17 Gerhard J. Woeginger. When does a dynamic programming formulation guarantee the
existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS J. Comput.,
12(1):57–74, 2000. doi:10.1287/IJOC.12.1.57.11901.

18 Wenxun Xing and Jiawei Zhang. Parallel machine scheduling with splitting jobs. Discret.
Appl. Math., 103(1-3):259–269, 2000. doi:10.1016/S0166-218X(00)00176-1.

ISAAC 2024

https://doi.org/10.1016/J.ARTINT.2020.103436
https://doi.org/10.1016/J.ARTINT.2020.103436
https://doi.org/10.48550/arXiv.2310.00976
https://doi.org/10.1007/978-3-031-71033-9_6
https://arxiv.org/abs/2204.11753
https://doi.org/10.1137/S1052623498348481
https://doi.org/10.1137/0204035
https://doi.org/10.1016/S0022-0000(03)00006-0
https://doi.org/10.1016/j.ejor.2018.09.020
https://doi.org/10.1016/S0898-1221(98)00087-X
http://www.jstor.org/stable/2627472
https://doi.org/10.1007/3-540-44634-6_29
https://doi.org/10.1287/opre.2022.2279
https://doi.org/10.1287/IJOC.12.1.57.11901
https://doi.org/10.1016/S0166-218X(00)00176-1

The Existential Theory of the Reals with
Summation Operators
Markus Bläser #

Saarland University, Saarbrücken, Germany

Julian Dörfler #

Saarland University, Saarbrücken, Germany

Maciej Liśkiewicz #

University of Lübeck, Germany

Benito van der Zander #

University of Lübeck, Germany

Abstract
To characterize the computational complexity of satisfiability problems for probabilistic and causal
reasoning within Pearl’s Causal Hierarchy, van der Zander, Bläser, and Liśkiewicz [IJCAI 2023]
introduce a new natural class, named succ-∃R. This class can be viewed as a succinct variant of
the well-studied class ∃R based on the Existential Theory of the Reals (ETR). Analogously to ∃R,
succ-∃R is an intermediate class between NEXP and EXPSPACE, the exponential versions of NP and
PSPACE.

The main contributions of this work are threefold. Firstly, we characterize the class succ-∃R in
terms of nondeterministic real Random-Access Machines (RAMs) and develop structural complexity
theoretic results for real RAMs, including translation and hierarchy theorems. Notably, we demon-
strate the separation of ∃R and succ-∃R. Secondly, we examine the complexity of model checking and
satisfiability of fragments of existential second-order logic and probabilistic independence logic. We
show succ-∃R-completeness of several of these problems, for which the best-known complexity lower
and upper bounds were previously NEXP-hardness and EXPSPACE, respectively. Thirdly, while
succ-∃R is characterized in terms of ordinary (non-succinct) ETR instances enriched by exponential
sums and a mechanism to index exponentially many variables, in this paper, we prove that when only
exponential sums are added, the corresponding class ∃RΣ is contained in PSPACE. We conjecture
that this inclusion is strict, as this class is equivalent to adding a VNP-oracle to a polynomial
time nondeterministic real RAM. Conversely, the addition of exponential products to ETR, yields
PSPACE. Furthermore, we study the satisfiability problem for probabilistic reasoning, with the
additional requirement of a small model, and prove that this problem is complete for ∃RΣ.

2012 ACM Subject Classification Theory of computation → Complexity classes

Keywords and phrases Existential theory of the real numbers, Computational complexity, Probabil-
istic logic, Models of computation, Existential second order logic

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.13

Related Version Full Version: https://arxiv.org/abs/2405.04697

Funding Benito van der Zander : Work supported by the Deutsche Forschungsgemeinschaft (DFG)
grant 471183316 (ZA 1244/1-1).

1 Introduction

The existential theory of the reals, ETR, is the set of all true sentences of the form

∃x0 . . . ∃xn φ(x0, . . . , xn), (1)

where φ is a quantifier-free Boolean formula over the basis {∨,∧,¬}, variables x0, . . . , xn,
and a signature consisting of the constants 0 and 1, the functional symbols + and ·, and the

© Markus Bläser, Julian Dörfler, Maciej Liśkiewicz, and Benito van der Zander;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 13; pp. 13:1–13:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mblaeser@cs.uni-saarland.de
https://orcid.org/0000-0002-1750-9036
mailto:jdoerfler@cs.uni-saarland.de
https://orcid.org/0000-0002-0943-8282
mailto:maciej.liskiewicz@uni-luebeck.de
https://orcid.org/0000-0003-0059-5086
mailto:b.vanderzander@uni-luebeck.de
https://orcid.org/0000-0001-5957-4621
https://doi.org/10.4230/LIPIcs.ISAAC.2024.13
https://arxiv.org/abs/2405.04697
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 The Existential Theory of the Reals with Summation Operators

relational symbols <, ≤, and =. The sentences are interpreted over the real numbers in the
standard way. The significance of this theory lies in its exceptional expressiveness, enabling
the representation of numerous natural problems across computational geometry [1, 20, 8],
Machine Learning and Artificial Intelligence [2, 21, 31], game theory [4, 12], and various
other domains. Consequently, a complexity class, ∃R, has been introduced to capture the
computational complexity associated with determining the truth within the existential theory
of the reals. This class is formally defined as the closure of ETR under polynomial-time
many-one reductions [14, 7, 25]. For a comprehensive compendium on ∃R, see [26].

Our study focuses on ETR which extends the syntax of formulas to allow the use of
summation operators in addition to the functional symbols + and ·. This research direction,
initiated in [31], was motivated by an attempt to accurately characterize the computational
complexity of satisfiability problems for probabilistic and causal reasoning across “Pearl’s
Causal Hierarchy” (PCH) [28, 23, 3].

In [31], the authors introduce a new natural class, named succ-∃R, which can be viewed
as a succinct variant of ∃R. Perhaps, one of the most notable complete problems for the new
class is the problem, called Σvi-ETR (“vi” stands for variable indexing). It is defined as an
extension of ETR by adding to the signature an additional summation operator1 ∑1

xj=0
which can be used to index the quantified variables xi used in Formula (1). To this end,
the authors define variables of the form x⟨xj1 ,...,xjm ⟩, which represent indexed variables with
the index given by xj1 , . . . , xjm interpreted as a number in binary. They can only be used
when variables xj1 , . . . , xjm

occur in the scope of summation operators with range {0, 1}.
E.g., ∃x0 . . . ∃x2N −1

∑1
e1=0 . . .

∑1
eN =0(x⟨e1,...,eN ⟩)2 = 1 is a Σvi-ETR sentence2 encoding a

unit vector in R2N . Note that sentences of Σvi-ETR allow the use of exponentially many
variables. Another example sentence is

∑1
x1=0

∑1
x2=0(x1 + x2)(x1 + (1 − x2))(1 − x1) = 0

that models the co-Sat instance (p ∨ q) ∧ (p ∨ q) ∧ p. It shows that the summation operator
can also be used in Σvi-ETR formulas in a standard way.

Analogously to ∃R, succ-∃R is an intermediate class between the exponential versions of
NP and PSPACE:

NP ⊆ ∃R ⊆ PSPACE ⊆ NEXP ⊆ succ-∃R ⊆ EXPSPACE. (2)

An interesting challenge, in view of the new class, is to determine whether it contains harder
problems than NEXP and to examine the usefulness of succ-∃R-completeness as a tool for
understanding the apparent intractability of natural problems. A step in these directions,
that we take in this work, is to express succ-∃R in terms of machine models over the reals,
which in the case of ∃R yield an elegant and useful characterization by NPreal [10].

In our work, we study also the different restrictions on which the summation operators
in ETR are allowed to be used and the computational complexity of deciding the resulting
problems. In particular, we investigate ∃RΣ – the class based on ETR enriched with standard
summation operator, and succ-∃Rpoly which is based on Σvi-ETR with the restriction that
only polynomially many variables can be used.

In this paper, we employ a family of satisfiability problems for probabilistic reasoning,
which nicely demonstrates the expressiveness of the ETR variants under consideration and
illustrates the natural necessity of introducing the summation operator.

1 In [31], the authors assume arbitrary integer lower and upper bound in
∑b

xj =a
. It is easy to see that,

w.l.o.g., one can restrict a and b to binary values.
2 We represent the instances in Σvi-ETR omitting the (redundant) block of existential quantifiers, so the

encoding of the example instance has length polynomial in N .

M. Bläser, J. Dörfler, M. Liśkiewicz, and B. van der Zander 13:3

NP

NPreal = ∃R

NPVNPR
real = ∃RΣ

PSPACE = ∃RΠ = succ-∃Rpoly

NEXP

NEXPreal = ∃RΣvi = succ-∃R

EXPSPACE

ETR

Σ-ETR

Π-ETR, succ-ETRpoly

Σvi-ETR, succ-ETR,

ESO, FO(⊥⊥c)

Satbase
prob,Satlin

prob

Satpoly
prob

Satpoly⟨Σ⟩
sm,prob

Satpoly⟨Σ⟩
prob

(1)

(5)

(4)(3)

(2)

(6)
(d)

(b)

(a)

(e)

(c)

Figure 1 The landscape of complexity classes of the existential theories of the reals and the
satisfiability problems for the probabilistic languages (to the left-hand side) complete for the
corresponding classes. Arrows “→” denote inclusions ⊆ and the earth-yellow labeled lines “−”
connect complexity classes with complete problems for those classes. The completeness results
(a), (b), and (d) were proven by Fagin et al. [11], Mossé et al. [21], resp. van der Zander et al. [31].
The characterization (c) is due to Erickson et al. [10] and (e) is proven in [31]. The references to our
results are as follows: (1) Theorem 26, (2) Theorem 24, (3) and (4) Theorem 19, (5) Lemma 2, and
(6) Theorem 12.

Related Work to our Study

In a pioneering paper in this field, Fagin, Halpern, and Megiddo [11] consider the probabilistic
language consisting of Boolean combinations of (in)equalities of basic and linear terms, like
P((X=0∨Y=1)∧ (X=0∨Y=0))=1∧ (P(X=0)=0∨P(X=0)=1)∧ (P(Y=0)=0∨P(Y=0)=1),
over binary variables X,Y (which can be seen as a result of reduction from the satisfied
Boolean formula (a ∨ b) ∧ (a ∨ b)). The authors provide a complete axiomatization for the
used logic and investigate the complexity of the probabilistic satisfiability problems Satbase

prob
and Satlin

prob, which ask whether there is a joint probability distribution of X,Y, . . . that
satisfies a given Boolean combination of (in)equalities of basic, respectively linear, terms (for
formal definitions, see Sec. 2). They show that both satisfiability problems are NP-complete
(cf. Fig. 1). Thus, surprisingly, the complexity is no worse than that of propositional logic.
Fagin et al. extend then the language to (in)equalities of polynomial terms, with the goal
of reasoning about conditional probabilities. They prove that there is a PSPACE algorithm,
based on Canny’s decision procedure [7], for deciding if such a formula is satisfiable but left
the exact complexity open. Recently, Mossé, Ibeling, and Icard, [21] have solved this problem,
showing that deciding the satisfiability (Satpoly

prob) is ∃R-complete. In [21], the authors also
investigate the satisfiability problems for the higher, more expressive PCH layers – which
are not the subject of our paper – and prove an interesting result, that for (in)equalities
of polynomial terms both at the interventional and the counterfactual layer the decision
problems still remain ∃R-complete.

ISAAC 2024

13:4 The Existential Theory of the Reals with Summation Operators

The languages used in [11, 21] and also in other relevant works as, e.g., [22, 13, 17], can only
represent marginalization as an expanded sum since they lack a unary summation operator Σ.
Thus, for instance, to express the marginal distribution of a random variable Y over a subset of
(binary) variables {Z1, . . . , Zm} as

∑
z1,...,zm

P(y, z1, . . . , zm), an encoding without summation
requires an extension P(y, Z1=0, . . . , Zm=0) + . . . + P(y, Z1=1, . . . , Zm=1) of exponential
size. Thus to analyze the complexity aspects of the standard notation of probability theory,
one requires an encoding that directly represents marginalization. In a recent paper [31],
the authors introduce the class succ-∃R, and show that the satisfiability (Satpoly⟨Σ⟩

prob) for the
(in)equalities of polynomial terms involving probabilities is succ-∃R-complete.

Thus, succ-∃R-completeness seems to be a meaningful yardstick for measuring com-
putational complexity of decision problems. An interesting task would be to investigate
problems involving the reals that have been shown to be in EXPSPACE, but not to be
EXPSPACE-complete, which are natural candidates for succ-∃R-complete problems.

Contributions and Structure of the Paper

Below we highlight our main contributions, partially summarized also in Fig. 1.
We provide the characterization of succ-ETR in terms of nondeterministic real RAMs
of exponential time respectively (Sec. 3). Moreover, for the classes over the reals in
the sequence of inclusions (2), an upward translation result applies, which implies, e.g.,
NEXP ⊊ succ-∃R unless NP = ∃R which is widely disbelieved (Sec. 4).
We strength slightly the completeness result (marked as (d) in Fig. 1) of [31] and prove
the problem Satpoly⟨Σ⟩

prob remains succ-∃R-complete even if we disallow the basic terms to
contain conditional probabilities (Sec. 5).
We show that existential second order logic of real numbers is complete for succ-∃R(Sec. 6).
PSPACE has natural characterizations in terms of ETR; It coincides both with ∃RΠ –
the class based on ETR enriched with standard product operator, and with succ-∃Rpoly,
defined in terms of the succinct variant of ETR with polynomially many variables (Sec. 7).
∃RΣ – defined similar to ∃RΠ, but with the addition of a unary summation operator
instead – is contained in PSPACE = ∃RΠ. We conjecture that this inclusion is strict, as
the class is equivalent to NPVNPR

real , machine to be an NPreal model with a VNPR oracle,
where VNPR denotes Valiant’s NP over the reals (Sec. 8.1).
Unlike the languages devoid of the marginalization operator, the crucial small-model
property is no longer satisfied. This property says that any satisfiable formula has a model
of size bounded polynomially in the input length. Satisfiability with marginalization and
with the additional requirement that there is a small model is complete for ∃RΣ at the
probabilistic layer (Sec. 8.2).

2 Preliminaries

Complexity Classes Based on the ETR

The problem succ-ETR and the corresponding class succ-∃R are defined in [31] as follows.
succ-ETR is the set of all Boolean circuits C that encode a true sentence φ as in Equation (1)
as follows: Assume that C computes a function {0, 1}N → {0, 1}M . Then φ is a tree
consisting of 2N nodes, each node being labeled with a symbol of {∨,∧,¬,+, ·, <,≤,=}, a
constant 0 or 1, or a variable x0, . . . x2N −1. For the node i ∈ {0, 1}N , the circuit computes
an encoding C(i) of the description of node i, consisting of the label of i, its parent, and
its two children. The tree represents a true sentence, if the value at the root node would

M. Bläser, J. Dörfler, M. Liśkiewicz, and B. van der Zander 13:5

become true after applying the operator of each node to the value of its children, whereby
the value of constants and variables is given in the obvious way. As in the case of ∃R, to
succ-∃R belong all languages which are polynomial time many-one reducible to succ-ETR.

Besides succ-ETR, [31] introduce more complete problems for succ-∃R as intermediate
problems in the hardness proof. Of particular importance is the problem Σvi-ETR that
we already discussed in the Introduction. Formally, the problem is defined as an extension
of ETR by adding to the signature an additional summation operator

∑1
xj=0 with the

following semantics3: If an arithmetic term is given by a tree with the top gate
∑1

xj=0 and
t(x1, . . . , xn) is the term computed at the child of the top gate, then the new term computes∑1

e=0 t(x1, . . . , xj−1, e, xj+1, . . . , xn), that is, we replace the variable xj by a summation
variable e, which then runs from 0 to 1. By nesting the summation operator, we are able
to produce a sum with an exponential number of summands. The main reason why the
new summation variables are introduced is due to the fact they can be used to index the
quantified variables xi used in Formula (1). Similarly as in succ-ETR, sentences of Σvi-ETR
allow the use of exponentially many variables, however, the formulas are given directly and
do not require any succinct encoding.

Probabilistic Languages

We always consider discrete distributions in the probabilistic languages studied in this paper.
We represent the values of the random variables as Val = {0, 1,..., c − 1} and denote by
X1, X2,..., Xn the random variables used in the input formula. We assume, w.l.o.g., that
they all share the same domain Val. A value of Xi is often denoted by xi or a natural
number. In this section, we describe syntax and semantics of the probabilistic languages.

By an atomic event, we mean an event of the form X = x, where X is a random
variable and x is a value in the domain of X. The language E of propositional formulas
over atomic events is the closure of such events under the Boolean operators ∧ and ¬:
p ::= X = x | ¬p | p ∧ p. The probability P(δ) for formulas δ ∈ E is called primitive
or basic term, from which we build the probabilistic languages. The expressive power
and computational complexity of the languages depend on the operations applied to the
primitives.Allowing gradually more complex operators, we describe the languages which are
the subject of our studies below. We start with the description of the languages T ∗ of terms,
using the grammars given below.4

T base t ::= P(δ)
T lin t ::= P(δ) | t + t
T poly t ::= P(δ) | t + t | −t | t · t
T poly⟨Σ⟩ t ::= P(δ) | t + t | −t | t · t |

∑
x t

In the summation operator
∑

x, we have a dummy variable x which ranges over all values
0, 1,..., c − 1. The summation

∑
x t is a purely syntactical concept which represents the

sum t[0/x] + t[1/x] + ... + t[c − 1/x], where by t[v/x], we mean the expression in which all
occurrences of x are replaced with value v. For example, for Val = {0, 1}, the expression

3 Recall, in [31], the authors assume arbitrary integer lower and upper bound in
∑b

xj =a
. But it is easy

to see that, w.l.o.g., one can restrict a and b to binary values.
4 In the given grammars we omit the brackets for readability, but we assume that they can be used in a

standard way.

ISAAC 2024

13:6 The Existential Theory of the Reals with Summation Operators

∑
x P(Y=1, X=x) semantically represents P(Y=1, X=0) + P(Y=1, X=1). We note that the

dummy variable x is not a (random) variable in the usual sense and that its scope is defined
in the standard way.

The polynomial calculus T poly was originally introduced by Fagin, Halpern, and Megiddo
[11] to be able to express conditional probabilities by clearing denominators. While this
works for T poly, this does not work in the case of T poly⟨Σ⟩, since clearing denominators with
exponential sums creates expressions that are too large. But we could introduce basic terms
of the form P(δ′|δ) with δ, δ′ ∈ E explicitly. All our hardness proofs work without conditional
probabilities but all our matching upper bounds are still true with explicit conditional
probabilities. For example, expression as P(X=1) + P(Y=2) · P(Y=3) is a valid term in
T poly.

Now, let Lab = {base, lin, poly, poly⟨Σ⟩} denote the labels of all variants of languages.
Then for each ∗ ∈ Lab we define the languages L∗ of Boolean combinations of inequalities in
a standard way: f ::= t ≤ t′ | ¬f | f ∧ f , where t, t′ are terms in T ∗.

Although the language and its operations may appear rather restricted, all the usual
elements of probabilistic formulas can be encoded. Namely, equality is encoded as greater-
or-equal in both directions, e.g. P(x) = P(y) means P(x) ≥ P(y) ∧ P(y) ≥ P(x). The
number 0 can be encoded as an inconsistent probability, i.e., P(X=1 ∧X=2). In a language
allowing addition and multiplication, any positive integer can be easily encoded from the fact
P(⊤) ≡ 1, e.g. 4 ≡ (1+1)(1+1) ≡ (P(⊤)+P(⊤))(P(⊤)+P(⊤)). If a language does not allow
multiplication, one can show that the encoding is still possible. Note that these encodings
barely change the size of the expressions, so allowing or disallowing these additional operators
does not affect any complexity results involving these expressions.

We define the semantics of the languages as follows. Let M = ({X1,..., Xn}, P) be
a tuple, where P is the joint probability distribution of variables X1,..., Xn. For val-
ues x1,..., xn ∈ Val and δ ∈ E , we write x1,..., xn |= δ if δ is satisfied by the assign-
ment X1=x1,..., Xn=xn. Denote by Sδ = {x1,..., xn | x1,..., xn |= δ}. We define JeKM,
for some expression e, recursively in a natural way, starting with basic terms as follows
JP(δ)KM =

∑
x1, ...,xn∈Sδ

P (X1=x1,..., Xn=xn) and JP(δ|δ′)KM = JP(δ∧ δ′)KM/JP(δ′)KM, as-
suming that the expression is undefined if JP(δ′)KM = 0. For two expressions e1 and e2,
we define M |= e1 ≤ e2, if and only if, Je1KM ≤ Je2KM. The semantics for negation and
conjunction are defined in the usual way, giving the semantics for M |= φ for any φ ∈ L∗.

Existential Second Order Logic of Real Numbers

We follow the definitions of [16]. Let A be a non-empty finite set and A = (A,R, fA1 ,..., fAr ,
gA1 ,..., gAt), with fAi : Aar(fi) → R and gAi ⊆ Aar(gi), be a structure. Each gAi is an ar(gi)-ary
relation on A and each fAi is a weighted real function on Aar(fi). The term t is generated
by the following grammar: t ::= c | f(x⃗) | t + t | t − t | t × t |

∑
x t, where c ∈ R is a

constant (denoting itself), f is a function symbol, and x⃗ is a tuple of first-order variables.
An assignment s is a total function that assigns a value in A for each first-order variable.
The numerical value of t in a structure A under an assignment s, denoted by JtKs

A, is defined
recursively in a natural way, starting with Jfi(x⃗)Ks

A = fAi (s(x⃗)) and applying the standard
rules of real arithmetic.

For operators O ⊆ {+,×,Σ,−}, (in-)equality operators E ⊆ {≤, <,=}, and constants
C ⊆ R, the grammar of ESOR(O,E,C) sentences is given by ϕ ::= x = y | ¬(x = y) | i e j |
¬(i e j) | R(x⃗) | ¬R(x⃗) | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x ϕ | ∀x ϕ | ∃f ϕ, where x, y ∈ A are first order
variables, i, j are real terms constructed using operations from O and constants from C,
e ∈ E, and R denotes a relation symbol of a finite relational vocabulary5 g1, . . . , gt.

5 The grammar of [16] does not allow quantification over relations, e.g. ∃R, as these relations can be
replaced by functions, e.g. chosen by ∃f .

M. Bläser, J. Dörfler, M. Liśkiewicz, and B. van der Zander 13:7

The semantics of ESOR(O,E,C) is defined via R-structures and assignments analogous
to first-order logic with additional semantics for second order existential quantifier ∃f . That
is, a structure A satisfies a sentence ϕ under an assignment s, i.e., A |=s ϕ, according to the
following cases of the grammar: A |=s x = y, iff s(x) equals s(y); A |=s ¬(ϕ) iff A ̸|=s ϕ;
A |=s i e j iff JiKs

A e JjKs
A where JiKs

A is the numerical value of i as defined above; A |=s R(x⃗)
iff gAi (s(x⃗)) is true for the gAi corresponding to R in the model A; A |=s ϕ ∧ ϕ′ iff A |=s ϕ

and A |=s ϕ
′; A |=s ϕ ∨ ϕ′ iff A |=s ϕ or A |=s ϕ

′; A |=s ∃xϕ iff A |=s[a/x] ϕ for some a ∈ A

where s[a/x] means the assignment s modified to assign a to x; A |=s ∀xϕ iff A |=s[a/x] ϕ for
all a ∈ A; and A |=s ∃fϕ iff A[h/f] |=s ϕ for some6 function h : Aar(f) → R where A[h/f] is
the expansion of A that interprets f as h.

For a set S ⊆ R, we consider the restricted logic ESOS(O,E,C) and L-ESOS(O,E,C).
There only the operators and constants of O ∪ E ∪ C are allowed and all functions f are
maps into S, i.e. f : Aar(f) → S. In the loose fragment L-ESOS(O,E,C), negations ¬(i e j)
on real terms are also disallowed.

Probabilistic independence logic FO(⊥⊥c) is defined as the extension of first-order logic
with probabilistic independence atoms x⃗⊥⊥z⃗ y⃗ whose semantics is the standard semantics of
conditional independence in probability distributions [9, 16].

Known Completeness and Complexity Results

The decision problems Sat∗
prob, with ∗ ∈ Lab, take as input a formula φ in the languages L∗

and ask whether there exists a model M such that M |= φ. The computational complexity
of probabilistic satisfiability problems has been a subject of intensive studies for languages
which do not allow explicitly marginalization via summation operator Σ. Very recently [31]
addressed the problem for polynomial languages.

Below, we summarize these results7, informally presented in the Introduction:
Satbase

prob and Satlin
prob are NP-complete, [11],

Satpoly
prob is ∃R-complete [21], and

Satpoly⟨Σ⟩
prob is succ-∃R-complete [31].

For a logic L, the satisfiability problem Sat(L) is defined as follows: given a formula
φ ∈ L, decide whether φ is satisfiable. For the model checking problem of a logic L, we
consider the following variant: given a sentence φ ∈ L and a structure A, decide whether
A |= φ. For model checking of FO(⊥⊥c), the best-known complexity lower and upper bounds
are NEXP-hardness and EXPSPACE, respectively [15].

3 NEXP over the Reals

In [10], Erickson, van Der Hoog, and Miltzow extend the definition of word RAMs to real
computations. In contrast to the so-called BSS model of real computation [5], the real
RAMs of Erickson et al. provide integer and real computations at the same time, allowing for
instance indirect memory access to the real registers and other features that are important
to implement algorithms over the reals. The input to a real RAM is a pair of vectors, the
first one is a vector of real numbers, the second is a vector of integers. Real RAMs have two
types of registers, word registers and real registers. The word registers can store integers

6 Note that h might be an arbitrary function and is not restricted to the functions fA
i of the model.

7 In the papers [21] and [31] the authors show even stronger results, namely that the completeness results
also hold for causal satisfiability problems.

ISAAC 2024

13:8 The Existential Theory of the Reals with Summation Operators

with w bits, where w is the word size. The total number of registers is 2w for each of the
two types. Real RAMs perform arithmetic operations on the word registers, where words are
interpreted as integers between 0 and 2w − 1, and bitwise Boolean operations. On the real
registers, only arithmetic operations are allowed. Word registers can be used for indirect
addressing on both types of registers and the control flow is established by conditional jumps
that depend on the result of a comparison of two word registers or of a real register with the
constant 0. For further details we refer to the original paper [10].

The real RAMs of [10] characterize the existential theory of the reals. The authors prove
that a problem is in ∃R iff there is a polynomial time real verification algorithm for it. In this
way, real RAMs are an “easy to program” mechanism to prove that a problem is contained
in ∃R. Beside the input I, which is a sequence of words, the real verification algorithm also
gets a certificate consisting of a sequence of real numbers x and a further sequence of words
z. I is in the language if there is a pair (x, z) that makes the real verification algorithm
accept. I is not in the language if for all pairs (x, z), the real verification rejects.

Instead of using certificates and verifiers, we can also define nondeterministic real RAMs
that can guess words and real numbers on the fly. Like for classical Turing machines, it
is easy to see that these two definitions are equivalent (when dealing with time bounded
computations).

▶ Definition 1. Let t : N → N be a function. We define NTimereal(t) to be the set of all
languages L ⊆ {0, 1}⋆, such that there is a constant c ∈ N and a nondeterministic real
word-RAM M that recognizes L in time t for all word-sizes w ≥ c · log(t(n)) + c.

For any set of functions T , we define NTimereal(T) =
⋃

t∈T NTimereal(t). We define our
two main classes of interest, NPreal and NEXPreal as follows:

NPreal = NTimereal(poly(n)), NEXPreal = NTimereal(2poly(n)).

Note that the word size needs to be at least logarithmic in the running time, to be able
to address a new register in each step.

One of the main results of Erickson et al. (Theorem 2 in their paper) can be rephrased
as ∃R = NPreal. Their techniques can be extended to prove that succ-∃R = NEXPreal.

We get the following in analogy to the well-known results that the succinct version of
3-Sat is NEXP-complete.

▶ Lemma 2. succ-ETR is NEXPreal-complete and thus NEXPreal = succ-∃R.

Proof idea. For the one direction, one carefully has to analyze the construction by Erickson
et al. and show that the simulation there can also be implemented succinctly. The reverse
direction simply follows from expanding the succinct ETR instance and use the fact that
nondeterministic real word-RAMs can solve ETR in polynomial time. Along the way, we
also obtain a useful normalization procedure for succinct ETR instances. While for normal
ETR instances, it is obvious that one can always push negations down, it is not clear for
succinct instances. We describe the details in the full version. ◀

4 The Relationships between the Boolean Classes and Classes over
the Reals

Now we study the new class NEXPreal = succ-∃R from a complexity theoretic point of view.

NP ⊆ ∃R ⊆ PSPACE; NEXP ⊆ succ-∃R ⊆ EXPSPACE. (3)

M. Bläser, J. Dörfler, M. Liśkiewicz, and B. van der Zander 13:9

The left side of (3) is well-known. The first inclusion on the right side is obvious, since a
real RAM simply can ignore the real part. The second inclusion follows from expanding the
succinct instance into an explicit formula (which now has exponential size) and simply using
the known PSPACE-algorithm.

We prove two translation results, that is, equality of one of the inclusion in the left
equation of (3) implies the equality of the corresponding inclusion in the right equation of (3).

▶ Theorem 3. If ∃R = NP, then succ-∃R = NEXP.

▶ Theorem 4. If ∃R = PSPACE, then succ-∃R = EXPSPACE.

Further we prove a nondeterministic time hierarchy theorem (see the full version for the
details) for real word RAMs. Using the characterization of ∃R and succ-∃R in terms of real
word RAMs, in particular, we get that succ-ETR is strictly more expressive than ETR.

▶ Corollary 5. ∃R = NPreal ⊊ NEXPreal = succ-∃R.

5 Hardness of Probabilistic Satisfiability without Conditioning

To prove that Satpoly⟨Σ⟩
prob is succ-∃R-complete, van der Zander, Bläser and Liśkiewicz [31]

show the hardness part for the variant of the probabilistic language where the primitives are
also allowed to be conditional probabilities. A novel contribution of our work is to extend
this completeness result to our version for languages which disallow conditional probabilities:

▶ Theorem 6. The problem Satpoly⟨Σ⟩
prob remains succ-∃R-complete even without conditional

probabilities.

In the rest of this section, we will give the proof of the theorem.
In [31] the authors have already shown that Σvi-ETR is succ-∃R-complete. We define

Σvi-ETR1 in the same way as Σvi-ETR, but asking the question whether there is a solution
where the sum of the absolute values (ℓ1 norm) is bounded by 1. Then we can reduce
Σvi-ETR1 to Satpoly⟨Σ⟩

prob without the need for conditional probabilities (Lemma 9). The
proof that Σvi-ETR1 is hard for succ-∃R (Lemma 8) depends on a result of Grigoriev and
Vorobjov [14] who showed that the solution to an ETR instance can be bounded by a constant
that only depends on the bitsize of the instance. Thus the solution can be scaled to fit into a
probability distribution. This completes the proof of Theorem 6.

▶ Theorem 7 (Grigoriev and Vorobjov [14]). Let f1, . . . , fk ∈ R[X1, . . . , Xn] be polynomials
of total degree ≤ d with coefficients of bit size ≤ L. Then every connected component of
{x ∈ Rn | f1(x) ≥ 0 ∧ · · · ∧ fk(x) ≥ 0} contains a point of distance less than 2Ldcn from the
origin for some absolute constant c. The same is true if some of the inequalities are replaced
by strict inequalities.

▶ Lemma 8. Σvi-ETR ≤P Σvi-ETR1.

Proof. Let ϕ be an instance of Σvi-ETR. We will transform it into a formula φ such that φ
has a solution with ℓ1 norm bounded by 1 iff ϕ has any solution.

Let S be the bit length of ϕ. The number n of variables in ϕ is bounded by 2S . The
degree of all polynomials is bounded by S. Note that the exponential sums do not increase
the degree at all. Finally, all coefficients have bit size O(S). Note that one summation
operator doubles the coefficients at most. By Theorem 7, if ϕ is satisfiable, then there is a
solution with entries bounded by T := 222cS

for some constant c.

ISAAC 2024

13:10 The Existential Theory of the Reals with Summation Operators

In our new instance φ first creates a small constant d ≤ 1/((2m + n)T) for some m
polynomial in S defined below. This can be done using Tseitin’s trick: We take 2m many
fresh variables ti and start with (2m + 2S)t1 = 1 and then iterate by adding the equation∑2m−1

i=1 (t2i − ti+1)2 = 0, i.e. forcing ti+1 = t2i . To implement the first equation we replace
2m by

∑1
e1=0 · · ·

∑1
em=0 1 and similarly replace 2S . To implement the second equation

we replace
∑2m−1

i=1 (t2i − ti+1)2 by
∑1

e1=0 · · ·
∑1

em=0
∑1

f1=0 · · ·
∑1

fm=0(t2e1,...,em
− tf1,...,fm

)2 ·
A(e1, . . . , em, f1, . . . , fm) where A is an arithmetic formula returning 1 iff the binary number
represented by f1, . . . , fm is the successor of the binary number represented by e1, . . . , em.
The number m is polynomial in S. The unique satisfying assignment to the ti has its entries
bounded by 1/(2m + 2S). Let d := t2m be the last variable.

Now in ϕ we replace every occurrence of xi by xi/d and then multiple each (in-)equality
by an appropriate power of d to remove the divisions in order to obtain φ. In this way, from
every solution to ϕ, we obtain a solution to φ by multiplying the entries by d and vice versa.
Whenever ϕ has a solution, then it has one with entries bounded by T . By construction φ

then has a solution with entries bounded by 1/(2m + 2S). Since each entry of the solution is
bounded by 1/(2m + 2S), the ℓ1 norm is bounded by 1/2. ◀

▶ Lemma 9. Σvi-ETR1 ≤P Satpoly⟨Σ⟩
prob via a reduction without the need for conditional

probabilities.

Proof. Let X0 be a random variable with range {−1, 0, 1} and let X1, . . . , XN be binary
random variables. We replace each real variable xe1,...,eN

in the Σvi-ETR1 formula as follows:

xe1,...,eN
:= P(X0=1 ∧X1=e1 ∧ . . . ∧XN =eN) − P(X0= − 1 ∧X1=e1 ∧ . . . ∧XN =eN)

This guarantees that xe1,...,eN
∈ [−1, 1]. The existential quantifiers now directly correspond

to the existence of a probability distribution P (X0, . . . , XN), where each variable corresponds
to an different set of two entries of P .

Let P (X0, . . . , XN) be a solution to the constructed Satpoly⟨Σ⟩
prob instance. Then clearly set-

ting xe1,...,eN
= P (1, e1, . . . , eN) −P (−1, e1, . . . , eN) satisfies the original Σvi-ETR1 instance.

Furthermore it has an ℓ1 norm bounded by 1:

1∑
e1=0

· · ·
1∑

eN =0
|xe1,...,eN

| =
1∑

e1=0
· · ·

1∑
eN =0

|P (1, e1, . . . , eN) − P (−1, e1, . . . , eN)|

≤
1∑

e1=0
· · ·

1∑
eN =0

(P (1, e1, . . . , eN) + P (−1, e1, . . . , eN))

≤ 1 .

Vice-versa, let the original Σvi-ETR1 be satisfied by some choice of the xe1,...,eN
with ℓ1

norm α bounded by 1. We define the probability distribution

P (X0, X1, . . . , XN) =

1−α
2N if X0 = 0

max(xX1,...,XN
, 0) if X0 = 1

max(−xX1,...,XN
, 0) if X0 = −1

Every entry of P is non-negative since α ≤ 1. Furthermore the sum of all entries is
exactly 1, the entries with X0 ∈ {−1, 1} contribute exactly α total and the 2N entries with
X0 = 0 contribute 1 − α total. Since P fulfills the equation xe1,...,eN

= P (1, e1, . . . , eN) −
P (−1, e1, . . . , eN), it is a solution to the constructed Satpoly⟨Σ⟩

prob instance. ◀

M. Bläser, J. Dörfler, M. Liśkiewicz, and B. van der Zander 13:11

6 Correspondence to Existential Second Order Logic and FO(⊥⊥c)

In this section, we investigate the complexity of existential second order logics and the
probabilistic independence logic FO(⊥⊥c).

▶ Lemma 10. Model checking of ESOR(Σ,+,×,≤, <,=,Q) is in succ-∃R.

Proof. In model checking, the input is a finite structure A and a sentence ϕ, and we need to
decide whether A |= ϕ. A includes a domain A for the existential/universal quantifiers over
variables. Any function (relation) of arity k can be represented as a (Boolean) table of size
|A|k. Some of these tables might be given in the input. The remaining tables of functions
chosen by quantifiers ∃f can simply be guessed by a NEXPreal machine in non-deterministic
exponential time. Then all possible values for the quantifiers of the finite domain can
be enumerated and all sentences can be evaluated. This completes the proof, due to the
characterization given in Lemma 2. ◀

▶ Proposition 11. Model checking of L-ESO[0,1](+,×,≤, 0, 1) is succ-∃R-hard.

Proof. We start with the following equivalences relating the logics:

L-ESO[0,1](+,×,≤, 0, 1) ≡ L-ESO[−1,1](+,×,≤, 0, 1) ≡ L-ESO[−1,1](+,×,−,=,≤, 0, 1/8, 1).

The first equivalence has been shown by Hannula et al. [16]. To see the second one, note
that we can replace operator = using a = b as a ≤ b ∧ b ≤ a. The negative one −1 can
be defined by a function −1 of arity 0 using ∃(−1) : (−1) + 1 = 0. Then any subtraction
a − b can be replaced with a + (−1) × b. Finally, the fraction 1/8 is a function given by
∃1/8 : 1/8 + 1/8 + 1/8 + 1/8 + 1/8 + 1/8 + 1/8 + 1/8 = 1. These equivalence reductions can be
performed in polynomial time.

In the rest of the proof, we show the hardness, reducing the problems in succ-∃R to
the existential second order logic L-ESO[−1,1](+,×,−,=,≤, 0, 1/8, 1). To this aim, we use
a succ-∃R-complete problem which is based on a problem given by Abrahamsen et al. [1],
who have shown that an equation system consisting of only sentences of the form xi = 1/8,
xi + xj = xk, and xi · xj = xk is ∃R-complete. As shown in [31], this can be turned
into a succ-∃R-complete problem, denoted as succETR1/8,+,×

[−1/8,1/8], by replacing the explicit
indices i, j, k with circuits that compute the indices for an exponential number of these three
equations. The circuits can be encoded with arithmetic operators, which allows us to encode
all equations in existential second order logic in a polynomial time reduction.

The instances of succETR1/8,+,×
[−1/8,1/8] are represented as seven Boolean circuits C0, C1,..., C6 :

{0, 1}M → {0, 1}N such that C0(j) gives the index of the variable in the jth equation of
type xi = 1/8, C1(j), C2(j), C3(j) give the indices of variables in the jth equation of the type
xi1 + xi2 = xi3 , and C4(j), C5(j), C6(j) give the indices of variables in the jth equation of
the type xi1xi2 = xi3 . Without loss of generality, we can assume that each type has the same
number 2M of equations. An instance of the problem succETR1/8,+,×

[−1/8,1/8] is satisfiable if and
only if:

∃x0,..., x2N −1 ∈ [−1/8, 1/8] : ∀j ∈ [0, 2M − 1] :
xC0(j) = 1/8, xC1(j) + xC2(j) = xC3(j), and xC4(j) · xC5(j) = xC6(j). (4)

Below, we prove that

succETR1/8,+,×
[−1/8,1/8] ≤P L-ESO[−1,1](+,×,−,=,≤, 0, 1/8, 1). (5)

ISAAC 2024

13:12 The Existential Theory of the Reals with Summation Operators

Let the instance of succETR1/8,+,×
[−1/8,1/8] be represented by seven Boolean circuits

C0, C1,..., C6 : {0, 1}M → {0, 1}N as described above. Let the variables of the instance
be indexed as xe1,...,eN

, with ei ∈ {0, 1} for i ∈ [N]. We will identify the bit sequence
b⃗ = b1,..., bM by an integer j, with 0 ≤ j ≤ 2M − 1, the binary representation of which is
b1...bM and vice versa.

We construct sentences in the logic L-ESO[−1,1](+,×,−,=,≤, 0, 1/8, 1) and prove that a
binary model satisfies the sentences if and only if the formula (4) is satisfiable.

Let q be an N -ary function where q(e1, . . . , eN) should encode the value of variable
xe1,...,eN

. For the range, we require ∀x⃗ : 0 − 1/8 ≤ q(x⃗) ∧ q(x⃗) ≤ 1/8.
For each circuit Ci, we define a function yi whose value yi(⃗b) is xCi(j), i.e., q(Ci(j)). Then

yi can directly be inserted in the equation system (4). For this, we need to encode the circuit
as logical sentences and relate y and q.

To model a Boolean formula encoded by a node of Ci, with i = 0, 1,..., 6, we use one step
of arithmetization to go from logical formulas to calculations on real numbers, where 0 ∈ R
means false and 1 ∈ R means true. While negation is not allowed directly in L-ESO, on the
real numbers we can simulate negation by subtraction.

For each node v of each circuit Ci, we need a function ci,v of arity M , such that ci,v (⃗b) is
the value computed by the node if the circuit is evaluated on input j = b1...bM .

If v is an input node, the node only reads one bit ui,k from the input, so let ∀⃗b : ci,v (⃗b) =
id(bk), where id is a function that maps 0, 1 from the finite domain to 0, 1 ∈ R.

For each internal node v of Ci, we proceed as follows.
If v is labeled with ¬ and u is a child of v, then we require ∀⃗b : ci,v (⃗b) = 1 − ci,u(⃗b).
If v is labeled with ∧ and u and w are children of v, then we require ∀⃗b : ci,v (⃗b) =

ci,u(⃗b) × ci,w (⃗b).
Finally, if v is labeled with ∨ and u and w are children of v, then we require ∀⃗b : ci,v (⃗b) =

1 − (1 − ci,u(⃗b)) × (1 − ci,w (⃗b)).
Thus, if v is an output node of a circuit Ci, then, for Ci fed with input j = b1...bM ∈

{0, 1}M , we have that v evaluates to true if and only if ci,v (⃗b) = 1.
Next, we need an (N +M)-arity selector function si(⃗b, e⃗) which returns 1 iff the output

of circuit Ci on input b⃗ is e⃗. It can be defined as:

∀⃗b, e⃗ : si(⃗b, e⃗) =
N∏

k=1
(ci,vk

(⃗b) × id(ek) + (1 − ci,vk
(⃗b)) × (1 − id(ek))).

Each factor of the product is 1 iff ci,vk
(⃗b) = ek. It has constant length, so it can be expanded

using the multiplication of the logic.
We express each q(Ci(j)) as a function yi(j), where b⃗ is the binary representation of j:

∀⃗b, e⃗ : yi(⃗b) × si(⃗b, e⃗) = q(e⃗) × si(⃗b, e⃗).

The above equation is trivially satisfied for si(⃗b, e⃗) = 0, thus it enforces equality of yi(⃗b)
and q(e⃗) only in the case si(⃗b, e⃗) = 1. Inserting yi in the equation system (4) gives us the
last L-ESO formula:

∀⃗b : y0(⃗b) = 1/8, y1(⃗b) + y2(⃗b) = y3(⃗b), and y4(⃗b) × y5(⃗b) = y6(⃗b),

which, combining with the previous formulas and preceded by second order existential
quantifiers ∃yi, ∃si, ∃ci,v, ∃id, with i = 0, . . . , 6, is satisfiable if and only if the formula (4)
are satisfiable.

M. Bläser, J. Dörfler, M. Liśkiewicz, and B. van der Zander 13:13

Obviously, the size of the resulting sentences are polynomial in the size |C0|+|C1|+...+|C6|
of the input instance and the sentences can be computed in polynomial time.

This completes the construction of reduction (5) and the proof of the proposition. ◀

As L-ESO[0,1](+,×,≤, 0, 1) is weaker than ESOR(Σ,+,×,≤, <,=,Q), it follows:

▶ Theorem 12. Let S = R or S = [a, b] with [0, 1] ⊆ S, {0, 1} ⊆ C ⊆ Q, {×} ⊆ O ⊆
{+,×,Σ} with |O| ≥ 2,and E ⊆ {≤, <,=} with {≤,=} ∩ E ̸= ∅. Model checking of

L-ESOS(O,E,C) and
ESOS(O,E,C)

is succ-∃R-complete.

Proof. We start with the following equivalence, which follows from the fact that a comparison
a ≤ b can be replaced by ∃ϵ, x : aϵ+ x = bϵ:

L-ESO[0,1](+,×,≤, 0, 1) ≡ L-ESO[0,1](+,×,=, 0, 1). (6)

The next fact has been used by [16], but without proof. Perhaps the authors thought it
to be too trivial to mention. But it is not obvious, since the standard technique of replacing
a ≤ b with ∃x : a+ x2 = b does not work here when x is restricted to [0, 1].

In some sense, L-ESO[0,1](+,×,≤, 0, 1) is the weakest logic one can consider in this
context:

▶ Fact 13. Let S = R or S = [a, b] with [0, 1] ⊆ S, {0, 1} ⊆ C ⊆ Q, {×} ⊆ O ⊆ {+,×,Σ}
with |O| ≥ 2,and E ∈ {≤,=}.

L-ESO[0,1](+,×,≤, 0, 1) ≤ L-ESOS(O,E,C) ≤ ESOS(O,E,C).

Proof of Fact 13. Relation = subsumes ≤ due to (6).
If + ∈ O, the remaining statements are trivial. Otherwise, we need to express + using Σ.
If S = R, x+ y can be written as Σtc(t) where c(0) = x, c(1) = y. (we consider model

checking problems, where the finite domain can be set to binary)
If S = [a, b], x or y might be outside the range. But the total weight of any k-arity

function is (b − a)k and each term has a maximal polynomial degree D, so x and y are
bounded by O((b− a)kD). So all expressions can be scaled to fit in the range (Lemma 6.4.
Step 3 proves this for functions that are probability distributions in [16]). ◀

All of this combined shows the theorem. ◀

Hannula et. al [16] and Durand et. al [9] have shown the following relationships
between expressivity of the logics: L-ESO[0,1](+,×,=, 0, 1) ≤ L-ESOd[0,1](Σ,×,=) ≡ FO(⊥⊥c).
L-ESOd[0,1][O,E,C] means a variant of L-ESO[0,1](O,E,C) where all functions are required
to be distributions, that is fA : Aar(f) → [0, 1] and

∑
a⃗∈Aar(f) fA(⃗a) = 1. From the proof for

the translation from L-ESO to FO(⊥⊥c) in [9], it follows that the reduction can be done in
polynomial time. Moreover, it is easy to see that model checking of FO(⊥⊥c) can be done in
NEXPreal. Thus we get

▶ Corollary 14. Model checking of FO(⊥⊥c) is succ-∃R-complete.

This corollary answers the question asked in [15] for the exact complexity of FO(⊥⊥c) and
confirms their result that the complexity lies between NEXP and EXPSPACE.

ISAAC 2024

13:14 The Existential Theory of the Reals with Summation Operators

7 Succinct ETR of Polynomially Many Variables

The key feature that makes the language Σvi-ETR defined in [31] very powerful is the ability
to index the quantified variables in the scope of summation. Nesting the summations allows
handling an exponential number of variables. Thus, similarly as in succ-ETR, sentences of
Σvi-ETR allow the use of exponentially many variables, however, the formulas are given
directly and do not require any succinct encoding. Due to the fact that variable indexing is
possible, [31] show that Σvi-ETR is polynomial time equivalent to succ-ETR.

Valiant’s class VNP [6, 19] is also defined in terms of exponential sums (we recall the
definition of VNP and related concepts in the full version). However, we cannot index
variables as above, therefore, the overall number of variables is always bounded by the length
of the defining expression. It is natural to extend ETR with a summation operator, but
without variable indexing as was allowed in Σvi-ETR. In this way, we can have exponential
sums, but the number of variables is bounded by the length of the formula. Instead of a
summation operator, we can also add a product operator, or both.

▶ Definition 15.
1. Σ-ETR is defined as ETR with the addition of a unary summation operator

∑1
xi=0.

2. Π-ETR is defined similar to Σ-ETR, but with the addition of a unary product operator∏1
xi=0 instead.

3. ΣΠ-ETR is defined similar to Σ-ETR or Π-ETR, but including both unary summation
and product operators.

In the three problems above, the number of variables is naturally bounded by the
length of the instance, since the problems are not succinct. For example, the formula∑1

x1=0
∑1

x2=0(x1 + x2)(x1 + (1 − x2))(1 − x1) = 0 explained in the introduction is also in
Σ-ETR and ΣΠ-ETR, but not in Π-ETR. The formula

∑1
e1=0 . . .

∑1
eN =0(x⟨e1,...,eN ⟩)2 = 1

is in neither of these three classes since it uses variable indexing.
To demonstrate the expressiveness of Π-ETR, we will show that the PSPACE-complete

problem QBF can be reduced to it.

▶ Lemma 16. QBF ≤P Π-ETR.

Proof. Let Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn) be a quantified Boolean formula with
Q1, . . . , Qn ∈ {∃, ∀}. We arithmetize φ as A(φ) inductively using the following rules:
φ is a variable xi: We construct A(φ) = xi.
φ is ¬φ1: We construct A(φ) as 1 −A(φ1).
φ is φ1 ∧ φ2: We construct A(φ) as A(φ1) ·A(φ2).
φ is φ1 ∨ φ2: We construct A(φ) as 1 − (1 −A(φ1)) · (1 −A(φ2)) via De Morgan’s law and

the previous two cases.
The special treatment of the ∨ operator ensures that whenever x1, . . . , xn ∈ {0, 1}, then A(φ)
evaluates to 1 iff x1, . . . , xn satisfy φ and 0 otherwise. We then arithmetize the quantifiers
Q1, . . . , Qn in a similar way, but using the unary product operator.
Qi = ∀: We construct A(∀xiQi+1xi+1 . . . Qnxnφ) as

∏1
xi=0 A(Qi+1xi+1 . . . Qnxnφ)

Qi = ∃: We construct A(∃xiQi+1xi+1 . . . Qnxnφ(x1, . . . , xn) as
1 −

∏1
xi=0(1 −A(Qi+1xi+1 . . . Qnxnφ)), again using De Morgan’s law.

The final Π-ETR formula is then just A(Q1x1Q2x2 . . . Qnxnφ) = 1.
The correctness of the construction follows because a formula of the form ∀ψ(x) is true over

the Boolean domain iff ψ(0) ∧ψ(1) is true. The unary product together with arithmetization
allows us to write the whole formula down without an exponential blow-up. ◀

M. Bläser, J. Dörfler, M. Liśkiewicz, and B. van der Zander 13:15

We also consider the succinct version of ETR with only a polynomial number of variables.

▶ Definition 17. succ-ETRpoly is defined similar to succ-ETR, but variables are encoded
in unary instead of binary, thus limiting the amount of variables to a polynomial amount of
variables. (Note that the given input circuit succinctly encodes an ETR formula and not an
arbitrary circuit.)

For succ-ETR, it does not matter whether the underlying structure of the given instance
is a formula or an arbitrary circuit, since we can transform the circuit into a formula using
Tseitin’s trick. This, however, requires a number of new variables that is proportional to the
size of the circuit, which is exponential.

Like for ETR, we can now define corresponding classes by taking the closure of the
problems defined above. It turns out that we get meaningful classes in this way, however,
for some unexpected reason. Except for Σ-ETR, all classes coincide with PSPACE, which
we will see below. By restricting the number of variables to be polynomial, the complexity
of succ-ETR reduces considerably, from being NEXPreal-complete, which contains NEXP,
to PSPACE. On the other hand, the problems are most likely more powerful than ETR,
assuming that ∃R is a proper subset of PSPACE, which is believed by at least some researchers.

▶ Definition 18. Let succ-∃Rpoly be the closure of succ-ETRpoly under polynomial time
many one reductions.

▶ Theorem 19. PSPACE = succ-∃Rpoly and the problems Π-ETR, ΣΠ-ETR, and
succ-ETRpoly are PSPACE-complete.

Proof idea. To show that succ-ETRpoly is in PSPACE, we rely on results by [24]. One of
the famous consequences of Renegar’s work is that ETR ∈ PSPACE. But Renegar shows
even more, because he can handle an exponential number of arithmetic terms of exponential
size with exponential degree as long as the number of variables is polynomially bounded. For
the completeness of Π-ETR, it turns out that an unbounded product is able to simulate an
arbitrary number of Boolean quantifier alternations, in constrast to an unbounded sum. So,
as shown in Lemma 16, we can reduce QBF to it. ◀

8 ETR with the Standard Summation Operator

In the previous section, we have seen that ETR with a unary product operator (Π-ETR)
is PSPACE-complete. Moreover, allowing both unary summation and product operators
does not lead to an increase in complexity. In this section, we investigate the complexity of
Σ-ETR, ETR with only unary summation operators.

▶ Definition 20. Let ∃RΣ be the closure of Σ-ETR under polynomial time many one
reductions. Moreover, for completeness, let ∃RΠ be the closure of Π-ETR under polynomial
time many one reductions.

8.1 Machine Characterization of ∃RΣ

By Theorem 19, we have ∃RΠ = PSPACE. For ∃RΣ, we can conclude: NPreal = ∃R ⊆ ∃RΣ ⊆
PSPACE. We conjecture that all inclusions are strict. In this section, we will provide some
arguments in favor of this.

We first observe that using summations we can quite easily solve PP-problems. In
particular, we have:

ISAAC 2024

13:16 The Existential Theory of the Reals with Summation Operators

▶ Lemma 21. NPPP ⊆ ∃RΣ .

Proof. The canonical NPPP-complete problem E-MajSat is deciding the satisfiability of a
formula

ψ : ∃x1, . . . , xn : #{(y1, . . . , yn) ∈ {0, 1}n | ϕ(x, y) = 1} ≥ 2n−1,

i.e., deciding whether there is an assignment to the x-variables such that the resulting formula
is satisfied by at least half of the assignments to the y-variables [18].

Let X1 . . . Xn, Y1 . . . Yn be real variables and ϕR the arithmetization of ϕ. We build an
equivalent ∃RΣ instance as follows:

1. Xi = 0 ∨Xi = 1, 1 ≤ i ≤ n, and

2.
1∑

Y1=0
. . .

1∑
Yn=0

ϕR(X,Y) ≥ 2n−1.

Then this instance is satisfiable iff ψ is satisfiable because Xi are existentially chosen and
constraint to be Boolean and

∑1
Y1=0 . . .

∑1
Yn=0 ϕ

R(X,Y) is exactly the number of satisfying
assignments to the Y -variables. ◀

Similarly to ∃R = NPreal, we can also characterize ∃RΣ using a machine model instead of
a closure of a complete problem under polynomial time many one reductions. For this we
define a NPVNPR

real machine to be an NPreal machine with a VNPR oracle, where VNPR denotes
Valiant’s NP over the reals. Since VNPR is a family of polynomials, the oracle allows us to
evaluate a family of polynomials, for example the permanent, at any real input8. The two
lemmas below demonstrate that NPVNPR

real coincides with ∃RΣ which strengthens Lemma 21
that NPPP ⊆ ∃RΣ and characterizes Σ-ETR in terms of complexity classes over the reals.

▶ Lemma 22. Σ-ETR ∈ NPVNPR
real . This also holds if the NPreal machine is only allowed to

call its oracle once.

▶ Lemma 23. Σ-ETR is hard for NPVNPR
real .

▶ Theorem 24. Σ-ETR is complete for NPVNPR
real . Thus, ∃RΣ = NPVNPR

real .

Proof idea. To prove Lemma 22, we show a normal form for Σ-ETR instances such that
all polynomials contained in it are of the form

∑
Y ∈{0,1}m p(X,Y) where p does not contain

any unary sums. Then we show how to translate formulas in this normal form into a real
word-RAM with oracle access. For the hardness results of Lemma 23, we encode the real
word-RAM computations into an ETR-instance, where the oracle calls (which w.l.o.g. can be
assumed to be calls to the permanent) are simulated by the summation operator. ◀

8.2 Reasoning about Probabilities in Small Models
In this section, we employ the satisfiability problems for languages of the causal hierarchy.
The problem Satpoly⟨Σ⟩

sm,prob is defined like Satpoly⟨Σ⟩
prob , but in addition we require that a satisfying

distribution has only polynomially large support, that is, only polynomially many entries in
the exponentially large table of probabilities are nonzero. Formally we can achieve this by
extending an instance with an additional unary input p ∈ N and requiring that the satisfying
distribution has a support of size at most p. The membership proofs of Satpoly

prob in NP and

8 See the full version for an overview of the relevant definitions.

M. Bläser, J. Dörfler, M. Liśkiewicz, and B. van der Zander 13:17

in ∃R, respectively, by [11], [17], and [21] rely on the fact that the considered formulas have
the small model property: If the instance is satisfiable, then it is satisfiable by a small model.
For Satpoly⟨Σ⟩

prob , this does not seem to be true because we can directly force any model to be
arbitrarily large, e.g., by encoding the additional parameter p above in binary or by enforcing a
uniform distribution using

∑
x1
. . .

∑
xn

(P (X1=x1, . . . , Xn=xn)−P (X1=0, . . . , Xn=0))2 = 0.
Thus, we have to explicitly require that the models are small, yielding the problem Satpoly⟨Σ⟩

sm,prob.
Formally, we use the following:

▶ Definition 25. The decision problems Satpoly⟨Σ⟩
sm,prob take as input a formula φ ∈ Lpoly⟨Σ⟩ and

a unary encoded number p ∈ N and ask whether there exists a model M = ({X1,..., Xn}, P)
such that M |= φ and #{(x1,..., xn) : P (X1=x1,..., Xn=xn) > 0} ≤ p.

It turns out that Satpoly⟨Σ⟩
sm,prob is a natural complete problem for ∃RΣ:

▶ Theorem 26. The decision problem Satpoly⟨Σ⟩
sm,prob is complete for ∃RΣ.

Proof idea. To show the containment of Satpoly⟨Σ⟩
sm,prob in ∃RΣ, we first show a normal form

that every probability occurring in the input instance contains all variables. Then we have
to use the exponential sum and the polynomially many variables to “built” a probability
distribution with polynomial support. The lower bound follows from reducing from a
restricted Σ-ETR-instance. ◀

9 Discussion

Traditionally, ETR has been used to characterize the complexity of problems from geometry
and real optimization. It has recently been used to characterize probabilistic satisfiability
problems, which play an important role in AI, see e.g. [21, 31]. We have further investigated
the recently defined class succ-∃R, characterized it in terms of real word-RAMs, and shown
the existence of further natural complete problems. Moreover, we defined a new class ∃RΣ

and also gave natural complete problems for it.
The studied summation operators allow the encoding of exponentiation, but only with

integer bases, so they do not affect the decidability, unlike Tarski’s exponential function [29].
Schäfer and Stefankovic [27] consider extensions of ETR where we have a constant number

of alternating quantifiers instead of just one existential quantifier. By the work of Grigoriev
and Vorobjov [14], these classes are all contained in PSPACE. Can we prove a real version of
Toda’s theorem [30]? Are these classes contained in ∃RΣ?

References
1 Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The art gallery problem is

∃R-complete. In Proc. of the 50th ACM SIGACT Symposium on Theory of Computing (STOC
2018), pages 65–73, 2018. doi:10.1145/3188745.3188868.

2 Mikkel Abrahamsen, Linda Kleist, and Tillmann Miltzow. Training neural networks is ∃R-
complete. In Proc. Advances in Neural Information Processing Systems (NeurIPS 2021), pages
18293–18306, 2021.

3 Elias Bareinboim, Juan D. Correa, Duligur Ibeling, and Thomas Icard. On Pearl’s Hierarchy
and the Foundations of Causal Inference, pages 507–556. Association for Computing Machinery,
New York, NY, USA, 2022. doi:10.1145/3501714.3501743.

4 Vittorio Bilò and Marios Mavronicolas. ∃R-complete decision problems about symmetric Nash
equilibria in symmetric multi-player games. In Proc. 34th Symposium on Theoretical Aspects
of Computer Science (STACS 2017). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

ISAAC 2024

https://doi.org/10.1145/3188745.3188868
https://doi.org/10.1145/3501714.3501743

13:18 The Existential Theory of the Reals with Summation Operators

5 Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of
the American Mathematical Society, 21(1):1–46, 1989.

6 Peter Bürgisser. Completeness and reduction in algebraic complexity theory, volume 7. Springer
Science & Business Media, 2000.

7 John Canny. Some algebraic and geometric computations in PSPACE. In Proc. of the
20th ACM Symposium on Theory of Computing (STOC 1988), pages 460–467. ACM, 1988.
doi:10.1145/62212.62257.

8 Jean Cardinal. Computational geometry column 62. ACM SIGACT News, 46(4):69–78, 2015.
doi:10.1145/2852040.2852053.

9 Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. Probabilistic
team semantics. In Foundations of Information and Knowledge Systems: 10th International
Symposium, FoIKS 2018, Proceedings 10, pages 186–206. Springer, 2018. doi:10.1007/
978-3-319-90050-6_11.

10 Jeff Erickson, Ivor Van Der Hoog, and Tillmann Miltzow. Smoothing the gap between NP
and ER. SIAM Journal on Computing, pages FOCS20–102, 2022.

11 Ronald Fagin, Joseph Y Halpern, and Nimrod Megiddo. A logic for reasoning about prob-
abilities. Information and Computation, 87(1-2):78–128, 1990. doi:10.1016/0890-5401(90)
90060-U.

12 Jugal Garg, Ruta Mehta, Vijay V Vazirani, and Sadra Yazdanbod. ∃R-completeness for decision
versions of multi-player (symmetric) Nash equilibria. ACM Transactions on Economics and
Computation (TEAC), 6(1):1–23, 2018. doi:10.1145/3175494.

13 George Georgakopoulos, Dimitris Kavvadias, and Christos H. Papadimitriou. Probabilistic
satisfiability. Journal of Complexity, 4(1):1–11, 1988. doi:10.1016/0885-064X(88)90006-4.

14 Dima Grigoriev and Nicolai N. Vorobjov Jr. Solving systems of polynomial inequalities in
subexponential time. J. Symb. Comput., 5(1/2):37–64, 1988. doi:10.1016/S0747-7171(88)
80005-1.

15 Miika Hannula, Minna Hirvonen, Juha Kontinen, Yasir Mahmood, Arne Meier, and Jonni
Virtema. Logics with probabilistic team semantics and the boolean negation. arXiv preprint
arXiv:2306.00420, 2023. doi:10.48550/arXiv.2306.00420.

16 Miika Hannula, Juha Kontinen, Jan Van den Bussche, and Jonni Virtema. Descriptive
complexity of real computation and probabilistic independence logic. In Proc. of the 35th
ACM/IEEE Symposium on Logic in Computer Science (LICS 2020), pages 550–563, 2020.
doi:10.1145/3373718.3394773.

17 Duligur Ibeling and Thomas Icard. Probabilistic reasoning across the causal hierarchy. In Proc.
34th AAAI Conference on Artificial Intelligence (AAAI 2020), pages 10170–10177. AAAI
Press, 2020. doi:10.1609/AAAI.V34I06.6577.

18 Michael L. Littman, Judy Goldsmith, and Martin Mundhenk. The computational complexity
of probabilistic planning. Journal of Artificial Intelligence Research, 9:1–36, 1998. doi:
10.1613/JAIR.505.

19 Meena Mahajan. Algebraic complexity classes. Perspectives in Computational Complexity:
The Somenath Biswas Anniversary Volume, pages 51–75, 2014.

20 Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs. Journal
of Combinatorial Theory, Series B, 103(1):114–143, 2013. doi:10.1016/J.JCTB.2012.09.004.

21 Milan Mossé, Duligur Ibeling, and Thomas Icard. Is causal reasoning harder than probabilistic
reasoning? The Review of Symbolic Logic, pages 1–26, 2022.

22 Nils J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986. doi:10.1016/
0004-3702(86)90031-7.

23 Judea Pearl. Causality. Cambridge University Press, 2009.
24 James Renegar. On the computational complexity and geometry of the first-order theory

of the reals. Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The
decision problem for the existential theory of the reals. Journal of symbolic computation,
13(3):255–299, 1992. doi:10.1016/S0747-7171(10)80003-3.

https://doi.org/10.1145/62212.62257
https://doi.org/10.1145/2852040.2852053
https://doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.1016/0890-5401(90)90060-U
https://doi.org/10.1016/0890-5401(90)90060-U
https://doi.org/10.1145/3175494
https://doi.org/10.1016/0885-064X(88)90006-4
https://doi.org/10.1016/S0747-7171(88)80005-1
https://doi.org/10.1016/S0747-7171(88)80005-1
https://doi.org/10.48550/arXiv.2306.00420
https://doi.org/10.1145/3373718.3394773
https://doi.org/10.1609/AAAI.V34I06.6577
https://doi.org/10.1613/JAIR.505
https://doi.org/10.1613/JAIR.505
https://doi.org/10.1016/J.JCTB.2012.09.004
https://doi.org/10.1016/0004-3702(86)90031-7
https://doi.org/10.1016/0004-3702(86)90031-7
https://doi.org/10.1016/S0747-7171(10)80003-3

M. Bläser, J. Dörfler, M. Liśkiewicz, and B. van der Zander 13:19

25 Marcus Schaefer. Complexity of some geometric and topological problems. In Proc.
International Symposium on Graph Drawing (GD 2009), pages 334–344. Springer, 2009.
doi:10.1007/978-3-642-11805-0_32.

26 Marcus Schaefer, Jean Cardinal, and Tillmann Miltzow. The existential theory of the reals as
a complexity class: A compendium. arXiv preprint, 2024. doi:10.48550/arXiv.2407.18006.

27 Marcus Schaefer and Daniel Štefankovič. Beyond the existential theory of the reals. Theory of
Computing Systems, 68(2):195–226, 2024. doi:10.1007/S00224-023-10151-X.

28 Ilya Shpitser and Judea Pearl. Complete identification methods for the causal hierarchy.
Journal of Machine Learning Research, 9:1941–1979, 2008. doi:10.5555/1390681.1442797.

29 Alfred Tarski. A decision method for elementary algebra and geometry. Journal of Symbolic
Logic, 14(3), 1949.

30 Seinosuke Toda. PP is as hard as the Polynomial-Time Hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991. doi:10.1137/0220053.

31 Benito van der Zander, Markus Bläser, and Maciej Liśkiewicz. The hardness of reasoning
about probabilities and causality. In Proc. Joint Conference on Artificial Intelligence (IJCAI
2023), 2023.

ISAAC 2024

https://doi.org/10.1007/978-3-642-11805-0_32
https://doi.org/10.48550/arXiv.2407.18006
https://doi.org/10.1007/S00224-023-10151-X
https://doi.org/10.5555/1390681.1442797
https://doi.org/10.1137/0220053

Routing from Pentagon to Octagon Delaunay
Graphs
Prosenjit Bose #

School of Computer Science, Carleton University, Ottawa, Canada

Jean-Lou De Carufel #

School of Electrical Engineering and Computer Science, University of Ottawa, Canada

John Stuart #

School of Electrical Engineering and Computer Science, University of Ottawa, Canada

Abstract
The standard Delaunay triangulation is a geometric graph whose vertices are points in the plane, and
two vertices share an edge if they lie on the boundary of an empty disk. If the disk is replaced with
a homothet of a fixed convex shape C, then the resulting graph is called a C-Delaunay graph. We
study the problem of local routing in C-Delaunay graphs where C is a regular polygon having five to
eight sides. In particular, we generalize the routing algorithm of Chew for square-Delaunay graphs
(Chew. SCG 1986, 169–177) in order to obtain the following approximate upper bounds of 4.640,
6.429, 8.531 and 4.054 on the spanning and routing ratios for pentagon-, hexagon-, septagon-, and
octagon-Delaunay graphs, respectively. The exact expression for the upper bounds of the routing
ratio is

Ψ(n) :=

{√
1 + ((cos(2π/n) + n − 1)/ sin(2π/n))2 if n ∈ {5, 6, 7},√
1 + ((cos(π/8) cos(3π/8) + 3)/(cos(π/8) sin(3π/8)))2 if n = 8.

We show that these bounds are tight for the output of our routing algorithm by providing a point set
where these bounds are achieved. We also include lower bounds of 1.708 and 1.995 on the spanning
and routing ratios of the pentagon-Delaunay graph.

Our upper bounds yield a significant improvement over the previous routing ratio upper bounds
for this problem, which previously sat at around 400 for the pentagon, septagon, and octagon as well
as 18 for the hexagon. Our routing ratios also provide significant improvements over the previously
best known spanning ratios for pentagon-, septagon- and octagon-Delaunay graphs, which were
around 45.

2012 ACM Subject Classification Theory of computation → Sparsification and spanners

Keywords and phrases Geometric Spanners, Generalized Delaunay Graphs, Local Routing Al-
gorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.14

1 Introduction

A geometric graph is a weighted graph whose vertices are points in the plane and edges are
line segments weighted with the Euclidean distance between their endpoints. Two of the
main distance-preserving properties of a graph are the spanning ratio and routing ratio. The
spanning ratio of a pair of points is the ratio of the shortest path between them in the graph
divided by their Euclidean distance, and the spanning ratio of a graph is the maximum
spanning ratio over all pairs of points [11]. On the other hand, the routing ratio is defined
similarly, except that the path is usually computed locally with only information of the
current vertex’s neighbourhood. Since a routing ratio is based on an algorithm that finds a
path and the spanning ratio is based on the existence of a path, the spanning ratio of any
graph is a lower bound on the routing ratio.

© Prosenjit Bose, Jean-Lou De Carufel, and John Stuart;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 14; pp. 14:1–14:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jit@scs.carleton.ca
https://orcid.org/0000-0002-8906-0573
mailto:decaruf@uottawa.ca
https://orcid.org/0000-0002-6734-8234
mailto:jstua022@uottawa.ca
https://orcid.org/0009-0005-3844-9000
https://doi.org/10.4230/LIPIcs.ISAAC.2024.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Routing in Polygon Delaunay Graphs

In this paper, we consider variants of standard Delaunay triangulations, which are
geometric graphs with an edge between two points if there exists a disk with the endpoints on
its boundary and no vertices in its interior. The spanning ratio of the Delaunay triangulation
is known to be between 1.5932 [14] and 1.998 [13], however the exact value still remains
unknown. The gap is even larger for the routing ratio, lying somewhere between 1.70 [2]
and 3.56 [1]. Many papers study the related graphs that result from replacing the disk with
a homothet of a fixed convex shape C, resulting in C-Delaunay graphs. Chew [8] proved
that square-Delaunay graphs have a spanning ratio of at most

√
10 by giving a local routing

algorithm. Subsequently, Chew [9] adapted his algorithm to equilateral triangle-Delaunay
graphs to find a spanning ratio of 2, however the adapted algorithm was no longer a routing
algorithm. In fact, Bose et al. [6] showed that the routing ratio of the equilateral triangle-
Delaunay graph is exactly 5√

3 , showing the first separation between the spanning ratio and
routing ratio. By generalizing Chew’s algorithm, Bose et al. [2] were then able to show
that the standard Delaunay triangulation has a routing ratio of at most 5.90 which was an
improvement on the previously known upper bound of 15.48 [5]. Currently, the best-known
bound is 3.56[1]. In this paper, we show that Chew’s algorithm can be further generalized to
pentagon-, hexagon-, septagon-, and octagon-Delaunay graphs to obtain routing ratios of
4.640, 6.429, 8.531 and 4.054, respectively.

The hexagon-Delaunay graph is known to have a tight spanning ratio of 2 [12], however
less is known about Delaunay graphs based on pentagons, septagons and octagons. With the
exception of the hexagon-Delaunay graph, our routing ratio upper bounds yield a significant
improvement over the previous best spanning ratio upper bounds. Bose et al. [4] give a
spanning ratio upper bound for any C-Delaunay graph, where C is any convex shape. In
particular, their bound is based intuitively on the thinness of C, which is essentially measured
by the ratio of the perimeter to the width of C. For example, this ratio is π when C is a disk.
Furthermore, by the construction of the paths from Bose et al. [4] and Perkovic et al. [12],
it is possible to route using the algorithm of Bose and Morin [7] with a constant routing
ratio of 9 times the spanning ratio. For each polygon, we compare our contribution to the
previous best known upper bound in Table 1. We also prove lower bounds of 1.708 and 1.995
on the spanning and routing ratios of the pentagon-Delaunay graph in the appendix.

Table 1 Comparison to previously best-known upper bounds on the spanning and routing ratio
of the C-Delaunay graph.

C Spanning Ratio Routing Ratio Our Routing and Spanning Ratio

Triangle 2[9] 5/
√

3[6]
Square

√
4 + 2

√
2 [3]

√
10[8]

Pentagon ≈ 45[4] ≈ 405[7] ≈ 4.640
Hexagon 2[12] 18[7] ≈ 6.429
Septagon ≈ 45[4] ≈ 405[7] ≈ 8.531
Octagon ≈ 43[4] ≈ 387[7] ≈ 4.054

Circle ≈ 1.998[13] ≈ 3.56[1]

2 Preliminaries

We denote the line segment between points u, v as uv, and the Euclidean length of uv is
denoted |uv|. For a path P in the plane, denote |P| as the length of the path. If paths P,Q
share an endpoint, then P +Q denotes their concatenation. Next, for a, b, c ∈ R2, we define

P. Bose, J.-L. De Carufel, and J. Stuart 14:3

∠abc as the angle from ab to bc clockwise around b. The x and y coordinates of a ∈ R2 are
denoted x(a), y(a) respectively. For two vertices u, v in a geometric graph G, the length of
the shortest path from u to v in G is denoted dG(u, v). Then for a constant c ≥ 1, G is said
to be a c-spanner if for all points u, v in G, we have dG(u, v) ≤ c|uv|. The spanning ratio of
G is the least c for which G is a c-spanner. The spanning ratio of a class of graphs G is the
least c for which all graphs in G are c-spanners. A constant spanner is a c-spanner where c is
a constant.

We make the assumption that the graph is embedded on a polynomial-sized grid and
therefore specifying the coordinates of a vertex in V (G) requires O(log(|V (G)|)) bits. Formally,
a m-memory local routing algorithm is a function that takes as input (s, N(s), t, M), and
outputs some memory M ′ and a vertex p ∈ N(s) where s is the current vertex, N(s) is the
neighbourhood of s, t is the destination, and both M, M ′ are bit-strings of length m. An
algorithm is said to be c-competitive for a family of geometric graphs G if the path output
by the algorithm for any pair of vertices s, t ∈ V (G) for G ∈ G has length at most c|st|. The
routing ratio of an algorithm is the least c for which the algorithm is c-competitive for G.
Note that the routing ratio is an upper bound on the spanning ratio.

For n ∈ {5, 6, 7, 8}, let ⃝n denote a regular n-gon in the plane. Every time we mention
an n-gon, it is assumed to be a scaled translate of ⃝n. Note that rotations are not permitted.
We refer to the boundary of any n-gon C as ∂C, and to the interior as int(C). We make
the general position assumptions that no two points are on a line parallel to a side of ⃝n,
that neither coordinate axis is parallel to a side of ⃝n, and that no four points lie on ∂C for
some n-gon C. For two points a, b ∈ ∂C, define Arc(C, a, b) to be the clockwise portion of
∂C from a to b. Let S be a set of points in the plane.

▶ Definition 1. For a, b ∈ S, an edge ab satisfies the empty-⃝n property with respect to S if
there exists an n-gon C with a, b ∈ ∂C and S ∩ int(C) = ∅.

▶ Definition 2. A ⃝n-Delaunay graph of S is a maximal planar graph on S such that every
edge satisfies the empty-⃝n property with respect to S. By maximal, we mean that no more
edges satisfying the empty-⃝n property can be added.

Note that specifying maximality in Definition 2 guarantees that every bounded face
is a triangle [4]. Let u, v be two points in the plane that satisfy the general position
assumption. Then Boundary(u, v) denotes the set of n-gons C such that u, v ∈ ∂C. Also for
any homothet C, define the point Center(C) to be the point in C equidistant from all vertices
of C. Furthermore, denote North(C) to be the vertex of C with the largest y-coordinate.
Similarly, define East(C), South(C) and West(C). For a set H of homothets of ⃝n, let
Center(H) := {Center(C) | C ∈ H}. Similarly, we define West(H). For any homothet C of
the n-gon ⃝n, we label the vertices clockwise from West(C) as C1, ..., Cn.

3 Routing Ratio Upper Bound

Recall that

Ψ(n) :=
{√

1 + ((cos(2π/n) + n− 1)/ sin(2π/n))2 if n ∈ {5, 6, 7},√
1 + ((cos(π/8) cos(3π/8) + 3)/(cos(π/8) sin(3π/8)))2 if n = 8.

The goal of this section is to prove the following theorem.

▶ Theorem 3. The routing ratio of the ⃝5-Delaunay graph is at most Ψ(5) ≈ 4.64.

ISAAC 2024

14:4 Routing in Polygon Delaunay Graphs

3.1 Local Routing Algorithm
We present Algorithm 1, which is a O(log(|V (G)|))-memory local routing algorithm for ⃝n-
Delaunay graphs generalizing Chew’s local routing algorithm [8]. Without loss of generality,
we assume that the start vertex s and destination t satisfy y(s) = y(t) and x(s) < x(t). The
location of s is stored in memory for each step. In addition, we will assume that all edges of
the convex hull are present in the ⃝n-Delaunay graph of S. Then in Section 3.2, we describe
how Algorithm 1 can be modified to handle routing when the convex hull is not present.

The intuition behind Algorithm 1 is that when the current vertex is pi, the next vertex
pi+1 is restricted to one of the vertices of the rightmost triangle Ti of the graph containing
vertex pi and intersecting st. Note that the two neighbours of pi under consideration are on
opposite sides of st. Then, consider the empty n-gon Ci corresponding to Ti. We partition the
boundary of Ci into two arcs by splitting at its west point wi and its rightmost intersection
with st, denoted ti. If pi is in the upper arc, we choose the clockwise neighbour, otherwise
we choose the counterclockwise neighbour. A trace of Algorithm 1 is illustrated in Figure 1.
Note that the triangles T0, ..., Tk are ordered from left to right along st, so the algorithm
terminates. We assume that there are k + 1 edges in the path output by Algorithm 1. Note
that the last edge pkt in Algorithm 1 may appear to be a separate case from case b in
Algorithm 1, but we can avoid analyzing it separately by viewing t as both above and below
st. The important detail in the analysis is that t is in the same portion of ∂Ck as pk (either
pk, t ∈ Arc(Ck, wk, tk) or pk, t ∈ Arc(Ck, tk, wk)).

s = p0

p1

p2

p3 p4

p5

t = p6

C0

C1

C2

C3

C5

C4

Figure 1 Trace of Algorithm 1. In this case, k = 5 and n = 5. The orange line is the path chosen
by Algorithm 1 and the thick black edges represent the other edge (pia or pib) considered in step b.

When u, v are in general position, the set Center(Boundary(u, v)) is analogous to the
perpendicular bisector of uv when the n-gon ⃝n is replaced with a disk. For this reason, we
will refer to Center(Boundary(u, v)) as Bisector(u, v). In Lemma 2.2.1.1 of [10], Ma shows
that for any regular n-gon, Bisector(u, v) is a polygonal chain completed with two rays at
the ends. In this way, Bisector(u, v) partitions R2 into two half-spaces (see Figure 2).

When y(v) > y(u), then there is a natural ordering of the points in Bisector(u, v) from
left to right. By convention, for any u, v ∈ R2 in general position, we say that the point
Bisector(u, v) ∩ Arc(C, u, v) is to the left of the point Bisector(u, v) ∩ Arc(C, v, u). This is
extended to an ordering on all the points of Bisector(u, v). Note that with this convention,
Bisector(u, v) does not have the same ordering as Bisector(v, u). For example, this convention

P. Bose, J.-L. De Carufel, and J. Stuart 14:5

Algorithm 1 Local Routing algorithm in ⃝n-Delaunay triangulation.

Data: Two points s, t ∈ S (w.l.o.g. y(s) = y(t) and x(s) < x(t))
Result: Vertices s = p0, ..., t = pk+1 forming a path in ⃝n-Delaunay graph of S

Set i← 0 and pi ← s;
while pi ̸= t do

(a) If t is a neighbour of pi, set pi+1 ← t.
(b) Otherwise, let Ti be the rightmost triangle in the graph intersecting st with

vertex pi. Let a, b be the other vertices of Ti above and below st, respectively.
Let Ci be the empty n-gon with pi, a, b ∈ ∂Ci. Let wi := West(Ci) and ti be
the intersection of Ci with st closest to t.
(1) If pi ∈ Arc(Ci, wi, ti), then set pi+1 ← a and i← i + 1.
(2) Else, set pi+1 ← b and i← i + 1.

end

tells us that in Figure 2, Center(Ci−1) is to the left of Center(Ci) on Bisector(q, pi), whereas
Center(Ci−1) is to the right of Center(Ci) on Bisector(pi, q). Then the following remark is
based on Ma’s plane sweep algorithm [10] which produces the vertices of Bisector(u, v).

▶ Remark 4 ([10]). Let u, v ∈ R2 be in general position with y(v) > y(u). Then for
any C, C ′ ∈ Boundary(u, v) we have that ∠South(C)Center(C)v ≥ ∠South(C ′)Center(C ′)v
provided that Center(C) is to the left of Center(C ′) on Bisector(u, v).

In the following lemma, we describe the structure of the path output by Algorithm 1.

pi

q

Ci−1
Ci

Figure 2 The black polygonal chain is Bisector(q, pi). The white points are the centers of the
5-gons Ci−1 and Ci.

▶ Lemma 5. Let i ∈ {1, ..., k}. If edges pi−1pi and pipi+1 both use case b1 in Algorithm 1,
then ∠wi−1Center(Ci−1)pi ≥ ∠wiCenter(Ci)pi. If instead both edges use case b2 in Algorithm
1, then ∠piCenter(Ci−1)wi−1 ≥ ∠piCenter(Ci)wi.

Proof. Assume without loss of generality that edges pi−1pi and pipi+1 were chosen using
case b1 in Algorithm 1. Then pi is above st. We will first consider the case where Ti−1 and
Ti share an edge, denoted piq. Since pi is above st, then q is below st. Refer to Figure 2.
Both Center(Ci−1) and Center(Ci) lie on Bisector(q, pi), however it remains to establish their
relative position. Then by Remark 4, the result follows if we show that Center(Ci−1) is to the
left of Center(Ci). Define L := {Center(C) | C ∈ Boundary(pi, q) and pi−1 ∈ int(C)} and

ISAAC 2024

14:6 Routing in Polygon Delaunay Graphs

R := {Center(C) | C ∈ Boundary(pi, q) and pi+1 ∈ int(C)}. Since pi−1 ∈ Arc(Ci−1, q, pi),
then L propagates from Center(Ci−1) to the left. Similarly, R propagates from Center(Ci)
to the right since pi+1 ∈ Arc(Ci, pi, q).If Center(Ci−1) is to the right of Center(Ci), then
L ∪R = Bisector(q, pi). However, Center(Ci−1) and Center(Ci) are both examples of points
in Bisector(q, pi) but not in L ∪ R. Therefore Center(Ci−1) is to the left of Center(Ci),
hence ∠South(Ci−1)Center(Ci−1)pi ≥ ∠South(Ci)Center(Ci)pi. Then we obtain the desired
inequality by remarking that pi is not on Arc(Cr, South(Cr), wr) for r ∈ {i− 1, i} and also
the angle ∠South(C)Center(C)West(C) is constant for all homothets C of ⃝n.

If Ti and Ti−1 do not share an edge, then we use this argument on all the triangles
between Ti−1 and Ti. The result follows since inequality is transitive. ◀

Next, we define the worst-case n-gons, shown in Figure 3.

pi+1
pi+1

pi
pi

Ci
Ci

C ′
i

C ′
i

pi+1

pi

Ci

C ′
i

Figure 3 The original 5-gons, Ci, are blue, and the worst-case 5-gons, C′
i from Definition 6, are

purple. In all examples, pi+1 is above st. Left: West(C′
i) = pi. Middle: West(C′

i) = pi. Right:
South(C′

i), s, t are collinear.

▶ Definition 6 (Worst-Case n-gons). Let i ∈ {0, ..., k} and suppose pi+1 is above st. Start
with an n-gon C = Ci, then move Center(C) left along Bisector(pi, pi+1) while keeping
C ∈ Boundary(pi, pi+1) until the points South(C), s, t are collinear, or pi = West(C). The
resulting n-gon is denoted by C ′

i. If instead pi+1 is below st, then move Center(C) right
along Bisector(pi, pi+1) while keeping C ∈ Boundary(pi, pi+1) until the points North(C), s, t

are collinear, or pi = West(C). The resulting n-gon is again denoted by C ′
i.

To shorten notation, denote w′
i := West(C ′

i) for i ∈ {0, ..., k}. A similar statement to that of
Lemma 5 can be made about the worst-case n-gons:

▶ Lemma 7. Let i ∈ {1, ..., k}. If edges pi−1pi and pipi+1 both use case b1 in Algorithm
1, then ∠w′

i−1Center(C ′
i−1)pi ≥ ∠w′

iCenter(C ′
i)pi. If instead both edges use case b2 in

Algorithm 1, then ∠piCenter(C ′
i−1)w′

i−1 ≥ ∠piCenter(C ′
i)w′

i.

Proof. Let i ∈ {1, ..., k} and assume edges pi−1pi and pipi+1 both use case b1 in Al-
gorithm 1. By Lemma 5, we have ∠wi−1Center(Ci−1)pi ≥ ∠wiCenter(Ci)pi. Since pi is
above st, then the construction of Definition 6 guarantees that ∠wi−1Center(Ci−1)pi ≤
∠w′

i−1Center(C ′
i−1)pi. Similarly, pi+1 is above st, meaning that ∠w′

iCenter(C ′
i)pi ≤

∠wiCenter(Ci)pi. Combining inequalities yields the result. Proving the case when both
edges use case b2 in Algorithm 1 is similar. ◀

Using the same point set as in Figure 1, the trace of Algorithm 1 is shown in Figure 4 with
worst-case n-gons.

Now we define the wedge Wp to be the area swept by stretching⃝n with its west point on p.
More precisely, Wp := {v ∈ R2 | ∃ homothet C of ⃝n such that p = West(C) and v ∈ C}.

P. Bose, J.-L. De Carufel, and J. Stuart 14:7

s = p0

p1

p2

p3 p4

p5

t = p6C ′
0

C ′
1

C ′
2

C ′
3

C ′
5

C ′
4

Figure 4 Trace of Algorithm 1 with worst-case 5-gons.

▶ Lemma 8. For i ∈ {1, ..., k}, we have w′
i ∈Ww′

i−1
.

Proof. Suppose pi is above st. If pi = w′
i, then w′

i is on the boundary of C ′
i−1, hence w′

i ∈
Cw′

i−1
. If on the other hand pi ̸= w′

i, by Definition 6 we must have pi ∈ Arc(C ′
i, w′

i, South(C ′
i))

and South(C ′
i) is on st. Suppose for now that South(C ′

i−1) is also on st. Define the set of
homothets

L := {C | South(C), s, t are collinear and pi ∈ Arc(C, West(C), South(C))}.

Then we will prove the following claim, illustrated in Figure 5.

pi

c2

Ĉ2

Ĉ1Ĉ3

Figure 5 West(L) is the black line, and c2 is the homothety center relating Ĉ2 and Ĉ3. Segments
West(Ĉ2)West(Ĉ3) and c2West(Ĉ2) lie on the same line. In this example, σ = 4 and m = 2.

▷ Claim. West(L) is a polygonal chain connected to a ray.

Firstly, suppose 1 < σ < n such that Cσ = South(C). Then for j ∈ {1, ..., σ − 1}, define Ĉj

to be the unique homothet of ⃝n where pi = Ĉj
j and Ĉσ

j is collinear with st. By definition,
for j ∈ {1, ..., σ − 1}, we have West(Ĉj) ∈West(L).

Next, for j ∈ {1, ..., σ − 2}, the n-gons Ĉj and Ĉj+1 are related by a homothety whose
center cj lies on the intersection of lines given by extending the segments st and Ĉj

j Ĉj+1
j .

Furthermore, for any C ∈ L with pi on CjCj+1, the homothety relating Ĉj and C has the
same center, cj . Therefore the point West(C) lies on the segment West(Ĉj)West(Ĉj+1). On
the other hand, for C ∈ L with pi on Cσ−1Cσ, the n-gons C and Ĉσ−1 are related by a

ISAAC 2024

14:8 Routing in Polygon Delaunay Graphs

homothety whose center is South(Ĉσ−1). Therefore the point West(C) must lie on the ray
r starting at West(Ĉσ−1) extending directly opposite South(Ĉσ−1). We have shown that
West(L) is the polygonal chain (West(Ĉ1), ..., West(Ĉσ−1)) along with the ray r, so the proof
of the claim is completed.

To establish a direction on West(L), which is homeomorphic to a ray by the claim, we
choose the convention that pi is the rightmost point. Then since the vertices Cj are labelled
in the clockwise orientation in the claim, we have that for C, C ′ ∈ L, if West(C) is to the left
of West(C ′) on West(L) then ∠West(C)Center(C)pi ≥ ∠West(C ′)Center(C ′)pi. Therefore
by Lemma 5, w′

i must be to the right of w′
i−1 on West(L).

Finally, we will show that the slope of West(L) remains between the slope of ⃝1
n⃝n

n

and ⃝1
n⃝2

n. Recall the notation ⃝j
n denotes the j-th vertex clockwise around ⃝n where

⃝1
n := West(⃝n). Let 1 < m < n such that ⃝m

n = North(⃝n). We analyze West(L) in
three portions.

Segment West(Ĉj)West(Ĉj+1) for j ∈ {1, ..., m − 1}. Let j ∈ {1, ..., m− 1}. Then by
the homothety relating Ĉj and Ĉj+1, the segment West(Ĉj)West(Ĉj+1) has slope equal to
the slope of segment cjWest(Ĉj). Since cj lies to the left of the line by extending West(Ĉj)Ĉ2

j ,
then the slope of cjWest(Ĉj) is positive and less than the slope of ⃝1

n⃝2
n.

Segment West(Ĉj)West(Ĉj+1) for j ∈ {m, ..., σ − 2}. Suppose j ∈ {m, ..., σ − 2}.
Then by the homothety relating Ĉj and Ĉj+1, the segment West(Ĉj)West(Ĉj+1) has slope
equal to the slope of segment West(Ĉj)cj . Since cj lies to the right of South(Ĉj), then the
slope of West(Ĉj)cj is negative and greater than or equal to the slope of ⃝1

n⃝σ
n, which is

always at least the slope of ⃝1
n⃝n

n.

Ray r. The slope of ray r is West(Ĉσ−1)cσ−1. Since cσ−1 is South(Ĉσ−1), then the slope
of the ray is equal to the slope of ⃝1

n⃝σ
n, which is again in the desired range.

Therefore the slope of each segment of West(L) is within the range given by the cone
Ww′

i−1
. Since w′

i is to the right on West(L), then we must have w′
i ∈Ww′

i−1
.

If now South(C ′
i−1) is instead below st, then we define the homothet C ′ such that

pi ∈ ∂C ′, the points s, South(C ′), t are collinear, and Center(C ′
i−1), Center(C ′), pi are

also collinear. Since C ′ is fully contained in C ′
i−1, then West(C ′) ∈ Ww′

i−1
. Also,

∠West(C ′)Center(C ′)pi = ∠West(C ′
i−1)Center(C ′

i−1)pi, therefore the argument from above
can show that w′

i ∈WWest(C′), hence w′
i ∈Ww′

i−1
. ◀

Next we define a projection that depends on whether the point is above or below st.

▶ Definition 9 (West Side Projection). For a point p above st, let p be the intersection of st

with the line passing through p with the same slope as ⃝1
n⃝2

n. Similarly, when p is below st,
let p be the intersection of st with the line passing through p with the same slope as ⃝1

n⃝n
n.

Using the projections, we define the two paths that we will call snail paths and that are
used to bound the length of the path output by Algorithm 1.

▶ Definition 10 (Snail Paths). Let a, b ∈ R2 satisfy y(a) = y(b). When x(a) < x(b),
define the n-gon C such that b = South(C) and a, C1, C2 are collinear. Then a,b :=
aC1 + Arc(C, C1, b). Similarly, let C ′ be the n-gon such that b = North(C ′) and a, C ′1, C ′n

are collinear, and then a,b := aC ′1 + Arc(C ′, b, C ′1). When x(a) ≥ x(b), we define a,b

and a,b to be empty paths.

The shape of the snail path is very important as it will directly lead to the routing ratio in
the proof of Theorem 3. Notice how the path in Figure 9 is arbitrarily close to s,t.

P. Bose, J.-L. De Carufel, and J. Stuart 14:9

▶ Remark 11. After fixing the orientation of the ⃝n, there exists a constant c > 1 such
that for any a, b ∈ R2 with y(a) = y(b) and x(a) < x(b), we have | a,b| = c|ab|. When
x(a) ≥ x(b), then | a,b| = 0. The same is true for | a,b|.
When n = 5, we prove Ψ(5) is an upper bound on the constant c from Remark 11.

▶ Lemma 12. Let n = 5 and a, b ∈ R2 with y(a) = y(b) and x(a) < x(b). Then
max(| a,b|, | a,b|) ≤ Ψ(5)|ab|.

Proof. Let C be the 5-gon corresponding to a,b, and let θ := ∠West(C)ab. For now,
assume C5 = South(C), meaning π/5 ≤ θ, and also θ ≤ π/2. Then the side length
|West(C)South(C)| = |ab| sin(θ)

sin(2π/5) by the law of sines. Similarly, |aWest(C)| = |ab| sin(2π/5+θ)
sin(2π/5) .

Since | a,b| = |aWest(C)|+ 4|West(C)South(C)|, then we have

| a,b| =
|ab| sin(2π/5 + θ)

sin(2π/5) + 4 |ab| sin(θ)
sin(2π/5) ≤ Ψ(5)|ab|,

where the last inequality follows from the analysis in the appendix. See Lemma 16. It is
straightforward to verify that the claim still holds when C5 ≠ South(C). The analysis for

a,b is symmetric. ◀

One useful tool that we will often use is a convex path bound from [2].

▶ Observation 13 (Convex Path Bound). Suppose two convex paths P1,P2 have the same
endpoints a and b, and P1 is contained in the region formed by the simple polygon P2 + ab.
Then |P1| ≤ |P2|.

Next, for i ∈ {0, ..., k}, we define the path Pi := w′
iw

′
i + Arc(C ′

i, w′
i, pi). Paths of this

form will be used in the following lemma for pentagons (n = 5).

▶ Lemma 14. Let n = 5. For 1 ≤ i ≤ k, we have

|Pi−1|+ |pi−1pi| ≤ Ψ(5)|w′
i−1w′

i|+ |Pi|. (1)

Furthermore, we have |Pk|+ |pkt| ≤ Ψ(5)|w′
k, t|.

Proof. For i ∈ {1, ..., k}, we will show that (1) holds using a case analysis. Without loss of
generality, we will assume that pi is above st for all cases. This is equivalent to assuming
that the routing decision is case b1 in Algorithm 1, meaning that pi−1 ∈ Arc(C ′

i−1, w′
i−1, pi).

The arguments for when pi is below st are symmetric. We will use the following shorthand:
s′

i := South(C ′
i).

Case 1: pi−1 is above st and both s′
i−1, s′

i lie on st. See Figure 6. We split the snail
path of C ′

i−1 up into several parts:

|
w′

i−1,s′
i−1
| = |Pi−1|+ |Arc(C ′

i−1, pi−1, pi)|+ |Arc(C ′
i−1, pi, s′

i−1)|. (2)

If w′
i is west of s′

i−1, then by a convex path bound, we get

|
w′

i
,s′

i−1
| ≤ |Pi|+ |Arc(C ′

i−1, pi, s′
i−1)|. (3)

On the other hand, inequality 3 still holds when w′
i is east of s′

i−1 since |
w′

i
,s′

i−1
| = 0.

Finally,

|Pi−1| + |Arc(C′
i−1, pi−1, pi)| = |

w′
i−1,s′

i−1
| − |Arc(C′

i−1, pi, s′
i−1)| − |Pi| + |Pi| by 2

≤ |
w′

i−1,s′
i−1

| − |
w′

i
,s′

i−1
| + |Pi| by 3

≤ |
w′

i−1,w′
i

| + |Pi| by Remark 11.

ISAAC 2024

14:10 Routing in Polygon Delaunay Graphs

w′
i−1 w′

i
s′is′i−1

w′
i−1 w′

i

pi

C ′
i−1 C ′

i

w′
i−1

w′
i s′iw′

i−1

w′
i

pi

C ′
i

C ′
i−1

C

Figure 6 Left: Case 1 when x(w′
i) < x(s′

i−1). The path
w′

i
,s′

i−1
is red. Right: Case 2 reduces

to case 1 by defining n-gon C in green.

Case 2: pi−1 is above st and only s′
i lies on st. We will reduce this case to Case 1.

See Figure 6 First, define a new n-gon C with w := West(C) such that w = w′
i−1, and

South(C), s, t are collinear, and pi ∈ ∂C. By a convex path bound, we have

|Pi−1|+ |Arc(C ′
i−1, pi−1, pi)| ≤ |w′

i−1w|+ |Arc(C, w, pi)| (4)

Lastly, we proceed with the argument in Case 1, replacing C ′
i−1 with C in order to obtain

|w′
i−1w|+ |Arc(C, w, pi)| ≤ |Pi|+ | w′

i−1,w′
i

| (5)

Combining (4) with (5) yields (1).

Case 3: pi−1 is above st and s′
i lies below st. In this case, pi = w′

i, meaning Pi = w′
ipi.

Let point p be collinear with w′
i−1, w′

i−1 such that y(p) = y(pi). Then by a convex path
bound, we have

|Pi−1|+ |Arc(C ′
i−1, pi−1, pi)| ≤ |w′

i−1p|+ | p,pi
|

Finally, equation (1) follows since the paths w′
i−1p and p,pi are translates of Pi and

w′
i−1,w′

i

respectively.

Case 4: pi−1 is below st. In this case, w′
i−1 = pi−1, hence Pi−1 = w′

i−1w′
i−1. Define point

p be the intersection of C ′
i−1 closest to s. We will prove the claim, illustrated in Figure 8.

▷ Claim. Pi−1 is a sub-path of
w′

i−1,p
.

Fix m such that ⃝m
n := North(⃝n). Then for 0 ≤ j ≤ m− 2 let Ĉj be the n-gon such that

Ĉm−j
j = p and West(Ĉj) = w′

i−1. Note that Ĉ0 is exactly the n-gon corresponding to
w′

i−1,p
.

In addition, p was defined to be collinear with C ′1
i−1C ′2

i−1, therefore w′
i−1 = West(Ĉm−2).

Then, for 1 ≤ j ≤ m−2, the n-gons Ĉj−1, Ĉj are related by a homothety with center cj lying
on the intersection of extended segments Ĉ1

j Ĉn
j and Ĉm−j

j Ĉm−j+1
j . By construction, we have

Ĉm−j
j = Ĉm−j+1

j−1 , therefore by symmetry (reflection about the extended line cjCenter(Ĉj)),
we also have Ĉ1

j = Ĉn
j−1. Then West(Ĉj) is on the snail path

w′
i−1,p

if and only if j < 2.
In particular, the claim holds when m− 2 < 2, which is the case for n ∈ {5, 6, 7, 8} since in
general ⌊n

4 ⌋ ≤ m− 1 ≤ ⌈n
4 ⌉.

P. Bose, J.-L. De Carufel, and J. Stuart 14:11

pi−1 = w′
i−1

wi

w′
i−1

pi

C ′
i−1 C ′

i

w′
i−1

w′
i−1

pi = w′
i

w′
i

p

C ′
i−1

Figure 7 Left: In Case 3, the blue path w′
i−1X + X,pi is longer than the dotted red path

Pi−1 + Arc(C′
i−1, pi−1, pi). Right: In Case 4: The blue path Pi−1 + pi−1pi is longer than the dotted

red path
w′

i−1,w′
i

+ Pi.

Ĉ0
Ĉ1 Ĉ2

w′
i−1 p

c1

c2 = Ĉ1
0

Ĉ1
1

w′
i−1 = Ĉ1

2

Figure 8 Case 4 claim. Here, n = 9, m = 4, and therefore C′
i−1 = Ĉ1

m−2 is not on the blue path
w′

i−1,p
. If instead n ∈ {5, 6, 7, 8}, then m ∈ {2, 3}.

Then by Lemma 8, x(p) ≤ x(w′
i), therefore Pi−1 is a also sub-path of

w′
i−1,w′

i

. Inequality
(1) follows since the paths Pi−1+pi−1pi and

w′
i−1,w′

i

+Pi have the same endpoints, concluding
this case.

Finally, we have |Pk|+ |pkt| ≤ max(|
w′

k
,t
|, |

w′
k

,t
|) by a convex path bound. Note that

for i = 1, the edge sp1 classifies as Case 4. ◀

Putting this all together, we can now prove Theorem 3.

Proof. Consider the path s = p0, ..., pk+1 = t from Algorithm 1 and apply Lemma 14:

k+1∑
i=1
|pi−1pi| ≤ (

k∑
i=1
|Pi|+ Ψ(5)|w′

i−1w′
i| − |Pi−1|) + (Ψ(5)|w′

kt| − |Pk|)

= Ψ(5)|w′
0t| − |P0| = Ψ(5)|st|.

Since Algorithm 1 is a O(log(|V (G)|))-memory local routing algorithm, then Ψ(5) is an upper
bound on the routing ratio of ⃝5-Delaunay graphs. ◀

ISAAC 2024

14:12 Routing in Polygon Delaunay Graphs

Now we present a lemma showing that our analysis is optimal for Algorithm 1.

▶ Lemma 15. Let n ∈ {5, 6, 7, 8}. For any ϵ > 0, there is a ⃝n-Delaunay graph for which
Algorithm 1 has a routing ratio of at least Ψ(n)− ϵ.

Proof. For simplicity, we present S not in general position, however it is possible to perturb
the position of each vertex to force the ⃝n-Delaunay graph of S to have the desired edges
while being in general position. See Figure 9. Let C be an n-gon, and define σ such that
Cσ = South(C). Then let L be a horizontal line above and arbitrarily close to Cσ. Define
t := L ∩ Cσ−1Cσ and vj := Cj for j ∈ {2, ..., σ − 1}. Let v0 be on CσCσ+1 below L. Let v1
be on C1C2 arbitrarily close to C1. Then let Ĉ be an n-gon such that East(Ĉ) = v0 and
p1 ∈ ∂Ĉ. Finally, s is the leftmost intersection of L and ∂Ĉ. Let S := {s, t, v0, v1, ..., vσ−1}.
While there are several valid ⃝n-Delaunay graphs of S, we will choose to route on the graph
with edges sv0, sv1, vj−1vj , v1v0, vjv0, v0t, vσ−1t for j ∈ {2, ..., σ − 1}. When Algorithm 1
routes from s to t in the ⃝n-Delaunay graph of S, then each step of case b is sub-case b1,
therefore the path is s, v1, v2, ..., vσ−1, t. By construction, this path is arbitrarily close to
the snail path s,t. Since Ψ(n)|st| represents the maximum length of the snail path s,t

over all orientations of ⃝n, then the routing ratio of Algorithm 1 for this graph is at least
Ψ(n)− ϵ. ◀

s t
v0

v1

v2

v3

v4

C

Ĉ

Figure 9 Worst-case point-set construction causes Algorithm 1 to choose the orange path which
is arbitrarily close to | s,t| since each step of case b is sub-case b1. Here n = σ = 5. For more
details, see proof of Lemma 15.

3.2 Extending Algorithm 1 to graphs where the convex hull is not
present

In order to extend Algorithm 1 to graphs where the convex hull is not present, we add
dummy vertices to the graph G to ensure the entire set S is triangulated. In particular,
define the set D of dummy vertices as follows:

Let C be the scaled translate of⃝n with Center(C) = s and |West(C)Center(C)| = 10|st|.
Then let Rot(C) denote the rotated n-gon obtained by rotating C about Center(C) by π

radians (or by π − ϵ radians for ϵ > 0 to satisfy the general position assumption). Lastly, let
D be the corners of Rot(C) that are in the unbounded region of the ⃝n-Delaunay graph
of S.

P. Bose, J.-L. De Carufel, and J. Stuart 14:13

If Algorithm 1 is used in the ⃝n-Delaunay graph of S ∪D, then the path from s to t

will have length at most c|st| where c is given in Lemma 16. In all cases, c < 10, so for all
i ∈ {0, ..., k + 1}, we have that pi /∈ D. The choice of D ensures that all pi are not incident
to the unbounded region.

When routing in the ⃝n-Delaunay graph of S, Algorithm 1 can be modified to simulate
the edges of the ⃝n-Delaunay graph of S ∪D. Firstly, it can be verified locally whether the
current vertex pi is incident to the unbounded region. Indeed, pi is in the unbounded region
if and only if there exists a j ∈ {1, ..., n} and an n-gon C such that Cj = pi and no edges
incident to pi intersect C. Note that the size of C is irrelevant. Then if pi is incident with
the unbounded region, it can be verified whether pi has neighbours in D in the ⃝n-Delaunay
graph of S ∪D since the algorithm stores the location of s and can calculate the distance |st|.

3.3 Extending our result to hexagons, septagons and octagons
So far, we have shown that Algorithm 1 has a routing ratio of at most Ψ(5) ≈ 4.640 for any
⃝5-Delaunay graph. To extend our result to n-gons with 6 ≤ n ≤ 8, then Lemma 12 needs
to be generalized to Lemma 16. Additionally, Lemma 14 is trivially generalized by replacing
each occurrence of Ψ(5) with Ψ(n) for the corresponding n-gon.

▶ Lemma 16. Let a, b ∈ R2 with y(a) = y(b) and x(a) < x(b). Then max(| a,b|, | a,b|) ≤
Ψ(n)|ab| for n ∈ {5, 6, 7, 8}.

Proof. Let n ∈ {5, 6, 7} and let C be the n-gon corresponding to a,b. Let θ := ∠West(C)ab,
and for now assume that South(C) = Cn. This means that π/5 ≤ θ ≤ π/2. Then by
the law of sines, |West(C)South(C)| = |ab| sin(θ)

sin(2π/n) and |aWest(C)| = |ab| sin(2π/n+θ)
sin(2π/n) . Since

| a,b| = |aWest(C)|+ (n− 1)|West(C)South(C)|, then we have

| a,b|
|ab|

= sin(2π/n + θ)
sin(2π/n) + (n− 1) sin(θ)

sin(2π/n) . (6)

Focusing on the numerators, we have
d

dθ

(
sin(2π/n + θ) + (n − 1) sin(θ)

)
= cos(2π/n + θ) + (n − 1) cos(θ)

= (cos(2π/n) cos(θ) − sin(2π/n) sin(θ)) + (n − 1) cos(θ)
= (cos(2π/n) + n − 1) cos(θ) − sin(2π/n) sin(θ).

From there, we get that the critical value of θ is

θ∗ = arctan
(

cos(2π/n) + n− 1
sin(2π/n)

)
.

Therefore the maximum value is

sin
(
2π/n + θ∗)

+ (n− 1) sin
(
θ∗)

sin(2π/n) .

When n is 5, 6 or 7, the maximum value of (6) is approximately 4.640, 6.429, or 8.531
respectively. It is straightforward to verify that the claim still holds when South(C) ̸= Cn.

When n = 8, the analysis is slightly different since we can not have South(C) = Cn.
As before, let C be the 8-gon corresponding to a,b, and let θ := ∠West(C)ab. Then
necessarily, we have South(C) = C7, meaning that ∠bC1a = 3π

8 . By the law of sines,
|C1C7| = |ab| sin(θ)

sin(3π/8) and |aC1| = |ab| sin(3π/8+θ)
sin(3π/8) . Also, |Arc(C, C7, C1)| cos(π/8) = |C1C7|.

Since | a,b| = |aC1|+ 3|Arc(C, C7, C1)|, then we have

ISAAC 2024

14:14 Routing in Polygon Delaunay Graphs

| a,b|
|ab|

= sin(3π/8 + θ)
sin(3π/8) + 3 sin(θ)

sin(3π/8) cos(π/8) where π/4 ≤ θ ≤ π/2,

which reaches a maximum of around 4.054 by a similar analysis to above. ◀

4 Routing Ratio Lower Bound for ⃝5-Delaunay graphs

▶ Lemma 17. Every local routing algorithm for ⃝5-Delaunay graphs must have a routing
ratio of at least 1.995 for any ϵ > 0.

Proof. Consider the construction shown in Figure 10.

s t

a

v1 = C1

v2

v3

C v4

v5

Figure 10 Point set construction obtaining a routing ratio lower bound of approximately 1.995.

Let δ > 0 and let C be a pentagon with |C1C2| = 1 + δ. Define v1 := C1, v2 ∈ C2C3

arbitrarily close to C2, v3 := C3, v4 ∈ C3C4 arbitrarily close to C4, and v5 ∈ C5C1

arbitrarily close to C5. Finally place point a on C1C2 such that |C1a| = 1. Place s outside
C equidistant from v1, a, arbitrarily close to C1C2. Define the point t ∈ C4C5 on the line
perpendicular to C1C2 through s. The point set is S := {s, t, a, v1, v2, v3, v4, v5}. While
S admits many different triangulations, we choose the triangulation from Figure 10. The
edges are sa, sv1, av1, av2, v1v2, v1v3, v1v5, v2v3, v3v4, v3v5, v4v5, v4t, v5t. In particular, the
neighbourhood of s is {a, v1}, however the shortest path from a to t is approximately along
the boundary ∂C. We will analyze the routing ratio of any algorithm that chooses to go to a.
Then, any algorithm that chooses v1 first will perform poorly on a symmetric graph reflected
about the line through st.

We consider the clockwise and counterclockwise arcs from point a to point t. The
counterclockwise arc has length

|Arc(C1, t, a)| = |av1|+ |v1C5|+ |C5t|

= 1 + (1 + δ) +
1
2 + (1 + δ) sin 18

sin 54 .

On the other hand, the clockwise arc from a to t has length

|Arc(C1, a, t)| = |aC2|+ |C2C3|+ |C3C4|+ |C4t|

= δ + (1 + δ) + (1 + δ) + (1 + δ −
1
2 + (1 + δ) sin 18

sin 54).

P. Bose, J.-L. De Carufel, and J. Stuart 14:15

Finally, we have |st| = |v1C5| cos 18+ |C5t| cos 54 = (1+δ) cos 18+
1
2 +(1+δ) sin 18

tan 54 . This means
that the routing ratio is at least

|sa|+ |ShortestPath(a, t)|
|st|

=
1
2 + min(|Arc(C1, a, t)|, |Arc(C1, t, a)|)

|st|
which reaches approximately 1.995 when δ = 0.447. ◀

5 Spanning Ratio Lower Bound for ⃝5-Delaunay graphs

▶ Lemma 18. For any ϵ > 0, there exists a ⃝5-Delaunay graph with spanning ratio of at
least 5

2+3 sin(π
10) − ϵ.

Proof. Let ϵ > 0. We will construct a point set for the ⃝5-Delaunay graph shown in
Figure 11. In particular, let the pentagon C have side length 1, then place a on C1C5

with |C1a| = 1
4 and b on C3C4 with |C3b| = 1

4 . Next, place v1 ∈ C1C2 arbitrarily close to
C1, v2 := C2, v3 ∈ C2C3 arbitrarily close to C3, v4 ∈ C4C5 arbitrarily close to C4, and
v5 ∈ C4C5 arbitrarily close to C5. We define S := {a, b, v1, v2, v3, v4, v5} and consider the
triangulation with edges av1, av5, v1v2, v1v5, v2v3, v2v4, v2v5, v3v4, v3b, v4b, v4v5. The shortest
path from a to b is approximately the boundary ∂C. Therefore the length of the shortest
path from a to b is approximately 5

2 , whereas |ab| = 1 + 3
2 sin(π

10). This means that the
spanning ratio of is approximately 1.708. ◀

a b

v1

v2 = C2

v3

v4v5

C

Figure 11 Point set construction obtaining a spanning ratio lower bound of approximately 1.708.
The shortest path between a and b is arbitrarily close to the perimeter of the pentagon.

6 Conclusions

We have dramatically improved the upper bound on the spanning ratio when n ∈ {5, 7, 8}
and on the routing ratio when n ∈ {5, 6, 7, 8}. We also provided matching lower bounds for
the paths output by our routing algorithm, showing that our analysis is tight. Furthermore,
we prove that no routing algorithm for pentagon-Delaunay graphs can have a routing ratio
less than 1.995. Finally, we show that the worst-case spanning ratio is at least 1.708 for the
pentagon-Delaunay graph. We conclude with the following three open questions: (1) Can
we improve the lower bound on the routing ratio for these graphs? (2) Can we provide a
routing algorithm that attains this lower bound? (3) Can our approach be generalized for
regular polygons with more than 8 sides?

ISAAC 2024

14:16 Routing in Polygon Delaunay Graphs

References
1 Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Vincent Despré, Darryl Hill, and

Michiel Smid. Improved routing on the Delaunay triangulation. Discret. Comput. Geom.,
70(3):495–549, 2023. doi:10.1007/s00454-023-00499-9.

2 Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Ljubomir Perkovic, and André van
Renssen. Upper and lower bounds for online routing on Delaunay triangulations. Discret.
Comput. Geom., 58(2):482–504, 2017. doi:10.1007/s00454-016-9842-y.

3 Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and Ljubomir Perkovic. Tight stretch
factors for L1- and L∞-Delaunay triangulations. Comput. Geom., 48(3):237–250, 2015.
doi:10.1016/j.comgeo.2014.10.005.

4 Prosenjit Bose, Paz Carmi, Sébastien Collette, and Michiel H. M. Smid. On the stretch factor
of convex Delaunay graphs. J. Comput. Geom., 1(1):41–56, 2010. doi:10.20382/jocg.v1i1a4.

5 Prosenjit Bose, Jean-Lou De Carufel, Stephane Durocher, and Perouz Taslakian. Competitive
online routing on Delaunay triangulations. Int. J. Comput. Geom. Appl., 27(4):241–254, 2017.
doi:10.1142/S0218195917500066.

6 Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Optimal local
routing on Delaunay triangulations defined by empty equilateral triangles. SIAM J. Comput.,
44(6):1626–1649, 2015. doi:10.1137/140988103.

7 Prosenjit Bose and Pat Morin. Competitive online routing in geometric graphs. Theor. Comput.
Sci., 324(2-3):273–288, 2004. doi:10.1016/j.tcs.2004.05.019.

8 Paul Chew. There is a planar graph almost as good as the complete graph. In SCG, pages
169–177. ACM, 1986. doi:10.1145/10515.10534.

9 Paul Chew. There are planar graphs almost as good as the complete graph. J. Comput. Syst.
Sci., 39(2):205–219, 1989. doi:10.1016/0022-0000(89)90044-5.

10 Lihong Ma. Bisectors and Voronoi Diagrams for Convex Distance Functions, volume 267 of
Informatik-Berichte. FernUniversität in Hagen, Hagen, 2000. Zugl.: Dissertation, FernUni-
versität in Hagen, 2000. URL: https://ub-deposit.fernuni-hagen.de/receive/mir_mods_
00000857.

11 Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University
Press, 2007. doi:10.1017/CBO9780511546884.

12 Ljubomir Perkovic, Michael Dennis, and Duru Türkoglu. The stretch factor of hexagon-
Delaunay triangulations. J. Comput. Geom., 12(2):86–125, 2021. doi:10.20382/jocg.
v12i2a5.

13 Ge Xia. The stretch factor of the Delaunay triangulation is less than 1.998. SIAM J. Comput.,
42(4):1620–1659, 2013. doi:10.1137/110832458.

14 Ge Xia and Liang Zhang. Toward the tight bound of the stretch factor of Delaunay triangula-
tions. In CCCG, 2011. URL: http://www.cccg.ca/proceedings/2011/papers/paper57.pdf.

https://doi.org/10.1007/s00454-023-00499-9
https://doi.org/10.1007/s00454-016-9842-y
https://doi.org/10.1016/j.comgeo.2014.10.005
https://doi.org/10.20382/jocg.v1i1a4
https://doi.org/10.1142/S0218195917500066
https://doi.org/10.1137/140988103
https://doi.org/10.1016/j.tcs.2004.05.019
https://doi.org/10.1145/10515.10534
https://doi.org/10.1016/0022-0000(89)90044-5
https://ub-deposit.fernuni-hagen.de/receive/mir_mods_00000857
https://ub-deposit.fernuni-hagen.de/receive/mir_mods_00000857
https://doi.org/10.1017/CBO9780511546884
https://doi.org/10.20382/jocg.v12i2a5
https://doi.org/10.20382/jocg.v12i2a5
https://doi.org/10.1137/110832458
http://www.cccg.ca/proceedings/2011/papers/paper57.pdf

On the Spanning and Routing Ratios of the
Yao-Four Graph
Prosenjit Bose
Carleton University, Ottawa, Canada

Darryl Hill
Carleton University, Ottawa, Canada

Michiel Smid
Carleton University, Ottawa, Canada

Tyler Tuttle
Carleton University, Ottawa, Canada

Abstract
The Yao graph is a geometric spanner that was independently introduced by Yao [SIAM J. Comput.,
1982] and Flinchbaugh and Jones [SIAM J. Algebr. Discret. Appl., 1981]. We prove that for any
two vertices of the undirected version of the Yao graph with four cones, there is a path between
them with length at most 13 + 5/

√
2 ≈ 16.54 times the Euclidean distance between the vertices,

improving the previous best bound of approximately 54.62. We also present an online routing
algorithm for the directed Yao graph with four cones that constructs a path between any two vertices
with length at most 17 + 9/

√
2 ≈ 23.36 times the Euclidean distance between the vertices. This

is the first routing algorithm for a directed Yao graph with fewer than six cones. The algorithm
uses knowledge of the coordinates of the current vertex, the (up to) four neighbours of the current
vertex, and the destination vertex to make a routing decision. It also uses one additional bit of
memory. We show how to dispense with this single bit at the cost of increasing the length of the
path to

√
331 + 154

√
2 ≈ 23.43 times the Euclidean distance between the vertices.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Yao graph, online routing, geometric spanners

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.15

Acknowledgements We would like to thank an anonymous reviewer for suggestions to improve the
presentation and for pointing out an error in our original proof of Lemma 7.

1 Background

Online routing is the problem of constructing a path in a graph from some current vertex to
a given destination vertex, without knowing the entire graph ahead of time. The path must
be constructed one vertex at a time. A routing algorithm computes, given some vertex, the
next vertex on the path.

The information available to a routing algorithm is of great importance. We say that a
routing algorithm is local if the only information available to it is knowledge of the current
vertex, the immediate neighbours of the current vertex, the destination vertex, plus a constant
amount of extra information.

In this paper we will consider routing algorithms for a specific type of geometric graph
called a Yao graph. A geometric graph is a graph whose vertex set is a set of points in the
plane, and whose edges are weighted by the Euclidean distance between their endpoints. We
will consider both directed and undirected graphs. Since the vertices of a geometric graph
are points, we will assume that the routing algorithm has access to their coordinates.

© Prosenjit Bose, Darryl Hill, Michiel Smid, and Tyler Tuttle;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8906-0573
https://doi.org/10.4230/LIPIcs.ISAAC.2024.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 On the Spanning and Routing Ratios of the Yao-Four Graph

Let u and v be two points in the plane. Define dx(u, v) and dy(u, v) to be the horizontal
and vertical distances between u and v. In this paper we will make use of three different
distance functions, or metrics, on R2. They are the L1 metric, the L2 (or Euclidean) metric,
and the L∞ metric.

∥uv∥1 = dx(u, v) + dy(u, v)

∥uv∥2 =
√

dx(u, v)2 + dy(u, v)2

∥uv∥∞ = max{dx(u, v), dy(u, v)} (1)

All of the results will be in terms of the standard Euclidean distance, but the analysis will
make use of the other metrics.

Let G = (V, E) be a geometric graph, directed or undirected. Let dG(u, v) denote the
length of the shortest path from u to v in G. For a real number t, we say that G is a t-spanner
if dG(u, v) ≤ t∥uv∥2 for all u and v in V . The spanning ratio (also called the stretch factor)
of G is the minimum such t.

Let A be a routing algorithm, and let dA
G(u, v) denote the length of the path from u to v

in G constructed by algorithm A. We say that A is t-competitive if dA
G(u, v) ≤ t∥uv∥2 for

all u and v in G. The routing ratio of A is the smallest such t. If A is t-competitive for all
graphs in some class G, then we say that A is t-competitive on G. The precise definition of
an online routing algorithm will be given in Section 1.2.

1.1 Yao graphs
The results of this paper are about the spanning and routing ratios of a specific class of
geometric graph known as Yao graphs. We begin by defining these graphs.

Fix an integer k ≥ 3. Let Ri be the ray emanating from the origin making an angle of
2πi/k with the positive x-axis1. The region between two consecutive rays is called a cone.
Specifically, let Ci be the region between Ri and Ri+1, including Ri but not Ri+1. The k

cones C0 through Ck−1 partition the plane (minus the origin) into k regions. Let Ci(p) and
Ri(p) be Ci and Ri translated so that the rays emanate from p rather than the origin.

Given a set P of n points in the plane, we construct a directed graph in the following
way. For each point p in P , we add at most k edges to the graph, one edge per cone Ci(p) of
p. Let q be the point in P ∩ Ci(p) that minimizes the distance ∥pq∥2. Add a directed edge
from p to q. See Figure 1 for an example. Repeating this for every point and every cone
adds at most kn edges to the graph. The resulting graph is called the (directed) Yao-k graph
of P , denoted Y⃗k(P) or simply Y⃗k if the set P is clear from context. The undirected Yao-k
graph Yk(P) (or Yk if the set P is clear) is obtained by forgetting the direction of each edge
of Y⃗k(P).

Notice that the vertices of a directed Yao-k graph have outdegree bounded by k. The
vertices of an undirected Yao-k graph can have unbounded degree.

The Yao graph was first defined in the early 1980s independently by Flinchbaugh and
Jones [1] and Yao [13]. Althöfer et al. first proved that Yao graphs are spanners in 1993 [6].
Specifically, they showed that for any set P of points and any t ≥ 1, there is an integer k

such that Yk(P) is a t-spanner of P .
Later work found specific bounds for spanning ratios of Yao graphs. Bose et al. showed

that the spanning ratio of Yk(P) is at most 1/(cos θ−sin θ) for all k ≥ 9 [11], where θ = 2π/k.
This was later improved to 1/(1− 2 sin(θ/2)) for all k ≥ 7 [12]. Finally, Barba et al. showed
that the spanning ratio is at most 1/(1− 2 sin(3θ/8)) for odd values of k ≥ 5 [2].

1 Angles are measured counterclockwise.

P. Bose, D. Hill, M. Smid, and T. Tuttle 15:3

C0C1

C2 C3

Figure 1 The four cones used to define the Y⃗4 graph.

The techniques used to bound the spanning ratio of Yao graphs with many cones do not
directly translate to Yao graphs with very few cones. For these, more specific arguments are
required. For Y6, the first published bound was by Damian and Raudonis, who showed that
the spanning ratio is at most 17.64 [9]. This was later improved by Barba et al. to 5.8 [2].

In the same paper that gives a bound of 1/(1− 2 sin(3θ/8)) on the spanning ratio of Y5,
Barba et al. [2] give a more precise argument that the spanning ratio of Y5 is at most 2 +

√
3.

For Y4, the first bound was by Bose et al. [12], who showed that the spanning ratio is at
most 662. This was improved by Damian and Nelavalli to 54.62 [10].

For fewer than four cones Yao graphs are not necessarily spanners [5]. In fact, the
Y1 graph is equivalent to the (directed) nearest-neighbour graph, which may not even be
connected. The Y2 and Y3 graphs are connected, but the directed versions are not necessarily
strongly connected. These results are summarized in Table 1.

For more than six cones, the proofs that Yao graphs are spanners give a routing algorithm
called cone routing: always move to the neighbour in the cone that contains the destination.
This gives a routing ratio equal to the spanning ratio. For Y⃗6, a local routing algorithm is
known with a routing ratio of 1 + 38/

√
3 ≈ 22.94 [7]. For four or five cones, however, no

local routing algorithms are known.
Theta graphs [4, 8] are a class of graphs that are similar to Yao graphs. The construction

begins the same way, by partitioning space into cones, but instead of adding an edge from a
vertex to its nearest neighbour in each cone, the vertices in each cone are projected onto
the bisector of the cone and an edge is added to whichever vertex has the closest projection.
Like Yao graphs, Theta graphs are spanners, and routing algorithms for Theta graphs have
been studied. In this paper we will present an online routing algorithm for Y⃗4(P) that is a
modification of the best-known routing algorithm for Θ⃗4(P) [3]. Although the algorithm is
similar, some care must be taken since every edge of a Theta graph defines an empty triangle,
whereas every edge of a Yao graph defines an empty sector of a circle. More importantly, our
analysis of the algorithm is novel and we believe it is much simpler than the analysis for the
Θ⃗4(P) routing algorithm.

1.2 Local routing
Let G = (V, E) be a graph. An online routing algorithm on G can be modelled as a function
f : V × V × P (V)× {0, 1}∗ → V × {0, 1}∗, where P (V) is the power set of V .

The first two parameters of f are the current vertex u and the target vertex v. The third
parameter is the set of vertices we can use to make a routing decision. We will focus on local
routing, where this parameter is the set of neighbours of u. The fourth parameter is a finite
bitstring called the header, which a routing algorithm can use to store arbitrary information
as it constructs a path.

ISAAC 2024

15:4 On the Spanning and Routing Ratios of the Yao-Four Graph

Table 1 Lower and upper bounds for spanning ratios of Yao graphs (θ = 2π/k). Our improved
upper bound for k = 4 is highlighted in bold. In the bottom four rows, m is a positive integer.

Number of cones k Lower bound Upper bound
3 or fewer ∞ ∞

4 Open 16.54
5 2.87 3.74
6 2 5.8

4m + 2 1 + 2 sin(θ/2) 1
1 − 2 sin(θ/2)

4m + 3 1 + 2 sin
(

3θ
8

)(
1 + 2

(
sin

(
13θ
16

)
+ sin

(
19θ
16

)) sin(θ/16)
sin(2θ)

) 1
1 − 2 sin(3θ/8)

4m + 4 1 + 2 sin(θ/2)(1 + tan(θ/2)) 1
1 − 2 sin(θ/2)

4m + 5 1 + 2 sin(3θ/8) + 4 sin(5θ/16) sin(3θ/8) 1
1 − 2 sin(3θ/8)

A routing algorithm must take these four parameters and decide which neighbour of u

should come next on the path, and potentially modify the header in some way. These are
the two outputs of the function f . A path from a vertex u to a vertex v is constructed in
the following way. Let u0 = u and h0 be some initial header that the routing algorithm is
allowed to compute before constructing the path. Then we get a sequence of vertices and
headers defined by (ui+1, hi+1) = f(ui, t, N(ui), hi). If ui = v for some i, we stop as the
routing algorithm has successfully found a path from u to v.

If, for any two vertices u and v in G, a routing algorithm A constructs a path from
u to v, then we say that A guarantees delivery on the graph G. Let dA

G(u, v) denote the
Euclidean length of the path from u to v in G constructed by algorithm A. We say that A is
t-competitive if dA

G(u, v) ≤ t∥uv∥2. The routing ratio of A on G is the smallest t such that
A is t-competitive.

If hi is the empty bitstring for all i, then we say that A is memoryless. If hi = h0 for
all i, then we say that A uses a static header. That is, the header is computed before the
routing algorithm begins and never modified. Otherwise we say that A uses a dynamic
header. The memory usage of a routing algorithm is the maximum length of hi at any point
during construction of a path from u to v, over all pairs of vertices in G.

2 The greedy-sweep algorithm

Let P be a finite set of points in the plane. To avoid tedious case analysis, we will make a
general position assumption that no two points have the same x or y coordinate, and that no
two points lie on a line with slope +1 or −1. Let s and t be two points of P . In this section
we will describe the routing algorithm for constructing a path from s to t in the directed
graph Y⃗4(P). First, we give some definitions that will be needed to describe and analyze the
algorithm.

Let p be any point in the plane. For another point q, define Wpq to be the quarter-circle
in Ci(p) that is centred at p with q on its boundary contained in Ci(p). Define the diagonals
of p to be the lines through p with slope +1 and −1. Denote the diagonals of p by d+(p) and
d−(p). The first step is to choose one of the two diagonals of t. Given the positions of s and
t, choose whichever diagonal is closer to s. This can be determined by checking which cone
of t contains s. If s is in C0(t) or in C2(t), then choose d+(t). Otherwise, choose d−(t). Let
d denote the chosen diagonal. Knowledge of this diagonal will be needed to make routing

P. Bose, D. Hill, M. Smid, and T. Tuttle 15:5

decisions. The choice of diagonal needs exactly one bit of memory to be remembered. Later
we will see that this bit can be dispensed with, at the cost of a slightly higher routing ratio.
Finally, define the height of a point p, denoted h(p), to be the L1 distance from p to d.

For any point p of P , exactly one of the cones of p has a nonempty, bounded intersection
with d. We say that this cone of p faces d. The intersection of the halfplane of d that contains
p and the cone forms a right triangle. Denote this triangle by T (p, d).

Algorithm 1 Pseudocode for the greedy-sweep algorithm.
▷ The procedure Greedy(p, t, d) returns the neighbour of p in the cone that

contains t, and the procedure Sweep(p, t, d) returns the neighbour of p in the cone that
faces diagonal d, or null if such a neighbour does not exist.
procedure GreedySweep(p, t, d)

q ← Greedy(p, t, d)
r ← Sweep(p, t, d)
if r = null or ∥pr∥2 > h(p) then

return q

else
return r

end if
end procedure

To make a routing decision at a point p, we have a choice of up to four neighbours. We
will determine where to go in the following way. Consider the triangle T (p, d). If T (p, d)
is empty of points of P , then we say that it is clean, or that p is clean with respect to d.
Given the information at p, it might not be possible to determine if T (p, d) is clean or not.
However, if r is the neighbour of p in the cone containing T (p, d), and ∥pr∥2 > h(p), then
T (p, d) must be clean. Also, if p does not have a neighbour in the cone that faces d, then
T (p, d) is clean. If either of these two conditions are met, then move from p to the neighbour
of p in whichever cone contains t. This is called a greedy step. Otherwise, move from p to its
neighbour in the cone that faces d. This is called a sweeping step. See Figure 2.

In two cones of t, a sweeping step and a greedy step are identical, in the sense that they
both select the same neighbour of p. For example, if d = d−(t) and if p is in C0(t), then a
greedy step and a sweeping step will both choose the neighbour of p in C2(p). In this case we
will consider the move to be a sweeping step. This means that greedy steps are only possible
in two cones of t. Which two cones will depend on whether d = d−(t) or d = d+(t).

All of the information necessary to make a routing decision can be determined solely
from the coordinates of p, the neighbours of p, and t, as well as the slope of the diagonal d.
See Algorithm 1 for a pseudocode description of the algorithm.

3 Analysis

We begin by stating a lemma that will be very useful in our analysis, relating the three
different metrics under consideration.

▶ Lemma 1. For any points u and v in the plane, the following chain of inequalities holds:

∥uv∥∞ ≤ ∥uv∥2 ≤ ∥uv∥1 ≤
√

2∥uv∥2 ≤ 2∥uv∥∞. (2)

ISAAC 2024

15:6 On the Spanning and Routing Ratios of the Yao-Four Graph

h(p)

p
T (p, d)

p′

T (p′, d)r
r′

q

d d

t t

Figure 2 From p, a greedy step to q would be taken since ∥pr∥2 > h(p). This implies that T (p, d)
is empty. From p′ a sweeping step to r′ would be taken since ∥p′r′∥2 < h(p′). There is not enough
information at p′ to determine if T (p′, d) is empty or not, since part of T (p′, d) is outside of the
quarter circle defined by p′ and r′.

Let P be a finite set of points in the plane, and let s and t be points in P . In this section
we will analyze the path in Y⃗4(P) constructed by the greedy-sweep algorithm starting from s,
with t as the destination. We begin the analysis by proving that the greedy-sweep algorithm
guarantees delivery, by eventually reaching t. For the remainder of this section, we will
assume without loss of generality that s is in C1(t), so d = d−(t), and that s is below d.

▶ Lemma 2. Let s and t be different vertices of a Y⃗4 graph, and consider the path constructed
by the greedy-sweep algorithm starting at s with t as the destination. Let u and v be two
consecutive vertices on this path. Then v is inside the square centred at t with u on its
boundary, and so ∥ut∥∞ > ∥vt∥∞.

This lemma immediately implies that the algorithm terminates.

▶ Corollary 3. The greedy-sweep algorithm guarantees delivery on the Y⃗4 graph.

To analyze the routing ratio of the greedy-sweep algorithm, we will consider greedy steps
and sweeping steps separately. Recall that d is the diagonal fixed by the algorithm.

Consider an edge uv traversed while routing. Since no two points lie on a common
diagonal by our general position assumption, the height change h(v)− h(u) must be either
positive or negative. Let D be the set of edges uv such that the height decreases from u to v,
meaning h(u) > h(v), and let I be the set of edges such that the height increases from u to
v. Since h(t) = 0 because t lies on d, we know that the total decrease in height must equal
the total increase in height plus the height of the initial point s. That is,∑

uv∈D

(
h(u)− h(v)

)
= h(s) +

∑
uv∈I

(
h(v)− h(u)

)
. (3)

The next two lemmas show that a sweeping step will always result in a height decrease that
is at least proportional to the length of the edge, and that the length of a greedy edge is at
least equal to the change in height.

▶ Lemma 4. Let uv be an edge taken during a sweeping step. We have h(u) − h(v) ≥
(2−

√
2)∥uv∥2.

Proof. We will consider two cases. See Figure 3. First, if uv does not cross d, then
h(v) = h(u)− ∥uv∥1 and we have h(u)− h(v) = ∥uv∥1 ≥ ∥uv∥2 by Lemma 1.

P. Bose, D. Hill, M. Smid, and T. Tuttle 15:7

u
d

u′
d

v v′

Figure 3 Illustration of Lemma 4. The edge uv does not cross d, and the edge u′v′ does. In both
cases the height decreases when traversing the edge.

Suppose uv crosses d, and that v is in Ci(u). Let θ be the angle made by the edge
uv with the ray Ri(u). We have h(v) = ∥uv∥1 − h(u), so Suppose uv crosses d, and that
uv is an i-edge. Let θ be the angle made by the edge uv with the ray Ri(u). We have
h(v) = ∥uv∥1 − h(u), so

h(u)− h(v) = 2h(u)− ∥uv∥1

≥ 2∥uv∥2 − (sin θ + cos θ)∥uv∥2

= (2− (sin θ + cos θ))∥uv∥2

≥ (2−
√

2)∥uv∥2. ◀

▶ Lemma 5. Let uv be an edge taken during a greedy step. We have h(v)− h(u) ≤ ∥uv∥2.

Proof. Assume without loss of generality that u is in C1(t) and that d = d−(t). If h(v) < h(u),
then the inequality is trivially satisfied. If h(v) > h(u), then we have h(v)−h(u) = dy(u, v) ≤
∥uv∥2. ◀

Now let S be the set of sweeping edges and G be the set of greedy edges. Lemma 4
implies S ⊆ D, so we must have I ⊆ G. In other words a sweeping edge will always decrease
the height, so if an edge increases the height it must be a greedy edge.

▶ Lemma 6. The total length of all the sweeping edges is at most (1+ 1√
2)(h(s)+

∑
uv∈G∥uv∥2).

Proof. The proof follows from Lemmas 4 and 5, and some simple manipulations:∑
uv∈S

∥uv∥2 ≤
∑

uv∈D

1
2−
√

2
(
h(u)− h(v)

)
= 1

2−
√

2

∑
uv∈D

(
h(u)− h(v)

)
= 1

2−
√

2

(
h(s) +

∑
uv∈I

(
h(v)− h(u)

))
≤ 1

2−
√

2

(
h(s) +

∑
uv∈G

∥uv∥2

)
. ◀

Finally we will bound the total length of the greedy edges in terms of ∥st∥∞. For any
point u, let u be the projection of u onto d. Define the footprint of an edge uv in the following
way. Let w be the point along either ray bounding the cone Ci(u) that contains v such that
∥uw∥2 = ∥uv∥2. The footprint of uv is the segment uw. See Figure 4. It does not matter
which ray we chose since the projection of w would be the same in both cases. Note that we
have ∥uv∥2 =

√
2∥uw∥2.

ISAAC 2024

15:8 On the Spanning and Routing Ratios of the Yao-Four Graph

u

u

v
w

w

t

Figure 4 A greedy edge uv. Its footprint is the segment uw. The blue triangle is empty because
uv is a greedy edge, and the orange region is empty because it is contained in Wuv, the empty
quarter circle defined by the edge uv. For any greedy edge u′v′ such that u′ is in C1(t), u′ is below
d, and u′ comes after u in the routing path, we must have u′ in the indicated triangle. The footprint
of u′v′ must be disjoint from the footprint of uv.

Recall that there are only two cones of t where greedy edges can originate, since in two
of the cones of t a greedy step would be the same thing as a sweeping step. In both of these
cones, the greedy edge can begin either above or below d. Split the set greedy edges into four
subsets, depending on which cone of t the edge originates in and whether the edge begins
above or below d. We will show that, for any two edges that are in the same subset of G,
their footprints are disjoint (except possibly at a single point).

▶ Lemma 7. Let uv and u′v′ be two greedy edges such that u and u′ are in the same cone of
t, and both are either above or below d. Then the footprints of these two edges are disjoint.

Proof. Let uw and u′w′ be the footprints of the edges uv and u′v′, respectively. Assume
without loss of generality that u appears before u′ on the routing path, and that u and u′

are in C1(t) and below d. We will show that the points u, w, u′, w′, and t appear in exactly
that order along d. To do this, we show that uw and u′w′ are contained in C1(t) and that

∥ut∥1 > ∥wt∥1 ≥ ∥u′t∥1 > ∥w′t∥1. (4)

First note that w must be in C1(t), since otherwise t would be in Wuv, which is empty. Recall
that Wuv is the quarter-circle in Ci(p) that is centred at p with q on its boundary contained
in Ci(p). Therefore we have ∥tu∥1 > ∥tw∥1. The same reasoning shows that ∥tu′∥1 > ∥tw′∥1.

Since u′ comes after u on the routing path, we know that it is inside the square centred
at t with u on its boundary by Lemma 2. The point u′ must be inside the intersection of this
square with C1(t), and below d. If ∥vt∥1 < ∥u′t∥1, then u′ would either have to be inside
T (u, d) or Wuv. Both of these two regions are empty, so we must have ∥vt∥1 ≥ ∥u′t∥1. See
Figure 4. ◀

We can use this lemma and the fact that greedy edges can only originate in two cones of
t to bound the total length of the greedy edges.

▶ Lemma 8. The total L2 length of the greedy edges is at most 8∥st∥∞.

P. Bose, D. Hill, M. Smid, and T. Tuttle 15:9

Proof. Let G1, . . . , G4 be the four sets of greedy edges defined above. The total length of
the footprints in one such set cannot be more than

√
2∥st∥∞, since that is the length of d

that lies inside the intersection of one of the cones of t with the square centred at t with s

on its boundary. Therefore,

∑
uv∈G

∥uv∥2 =
4∑

i=1

∑
uv∈Gi

∥uv∥2 =
4∑

i=1

∑
uv∈Gi

√
2∥uu∥2 ≤

4∑
i=1

2∥st∥∞ = 8∥st∥∞. ◀

Now that we have a bound on the length of the greedy edges in terms of ∥st∥∞, we can
combine that with our bound on the length of the sweeping edges to get a bound on the
total length of the path, and therefore the routing ratio.

▶ Theorem 9. The routing ratio of the greedy-sweep algorithm is at most 17 + 9/
√

2.

3.1 Removing the diagonal bit

In the greedy-sweep algorithm, one bit of memory is required to remember the choice of
diagonal. Removing the single bit of memory just requires us to fix a diagonal ahead of time,
without knowledge of s and t. We will choose d−(t) as our diagonal. The proof of Lemma 2
does not depend on our choice of d at all, so the routing algorithm will still terminate with
this modification.

A few changes to the analysis have to be made, however. The initial height h(s) can now
be larger. The height of s for the one bit greedy-sweep is at most ∥st∥∞, because we chose d

to be whichever diagonal of t is closer to s. Now, however, since we fix the diagonal ahead of
time the height of s is at most 2∥st∥∞. The proofs of Lemmas 6 and 8 do not depend on the
choice of diagonal, and so they remain unchanged. Notice how increasing h(s) beyond ∥st∥∞
also increases the distance ∥st∥2. This results in the routing ratio being a unimodal function
of ∥st∥∞, where at a certain point increasing h(s) actually decreases the routing ratio since
∥st∥∞ increases too quickly. The routing ratio will increase slightly, from 17 + 9/

√
2 ≈ 23.36

to
√

331 + 154
√

2 ≈ 23.43.

▶ Theorem 10. The memoryless version of the greedy-sweep algorithm has a routing ratio
of at most

√
331 + 154

√
2.

Proof. Assume without loss of generality that s lies on the left edge of the square centred at
t with s on the boundary. By Lemmas 6 and 8 we know that the length of the routing path
is at most αh(s) + (8α + 8)∥st∥∞, where α = 1 + 1√

2 . If h(s) ≤ ∥st∥∞ then we can proceed
as we did for the proof of Theorem 9.

If h(s) > ∥st∥∞, then let θ be the angle made by the segment st with the ray R2(t) and
let ρ be the routing ratio. Notice that 0 < θ < π

4 . Then

ρ ≤ αh(s) + (8α + 8)∥st∥∞

∥st∥2

= α sin θ + (9α + 8) cos θ.

This is maximized when θ = arctan(α/(9α + 8)) with a value of ρ =
√

331 + 154
√

2. ◀

ISAAC 2024

15:10 On the Spanning and Routing Ratios of the Yao-Four Graph

4 Spanning ratio

We now turn our attention to the undirected Yao-4 graph. Let s and t be two vertices of a Y⃗4
graph, and let P be the path from s to t constructed by the greedy-sweep algorithm. Notice
that this is also a path in the undirected Y4 graph. This already gives an upper bound of
23.36 on the spanning ratio of the undirected Y4 graph. In this section, we will improve this
upper bound to 16.95.

First, define Pi(p) to be the path constructed by starting at p and following edges
in cone i repeatedly, until a point is reached that has no neighbour in cone i. Also,
given two points p and q define R(p, q) to be the axis-aligned rectangle that has p and q

at opposite corners. The side lengths of this rectangle are dx(p, q) and dy(p, q). Define
SS(p, q) = min{dx(p, q), dy(p, q)} and LS(p, q) = max{dx(p, q), dy(p, q)}.

Assume without loss of generality that s is in C1(t), and that it is below d−(t). In this
situation, greedy edges can only originate in C1(t) and in C3(t), not C0(t) or C2(t). The key
point of this section is that if any edge of P originates in C3(t), then P must intersect at
least one of P0(t) and P2(t). We will show that if two edges of a Y4 graph intersect, then
there is a short path between the endpoints of the two edges. This means we can take a
“shortcut” and only use the subpath of P before its intersection with P0(t) or P2(t).

Before proving the main result of this section, we will characterize the possible intersections
in a Y4 graph. First, some definitions. An edge pq is called an i-edge if q is in Ci(p). If pq is
an i-edge and uv is an (i± 1)-edge, then we say that pq and uv are in adjacent cones. If uv

is an (i + 2)-edge, then we say that they are in opposite cones. Note that an i-edge is the
same thing as an (i mod 4)-edge.

▶ Lemma 11. Let pq and uv be i-edges such that p is not in Ci(u) and u is not in Ci(p).
Then pq and uv cannot intersect except if q = v.

The previous lemma implies that edges in the same cone can only intersect at their
endpoints. We will characterize intersections of edges in opposite or adjacent cones into two
categories: short side and long side crossings. See Figure 5.

If pq and uv are in opposite cones and pq intersects the short side of R(p, u), then we say
that pq short side crosses uv. Notice that two edges in opposite cones do not have to actually
intersect for us to say that they short side cross. If the edges are in adjacent cones and pq

intersects the short side of R(p, v), then we say that pq short side crosses uv. If it intersects
the long side of R(p, v), then we say that pq long side crosses uv. Edges in adjacent cones
must intersect if they short or long side cross. If the edges are in adjacent cones and q = v,
then we will consider the intersection to be a short side crossing.

If pq and uv are in opposite cones and intersect, then we always consider this a short side
crossing since one of the edges will short side cross R(p, u), as the next lemma shows.

▶ Lemma 12. Let pq and uv be edges in opposite cones that intersect. Then either pq short
side crosses uv, or uv short side crosses pq.

Note the slight difference in definitions for opposite and adjacent cones. If pq short side
crosses uv and they are in adjacent cones, then pq intersects the short side of R(p, v). But
if they are in opposite cones, then pq intersects the short side of R(p, u). We will call the
second point (other than p) that defines this rectangle the visible vertex, so that we can say
pq short side crosses an edge with visible vertex u.

P. Bose, D. Hill, M. Smid, and T. Tuttle 15:11

p

q

u v

p

q
u

v

p

u

v

q

R(p, u)
R(p, v) R(p, v)

Figure 5 Three different crossings. From left to right: pq opposite cone short side crosses uv

with visible vertex u, pq adjacent cone short side crosses uv with visible vertex v, and pq long side
crosses uv.

4.1 Short side crossings
In this section we will prove that if an edge short side crosses another edge, then we can find
a short undirected path between them. Long side crossings will be considered in the next
section. The following two lemmas are simply geometric facts that will be needed to prove
the main result of this section.

▶ Lemma 13. Let p and q be two distinct points. Then ∥pq∥2 ≤ LS(p, q) + (
√

2− 1)SS(p, q).

Proof. Consider a right triangle with legs LS(p, q) and SS(p, q). Let θ be the angle adjacent
to the hypotenuse and the leg with length LS(p, q). We have SS(p, q) = ∥pq∥2 sin θ and
LS(p, q) = ∥pq∥2 cos θ.

(
√

2− 1)SS(p, q) + LS(p, q) = ∥pq∥2((
√

2− 1) sin θ + cos θ). (5)

The function (
√

2− 1) sin θ + cos θ is at least 1 on the interval [0, π/4]. ◀

▶ Lemma 14. Let pq be an edge that short side crosses an edge with visible vertex u. Then
(1) LS(q, u) ≤ SS(p, u), and
(2) SS(q, u) ≤ (

√
2− 1)SS(p, u).

Now we are ready to state the main result of this section.

▶ Lemma 15. Let pq be an edge of a Y4 graph that short side crosses another edge with
visible vertex u. Then there is an undirected path from p to u with length at most LS(p, u) +
(
√

2 + 1)SS(p, u).

Proof. The proof is by induction on all pairs of points p ̸= u such that there is an edge pq

that short side crosses an edge with visible vertex u, ordered by SS(p, u).
Consider one such pair. There are two possibilities. If q = u, then there is a path between

p and u with length ∥pu∥2 ≤ ∥pu∥1 < LS(p, u) + (
√

2 + 1)SS(p, u). Otherwise q ̸= u. Assume
without loss of generality that pq is a 0-edge and that pq crosses the top edge of R(p, u).
Consider P3(q). We claim that this path must exit R(q, u) by the right edge. Since u is in
C3(q), the path must intersect some edge of R(q, u).

If pq adjacent short side crosses an edge vu, then vu must be a 3-edge. Therefore P3(q)
cannot intersect vu by Lemma 11, so it must intersect the right edge of R(q, u) because vu

is above the bottom edge. If pq opposite short side crosses an edge uv, then R(p, u) must be
empty since it is contained in the intersection of Wpq and Wuv. Let q′ be the last point on
P3(q). We have dy(p, q′) < dx(q′, u), so the path P3(q) must exit R(q, u) to the right.

ISAAC 2024

15:12 On the Spanning and Routing Ratios of the Yao-Four Graph

p

q

u

P3(q)

Figure 6 Figure for Lemma 15. Notice that P1(u) must either intersect pq or P3(q). If u′ is the
last vertex on P1(u) inside R(q, u), then the long side of R(q, u′) is horizontal because the shaded
region of R(q, u′) is contained in Wpq.

This implies that P1(u) must either intersect pq or P3(q). Both of these will result in a
short side crossing. Let u′ be the last point on P1(u) that is inside R(q, u). If P1(u) intersects
P3(q), there is a short side crossing since the edges will be in opposite cones, and edges in
opposite cones that intersect always short side cross. Otherwise if P1(u) intersects pq, the
long side of R(q, u′) is horizontal, so we have a short side crossing. Notice that this short
side crossing has a smaller short side length than SS(p, u). See Figure 6.

This implies that in the pair p and u such that SS(p, u) is minimized, there is an edge
from p to u. So in the base case there is a path between p and u with length at most ∥pu∥2.

Now assume for the inductive step that we have a pair of points p and u such that there
is an edge pq that short side crosses an edge with visible vertex u, and that for every other
such pair p′ and u′ such that SS(p′, u′) < SS(p, u), there is a path from p′ to u′ of length
at most LS(p′, u′) + (

√
2 + 1)SS(p′, u′). If P1(u) intersects pq, then construct a path in

the following manner. By induction, there is a path between q and u′ with length at most
LS(q, u′) + (

√
2 + 1)SS(q, u′). Concatenate the edge pq, the path between q and u′, and the

segment of P1(u) up to u′. The resulting path has length at most

dG(p, u) ≤ ∥pq∥2 + LS(q, u′) + (
√

2 + 1)SS(q, u′) + ∥uu′∥1

≤ ∥pq∥2 + LS(q, u) + (
√

2 + 1)SS(q, u).
(6)

Now, if P1(u) intersects P3(q), then

dG(p, u) ≤ ∥pq∥2 + ∥qq′∥1 + LS(q′, u′) + (
√

2 + 1)SS(q′, u′) + ∥uu′∥1

≤ ∥pq∥2 + LS(q, u) + (
√

2 + 1)SS(q, u).
(7)

In both cases we have the same bound on the length of the path. Now, Lemma 13 implies
that ∥pq∥2 ≤ LS(p, u) + (

√
2 − 1)SS(p, u), and Lemma 14 gives bounds on LS(q, u) and

SS(q, u). Putting these together finishes off the proof:

dG(p, u) ≤ ∥pq∥2 + LS(q, u) + (
√

2 + 1)SS(q, u)

≤ LS(p, u) + (
√

2− 1)SS(p, u) + SS(p, u) + (
√

2 + 1)(
√

2− 1)SS(p, u)

= LS(p, u) + (
√

2 + 1)SS(p, u). ◀

P. Bose, D. Hill, M. Smid, and T. Tuttle 15:13

p

q

u

v

ℓ

m

r

Figure 7 Figure for Lemma 17.

4.2 Long side crossings

Suppose we have an edge pq that long side crosses another edge uv. In this section, we will
show that there is a short path from q to u, using the short side crossings from the previous
section. Assume without loss of generality that uv is a 3-edge and pq is a 0-edge. We will
show that from u and q we can find two paths in opposite cones that must intersect, and by
Lemma 12 that intersection must be a short side crossing.

▶ Lemma 16. P0(u) intersects the top edge of R(u, q).

Proof. The path P0(u) cannot intersect the right edge, since then it would have to intersect
the edge pq. But pq is a 0-edge, and two 0-edges cannot intersect by Lemma 11. ◀

▶ Lemma 17. P2(q) intersects the left edge of R(u, q).

Proof. Consider Figure 7. The point ℓ is directly above p and on the arc of Wuv. The point
r is the other intersection of the line d+(ℓ) with the arc of Wuv.

Every point on the arc of Wpq is below d−(m), including q. The point r is above d+(p)
and on the arc of Wuv. This means that r must be above and to the right of m. Therefore q

is also below d−(r).
Since q is above r but below d−(r), it must be the case that q is to the left of r. In other

words, we have dx(u, q) < dx(u, r) = dx(u, y), which is what we wanted to show.
We have shown that dy(u, ℓ) > dx(u, q). That implies that the rectangle R with u as its

upper-left corner, with width dx(u, q) and height dy(u, ℓ), is taller than it is wide. Notice
that R is contained in Wpq ∪Wuv, meaning that it is empty of points. Consider an edge xy

on P2(q) such that x is in R(u, q). If y is below ℓ, then we must have

∥xy∥2 > dy(x, y) > dy(x, ℓ) > dy(x, u) + dx(x, u) > ∥xu∥2,

a contradiction since both y and u are in C2(x). Therefore no edge of P2(q) can span R in
this sense, and P2(q) must intersect the left edge of R(u, q). ◀

These two lemmas imply the main result of this section.

▶ Lemma 18. Let pq be an edge of a Y4 graph that long side crosses another edge uv. Then
there is an undirected path between u and q with length at most LS(u, q) + (

√
2 + 1)SS(u, q).

ISAAC 2024

15:14 On the Spanning and Routing Ratios of the Yao-Four Graph

4.3 Constructing a path

In this section we describe how to construct a path between two vertices of an undirected Y4
graph. Let s and t be the endpoints of our path. Let P be the path from s to t constructed
by the greedy sweep algorithm in the directed Y⃗4 graph. This is also a path in the undirected
Y4 graph. For the remainder of this section, assume without loss of generality that s is above
and to the left of t, and that s is below the diagonal d−(t).

We consider three cases, based on the observation that if some vertex of P lies in C3(t),
then P must intersect at least one of P0(t) or P2(t). We will construct a path in a different
way for each of the three cases. The cases that we consider then are:
1. The path P does not intersect P0(t) ∪ P2(t), except for at t

2. The first intersection of P with P0(t) ∪ P2(t) is a short side crossing
3. The first intersection of P with P0(t) ∪ P2(t) is a long side crossing

In the first case, the path between s and t is P itself.
In the second case, let uv be the first edge of P that intersects Pi(t), where i ∈ {0, 2}.

If u is in Ci(t), then uv must be an (i + 2)-edge, so the edge pq that it intersects is in the
opposite cone. Therefore by Lemma 15 there is a path between u and p with length at most
LS(p, u) + (

√
2 + 1)SS(p, u). Otherwise, if u is in C1(t), then uv must be a 3-edge and we

have edges in adjacent cones that intersect. In this case we must have pq short side crossing
uv, with visible vertex v. By Lemma 15 there is a path between v and p with length at most
LS(p, v) + (

√
2 + 1)SS(p, v). In either case concatenating the subpath of P from s to the

visible vertex (u in the case of an opposite cone short side crossing, and v in the case of an
adjacent cone short side crossing), the path from the visible vertex to p of Lemma 15, and
the subpath of Pi(t) from t to p (in reverse) gives a path between s and t.

The third case is similar to the second. Let uv be the first edge of P that intersects Pi(t),
where i ∈ {0, 2}. In this case pq long side crosses uv, meaning they must be in adjacent
cones, and so uv is a 3-edge, and u is in C1(t). By Lemma 18 there is a path between u and
q. Concatenate the subpath of P from s to u, the path from u to q, and the subpath of Pi(t)
from t to q (in reverse).

▶ Theorem 19. Let P be a set of points. For any two points s and t in P , there is a path in
Y4(P) with length at most (13 + 5/

√
2)∥st∥2.

Proof. The path is constructed as previously described. We will bound the length for each
case separately.

Case 1. Since no edge of P originates in C3(t), we know that any greedy edge of P will
have to originate in C1(t). We can modify the proof of Lemma 8 using this fact. Now there
are only two subsets of greedy edges to consider, depending on whether they originate above
or below the diagonal. This results in a total length of 4∥st∥∞ for the greedy edges. The
proof of Lemma 6 does not need to change at all, giving a total length for P of

∑
uv∈S

∥uv∥2 +
∑

uv∈G

∥uv∥2 ≤
(

1 + 1√
2

)(
h(s) +

∑
uv∈G

∥uv∥2

)
+

∑
uv∈G

∥uv∥2

≤
(

1 + 1√
2

)(
∥st∥∞ + 4∥st∥∞

)
+ 4∥st∥∞

≤
(

9 + 5√
2

)
∥st∥2.

P. Bose, D. Hill, M. Smid, and T. Tuttle 15:15

Case 2. Let u be the vertex of P that is the visible vertex of the first intersection of P

with Pi(t). Let P ′ be the subpath of P from s to u. Notice P ′ does not have any edges
originating in C3(t). Therefore the total length of the greedy edges on this subpath is at
most 4∥st∥∞ as in case 1. Now we modify the proof of Lemma 6 by noting that∑

pq∈D′

(h(p)− h(q)) = h(s)− h(u) +
∑

pq∈I′

(h(q)− h(p)) (8)

where D′ and I ′ are the sets of edges of P ′ where the height decreases and increases,
respectively, as in the proof of Lemma 6. Using that fact we see that the length of P ′ is at
most (8 + 4/

√
2)∥st∥∞ + (1 + 1/

√
2)(h(s)− h(u)).

Next, we know the length of the path between u and p by Lemma 15: at most (
√

2 +
1)SS(u, p) + LS(u, p). And finally the length of the subpath of Pi(t) is at most ∥pt∥1. Notice
that p is inside R(t, u), so we have

(
√

2 + 1)SS(u, p) + LS(u, p) + ∥pt∥1 = (
√

2 + 1)SS(u, p) + LS(u, p) + SS(p, t) + LS(p, t)

≤ (
√

2 + 1)SS(t, u) + LS(t, u).

Now, we have SS(t, u) + LS(t, u) = h(u). Furthermore, h(u)/2 ≤ LS(t, u) ≤ h(u). Therefore,

(
√

2 + 1)SS(t, u) + LS(t, u) = (
√

2 + 1)(h(u)− LS(t, u)) + LS(t, u)

= (
√

2 + 1)h(u)−
√

2LS(t, u)

≤ (
√

2 + 1)h(u)−
√

2
2 h(u)

=
(

1 + 1√
2

)
h(u).

Adding this to the length of P ′, we see that the length of the path between s and t is at most(
8 + 4√

2

)
∥st∥∞+

(
1 + 1√

2

)(
h(s)− h(u)

)
+

(
1 + 1√

2

)
h(u)

=
(

8 + 4√
2

)
∥st∥∞ +

(
1 + 1√

2

)
h(s)

≤
(

9 + 5√
2

)
∥st∥∞

≤
(

9 + 5√
2

)
∥st∥2.

Interestingly, this is the same bound as in case 1.
Case 3. Just like in case 2, the subpath P ′ from s to u has length at most 4∥st∥∞ + (1 +

1/
√

2)(4∥st∥∞ + h(s) − h(u)) ≤ (9 + 5/
√

2)∥st∥∞. By Lemma 18, the length of the path
between u and q is at most LS(u, q) + (

√
2 + 1)SS(u, q). Finally, the subpath of Pi(t) from t

to q has length at most ∥tq∥1.
We will show that LS(u, q) ≤ dy(u, p) and SS(u, q) ≤ (

√
2− 1)dy(u, p). That will imply

that the length of the subpath between u and q has length at most dy(u, p) + (
√

2 + 1)(
√

2−
1)dy(u, p) = 2dy(u, p) ≤ 2dy(u, t) ≤ 2∥st∥∞. We also have ∥qt∥1 ≤ 2∥qt∥∞ ≤ 2∥st∥∞. So
the total length of the subpath between u and t is at most 4∥st∥∞. Adding that to the length
of P ′ gives a total of (13 + 5/

√
2)∥st∥∞.

Consider Figure 8. Without loss of generality, we assume that pq is an edge on P0(t). Let
x = dx(u, p) and y = dy(u, p). Let u′ be the point directly above p such that dy(u′, p) = y.

ISAAC 2024

15:16 On the Spanning and Routing Ratios of the Yao-Four Graph

u u′ w

w′

v′

p

θ

q′

Figure 8 Case 3 of Theorem 19.

Let v′ be the point of the bisector of C0(p) such that dx(v′, p) = dy(v′, p) = y. Let w be the
point between u′ and v′ such that dx(w, v′) = x. Let w′ be the point on the bisector of C0(t)
such that ∥pw′∥2 = ∥pw∥2. Finally, let q′ be the point above v′ such that dy(p, q′) = ∥pv′∥2.

First, some observations. The point v must be to the left of v′ since ∥uv′∥2 = ∥up∥1 ≥
∥uv∥2. The point q must be inside R(u′, q′), since q is above u and right of p, but if it were
outside of the rectangle then it would contain v′ and the point v could not exist, because
Wpq is empty of points.

We will show that LS(u, q) ≤ LS(u′, q′) and SS(u, q) ≤ SS(u′, q′). Then, since
LS(u′, q′) = y and SS(u′, q′) = dy(u′, q′) = (

√
2− 1)y, we will have completed the proof.

First since q is inside R(u′, q′) we must have dy(u, q) ≤ dy(u′, q′). Next we show that
dx(u, q) ≤ dx(u′, q′). To do this we will show that q is to the left of w. Then we would
have dx(u, q) ≤ dx(u, w) = dx(u′, q′). We know that ∥uv∥2 < ∥up∥2, so if we can show that
∥up∥2 < ∥uw′∥2 then we will know that v cannot lie in the shaded region of Figure 8. That
would mean that Wpq is inside Wpw, so ∥pq∥2 < ∥pw∥2, and since q is above w this must
mean that q is left of w.

Now we prove that ∥up∥2 < ∥uw′∥2. Let r = dx(p, w′) = dy(p, w′). Notice that
∥up∥2

2 = x2 + y2 and ∥uw′∥2
2 = (x + r)2 + (y − r)2. If we can show that the inequality

x2 + y2 < (x + r)2 + (y − r)2 holds, we will be done. The inequality can be simplified to
x + r > y. This holds since w is left of w′, so x + r = dx(u, w′) > dx(u, w) = y.

Therefore ∥uw′∥2 > ∥up∥2, which implies that q is to the left of w, which implies that
dx(u, q) ≤ dx(u′, q′). This together with the fact that dy(u, q) ≤ dy(u′, q′) means we must
have LS(u, q) ≤ LS(u′, q′) = dy(u, p) and SS(u, q) ≤ SS(u′, q′) = (

√
2 − 1)dy(u, p). As we

have previously shown, this means the length of the path between s and t has length at most
(13 + 5/

√
2)∥st∥2 ≈ 16.54∥st∥2. Notice that the bound in this case is greater than the bound

for the other two cases, by exactly 4∥st∥2. ◀

5 Conclusion

We have presented a local routing algorithm for the directed Y⃗4 graph, the first such routing
algorithm for this class of graphs. The routing ratio of this algorithm is 17 + 9/

√
2 ≈ 23.36.

The algorithm requires one bit of memory, and we showed that this can be dispensed with at
the cost of increasing the routing ratio to

√
331 + 154

√
2 ≈ 23.42. Our result also lowers

the best-known upper bound on the spanning ratio of the directed Y⃗4 graph from 54.82 to

P. Bose, D. Hill, M. Smid, and T. Tuttle 15:17

23.36. We also used the routing algorithm to bound the spanning ratio of the undirected Y4
graph to be at most 16.54. To do so we showed that if two edges of a Y4 graph intersect,
then there must be a short path between the endpoints of these edges.

References
1 B. E. Flinchbaugh and L. K. Jones. Strong connectivity in directional nearest-neighbour graphs.

SIAM Journal on Algebraic Discrete Methods, 2(4):461–463, 1981. doi:10.1137/0602049.
2 Luis Barba, Prosenjit Bose, Mirela Damian, Rolf Fagerberg, Wah Loon Keng, Joseph O’Rourke,

André van Renssen, Perouz Taslakian, Sander Verdonschot, and Ge Xia. New and improved
spanning ratios for Yao graphs. In Proceedings of the Thirtieth Annual Symposium on
Computational Geometry, SOCG’14, pages 30–39, New York, NY, USA, 2014. Association for
Computing Machinery. doi:10.1145/2582112.2582143.

3 Prosenjit Bose, Jean-Lou De Carufel, Darryl Hill, and Michiel Smid. On the spanning and
routing ratio of theta-four. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2361–2370. SIAM, 2019. doi:10.1137/1.9781611975482.144.

4 Kenneth L. Clarkson. Approximation algorithms for shortest path motion planning. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages 56–65,
1987. doi:10.1145/28395.28402.

5 Nawar M El Molla. Yao spanners for wireless ad hoc networks. Villanova University, 2009.
6 Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse

spanners of weighted graphs. Discrete & Computational Geometry, 9:81–100, 1993. doi:
10.1007/BF02189308.

7 William Michael Zoltan Kalnay. Routing Ratio of the Directed Yao-6 Graphs. Carleton
University, 2023.

8 J. Mark Keil. Approximating the complete Euclidean graph. In 1st Scandinavian Workshop
on Algorithm Theory, volume 318 of Lecture Nodes in Computer Science, pages 208–213, 1988.
doi:10.1007/3-540-19487-8_23.

9 Mirela Damian and Kristin Raudonis. Yao graphs span theta graphs. In Combinatorial
Optimization and Applications COCOA 2010, volume 6509 of Lecture Nodes in Computer
Science, pages 181–194, 2010. doi:10.1007/978-3-642-17461-2_15.

10 Mirela Damian and Naresh Nelavalli. Improved bounds on the stretch factor of Y4. Computa-
tional Geometry, 62:14–24, 2017. doi:j.comgeo.2016.12.001.

11 Prosenjit Bose, Anil Maheshwari, Giri Narasimhan, Michiel Smid, and Norbert Zeh. Approx-
imating geometric bottleneck shortest paths. Computational Geometry, 29(3):233–249, 2004.
doi:10.1016/j.comgeo.2004.04.003.

12 Prosenjit Bose, Mirela Damian, Karim Douïeb, Joseph O’Rourke, Ben Seamone, Michiel Smid,
and Stefanie Wuhrer. π/2-angle Yao graphs are spanners. In Algorithms and Computation
– 21st International Symposium, ISAAC 2010, volume 6507 of Lecture Nodes in Computer
Science, pages 446–457, 2010. doi:10.1007/978-3-642-17514-5_38.

13 Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM Journal on Computing, 11(4):721–736, 1982. doi:10.1137/0211059.

ISAAC 2024

https://doi.org/10.1137/0602049
https://doi.org/10.1145/2582112.2582143
https://doi.org/10.1137/1.9781611975482.144
https://doi.org/10.1145/28395.28402
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/3-540-19487-8_23
https://doi.org/10.1007/978-3-642-17461-2_15
https://doi.org/j.comgeo.2016.12.001
https://doi.org/10.1016/j.comgeo.2004.04.003
https://doi.org/10.1007/978-3-642-17514-5_38
https://doi.org/10.1137/0211059

FPT Approximations for Fair k-Min-Sum-Radii
Lena Carta
University of Bonn, Germany

Lukas Drexler #

Heinrich Heine University Düsseldorf, Germany

Annika Hennes1 #

Heinrich Heine University Düsseldorf, Germany

Clemens Rösner #

Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI,
Sankt Augustin, Germany

Melanie Schmidt #

Heinrich Heine University Düsseldorf, Germany

Abstract
We consider the k-min-sum-radii (k-MSR) clustering problem with fairness constraints. The k-min-
sum-radii problem is a mixture of the classical k-center and k-median problems. We are given a set
of points P in a metric space and a number k and aim to partition the points into k clusters, each
of the clusters having one designated center. The objective to minimize is the sum of the radii of
the k clusters (where in k-center we would only consider the maximum radius and in k-median we
would consider the sum of the individual points’ costs).

Various notions of fair clustering have been introduced lately, and we follow the definitions due
to Chierichetti et al. [13] which demand that cluster compositions shall follow the proportions of
the input point set with respect to some given sensitive attribute. For the easier case where the
sensitive attribute only has two possible values and each is equally frequent in the input, the aim is
to compute a clustering where all clusters have a 1:1 ratio with respect to this attribute. We call
this the 1:1 case.

There has been a surge of FPT-approximation algorithms for the k-MSR problem lately, solving
the problem both in the unconstrained case and in several constrained problem variants. We add
to this research area by designing an FPT (6 + ϵ)-approximation that works for k-MSR under the
mentioned general fairness notion. For the special 1:1 case, we improve our algorithm to achieve a
(3 + ϵ)-approximation.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Approximation algorithms analysis

Keywords and phrases Clustering, k-min-sum-radii, fairness

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.16

Related Version Full Version: https://arxiv.org/abs/2410.00598

Funding Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project 456558332

1 Introduction

Cluster analysis is an unsupervised learning task that has inspired much research during the
last decades. Nearly all popular clustering formulations lead to NP-hard and often APX-hard
problems, thus there is a thriving field designing approximation algorithms for clustering. A
very popular and well studied problem is the k-median problem: Given n points P from a

1 Corresponding author

© Lena Carta, Lukas Drexler, Annika Hennes, Clemens Rösner, and Melanie Schmidt;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lukas.drexler@hhu.de
https://orcid.org/0000-0001-9395-6711
mailto:annika.hennes@hhu.de
https://orcid.org/0000-0001-9109-3107
mailto:clemens.roesner@gmx.de
mailto:mschmidt@hhu.de
https://orcid.org/0000-0003-4856-3905
https://doi.org/10.4230/LIPIcs.ISAAC.2024.16
https://arxiv.org/abs/2410.00598
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 FPT Approximations for Fair k-Min-Sum-Radii

metric space and a number k, find k centers C ⊆ P such that the sum of the distances of
all points to their respective centers is minimized. Notice that k centers implicitly define k

clusters by assigning each point to its closest center (breaking ties arbitrarily). The k-median
problem is APX-hard [19, 23], but allows for O(1)-approximations. After a long line of
research, the currently best approximation for k-median achieves a guarantee of 2.675+ε [10]2.
A clustering function that is very popular for its simplicity and elegant algorithms is k-center.
It has the same input and solution space, but judges clusterings based on the maximum radius
of the (induced) clusters. The goal is to minimize the radius of the cluster with largest radius.
It has been known for quite some time that k-center admits a 2-approximation [18, 20], and
that this is tight when assuming P ̸= NP [21].

In this paper, we consider k-min-sum-radii clustering, abbreviated as k-MSR. We get the
same input and solution space as for k-center, but the objective changes to the sum of the
cluster radii. The problem thus lies in between k-center and k-median as it is a sum-based
objective, but considers radii instead of points. Contrary to intuition, in metric spaces, many
design techniques fail for k-msr which work fine for k-center and k-median. However, the
problem allows for a polynomial (3 + ϵ)-approximation [9] via primal dual algorithms.

The model of fair clustering was introduced by Chierichetti et. al. [13] based on a disparate
impact approach. In the easiest case, given an input point set with the same number of
blue and red points, the goal of fair clustering is to find a clustering where every cluster
is composed of the same number of red and blue points (the colors represent values of a
sensitive attribute). The number of points in a cluster is unlimited, but the composition of
the clusters is constrained. For k-center and k-median, the following simple approach suffices
to design polynomial-time approximation algorithms for fair clustering in this scenario:

Compute a fair micro clustering, i.e., a clustering into µ≫ k clusters which is fair (this
is easier than finding exactly k clusters, for two colors and µ = n/2 it is just a matching).
Consider the clusters in this micro clustering as inseparable entities and use an algorithm for
the unconstrained problem to cluster them into k clusters. The resulting clusters are fair
because the union of fair clusters is again fair (this property of the constraint fairness is
sometimes called mergeability). In addition, both for k-center and for k-median, the cost
of the resulting clusters can be reasonably bounded, yielding O(1)-approximations for the
respective fair clustering problems. Most surprisingly, the same approach does not work in
the case of k-min-sum-radii. The reason is that for k-min-sum-radii, the cost of a micro
clustering can actually be larger than the clustering with k clusters. This property is shared
neither by k-center nor by k-median: For k-center, the radius of the micro clustering is
always bounded by the k-clustering, and for k-median, the sum of the points’ costs in the
micro clustering is bounded by the respective sum of the k-clustering.

Figure 1 illustrates the situation for k-MSR. The figure is for unconstrained k-MSR
to ease visualization, and just illustrates how the cost of micro clusterings for k-MSR can
behave. The examples are depicted with k = 1 and µ = 4. In (a), we see a cluster with
k-MSR cost 1 in which all points have the same pairwise distance, namely 1. If this cluster
is broken into µ pieces, then these pieces suddenly contribute t to the objective. In (b), we
have a star with µ leaves where one cost 1 cluster remains when we use µ clusters, so the
cost stays the same. In (c), the cluster only contains µ points, and then the cost drops to
zero when it is divided into µ subclusters. Overall we observe that we have no control over
the cost of a micro clustering and that the micro clustering approach fails.

2 This result actually holds for a slightly more general variant where the set of input points P can be
different than the set of possible center locations from which we pick C.

L. Carta, L. Drexler, A. Hennes, C. Rösner, and M. Schmidt 16:3

cost 1

⇒

cost µ cost 1

⇒

cost 1 cost 1

⇒

cost 0
(a) cost increases to µ (b) cost stays the same (c) cost drops to 0

Figure 1 Anything can happen for k-MSR: The cost of a micro clustering with µ = 4 compared
to the macro clustering with k = 1. All pictures use shortest path metrics, the edges have unit
weights.

Table 1 A list of FPT approximation results for k-MSR and k-median, all of which appeared in
the last five years. Multiple results for the same problem are listed in reverse chronological order.

Unconstr. Capacities / Uniform Cap. Matroid Con. Fair Centers

k-MSR 2+ϵ [12] ≈ 7.6 [24], 15+ϵ [5] / 3 [24], 4+ϵ [5], 28 [22] 9+ϵ [22] 3+ϵ [12]
k-med 1.546 [4]∗) 3+ϵ [15], 7+ϵ [1] / no improvement 2+ϵ [14] –
∗) This result holds for the problem as described in the introduction. If centers can be chosen from

a set possibly different from P then the best known FPT approximation bound is ≈ 1.735+ϵ [14].

FPT Approximation. There is mainly one approach for designing polynomial-time approx-
imation algorithms for k-MSR, which is a primal-dual approach that yielded the currently best
known bounds for unconstrained k-MSR and k-MSR with lower bounds on the cluster sizes,
or outliers [9]. This lack of diversity in the techniques to obtain approximation algorithms
for k-MSR has lately led to a surge of FPT approximation algorithms for k-MSR, that was
also inspired by a similar strong interest in FPT approximation algorithms for the k-median
problem. FPT approximation algorithms have been obtained for various problem variants,
see Table 1. The “fair centers” variant demands that the set of centers is fair rather than
the clusters. For more details, see the paragraph about related work. While the obtained
approximation algorithms only work for small k, they are still of high interest due to the
problem insights that they provide and also due to the fact that clustering with a small
number of clusters is an important domain.

Our Results

We get the following results in FPT-time where the parameter is the number of clusters k.
A (3 + ϵ)-approximation for the fair clustering k-MSR problem when there are only two
colors, both have exactly a ratio of 1:1 in the input point set, and we also want to achieve
that exact ratio. We are not aware of any results on fair k-MSR in general metrics.
A (6 + ϵ)-approximation that works for a variety of more general fairness constraints,
including all notions defined in [7, 13, 25]. To the best of our knowledge, there are no
previous results for this problem.

We also extend our approach for clustering with uniform lower bounds, and generally to the
class of mergeable constraints (see Definition 1). Uniform lower bounds have been studied in
the clustering literature to model anonymity [2]: The constraint demands that every cluster
contains a minimum number of ℓ points, i.e., that |a(c)| ≥ ℓ for all c ∈ C. A polynomial-time
(3.5 + ϵ)-approximation algorithm for k-MSR with lower bounds is known [9], and our FPT
approximation algorithm achieves a (3 + ϵ)-guarantee.

ISAAC 2024

16:4 FPT Approximations for Fair k-Min-Sum-Radii

Main Technical Contribution. Our main technical contribution is the development of a
completely novel approach to design FPT approximation algorithms for k-MSR. We give
more details on this approach in the next paragraph, but the main gain from our approach
is that we make it possible to use k-center algorithms as a subroutine via a clever branching
that we have not seen like this in the literature before. We believe this technique to be of
independent interest for the design of FPT approximation algorithms for k-MSR.

Following this novel design scheme, it is possible to obtain O(1)-approximations for fair
k-MSR and mergeable constraints in general. An additional technical contribution lies in
reducing the factors to small constants. In particular in the general fairness case, obtaining
the factor 6 + ϵ requires a clever bounding technique.

More Insight into the Scheme. We first discuss another approach that does not work
for k-MSR. There is a fairly general idea to obtain FPT approximations for constrained
k-clustering problems which we can think of in the following way: Compute a solution to
the unconstrained clustering problem with an approximation algorithm (here, one can even
use a bicriteria approximation which computes O(k) centers). This gives a set of centers S.
Then “move” all points to their closest center, i.e., create an instance I where all points lie
at the k centers in S. The optimum cost for the constrained problem on I can be related to
the optimum cost for the constrained problem on the original instance. Then solve I with
an algorithm that uses that the points all lie on k locations (notice that the constraint will
prevent us from simply opening one center at each location). The resulting solution is then
translated back to the original instance.

Adamczyk et al. [1] use this approach to develop an FPT (7 + ε)-approximation for
capacitated k-median. But here is another problem of the k-MSR cost function: Moving
all points to centers of an approximate solution also has uncontrollable effects on the cost
function. There seems to be no easy fix to this, and Inamdar and Varadarajan in the
introduction of [22] also notice that the approach does not seem to extend to k-MSR, so
there is a need for new techniques to design FPT algorithms for k-MSR in general.

The starting idea of our approach is to use an algorithm for the unconstrained k-center
problem at the core of the algorithm (rather than for an unconstrained k-MSR problem, which
would follow the above scheme). This means that we start off with a small approximation
ratio of 2. Notice that there is a connection between the value F ∗ of an optimal k-center
solution and the largest radius rmax in an optimal k-min-sum-radii solution: rmax must lie
in the interval [F ∗, kF ∗]. This relation is obviously not tight enough to directly lead to an
algorithm, but it can be used to find a near optimal approximation r̂max for the largest radius
(a proof can be found in the full version). Now our first idea is that we can find the largest
cluster in an k-MSR solution by running a k-center algorithm with r̂max and then guessing
in which of the k-center clusters the largest k-MSR cluster lies. But this only works for the
first cluster. To recurse, we have to eliminate this cluster from the input such that a k-center
algorithm can find the next cluster. The main hurdle here is that we cannot simply delete
the cluster because we might destroy the optimal fair assignment (which we do not know
and cannot guess at this point). We resolve this problem by keeping all points but adjusting
the metric to a (non-metric) distance function. Then we show that we can still solve the
resulting problem by approximately solving a so called k-center completion problem.

This problem might be of independent interest and could play a role in further k-MSR
research: Basically, we hand the problem an incomplete set of centers C ′ = {c1, . . . , cℓ} with
ℓ ≤ k together with radii r1, . . . , rℓ and ask it to find a k-center solution where points can be
assigned to a center ci from C ′ while paying ri less than the actual distance. We observe
that the k-center completion problem can be solved by Gonzalez’ 2-approximation technique
for k-center [18].

L. Carta, L. Drexler, A. Hennes, C. Rösner, and M. Schmidt 16:5

Using this modeling we are able to recursively find largest clusters. There is another
technical problem, though. In every step, we are guessing the cluster in the completed
solution returned from the k-center completion problem in which the optimal center of the
next k-MSR cluster lies. But this may be one of the first ℓ clusters. Now the final crucial
idea is that in this case, we opt to increase the radius of that previous cluster instead of
opening a new cluster. It makes sense that for the k-MSR objective, this is a good idea:
Often we can reduce cost by using less clusters instead of using overlapping clusters.

Combining these three ideas ((i) guessing clusters based on a k-center solution, (ii)
modeling the elimination of clusters by using a completion problem, (iii) allowing clusters to
grow), we obtain our main algorithm.

Applying our scheme yields a covering of the input points where we know that the balls
are reasonably small compared to the balls in an optimal solution, and every optimum ball
is covered by one of our balls. However, we also need to compute the actual clustering.
Doing so requires to resolve the cluster membership of points that are in multiple balls, while
respecting fairness constraints. For the general fairness case, we do this by modelling the
overlap of balls by a graph and computing connected components in this graph. We can then
show that the radius of the components is not too large (see Section 3.2).

Related Work. Research on FPT algorithms for constrained and unconstrained k-MSR is
highly active at the moment, see Table 1. Notice that the paper by Chen et al. [12] gives an
algorithm for a problem called fair sum of radii, but it refers to setting different from ours:
While points also have colors, the fairness constraints are not imposed on the clusters but
rather on the centers. More precisely, each color i has its own associated value ki and any
feasible solution has to use exactly ki centers from that color. We call this fair centers in the
table. All the results in the table are in general metric space, which is our setting.

In the more restricted Euclidean case, Drexler et al. [16] gave a PTAS for the fair k-MSR
problem for constant k, however, the PTAS was faulty and a corrected version only exists for
k-MSR with outliers, not for fair k-MSR. It is thus open to give a better result for Euclidean
fair k-MSR. Bandyapadhyay et al. [5] give a (2+ε)-approximation for the capacitated k-MSR
problem whose runtime linearly depends on the dimension, and a (1 + ε)-approximation
which depends exponentially on the dimension.

There are some results on poly-time approximation algorithms for k-MSR in general
metrics, all following the primal-dual scheme. For the unconstrained case, the first was
due to Charikar and Panigrahy [11], and there are two recent improvements by Friggstad
and Jamshidian [17] and Buchem et al [9] (see below). The k-MSR problem with uniform
lower bounds has been studied by Ahmadian and Swamy [3] who give a polynomial-time
3.83-approximation, and additionally give a 12.365-approximation if outliers are additionally
considered. In [9], Buchem et al. improve upon all these factors by proposing a (3 + ε)-
approximation for the unconstrained case and the version with outliers, and a (3.5 + ε)-
approximation for lower bounds and lower bounds with outliers. Their algorithm also works
for the non-uniform lower bounded case (for this case, we could achieve a (6+ϵ)-approximation
since lower bounds are mergeable, but that is worse than (3.5 + ϵ)).

2 Getting Started

Defining the k-Center and k-MSR Problem. An instance I for a k-clustering problem
consists of a finite set P of n points, a (metric) distance function d : P × P → R≥0 and a
number k ∈ N with k ≤ n. A feasible solution S = (C, σ) consists of a set C = {c1, . . . , ck} ⊆ P

ISAAC 2024

16:6 FPT Approximations for Fair k-Min-Sum-Radii

of centers and an assignment σ : P → C of points to centers. For a center ci ∈ C, we call
Ci = σ−1(ci) the cluster of ci induced by σ. Furthermore, we let ri = maxp∈Ci

d(p, ci)
denote the radius of Ci. Let r1, r2, . . . , rk be the radii induced by a solution S. We refer to
the tuple (r1, . . . , rk) as the radius profile of S. The cost of S = (C, σ) with radius profile
(r1, . . . , rk) with respect to the k-center objective is defined as maxi∈{1,...,k} ri, while the
cost with respect to the k-min-sum-radii objective is defined as MSR(S) =

∑k
i=1 ri. The

k-center/k-min-sum-radii problem takes as input a point set P , a metric d : P × P → R≥0
and a number k ∈ N, and the task is to minimize the k-center/k-min-sum-radii objective.

Exact Fairness. In the fairness setting, every point belongs to exactly one protected group.
Here, we will usually denote these groups by colors γ1, . . . , γm. A coloring of the points is
given by a function γ : P → {γ1, . . . , γm}.

The notion of exact fairness as for example defined in [25] is based on maintaining the
underlying proportions of colors in the clusters. That is, for every color γj , the proportion of
points in P with color γj is the same as the proportion of points with color γj in any cluster.
To be more precise, we call a solution S = (C, σ) with induced clusters C1, . . . , Ck fair if

|Ci ∩ Γj |
|Ci|

= |Γj |
|P |

for all i ≤ k and j ≤ m, where Γj = γ−1(γj) is the set of points with color γj . The special
case of m = 2 and |Γ1| = |Γ2| has a specifically nice structure because the optimum solution
can be partitioned into |P |/2 bicolored pairs. We refer to this as the 1:1 case.

There also exist more relaxed definitions of fairness that do not demand strict preservation
of input ratios. In the full version, we discuss notions from [6, 7, 8, 13, 25].

Mergeable Constraints. Let (C, σ) be a clustering. We merge two clusters Ci := σ−1(ci),
Cj := σ−1(cj) by replacing ci, cj ∈ C by an arbitrary point c′ ∈ Ci∪Cj (i.e., C := C\{ci, cj}∪
{c′}) and assigning σ(p) = c′ for all p ∈ Ci ∪ Cj . Notice that because σ maps every point to
exactly one center, all clusters Ci := σ−1(ci), i = 1, . . . , k need to be pairwise disjoint.

▶ Definition 1. We say a constraint is mergeable if a feasible clustering is still feasible with
respect to the constraint after merging two of its clusters.

In this context, we say an assignment is feasible if it preserves the constraint. When dealing
with the k-min-sum-radii problem with a specific mergeable constraint, we refer to the
k-center problem with the same constraint as the corresponding k-center problem. For
example, for k-min-sum-radii with exact fairness, the corresponding k-center problem is
k-center with exact fairness. In the full version, we list several (fairness) constraints that are
mergeable and prove this.

2.1 The k-center completion problem
The following problem can be solved in a relatively straightforward way using Gonzalez’
algorithm [18].

▶ Definition 2. The k-center completion problem takes as input a point set P , a metric
d : P × P → R≥0, a number k ∈ N, a set of predefined centers c1, . . . , cℓ for an ℓ ∈ [k], and
corresponding radii r1, . . . , rℓ. The aim is to compute centers cℓ+1, . . . , ck and an assignment
α : P → {c1, . . . , ck} such that maxx∈P d′(x, α(x)) is minimized where

L. Carta, L. Drexler, A. Hennes, C. Rösner, and M. Schmidt 16:7

p

ĉ1

ĉ2 c̄3

r̂1

r̂2

Figure 2 An instance of a 3-center completion problem. The centers ĉ1 and ĉ2 with corresponding
radii r̂1 = 1 and r̂2 = 0.5 are already given. The underlying distances are given by d(p, ĉ1) = 1.5,
d(p, ĉ2) = 1, d(p, c̄3) =

√
2. In d′, all distances to one of the centers ĉ1, ĉ2 are shortened by the

respective radius r̂1, r̂2. Dotted parts indicate the segments that do not contribute to the distance
d′. For example, d′(p, ĉ1) = 0.5, d′(p, ĉ2) = 0.5. However, distances not involving ĉ1 or ĉ2 as one of
the end points stay the same, i.e., d′(p, c̄3) = d(p, c̄3). Originally, the point p is closer to c̄3 than to
ĉ1. But under d′, p is closer to ĉ1. This example also shows that the distance d′ does not fulfill the
triangle inequality: While d′(p, c̄3) =

√
2, the detour via ĉ2 is shorter: d′(p, ĉ2) + d(ĉ2, c̄3) = 1.

d′(x, y) =

max{d(x, y)− ri, 0} if x ∈ P \ {c1, . . . , cℓ}, y = ci with i ∈ {1, . . . , ℓ}
max{d(x, y)− ri − rj , 0} if x = ci, y = cj with i, j ∈ {1, . . . , ℓ}
d(x, y) else

i.e., the radius of clusters 1 to ℓ is reduced by r1, . . . , rℓ when computing the objective function.

Figure 2 shows an example instance for such a completion problem. The k-center
completion problem can be solved by running an adapted farthest-first traversal starting
with c1, . . . , cℓ and using distance function d′. For i = ℓ + 1, . . . , k, always pick a point x that
maximizes minj∈[i] d′(x, cj) and set ci := x. When started with ℓ = 0 and d instead of d′,
this is known as farthest-first traversal or Gonzalez’ algorithm [18]. The change is that we
already have chosen the first ℓ centers and thus they differ from what Gonzalez’ algorithm
would have picked (and consequently, the remaining centers also differ), and also that the
distance to the first ℓ points is not metric. The adapted algorithm is described in Algorithm 1.
Lemma 3 verifies that the algorithm still succeeds in computing a 2-approximation.

▶ Lemma 3. Running Algorithm 1 with d′ and c1, . . . , cℓ already fixed yields a 2-approximation
for the k-center completion problem with input (P, d, k, c1, . . . , cℓ, r1, . . . , rℓ).

Proof. We follow the proof for the approximation guarantee of Gonzalez’ algorithm and
verify that it still works in the case of the somewhat different k-center problem. Let D be
the maximum distance of any point to its closest point in {c1, . . . , ck} with respect to d′,
i.e., D is the cost of the solution computed by Farthest-first-traversal-completion
with c1, . . . , cℓ already fixed. Let ck+1 be a point with mini∈[k] d′(ck+1, ci) = D. Observe
that all ci with i ≥ ℓ + 1 satisfy that d′(ci, cj) ≥ D for all j ∈ {1, . . . , ℓ} because otherwise
ck+1 would have been chosen as a center since its minimum distance is D. Inductively we
also get for all ci, cj with i, j ≥ ℓ + 1 that d′(ci, cj) ≥ D is true because otherwise ck+1 would
have been chosen. Now we get to the point where the proof differs slightly from the original

ISAAC 2024

16:8 FPT Approximations for Fair k-Min-Sum-Radii

Algorithm 1 Farthest-first-traversal-completion.

Input : Point set P , distance function d, integer k, centers c1, . . . , ci, radii r1, . . . , ri

Output : Set of k centers, assignment α

1 // Update distance function
2 d′ ← d

3 for j = 1, . . . , i do
4 for p ∈ P do
5 d′(cj , p)← max{d(cj , p)− rj , 0}

6 // Complete centers by farthest-first-traversal
7 for j = i + 1, . . . , k do
8 ci+1 ← arg maxp∈P maxc∈{c1,...,ci} d′(p, c)
9 // Assign points to their closest centers

10 for p ∈ P do
11 α(p)← arg minc∈{c1,...,ck} d′(p, c)
12 return c1, . . . , ck, α

proof because we have a case distinction. We have k + 1 points c1, . . . , ck+1. In an optimum
solution for the somewhat different k-center problem, we can assume that every point is
assigned to its closest center, and in particular, all centers are assigned to themselves. There
is always an optimum solution that satisfies this (this property is not necessarily ensured for
clustering problems with constraints). Let c∗

ℓ+1, . . . , c∗
k and α∗ : P → {c1, . . . , cℓ, c∗

ℓ+1, . . . , c∗
k}

be a such an optimal solution, i.e., α∗(ci) = ci for all i ∈ [ℓ].
Case 1 is that for some i ∈ {ℓ + 1, . . . , k + 1}, α∗(ci) = cj ∈ {c1, . . . , cℓ}, i.e., one of the

points we picked as a center or the additional point ck+1 is in the optimum solution assigned
to one of the predefined centers. In this case, OPT ≥ d′(ci, cj) ≥ D since we argued that all
our centers have distance of at least D to the predefined centers.

Case 2 is that none of cℓ+1, . . . , ck+1 is assigned to any predefined center. Thus, they are
all assigned to the k − ℓ centers c∗

ℓ+1, . . . , c∗
k. By the pigeonhole principle, this means that

α∗(ci) = α∗(cj) = c∗
m for some i, j ∈ {ℓ+1, . . . , k +1} and m ∈ {ℓ+1, . . . , k}. Since i, j ∈ [ℓ],

d′(ci, cj) ≥ D as argued above. Also since i, j, m ∈ [ℓ], by definition, d′(ci, cj) = d(ci, cj),
d′(ci, cm) = d(ci, cm) and d′(cj , cm) = d(cj , cm).

We conclude by the triangle inequality that

D ≤ d′(ci, cj) = d(ci, cj) ≤ d(ci, c∗
m) + d(d∗

m, cj)
≤ 2 max

g=i,j
{d(cg, α∗(cg))} ≤ 2 max

g≥ℓ+1
{d(cg, α∗(cg))}.

As d(cg, α∗(cg)) = d′(cg, α∗(cg)) for all g ≥ ℓ + 1 by definition, this implies OPT ≥ 1
2 D. ◀

2.2 Guessing an Approximate Radius Profile for the Optimum Solution
In the full version, we obtain the following corollary that allows us to guess close approx-
imations for all radii of the optimal k-MSR solution in FPT time. Let (r∗

1 , . . . , r∗
k) be the

radius profile of an optimal solution. We call a radius profile (r̃1, . . . , r̃k) near-optimal if
r∗

i ≤ r̃i ≤ (1 + ε)r∗
i for all i ∈ {1, . . . , k}.

▶ Corollary 4. Let (r∗
1 , . . . , r∗

k) be the radius profile of an optimal solution, and assume
that we know the value of a constant-factor approximation solution for the corresponding
k-center problem on the same instance. Then we can compute a set of size O(logk

1+ε(k/ ε))
that contains a near-optimal radius profile (r̃1, . . . , r̃k) in time O(k logk

1+ε(k/ ε)).

L. Carta, L. Drexler, A. Hennes, C. Rösner, and M. Schmidt 16:9

3 Algorithm for k-Min-Sum-Radii with Mergeable Constraints

The aim of this section is to prove the following Theorem 5 which is proven in Section 3.2,
followed by Theorem 13 for 1:1 fairness in Section 3.2.1 and Corollary 14 for lower bounds in
Section 3.2.2.

▶ Theorem 5. For every ε > 0, there exists an algorithm that computes a (6 − 3
k + ε)-

approximation for k-min-sum-radii with mergeable constraints in time O((k log1+ε(k/ ε))k ·
poly(n)) if the corresponding constrained k-center problem has a constant factor approximation
algorithm.

Our algorithm works in two steps. First, the algorithm computes a candidate set of k radii
and centers based on guessing. If it guesses correctly, the induced balls form a feasible
k-min-sum-radii solution with certain properties. However, it might not fulfill the mergeable
constraint yet. What it means to guess correctly is defined later in Definition 6 after the
algorithm is specified. Notice that for this part, we need no assumptions about the constraint
aside from the fact that an approximation algorithm for the k-center problem under this
mergeable constraint exists. We need mergeability only in the computation of the final
assignment in Section 3.2.

In the second step of the algorithm, we compute an assignment of points to the candidate
centers. If the center and radius candidates from the first step are appropriate, then this
assignment is guaranteed to fulfill the mergeable constraint.

In the following, we fix an optimal solution that we are trying to find. It consists of
clusters C∗

1 , . . . , C∗
k , with centers c∗

1, . . . , c∗
k and radii r∗

1 , . . . , r∗
k. We will assume that the

optimal radii are sorted decreasingly. All clusters necessarily fulfill the mergeable constraint.
Furthermore, we assume that we are in an iteration where we consider the radius profile
r̃1, . . . , r̃k satisfying r∗

j ≤ r̃j ≤ (1 + ε)r∗
j for all j ≤ k. We also say that such a radius profile

is near-optimal. Such an iteration exists due to Corollary 4. During this run of the algorithm,
we are constructing candidate centers ĉ1, . . . , ĉk and candidate radii r̂1, . . . , r̂k. In summary,
we have the following notation to be aware of during the following:

C∗
1 , . . . , C∗

k denote an optimal clustering for k-MSR with mergeable constraint with centers
c∗

1, . . . , c∗
k and radii r∗

1 ≥ . . . ≥ r∗
k

r̃1, . . . , r̃k denote initial near-optimal radius profile such that r∗
j ≤ r̃j ≤ (1 + ε)r∗

j for all
j ≤ k

ĉ1, . . . , ĉi, r̂1, . . . , r̂i denote candidate centers and radii constructed up to iteration i

3.1 Selection of Candidate Centers and Radii
The general idea of the algorithm is as follows: Assume that in the beginning of iteration i,
we already fixed candidate centers ĉ1, . . . , ĉi−1 and candidate radii r̂1, . . . , r̂i−1. We compute
a 2-approximation for the induced k-center completion instance. The resulting output
consists of centers ĉ1, . . . , ĉi−1, c̄i, . . . , c̄k, radii r̂1, . . . , r̂i−1, r̄i, . . . , r̄k and an assignment α.
We guess α(c∗

i), i.e. where the i-th center of the optimal solution is assigned to in the
k-center completion solution. Recall that we already have a good approximation for r̃i for
the corresponding optimal solution radius r∗

i . If we guess that α(c∗
i) is among the newly

chosen centers, i.e. if α(c∗
i) = c̄j ∈ {c̄i, . . . , c̄k}, we open a new ball with radius r̂i = 3r̃i at

this center ĉi := c̄j . Otherwise, if we guess that α(c∗
i) = ĉj ∈ {ĉ1, . . . , ĉi−1}, there already

exists a ball around this center, and we only need to enlarge this ball by 3r̃i. In order to
have k centers in the end, we set ĉi to some arbitrary point and r̂i = 0.

ISAAC 2024

16:10 FPT Approximations for Fair k-Min-Sum-Radii

The guessing of the center assignments can be handled as follows. In every iteration i,
we have k possible choices for α(c∗

i). So each sequence of k “guesses” can be encoded by a
tuple a = (a1, . . . , ak) ∈ {1, . . . , k}k, where ai = ℓ means that in the ith iteration, we choose
the ℓ-th center of the k-center completion solution as α(c∗

i) (i.e. ĉℓ if ℓ < i, or c̄ℓ if ℓ ≥ i).
Thus, we can emulate the guessing by generating all such tuples upfront, computing the
candidate balls for each of these, and choosing the best feasible one in the end. For a formal
description of the algorithm, see Algorithm 2.

Algorithm 2 Centers-and-radii.

Input : Points P , distances d, k ∈ N, radius profile (r̃1, . . . , r̃k), tuple (a1, . . . , ak)
Output : Set of k centers, set of k radii

1 I0 ← (P, d, k, ∅, ∅)
2 for i = 1, . . . , k do
3 (Skcc, α)← Farthest-first-traversal-completion(Ii−1) , where

Skcc = {ĉ1, . . . , ĉi−1, c̄i, . . . , c̄k} and α : P → Skcc

4 if ai < i then
5 // guess that α(c∗

i) ∈ {ĉ1, . . . , ĉi−1}
6 Set r̂ai ← r̂ai + 3r̃i, choose ĉi arbitrarily, set r̂i ← 0
7 else if ai ≥ i then
8 // guess that α(c∗

i) ∈ {c̄i, . . . , c̄k}
9 Set ĉi ← c̄ai

, r̂i ← 3r̃i

10 Ii ← (P, d, k, {ĉ1, . . . , ĉi}, {r̂1, . . . , r̂i})
11 return {ĉ1, . . . , ĉk}, {r̂1, . . . , r̂k}

In the full version, we show an example run of Algorithm 2. With this notation and
Algorithm 2 in place, we can now formally define what it means to guess correctly.

▶ Definition 6 (Guessing correctly). Given a solution (Skcc, α) for the k-center completion
problem with input ĉ1, . . . , ĉi−1 and r̂1, . . . , r̂i−1. We say that Algorithm 2 guesses correctly
if the input tuple a is such that in every iteration i, ai is a correct guess of the assignment
of the next optimal center under α. To be more precise, ai is the smallest index in {1, . . . , k}
such that cai

= α(c∗
i) with Skcc = {c1, . . . , ck}, where c∗

i is the center of the next optimal
cluster C∗

i .

The idea of Algorithm 2 is that it fully covers one so-far uncovered optimal cluster in
every iteration (under the assumption that the initial radius profile is near-optimal and
Algorithm 2 guesses correctly). For the analysis, we need the following Lemma that bounds
the cost of an optimal k-center completion solution in any iteration of Algorithm 2 by the
radius of the largest remaining optimal cluster that is not fully covered yet. Combining with
Lemma 3 gives an upper bound on the distance between an optimal center c∗ and the center
α(c∗) it is assigned to.

▶ Lemma 7. Assume that up to the end of iteration i, Algorithm 2 chose centers ĉ1, . . . , ĉi

and radii r̂1, . . . , r̂i such that for all p ∈
⋃

j≤i C∗
j , there exists a center ĉℓ ∈ {ĉ1, . . . , ĉi} such

that d′(p, ĉℓ) = 0. Then, the value of an optimal solution for the k-center completion problem
with input {ĉ1, . . . , ĉi}, {r̂1, . . . , r̂i} is at most r∗

i+1.

Proof. Consider the center extension {c∗
i+1, . . . , c∗

k}. By the precondition of the lemma, we
can assign every point in p ∈

⋃
j≤i C∗

j to a center in {ĉ1, . . . , ĉi} at distance 0 with respect
to d′. For all h ≥ i + 1, any x ∈ C∗

h can be assigned to c∗
h at distance ≤ r∗

h. As the optimal

L. Carta, L. Drexler, A. Hennes, C. Rösner, and M. Schmidt 16:11

radii are sorted in decreasing order, r∗
i+1 is the largest remaining radius among the optimal

clusters under d′. Hence, the resulting assignment α′ satisfies d′(x, α′(x)) ≤ r∗
i+1. Notice

that {c∗
i+1, . . . , c∗

k} and α′ form a feasible solution for the k-center completion problem and
that the maximum radius of this solution is r∗

i+1 as argued above. Hence, the optimum value
for the k-center completion problem is upper bounded by r∗

i+1. ◀

Now, we can show that there exists a surjective mapping φ : {C∗
1 , . . . , C∗

k} → B̂, where B̂ is
the collection of balls from {B(ĉ1, r̂1), . . . , B(ĉk, r̂k)} for which r̂i > 0, such that C∗

j ⊆ φ(C∗
j)

for all j ≤ k. The next Lemma formalizes this.

▶ Lemma 8. Assume that our guess of the initial radius profile is near-optimal and that
Algorithm 2 guesses correctly. Let B̂ denote the set of balls B(ĉ1, r̂1), . . . , B(ĉk, r̂k) found by
Algorithm 2. Then the following two statements hold true
1. for all j ≤ k, there exists ℓ ≤ k such that C∗

j ⊆ B(ĉℓ, r̂ℓ)
2. for all ℓ ≤ k, if rℓ > 0 then there exists j ≤ k such that C∗

j ⊆ B(ĉℓ, r̂ℓ).

Proof. We show that the statement holds at the end of every iteration of Algorithm 2. That
is, we show that for all i ≤ k, the following holds
(1) for all j ≤ i, there exists ℓ ≤ i such that C∗

j ⊆ B(ĉℓ, r̂ℓ)
(2) for all ℓ ≤ i, if rℓ > 0 then there exists j ≤ i such that C∗

j ⊆ B(ĉℓ, r̂ℓ).
Then setting i = k implies the result. We prove this via induction over i ≤ k. For i = 0, the
statements are trivially fulfilled. Now let the statement be fulfilled at the end of iteration
i− 1 < k for some i > 0.

By Lemma 7, OPTkcc ≤ r∗
i , where OPTkcc is the value of an optimal solution for the

k-center completion problem that takes the centers and radii generated until the end of
iteration i− 1 as input. By Lemma 3, Farthest-first-traversal-completion in Line 3
of Algorithm 2 computes a 2-approximation for the k-center completion problem. These two
arguments together imply d(c∗

i , α(c∗
i)) ≤ 2 OPTkcc ≤ 2r∗

i .
If c∗

i = ĉj for some j ≤ i− 1, then for all p ∈ C∗
i , it is d(p, ĉj) = d(p, c∗

i) ≤ r∗
i ≤ r∗

j , where
the last inequality holds because the optimal radii are sorted decreasingly.

If Algorithm 2 guesses correctly, cai
= α(c∗

i) = c∗
i = ĉj and the radius r̂new

j produced
in Line 6 fulfills r̂new

j := r̂j + 3r̃i ≥ r∗
i . Therefore C∗

i is covered completely by B(ĉj , r̂new
j).

This implies that (1) holds. For index i, the algorithm creates a new ball with radius r̂i = 0.
Therefore, statement (2) is fulfilled by the induction hypothesis.

Now, we assume that c∗
i /∈ {ĉ1, . . . , ĉi−1}. There are two cases for the guess ai.

1. Either ai < i. Then, we are in Line 6 of Algorithm 2 and enlarge an already existing ball
centered at α(c∗

i) = ĉai by 3r̃i, i.e., the ai-th ball is B(ĉai , r̂ai + 3r̃i) at the end of the
iteration. For every p ∈ C∗

i ,

d(p, ĉai
) ≤ d(p, c∗

i)+d(c∗
i , ĉai

) = d(p, c∗
i)+d′(c∗

i , ĉai
)+ r̂ai

= d(p, c∗
i)+d′(c∗

i , α(c∗
i))+ r̂ai

.

It is d(p, c∗
i) ≤ r∗

i as p ∈ C∗
i , and d′(c∗

i , α(c∗
i)) ≤ 2r∗

i as α is the assignment given by the
2-approximation. Further, r∗

i ≤ r̃i. Overall, d(p, ĉai
) ≤ 3r̃i + r̂ai

, which implies that the
ball B(ĉai , r̂ai + 3r̃i) covers C∗

i completely.
2. Or ai ≥ i. In this case, the algorithm creates a new ball B(ĉi, r̂i) with ĉi := cai

= α(c∗
i)

and r̂ := 3r̃i. For every p ∈ C∗
i ,

d(p, ĉi) = d(p, α(c∗
i)) ≤ d(p, c∗

i) + d(c∗
i , α(c∗

i)) = d(p, c∗
i) + d′(c∗

i , α(c∗
i)),

where the last equality holds because c∗
i ̸∈ {ĉ1, . . . , ĉi−1} and ai is the smallest index

such that cai = α(c∗
i), which implies cai ̸∈ {ĉ1, . . . , ĉi−1}. Again, d(p, c∗

i) ≤ r∗
i and

d′(c∗
i , α(c∗

i)) ≤ 2r∗
i . Overall, d(p, ĉi) ≤ 3r∗

i ≤ 3r̃i, and hence, C∗
i is completely covered by

B(ĉi, r̂i). ◀

ISAAC 2024

16:12 FPT Approximations for Fair k-Min-Sum-Radii

ĉ1

ĉ2

ĉ3

ĉ4r̂1

r̂2

r̂3
r̂4

Figure 3 An instance of a k-min-sum-radii problem with exact fairness constraint with two colors
and a blue:orange ratio of 2:1. The larger dots indicate centers and the gray lines indicate the radii
output by Alg. 2. The black circles show the induced balls B(ĉi, r̂i). The black lines between points
represent the edges of the induced access graph. Note that the balls themselves are not necessarily
fair, but every connected component is.

Notice that the candidate balls might overlap, but the optimal clusters are pairwise disjoint
by definition of a clustering. The following lemma relates the total cost of the clustering
consisting of the candidate balls to the cost of an optimal k-min-sum-radii with mergeable
constraints solution. This will be useful for analyzing the cost of our final solution later
on. Notice that this statement does not imply an approximation ratio for the vanilla
k-min-sum-radii problem.

▶ Lemma 9. Let r̂1, . . . , r̂k be the radii produced by Alg. 2. Then
∑k

j=1 r̂j ≤ 3(1+ε)
∑k

j=1 r∗
j .

Proof. We show by induction that
∑i

j=1 r̂j ≤ 3 ·
∑i

j=1 r̃j for all i ≤ k. Then for i = k, the
result follows since r̃j ≤ (1 + ε)r∗

j for all j ≤ k.
For i = 0, the statement trivially holds. Now assume that the statement holds for i− 1.

Either the algorithm sets r̂i := 3r̃i during iteration i. Then,
∑i

j=1 r̂j =
∑i−1

j=1 r̂j + r̂i ≤
3

∑i−1
j=1 r̃j + 3r̃i. For the remaining case, let r̂

(i−1)
j denote the value of r̂j at the beginning

of the ith iteration, and r̂
(i)
j its value at the end of the iteration, j ≤ i. There exists ℓ < i

such that the algorithm sets r̂
(i)
ℓ := r̂

(i−1)
ℓ + 3r̃i and r̂

(i)
i := 0. Then,

∑i
j=1 r̂

(i)
j =

∑i−1
j=1 r̂

(i)
j =∑i−1

j=1 r̂
(i−1)
j + 3r̃i ≤ 3 ·

∑i
j=1 r̃j . ◀

3.2 Finding the Assignment
In the following, we will show how to find a feasible assignment. We construct a graph from
center and radii candidates computed in the first part of the algorithm and observe that the
clustering induced by the connected components of this graph fulfills the given mergeable
constraint. We define the access graph G = (V, E) as follows. The set of vertices corresponds
to the given point set, i.e. V = P . We add an edge between any pair of vertices x, y ∈ V

iff x = ĉi for a center ĉi constructed in Algorithm 2 and d(y, ĉi) ≤ r̂i for the corresponding
radius r̂i. The construction is exemplified in Figure 3. A connected component is a maximal
connected subgraph of G. Let CC(G) denote the set of connected components in G. Covering
a connected component Z ∈ CC(G) using one large cluster is not more expensive than
covering it using the balls B(ĉ, r̂) for all ĉ ∈ Z.

L. Carta, L. Drexler, A. Hennes, C. Rösner, and M. Schmidt 16:13

▶ Lemma 10. Assume Algorithm 2 made the correct decision in each iteration and terminates
with centers Ĉ = {ĉ1, . . . , ĉk} and radii r̂1, . . . , r̂k. Let G = (V, E) be the corresponding access
graph. Let Z ∈ CC(G) be a connected component of G. Then assigning all vertices from Z

to an arbitrary point in Z yields a cluster that is feasible with respect to the given mergeable
constraint.

Proof. Let Z ∈ CC(G) be a connected component of G. Let V(Z) denote the set of vertices
of Z. We will show that V(Z) consists solely of ℓ optimal clusters that all lie entirely in
V(Z) for some ℓ ≥ 1. As optimal clusters fulfill the mergeable constraint, the union of these
also fulfills the mergeable constraint.

Every point p ∈ V(Z) lies in some optimal cluster. Hence, there exists at least one
optimal cluster that intersects V(Z). We want to conclude that such a cluster already is
completely contained in V(Z). Assume for a contradiction that there exists an optimal ball
C∗ such that C∗ ∩V(Z) ̸= ∅ and C∗ ̸⊆ V(Z). By Lemma 8, there exists a ball B(ĉ, r̂) such
that C∗ ⊆ B(ĉ, r̂). Let v ∈ C∗ \V(Z). Then d(v, ĉ) ≤ r̂ and therefore ĉ must be part of the
connected component Z, a contradiction. ◀

We can use this insight as follows: For every connected component Z ∈ CC(G), pick one of
the centers ĉ ∈ Ĉ ∩V(Z) that lie inside the connected component and assign all points in
V(Z) to ĉ. This way, we get a solution that contains one cluster per connected component.
To achieve the smallest possible cost guarantee, we set ĉ with the largest corresponding r̂ as
the final center.

▶ Lemma 11. Let Ĉ = {ĉ1, . . . , ĉk}, r̂1, . . . , r̂k and G = (V, E) as in Lemma 10. For every
connected component Z, we choose the center ĉZ ∈ Ĉ ∩ V(Z) such that the corresponding
radius r̂Z is maximal among all radii in the connected component. Then, the solution (C, f)
with C = {ĉZ | Z ∈ CC(G)} and f : P → C with f(z) = ĉZ for all z ∈ Z and for all
connected components Z is a (6 − 3

k + ε)-approximation for the k-min-sum-radii problem
under a mergeable constraint.

Proof. Since each cluster in the solution corresponds to exactly one connected component of
G, Lemma 10 implies that the solution fulfills the mergeable constraint.

It remains to prove the approximation factor. Let Z ∈ CC(G) be a connected component
in G. Let vZ ∈ arg maxp∈Z d(ĉZ , vZ). There exists a path from ĉZ to vZ in Z. A shortest
such path ĉZ , v1, ĉZ

1 , v2, ĉZ
2 , . . . vℓ, ĉZ

ℓZ
, vZ with ℓZ ≤ k alternatingly visits points in Ĉ and

V(Z)\Ĉ. Therefore, its length is bounded by
∑

i≤ℓZ
2r̂Z

i − r̂Z
max, where r̂Z

max := maxi : ĉi∈Z r̂Z
i .

The radius of a cluster with center ĉZ is given by d(vZ , ĉZ). Hence, the sum of the radii of
such clusters is bounded by

∑
Z∈CC(G)

d(vZ , ĉZ) ≤
∑

Z∈CC(G)

(∑
i≤ℓZ

2r̂Z
i − r̂Z

max

)
=

k∑
j=1

2r̂j −
∑

Z∈CC(G)

r̂Z
max

where the second equality holds because a graph’s connected components are disjoint.
There exists a connected component Z ′ such that r̂Z′

max = maxi≤k r̂i =: r̂max. Therefore,∑
Z∈CC(G) r̂Z

max ≥ r̂max. Further, r̂max ≥ 1
k

∑k
j=1 r̂j . Hence,

k∑
j=1

2r̂j −
∑

Z∈CC(G)

r̂Z
max ≤

(
2− 1

k

) k∑
j=1

r̂j ,

ISAAC 2024

16:14 FPT Approximations for Fair k-Min-Sum-Radii

and by Lemma 9,

(
2− 1

k

) k∑
j=1

r̂j ≤ 3
(
1 + ε

)(
2− 1

k

) k∑
j=1

r∗
j =

(
6− 3

k

)(
1 + ε

) k∑
j=1

r∗
j . ◀

Algorithm 4 finds such a solution. Now we are ready to prove our main Theorem.

Algorithm 3 Assignment.

Input : Graph G = (V, E), distance function d, set of centers ĉ1, . . . , ĉk

Output : Set of ≤ k centers C, assignment f

1 C← ∅
2 for each connected component Z of G do
3 find a center ĉ ∈ Z ∩ Ĉ such that r̂ is largest
4 C← C ∪ {ĉ}
5 for all p ∈ Z do
6 f(p)← ĉ

7 return C, f

Algorithm 4 k-min-sum-radii with mergeable constraints.

Input : Point set P , distance function d, k ∈ N
Output : Set of ≤ k centers C, assignment f

1 U ← (6 + ε) maxx,y∈P d(x, y) // upper bound on the sum of radii cost
2 R← set of radius profile guesses
3 forall (r̃1, . . . , r̃k) ∈ R do
4 forall a ∈ {1, . . . , k}k do
5 ({ĉ1, . . . , ĉk}, {r̂1, . . . , r̂k})← Centers-and-radii(P, d, k, (r̃1, . . . , r̃k), a)
6 compute the access graph G based on {ĉ1, . . . , ĉk} and {r̂1, . . . , r̂k}
7 (C, f)← Assignment(G, d, {ĉ1, . . . , ĉk})
8 if (C, f) is feasible and MSR(C, f) < U then
9 (C∗, f∗)← (C, f)

10 U ← MSR(C, f)

11 return C∗, f∗

▶ Theorem 5. For every ε > 0, there exists an algorithm that computes a (6 − 3
k + ε)-

approximation for k-min-sum-radii with mergeable constraints in time O((k log1+ε(k/ ε))k ·
poly(n)) if the corresponding constrained k-center problem has a constant factor approximation
algorithm.

Proof. We invoke Algorithm 2 for all possible guesses of radius profiles and center assignments.
For each of these, we compute the access graph G and invoke Algorithm 3 to obtain a solution.
By Lemma 11, this solution is feasible and a (6 − 3

k + ε)-approximation, assuming that
Algorithm 2 guesses correctly. Since it iterates over all possible guesses, we can be sure that
in one of the iterations we do indeed guess correctly. In the end, we return the best solution
found, whose cost can therefore be upper bounded by (6− 3

k + ε) times the optimum.

L. Carta, L. Drexler, A. Hennes, C. Rösner, and M. Schmidt 16:15

ĉ1

ĉ2

ĉ3

o4

b3

b1

o2

b4 o5

b5

ĉ1

o2

o4

ĉ3

o5

b1

b3

ĉ2

b4

b5

s t

Γ1 Γ2

Figure 4 A fair k-min-sum-radii instance with two colors and equal proportions. Left: Output of
Algorithm 2 as balls B(ĉi, r̂i) for i = 1, 2, 3 and the graph edges between any fair pair of points that
have access to the same center ĉ. Right: The corresponding flow network. All edges have capacity 1.

To be able to guess a radius profile, we first need to compute an approximate solution for
constrained k-center, which can be done in polynomial time. By Corollary 4, we can then
construct the set R in Line 2 of Algorithm 4 in time O(k log1+ε(k/ ε)k). The outer for-loop in
line 3 then goes through |R| iterations, which is O(log1+ε(k/ ε)k). The inner for-loop in line
4 goes through kk iterations. So in total, lines 5-10 are invoked O

(
(k log1+ε(k/ ε))k

)
times.

The runtime of one call to Centers-and-radii is dominated by the runtime of the calls to
Farthest-first-traversal-completion. This in turn has the same asymptotic running
time as Gonzalez’ algorithm, which can be implemented to run in O(kn). So we can bound
the runtime of Centers-and-radii by O(k2n). The construction of the access graph can
be performed in O(kn), as can one call to Assignment. The feasibility of a solution can be
checked in O(n). Thus, we obtain an overall running time of O

(
(k log(k/ ε))k · poly(n)

)
. ◀

3.2.1 Fairness with two Colors and Equal Proportions
We can get better guarantees for the exact fairness constraint with two colors and equal
proportions. In this case, we can find a fair assignment such that none of the radii r̂ has to
be enlarged. The idea is that we first compute a fair micro clustering (i.e. partition P into
fair pairs) and then assign these pairs to a common center.

Let P = Γ1∪Γ2, i.e., P consists of two different colors, γ1, γ2. We set Γ1 = γ−1(γ1), Γ2 =
γ−1(γ2) as the sets of points carrying the respective color. Here, |Γ1| = |Γ2| = n

2 . We want
to partition the set P into pairs consisting of two points p1, p2 where p1 ∈ Γ1 and p2 ∈ Γ2.
This is equivalent to finding a perfect matching of size n

2 between Γ1 and Γ2.
For this, we construct a flow network where there is an edge between p1 ∈ Γ1 and

p2 ∈ Γ2 if and only if they have access to a common center ĉ, i.e., iff there exists ĉ ∈ Ĉ with
d(ĉ, p1) ≤ r̂ and d(ĉ, p2) ≤ r̂. We connect all nodes of Γ1 to some vertex s and all nodes of
Γ2 to some vertex t. We set the capacities of all the edges of this network to 1. Computing a
perfect matching between points in Γ1 and Γ2 corresponds to finding a flow with value n

2 in
the given network. Such a flow exists if Algorithm 2 guessed correctly.

From the flow, we can construct the fair pairs by combining two points p1 ∈ Γ1 and
p2 ∈ Γ2 if the edge connecting them carries flow. We assign such a pair to a center ĉ to
which both points have access. We can summarize this in the following observation:

▶ Observation 12. Let F = {p1, p2} be a fair pair constructed as described above, let ĉ be the
center to which it gets assigned and r̂ the corresponding radius. Then maxi=1,2 d(pi, ĉ) ≤ r̂.

ISAAC 2024

16:16 FPT Approximations for Fair k-Min-Sum-Radii

In other words, assigning the fair pairs as a whole does not increase the cost. Together with
Lemma 9, this implies the following theorem.

▶ Theorem 13. Let P = Γ1∪Γ2 be a set of points consisting of only two different color groups
Γ1 and Γ2 that fulfill |Γ1| = |Γ2|. For every ε > 0, there exists an FPT (3 + ε)-approximation
algorithm for the fair k-min-sum-radii problem.

Proof. We run Algorithm 2 to obtain a set of balls B(ĉ, r̂) and then compute a partitioning
of P into fair pairs as described above. We assign each fair pair to a center to which both
points of the pair have access. By Lemma 9,

∑k
i=1 r̂i ≤ 3(1 + ε)

∑k
i=1 r∗

i . As noted in
Observation 12, assigning fair pairs does not increase the cost, which concludes the proof. ◀

3.2.2 Uniform Lower Bounds
In k-min-sum-radii with uniform lower bounds, we have an additional input number ℓ ∈ N,
and every cluster in the solution needs to contain at least ℓ points. In this case we set up
a network flow between the centers Ĉ on the left and the points on the right. There is a
super source s and an edge (s, ĉ) for every ĉ ∈ Ĉ. The capacity of these edges is set to the
lower bound L. Then every ĉ is connected to all x ∈ P with d(ĉ, x) ≤ r̂. Finally, all points
are connected with a unit capacity edge (x, t) to a super sink t. Any flow in this network
corresponds to an assignment of at least L points to each center. Since our balls cover the
optimum solution, we know that there exists a feasible flow in this network that sends k · L
units of flow to the super sink. We can thus run a maximum flow algorithm to find such an
assignment. After that, any remaining point x ∈ P can be assigned arbitrarily to a center ĉ

with d(x, ĉ) ≤ r̂. Again, this is possible due to Lemma 8.

▶ Theorem 14. There exists an FPT (3+ε)-approximation algorithm for the k-min-sum-radii
problem with uniform lower bounds.

References
1 Marek Adamczyk, Jaroslaw Byrka, Jan Marcinkowski, Syed Mohammad Meesum, and Michal

Wlodarczyk. Constant-factor FPT approximation for capacitated k-median. In Michael A.
Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium
on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144
of LIPIcs, pages 1:1–1:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPICS.ESA.2019.1.

2 Gagan Aggarwal, Rina Panigrahy, Tomás Feder, Dilys Thomas, Krishnaram Kenthapadi,
Samir Khuller, and An Zhu. Achieving anonymity via clustering. ACM Trans. Algorithms,
6(3):49:1–49:19, 2010. doi:10.1145/1798596.1798602.

3 Sara Ahmadian and Chaitanya Swamy. Approximation algorithms for clustering problems
with lower bounds and outliers. In Proc. of the 43rd ICALP, pages 69:1–69:15, 2016. doi:
10.4230/LIPICS.ICALP.2016.69.

4 Aditya Anand and Euiwoong Lee. Separating k-median from the supplier version. In Jens
Vygen and Jaroslaw Byrka, editors, Integer Programming and Combinatorial Optimization
- 25th International Conference, IPCO 2024, Wrocław, Poland, July 3-5, 2024, Proceedings,
volume 14679 of Lecture Notes in Computer Science, pages 14–27. Springer, 2024. doi:
10.1007/978-3-031-59835-7_2.

5 Sayan Bandyapadhyay, William Lochet, and Saket Saurabh. FPT constant-approximations for
capacitated clustering to minimize the sum of cluster radii. In Erin W. Chambers and Joachim
Gudmundsson, editors, 39th International Symposium on Computational Geometry, SoCG
2023, June 12-15, 2023, Dallas, Texas, USA, volume 258 of LIPIcs, pages 12:1–12:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.SOCG.2023.12.

https://doi.org/10.4230/LIPICS.ESA.2019.1
https://doi.org/10.4230/LIPICS.ESA.2019.1
https://doi.org/10.1145/1798596.1798602
https://doi.org/10.4230/LIPICS.ICALP.2016.69
https://doi.org/10.4230/LIPICS.ICALP.2016.69
https://doi.org/10.1007/978-3-031-59835-7_2
https://doi.org/10.1007/978-3-031-59835-7_2
https://doi.org/10.4230/LIPICS.SOCG.2023.12

L. Carta, L. Drexler, A. Hennes, C. Rösner, and M. Schmidt 16:17

6 Suman Kalyan Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani.
Fair algorithms for clustering. In Hanna M. Wallach, Hugo Larochelle, Alina Bey-
gelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Inform-
ation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 4955–4966, 2019. URL: https://proceedings.neurips.cc/paper/2019/hash/
fc192b0c0d270dbf41870a63a8c76c2f-Abstract.html.

7 Ioana Oriana Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel R.
Schmidt, and Melanie Schmidt. On the cost of essentially fair clusterings. In Dimitris
Achlioptas and László A. Végh, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2019, September 20-22, 2019,
Massachusetts Institute of Technology, Cambridge, MA, USA, volume 145 of LIPIcs, pages
18:1–18:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.
APPROX-RANDOM.2019.18.

8 Matteo Böhm, Adriano Fazzone, Stefano Leonardi, and Chris Schwiegelshohn. Fair clustering
with multiple colors. CoRR, abs/2002.07892, 2020. arXiv:2002.07892.

9 Moritz Buchem, Katja Ettmayr, Hugo K. K. Rosado, and Andreas Wiese. A (3 + ε)-
approximation algorithm for the minimum sum of radii problem with outliers and extensions
for generalized lower bounds. In David P. Woodruff, editor, Proceedings of the 2024 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10,
2024, pages 1738–1765. SIAM, 2024. doi:10.1137/1.9781611977912.69.

10 Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh.
An improved approximation for k-median, and positive correlation in budgeted optimization.
In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 737–756.
SIAM, 2015. doi:10.1137/1.9781611973730.50.

11 Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diameters. In
Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd
Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece,
pages 1–10. ACM, 2001. doi:10.1145/380752.380753.

12 Xianrun Chen, Dachuan Xu, Yicheng Xu, and Yong Zhang. Parameterized approximation
algorithms for sum of radii clustering and variants. In Michael J. Wooldridge, Jennifer G. Dy,
and Sriraam Natarajan, editors, Thirty-Eighth AAAI Conference on Artificial Intelligence,
AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence,
IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI
2014, February 20-27, 2024, Vancouver, Canada, pages 20666–20673. AAAI Press, 2024.
doi:10.1609/AAAI.V38I18.30053.

13 Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair
clustering through fairlets. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, ed-
itors, Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 5029–5037, 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/
978fce5bcc4eccc88ad48ce3914124a2-Abstract.html.

14 Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight
FPT approximations for k-median and k-means. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132
of LIPIcs, pages 42:1–42:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPICS.ICALP.2019.42.

ISAAC 2024

https://proceedings.neurips.cc/paper/2019/hash/fc192b0c0d270dbf41870a63a8c76c2f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/fc192b0c0d270dbf41870a63a8c76c2f-Abstract.html
https://doi.org/10.4230/LIPICS.APPROX-RANDOM.2019.18
https://doi.org/10.4230/LIPICS.APPROX-RANDOM.2019.18
https://arxiv.org/abs/2002.07892
https://doi.org/10.1137/1.9781611977912.69
https://doi.org/10.1137/1.9781611973730.50
https://doi.org/10.1145/380752.380753
https://doi.org/10.1609/AAAI.V38I18.30053
https://proceedings.neurips.cc/paper/2017/hash/978fce5bcc4eccc88ad48ce3914124a2-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/978fce5bcc4eccc88ad48ce3914124a2-Abstract.html
https://doi.org/10.4230/LIPICS.ICALP.2019.42
https://doi.org/10.4230/LIPICS.ICALP.2019.42

16:18 FPT Approximations for Fair k-Min-Sum-Radii

15 Vincent Cohen-Addad and Jason Li. On the fixed-parameter tractability of capacitated
clustering. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi,
editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP
2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 41:1–41:14. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.ICALP.2019.41.

16 Lukas Drexler, Annika Hennes, Abhiruk Lahiri, Melanie Schmidt, and Julian Wargalla.
Approximating fair k-min-sum-radii in euclidean space. In Jaroslaw Byrka and Andreas Wiese,
editors, Approximation and Online Algorithms - 21st International Workshop, WAOA 2023,
Amsterdam, The Netherlands, September 7-8, 2023, Proceedings, volume 14297 of Lecture Notes
in Computer Science, pages 119–133. Springer, 2023. doi:10.1007/978-3-031-49815-2_9.

17 Zachary Friggstad and Mahya Jamshidian. Improved polynomial-time approximations for
clustering with minimum sum of radii or diameters. In Shiri Chechik, Gonzalo Navarro, Eva
Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms,
ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages
56:1–56:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.
ESA.2022.56.

18 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci., 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.

19 Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms.
J. Algorithms, 31(1):228–248, 1999. doi:10.1006/JAGM.1998.0993.

20 Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem.
Math. Oper. Res., 10(2):180–184, 1985. doi:10.1287/MOOR.10.2.180.

21 Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems. Discret.
Appl. Math., 1(3):209–215, 1979. doi:10.1016/0166-218X(79)90044-1.

22 Tanmay Inamdar and Kasturi R. Varadarajan. Capacitated sum-of-radii clustering: An
FPT approximation. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors,
Proceedings of the 28th Annual European Symposium on Algorithms (ESA), volume 173, pages
62:1–62:17, 2020. doi:10.4230/LIPICS.ESA.2020.62.

23 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on
Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 731–740. ACM,
2002. doi:10.1145/509907.510012.

24 Ragesh Jaiswal, Amit Kumar, and Jatin Yadav. FPT approximation for capacitated sum of
radii. In Venkatesan Guruswami, editor, 15th Innovations in Theoretical Computer Science
Conference, ITCS 2024, January 30 to February 2, 2024, Berkeley, CA, USA, volume 287
of LIPIcs, pages 65:1–65:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:
10.4230/LIPICS.ITCS.2024.65.

25 Clemens Rösner and Melanie Schmidt. Privacy preserving clustering with constraints. In
Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,
45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July
9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 96:1–96:14. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.ICALP.2018.96.

https://doi.org/10.4230/LIPICS.ICALP.2019.41
https://doi.org/10.1007/978-3-031-49815-2_9
https://doi.org/10.4230/LIPICS.ESA.2022.56
https://doi.org/10.4230/LIPICS.ESA.2022.56
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1006/JAGM.1998.0993
https://doi.org/10.1287/MOOR.10.2.180
https://doi.org/10.1016/0166-218X(79)90044-1
https://doi.org/10.4230/LIPICS.ESA.2020.62
https://doi.org/10.1145/509907.510012
https://doi.org/10.4230/LIPICS.ITCS.2024.65
https://doi.org/10.4230/LIPICS.ITCS.2024.65
https://doi.org/10.4230/LIPICS.ICALP.2018.96

Succinct Data Structures for Baxter Permutation
and Related Families
Sankardeep Chakraborty #

The University of Tokyo, Japan

Seungbum Jo1 #

Chungnam National University, Daejeon, Republic of Korea

Geunho Kim #

Pohang University of Science and Technology, Republic of Korea

Kunihiko Sadakane #

The University of Tokyo, Japan

Abstract
A permutation π : [n] → [n] is a Baxter permutation if and only if it does not contain either of the
patterns 2 41 3 and 3 14 2. Baxter permutations are one of the most widely studied subclasses
of general permutation due to their connections with various combinatorial objects such as plane
bipolar orientations and mosaic floorplans, etc. In this paper, we introduce a novel succinct
representation (i.e., using o(n) additional bits from their information-theoretical lower bounds) for
Baxter permutations of size n that supports π(i) and π−1(j) queries for any i ∈ [n] in O(f1(n)) and
O(f2(n)) time, respectively. Here, f1(n) and f2(n) are arbitrary increasing functions that satisfy the
conditions ω(log n) and ω(log2 n), respectively. This stands out as the first succinct representation
with sub-linear worst-case query times for Baxter permutations. The main idea is to traverse the
Cartesian tree on the permutation using a simple yet elegant two-stack algorithm which traverses
the nodes in ascending order of their corresponding labels and stores the necessary information
throughout the algorithm.

Additionally, we consider a subclass of Baxter permutations called separable permutations, which
do not contain either of the patterns 2 4 1 3 and 3 1 4 2. In this paper, we provide the first succinct
representation of the separable permutation ρ : [n] → [n] of size n that supports both ρ(i) and
ρ−1(j) queries in O(1) time. In particular, this result circumvents Golynski’s [SODA 2009] lower
bound result for trade-offs between redundancy and ρ(i) and ρ−1(j) queries.

Moreover, as applications of these permutations with the queries, we also introduce the first
succinct representations for mosaic/slicing floorplans, and plane bipolar orientations, which can
further support specific navigational queries on them efficiently.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Succinct data structure, Baxter permutation, Mosaic floorplan, Plane bipolar
orientation

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.17

Related Version Full Version: https://arxiv.org/abs/2409.16650 [8]

Funding Seungbum Jo: This work was supported by research fund of Chungnam National University.
Geunho Kim: This research was partly supported by the Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.
2017-0-00905, Software Star Lab (Optimal Data Structure and Algorithmic Applications in Dynamic
Geometric Environment)).

1 Corresponding author

© Sankardeep Chakraborty, Seungbum Jo, Geunho Kim, and Kunihiko Sadakane;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sankardeep.chakraborty@gmail.com
https://orcid.org/0000-0002-2395-4160
mailto:sbjo@cnu.ac.kr
https://orcid.org/0000-0002-8644-3691
mailto:gnhokim@postech.ac.kr
https://orcid.org/0000-0003-4705-0489
mailto:sada@mist.i.u-tokyo.ac.jp
https://orcid.org/0000-0002-8212-3682
https://doi.org/10.4230/LIPIcs.ISAAC.2024.17
https://arxiv.org/abs/2409.16650
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Succinct Data Structures for Baxter Permutation and Related Families

1 Introduction

A permutation π : [n] → [n] is a Baxter permutation if and only if there are no three indices
i < j < k that satisfy π(j + 1) < π(i) < π(k) < π(j) or π(j) < π(k) < π(i) < π(j + 1)
(that is, π does not have pattern 2 41 3 or 3 14 2) [2]. For example, 3 5 2 1 4 is not a
Baxter permutation because the pattern 2 41 3 appears (π(2 + 1) = 2 < π(1) = 3 < π(5) =
4 < π(2) = 5 holds). A Baxter permutation π is alternating if the elements in π rise and
descend alternately. One can also consider separable permutations, which are defined as
the permutations without two patterns 2 4 1 3 and 3 1 4 2 [7]. From the definitions, any
separable permutation is also a Baxter permutation, but the converse does not hold. For
example, 2 5 6 3 1 4 8 7 is a Baxter permutation but not a separable permutation because of
the appearance of the pattern 2 4 1 3 (2 5 1 4).

In this paper, we focus on the design of a succinct data structure for a Baxter permutation
π of size n, i.e., the data structure that uses up to o(n) extra bits in addition to the information-
theoretical lower bound along with supporting relevant queries efficiently. Mainly, we consider
the following two fundamental queries on π: (1) π(i) returns the i-th value of π, and (2)
π−1(j) returns the index i of π(i) = j. We also consider the design of a succinct data
structure for a separable permutation ρ of size n that supports ρ(i) and ρ−1(j) queries. In
the rest of this paper, log denotes the logarithm to the base 2, and we assume a word-RAM
model with Θ(log n)-bit word size, where n is the size of the input. Also, we ignore all ceiling
and floor operations that do not impact the final results.

1.1 Previous Results
For general permutations, there exist upper and lower bound results for succinct data
structures supporting both π(i) and π−1(j) queries in sub-linear time [20,27]. However, to
the best of our knowledge, there does not exist any data structures for efficiently supporting
these queries on any subclass of general permutations. One can consider suffix arrays [21]
as a subclass of general permutations, but their space consumption majorly depends on
the entropy of input strings. This implies that for certain input strings, Ω(n log n) bits
(asymptotically the same space needed for storing general permutations) are necessary for
storing the suffix arrays on them.

Baxter permutation is one of the most widely studied classes of permutations [5] because
diverse combinatorial objects, for example, plane bipolar orientations, mosaic floorplans,
twin pairs of binary trees, etc. have a bijection with Baxter permutations [1, 15]. Note that
some of these objects are used in many applied areas. For example, mosaic floorplans are
used in large-scale chip design [25], plane bipolar orientations are used to draw graphs in
various flavors (visibility [34], straight-line drawing [17]), and floorplan partitioning is used
to design a model for stochastic processes [29]. The number of distinct Baxter permutations
of size n is Θ(8n/n4) [32], which implies that at least 3n − o(n) bits are necessary to store
a Baxter permutation of size n. Furthermore, the number of distinct alternating Baxter
permutations of size 2n (resp. 2n + 1) is (cn)2 (resp. cncn+1) where cn = (2n)!

(n+1)!n! is the n-th
Catalan number [11]. Therefore, at least 2n − o(n) bits are necessary to store an alternating
Baxter permutation of size n. Dulucq and Guibert [12] established a bijection between
Baxter permutations π of size n and a pair of unlabeled binary trees, called twin binary trees,
which are essentially equivalent to the pair of unlabeled minimum and maximum Cartesian
trees [35] for π. They provided methods for constructing π from the structure of twin
binary trees and vice versa, both of which require O(n) time. Furthermore, they presented a
representation scheme that requires at most 8n bits for Baxter permutations of size n and 4n

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:3

bits for alternating Baxter permutations of size n. Gawrychowski and Nicholson proposed a
3n-bit representation that stores the tree structures of alternating representations of both
minimum and maximum Cartesian trees [18]. Based on the bijection established in [12],
the representation in [18] gives a succinct representation of a Baxter permutation of size n.
Moreover, this representation can efficiently support a wide range of tree navigational queries
on these trees in O(1) time using only o(n) additional bits. However, surprisingly, all of these
previous representations of π crucially fail to address both, perhaps the most natural, π(i)
and π−1(j) queries efficiently as these queries have a worst-case time complexity of Θ(n).

Separable permutation was introduced by Bose et al.[7] as a specific case of patterns for
the permutation matching problem. It is known that the number of separable permutations
of size n equals the large Schröder number An, which is Θ

(
(3+2

√
2)n

n1.5

)
[36]. Consequently, to

store a separable permutation ρ of size n, at least n log(3+2
√

2)−O(log n) ≃ 2.54n−O(log n)
bits are necessary. Bose et al. [7] also showed that ρ can be encoded as a separable tree,
which is a labeled tree with at most 2n − 1 nodes. Thus, by storing the separable tree using
O(n log n) bits, one can support both ρ(i) and ρ−1(j) queries in O(1) time using standard tree
navigation queries. Yao et al. [36] showed a bijection between all canonical forms of separable
trees with n leaves and the separable permutations of size n. To the best of our knowledge,
there exists no o(n log n)-bit representation for storing either separable permutations or their
corresponding separable trees that can be constructed in polynomial time while supporting ρ

queries in sub-linear time.
A mosaic floorplan is a collection of rectangular objects that partition a single rectangular

region. Due to its broad range of applications, there is a long history of results (see [22,36]
and the references therein) concerning the representation of mosaic floorplans of size n in
small space [1, 22, 23]. Ackerman et al. [1] presented a linear-time algorithm to construct
a mosaic floorplan of size n from its corresponding Baxter permutation of size n and vice
versa. Building on this construction algorithm, He [22] proposed the current state-of-the-art,
a succinct representation of a mosaic floorplan of size n using 3n − 3 bits. Again, all of
these previous representations primarily focus on constructing a complete mosaic floorplan
structure and do not consider supporting navigational queries, e.g., return a rectangular
object immediately adjacent to the query object in terms of being left, right, above, or below
it, without constructing it completely. Note that these queries have strong applications
like the placement of blocks on the chip [1, 37]. There also exists a subclass of mosaic
floorplans known as slicing floorplans, which are mosaic floorplans whose rectangular objects
are generated by recursively dividing a single rectangle region either horizontally or vertically.
The simplicity of a slicing floorplan makes it an efficient solution for optimization problems, as
stated in [38]. Yao et al. [36] showed there exists a bijection between separable permutations
of size n and slicing floorplans with n rectangular objects. They also showed that separable
trees can be used to represent the positions of rectangular objects in the corresponding slicing
floorplans. However, to the best of our knowledge, there exists no representation of a slicing
floorplan using o(n log n) bits that supports the above queries without reconstructing it.

1.2 Our Results and Main Idea
In this paper, we first introduce a (3n + o(n))-bit representation of a Baxter permutation
π of size n that can support π(i) and π−1(j) queries in O(f1(n)) and O(f2(n)) time re-
spectively. Here, f1(n) and f2(n) are any increasing functions that satisfy ω(log n) and
ω(log2 n), respectively. We also show that the same representation provides a (2n + o(n))-bit
representation of an alternating Baxter permutation of size n with the same query times.
These are the first succinct representations of Baxter and alternating Baxter permutations
that can support the queries in sub-linear time in the worst case.

ISAAC 2024

17:4 Succinct Data Structures for Baxter Permutation and Related Families

Our main idea of the representation is as follows. To represent π, it suffices to store the
minimum or maximum Cartesian tree defined on π along with their labels. Here the main
challenging part is to decode the label of any node in either of the trees in sub-linear time,
using o(n)-bit auxiliary structures. Note that all the previous representations either require
linear time for the decoding or explicitly store the labels using O(n log n) bits. To address
this issue, we first introduce an algorithm that labels the nodes in the minimum Cartesian
tree in ascending order of their labels. This algorithm employs two stacks and only requires
information on whether each node with label i is a left or right child of its parent, as well as
whether it has left and/or right children. Note that unlike the algorithm of [12], our algorithm
does not use the structure of the maximum Cartesian tree. We then proceed to construct a
representation using at most 3n + o(n) bits, which stores the information used throughout
our labeling algorithm. We show that this representation can decode the minimum Cartesian
tree, including the labels on its nodes. This approach was not considered in previous succinct
representations that focused on storing the tree structures of both minimum and maximum
Cartesian trees, or their variants. To support the queries efficiently, we show that given any
label of a node in the minimum or maximum Cartesian tree, our representation can decode the
labels of its parent, left child, and right child in O(1) time with o(n)-bit auxiliary structures.
Consequently, we can decode any O(log n)-size substring of the balanced parentheses of both
minimum and maximum Cartesian trees with dummy nodes to locate nodes according to
their inorder traversal (see Section 4.1 for a detailed definition of the inorder traversal) on π

in O(f1(n)) time. This decoding step plays a key role in our query algorithms, which can
be achieved from non-trivial properties of our representation, and minimum and maximum
Cartesian trees on Baxter permutations. As a result, our representation not only supports
π(i) and π−1(j) queries, but also supports range minimum/maximum and previous/next
larger/smaller value queries efficiently.

Next, we give a succinct representation of separable permutation ρ of size n, which
supports all the operations above in O(1) time. Our result implies the Golynski’s lower
bound result [20] for trade-offs between redundancy and ρ(i) and ρ−1(j) queries does not hold
in separable permutations. The main idea of the representation is to store the separable tree
of ρ using the tree covering algorithm [14], where each micro-tree is stored as its corresponding
separable permutation to achieve succinct space. Note that a similar approach has been
employed for succinct representations on some graph classes [4, 9]. However, due to the
different structure of the separable tree compared to the Cartesian tree, the utilization of
non-trivial auxiliary structures is crucial for achieving O(1) query time on the representation.

Finally, as applications of our succinct representations of Baxter and separable permuta-
tions, we present succinct data structures of mosaic and slicing floorplans and plane bipolar
orientations that support various navigational queries on them efficiently. While construction
algorithms for these structures already exist from their corresponding Baxter or separable
permutations [1, 6], we show that the navigational queries can be answered using a constant
number of π(i) (or ρ(i)), range minimum/maximum, and previous/next smaller/larger value
queries on their respective permutations, which also require some nontrivial observations
from the construction algorithms. This implies that our succinct representations allow for the
first time succinct representations of these structures that support various navigation queries
on them in sub-linear time. For example, we consider two queries on mosaic and slicing
floorplans as (1) checking whether two rectangular objects are adjacent, and (2) reporting all
rectangular objects adjacent to the given rectangular object. Note that the query of (2) was
previously addressed in [1], as the direct relation set (DRS) query, which was computed in
O(n) time, and important for the actual placement of the blocks on the chip.

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:5

The paper is organized as follows. We introduce the representation of a Baxter permutation
π of size n in Section 3. In Section 4, we explain how to support π(i) and π−1(j) queries on π,
in addition to tree navigational queries on both the minimum and maximum Cartesian trees.
In Section 5.1, we present a succinct representation of separable permutation ρ that can
support ρ(i) and ρ−1(j) in O(1) time. Finally, some preliminaries are outlined in the next
section. Due to the space limit, the remaining results of our work (succinct representations
of mosaic/slicing floorplans and plane bipolar orientations) are included in the full version of
the paper [8].

2 Preliminaries

In this section, we introduce some preliminaries that will be used in the rest of the paper.

Cartesian trees. Given a sequence S = (s1, s2, . . . , sn) of size n from a total order, a
minimum Cartesian tree of S, denoted as MinC(S) is a binary tree constructed as fol-
lows [35]: (a) the root of the MinC(S) is labeled as the minimum element in S (b) if the
label of the root is si, the left and right subtree of S are MinC(S1) and MinC(S2), respect-
ively where S1 = (s1, s2, . . . , si−1) and S2 = (si+1, si+2, . . . , sn). One can also define a
maximum Cartesian tree of S (denoted as MaxC(S)) analogously. From the definition, in
both MinC(S) and MaxC(S), any node with inorder i is labeled with si.

Balanced parentheses. Given an ordered tree T of n nodes, the BP of T (denoted as
BP (T)) is defined as a sequence of open and closed parentheses constructed as follows [28].
One traverses T from the root node in depth-first search (DFS) order. During the traversal,
for each node p ∈ T , we append “(” when we visit the node p for the first time, and append
“)” when all the nodes on the subtree rooted at p are visited, and we leave the node p. From
the construction, it is clear that the size of BP (T) is 2n bits, and always balanced. Munro
and Raman [28] showed that both (a) findopen(i): returns the position of matching open
parenthesis of the close parenthesis at i, and (b) findclose(i): returns the position of matching
close parenthesis of the open parenthesis at i, queries can be supported on BP (T) in O(t(n))
time with o(n)-bit auxiliary structures, when any O(log n)-bit substring of the BP (T) can
be decoded in t(n) time. Furthermore, it is known that the wide range of tree navigational
queries on T also can be answered in O(t(n)) time using BP (T) with o(n)-bit auxiliary
structures [30]: Here, each node is given and returned as the position of the open parenthesis
that appended when the node is first visited during the construction of BP (T) (for the full
list of the queries, please refer to Table I in [30]).

Rank and Select queries. Given a sequence S = (s1, s2, . . . , sn) ∈ {0, . . . , σ − 1}n of size n

over an alphabet of size σ, (a) rankS(a, i) returns the number of occurrence of a ∈ {0, . . . , σ−1}
in (s1, s2, . . . , si), and (b) selectS(a, j) returns the first position of the j-th occurrence of
a ∈ {0, . . . , σ − 1} in S (in the rest of this paper, we omit S if it is clear from the context).
The following data structures are known, which can support both rank and select queries
efficiently using succinct space [3, 31]: (1) suppose σ = 2, and S has m 1s. Then there exists
a (log

(
n
m

)
+ o(n))-bit data structure that supports both rank and select queries in O(1) time.

The data structure can also decode any O(log n) consecutive bits of S in O(1) time, (2) there
exists an (n log σ + o(n))-bit data structure that can support both rank and select queries in
O(1) time, and (3) if σ = O(1) and one can access any O(log n)-length sequence of S in t(n)
time, one can support both rank and select queries in O(t(n)) time using o(n)-bit auxiliary
structures.

ISAAC 2024

17:6 Succinct Data Structures for Baxter Permutation and Related Families

Range minimum and previous/next smaller value queries. Given a sequence S =
(s1, s2, . . . , sn) of size n from a total order with two positions i and j with i ≤ j, the
range minimum query RMin(i, j) on S returns the position of the smallest element within
the range si, . . . , sj . Similarly, a range maximum query RMax(i, j) on S is defined to find
the position of the largest element within the same range.

In addition, one can define previous (resp. next) smaller value queries at the position i

on S, denoted as PSV(i) (resp. NSV(i)), which returns the nearest position from i to the left
(resp. right) whose value is smaller than si. If there is no such elements, the query returns
0 (resp. n + 1). One can also define previous (resp. next) larger value queries, denoted as
PLV(i) (resp. NLV(i)) analogously.

It is known that if S is a permutation, RMin, PSV, and NSV queries on S can be answered
in O(1) time, given a BP of MinC(S) with o(n) bit auxiliary structures [16,30].

Tree Covering. Here, we briefly outline Farzan and Munro’s [14] tree covering representation
and its application in constructing a succinct tree data structure. The core idea involves
decomposing the input tree into mini-trees and further breaking them down into smaller units
called micro-trees. These micro-trees can be efficiently stored in a compact precomputed
table. The shared roots among mini-trees enable the representation of the entire tree by
focusing only on connections and links between these subtrees. We summarize the main
result of Farzan and Munro’s algorithm in the following theorem.

▶ Theorem 1 ([14]). For a rooted ordered tree with n nodes and a positive integer 1 ≤ ℓ1 ≤ n,
one can decompose the trees into subtrees satisfying the following conditions: (1) each subtree
contains at most 2ℓ1 nodes, (2) the number of subtrees is O(n/ℓ1), (3) each subtree has at
most one outgoing edge, apart from those from the root of the subtree.

See Figure 3 for an example. After decomposing the subtree as above, any node with an
outgoing edge to a child outside the subtree is termed a boundary node. The corresponding
edge is referred to as the non-root boundary edge. Each subtree has at most one boundary
node and a non-root boundary edge. Additionally, the subtree may have outgoing edges
from its root node, designated as root boundary edges. For example, to achieve a tree
covering representation for an arbitrary tree with n nodes, Theorem 1 is initially applied with
ℓ1 = log2 n, yielding O(n/log2 n) mini-trees. The resulting tree, formed by contracting each
mini-tree into a vertex, is denoted as the tree over mini-trees. This tree, with O(n/log2 n)
nodes, can be represented in O(n/log n) = o(n) bits through a pointer-based representation.
Subsequently, Theorem 1 is applied again to each mini-tree with ℓ2 = 1

6 log n, resulting in
a total of O(n/log n) micro-trees. The mini-tree over micro-trees, formed by contracting
each micro-tree into a node and adding dummy nodes for micro-trees sharing a common
root, has O(log n) vertices and is represented with O(log log n)-bit pointers. Encoding the
non-root/root boundary edge involves specifying the originating vertex and its rank among
all children. The succinct tree representation, such as balanced parentheses (BP) [26], is
utilized to encode the position of the boundary edge within the micro-tree, requiring O(log ℓ2)
bits. The overall space for all mini-trees over micro-trees is O(n log log n/log n) = o(n) bits.
Finally, the micro-trees are stored with two-level pointers in a precomputed table containing
representations of all possible micro-trees, demonstrating a total space of 2n + o(n) bits. By
utilizing this representation, along with supplementary auxiliary structures that require only
o(n) bits of space, it is possible to perform fundamental tree navigation operations, such as
accessing the parent, the i-th child, the lowest common ancestor, among many others, in
O(1) time [14].

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:7

3 Succinct Representation of Baxter Permutation

In this section, we present a (3n + o(n))-bit representation for a Baxter permutation π =
(π(1), . . . , π(n)) of size n. We begin by providing a brief overview of our representation.
It is clear that the tree structure of MinC(π), along with the associated node labels can
decode π completely. However, the straightforward storage of node labels uses Θ(n log n) bits,
posing an efficiency challenge. To address this issue, we first show that when π is a Baxter
permutation, a two-stack based algorithm can be devised to traverse the nodes of MinC(π)
according to the increasing order of their labels. After that, we present a (3n + o(n))-bit
representation that stores the information used throughout the algorithm, and show that the
representation can decode MinC(π) with the labels of the nodes.

Algorithm 1 Two-stack based algorithm.

Initialize two empty stacks L and R.
Visit ϕ(1) (i.e., the root of MinC(π)).
while i = 2 . . . n do

// The last visited node is ϕ(i − 1) by Lemma 2.
if ϕ(i) is a left child of its parent then

if ϕ(i − 1) has a left child then
Visit the left child of ϕ(i − 1).

else
Pop a node from stack L, and visit the left child of the node.

end
if ϕ(i − 1) has a right child that has not yet been visited then

Push ϕ(i − 1) to the stack R.
end

else // ϕ(i) is a right child of its parent
if ϕ(i − 1) has a right child then

Visit the right child of ϕ(i − 1).
else

Pop a node from stack R, and visit the right child of the node.
end
if ϕ(i − 1) has a left child that has not yet been visited then

Push ϕ(i − 1) to the stack L.
end

end
end

Note that our encoding employs a distinct approach compared to prior representations,
as seen in references [12,13,18,24]. These earlier representations store the tree structures
of MinC(π) and MaxC(π) (or their variants) together, based on the observation that there
always exists a bijection between π and the pair of MinC(π) and MaxC(π) if π is a Baxter
permutation [12]. We show that for any node in MinC(π), our representation allows to decode
the labels of its parent, left child, and right child in O(1) time using o(n)-bit auxiliary data
structures. Using the previous representations that only store tree structures of MinC(π) and
MaxC(π), these operations can take up to Θ(n) time in the worst-case scenario, even though
tree navigation queries can be supported in constant time.

ISAAC 2024

17:8 Succinct Data Structures for Baxter Permutation and Related Families

i
i4

i + 1

i3

i′

k

i
i2

i + 1

i1

i′

(a) (b)

k

Figure 1 (a) the case when ϕ(i) is in the left subtree of ϕ(k), and (b) the case when ϕ(i) is in
the right subtree of ϕ(k).

Now we introduce a two-stack based algorithm to traverse the nodes in MinC(π) according
to the increasing order of their labels. Let ϕ(i) denote the node of MinC(π) with the label i.
The algorithm assumes that we know whether ϕ(i) is left or right child of its parent for all
i ∈ {2, . . . , n}.

The following lemma shows that if π is a Baxter permutation, the two-stack based
algorithm works correctly.

▶ Lemma 2. If π is a Baxter permutation, the two-stack based algorithm on MinC(π) traverses
the nodes according to the increasing order of their labels.

Proof. From Algorithm 1, it is clear that we first visit the root node, which is ϕ(1). Then we
claim that for any i, the two-stack based algorithm traverses the node ϕ(i + 1) immediately
after traversing ϕ(i), thereby proving the theorem.

Suppose not. Then we can consider the cases as (a) the left child of ϕ(i) exists, but
ϕ(i + 1) is not a left child of ϕ(i), or (b) the left child of ϕ(i) does not exist, but ϕ(i + 1) is
not a left child of the node at the top of L. For the case (a) (the case (b) can be handled
similarly), suppose ϕ(i + 1) is a left child of the node ϕ(i′). Then i′ < i by the definition
of MinC(π) and the case (a). Now, let ϕ(k) be the lowest common ancestor of ϕ(i) and
ϕ(i′). If ϕ(i) is in the left subtree of ϕ(k) (see Figure 1(a) for an example), k cannot be i′

from the definition of MinC(π). Then consider two nodes, ϕ(i1) and ϕ(i2), which are the
leftmost node of the subtree rooted at node ϕ(i′) and the node whose inorder is immediately
before ϕ(i1), respectively. Since ϕ(i2) lies on the path from ϕ(k) to ϕ(i′), we have i + 1 ≤ i1
and k ≤ i2 < i′. Therefore, there exists a pattern 3 14 2 induced by i − i2, i1 − i′, which
contradicts the fact that π is a Baxter permutation.

If ϕ(i) is in the right subtree of ϕ(k) (see 1(b) for an example), k cannot be i from the
definition of MinC(π). Consider two nodes, ϕ(i3) and ϕ(i4), which are the leftmost node of
the subtree rooted at node ϕ(i) and the node whose inorder is immediately before ϕ(i3),
respectively. Since ϕ(i4) lies on the path from ϕ(k) to ϕ(i), we have i + 1 < i3 (i3 is greater
than i and cannot be i + 1) and k ≤ i4 < i. Therefore, there exists a pattern 3 14 2 induced
by (i + 1) − i4, i3 − i, which contradicts the fact that π is a Baxter permutation.

The case when ϕ(i+1) is a right child of its parent can be proven using the same argument
by showing that if the algorithm fails to navigate ϕ(i + 1) correctly, the pattern 2 41 3 exists
in π. ◀

The representation of π encodes the two-stack based algorithm as follows. First, to
indicate whether each non-root node is whether a left or right child of its parent, we store
a binary string lr[1, . . . n − 1] ∈ {l, r}n−1 of size n − 1 where lr[i] = l (resp. lr[i] = r) if the
node ϕ(i + 1) is a left (resp. right) child of its parent. Next, to decode the information on

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:9

1

8

9 10

2

4

7
5

6

3
11

lr r r l r r l l l r r
lp (() ())
rp { { } }
E 3 3 2 3 2 0 0 3 0 0
lrp (({) ([])) { } }
U 1 1 2 1 2 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11

9 8 10 1 7 4 5 6 2 3 11permutation
1 2 3 4 5 6 7 8 9 10 11

Figure 2 An example of the representation of the Baxter permutation π =
(9, 8, 10, 1, 7, 4, 5, 6, 2, 3, 11). Note that the data structure maintains only E and lr along with
o(n)-bit auxiliary structures.

the stack L during the algorithm, we define an imaginary string of balanced parentheses
lp[1 . . . n − 1] as follows: After the algorithm traverses ϕ(i), lp[i] is (1) “(” if the algorithm
pushes ϕ(i) to the stack L, (2) “)” if the algorithm pops a node from the stack L, and (3)
undefined otherwise. We also define an imaginary string of balanced parentheses rp[1, . . . n]
in the same way to decode the information on the stack R during the algorithm. We use
“{” and “}” to denote the parentheses in rp. Then from the correctness of the two-stack
algorithm (Lemma 2), and the definitions of lr, lp, and rp, we can directly derive the following
lemma:

▶ Lemma 3. For any i ∈ {1, . . . , n − 1}, the following holds:
Suppose the node ϕ(i) is a leaf node. Then either lp[i] or rp[i] is defined. Also, lr[i] is l

(resp. r) if and only if lp[i] (resp. rp[i]) is a closed parenthesis.
Suppose the node ϕ(i) only has a left child. In this case, lr[i] is l if and only if both lp[i]
and rp[i] are undefined. Also, lr[i] is r if and only if lp[i] = “(” and rp[i] = “}”.
Suppose the node ϕ(i) only has a right child. In this case, lr[i] is l if and only if lp[i] = “)”
and rp[i] = “{”. Also, lr[i] is r if and only if both lp[i] and rp[i] are undefined.
Suppose the node ϕ(i) has both left and right child. In this case, lr[i] is l if and only if
lp[i] is undefined and rp[i] = “{”. Also, lr[i] is r if and only if lp[i] = “(” and rp[i] is
undefined.

To indicate whether each node ϕ(i) has a left and/or right child we store a string
E ∈ {0, 1, 2, 3}n−1 of size n − 1 where (a) E[i] = 0 if ϕ(i) is a leaf node (b) E[i] = 1 if ϕ(i)
has only a left child, (c) E[i] = 2 if ϕ(i) has only a right child, and (d) E[i] = 3 if ϕ(i) has
both left and right children. We store E using 2n + o(n) bits, which allows support both rank
and select operations in O(1) time [3]. Thus, the overall space required for our representation
is at most 3n + o(n) bits (2n bits for E, n bits for lr along with o(n)-bit auxiliary structures).
From Lemma 3, our representation can access lp[i] and rp[i] in O(1) time by referring lr[i]
and E[i]. Next, we show both findopen and findclose on lp and rp in O(1) time using the
representation. We define an imaginary string lrp of length at most 2(n − 1) over an alphabet
of size 6 that consists of three different types of parentheses (), {}, [] constructed as follows.
We first initialize lrp as an empty string and scan lr and E from the leftmost position. Then
based on Lemma 3, whenever we scan lr[i] and E[i], we append the parentheses to lrp as
follows:

ISAAC 2024

17:10 Succinct Data Structures for Baxter Permutation and Related Families

(if lr[i] = r and E[i] = 3
) if lr[i] = l and E[i] = 0
{ if lr[i] = l and E[i] = 3
} if lr[i] = r and E[i] = 0
(} if lr[i] = r and E[i] = 1
{) if lr[i] = l and E[i] = 2
[] if (1) lr[i] = l and E[i] = 1, or (2) lr[i] = r and E[i] = 2

We store a precomputed table that has all possible pairs of lr and E of size (log n)/4 as
indices. For each index of the table, it returns lrp constructed from the corresponding pair of
lr and E. Thus, the size of the precomputed table is O(2 3

4 log n log n) = o(n) bits
Additionally, we define an imaginary binary sequence U ∈ {1, 2}n−1 of size n − 1, where

U [i] denotes the number of symbols appended to lrp during its construction by scanning lr[i]
and E[i]. Then by Lemma 3, we can decode any O(log n)-sized substring of U starting from
position U [i] by storing another precomputed table of size o(n) bits, indexed by all possible
pairs of lr and E of size (log n)/4. Consequently, we can support both rank and select queries
on U by storing o(n)-bit auxiliary structures, without storing U explicitly [3].

To decode any O(log n)-sized substring of lrp starting from position lrp[i], we first decode
a O(log n)-sized substring of E and lr from the position i′ = i − rankU (2, i) and decode the
substring of lrp by accessing the precomputed table a constant number of times (bounded
conditions can be easily verified using rankU (2, i − 1)). Thus, without maintaining lrp, we can
support rank, select, findopen, and findclose queries on lrp in O(1) time by storing o(n)-bit
auxiliary structures [3, 10]. With the information provided by lrp and U , we can compute
findopen(i) and findclose(i) operations on lp in O(1) time as follows: To compute findopen(i),
we compute i1 − rankU (2, i1 −1), where i1 is the position of the matching “(” corresponding to
lrp[i + rankU (2, i)]. For computing findclose(i), we similarly compute i2 − rankU (2, i2), where
i2 corresponds to the position of the “)” corresponding to lrp[i + rankU (2, i − 1)]. Likewise,
we can compute findopen(i) and findclose(i) operations on rp by locating the matching “{”
or “}” in lrp. In summary, our representation enables findopen and findclose operations on
both lp and rp to be supported in O(1) time without storing them explicitly.

Now we show that our representation is valid, i.e., we can decode π from the representation.

▶ Theorem 4. The strings lr and E give a (3n + o(n))-bit representation for the Baxter
permutation π = (π(1), . . . , π(n)) of size n.

Proof. It is enough to show that the representation can decode MinC(π) along with the
associated labels. For each non-root node ϕ(i), we can check ϕ(i) is either a left or right
child of its parent by referring lr[i − 1]. Thus, it is enough to show that the representation
can decode the label of the parent of ϕ(i). Without loss of generality, suppose ϕ(i) is a left
child of its parent (the case that ϕ(i) is a right child of its parent is analogous). Utilizing
the two-stack based algorithm and referring to Lemma 3, we can proceed as follows: If no
element is removed from the L stack after traversing ϕ(i−1) (this can be checked by referring
lr[i] and E[i]), we can conclude that the parent node of ϕ(i) is indeed ϕ(i − 1). Otherwise,
the parent of ϕ(i) is the node labeled with findopen(i − 1) on lp from the two-stack based
algorithm. ◀

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:11

▶ Example 5. Figure 2 shows the representation of the Baxter permutation π =
(9, 8, 10, 1, 7, 4, 5, 6, 2, 3, 11). Using the representation, we can access lp[3] =“)” by refer-
ring lr[3] = l and E[3] = 2 by Lemma 3. Also, findopen(6) on lp computed by (1) computing
the position of the matching “(” of the parenthesis of lrp at the position i′ = 6+rankU (2, 6) = 8,
which is 5, and (2) returning 5 − rankU (2, 5 − 1) = 4. Note that lrp is not explicitly stored.
Finally, we can decode the label of the parent of ϕ(4) using findopen(3) on lp (ϕ(4) is the left
child of its parent since lr[3] = l), resulting in the value 2. Thus, ϕ(2) is the parent of ϕ(4).

Representation of alternating Baxter Permutation. Assuming π is an alternating permuta-
tion of size n, one can ensure that MinC(π) always forms a full binary tree by introducing, at
most, two dummy elements n + 1 and n + 2, and adding them to the leftmost and rightmost
positions of π, respectively [11, 12]. Specifically, we add the node ϕ(i + 1) as the leftmost
leaf of MinC(π) if π(1) < π(2), Similarly, we add the node ϕ(i + 2) as the rightmost leaf of
MinC(π) if π(n − 1) > π(n).

Since no node in MinC(π) has exactly one child in this case, we can optimize the string
E in the representation of Theorem 4 into a binary sequence of size at most n − 1, where
E[i] indicates whether the node ϕ(i) is a leaf node or not. Thus, we can store π using at
most 2n + o(n) bits. We summarize the result in the following corollary.

▶ Corollary 6. The strings lr and E give a (2n + o(n))-bit representation for the alternating
Baxter permutation π = (π(1), . . . , π(n)) of size n.

4 Computing the BP sequence of Cartesian trees

Let π be a Baxter permutation of size n. In this section, we describe how to to compute π(i)
and π−1(j) for i, j ∈ {1, 2, . . . , n} using the representation of Theorem 4. First in Section 4.1
we modify Cartesian trees so that inorders are assigned to all the nodes. Then we show in
Section 4.2 we can obtain the BP sequence of MinC(π) from our representation. By storing
the auxiliary data structure of [30], we can support tree navigational operations in Section 2.
Finally, in Section 4.4, we show that our data structure can also support the tree navigational
queries on MaxC(π) efficiently, which used in the results in the succinct representations of
mosaic floorplans and plane bipolar orientations.

To begin discussing how to support π(i) and π−1(j) queries, we will first show that the
representation of Theorem 4 can efficiently perform a depth-first traversal on MinC(π) using
its labels. We will establish this by proving the following lemma, which shows that three
key operations, namely (1) left_child_label(i): returns the label of the left child of ϕ(i),
(2) right_child_label(i): returns the label of the right child of ϕ(i), and (3) parent_label(i):
returns the label of the parent of ϕ(i) on MinC(π), can be supported in O(1) time.

▶ Lemma 7. The representation of Theorem 4 can support left_child_label(i),
right_child_label(i), and parent_label(i) in O(1) on MinC(π) in O(1) time.

Proof. The proof of Theorem 4 shows how to support parent_label(i) in O(1) time. Next,
to compute left_child_label(i), it is enough to consider the following two cases according to
Lemma 3: (1) If lr[i] = l and lp[i] is undefined, left_child_label(i) is i + 1, and (2) if lr[i] = r

and lp[i] = ‘(’, we can compute left_child_label(i) in O(1) time by returning findclose(i) on lp.
Similarly, right_child_label(i) can be computed in O(1) time using lr and rp analogously. ◀

Now we can compute ϕ(i + 1) from ϕ(i) without using the two stacks in O(1) time. We
denote this operation by next(i).

ISAAC 2024

17:12 Succinct Data Structures for Baxter Permutation and Related Families

1. If lr[i] = l and the left child of ϕ(i) exists, next(i) is the left child of ϕ(i).
2. If lr[i] = r and the right child of ϕ(i) exists, next(i) is the right child of v.
3. If lr[i] = l and the left child of ϕ(i) does not exist, next(i) is the left child of ϕ(j) where

j = findclose(i) on lp.
4. If lr[i] = r and the right child of ϕ(i) does not exist, next(i) is the left child of ϕ(j) where

j = findclose(i) on rp.

4.1 Computing inorders
First, we define the inorder of a node in a binary tree. Inorders of nodes are defined recursively
as follows. We first traverse the left subtree of the root node and give inorders to the nodes
in it, then give the inorder to the root, and finally traverse the right subtree of the root node
and give inorders. In [30], inorders are defined for only nodes with two or more children. To
apply their data structures to our problem, we modify a binary tree as follows. For each
leaf, we add two dummy children. If a node has only right child, we add a dummy left child.
If a node has only left child, we add a dummy right child. Then in the BP sequence B of
the modified tree, i-th occurrence of “)(” corresponds to the node with inorder i. Therefore
we can compute rank and select on “)(” in constant time using the data structure of [30]
if we store the BP sequence B of the modified tree explicitly. However, if we do so, we
cannot achieve a succinct representation of a Baxter permutation. We implicitly store B.
The details are explained next.

4.2 Implicitly storing BP sequences
We first construct B for MinC(π) and auxiliary data structures of [30] for tree navigational
operations. In their data structures, B is partitioned into blocks of length ℓ for some
parameter ℓ, and search trees called range min-max trees are constructed on them. In the
original data structure, blocks are stored explicitly, whereas in our data structure, they are
not explicitly stored and temporarily computed from our representation. If we change the
original search algorithm so that an access to an explicitly stored block is replaced with
decoding the block from our representation, we can use the range min-max trees as a black
box, and any tree navigational operation works using their data structure. Because the
original algorithms have constant query time, they do a constant number of accesses to
blocks. If we can decode a block in t time, A tree navigational operation is done in O(t)
time. Therefore what remains is, given a position of B, to extract a block of ℓ bits.

Given the inorder of a node, we can compute its label as follows. For each block, we store
the following. For the first bit of the block, there are four cases: (1) it belongs to a node in
the Cartesian tree. (2) it belongs to two dummy children for a leaf in the Cartesian tree. (3)
it belongs to the dummy left child of a node. (4) it belongs to the dummy right child of a
node. We store two bits to distinguish these cases. For case (1), we store the label and the
inorder of the node using log n bits, and the information that the parenthesis is either open
or close using 1 bit. For case (2), we store the label and the inorder of the parent of the two
dummy children, and the offset in the pattern “(()())” of the first bit in the block. For cases
(3) and (4), we store the label and the inorder of the parent of the dummy node and the
offset in the pattern “()”.

To extract a block, we first obtain the label of the first non-dummy node in the block. Then
from that node, we do a depth-first traversal using left_child_label(i), right_child_label(i),
and parent_label(i), and compute a sub-sequence of B for the block. During the traversal,
we also recover other dummy nodes. Because the sub-sequence is of length ℓ, there are O(ℓ)

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:13

nodes and it takes O(ℓ) time to recover the block. To compute an inorder rank and select,
we use a constant number of blocks. Therefore it takes O(ℓ) time. The space complexity for
additional data structure is O(n log n/ℓ) bits. If we choose ℓ = ω(log n), the space is o(n).

To support other tree operations including RMin, NSV, and PSV queries on π, we use the
original auxiliary data structures of [30]. The space complexity is also O(n log n/ℓ) bits.

4.3 Converting labels and inorders
For the minimum Cartesian tree MinC(π) of Baxter permutation π, the label of the node
with inorder i is π(i). The inorder of the node with label j is denoted by π−1(j).

We showed how to compute the label of the node with given inorder i above. This
corresponds to computing π(i). Next we consider given label j, to compute the inorder
i = π−1(j) of the node with label j. Note that π(i) = j and π−1(j) = i hold.

We use next(·) to compute the inorder of the node with label j. Assume iℓ+1 ≤ j < (i+1)ℓ.
We start from the node ϕ(iℓ + 1) with label iℓ + 1 and iteratively compute next(·) until we
reach the node with label j. Therefore for i = 0, 1, . . . , n/ℓ, we store the positions in the
modified BP sequence for nodes ϕ(iℓ + 1) using O(n log n/ℓ) bits. If next(iℓ + k) is a child of
ϕ(iℓ + k), we can compute its position in the modified BP sequence using the data structure
of [30]. If next(iℓ + k) is not a child of ϕ(iℓ + k), we first compute p = findclose(iℓ + k) on lp
or rp. A problem is how to compute the node ϕ(p) and its inorder. To compute the inorder of
ϕ(p), we use pioneers of the BP sequence [19]. A pioneer is an open or close parenthesis whose
matching parenthesis belongs to a different block. If there are multiple pioneers between two
blocks, only the outermost one is a pioneer. The number of pioneers is O(n/ℓ) where ℓ is
the block size. For each pioneer, we store its position in the BP sequence. Therefore the
additional space is O(n log n/ℓ) bits. Consider the case we obtained p = findclose(v). If v

is a pioneer, the inorder of ϕ(p) is stored. If v is not a pioneer, we go to the pioneer that
tightly encloses v and ϕ(p), obtain its position in the BP sequence, and climb the tree to ϕ(p).
Because ϕ(p) and the pioneer belong to the same block, this takes O(ℓ) time. Computing a
child also takes O(ℓ) time. We repeat this O(ℓ) times until we reach ϕ(j). Therefore the time
complexity for converting the label of a node to its inorder takes O(ℓ2) time. The results are
summarized as follows.

▶ Theorem 8. For a Baxter permutation π of size n, π(i) and π−1(j) can be computed in
O(ℓ) time and O(ℓ2) time, respectively, using a 3n + O(n log n/ℓ) bit data structure. This is
a succinct representation of a Baxter permutation if ℓ = ω(log n). The data structure also
can support the tree navigational queries in Section 2 on MinC(π), RMin, PSV, and NSV
queries in O(ℓ) time.

Note that Theorem 8 also implies that we can obtain the (2n + o(n))-bit succinct data
structure of an alternating Baxter permutation of size n that support π(i) and π−1(j) can
be computed in O(ℓ) time and O(ℓ2) time, respectively, for any ℓ = ω(log n).

4.4 Navigation queries on Maximum Cartesian trees
In this section, we show the representation of Theorem 4 can also support the tree navigational
queries on MaxC(π) in the same time as queries on MinC(π), which will be used in the succinct
representations of mosaic floorplans and plane bipolar orientations.

Note that we can traverse the nodes in MaxC(π) according to the decreasing order of
their labels, using the same two-stack based algorithm as described in Section 3. Now, let
ϕ′(i) represent the node in MaxC(π) labeled with i. We then define sequences lr and E

ISAAC 2024

17:14 Succinct Data Structures for Baxter Permutation and Related Families

on MaxC(π) in a manner analogous to the previous definition (we denote them as lr′, and
E′, respectively). The only difference is that the value of i-th position of these sequences
corresponds to the node ϕ′(n − i + 1) instead of ϕ(i), since we are traversing from the node
with the largest label while traversing MaxC(π). Then by Theorem 4 and 8, it is enough to
show how to decode any O(log n)-size substring of lr′ and E′ from lr and E, respectively.

We begin by demonstrating that for any i ∈ [1, . . . , n − 1], the value of lr′[i] is l if and only
if lr[n − i] is r. As a result, our representation can decode any O(log n)-sized substring of lr′

in constant O(1) time. Consider the case where lr[i] is l (the case when lr[i] = r is handled
similarly). In this case, according to the two-stack based algorithm, ϕ(i + 1) is the left child
of ϕ(i1), where i1 ≤ i. Now, we claim that ϕ′(i) is the right child of its parent. Suppose,
for the sake of contradiction, that ϕ′(i) is a left child of ϕ′(i2). Then ϕ(i + 1) cannot be an
ancestor of ϕ(i), as there are no labels between i + 1 and i. Thus, i2 > i + 1, and there
must exist a lowest common ancestor of ϕ′(i) and ϕ′(i + 1) (denoted as ϕ′(k)). At this point,
ϕ′(i + 1) and ϕ′(i2) reside in the left and right subtrees rooted at ϕ′(k), respectively. Now
i3 ≤ i be a leftmost leaf of the subtree rooted at ϕ′(i). Then there exists a pattern 2 41 3
induced by (i + 1) − k and i3 − i2, which contradicts the fact that π is a Baxter permutation.

Next, we show that the following lemma implies that the representation can also decode
any O(log n)-size substring of E′ in O(1) time from E along with π(1) and π(n).

▶ Lemma 9. Given a permutation π, ϕ(i) has a left child if and only if π−1(i) > 1
and π(π−1(i) − 1) > i. Similarly, ϕ(i) has a right child if and only if π−1(i) < n and
π(π−1(i) + 1) > i.

Proof. We only prove that ϕ(i) has a left child if and only if π−1(i) > 1 and π(π−1(i)−1) < i

(the other statement can be proved using the same argument). Let i1 be π(π−1(i) − 1). From
the definition of the minimum Cartesian tree, if ϕ(i1) is at the left subtree of ϕ(i), it is clear
that i1 > i. Now, suppose i1 > i, but ϕ(i) does not have a left child. In this case, ϕ(i) cannot
be an ancestor of ϕ(i1). Thus, there must exist an element in π positioned between i1 and i,
which contradicts the fact that they are consecutive elements. ◀

As a conclusion, the data structure of Theorem 8 can support the tree navigational
queries in Section 2 on MaxC(π), and RMax, PSV, and NSV queries in ω(log n) time using
o(n)-bit auxiliary structures from the results in Section 4.2. We summarize the results in the
following theorem.

▶ Theorem 10. For a Baxter permutation π of size n, The succinct data structure of
Theorem 8 on π can support the tree navigational queries in Section 2 on MaxC(π), RMax,
PLV, and NLV queries in O(f1(n)) time for any f1(n) = ω(log n).

5 Succinct Data Structure of Separable Permutation

In this section, we present a succinct data structure for a separable permutation ρ =
(ρ(1), . . . , ρ(n)) of size n that supports ρ(i) and ρ−1(j) in O(1) time. The main idea of the
data structure is as follows. It is known that for the separable permutation ρ, there exists a
unique separable tree (v − h tree) Tρ of n leaves [7,33], which will be defined later. Since Tρ is
a labeled tree with at most 2n − 1 nodes, O(n log n) bits are necessary to store Tρ explicitly.
Instead, we store it using a tree covering where each micro-tree of Tρ is stored as an index of
the precomputed table that maintains all separable permutations whose separable trees have
at most ℓ2 nodes, where ℓ2 is a parameter of the size of the micro-tree of Tρ, which will be
decided later. After that, we show how to support the queries in Theorem 8 and 10 in O(1)
time using the representation, along with o(n)-bit auxiliary structures.

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:15

i 1 2 3 4 5 6 7 8 9 10 11 12
ρ 2 1 9 10 11 12 8 4 6 5 7 3
B 1 0 1 1 1 0 1 1 1 0 0 1

Sρ = 1 9 12 8 4 5 7 3
ρ′ = 1 11 12 8 4 5 7 3

2 1

9 10 11 12

8

4

6 5

7

3

−∞

1

11

12

8 4

5

7

3

T1

T2

T3

T4

T5 T8

T6

T7
Tp

Y

Figure 3 An example of the representation of the separable permutation ρ =
(2, 1, 9, 10, 11, 12, 8, 4, 6, 5, 7, 3). Each tree within the red area represents a mini-tree of Tρ with
ℓ1 = 3.

5.1 Succinct Representation
Given a separable permutation ρ of size n, the separable tree Tρ of ρ is an ordered tree with
n leaves defined as follows [33]:

Each non-leaf node of Tρ is labeled either ⊕ or ⊖. We call a ⊕ node as an internal node
labeled with ⊕, and similarly, a ⊖ node as an internal node labeled with ⊖.
The leaf node of Tρ whose leaf rank (i.e., the number of leaves to the left) i has a label
ρ(i). In the rest of this section, we refer to it as the leaf ρ(i).
Any non-leaf child of ⊕ node is a ⊖ node. Similarly, any non-leaf child of ⊖ node is a ⊕
node.
For any internal node p ∈ Tρ, let ρp be a sequence of the labels of p’s children from left
to right, as replacing the label of non-leaf child of p to the label of the leftmost leaf node
in the rooted subtree at the node. Then if p is a ⊕ (resp. ⊖ node), ρp is an increasing
(resp. decreasing) subsequence of ρ.

See Figure 3 for an example. Szepienic and Otten [33] showed that for any separable
permutation of size n, there exists a unique separable tree of it with n leaves.

We maintain ρ through the tree covering algorithm applied to Tρ, with the parameters
for the sizes of mini-trees and micro-trees as ℓ1 = log2 n and ℓ2 = log n

6 , respectively. Here,
the precomputed table maintains all possible separable permutations whose corresponding
separable trees have at most ℓ2 nodes. Additionally, two special cases are considered: when
the micro-tree is a singleton ⊕ or ⊖ node. Since any separable permutation stored in the
precomputed table has a size at most ℓ2, there exist o(n) indices in the precomputed table.

The micro-trees of Tρ are stored as their corresponding indices in the precomputed table,
using n log(3 + 2

√
2) + o(n) ≃ 2.54n + o(n) bits in total. In the full version of the paper [8],

we consider how to support ρ(i) and ρ−1(j) in O(1) time. The data structure also supports
RMin, RMax, PSV, PLV, NSV, and NLV on ρ in O(log log n) time.

6 Future Work

We conclude with the following concrete problems for possible further work in the future:
(1) Can we improve the query times of π and π−1 for Baxter permutations? (2) can we
show any time/space trade-off lower bound for Baxter permutation similar to that of general
permutation [20]? and (3) are there any succinct data structures for other pattern-avoiding
permutations?

ISAAC 2024

17:16 Succinct Data Structures for Baxter Permutation and Related Families

References
1 Eyal Ackerman, Gill Barequet, and Ron Y. Pinter. A bijection between permutations and

floorplans, and its applications. Discret. Appl. Math., 154(12):1674–1684, 2006. doi:10.1016/
J.DAM.2006.03.018.

2 Glen Baxter. On fixed points of the composite of commuting functions. Proceedings of the
American Mathematical Society, 15(6):851–855, 1964.

3 Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for representing
sequences. ACM Transactions on Algorithms (TALG), 11(4):1–21, 2015. doi:10.1145/
2629339.

4 Guy E. Blelloch and Arash Farzan. Succinct representations of separable graphs. In CPM,
volume 6129 of Lecture Notes in Computer Science, pages 138–150. Springer, 2010. doi:
10.1007/978-3-642-13509-5_13.

5 Miklós Bóna. Combinatorics of Permutations, Second Edition. Discrete mathematics and its
applications. CRC Press, 2012.

6 Nicolas Bonichon, Mireille Bousquet-Mélou, and Éric Fusy. Baxter permutations and plane
bipolar orientations. Electron. Notes Discret. Math., 31:69–74, 2008. doi:10.1016/j.endm.
2008.06.011.

7 Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. Pattern matching for permutations. Inf.
Process. Lett., 65(5):277–283, 1998. doi:10.1016/S0020-0190(97)00209-3.

8 Sankardeep Chakraborty, Seungbum Jo, Geunho Kim, and Kunihiko Sadakane. Succinct data
structures for baxter permutation and related families, 2024. arXiv:2409.16650.

9 Sankardeep Chakraborty, Seungbum Jo, Kunihiko Sadakane, and Srinivasa Rao Satti. Succinct
data structures for bounded clique-width graphs. Discret. Appl. Math., 352:55–68, 2024.
doi:10.1016/J.DAM.2024.03.016.

10 Richie Chih-Nan Chuang, Ashim Garg, Xin He, Ming-Yang Kao, and Hsueh-I Lu. Compact
encodings of planar graphs via canonical orderings and multiple parentheses. In Automata,
Languages and Programming: 25th International Colloquium, ICALP’98 Aalborg, Denmark,
July 13–17, 1998 Proceedings 25, pages 118–129. Springer, 1998. doi:10.1007/BFB0055046.

11 Robert Cori, Serge Dulucq, and Gérard Viennot. Shuffle of parenthesis systems and baxter
permutations. Journal of Combinatorial Theory, Series A, 43(1):1–22, 1986. doi:10.1016/
0097-3165(86)90018-X.

12 Serge Dulucq and Olivier Guibert. Stack words, standard tableaux and baxter permutations.
Discrete Mathematics, 157(1-3):91–106, 1996. doi:10.1016/S0012-365X(96)83009-3.

13 Serge Dulucq and Olivier Guibert. Baxter permutations. Discrete Mathematics, 180(1-3):143–
156, 1998. doi:10.1016/S0012-365X(97)00112-X.

14 A. Farzan and J. I. Munro. A uniform paradigm to succinctly encode various families of trees.
Algorithmica, 68(1):16–40, January 2014. doi:10.1007/S00453-012-9664-0.

15 Stefan Felsner, Éric Fusy, Marc Noy, and David Orden. Bijections for baxter families and related
objects. J. Comb. Theory, Ser. A, 118(3):993–1020, 2011. doi:10.1016/J.JCTA.2010.03.017.

16 Johannes Fischer. Combined data structure for previous- and next-smaller-values. Theor.
Comput. Sci., 412(22):2451–2456, 2011. doi:10.1016/J.TCS.2011.01.036.

17 Éric Fusy. Straight-line drawing of quadrangulations. In Michael Kaufmann and Dorothea
Wagner, editors, Graph Drawing, 14th International Symposium, GD 2006, Karlsruhe, Ger-
many, September 18-20, 2006. Revised Papers, volume 4372 of Lecture Notes in Computer
Science, pages 234–239. Springer, 2006. doi:10.1007/978-3-540-70904-6_23.

18 Paweł Gawrychowski and Patrick K Nicholson. Optimal encodings for range top-k k, selection,
and min-max. In Automata, Languages, and Programming: 42nd International Colloquium,
ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I 42, pages 593–604. Springer,
2015. doi:10.1007/978-3-662-47672-7_48.

19 Richard F. Geary, Naila Rahman, Rajeev Raman, and Venkatesh Raman. A simple optimal
representation for balanced parentheses. Theoretical Computer Science, 368(3):231–246, 2006.
Combinatorial Pattern Matching. doi:10.1016/J.TCS.2006.09.014.

https://doi.org/10.1016/J.DAM.2006.03.018
https://doi.org/10.1016/J.DAM.2006.03.018
https://doi.org/10.1145/2629339
https://doi.org/10.1145/2629339
https://doi.org/10.1007/978-3-642-13509-5_13
https://doi.org/10.1007/978-3-642-13509-5_13
https://doi.org/10.1016/j.endm.2008.06.011
https://doi.org/10.1016/j.endm.2008.06.011
https://doi.org/10.1016/S0020-0190(97)00209-3
https://arxiv.org/abs/2409.16650
https://doi.org/10.1016/J.DAM.2024.03.016
https://doi.org/10.1007/BFB0055046
https://doi.org/10.1016/0097-3165(86)90018-X
https://doi.org/10.1016/0097-3165(86)90018-X
https://doi.org/10.1016/S0012-365X(96)83009-3
https://doi.org/10.1016/S0012-365X(97)00112-X
https://doi.org/10.1007/S00453-012-9664-0
https://doi.org/10.1016/J.JCTA.2010.03.017
https://doi.org/10.1016/J.TCS.2011.01.036
https://doi.org/10.1007/978-3-540-70904-6_23
https://doi.org/10.1007/978-3-662-47672-7_48
https://doi.org/10.1016/J.TCS.2006.09.014

S. Chakraborty, S. Jo, G. Kim, and K. Sadakane 17:17

20 Alexander Golynski. Cell probe lower bounds for succinct data structures. In Proceedings of
the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages 625–634. SIAM,
2009. doi:10.1137/1.9781611973068.69.

21 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.
doi:10.1137/S0097539702402354.

22 Bryan Dawei He. A simple optimal binary representation of mosaic floorplans and baxter
permutations. Theoretical Computer Science, 532:40–50, 2014. doi:10.1016/J.TCS.2013.05.
007.

23 Xianlong Hong, Gang Huang, Yici Cai, Jiangchun Gu, Sheqin Dong, Chung-Kuan Cheng, and
Jun Gu. Corner block list: An effective and efficient topological representation of non-slicing
floorplan. In IEEE/ACM International Conference on Computer Aided Design. ICCAD-2000.
IEEE/ACM Digest of Technical Papers (Cat. No. 00CH37140), pages 8–12. IEEE, 2000.
doi:10.1109/ICCAD.2000.896442.

24 Seungbum Jo and Geunho Kim. Space-efficient data structure for next/previous larger/smaller
value queries. In LATIN, volume 13568 of Lecture Notes in Computer Science, pages 71–87.
Springer, 2022. doi:10.1007/978-3-031-20624-5_5.

25 Thomas Lengauer. Combinatorial algorithms for integrated circuit layout. Springer Science &
Business Media, 2012.

26 J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static trees.
SIAM J. Comput., 31(3):762–776, 2001. doi:10.1137/S0097539799364092.

27 J Ian Munro, Rajeev Raman, Venkatesh Raman, et al. Succinct representations of permutations
and functions. Theoretical Computer Science, 438:74–88, 2012. doi:10.1016/J.TCS.2012.03.
005.

28 J Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing, 31(3):762–776, 2001. doi:10.1137/S0097539799364092.

29 Masahiro Nakano, Akisato Kimura, Takeshi Yamada, and Naonori Ueda. Baxter permutation
process. Advances in Neural Information Processing Systems, 33:8648–8659, 2020.

30 Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct trees.
ACM Transactions on Algorithms (TALG), 10(3):1–39, 2014. doi:10.1145/2601073.

31 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms (TALG), 3(4):43–es, 2007.

32 Zion Cien Shen and Chris CN Chu. Bounds on the number of slicing, mosaic, and general
floorplans. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
22(10):1354–1361, 2003. doi:10.1109/TCAD.2003.818136.

33 Antoni A. Szepieniec and Ralph H. J. M. Otten. The genealogical approach to the layout
problem. In DAC, pages 535–542. ACM/IEEE, 1980. doi:10.1145/800139.804582.

34 Roberto Tamassia and Ioannis G. Tollis. A unified approach a visibility representation of
planar graphs. Discret. Comput. Geom., 1:321–341, 1986. doi:10.1007/BF02187705.

35 Jean Vuillemin. A unifying look at data structures. Communications of the ACM, 23(4):229–239,
1980. doi:10.1145/358841.358852.

36 Bo Yao, Hongyu Chen, Chung-Kuan Cheng, and Ronald L. Graham. Floorplan representations:
Complexity and connections. ACM Trans. Design Autom. Electr. Syst., 8(1):55–80, 2003.
doi:10.1145/606603.606607.

37 Xiaoke Zhu, Changwen Zhuang, and Y. Kajitani. A general packing algorithm based on
single-sequence. In 2004 International Conference on Communications, Circuits and Systems,
volume 2, pages 1257–1261 Vol.2, July 2004. doi:10.1109/ICCCAS.2004.1346402.

38 Changwen Zhuang, Xiaoke Zhu, Y. Takashima, S. Nakatake, and Y. Kajitani. An algorithm for
checking slicing floorplan based on hpg and its application. In 2004 International Conference on
Communications, Circuits and Systems (IEEE Cat. No.04EX914), volume 2, pages 1223–1227
Vol.2, 2004. doi:10.1109/ICCCAS.2004.1346395.

ISAAC 2024

https://doi.org/10.1137/1.9781611973068.69
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1016/J.TCS.2013.05.007
https://doi.org/10.1016/J.TCS.2013.05.007
https://doi.org/10.1109/ICCAD.2000.896442
https://doi.org/10.1007/978-3-031-20624-5_5
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1016/J.TCS.2012.03.005
https://doi.org/10.1016/J.TCS.2012.03.005
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1145/2601073
https://doi.org/10.1109/TCAD.2003.818136
https://doi.org/10.1145/800139.804582
https://doi.org/10.1007/BF02187705
https://doi.org/10.1145/358841.358852
https://doi.org/10.1145/606603.606607
https://doi.org/10.1109/ICCCAS.2004.1346402
https://doi.org/10.1109/ICCCAS.2004.1346395

Enhancing Generalized Compressed Suffix Trees,
with Applications
Sankardeep Chakraborty #

The University of Tokyo, Japan

Kunihiko Sadakane #

The University of Tokyo, Japan

Wiktor Zuba #

CWI, Amsterdam, The Netherlands

Abstract
Generalized suffix trees are data structures for storing and searching a set of strings. Though many
string problems can be solved efficiently using them, their space usage can be large relative to the
size of the input strings. For a set of strings with n characters in total, generalized suffix trees
use O(n log n) bit space, which is much larger than the strings that occupy n log σ bits where σ

is the alphabet size. Generalized compressed suffix trees use just O(n log σ) bits but support the
same basic operations as the generalized suffix trees. However, for some sophisticated operations we
need to add auxiliary data structures of O(n log n) bits. This becomes a bottleneck for applications
involving big data. In this paper, we enhance the generalized compressed suffix trees while still
retaining their space efficiency. First, we give an auxiliary data structure of O(n) bits for generalized
compressed suffix trees such that given a suffix s of a string and another string t, we can find the
suffix of t that is closest to s. Next, we give a o(n) bit data structure for finding the ancestor of
a node in a (generalized) compressed suffix tree with given string depth. Finally, we give data
structures for a generalization of the document listing problem from arrays to trees. We also show
their applications to suffix-prefix matching problems.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases suffix tree, compact data structure, suffix-prefix query, weighted level ancestor

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.18

Funding Sankardeep Chakraborty: Supported by MEXT Quantum Leap Flagship Program (MEXT
Q-LEAP) Grant Number JPMXS0120319794.
Wiktor Zuba: Received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreements No 101034253 and 872539.

1 Introduction

Suffix trees are data structures for string matching [29]. In addition to the basic pattern
matching problem, they can also be used for other problems such as finding longest common
extensions, maximal pairs, approximate string matching, etc. [14]. They can be further
extended to generalized suffix trees (GSTs for short) storing suffixes of a set of strings, which
gives them many applications in bioinformatics such as longest common substrings, maximal
unique matches [5], and maximal exact matches [17]. Hereafter we do not distinguish suffix
trees and GSTs unless specified because GST is the suffix tree of the string obtained by
concatenating all the strings from the set.

Though suffix trees are the most basic data structures in string processing, one drawback
is their space usage. Though the suffix tree of a string uses O(n) machine words, where
n is the string length, that alone already requires huge memory. It was estimated that
for a human genome, which has about 3 billion characters, the suffix tree uses more than
40 GB of memory [16]. Therefore there has been much research on reducing the space

© Sankardeep Chakraborty, Kunihiko Sadakane, and Wiktor Zuba;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sankardeep.chakraborty@gmail.com
https://orcid.org/0000-0002-2395-4160
mailto:sada@mist.i.u-tokyo.ac.jp
https://orcid.org/0000-0002-8212-3682
mailto:w.zuba@mimuw.edu.pl
https://orcid.org/0000-0002-1988-3507
https://doi.org/10.4230/LIPIcs.ISAAC.2024.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Enhancing Generalized Compressed Suffix Trees, with Applications

requirement of suffix trees. There are two approaches; one is to omit some of the components
of suffix trees and the other is to compress the components. For the first approach, suffix
arrays [19], enhanced suffix arrays [1], and space efficient suffix trees [21] have been proposed
as space-efficient alternatives to the suffix trees. For the second approach, the compressed
suffix arrays [13] and compressed suffix trees [25] have been proposed for compressing the
respective standard structures. The first approach aims mainly at reduction of the practical
space usage as asymptotically the space usage remains the same; suffix arrays and enhanced
suffix arrays use O(n log n) bits of space for a string of length n – the same as the suffix
trees. The second approach, on the other hand, aims at improving the asymptotic bounds;
compressed suffix arrays and trees use O(n log σ) bits where σ is the size of the alphabet of
the string. These data structures are truly linear space data structures – the space is linear
to the actual input size – n log σ bits1 (the space needed to represent the string).

Though the compressed suffix trees support the same set of basic operations as the suffix
trees, some of auxiliary data structures for supporting extended operations still use O(n log n)
bit space, which dominates the space of the entire data structure.

1.1 Our contributions
In this paper, we enhance the generalized compressed suffix trees. First we add auxiliary
data structures which for a given suffix t and a string ID i allow finding the suffix of the
string i most similar to t. For two given suffixes it is easy to compute the length of their
longest common prefix using the suffix tree even if the suffixes belong to different strings.
However, if a suffix t of a string is fixed and the ID i of another string is given, finding the
suffix of the string i with the longest common prefix with s takes time due to the multiplicity
of the possible candidate suffixes.

▶ Theorem 1 (Closest colored suffixes). We are given a set of strings S1, S2, . . . , Sk on an
alphabet of size σ. The total length of the strings is n. There exists a data structure using
SIZESA(2n, σ) + O(n + k) bits so that given a suffix t of a string Sj and an index i, we can
obtain the suffix s of Si that has the maximum LCP with t in O(TIMESA · log log k) time,
where SIZESA(n, σ) is the size of a data structure storing a suffix array for a string of length
n on an alphabet of size σ, and TIMESA is the time for obtaining an entry of a suffix array
or its inverse.

Note that TIMESA also depends on n and σ in general, but we omit them because they are
fixed throughout the paper. If we use the data structure in the second row of Table 1, the
space and the time complexities become 2n log σ + O(n + k) bits and O(log n log log k) time,
respectively. An existing solution [18] has O(log log k) query time using O(n log n) bit space.
Our algorithm is faster than the original GST, which is O(TIMESA · log n) time.

Next we give a succinct index for weighted level ancestors in compressed suffix trees.

▶ Theorem 2 (Weighted level ancestors). By adding an auxiliary data structure of o(n) bits
to the compressed suffix tree, we can compute the nearest ancestor of a node with string depth
smaller than a given value in O(TIMESA · log log n) time.

This is faster than the original GST, which is O(TIMESA · log n) time. The proofs are given
in Section 3.

1 Throughout the paper the base of the logarithm is two.

S. Chakraborty, K. Sadakane, and W. Zuba 18:3

Table 1 Size in bits and query time of suffix arrays and compressed suffix arrays, where n is the
length of the string and σ is its alphabet size. Hk is the k-th order entropy of the string. Time for
obtaining an entry of the suffix array is denoted by TIMESA.

Index Space (SIZESA(n, σ)) Query time (TIMESA)
Suffix array [19] n log n O(1)
Compressed suffix array [13] n log σ + O(n) O(log n)
Compressed suffix array [13] O(ϵ−1n log σ) O(logϵ n)
FM-index [7] nHk + o(n log σ) O(log σ

log log n
)

We also give applications of these two enhancements in Section 4. Our proposed data
structures are used to solve the suffix-prefix matching problems [18] (see also [31] for
their approximate version). Existing solutions use O(n log n) bit space, whereas ours use
linear (O(n log σ) bit) space. For solving this problem, we generalize the document listing
problem [22] from arrays to trees providing data structures that are of independent interest.

2 Preliminaries

2.1 Suffix arrays, suffix trees, and their compression
A string S of length n on an alphabet A is an array S[1, n] of characters in A. We assume the
alphabet is an ordered set. We add a terminator $ at the end of the string, that is, S[n+1] = $,
which is smaller than any character in A. The character at position i in the string S is
denoted by S[i]. A substring of S is the concatenation of characters S[i], S[i+1], . . . , S[j] and
denoted by S[i, j]. Substrings of the form S[i, n] and S[1, i] are called suffixes and prefixes,
respectively. For two strings s, t, LCP(s, t) is defined to be the length of the longest common
prefix between them.

The suffix array [19] of a string S of length n is an integer array SA[0, n], where SA[i] = j

means that the suffix S[j, n] is lexicographically the i-th suffix among all the suffixes of S

(S[0] = n + 1). The (classic) suffix array uses n log n bits of space for the array SA, and
n log σ bits of space for the string S itself.

The suffix tree of a string is a compacted trie representing all the suffixes of the string [29].
The suffix tree has n + 1 leaves, each corresponding to a suffix of S (including the last suffix
S[n + 1, n + 1] = $). Each edge of the suffix tree has a string label. We define the string label
of a node as the concatenation of the labels of the edges between the root and the node. The
string label of the i-th leaf coincides with lexicographically the i-th suffix. The string depth
of an internal node v of the suffix tree is the length of the string label of v. For two suffixes
s and t, LCP(s, t) is equal to the string depth of the lowest common ancestor between their
corresponding leaves.

The suffix array can be compressed to O(n log σ) bits where σ = |A| so that each entry
SA[i] can be computed in polylog(n) time [13]. The inverse suffix array ISA[1, n + 1] of a
string is an integer array such that ISA[j] = i if and only if SA[i] = j. The inverse array can
be computed within the same time complexity as the suffix array. Let TIMESA denote the
time for computing a value of a suffix array or an inverse suffix array. The space and query
time complexities for compressed versions of the suffix arrays are shown in Table 1.

The compressed suffix tree [25] of a string S consists of the compressed suffix array
of S, a balanced parentheses (BP) representation [20, 23] of the compacted trie, and a
bit-vector storing the information about the string depths of nodes. The second and the third
components use 4n + o(n) bits and 2n + o(n) bits, respectively. Using these components, we
can compute the string depth of a node in O(TIMESA) time.

ISAAC 2024

18:4 Enhancing Generalized Compressed Suffix Trees, with Applications

Using the compressed suffix tree, we can support the following operations:
Finding the leaf corresponding to the lexicographically i-th suffix in constant time.
Finding the lowest common ancestor of two nodes in constant time.
Finding the level ancestor (the ancestor of a node with given depth) in constant time [23].
Note that this depth is not the string depth.
Computing the string depth of a node in O(TIMESA) time.
Computing the edge labels of length ℓ in O(TIMESA + ℓ) time.

Note that the compressed suffix tree of [25] supports weighted level ancestor queries w.r.t.
string depths in O(TIMESA · log n) time by a binary search using (unweighted) level ancestor
queries and string depth queries. If we can use O(n log n) bits of space we can support
this query in constant time [3]. In this paper we give an index supporting the queries in
O(TIMESA · log log n) time using additional o(n) bits to the compressed suffix trees.

2.2 Bit-vectors and rank/select dictionaries
A bit-vector is a string B[1, n] on alphabet {0, 1} supporting the following three operations.

access(B, i): returns B[i].
rankc(B, i): returns the number of c’s (c ∈ {0, 1}) in B[1, i].
selectc(B, i): returns the position of the i-th occurrence of c ∈ {0, 1}. If i > rankc(B, n),
we define selectc(B, i) = n + 1. We also define selectc(B, 0) = 0.

We can perform each of these operations in constant time using n + o(n) bits of space [24].
The predecessor predc(B, i) and the successor succc(B, i) are the positions of c closest to

i. They can be computed in constant time as predc(B, i) := selectc(B, rankc(B, i − 1)) and
succc(B, i) := selectc(B, rankc(B, i) + 1). Note that predc(B, i) < i < succc(B, i).

2.3 Generalized suffix arrays and trees
We are given a set of strings S1, S2, . . . , Sk on an alphabet of size σ. We concatenate them
into string S = S1$S2$ · · · Sk$. The generalized suffix array/tree of the set of the strings is
just the suffix array/tree of S with the following modification.

We create a bit-vector D of length n + k where n = |S1| + |S2| + · · · + |Sk|, and set
1’s for the positions of $’s in S. Then, given a position j in S, we can compute the ID d

of the string Sd containing the position j in constant time by d := rank1(D, j) + 1. We
define the document array A[0, n + k] as A[i] := rank1(D, SAS [i]) + 1. we do not store the
document array explicitly because it uses n log k bits and each entry can be computed from
the (compressed) suffix array in TIMESA time.

Sadakane [26] enhanced generalized compressed suffix trees to compute the number of
occurrences of a pattern in each of the strings efficiently. After creating (compressed) suffix
arrays (and inverse suffix arrays) of S and each Sd we can convert the rank rl of a suffix of
Sd into the rank rg in S and vice versa in O(tSA) time as follows.

rg = ISAS [SASd
[rl] + sd] (1)

rl = ISASd
[SAS [rg] − sd] (2)

where sd = |S1| + |S2| + · · · + |Sd−1| + d − 1. We can compute sd in constant time using
the bit-vector D, namely, sd = select1(D, d − 1). Recall that d is computed from rg by
d := rank1(D, rg) + 1. We call rg and rl as the global and the local rank of the suffix,
respectively.

Figure 1 shows the generalized suffix tree for a set of strings ACAA, ACAG, ACGC,
CACA. Note that we use the same example as [18]. Each string is appended with a terminator
$. To bound the degree of a node by σ + 1, we add an artificial node if a node has more than

S. Chakraborty, K. Sadakane, and W. Zuba 18:5

10 15 205 4 19 3 17 1 6 11 8 14 18 2 16 7 12 9 13SA

A 1 2 3 4 1 4 1 4 1 2 3 2 3 4 1 4 2 3 2 3

$
A C

G

$

A
$

C G
$

A G
C

$
$ G

$

$ A
G

C
$

$

A
$

C
A
$

G
$

C
$

$

A
$

𝒮𝒮 ACAA$ACAG$ACGC$CACA$
1 20

𝐷𝐷 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0

Figure 1 Generalized suffix tree for a set of strings ACAA, ACAG, ACGC, CACA. SA is the
suffix array of the concatenated string S, and A is the array storing ID’s of suffixes.

one edge with label starting from $. For example, the root node has an edge with label $
pointing to a node with four edges labeled $. We can distinguish $’s by their positions in S.
We define the string depth of an artificial node as that of its parent node. We can compute
it using the same algorithm as that for normal nodes.

2.4 LCP arrays
For a string T of length n and its suffix array SA, we define the LCP (longest common
prefix) array L[1, n] as

L[i] = LCP(T [SA[i − 1], n], T [SA[i], n]).

If we store L in plain form, we need n log n bits of space. However, if we have access to the
suffix array, we can compress it into 2n + o(n) bits so that any entry of L[i] is computed in
TIMESA + O(1) time [25].

The length of the LCP between two suffixes T [SA[p], n] and T [SA[q], n] of a string can
be obtained by minp<i≤q L[i]. The index i attaining the minimum value can be computed in
constant time using the 2n + o(n) bit data structure for range minimum queries [8]. We can
also compute it using the compressed suffix tree [25]. In this case, we use 4n + o(n) bits for
the tree topology of the suffix tree.

2.5 Rank and select data structures for large alphabets
Let T [1, n] be a string on alphabet A of size k. As a generalization of the case of bit-vectors,
we can define operations access(T, i), rankc(T, i), and selectc(T, i) for c ∈ A. The wavelet
tree [12] supports all the operations in O(log k) time using (n+o(n)) log k bit space. Golynski
et al. [11] gave a data structure supporting select in constant time and rank and access in
O(log log k) time using (n + o(n)) log k + 2n bit space2.

These data structures encode the string in a specific form. Therefore we cannot further
compress the string. Barbay et al. [2] considered another approach; they design succinct
indexes for abstract data types. Their results are summarized as follows3.

2 There are other variants.
3 The claim is slightly simplified from the original one.

ISAAC 2024

18:6 Enhancing Generalized Compressed Suffix Trees, with Applications

▶ Theorem 3 (Theorem 2.10 in [2]). Given support for select in f(n, k) time on a string S of
length n on an alphabet of size k, we can support access, rank, predecessor, and successor (for
any character) in O(f(n, k) log log k) time with a succinct index using O(n log k/ log log k)
bits of space.

Though this index uses asymptotically smaller space than the string itself, its size still
depends on the alphabet size k. In this paper we follow the abstract data type approach and
give a new index using less space (see Lemma 6).

2.6 Nearest marked ancestors
Let T be a rooted tree with some of the nodes marked. In the nearest marked ancestor
problem, for a given node v of T we want to find its closest marked ancestor. Tsur [28] gave
solutions for a generalized version of this problem – nearest colored ancestor – where each
node has a color and we find the nearest ancestor with a given color. In this paper we only
use the nearest marked ancestor queries, thus we provide a simplified statement.

▶ Theorem 4 (A simplified version of Theorem 1 of [28]). There exists a representation of T

that uses n + o(n) bits in addition to a 2n + o(n) bit representation of the tree topology that
allows for answering the nearest marked ancestor queries in O(1) time.

2.7 Weighted level ancestor queries
Consider a rooted tree with n nodes where each node has an integer weight in [0, U] and
on any path from a leaf to the root, the weights are non-increasing. The weighted level
ancestor WA(v, w) of node v is the closest node on the path from v to the root that has
weight smaller than w. Kopelowitz and Lewenstein [15] gave a data structure using linear
space that answers a query in the same time complexity as finding the predecessor among n

values in [0, U]. For the case of U = O(n), we obtain a data structure using O(n log n) bits of
space that answers a query in O(log log n) time. As shown above, for the case that weights
are equal to the string depths in a suffix tree, there is a data structure using O(n log n) bits
of space that supports the query in constant time [3]. In Section 3.3 we show how to reduce
the space at the cost of more expensive queries.

2.8 Tree Covering
Here we provide an overview of Farzan and Munro’s tree covering representation and its
application in creating a succinct tree data structure [6]. Their approach involves decomposing
the input tree into smaller units called “mini-trees”, which are further divided into “micro-
trees.” These micro-trees are stored efficiently in a compact precomputed table. By focusing
on the connections and links between these subtrees, the entire tree can be represented using
the shared roots of the mini-trees. The main result is the following theorem.

▶ Theorem 5 ([6]). For a rooted ordered tree with n nodes and a positive integer 1 ≤ ℓ ≤ n,
one can decompose the trees into subtrees satisfying the following conditions: (1) each subtree
contains at most 2ℓ nodes, (2) the number of subtrees is O(n/ℓ), (3) each subtree has at most
one outgoing edge, apart from those from the root of the subtree.

Note that to achieve this, we allow subtrees to share their root nodes, hence the name “tree
covering”. Theorem 5 applied with ℓ = log2 n creates a tree covering representation for a
tree with n nodes, resulting in O(n/ log2 n) mini-trees. The resulting tree over mini-trees,

S. Chakraborty, K. Sadakane, and W. Zuba 18:7

with O(n/ log2 n) nodes, can be represented in O(n/ log n) = o(n) bits. Theorem 5 can be
then applied to each mini-tree with ℓ1 = 1

6 log n, resulting in O(n/ log n) micro-trees. The
mini-tree over micro-trees is obtained by contracting each micro-tree into a node and adding
dummy nodes for micro-trees sharing a common root, and it has O(log n) vertices, thus,
it can be represented by O(log log n)-bit pointers. The total space for all mini-trees over
micro-trees is O(n log log n/ log n) = o(n) bits. Micro-trees are stored with two-level pointers
in a precomputed table, which occupies 2n + o(n) bits. This representation, supplemented
by auxiliary data structures requiring only o(n) bits, enables fundamental tree navigation
operations, such as accessing the parent, the i-th child, the lowest common ancestor, and
many more in O(1) time [6].

2.9 Document listing problems
The document listing problem [22] is, given an array of colors A[1, n] and an interval [i, j]
of the indices of the array, to enumerate all distinct colors in the sub-array A[i, j]. The
problem can be solved in optimal O(1 + k) time where k is the output size (the number of
distinct colors in A[i, j]), after O(n) time preprocessing for A. Namely, the preprocessing
first constructs another array P [1, n] such that P [i] = j if j < i is the largest index such that
A[i] = A[j], and P [i] = −1 if no such j exists, and then constructs a range minimum query
data structure for P . We can consider P to be a representation of linked lists connecting the
same colors.

A query for A[i, j] is done as follows. First we find the index m of the minimum value in
P [i, j]. If P [m] < i, we output A[m] and recurse for A[i, m − 1] and A[m + 1, j]. If P [m] ≥ i,
we terminate. If we have access to the array P in time t, the query time complexity is
O((1 + k)t).

The algorithm is extended so that it works without storing P explicitly [26]. Instead we
store a range minimum query data structure for P using 2n + o(n) bits. The query algorithm
is changed to work without accesses to P . Instead of checking if P [m] < i for finding answers
without duplicates, we use a bit array D whose length is the number of possible colors in A,
and set D[c] = 1 if color c is output. Therefore it can be checked in constant time if a color
is already output or not. After outputting all the answers, we clear the bits of D. To do this,
we need to keep the output in the memory.

3 Enhancing Generalized Compressed Suffix Trees

3.1 New predecessor data structures
Let T [1, n] be a string on alphabet A of size k. We give a simpler and more space-efficient
index than [2] by omitting support for the access operation, which can be done using a GST.
Our new index is summarized as follows.

▶ Lemma 6. Given support for select in f(n, k) time on a string S of length n on an alphabet
of size k, there is a succinct index using O(n + k) bits that supports rank, predecessor, and
successor for any character in O(f(n, k) log log k) time.

Proof. Since predecessors and successors can be computed using rank and select operations
as shown in Section 2.2, it is enough to show that we can compute ranks in O(f(n, k) log log k)
time. We use a similar approach to [2]. We partition T into blocks T1, T2, . . . , Tm (m = ⌈n/k⌉)
of length k each. Let Fc be a bit-vector storing frequencies of c ∈ A for each block using unary
codes. That is, Fc = 1fc(1)01fc(2)0 · · · 1fc(m)0 where fc(i) is the number of occurrences of c in

ISAAC 2024

18:8 Enhancing Generalized Compressed Suffix Trees, with Applications

T 1 2 3 4 1 4 1 1 4 2 3 2 3 4 1 4 2 3 2 3

1 2 3 4 T1 1 4 1 1 T2 4 2 3 2 T3 3 4 1 4 T4 2 3 2 3 T5

1 0 1 1 1 0 0 1 0 0 F1

1 0 0 1 1 0 0 1 1 0 F2

1 0 0 1 0 1 0 1 1 0 F3

1 0 1 0 1 0 1 1 0 0 F4

Figure 2 An example of our rank/select indexes of Lemma 6. The array T in the figure is the
same as the array A in Figure 1.

Ti. The total length of Fc for all c ∈ A is
∑k

c=1(fc +m) ≤ 2n+2k where fc =
∑m

i=1 fc(i). We
can compute the number of c’s in T1, . . . , Ti in f(n, k) time by select0(Fc, i) − i. We can also
obtain the block containing the j-th occurrence of c in f(n, k) time by select1(Fc, j) − j + 1.
Therefore given an index j of T , we can obtain the number p of occurrences of c in blocks
before the block containing j in f(n, k) time by p = select0(Fc, b) − b where b = ⌈j/k⌉ is the
index of the block. Then the problem is reduced to computing the rank of c in block Tb.

We assume that for each character c ∈ A, we can compute select in τ time, and show
that with this assumption we can compute rank in a block in O(τ log log k) time using an
auxiliary data structure of O(n) bits.

Let b be the index of the block containing T [j] (b = ⌈j/k⌉). If fc(b) ≤ log k, we can
compute rank in O(τ log log k) time by simply doing a binary search using select operations.
If fc(b) > log k, we choose every log k values of the positions of c’s in block Tb, and construct
the y-fast trie [30]. The space is O

(⌈
fc(b)
log k

⌉
· log k

)
bits for each character c. Because there

are less than k/ log k such c’s, the total space for block Tb is O
(∑

c

(
fc(b)
log k + 1

)
log k

)
= O(k)

bits, and the total space for all the blocks is O(n) bits. Using the y-fast trie, we can obtain
the predecessor among the samples in O(log log k) time, and then by a binary search we
can obtain the true predecessor in O(τ log log k) time. Successors and ranks are similarly
computed in O(τ log log k) time. ◀

3.2 Finding Closest Colored Suffixes
Given a suffix t of a string Si and the index j of another string Sj , we compute a suffix of Sj

that has the maximum LCP value with s.
We use the same framework as [18]. Let p and q be the lex-order of suffix s of Si

and the closest suffix t of Sj to t in the suffix array for S, respectively. Then there are
no suffixes of Sj whose lex-order in S is between p and q. Let A[1, n + k] be an array of
integers such that A[i] = d if lexicographically the i-th suffix in S belongs to Sd. That is,
d = rank1(D, SAS [i]) + 1 is the ID of the string containing the suffix, as shown in Section 2.3.
Then it holds that A[q] = d and for all i between p and q exclusive A[i] ̸= d. That is,
q is either the predecessor or the successor of p representing d. In their paper, the data
structure of [4] is used for computing predecessors and successors. We replace it with our
predecessor data structure of Lemma 6. To use it, we need to give an algorithm for computing
selectd(A, i).

▶ Lemma 7. We can compute selectd(A, i) in O(TIMESA) time.

Proof. We can compute selectd(A, i) by the following formula.

selectd(A, i) := ISAS [SASd
[i] + select1(D, d)]

This takes clearly O(TIMESA) time. ◀

S. Chakraborty, K. Sadakane, and W. Zuba 18:9

To compute the closest suffix we first compute the predecessor q1 and the successor q2 in
A, which correspond to suffixes s1 and s2 of Sj , then we decide which one is closer to t. We
compute the lengths of LCP(s1, t) and LCP(s2, t) and choose the larger one (if they are the
same, we choose one arbitrarily). The length of LCP(s1, t) is computed as follows.

Find the leaves of the suffix tree of S corresponding to s1 and t. They are lexicographically
the q1-th and p-th suffixes.
Find the lowest common ancestor v between the leaves.
Compute the string depth of v.

All this can be done in O(TIMESA) total time. The length of LCP(s2, t) is computed
similarly.

Now we give a proof of Theorem 1.

Proof. We construct compressed suffix trees for each of S1, S2, . . . , Sk, and the compressed suf-
fix tree for their concatenation S. The compressed suffix arrays of Si have size SIZESA(|Si|, σ)
for i = 1, 2, . . . , k and the total size is SIZESA(n, σ) bits. The compressed suffix array of
S uses additional SIZESA(n, σ) bits. The suffix tree structures are stored in O(n + k) bits.
Therefore the total space is SIZESA(2n, σ) + O(n + k) bits. We store the bit-vector D of
the lengths of the strings in n + k + o(n + k) bits. We also construct the predecessor data
structure of Lemma 6 for the document array A storing ID’s of suffixes in S. Note that we
do not store the document array A explicitly; each entry of A is computed in O(TIMESA)
time using the compressed suffix arrays of S (see Section 2.3).

For a query, we compute the global rank p of t in S using Equation 1 in O(TIMESA) time.
Then we compute the predecessor q1 and the successor q2 in A such that A[q1] = A[q2] = j

in O(TIMESA · log log k) time using Lemma 6 where f(n, k) = O(TIMESA). We compute
the LCP’s between the suffix at q1 and t and the suffix at q2 and t in O(TIMESA) time,
and choose the suffix with longer LCP. The query complexity is O(TIMESA · log log k) in
total. ◀

3.3 Succinct index for weighted level ancestor queries
We prove Theorem 2. The solution of Kopelowitz and Lewenstein [15] for weighted level
ancestor queries uses O(n log n) bit space and supports a query in O(log log n) time. Though
there are improved data structures [10, 3] that support a query in constant time for a suffix
tree, they also use O(n log n) bit space.

We give a succinct (o(n) bit) index for weighted level ancestors which can be used together
with a (generalized) compressed suffix tree. The query time is O(TIMESA log log n). The
basic idea is to decompose the tree into small components using the tree covering [6] so that
each component is a connected subgraph, called a mini tree, of the tree with O(log2 n) nodes.
The number of components is O(n/ log2 n). We create a tree, called tree over mini trees,
connecting the components and use the O(n log n) bit data structure (in our application we
use O((n/ log2 n) log n) = O(n/ log n) bits) for this new tree.

Given a query WA(v, w), we first find the mini tree containing v and check if the root
of the mini tree has weight smaller than w. If so, the answer is inside the mini tree, and
we can find it by a binary search using unweighted level ancestor queries. Because the mini
tree contains O(log2 n) nodes, the path length from v to the mini tree root is also O(log2 n).
Therefore the binary search takes O(log log n) steps and at each step we compute the string
depth of a node in O(TIMESA) time. If the root of the mini tree has weight larger than w,
we find the nearest mini tree whose root has weight smaller than w. This is done by using
the data structure of [15] in O(log log n) time. Finally we find the answer - the right node
of this mini tree through binary search. The total time complexity is O(TIMESA · log log n)
and the space complexity is o(n) bits in addition to that of the compressed suffix tree.

ISAAC 2024

18:10 Enhancing Generalized Compressed Suffix Trees, with Applications

3.4 Document listing problem in a rooted tree
We generalize the document listing problem from arrays to rooted trees, that is, given two
nodes of the tree with an ancestor-descendant relation we output all the distinct colors
appearing on the path connecting them. A single node can have one color, multiple colors,
or no color at all.

To solve this problem, we use the heavy-path decomposition of the rooted tree [27].
That is we decompose the tree with n nodes into heavy paths so that any root-to-leaf path
intersects O(log n) heavy paths.

First we give an O(n + k) bit representation of heavy paths. See Figure 3 for an example.
We assume the tree topology is given as a BP sequence. Its length is at most 4(n+k) because
the tree has n + k leaves and at most n + k − 1 internal nodes. We encode heavy edges using
bit-vector called “heavy”. We set heavy[i] = 1 iff the edge between the node with preorder i

and its parent is heavy. We mark a node if it is the head of a heavy path using a bit-vector of
length n, called “head”. Then by a nearest marked ancestor query we can find the preorder
of the head of the heavy path containing a given node and the distance between them in
constant time. We can give a total order for the heavy paths by the preorders of the head
nodes. Using the bit-vector “head”, we can give numbers from 1 to m ≤ n to heavy paths.
We can also store the lengths of the heavy paths using unary codes in at most m + n bits.
This is encoded in “path-len”. In Figure 3, the heavy path from node a to the 8-th leaf
from the left has the head at node a, and it is the first heavy path because the head has the
smallest preorder among all the five heavy paths. Its length 5 is encoded by the unary code
at the beginning of the bit-vector “path-len”.

Next we give an encoding of the colors of the nodes. For each heavy path, we encode the
number of colors in each node using unary codes. The first heavy path has nodes a, c, e, f
plus a leaf and the number of colors of them is 4, 2, 0, 1, and 0, respectively. The numbers
are encoded in bit-vector “multi” using n + u bits where u ≤ n is the total number of colors.
For other heavy paths, the numbers of colors are stored similarly. The array named “color”
stores the colors of nodes. Note that this array is constructed in the preprocessing phase
and deleted after we construct the range minimum query data structure for array P (see
Section 2.9). The range minimum query data structure uses O(n + u) bits. Note that in
the original algorithm for arrays, we set P [i] = −1 if there are no values j < i such that
A[j] = A[i], whereas in our algorithm for trees, we set P [i] = j if there exists j < i such that
color[j] = color[i] and the node with color[j] is the nearest such ancestor of the node with
color[i]. In the example, for the heavy path containing nodes g, h, and a leaf, the colors
of the nodes in the path are stored in color[8, 9], and the corresponding P values are 3, 4
because the root node has colors 3, 4 and therefore we store the indices of P storing the same
colors.

A document listing query is done as follows. We first give an algorithm for the case
P is explicitly stored. We are given the head h and the tail t nodes of a sub-path p on a
root-to-leaf path. First we partition the path into a set of heavy paths. This is done by
first obtaining the nearest marked node of the tail node, that is, the head of the heavy path
containing t. We go to the parent of the head node and repeat this process until we find the
heavy path containing h. This is done in O(log n) time because the sub-path p may contain
O(log n) heavy paths. Then for each heavy path which has an overlap with p, we find the
minimum value P [i] and choose the minimum among those values. We check whether the
value of P [i] is smaller than the index of h in the array color, and if it is, we output its
color and continue the process. The first minimum value P [i] is obtained in O(log n) time,
then we divide the heavy path containing P [i] into two. To efficiently output all distinct

S. Chakraborty, K. Sadakane, and W. Zuba 18:11

a

c

i

2 3 41 1 4 1

e

f

1 4 2 3 2

g

3

h

4 1 4 2 3 2 3A

b
d

$

$

$

$

$ $

1,2,3,4

1,4

1 4

3

2

((() () () ()) ((() ()) () ((() () ()) ()) ()) (() (() () () ()) ()) (() ()))
ab c d e f g h i

0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0

1 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9preorder

a b c d e f g h i

1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
heavy
head

path-len 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0
a b d g i

multi 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0
1 2 3 4 1 4 1 3 4 2

a c e f b d g h i

color
P -1-1-1-1 1 4 5 3 4 2

Figure 3 A data structure for document listing problem in a rooted tree. Node c has colors 1,4
because there are two suffixes of S1 and S4 ending at the node. The heavy-path from the node
consists of nodes a, c, e, f, and a leaf, and it is represented by the boxes in the bit-vectors.

colors, we maintain divided paths using a Fibonacci heap [9]. Because O(log n + z) values
are stored in the Fibonacci heap where z is the output size, the query algorithm runs in
O(log n + z log(z + log n)) time using O(log n(z + log n)) bit space.

We modify the algorithm for the case where P is represented only through its range
minimum data structure. We compute the color of a suffix using a GST. In this case, we use
a similar algorithm to the one described in Section 2.9 using a bit array of length k to mark
output colors. First we obtain O(log n) paths representing p. Then for each path, we find
the position i of the minimum value of P . We compute the color color[i] in O(TIMESA) time
using the GST. If this color was not found yet, we output it and divide the path into two. It
is not necessary to find the minimum of the minimum values because duplication is checked
by a different mechanism. It is also not necessary to store the paths in a Fibonacci heap.
The time complexity is O(TIMESA(log n + z)) and the working space is O(log n(log n + z))
bits.

4 Application to Suffix-prefix Matching

In the Suffix-Prefix problem we are given a set of strings S1, . . . , Sk. We want to preprocess
this set of strings so that given i, j ∈ [1, k] we can answer query “what is the length of the
longest suffix of Si that is also a prefix of Sj” fast.

For any i, j ∈ [1, k], we define SPLi,j as the longest string that is both a suffix of Si and
a prefix of Sj . We consider the following variants [18]:

One-to-One(i, j): output SPLi,j .
One-to-All(i): output SPLi,j for every j ∈ [1, k].
Report(i, ℓ): output all distinct j ∈ [1, k] such that SPLi,j ≥ ℓ, where ℓ ≥ 0 is an integer.
Count(i, ℓ): output the number of distinct j ∈ [1, k] such that SPLi,j ≥ ℓ, where ℓ ≥ 0 is
an integer.
Top(i, K): output K distinct j ∈ [1, k] with the highest values of SPLi,j , breaking ties
arbitrarily.

ISAAC 2024

18:12 Enhancing Generalized Compressed Suffix Trees, with Applications

Table 2 Time complexities for suffix-prefix problems. An existing solution uses O(n log n) bits
of space, while ours uses SIZESA(2n, σ) + O(n + k) bits of space. Typical values of SIZESA and
TIMESA are n log σ + O(n) and O(log n), respectively. The term z in the time complexity of the
Report and Count queries is the output size of the Report query.

Query Time ([18]) Time (ours)
One-to-One(i, j) O(log log k) O(TIMESA · log log n)
One-to-All(i) O(k) O(k · TIMESA · log log n)
Report(i, ℓ) O(log n/ log log n + z) O(TIMESA(log n + z))
Count(i, ℓ) O(log n/ log log n) O(TIMESA(log n + z))

We give compact data structures for these problems except for Top(i, K). The results
are summarized in Table 2.

4.1 Answering One-to-One and One-to-All queries
The base of the data structure consists of suffix trees STi of Si for each i ∈ [1, k] and a
generalized suffix tree ST of the whole set of strings. ST is additionally enhanced with a
rank-select queries data structure and the lowest common ancestor queries data structure. A
node v of ST is colored j if the string label of v is equal to a suffix of j. Note that a node
may have multiple colors.

Using Theorem 1 for the full string Si and j we obtain the location of the closest suffix
U of Sj in ST in O(TIMESA · log log k) time. We can convert the global rank of U to the
local rank in STj in O(TIMESA) time. Next, using the lowest common ancestor query for
Si and U in ST we can find the LCP of those two strings, that is the string depth of the
lowest common ancestor of the nodes representing them, in O(TIMESA) time. Next by using
the weighted level ancestor query in STj for the leaf representing U and the LCP length we
locate the node u of STj with the property that every ancestor of Si in ST marked with
color j is also an ancestor of u in STj , and every ancestor of u in STj is also an ancestor
of Si, in O(TIMESA · log log n) time. Thus we reduced the problem of finding the nearest
ancestor marked with color j in ST to finding the nearest marked ancestor in STj - that is
in a situation where all the marks have the same color.

For the topology of each STj , we use the nearest marked ancestor data structure [28].
The additional space is n + o(n) bits for all STj ’s, and the answer is obtained in constant
time. In summary, a One-to-One suffix-prefix query is done in O(TIMESA · log log n) time.

For a One-to-All query, we naively repeat One-to-One queries for each j ∈ [1, k]. Then
the time complexity is O(k · TIMESA · log log n).

4.2 Report and Count queries
As shown in [18], Report(i, ℓ) and Count(i, ℓ) are the same as Reportr(j, ℓ) and Countr(j, ℓ)
for the reversed strings Sr

1 , . . . , Sr
k. Let ST r be the generalized compressed suffix tree of the

set of the reversed strings, and let v be the nearest node to the root that is on the path
from the root node representing Sr

j (reversed sting Sj) and that has a string depth at least
ℓ. We color node u by color i if a suffix of Sr

i (without the terminator) ends at u. Then
Reportr(j, ℓ) is to output all distinct colors on the path from v to the leaf corresponding
to Sr

j . That is, Reportr(j, ℓ) corresponds to the document listing problem in a tree. The
node v is obtained in O(TIMESA · log log n) time using the weighted level ancestor query.
We use the algorithm from Section 3.4. Note that the arrays “color” and P are not stored
explicitly. By using range minimum queries on P , we obtain only the position in P of the

S. Chakraborty, K. Sadakane, and W. Zuba 18:13

minimum value. To obtain the color, we use the compressed suffix tree. If a node u has color
i, then u has an edge labeled $ and a leaf connected by the edge stores a suffix of Sr

i (nodes
f, g, h, and i in Figure 3). If u has multiple colors, we create a child w of u connected by an
edge labeled $ and create a leaf as a child of w for each color (nodes a and c in Figure 3).
Since we can obtain the global rank of the suffix using the BP sequence of the generalized
suffix tree, we can obtain the color in O(TIMESA) time. The total time complexity becomes
O(TIMESA(log n + z)) time. Count(j, ℓ) is done in the same time complexity as Report(j, ℓ).

For Top-K, we can use the observation in [18] that there exists an integer ℓ ∈ [0, n − 1]
such that Count(i, ℓ + 1) ≤ K < Count(i, ℓ). Therefore we can solve a Top-K query by a
binary search based on the value of Count(i, ℓ). Unfortunately the time for Count(j, ℓ) by
our algorithm depends on the value, hence such an algorithm for Top-K is inefficient.

5 Concluding Remarks

This paper has proposed auxiliary data structures to enhance generalized compressed suffix
trees (GSTs). By adding O(n) bits of space, we improved the time complexity for finding the
closest colored suffix from O(TIMESA · log n) to O(TIMESA · log log k) time, where k is the
number of strings and n is the total length of the strings, and TIMESA is the time to obtain
an entry of the suffix array. We also improved the time complexity for finding weighted level
ancestors in a compressed suffix tree from O(TIMESA · log n) to O(TIMESA · log log n) time.
Using these enhanced GSTs, we obtained linear space (O(n log σ) bits) data structures for
suffix-prefix queries for a set of strings. Future work will be to give time-efficient algorithms
for Count and Top-K queries using O(n) bits of space. A challenging open problem is to
obtain a weighted level ancestor data structure for suffix trees using O(n) bits of space
supporting a query in constant time.

References
1 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees with

enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004. The 9th International
Symposium on String Processing and Information Retrieval. doi:10.1016/S1570-8667(03)
00065-0.

2 Jérémy Barbay, Meng He, J. Ian Munro, and Srinivasa Rao Satti. Succinct indexes for
strings, binary relations and multilabeled trees. ACM Trans. Algorithms, 7(4), September
2011. doi:10.1145/2000807.2000820.

3 Djamal Belazzougui, Dmitry Kosolobov, Simon J. Puglisi, and Rajeev Raman. Weighted
Ancestors in Suffix Trees Revisited. In Paweł Gawrychowski and Tatiana Starikovskaya, editors,
32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021), volume 191 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 8:1–8:15, Dagstuhl, Germany,
2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CPM.2021.8.

4 Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for representing
sequences. ACM Trans. Algorithms, 11(4), April 2015. doi:10.1145/2629339.

5 Arthur L. Delcher, Adam Phillippy, Jane Carlton, and Steven L. Salzberg. Fast algorithms
for large-scale genome alignment and comparison. Nucleic Acids Research, 30(11):2478–2483,
June 2002. doi:10.1093/nar/30.11.2478.

6 Arash Farzan and J. Ian Munro. A uniform paradigm to succinctly encode various families of
trees. Algorithmica, 68(1):16–40, 2014. doi:10.1007/S00453-012-9664-0.

7 P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM, 52(4):552–581,
2005. doi:10.1145/1082036.1082039.

ISAAC 2024

https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1145/2000807.2000820
https://doi.org/10.4230/LIPIcs.CPM.2021.8
https://doi.org/10.1145/2629339
https://doi.org/10.1093/nar/30.11.2478
https://doi.org/10.1007/S00453-012-9664-0
https://doi.org/10.1145/1082036.1082039

18:14 Enhancing Generalized Compressed Suffix Trees, with Applications

8 Johannes Fischer and Volker Heun. A new succinct representation of rmq-information and
improvements in the enhanced suffix array. In Bo Chen, Mike Paterson, and Guochuan Zhang,
editors, Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, pages 459–
470, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. doi:10.1007/978-3-540-74450-4_
41.

9 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, July 1987. doi:10.1145/28869.
28874.

10 Paweł Gawrychowski, Moshe Lewenstein, and Patrick K. Nicholson. Weighted ancestors in
suffix trees. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms - ESA 2014,
pages 455–466, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

11 Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Rank/select operations on large
alphabets: a tool for text indexing. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, SODA ’06, pages 368–373, USA, 2006. Society for Industrial
and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=1109557.1109599.

12 R. Grossi, A. Gupta, and J. S. Vitter. High-Order Entropy-Compressed Text Indexes. In
Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 841–850, 2003.

13 R. Grossi and J. S. Vitter. Compressed Suffix Arrays and Suffix Trees with Applications
to Text Indexing and String Matching. SIAM Journal on Computing, 35(2):378–407, 2005.
doi:10.1137/S0097539702402354.

14 D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.
15 Tsvi Kopelowitz and Moshe Lewenstein. Dynamic weighted ancestors. In Proceedings of

the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pages
565–574, USA, 2007. Society for Industrial and Applied Mathematics. URL: http://dl.acm.
org/citation.cfm?id=1283383.1283444.

16 S. Kurtz. Reducing the Space Requirement of Suffix Trees. Software – Practice and Ex-
perience, 29(13):1149–1171, 1999. doi:10.1002/(SICI)1097-024X(199911)29:13\%3C1149::
AID-SPE274\%3E3.0.CO;2-O.

17 Stefan Kurtz, Adam Phillippy, Arthur Delcher, Michael Smoot, Martin Shumway, Corina
Antonescu, and Steven Salzberg. Versatile and open software for comparing large genomes.
Genome biology, 5:R12, February 2004. doi:10.1186/gb-2004-5-2-r12.

18 Grigorios Loukides, Solon P. Pissis, Sharma V. Thankachan, and Wiktor Zuba. Suffix-
Prefix Queries on a Dictionary. In Laurent Bulteau and Zsuzsanna Lipták, editors, 34th
Annual Symposium on Combinatorial Pattern Matching (CPM 2023), volume 259 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 21:1–21:20, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CPM.2023.21.

19 U. Manber and G. Myers. Suffix arrays: A New Method for On-Line String Searches. SIAM
Journal on Computing, 22(5):935–948, 1993. doi:10.1137/0222058.

20 J. I. Munro and V. Raman. Succinct Representation of Balanced Parentheses and Static Trees.
SIAM Journal on Computing, 31(3):762–776, 2001. doi:10.1137/S0097539799364092.

21 J. I. Munro, V. Raman, and S. R. Satti. Space Efficient Suffix Trees. Journal of Algorithms,
39:205–222, 2001. doi:10.1006/JAGM.2000.1151.

22 S. Muthukrishnan. Efficient Algorithms for Document Retrieval Problems. In Proceedings
of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 657–666, 2002. URL:
http://dl.acm.org/citation.cfm?id=545381.545469.

23 G. Navarro and K. Sadakane. Fully-Functional Static and Dynamic Succinct Trees. ACM
Transactions on Algorithms (TALG), 10(3):Article No. 16, 39 pages, 2014.

24 R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries with applications to
encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms (TALG),
3(4), 2007. doi:10.1145/1290672.1290680.

25 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):589–607, 2007. doi:10.1007/S00224-006-1198-X.

https://doi.org/10.1007/978-3-540-74450-4_41
https://doi.org/10.1007/978-3-540-74450-4_41
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874
http://dl.acm.org/citation.cfm?id=1109557.1109599
https://doi.org/10.1137/S0097539702402354
http://dl.acm.org/citation.cfm?id=1283383.1283444
http://dl.acm.org/citation.cfm?id=1283383.1283444
https://doi.org/10.1002/(SICI)1097-024X(199911)29:13%3C1149::AID-SPE274%3E3.0.CO;2-O
https://doi.org/10.1002/(SICI)1097-024X(199911)29:13%3C1149::AID-SPE274%3E3.0.CO;2-O
https://doi.org/10.1186/gb-2004-5-2-r12
https://doi.org/10.4230/LIPIcs.CPM.2023.21
https://doi.org/10.1137/0222058
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1006/JAGM.2000.1151
http://dl.acm.org/citation.cfm?id=545381.545469
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1007/S00224-006-1198-X

S. Chakraborty, K. Sadakane, and W. Zuba 18:15

26 Kunihiko Sadakane. Succinct data structures for flexible text retrieval systems. J. Discrete
Algorithms, 5(1):12–22, 2007. doi:10.1016/J.JDA.2006.03.011.

27 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

28 Dekel Tsur. Succinct data structures for nearest colored node in a tree. Information Processing
Letters, 132:6–10, 2018. doi:10.1016/j.ipl.2017.10.001.

29 P. Weiner. Linear Pattern Matching Algorithms. In Proceedings of IEEE Symposium on
Switching and Automata Theory, pages 1–11, 1973.

30 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space θ(n). Informa-
tion Processing Letters, 17(2):81–84, 1983. doi:10.1016/0020-0190(83)90075-3.

31 Wiktor Zuba, Grigorios Loukides, Solon P. Pissis, and Sharma V. Thankachan. Approximate
suffix-prefix dictionary queries. In Rastislav Královic and Antonín Kucera, editors, 49th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2024,
August 26-30, 2024, Bratislava, Slovakia, volume 306 of LIPIcs, pages 85:1–85:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.MFCS.2024.85.

ISAAC 2024

https://doi.org/10.1016/J.JDA.2006.03.011
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1016/j.ipl.2017.10.001
https://doi.org/10.1016/0020-0190(83)90075-3
https://doi.org/10.4230/LIPICS.MFCS.2024.85

Tight (Double) Exponential Bounds for
Identification Problems: Locating-Dominating Set
and Test Cover
Dipayan Chakraborty # Ñ

Université Clermont Auvergne, CNRS, Mines Saint-Étienne, Clermont Auvergne INP, LIMOS,
63000 Clermont-Ferrand, France
Department of Mathematics and Applied Mathematics, University of Johannesburg, South Africa

Florent Foucaud # Ñ

Université Clermont Auvergne, CNRS, Mines Saint-Étienne, Clermont Auvergne INP, LIMOS,
63000 Clermont-Ferrand, France

Diptapriyo Majumdar # Ñ

Indraprastha Institute of Information Technology Delhi, New Delhi, India

Prafullkumar Tale # Ñ

Indian Institute of Science Education and Research Bhopal, India

Abstract
Foucaud et al. [ICALP 2024] demonstrated that some problems in NP can admit (tight) double-
exponential lower bounds when parameterized by treewidth or vertex cover number. They showed
these first-of-their-kind results by proving conditional lower bounds for certain graph problems, in
particular, the metric-based identification problems (Strong) Metric Dimension. We continue
this line of research and highlight the usefulness of this type of problems, to prove relatively rare
types of (tight) lower bounds. We investigate fine-grained algorithmic aspects of classical (non-metric
based) identification problems in graphs, namely Locating-Dominating Set, and in set systems,
namely Test Cover. In the first problem, an input is a graph G on n vertices and an integer k, and
the objective is to decide whether there is a subset S of k vertices such that any two distinct vertices
not in S are dominated by distinct subsets of S. In the second problem, an input is a set of items U ,
a collection of subsets F of U called tests, and an integer k, and the objective is to select a set S of
at most k tests such that any two distinct items are contained in a distinct subset of tests of S.

For our first result, we adapt the techniques introduced by Foucaud et al. [ICALP 2024] to prove
similar (tight) lower bounds for these two problems.

Locating-Dominating Set (respectively, Test Cover) parameterized by the treewidth of the
input graph (respectively, the natural auxiliary graph) does not admit an algorithm running in
time 22o(tw)

· poly(n) (respectively, 22o(tw)
· poly(|U | + |F|))), unless the ETH fails.

This augments the short list of NP-Complete problems that admit tight double-exponential lower
bounds when parameterized by treewidth, and shows that “local” (non-metric-based) problems can
also admit such bounds. We show that these lower bounds are tight by designing treewidth-based
dynamic programming schemes with matching running times.

Next, we prove that these two problems also admit “exotic” (and tight) lower bounds, when
parameterized by the solution size k. We prove that unless the ETH fails,

Locating-Dominating Set does not admit an algorithm running in time 2o(k2) · poly(n), nor a
polynomial-time kernelization algorithm that reduces the solution size and outputs a kernel with
2o(k) vertices, and
Test Cover does not admit an algorithm running in time 22o(k)

· poly(|U | + |F|) nor a kernel
with 22o(k)

vertices.
Again, we show that these lower bounds are tight by designing (kernelization) algorithms with
matching running times. To the best of our knowledge, Locating-Dominating Set is the first
known problem which is FPT when parameterized by solution size k, where the optimal running
time has a quadratic function in the exponent. These results also extend the (very) small list of
problems that admit an ETH-based lower bound on the number of vertices in a kernel, and (for

© Dipayan Chakraborty, Florent Foucaud, Diptapriyo Majumdar, and Prafullkumar Tale;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dipayan.chakraborty@uca.fr
https://dipayan5186.github.io/Website/
https://orcid.org/0000-0001-7169-7288
mailto:florent.foucaud@uca.fr
https://perso.limos.fr/ffoucaud
https://orcid.org/0000-0001-8198-693X
mailto:diptapriyo@iiitd.ac.in
https://diptapriyomajumdar.wixsite.com/toto
https://orcid.org/0000-0003-2677-4648
mailto:prafullkumar@iiserb.ac.in
https://pptale.github.io/
https://orcid.org/0000-0001-9753-0523
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Tight (Double) Exponential Bounds for Identification Problems

Test Cover) a double-exponential lower bound when parameterized by the solution size. Whereas
it is the first example, to the best of our knowledge, that admit a double exponential lower bound
for the number of vertices.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Identification Problems, Locating-Dominating Set, Test Cover, Double
Exponential Lower Bound, ETH, Kernelization Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.19

Related Version Full Version: https://arxiv.org/abs/2402.08346

Funding Dipayan Chakraborty: International Research Center “Innovation Transportation and
Production Systems” of the I-SITE CAP 20-25.
Florent Foucaud: ANR project GRALMECO (ANR-21-CE48-0004), French government IDEX-ISITE
initiative 16-IDEX-0001 (CAP 20-25), International Research Center “Innovation Transportation
and Production Systems” of the I-SITE CAP 20-25.
Diptapriyo Majumdar : Supported by Science and Engineering Research Board (SERB) grant
SRG/2023/001592.
Prafullkumar Tale: Supported by INSPIRE Faculty Fellowship DST/INSPIRE/04/2021/00314.

1 Introduction

The article aims to study the algorithmic properties of certain identification problems in
discrete structures. In identification problems, one wishes to select a solution substructure
of an input structure (a subset of vertices, the coloring of a graph, etc.) so that the
solution substructure uniquely identifies each element. Some well-studied examples are, for
example, the problems Test Cover for set systems and Metric Dimension for graphs
(Problems [SP6] and [GT61] in the book by Garey and Johnson [39], respectively). This type
of problem has been studied since the 1960s both in the combinatorics community (see e.g.
Rényi [60] or Bondy [9]), and in the algorithms community since the 1970s [7, 10, 25, 55].
They have multiple practical and theoretical applications, such as network monitoring [59],
medical diagnosis [55], bioinformatics [7], coin-weighing problems [62], graph isomorphism [4],
games [19], machine learning [18] etc. An online bibliography on the topic with over 500
entries as of 2024 is maintained at [46].

In this article, we investigate fine-grained algorithmic aspects of identification problems
in graphs, namely Locating-Dominating Set, and in set systems, namely Test Cover.
Like most other interesting and practically motivated computational problems, identification
problems also turned out to be NP-hard, even in very restricted settings. See, for example,
[20] and [39], respectively. We refer the reader to “Related Work” towards the end of this
section for a more detailed overview on their algorithmic complexity.

To cope with this hardness, these problems have been studied through the lens of
parameterized complexity. In this paradigm, we associate each instance I with a parameter
ℓ, and are interested to know whether the problem admits a fixed parameter tractable (FPT)
algorithm, i.e., an algorithm with the running time f(ℓ)·|I|O(1), for some computable function
f . A parameter can either originate from the formulation of the problem itself or can be a
property of the input. If a parameter originates from the formulation of the problem itself,
then that is called a natural parameter. Otherwise, the parameters that are properties of the
input graph are called the structural parameters. One of the most well-studied structural
parameters is ‘treewidth’ (which, informally, quantifies how close the input graph is to a

https://doi.org/10.4230/LIPIcs.ISAAC.2024.19
https://arxiv.org/abs/2402.08346

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:3

tree, and is denoted by tw). We refer readers to [26, Chapter 7] for a formal definition.
Courcelle’s celebrated theorem [21] states that the class of graph problems expressible in
Monadic Second-Order Logic (MSOL) of constant size admit an algorithm running in time
f(tw) ·poly(n). Hence, a large class of problems admit an FPT algorithm when parameterized
by the treewidth. Unfortunately, the function f is a tower of exponents whose height depends
roughly on the size of the MSOL formula. Hence, this result serves as a starting point to
obtain an (usually impractical) FPT algorithm.

Over the years, researchers have searched for more efficient problem-specific algorithms
when parameterized by the treewidth. There is a rich collection of problems that admit an
FPT algorithm with single- or almost-single-exponential dependency with respect to treewidth,
i.e., of the form 2O(tw) · nO(1) or 2O(tw log(tw)) · nO(1), (see, for example, [26, Chapter 7]).
There are a handful of graph problems that only admit FPT algorithms with double- or
triple-exponential dependence in the treewidth [8, 30, 31, 32, 42, 54]. In the respective articles,
the authors prove that this double- (respectively, triple-) dependence in the treewidth cannot
be improved unless the Exponential Time Hypothesis (ETH)1 fails.

All the double- (or triple-) exponential lower bounds in treewidth mentioned in the
previous paragraph are for problems that are #NP-complete, Σp

2-complete, or Πp
2-complete.

Indeed, until recently, this type of lower bounds were known only for problems that are
complete for levels that are higher than NP in the polynomial hierarchy. Foucaud et al. [36]
recently proved for the first time, that it is not necessary to go to higher levels of the
polynomial hierarchy to achieve double-exponential lower bounds in the treewidth. The
authors studied three NP-complete metric-based graph problems viz Metric Dimension,
Strong Metric Dimension, and Geodetic Set. They proved that these problems admit
double-exponential lower bounds in tw (and, in fact in the size of minimum vertex cover
size vc for the second problem) under the ETH. The first two of these three problems are
identification problems.

In this article, we continue this line of research and highlight the usefulness of identifica-
tion problems to prove relatively rare types of lower bounds, by investigating fine-grained
algorithmic aspects of Locating-Dominating Set and Test Cover, two classical (non-
metric-based) identification problems. This also shows that this type of bounds can hold for
“local” (i.e., non-metric-based) problems (the problems studied in [36] were all metric-based).
Apart from serving as examples for double-exponential dependence on treewidth, these prob-
lems are of interest in their own right, and possess a rich literature both in the algorithms
and discrete mathematics communities, as highlighted in “Related Work”.

Locating-Dominating Set
Input: A graph G on n vertices and an integer k.
Question: Does there exist a locating-dominating set of size k in G, that is, a set S of
V (G) of size at most k such that for any two different vertices u, v ∈ V (G) \ S, their
neighbourhoods in S are different, i.e., N(u) ∩ S ̸= N(v) ∩ S and non-empty?

Test Cover
Input: A set of items U , a collection F of subsets of U called tests, and an integer k.
Question: Does there exist a collection of at most k tests such that for each pair of
items, there is a test that contains exactly one of the two items?

1 The ETH roughly states that n-variable 3-SAT cannot be solved in time 2o(n)nO(1).
See [26, Chapter 14].

ISAAC 2024

19:4 Tight (Double) Exponential Bounds for Identification Problems

As Test Cover is defined over set systems, for structural parameters, we define an
auxiliary graph in the natural way: A bipartite graph G on n vertices with bipartition ⟨R,B⟩
of V (G) such that sets R and B contain a vertex for every set in F and for every item in
U , respectively, and r ∈ R and b ∈ B are adjacent if and only if the set corresponding to r
contains the element corresponding to b.

The Locating-Dominating Set problem is also a graph domination problem. In the
classical Dominating Set problem, an input is an undirected graph G and an integer k,
and the objective is to decide whether there is a subset S ⊆ V (G) of size k such that for
any vertex u ∈ V (G) \ S, at least one of its neighbours is in S. It can also be seen as a
local version of Metric Dimension2 in which the input is the same and the objective is
to determine a set S of V (G) such that for any two vertices u, v ∈ V (G) \ S, there exists a
vertex s ∈ S such that dist(u, s) ̸= dist(v, s).

We demonstrate the applicability of the techniques from [36] to Locating-Dominating
Set and Test Cover. We adopt the main technique developed in [36] to our setting,
namely, the bit-representation gadgets and set representation gadget to prove the following
result.

▶ Theorem 1. Unless the ETH fails, Locating-Dominating Set (respectively, Test
Cover) parameterized by the treewidth of the input graph (respectively, the natural auxiliary
graph) does not admit an algorithm running in time 22o(tw) · poly(n).

We remark that the algorithmic lower bound of Theorem 1 holds true even with respect
to treedepth (and hence with respect to pathwidth), a parameter larger than treewidth. In
contrast, Dominating Set admits an algorithm running in time O(3tw · n2) [67, 52]. In
the full version of the paper, we prove that both Locating-Dominating Set and Test
Cover admit an algorithm with matching running time, by nontrivial dynamic programming
schemes on tree decompositions.

Theorem 1 adds Locating-Dominating Set and Test Cover to the short list of
NP-Complete problems that admit (tight) double-exponential lower bounds for treewidth.
Using the techniques mentioned in [36], two more problems, viz. Non-Clashing Teaching
Map and Non-Clashing Teaching Dimension, from learning theory were recently shown
in [14] to admit similar lower bounds.

Next, we prove that Locating-Dominating Set and Test Cover also admit “exotic”
lower bounds, when parameterized by the solution size k. First, note that both problems are
trivially FPT when parameterized by the solution size. Indeed, as any solution must have
size at least logarithmic in the number of elements/vertices (assuming no redundancy in the
input), the whole instance is a trivial single-exponential kernel for Locating-Dominating
Set, and double-exponential in the case of Test Cover. To see this, note that in both
problems, any two vertices/items must be assigned a distinct subset from the solution set.
Hence, if there are more than 2k of them, we can safely reject the instance. Thus, for
Locating-Dominating Set, we can assume that the graph has at most 2k + k vertices,
and for Test Cover, at most 2k items. Moreover, for Test Cover, one can also assume
that every test is unique (otherwise, delete any redundant test), in which case there are at
most 22k tests. Hence, Locating-Dominating Set admits a kernel with size O(2k), and
an FPT algorithm running in time 2O(k2) (See Proposition 7). We prove that both of these
bounds are optimal.

2 Note that Metric Dimension is also an identification problem, but it is inherently non-local in nature,
and indeed was studied together with two other non-local problems in [36], where the similarities
between these non-local problems were noticed.

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:5

▶ Theorem 2. Unless the ETH fails, Locating-Dominating Set, parameterized by the
solution size k, does not admit

an algorithm running in time 2o(k2) · nO(1), nor
a polynomial time kernelization algorithm that reduces the solution size and outputs a
kernel with 2o(k) vertices.

To the best of our knowledge, Locating-Dominating Set is the first known problem to
admit such an algorithmic lower bound, with a matching upper bound, when parameterized
by the solution size. The only other problems known to us, admitting similar lower bounds,
are for structural parameterizations like vertex cover [1, 14, 36] or pathwidth [58, 61]. The
second result is also quite rare in the literature. The only results known to us about ETH-
based conditional lower bounds on the number of vertices in a kernel when parameterized by
the solution size are for Edge Clique Cover [27] and Biclique Cover [15]3. Theorem 2
also improves upon a “no 2O(k)nO(1) algorithm” bound from [5] (under W[2] ̸= FPT) and a
2o(k log k) ETH-based lower bound recently proved in [11].

Now, consider the case of Test Cover. As mentioned before, it is safe to assume that
|F| ≤ 2|U | and |U | ≤ 2k. By Bondy’s celebrated theorem [9], which asserts that in any
feasible instance of Test Cover, there is always a solution of size at most |U | − 1, we can
also assume that k ≤ |U | − 1. Hence, the brute-force algorithm that enumerates all the
sub-collections of tests of size at most k runs in time |F|O(|U |) = 2O(|U |2) = 22O(k) . Our next
result proves that this simple algorithm is again optimal.

▶ Theorem 3. Unless the ETH fails, Test Cover does not admit
an algorithm running in time 22o(k) · (|U | + |F|)O(1), nor
a polynomial time kernelization algorithm that reduces the solution size and outputs a
kernel with 22o(k) vertices.

This result adds Test Cover to the relatively rare list of NP-complete problems that
admit such double-exponential lower bounds when parameterized by the solution size and
the matching algorithm. The only other examples that we know of are Edge Clique
Cover [27], Distinct Vectors Problem [57], and Telephone Broadcast [66]. For
double-exponential algorithmic lower bounds with respect to structural parameters, please
see [33, 42, 45, 47, 48, 50, 51, 53].

The second result in the theorem is a simple corollary of the first result. Assume that
the problem admits a kernel with 22o(k) vertices. Then, the brute-force enumerating all the
possible solutions works in time

(22o(k)

k

)
· (|U | + |F|)O(1), which is 2k·2o(k) · (|U | + |F|)O(1),

which is 22o(k) · (|U | + |F|)O(1), contradicting the first result. To the best of our knowledge,
Test Cover is the first problem that admit a double exponential kernelization lower bound
for the number of vertices when parameterized by solution size, or by any natural parameter.

Related Work. Locating-Dominating Set was introduced by Slater in the 1980s [63, 64].
The problem is NP-complete [20], even for special graph classes such as planar unit disk
graphs [56], planar bipartite subcubic graphs, chordal bipartite graphs, split graphs and co-
bipartite graphs [35], interval and permutation graphs of diameter 2 [38]. By a straightforward
application of Courcelle’s theorem [22], Locating-Dominating Set is FPT for parameter
treewidth and even cliquewidth [23]. Explicit polynomial-time algorithms were given for
trees [63], block graphs [3], series-parallel graphs [20], and cographs [37]. Regarding the
approximation complexity of Locating-Dominating Set, see [35, 40, 65].

3 Additionally, Point Line Cover does not admit a kernel with O(k2−ϵ) vertices, for any ϵ > 0, unless
NP ⊆ coNP/poly [49].

ISAAC 2024

19:6 Tight (Double) Exponential Bounds for Identification Problems

It was shown in [5] that Locating-Dominating Set cannot be solved in time 2o(n) on
bipartite graphs, nor in time 2o(

√
n) on planar bipartite graphs or on apex graphs, assuming

the ETH. Moreover, they also showed that Locating-Dominating Set cannot be solved
in time 2O(k)nO(1) on bipartite graphs, unless W[2] = FPT. Note that the authors of [5]
have designed a complex framework with the goal of studying a large class of identification
problems related to Locating-Dominating Set and similar problems.

In [12], structural parameterizations of Locating-Dominating Set were studied. It was
shown that the problem admits a linear kernel for the parameter max-leaf number, however
(under standard complexity assumptions) no polynomial kernel exists for the solution size,
combined with either the vertex cover number or the distance to a clique. They also provide
a double-exponential kernel for the parameter distance to the cluster. In the full version [11]
of [12], the same authors show that Locating-Dominating Set does neither admit a
2o(k log k)nO(1)-time nor an no(k)-time algorithm, assuming the ETH.

Test Cover was shown to be NP-complete by Garey and Johnson [39, Problem SP6]
and it is also hard to approximate within a ratio of (1 − ϵ) lnn [10] (an approximation
algorithm with ratio 1 + lnn exists by reduction to Set Cover [7]). As any solution has
size at least log2(n), the problem admits a trivial kernel of size 22k , and thus Test Cover
is FPT parameterized by solution size k. Test Cover was studied within the framework of
“above/below guarantee” parameterizations in [6, 24, 25, 41] and kernelization in [6, 24, 41].
These results have shown an intriguing behavior for Test Cover, with some nontrivial
techniques being developed to solve the problem [6, 25]. Test Cover is FPT for parameters
n−k, but W [1]-hard for parameters m−k and k− log2(n) [25]. However, assuming standard
assumptions, there is no polynomial kernel for the parameterizations by k and n− k [41],
although there exists a “partially polynomial kernel” for parameter n− k [6] (i.e. one with
O((n− k)7) elements, but potentially exponentially many tests). When the tests have all a
fixed upper bound r on their size, the parameterizations by k, n− k and m− k all become
FPT with a polynomial kernel [24, 41].

The problem Discriminating Code [16] is very similar to Test Cover (with the
distinction that the input is presented as a bipartite graph, one part representing the
elements and the other, the tests, and that every element has to be covered by some solution
test), and has been shown to be NP-complete even for planar instances [17].

Organization. Due to the space constraints, we present overviews of the reductions in this
extended abstract. Formal proofs for the arguments can be found in the full version of
the paper. We use the Locating-Dominating Set problem to demonstrate key technical
concepts regarding our lower bounds and algorithms. We present an overview of the arguments
about Locating-Dominating Set in Sections 3 and 4. The arguments regarding Test
Cover follow the identical line, and an overview is presented in Section 5. We conclude with
an open problem in Section 6.

2 Preliminaries

For a positive integer q, we denote the set {1, 2, . . . , q} by [q]. We use N to denote the
collection of all non-negative integers.

Graph theory. We use standard graph-theoretic notation, and we refer the reader to [28]
for any undefined notation. For an undirected graph G, sets V (G) and E(G) denote its set
of vertices and edges, respectively. We denote an edge with two endpoints u, v as uv. Unless

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:7

otherwise specified, we use n to denote the number of vertices in the input graph G of the
problem under consideration. Two vertices u, v in V (G) are adjacent if there is an edge uv in
G. The open neighborhood of a vertex v, denoted by NG(v), is the set of vertices adjacent to
v. The closed neighborhood of a vertex v, denoted by NG[v], is the set NG(v) ∪ {v}. We say
that a vertex u is a pendant vertex if |NG(v)| = 1. We omit the subscript in the notation for
neighborhood if the graph under consideration is clear. For a subset S of V (G), we define
N [S] =

⋃
v∈S N [v] and N(S) = N [S] \ S. For a subset S of V (G), we denote the graph

obtained by deleting S from G by G− S. We denote the subgraph of G induced on the set
S by G[S].

Locating-Dominating Sets. A subset of vertices S in graph G is called its dominating set
if N [S] = V (G). A dominating set S is said to be a locating-dominating set if for any two
different vertices u, v ∈ V (G) \S, we have N(u) ∩S ̸= N(v) ∩S. In this case, we say vertices
u and v are distinguished by the set S. We say a vertex u is located by set S if for any vertex
v ∈ V (G) \ {u}, u and v are distinguished by S (equivalently N(u) ∩ S ≠ N(v) ∩ S). Note
that, if S locates u, then any superset S′ ⊃ S also locates u. By extension, a set X is located
by S if all vertices in X are located by S. We note the following simple observation (see also
[13, Lemma 5]).

▶ Observation 4. If S is a locating-dominating set of a graph G, then there exists a locating-
dominating set S′ of G such that |S′| ≤ |S| and that contains all vertices that are adjacent
with a pendant vertices (i.e. vertices of degree 1) in G.

Proof. Let u be a pendant vertex which is adjacent with a vertex v of G. We now look for a
locating dominating set S′ of G such that |S′| ≤ |S| and contains the vertex v. As S is a
(locating) dominating set, we have {u, v} ∩ S ̸= ∅. If v ∈ S, then take S′ = S. Therefore,
let us assume that u ∈ S and v ̸∈ S. Define S′ = (S ∪ {v}) \ {u}. It is easy to see that S′

is a dominating set. If S′ is not a locating-dominating set, then there exists w, apart from
u, in the neighbourhood of v such that both u and w are adjacent with only v in S′. As u
is a pendant vertex and v its unique neighbour, w is not adjacent to u. Hence, w was not
adjacent with any vertex in S′ \ {v} = S \ {u}. This, however, contradicts the fact that S is
a (locating) dominating set. Hence, S′ is a locating-dominating set and |S′| = |S|. Thus,
the result follows from repeating this argument for each vertex of G adjacent to a pendant
vertex. ◀

Parameterized complexity. An instance of a parameterized problem Π consists of an input
I, which is an input of the non-parameterized version of the problem, and an integer k,
which is called the parameter. Formally, Π ⊆ Σ∗ × N. A problem Π is said to be fixed-
parameter tractable, or FPT, if given an instance (I, k) of Π, we can decide whether (I, k)
is a Yes-instance of Π in time f(k) · |I|O(1). Here, f : N 7→ N is some computable function
depending only on k. A parameterized problem Π is said to admit a kernelization if given
an instance (I, k) of Π, there is an algorithm that runs in time polynomial in |I| + k and
constructs an instance (I ′, k′) of Π such that (i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π, and
(ii) |I ′| + k′ ≤ g(k) for some computable function g : N 7→ N depending only on k. If g(·) is
a polynomial function, then Π is said to admit a polynomial kernelization. For a detailed
introduction to parameterized complexity and related terminologies, we refer the reader to
the recent books by Cygan et al. [26] and Fomin et al. [34].

ISAAC 2024

19:8 Tight (Double) Exponential Bounds for Identification Problems

3 Locating-Dominating Set Parameterized by Treewidth

We first present a bird’s eye overview of the dynamic programming algorithm. Let T =
(T, {Xt}t∈V (T)) be a nice tree decomposition of G. For every node t ∈ V (T), consider the
subtree Tt of T rooted at t. Let Gt denote the subgraph of G that is induced by the vertices
that are present in the bags of Tt. For every node t ∈ T , we define a subproblem (or DP-state)
using a tuple [t, (Y,W), (A,D),B]. Consider a partition (Y,W,Xt \ (Y ∪ W)) of Xt. The
first part denotes the vertices in the partial solution S. The second part denotes the vertices
in Xt that are dominated (but need not be located) by the solution vertices in Gt but that
are outside Xt. To extend this partial solution, we need to keep track of vertices that are
adjacent to a unique subset in Y . For example, suppose there is vertex u ∈ V (Gt) \ (S ∪Xt)
such that NGt

(u) ∩ S = A for some subset A ⊆ Y . Then u still needs to be located by S. It
means that there should not be a vertex, say v, in V (G) \ V (Gt) such that NGt

(v) ∩ S′ = A,
where S′ is an extension of the partial solution S. Hence, we need to keep track of all such
vertices by keeping track of the neighbourhood of all such vertices. We define A, which is a
subset of the power set of Y , to store all such sets that are the neighborhoods of vertices in
V (Gt) \ Xt. Similarly, we define D to store all such sets with respect to vertices that are
in Xt. Finally, we define B to store the pairs of vertices that need to be resolved by the
extension of the partial solution. We formalise these ideas in the full version of the paper to
prove the following theorem.

▶ Theorem 5. Locating-Dominating Set, parameterized by the treewidth tw of the input
graph admits an algorithm running in time 22O(tw) · nO(1).

In the remainder of this section, we prove the lower bound mentioned in Theorem 1
by presenting a reduction from a variant of 3-SAT called (3, 3)-SAT. In this variation, an
input is a boolean satisfiability formula ψ in conjunctive normal form such that each clause
contains at most 3 variables, and each variable appears at most 3 times. Using the ETH [43],
the sparcification lemma [44], and a simple reduction from 3-SAT, we have the following
result.

▶ Proposition 6. (3, 3)-SAT, with n variables and m clauses, does not admit an algorithm
running in time 2o(m+n), unless the ETH fails.

We highlight that every variable appears positively and negatively at least once. Otherwise,
if a variable appears only positively (respectively, only negatively) then we can assign it True
(respectively, False) and safely reduce the instance by removing the clauses containing this
variable. Hence, instead of the first, second, or third appearance of the variable, we use the
first positive, first negative, second positive, or second negative appearance of the variable.

Reduction. The reduction takes as input an instance ψ of (3, 3)-SAT with n variables and
outputs an instance (G, k) of Locating-Dominating Set such that tw(G) = O(log(n)).
Suppose X = {x1, . . . , xn} is the collection of variables and C = {C1, . . . , Cm} is the
collection of clauses in ψ. Here, we consider ⟨x1, . . . , xn⟩ and ⟨C1, . . . , Cm⟩ to be arbitrary
but fixed orderings of variables and clauses in ψ. For a particular clause, the first order
specifies the first, second, or third (if it exists) variable in the clause in a natural way. The
second ordering specifies the first/second positive/negative appearance of variables in X in a
natural way. The reduction constructs a graph G as follows.

To construct a variable gadget for xi, it starts with two claws {α0
i , α

1
i , α

2
i , α

3
i } and

{β0
i , β

1
i , β

2
i , β

3
i } centered at α0

i and β0
i , respectively. It then adds four vertices

x1
i ,¬x1

i , x
2
i ,¬x2

i , and the corresponding edges, as shown in Figure 1. Let Ai be the collec-
tion of these twelve vertices and we define A = ∪n

i=1Ai. Define Xi := {x1
i ,¬x1

i , x
2
i ,¬x2

i }.

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:9

Figure 1 For the sake of clarity, we do not explicitly show the pendant vertices adjacent to
vertices in V . The variable and clause gadgets are on the left-side and right-side of V , respectively.
In this example, we consider a clause Cj = xi ∨ ¬xi+1 ∨ xi+2. Moreover, suppose this is the second
positive appearance of xi and the first negative appearance of xi+1, and xi corresponds to c1

j and
xi+1 corresponds to c2

j . Suppose V contains 6 vertices indexed from top to bottom, and the set
corresponding to these two appearances are {1, 3, 4} and {3, 4, 6} respectively. The star boundary
denote the vertices that we can assume to be in any locating-dominating set, without loss of generality.
The square boundary corresponds to selection of other vertices in S. In the above example, it
corresponds to setting both xi and xi+1 to True. On the clause side, the selection corresponds to
selecting xi to satisfy the clause Cj .

To construct a clause gadget for Cj , the reduction starts with a star graph centered
at γ0

j and with four leaves {γ1
j , γ

2
j , γ

3
j , γ

4
j }. It then adds three vertices c1

j , c
2
j , c

3
j and the

corresponding edges shown in Figure 1. Let Bj be the collection of these eight vertices
and B = ∪m

j=1Bj .
Let p be the smallest positive integer such that 4n ≤

(2p
p

)
. Define Fp as the collection of

subsets of [2p] that contains exactly p integers (such a collection Fp is called a Sperner
family). Define set-rep :

⋃n
i=1 Xi → Fp as an injective function by arbitrarily assigning

a set in Fp to a vertex xℓ
i or ¬xℓ

i , for every i ∈ [n] and ℓ ∈ [2]. In other words, every
appearance of a literal is assigned a distinct subset in Fp.
The reduction adds a connection portal V , which is a clique on 2p vertices v1, v2, . . . , v2p.
For every vertex vq in V , the reduction adds a pendant vertex uq adjacent to vq.
For each vertex xℓ

i ∈ X where i ∈ [n] and ℓ ∈ [2], the reduction adds edges (xℓ
i , vq) for

every q ∈ set-rep(xℓ
i). Similarly, it adds edges (¬xℓ

i , vq) for every q ∈ set-rep(¬xℓ
i).

For a clause Cj , suppose variable xi appears positively for the ℓth time as the rth variable
in Cj . For example, xi appears positively for the second time as the third variable in Cj .
Then, the reduction adds edges across B and V such that the vertices cr

j and xℓ
i have

the same neighbourhood in V , namely, the set {vq : q ∈ set-rep(xℓ
i)}. Similarly, it adds

edges for the negative appearance of the variables.

This concludes the construction of G. The reduction sets k = 4n+ 3m+ 2p and returns
(G, k) as the reduced instance of Locating-Dominating Set.

ISAAC 2024

19:10 Tight (Double) Exponential Bounds for Identification Problems

We now provide an overview of the proof of correctness in the reverse direction. The
crux of the correctness is: Without loss of generality, all the vertices in the connection portal
V are present in any locating-dominating set S of G. Consider a vertex, say x1

i , on the
“variable-side” of S and a vertex, say c1

j , on the “clause-side” of S. If both of these vertices
have the same neighbors in the connection portal and are not adjacent to the vertices in
S \ V , then at least one of x1

i or c1
j must be included in S.

More formally, suppose S is a locating-dominating set of G of size at most k = 4n +
3m + 2p. Then, we prove that S must have exactly 4 vertices from each variable gadget
and exactly 3 vertices from each clause gadget. Further, S contains either {αi

0, β
i
0, x

1
i , x

2
i } or

{αi
0, β

i
0,¬x1

i ,¬x2
i }, but no other combination of vertices in the variable gadget corresponding

to xi. For a clause gadget corresponding to Cj , S contains either {γ0
j , c

2
j , c

3
j}, {γ0

j , c
1
j , c

3
j},

or {γ0
j , c

1
j , c

2
j}, but no other combination. These choices imply that c1

j , c2
j , or c3

j are not
adjacent to any vertex in S \ V . Consider the first case and suppose c1

j corresponds to the
second positive appearance of variable xi. By the construction, the neighborhoods of x2

i

and c1
j in V are identical. This forces a selection of {αi

0, β
i
0, x

1
i , x

2
i } in S from the variable

gadget corresponding to xi, which corresponding to setting xi to True. Hence, a locating
dominating set S of size at most k implies a satisfying assignment of ψ.

Sketch of Proof of Theorem 1. Note that since each component of G − V is of constant
order, the tree-width of G is O(|V |). By the asymptotic estimation of the central binomial
coefficient,

(2p
p

)
∼ 4p

√
π·p [2]. To get the upper bound of 2p, we scale down the asymptotic

function and have 4n ≤ 4p

2p = 2p. Since we choose the value of p as small as possible such
that 2p ≥ 4n, we choose p = log(n) + 3. This ensures us that p = O(log(n)). And hence,
|V | = O(log(n)) which implies tw(G) = O(log n). The remaining arguments are standard for
proving the conditional lower bound under ETH. ◀

4 Locating-Dominating Set Parameterized by the Solution Size

In this section, we study the parameterized complexity of Locating-Dominating Set when
parameterized by the solution size k. First, we formally prove that the problem admits a
kernel with O(2k) vertices, and hence a simple FPT algorithm running in time 2O(k2). Next,
we prove that both results mentioned above are optimal under the ETH.

▶ Proposition 7. Locating-Dominating Set admits a kernel with O(2k) vertices and an
algorithm running in time 2O(k2) + O(k log n).

Proof. Slater proved that for any graph G on n vertices with a locating-dominating set of
size k, we have n ≤ 2k + k − 1 [64]. Hence, if n > 2k + k − 1, we can return a trivial No
instance (this check takes time O(k log n)). Otherwise, we have a kernel with O(2k) vertices.
In this case, we can enumerate all subsets of vertices of size k, and for each of them, check in
quadratic time if it is a valid solution. Overall, this takes time

(
n
k

)
n2; since n ≤ 2k + k − 1,

this is
(2O(k)

k

)
· 2O(k), which is 2O(k2). ◀

To prove Theorem 2, we present a reduction that takes as input an instance ψ, with n

variables, of 3-SAT and returns an instance (G, k) of Locating-Dominating Set such
that |V (G)| = 2O(

√
n) and k = O(

√
n). By adding dummy variables in each set, we can

assume that
√
n is an even integer. Suppose the variables are named xi,j for i, j ∈ [

√
n]. The

reduction constructs graph G as follows:
It partitions the variables of ψ into

√
n many buckets X1, X2, . . . , X√

n such that each
bucket contains exactly

√
n many variables. Let Xi = {xi,j | j ∈ [

√
n]} for all i ∈ [

√
n].

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:11

Figure 2 Suppose an instance ψ of 3-SAT has n = 9 variables and 4 clauses. We do not show
the third variable bucket and explicit edges across A and bit-rep(A) for brevity.

For every Xi, it constructs set Ai of 2
√

n new vertices, Ai = {ai,ℓ | ℓ ∈ [2
√

n]}. Each
vertex in Ai corresponds to a unique assignment of variables in Xi. Let A be the
collection of all the vertices added in this step.
For every Xi, the reduction adds a path on three vertices b◦

i , b′
i, and b⋆

i with edges
(b◦

i , b
′
i) and (b′

i, b
⋆
i). Suppose B is the collection of all the vertices added in this step.

For every Xi, it makes b◦
i adjacent with every vertex in Ai.

For every clause Cj , the reduction adds a pair of vertices c◦
j , c

⋆
j . For a vertex ai,ℓ ∈ Ai

for some i ∈ [
√
n], and ℓ ∈ [2

√
n], if the assignment corresponding to vertex ai,ℓ satisfies

clause Cj , then it adds edge (ai,ℓ, c
◦
j).

The reduction adds a bit-representation gadget4 to locate set A. Once again, informally
speaking, it adds some supplementary vertices such that it is safe to assume these vertices
are present in a locating-dominating set, and they locate every vertex in A. More precisely:

First, set q := ⌈log(|A|)⌉ + 1. This value for q allows to uniquely represent each integer
in [|A|] by its bit-representation in binary (starting from 1 and not 0).
For every i ∈ [q], the reduction adds two vertices yi,1 and yi,2 and edge (yi,1, yi,2).
For every integer q′ ∈ [|A|], let bit(q′) denote the binary representation of q′ using q
bits. Connect ai,ℓ ∈ A with yi,1 if the ith bit in bit((i+ (ℓ− 1) ·

√
n)) is 1.

It adds two vertices y0,1 and y0,2, and edge (y0,1, y0,2). It also makes every vertex in
A adjacent with y0,1.
Let bit-rep(A) be the collection of the vertices yi,1 for all i ∈ {0} ∪ [q] added in this
step.

Finally, the reduction adds a bit-representation gadget to locate set C. However, it adds
the vertices in such a way that for any pair c◦

j , c
⋆
j , the supplementary vertices adjacent to

them are identical.

4 With the problem-specific adaptations, the bit-representation gadgets resembles the gadget used in [29].

ISAAC 2024

19:12 Tight (Double) Exponential Bounds for Identification Problems

The reduction sets p := ⌈log(|C|/2)⌉ + 1 and for every i ∈ [p], it adds two vertices zi,1
and zi,2 and edge (zi,1, zi,2).
For every integer j ∈ [|C|/2], let bit(j) denote the binary representation of j using q
bits. Connect c◦

j , c
⋆
j ∈ C with zi,1 if the ith bit in bit(j) is 1.

It adds two vertices z0,1 and z0,2, and edge (z0,1, z0,2). It also makes every vertex in C
adjacent with y0,1.
Let bit-rep(C) be the collection of the vertices zi,1 for all i ∈ {0} ∪ [p] added in this
step.

This completes the reduction. See Figure 2 for an illustration. Please check this. The
reduction sets

k = |B|/3 + (⌈log(|A|)⌉ + 1 + 1) + ⌈(log(|C|/2)⌉ + 1 + 1) +
√
n = O(

√
n)

as |B| = 3
√
n, |A| =

√
n · 2

√
n, and |C| = O(n3), and returns (G, k) as a reduced instance.

We present a brief overview of the proof of correctness in the reverse direction. Suppose
S is a locating-dominating set of graph G of size at most k. Note that b⋆

i , yi,2 and zi,2 are
pendant vertices for appropriate i. We argue that it is safe to consider that vertices b′

i, yi,1,
and zi,1 are in S. This already forces |B|/2 + ⌈log(|A|)⌉ + 2 + ⌈log(|C|/2)⌉ + 2 many vertices
in S. The remaining

√
n many vertices need to locate vertices in pairs (b◦

i , b⋆
i) and (c◦

j , c⋆
j)

for every i ∈ [
√
n] and j ∈ [|C|]. Note that the only vertices that are adjacent with b◦

i but
are not adjacent with b⋆

i are in Ai. Also, the only vertices that are adjacent with c◦
j but are

not adjacent with c⋆
j are in Ai and correspond to an assignment that satisfies Cj . Hence, any

locating-dominating set should contain at least one vertex in Ai (which will locate b◦
i from

b⋆
i) such that the union of these vertices resolves all pairs of the form (c◦

j , c⋆
j), and hence

corresponds to a satisfying assignment of ψ.

Proof of Theorem 2. Assume there exists an algorithm, say A, that takes as input an
instance (G, k) of Locating-Dominating Set and correctly concludes whether it is a
Yes-instance in time 2o(k2) · |V (G)|O(1). Consider algorithm B that takes as input an instance
ψ of 3-SAT, uses the reduction above to get an equivalent instance (G, k) of Locating-
Dominating Set, and then uses A as a subroutine. The correctness of algorithm B follows
from the correctness of the reduction and of algorithm A. From the description of the reduction
and the fact that k =

√
n, the running time of algorithm B is 2O(

√
n) + 2o(k2) · (2O(

√
n))O(1) =

2o(n). This, however, contradicts the ETH. Hence, Locating-Dominating Set does not
admit an algorithm with running time 2o(k2) · |V (G)|O(1) unless the ETH fails.

For the second part of Theorem 2, assume that such a kernelization algorithm exists.
Consider the following algorithm for 3-SAT. Given a 3-SAT formula on n variables, it uses
the above reduction to get an equivalent instance of (G, k) such that |V (G)| = 2O(

√
n) and k =

O(
√
n). Then, it uses the assumed kernelization algorithm to construct an equivalent instance

(H, k′) such that H has 2o(k) vertices and k′ ≤ k. Finally, it uses a brute-force algorithm,
running in time |V (H)|O(k′), to determine whether the reduced instance, equivalently the
input instance of 3-SAT, is a Yes-instance. The correctness of the algorithm follows from the
correctness of the respective algorithms and our assumption. The total running time of the
algorithm is 2O(

√
n)+(|V (G)|+k)O(1)+|V (H)|O(k′) = 2O(

√
n)+(2O(

√
n))O(1)+(2o(

√
n))O(

√
n) =

2o(n). This, however, contradicts the ETH. ◀

5 Test Cover Parameterization by the Solution Size

In this section, we present a reduction that is very close to the reduction used in the proof of
Theorem 2 to prove Theorem 3.

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:13

For notational convenience, instead of specifying an instance of Test Cover, we specify
the auxiliary graph as mentioned in the definition. The reduction takes as input an instance
ψ, with n variables and m clauses, of 3-SAT and returns a reduced instance (G, ⟨R,B⟩, k) of
Test Cover and k = O(log(n) + log(m)) = O(log(n)), using the sparcification lemma [44].
The reduction constructs graph G as follows.

The reduction adds some dummy variables to ensure that n = 22q for some positive
integer q which is power of 2. This ensures that r = log2(n) = 2q and s = n

r both are
integers. It partitions the variables of ψ into r many buckets X1, X2, . . . , Xr such that
each bucket contains s many variables. Let Xi = {xi,j | j ∈ [s]} for all i ∈ [r].
For every Xi, the reduction constructs a set Ai of 2s many red vertices, that is, Ai =
{ai,ℓ | ℓ ∈ [2s]}. Each vertex in Ai corresponds to a unique assignment of the variables in
Xi. Moreover, let A = ∪r

i=1Ai.
Corresponding to each Xi, let the reduction add a blue vertex bi and the edges (bi, ai,ℓ)
for all i ∈ [r] and ℓ ∈ [2s]. Let B = {bi | i ∈ [r]}.
For every clause Cj , the reduction adds a pair of blue vertices c◦

j , c
⋆
j . For a vertex ai,ℓ ∈ Ai

with i ∈ [r], and ℓ ∈ [2s], if the assignment corresponding to vertex ai,ℓ satisfies the clause
Cj , then the reduction adds the edge (ai,ℓ, c

◦
j). Let C = {c◦

j , c
⋆
j | j ∈ [m]}.

The reduction adds a bit-representation gadget to locate set C. However, it adds the
vertices in such a way that for any pair c◦

j , c
⋆
j , the supplementary vertices adjacent to

them are identical.
The reduction sets p := ⌈log(m)⌉ + 1 and for every i ∈ [p], it adds two vertices, a red
vertex zi,1 and a blue vertex zi,2, and edge (zi,1, zi,2).
For every integer j ∈ [m], let bit(j) denote the binary representation of j using p bits.
Connect c◦

j , c
⋆
j ∈ C with zi,1 if the ith bit in bit(j) is 1.

It add two vertices z0,1 and z0,2, and edge (z0,1, z0,2). It also makes every vertex in C

adjacent with z0,1. Let bit-rep(C) be the collection of all the vertices added in this
step.

The reduction adds an isolated blue vertex b0.

This completes the construction. The reduction sets k = r+ 1
2 |bit-rep(C)| = O(log(n))+

O(log(m)) = O(log(n)), and returns (G, ⟨R,B⟩, k) as an instance of Test Cover. We refer
to Figure 3 for an illustration.

We present a brief overview of the proof of correctness for the backward direction (⇐).
Suppose R′ is a set of tests of the graph G of order at most k. Since b0 is an isolated blue
vertex of G, it implies that the set R′ dominates and locates every pair of vertices in B \ {b0}.
The blue vertices in bit-rep(C) are pendant vertices that are adjacent with red vertices in
bit-rep(C). Hence, all the red vertices in bit-rep(C) are in R′. The remaining r many
vertices need to locate vertices in pairs (c◦

j , c⋆
j), for every j ∈ [m], which have the same

neighbourhood in bit-rep(C). To do so, note that the only vertices adjacent to c◦
j and not

to c⋆
j are in Ai and corresponds to an assignment satisfying clause Cj . Hence, for every

j ∈ [m], the set R′ should contain at least one vertex {ai,ℓ} in order to locate c◦
j , c⋆

j , where
(ai,ℓ, c

◦
j) is an edge for some i ∈ [r] and ℓ ∈ [2s]. Moreover, in order to dominate the vertices

of B, for each i ∈ [r], the set R′ must have a vertex from each Ai. Hence, the set R′ is forced
to contain exactly one vertex from each Ai. Concatenating the assignments corresponding
to each ai,ℓ in R′, we thus obtain a satisfying assignment of ψ. Proof of Theorem 3 follows
from the arguments that are standard to proving such lower bounds.

ISAAC 2024

19:14 Tight (Double) Exponential Bounds for Identification Problems

Figure 3 An illustrative example of the graph constructed by the reduction in Section 5. Red
(squared) nodes denote the tests whereas blue (filled circle) nodes the elements.

6 Conclusion

We presented several results that advance our understanding of the algorithmic complexity of
Locating-Dominating Set and Test Cover, which we showed to have very interesting
and rare parameterized complexities. Moreover, we believe the techniques used in this
article can be applied to other identification problems to obtain relatively rare conditional
lower bounds. The process of establishing such lower bounds boils down to designing
bit-representation gadgets and set-representation gadgets for the problem in question.

Apart from the broad question of designing such lower bounds for other identific-
ation problems, we mention an interesting problem left open by our work. Can our
tight double-exponential lower bound for Locating-Dominating Set parameterized by
treewidth/treedepth be applied to the feedback vertex set number? The question could also
be studied for other related parameters.

References

1 Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Split contraction:
The untold story. ACM Trans. Comput. Theory, 11(3):18:1–18:22, 2019. doi:10.1145/3319909.

2 Ian Anderson. Combinatorics of Finite Sets. Oxford University Press, 1987.
3 Gabriela R. Argiroffo, Silvia M. Bianchi, Yanina Lucarini, and Annegret Katrin Wagler. Linear-

time algorithms for three domination-based separation problems in block graphs. Discret.
Appl. Math., 281:6–41, 2020. doi:10.1016/J.DAM.2019.08.001.

4 László Babai. On the complexity of canonical labelling of strongly regular graphs. SIAM J.
Comput., 9(1):212–216, 1980. doi:10.1137/0209018.

5 Florian Barbero, Lucas Isenmann, and Jocelyn Thiebaut. On the distance identifying set meta-
problem and applications to the complexity of identifying problems on graphs. Algorithmica,
82(8):2243–2266, 2020. doi:10.1007/S00453-020-00674-X.

https://doi.org/10.1145/3319909
https://doi.org/10.1016/J.DAM.2019.08.001
https://doi.org/10.1137/0209018
https://doi.org/10.1007/S00453-020-00674-X

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:15

6 Manu Basavaraju, Mathew C. Francis, M. S. Ramanujan, and Saket Saurabh. Partially
polynomial kernels for set cover and test cover. SIAM J. Discret. Math., 30(3):1401–1423,
2016. doi:10.1137/15M1039584.

7 Piotr Berman, Bhaskar DasGupta, and Ming-Yang Kao. Tight approximability results
for test set problems in bioinformatics. J. Comput. Syst. Sci., 71(2):145–162, 2005. doi:
10.1016/J.JCSS.2005.02.001.

8 Ivan Bliznets and Markus Hecher. Tight double exponential lower bounds. In Xujin Chen and
Bo Li, editors, Theory and Applications of Models of Computation - 18th Annual Conference,
TAMC 2024, Hong Kong, China, May 13-15, 2024, Proceedings, volume 14637 of Lecture Notes
in Computer Science, pages 124–136. Springer, 2024. doi:10.1007/978-981-97-2340-9_11.

9 John A Bondy. Induced subsets. Journal of Combinatorial Theory, Series B, 12(2):201–202,
1972.

10 Koen M. J. De Bontridder, Bjarni V. Halldórsson, Magnús M. Halldórsson, Cor A. J. Hurkens,
Jan Karel Lenstra, R. Ravi, and Leen Stougie. Approximation algorithms for the test cover
problem. Math. Program., 98(1-3):477–491, 2003. doi:10.1007/S10107-003-0414-6.

11 Márcia R. Cappelle, Guilherme de C. M. Gomes, and Vinícius Fernandes dos Santos. Parameter-
ized algorithms for locating-dominating sets. CoRR, abs/2011.14849, 2020. arXiv:2011.14849.

12 Márcia R. Cappelle, Guilherme C. M. Gomes, and Vinícius Fernandes dos Santos. Paramet-
erized algorithms for locating-dominating sets. In Carlos E. Ferreira, Orlando Lee, and
Flávio Keidi Miyazawa, editors, Proceedings of the XI Latin and American Algorithms,
Graphs and Optimization Symposium, LAGOS 2021, Online Event / São Paulo, Brazil,
May 2021, volume 195 of Procedia Computer Science, pages 68–76. Elsevier, 2021. doi:
10.1016/J.PROCS.2021.11.012.

13 Dipayan Chakraborty, Anni Hakanen, and Tuomo Lehtilä. The n/2-bound for locating-
dominating sets in subcubic graphs, 2024. arXiv:2406.19278.

14 Jérémie Chalopin, Victor Chepoi, Fionn Mc Inerney, and Sébastien Ratel. Non-clashing
teaching maps for balls in graphs. CoRR, abs/2309.02876, 2023. doi:10.48550/arXiv.2309.
02876.

15 L. Sunil Chandran, Davis Issac, and Anreas Karrenbauer. On the parameterized complexity
of biclique cover and partition. In Jiong Guo and Danny Hermelin, editors, 11th International
Symposium on Parameterized and Exact Computation, IPEC 2016, volume 63 of LIPIcs, pages
11:1–11:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPICS.
IPEC.2016.11.

16 Emmanuel Charbit, Irène Charon, Gérard D. Cohen, Olivier Hudry, and Antoine Lobstein.
Discriminating codes in bipartite graphs: bounds, extremal cardinalities, complexity. Advances
in Mathematics of Communication, 2(4):403–420, 2008. doi:10.3934/AMC.2008.2.403.

17 Irène Charon, Gérard D. Cohen, Olivier Hudry, and Antoine Lobstein. Discriminating codes in
(bipartite) planar graphs. Eur. J. Comb., 29(5):1353–1364, 2008. doi:10.1016/J.EJC.2007.
05.006.

18 Bogdan S. Chlebus and Sinh Hoa Nguyen. On finding optimal discretizations for two attributes.
In Proceedings of the First International Conference on Rough Sets and Current Trends in
Computing, volume 1424, pages 537–544, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.
doi:10.1007/3-540-69115-4_74.

19 Vasek Chvátal. Mastermind. Combinatorica, 3(3):325–329, 1983. doi:10.1007/BF02579188.
20 C. Colbourn, P. J. Slater, and L. K. Stewart. Locating-dominating sets in series-parallel

networks. Congressus Numerantium, 56:135–162, 1987.
21 Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite

graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.
22 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.

Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

ISAAC 2024

https://doi.org/10.1137/15M1039584
https://doi.org/10.1016/J.JCSS.2005.02.001
https://doi.org/10.1016/J.JCSS.2005.02.001
https://doi.org/10.1007/978-981-97-2340-9_11
https://doi.org/10.1007/S10107-003-0414-6
https://arxiv.org/abs/2011.14849
https://doi.org/10.1016/J.PROCS.2021.11.012
https://doi.org/10.1016/J.PROCS.2021.11.012
https://arxiv.org/abs/2406.19278
https://doi.org/10.48550/arXiv.2309.02876
https://doi.org/10.48550/arXiv.2309.02876
https://doi.org/10.4230/LIPICS.IPEC.2016.11
https://doi.org/10.4230/LIPICS.IPEC.2016.11
https://doi.org/10.3934/AMC.2008.2.403
https://doi.org/10.1016/J.EJC.2007.05.006
https://doi.org/10.1016/J.EJC.2007.05.006
https://doi.org/10.1007/3-540-69115-4_74
https://doi.org/10.1007/BF02579188
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H

19:16 Tight (Double) Exponential Bounds for Identification Problems

23 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/S002249910009.

24 Robert Crowston, Gregory Z. Gutin, Mark Jones, Gabriele Muciaccia, and Anders Yeo.
Parameterizations of test cover with bounded test sizes. Algorithmica, 74(1):367–384, 2016.
doi:10.1007/S00453-014-9948-7.

25 Robert Crowston, Gregory Z. Gutin, Mark Jones, Saket Saurabh, and Anders Yeo. Para-
meterized study of the test cover problem. In Branislav Rovan, Vladimiro Sassone, and
Peter Widmayer, editors, Mathematical Foundations of Computer Science 2012 - 37th In-
ternational Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceed-
ings, volume 7464 of Lecture Notes in Computer Science, pages 283–295. Springer, 2012.
doi:10.1007/978-3-642-32589-2_27.

26 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

27 Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. Known algorithms for edge clique
cover are probably optimal. SIAM J. Comput., 45(1):67–83, 2016. doi:10.1137/130947076.

28 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012. URL: https://dblp.org/rec/books/daglib/0030488.bib.

29 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility through colors and
ids. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas,
and Wolfgang Thomas, editors, Automata, Languages and Programming, 36th International
Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume
5555 of Lecture Notes in Computer Science, pages 378–389. Springer, 2009. doi:10.1007/
978-3-642-02927-1_32.

30 Johannes Klaus Fichte, Markus Hecher, Michael Morak, Patrick Thier, and Stefan Woltran.
Solving projected model counting by utilizing treewidth and its limits. Artif. Intell., 314:103810,
2023. doi:10.1016/J.ARTINT.2022.103810.

31 Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Exploit-
ing treewidth for projected model counting and its limits. In Theory and Applications
of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT 2018, Proc.,
volume 10929 of Lecture Notes in Computer Science, pages 165–184. Springer, 2018. doi:
10.1007/978-3-319-94144-8_11.

32 Jacob Focke, Fabian Frei, Shaohua Li, Dániel Marx, Philipp Schepper, Roohani Sharma, and
Karol Wegrzycki. Hitting meets packing: How hard can it be? In 32nd Annual European
Symposium on Algorithms, ESA 2024, September 2-4, 2024, Royal Holloway, London, United
Kingdom, volume 308 of LIPIcs, pages 55:1–55:21. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2024. doi:10.4230/LIPICS.ESA.2024.55.

33 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Clique-width III: hamiltonian cycle and the odd case of graph coloring. ACM Trans. Algorithms,
15(1):9:1–9:27, 2019. doi:10.1145/3280824.

34 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory
of parameterized preprocessing. Cambridge University Press, 2019.

35 Florent Foucaud. Decision and approximation complexity for identifying codes and locating-
dominating sets in restricted graph classes. J. Discrete Algorithms, 31:48–68, 2015. doi:
10.1016/J.JDA.2014.08.004.

36 Florent Foucaud, Esther Galby, Liana Khazaliya, Shaohua Li, Fionn Mc Inerney, Roohani
Sharma, and Prafullkumar Tale. Problems in NP can admit double-exponential lower bounds
when parameterized by treewidth or vertex cover. In Karl Bringmann, Martin Grohe, Gabriele
Puppis, and Ola Svensson, editors, 51st International Colloquium on Automata, Languages,
and Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs,
pages 66:1–66:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/
LIPICS.ICALP.2024.66.

https://doi.org/10.1007/S002249910009
https://doi.org/10.1007/S00453-014-9948-7
https://doi.org/10.1007/978-3-642-32589-2_27
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/130947076
https://dblp.org/rec/books/daglib/0030488.bib
https://doi.org/10.1007/978-3-642-02927-1_32
https://doi.org/10.1007/978-3-642-02927-1_32
https://doi.org/10.1016/J.ARTINT.2022.103810
https://doi.org/10.1007/978-3-319-94144-8_11
https://doi.org/10.1007/978-3-319-94144-8_11
https://doi.org/10.4230/LIPICS.ESA.2024.55
https://doi.org/10.1145/3280824
https://doi.org/10.1016/J.JDA.2014.08.004
https://doi.org/10.1016/J.JDA.2014.08.004
https://doi.org/10.4230/LIPICS.ICALP.2024.66
https://doi.org/10.4230/LIPICS.ICALP.2024.66

D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale 19:17

37 Florent Foucaud, George B. Mertzios, Reza Naserasr, Aline Parreau, and Petru Valicov.
Identification, location-domination and metric dimension on interval and permutation graphs.
I. bounds. Theoretical Computer Science, 668:43–58, 2017. doi:10.1016/J.TCS.2017.01.006.

38 Florent Foucaud, George B Mertzios, Reza Naserasr, Aline Parreau, and Petru Valicov.
Identification, location-domination and metric dimension on interval and permutation
graphs. II. algorithms and complexity. Algorithmica, 78(3):914–944, 2017. doi:10.1007/
S00453-016-0184-1.

39 M. R. Garey and David S. Johnson. Computers and Intractability – A guide to NP-completeness.
W.H. Freeman and Company, 1979.

40 Sylvain Gravier, Ralf Klasing, and Julien Moncel. Hardness results and approximation
algorithms for identifying codes and locating-dominating codes in graphs. Algorithmic Oper.
Res., 3(1), 2008. URL: http://journals.hil.unb.ca/index.php/AOR/article/view/2808.

41 Gregory Z. Gutin, Gabriele Muciaccia, and Anders Yeo. (non-)existence of polynomial kernels
for the test cover problem. Inf. Process. Lett., 113(4):123–126, 2013. doi:10.1016/J.IPL.
2012.12.008.

42 Tesshu Hanaka, Noleen Köhler, and Michael Lampis. Core stability in additively separable
hedonic games of low treewidth, 2024. arXiv:2402.10815, doi:10.48550/arXiv.2402.10815.

43 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/JCSS.2000.1727.

44 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/JCSS.2001.
1774.

45 Klaus Jansen, Kim-Manuel Klein, and Alexandra Lassota. The double exponential runtime
is tight for 2-stage stochastic ILPs. Math. Program., 197:1145–1172, 2023. doi:10.1007/
S10107-022-01837-0.

46 D. Jean and A Lobstein. Watching systems, identifying, locating-dominating and discriminating
codes in graphs: a bibliography, 2024. Published electronically at https://dragazo.github.
io/bibdom/main.pdf.

47 Dusan Knop, Michal Pilipczuk, and Marcin Wrochna. Tight complexity lower bounds for integer
linear programming with few constraints. ACM Trans. Comput. Theory, 12(3):19:1–19:19,
2020. doi:10.1145/3397484.

48 Lukasz Kowalik, Alexandra Lassota, Konrad Majewski, Michal Pilipczuk, and Marek Soko-
lowski. Detecting points in integer cones of polytopes is double-exponentially hard. In
2024 Symposium on Simplicity in Algorithms (SOSA), pages 279–285, 2024. doi:10.1137/1.
9781611977936.25.

49 Stefan Kratsch, Geevarghese Philip, and Saurabh Ray. Point line cover: The easy kernel is
essentially tight. ACM Trans. Algorithms, 12(3):40:1–40:16, 2016. doi:10.1145/2832912.

50 M. Künnemann, F. Mazowiecki, L. Schütze, H. Sinclair-Banks, and K. Węgrzycki. Coverability
in VASS Revisited: Improving Rackoff’s Bound to Obtain Conditional Optimality. In 50th
International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume
261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 131:1–131:20, Dagstuhl,
Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPICS.
ICALP.2023.131.

51 Michael Lampis, Stefan Mengel, and Valia Mitsou. QBF as an alternative to Courcelle’s
theorem. In Theory and Applications of Satisfiability Testing - SAT 2018 - 21st International
Conference, SAT 2018, volume 10929 of Lecture Notes in Computer Science, pages 235–252.
Springer, 2018. doi:10.1007/978-3-319-94144-8_15.

52 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.
doi:10.1145/3170442.

ISAAC 2024

https://doi.org/10.1016/J.TCS.2017.01.006
https://doi.org/10.1007/S00453-016-0184-1
https://doi.org/10.1007/S00453-016-0184-1
http://journals.hil.unb.ca/index.php/AOR/article/view/2808
https://doi.org/10.1016/J.IPL.2012.12.008
https://doi.org/10.1016/J.IPL.2012.12.008
https://arxiv.org/abs/2402.10815
https://doi.org/10.48550/arXiv.2402.10815
https://doi.org/10.1006/JCSS.2000.1727
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1007/S10107-022-01837-0
https://doi.org/10.1007/S10107-022-01837-0
https://dragazo.github.io/bibdom/main.pdf
https://dragazo.github.io/bibdom/main.pdf
https://doi.org/10.1145/3397484
https://doi.org/10.1137/1.9781611977936.25
https://doi.org/10.1137/1.9781611977936.25
https://doi.org/10.1145/2832912
https://doi.org/10.4230/LIPICS.ICALP.2023.131
https://doi.org/10.4230/LIPICS.ICALP.2023.131
https://doi.org/10.1007/978-3-319-94144-8_15
https://doi.org/10.1145/3170442

19:18 Tight (Double) Exponential Bounds for Identification Problems

53 Daniel Lokshtanov, Saket Saurabh, Subhash Suri, and Jie Xue. An ETH-tight algorithm
for multi-team formation. In 41st IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2021, volume 213 of LIPIcs, pages
28:1–28:9. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.
FSTTCS.2021.28.

54 Dániel Marx and Valia Mitsou. Double-exponential and triple-exponential bounds for choos-
ability problems parameterized by treewidth. In 43rd International Colloquium on Automata,
Languages, and Programming (ICALP 2016), volume 55 of LIPIcs, pages 28:1–28:15, 2016.
doi:10.4230/LIPICS.ICALP.2016.28.

55 Bernard M. E. Moret and Henry D. Shapiro. On minimizing a set of tests. SIAM Journal on
Scientific and Statistical Computing, 6(4):983–1003, 1985.

56 Tobias Müller and Jean-Sébastien Sereni. Identifying and locating-dominating codes in
(random) geometric networks. Comb. Probab. Comput., 18(6):925–952, 2009. doi:10.1017/
S0963548309990344.

57 Marcin Pilipczuk and Manuel Sorge. A double exponential lower bound for the distinct vectors
problem. Discret. Math. Theor. Comput. Sci., 22(4), 2020. doi:10.23638/DMTCS-22-4-7.

58 Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time: A
logical approach. In Mathematical Foundations of Computer Science 2011 - 36th International
Symposium, MFCS 2011, Proceedings, volume 6907 of Lecture Notes in Computer Science,
pages 520–531. Springer, 2011. doi:10.1007/978-3-642-22993-0_47.

59 N.S.V. Rao. Computational complexity issues in operative diagnosis of graph-based systems.
IEEE Transactions on Computers, 42(4):447–457, 1993. doi:10.1109/12.214691.

60 Alfred Rényi. On random generating elements of a finite boolean algebra. Acta Scientiarum
Mathematicarum Szeged, 22:75–81, 1961.

61 Ignasi Sau and Uéverton dos Santos Souza. Hitting forbidden induced subgraphs on bounded
treewidth graphs. Inf. Comput., 281:104812, 2021. doi:10.1016/J.IC.2021.104812.

62 András Sebö and Eric Tannier. On metric generators of graphs. Mathematics of Operations
Research, 29(2):383–393, 2004. doi:10.1287/MOOR.1030.0070.

63 Peter J. Slater. Domination and location in acyclic graphs. Networks, 17(1):55–64, 1987.
doi:10.1002/net.3230170105.

64 Peter J. Slater. Dominating and reference sets in a graph. Journal of Mathematical and
Physical Sciences, 22(4):445–455, 1988.

65 Jukka Suomela. Approximability of identifying codes and locating-dominating codes. Inf.
Process. Lett., 103(1):28–33, 2007. doi:10.1016/J.IPL.2007.02.001.

66 P. Tale. Double exponential lower bound for telephone broadcast, 2024. arXiv:2403.03501,
doi:10.48550/arXiv.2403.03501.

67 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming on
tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter Sanders,
editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark,
September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages
566–577. Springer, 2009. doi:10.1007/978-3-642-04128-0_51.

https://doi.org/10.4230/LIPICS.FSTTCS.2021.28
https://doi.org/10.4230/LIPICS.FSTTCS.2021.28
https://doi.org/10.4230/LIPICS.ICALP.2016.28
https://doi.org/10.1017/S0963548309990344
https://doi.org/10.1017/S0963548309990344
https://doi.org/10.23638/DMTCS-22-4-7
https://doi.org/10.1007/978-3-642-22993-0_47
https://doi.org/10.1109/12.214691
https://doi.org/10.1016/J.IC.2021.104812
https://doi.org/10.1287/MOOR.1030.0070
https://doi.org/10.1002/net.3230170105
https://doi.org/10.1016/J.IPL.2007.02.001
https://arxiv.org/abs/2403.03501
https://doi.org/10.48550/arXiv.2403.03501
https://doi.org/10.1007/978-3-642-04128-0_51

Revisit the Scheduling Problem with Calibrations
Lin Chen #

Department of Computer Science, Zhejiang University, China

Yixiong Gao # Ñ

Department of Computer Science, City University of Hong Kong, Kowloon, China

Minming Li # Ñ

Department of Computer Science, City University of Hong Kong, Kowloon, China

Guohui Lin # Ñ

Department of Computing Science, University of Alberta, Edmonton, Canada

Kai Wang #

Department of Computer Science, City University of Hong Kong, Kowloon, China

Abstract
The research about scheduling with calibrations was initiated from the Integrated Stockpile Evaluation
(ISE) program which tests nuclear weapons periodically. The tests for these weapons require
calibrations that are expensive in the monetary sense. This model has many industrial applications
where the machines need to be calibrated periodically to ensure high-quality products, including
robotics and digital cameras. In 2013, Bender et al. (SPAA ’13) proposed a theoretical framework for
the ISE problem. In this model, a machine can only be trusted to run a job when it is calibrated and
the calibration remains valid for a time period of length T , after which it must be recalibrated before
running more jobs. The objective is to find a schedule that completes all jobs by their deadlines
and minimizes the total number of calibrations. In this paper, we study the scheduling problem
with calibrations on multiple parallel machines where we consider unit-time processing jobs with
release times and deadlines. We propose a dynamic programming algorithm with polynomial running
time when the number of machines is constant. Then, we propose another dynamic programming
approach with polynomial running time when the length of the calibrated period is constant. Also,
we propose a PTAS, that is, for any constant ϵ > 0, we give a (1 + ϵ) - approximation solution with
m machines.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Approximation Algorithm, Scheduling, Calibration, Resource Augmentation

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.20

1 Introduction

The original motivation for scheduling with calibrations came directly from the Integrated
Stockpile Evaluation (ISE) program which tests nuclear weapons periodically [6]. The tests
for these weapons require calibrations that are expensive. This motivation can be extended
to the scenarios where the machines need to be calibrated periodically to ensure high-quality
products, such as robotics and digital cameras [17, 4, 27]. In this model, a machine must be
calibrated before it runs a job. When the machine is calibrated at time t, it stays calibrated
for a time period of length T , after which it must be recalibrated to run more jobs. We
refer to the time interval [t, t + T] as the calibration interval and no job can be started or be
processed on a machine outside the times sitting in a calibration interval. In the ideal model,
calibrating a machine is instantaneous, meaning that the machine can run a job immediately
after being calibrated and the machine can switch from uncalibrated to calibrated status
instantaneously. The objective is to assign the jobs to the machines using the minimum
number of calibrations.

© Lin Chen, Yixiong Gao, Minming Li, Guohui Lin, and Kai Wang;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 20; pp. 20:1–20:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chenlin198662@gmail.com
https://orcid.org/0000-0003-3909-4916
mailto:yixiong.gao@my.cityu.edu.hk
https://yixionggao.com/
https://orcid.org/0009-0008-8846-3873
mailto:minming.li@cityu.edu.hk
https://www.cs.cityu.edu.hk/~minmli/
https://orcid.org/0000-0002-7370-6237
mailto:guohui@ualberta.ca
https://webdocs.cs.ualberta.ca/~ghlin/
https://orcid.org/0000-0003-4283-3396
mailto:kai.wang@my.cityu.edu.hk
https://orcid.org/0000-0002-6455-485X
https://doi.org/10.4230/LIPIcs.ISAAC.2024.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Revisit the Scheduling Problem with Calibrations

Methodologies have been introduced about performing a calibration in different scenarios
[20, 23, 26], as well as determining the time period of a calibration [16, 18]. On the other hand,
there is quite a lot of research work about scheduling algorithms [5]. In 2013, Bender et al. [3]
proposed a theoretical framework for scheduling with calibrations. They considered unit-time
jobs with release times and deadlines, aiming at minimizing the number of calibrations. In
the single-machine setting, they proposed a greedy, optimal, polynomial-time algorithm
called Lazy-Binning where the algorithm delays the start of a calibration interval for as long
as possible, until delaying it further would make it impossible to find a feasible schedule.
For the multiple machine setting, they proposed the Lazy-Binning algorithm on multiple
machines and showed it is a 2-approximation algorithm, while the complexity status still
remains open.

Later, Fineman and Sheridan [12] considered the non-preemptive jobs with non-unit
processing times and generalized the problem with resource-augmentation [15] in the sense
that an approximate solution can be obtained if we speed up the machines and/or have
more machines. They worked on multiple machine setting without preemption, showed the
relationship of the problem with the classical machine-minimization problem [19] and proved
that if there is an s-speed α-approximation algorithm for the machine-minimization problem,
then it would give an s-speed O(α)-machine O(α)-approximation solution for the calibration
minimization problem.

Angel et al. [2] developed different results on several generalizations of this problem. They
considered the jobs of non-unit processing times on a single machine with preemption, and
proposed an optimal greedy algorithm, which extends the idea of the Lazy Binning algorithm.
Also, they extended the model to allow many types of calibrations where different types of
calibrations have different interval lengths and costs, and proved that the problem is NP-hard.
At last, they considered a more realistic case where calibrating a machine takes a fixed
amount of time, and proposed a dynamic programming approach to solve the problem. Chau
et al. [7] showed a 3-approximation polynomial time algorithm when jobs have unit processing
times. Also, they showed a (3/(1 − ε))-approximation pseudo-polynomial time algorithm
and a (18/(1 − ε))-approximation polynomial time algorithm for the arbitrary processing
time case. Chau et al. [9] showed that the scheduling problem with batch calibrations can
be solved in polynomial time. Also, they proposed some fast approximation algorithms for
several special cases. Chen and Zhang [11] considered online scheduling with calibration while
calibrating a machine will require certain time units. They gave an asymptotically optimal
algorithm for this problem when all the jobs have unit processing times, and improved the
competitive ratio for the special case that calibrating a machine is instantaneous.

While the above works are about minimizing the number of calibrations, Chau et al. [8]
worked on the trade-off between weighted flow time and calibration cost for unit-time jobs.
They integrated the objective function with these two criteria, and gave several online
approximation results on different settings and also a dynamic programming method for
the offline problem. Wang [24] worked on the scheduling of minimizing total time slot
cost with calibration requirements. They considered jobs of identical processing times, and
proposed three different dynamic programs for different scenarios. Chen et al. [10] studied the
scheduling problem with multiple types of calibrations and proposed constant approximation
algorithms for several types of calibrations.

In this paper, we work on the original problem proposed by Bender et al. [3] in which
jobs have unit processing times with release times and deadlines. We abbreviate this
problem as P |rj , pj = 1, dj , T |#Calibrations with machine calibrations, where we adopt the
classical three-field notation in scheduling of Graham et al. [13]. We propose two dynamic

L. Chen, Y. Gao, M. Li, G. Lin, and K. Wang 20:3

programming approaches to solve the problem with polynomial running time when (i) the
number of machines is constant, (ii) or the valid length of a calibration is constant. Moreover,
when the number of machine and the valid length of a calibration are both inputs, we present
a PTAS. Our results are summarized in Table 1. It is worth noting that the currently
best result for this problem is a 2-approximation algorithm by Bender et al. [3], and the
complexity status still remains open.

Table 1 A summary of the results of scheduling with calibrations on multiple machines.

Algorithm Approximation Ratio Time Complexity Remark
Section 3 1 O(n8+6m) m is constant, T is input
Section 4 1 O(n8m3T) m is input, T is constant
Section 5 1 + ϵ O(n17+18⌈1/ϵ⌉) Both m, T are input

Bender et al. [3] 2 Poly(n, m) Lazy-binning approach

Transforming a dynamic programming formulation into a PTAS (polynomial time approx-
imation scheme) has been studied decades ago [14, 21]. Woeginger [25] proposed a general
technique and gave some conditions to identify whether a dynamic programming formulation
could be transformed into an FPTAS. Schuurman and Woeginger [22] summarized the meth-
ods into three main categories, structuring the input, structuring the output and structuring
the execution of an algorithm.

For our problem, it is not straightforward to directly apply Schuurman and Woeginger’s
[22] method to get an FPTAS. Therefore, in this paper, we show a different approach to
transform the dynamic program formulation into a PTAS, which lies in the category of
structuring the output. In Section 2 we present the structure of an optimal schedule of
this problem. Then in Section 3 we propose a dynamic programming approach to solve the
problem. In Section 4 we propose another dynamic programming approach for the case when
T is constant. In Section 5 we give a PTAS algorithm. We conclude our results in Section 6.

2 Formulation

We are given a set J of n jobs, where each job j ∈ J has release time rj , deadline dj and
processing time pj = 1. We have m identical parallel machines which can be trusted to run
a job only when calibrated. The calibration remains valid for a time period of length T . The
objective is to find a schedule that completes all jobs before their deadlines such that the
number of calibrations is minimized. We assume that all the input are non-negative integers.

A feasible solution includes the schedule of calibrations (i.e., when to start a calibration
on each machine) and the schedule of jobs (i.e., when and on which machine to start a job).
We assume all the inputs are integers and both calibrations and jobs should start at times
which are also integers. We denote the time interval (t − 1, t] as time slot t and t is called
active if some job is scheduled in this time slot. We sort the jobs by non-decreasing order of
their deadlines, and non-decreasing order of release times if two or more jobs have the same
deadline. The jobs are indexed from 1 to n, and any job j ∈ J has index j ∈ [1, n]. As a
matter of fact, once the schedule of calibrations is fixed, the schedule of jobs can be obtained
by applying the classical Earliest-Deadline-First (EDF) scheduling algorithm, in which for
any time slot, the job of the earliest deadline has the highest priority to be considered to
schedule whenever a machine is available (i.e., calibrated).

ISAAC 2024

20:4 Revisit the Scheduling Problem with Calibrations

tj
di

dj

tiri di

dj

ri

Figure 1 An illustration for Lemma 1.

▶ Lemma 1 (EDF). There exists an optimal schedule such that for any two jobs i, j with
i < j, if ri ≤ tj then ti ≤ tj where ti, tj are the corresponding starting times of job i and j

in the optimal schedule respectively.

Proof. As job i has smaller index than job j, i.e., i < j, we have di ≤ dj . Suppose ti > tj

in the optimal schedule, and then we have ri ≤ tj < ti < di ≤ dj , which implies that by
swapping the schedule of the two jobs i and j (schedule job i at time tj and job j at time
ti), the new schedule is still feasible and follows EDF scheduling policy. In order to prove
that another optimal schedule can be obtained after a finite number of the above swapping
process, we only need to show that a certain value of the schedule decreases after the swapping
process. Especially, after swapping, the value (i − ti)2 + (j − tj)2 strictly decreases since
(i − ti)2 + (j − tj)2 > (i − tj)2 + (j − ti)2. Therefore, we will eventually obtain an optimal
schedule satisfying the statement. ◀

▶ Definition 2. Let Ψ =
⋃

j∈J,s∈[0,n]{dj − s}, Φ =
⋃

j∈J,t∈Ψ,s∈[0,n] {rj + s, t + s} and
Φ(j) = {t | rj < t ≤ dj , t ∈ Φ}, ∀j ∈ J .

One would find that |Ψ| = O(n2). Also |Φ| = O(n2) since for each t ∈ Ψ we have t = dj − s

for some j ∈ J, s ∈ [0, n] and the number of possible values of dj − s + s′ for s′ ∈ [0, n] is
bounded by O(n2). The following lemma is from the work by Angel et al. [1].

▶ Lemma 3 ([1]). There always exists an optimal schedule such that
i.) each calibration starts at a time in Ψ.
ii.) ∀j ∈ J , job j finishes at a time in Φ(j).

3 Dynamic Programming Approach

In this section we introduce a dynamic programming approach to solve the problem. Assume
that the calibrations on the same machine never overlap with each other and we look for
the optimal solution which follows EDF scheduling policy. We focus on the problem within
a specific time interval [t1, t2) and consider the jobs that are released during this interval,
where t1, t2 are the possible job completion times. Lemma 1 shows a very important property
that once job j is scheduled at time slot t in the optimal solution, the remaining jobs (whose
index is less than j) could be partitioned into two groups such that they must be scheduled
during time intervals [t1, t) and [t, t2) in the optimal solution, respectively (more details in
later analysis). Therefore, we could split the problem into sub-problems. In the sub-problem,
we need to mark the calibrations that cross the boundary of the time interval [t1, t2), where
we use vectors defined in the following.

Given time slot t, some machines may be calibrated at slot t and others may not. We
use notation nul to represent the situation that the machine is not calibrated at some
time slot (nul represents NULL in programming). In order to mark the calibrations on
each machine that cover time slot t (there could be at most m such calibrations), we use
a vector γ = ⟨γ1, γ2, ..., γm⟩ to represent the starting times of these calibrations where

L. Chen, Y. Gao, M. Li, G. Lin, and K. Wang 20:5

γk ∈ {nul} ∪ (Ψ ∩ [t − T, t)) indicates the starting time of the calibration on machine k. Let
Γ(t) = {⟨γ1, γ2, ..., γm⟩ | γk ∈ {nul} ∪ (Ψ ∩ [t − T, t)), ∀k ∈ [1, m]} be the set of all possible
vectors, with respect to time slot t.

▶ Definition 4. Let J(j, t1, t2), ∀j ∈ J be the subset of jobs whose index is at most j and
release time is between t1 and t2, i.e., J(j, t1, t2) = {i | i ≤ j, ri ∈ [t1, t2), i ∈ J}

▶ Definition 5. Let f(j, t1, t2, q, u, v) be the minimum number of calibrations to schedule jobs
J(j, t1, t2) on m machines where u = ⟨u1, u2, ..., um⟩, u − T ∈ Γ(t1), v = ⟨v1, v2, ..., vm⟩ ∈
Γ(t2), t1 ∈ Φ, t2 ∈ Φ, q ∈ [0, m] on the condition that

i.) jobs J(j, t1, t2) are only scheduled during time interval [t1, t2).
ii.) time intervals [t1, uk) and [vk, t2) have already been calibrated on machine k, ∀k ∈ [1, m].
iii.) q other jobs (not from J(j, t1, t2)) have already been assigned to time slot t2.

In the definition, we use vector u (resp. v) to mark the calibration ending times (resp.
starting times) of the calibrations that cross the boundary of interval [t1, t2), i.e., covering
time slot t1 (resp. t2), where u − T ∈ Γ(t1) (resp. v ∈ Γ(t2)). We use parameter q to reserve
q machines at slot t2 in order to schedule the jobs (not from J(j, t1, t2)) that are assigned to
slot t2.

We consider the starting time of job j and suppose job j is scheduled at time slot t in the
optimal schedule (refer to Figure 2). If a job from J(j − 1, t1, t2) is released before t, then
it must be scheduled before (or at) time slot t by Lemma 1. Therefore, the remaining jobs
J(j − 1, t1, t2) can be partitioned into two groups: jobs J(j − 1, t1, t) and jobs J(j − 1, t, t2).
For jobs J(j − 1, t1, t), they will not be scheduled after time t as argued, and for jobs
J(j − 1, t, t2) they cannot be scheduled before t because of the job release time. Hence the
original problem could be divided into two sub-problems. Moreover, we have to enumerate
the calibrations (i.e., the calibration starting times) on each machine that cover time slot t

in the optimal schedule, in order to schedule job j at time slot t. Specifically, we use vector
x = ⟨x1, x2, ..., xm⟩ ∈ Γ(t) to indicate the starting times of the calibrations on all machines
and correspondingly y = ⟨y1, y2, ..., ym⟩ = x + T as the calibration ending times.

...

...

t1 t2t

...

q

u vx y

j

Figure 2 An illustration for Proposition 7.

In the following, we define the operations that is related to nul.

▶ Definition 6. For any x ∈ R, we define the min and max functions min{nul, x},
min{x, nul}, max{nul, x}, max{x, nul} to be x, the operations x + nul, x − nul, nul −
nul, min{nul, nul} to be nul, and the intervals [x, nul), [nul, x) to be ∅.

We define min (or max, analogously) function on two vectors γ, λ to be β = min{γ, λ}
where βk = min{γk, λk}, ∀k ∈ [1, m] (recall that γk or λk might be nul). We define operator
+ (or −, analogously) on a vector λ and a number x to be β = λ + x where βk = λk + x.
And we define operator < (or ≤, >, ≥, analogously) to be β = (λ < x) where βk = λk if
λk ̸= nul, λk < x and otherwise βk = nul.

ISAAC 2024

20:6 Revisit the Scheduling Problem with Calibrations

Let function δ(λ) =
∑

λk ̸=nul,k∈[1,m] 1 on vector λ be the function that indicates the
number of real values in vector λ.

▶ Proposition 7. For the case J(j, t1, t2) = ∅, we set f(j, t1, t2, q, u, v) to be 0 if at least q

machines are calibrated at time slot t2 providing u and v, and otherwise ∞. If j ̸∈ J(j, t1, t2)
we have f(j, t1, t2, q, u, v) = f(j − 1, t1, t2, q, u, v). If j ∈ J(j, t1, t2) and Φ(j) ∩ (t1, t2] = ∅,
we have f(j, t1, t2, q, u, v) = ∞. Otherwise we have f(j, t1, t2, q, u, v) =

min
t∈Φ(j)∩(t1,t2]

∞ , if t = t2, q = m

f(j − 1, t1, t2, q + 1, u, v) , if t = t2, 0 < q < m

min
cond.

δ(x)

+f(j − 1, t1, t, 1, u, v′)
+f(j − 1, t, t2, q, u′, v) , if t < t2 or q = 0

where cond. represents x ∈ Γ(t), y = x + T, u′ = max{y, u ≥ t}, v′ = min{x, v < t}.

Proof. For the base cases, if J(j, t1, t2) = ∅, no job needs to be scheduled, hence we only
need to guarantee that at least q machines are calibrated at time slot t2. If j ̸∈ J(j, t1, t2), we
would have J(j, t1, t2) = J(j − 1, t1, t2). If j ∈ J(j, t1, t2), Φ(j) ∩ (t1, t2] = ∅, it is impossible
to schedule job j during interval (t1, t2].

In the dynamic programming equation, we allow calibrations to overlap with each other
on the same machine, and we guarantee that for each time slot, the number of jobs that are
assigned to this time slot is at most the number of machines that are calibrated during this
time slot. Firstly, we try every possibility (specifically, job starting time) to schedule job j.
Secondly, we follow the scheduling policy that whenever a time slot is active, we try every
possibility of the calibrations (specifically, calibration starting times) on each machine that
cover this time slot. Depending on the time slot t where job j is scheduled, we divide the
analysis into three cases.
Case 1) t = t2, q = m. In this case, there are already q jobs assigned to time slot t2.
Therefore it is infeasible to assign job j to time slot t2.
Case 2) t = t2, 0 < q < m. In this case, job j is assigned to time slot t2. Since q > 0,
i.e., some job is already scheduled at time slot t2, by our approach the calibration decision
on time slot t2 is already made, which means that we do not need to enumerate again the
calibrations that cover time slot t2. Therefore we just schedule job j at slot t2 and recurse to
the sub-problem f(j − 1, t1, t2, q + 1, u, v) where we reserve q + 1 machines at time slot t2.
Case 3) t < t2 or q = 0. If t < t2, time slot t is not yet active as we only reserve time slot
t2 for other jobs. If t = t2, q = 0, no job is reserved at time slot t2 by definition. Therefore, in
this case time slot t is not yet active and we enumerate the calibrations that cover time slot
t, i.e., vector x ∈ Γ(t). Once we fix time slot t and vector x, we partition the remaining jobs
J(j − 1, t1, t2) into two groups: jobs J(j − 1, t1, t) and jobs J(j − 1, t, t2). Because jobs in
J(j − 1, t1, t) will not be scheduled after time t in the optimal solution by Lemma 1 and jobs
in J(j − 1, t, t2) cannot be scheduled before t because of the job release time, the two groups
of jobs must be scheduled during interval [t1, t) and [t, t2) respectively. The only issue left is
to determine the calibrations that cross the boundary of the intervals. For the calibrations
that intersect with interval [t1, t) and cover time slot t, they must come from the calibrations
with starting time x or v. Hence we define v′ = min{x, v < t} to include as many calibrated
slots on each machine as possible for interval [t1, t) and define the first sub-problem to be
f(j − 1, t1, t, 1, u, v′), in which we reserve one machine at time slot t for the schedule of job
j. Note that v′ follows the definition of the sub-problem, i.e., v′ ∈ Γ(t). Symmetrically, we

L. Chen, Y. Gao, M. Li, G. Lin, and K. Wang 20:7

define vector u′ = max{y, u ≥ t} to include as many calibrated slots on each machine as
possible for interval [t, t2) and we have u′ − T ∈ Γ(t). We define the sub-problem to be
f(j − 1, t, t2, q, u′, v). As we have tried every possibility of time slot t, vector x, at least one
try is the same as the optimal solution. Hence, we obtain two partial schedules from two
sub-problems respectively and then schedule job j at time slot t. Job j is feasible because
the first sub-problem has reserved a time slot for job j at slot t by definition. ◀

Time Complexity. The dynamic program has table size O(n2|Φ|2|Ψ|2m). Constructing
the solution from the sub-problems takes O(|Φ||Ψ|m) steps. In total, the running time is
O(n2|Φ|3|Ψ|3m) = O(n8+6m). When m is constant, i.e., the number of machines is constant,
our dynamic programming approach has polynomial running time.

4 When T is Constant

The algorithm in Section 3 is exponential on the number of machines (i.e., m). When m is
input and T is constant, we introduce another dynamic programming approach in this section
with polynomial running time. Since all jobs have unit processing times, the scheduling
between two different time slots is independent once the calibration scheme and the starting
time of each job are determined. That is, for a certain time slot t, a job processed on this
slot and any two available (i.e., calibrated) machines on this slot, it makes no difference to
schedule the job on either of the two machines for the schedule of any other time slot t′.
This inspires us that we do not need to distinguish machines, but only need to distinguish
calibrations with different starting times. When T is constant, we can use this to optimize
the table’s cardinality in the dynamic programming approach to a polynomial of n and m.

▶ Definition 8. Assume that the calibrations on the same machine never overlap. To mark
the status of calibrations at time slot t, we use a vector ct = ⟨ct,1, ct,2, ..., ct,T ⟩ to represent
the numbers of calibrations distinguished by the number of remaining time slots that kept
the machine calibrated, where ct,k ∈ {0, 1, 2, . . . , m} indicates the number of calibrations that
makes the machine available at time slot t, t + 1, . . . , t + k − 1.

We define function ι on vector ct and an integer x as ι(ct, x) = ct+x where ct+x,k = ct,k−x

if k − x ∈ [1, T], and otherwise 0, ∀k ∈ [1, T]. We define max function on two vectors γ, λ

to be β = max{γ, λ} where βk = max{γk, λk}, ∀k ∈ [1, T].
Let C(t) = {⟨ct,1, ct,2, ..., ct,T ⟩ | ct,k ∈ {0, 1, 2, . . . , m}, ∀k ∈ [1, T] ∧

∑T
k=1 ct,k ≤ m} be

the set of all possible vectors, with respect to time slot t. One would find |C(t)| = O(mT).

▶ Definition 9. We define f(j, t1, t2, q, ct1 , ct2) to be the minimum number of calibrations to
schedule jobs J(j, t1, t2) on m machines where ct1 ∈ C(t1), ct2 ∈ C(t2), t1 ∈ Φ, t2 ∈ Φ, q ∈
[0, m] on the condition that

i.) jobs J(j, t1, t2) are only scheduled during time interval [t1, t2).
ii.) machines have already been calibrated according to ct1 and ct2 .
iii.) q other jobs (not from J(j, t1, t2)) have already been assigned to time slot t2.

▶ Proposition 10. For the case J(j, t1, t2) = ∅, we set f(j, t1, t2, q, ct1 , ct2) to be 0 if
there are at least q available machines on time slot t (i.e., q ≤

∑T
k=1 ct2,k), and otherwise

∞. If j ̸∈ J(j, t1, t2), we have f(j, t1, t2, q, ct1 , ct2) = f(j − 1, t1, t2, q, ct1 , ct2). If j ∈
J(j, t1, t2) and Φ(j) ∩ (t1, t2] = ∅, we have f(j, t1, t2, q, ct1 , ct2) = ∞. Otherwise we have

ISAAC 2024

20:8 Revisit the Scheduling Problem with Calibrations

f(j, t1, t2, q, ct1 , ct2) =

min
t∈Φ(j)∩(t1,t2]

∞ , if t = t2, q = m

f(j − 1, t1, t2, q + 1, ct1 , ct2) , if t = t2, 0 < q < m

min
cond.

∑T
k=1 ct,k

+f(j − 1, t1, t, 1, ct1 , ċt)
+f(j − 1, t, t2, q, c̈t, ct2) , if t < t2 or q = 0

where cond. stands for ċt = max{ι(ct1 , t − t1), ct}, c̈t = max{ι(ct2 , t − t2), ct} where
ct, ċt, c̈t ∈ C(t).

Proof. The structure of the proof is similar to Proposition 7. Beyond the base cases, we first
try every possible starting time t to schedule job j. Then we follow the scheduling policy
that whenever a time slot is active, we try every possibility of ct. Depending on the time
slot t where job j is scheduled, we divide the analysis into three cases.
Case 1) t = t2, q = m. In this case, all the available machines are already reserved, therefore
it is infeasible to assign job j to time slot t2.
Case 2) t = t2, 0 < q < m. In this case, job j is assigned to time slot t2. Since q > 0, the
calibration setting on time slot t2 is already determined, we only need to choose an unoccupied
machine for job j at slot t2 and recurse to the sub-problem f(j − 1, t1, t2, q + 1, ct1 , ct2).
Case 3) In this case, job j can be scheduled at time slot t, and time slot t is not yet active
so far. We enumerate the calibrations that cover time slot t, i.e., vector ct ∈ C(t). As argued
in Proposition 7, when job j is scheduled at time slot t, jobs J(j − 1, t1, t) and J(j − 1, t, t2)
should be scheduled during intervals (t1, t] and (t, t2] respectively. Then We determine the
calibrations that cross the boundary of the intervals. We define ċt = max{ι(ct1 , t − t1), ct}
to include all the calibrations in ct1 or ct and restrict ċt ∈ C(t) to avoid the situation where
the number of available machines exceeds m. We reserve one machine for the job j at
time slot t in the first sub-problem f(j − 1, t1, t, 1, ct1 , ċt). Symmetrically, we define vector
c̈t = max{ι(ct2 , t − t2), ct} and the second sub-problem to be f(j − 1, t, t2, q, c̈t, ct2). As
we have tried every possibility of time slot t, vector ct, at least one try is the same as the
optimal solution. ◀

Time Complexity. The dynamic program has table size O(n2|Φ|2|C|2). Constructing
the solution from the sub-problems takes O(|Φ||C|) steps. In total, the running time is
O(n2|Φ|3|C|3) = O(n8m3T). When T is constant, our dynamic programming approach has
polynomial running time.

Connection with Section 3. When m is input, the dynamic programming approach in
Section 3 has exponential running time, while the running time of the approach in this
section is polynomial on n and m. However, this running time is exponential on T . When T

is constant, our proposed dynamic programming approach has polynomial running time.

5 PTAS

In this section, we extend the dynamic programming approach in Section 3 and present a
PTAS. In other words, for any constant ϵ > 0, we give a (1 + ϵ) - approximation solution with
m machines. The high level idea of the PTAS is to compress the vectors by decreasing the
number of possible distinct starting times of calibrations so that the dynamic programming

L. Chen, Y. Gao, M. Li, G. Lin, and K. Wang 20:9

has polynomial running time. We propose a compression method by delaying the calibrations
in the optimal solution and prove that in the approximation solution, for each time slot t the
corresponding vector set Γ(t) has polynomial cardinality. More specifically, we prove that
given (1 + ϵ)m machines there exists a (1 + ϵ) - approximation solution such that for any
time slot t, the number of distinct starting times (and ending times) of the calibrations that
cover time slot t is at most 2⌈1/ϵ⌉ + 1. At last, we use a modified dynamic programming
algorithm to find that (1 + ϵ) - approximation solution without using the extra ϵm machines.

τ1 τ1 + T

OPT

PTAS

extra calibrations

Figure 3 An illustration for Lemma 11 to show the transformation of the calibrations in the
optimal solution. For each group of calibrations, after delaying the calibrations the affected jobs are
depicted within a rectangle. We move the affected jobs in each rectangle into the extra machines,
without changing the job starting time. As the time interval covered by each rectangle is disjoint
with other rectangles, the new schedule of the jobs from two rectangles is independent of each other.

▶ Lemma 11. There exists a (1 + ϵ) - approximation solution on (1 + ϵ)m machines such
that for any time slot t, the number of distinct starting times (and ending times) of the
calibrations that cover time slot t is at most 2⌈1/ϵ⌉+1, and there are at most m jobs scheduled
at time slot t.

Proof. Consider the optimal solution that satisfies Lemma 1 and Lemma 3, in which no
two calibrations overlap with each other on the same machine. We show how to transform
the optimal solution into another solution satisfying the statement, shown in Figure 3. In
our approach, we maintain the schedule of the jobs as in the optimal schedule and only
change the schedule of calibrations. Hence, in the new schedule there are at most m jobs
scheduled at any time slot. Assume that in the optimal solution the calibrations are sorted
in non-decreasing order of their starting times (regardless of the machines). We define block
to be the set of consecutive calibrations satisfying the property that the largest difference of
their starting times is less than T and the set is maximal in the sense that adding one more
calibration will violate the property. We partition the calibrations in the optimal solution
into many disjoint blocks starting from the first calibration. The transformation works in
many phases where in each phase we work on one block.

Suppose in the current phase the block contains l calibrations. First, we will delay these
l calibrations so that the number of distinct starting times of these calibrations is at most
⌈1/ϵ⌉ (skip the phase and do nothing if l ≤ ⌈1/ϵ⌉). This process will cause the infeasibility
of some jobs because of the delay of calibrations. We construct a feasible schedule of jobs by
creating an extra of ⌊ϵl⌋ calibrations on the extra ϵm machines and rescheduling the affected
jobs on the extra machines.

Let τi be the starting time of the i-th calibration in the block, we have τ1 ≤ τ2 ≤ ... ≤
τl < τ1 + T . Note that l ≤ m because each of these calibrations covers time slot τ1 + T .

ISAAC 2024

20:10 Revisit the Scheduling Problem with Calibrations

Step 1. (Partition) We partition the calibrations in the block into ⌈1/ϵ⌉ groups such that
each group contains at most ⌈ϵl⌉ consecutive calibrations. One would find that the partition
is feasible as ⌈1/ϵ⌉ · ⌈ϵl⌉ ≥ l. Note that the maximum calibration starting time in one group
is no larger than the minimum calibration starting time in the next group.

Step 2. (Delay) For each group of calibrations, let τ be the latest calibration starting time,
then we delay the calibrations in this group so that they have identical starting time τ .

Step 3. (Augment) We add an extra group of ⌊ϵl⌋ calibrations once with identical starting
time τ1 on the extra ϵm machines.

Step 4. (Transform) For the calibrations that are delayed in each group, we reschedule
the corresponding affected jobs on the extra machines, without changing the starting time of
any job.

Analysis. We show that the new schedule of jobs is feasible. First, we claim that the number
of the affected jobs which start at a time t ∈ [τ1, τ1 + T) in the optimal solution is at most
⌈ϵl⌉ − 1. In total we have created an extra of ⌊ϵl⌋ calibrations. For each group of calibrations,
let ta, tb be the smallest and largest calibration starting time, respectively. There is at least
one calibration that is not delayed, hence we delay at most ⌈ϵl⌉ − 1 calibrations in this group.
The affected jobs caused by the delay of the calibrations in this group must have job starting
time within [ta, tb). In other words, in the optimal solution any affected job that starts at a
time within [ta, tb) must be scheduled in a calibration from this group (i.e., not from other
groups), because the maximum calibration starting time in one group is no larger than the
minimum calibration starting time in the next group by Step 1. Therefore, ∀t ∈ [τ1, τ1 + T),
the total number of the affected jobs which start at time t is at most ⌈ϵl⌉ − 1, because we
delay at most ⌈ϵl⌉ − 1 calibrations in this group. Since ⌈ϵl⌉ − 1 ≤ ⌊ϵl⌋, we conclude that the
new schedule of jobs is feasible.

Now, we prove the lemma. Suppose in total there are b phases and let τ ′
1, τ ′

2, ..., τ ′
b be the

starting times of the extra calibrations in each phase. Then we have τ ′
i+1 − τ ′

i ≥ T, ∀i ∈ [1, b)
according to the above process. In one phase, we process l calibrations and we create ⌊ϵl⌋
extra calibrations, which implies that the final solution is (1 + ϵ)-approximation since we
never consider a calibration twice in different phases. Moreover Lemma 3 holds for the new
solution because we do not change the starting time of any job and the starting time of
the extra calibrations in each phase is the same as one of the calibrations from the block in
the optimal solution. And note that in the new solution, calibrations might overlap with
each other on the same machines. In each phase, we partition the calibrations into ⌈1/ϵ⌉
groups and the calibrations in each group have identical starting time, hence the number
of distinct starting times of the calibrations is at most ⌈1/ϵ⌉ + 1 in each phase, including
the extra calibrations. In other words, for each interval [τ ′

i , τ ′
i+1) the number of distinct

starting times of the calibrations that start during this interval in the new solution is at most
⌈1/ϵ⌉ + 1. Consider an arbitrary time slot t from [τ ′

i , τ ′
i+1) and the calibrations that cover

slot t in the new solution. These calibrations must have starting times in (τ ′
i−1, τ ′

i+1) since
τ ′

i+1 − τ ′
i−1 ≥ 2T . Therefore, the total number of distinct starting times of the calibrations

that cover time slot t is at most 2⌈1/ϵ⌉ + 1 (the extra calibrations in phase i − 1 will not cover
time slot t). Also, the total number of distinct ending times of the calibrations that cover
time slot t is at most 2⌈1/ϵ⌉ + 1, because all calibrations have identical length. Eventually,
the lemma is proved. ◀

L. Chen, Y. Gao, M. Li, G. Lin, and K. Wang 20:11

Vector Compression

Lemma 11 shows that for each optimal solution, there is a corresponding (1+ϵ)-approximation
solution on (m + ϵm) machines with the property that the number of distinct starting times
of the calibrations that cover each time slot t is bounded by a constant. In the following, we
propose a method to find a (1 + ϵ)-approximation solution with m machines, which is based
on the dynamic programming in the previous section. We first propose the algorithm with
(m + ϵm) machines (which we refer to as resource-augmentation version), while guaranteeing
that for any time slot there are at most m jobs scheduled. Note that the extra ϵm machines is
due to the extra additional calibrations as shown in Figure 3. Therefore, we then transform the
resource-augmentation solution to a solution that only requires m machines by rescheduling
the calibration without changing the schedule of jobs.

Let h = 2⌈1/ϵ⌉ + 1, m′ = m + ⌊ϵm⌋ and we assume m′ < n (a trivial solution could be
found when the optimal schedule uses m′ machines with m′ ≥ n). Previously in Section 3,
for the calibrations that cover time slot t, we use vector γ = ⟨γ1, γ2, ..., γm⟩ ∈ Γ(t) to mark
the calibration starting time on each machine. Similar to Section 4, in the modified dynamic
programming for PTAS, we discard the information of the mapping from calibrations to
machines and only mark the starting times of the calibrations that cover time slot t. In other
words, for each calibration, we do not need to know the corresponding machine on which the
calibration takes effect. We focus on the solution on m′ machines and use configurations to
mark the calibration starting times.

▶ Definition 12. We define a configuration to be a pair of vectors ⟨α, η⟩ where α =
⟨α1, α2, ..., αh⟩, η = ⟨η1, η2, ..., ηh⟩ and for each i ∈ [1, h], αi ∈ {nul} ∪ Ψ indicates the
starting time of a calibration, ηi ∈ [0, m′] indicates the number of the calibrations that share
the same starting time αi. We define A = {⟨α1, α2, ..., αh⟩ | αi ∈ {nul}∪Ψ, ∀i ∈ [1, h]} to be
the set of all possible vectors α. Given time slot t, we define A(t) = {⟨α1, α2, ..., αh⟩ | αi ∈
{nul} ∪ (Ψ ∩ [t − T, t)), ∀i ∈ [1, h]}, where αi indicates the starting time of a calibration
which covers time slot t. Let B = {η |

∑h
i=0 ηi ≤ m′, ηi ∈ [0, m′], ∀i ∈ [1, h]} be the set of all

possible vectors η.

In total we have at most nh|Ψ|h configurations as |A| ≤ |Ψ|h and |B| ≤ (m′ +1)h ≤ nh, which
implies that the total number of possible configurations is polynomial in n. Given time slot t,
and two configurations ⟨α̇, η̇⟩ and ⟨α̈, η̈⟩, we use ∪t as the notation of the process that merges
these two configurations into a new configuration ⟨α, η⟩ where ⟨α, η⟩ = ⟨α̇, η̇⟩ ∪t ⟨α̈, η̈⟩ such
that each calibration from the new configuration covers time slot t. In the merging process,
we first identify the distinct starting times of the calibrations from the two configurations that
cover time slot t, then for each distinct starting time, we count the number of calibrations
that share the same starting time. We guarantee that α ∈ A(t) and η ∈ B for the new
configuration ⟨α, η⟩ after the merging process. In other words, we will discard the new
configuration if it is not valid (either the number of distinct calibration starting times is
beyond h or η ̸∈ B).

▶ Definition 13. We define f#(j, t1, t2, q, ⟨α̌, η̌⟩, ⟨α̂, η̂⟩) to be the minimum number of extra
necessary calibrations to schedule jobs J(j, t1, t2) on m′ machines where j ∈ J, t1 ∈ Φ, t2 ∈
Φ, q ∈ [0, m], α̌ ∈ A(t1), α̂ ∈ A(t2), η̌ ∈ B, η̂ ∈ B on the condition that

i.) jobs in J(j, t1, t2) are only scheduled during time interval (t1, t2].
ii.) calibrations indicated by configurations ⟨α̌, η̌⟩ and ⟨α̂, η̂⟩ have already been selected to

be assigned to machines.
iii.) q other jobs (not from J(j, t1, t2)) have already been assigned at time slot t2.
iv.) there are at most m jobs scheduled at any time slot.

ISAAC 2024

20:12 Revisit the Scheduling Problem with Calibrations

In dynamic programming, we allow the overlap of calibrations and we guarantee that at each
time slot, we assign at most m jobs into this slot.

▶ Proposition 14. Let F # = f#(j, t1, t2, q, ⟨α̌, η̌⟩, ⟨α̂, η̂⟩). For the base case J(j, t1, t2) = ∅,
we set F # to be 0 if time slot t2 is covered by at least q calibrations given by config-
urations ⟨α̌, η̌⟩ and ⟨α̂, η̂⟩, otherwise ∞. If j ̸∈ J(j, t1, t2), we have F # = f#(j −
1, t1, t2, q, ⟨α̌, η̌⟩, ⟨α̂, η̂⟩). If j ∈ J(j, t1, t2) and Φ(j) ∩ (t1, t2] = ∅, we have F # = ∞.
Otherwise, we have F # =

min
t∈Φ(j)∩(t1,t2]

∞ , if t = t2, q = m

f#(j − 1, t1, t2, q + 1, ⟨α̌, η̌⟩, ⟨α̂, η̂⟩) , if t = t2, 0 < q < m

min
cond.

∑h
i=0 ηi

+f#(j − 1, t1, t, 1, ⟨α̌, η̌⟩, ⟨α̇, η̇⟩)
+f#(j − 1, t, t2, q, ⟨α̈, η̈⟩, ⟨α̂, η̂⟩) , if t < t2 or q = 0

where cond. stands for ⟨α̇, η̇⟩ = ⟨α, η⟩ ∪t ⟨α̂, η̂⟩, ⟨α̈, η̈⟩ = ⟨α, η⟩ ∪t ⟨α̌, η̌⟩ where α, α̇, α̈ ∈
A(t) and η, η̇, η̈ ∈ B.

Proof. Similar to Proposition 7, we maintain the invariant that whenever a time slot becomes
active (i.e., we reserve a time slot for a job), we enumerate all the calibrations that cover
this time slot (excluding the calibrations that have already been selected). For example, for
time slot t which is not active at the moment, even some calibrations from configurations
⟨α̌, η̌⟩, ⟨α̂, η̂⟩ might already cover time slot t. We enumerate the remaining calibrations that
could cover time slot t (i.e., configuration ⟨α, η⟩ with α ∈ A(t), η ∈ B) when we plan to
assign a job to time slot t. Note that the actual calibrations that cover time slot t come from
configurations ⟨α̌, η̌⟩, ⟨α̂, η̂⟩ and ⟨α, η⟩. In the dynamic programming, we enumerate the
time slot t in which job j ∈ J(j, t1, t2) is scheduled in the optimal schedule.
Case 1) If t = t2, q = m, we cannot assign job j to time slot t because there are already
other m jobs assigned to time slot t.
Case 2) t = t2, 0 < q < m. In this case, time slot t has already become active since
q > 0. Hence, the calibrations that cover time slot t2 has already been enumerated (in other
words, we do not need to enumerate it again). Also, job j could be assigned to time slot t2
because q < m. Therefore, we just assign job j to time slot t and reduce to the sub-problem
f#(j − 1, t1, t2, q + 1, ⟨α̌, η̌⟩, ⟨α̂, η̂⟩). Especially, if q = 0, no job has been assigned to time
slot t, i.e., time slot t is not active, then we have to enumerate the calibrations that cover
time slot t, which is handled in Case 3). If t < t2, time slot t is not active because we only
reserve time slot t2 for the q other jobs.
Case 3) In this case, job j can be scheduled at time slot t, and no job has been assigned
to time slot t so far. We enumerate the calibrations that cover time slot t, which is the
configuration ⟨α, η⟩ with α ∈ A(t), η ∈ B. As argued in Proposition 7, when job j is scheduled
at time slot t, jobs J(j − 1, t1, t) and J(j − 1, t, t2) should be scheduled during intervals (t1, t]
and (t, t2] respectively. Hence we reduce to sub-problems f#(j − 1, t1, t, 1, ⟨α̌, η̌⟩, ⟨α̇, η̇⟩) and
f#(j − 1, t, t2, q, ⟨α̈, η̈⟩, ⟨α̂, η̂⟩) where ⟨α̇, η̇⟩ = ⟨α, η⟩ ∪t ⟨α̂, η̂⟩, ⟨α̈, η̈⟩ = ⟨α, η⟩ ∪t ⟨α̌, η̌⟩ by
reserving a calibrated machine at time slot t for job j. Because we enumerate all possible
configurations ⟨α, η⟩ with α ∈ A(t), η ∈ B, we are able to reach the schedule that is the
same as the optimal schedule. ◀

Time complexity. The modified dynamic program has table size O(n2|Φ|2(|A||B|)2). Con-
structing the solution from the sub-problems takes O(|Φ||A||B|) steps. In total the time
complexity is O(n2|Φ|3(|A||B|)3) = O(n2|Φ|3n3h|Ψ|3h) = O(n17+18⌈1/ϵ⌉).

L. Chen, Y. Gao, M. Li, G. Lin, and K. Wang 20:13

▶ Lemma 15. There exists a (1 + ϵ) - approximation solution on m machines.

Proof. By Lemma 11 and the algorithm in Proposition 14, we can obtain a (1 + ϵ) -
approximation solution σ on m′ machines while guaranteeing that there are at most m jobs
scheduled at any time slot. In the following, we transform σ to an (1 + ϵ) - approximation
solution σ′ on m machines, without changing the schedule of jobs. In solution σ, we consider
the earliest time slot t such that more than m machines are calibrated at time slot t.
Case 1) If no such time slot t exists, we then assign the calibrations to m machines via
Round-Robin method, as proposed in [3], and obtain a feasible solution on m machines.
Case 2) Otherwise, there must be some calibration starting at time t − 1, we then delay
this calibration by one more time slot. Note that jobs are still feasible since there are at
most m jobs scheduled at time slot t. We repeat the above process until Case 1) occurs and
Case 1) eventually will occur since the sum of the calibration starting time is increasing after
each delay operation. Thus, we finish the proof. ◀

Connection with Section 4. Note that in Section 3 we directly record the calibration times
on each machine in the dynamic program, while in Section 4 and this section we propose
different methods for vector compression to ensure a polynomial space of the proposed
dynamic programs. Specifically, in Section 4, for a fixed time slot t, the number of possible
distinct calibration starting times within interval [t, t + T) is constant since T is constant,
instead, in this section when T is input, we apply the calibration delaying operation to ensure
the polynomial number of distinct calibration starting times within interval [t, t + T).

6 Conclusion

We study the scheduling problem with calibrations on multiple machines where we consider
the schedule of unit-time processing jobs with release times and deadlines such that the total
number of calibrations is minimized. We propose two dynamic programming approaches to
solve the problem with running time O(n8+6m) and O(n8m3T) respectively. Thus when m is
constant or T is constant, we can give an algorithm of polynomial running time. Moreover,
we present a PTAS, which has running time O(n17+18⌈1/ϵ⌉). This approach very likely works
only on the case that the jobs have identical processing time. It would be worth challenging
to tackle the open problem proposed by Bender et al. [3] about the complexity status on
multiple machines with jobs of unit processing times.

References
1 Eric Angel, Evripidis Bampis, Vincent Chau, and Vassilis Zissimopoulos. On the complexity of

minimizing the total calibration cost. In International Workshop on Frontiers in Algorithmics,
pages 1–12. Springer, 2017. doi:10.1007/978-3-319-59605-1_1.

2 Eric Angel, Evripidis Bampis, Vincent Chau, and Vassilis Zissimopoulos. Calibrations schedul-
ing with arbitrary lengths and activation length. Journal of Scheduling, 24(5):459–467, 2021.
doi:10.1007/S10951-021-00688-5.

3 Michael A. Bender, David P. Bunde, Vitus J. Leung, Samuel McCauley, and Cynthia A.
Phillips. Efficient scheduling to minimize calibrations. In Proceedings of the Twenty-fifth
Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’13, pages
280–287, New York, NY, USA, 2013. ACM. doi:10.1145/2486159.2486193.

4 B Bringmann, A Küng, and W Knapp. A measuring artefact for true 3d machine testing and
calibration. CIRP Annals-Manufacturing Technology, 54(1):471–474, 2005.

5 Peter Brucker and P Brucker. Scheduling algorithms, volume 3. Springer, Heidelberg, 2007.

ISAAC 2024

https://doi.org/10.1007/978-3-319-59605-1_1
https://doi.org/10.1007/S10951-021-00688-5
https://doi.org/10.1145/2486159.2486193

20:14 Revisit the Scheduling Problem with Calibrations

6 Chris Burroughs. New integrated stockpile evalution program to better ensure weapons
stockpile safety, security, reliability, 2006. URL: http://www.sandia.gov/LabNews/060331.
html.

7 Vincent Chau, Shengzhong Feng, Minming Li, Yinling Wang, Guochuan Zhang, and Yong
Zhang. Weighted throughput maximization with calibrations. In Algorithms and Data
Structures: 16th International Symposium, WADS 2019, Edmonton, AB, Canada, August 5–7,
2019, Proceedings 16, pages 311–324. Springer, 2019. doi:10.1007/978-3-030-24766-9_23.

8 Vincent Chau, Minming Li, Samuel McCauley, and Kai Wang. Minimizing total weighted
flow time with calibrations. In Proceedings of the 29th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’17, pages 67–76, New York, NY, USA, 2017. ACM.
doi:10.1145/3087556.3087573.

9 Vincent Chau, Minming Li, Elaine Yinling Wang, Ruilong Zhang, and Yingchao Zhao.
Minimizing the cost of batch calibrations. Theoretical Computer Science, 828:55–64, 2020.
doi:10.1016/J.TCS.2020.04.020.

10 Hua Chen, Vincent Chau, Lin Chen, and Guochuan Zhang. Scheduling many types of
calibrations. In International Conference on Algorithmic Applications in Management, pages
286–297. Springer, 2020. doi:10.1007/978-3-030-57602-8_26.

11 Zuzhi Chen and Jialin Zhang. Online scheduling of time-critical tasks to minimize the number of
calibrations. Theoretical Computer Science, 914:1–13, 2022. doi:10.1016/J.TCS.2022.01.040.

12 Jeremy T. Fineman and Brendan Sheridan. Scheduling non-unit jobs to minimize calibrations.
In Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’15, pages 161–170, New York, NY, USA, 2015. ACM. doi:10.1145/2755573.2755605.

13 Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals of discrete
mathematics, 5:287–326, 1979.

14 Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM, 22(4):463–468, October 1975. doi:10.1145/321906.321909.

15 Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J. ACM,
47(4):617–643, July 2000. doi:10.1145/347476.347479.

16 Kuo-Huang Lin and Bin-Da Liu. A gray system modeling approach to the prediction of
calibration intervals. IEEE Transactions on Instrumentation and Measurement, 54(1):297–304,
2005. doi:10.1109/TIM.2004.840234.

17 Hoai-Nhan Nguyen, Jian Zhou, and Hee-Jun Kang. A new full pose measurement method for
robot calibration. Sensors, 13(7):9132–9147, 2013. doi:10.3390/S130709132.

18 Emilia Nunzi, Gianna Panfilo, Patrizia Tavella, Paolo Carbone, and Dario Petri. Stochastic and
reactive methods for the determination of optimal calibration intervals. IEEE Transactions on
Instrumentation and Measurement, 54(4):1565–1569, 2005. doi:10.1109/TIM.2005.851501.

19 Cynthia A Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical scheduling via
resource augmentation. In Proceedings of the 29th. ACM Symposium on Theory of Computing
(STOC ’97), pages 140–149, New York, NY, 1997. ACM Press.

20 SR Postlethwaite, DG Ford, and D Morton. Dynamic calibration of CNC machine tools.
International Journal of Machine Tools and Manufacture, 37(3):287–294, 1997.

21 Sartaj K. Sahni. Algorithms for scheduling independent tasks. J. ACM, 23(1):116–127, January
1976. doi:10.1145/321921.321934.

22 Petra Schuurman and Gerhard J. Woeginger. Approximation schemes – a tutorial, 2007.
23 Minze Stuiver, Paula J Reimer, and Thomas F Braziunas. High-precision radiocarbon age

calibration for terrestrial and marine samples. Radiocardbon, 40(3):1127–1151, 1998.
24 Kai Wang. Calibration scheduling with time slot cost. Theoretical Computer Science, 821:1–14,

2020. doi:10.1016/J.TCS.2020.03.018.
25 Gerhard J Woeginger. When does a dynamic programming formulation guarantee the existence

of a fully polynomial time approximation scheme (FPTAS)? INFORMS Journal on Computing,
12(1):57–74, 2000. doi:10.1287/IJOC.12.1.57.11901.

http: //www.sandia.gov/LabNews/060331.html
http: //www.sandia.gov/LabNews/060331.html
https://doi.org/10.1007/978-3-030-24766-9_23
https://doi.org/10.1145/3087556.3087573
https://doi.org/10.1016/J.TCS.2020.04.020
https://doi.org/10.1007/978-3-030-57602-8_26
https://doi.org/10.1016/J.TCS.2022.01.040
https://doi.org/10.1145/2755573.2755605
https://doi.org/10.1145/321906.321909
https://doi.org/10.1145/347476.347479
https://doi.org/10.1109/TIM.2004.840234
https://doi.org/10.3390/S130709132
https://doi.org/10.1109/TIM.2005.851501
https://doi.org/10.1145/321921.321934
https://doi.org/10.1016/J.TCS.2020.03.018
https://doi.org/10.1287/IJOC.12.1.57.11901

L. Chen, Y. Gao, M. Li, G. Lin, and K. Wang 20:15

26 G Zhang and R Hocken. Improving the accuracy of angle measurement in machine calibration.
CIRP Annals-Manufacturing Technology, 35(1):369–372, 1986.

27 Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000. doi:10.1109/34.888718.

ISAAC 2024

https://doi.org/10.1109/34.888718

Mimicking Networks for Constrained Multicuts in
Hypergraphs
Kyungjin Cho #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Eunjin Oh #

Department of Computer Science and Engineering, POSTECH, Pohang, Republic of Korea

Abstract
In this paper, we study a multicut-mimicking network for a hypergraph over terminals T with a
parameter c. It is a hypergraph preserving the minimum multicut values of any set of pairs over T

where the value is at most c. This is a new variant of the multicut-mimicking network of a graph
in [Wahlström ICALP’20], which introduces a parameter c and extends it to handle hypergraphs.
Additionally, it is a natural extension of the connectivity-c mimicking network introduced by
[Chalermsook et al. SODA’21] and [Jiang et al. ESA’22] that is a (hyper)graph preserving the
minimum cut values between two subsets of terminals where the value is at most c.

We propose an algorithm for a hypergraph that returns a multicut-mimicking network over
terminals T with a parameter c having |T |cO(r log c) hyperedges in p1+o(1) + |T |(cr log n)Õ(rc)m time,
where p and r are the total size and the rank, respectively, of the hypergraph.

2012 ACM Subject Classification Theory of computation → Sparsification and spanners

Keywords and phrases hyperedge multicut, vertex sparsification, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.21

Related Version Full Version: https://arxiv.org/abs/2409.12548

Funding This work was partly supported by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.RS-2024-00440239,
Sublinear Scalable Algorithms for Large-Scale Data Analysis) and the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT) (No.RS-2024-00358505).
Kyungjin Cho: Supported by the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (No.RS-2024-00410835).

1 Introduction

Graph sparsification is a fundamental tool in theoretical computer science. By reducing
the size of a graph while preserving specific properties, such as the value of an objective
function or its approximation, graph sparsification significantly enhances computational
efficiency. This is particularly crucial for practical applications with limited resources and
for handling large-scale data in real-world problems. Due to these advantages, various types
of sparsification results have been presented over the decades, including spanners [4, 9], flow
sparsification [6, 15], and cut sparsification [5]. Additionally, their applications have been
widely studied, such as in designing dynamic algorithms [11]. In this paper, we focus on
graph sparsification specifically tailored for hypergraph separation and cut problems.

Hypergraph separation and cut problems have garnered significant attention due to
their extensive applications and theoretical challenges. These problems are particularly
compelling because hypergraphs offer more accurate modeling of many complex real-world
scenarios compared to normal graphs. Examples include VLSI layout [1], data-pattern-
based clustering [23], and social tagging networks [25]. The transition from graph to
hypergraph separation problems opens up new avenues for research, driven by the need

© Kyungjin Cho and Eunjin Oh;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 21; pp. 21:1–21:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kyungjincho@postech.ac.kr
https://orcid.org/0000-0003-2223-4273
mailto:eunjin.oh@postech.ac.kr
https://orcid.org/0000-0003-0798-2580
https://doi.org/10.4230/LIPIcs.ISAAC.2024.21
https://arxiv.org/abs/2409.12548
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Mimicking Networks for Constrained Multicuts in Hypergraphs

to address the unique properties and complexities inherent in hypergraphs. Researchers
have thus increasingly focused on developing graph algorithms and theoretical frameworks
for hypergraph problems, such as the small set expansion problem in hypergraphs [19],
spectral sparsification in hypergraphs [2, 13], and connectivity-c mimicking problem in
hypergraphs [10]. This growing interest underscores the critical importance of hypergraph
separation and cut problems in both theoretical and practical applications.

One of the key problems in (hyper)graph sparsification is the mimicking problem. It aims
to find a graph that preserves minimum cut sizes between any two subsets of vertices called
terminals. A cut between two sets of vertices is a set of edges whose removal disconnects the
given two sets. Kratsch et al. [14] showed that there is a mimicking network with O(τ3) edges,
where τ is the number of edges incident to terminals. Chalermsook et al. [3] introduced a
constraint version, called connectivity-c mimicking problem, that aims to preserve minimum
cut sizes between every two subsets of terminals where the size is at most c, and they showed
that there is such a graph with O(kc4) edges, which was later improved to O(kc3) [16], where
k is the number of terminals. This result was extended to hypergraphs by Jiang et al. [10].

A crucial variant of the mimicking problem is the multicut-mimicking problem. A multicut
of pairs of vertices is a set of (hyper)edges whose removal disconnects each given pair. Studies
have shown that the multicut problem is highly beneficial in various applications, including
network design, optimization, and security, where maintaining specific connectivity while
minimizing resources is necessary compared to cut problems [12]. It is already known that
the problem is NP-hard even for graphs [8, 20]. A multicut-mimicking network for a set
of terminals in a (hyper)graph is a (hyper)graph that preserves the size of the minimum
multicut for any set of pairs of terminals. Kratsch et al. [14] proposed a method to obtain
a multicut-mimicking network by contracting edges in a graph except at most τO(k) edges,
where k and τ are the numbers of terminals and incident edges to terminals, respectively.
Wahlström [24] refined this method and reduced the number of edges to τO(log τ).

Unlike the mimicking problem, there is no existing result for the constraint version
of multicut-mimicking network problem, even for graphs. We further study the multicut-
mimicking problem by introducing a parameter c. Precisely, we present an algorithm to
compute a hypergraph, that preserves the size of the minimum multicut for any set of pairs
of terminals where the size is at most c, with a linear size in the number of terminals while
the previous best-known result for multicut-mimicking network, without the parameter c,
has an exponential size [14]. It will allow for more refined control over the sparsification
process, enabling the construction of smaller and more efficient networks. For instance, this
notion in mimicking problem was utilized for a dynamic connectivity problem [11].

Our result. In this paper, we study vertex sparsifiers for multiway connectivity with a
parameter c > 0. Our instance (G, T, c) consists of an undirected hypergraph G, terminal
set T ⊆ V (G), and a parameter c. Precisely, we construct a hypergraph that preserves
minimum multicut values over T where the value is at most c. It is the first result for the
multicut-mimicking networks adapting the parameter c even for graphs.

Previously, the best-known multicut-mimicking network had a quasipolynomial size in the
total degree of terminals in T [24], specifically |∂T |O(log |∂T |). By introducing the parameter
c, we demonstrate that a multicut-mimicking network for (G, T, c) exists with a size linear
in |T |. This allows us to utilize the near-linear time framework of Jiang et al. [10] to find
a mimicking network using the expander decomposition of Long and Saranurak [18]. Our
result is summarized in Theorem 1. Here, m = |E(G)| and r is the rank of G.

K. Cho and E. Oh 21:3

▶ Theorem 1. For (G, T, c), we can compute a multicut-mimicking network of at most
kcO(r log c) hyperedges in p1+o(1)+k(cr log c log n)O(rc)m time, where k = |T | and p =

∑
e∈E |e|.

Outline. Our work extends the framework from connectivity-c mimicking networks for
hypergraphs, introduced by Jiang et al. [10], to multicut-mimicking networks, as well as adapt-
ing methods from multicut-mimicking networks for graphs, introduced by Wahlström [24], to
hypergraphs with a parameter c. While we broadly follow the previous approaches, we extend
the concepts and methods used in the previous studies to fit the multicut-mimicking problem
in hypergraphs with the parameter c. This extension allows us to handle the complexities of
hypergraphs effectively.

We introduce notions used in this paper in Section 2 and illustrate an efficient algorithm
to compute a small-sized multicut-mimicking network outlined in Theorem 1 in Section 3.
We give an upper bound for the size of minimal multicut-mimicking networks of hypergraphs
in Section 4, which is a witness for the performances of our algorithm outlined in Theorem 1.

2 Preliminaries

A hypergraph G is a pair (V (G), E(G)), where V (G) denotes the set of vertices and E(G) is
a collection of subsets of V (G) referred to as hyperedges. If the context is clear, we write V

and E. The rank of G is defined as the size of its largest hyperedge. For a vertex v ∈ V , a
hyperedge e is said to be incident to v if v ∈ e. For a vertex set X ⊂ V , let ∂GX denote the
set of hyperedges in E containing at least one vertex from X and one from V \ X, and let
E(X) denote the set of hyperedges fully contained in X. Additionally, we let G/e denote the
contraction of a hyperedge e in G obtained by merging all vertices in e into a single vertex
and modifying the other hyperedges accordingly. A path in a hypergraph is defined as a
sequence of hyperedges such that any two consecutive hyperedges contain a common vertex.

Consider a partition (X1, . . . , Xs) of a vertex set X ⊆ V . We call each subset Xi a
component of this partition. Additionally, the cut of (X1, . . . , Xs) in G is defined as the
set of hyperedges of G intersecting two different components. We let [a] = {1, . . . , a} and
[a, b] = {a, . . . , b} for integers a < b. Furthermore, let |X| denote the number of elements of
a set X. For a hyperedge e ∈ E(G), we let |e| to denote the number of vertices in e.

In this paper, an instance (G, T, c) consists of a hypergraph G, a set T ⊆ V (G), and a
positive constant c. We refer to the vertices in T as terminals. For a set R of pairs of T , a
multicut of R in G is a set of hyperedges F ⊂ E(G) such that every connected component
in G \ F contains at most one element of every pair {t, t′} ∈ R. We construct a multicut-
mimicking network H of (G, T, c) that is a hypergraph obtained from G by contraction
of hyperedges which preserves the size of minimum multicut for all set R of pairs over T

where the size is at most c. Precisely, if a multicut F of R exists in G with |F | ≤ c, then a
multicut F ′ of R exists in H with |F ′| ≤ |F |. We say H is minimal if no contraction H/e is
a multicut-mimicking network of (G, T, c). Analogously, we define a minimal instance. We
address the multicut-mimicking problem by utilizing multiway cuts.

2.1 Multiway Cuts and Essential Edges
We refer to a partition of terminals T as a terminal partition. For a terminal partition
T , a hyperedge set F is termed a multiway cut of T if any two terminals from different
components in T are not connected in G \ F . Furthermore, if there is no multiway cut of
size less than |F |, then F is called a minimum multiway cut of T in G. Let min-cutG(T)

ISAAC 2024

21:4 Mimicking Networks for Constrained Multicuts in Hypergraphs

(a) (b) (c)

e

Figure 1 Sketch of Lemma 3. For a multiway cut F of a terminal partition T and X ⊂ V ,
illustrated in (a), let T ′ be the terminal partition of TX in (Ĝ[X], TX , cX) according to G \ F . Then
we can modify F as excluding e if e is non-essential in (Ĝ[X], TX , cX), illustrated in (b-c).

denote the minimum multiway cut size of the partition in G. A hyperedge e ∈ E(G) is said
to be essential for (G, T, c) if there exists a terminal partition T with min-cutG(T) ≤ c such
that every minimum multiway cut of T in G contains e. Otherwise, e is non-essential.

Multicuts and multiway cuts in graphs are closely related [24, Proposition 2.2]. We observe
that this close relation also holds in hypergraphs. Briefly, a contraction of a non-essential
hyperedge is a multicut-mimicking network by Lemma 2, proved in the full version.

▶ Lemma 2. For a hyperedge e of G, G/e is a multicut-mimicking network for (G, T, c) if
and only if e is non-essential for (G, T, c).

A multicut-mimicking network is minimal if and only if every hyperedge is essential. Note
that we cannot contract multiple non-essential hyperedges simultaneously. This is because
even if two hyperedges e and e′ are non-essential in (G, T, c), the contraction G/{e, e′} might
not be a multicut-mimicking network of (G, T, c) even for a graph G, not a hypergraph. In this
paper, we construct a multicut-mimicking network by finding and contracting non-essential
hyperedges one by one.

2.2 Restricted Hypergraphs and Subinstances
The subinstance (Ĝ[X], TX , cX) of (G, T, c) for X ⊂ V (G) is constructed as follows. Refer to
Figure 1 (a-b). For each hyperedge e ∈ ∂X, we insert a vertex ae, and we choose an arbitrary
terminal te in e ∩ (X ∩ T). If no such terminal exists, we insert a new vertex te. We refer to
ae, te as the anchored terminals of e, and (e ∩ X) ∪ {ae, te} as the restricted hyperedge of e,
denoted by eX . We obtain Ĝ[X] from G through the following: i) add the anchored terminals
of the hyperedges in ∂X, ii) replace the hyperedges in ∂X with their restricted hyperedges,
and iii) delete the vertices V \ X and the hyperedges E(V \ X). We call it the restricted
hypergraph of G for X. Let TX denote the set of all terminals in T ∩ X and the anchored
terminals, and cX = min{c, |TX |}. All subinstances preserve all essential hyperedges in the
original instance by Lemma 3. Figure 1 sketches its proof, and details are in the full version.

▶ Lemma 3. If a hyperedge e is non-essential in a subinstance (Ĝ[X], TX , cX), then e is
also non-essential in the original instance (G, T, c). Furthermore, e is not in ∂GX.

3 Efficient Algorithm for Computing Multicut-Mimicking Networks

In this section, we design an algorithm to compute a minimal multicut-mimicking network
for (G, T, c), where G is a hypergraph. We broadly follow the approach of Jiang et al. [10].
Since their original algorithm was designed for mimicking networks, not multicut-mimicking
networks, we need to modify their algorithm. First, we introduce their algorithm briefly.

K. Cho and E. Oh 21:5

Jiang et al. [10] designed an algorithm to find a connectivity-c mimicking network for
hypergraphs using the expander decomposition of Long and Saranurak [18]. Precisely, they
designed an algorithm to find a connectivity-c mimicking network of size linear in |T | for an
expander G with terminals T , and then, they extended it for a general hypergraph using the
expander decomposition. For a parameter ϕ > 0, a hypergraph G (and instance (G, T, c)) is
called a ϕ-expander if either E(X) or E(V \ X) has at most ϕ−1|∂X| hyperedges for any
vertex set X ⊂ V (G). The following explains the key idea of their and our algorithm.

Recall that contracting a non-essential hyperedge obtains a smaller mimicking network by
Lemma 2. Generally, a non-essential hyperedge can be found by comparing every terminal
partition and subset of hyperedges, which is time-consuming. However, if we suppose
that the given instance is an expander, then we can do this more efficiently by comparing
useful terminal partitions and their minimum multiway cuts instead of whole partitions and
hyperedge subsets. We adapt concepts used in the previous research such as useful terminal
partitions to suit our needs, and we newly introduce the concept core of a multiway cut
which refers to a small-sized vertex set including whole hyperedges of the multiway cut.

Useful terminal partitions, connected multiway cuts, and cores. Assume that the instance
(G, T, c) is a ϕ-expander and G is a connected hypergraph. For a multiway cut F in G, we
define the core of F as the union C of connected components X in G\F with |E(X)| ≤ ϕ−1|F |.
The definition of an expander guarantees that at most one component in G \ F has more
than ϕ−1|F | hyperedges. Therefore, the multiway cut F includes all hyperedges ∂C and is
contained in E(C) ∪ ∂C. We say F is a connected multiway cut in (G, T, c) if it is a minimum
multiway cut of some terminal partition with |F | ≤ c and T ∩ C is connected in Ĝ[C], where
C is the core of F and Ĝ[C] is the restricted hypergraph defined in Section 2.2. A terminal
partition is said useful if every minimum multiway cut of it is a connected multiway cut.

Since every core of connected multiway cuts has a small number of vertices and hyperedges
in ϕ-expander, we can enumerate all of them efficiently. Additionally, since a core includes its
corresponding multiway cut, we can also enumerate all connected multiway cuts and useful
partitions. Details are in Section 3.1. The most interesting property is that comparing all
useful partitions is sufficient to find a non-essential hyperedge.

▶ Lemma 4. A hyperedge e ∈ E is essential for (G, T, c) if and only if there is a useful
partition such that every minimum multiway cut for it contains e.

Proof. The “if” direction is trivial since it is consistent with the definition of essential. For
the “only if” direction, we assume that e is essential for (G, T, c). Let T be a terminal
partition minimizing min-cutG(T) of which every minimum multiway cut involves e. In the
following, we show that T is a useful partition by contradiction. Figure 2 illustrates this
proof.

Assume that T is not a useful partition for (G, T, c), and let F be a minimum multiway
cut of T which is not a connected multiway cut. If the core of F is V (G), then F is a
connected multiway cut. Therefore, the core is the complement of some connected component
X in G \ F . Let C be the connected component in G − X that intersects the hyperedge
e. Refer to Figure 2(a). Then we decompose the multiway cut F into Fe and F̄ where
Fe = F ∩ E(C ∪ X) and F̄ = F \ Fe. By the construction, we have Fe ⊊ F and e ∈ Fe. We
construct a minimum multiway cut of T excluding e that completes the proof.

Let T ′ be the terminal partition according to G \ Fe. Since Fe ⊊ F and we chose T
as minimizing min-cutG(T) while any minimum multiway cut of T contains e, there is a
multiway cut F ′ of T ′ excluding e. We claim that F ′ ∪ F̄ is a minimum multiway cut of T

ISAAC 2024

21:6 Mimicking Networks for Constrained Multicuts in Hypergraphs

e

(a) (b) (c)

Figure 2 Illustration of the proof of Lemma 4. (a) Illustration of the terminal partition T and
the vertex partition according to G \ F . The middle gray area is X. The right three red areas form
C. (b) Illustration of the terminals partition T ′ and the partition of G \ F ′. (c) Illustration of the
partition G \ (F ′ ∪ F̄). F ′ ∪ F̄ is a multiway cut of T excluding e.

excluding e which contradicts and completes the proof. Refer to Figure 2(b-c). Note that
the multiway cut has a size at most |F | and excludes e by construction. Thus, it is sufficient
to show that there is no path in G \ (F ′ ∪ F̄) between two components in T .

Consider a path π in G between two terminals in different components in T . Note that π

is not a path in G \ F , and thus, π is not in G \ Fe or G \ F̄ . Recall that F ′ is the multiway
cut of the terminal partition according to G \ Fe. That means π is not in G \ F ′ if it is not
in G \ Fe. Therefore, there is no path in G \ (F ′ ∪ F̄) between two components in T . ◀

3.1 Useful Terminal Partitions in Expanders
In this section, we explain how to efficiently enumerate all useful terminal partitions and
their minimum multiway cuts. Then, we explain how to compute a multicut-mimicking
network for an expander using the enumerated list along with Lemma 4. Here, the instance
(G, T, c) is a ϕ-expander and G is a connected hypergraph.

The key is based on Observation 5, proved in the full version. Briefly, cores in a ϕ-expander
have a small number of vertices and hyperedges. The observation enables us to find all cores
of connected multiway cuts and subsequently enumerate all useful partitions. However, it is
possible to enumerate terminal partitions that are not useful. Therefore, we need to prune
the enumerated lists for useful terminal partitions and their minimum multiway cuts.

▶ Observation 5. For a connected multiway cut F and its core C, the restricted hypergraph
Ĝ[C] is connected and has at most (3ϕ−1 + 1)|F | hyperedges.

Enumerating connected multiway cuts. Jiang et al. [10, EnumerateCutsHelp] designed an
algorithm to enumerate all connected vertex sets C with |∂C| ≤ c, |E(C)| ≤ M , and t ∈ C

in the ϕ-expander G when a vertex t ∈ V (G) and two integers c, M are given as an input.
This algorithm takes (r(M + c))O(rc) time. Additionally, the number of returned connected
vertex sets is at most (r(M + c))O(rc). We use this algorithm along with Observation 5 for
enumerating all connected multiway cuts. Details are in the full version. Briefly, we find all
connected vertex set C with C ∩ T ̸= ∅, |∂C| ≤ c, and |E(C)| ≤ (3ϕ−1 + 1)c. Then we can
enumerate every connected multiway cut from c sized subsets of E(C) ∪ ∂C by Observation 5.

In conclusion, we enumerate |T |(rcϕ−1)O(rc) multiway cuts including all connected mul-
tiway cuts of size at most c in |T |(rcϕ−1)O(rc) time. At most |T |(rcϕ−1)O(rc) terminal
partitions of T are contributed by the enumerated multiway cuts since each multiway cut of
size c generates at most rc connected components. They include all useful partitions.

Pruning useful terminal partitions. To check whether a terminal partition is useful or not,
we need to verify if C ∩ T is connected in Ĝ[C] for each core C of its minimum multiway
cuts. Specifically, it is sufficient to check the inclusion-wise minimal cores among them. For

K. Cho and E. Oh 21:7

this, we utilize important cuts ∂R, which inclusion-wise maximizes R ⊂ V while maintaining
the size of the cut ∂R. The definition aligns with our needs as outlined in Lemma 6, proved
in the full version.

For two disjoint vertex sets A and B, let R be a vertex set containing A while excluding
B. We say ∂R is an important cut of (A, B) if there is no R′ ⊋ R excluding B with
|∂R′| ≤ |∂R|. This definition holds even if A = ∅. In a directed graph, an important cut is
defined analogously by setting ∂R as the outgoing arcs from R to V \ R. Furthermore, there
is an FPT algorithm for enumerating all important cuts in a directed graph [7].

▶ Lemma 6. For a terminal partition T with min-cutG(T) ≤ c, the following are equivalent:
(i) T is a useful terminal partition of T , and
(ii) Every minimum multiway cut F of T is a connected multiway cut if some component

T ′ in T and important cut R of (T ′, T \ T ′) satisfy ∂R ⊂ F , |E(R)| ≥ cϕ−1, and
F ∩ E(R) = ∅.

We construct an auxiliary directed graph Dinc to enumerate important cuts in G. For
instance (G, T, c), the vertex set of Dinc is the union of V (G) and two copies Ein and Eout of
E(G). For a hyperedge e in E(G), we use ein and eout to denote the copies of e in Ein and
Eout, respectively, and we insert one arc from ein to eout. For each v ∈ V (G) and e ∈ E(G)
with v ∈ e, we insert 2c parallel arcs from v to ein and from eout to v. Important cuts in G

correspond one-to-one with those in Dinc. Details are in the full version.
We can enumerate all important cuts of G by applying the FPT algorithm for Dinc. There

are at most 2O(rc) number of important cuts in G, and they can be enumerated in 2O(rc)m

time [7], where m = |E(G)|. By Lemma 6, we can prune all useful terminal partitions in
|T |(rcϕ−1)O(rc)m time among the |T |(rcϕ−1)O(rc) enumerated candidates.

Lemma 7 summarizes this section, details are in the full version. In the remainder,
we give an algorithm to compute a minimal multicut-mimicking network for ϕ-expander
using it.

▶ Lemma 7. There are |T |(rcϕ−1)O(rc) useful partitions and their minimum multiway cuts
in a ϕ-expander (G, T, c). We can enumerate all of them in |T |(rcϕ−1)O(rc)m time.

Algorithm for ϕ-expanders. By Lemma 4 and Lemma 7, we can recursively find and
contract a non-essential hyperedge efficiently for a ϕ-expander (G, T, c) until every hyperedge
in the instance is essential. The algorithm is outlined in the following lemma. Recall that a
minimal multicut-mimicking network H of (G, T, c) is a multicut-mimicking network so that
every hyperedge in (H, T, c) is essential. Here, m = |E(G)| and r is the rank of G.

▶ Lemma 8. For a ϕ-expander (G, T, c), we can find a minimal multicut-mimicking network
in |T |(rcϕ−1)O(rc)m time. Moreover, it has at most |T |cO(r log c) hyperedges.

Sketch of the proof. We demonstrate that a minimal multicut-mimicking network has at
most |T |cO(r log c) hyperedges in Section 4 which is one of our main contributions. We sketch
an algorithm to compute a minimal multicut-mimicking network, details are in the full
version.

If m ∈ O(cϕ−1), then we can obtain such a multicut-mimicking network by enumerating
all multiway cuts of size at most c. In the following, we consider the other case that
m ≥ 3cϕ−1 + c. At the beginning of the algorithm, we enumerate all important cuts and
their minimum multiway cuts by applying Lemma 7. Since there are at most k(rcϕ−1)O(rc)

multiway cuts and each multiway cut consists at most (rc)O(rc) useful partitions, we visit
a hyperedge and check whether it is non-essential in the current instance in k(rcϕ−1)O(rc)

time by Lemma 4. If it is non-essential, we contract it before we move to another hyperedge.

ISAAC 2024

21:8 Mimicking Networks for Constrained Multicuts in Hypergraphs

After we contract a non-essential hyperedge, we do not need to call the algorithm outlined
in Lemma 7 again. Precisely, deleting multiway cuts which include the contracted hyperedge
among the already enumerated ones is sufficient while more than (3cϕ−1 + c) hyperedges are
left. This is because no new connected multiway cut occurs or disappears by contracting
a non-essential hyperedge if the number of remaining hyperedges exceeds (3cϕ−1 + c). Its
detailed proof is in the full version. If all remaining hyperedges are essential, then we return
the current instance as a solution. For the other case that the number of them is at most
(3cϕ−1 + c), we apply the algorithm for m ∈ O(cϕ−1) explained before. In conclusion, we
can obtain a minimal multicut-mimicking network in the time complexity in Lemma 8. ◀

3.2 Near-Linear Time Algorithm for General Hypergraphs
In this section, we obtain a multicut-mimicking network for a general instance (G, T, c), by
recursively calling MimickingExpander. The submodule MimickingExpander computes a small
multicut-mimicking network based on the expander decomposition of Long and Saranurak [18]
and the algorithm for a ϕ-expander with ϕ > 0 outlined in Lemma 8. However, its return is
not sufficiently small, and thus, we obtain a much smaller solution by applying it recursively.

MimickingExpander(G; T, c). We let n = |V (G)|, m = |E(G)|, and ϕ−1 =
4rcMr log c log3 n, where the multicut-mimicking network returned by Lemma 8 has at most
kcMr log c hyperedges for an expander with k terminals. When the submodule is called, we
first decompose the vertex set V (G) into the vertex partition (V1, . . . , Vs) so that the size of
the cut of (V1, . . . , Vs) is at most ϕm log3 n and each Ĝ[Vj] is a ϕ-expander for j ∈ [s]. There
is a p1+o(1) time algorithm computing such a vertex partition [18], where p =

∑
e∈E |e|.

Every subinstance (Ĝ[Vj], Tj , cj) is a ϕ-expander, where cj = min{c, |Tj |} and Tj is the
union of T ∩ Vj and anchored terminals in Ĝ[Vj]. For each (Ĝ[Vj], Tj , cj), we construct a
multicut-mimicking network Hj by Lemma 8. Finally, we return the multicut-mimicking
network H by gluing H1, . . . , Hs. Precisely, we merge all restricted hyperedges having a
common anchored terminal and remove all anchored terminals not in V . The following
lemma summarizes the performance of this submodule, proved in the full version.

▶ Lemma 9. MimickingExpander(G; T, c) returns a multicut-mimicking network of (G, T, c)
with (|T |cO(r log c) + (m/2)) hyperedges in (p1+o(1) + |T |(cr log c log n)O(rc)m) time.

Overall algorithm. For an instance (G, T, c), we initialize G0 = G and obtain the multicut-
mimicking network Gi by MimickingExpander(Gi−1; T, c) for i ∈ [⌈log m⌉], inductively. Finally,
we return G⌈log m⌉. This algorithm corresponds to Theorem 1. Details are in the full version.

▶ Theorem 1. For (G, T, c), we can compute a multicut-mimicking network of at most
kcO(r log c) hyperedges in p1+o(1)+k(cr log c log n)O(rc)m time, where k = |T | and p =

∑
e∈E |e|.

4 Bound for Minimal Instances

To complete the proof of Lemma 8 (and Theorem 1), we need to show that a minimal
multicut-mimicking network for an expander (G, T, c) has at most |T |cO(r log c) hyperedges.
This section demonstrates it for not only expanders but also general instances. Precisely, we
show the following theorem in this section. Here, r is the rank of G.

▶ Theorem 10. Every minimal instance (G, T, c) has at most |T |cO(r log c) hyperedges.

K. Cho and E. Oh 21:9

In this section, we consider the scenario that every terminal in T has degree one in G. It
is sufficient since the other case can be reduced to this scenario by inserting c + 1 dummy
terminals instead of each terminal t in T that are adjacent only to t. This reduction does not
increase the rank or the parameter c while increasing the number of terminals by at most c

times. However, this increase does not affect the asymptotic complexity in Theorem 10. The
following explains the previous works and introduces the notions used in this section.

We broadly follow the approach of Wahlström [24]. He utilized the framework of Kratsch
et al. [14] for multicut-mimicking networks in graphs without the parameter c. We incorporate
the unbreakable concept to address the parameter c. Additionally, we slightly modify the
dense concept used in the previous work to account for hypergraphs.

Unbreakable and dense. For a subinstance (Ĝ[X], TX , cX) with respect to X ⊂ V (G),
the terminal set TX includes T ∩ X and up to two anchored terminals for each restricted
hyperedge e ∈ ∂GX. Hence, |TX | ≤ 2|∂GX| + |T ∩ X|. We denote the value 2|∂GX| + |T ∩ X|
as capT (X; G), or capT (X) if the context is clear. Furthermore, we define the following:

Unbreakable: An instance (G, T, c) is said to be d-unbreakable for d > 0 if |T ∩ X| ≤ d

for any vertex set X ⊆ V (G) with |T ∩ X| ≤ |T \ X| and |∂X| ≤ c.
Dense: An instance (G, T, c) is said to be α-dense for α > 0 if |E(X)| ≤ (capT (X))α for
any vertex set X ⊆ V with 0 < |E(X)| ≤ |E(V \ X)| and |∂X| ≤ c.

Wahlström [24] also used the concept of dense defining it based on the vertices instead of
E(·). Since he addressed graphs, it was guaranteed that |E(X)| = Ω(|X|) by using connective
assumption. However, this is not for hypergraphs. Thus, we slightly modify the definition.

In Section 4.2, we prove Theorem 10 for unbreakable and dense instances using the notions
introduced in Section 4.1. Section 4.3 explains how to extend this proof for general instances.

4.1 Matroids and Representative Sets
We use the notion of matroids and representative sets as in the previous work, which is a
generalization of the notion of linear independence in vector spaces. Formally, a matroid
(S, I) consists of a universe set S and an independent set I ⊆ 2S with ∅ ∈ I satisfying:

If B ∈ I and A ⊆ B, then A ∈ I, and
If A, B ∈ I with |A| < |B|, then there exists x ∈ B \ A such that A ∪ {x} ∈ I.

For a matroid (S, I), its rank is the size of the largest set in I. It is said to be representable
if there is a matrix over a field whose columns are indexed by the elements of S such that:
F ⊂ S is in I if and only if the columns indexed by F are linearly independent over the field.

Representative sets. Kratsch et al. [14] introduced a framework for computing non-essential
vertices using the notion of representative sets. We employ the framework. For this purpose,
we introduce two operations: truncation and direct sum along with Lemma 11. For a matroid
(S, I) and an integer r > 0, the r-truncation of (S, I) is defined as a matroid (S, I ′) such
that F ⊆ S is contained in I ′ if and only if |F | ≤ r and F ∈ I. Note that an r-truncation
has rank at most r. For matroids M1, . . . , Ms over disjoint universes with Mi = (Si, Ii) for
i ∈ [s], their direct sum is defined as a matroid (S, I) such that S is the union of all Si, and
a subset F of S is in I if and only if F can be decomposed into s disjoint subsets, each of
which is independent in Mi. The direct sum of matroids also satisfies the matroid axioms.

For a matroid (S, I) and two subsets A, B of S, we say A extends B if A ∩ B = ∅ and
A ∪ B ∈ I. For J ⊆ 2S , a subset J ∗ of J is called a representative set if for any set B ⊆ S,
there is a set A∗ ∈ J ∗ that extends B when there is a set A ∈ J that extends B.

ISAAC 2024

21:10 Mimicking Networks for Constrained Multicuts in Hypergraphs

▶ Lemma 11 ([14, Lemma 3.4]). Let M1 = (S1, I1), . . . , Ms = (Ss, Is) be matroids repre-
sented over the same finite field and with pairwise disjoint universe sets. Let J be a collection
of sets containing one element from Si for each i ∈ [s]. Then, some representative set of J
in the direct sum of all matroids Mi has a size at most the product of the ranks of all Mi.

Uniform and (hyperedge) gammoids. We use two classes of representable matroids: uniform
matroids and gammoids. They, along with their truncation and direct sum, are representable
over any large field [7, 14, 17, 21, 22].

Uniform matroid: For a set S and an integer r > 0, the uniform matroid on S of rank
r is the matroid in which the universe set is S and the independent set consists of the
sets containing at most r elements in S.
Gammoid: For a directed graph D = (V, A) and two subsets S and U of V , a gammoid
defined on (D, S, U) is a matroid (U, I) where I consists of the sets X ⊆ U such that
there are |X| pairwise vertex-disjoint paths in D from S to X.

In this paper, we define and use hyperedge gammoids to handle hypergraphs.

Hyperedge gammoid: For a hypergraph G and a terminal set T ⊂ V (G), we consider
a directed graph Dsplit defined as follows. First, we start from the undirected graph Dsplit

of which the vertex set is E(G) and ee′ ∈ E(Dsplit) for two e, e′ in E(G) (and V (Dsplit))
if and only if e ∩ e′ is not empty. Then, we replace each undirected edge with two-way
directed arcs. Furthermore, we insert a copy Esink of E(G) into V (Dsplit). We call the copy
in Esink of a hyperedge e ∈ E(G) a sink-only copy of e, and denote it by sink(e). We insert
one-way arcs from e′ to sink(e) on Dsplit for every e′ ∈ E(G) where e′ ∩ e is not empty.
The hyperedge gammoid of (G, T) is the gammoid on (Dsplit, ∂GT ⊂ E(G), E(G) ∪ Esink).

Recall that a path of a hypergraph is defined as a sequence of hyperedges such that any
two consecutive hyperedges contain a common vertex. If a path starts or ends at a hyperedge
containing a terminal t, we say that it starts or ends at t to make the description easier. For
a subset F of E(G) ∪ Esink, let FE be the set of hyperedges e of E(G) where e or sink(e) is
contained in F . Even if F contains both e and sink(e), e appears in FE exactly once.

▶ Observation 12. F ⊆ E(G) ∪ Esink is independent in the hyperedge gammoid of (G, T) if
and only if there exist |F | pairwise edge-disjoint paths from T to FE in G with two exceptions:

Two paths can end at e ∈ E(G) if e ∈ F and sink(e) ∈ F , and
One path can pass through e while another path ends at e if e /∈ F but sink(e) ∈ F .

4.2 Essential Hyperedges in Unbreakable and Dense Instances
Assume that (G, T, c) is d-unbreakable and α-dense with c ≤ d ≤ |T | and α ≥ 35r log d,
where r is the rank of G. In this section, we show that (G, T, c) contains at most |T |dα−1

essential hyperedges which directly implies Theorem 10 for O(c)-unbreakable and Θ(r log c)-
dense instances. Precisely, if there are more than |T |dα−1 hyperedges, then at least one is
non-essential, and thus, the instance is not minimal. Here, k = |T | and r is the rank of G.

The following matroids would be a witness for our claim with i0 = 30r:
One uniform matroid on E of rank (κ + c), where κ = (d/2)α−i0−2,
One (k + c + 1)-truncation M0 of the hyperedge gammoid of (G, T), and
i0 copies M1, . . . , Mi0 of the (d + c + 1)-truncation of the hyperedge gammoid of (G, T),

K. Cho and E. Oh 21:11

For a hyperedge e, its appearance in the universe sets of the uniform matroid on E is
denoted by eu. In the universe set of Mi for i ∈ [0, i0], ei and sinki(e) denote the hyperedge
and its sink-only copy, respectively. Note that sink-only copies have no outgoing arc in Dsplit,
where the hyperedge gammoid is defined on the directed graph Dsplit, refer to Section 4.1.

Let M denote the direct sum of the (i0 + 2) matroids described above. For a hyperedge
e ∈ E(G), let J(e) = {eu}∪{sink0(e), . . . , sinki0(e)}. Then, we let J ∗ be the representative set
of {J(e) | e ∈ E(G)} outlined in Lemma 11. The set J ∗ consists of all essential hyperedges.

▶ Lemma 13. J ∗ contains all J(ē) where ē is an essential hyperedge for (G, T, c).

Proof. We fix an essential hyperedge ē and show that J(ē) is in J ∗. To do this, we construct
an independent set in M extended by J(ē), but not extended by J(e) for any hyperedge e ̸= ē.
Let T be a terminal partition with min-cutG(T) ≤ c such that every minimum multiway
cut of T includes ē. We fix a minimum multiway cut F of T in G, and let (V0, . . . , Vs)
be the vertex partition according to G \ F . We assume that the component V0 maximizes
|T ∩ V0| among V0, . . . , Vs, and V1 maximizes |E(V1)| among V1, . . . , Vs. Additionally, the
other components V2, . . . , Vs are sorted in the decreasing order of capT (·) values. Let Esmall
denote the union of E(Vi0+1), E(Vi0+2), . . . , E(Vs).

Then we consider the following sets whose union will be a witness showing that J(ē)
is in any representative set of {J(e) | e ∈ E(G)}. Let Au denote the subset {eu | e ∈
(Esmall ∪ F) \ {ē}} of the universe set of the uniform matroid on E of rank κ + c. Let Ag

i

be the subset {ei | e ∈ F ∪ ∂(T ∩ Vi)} of the universe set of Mi for i ∈ [0, i0]. We need to
demonstrate three assertions: (i) Au is extended by {(ē)u} in the uniform matroid on E of
rank κ + c, (ii) Ag

i is extended by {sinki(ē)} in Mi for i ∈ [0, i0], and (iii) any J(e) with
e ̸= ē cannot extend A = Au ∪ (∪i∈[0,i0]A

g
i) in M. By combining these assertions, we can

conclude that A is extended in M by J(ē) only, which completes the proof of Lemma 13.

Assertion (i). Recall that the size of F is at most c. Then Au is extended by {(ē)u} in the
uniform matroid on E of rank κ + c if |Esmall| ≤ κ because ē is not in (Esmall ∪ F) \ {ē}.

We first show that
∑

j∈[s] capT (Vj) ≤ (3d + 2rc). Note that every component Vj has at
most d terminals of T for j ∈ [s] because (G, T, c) is d-unbreakable. Precisely, if a component
Vj has more than d terminals, then V0 also contains more than d terminals since we chose
V0 as containing the most terminals, and thus, the d-unbreakable property is violated from
|Vj ∩ T |, |T \ Vj | > d. Let x be the smallest index in [s] such that

∑
j∈[x] |T ∩ Vj | > d. By

choosing x in this manner, the total size of T ∩ Vj for all indices 1 ≤ j < x is at most d, and
for all indices j > x is also at most d due to the d-unbreakable property. Due to |T ∩ Vx| ≤ d,
we have

∑
j∈[s] |T ∩ Vj | ≤ 3d. Moreover, since each hyperedge in F can intersect at most r

components and capT (Vj) = 2|∂GVj | + |T ∩ Vj |, we have
∑

j∈[s] capT (Vj) ≤ (3d + 2rc).
Now we focus on the components Vi0+1, . . . , Vs as follows. Since (G, T, c) is α-dense,

|E(Vj)| ≤ (capT (Vj))α for j ∈ [2, s] by the α-dense property.1 Thus, the ordering capT (V2) ≥
· · · ≥ capT (Vs) implies that capT (Vj) ≤ (3d + 2rc)/(j − 1). Therefore, we have

|Esmall| =
∑

j∈[i0+1,s]

|E(Vj)| ≤
∑

j∈[i0+1,s]

(
3d + 2rc

i0

)α

≤
∑

j∈[i0+1,s]

(
d

4

)α

≤ (d/4)α · rc ≤ (d/2)α+1 · (1/2)α−1
r ≤ (d/2)α−i0−2 = κ.

1 |E(Vj)| = min{|E(Vj)|, |E(V \ Vj)|} ≤ capT (Vj)α for j ∈ [2, s].

ISAAC 2024

21:12 Mimicking Networks for Constrained Multicuts in Hypergraphs

The inequalities follow from i0 = 30r, s ≤ rc, and the assumption we made at the beginning
of this subsection: c ≤ d ≤ k and α ≥ 35r log d ≥ (i0 + 2) log d.2 It implies |Au| ≤ κ + c − 1
due to (ē)u /∈ Au. Therefore, {(ē)u} extends Au in the uniform matroid on E of rank κ + c.

Sketch of Assertions (ii-iii). Details are in the full version. Briefly, Assertions (ii-iii)
holds since there are |F | + 1 pairwise edge-disjoint paths from T \ Vi to F in G for each
component Vi if we allow using ē ∈ F twice while there is no path from T \ Vi to E(Vi)
excluding F . Recall that ē is essential. Therefore, {sinki(e)} extends Ag

i if and only if e = ē

by Observation 12 along with the Menger’s theorem for hypergraphs [26]. ◀

Lemma 14 holds by Lemma 11 and Lemma 13. The detailed proof is in the full version.

▶ Lemma 14. If (G, T, c) is d-unbreakable and α-dense with α ≥ 35r log d, c ≤ d ≤ k, and
m > kdα−1, then there is a non-essential hyperedge.

4.3 Non-Essential Hyperedge in a General Instance
In this section, we show that a minimal multicut-mimicking network of (G, T, c) has at most
|T |cO(r log c) hyperedges. For this achievement, we start by assuming that (G, T, c) has more
than |T |cΩ(r log c) hyperedges, and find a subinstance that has a non-essential hyperedge.
Note that the obtained hyperedge is also non-essential in (G, T, c) by Lemma 3, and thus,
(G, T, c) is not minimal by Lemma 2. Note that we can find a 5c-unbreakable subinstance
(G′, T ′, c) of |T ′|cΩ(r log c) hyperedges [10]. Details are in the full version. In the following,
we suppose that (G, T, c) is a 5c-unbreakable with |T |cΩ(r log c) hyperedges.

We recursively find a subinstance until it satisfies the conditions in Lemma 14. Then it
has a non-essential hyperedge, furthermore, it is also non-essential in the original instance.
Note that constructing a subinstance might increase the size of a hyperedge by inserting two
anchored terminals for a restricted hyperedge. However, it increases the hyperedge size only
if the hyperedge has less than two terminals. Additionally, once increased hyperedge has
two (anchored) terminals. Thus, the rank is increased by at most one even if we obtain a
subinstance recursively. We fix r as the rank of the original instance to avoid confusion.

Construction of non-minimal instance. We suppose that (G, T, c) is d-unbreakable with
d = min{5c, |T |}. Then we show that if G has more than |T |dα(c)−1 hyperedges, (G, T, c)
has a non-essential hyperedge by inductively along m, where α(c) = 35(r + 2) log(5c). Recall
that r is a fixed constant so that the rank of (G, T, c) is at most r + 1, and α is the constant
derived from c only. For simplicity, we use α to denote α(c) when the context is clear. If
(G, T, c) is α-dense, then it has a non-essential hyperedge by Lemma 14.

When (G, T, c) is not α-dense, there is a witness vertex set X ⊆ V with 0 < |E(X)| ≤
|E(V \ X)|, |∂X| ≤ c, and |E(X)| > (capT (X))α.3 If |X ∩ T | > |T \ X|, we replace X with
V \ X. Note that the following inequalities still hold: |∂X| ≤ c, |E(X)| > (capT (X))α, and
|E(V \ X)| > 0. The first one holds since ∂X = ∂(V \ X), and the second one holds since
|T ∩ X| and capT (X) are decreased by the replacement while |E(X)| is increased. The last
holds since we chose X so that E(X), E(V \X) ̸= ∅. Additionally, the size of T ∩X is at most d

since our instance is d-unbreakable. We move to the subinstance (Ĝ[X], TX , cX) with respect
to X, where cX = min{c, |TX |} and TX is the union of terminals T ∩ X and the anchored
terminals. Recall that the size of TX is at most capT (X; G) = |T ∩ X| + 2|∂X| ≤ d + 2c.
Lemma 15, proved in the full version, ensures the safeness of this inductive proof.

2 Precisely, these assumption give us r ·
(

1
2

)α−1 ≤
(

d
2

)−i0−3 which implies the last inequality.
3 (G, T, c) is α-dense if |E(Y)| ≤ (capT (Y))α for any Y ⊆ V with 0 < |E(Y)| ≤ |E(V \ Y)| and |∂Y | ≤ c.

K. Cho and E. Oh 21:13

▶ Lemma 15. (Ĝ[X], TX , cX) is dX-unbreakable with dX = min{5cX , |TX |}. Additionally,
Ĝ[X] has more than |TX |dα′−1

X hyperedges but less than |E(G)|, where α′ = α(cX).

We recursively obtain a subinstance until it becomes α-dense. Note that k, d, m, and α

change during the recursion while the rank is always at most r + 1, where k and m denote
the number of terminals and hyperedges, respectively, in the current instance. However,
Lemma 15 guarantees that m > kdα−1 holds at each step. Moreover, m is strictly decreased.
Thus, we always reach a d-unbreakable and α-dense instance satisfying the conditions of
Lemma 14, and it has a non-essential hyperedge. It is easy to show that the hyperedge is
also non-essential in the original instance by applying Lemma 3 recursively.

Therefore, a d-unbreakable instance (G, T, c) with m > |T |dα(c)−1 and d = min{5c, |T |}
has a non-essential hyperedge. This section proves Theorem 10.

▶ Theorem 10. Every minimal instance (G, T, c) has at most |T |cO(r log c) hyperedges.

References
1 Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist partitioning: A survey.

Integration, 19(1-2):1–81, 1995. doi:10.1016/0167-9260(95)00008-4.
2 Nikhil Bansal, Ola Svensson, and Luca Trevisan. New notions and constructions of sparsification

for graphs and hypergraphs. In Proceedings of the 60th Annual Symposium on Foundations of
Computer Science (FOCS 2019), pages 910–928, 2019. doi:10.1109/FOCS.2019.00059.

3 Parinya Chalermsook, Syamantak Das, Yunbum Kook, Bundit Laekhanukit, Yang P. Liu,
Richard Peng, Mark Sellke, and Daniel Vaz. Vertex sparsification for edge connectivity. In
Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pages
1206–1225, 2021. doi:10.1137/1.9781611976465.74.

4 Shiri Chechik and Christian Wulff-Nilsen. Near-optimal light spanners. ACM Transactions on
Algorithms (TALG), 14(3):1–15, 2018. doi:10.1145/3199607.

5 Chandra Chekuri and Chao Xu. Minimum cuts and sparsification in hypergraphs. SIAM
Journal on Computing, 47(6):2118–2156, 2018. doi:10.1137/18M1163865.

6 Yu Chen and Zihan Tan. On (1 + ε)-approximate flow sparsifiers. In Proceedings of the 35th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2024), pages 1568–1605, 2024.
doi:10.1137/1.9781611977912.63.

7 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4(8).
Springer, 2015. doi:10.1007/978-3-319-21275-3.

8 Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis
Yannakakis. The complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–
894, 1994. doi:10.1137/S0097539792225297.

9 Arnold Filtser and Shay Solomon. The greedy spanner is existentially optimal. In Proceedings
of the 35th ACM Symposium on Principles of Distributed Computing (PODC 2016), pages
9–17, 2016. doi:10.1145/2933057.2933114.

10 Han Jiang, Shang-En Huang, Thatchaphol Saranurak, and Tian Zhang. Vertex sparsifiers for
hyperedge connectivity. In Proceedings of the 30th Annual European Symposium on Algorithms
(ESA 2022), pages 70:1–70:13, 2022. doi:10.4230/LIPICS.ESA.2022.70.

11 Wenyu Jin and Xiaorui Sun. Fully dynamic s-t edge connectivity in subpolynomial time.
In Proceedings of the 62nd Annual Symposium on Foundations of Computer Science (FOCS
2022), pages 861–872. IEEE, 2022.

12 Jörg Hendrik Kappes, Markus Speth, Gerhard Reinelt, and Christoph Schnörr. Higher-order
segmentation via multicuts. Computer Vision and Image Understanding, 143:104–119, 2016.
doi:10.1016/J.CVIU.2015.11.005.

ISAAC 2024

https://doi.org/10.1016/0167-9260(95)00008-4
https://doi.org/10.1109/FOCS.2019.00059
https://doi.org/10.1137/1.9781611976465.74
https://doi.org/10.1145/3199607
https://doi.org/10.1137/18M1163865
https://doi.org/10.1137/1.9781611977912.63
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/S0097539792225297
https://doi.org/10.1145/2933057.2933114
https://doi.org/10.4230/LIPICS.ESA.2022.70
https://doi.org/10.1016/J.CVIU.2015.11.005

21:14 Mimicking Networks for Constrained Multicuts in Hypergraphs

13 Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Spectral hy-
pergraph sparsifiers of nearly linear size. In Proceedings of the 62nd Annual Symposium on
Foundations of Computer Science (FOCS 2022), pages 1159–1170, 2022.

14 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. Journal of the ACM, 67(3):1–50, 2020. doi:10.1145/3390887.

15 Robert Krauthgamer and Ron Mosenzon. Exact flow sparsification requires unbounded size.
In Proceedings of the 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2023), pages 2354–2367, 2023. doi:10.1137/1.9781611977554.CH91.

16 Yang P Liu. Vertex sparsification for edge connectivity in polynomial time. In Proceedings
of the 14th Innovations in Theoretical Computer Science Conference (ITCS 2023), pages
83:1–83:15, 2023. doi:10.4230/LIPICS.ITCS.2023.83.

17 Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic
truncation of linear matroids. ACM Transactions on Algorithms (TALG), 14(2):1–20, 2018.
doi:10.1145/3170444.

18 Yaowei Long and Thatchaphol Saranurak. Near-optimal deterministic vertex-failure connec-
tivity oracles. In Proceedings of the 63rd Annual Symposium on Foundations of Computer
Science (FOCS 2022), pages 1002–1010, 2022. doi:10.1109/FOCS54457.2022.00098.

19 Anand Louis and Yury Makarychev. Approximation algorithms for hypergraph small set
expansion and small set vertex expansion. Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, page 339, 2014.

20 Dániel Marx. Parameterized graph separation problems. Theoretical Computer Science,
351(3):394–406, 2006. doi:10.1016/J.TCS.2005.10.007.

21 Dániel Marx. A parameterized view on matroid optimization problems. Theoretical Computer
Science, 410(44):4471–4479, 2009. doi:10.1016/J.TCS.2009.07.027.

22 James Oxley. Matroid theory. In Handbook of the Tutte Polynomial and Related Topics, pages
44–85. Chapman and Hall/CRC, 2022.

23 Muhammet Mustafa Ozdal and Cevdet Aykanat. Hypergraph models and algorithms for
data-pattern-based clustering. Data Mining and Knowledge Discovery, 9:29–57, 2004. doi:
10.1023/B:DAMI.0000026903.59233.2A.

24 Magnus Wahlström. Quasipolynomial multicut-mimicking networks and kernels for multiway
cut problems. ACM Transactions on Algorithms (TALG), 18(2):1–19, 2022. doi:10.1145/
3501304.

25 Zi-Ke Zhang and Chuang Liu. A hypergraph model of social tagging networks. Journal of
Statistical Mechanics: Theory and Experiment, 2010(10):P10005, 2010.

26 Alexander Aleksandrovich Zykov. Hypergraphs, volume 29(6). IOP Publishing, 1974.

https://doi.org/10.1145/3390887
https://doi.org/10.1137/1.9781611977554.CH91
https://doi.org/10.4230/LIPICS.ITCS.2023.83
https://doi.org/10.1145/3170444
https://doi.org/10.1109/FOCS54457.2022.00098
https://doi.org/10.1016/J.TCS.2005.10.007
https://doi.org/10.1016/J.TCS.2009.07.027
https://doi.org/10.1023/B:DAMI.0000026903.59233.2A
https://doi.org/10.1023/B:DAMI.0000026903.59233.2A
https://doi.org/10.1145/3501304
https://doi.org/10.1145/3501304

On HTLC-Based Protocols for Multi-Party
Cross-Chain Swaps
Emily Clark
University of California, Riverside, CA, USA

Chloe Georgiou
University of California, Riverside, CA, USA

Katelyn Poon
University of California, Riverside, CA, USA

Marek Chrobak
University of California, Riverside, CA, USA

Abstract
In his 2018 paper, Herlihy introduced an atomic protocol for multi-party asset swaps across different
blockchains. Practical implementation of this protocol is hampered by its intricacy and computational
complexity, as it relies on elaborate smart contracts for asset transfers, and specifying the protocol’s
steps on a given digraph requires solving an NP-hard problem of computing longest paths. Herlihy
left open the question whether there is a simple and efficient protocol for cross-chain asset swaps in
arbitrary digraphs. Addressing this, we study HTLC-based protocols, in which all asset transfers are
implemented with standard hashed time-lock smart contracts (HTLCs). Our main contribution is
a full characterization of swap digraphs that have such protocols, in terms of so-called reuniclus
graphs. We give an atomic HTLC-based protocol for reuniclus graphs. Our protocol is simple and
efficient. We then prove that non-reuniclus graphs do not have atomic HTLC-based swap protocols.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases distributed computing, blockchain, asset swaps

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.22

Related Version All proofs omitted in this extended abstract can be found in the full version.
Full Version: https://doi.org/10.48550/arXiv.2403.03906 [5]

Funding Research partially supported by National Science Foundation grant CCF-2153723.

1 Introduction

In 2018, Herlihy [9] introduced a model for multi-party asset swaps across different blockchains,
where an asset swap is represented by a strongly connected directed graph, with each vertex
corresponding to one party and each arc representing a pre-arranged asset transfer between
two parties. The goal is to design a protocol to implement the transfer of all assets. The
protocol must guarantee, irrespective of the behavior of other parties, that each honest party
will end up with an outcome that it considers acceptable. The protocol should also discourage
cheating, so that any coalition of parties cannot improve its outcome by deviating from the
protocol. These two conditions are called safety and strong Nash equilibrium, respectively. A
protocol that satisfies these conditions is called atomic.

In this model, Herlihy [9] developed an atomic protocol for asset swaps in arbitrary
strongly connected digraphs. While this result is a significant theoretical advance, its
practical implementation is hampered by its intricacy and high computational complexity,
as it relies on elaborate smart contracts for asset transfers, and specifying the protocol’s
steps on a given digraph requires solving an NP-hard problem of computing longest paths. It
also uses a cryptographic scheme with nested digital signatures that may reveal the graph’s
topology to all parties, raising concerns about privacy.

© Emily Clark, Chloe Georgiou, Katelyn Poon, and Marek Chrobak;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 22; pp. 22:1–22:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8673-2709
https://doi.org/10.4230/LIPIcs.ISAAC.2024.22
https://doi.org/10.48550/arXiv.2403.03906
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 HTLC-Based Protocols for Multi-Party Cross-Chain Swaps

Herlihy [9] also mentions a simpler protocol that uses only standard smart contracts
called hashed time-lock contracts (HTLC’s), that require only one secret/hashlock pair and a
time-out mechanism (see [19, 16]). This protocol, however, works correctly only for special
types of digraphs that we call bottleneck graphs. This raises a natural question, already posed
in [9]: Is there a simple and efficient protocol for multi-party asset swaps that is atomic and
works on all strongly connected digraphs?

Our contributions. Motivated by this question, we study HTLC-based protocols, which
are allowed to exchange assets only via HTLC’s. As it turns out, the class of digraphs that
have such protocols is much broader than bottleneck digraphs; in fact, we give a complete
characterization of digraphs that admit HTLC-based protocols. We call them reuniclus
graphs. Roughly, a reuniclus graph can be thought of as a tree of biconnected components,
each being an induced bottleneck subgraph. In this terminology, our main contribution can
be stated as follows:

▶ Theorem 1. A swap digraph G has an atomic HTLC-based protocol if and only if G is a
reuniclus digraph.

The sufficiency condition is proved by providing an atomic HTLC-based protocol for
reuniclus digraphs. The protocol itself is simple and efficient. Also, testing whether a given
graph is a reuniclus graph and, if it is, computing the specification of the protocol for each
party can be accomplished in linear time. (The key ingredient is the algorithm from [12] that
can be used to recognize bottleneck graphs.) Our most technically challenging contribution
is the proof of the necessity condition. This requires showing that the atomicity assumption
implies some structural properties of the underlying graph. By carefully exploiting this
approach, we prove that each digraph with an atomic protocol must have the reuniclus
structure.

Our asset-swap model is in fact a slight generalization of the one in [9], as it uses a
relaxed definition of the preference relation, which allows each party to customize some of
their preferences.

Related work. The problem of securely exchanging digital products between untrustful
parties has been studied since 1990s under the name of fair exchange. As simultaneous
exchange is not feasible in a typical electronic setting, protocols for fair exchange rely on a
trusted party – see for example [15, 7, 3, 1, 2]. In the model from [9], smart contracts play
the role of trusted parties.

With users now holding assets on a quickly growing number of different blockchains,
cross-chain interoperability tools became necessary to allow these users to trade their assets.
An atomic swap concept was one of the proposed tools to address this issue. The concept
itself and some early implementations of asset-swap protocols (see, for example [18]) predate
the work of Herlihy [9].

In recent years there has been intensive research activity on asset-swap protocols. The
preference relation of the participants in the model from [9] is very rudimentary, and some
refinements of this preference model were studied in [4, 11]. Some proposals [14, 20] address
the issue of “ grieving”, when one party needs to wait for the counter-party to act, while
its assets are locked and unaccessible. Other directions of study include investigations of
protocol’s time and space complexity [11], privacy issues [6], security enhancements [13], and
generalizations of swaps to more complex transactions [10, 17, 8].

E. Clark, C. Georgiou, K. Poon, and M. Chrobak 22:3

2 Multi-Party Asset Swaps

The multi-party asset swap problem we address is this: There is a set V of parties, each with
a set of assets that it wishes to exchange for some other assets. Suppose that there is a
way to reassign assets from each current owner to their new owner in such a way that each
party would receive exactly their desired assets. This reassignment is called a multi-party
asset swap. The goal is now to arrange the transfers of these assets. The challenge is that
some parties may deviate from the protocol, attempting to improve their outcome, or even
behave irrationally. To address this, the asset-swap protocol must satisfy the following
safety property in addition to correctness: an outcome of any honest party (that follows the
protocol) must be guaranteed to be acceptable (not worse than its initial holdings), even if
other parties deviate from the protocol or collaboratively attempt to cheat.

Let G = (V, A) be a digraph with vertex set V and arc set A, without self-loops or parallel
arcs. By N in

v we denote the set of in-neighbors of v, by Ain
v its set of incoming arcs, Nout

v are
the out-neighbors of v and Aout

v are its outgoing arcs. Other graph notation and terminology
is standard.

Clearing service. We assume the existence of a market clearing service, where each party
submits its proposed exchange (the collections of its current and desired assets). If a swap is
possible, the clearing service constructs a digraph G = (V, A) representing this swap. Each
arc (u, v) of G represents the intended transfer of one asset from its current owner u (the
seller) to its new owner v (the buyer). For simplicity, we assume that any party can transfer
only one asset to any other party, and we identify assets with arcs, so (u, v) denotes both
an arc of G and the asset of u to be transferred to v. The service ensures that G satisfies
the assumptions of the swap protocol, and it informs each party of the protocol’s steps.
Importantly, we do not assume that the parties trust the market clearing service.

Secrets and hashlocks. We allow each party v to create a secret value sv, and convert it
into a hashlock value hv = H(sv), where H() is a one-way permutation. The value of sv is
secret, meaning that no other party has the capability to compute sv from hv. The hashlock
values can be made public.

Hashed time-lock contracts (HTLCs). Asset transfers are realized with smart contracts,
which are simply pieces of code running on a blockchain. The contracts used in our model
are called hashed time-lock contracts, or HTLCs, for short, and are defined as follows: Each
contract is associated with an arc (u, v) of G, and is used to transfer the asset (u, v) from u

to v. It is created by u, with u providing it with the asset, timeout value τ , and a hashlock
value h. Once this contract is created, the possession of the asset is transferred from u to the
contract. The counter-party v can access the contract to verify its correctness; in particular,
it can learn the hashlock value h. There are two ways in which the asset can be released: (1)
One, v can claim it. To claim it successfully, v must provide a value s such that H(s) = h

not later than at time τ . When this happens, the smart contract transfers the asset to v,
and it gives s to u. (2) Two, the contract can expire. As soon as the current time exceeds τ ,
and if the asset has not been claimed, the contract returns the asset to u.

Further overloading notation and terminology, we will also refer to the contract on arc
(u, v) as “contract (u, v)”. If this contract has hashlock hx of a party x (where x may be
different from u and v), we will say that it is protected by hashlock hx or simply protected by
party x.

ISAAC 2024

22:4 HTLC-Based Protocols for Multi-Party Cross-Chain Swaps

Protocols. In an execution of P there is no guarantee that all parties actually follow P.
When we refer to an honest or conforming party u, we mean that u follows P, except when
it can infer that not all parties follow P. From that point on, u may behave arbitrarily (but
still rationally).

In an HTLC-based protocol, all asset transfers are implemented with HTLCs, and no other
interaction between the parties is allowed. Each party can create one secret/hashlock pair.
These hashlock values are distributed via smart contracts (or can simply be made public).

Outcomes. For each party v, v’s outcome associated with an execution of a protocol P is
specified by the sets of assets that are relinquished and acquired by v. Thus such an outcome
is a pair ω =

〈
ωin | ωout

〉
, where ωin ⊆ Ain

v and ωout ⊆ Aout
v . To reduce clutter, instead of

arcs, in
〈
ωin | ωout

〉
we can list only the corresponding in-neighbors and out-neighbors of v;

for example, instead of ⟨{(x, v), (y, v)} | {(v, z)}⟩ we will write ⟨x, y | z⟩.
An outcome ω =

〈
ωin | ωout

〉
of some party u is called acceptable if in this outcome u

retains all its own assets or it gains all incoming assets. That is, either ωin = Ain
v or ωout = ∅.

The following two types of outcomes are particularly significant: Dealv =
〈
Ain

v | Aout
v

〉
represents an outcome where all prearranged asset transfers involving v are completed, and
NoDealv = ⟨∅ | ∅⟩ represents an outcome where none of the prearranged asset transfers
involving v is completed. We will skip the subscript v in these notations whenever v is
understood from context1.

For a set C of parties, its set Ain
C of incoming arcs consists of arcs (u, v) with u /∈ C

and v ∈ C. The set Aout
C of outgoing arcs is defined analogously. With this, the concept of

outcomes and its properties extend naturally to sets of parties (“coalitions”). For example,
an outcome of C is acceptable if it either contains all incoming arcs of C or does not contain
any outgoing arcs of C.

The preference relation. A preference relation of a party v is a partial order on the set
of all outcomes for v that satisfies the following three properties: (p1) If ωin

1 ⊆ ωin
2 and

ωout
1 ⊇ ωout

2 , then ω2 is preferred to ω1 ; (p2) If ω is unacceptable then NoDeal is preferable
to ω; (p3) Deal is better than NoDeal. These are natural: (p1) says that it is better to
receive more assets and relinquish fewer assets, and without (p3) v would have no incentive
to participate in the protocol. The preference relation captures rational behavior, leading to
the definition of Nash equilibrium property, below.

Protocol properties. Following [9], we define the following properties of a swap protocol P:
Liveness: P is live if each party ends up in Deal, providing that all parties follow P.
Safety: P is safe if each honest party ends up in an acceptable outcome, independently of

the behavior of other parties.
Strong Nash Equilibrium: P has the strong Nash equilibrium property if for any set C of

parties, if all parties outside C follow P then the parties in C cannot improve the outcome
of C by deviating from P.

Atomicity: P is called atomic if it’s live, safe, and has the strong Nash equilibrium property.

The lemma below is a mild extension of the one in [9]. The point of the lemma is that, in
Herlihy’s preference model, the strong Nash equilibrium property comes for free. The strong
connectivity assumption is necessary for the safety property to hold, see [9]. (See the full
paper for the easy proof.)

1 Herlihy [9] defines other types of outcomes: Discount, FreeRide and Underwater, but these are not
essential – see the full version of the paper.

E. Clark, C. Georgiou, K. Poon, and M. Chrobak 22:5

▶ Lemma 2. Assume that digraph G is strongly connected. If a protocol P is live and safe
then P is atomic.

3 An Atomic Protocol for Reuniclus Digraphs

In this section we give an atomic asset-swap protocol for reuniclus digraphs. First, in
Section 3.1, we describe an atomic protocol for bottleneck digraphs called Protocol BDP.
This protocol is mostly equivalent to the simplified protocol from [9, Section 4.6]. We include
it here, because it serves as a stepping stone to our full protocol for reuniclus digraphs that
is presented in Section 3.2.

3.1 Protocol BDP for Bottleneck Digraphs

Protocol BDP for leader ℓ:
At time 0: Create a secret sℓ and com-
pute hℓ = H(sℓ). For each arc (ℓ, v),
create contract with hashlock hℓ and
timeout τℓv = D∗ + D+

v .
At time D∗: Claim all incoming assets
using secret sℓ.

Protocol BDP for a follower u:
At time D−

u : For each arc (u, v), create
contract with hashlock h and timeout
τuv = D∗ + D+

v .
At time D∗ + D+

u : Let s be the secret
obtained from the contract for some
claimed outgoing assets. Use s to claim
all incoming assets.

Figure 1 Protocol BDP, for the leader on the left, and for the followers on the right. Each
bullet-point step takes one time unit. In the description we tacitly assume that u aborts if it detects
any deviation from the protocol.

A vertex v in a digraph G is called a bottleneck vertex if it belongs to each cycle of G.
If G is strongly connected and has a bottleneck vertex then we refer to G as a bottleneck
digraph.

We now describe Protocol BDP for a bottleneck digraph G. One bottleneck vertex of G is
designated as the leader. This leader, denoted ℓ, creates its secret/hashlock pair (sℓ, hℓ). The
other vertices are called followers. Protocol BDP has two phases. The first phase, initiated
by ℓ, creates all contracts. Each follower waits for all the incoming contracts to be created,
and then creates the outgoing contracts. For followers, the timeout values for all incoming
contracts are strictly larger than the timeout values for all outgoing contracts. In the second
phase the assets are claimed, starting with ℓ claiming its incoming assets. Now the process
proceeds backwards. For each follower v, when any of its outgoing assets is claimed, v learns
the secret value sℓ, and it can now claim its incoming assets.

The detailed description of this protocol is given in Figure 1. In the protocol, D−
v denotes

the maximum distance from ℓ to v, defined as the maximum length of a simple path from ℓ

to v. In particular, D−
ℓ = 0. The values D−

y are used in contract creation times. By D∗ we
denote the maximum length of a simple cycle in G, so D∗ = maxz∈Nin

ℓ
D−

z + 1.
In the timeout values, the notation D+

v is the maximum distance from v to ℓ. Naturally,
we have maxz∈Nout

ℓ
D+

z + 1 = D∗. Note that, for each v, the timeouts of all incoming
contracts (u, v) are equal to D∗ + D+

v , exactly when v claims them. Also, if v ̸= ℓ then
D∗ + D+

v is larger than the timeout D∗ + D+
w of each outgoing contract (v, w).

▶ Theorem 3. If G is a bottleneck digraph, then Protocol BDP is an atomic swap protocol
for G.

ISAAC 2024

22:6 HTLC-Based Protocols for Multi-Party Cross-Chain Swaps

The safety property should be intuitive: The leader protects its outgoing assets, so it will
lose these assets only if it first claims its incoming assets. If a follower loses an outgoing
asset, it has at least one time unit to claim its incoming assets. The formal proof is similar
(in fact, easier) to that for reuniclus graphs and omitted. (See the full version.)

3.2 Protocol RDP for Reuniclus Digraphs
Reuniclus digraphs. A strongly connected digraph G is called a reuniclus digraph if there
are vertices b1, b2, ..., bp ∈ G, induced subgraphs G1, G2, ..., Gp of G, and a rooted tree K
whose nodes are b1, b2, ..., bp, such that: (rg1) Each digraph Gj is a bottleneck subgraph,
with bj being its bottleneck vertex. We call Gj a bottleneck component of G and the home
component of bj . (rg2) If i ̸= j, then Gi ∩ Gj = {bj} if bi is the parent of bj in K, and
Gi ∩ Gj = ∅ otherwise.

We refer to K as the control tree of G. (See Figure 2 for an example.) We extend the
tree terminology to relations between bottleneck components, or between bottleneck vertices
and components, in a natural fashion. Intuitively, a reuniclus graph G can be divided into
bottleneck components. Overlaps are allowed only between two components if one is the
parent of the other in the control tree K, in which case the overlap is just a single vertex
that is the bottleneck of the child component.

k u

b

j

x

d

z

y

h

c

BU X

Y

f

Z
g

b

u x

y z

Figure 2 An example of a reuniclus graph (left) and its control tree (right). The bottleneck
components (circled) are B, U , X, Y and Z. Their designated bottleneck vertices are b, u, x, y

and z.

From the definition, the set of all bottleneck vertices in G forms a feedback vertex set of
G. These bottleneck vertices are articulation vertices of G. Each bottleneck component may
consist of several biconnected components that share the same bottleneck vertex.

Protocol RDP. Protocol RDP can be thought of as a hierarchical extension of Protocol BDP.
Each bottleneck vertex bj is called the leader of Gj . It creates a secret/hashlock pair (sj , hj),
and its hashlock hj is used to transfer assets within Gj , while the transfer of assets in the
descendant components of bj is “delegated” to the children of bj in K. We assume that the
root component of K is G1, and its bottleneck b1 is called the main leader, denoted also by ℓ.
All non-leader vertices are called followers.

Protocol RDP has two phases: contract creation and asset claiming. In the first phase, at
time 0 all leaders create the outgoing contracts within their home bottleneck components.
Then the contracts are propagated within the bottleneck components, to some degree inde-
pendently; except that each leader bj creates its outgoing contracts in its parent component
Gi only after all its incoming contracts, both in Gi and Gj , are created. This ensures that at
that time all contracts in its descendant components will be already created.

E. Clark, C. Georgiou, K. Poon, and M. Chrobak 22:7

Protocol RDP for a leader bj ∈ Gi ∩ Gj :
At time 0: Generate secret sj and compute hj = H(sj). For each arc (bj , v) in Gj ,
create contract with hashlock hj and timeout τbjv = B∗ + D+

v .
At time B−

bj
: For each arc (bj , v) in Gi create its contract with hashlock h and timeout

τbjv = B∗ + D+
v .

At time B∗ + D+
bj

: Claim all incoming assets, using secret s in Gi and secret sj in Gj .

Figure 3 Protocol RDP for a sub-leader bj , namely the bottleneck vertex of Gj that also belongs
to its parent component Gi. Recall that B−

u denotes the maximum distance from some leader to u

along a path that satisfies conditions (i)-(iii), and that B∗ = B−
ℓ . D+

v is the maximum length of a
simple path from v to ℓ. We assume that bj aborts when it detects any deviation from the protocol.

In the asset claiming phase, the main leader ℓ is the first to claim the incoming contracts.
The behavior of followers is the same as in Protocol BDP: they claim the incoming assets one
step after all their outgoing assets were claimed. The behavior of all non-main leaders is more
subtle. Each such sub-leader bj waits until all its outgoing assets in the parent component
are claimed, and then it claims all of its incoming assets.

The full protocol for non-main leaders bj is given in Figure 3. Figure 4 shows timeout
values for the reuniclus graph in Figure 2. In what follows we explain some notations used in
the protocol.

As before, we use notation D+
y for the maximum distance from y to ℓ in G. We also

need the concept analogous to the maximum distance from a leader, but this one is a little
more subtle than for bottleneck graphs, because we now need to consider paths whose initial
bottleneck vertex can be repeated once on the path. Formally, if v ∈ Gi, then B−

v denotes
the maximum length of a path with the following properties: (i) it starts at some leader bj

that is a descendant of bi (possibly bj = bi), (ii) it ends in v, and (iii) it does not repeat
any vertices, with one possible exception: it can only revisit bj , and if it does, it either ends
or leaves Gj (and continues in the parent component of bj). (This can be interpreted as a
maximum path length in a DAG obtained by splitting each leader into two vertices, one with
the outgoing arcs into its home component and the other with all other arcs.) For example,
in the graph in Figure 2, one allowed path for v = u is x − y − z − d − g − x − j − u.

These values can be computed using auxiliary values B−
uv defined for each edge (u, v).

Call an edge (u, v) a bottleneck edge if u is a bottleneck vertex, say u = bj , and v ∈ Gj .
That is, bottleneck edges are the edges from bottleneck vertices that go into their home
components. First, for each bottleneck edge (bj , v) let B−

bjv = 0. Then, for each vertex u and
each non-bottleneck edge (u, v) let B−

u = B−
uv = max(x,u) B−

xu + 1, where the maximum is
over all edges (x, u) entering u. By B∗ we denote the value of B−

ℓ .
The values B−

z determine contract creation times. As shown in Figure 3, each leader
bj creates its contracts in its home component at time 0. Each other contract (u, v) will
be created at time B−

u . The last contract will be created by some in-neighbor of ℓ at time
step B∗ − 1. Then ℓ will initiate the contract claiming phase at time B∗. Analogous to
Protocol BDP, each party u will claim its incoming contracts at time B∗ + D+

u , which is its
timeout value.

▶ Theorem 4. If G is a reuniclus digraph, then Protocol RDP is an atomic swap protocol
for G.

Proof. According to Lemma 2, it is sufficient to prove only the liveness and safety properties.
Liveness. The liveness property is quite straightforward. Each party u ̸= ℓ has exactly
one time unit, after its last incoming contract is created, to create its outgoing contracts.
This will complete the contract creation at time B∗ − 1. Thus at time B∗ leader ℓ can claim

ISAAC 2024

22:8 HTLC-Based Protocols for Multi-Party Cross-Chain Swaps

k u

b

j

x

d

z

y

10, hu

11, hu 9, hb

11, hb

12, hb

11, h b10, hb

16, hx

15, hx

14, hx
13, hx

h
16, h z

15
, h z

c16, h y

17, h y

f

15, hz

16, hzg

12, h
x

13
, h

x 14, hx

Figure 4 Timeout values and hashlocks for Protocol RDP for the graph in Figure 2. The main
leader is ℓ = b. We have B∗ = 9 (this is the length of path y − c − y − z − d − g − x − j − u − b).

its incoming assets. For any other party u, each incoming asset (x, u) of u has timeout
τxu = B∗ + D+

u . If u is a follower then all the outgoing assets of u will be claimed before
time τxu, and if u is a non-main leader then all of u’s outgoing assets in its parent component
will be claimed before time τxu. So u can claim all incoming assets at time τxu.

Safety. The proof of the safety condition for the main leader ℓ and pure followers is the
same as in Protocol BDP for bottleneck digraphs. So here we focus only on non-main leaders.

Let bj be a non-main leader whose parent component is Gi. Assume that bj follows the
protocol. So, according to Protocol RDP, bj will create its outgoing contracts in Gj at time 0.
Before creating its outgoing contracts in Gi, bj checks if all incoming contracts are created.
If any of its incoming contracts is not created or not valid, bj will abort without creating its
outgoing contracts in Gi. Thus its outcome will be NoDeal.

We can thus assume that all incoming contracts of bj are created and correct; in particular
all incoming contracts in Gj have hashlock hj and all incoming contracts in Gi have the same
hashlock h (which may or may not be equal to hi). Then bj creates its outgoing contracts in
Gi, as in the protocol. We now need to argue that if any of bj ’s outgoing assets is successfully
claimed then bj successfully claims all its incoming assets.

Suppose that some outgoing asset of bj , say (bj , w) is successfully claimed by w. Two
cases arise, depending on whether w is in Gi or Gj .

If w ∈ Gi then from contract (bj , w) will provide bj with some secret value s for which
H(s) = h, because bj used h for its outgoing contracts in Gi. At this point, bj has both
secret values s and sj , and the timeout of all incoming contracts of bj is greater than the
timeout of (bj , w). Therefore bj has the correct secrets and at least one time unit to claim
all incoming contracts, and its outcome will be Deal or Discount, thus acceptable.

In the second case, w ∈ Gj , the home component of bj . For w to successfully claim
(bj , w), it must have the value of sj . But, as bj follows the protocol, it releases sj only when
claiming all incoming assets. So at this time bj already has all incoming assets. Therefore in
this case the outcome of bj is also either Deal or Discount. ◀

4 A Characterization of Digraphs that Admit HTLC-Based Protocols

This section proves Theorem 1. By straightforward inspection, Protocol RDP from Section 3.2
is HTLC-based: each party creates at most one secret/hashlock pair, and all contracts are
transferred using HTLC’s. This already proves the (⇐) implication in Theorem 1.

It remains to prove the (⇒) implication, namely that the existence of an atomic HTLC-
based protocol implies the reuniclus property of the underlying graph. We divide the proof
into two parts. First, in Section 4.1 we establish some basic properties of HTLC-based
protocols. Using these properties, we then wrap up the proof of the (⇒) implication in
Section 4.2.

E. Clark, C. Georgiou, K. Poon, and M. Chrobak 22:9

4.1 Basic Properties of HTLC-Based Protocols
Let P be an HTLC-based protocol for a strongly connected digraph G, and for the rest of
this section assume that P is atomic. We now establish some fundamental properties that
must be satisfied by P.

Most of the proofs of protocol properties given below use the same fundamental approach,
based on an argument by contradiction: we show that if P did not satisfy the given property
then there would exist a (non-conforming) execution of P in which some parties, by deviating
from P, would force a final outcome of some conforming party to be unacceptable, thus
violating the safety property.

For illustration, we include the proofs for Lemma 5 and for some other theorems and
corollaries later in the section. See the full version [5] for the missing proofs.

▶ Lemma 5. If some party successfully claims an incoming asset at some time t, then all
contracts in the whole graph must be placed before time t.

Proof. Assume that a party v successfully claims an asset (u, v) at time t. Towards con-
tradiction, suppose that there is some arc (x, y) for which the contract is still not placed
at time t. Since G is strongly connected, there is a path y = u1, u2, ..., up = u from y to u

in G. Let also u0 = x and up+1 = v. Now consider an execution of P in which all parties
except x are conforming, x follows P up to time t − 1, but later it never creates contract
(x, y). This execution is indistinguishable from the conforming execution up until time t − 1,
so at time t node v will claim contract (u, v). Since the first asset on path u0, u1, ..., up+1 is
not transferred and the last one is, there will be a party uj on this path, with 1 ≤ j ≤ p,
for which asset (uj−1, uj) is not transferred but (uj , uj+1) is. But then the outcome of uj is
unacceptable even though uj is honest, contradicting the safety property of P. ◀

Lemma 5 is important: it implies that P must consist of two phases: the contract creation
phase, in which all parties place their outgoing contracts (by the liveness property, all
contracts must be created), followed by the asset claiming phase, when the parties claim
their incoming assets.

▶ Lemma 6. Suppose that at a time t a party v creates an outgoing contract protected by a
party different than v. Then all v’s incoming contracts must be created before time t.

Consider now the snapshot of of P right after the contract creation phase, when all
contracts are already in place but none of the assets are yet claimed. Lemma 6 implies the
following:

▶ Corollary 7.
(a) If on some path each contract except possibly the first is not protected by its seller, then

along this path the contract creation times strictly increase.
(b) Each cycle must contain a contract protected by its seller.

Next, we establish some local properties of P; in particular we will show that for each
party v there is at most one other party that protects contracts involving v.

▶ Lemma 8. If a party v has an incoming contract protected by some party x different from
v then:
(a) Party v has at least one outgoing contract protected by x;
(b) All contracts involving v are protected either by v or by x.

ISAAC 2024

22:10 HTLC-Based Protocols for Multi-Party Cross-Chain Swaps

▶ Lemma 9. Let P = u1, u2, ..., uk be a simple path whose last contract is protected by some
party z /∈ {u1, u2, ..., uk−1}. Then for each i = 1, ..., k − 1, contract (ui, ui+1) is protected by
one of the parties ui+1, ui+2, ..., uk−1, z. Consequently, each contract on P is not protected
by its seller.

▶ Lemma 10. If all incoming contracts of a party v are protected by v then all outgoing
contracts of v are also protected by v.

Intuitively, if v had an outgoing contract protected by some other party x but not an
incoming contract protected by x, then this outgoing contract would be “redundant” for
v, since v does not need the secret from this contract to claim an incoming contracts. The
lemma shows that the issue is not just redundancy – this is in fact not even possible if the
protocol is atomic.

▶ Lemma 11. If a party v has an outgoing contract protected by some party x different from
v then it has an incoming contract protected by x.

▶ Lemma 12. A party v has an incoming contract protected by v if and only if it has an
outgoing contract protected by v.

The theorem below summarizes the local properties of the contracts involving a party v.

▶ Theorem 13. Consider the contracts involving a party v, both incoming and outgoing.
(a) For each party x (which may or may not be v), v has an incoming contract protected by

x if and only if v has an outgoing contract protected by x.
(b) If there are any contracts protected by v, then at least one incoming contract protected by

v has a smaller timeout than all outgoing contracts protected by v.
(c) There is at most one party x ̸= v that protects a contract involving v. For this x, all

timeouts of the outgoing contracts protected by x are smaller than all timeouts of the
incoming contracts (no matter what party protects them).

Proof.
(a) This part is just a restatement of the properties established earlier. For x = v, the

statement is the same as in Lemma 12. For x ̸= v, if v has an incoming contract protected
by x then, by Lemma 8, it must have an outgoing contract protected by x, and if v

has an outgoing contract protected by x then, by Lemma 11, it must have an incoming
contract protected by x.

(b) Let (v, w) be an outgoing contract protected by v whose timeout value τvw is smallest.
Consider any path P from w to v with all contracts on P protected by v. (This path must
exist. To see this, starting from w follow contracts protected by v. By Corollary 7(b),
eventually this process must end at v.) Then part (b) of Theorem 13 implies that along
this path timeout values must decrease, so its last contract (u, v) must satisfy τuv < τvw.
Thus, by the choice of w, the timeout value of (u, v) is smaller than all timeout values of
the outgoing contracts protected by v.

(c) Let x ̸= v. If v has an incoming contract protected by x then, by Lemma 8, all contracts
involving v but not protected by v are protected by x. If v has an outgoing contract
protected by x then Lemma 11 implies that some incoming contract is protected by x.

We now consider the claims about the timeout values. Let (v, w) be an outgoing contract
protected by x, and let (u, v) be an incoming contract. Towards contradiction, suppose that
in P the timeouts of these contracts satisfy τuv ≤ τvw. Denote by t∗ the first step of P after
the contract creation phase. We consider two cases, depending on whether (u, v) is protected
by x or v.

E. Clark, C. Georgiou, K. Poon, and M. Chrobak 22:11

Case 1: contract (u, v) is protected by x. We consider an execution of P where all parties
follow P until time t∗ − 1. Then, starting at time t∗, we alter the behavior of some parties, as
follows: all parties other than v, w and x will abort the protocol, x will provide its secret sx

to w, and w will claim asset (v, w) at time τvw. This way, the earliest v can claim asset (u, v)
is at time τvw + 1, which is after timeout τuv. Thus v ends up in an unacceptable outcome,
giving us a contradiction, which completes the proof of (b).
Case 2: contract (u, v) is protected by v. We can assume that its timeout τuv is minimum
among all incoming contracts protected by v. (Otherwise, in the argument below replace
(u, v) by the incoming contract protected by v that has minimum timeout.) Let (v, y) be any
outgoing contract protected by v. From part (b), we have that τuv < τvy. Let also (z, v) be
any incoming contract protected by x.

We now consider an execution of P where all parties follow the protocol until time t∗ − 1.
At time t, all parties other than u, w, x, y, z abort the protocol, and x gives its secret sx to
w. As time proceeds, v may notice that some parties do not follow the protocol, so, even
though v is honest, from this time on it is not required to follow the protocol. We show that
independently of v’s behavior, it can end up in an unacceptable outcome, contradicting the
safety property of P.

To this end, we consider two possibilities. If v does not claim (u, v) at or before time τuv,
then w can claim (v, w) at time τvw, so v will lose asset (v, w) without getting asset (u, v).
On the other hand, if v claims (u, v), then u can give secret sv to y who can then claim asset
(v, y), and w will not claim asset (v, w), so v will not be able to claim asset (z, v), as it will
not have secret sx. In both cases, the outcome of v is unacceptable. ◀

We now use the above properties to establish some global properties of P. The first
corollary extends Corollary 7, and is a direct consequence of Theorem 13(b).

▶ Corollary 14. If on some path each contract except possibly the first is not protected by the
seller, then along this path the timeout values strictly decrease.

The next corollary follows from Corollaries 7 and 14.

▶ Corollary 15. Let P be a path such that all contracts on P except possibly the first are
protected by a party x that is not an internal vertex of P . Then all contract creation times
along P strictly increase and all timeout values strictly decrease.

▶ Corollary 16.
(a) Let (u, v) be a contract protected by some party x other than v. Consider a path P

starting with arc (u, v), that doesn’t contain x as an internal vertex and on which each
contract is not protected by its seller. Then all contracts along P are protected by x.

(b) Let (u, v) be a contract protected by some party x other than u. Consider a path P ending
with arc (u, v), that doesn’t contain x as an internal vertex and on which each contract
is not protected by its buyer. Then all contracts along P are protected by x.

Proof.
(a) The corollary follows easily by repeated application of Theorem 13. Let (v, w) be the

second arc on P . By the assumption, (v, w) is not protected by v, and since v has an
incoming contract protected by x and x ̸= v, Theorem 13 implies that contract (v, w)
must be also protected by x. If w = x, this must be the end of P . If w ≠ x, then w has
an incoming contract protected by x, so we can repeat the same argument for w, and so
on. This implies part (a).

(b) The proof for this part is symmetric to that for part (a), with the only difference being
that we proceed now backwards from u along P . ◀

ISAAC 2024

22:12 HTLC-Based Protocols for Multi-Party Cross-Chain Swaps

▶ Theorem 17.
(a) Let P be a simple path starting at a vertex x whose last contract is protected by x. Then

all contracts on P are protected by x.
(b) Let Q be a simple path ending at a vertex x whose first contract is protected by x. Then

all contracts on Q are protected by x.

Proof. (a) Let P = u1, u2, ..., up+1, where u1 = x and (up, up+1) is protected by x. The
proof is by contradiction. Suppose that P violates part (a), namely it contains a contract not
protected by x. (In particular, this means that p ≥ 2.) We can assume that among all simple
paths that violate property (a), P is shortest. (Otherwise replace P in the argument below
by a shortest violating path.) Then (up−1, up) is not protected by x, because otherwise the
prefix of P from x to up would be a violating path shorter than P . So (up−1, up) is protected
by up. Using Lemma 9, each contract on the path u1, u2, ..., up is not protected by the seller.
Since (up, up+1) is protected by x and x ≠ up, each contract on P is not protected by its
seller.

x

u3 u4

u5

u6

u7

u8
u9

u4
u5 u8

u8

u8

xx
xx

x

P

P'

u2 u4

u2

Figure 5 Illustration of the proof of Theorem 17(a). Path P is marked with solid arrows, path
P ′ is marked with dashed arrows. Here, p = 8 and u1 = x. The labels on edges show the parties
that protect them.

Next, we claim that there is a simple path P ′ from up+1 to x whose all contracts are
protected by x. If up+1 = x, this is trivial, so assume that up+1 ̸= x. Then, since up+1 has
an incoming contract protected by x and x ̸= up+1, up+1 must have an outgoing contract
(up+1, w) protected by x. If w = x, we are done. Else, we repeat the process for w, and so
on. Eventually, extending this path we must end at x, for otherwise we would have a cycle
with all contracts protected by x but not containing x, contradicting Corollary 7(b). This
proves that such path P ′ exists. Since all contracts on P ′ are protected by x, they are not
protected by their sellers.

Finally, let C be the cycle obtained by combining paths P and P ′. (See Figure 5.) Then
every contract on C is not protected by its seller, contradicting Corollary 7, completing the
proof. ◀

4.2 Proof of the (⇐) Implication in Theorem 1
In this section we use the protocol properties established in the previous section to prove
necessary conditions for a digraph to admit an atomic HTLC protocol. We start with
protocols that use only one common hashlock for the whole graph. (See the full version for
the missing proofs.)

▶ Lemma 18. Suppose that G has an atomic HTLC protocol P in which only one party
creates a secret/hashlock pair. Then G must be a bottleneck graph.

We now consider the general case, when all parties are allowed to create secret/hashlock
pairs. The lemma below establishes the (⇒) implication in Theorem 1.

E. Clark, C. Georgiou, K. Poon, and M. Chrobak 22:13

▶ Lemma 19. Suppose that G has an atomic HTLC protocol P. Then G must be a reuniclus
digraph.

Proof. Recall what we have established so far in Section 4.1. From Theorem 13(c) we know
that, for each party u, all contracts involving u are protected either by u or by just one other
party. Using this property, we define the control relation on parties, as follows: If u has
any contracts protected by some other party x, we will say that x controls u. Let K be a
digraph whose vertices are the parties that created secret/hashlock pairs, and each arc (u, x)
represents the control relation, meaning that x controls u. We want to prove that K is a tree.

Each node in K has at most one outgoing arc. This property already implies that each
connected component of K is a so-called 1-tree, namely a graph that has at most one cycle.
So in order to show that K is actually a tree, it is sufficient to show the two claims below.

▷ Claim 20. K does not have any cycles.

We now prove Claim 20. Towards contradiction, suppose that K has a cycle C =
v1, v2, ..., vk, vk+1, where vk+1 = v1. Consider any arc (vi, vi+1) on C. This arc represents
that vi+1 controls vi. So, in G, vi has an outgoing contract protected by vi+1. Let Pi be
any path in G starting with this contract and ending at vi+1. Then Theorem 17(b) gives us
that all contracts on Pi are protected by vi+1. Combining these paths P1, ..., Pk we obtain a
cycle C ′ in G. Then in C ′, each contract is not protected by its seller, which would contract
Corollary 7(b). This completes the proof of Claim 20.

▷ Claim 21. K has only one tree.

From Claim 20 we know that each (weakly) connected component of K is a tree. The
roots of these trees have the property that their contracts are not protected by any other
party. To prove Claim 21, suppose towards contradiction that K has two different trees,
and denote by r and r′ the roots of these trees. Since r, r′ are roots of trees, all contracts
involving r are protected by r and all contracts involving r′ are protected by r′. Consider
any simple path P = u1, u2, ..., uk from u1 = r to r′ = uk. Since the last contract on P is
protected by r′ and r′ is not in {u1, u2, ..., uk−1}, Lemma 9 implies that all contracts on this
path are not protected by their sellers. But this contradicts the fact that (u1, u2) is protected
by u1. This completes the proof of Claim 21.

We now continue with the proof of the theorem. Denote by b1, b2, ..., bp the nodes of K.
For each bj , define Gj to be the subgraph induced by the contracts protected by bj . That
is, for each contract (u, v) protected by bj we add vertices u, v and arc (u, v) to Gj . The
necessary properties (rg1) and (rg2) follow from our results in Section 4.1. It remains to
show that subgraphs G1, G2, ..., Gp, together with tree K, satisfy conditions (rg1) and (rg2)
that characterize reuniclus graphs.

Consider some u ̸= bj that is in Gj . By the definition of Gj , u is involved in a contract
protected by bj . Then Theorem 13 gives us that u has both an incoming and outgoing
contract protected by bj . Take any path P starting at an outgoing contract of u protected
by bj and ending at bj . Then Theorem 17(b) implies that all contracts on P are protected
by bj . By the same reasoning, there is a path P ′ starting at bj and ending with an incoming
contract of u protected by bj . Then, by Theorem 17(a) all contracts on P ′ are protected by
bj . This gives us that Gj is strongly connected. And, by Corollary 7, Gj cannot contain a
cycle not including bj . Therefore Gj is a bottleneck graph with bj as its bottleneck.

We also need to prove that Gj is in fact an induced subgraph, that is, if u, v ∈ Gj and G

has an arc (u, v), then (u, v) ∈ Gj as well. That is, we need to prove that (u, v) is protected
by bj . Suppose, towards, contradiction, that (u, v) is protected by some bi ≠ bj . Then both

ISAAC 2024

22:14 HTLC-Based Protocols for Multi-Party Cross-Chain Swaps

u and v are involved in contracts protected by both bi and bj , and this implies that u = bi

and v = bj , or vice versa. And this further implies that bi would be protected by bj and vice
versa, which would be a cycle in K, contradicting that K is a tree. This completes the proof
of property (rg1).

Finally, consider property (rg2). If a vertex u is not any of designated bottleneck vertices
b1, b2, ..., bp, then, by Theorem 13, all its contracts are protected by the same party, which
means that it belongs to exactly one graph Gj . On the other hand, if u = bj , then again by
Theorem 13, it is involved only in contracts protected by itself and one other party, say bi.
But then it belongs only to Gj and Gi, completing the proof of (rg2). ◀

5 Final Comments

We have provided a full characterization of digraphs for which there exist atomic HTLC-based
protocols for asset swaps, by proving that these digraphs are exactly the class of reuniclus
graphs. Our work raises several natural open problems and leads to new research directions,
including the following:

One natural extension of HTLCs would be to allow multiple hashlocks in a contract. We
can show that there are non-reuniclus graphs that have atomic protocols based on such
contracts, and that there are strongly connected digraphs that don’t, although at this
time we do not have a full characterization of digraphs that admit such protocols.
A further extension would be to allow different hashlocks in the same contract have
different timeouts. What types of graphs can be handled with such protocols?
More generally, are there any simple generalizations of HTLCs that lead to atomic
protocols for arbitrary graphs?
Herlihy’s method requires computing longest paths in graphs in order to specify the
protocol’s steps on a given digraph. Are longest paths truly necessary to assure the safety
property in arbitrary graphs? If so, it would be interesting to prove this, say via some
sort of computational-hardness result.

References
1 N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for fair exchange.

In Proceedings of the 4th ACM Conference on Computer and Communications Security, CCS
’97, pages 7–17, New York, NY, USA, 1997. ACM. doi:10.1145/266420.266426.

2 N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital signatures.
IEEE Journal on Selected Areas in Communications, 18:593–610, 1997.

3 M. Ben-Or, O. Goldreich, S. Micali, and R. L. Rivest. A fair protocol for signing contracts.
IEEE Trans. Inf. Theor., 36(1):40–46, September 2006.

4 Eric Chan, Marek Chrobak, and Mohsen Lesani. Cross-chain swaps with preferences. In 36th
IEEE Computer Security Foundations Symposium, CSF 2023, Dubrovnik, Croatia, July 10-14,
2023, pages 261–275. IEEE, 2023. doi:10.1109/CSF57540.2023.00031.

5 Emily Clark, Chloe Georgiou, Katelyn Poon, and Marek Chrobak. On htlc-based protocols
for multi-party cross-chain swaps. CoRR, abs/2403.03906, 2024. arXiv:2403.03906, doi:
10.48550/arXiv.2403.03906.

6 Apoorvaa Deshpande and Maurice Herlihy. Privacy-preserving cross-chain atomic swaps.
In International Conference on Financial Cryptography and Data Security, pages 540–549.
Springer, 2020. doi:10.1007/978-3-030-54455-3_38.

7 Matt Franklin and Gene Tsudik. Secure group barter: Multi-party fair exchange with semi-
trusted neutral parties. In Rafael Hirchfeld, editor, Financial Cryptography, pages 90–102,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

https://doi.org/10.1145/266420.266426
https://doi.org/10.1109/CSF57540.2023.00031
https://arxiv.org/abs/2403.03906
https://doi.org/10.48550/arXiv.2403.03906
https://doi.org/10.48550/arXiv.2403.03906
https://doi.org/10.1007/978-3-030-54455-3_38

E. Clark, C. Georgiou, K. Poon, and M. Chrobak 22:15

8 Ethan Heilman, Sebastien Lipmann, and Sharon Goldberg. The Arwen trading protocols.
In International Conference on Financial Cryptography and Data Security, pages 156–173.
Springer, 2020. doi:10.1007/978-3-030-51280-4_10.

9 Maurice Herlihy. Atomic cross-chain swaps. In Proceedings of the 2018 ACM Symposium on
Principles of Distributed Computing, PODC ’18, pages 245–254, New York, NY, USA, 2018.
ACM. URL: https://dl.acm.org/citation.cfm?id=3212736.

10 Maurice Herlihy, Barbara Liskov, and Liuba Shrira. Cross-chain deals and adversarial commerce.
arXiv preprint arXiv:1905.09743, 2019. arXiv:1905.09743.

11 Soichiro Imoto, Yuichi Sudo, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Atomic
cross-chain swaps with improved space and local time complexity, 2019. arXiv:1905.09985.

12 Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. When recursion is better than
iteration: A linear-time algorithm for acyclicity with few error vertices. In Proceedings of the
2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1916–1933, 2018.
doi:10.1137/1.9781611975031.125.

13 Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and Mat-
teo Maffei. Anonymous multi-hop locks for blockchain scalability and interoperabil-
ity. In 26th Annual Network and Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, February 24-27, 2019. The Internet Society, 2019. URL:
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-
blockchain-scalability-and-interoperability/.

14 Subhra Mazumdar. Towards faster settlement in htlc-based cross-chain atomic swaps, 2022.
arXiv:2211.15804, doi:10.48550/arXiv.2211.15804.

15 Silvio Micali. Simple and fast optimistic protocols for btcwiki electronic exchange. In
Proceedings of the Twenty-second Annual Symposium on Principles of Distributed Computing,
PODC ’03, pages 12–19, New York, NY, USA, 2003. ACM.

16 Wallstreetmojo Team. Hashed timelock contract. https://www.wallstreetmojo.com/
hashed-timelock-contract/, 2024.

17 Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, and Pedro Moreno-Sánchez. Universal
atomic swaps: Secure exchange of coins across all blockchains. Cryptology ePrint Archive,
2021.

18 Tier Nolan. Alt chains and atomic transfers. https://bitcointalk.org/index.php?topic=
193281.msg2224949#msg2224949, 2013. [Online; accessed 23-January-2021].

19 Aisshwarya Tiwari. An introductory guide to hashed timelock contracts. https://crypto.
news/learn/an-introductory-guide-to-hashed-timelock-contracts/, 2022.

20 Yingjie Xue and Maurice Herlihy. Hedging against sore loser attacks in cross-chain transactions.
In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, PODC’21,
pages 155–164, New York, NY, USA, 2021. Association for Computing Machinery. doi:
10.1145/3465084.3467904.

ISAAC 2024

https://doi.org/10.1007/978-3-030-51280-4_10
https://dl.acm.org/citation.cfm?id=3212736
https://arxiv.org/abs/1905.09743
https://arxiv.org/abs/1905.09985
https://doi.org/10.1137/1.9781611975031.125
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://www.ndss-symposium.org/ndss-paper/anonymous-multi-hop-locks-for-blockchain-scalability-and-interoperability/
https://arxiv.org/abs/2211.15804
https://doi.org/10.48550/arXiv.2211.15804
https://www.wallstreetmojo.com/hashed-timelock-contract/
https://www.wallstreetmojo.com/hashed-timelock-contract/
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://crypto.news/learn/an-introductory-guide-to-hashed-timelock-contracts/
https://crypto.news/learn/an-introductory-guide-to-hashed-timelock-contracts/
https://doi.org/10.1145/3465084.3467904
https://doi.org/10.1145/3465084.3467904

Simple Realizability of Abstract Topological Graphs
Giordano Da Lozzo # Ñ

Roma Tre University, Italy

Walter Didimo # Ñ

University of Perugia, Italy

Fabrizio Montecchiani # Ñ

University of Perugia, Italy

Miriam Münch # Ñ

University of Passau, Germany

Maurizio Patrignani # Ñ

Roma Tre University, Italy

Ignaz Rutter # Ñ

University of Passau, Germany

Abstract
An abstract topological graph (AT-graph) is a pair A = (G, X), where G = (V, E) is a graph
and X ⊆

(
E
2

)
is a set of pairs of edges of G. A realization of A is a drawing ΓA of G in the plane

such that any two edges e1, e2 of G cross in ΓA if and only if (e1, e2) ∈ X ; ΓA is simple if any two
edges intersect at most once (either at a common endpoint or at a proper crossing). The AT-graph
Realizability (ATR) problem asks whether an input AT-graph admits a realization. The version of
this problem that requires a simple realization is called Simple AT-graph Realizability (SATR).
It is a classical result that both ATR and SATR are NP-complete [16, 19].

In this paper, we study the SATR problem from a new structural perspective. More precisely,
we consider the size λ(A) of the largest connected component of the crossing graph of any realization
of A, i.e., the graph C(A) = (E, X). This parameter represents a natural way to measure the level
of interplay among edge crossings. First, we prove that SATR is NP-complete when λ(A) ≥ 6. On
the positive side, we give an optimal linear-time algorithm that solves SATR when λ(A) ≤ 3 and
returns a simple realization if one exists. Our algorithm is based on several ingredients, in particular
the reduction to a new embedding problem subject to constraints that require certain pairs of edges
to alternate (in the rotation system), and a sequence of transformations that exploit the interplay
between alternation constraints and the SPQR-tree and PQ-tree data structures to eventually arrive
at a simpler embedding problem that can be solved with standard techniques.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Graph algorithms; Human-centered computing → Graph drawings

Keywords and phrases Abstract Topological Graphs, SPQR-Trees, Synchronized PQ-Trees

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.23

Related Version Full Version: http://arxiv.org/abs/2409.20108 [5]

Funding Research by Da Lozzo, Didimo, Montecchiani, and Patrignani was supported, in part, by
MUR of Italy (PRIN Project no. 2022ME9Z78 – NextGRAAL and PRIN Project no. 2022TS4Y3N –
EXPAND). Research by Münch and Rutter was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 541433306.

Acknowledgements Research started at the 1st Summer Workshop on Graph Drawing, September
2021, Castiglione del Lago, Italy.

© Giordano Da Lozzo, Walter Didimo, Fabrizio Montecchiani, Miriam Münch, Maurizio Patrignani,
and Ignaz Rutter;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giordano.dalozzo@uniroma3.it
http://www.dia.uniroma3.it/~dalozzo
https://orcid.org/0000-0003-2396-5174
mailto:walter.didimo@unipg.it
https://mozart.diei.unipg.it/didimo/
https://orcid.org/0000-0002-4379-6059
mailto:fabrizio.montecchiani@unipg.it
https://mozart.diei.unipg.it/montecchiani/
https://orcid.org/0000-0002-0543-8912
mailto:muenchm@fim.uni-passau.de
https://www.fim.uni-passau.de/theoretische-informatik/lehrstuhlteam/miriam-muench
https://orcid.org/0000-0002-6997-8774
mailto:maurizio.patrignani@uniroma3.it
https://compunet.ing.uniroma3.it/#!/people/titto
https://orcid.org/0000-0001-9806-7411
mailto:rutter@fim.uni-passau.de
https://www.fim.uni-passau.de/en/theoretical-computer-science/chair/prof-dr-ignaz-rutter
https://orcid.org/0000-0002-3794-4406
https://doi.org/10.4230/LIPIcs.ISAAC.2024.23
http://arxiv.org/abs/2409.20108
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Simple Realizability of Abstract Topological Graphs

1 Introduction

A topological graph Γ is a geometric representation of a graph G = (V,E) in the plane such
that the vertices of G are mapped to distinct points and the edges of G are simple curves
connecting the points corresponding to their end-vertices. For simplicity, the geometric
representations of the elements of V and E in Γ are called vertices and edges of Γ, respectively.
It is required that: (i) any intersection point of two edges in Γ is either a common endpoint or
a crossing (a point where the two edges properly cross); (ii) any two edges of Γ have finitely
many intersections and no three edges pass through the same crossing point. Additionally,
we say that Γ is simple if adjacent edges never cross and any two non-adjacent edges cross
at most once. The crossing graph C(Γ) of a topological graph Γ is a graph whose vertices
correspond to the edges of Γ (and hence of G) and two vertices are adjacent if and only if
their corresponding edges cross in Γ.

An abstract topological graph (AT-graph) is a pair A = (G,X) such that G = (V,E) is
a graph and X ⊆

(
E
2
)

is a set of pairs of edges of G. We say that A is realizable if there
exists a topological graph ΓA isomorphic to G such that any two edges e and e′ of G cross
(possibly multiple times) in ΓA if and only if (e, e′) ∈ X . The topological graph ΓA is called
a realization of A. Note that, by definition, A is realizable if and only if the crossing graph
of any realization ΓA of A is isomorphic to the graph (E,X). Since such a crossing graph
only depends on A (i.e., it is the same for any realization of A), we denote it by C(A).

The AT-graph Realizability (ATR) problem asks whether an AT-graph A = (G,X)
is realizable. The Simple AT-graph Realizability (SATR) problem is the version of
ATR in which the realization of A is required to be simple; if such a realization exists, then
A is said to be simply realizable. Since the introduction of the concept of AT-graphs [18],
establishing the complexity of the ATR (and of the SATR) problem has been the subject of
an intensive research activity, also due to its connection with other prominent problems in
topological and geometric graph theory. Clearly, if X = ∅, both the ATR and the SATR
problems are equivalent to testing whether G is planar, which is solvable in linear time [3, 15].
However, for X ̸= ∅, a seminal paper by Kratochvíl [16] proves that ATR is NP-hard and
that this problem is polynomially equivalent to recognizing string graphs. We recall that a
graph S is a string graph if there exists a system of curves (called strings) in the plane whose
crossing graph is isomorphic to S. In the same paper, Kratochvíl proves the NP-hardness of
the Weak AT-graph Realizability (WATR) problem, that is, deciding whether a given
AT-graph A = (G,X) admits a realization where a pair of edges may cross only if it belongs
to X . He also proves that recognizing string graphs remains polynomial-time reducible to
WATR. Subsequent results focused on establishing decision algorithms for WATR; it was
first proven that this problem belongs to NEXP [25] and then to NP [24]. This also implies the
NP-completeness of recognizing string graphs (which is polynomial-time reducible to WATR)
and of ATR (which is polynomially equivalent to string graph recognition). Concerning
the simple realizability setting for AT-graphs, it is known that the SATR problem remains
NP-complete, still exploiting the connection with recognizing string graphs [19, 20]. On the
positive side, for those AT-graphs A = (G,X) for which G is a complete n-vertex graph,
SATR is solvable in polynomial-time, with an O(n6)-time algorithm [21, 22]. Refer to [21]
for the complexity of other variants of ATR, and to [11] for a connection with the popular
Simultaneous Graph Embedding problem.

Our contributions. In this paper, we further investigate the complexity of the simple
realizability setting, i.e., of the SATR problem. We remark that focusing on simple drawings
is a common scenario in topological graph theory, computational geometry, and graph

G. Da Lozzo, W. Didimo, F. Montecchiani, M. Münch, M. Patrignani, and I. Rutter 23:3

drawing (see, e.g., [9, 12, 14, 26]), because avoiding crossings between adjacent edges, as well
as multiple crossings between a pair of non-adjacent edges, is a requirement for minimal edge
crossing layouts. Specifically, we study the simple realizability problem for an AT-graph A

from a new structural perspective, namely looking at the number of vertices of the largest
connected component of the crossing graph C(A), which we denote by λ(A). This parameter
is a natural measure of the level of interplay among edge crossings. Namely, SATR is trivial
on instances for which λ(A) ≤ 2, that is, instances in which the number of crossings is
unbounded but each edge is crossed at most once. On the other hand, the problem becomes
immediately nontrivial as soon as λ(A) ≥ 3. Precisely, our results are as follows:

We prove that Simple AT-graph Realizability is NP-complete already for instances A
for which λ(A) = 6 (which, in fact, implies the hardness for every fixed value of λ(A) ≥ 6);
see Section 3. A consequence of our result is that, unless P = NP, the problem is not
fixed-parameter tractable with respect to λ(A) and, thus, with respect to any graph
parameter bounded by λ(A), such as the maximum node degree, the treewidth or even
the treedepth. As the results in [16, 19, 20], our hardness proof uses a reduction from
3-Connected Planar 3-SAT. However, the reduction in [16] does not deal with the
simplicity of the realization, whereas the reduction in [19, 20] may lead to instances A
for which λ(A) is greater than six and, actually, is even not bounded by a constant.
We prove that Simple AT-graph Realizability can be solved efficiently when λ(A) ≤ 3.
More precisely, we give an optimal O(n)-time testing algorithm, which also finds a simple
realization if one exists; see Section 4. We remark that the only polynomial-time algorithm
previously known in the literature for the SATR problem is restricted to complete graphs
and has high complexity [21, 22]. Our algorithm is based on several ingredients, including
the reduction to a new embedding problem subject to constraints that require certain
pairs of edges to alternate (in the rotation system), and a sequence of transformations that
exploit the interplay between alternation constraints and the SPQR-tree [7, 8] and PQ-
tree [3, 4] data structures to eventually arrive at a simpler embedding problem that can be
solved with standard techniques. We remark that the alternation constraints we encounter
in our problem are rather opposite to the more-commonly encountered consecutivity
constraints [1, 2, 13, 23] and cannot be handled straightforwardly with PQ-trees.

For proofs of lemmas and theorems marked with (⋆) we refer to the full version [5].

2 Basic Definitions and Tools

For basic definitions about graphs and their drawings, refer to [6, 10]. We only consider
simple realizations and thus we often omit the qualifier “simple” when clear from the context.

Let A = (G,X) be an AT-graph, with G = (V,E), and let ΓA be a realization of A.
A face of ΓA is a region of the plane bounded by maximal uncrossed portions of the
edges in E. A set E′ ⊆ E of k edges pairwise crossing in ΓA is a k-crossingof ΓA.
As we focus on simple realizations, we assume that the edges in E′ are pairwise non-
adjacent in G. For a k-crossing E′, denote by V (E′) the set of 2k endpoints of the k

edges in E′. The arrangement of E′, denoted by CE′ , is the arrangement of the curves
representing the edges of E′ in ΓA. A k-crossing E′ is untangled if, in the arrangement CE′ ,
all 2k vertices in V (E′) are incident to a common face (see Fig. 1b); otherwise, it is tangled
(see Fig. 1a). The next lemma will turn useful in Section 4.

▶ Lemma 1 (⋆). An AT-graph A with λ(A) ≤ 3 admits a simple realization if and only if it
admits a simple realization in which all 3-crossings are untangled.

ISAAC 2024

23:4 Simple Realizability of Abstract Topological Graphs

e1

e2

e3 u2
u1

v2

v1 Gf

Gh

p

(a) Realization ΓA.

Q

e1

e2

e3 u2
u1

a
b

Gf

Gh

c

(b) Realization Γ′
A.

a

c

b

λ1

u1

v1

λ2λ3 λ4

(c) Curves of e1.

Figure 1 Illustrations for the proof of Lemma 1. (a) A schematic representation of a simple
realization ΓA of an AT-graph A with a tangled 3-crossing E′ = {e1, e2, e3}. (b) The simple
realization Γ′

A obtained from ΓA, where E′ is untangled. (c) The curves forming e1 in Γ′
A.

Proof Sketch. Let A be an AT-graph with λ(A) ≤ 3 and let ΓA be a simple realization of
A that contains a tangled 3-crossing E′. We show how to obtain a new simple realization Γ′

A

of A that coincides with ΓA except for the drawing of one of the edges in E′ and such that
E′ is untangled (refer to Fig. 1). Repeating such a transformation for each tangled 3-crossing
yields the desired simple realization of A with no tangled 3-crossings.

Since ΓA is simple and |E′| = 3, the arrangement CE′ in ΓA splits the plane into two faces,
a bounded face f and an unbounded face h. Let e1 = (u1, v1), e2 = (u2, v2), and e3 = (u3, v3)
be the edges in E′. Since E′ is tangled, assume w.l.o.g. that f contains an endpoint of two
edges of E′ (and thus h contains the remaining four endpoints), that such endpoints are v1
and v2, and that traversing e2 from u2 to v2, we see u1 to the left at the intersection between
e2 and e1. Let Gf (resp. Gh) be the subgraph of G formed by the vertices and edges of G
in the interior of f (resp. of h). Let Q be a closed curve passing through v1 and v2 that
encloses the drawing of Gf in ΓA, without intersecting any other vertex or edge. To obtain
Γ′

A, replace the drawing of e1 in ΓA with the union of four curves λ1, λ3, λ3, λ4 defined as
shown in Fig. 1c by following the drawing of e1, e2 and Q. Moving on e2 from u2 to v2, we
now see u1 to the right at the intersection of e2 with e1. Hence, all the endpoints of the
edges in E′ lie in the same face of CE′ in Γ′

A, i.e., E′ is untangled in Γ′
A. ◀

3 NP-completeness for AT-Graphs with λ(A) ≥ 6

In this section, we show that the SATR problem is NP-complete for an AT-graph A even
when the largest component of the crossing graph C(A) has bounded size; specifically, when
λ(A) = 6 (see Theorem 6). We will exploit a reduction from the NP-complete problem
3-Connected Planar 3-SAT [17].
Let φ be a Boolean formula in conjunctive normal form. The variable-clause graph Gφ of φ
is the bipartite (multi-)graph that has a node for each variable and for each clause, and an
edge between a variable-node and a clause-node if a positive or negated literal of the variable
appears in the clause. If each clause of φ has exactly three literals corresponding to different
variables and Gφ is planar and triconnected, then φ is an instance of 3-Connected Planar
3-SAT. Observe that in this case Gφ is a simple graph. Our proof exploits several gadgets
described hereafter, which are then combined to obtain the desired reduction.

Intuitively, in the instance Aφ of SATR corresponding to φ, we encode truth values into
the clockwise or counter-clockwise order in which some edges cross suitable cycles of the
subgraphs (called “variable gadgets”) representing the variables of φ in Aφ. These edges
connect the variable gadgets to the subgraphs (called “clause gadgets”) representing those
clauses that contain a literal of the corresponding variable. Only if at least one of the

G. Da Lozzo, W. Didimo, F. Montecchiani, M. Münch, M. Patrignani, and I. Rutter 23:5

a1

a2

a3

b1
c1

c2

b2

b3

c3

d1

e1
f1

h2

d2
d3

f3

f2

l1

l3

π1,3

π2,3

ψ2,3

ψ1,3

g1

h1

e2

g2

e3

g3

h3

l2

(a)

e1

e2

e3

f1
g1

g2

f2

f3

g3

h1

a1
b1

d2

h2
h3

b3

b2

ψ1,3

ψ2,3

π2,3

π1,3

c1

d1

a2

c2

a3

c3

d3
R2,3

l1

l3

l2

(b)

S1 S2

S3S4

e11

a11

e12

a12

e13a13

a21

e21

e22a22

e23

a23

a33e33

e31

a31

a32

e32

e43

a43

e41

a41

e42 a42

ev,c1 ev,c2

ev,c4 ev,c3

(c)

Figure 2 (a,b) The split gadget S : The clockwise circular order of the edges leaving the gadget
is either b1, f1, b2, f2, b3, f3 (a) or f1, b1, f2, b2, f3, b3 (b). (c) The variable gadget Vv. The dashed
edges belong to the variable cycle of v in the skeleton Hφ.

literals appearing in a clause gadget encodes a true value, the clause gadget admits a simple
realization. We start by describing the “skeleton” of Aφ, that is the part of Aφ that encloses
all the gadgets and ensures that they are properly connected. Next, we describe the “split
gadget” which, in turn, is used to construct the variable gadget. If a variable v has literals
in k clauses, we have k pairs of edges leaving the corresponding variable gadget and entering
the k clause gadgets. The clause gadgets always receive three truth values, corresponding to
the three literals of the corresponding clause.

Skeleton. Arbitrarily choose a planar embedding Eφ of Gφ. The skeleton Hφ of φ is
a 4-regular 3-connected plane graph obtained from Eφ as follows. For each degree-k variable v
of φ, the graph Hφ contains a k-cycle formed by the sequence of edges (ev,c1 , ev,c2 , . . . , ev,ck

),
which we refer to as the variable cycle of v, where c1, . . . , ck are the clause-nodes of Gφ

adjacent to v in the clockwise order in which they appear around v in Eφ.
For each clause c of φ, the graph Hφ contains a 3-cycle formed by the sequence of
edges (ec,v1 , ec,v2 , ec,v3), which we refer to as the clause cycle of c, where v1, v2, v3 are
the variable-nodes of Gφ adjacent to c in the clockwise order in which they appear around c

in Eφ.
For each edge (vi, cj) of Gφ, the graph Hφ contains two edges, which we refer to as the pipe
edges of the edge (vi, cj), connecting the endpoints of evi,cj

and ecj ,vi
without crossings.

▶ Lemma 2 (⋆). The skeleton Hφ obtained from Eφ is triconnected.

Split gadget. The split gadget S is the AT-graph defined as follows; refer to Figs. 2a and 2b.
The underlying graph of S consists of six connected components: (1) a 3-cycle formed by the
edges l1, l2, and l3, which we call outer cycle of S; (2) a 3-cycle formed by the vertices v1, v2,
and v3 (filled white in Figs. 2a and 2b) such that, for i = 1, 2, 3, the vertex vi is the endpoint
of the two paths formed by the sequence of edges (ai, bi, ci, di) (red paths in Figs. 2a and 2b)
and (ei, fi, gi, hi) (blue paths in Figs. 2a and 2b); (3) four length-3 paths π1,3, π2,3, ψ1,3,
and ψ2,3. We denote the first, intermediate, and last edge of a length-3 path p as p′, p′′,
and p′′′, respectively. The crossing graph C(S) of S consists of several connected components.
Next, we describe the eight non-trivial connected components of C(S), i.e., those that are not
isolated vertices, determined by the following crossings of the edges of S: (i) For j = 1, 2, 3,

ISAAC 2024

23:6 Simple Realizability of Abstract Topological Graphs

copyright © 2021 G. Da Lozzo

ex

ey

ez

fx

fy

fz

ax
bx

bz

by

ec,yec,x

ec,z

ay

az
True

False False

czgz

cy

gycx

gx

ex

ay

ez

fx

by

fz

ax
bx

bz

fy

ec,yec,x

ec,z

ey

az
True

False True

czgz

gy

cycx

gx

ax

ay

ez

bx

by

fz

ex
fx

bz

fy

ec,yec,x

ec,z

ey

az
True

True True

czgz

gy

cygx

cx

Figure 3 Illustrations for the existence of simple realizations of the clause gadget Qc together
with the clause cycle of c (dashed edges) when for at least one pair fv, bv, with v ∈ {x, y, z}, we
have that bv precedes fv along ec,v, while traversing the clause cycle of c clockwise.

edge lj crosses both bj and fj ; (ii) For j = 1, 2, edge π′′
j,3 crosses ψ′′

j,3; (iii) For j = 1, 2, edge
cj crosses gj and π′

j,3, further gj crosses ψ′
j,3; finally (iv) edge c3 crosses g3, π′′′

1,3, and π′′′
2,3,

further g3 crosses ψ′′′
1,3 and ψ′′′

2,3.

▶ Lemma 3 (⋆). In any simple realization of S, the circular (clockwise or counterclock-
wise) order of the edges crossing the outer cycle of S is either b1, f1, b2, f2, b3, f3
or f1, b1, f2, b2, f3, b3.

Variable gadget. For each variable v of degree k in φ and incident to clauses c1, c2, . . . , ck

in Gφ, the variable gadget Vv is an AT-graph defined as follows; refer to Fig. 2c. Assume,
w.l.o.g., that c1, c2, . . . , ck appear in this clockwise order around v in Eφ. The underlying graph
of Vv is composed of k split gadgets S1, S2, . . . , Sk. For each split gadget Si, with i = 1, . . . , k,
rename the edges aj and ej of Si as ai

j and ei
j , respectively, with j ∈ {1, 2, 3}. For i = 1, . . . , k,

we identify the edges ai
j and ai+1

j+1 and the edges ei
j and ei+1

j+1, where k + 1 = 1. The
crossing graph C(Vv) of Vv consists of all vertices and edges of the crossing graphs of Si,
with i = 1, . . . , k. Moreover, for i = 1, . . . , k, it contains a non-trivial connected component
consisting of the single edge (ai

2, e
i
2) (which coincides with (ai+1

3 , ei+1
3), i+ 1 = 1 when i = k).

▶ Lemma 4 (⋆). In any simple realization of Vv together with the variable cycle of v in which
both ai

1 and ei
1 cross ev,ci

, for i = 1, . . . , k, the clockwise circular order of the edges crossing
the variable cycle of v in Vv is either a1

1, e1
1, a2

1, e2
1,. . . , ak

1 , ek
1 or e1

1, a1
1, e2

1, a2
1,. . . , ek

1 , ak
1 .

In the proof of Theorem 6, the two circular orders for the edges
⋃k

i=1{ai
1, e

i
1} of Vv

considered in Lemma 4 will correspond to the two possible truth assignment of the variable v.

Clause gadget. For each clause c in φ, the clause gadget Qc is the AT-graph, whose
construction is inspired by a similar gadget used in [19], defined as follows; see Fig. 3. The
underlying graph of Qc consists of six length-3 paths: For v ∈ {x, y, z}, we have a path formed
by the edges (av, bv, cv) (red paths in Fig. 3) and a path formed by the edges (ev, fv, gv)
(blue paths in Fig. 3). The crossing graph C(Qc) of Qc consists of one non-trivial connected
component formed by the triangles (cx, cy, cz) and (gx, gy, gz), and the edges (cx, gz), (cy, gx),
and (cz, gy).

▶ Lemma 5 (⋆). The clause gadget Qc admits a simple realization together with the clause
cycle of c in which, for v ∈ {x, y, z}, both bv and fv cross ec,v, and in which the edges ec,x, ec,y,
and ec,z appear in this order when traversing clockwise the clause cycle of c if and only
if for at least one pair fv, bv, with v ∈ {x, y, z}, we have that bv precedes fv along ec,v

when traversing the clause cycle of c clockwise.

G. Da Lozzo, W. Didimo, F. Montecchiani, M. Münch, M. Patrignani, and I. Rutter 23:7

Based on Lemma 5, we associate the True value with a literal of a variable v ∈ {x, y, z}
appearing in c when bv precedes fv along ec,v while traversing the clause cycle of c clockwise,
and False otherwise; see Fig. 3. We can finally prove the main result of the section.

▶ Theorem 6 (⋆). SATR is NP-complete for instances A with λ(A) = 6.

Proof Sketch. The membership in NP is obvious. We give a reduction from the NP-complete
problem 3-Connected Planar 3-SAT [17]. Let φ be an instance of 3-Connected
Planar 3-SAT. We construct an instance Aφ = (G′,X ′) of SATR that is simply realizable
if and only if φ is satisfiable. We initialize G′ = Hφ and X ′ = ∅. Then, for each variable v,
we extend Aφ to include Vv as follows: For each clause ci that contains a literal of v, add
to X ′ the pair of edges {ai

1, ev,ci
} and {ei

1, ev,ci
}, where ai

1 and ei
1 belong to Vv, and ev,ci

belongs to Hφ. Also, for each clause c, we extend Aφ to include Qc as follows: For each
variable v ∈ {x, y, z} whose literals belong to c, we add to X ′ the pair of edges {fv, ec,v}
and {bv, ec,v}, where fv and bv belong to Qc, and ec,v belongs to Hφ. Finally, for each
occurrence of a literal of a variable v to a clause ci, we identify edges of Vv with edges of Qv

as follows: If v appears as a positive (resp. negated) literal in ci, then we identify the edge
ai

1 of Vv with the edge ay (resp. ey) of Qv and we identify the edge ei
1 of Vv with the edge ey

(resp. ay) of Qv. Observe that we do not allow the edges ai
1 and ei

1 to cross. Clearly, Aφ can
be constructed in polynomial time. The equivalence between Aφ and φ immediately follows
from Lemmata 4 and 5, and from the fact that, by Lemma 2, in any simple realization of
Aφ, all the variable cycles and all the clause cycles maintain the same circular orientation.
Finally, note that the size of the largest connected component of C(Aφ) is six. ◀

We remark that the NP-hardness of Theorem 6 holds for instances whose crossing graph
is planar, and has maximum degree 3 and treewidth 3. Moreover, it implies that SATR is
NP-complete when λ(A) ≥ k, for any k ≥ 6. Finally, since our reduction yields instances
whose size is linear in the size of the input (planar) 3-SAT formula, we have the following.

▶ Corollary 7 (⋆). Unless ETH fails, SATR has no 2o(
√

n)-time algorithm, where n is the
number of vertices of the input AT-graph.

4 A Linear-Time Algorithm for AT-Graphs with λ(A) ≤ 3

In this section we show that the problem SATR can be solved in linear-time for AT-graphs A
with λ(A) ≤ 3; see Theorem 13. We first give a short high-level overview of the overall
strategy but note that proper definitions will only be given later in the detailed description
of the algorithm. The first step is to reduce SATR to a constrained embedding problem
where each vertex v may be equipped with alternation constraints that restrict the allowed
orders of its incident edges around v. Next, we further reduce to the biconnected variant of
the embedding problem which leads to new types of alternation constraints. It will turn out
that many of these constraints can be transformed into constraints that can be expressed in
terms of PQ-trees and are therefore easier to handle. Finally, we show that, when no further
such transformations are possible, all the remaining alternation constraints have a simple
structure that allows for an efficient test.

We now start with reducing SATR to a constrained embedding problem. Let A = (G,X)
be an n-vertex AT-graph such that λ(A) ≤ 3. We construct from G an auxiliary graph H

as follows. For each connected component X of C(A) that is not an isolated vertex, denote
by E(X) the set of edges of G corresponding to the vertices of X, and by V (X) the vertices
of G that are end-vertices of the edges in E(X). Remove from G the edges in E(X)

ISAAC 2024

23:8 Simple Realizability of Abstract Topological Graphs

1

1′

3 2′

2

3′

vX

(d)

1

1′

2 2′

3

3′

vX

(c)

vX vX

1

1′

2 3′

3

2′

(b)

1

1′

2 2′

3

3′

(a)

Figure 4 (a) A K3-crossing. (b) A P3-crossing. A circular order of the neighbors around a crossing
vertex vX satisfying (c) a K3-constraint but not a P3-constraint, (d) a P3- but not a K3-constraint.

and add a crossing vertex vX adjacent to all vertices in V (X); see Fig. 4. Since no two
crossing vertices are adjacent, the graph H does not depend on the order in which we apply
these operations. The edges incident to vX are partitioned into pairs of edges where two
edges (a, vX) and (b, vX) form a pair if (a, b) is an edge of G corresponding to a vertex
of X. We call (a, vX) and (b, vX) the portions of (a, b) and say that (a, vX) and (b, vX) stem
from (a, b) . Note that since λ(A) ≤ 3, a crossing vertex vX has either degree 4 or 6. In the
first case X is a K2 and in the latter case X is either an induced 3-path P3 or a triangle K3.
If X = K2, we color its two vertices red and blue, respectively. If X = K3 we color its three
vertices red, blue, and purple, respectively. If X = P3, its vertex of degree 2 is colored purple,
whereas we color red and blue the remaining two vertices, respectively. Based on Lemma 1,
we observe the following.

▶ Observation 8 (⋆). If A admits a simple realization, then H is planar.

Observation 8 gives an immediate necessary condition for the realizability of A, which
is, however, not sufficient. Indeed, a planar embedding of H obtained from contracting
edges in a realization of A satisfies an additional property: for each crossing vertex vX the
portions stemming from two distinct edges e, f of G alternate around vX if and only if the
two vertices corresponding to e, f in X are adjacent. To keep track of this requirement, we
equip every crossing vertex vX with an alternation constraint that (i) colors its incident
edges with colors r(ed), b(lue), p(urple) so that a portion of an edge in G gets the same
color as the corresponding vertex in X, and (ii) specifies which pairs of colors must alternate
around v; see Fig. 4 for an example. For a K2-constraint there are no purple edges, and
red and blue must alternate. For a K3-constraint all pairs of colors must alternate. For a
P3-constraint, red and purple as well as purple and blue must alternate, whereas red and blue
must not alternate. Each component X of C(A) with the coloring described above naturally
translates to a constraint for vX . For X = K2, we obtain a K2-constraint, for X = P3 we get
a P3-constraint, and for X = K3 we get a K3-constraint; see Fig. 4. The auxiliary graph H

with alternation constraints is feasible if it admits a planar embedding that satisfies the
alternation constraints of all vertices. Thus, we have the following.

▶ Lemma 9. An AT-graph A = (G,X) with λ(A) ≤ 3 is simply realizable if and only if the
corresponding auxiliary graph H with alternation constraints is feasible.

To find such an embedding, we decompose the graph into biconnected components. It
turns out that this may create additional types of alternation constraints that stem from
the constraints described above, but do not fall into the category of an existing class of
constraints. For the sake of exposition, we introduce these constraints now, even though they
will not be part of an instance obtained by the above reduction from SATR.

Let v be a vertex of degree 5 and let c be a color. For a C-constraint (C ∈ {K3, P3,K2})
as defined above, we define a corresponding C−c-constraint of v, which (i) colors the edges
incident to v such that each color occurs at most twice but color c occurs only once and

G. Da Lozzo, W. Didimo, F. Montecchiani, M. Münch, M. Patrignani, and I. Rutter 23:9

(c)(b)(a)

v v v

(d)

v

(e)

v

Figure 5 Circular orders of edges incident to a vertex v satisfying (a) a K−r
3 - and a P −r

3 -
constraint, (b) a P −p

3 - but not a K−p
3 -constraint, (c) a K−p

3 - but not a P −p
3 -constraint,(d) a P

−(p,r)
3 -

but not a K
−(p,r)
3 -constraint , (e) a P

−(b,r)
3 - and a K

−(b,r)
3 -constraint.

(c)(b)(a)

v v

(d)

v v

(e)

v

Figure 6 Circular orders of edges around a vertex v allowing to insert two edges of distinct colors
(dashed) so that every color occurs twice and a (a−b) K3-constraint, (c−e) P3-constraint is satisfied.

(ii) requires that in the rotation, it is possible to insert an edge of color c so that the
original C-constraint is satisfied; see Fig. 5. Observe that a K−c

2 -constraint is always satisfied
and is thus not needed. Since the colors of a K3-constraint are entirely symmetric, we
may assume without loss of generality that c = r in this case. For P3-constraints, only red
and blue are symmetric, i.e., we may assume without loss of generality that either c = p

or c = r. In particular, the K−r
3 -constraint and the P−r

3 -constraint both require that purple
and blue alternate around v, whereas the position of the red edge is arbitrary; see Fig. 5(a).
Thus the K−r

3 -constraint and the P−r
3 -constraint are equivalent. For a P−p

3 -constraint to be
fulfilled, red and blue must not alternate and the purple edge either has to be between the
two red edges or between the two blue edges; see Fig. 5(b).

Now let v be a vertex of degree 4 and let c, c′ be two colors. For a C-constraint, we define
a corresponding C−c,c′-constraint of v, which (i) colors the edges incident to v such that
the colors distinct from c and c′ occur twice but colors c and c′ occur only once if c ̸= c′, or
not at all if c = c′, and (ii) requires that in the rotation, it is possible to insert two edges of
color c and c′, respectively, so that the original C-constraint is satisfied. Since the colors
of a K3-constraint are entirely symmetric, we may assume w.l.o.g. that either c = c′ = r

or c = r, c′ = b in this case. For P3-constraints, only red and blue are symmetric, we may
hence assume without loss of generality that (c, c′) ∈ {(r, r), (p, p), (r, p), (r, b)}. Observe
that a K−c,c′

2 -constraint is always satisfied and is thus not needed. The same holds for
a K−r,b

3 -constraint, a P−r,b
3 -constraint and a P−r,p

3 -constraint; see Fig. 6. Also, note that
a K−r,r

3 -constraint and a P−r,r
3 -constraint are both equivalent to a K2-constraint, while

a P−p,p
3 -constraint requires that red and blue do not alternate around v.
Finally for a C-constraint, we define a corresponding C−(c,c′)-constraint of v, which (i)

colors the edges incident to v such that the colors distinct from c and c′ occur twice
but colors c and c′ occur only once if c ≠ c′, or not at all if c = c′, and (ii) requires
that in the rotation, it is possible to insert an edge of color c and an edge of color c′

consecutively, so that the C-constraint is satisfied; see Fig. 5(d), (e) for examples. This
type of constraints is motivated as follows. Let v be a cut vertex in a graph G. The cut
components of v in G are the subgraphs of G induced by v together with the maximal
subsets of the vertices of G that are not disconnected by the removal of v. Note that

ISAAC 2024

23:10 Simple Realizability of Abstract Topological Graphs

the edges belonging to two different cut components cannot alternate around v without
resulting in a crossing and observe that a K−(c,c′)

2 -constraint with c ̸= c′ is always satisfied
and is thus not needed. Also note that a C−(c,c)-constraint cannot be satisfied, since every
C-constraint requires that every color alternates with at least one of the remaining colors.
Since the colors of a K3-constraint are entirely symmetric, we may assume without loss
of generality that either c = c′ = r or c = r, c′ = b in this case. For P3-constraints, only
red and blue are symmetric, i.e., we may assume without loss of generality that (c, c′) ∈
{(r, r), (p, p), (r, p), (r, b)}. In particular, a K−(r,b)

3 -constraint and a P−(r,b)
3 -constraint both

require the consecutivity of the two purple edges and are thus equivalent; see Fig. 5(e). For
a P

−(r,p)
3 -constraint to be fulfilled, the two blue edges must not occur consecutively (see

Fig. 5(d)); i.e., the two blue edges have to alternate with the two remaining edges. Thus
a P−(p,r)

3 -constraint is equivalent to a K2-constraint. By the above discussion we may assume
that only K3, P3, K−r

3 , P−p
3 , K2, P−p,p

3 and K
−(r,b)
3 constraints occur.

The Alternation-Constrained Planarity (ACP) problem has as input a graph H with
alternation constraints and asks whether H is feasible. By Lemma 9, there is a linear-time
reduction from SATR with λ(A) ≤ 3 to ACP. Next, we further reduce ACP to 2-connected
ACP, which is the restriction of ACP to instances for which H is 2-connected.

▶ Lemma 10 (⋆). There is a linear-time algorithm that either recognizes that an instance H
of ACP is a no-instance or computes a collection H1, . . . ,Hk of instances of 2-connected
ACP, such that H is a yes-instance if and only if Hi is a yes-instance for every 1 ≤ i ≤ k.

Proof Sketch. Our reduction strategy considers one cut vertex at a time and splits the
graph at that vertex into a collection of smaller connected components. The reduction
consists of applying this cut vertex split until all cut vertices are removed or we find out
that H is a no-instance. Consider an instance H of ACP and one of its cut vertices v
with cut components H1, . . . ,Hl. In the cut components, let every vertex except v preserve
its alternation constraint (if any). Now the goal is to find out which constraints have to
be assigned to the copies of v in the cut components such that H is a yes-instance if and
only if each Hi is a yes-instance. We denote by E(v) the edges incident to v in H and
by Ei(v) the edges incident to v in Hi, for 1 ≤ i ≤ l. Without loss of generality assume
that |Ei(v)| ≥ |Ej(v)| for 1 ≤ i < j ≤ l. We encode the distribution of edges from E(v)
among the cut components as a split-vector (|E1(v)|, |E2(v)|, . . . , |El(v)|).

If v has no alternation constraint, H is feasible if and only if each cut component Hi,
with i = 1, . . . , l, is and hence all copies of v remain unconstrained. Otherwise, v has an
alternation constraint C. This implies |E(v)| ≤ 6 and thus the edges in E(v) are distributed
among at least two and at most six cut components. Note that the edges belonging to two
different cut components cannot alternate around v without resulting in a crossing. Thus, H
is a no-instance if C ∈ {K3,K

−r
3 ,K2} and there are two cut components containing a pair

of edges of the same color from E(v), respectively. If C ∈ {P3, P
−p
3 }, the same holds if one

cut component contains both purple edges, whereas a distinct cut component contains both
red or both blue edges. In the following, we assume that the above does not apply.

Now we consider cases based on the split-vectors. If |E1(v)| ≤ 3, H is either a no-instance,
or we can always arrange the cut components around v such that C is satisfied. In all positive
cases, it suffices to leave each copy of v unconstrained. It remains to consider the remaining
split-vectors with |E1(v)| ≥ 4. Here we only describe the case (5, 1); the remaining cases can
be found in the full version [5].

G. Da Lozzo, W. Didimo, F. Montecchiani, M. Münch, M. Patrignani, and I. Rutter 23:11

(b)(a) (c)

Figure 7 The PQ-trees representing alternation constraints of degree-4 vertices. (a) K2-constraint,
(b) P −p,p

3 -constraint, and (c) K
−(r,b)
3 -constraint.

Case: (5, 1). Let C ∈ {K3, P3} be the constraint of v and let c be the color of the edge
of E(v) in H2. To merge embeddings of H1 and H2 to a planar embedding of H such
that the C-constraint is satisfied, it is necessary that the embedding of H1 allows to insert
an edge of color c such that the C-constraint is satisfied. Thus, it is necessary that the
order of edges around v in H1 satisfies a C−c-constraint. Note that if the C−c-constraint is
satisfied, it is guaranteed that the embeddings of H1 and H2 can be merged such that the
original C-constraint is satisfied. Therefore, it is necessary and sufficient to equip the copy
of v in H1 with a C−c-constraint whereas the copy of v in H2 remains unconstrained.
Note that we may assume that after a linear-time preprocessing every edge in H is labeled with
the block it belongs to. Then, for a cut vertex v a split as described above takes O(deg(v))-time.
When no cut vertex is left, we return the resulting alternation-constrained blocks of H. ◀

Algorithm for the Embedding Problem. In the following we assume familiarity with the
PQ-tree [4, 3] and SPQR-tree data structures [7]. We define a more general problem General
Alternation-Constrained Planarity (GACP) whose input is a graph H where vertices
of degree 4, 5, or 6 may be equipped with an alternation constraint or with a (synchronized)
PQ-tree (but not both). The question is whether H admits a planar embedding such that
all alternation constraints are satisfied (i.e., H is feasible) and the order of edges around
a vertex with a PQ-tree B is compatible with B. The 2-connected GACP problem is
the restriction of GACP to input graphs that are 2-connected. Clearly, every instance of
(2-connected) ACP is an instance of (2-connected) GACP. For our purpose, however,
it will turn out that PQ-tree constraints are easier to handle. Thus, given an instance
of ACP we aim to construct an equivalent instance of GACP, where as many alternation
constraints as possible are replaced by PQ-trees. In particular, alternation constraints of
degree-4 vertices can be replaced by the PQ-trees shown in Fig. 7, see the full version [5] for
details. Hence we may assume from now on that no vertex with an alternation constraint in
H has degree 4; i.e., all these vertices have degree 5 or 6.

Let v be a vertex with alternation constraints. We call two edges e, f incident to v a
consecutive edge pair, if they are consecutive (around v) in every planar embedding of H
that satisfies all constraints. In the full version [5] we show that, with the exception of K−r

3 ,
an alternation constraint at a vertex incident to a consecutive edge pair can be replaced by a
PQ-tree. The overall strategy of the remaining section consists of three steps. In Step 1 we
identify consecutive edge pairs in H with the help of the SPQR-tree of H and replace the
corresponding alternation constraints by PQ-trees. By doing this exhaustively and using a
special operation described in [5] to remove the K−r

3 -constraints, we end up with an instance
whose alternation constraints are all K3-constraints and every vertex with such a constraint
appears in the skeletons of exactly two P -nodes and one S-node in the SPQR-tree. In Step 2,
we handle such constraints by considering them on a more global scale. We show that they
form cyclic structures, where either the constraints cannot be satisfied or can be dropped
and satisfied irrespective of the remaining solution. Eventually, we arrive at an instance with
only (synchronized) PQ-trees as constraints, which we solve with standard techniques in
Step 3.

ISAAC 2024

23:12 Simple Realizability of Abstract Topological Graphs

For the rest of this section let H be an instance of 2-connected GACP and let T be
the SPQR-tree of H. We begin with Step 1 and identify consecutive edge pairs.

▶ Lemma 11 (⋆). Let H be an instance of 2-connected GACP and let T be the SPQR-tree
of H. A vertex v with alternation constraint C in H is incident to a consecutive edge pair if

(i) there is a skeleton in T with a virtual edge containing exactly two edges from E(v) or
(ii) there is a skeleton in T with a virtual edge containing all but two edges from E(v) or
(iii) v appears in the skeleton of an R-node in T .

Since we immediately replace alternation constraints by PQ-trees whenever we find a
consecutive edge pair, we assume from now on that no vertex with alternation constraint
different from K−r

3 satisfies one of the conditions of Lemma 11. Let µ be a node of T and let
v be a vertex of its skeleton incident to the virtual edges e1, . . . , ek. Then the distribution
vector (d1, . . . , dk) of v, with di ≥ di+1 for every 1 ≤ i < k, contains for each virtual edge ei

the number di of edges from E(v) contained in ei.
Consider a vertex v with alternation constraint different from K−r

3 in H. Assume that v
appears in an S-node ν in T . Since the vertices in the skeleton of an S-node have degree 2, v
also appears in at least one other node µ adjacent to ν in T . Note that µ is a P -node since
there are no two adjacent S-nodes in an SPQR-tree. Hence, we may assume in the following
that every vertex with alternation constraint appears in a P -node µ. Recall that the vertices
in the skeleton of a P -node have degree at least 3; i.e., the edges of E(v) are distributed
among at least three virtual edges. Since by assumption no virtual edge contains exactly two
edges from E(v) or all but two edges from E(v), the only possible distributions without a
consecutive edge pair are (1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1) and (3, 1, 1, 1).

In the first two cases it can be shown that we can get rid of the alternation constraint C
of v as it is either always possible to reorder the children of µ according to C in a realization
of H without C or H without C (and thus H) is not realizable. Similar techniques allow us to
show that we can get rid of (i) P3-constraints, (ii) K−r

3 -constraints and of (iii) K3-constraints
of poles of P -nodes such that the other pole is either unconstrained or has a PQ-tree. The
proofs are deferred to the full version [5]. Hence, we may assume that only K3-constraints
occur and that every vertex v with K3-constraint appears in the skeleton of a P -node ν in T
with distribution vector (3, 1, 1, 1), whose pole distinct from v also has a K3-constraint. This
concludes Step 1.

Now move to Step 2. Let v be a vertex with K3-constraint. The three edges from E(v)
contained in the same virtual edge in the skeleton of ν must have pairwise distinct colors;
otherwise, H is a no-instance. Since there are no two adjacent P -nodes in an SPQR-tree and
by assumption no vertex with alternation constraint appears in an R-node, v also appears in
an S-node with distribution vector (3, 3). Let µ be an S-node in T that contains v. Since
there are no two adjacent S-nodes in an SPQR-tree, for each neighbor u of v in the skeleton
of µ, there is a P -node adjacent to µ in T with poles v, u. Thus, by assumption, the neighbors
of v in the skeleton of µ also have a K3-constraint. Iteratively, it follows that every vertex in
the skeleton of µ has a K3-constraint and shares a P -node with each of its two neighbors.

Consider an S-node µ in T that contains alternation-constrained vertices v0, . . . , vk−1
in this order; see Fig. 8. In the following, we consider the indices of the vertices and edges
in µ modulo k. For every 0 ≤ i < k, we denote the virtual edge between vi and vi+1 by ei

and let νi be the P -node adjacent to µ in T with poles vi, vi+1. Note that for every i, the
virtual edge e in the skeleton of νi that contains three edges from E(vi) also contains three
edges from E(vi+1), since e is the virtual edge representing µ. Thus, if we fix the order of
the three edges from E(vi) in ei, this fixes the order of the three edges from E(vi+1) in ei.

G. Da Lozzo, W. Didimo, F. Montecchiani, M. Münch, M. Patrignani, and I. Rutter 23:13

v1

v2

v1

v2
µ ν

v3

v0

e0

e2

e3 e1

v2

ν

Figure 8 An S-node µ and an adjacent P -node ν.

Since vi+1 has an alternation constraint, this also fixes the order of the edges from E(vi+1)
in ei+1. In this way, a fixed order of the three edges from E(v1) in e1 implies an order of the
edges from E(vk−1) in ek−1, which in turn implies an order on the three edges from E(v1)
in ek−1. If there exists an order of the three edges from E(v1) in e1 that implies an order of
the remaining edges from E(v1) in ek−1 such that the K3-constraint is satisfied, we obtain an
equivalent instance by removing all K3-constraints of vertices in the skeleton of µ, since we
can reorder the parallels adjacent to ν independently of the remaining graph. Otherwise, H
is a no-instance. By the discussion above, we have the following.

▶ Lemma 12. Let µ be an S-node in T that contains vertices with K3-constraint. There
is an O(deg(µ))-algorithm that either recognizes that H is a no-instance, or computes an
equivalent instance by removing all K3-constraints of vertices in the skeleton of µ.

Now we may assume that our graph H does not contain alternation constraints and start
with Step 3. To solve such an instance, we expand each vertex with its associated PQ-tree, if
any, into a gadget that allows the same circular orders of its incident edges as the PQ-tree
(essentially a P-node becomes a normal vertex, whereas a Q-node expands into a wheel as
described in [13]). Embedding the resulting graph H⋆ and then contracting the gadgets back
into single vertices already ensures that for each vertex of H the order of its incident edges
is represented by its PQ-tree. Since our synchronized PQ-trees only involve Q-nodes, it then
suffices to ensure that synchronized Q-nodes are flipped consistently. To this end, observe
that each wheel is 3-connected and hence its embedding is determined by a single R-node in
the SPQR-tree of H⋆. This allows us to express such constraints in a simple 2-SAT formula
of linear size, similar to, e.g., [1, 13]. Therefore, we obtain the following.

▶ Theorem 13 (⋆). Let A = (G,X) be an n-vertex AT-graph such that λ(A) ≤ 3. There
exists an O(n)-time algorithm that decides whether A is a positive instance of SATR and
that, in the positive case, computes a simple realization of A.

5 Conclusions and Open Problems

We proved that deciding whether an AT-graph A is simply realizable is NP-complete,
already when the size λ(A) of the largest connected components of the crossing graph C(A)
satisfies λ(A) ≤ 6. On the other hand, we described an optimal linear-time algorithm that
solves the problem when λ(A) ≤ 3. This is the first efficient algorithm for the Simple
AT-graph Realizability problem that works on general graphs.

An open problem that naturally arises from our findings is filling the gap between
tractability and intractability: What is the complexity of Simple AT-graph Realizability
if λ(A) is 4 or 5? A first issue is that Lemma 1 only allows to untangle cliques of size 3 and

ISAAC 2024

23:14 Simple Realizability of Abstract Topological Graphs

it is not clear whether a similar result can be proved for components of size 4. Furthermore,
contracting larger crossing structures yields more complicated alternation constraints and it
is not clear whether they can be turned into PQ-trees, similar to the case of components
of size 3. We therefore feel that different techniques may be necessary to tackle the cases
where 4 ≤ λ(A) ≤ 5.

Another interesting direction is to study alternative structural parameters under which
the problem can be tackled, and which are not ruled out by our hardness result, as discussed
in the introduction; for example the vertex cover number of C(A). Finally, one can try to
extend our approach to the “weak” setting (i.e., the Weak AT-graph Realizability
problem), still requiring a simple realization.

References
1 Thomas Bläsius, Simon D. Fink, and Ignaz Rutter. Synchronized planarity with applications

to constrained planarity problems. ACM Trans. Algorithms, 19(4):34:1–34:23, 2023. doi:
10.1145/3607474.

2 Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-ordering with applications to constrained
embedding problems. ACM Trans. Algorithms, 12(2):16:1–16:46, 2016. doi:10.1145/2738054.

3 Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13(3):335–379,
1976. doi:10.1016/S0022-0000(76)80045-1.

4 Kellogg Speed Booth. PQ-tree algorithms. University of California, Berkeley, 1975.
5 Giordano Da Lozzo, Walter Didimo, Fabrizio Montecchiani, Miriam Münch, Maurizio Pat-

rignani, and Ignaz Rutter. Simple realizability of abstract topological graphs. CoRR,
abs/2409.20108, 2024. doi:10.48550/arXiv.2409.20108.

6 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

7 Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of triconnected components
with SPQR-trees. Algorithmica, 15(4):302–318, 1996. doi:10.1007/BF01961541.

8 Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM J. Comput.,
25(5):956–997, 1996. doi:10.1137/S0097539794280736.

9 Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing
beyond planarity. ACM Comput. Surv., 52(1):4:1–4:37, 2019. doi:10.1145/3301281.

10 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

11 Elisabeth Gassner, Michael Jünger, Merijam Percan, Marcus Schaefer, and Michael Schulz.
Simultaneous graph embeddings with fixed edges. In Fedor V. Fomin, editor, 32nd International
Workshop on Graph-Theoretic Concepts in Computer Science, WG 2006, volume 4271 of Lecture
Notes in Computer Science, pages 325–335. Springer, 2006. doi:10.1007/11917496_29.

12 Jacob E. Goodman and Joseph O’Rourke, editors. Handbook of Discrete and Computational
Geometry, Second Edition. Chapman and Hall/CRC, 2004. doi:10.1201/9781420035315.

13 Carsten Gutwenger, Karsten Klein, and Petra Mutzel. Planarity testing and optimal edge
insertion with embedding constraints. J. Graph Algorithms Appl., 12(1):73–95, 2008. doi:
10.7155/JGAA.00160.

14 Seok-Hee Hong. Beyond planar graphs: Introduction. In Seok-Hee Hong and Takeshi Tokuyama,
editors, Beyond Planar Graphs, Communications of NII Shonan Meetings, pages 1–9. Springer,
2020. doi:10.1007/978-981-15-6533-5_1.

15 John E. Hopcroft and Robert Endre Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568,
1974. doi:10.1145/321850.321852.

16 Jan Kratochvíl. String graphs. II. Recognizing string graphs is NP-hard. J. Comb. Theory,
Ser. B, 52(1):67–78, 1991. doi:10.1016/0095-8956(91)90091-W.

https://doi.org/10.1145/3607474
https://doi.org/10.1145/3607474
https://doi.org/10.1145/2738054
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.48550/arXiv.2409.20108
https://doi.org/10.1007/BF01961541
https://doi.org/10.1137/S0097539794280736
https://doi.org/10.1145/3301281
https://doi.org/10.1007/11917496_29
https://doi.org/10.1201/9781420035315
https://doi.org/10.7155/JGAA.00160
https://doi.org/10.7155/JGAA.00160
https://doi.org/10.1007/978-981-15-6533-5_1
https://doi.org/10.1145/321850.321852
https://doi.org/10.1016/0095-8956(91)90091-W

G. Da Lozzo, W. Didimo, F. Montecchiani, M. Münch, M. Patrignani, and I. Rutter 23:15

17 Jan Kratochvíl. A special planar satisfiability problem and a consequence of its
NP-completeness. Discrete Applied Mathematics, 52(3):233–252, 1994. doi:10.1016/
0166-218X(94)90143-0.

18 Jan Kratochvíl, Anna Lubiw, and Jaroslav Nesetril. Noncrossing subgraphs in topological
layouts. SIAM J. Discret. Math., 4(2):223–244, 1991. doi:10.1137/0404022.

19 Jan Kratochvíl and Jiří Matoušek. NP-hardness results for intersection graphs. Commentationes
Mathematicae Universitatis Carolinae, 30(4):761–773, 1989. URL: http://eudml.org/doc/
17790.

20 Jan Kratochvíl and Jirí Matousek. Intersection graphs of segments. J. Comb. Theory, Ser. B,
62(2):289–315, 1994. doi:10.1006/JCTB.1994.1071.

21 Jan Kyncl. Simple realizability of complete abstract topological graphs in P. Discret. Comput.
Geom., 45(3):383–399, 2011. doi:10.1007/S00454-010-9320-X.

22 Jan Kyncl. Simple realizability of complete abstract topological graphs simplified. Discret.
Comput. Geom., 64(1):1–27, 2020. doi:10.1007/S00454-020-00204-0.

23 Marcus Schaefer. Toward a theory of planarity: Hanani-tutte and planarity variants. J. Graph
Algorithms Appl., 17(4):367–440, 2013. doi:10.7155/JGAA.00298.

24 Marcus Schaefer, Eric Sedgwick, and Daniel Stefankovic. Recognizing string graphs in NP. J.
Comput. Syst. Sci., 67(2):365–380, 2003. doi:10.1016/S0022-0000(03)00045-X.

25 Marcus Schaefer and Daniel Stefankovic. Decidability of string graphs. J. Comput. Syst. Sci.,
68(2):319–334, 2004. doi:10.1016/J.JCSS.2003.07.002.

26 Ileana Streinu, Károly Bezdek, János Pach, Tamal K. Dey, Jianer Chen, Dina Kravets,
Nancy M. Amato, and W. Randolph Franklin. Discrete and computational geometry. In
Kenneth H. Rosen, John G. Michaels, Jonathan L. Gross, Jerrold W. Grossman, and Douglas R.
Shier, editors, Handbook of Discrete and Combinatorial Mathematics. CRC Press, 1999.
doi:10.1201/9781439832905.CH13.

ISAAC 2024

https://doi.org/10.1016/0166-218X(94)90143-0
https://doi.org/10.1016/0166-218X(94)90143-0
https://doi.org/10.1137/0404022
http://eudml.org/doc/17790
http://eudml.org/doc/17790
https://doi.org/10.1006/JCTB.1994.1071
https://doi.org/10.1007/S00454-010-9320-X
https://doi.org/10.1007/S00454-020-00204-0
https://doi.org/10.7155/JGAA.00298
https://doi.org/10.1016/S0022-0000(03)00045-X
https://doi.org/10.1016/J.JCSS.2003.07.002
https://doi.org/10.1201/9781439832905.CH13

Exact Algorithms for Clustered Planarity with
Linear Saturators
Giordano Da Lozzo # Ñ

Roma Tre University, Italy

Robert Ganian # Ñ

Algorithms and Complexity Group, TU Wien, Austria

Siddharth Gupta # Ñ

BITS Pilani, K K Birla Goa Campus, India

Bojan Mohar # Ñ

Department of Mathematics, Simon Fraser University, Burnaby, Canada

Sebastian Ordyniak # Ñ

University of Leeds, UK

Meirav Zehavi # Ñ

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
We study Clustered Planarity with Linear Saturators, which is the problem of augmenting
an n-vertex planar graph whose vertices are partitioned into independent sets (called clusters) with
paths – one for each cluster – that connect all the vertices in each cluster while maintaining planarity.
We show that the problem can be solved in time 2O(n) for both the variable and fixed embedding case.
Moreover, we show that it can be solved in subexponential time 2O(

√
n log n) in the fixed embedding

case if additionally the input graph is connected. The latter time complexity is tight under the
Exponential-Time Hypothesis. We also show that n can be replaced with the vertex cover number
of the input graph by providing a linear (resp. polynomial) kernel for the variable-embedding (resp.
fixed-embedding) case; these results contrast the NP-hardness of the problem on graphs of bounded
treewidth (and even on trees). Finally, we complement known lower bounds for the problem by
showing that Clustered Planarity with Linear Saturators is NP-hard even when the number
of clusters is at most 3, thus excluding the algorithmic use of the number of clusters as a parameter.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Computational geometry; Mathematics of computing → Graph algorithms

Keywords and phrases Clustered planarity, independent c-graphs, path saturation, graph drawing

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.24

Related Version Full Version: http://arxiv.org/abs/2409.19410 [39]

Funding Giordano Da Lozzo: Supported, in part, by MUR of Italy (PRIN Project no. 2022ME9Z78 –
NextGRAAL and PRIN Project no. 2022TS4Y3N – EXPAND).
Robert Ganian: Supported by the Austrian Science Fund (FWF, Project 10.55776/Y1329) and the
Vienna Science and Technology Fund (WWTF, Project 10.47379/ICT22029).
Siddharth Gupta: Supported, in part, by BITS Pilani New Faculty Seed Grant.
Bojan Mohar : Supported, in part, by the NSERC Discovery Grant R832714 (Canada), by the ERC
Synergy grant (European Union, ERC, KARST, project number 101071836), and by the Research
Project N1-0218 of ARIS (Slovenia).
Meirav Zehavi: Supported by the European Research Council (ERC) grant titled PARAPATH.

Acknowledgements This research started at the Dagstuhl Seminar: New Frontiers of Parameterized
Complexity in Graph Drawing; seminar number: 23162; April 16-21, 2023 [28].

© Giordano Da Lozzo, Robert Ganian, Siddharth Gupta, Bojan Mohar, Sebastian Ordyniak, and
Meirav Zehavi;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 24; pp. 24:1–24:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giordano.dalozzo@uniroma3.it
http://www.dia.uniroma3.it/~dalozzo
https://orcid.org/0000-0003-2396-5174
mailto:rganian@gmail.com
https://www.ac.tuwien.ac.at/people/rganian/
https://orcid.org/0000-0002-7762-8045
mailto:siddharthg@goa.bits-pilani.ac.in
https://guptasid.bitbucket.io/
https://orcid.org/0000-0003-4671-9822
mailto:mohar@sfu.ca
https://www.sfu.ca/~mohar/
https://orcid.org/0000-0002-7408-6148
mailto:sordyniak@gmail.com
https://eps.leeds.ac.uk/computing/staff/8786/dr-sebastian-ordyniak
https://orcid.org/0000-0003-1935-651X
mailto:meiravze@bgu.ac.il
https://sites.google.com/site/zehavimeirav/
https://orcid.org/0000-0002-3636-5322
https://doi.org/10.4230/LIPIcs.ISAAC.2024.24
http://arxiv.org/abs/2409.19410
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Exact Algorithms for Clustered Planarity with Linear Saturators

1 Introduction

The representation of graphs with a hierarchical structure has become an increasingly crucial
tool in the analysis of networked data across various domains. Indeed, by recursively grouping
vertices into clusters exhibiting semantic affinity, modern visualization tools allow for the
visualization of massive graphs whose entire visualization would otherwise be impossible.
Clustered graphs, where a graph’s vertex set is partitioned into distinctive subsets, natur-
ally originate in various and diverse fields such as knowledge representation [35], software
visualization [41], visual statistics [10], and data mining [40], only to name a few.

Formally, a flat clustered graph (for short, clustered graph or c-graph) is a pair C = (G,V)
where G is a graph and V = {V1, . . . , Vk} is a partition of the vertex set of G into sets Vi

called clusters. The graph G is the underlying graph of C. A pivotal criterion for a coherent
visualization of a clustered graph stems from the classical notion of graph planarity. A
c-planar drawing of a clustered graph C = (G,V) is defined as a planar drawing of G,
accompanied by a representation of each cluster Vi ∈ V as a region Di homeomorphic to a
closed disc, such that regions associated with different clusters are disjoint, the drawing of the
subgraph of G induced by the vertices of each cluster Vi lies in the interior of Di, and each
edge crosses the boundary of a region at most once. The problem of testing for the existence
of a c-planar drawing of a clustered graph, called C-Planarity Testing, was introduced
by Lengauer [37] (in an entirely different context) and then rediscovered by Feng, Cohen, and
Eades [23]. Determining the complexity of the problem has occupied the agenda of the Graph
Drawing community for almost three decades [2,6,7,9,11,14–16,18,19,21,26,29,30,32–34,43].
The seemingly elusive goal of settling the question regarding the computational complexity
of this problem has only been recently addressed by Fulek and Tóth [27], who presented a
polynomial-time algorithm running in O(n8) time (and in O(n16) time for the version of the
problem in which a recursive clustering of the vertices is allowed. It is worth pointing out
that, even before a polynomial-time solution for the C-Planarity problem was presented,
Cortese and Patrignani [17] established that the problem retains the same complexity on
both flat and general (i.e., recursively clustered) instances. Subsequently, a more efficient
algorithm running in quadratic time has been presented by Bläsius, Fink, and Rutter [8].

Patrignani and Cortese studied independent c-graphs, i.e., c-graphs where each of the
clusters induces an independent set [17]. A characterization given by Di Battista and Frati [21]
implies that an independent c-graph is c-planar if and only if the underlying graph can be
augmented by adding extra edges, called saturating edges, in such a way that the resulting
graph has a planar embedding and each cluster induces a tree in the resulting graph. Angelini
et al. [4] considered a constrained version of c-planarity, called Clustered Planarity
with Linear Saturators (for short, CPLS), which takes as input an independent c-graph
and requires that each cluster induces a path (instead of a tree) in the augmented graph.
They proved that the CPLS problem is NP-complete for c-graphs with an unbounded number
of clusters, regardless of whether the input graph is equipped with an embedding or not.
The problem fits the paradigm of augmenting planar graphs with edges in such a way that
the resulting graph remains planar, while achieving some other desired property, which is a
central question in Algorithmic Graph Theory [1, 12,13,24,36,42].

Although CPLS is a topological problem, it stems from a geometric setting within
intersection-link representations, a form of hybrid representations for locally-dense globally-
sparse graphs [4]. Specifically, see also [3], given a c-graph C = (G,V) whose every cluster
induces a clique, the Clique Planarity problem asks to compute a clique planar rep-
resentation of C, i.e., a drawing of C in which each vertex v ∈ V (G) is represented as a

G. Da Lozzo, R. Ganian, S. Gupta, B. Mohar, S. Ordyniak, and M. Zehavi 24:3

(a) (b) (c)

Figure 1 (a) A partial clique planar representation focused on a cluster. (b) Canonical represent-
ation of the cluster in (a). A linear saturation of the vertices of the cluster corresponding to (b).

translate R(v) of a given rectangle R, each intra-cluster edge (u, v) is represented by an inter-
section between R(u) and R(v), and each inter-cluster edge (u, v) is represented by a Jordan
arc connecting the boundaries of R(u) and R(v) that intersects neither the interior of any
rectangle nor the representation of any other inter-cluster edge. Notably, the authors showed
that a c-graph whose every cluster induces a clique admits a clique planar representation
if and only if it admits a so-called canonical representation, where the vertices are squares
arranged in a “linear fashion”; see Fig. 1. This allowed them to establish the equivalence
between CPLS and Clique Planarity. In particular, they proved that a c-graph C whose
every cluster induces a clique is a yes-instance of Clique Planarity if and only if the
c-graph obtained by removing all intra-cluster edges from C is a yes-instance of CPLS.

Our Contribution. In this paper, we study the CPLS problem from a computational
perspective, in both the fixed embedding as well as the variable embedding setting. In
the fixed embedding case, the underlying graph of the c-graph comes with a prescribed
combinatorial embedding, which must be preserved by the output drawing. Instead, in
the variable embedding setting, we are allowed to select the embedding of the underlying
graph. To distinguish these two settings, we refer to the former problem (i.e., where a fixed
embedding is provided as part of the input) as CPLSF. Our main results are as follows.
(1) In Section 3 we give exact single-exponential and sub-exponential algorithms for the
problems. In particular, both CPLS and CPLSF can be solved in 2O(n) time. Moreover,
we obtain a subexponential 2O(

√
n log n) algorithm for CPLSF when the underlying graph is

connected; this result is essentially tight under the Exponential Time Hypothesis [31]. In
both cases, the main idea behind the algorithms is to use a divide-and-conquer approach
that separates the instance according to a hypothetical separator in the solution graph.
(2) In Section 4 we obtain polynomial kernels (and thus establish fixed-parameter tractability)
for both CPLS and CPLSF with respect to the vertex cover number of the underlying graph.
Interestingly, while being provided with an embedding allowed us to design a more efficient
exact algorithm for CPLSF, in the parameterized setting the situation is reversed: we obtain
a linear kernel for CPLS, but for CPLSF the size of the kernel is cubic in the vertex cover
number. Combining the former result with our exact algorithm for CPLS allows us to obtain
an algorithm that runs in single-exponential time with respect to the vertex cover number.
(3) In Section 5 we observe that the CPLS problem is NP-complete on trees and even a
disjoint union of stars. Since stars have treedepth, pathwidth, and treewidth one, this charts
an intractability border between the vertex cover number parameterization used in Section 4
and other parameters. Then we prove that the problem is NP-complete even for c-graphs
having at most 3 clusters, thus strengthening the previously known hardness result for an

ISAAC 2024

24:4 Exact Algorithms for Clustered Planarity with Linear Saturators

unbounded number of clusters. This result combined with the equivalence between CPLS
and Clique Planarity shows that Clique Planarity is NP-complete for instances with
a bounded number of clusters, which solves an open problem posed in [3, OP 4.3].

Full proofs and further details for paragraphs marked with (⋆) can be found in the full
version of the paper [39].

2 Preliminaries

For a positive integer k, we denote by [k] the set {1, . . . , k}. We use standard terminology in
the context of graph theory [22] and graph drawing [20]. An embedded graph GE is a planar
graph G equipped with an embedding E . A noose N of an embedded graph GE is a simple
closed curve in some drawing Γ of GE that

(i) intersects G only at vertices and
(ii) traverses each face of Γ at most once.

Given a subgraph H of G, we denote by E(H) the embedding of H obtained from E by
restricting it to H. The vertex cover number of a graph G is the smallest size of a vertex
cover in G. We assume basic familiarity with the parameterized complexity framework, and
in particular with the notion of kernelization [25].

Clustered Planarity with Linear Saturators. Let C be a c-graph. We say that C has a fixed
embedding if the underlying graph of C is an embedded graph, and has a variable embedding
otherwise. We say that C is an embedded c-graph if C has a fixed embedding.

Let C = (G, {V1, . . . , Vk}) be an independent c-graph, i.e., for every i ∈ [k], Vi is an
independent set of G. We say that G can be linearly saturated if there exist sets Z1, . . . , Zk

of non-edges of G such that
(i) H = (V (G), E(G) ∪ Z) for Z =

⋃k
i=1 Zi is planar,

(ii) for every i ∈ [k], each edge in Zi connects two vertices of Vi in H, and
(iii) for every i ∈ [k], the graph H[Vi] is a path.
For i ∈ [k], the edges in Zi are the saturating edges of cluster Vi, and H is the linear
saturation of G via Z1, . . . , Zk. We now define the Clustered Planarity with Linear
Saturators (for short, CPLS) and the Fixed Embedding Clustered Planarity with
Linear Saturators (for short, CPLSF) problems.

▶ CPLS: Given an independent c-graph (G,V), does there exist a linear saturation of G?
▶ CPLSF: Given an independent embedded c-graph (GE ,V), does there exist a linear
saturation H of G that admits an embedding E ′ for which E ′(G) coincides with E?

To devise exact algorithms for the CPLS and CPLSF problem, it will be useful to consider
a more general setting. A c-graph is paths-independent if each of its clusters induces a
collection of paths; the notion of a linear saturator for a paths-independent c-graph is
the same as that of an independent c-graph. We now define the Clustered Planarity
with Linear Saturators Completion (for short, CPLS-Completion) and the Fixed
Embedding Clustered Planarity with Linear Saturators Completion (for short,
CPLSF-Completion) problem as the generalizations of CPLS and CPLSF, respectively, where
the input is a paths-independent c-graph. Observe that in case of CPLS (resp., CPLSF),
H[Vi] = H[Zi] as every cluster induces an independent set in G; this is, however, not
necessarily true in the case of CPLS-Completion (resp., CPLSF-Completion).

G. Da Lozzo, R. Ganian, S. Gupta, B. Mohar, S. Ordyniak, and M. Zehavi 24:5

3 Exact Algorithms for CPLS and CPLSF

This section details our exact single- and sub-exponential algorithms for CPLS and CPLSF.

Proof Ideas. We aim to solve the problem via a divide-and-conquer approach, where at
each iteration, we “split” the current instance of the problem into simpler (and, in particular,
substantially smaller) sub-instances of the problem. To understand how to perform the split,
consider an (unknown) solution Z, and the graph H = (V (G), E(G) ∪ Z). As this graph
is planar, there exists a noose N that intersects only O(

√
|V (G)|) vertices of H and does

not intersect any edges of H, such that both the interior and the exterior of N contain a
constant fraction (roughly between 1/3 to 2/3) of the vertices of G [38]. Thus, naturally, we
would like to split our problem instance into two instances, one corresponding to the interior
and boundary of N , and the other corresponding to the exterior and boundary of N (so, the
boundary is common to both). However, two issues arise, which we describe next.

The first (simpler) issue is that we do not know N since we do not know Z. However,
since N intersects only few vertices, we can simply “guess” N by guessing the set U of
intersected vertices, and the cyclic order ρ in which N intersects them. By guessing, we
mean that we iterate over all possible options, and aim to find at least one that yields a
solution (if a solution exists). Having U and ρ at hand, we still do not know the interior
and exterior of N , and therefore, we still do not know how to create the two simpler
sub-instances. Thus, we perform additional guesses: We guess the set I of vertices drawn
(with respect to the planar drawing of H) strictly inside N and thereby also the set O of
vertices drawn strictly outside N . Additionally, for the set of edges having both endpoints
in U , we guess a partition {Ein, Eout} that encodes which of them are drawn inside N

and which of them are drawn outside N . Specifically for the fixed embedding case, we
non-trivially exploit the given embedding to perform the guesses of I,O and {Ein, Eout} in a
more sophisticated manner that yields only subexponentially many guesses.

The second (more complicated) issue is that we cannot just create two instances: One for
the subgraph of G induced by I ∪ U (and without the edges in Eout) and the other for the
subgraph of G induced by O∪U (and without the edges in Ein) and solve them independently.
The two main concerns are the following: First, we need a single planar drawing for the entire
(unknown) graph H and so the drawings of the two graphs in the two sub-instances should be
“compatible”. Second, we may not need to (and in some cases, in fact, must not) add edges to a
graph in any of the two sub-instances to connect all vertices in the same cluster in that graph
into a single path. Instead, we need to create a collection of paths, so that the two collections
that we get, one for each of the two sub-instances, will together yield a single path.

To handle the second concern, we perform additional guesses. Specifically, we guess some
information on how the (solution) cluster paths in H “behave” when they are restricted to
the interior of N – we guess a triple (M,P,D) which encodes, roughly speaking, a pairing M
between some vertices in U that are connected by the cluster paths only using the interior
of N , the set of vertices P through which the cluster paths enter the interior of N and “do not
return”, and the set of vertices D that are incident to two edges in Z drawn in the interior.
Now, having such a guess at hand, we handle both concerns by defining a special graph that
augments the graph induced by G[U∪O] (with the edges in Ein removed) so that the solutions
returned for the corresponding sub-instance will have to be, in some sense, “compatible” with
(M,P,D) as well as draw O and Eout outside N while preserving the order ρ. The definition
of this augmented graph is, perhaps, the most technical definition required for the proof,
as it needs to handle both concerns simultaneously. Among other operations performed to

ISAAC 2024

24:6 Exact Algorithms for Clustered Planarity with Linear Saturators

obtain this augmented graph, for the first concern, we add extra edges between vertices in M ,
attach pendants on P , and treat vertices in D as if they belong to their own clusters, and for
the second concern, we triangulate the result in a careful manner.

The Variable-Embedding Case. Towards solving CPLS, we recursively solve the more
general problem mentioned earlier, namely, CPLS-Completion. Additionally, we suppose that
some of the vertices of the input graph can be marked, and that we are not allowed to add
edges incident to marked vertices. To avoid confusion, we will denote this annotated version
by CPLS-Completion*. The rest of this section is devoted to the proof of the following.

▶ Theorem 1. Let C = (G,V) be an n-vertex paths-independent c-graph. It can be tested
whether C is a positive instance of CPLS-Completion* in 8n+O(

√
n log n) = 2O(n) time.

We start with the following definition.

▶ Definition 2 (Non-Crossing Matchings and the Partition MatPenDel). Let C = (G,V) be
a paths-independent c-graph. Let ρ be a cyclic ordering of some subset U of V (G). A matching
M is a non-crossing matching of ρ if it is a matching in the graph H = (U, {{a, b} : a, b ∈ U})
such that for every pair of edges {a, b}, {c, d} ∈ M , when we traverse U in the cyclic order
ρ, starting with a, we either encounter b before both c and d, or we encounter both c and d
before b. Denote by MatPenDel(V, ρ) (which stands for Matching, Pendants and Deleted)
the set of all triples (M,P,D) such that:

M is a non-crossing matching of ρ such that each edge of M matches only vertices in the
same cluster, and
P,D ⊆ U \ V (M) are disjoint sets, where V (M) is the set of vertices matched by M .

Intuitively, ρ will represent a cyclic balanced separator of G, i.e., a noose in a drawing of
the solution graph that separates the solution graph into two almost equally sized subgraphs,
M will represent path segments between pairs of vertices on ρ, P (“pendants”) will represent
vertices through which the paths leave ρ never to return,1 and D will represent degree-2
vertices on the aforementioned path segments (which will be, in a sense, deleted when we
“complement” the triple). This will be formalized in Definition 5 ahead.

▶ Observation 3. Let C = (G,V) be a paths-independent c-graph. Let ρ be a cyclic or-
dering of some subset U of V (G). Then, |MatPenDel(V, ρ)| = 2O(|U |). Moreover, the set
MatPenDel(V, ρ) can be computed in time 2O(|U |).

We formalize the notion of a partial solution as follows.

▶ Definition 4 (Partial Solution). Let C = (G,V) be a paths-independent c-graph. A cluster
path is a path all of whose vertices belong to the same cluster in V. A partial solution for
C is a set S of vertex-disjoint cluster paths. Note that S can contain several cluster paths
whose vertices belong to the same cluster. We say that S is properly marked if every edge in
S incident to a marked vertex also belongs to G.

Next, we formalize how a triple in MatPenDel captures information on a partial solution
(see Fig. 2a). For intuition, think of S as if it consisted of paths that contain vertices only
from the exterior (or only from the interior) of a cyclic separator.

1 Thus, for a (non-partial) solution, P contains at most 2 vertices per cluster, though we do not need to
formally demand this already in Definition 5.

G. Da Lozzo, R. Ganian, S. Gupta, B. Mohar, S. Ordyniak, and M. Zehavi 24:7

a
b
c
d
e

f g h i
j
k

l

m

n
o

pqr
s

t

(a)

a
b
c
d
e

f g h i
j
k

l

m

n
o

pqr
s

t

(b)

Figure 2 (a) Example for Definition 5: The paths in S are drawn as black curves, and the
vertices in U are marked by disks. We have M = {{a, b}, {c, e}, {f, i}}, P = {m, o, r}, D =
{d, g, h, j, k, l, n, p, q} and U \ (V (M) ∪ P ∪ D) = {s, t}. (b) Example for Definition 7: The
vertices in U are marked by disks, and their association with the clusters is indicated by col-
ors. Suppose Min = {{a, b}, {c, e}, {f, i}}, Pin = {m, o, r}, Din = {d, g, h, j, k, l, n, p, q} and
U \ (V (Min) ∪ Pin ∪ Din) = {s, t}, and Mout = {{f, o}, {i, m}, {r, a}}, Pout = {c, e}, Dout = {s, t}
and U \ (V (Mout) ∪ Pout ∪ Dout) = {b, d, g, h, j, k, l, n, p, q}. Then, the triples Tin = (Min, Pin, Din)
and Tout = (Mout, Pout, Dout) are complementary, and GTin,Tout is a subgraph of the illustrated graph
induced by {a, b, c, e, f, i, m, o, r}. The pendants are the endpoints of the edges going inside or
outside the cycle (the vertex b, for example, is not adjacent to a pendant, while the vertex c is).

▶ Definition 5 (Extracting a Triple from a Partial Solution). Let C = (G,V) be
a paths-independent c-graph. Let U ⊆ V (G) and let S be a partial solution. Then,
ExtractTriple(U,S) = (M,P,D) is defined as follows:

M has an edge between the endpoints of every path in S that has both endpoints in U ,
P ⊆ U consists of the vertices of degree 1 in S belonging to U that are not in V (M),2 and
D ⊆ U consists of the vertices of degree 2 in S belonging to U .

Further, S is compatible with a cyclic ordering ρ of U if M is a non-crossing matching of ρ.

We have the following immediate observation, connecting Definitions 2 and 5.

▶ Observation 6. Let C = (G,V) be a paths-independent c-graph. Let ρ be a cyclic or-
dering of some subset U of V (G). Let S be a partial solution compatible with ρ. Then,
ExtractTriple(U,S) ∈ MatPenDel(V, ρ).

We will be interested, in particular, in triples which are complementary (see Fig. 2b),
which intuitively means that partial solutions for the inside and the outside described by the
two triples can be combined to a solution for the whole graph:

▶ Definition 7 (Complementary Triples in MatPenDel). Let C = (G,V) be a paths-
independent c-graph. Let ρ be a cyclic ordering of some subset U of V (G). Then, Tin =
(Min, Pin, Din), Tout = (Mout, Pout, Dout) ∈ MatPenDel(V, ρ) are complementary if:
1. Din ⊆ U \ (V (Mout) ∪ Pout ∪Dout), and Dout ⊆ U \ (V (Min) ∪ Pin ∪Din).3

2. Let GTin,Tout denote the graph on vertex set V (Mout) ∪ Pout ∪ V (Min) ∪ Pin and edge set
Min ∪Mout, such that for every vertex in Pin, and similarly, for every vertex in Pout, we

2 In other words, for every path in S having precisely one endpoint in U , P contains the endpoint in U .
3 The reason why we write ⊆ rather than = is that some vertices in, e.g., U \ (V (Mout) ∪ Pout ∪ Dout) can

be the endpoints of solution paths. For example, consider the vertex b in Fig. 2b.

ISAAC 2024

24:8 Exact Algorithms for Clustered Planarity with Linear Saturators

add a new vertex attached to it and belonging to the same cluster.4 Then, this graph is a
collection of paths, such that all vertices in its vertex set that belong to the same cluster
in V also belong to the same (single) path, and all vertices that belong to the same path
also belong to the same cluster.

The utility of complementary triples is in the following definition, which specifies when a
partial solution S for the inner part satisfying ExtractTriple(U,S) = Tout can be combined
with any partial solution S ′ for the outer part that satisfies ExtractTriple(U,S ′) = Tin.

▶ Definition 8 (Partial Solution Compatible with (Tin, I, Ein)). Consider (G,V), a cyclic
ordering ρ of some U ⊆ V (G), Tin = (Min, Pin, Din) ∈ MatPenDel(V, ρ), I ⊆ V (G) \ U , and
Ein ⊆ E(G[U]). Then, a partial solution S is compatible with (Tin, I, Ein) if:
1. ExtractTriple(U,S) = Tout and Tin are complementary.
2. Let G′

in = G[I ∪ U] − (E(G[U]) \ Ein) and Gin = G′
in − Din. We have that S contains

all and only the vertices in Gin, and all (but not necessarily only)5 edges in Gin between
vertices in the same cluster.

3. There exists a planar drawing φin of G′
in ∪ E(S) with an inner-face whose boundary

contains U (with, possibly, other vertices) ordered as by ρ.
4. Each path in S satisfies one of the following conditions: (a) it consists of all vertices of a

cluster in V that belong to Gin, and has no endpoint in U , or (b) it has an endpoint in U .

Towards the statement that will show the utility of compatibility (in Lemma 10 ahead),
we need one more definition, which intuitively provides necessary conditions for obtaining a
solution for (G,V) from a partial solution that is compatible with (Tin, I, Ein).

▶ Definition 9 (Sensibility of (Tin, I, Ein)). Consider (G,V), a cyclic ordering ρ of some
U ⊆ V (G), Tin = (Min, Pin, Din) ∈ MatPenDel(V, ρ), I ⊆ V (G) \ U , and Ein ⊆ E(G[U]).
Then, (Tin, I, Ein) is sensible if:
1. There is no edge {u, v} ∈ E(G) with v ∈ I and u ∈ O for O = V (G) \ (I ∪ U).
2. No vertex in Din is adjacent in G′

in = G[I ∪ U] − (E(G[U]) \ Ein) to a vertex in the
same cluster in V. Additionally, no vertex in U \ (V (Min) ∪ Pin ∪ Din) is adjacent in
G′

out = G[O ∪ U] − Ein for O = V (G) \ (I ∪ U) to a vertex in the same cluster in V.
3. No cluster in V has non-empty intersection with both I ∪ (U \Din) and O ∪Din but not

with V (Min) ∪ Pin.

We show that compatible solutions yield solutions to CPLS-Completion* in MatPenDel.

▶ Lemma 10. Consider (G,V), a cyclic ordering ρ of some U ⊆ V (G), Tin = (Min, Pin, Din) ∈
MatPenDel(V, ρ), I ⊆ V (G) \ U , and Ein ⊆ E(G[U]). Suppose that (Tin, I, Ein) is sensible.
Additionally, consider

a properly marked partial solution Sin compatible with (Tin, I, Ein), and
a properly marked partial solution Sout compatible with ExtractTriple(U,Sin) = (Tout, O,

Eout) where O = V (G) \ (I ∪ U) and Eout = E(G[U]) \ Ein.
Then, Z = E(Sin ∪Sout)\E(G) is a solution to (G,V) as an instance of CPLS-Completion*.

The crucial tool used to partition an instance of CPLS-Completion* into two smaller
instances is the augmented graph (AugmentGraph((G,V), ρ, (M,P,D))), which is illustrated
in Fig. 3 and intuitively ensures that a solution for the given graph is compatible with the
triple (T, P,D). The central statement about augmented graphs is the following.

4 So, if a vertex belongs to both Pin and Pout, we attach two new vertices to it.
5 As the paths in S can contain edges that are not edges in G.

G. Da Lozzo, R. Ganian, S. Gupta, B. Mohar, S. Ordyniak, and M. Zehavi 24:9

a

b
c
d
e

f g h i
j
k

l

m

n
o

pqr
s

t

Figure 3 Example of an augmented graph. The vertices in U are marked by disks,
and the clusters in V are {{a, b, p, q, r, s, t}, {c, d, e}, {f, g, h, i, l, m, n, o}, {j, k}}. Suppose M =
{{a, b}, {c, e}, {f, i}}, P = {m, o, r}, D = {d, g, h, j, k, l, n, p, q} and U \ (V (M) ∪ P ∪ D) = {s, t}.
Newly added vertices to the augmented graph are marked by squares, vertices belonging to their
own singleton clusters are yellow or purple, and the other clusters are: (i) a, b, r, s, t and the two
neighboring squares drawn inside the cycle (blue); (ii) {c, e} and the neighboring square drawn inside
the cycle (green); (iii) {f, i, m, o} and the three neighboring squares drawn inside the cycle (black).

▶ Lemma 11. Consider (G,V), a cyclic ordering ρ of some U ⊆ V (G), Tin = (Min, Pin, Din) ∈
MatPenDel(V, ρ), I ⊆ V (G) \ U , and Ein ⊆ E(G[U]). Let Zin ̸=NULL6 be a solution
to the instance (GA,VA) =AugmentGraph(G′

in, ρ, Tin) of CPLS-Completion* (where
G′

in = G[I ∪ U] − (E(G[U]) \ Ein)). Then, in polynomial time, we can compute a partial
solution compatible with (Tin, I, Ein) that is marked properly.

Using the ideas outlined at the beginning of the section, we can now use Lemmas 10
and 11 to show Theorem 1.

Fixed Embedding. By building on the ideas for the variable-embedding case, we also provide
a single-exponential algorithm for CPLSF, which becomes subexponential if additionally the
input graph is connected. While the single-exponential algorithm is almost identical to our
algorithm for CPLS, the subexponential algorithm uses connectivity together with the fixed
embedding to reduce the number of guesses during the initial phase of the algorithm.

▶ Theorem 12. CPLSF-Completion (and thus also CPLSF) can be solved in time 2O(n).
Moreover, it can be solved in time 2O(

√
n log n) if the input graph is connected.

4 The Kernels

In this section we provide kernelization algorithms for CPLS and CPLSF parameterized by
the vertex cover number k of the input graph G. Assume that X is a vertex cover of G of
size k; we will deal with computing a suitable vertex cover in the proofs of the main theorems
of this section. As our first step, we construct the set Z consisting of the union of X with all
vertices of degree at least 3 in G. Since G can be assumed to be planar, we have:

▶ Lemma 13 ([25, Lemma 13.3]). |Z| ≤ 3k.

6 We use NULL to algorithmically represent the non-existence of a solution (particularly in pseudocode).

ISAAC 2024

24:10 Exact Algorithms for Clustered Planarity with Linear Saturators

Note that each vertex in V (G)\Z now has 0, 1 or 2 neighbors in Z. For each subset Q ⊆ Z

of size at most 2, let the neighborhood type TQ consist of all vertices in V (G) \ Z whose
neighborhood in Z is precisely Q. Moreover, for i ∈ {0, 1, 2} we let Ti =

⋃
Q⊆Z,|Q|=i TQ

contain all vertices outside of Z with degree i. At this point, our approach for dealing with
CPLS and CPLSF will diverge.

The Fixed-Embedding Case. We will begin by obtaining a handle on vertices with precisely
two neighbors in Z. However, to do so we first need some specialized terminology. To make
our arguments easier to present, we assume w.l.o.g. that the input instance I is equipped
with a drawing D of G that respects the given embedding.

Let G2 be the subgraph of G induced on Z ∪ T2, where T2 is the set of all vertices in
V (G) \ Z with precisely two neighbors in Z. Let D2 be the restriction of D to G2, and
observe that D2 only differs from D by omitting some pendant and isolated vertices. Let
a face in D2 be special if it is incident to more than 2 vertices of Z, and clean otherwise;
notice that the boundary of a clean face must be a C4 which has precisely two vertices of Z
that lie on opposite sides of the C4 and which contains only vertices in T0 ∪ T1 in its interior.

▶ Lemma 14. The number of special faces in D2 is upper-bounded by 9k, and the number of
vertices in T2 that are incident to at least one special face is upper-bounded by 36k.

For a pair {a, b} ⊆ Z, we say that a set P of clean faces is an (ab)-brick if (1) the only
vertices of Z they are incident to are a and b, and (2) P forms a connected region in D2,
and (3) P is maximal with the above properties. Since the boundaries of every clean face
in P consists of a, b, and two degree-2 vertices, this in particular implies that the clean faces
in P form a sequence where each pair of consecutive faces shares a single degree-2 vertex;
this sequence may either be cyclical (in the case of a and b not being incident to any special
faces; we call such bricks degenerate), or the first and last clean face in P are adjacent to
special faces. Observe that a degenerate brick may only occur if |Z| = 2.

▶ Observation 15. The total number of bricks in D2 is upper-bounded by 24k.

In the next lemma, we use Observation 15 to guarantee the existence of a brick with
sufficiently many clean faces to support a safe reduction rule.

▶ Lemma 16. Assume |T2| ≥ 420k + 1, where k is the size of a provided vertex cover of
G. Then we can, in polynomial time, either correctly determine that I is a no-instance or
find a vertex v ∈ T2 with the following property: I is a yes-instance if and only if so is the
instance I ′ obtained from I by removing v.

Our next goal will be to reduce the size of T1. To do so, we will first reduce the total
number of clusters occurring in the instance – in particular, while by now we have the tools
to reduce the size of G2 (and hence also the number of clusters intersecting V (G2) = T2 ∪Z),
there may be many other clusters that contain only vertices in T1 and T0. Let Vi be a cluster
which does not intersect V (G2) = T2 ∪Z. Observe that if Vi contains vertices in more than a
single face of D2, then I must be a no-instance; for the following, we shall hence assume that
this is not the case. In particular, for a cluster Vi such that all of its vertices are contained
in a face f of D, we define its type t(i) as follows. ti is the set which contains f as well as all
vertices v on the boundary of f fulfilling the following condition: each v ∈ t(i) is adjacent to
a pendant vertex a ∈ Vi where a is drawn in f . An illustration of types is provided in Fig. 4.

For the next lemma, let τ be the set of all types occurring in I.

▶ Lemma 17. If |V (G2)| = α and D2 has β faces, then |τ | ≤ 7α+ 8β or I is a no-instance.

G. Da Lozzo, R. Ganian, S. Gupta, B. Mohar, S. Ordyniak, and M. Zehavi 24:11

s1

s2

s3

s4s5

s6

s7

Figure 4 An illustration of cluster types in a depicted face f . In this example, individual clusters
are marked by colors and none of the vertices s1, . . . , s7 belong to any of the colored clusters. The
types of the red, blue, yellow and green clusters are {f, s5, s6, s7}, {f, s1, s3, s4, s5, s7}, {f, s2} and
{f, s1, s2, s4}, respectively. Note that the depicted example cannot occur in a yes-instance since the
curves for, e.g., the blue and red clusters would need to cross each other.

Lemma 17 allows us to bound the total number of cluster types in the instance via
Lemma 18 below. The proof relies on a careful case analysis that depends on the size of
the cluster types of the considered clusters; for cluster types of size at least 4 we directly
obtain a contradiction with planarity, but for cluster types of size 2 or 3 we identify “rainbow
patterns” that must be present and allow us to simplify the instance.

▶ Lemma 18. Assume there are three distinct clusters, say V1, V2 and V3, which do not
intersect V (G2) and all have the same type of size at least 2. Then we can, in polynomial
time, either correctly identify that I is a no-instance or find a non-empty set A ⊆ T1 with the
following property: I is a yes-instance iff so is the instance I ′ obtained from I by removing A.

Having bounded the number of cluster types (Lemma 17) and the number of clusters of
each type (Lemma 18), it remains to bound the number of vertices in each of the clusters.

▶ Lemma 19. Let a ∈ V (G2) and f be a face of D2 incident to a, and let k be the size of a
provided vertex cover of G. Assume a cluster Vi contains at least 2k + 3 vertices in T1 that
are adjacent to a and lie in f . Then we can, in polynomial time, either correctly identify
that I is a no-instance, or find a vertex q ∈ Vi ∩ T1 such that I is a yes-instance if and only
if so is the instance I ′ obtained by deleting q.

We now have all the ingredients required to obtain our polynomial kernel:

▶ Theorem 20. CPLSF has a cubic kernel when parameterized by the vertex cover number.

The Variable-Embedding Case. For CPLS, we establish the following result:

▶ Theorem 21 (⋆). CPLS has a linear kernel when parameterized by the vertex cover
number.

Proof Sketch. One can immediately observe that the vertices in T0 are irrelevant. On a
high level, we can then proceed by devising reduction rules that result in a new instance that
does not contain large clusters; however it may still happen that there are many clusters
occurring in the instance. To deal with this, we group all the clusters together depending
on the “neighborhood types” of the vertices they contain. A second level of analysis and
reduction then allows us to deal with each group of clusters; there, the most difficult case
surprisingly arises when dealing with instances containing many clusters, each consisting of
precisely two pendant vertices. ◀

ISAAC 2024

24:12 Exact Algorithms for Clustered Planarity with Linear Saturators

As an immediate consequence of Theorem 21 and Theorem 1, we can obtain an improved
asymptotic running time for solving CPLS:

▶ Corollary 22. CPLS can be solved in time 2O(k) · nO(1), where k and n are the vertex
cover number and the number of vertices of the input graph, respectively.

5 NP-completeness

The CPLS problem was shown NP-complete for instances with an unbounded number of
clusters, even when the underlying graph is a subdivision of a 3-connected planar graph [4].
It is a simple exercise to see that CPLS is NP-complete for trees and for forests of stars (see
the Full Version). We establish the NP-completeness of CPLS and CPLSF when restricted to
instances with up to three clusters, which we refer to as CPLS-3 and CPLSF-3, respectively.

The proof is based on a reduction from a specialized and still NP-complete version of the
Bipartite 2-Page Book Embedding (B2PBE) problem [5]. Let G = (Ub, Ur, E) be a
bipartite planar graph, where the vertices in Ub and Ur are called black and red, respectively.
A bipartite 2-page book embedding of G is a planar embedding E of G in which the vertices
are placed along a Jordan curve ℓE , called spine of E , the black vertices appear consecutively
along ℓE , and each edge lies entirely in one of the two regions of the plane, called pages,
bounded by ℓE . The B2PBE problem asks whether a given bipartite graph admits a bipartite
2-page book embedding. We will reduce from the B2PBE with Prescribed End-vertices
(B2PBE-PE) problem. Given a bipartite planar graph G = (Ub, Ur, E) and a quadruple
(bs, bt, rs, rt) ∈ Ub × Ub × Ur × Ur, B2PBE-PE asks whether G admits a bipartite 2-page
book embedding E in which the vertices bs, bt, rs, and rt appear in this counter-clockwise
order along the spine of E . Let G+ be a planar supergraph of G whose vertex set is Ub ∪ Ur

and whose edge set is E ∪ E(σ), where σ is a cycle that traverses all the vertices of Ub (and,
thus, also of Ur) consecutively. A cycle σ exhibiting the above properties is a connector of G.
By [5, Lemma 2.1] and the definition of connector, we have the following.

▶ Lemma 23. A bipartite graph G = (Ub, Ur, E) with distinct vertices bs, bt ∈ Ub and
rs, rt ∈ Ur is a positive instance of B2PBE-PE iff it admits a connector σ in which bt and rt

immediately precede rs and bs, respectively, counter-clockwise along σ.

Next, we sketch a reduction from B2PBE-PE, which is NP-complete even for 2-connected
graphs, to CPLS-3. As B2PBE-PE remains NP-complete even for instances with a fixed
embedding (see [5] for details), the reduction also works if the target problem is CPLSF-3.

▶ Lemma 24. B2PBE-PE ≤P
m CPLS-3.

b′t r′s

r∗

b∗

α

β

ψ

ω

(a) Gadget Q

b′t r′s

r∗

b∗

α

β

ψ

ω

(b) Saturation of Q

b′s r′t

r⋄

b⋄

λ

µ

χ

ν

(c) Gadget P

b′s r′t

r⋄

b⋄

λ

µ

χ

ν

(d) Saturation of P

Figure 5 Illustrations for the gadget Q and P.

G. Da Lozzo, R. Ganian, S. Gupta, B. Mohar, S. Ordyniak, and M. Zehavi 24:13

rt

bs

r4

r3
r2

r1

b4

b3

b2

b1
f ′′in

f ′′out

f ′in

f ′out

πb πre′′in

e′′out

e′out

e′in

σ

bt

rs

(a)

P

Q

rt

bs

r4

r3
r2

r1

b4

b3

b2

b1

c′′in
c′in

c′out

β

ψ

µ

ν

πb πr

c′′out

bt

rs

(b)

Figure 6 Illustrations for the proof of Lemma 24. (a) A planar embedding Eσ of a bipartite graph
G together with a connector σ of G. The edges of σ are dashed. (b) A planar embedding of the
linear saturation of the underlying graph of the independent c-graph C, obtained from Eσ.

Proof Sketch. In our reduction from B2PBE-PE to CPLS-3, we will use the originating
gadget Q in Fig. 5a and the traversing gadget P in Fig. 5c. These are independent c-graphs
with three clusters: red, blue, and black. Let W be a graph with 4 labeled vertices bs, bt, rb,
and rt. The PQ-merge of W is the graph obtained by taking the union of W , GQ, and GP ,
identifying the vertices bt and rs of W with the vertices b′

t and r′
s of GQ, respectively, and

identifying the vertices bs and rt of W with the vertices b′
s and r′

t of GP , respectively.
Given a connected bipartite planar graph G = (Ub, Ur, E) and an ordered quadruple

(bs, bt, rs, rt) ∈ Ub ×Ub ×Ur ×Ur, we construct an independent c-graph C = (H, {Vb, Vr, Vc})
with three clusters (red, black, and blue) as follows. First, we initialize the underlying
graph H of C to be the PQ-merge of G (which is well-defined, since G contains the 4 distinct
vertices bs, bt, rs, and rt.). Also, we initialize Vb = Ub ∪ {b∗, b⋄}, Vr = Ur ∪ {r∗, r⋄}, and
Vc = {α, β, λ, µ, ν, χ, ψ, ω}. Second, we subdivide, in H, each edge e of E(G) with a dummy
vertex ce and assign the vertex ce to Vc.

Clearly, the above reduction can be carried out in polynomial time in the size of G. In the
Full Version, we show that C is a positive instance of CPLS-3 if and only if (G, bs, bt, rs, rt) is
a positive instance of B2PBE-PE. The crux of the proof relies on the property that, in any
planar embedding of a linear saturation of the underlying graph of C, the end-vertices of the
path saturating the red cluster must be r∗ and r⋄, the end-vertices of the path saturating the
blue cluster must be α and ω, and the end-vertices of the path saturating the black cluster
must be b∗ and b⋄. This allows us to turn an embedding of G together with its connector
(Fig. 6a) into a linear saturation of the underlying graph of C (Fig. 6b), and vice versa. ◀

Lemma 24 and the fact that CPLS and CPLSF clearly lie in NP imply the main result
of the section, which is summarized in the following and rules out the existence of FPT
algorithms for CPLS and CPLSF parameterized by the number of clusters, unless P = NP.

▶ Theorem 25. CPLS and CPLSF are NP-complete even when restricted to instances with
at most three clusters.

ISAAC 2024

24:14 Exact Algorithms for Clustered Planarity with Linear Saturators

6 Conclusions

This paper established upper and lower bounds that significantly expand our understanding
of the limits of tractability for finding linear saturators in the context of clustered planarity.

We remark that, prior to this research, the problem was not known to be NP-complete
for instances with O(1) clusters. Our NP-hardness result for instances of CPLS with three
clusters narrows the complexity gap to its extreme (while also solving the open problem posed
in [3, OP 4.3] about the complexity of Clique Planarity for instances with a bounded
number of clusters), and animates the interest for the remaining two cluster case.

References
1 Greg Aloupis, Luis Barba, Paz Carmi, Vida Dujmovic, Fabrizio Frati, and Pat Morin. Com-

patible connectivity augmentation of planar disconnected graphs. Discret. Comput. Geom.,
54(2):459–480, 2015. doi:10.1007/S00454-015-9716-8.

2 Patrizio Angelini and Giordano Da Lozzo. Clustered planarity with pipes. Algorithmica,
81(6):2484–2526, 2019. doi:10.1007/S00453-018-00541-W.

3 Patrizio Angelini and Giordano Da Lozzo. Beyond clustered planar graphs. In Seok-Hee
Hong and Takeshi Tokuyama, editors, Beyond Planar Graphs, Communications of NII Shonan
Meetings, pages 211–235. Springer, 2020. doi:10.1007/978-981-15-6533-5_12.

4 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Pat-
rignani, and Ignaz Rutter. Intersection-link representations of graphs. J. Graph Algorithms
Appl., 21(4):731–755, 2017. doi:10.7155/JGAA.00437.

5 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, and Maurizio
Patrignani. 2-Level quasi-planarity or how caterpillars climb (SPQR-)trees. In Dániel Marx,
editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021,
Virtual Conference, January 10 - 13, 2021, pages 2779–2798. SIAM, 2021. doi:10.1137/1.
9781611976465.165.

6 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrig-
nani, and Vincenzo Roselli. Relaxing the constraints of clustered planarity. Comput. Geom.,
48(2):42–75, 2015. doi:10.1016/J.COMGEO.2014.08.001.

7 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, and Vincenzo
Roselli. The importance of being proper: (in clustered-level planarity and T-level planarity).
Theor. Comput. Sci., 571:1–9, 2015. doi:10.1016/J.TCS.2014.12.019.

8 Thomas Bläsius, Simon D. Fink, and Ignaz Rutter. Synchronized planarity with applications
to constrained planarity problems. ACM Trans. Algorithms, 19(4):34:1–34:23, 2023. doi:
10.1145/3607474.

9 Thomas Bläsius and Ignaz Rutter. A new perspective on clustered planarity as a combinatorial
embedding problem. Theor. Comput. Sci., 609:306–315, 2016. doi:10.1016/J.TCS.2015.10.
011.

10 Ulrik Brandes and Jürgen Lerner. Visual analysis of controversy in user-generated encyclopedias.
Inf. Vis., 7(1):34–48, 2008. doi:10.1057/PALGRAVE.IVS.9500171.

11 Markus Chimani, Giuseppe Di Battista, Fabrizio Frati, and Karsten Klein. Advances on testing
c-planarity of embedded flat clustered graphs. Int. J. Found. Comput. Sci., 30(2):197–230,
2019. doi:10.1142/S0129054119500011.

12 Markus Chimani, Carsten Gutwenger, Petra Mutzel, and Christian Wolf. Inserting a vertex
into a planar graph. In Claire Mathieu, editor, Proceedings of the Twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6,
2009, pages 375–383. SIAM, 2009. doi:10.1137/1.9781611973068.42.

13 Markus Chimani and Petr Hlinený. Inserting multiple edges into a planar graph. In Sándor P.
Fekete and Anna Lubiw, editors, 32nd International Symposium on Computational Geometry,
SoCG 2016, June 14-18, 2016, Boston, MA, USA, volume 51 of LIPIcs, pages 30:1–30:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPICS.SOCG.2016.
30.

https://doi.org/10.1007/S00454-015-9716-8
https://doi.org/10.1007/S00453-018-00541-W
https://doi.org/10.1007/978-981-15-6533-5_12
https://doi.org/10.7155/JGAA.00437
https://doi.org/10.1137/1.9781611976465.165
https://doi.org/10.1137/1.9781611976465.165
https://doi.org/10.1016/J.COMGEO.2014.08.001
https://doi.org/10.1016/J.TCS.2014.12.019
https://doi.org/10.1145/3607474
https://doi.org/10.1145/3607474
https://doi.org/10.1016/J.TCS.2015.10.011
https://doi.org/10.1016/J.TCS.2015.10.011
https://doi.org/10.1057/PALGRAVE.IVS.9500171
https://doi.org/10.1142/S0129054119500011
https://doi.org/10.1137/1.9781611973068.42
https://doi.org/10.4230/LIPICS.SOCG.2016.30
https://doi.org/10.4230/LIPICS.SOCG.2016.30

G. Da Lozzo, R. Ganian, S. Gupta, B. Mohar, S. Ordyniak, and M. Zehavi 24:15

14 Markus Chimani and Karsten Klein. Shrinking the search space for clustered planarity.
In Walter Didimo and Maurizio Patrignani, editors, Graph Drawing - 20th International
Symposium, GD 2012, Redmond, WA, USA, September 19-21, 2012, Revised Selected Papers,
volume 7704 of Lecture Notes in Computer Science, pages 90–101. Springer, 2012. doi:
10.1007/978-3-642-36763-2_9.

15 Pier Francesco Cortese and Giuseppe Di Battista. Clustered planarity. In Joseph S. B. Mitchell
and Günter Rote, editors, Proceedings of the 21st ACM Symposium on Computational Geometry,
Pisa, Italy, June 6-8, 2005, pages 32–34. ACM, 2005. doi:10.1145/1064092.1064093.

16 Pier Francesco Cortese, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and
Maurizio Pizzonia. C-planarity of c-connected clustered graphs. J. Graph Algorithms Appl.,
12(2):225–262, 2008. doi:10.7155/JGAA.00165.

17 Pier Francesco Cortese and Maurizio Patrignani. Clustered planarity = flat clustered planarity.
In Therese Biedl and Andreas Kerren, editors, Graph Drawing and Network Visualization - 26th
International Symposium, GD 2018, Barcelona, Spain, September 26-28, 2018, Proceedings,
volume 11282 of Lecture Notes in Computer Science, pages 23–38. Springer, 2018. doi:
10.1007/978-3-030-04414-5_2.

18 Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta.
Subexponential-time and FPT algorithms for embedded flat clustered planarity. In An-
dreas Brandstädt, Ekkehard Köhler, and Klaus Meer, editors, Graph-Theoretic Concepts
in Computer Science - 44th International Workshop, WG 2018, Cottbus, Germany, June
27-29, 2018, Proceedings, volume 11159 of Lecture Notes in Computer Science, pages 111–124.
Springer, 2018. doi:10.1007/978-3-030-00256-5_10.

19 Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta. C-
planarity testing of embedded clustered graphs with bounded dual carving-width. Algorithmica,
83(8):2471–2502, 2021. doi:10.1007/S00453-021-00839-2.

20 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

21 Giuseppe Di Battista and Fabrizio Frati. Efficient c-planarity testing for embedded flat
clustered graphs with small faces. J. Graph Algorithms Appl., 13(3):349–378, 2009. doi:
10.7155/JGAA.00191.

22 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

23 Qing-Wen Feng, Robert F. Cohen, and Peter Eades. Planarity for clustered graphs. In Paul G.
Spirakis, editor, Algorithms - ESA ’95, Third Annual European Symposium, Corfu, Greece,
September 25-27, 1995, Proceedings, volume 979 of Lecture Notes in Computer Science, pages
213–226. Springer, 1995. doi:10.1007/3-540-60313-1_145.

24 Sergej Fialko and Petra Mutzel. A new approximation algorithm for the planar augmentation
problem. In Howard J. Karloff, editor, Proceedings of the Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, 25-27 January 1998, San Francisco, California, USA, pages 260–269.
ACM/SIAM, 1998. URL: http://dl.acm.org/citation.cfm?id=314613.314714.

25 F.V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: Theory of Paramet-
erized Preprocessing. Cambridge University Press, 2019. URL: https://books.google.at/
books?id=s1N-DwAAQBAJ.

26 Radoslav Fulek, Jan Kyncl, Igor Malinovic, and Dömötör Pálvölgyi. Clustered planarity
testing revisited. Electron. J. Comb., 22(4):4, 2015. doi:10.37236/5002.

27 Radoslav Fulek and Csaba D. Tóth. Atomic embeddability, clustered planarity, and thicken-
ability. J. ACM, 69(2):13:1–13:34, 2022. doi:10.1145/3502264.

28 Robert Ganian, Fabrizio Montecchiani, Martin Nöllenburg, Meirav Zehavi, and Liana Khazaliya.
New frontiers of parameterized complexity in graph drawing (Dagstuhl Seminar 23162).
Dagstuhl Reports, 13(4):58–97, 2023. doi:10.4230/DAGREP.13.4.58.

29 Michael T. Goodrich, George S. Lueker, and Jonathan Z. Sun. C-planarity of extrovert
clustered graphs. In Patrick Healy and Nikola S. Nikolov, editors, Graph Drawing, 13th

ISAAC 2024

https://doi.org/10.1007/978-3-642-36763-2_9
https://doi.org/10.1007/978-3-642-36763-2_9
https://doi.org/10.1145/1064092.1064093
https://doi.org/10.7155/JGAA.00165
https://doi.org/10.1007/978-3-030-04414-5_2
https://doi.org/10.1007/978-3-030-04414-5_2
https://doi.org/10.1007/978-3-030-00256-5_10
https://doi.org/10.1007/S00453-021-00839-2
https://doi.org/10.7155/JGAA.00191
https://doi.org/10.7155/JGAA.00191
https://doi.org/10.1007/3-540-60313-1_145
http://dl.acm.org/citation.cfm?id=314613.314714
https://books.google.at/books?id=s1N-DwAAQBAJ
https://books.google.at/books?id=s1N-DwAAQBAJ
https://doi.org/10.37236/5002
https://doi.org/10.1145/3502264
https://doi.org/10.4230/DAGREP.13.4.58

24:16 Exact Algorithms for Clustered Planarity with Linear Saturators

International Symposium, GD 2005, Limerick, Ireland, September 12-14, 2005, Revised
Papers, volume 3843 of Lecture Notes in Computer Science, pages 211–222. Springer, 2005.
doi:10.1007/11618058_20.

30 Carsten Gutwenger, Michael Jünger, Sebastian Leipert, Petra Mutzel, Merijam Percan, and
René Weiskircher. Advances in c-planarity testing of clustered graphs. In Stephen G. Kobourov
and Michael T. Goodrich, editors, Graph Drawing, 10th International Symposium, GD 2002,
Irvine, CA, USA, August 26-28, 2002, Revised Papers, volume 2528 of Lecture Notes in
Computer Science, pages 220–235. Springer, 2002. doi:10.1007/3-540-36151-0_21.

31 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/JCSS.2001.
1774.

32 Vít Jelínek, Eva Jelínková, Jan Kratochvíl, and Bernard Lidický. Clustered planarity: Em-
bedded clustered graphs with two-component clusters. In Ioannis G. Tollis and Maurizio
Patrignani, editors, Graph Drawing, 16th International Symposium, GD 2008, Heraklion, Crete,
Greece, September 21-24, 2008. Revised Papers, volume 5417 of Lecture Notes in Computer
Science, pages 121–132. Springer, 2008. doi:10.1007/978-3-642-00219-9_13.

33 Vít Jelínek, Ondrej Suchý, Marek Tesar, and Tomás Vyskocil. Clustered planarity: Clusters
with few outgoing edges. In Ioannis G. Tollis and Maurizio Patrignani, editors, Graph Drawing,
16th International Symposium, GD 2008, Heraklion, Crete, Greece, September 21-24, 2008.
Revised Papers, volume 5417 of Lecture Notes in Computer Science, pages 102–113. Springer,
2008. doi:10.1007/978-3-642-00219-9_11.

34 Eva Jelínková, Jan Kára, Jan Kratochvíl, Martin Pergel, Ondrej Suchý, and Tomás Vyskocil.
Clustered planarity: Small clusters in cycles and eulerian graphs. J. Graph Algorithms Appl.,
13(3):379–422, 2009. doi:10.7155/JGAA.00192.

35 Tomihisa Kamada and Satoru Kawai. A general framework for visualizing abstract objects
and relations. ACM Trans. Graph., 10(1):1–39, 1991. doi:10.1145/99902.99903.

36 Goos Kant and Hans L. Bodlaender. Planar graph augmentation problems (extended abstract).
In Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Nicola Santoro, editors, Algorithms and
Data Structures, 2nd Workshop WADS ’91, Ottawa, Canada, August 14-16, 1991, Proceedings,
volume 519 of Lecture Notes in Computer Science, pages 286–298. Springer, 1991. doi:
10.1007/BFB0028270.

37 Thomas Lengauer. Hierarchical planarity testing algorithms. J. ACM, 36(3):474–509, 1989.
doi:10.1145/65950.65952.

38 Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

39 Giordano Da Lozzo, Robert Ganian, Siddharth Gupta, Bojan Mohar, Sebastian Ordyniak,
and Meirav Zehavi. Exact algorithms for clustered planarity with linear saturators, 2024.
arXiv:2409.19410.

40 Oliver Niggemann. Visual data mining of graph based data. PhD thesis, University of Pader-
born, Germany, 2001. URL: http://ubdata.uni-paderborn.de/ediss/17/2001/niggeman/
disserta.pdf.

41 Renato Paiva, Genaína Nunes Rodrigues, Rodrigo Bonifácio, and Marcelo Ladeira. Exploring
the combination of software visualization and data clustering in the software architecture
recovery process. In Sascha Ossowski, editor, Proceedings of the 31st Annual ACM Symposium
on Applied Computing, Pisa, Italy, April 4-8, 2016, pages 1309–1314. ACM, 2016. doi:
10.1145/2851613.2851765.

42 Johannes A. La Poutré. Alpha-algorithms for incremental planarity testing (preliminary
version). In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings of the
Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal,
Québec, Canada, pages 706–715. ACM, 1994. doi:10.1145/195058.195439.

43 Jamie Sneddon and C. Paul Bonnington. A note on obstructions to clustered planarity.
Electron. J. Comb., 18(1), 2011. doi:10.37236/646.

https://doi.org/10.1007/11618058_20
https://doi.org/10.1007/3-540-36151-0_21
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1007/978-3-642-00219-9_13
https://doi.org/10.1007/978-3-642-00219-9_11
https://doi.org/10.7155/JGAA.00192
https://doi.org/10.1145/99902.99903
https://doi.org/10.1007/BFB0028270
https://doi.org/10.1007/BFB0028270
https://doi.org/10.1145/65950.65952
https://arxiv.org/abs/2409.19410
http://ubdata.uni-paderborn.de/ediss/17/2001/niggeman/disserta.pdf
http://ubdata.uni-paderborn.de/ediss/17/2001/niggeman/disserta.pdf
https://doi.org/10.1145/2851613.2851765
https://doi.org/10.1145/2851613.2851765
https://doi.org/10.1145/195058.195439
https://doi.org/10.37236/646

The Complexity of Geodesic Spanners Using
Steiner Points
Sarita de Berg #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Tim Ophelders #

Department of Information and Computing Sciences, Utrecht University, The Netherlands
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Irene Parada #

Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain

Frank Staals #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Jules Wulms #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Abstract
A geometric t-spanner G on a set S of n point sites in a metric space P is a subgraph of the complete
graph on S such that for every pair of sites p, q the distance in G is a most t times the distance d(p, q)
in P . We call a connection between two sites a link. In some settings, such as when P is a simple
polygon with m vertices and a link is a shortest path in P , links can consist of Θ(m) segments and
thus have non-constant complexity. The spanner complexity is a measure of how compact a spanner
is, which is equal to the sum of the complexities of all links in the spanner. In this paper, we study
what happens if we are allowed to introduce k Steiner points to reduce the spanner complexity. We
study such Steiner spanners in simple polygons, polygonal domains, and edge-weighted trees.

Surprisingly, we show that Steiner points have only limited utility. For a spanner that uses k

Steiner points, we provide an Ω(nm/k) lower bound on the worst-case complexity of any (3 − ε)-
spanner, and an Ω(mn1/(t+1)/k1/(t+1)) lower bound on the worst-case complexity of any (t − ε)-
spanner, for any constant ε ∈ (0, 1) and integer constant t ≥ 2. These lower bounds hold in all
settings. Additionally, we show NP-hardness for the problem of deciding whether a set of sites in a
polygonal domain admits a 3-spanner with a given maximum complexity using k Steiner points.

On the positive side, for trees we show how to build a 2t-spanner that uses k Steiner points
of complexity O(mn1/t/k1/t + n log(n/k)), for any integer t ≥ 1. We generalize this result
to forests, and apply it to obtain a 2

√
2t-spanner in a simple polygon with total complexity

O(mn1/t(log k)1+1/t/k1/t + n log2 n). When a link in the spanner can be any path between two
sites, we show how to improve the spanning ratio in a simple polygon to (2k + ε), for any constant
ε ∈ (0, 2k), and how to build a 6t-spanner in a polygonal domain with the same complexity.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases spanner, simple polygon, polygonal domain, geodesic distance, complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.25

Related Version Full Version: https://arxiv.org/abs/2402.12110 [13]

Funding Tim Ophelders: partially supported by the Dutch Research Council (NWO) under project
no. VI.Veni.212.260.
Irene Parada: I. P. is a Serra Húnter Fellow. Partially supported by grant 2021UPC-MS-67392
funded by the Spanish Ministry of Universities and the European Union (NextGenerationEU) and
by grant PID2019-104129GB-I00 funded by MICIU/AEI/10.13039/501100011033.

Acknowledgements Work initiated at the 2023 AGA Workshop in Otterlo. We would like to thank
Wouter Meulemans for his contributions in the initial phase of the project.

© Sarita de Berg, Tim Ophelders, Irene Parada, Frank Staals, and Jules Wulms;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 25; pp. 25:1–25:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:S.deBerg@uu.nl
https://orcid.org/0000-0001-5555-966X
mailto:t.a.e.ophelders@uu.nl
https://orcid.org/0000-0002-9570-024X
mailto:irene.parada@upc.edu
https://orcid.org/0000-0003-3147-0083
mailto:F.Staals@uu.nl
mailto:jwulms@ac.tuwien.ac.at
https://orcid.org/0000-0002-9314-8260
https://doi.org/10.4230/LIPIcs.ISAAC.2024.25
https://arxiv.org/abs/2402.12110
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 The Complexity of Geodesic Spanners Using Steiner Points

1 Introduction

Consider a set S of n point sites in a metric space P . In applications such as (wireless)
network design [3], regression analysis [19], vehicle routing [12, 26], and constructing TSP
tours [6], it is desirable to have a compact network that accurately captures the distances
between the sites in S. Spanners provide such a representation. Formally, a geometric
t-spanner G is a subgraph of the complete graph on S, so that for every pair of sites p, q

the distance dG(p, q) in G is at most t times the distance d(p, q) in P [24]. The quality of
a spanner can be expressed in terms of the spanning ratio t and a term to measure how
“compact” it is. Typical examples are the size of the spanner, that is, the number of edges
of G, its weight (the sum of the edge lengths), or its diameter. Such spanners are well
studied [4, 8, 10, 18]. For example, for point sites in Rd and any constant ε > 0 one can
construct a (1 + ε)-spanner of size O(n/εd−1) [25]. Similar results exist for more general
spaces [9, 20, 21]. Furthermore, there are various spanners with other desirable spanner
properties such as low maximum degree, or fault-tolerance [7, 22, 23, 25].

When the sites represent physical locations, there are often other objects (e.g. buildings,
lakes, roads, mountains) that influence the shortest path between the sites. In such settings, we
need to explicitly incorporate the environment. We consider the case where this environment
is modeled by a polygon P with m vertices, and possibly containing holes. The distance
between two points p, q ∈ P is then given by their geodesic distance: the length of a shortest
path between p and q that is fully contained in P . This setting has been considered before.
For example, Abam, Adeli, Homapou, and Asadollahpoor [1] present a (

√
10 + ε)-spanner of

size O(n log2 n) when P is a simple polygon, and a (5+ε)-spanner of size O(n
√

h log2 n) when
the polygon has h > 1 holes. Abam, de Berg, and Seraji [2] even obtain a (2 + ε)-spanner of
size O(n log n) when P is actually a terrain. To avoid confusion between the edges of P and
the edges of G, we will from hereon use the term links to refer to the edges of G.

As argued by de Berg, van Kreveld, and Staals [15], each link in a geodesic spanner may
correspond to a shortest path containing Ω(m) polygon vertices. Therefore, the spanner
complexity, defined as the total number of line segments that make up all links in the spanner,
more appropriate measures how compact a geodesic spanner is. In this definition, a line
segment that appears in multiple links is counted multiple times: once for each link it appears
in. The above spanners of [1, 2] all have worst-case complexity Ω(mn), hence de Berg, van
Kreveld, and Staals present an algorithm to construct a 2

√
2t-spanner in a simple polygon

with complexity O(mn1/t + n log2 n), for any integer t ≥ 1. By relaxing the restriction of
links being shortest paths to any path between two sites, they obtain, for any constant
ε ∈ (0, 2t), a relaxed geodesic (2t + ε)-spanner in a simple polygon, or a relaxed geodesic
6t-spanner in a polygon with holes, of the same complexity. These complexity bounds are
still relatively high. De Berg, van Kreveld, and Staals [15] also show that these results are
almost tight. In particular, for sites in a simple polygon, any geodesic (3 − ε)-spanner has
worst-case complexity Ω(nm), and for any constant ε ∈ (0, 1) and integer constant t ≥ 2, a
(t − ε)-spanner has worst-case complexity Ω(mn1/(t−1) + n).

Problem Statement. A very natural question is then if we can reduce the total complexity
of a geodesic spanner by allowing Steiner points. That is, by adding an additional set S
of k vertices in G, each one corresponding to a (Steiner) point in P . For the original sites
p, q ∈ S we still require that their distance in G is at most t times their distance in P , but
the graph distance from a Steiner point p′ ∈ S to any other site is unrestrained. Allowing
for such Steiner points has proven to be useful in reducing the weight [5, 17] and size [22]

S. de Berg, T. Ophelders, I. Parada, F. Staals, and J. Wulms 25:3

Figure 1 A spanner in a simple polygon that uses two Steiner points (red squares). By adding
the two Steiner points, the spanner has a small spanning ratio and low complexity, as we no longer
need multiple links that pass through the middle section of P .

of spanners. In our setting, it allows us to create additional “junction” vertices, thereby
allowing us to share high-complexity subpaths. See Figure 1 for an illustration. Indeed, if
we are allowed to turn every polygon vertex into a Steiner point, Clarkson [11] shows that,
for any ε > 0, we can obtain a (1 + ε)-spanner of complexity O((n + m)/ε). However, the
number of polygon vertices m may be much larger than the number of Steiner points we can
afford. Hence, we focus on the scenario in which the number of Steiner points k is (much)
smaller than m and n.

Our Contributions. Surprisingly, we show that in this setting, Steiner points have only
limited utility. In some cases, even a single Steiner point allows us to improve the complexity
by a linear factor. However, we show that such improvements are not possible in general.
First of all, we show that computing a minimum cardinality set of Steiner points for sites in
a polygonal domain that allow for a 3-spanner of a certain complexity is NP-hard. Moreover,
we show that there is a set of n sites in a simple polygon with m = Ω(n) vertices for which
any (2 − ε)-spanner (with k < n/2 Steiner points) has complexity Ω(mn2/k2). Similarly, we
give a Ω(mn/k) and Ω(mn1/(1+t)/k1/(1+t)) lower bound on the complexity of a (3 − ε)- and
(t − ε)-spanner with k Steiner points. Hence, these results dash our hopes for a near linear
complexity spanner with “few” Steiner points and constant spanning ratio.

These lower bounds actually hold in a more restricted setting. Namely, when the metric
space is simply an edge-weighted tree that has m vertices, and the n sites are all placed in
leaves of the tree. In this setting, we show that we can efficiently construct a spanner whose
complexity is relatively close to optimal. In particular, our algorithm constructs a 2t-spanner
of complexity O(mn1/t/k1/t + n log(n/k)). The main idea is to partition the tree into k

subtrees of roughly equal size, construct a 2t-spanner without Steiner points on each subtree,
and connect the spanners of adjacent trees using Steiner points. The key challenge that we
tackle, and one of the main novelties of the paper, is to make sure that each subtree contains
only a constant number of Steiner points. We carefully argue that such a partition exists, and
that we can efficiently construct it. Constructing the spanner takes O(n log(n/k) + m + K)
time, where K is the output complexity. This output complexity is either the size of the
spanner (O(n log(n/k))), in case we only wish to report the endpoints of the links, or the
complexity, in case we wish to explicitly report the shortest paths making up the links. An
extension of this algorithm allows us to deal with a forest as well.

This algorithm for constructing a spanner on an edge-weighted tree turns out to be the
crucial ingredient for constructing low-complexity spanners for point sites in polygons. In
particular, given a set of sites in a simple polygon P , we use some of the techniques developed
by de Berg, van Kreveld, and Staals [15] to build a set of trees whose leaves are the sites,
and in which the distances in the trees are similar to the distances in the polygon. We then
construct a 2t-spanner with k Steiner points on this forest of trees using the above algorithm,

ISAAC 2024

25:4 The Complexity of Geodesic Spanners Using Steiner Points

and argue that this actually results into a 2
√

2t-spanner with respect to the distances in the
polygon. The main challenge here is to argue that the links used still have low complexity,
even when they are now embedded in the polygon. We prove that the spanner (with respect to
the polygon) has complexity O(mn1/t(log k)1+1/t/k1/t + n log2 n), and can be constructed in
time O(n log2 n + m log n + K). If we allow a link in the spanner to be any path between two
sites (or Steiner points), then we obtain for any constant ε ∈ (0, 2k) a relaxed (2t+ε)-spanner
of the same complexity. For k = O(1) our spanners thus match the results of de Berg, van
Kreveld, and Staals [15]. Finally, we extend these results to polygonal domains, where we
construct a similar complexity relaxed 6t-spanner in O(n log2 n + m log n log m + K) time.

Organization. We start with our results on edge-weighted trees in Section 2. To get a feel
for the problem, we first establish lower bounds on the spanner complexity in Section 2.1. In
Section 2.2 we present the algorithm for efficiently constructing a low complexity 2t-spanner,
in the full version [13] we extend it to a forest. In Section 3, we show how to use these results
to obtain a 2

√
2t-spanner for sites in a simple polygon P . In Section 4 we further extend our

algorithms to the most general case in which P may even have holes. In the full version of
the paper [13] we show that computing a minimum cardinality set of Steiner points with
which we can simultaneously achieve a particular spanning ratio and maximum complexity
is NP-hard. In Section 5 we pose some remaining open questions. Omitted proofs can be
found in the full version [13].

2 Steiner spanners for trees

In this section, we consider spanners on an edge-weighted rooted tree T . We allow only
positive weights. The goal is to construct a t-spanner on the leaves of the tree that uses k

Steiner points, i.e. the set of sites S is the set of leaves. We denote by n the number of leaves
and by m the number of vertices in T . The complexity of a link between two sites (or Steiner
points) p, q ∈ T is the number of edges in the shortest path π(p, q), and the distance d(p, q)
is equal to the sum of the weights on this (unique) path. We denote by T (v) the subtree of
T rooted at vertex v. For an edge e ∈ T with upper endpoint v1 (endpoint closest to the
root) and lower endpoint v2, we denote by T (e) := T (v2) ∪ {e} the subtree of T rooted at v1.

The Steiner points are not restricted to the vertices of T , but can lie anywhere on the
tree. To be precise, for any δ ∈ (0, 1) a Steiner point s can be placed on an edge (u, v) of
weight w. This edge is then replaced by two edges (u, s) and (s, v) of weight δw and (1 − δ)w.
Observe that this increases the complexity of a spanner on T by at most a constant factor as
long as there are at most a constant number of Steiner points placed on a single edge. The
next lemma states that it is indeed never useful to place more than one Steiner point on the
interior of an edge.

▶ Lemma 1. If a t-spanner G of a tree T has more than one Steiner point on the interior of
an edge e = (u, v), then we can modify G to obtain a t-spanner G′ that has no Steiner points
on the interior of e without increasing the complexity and number of Steiner points.

Proof. Let S denote the set of Steiner points of G and let S(e) ⊆ S the subset of Steiner
points that lie on e. We assume that each Steiner point is used by a path πG(p, q) for some
sites p, q, otherwise we can simply remove it. We define the set of Steiner points of G′ as
S ′ = (S \ S(e)) ∪ {u, v}. Observe that |S ′| ≤ |S|. To obtain G′, we replace each link (p, s)
with s ̸∈ S ′ by (p, u) if (p, s) intersects u and by (p, v) if (p, s) intersects v. Links between
Steiner points on e are simply removed. Finally, we add the link (u, v) to G′.

S. de Berg, T. Ophelders, I. Parada, F. Staals, and J. Wulms 25:5

1

2
Θ(m

k)

2k pitchforks

Θ(n
k) sites

Θ(m
n)

h

w

(a) (b)

Θ(m
k) 2k + 1 combs

Θ(n
k) sites

(c)

Figure 2 (a) Our construction for an Ω(mn2/k2) lower bound on the complexity of any (2 − ε)-
spanner. (b) A more detailed version of the comb of a pitchfork highlighted in the orange disk, which
is also used for our Ω(mn1/(t+1)/k1/(t+1)) lower bound on the complexity of any (t − ε)-spanner.
(c) Our construction for an Ω(nm/k) lower bound on the complexity of any (3 − ε)-spanner.

We first argue that the spanning ratio of G′ is as most the spanning ratio of G. Consider
a path between two sites p, q in G. If this path still exists in G′, then dG(p, q) = dG′(p, q). If
not, then the path must visit e. Let (p1, s1) and (p2, s2) denote the first and last link in the
path that connect to a Steiner point in the interior of e (possibly s1 = s2). If π(p, q) does not
intersect the open edge e, then these links are replaced by (p1, u) and (p2, u) (or symmetrically
by (p1, v) and (p2, v)) in G′. This gives a path in G′ via u such that dG′(p, q) < dG(p, q). If
π(p, q) does intersect e, i.e. p and q lie on different sides of e, then, without loss of generality,
the links (p1, s1) and (p2, s2) are replaced by (p1, u), (u, v), and (p2, v). Again, this gives a
path in G′ such that dG′(p, q) ≤ dG(p, q).

Finally, what remains is to argue that the complexity of the spanner does not increase.
Each link that we replace intersects either u or v, thus replacing this link by a link up to u

or v reduces the complexity by one. Because each Steiner point on e occurs on at least one
path between sites in G, we replace at least two links. This decreases the total complexity by
at least two, while including the edge (u, v) increases the complexity by only one. ◀

▶ Corollary 2. Any spanner G on a tree T can be modified without increasing the spanning
ratio and complexity such that no edge contains more than one Steiner point in its interior.

2.1 Complexity lower bounds
In this section, we provide several lower bounds on the worst-case complexity of any (t − ε)-
spanner that uses k Steiner points, where t is an integer constant and ε ∈ (0, 1). When Steiner
points are not allowed, any (2 − ε)-spanner in a simple polygon requires Ω(n2) edges [1]
and Ω(mn2) complexity. If we allow a larger spanning ratio, say (3 − ε) or even (t − ε), the
worst-case complexity becomes Ω(mn) or Ω(mn1/(t−1)), respectively [15]. As the polygons
used for these lower bounds are very tree-like, these bounds also hold in our tree setting.
Next, we show how much each of these lower bounds is affected by the use of k Steiner points.

▶ Lemma 3. For any constant ε ∈ (0, 1), there exists an edge-weighted tree T for which any
(2 − ε)-spanner using k < n/2 Steiner points has complexity Ω(mn2/k2).

Proof sketch. The tree in Figure 2(a) is used to show this bound. Each of the k pitchforks
that does not contain a Steiner point contributes Ω(mn2/k3) complexity to the spanner. ◀

ISAAC 2024

25:6 The Complexity of Geodesic Spanners Using Steiner Points

(a) (b)

s1 s2
p`

S1 S2S0

Figure 3 (a) The sets Si defined by the two (red square) Steiner points. (b) For any spanner
on S1, every link to a Steiner point can be replaced by a link of smaller complexity, while increasing
the spanning ratio by at most one. Here, the dashed links can be replaced by the green links.

▶ Lemma 4. For any constant ε ∈ (0, 1), there exists an edge-weighted tree T for which any
(3 − ε)-spanner using k < n/2 Steiner points has complexity Ω(mn/k).

Proof sketch. The tree in Figure 2(c) is used to show this lower bound. ◀

▶ Lemma 5. For any constant ε ∈ (0, 1) and integer constant t ≥ 2, there exists an edge-
weighted tree T for which any (t − ε)-spanner using k < n Steiner points has complexity
Ω(mn1/(t+1)/k1/(t+1)).

Before we prove Lemma 5, we first discuss a related result in a simpler metric space.
Let ϑn be the 1-dimensional Euclidean metric space with n points v1, . . . , vn on the x-axis at
1, 2, . . . , n. A link (vi, vj) has complexity |i − j|. Dinitz, Elkin, and Solomon [16] give a lower
bound on the total complexity of any spanning subgraph of ϑn, given that the link-radius is
at most ρ. The link-radius (called hop-radius in [16]) ρ(G, r) of a graph G with respect to a
root r is defined as the maximum number of links needed to reach any vertex in G from r.
The link-radius of G is then minr∈V ρ(G, r). The link-radius is bounded by the link-diameter,
which is the minimum number of links that allow reachability between any two vertices.

▶ Lemma 6 (Dinitz et al. [16]). For any sufficiently large integer n and positive integer
ρ < log n, any spanning subgraph of ϑn with link-radius at most ρ has complexity Ω(ρ·n1+1/ρ).

Proof of Lemma 5. Consider the tree construction illustrated in Figure 2(b). This edge-
weighted tree T has the shape of a comb of width w and height h with n teeth separated by
corridors of complexity M = Θ(m/n) each. Each leaf at the bottom of a comb tooth is a site.

Any spanning subgraph of ϑn of complexity C and link-diameter ρ is in one-to-one
correspondence with a (ρ + 1 − ε)-spanner of complexity C · m/n in T [15]. Lemma 6 then
implies that any (t − ε)-spanner has worst-case complexity Ω(mn1/(t−1)).

When a set S of k Steiner points is introduced, we consider the at most k + 1 sets
S0, . . . , Sk of consecutive sites that have no Steiner point between them; see Figure 3(a).
We can replace any link (p, q) where p, q ∈ S ∪ S and π(p, q) intersects a Steiner point s

by the links (p, s) and (s, q). Corollary 2 implies that this increases the complexity by only
a constant factor. From now on, we thus assume there are no such links. We claim the
following for any (t − ε)-spanner G on S = S0 ∪ · · · ∪ Sk.

▷ Claim 7. Let Ci be the complexity of the subgraph of G induced by Si and the at most
two Steiner points sℓ and sr bounding Si from the left and right, respectively. Then, we can
construct a (t + 2 − ε)-spanner G′

i on Si that has complexity at most Ci.

Proof of Claim. Let pℓ and pr denote the leftmost and rightmost site in Si. We replace each
link (p, sℓ) (or (p, sr)), p ∈ Si, by the link (p, pℓ) (resp. (p, pr)). If there is a link (sℓ, sr),
it is replaced by (pℓ, pr). Any path in G between p, q ∈ Si that visits either sℓ and/or sr

S. de Berg, T. Ophelders, I. Parada, F. Staals, and J. Wulms 25:7

corresponds to a path via pr and/or pℓ in G′
i. The length of the path increases by 2h when

visiting pr or pℓ, so by at most 4h when visiting both. As d(p, q) ≥ 2h, the spanning ratio
increases by at most two. ◁

These changes in the spanner only decrease the complexity of the subspanner on Si.
Notice also that if we apply them to each of the sets Si, each link of G is changed by only
one of the subspanners G′

i. Thus, we consider the minimum complexity of any (t + 2 − ε)-
spanner on these sites. By applying Lemma 6, we find that the worst-case complexity of any
(t + 2 − ε)-spanner on these |Si| sites is Ω(m/n · |Si|1+1/(t+1)). The complexity of G is at least
the sum of the complexities of these G′

i spanners over all Si, so m
n

∑k
i=0 Ω

(
|Si|1+1/(t+1)),

where
∑k

i=0 |Si| = Θ(n). Using a logarithmic transformation and induction, we see that this
sum is minimized when |Si| = Θ(n/k) for all i ∈ 0, . . . , k. So,

m

n

k∑
i=0

Ω
(

|Si|1+1/(t+1)
)

≥ m

n

k∑
i=0

Ω
(

(n/k)1+1/(t+1)
)

= Ω
(

mn1/(t+1)/k1/(t+1)
)

. ◀

2.2 A low complexity Steiner spanner
In this section, we describe how to construct low complexity spanners for edge-weighted
trees. The goal is to construct a 2t-spanner of complexity O(mn1/t/k1/t + n log n) that uses
at most k Steiner points. We first show that the spanner construction for a simple polygon
of [15] can be used to obtain a low complexity spanner for a tree (without Steiner points).

▶ Lemma 8 (de Berg et al. [15]). For any integer t ≥ 1, we can build a 2t-spanner for an
edge-weighted tree T of size O(n log n) and complexity O(mn1/t + n log n) in O(n log n + m)
time.

Spanner construction. Given an edge-weighted tree T , to construct a Steiner spanner G
for T , we start by partitioning the sites in k sets S1, . . . Sk by an in-order traversal of the
tree. The first ⌈n/k⌉ sites encountered are in S1, the second ⌈n/k⌉ in S2, etc. After this, the
sites are reassigned into k new disjoint sets S′

1, . . . S′
k. For each of these sets, we consider a

subtree T ′
i ⊆ T whose leaves are the set S′

i. There are four properties that we desire of these
sets and their subtrees.
1. The size of S′

i is O(n/k).
2. The trees T ′

i cover T , i.e.
⋃

i T ′
i = T .

3. The trees T ′
i are disjoint apart from Steiner points.

4. Each tree T ′
i contains only O(1) Steiner points.

As we prove later, these properties ensure that we can construct a spanner on each subtree T ′
i

to obtain a spanner for T . We obtain such sets S′
i and the corresponding trees T ′

i as follows.
We color the vertices and edges of the tree T using k colors {1, . . . , k} in two steps. In

this coloring, an edge or vertex is allowed to have more than one color. First, for each set
Si, we color the smallest subtree that contains all sites in Si with color i. After this step,
all uncolored vertices have only uncolored incident descendant edges. Second, we color the
remaining uncolored edges and vertices. These edges and their (possibly already colored)
upper endpoints are colored in a bottom-up fashion. We assign each uncolored edge and its
upper endpoint the color with the lowest index i that is assigned also to its lower endpoint.

After coloring T , we for i ∈ {1, . . . , k} place a Steiner point si at the root of tree Ti

formed by all edges and vertices of color i. This may place multiple Steiner points at the same
vertex. We may abuse notation, and denote by si the vertex occupied by Steiner point si.

ISAAC 2024

25:8 The Complexity of Geodesic Spanners Using Steiner Points

(a) (b)

T ′
1

T ′
3

T ′
2

T ′
1

T ′
2 T ′

3
T ′
4

Figure 4 The tree Ti is the subtree whose edges and vertices have color i. A Steiner point (square)
is placed at the root of Ti. The shaded areas show the trees T ′

i . The examples show the case when
the Steiner points are (a) at different vertices or (b) share a vertex.

For each Steiner point si, we define a subtree T ′
i ⊆ T . The sites in T ′

i will be the set S′
i.

The tree T ′
i is a subtree of T (si). When si is the only Steiner point at the vertex, then

T ′
i = T (si) \

⋃
j(T (sj) \ {sj}) for sj a descendant of si. In other words, we look at the tree

rooted at si up to and including the next Steiner points, see Figure 4(a). When si is not
the only Steiner point at the vertex, we include only subtrees T (e) of si (up to the next
Steiner points) that start with an edge e that has color i and no color j > i. See Figure 4(b).
Whenever si has the lowest or highest index of the Steiner points at si, we also include all
T (e′) that start with an edge e′ of color j < i or j > i, respectively. This generalizes the
scheme for when si is the only Steiner point at the vertex.

By creating T ′
i in this way, si is not a leaf of T ′

i . We therefore adapt T ′
i by adding an

edge of weight zero between the vertex at si and a new leaf corresponding to si. On each
subtree T ′

i , we construct a 2t-spanner using the algorithm of Lemma 8. These k spanners
connect at the Steiner points, which we formally prove in the spanner analysis.

Analysis. To prove that G is indeed a low complexity 2t-spanner for T , we first show that
the four properties stated before hold for S′

i and T ′
i . We often apply the following lemma,

that limits the number of colors an edge can be assigned by our coloring scheme.

▶ Lemma 9. An edge can have at most two colors.

Proof. First, observe that an edge can receive more than one color only in the first step of
the coloring. Suppose for contradiction that there is an edge e in T that has three colors
i < j < ℓ. Let v be the lower endpoint of e. Then there must be three sites pi ∈ Si, pj ∈ Sj ,
pℓ ∈ Sℓ in T (v). Because these sets are defined by an in-order traversal, pi must appear
before pj in the traversal. Similarly, pj appears before pℓ. Additionally, there must be a
site p′

j ∈ Sj in T \ T (v), otherwise the color j would not be assigned to e. The site p′
j must

appear before pi or after pℓ in the traversal. In the first case, pi must be in Sj as it appears
between two sites in Sj . In the second case, we find pℓ ∈ Sj , also giving a contradiction. ◀

We prove properties 1, 2, and 3 in the full version [13].

▶ Lemma 10. There are at most five Steiner points in T ′
i .

Proof sketch. By definition, si is in T ′
i , so we want to show that there are at most four

other Steiner points in T ′
i . Note that a Steiner point can occur in T ′

i only if its path to si

does not encounter any other Steiner point. In this proof sketch we show there are at most

S. de Berg, T. Ophelders, I. Parada, F. Staals, and J. Wulms 25:9

e

(a) (b)

sx sy

si

T ′
i

si

T ′
i

e′

sc
e

T ′
i [j]

Figure 5 Notation used in Lemma 10. In T ′
i [j] are all subtrees that start with an edge of color j.

two Steiner points in subtrees T (e) for which the edge e, which is incident to si in T ′
i , does

not have color i. In the full proof we use similar techniques to bound the number of Steiner
points in subtrees for which e does have color i by two as well.

Let T ′
i [j] be the subtree of T ′

i rooted at si that is the union of T (e) ∩ T ′
i for all edges e

incident to si of color j ̸= i and not of color i as well, see Figure 5(a). We argue that this
subtree is non-empty for at most two colors j. Consider such an edge e. Because e does not
have color i and e ∈ T ′

i , it must be that sj is above si in T . Thus, the parent edge of si in T

must also be colored j. By Lemma 9, the parent edge of si in T can be assigned at most two
colors, so T ′

i [j] is non-empty for at most two colors.
Next, we prove that T ′

i [j] contains at most one Steiner point other than si. We assume
that i < j, the proof for i > j is symmetric. Assume for contradiction that T ′

i [j] contains
two Steiner points sx and sy, x < y; see Figure 5(b). As shown before, there is a site of Sj

in T \ T (si). As i < j, this implies that i < x < y < j. Let e′ be the first edge on π(si, sx)
that is not on π(si, sy), i.e. the first edge after the paths diverge. Let c be a color of e′ and
let v and w be the upper and lower endpoint of e′. The tree T (w) does not contain any sites
of Sj , as these appear in the traversal after the sites of Sx. It follows that Sc is before Sj in
the in-order traversal, in other words i < c < j. The parent edge of si cannot be colored c,
as a site of Sc would then appear either before a site in Si or after a site in Sj in the in-order
traversal. It follows that sc is on the path π(v, si). If sc ̸= si, this contradicts the assumption
that this path does not contain a Steiner point. If sc = si, then i < c implies that the subtree
starting with an edge of color j is in not T ′

i , which is a contradiction. We conclude that
there are at most two Steiner points in the subtrees T ′

i [j] in total for all j ̸= i. ◀

We are now ready to prove that our algorithm computes a spanner with low complexity.

▶ Lemma 11. The spanner G is a 2t-spanner for T of size O(n log(n/k)) and complexity
O(mn1/t/k1/t + n log(n/k)).

Proof. To bound the size and complexity of the spanner, we first consider the number of
leaves ni and vertices mi in each subtree T ′

i . As ni is equal to |S′
i| plus the number of

Steiner points in T ′
i , properties 1 and 4 (Lemma 10) imply that ni = O(n/k) + 5 = O(n/k).

Property 3 states the subtrees T ′
i are disjoint apart from their shared Steiner points, so∑

mi = O(m). By Lemma 8, G has size
∑k

i=1 O
(

n
k log

(
n
k

))
= O

(
n log

(
n
k

))
and complexity∑k

i=1 O
(

mi

(
n
k

)1/t + n
k log

(
n
k

))
= O

(
mn1/t

k1/t + n log
(

n
k

))
.

What remains is to show that G is a 2t-spanner. Let p, q ∈ S be two leaves in T . If p, q ∈ S′
i

for some i ∈ {1, . . . , k} then the shortest path π(p, q) is contained within T ′
i . The 2t-spanner

on T ′
i implies that dG(p, q) ≤ 2td(p, q). If there is no such set S′

i that contains both sites,
consider the sequence of vertices v1, . . . , vℓ where π(p, q) exits some subtree T ′

i . Let v, w be

ISAAC 2024

25:10 The Complexity of Geodesic Spanners Using Steiner Points

two consecutive vertices in this sequence. Without loss of generality, assume that w ∈ T (v),
and let sx be the Steiner point at v for which w ∈ T ′

x (properties 2 and 3 imply sx exists).
Then the 2t-spanner on T ′

x ensures that dG(v, w) ≤ 2td(v, w). It follows that dG(p, q) ≤
dG(p, v1) + dG(v1, v2) + · · · + dG(vℓ, q) ≤ 2t(d(p, v1) + d(v1, v2) + · · · + d(vℓ, q)) = 2td(p, q). ◀

▶ Theorem 12. Let T be a tree with n leaves and m vertices, and t ≤ 1 be any integer
constant. For any 1 ≤ k ≤ n, we can build a 2t-spanner G for T using at most k Steiner points
of size O(n log(n/k)) and complexity O(mn1/t/k1/t + n log(n/k)) in O(n log(n/k) + m + K)
time, where K is the output size.

A forest spanner. The tree spanner can be extended to a spanner for a forest F . As F
is disconnected, we cannot require all sites to have a path between them in the spanner.
Instead, we say that G is a t-spanner for F if G is a t-spanner for every tree in F .

▶ Theorem 13. Let F be a forest with n leaves and m vertices, and t ≤ 1 be any integer
constant. For any 1 ≤ k ≤ n, we can build a 2t-spanner G for F using at most k Steiner points
of size O(n log(n/k)) and complexity O(mn1/t/k1/t + n log(n/k)) in O(n log(n/k) + m + K)
time, where K is the output size.

3 Steiner spanners in simple polygons

We consider the problem of computing a t-spanner using k Steiner points for a set of n point
sites in a simple polygon P with m vertices. We measure the distance between two points in
p, q in P by their geodesic distance, i.e. the length of the shortest path π(p, q) fully contained
within P . A link (p, q) in the spanner is the shortest path π(p, q), and its complexity is
the number of segments in this path. Lower bounds for trees straightforwardly extend to
polygonal instances. Again, we aim to obtain a spanner of complexity close to the lower bound.

▶ Lemma 14. The lower bounds of Lemmata 3, 4, and 5 also hold for simple polygons.

Spanner construction. Next, we describe how to obtain a low-complexity spanner in a
simple polygon using at most k Steiner points. In our approach, we combine ideas from [2]
and [15] with the forest spanner of Theorem 13. We first give a short overview of the approach
to obtain a low complexity 2

√
2t-spanner [15], and then discuss how to combine these ideas

with the forest spanner to obtain a low complexity Steiner spanner.
We partition the polygon P into two subpolygons Pℓ and Pr by a vertical line segment λ

such that roughly half of the sites lie in either subpolygon. For the line segment λ, we then
consider the following weighted 1-dimensional space. For each site p ∈ S, let pλ be the
projection of p: the closest point on λ to p. The (weighted 1-dimensional distance) between
two sites pλ, qλ is defined as dw(pλ, qλ) := d(p, pλ) + d(pλ, qλ) + d(q, qλ). In other words,
the sites in the 1-dimensional space are weighted by the distance to their original site in P .
For this 1-dimensional space we construct a t-spanner Gλ, and for each link (pλ, qλ) in Gλ

we add the link (p, q) to the spanner G. Finally, we process the subpolygons Pℓ and Pr

recursively. De Berg, van Kreveld, and Staals [15] show that this gives a
√

2t-spanner in a
simple polygon. To obtain a spanner of complexity O(mn1/t + n log2 n), they construct a
1-dimensional 2t-spanner Gλ using the approach of Lemma 8, resulting in a 2

√
2t-spanner.

In our case, we require information on the paths from the sites to their projection instead
of only their distance to decide where to place the Steiner points. This information is
captured in the shortest path tree SPT λ of the segment λ, which is the union of all shortest

S. de Berg, T. Ophelders, I. Parada, F. Staals, and J. Wulms 25:11

λ

p

p

λ
SPT i,j

Figure 6 The shortest path tree of λ in P ′ and its SPT i,j . The grey nodes and edges are not
included in SPT i,j , but can be assigned to a T ′

i as indicated by the colored backgrounds. The
squares show the Steiner points in SPT i,j and P ′. The sites in P ′ are colored as the trees T ′

i .

paths from the vertices of P to their closest point on λ. Additionally, we include all sites in
S in the tree SPT λ. The segment λ is split into multiple edges at the projections of the sites,
see Figure 6. The tree SPT λ is rooted at the lower endpoint of λ and has O(m + n) vertices.

We adapt the algorithm to build a spanner in P as follows. Instead of computing a
1-dimensional spanner directly in each subproblem in the recursion, we first collect the
shortest path trees of all subproblems. Let SPT i,j denote the shortest path tree of the j-th
subproblem at the i-th level of the recursion. We exclude all vertices from SPT i,j that have
no site as a descendant. This ensures that all leaves of the tree are sites. Let F = ∪i,jSPT i,j

be the forest consisting of all trees. A site in S or vertex of P can occur in multiple trees
SPT i,j , but they are seen as distinct sites and vertices in the forest F . We call a tree SPT i,j

large if 0 ≤ i ≤ log k and small otherwise. In other words, the trees created in the recursion
up to level log k are large. We then partition F into two forests Fs and Fℓ containing the
small and large trees. For each tree in Fs we directly apply the 2t-spanner of Lemma 8 that
uses no Steiner points to obtain a spanner Gs. For the forest Fℓ we apply Theorem 13 to
obtain a 2t-spanner Gℓ for Fℓ. Let GF = Gs ∪ Gℓ. A Steiner point in GF corresponds to either
a vertex of P or a point on λ. Let S denote the set of Steiner points. To obtain a spanner G
in the simple polygon, we add a link (p, q), p, q ∈ S ∪ S, to G whenever there is a link in GF
between (a copy of) p and q.

▶ Lemma 15. The graph G is a 2
√

2t-spanner for the sites S in P of size O(n log2 n).

Complexity analysis. To bound the complexity of the links in G, we have to account for the
complexity of links generated by both Gs and Gℓ. Bounding the complexity of Gs is relatively
straightforward, but to bound the complexity of Gℓ we first prove a lemma on the structure
of a shortest path in P between sites in Fℓ.

Let T be a tree in Fℓ and let P ′ be the corresponding subpolygon of the subproblem. We
consider the shortest path between two sites that are assigned to the same subtree T ′

i of T by
the forest algorithm. It can be that this shortest path uses vertices of P ′ that were excluded
from T , as they had no site as a descendant. For the analysis, we do include these vertices
in T and assign them to subtrees T ′

j as in Section 2.2; see Figure 6. The following lemma
states that the complexity of a shortest path between two sites in the same subtree T ′

i is
bounded by the number of vertices in T ′

i . We use this to bound the complexity in Lemma 17.

▶ Lemma 16. A shortest path π(p, q) in P ′ between sites p, q ∈ T ′
i uses vertices in T ′

i only.

ISAAC 2024

25:12 The Complexity of Geodesic Spanners Using Steiner Points

(a) (b)

rλ

λ

r′

r

A

B

πr

p1

r

r′ r′
p2

r

p3

Figure 7 (a) The extended path πr separates the polygon into P ′
r = A ∪ B and P ′

¬r. (b) Sites
p1...3 correspond to the respective subcases (i–iii) based on the structure of the polygon around r′.

Proof. Assume for contradiction that r is a highest vertex in T used by π(p, q) that is not
in T ′

i . First, consider the case that r is the root of T . Recall that this means r is the bottom
endpoint of λ, and thus lies on the boundary of P ′. As r is on π(p, q), it must be that p

and q lie in different subpolygons, and at least one of them lies below the horizontal line
through r. This implies that si = r, which is a contradiction.

Next, consider the case that r is not the root of T . Let r′ be the parent of r. If r′ is in T ′
i ,

then it must be a leaf. We consider the following partition of P ′. Recall that rλ denotes
the closest point on λ to r. We extend the shortest path π(r, rλ) to the boundary of P ′ by
extending the first and last line segments of the path to obtain a path πr, see Figure 7(a).
Let ∂P ′ denote the boundary of P ′. We define P ′

r to be the closed polygon bounded by ∂P ′

and πr that contains the polygon edges incident to r, and P ′
¬r := P ′ \ P ′

r. Because r is a
reflex vertex of P ′, P ′

r is well-defined. Without loss of generality, we assume that P ′
r contains

the part of λ above rλ, as in Figure 7(a). If both p and q are in P ′
¬r, then r /∈ π(p, q). It

follows that p and/or q are in P ′
r. Without loss of generality, assume that p ∈ P ′

r.
We distinguish two cases based on the location of p, see Figure 7(a). Either p ∈ A, where

A ⊂ P ′
r is bounded by the extension segment starting at r and ∂P ′, or p ∈ B, where B ⊂ P ′

r

is bounded by π(r, rλ), the extension segment starting at rλ, and ∂P ′.
If p ∈ A, then p is a descendant of r in T . As p and q are in T ′

i and r is not, it must be
that q is also a descendant of r. It follows that q ∈ A, but this means that r is not a reflex
vertex on π(p, q), which contradicts it being a shortest path.

If p ∈ B, the previous paragraph implies that q /∈ A. Additionally, q /∈ B as well, as r

would then not be a reflex vertex in π(p, q). It follows that q ∈ P ′
¬r. Next, we make a

distinction on whether r′ is a vertex of P ′ or not. First, assume that r′ is not a vertex of P ′,
and thus r′ ∈ λ. Because p ∈ B, pλ must be at or above r′. Because q ∈ P ′

¬r, qλ must be
below r′. This implies that the path in T from p to q visits r′, which contradicts p, q ∈ T ′

i .
Next, we assume that r′ is a vertex of P ′. We distinguish three different subcases based

on the shape of the polygon around r′, see Figure 7(b), and find a contradiction in each case:
(i) The edges of P ′ incident to r′ are in P ′

¬r. As r is on π(p, q), q must be a descendant
of r′. It follows that the Steiner point si is located on the path in T from q to r′, so p is
also a descendant of r′. It follows that p is on the segment rr′. However, for r to be on
π(p, q), q must then be in A, which is a contradiction.

(ii) The edges of P ′ incident to r′ are in P ′
r, and r′ is on π(p, pλ). In this case, p is a

descendant of r′. This again implies that q is a descendent of r′, which contradicts q ∈ P ′
¬r.

(iii) The edges of P ′ incident to r′ are in P ′
r, and r′ is not on π(p, pλ). The path

π(p, q) either intersects the boundary of B twice, which is not allowed as both are shortest
paths, or visits r′ as well. However, this implies that q ∈ A, which is a contradiction. ◀

▶ Lemma 17. The spanner G has complexity O(mn1/t(log k)1+1/t/k1/t + n log2 n).

S. de Berg, T. Ophelders, I. Parada, F. Staals, and J. Wulms 25:13

Proof. To bound the complexity of the links in G generated by Gs we apply Lemma 8 directly.
As Lemma 8 corresponds to the algorithm to construct a low complexity spanner in a polygon
using the shortest path tree, the complexity bound also holds in the simple polygon setting.
Using

∑2i

j=0 mi,j = O(m), where mi,j is the number of vertices in SPT i,j , the complexity is

O(log n)∑
i=log k

2i∑
j=0

O

(
mi,j

(n

2i

)1/t

+ n

2i
log

(n

2i

))
= O

(
mn1/t

k1/t
+ n log2 n

)
.

For Fℓ, the algorithm of Lemma 8 is used as a subroutine on every subtree T ′
i . Lemma 16

implies that the complexity bound of Theorem 13 also holds for links in P . Recall that the
number of sites in Fℓ is O(n log k). A vertex of P can occur in at most two subproblems at each
level of the recursion that partitions P , thus the number of vertices in Fℓ is O((m + n) log k).
As the n sites are equally divided over all subproblems at level i, the complexity of the links
in G generated by Gℓ given by Theorem 13 is improved to

O

(
m log k(n log k)1/t

k1/t
+ n log k log

(
n log k

k

))
= O

(
mn1/t(log k)1+1/t

k1/t
+ n log2 n

)
. ◀

▶ Theorem 18. Let S be a set of n point sites in a simple polygon P with m vertices, and t ≥ 1
be any integer constant. For any 1 ≤ k ≤ n, we can build a geodesic 2

√
2t-spanner with at

most k Steiner points, of size O(n log2 n) and complexity O(mn1/t(log k)1+1/t/k1/t +n log2 n)
in O(n log2 n + m log n + K) time, where K is the output size.

A relaxed geodesic (2k + ε)-spanner. In a more recent version of the paper by de Berg,
van Kreveld, and Staals [14, 15] they show how to apply the refinement proposed by Abam,
de Berg, and Seraji [2] to improve the spanning ratio to (2k + ε) for any constant ε ∈ (0, 2k).
They make two changes in their approach. First, instead of using the shortest path between
two sites as a link they allow a link to be any path between two sites. They call such a spanner
a relaxed geodesic spanner. Second, for each split of the polygon they construct spanners on
several sets of sites in the 1-dimensional weighted space. Using the same adaptations, we
obtain a relaxed (2k + ε)-spanner of complexity O(mn1/t(log k)1+1/t/k1/t + n log2 n).

4 Steiner spanners in polygonal domains

If the polygon contains holes, the spanner construction in the previous section no longer
suffices. In particular, we may need a different type of separator, and shortest paths in P

are no longer restricted to vertices in some subtree (Lemma 16 does not hold). De Berg, van
Kreveld, and Staals [15] run into similar problems when generalizing their low complexity
spanner, and solve them as follows. There are two main changes in their construction. First,
the separator is no longer a line segment, but a balanced separator that consists of at most
three shortest paths that partition the domain into two subdomains Pr and Pℓ. They then
construct a spanner Gλ on the 1-dimensional space containing the projections of the sites for
each shortest path in the separator. Second, the links that are included in the spanner are
no longer shortest paths, but consist of at most three shortest paths, resulting in a relaxed
geodesic spanner. In contrast to the simple polygon, using a 1-dimensional spanner with
spanning ratio t results in a spanning ratio in P of 3t [15].

To construct a low complexity spanner using k Steiner points, we use our simple polygon
approach with the adaptions of [15]. The number of trees, and thus the number of sites and
vertices in the trees, increases by a constant factor, as we create at most three shortest path

ISAAC 2024

25:14 The Complexity of Geodesic Spanners Using Steiner Points

trees at each level. To bound the complexity, we can no longer apply Lemma 16. However, the
links that are added to G are shortest paths in the shortest path tree. Therefore, the bound
on the complexity of GF directly translates to a bound on the complexity of G. As in the
simple polygon case, we obtain a spanner of complexity O(mn1/t(log k)1+1/t/k1/t + n log2 n).

▶ Theorem 19. Let S be a set of n point sites in a polygonal domain P with m ver-
tices, and t ≥ 1 be any integer constant. For any k ≤ n, we can build a relaxed
geodesic 6t-spanner with at most k Steiner points, of size O(n log n log(n/k)) and com-
plexity O(mn1/t(log k)1+1/t/k1/t + n log2 n) in O(n log2 n + m log n log m + K) time, where
K is the output size.

5 Future work

On the side of constructing low-complexity spanners, an interesting direction for future work
would be to close the gap between the upper and lower bounds, both with and without using
Steiner points. We believe it might be possible to increase the n1/(t+1) term to n1/t (or even
n1/(t−1)) in Lemma 5. On the side of the hardness, many interesting open questions remain,
such as: Is the problem still hard in a simple polygon? Can we show hardness for other
spanning ratios and/or a less restricted complexity requirement? Is the problem even in NP?

References
1 Mohammad Ali Abam, Marjan Adeli, Hamid Homapour, and Pooya Zafar Asadollahpoor.

Geometric spanners for points inside a polygonal domain. In Proc. 31st International Sym-
posium on Computational Geometry, SoCG, volume 34 of LIPIcs, pages 186–197. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPICS.SOCG.2015.186.

2 Mohammad Ali Abam, Mark de Berg, and Mohammad Javad Rezaei Seraji. Geodesic
spanners for points on a polyhedral terrain. SIAM J. Comput., 48(6):1796–1810, 2019.
doi:10.1137/18M119358X.

3 Khaled M. Alzoubi, Xiang-Yang Li, Yu Wang, Peng-Jun Wan, and Ophir Frieder. Geometric
spanners for wireless ad hoc networks. IEEE Trans. Parallel Distributed Syst., 14(4):408–421,
2003. doi:10.1109/TPDS.2003.1195412.

4 Sunil Arya, Gautam Das, David M. Mount, Jeffrey S. Salowe, and Michiel H. M. Smid.
Euclidean spanners: short, thin, and lanky. In Proc. 27th Annual ACM Symposium on Theory
of Computing, STOC, pages 489–498. ACM, 1995. doi:10.1145/225058.225191.

5 Sujoy Bhore and Csaba D. Tóth. Light Euclidean Steiner spanners in the plane. In Proc. 37th
International Symposium on Computational Geometry, SoCG, volume 189 of LIPIcs, pages
15:1–15:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.
SOCG.2021.15.

6 Glencora Borradaile and David Eppstein. Near-linear-time deterministic plane Steiner spanners
for well-spaced point sets. Comput. Geom., 49:8–16, 2015. doi:10.1016/J.COMGEO.2015.04.
005.

7 Prosenjit Bose, Joachim Gudmundsson, and Michiel H. M. Smid. Constructing plane spanners
of bounded degree and low weight. Algorithmica, 42(3-4):249–264, 2005. doi:10.1007/
S00453-005-1168-8.

8 Prosenjit Bose and Michiel H. M. Smid. On plane geometric spanners: A survey and open
problems. Comput. Geom., 46(7):818–830, 2013. doi:10.1016/J.COMGEO.2013.04.002.

9 T.-H. Hubert Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou. On hierarchical
routing in doubling metrics. ACM Trans. Algorithms, 12(4):55:1–55:22, 2016. doi:10.1145/
2915183.

10 T.-H. Hubert Chan, Mingfei Li, Li Ning, and Shay Solomon. New doubling spanners: Better
and simpler. SIAM J. Comput., 44(1):37–53, 2015. doi:10.1137/130930984.

https://doi.org/10.4230/LIPICS.SOCG.2015.186
https://doi.org/10.1137/18M119358X
https://doi.org/10.1109/TPDS.2003.1195412
https://doi.org/10.1145/225058.225191
https://doi.org/10.4230/LIPICS.SOCG.2021.15
https://doi.org/10.4230/LIPICS.SOCG.2021.15
https://doi.org/10.1016/J.COMGEO.2015.04.005
https://doi.org/10.1016/J.COMGEO.2015.04.005
https://doi.org/10.1007/S00453-005-1168-8
https://doi.org/10.1007/S00453-005-1168-8
https://doi.org/10.1016/J.COMGEO.2013.04.002
https://doi.org/10.1145/2915183
https://doi.org/10.1145/2915183
https://doi.org/10.1137/130930984

S. de Berg, T. Ophelders, I. Parada, F. Staals, and J. Wulms 25:15

11 Kenneth L. Clarkson. Approximation algorithms for shortest path motion planning. In Proc.
19th Annual ACM Symposium on Theory of Computing, STOC, pages 56–65. ACM, 1987.

12 Vincent Cohen-Addad, Arnold Filtser, Philip N. Klein, and Hung Le. On light spanners,
low-treewidth embeddings and efficient traversing in minor-free graphs. In Proc. 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS, pages 589–600. IEEE, 2020.
doi:10.1109/FOCS46700.2020.00061.

13 Sarita de Berg, Tim Ophelders, Irene Parada, Frank Staals, and Jules Wulms. The complexity
of geodesic spanners using steiner points, 2024. arXiv:2402.12110, doi:10.48550/arXiv.
2402.12110.

14 Sarita de Berg, Marc van Kreveld, and Frank Staals. The complexity of geodesic spanners.
CoRR, abs/2303.02997, 2023. URL: https://arxiv.org/abs/2303.02997, doi:10.48550/
arXiv.2303.02997.

15 Sarita de Berg, Marc J. van Kreveld, and Frank Staals. The complexity of geodesic spanners.
In Proc. 39th International Symposium on Computational Geometry, SoCG, volume 258 of
LIPIcs, pages 16:1–16:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPICS.SOCG.2023.16.

16 Yefim Dinitz, Michael Elkin, and Shay Solomon. Shallow-low-light trees, and tight lower
bounds for Euclidean spanners. In Proc. 49th Annual IEEE Symposium on Foundations of
Computer Science, FOCS, pages 519–528, 2008. doi:10.1109/FOCS.2008.24.

17 Michael Elkin and Shay Solomon. Narrow-shallow-low-light trees with and without Steiner
points. SIAM J. Discret. Math., 25(1):181–210, 2011. doi:10.1137/090776147.

18 Michael Elkin and Shay Solomon. Optimal Euclidean spanners: Really short, thin, and lanky.
J. ACM, 62(5):35:1–35:45, 2015. doi:10.1145/2819008.

19 Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert Krauthgamer. Efficient regression in metric
spaces via approximate Lipschitz extension. IEEE Trans. Inf. Theory, 63(8):4838–4849, 2017.
doi:10.1109/TIT.2017.2713820.

20 Lee-Ad Gottlieb and Liam Roditty. An optimal dynamic spanner for doubling metric spaces.
In Proc. 16th Annual European Symposium on Algorithms, ESA, volume 5193 of LNCS, pages
478–489, 2008. doi:10.1007/978-3-540-87744-8_40.

21 Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-dimensional met-
rics and their applications. SIAM J. Comput., 35(5):1148–1184, 2006. doi:10.1137/
S0097539704446281.

22 Hung Le and Shay Solomon. Truly optimal Euclidean spanners. In Proc. 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS, pages 1078–1100. IEEE Computer
Society, 2019. doi:10.1109/FOCS.2019.00069.

23 Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid. Efficient algorithms for
constructing fault-tolerant geometric spanners. In Proc. 13th Annual ACM Symposium on the
Theory of Computing, STOC, pages 186–195. ACM, 1998. doi:10.1145/276698.276734.

24 Joseph S. B. Mitchell and Wolfgang Mulzer. Proximity algorithms. In Handbook of Discrete
and Computational Geometry (3rd Edition), chapter 32, pages 849–874. Chapman & Hall/CRC,
2017.

25 Giri Narasimhan and Michiel H. M. Smid. Geometric Spanner Networks. Cambridge University
Press, 2007.

26 Jan Remy, Reto Spöhel, and Andreas Weißl. On Euclidean vehicle routing with allocation.
Comput. Geom., 43(4):357–376, 2010. doi:10.1016/J.COMGEO.2008.12.009.

ISAAC 2024

https://doi.org/10.1109/FOCS46700.2020.00061
https://arxiv.org/abs/2402.12110
https://doi.org/10.48550/arXiv.2402.12110
https://doi.org/10.48550/arXiv.2402.12110
https://arxiv.org/abs/2303.02997
https://doi.org/10.48550/arXiv.2303.02997
https://doi.org/10.48550/arXiv.2303.02997
https://doi.org/10.4230/LIPICS.SOCG.2023.16
https://doi.org/10.4230/LIPICS.SOCG.2023.16
https://doi.org/10.1109/FOCS.2008.24
https://doi.org/10.1137/090776147
https://doi.org/10.1145/2819008
https://doi.org/10.1109/TIT.2017.2713820
https://doi.org/10.1007/978-3-540-87744-8_40
https://doi.org/10.1137/S0097539704446281
https://doi.org/10.1137/S0097539704446281
https://doi.org/10.1109/FOCS.2019.00069
https://doi.org/10.1145/276698.276734
https://doi.org/10.1016/J.COMGEO.2008.12.009

Constrained Boundary Labeling
Thomas Depian #

Algorithms and Complexity Group, TU Wien, Austria

Martin Nöllenburg #

Algorithms and Complexity Group, TU Wien, Austria

Soeren Terziadis #

Algorithms cluster, TU Eindhoven, The Netherlands

Markus Wallinger #

Chair for Efficient Algorithms, Technical University of Munich, Germany

Abstract
Boundary labeling is a technique in computational geometry used to label dense sets of feature points
in an illustration. It involves placing labels along an axis-aligned bounding box and connecting
each label with its corresponding feature point using non-crossing leader lines. Although boundary
labeling is well-studied, semantic constraints on the labels have not been investigated thoroughly.
In this paper, we introduce grouping and ordering constraints in boundary labeling: Grouping
constraints enforce that all labels in a group are placed consecutively on the boundary, and ordering
constraints enforce a partial order over the labels. We show that it is NP-hard to find a labeling
for arbitrarily sized labels with unrestricted positions along one side of the boundary. However, we
obtain polynomial-time algorithms if we restrict this problem either to uniform-height labels or to a
finite set of candidate positions. Finally, we show that finding a labeling on two opposite sides of
the boundary is NP-complete, even for uniform-height labels and finite label positions.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Computational geometry; Theory of computation → Problems, reductions
and completeness; Human-centered computing → Geographic visualization

Keywords and phrases Boundary labeling, Grouping constraints, Ordering constraints

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.26

Related Version Full Version: https://arxiv.org/abs/2402.12245 [10]

Funding Thomas Depian: Vienna Science and Technology Fund (WWTF) [10.47379/ICT22029].
Martin Nöllenburg: Vienna Science and Technology Fund (WWTF) [10.47379/ICT19035].
Soeren Terziadis: Vienna Science and Technology Fund (WWTF) [10.47379/ICT19035] and European
Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 101034253.
Markus Wallinger : Vienna Science and Technology Fund (WWTF) [10.47379/ICT19035].

1 Introduction

Annotating features of interest with textual information in illustrations, e.g., in technical,
medical, or geographic domains, is an important and challenging task in graphic design and
information visualization. One common guideline when creating such labeled illustrations is
to “not obscure important details with labels” [9, p. 35]. Therefore, for complex illustrations,
designers tend to place the labels outside the illustrations, creating an external labeling as
shown in Figure 1a. Feature points, called sites, are connected to descriptive labels with
non-crossing polyline leaders, while optimizing an objective function, e.g., the leader length.

External labeling is a well-studied area both from a practical visualization perspective
and from a formal algorithmic perspective [5]. One aspect of external labeling that has not
yet been thoroughly studied in the literature, though, and which we investigate in this paper,

© Thomas Depian, Martin Nöllenburg, Soeren Terziadis, and Markus Wallinger;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 26; pp. 26:1–26:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tdepian@ac.tuwien.ac.at
https://orcid.org/0009-0003-7498-6271
mailto:noellenburg@ac.tuwien.ac.at
https://orcid.org/0000-0003-0454-3937
mailto:s.d.terziadis@tue.nl
https://orcid.org/0000-0001-5161-3841
mailto:markus.wallinger@tum.de
https://orcid.org/0000-0002-2191-4413
https://doi.org/10.4230/LIPIcs.ISAAC.2024.26
https://arxiv.org/abs/2402.12245
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Constrained Boundary Labeling

(a) Schematic of the sun. © ScienceFacts.net [7];
reproduced with permission.

Reggio di Calabria

Vandoies
Aosta
Como
Milan

Catania

Messina

Palermo

Catanzaro
Tropea

Cagliari

Cosenza

Salerno

Taranto
Potenza

Naples

Sassari

Foggia

Bari

Latina
Campobasso

Rome

Pescara

Perugia

Livorno

Florence

Ancona

Prato

Rimini
Genoa

Ravenna

Bologna
Modena
Parma
Turin

Venice
Trieste
Brescia

Bergamo

Verona

(b) Cities in Italy. Labeling with po-leaders cre-
ated by our algorithm described in Section 2.2.

Figure 1 Labelings that adhere to semantic constraints.

is that of constraining the placement of (subsets of) labels in the optimization process. The
sequential arrangement of external labels along the boundary of the illustration creates new
spatial proximities between the labels that do not necessarily correspond to the geometric
proximity patterns of the sites in the illustration. Hence, it is of interest in many applications
to put constraints on the grouping and ordering of these labels in order to improve the
readability and semantic coherence of the labeled illustration. Examples of such constraints
could be to group labels of semantically related sites or to restrict the top-to-bottom order of
certain labels to reflect some ordering of their sites in the illustration; see Figure 1a, where
the inner and outer layers of the sun are grouped and ordered from the core to the surface.

More precisely, we study such constrained labelings in the boundary labeling model, which
is a well-studied special case of external labelings. Here, the labels must be placed along
a rectangular boundary around the illustration [4]. Initial work placed the labels on one
or two sides of the boundary, usually the left and right sides. For uniform-height labels,
polynomial-time algorithms to compute a labeling that minimizes the length of the leaders [4]
or more general optimization functions [6] have been proposed. Polynomial-time approaches
to compute a labeling with equal-sized labels on (up to) all four sides of the boundary are
also known [21]. For non-uniform height labels, NP-hardness has been shown in the general
two-sided [4], and in different one-sided settings [3, 12]. Several leader styles have been
considered, and we refer to the book of Bekos et al. [5] and the user study of Barth et al. [1]
for an overview. In this paper, we will focus on a frequently used class of L-shaped leaders,
called po-leaders, that consist of two segments: one is parallel and the other orthogonal to
the side of the boundary on which the label is placed [4], see Figure 1b. These po-leaders
turned out as the recommended leader type in the study of Barth et al. [1] as they performed
well in various readability tasks and received high user preference ratings.

The literature considered various extensions of boundary labeling [2, 12, 17, 18], and
we broaden this body of work with our paper that aims at systematically investigating the
above-mentioned constraints in boundary labeling from an algorithmic perspective.

Problem Description. In the following, we use the taxonomy of Bekos et al. [5] where
applicable. Let S be a set of n sites in R2 enclosed in an axis-parallel bounding box B and in
general position, i.e., no two sites share the same x- or y-coordinate. For each site si ∈ S, we

T. Depian, M. Nöllenburg, S. Terziadis, and M. Wallinger 26:3

(a) Length-minimal. (b) Bend-minimal.

si

sj

(c) A 2-sided labeling. (d) Non-admissible.

Figure 2 Colors indicate grouping and arrows ordering constraints. Labelings that are optimal
with respect to (a) the total leader length and (b) the number of bends. In the 2-sided layout (c)
the ordering constraint si ≼ sj is not enforced since ℓi and ℓj are on different sides. Note that (d) is
a planar but non-admissible length-minimal labeling.

have an open rectangle ℓi of height h(ℓi) and some width, which we call the label of the site.
The rectangles model the (textual) labels, which are usually a single line of text in a fixed
font size, as their bounding boxes. Hence, we often restrict ourselves to uniform-height labels,
but neglect their width. The po-leader λi = (si, ci) is a polyline consisting of (up to) one
vertical and one horizontal segment and connects site si with the reference point ci, which is
a point on the boundary B at which we attach the label ℓi. The point where λi touches ℓi

is called the port of ℓi. We define the port for each label ℓ to be at half its height, i.e., we
use fixed ports. Hence, the position of ci uniquely determines the position of the port pi

and thus the placement of the label ℓi. We denote with Λ the set of all possible leaders and
with C the set of all possible reference points. In a b-sided boundary labeling L : S → C, we
route for each site s ∈ S a leader λ to the reference point L(s) on the right (b = 1) or the
right and left (b = 2) side of B, such that we can (in a post-processing step) place the label ℓ

for s at the reference point L(s) and no two labels will overlap. If C consists of a finite set
of m candidate reference points on B, we say that we have fixed (candidate) reference points,
otherwise C consists of the respective side(s) of B, which is called sliding (candidate) reference
points. In the following, we call the reference points in C simply candidates. A labeling is
called planar if no two labels overlap and there is no leader-leader or leader-site crossing.
We can access the x- and y-coordinate of a site, port, or candidate with x(·) and y(·).

In our constrained boundary labeling setting, we are given a tuple of constraints (Γ,≼)
consisting of a family of k grouping constraints Γ and a partial order ≼ on the sites. A
grouping constraint ∅ ≠ G ⊆ S enforces that the labels for the sites in G appear consecutively
on the same side of the boundary, as in Figures 2a–2c, but in general there can be gaps
between two labels of the same group; compare Figures 2a and 2b. An ordering constraint
si ≼ sj enforces for the labeling L to have y(L(si)) ≥ y(L(sj)) but only if si and sj are
labeled on the same side of B. Hence, if the labels ℓi and ℓj are placed on the same side
of B, then the ordering constraint enforces that ℓj must not appear above ℓi. On the other
hand, if ℓi and ℓj are on different sides of B, then the constraint si ≼ sj has no effect; see
also Figure 2c. This interpretation is motivated by the Gestalt principle of proximity [30], as
the spatial distance between labels on opposite sides is usually large and we thus perceive
labels on the same side as belonging together. Furthermore, this interpretation of ordering
constraints has already been applied in hand-made labelings [14]. Note that in general ≼
may contain reflexive constraints, which will be fulfilled by any labeling and can thus be
removed. The one-sided model in addition implicitly fulfills any transitive constraint. Hence,
we work in the one-sided model with the transitive reduction of (S,≼). In the following, we
denote with r the number of ordering constraints in the respective model.

ISAAC 2024

26:4 Constrained Boundary Labeling

A labeling respects the grouping/ordering constraints if all the grouping/ordering con-
straints are satisfied. Furthermore, the grouping/ordering constraints are consistent if there
exists a (not necessarily planar) labeling that respects them. Similarly, the constraints (Γ,≼)
are consistent if there exists a labeling that respects Γ and ≼ simultaneously. Finally, a la-
beling is admissible if it is planar and respects the constraints. If an admissible labeling exists,
we want to optimize a quality criterion expressed by a function f : Λ → R+

0 . In this paper, f

measures the length or the number of bends of a leader, which are the most commonly used
criteria [5]. Figure 2 highlights the differences and shows in (d) that an optimal admissible
labeling might be, with respect to f , worse than its planar (non-admissible) counterpart.

In an instance I of the Constrained b-Sided Boundary Labeling problem (b-CBL
in short), we want to find an admissible b-sided po-labeling L∗ for I (possibly on a set of m

candidates C) that minimizes
∑

s∈S f((s, L∗(s)) or report that no admissible labeling exists.

Related Work on Constrained External Labeling. Our work is in line with (recent) efforts
to integrate semantic constraints into the external labeling model. The survey of Bekos et
al. [5] reports papers that group labels. Some results consider heuristic label placements in
interactive 3D visualizations [19, 20] or group (spatially close) sites together to label them
with a single label [11, 24, 28], bundle the leaders [25], or align the labels [29]. These papers
are usually targeted at applications and do not aim for exact algorithms or formal complexity
bounds. Moreover, the grouping is often not part of the input but rather determined by
clustering similar sites. To the best of our knowledge, Niedermann et al. [26] are the first
that support the explicit grouping of labels while ensuring a planar labeling. They proposed
a contour labeling algorithm, a generalization of boundary labeling, that can be extended to
group sets of labels as hard constraints in their model. However, they did not analyze this
extension in detail and do not support ordering constraints. Recently, Gedicke et al. [16]
tried to maximize the number of respected groups that arise from the spatial proximity of the
sites or their semantics, i.e., they reward a labeling also based on the number of consecutive
labels from the same group. They disallow assigning a site to more than one group, but see
combining spatial and semantic groups as an interesting direction for further research. We
work towards that goal, as we allow grouping constraints to overlap. Finally, Klawitter et
al. [23] visualized geophylogenies by embedding a binary (phylogenetic) tree on one side of
the boundary. Each leaf of the tree corresponds to a site, and we aim to connect them using
straight-line leaders with few crossings. These trees implicitly encode grouping constraints, as
sites with a short path between their leaves must be labeled close together on the boundary.
However, Klawitter et al. not only considered a different optimization function, but restricted
themselves to binary trees, which cannot represent all grouping constraints. Overall, we can
identify a lack of a systematic investigation of (general) grouping and ordering constraints
from an algorithmic perspective in the literature. With this paper, we aim to fill this gap.

Contributions. In Section 2, we take a closer look at 1-CBL. We prove that it is NP-hard to
find an admissible labeling with sliding candidates and unrestricted label heights (Section 2.1)
and present polynomial-time algorithms for fixed candidates and unrestricted label heights
(Section 2.2) and for sliding candidates and uniform-height labels (Section 2.3). To that end,
we combine a dynamic program with a novel data structure based on PQ-Trees. As our
final contribution, we show in Section 3 that 2-CBL is NP-complete, even for uniform-height
labels and fixed candidates. To the best of our knowledge, this is the first two-sided boundary
labeling problem that is already NP-hard in such a restricted setting. We summarize our
results in Table 1.

T. Depian, M. Nöllenburg, S. Terziadis, and M. Wallinger 26:5

Table 1 Our results on b-CBL with n sites, m candidates, and a family Γ of k grouping constraints.

b candidates label height result reference

1 sliding non-uniform NP-hard Theorem 2.1
1 fixed non-uniform O(n5m3 log m + k +

∑
G∈Γ |G|) Theorem 2.6

1 sliding uniform O(n11 log n + k +
∑

Gp∈Γ |G|) Theorem 2.9

2 fixed uniform NP-complete Theorem 3.1

Full proofs of statements marked by ★ are deferred to the full version [10].

2 The Constrained One-Sided Boundary Labeling Problem

In Section 2.1, we show that finding an admissible labeling for an instance of 1-CBL is
NP-hard. However, by restricting the input to either fixed candidates (Section 2.2) or uniform
labels (Section 2.3), we can obtain polynomial-time algorithms.

2.1 Constrained One-Sided Boundary Labeling is NP-hard
To show that it is NP-hard to find an admissible labeling in an instance of 1-CBL, we can
reduce from the (weakly) NP-complete problem Partition. Inspired by a reduction by Fink
and Suri [12] from Partition to the problem of finding a planar labeling with non-uniform
height labels and sliding candidates in the presence of a single obstacle on the plane, we
will create a gadget of sites with grouping and ordering constraints that simulates such
an obstacle. The following construction is not in general position and contains leader-site
crossings. We resolve this issue in the full version [10].

Construction of the Instance. We will first give a reduction that only uses grouping
constraints. In the end, we show how we can replace the grouping constraints by ordering
constraints. Let (A = {a1, . . . aN }, w : A → N+) be an instance of the weakly NP-complete
problem Partition, in which we want to know if there exists a subset A′ ⊆ A such that∑

a∈A′ w(a) =
∑

a∈A\A′ w(a) = A, for some integer A, for which we can safely assume A ≥ 6.
We create for each element ai a site si whose corresponding label ℓsi

has a height of w(ai),
and place the sites on a horizontal line next to each other. Furthermore, we create five
sites, b1 to b5, with corresponding labels of height 1 for b1 and b5, height ⌊(A − 4)/2⌋ for b2
and b4, and height 2 or 3 for b3, depending on whether A is even or odd, respectively, and
place them as in Figure 3. Observe that the heights of the labels for b1 to b5 sum up to A.
We create the grouping constraints {{b1, b2, b3}, {b2, b3, b4}, {b3, b4, b5}}, which enforce that
any admissible labeling must label these sites as indicated in Figure 3. Since there is neither
an alternative order of the labels nor room to slide around, the labels of b2 to b4 must be
placed contiguously, without any free space, and at that fixed position on the boundary.
Hence, we call the resulting structure a block. We create two additional blocks above and
below the sites for A to create two A-high free windows on the boundary; see Figure 3.
These windows will be the only place the labels for the sites representing the elements of A
can be. Thus, we can form an equivalence between partitioning the elements of A into two
sets, A1 and A2, and placing the labels for the sites in the upper or lower window on the
boundary, respectively. Since the windows on the boundary have a height of A, we ensure
that the sum of the label heights in each window is exactly A. Finally, note that the grouping

ISAAC 2024

26:6 Constrained Boundary Labeling

s1 si sN

h(ℓ2) = ⌊A−4
2 ⌋

h(ℓ4) = ⌊A−4
2 ⌋

h(ℓ1) = 1

h(ℓ5) = 1

h(ℓ3) =

{
2 for A even,

3 for A odd

2
3
4

1
2
3

3
4
5

ℓ2

ℓ3

ℓ4
b5

b1

b2

b4
b3

ℓ1

ℓ5

· · ·· · ·

Block

Block

Block
Labels for

block

Labels for
block

∑
h = A

h(ℓsi) = w(ai)

∑
h = A

∑
h = A

∑
h = A

Figure 3 Components of the instance created by our NP-hardness reduction. Colored bands
visualize the grouping constraints of a block, that can be replaced by ordering constraints (arrows).
Note that the label heights and distances in this figure are not to scale.

constraints we used to keep the labels for the sites of the blocks in place can be exchanged
by the ordering constraints {b1 ≼ b2, b2 ≼ b3, b3 ≼ b4, b4 ≼ b5} (also shown in Figure 3 via
the arrows). Similar substitutions in the other two blocks yield Theorem 2.1.

▶ Theorem 2.1 (★). Deciding if an instance of 1-CBL has an admissible labeling is NP-hard,
even for a constant number of grouping or ordering constraints.

We conclude this section by noting that the problem Partition is only weakly NP-
complete. Therefore, Theorem 2.1 does not prove that 1-CBL is also NP-hard in the strong
sense and such a result would require a reduction from a different problem. Alternatively
obtaining a pseudo-polynomial algorithm for our problem at hand would show that it is
weakly NP-complete, ruling out strong NP-hardness under common complexity assumptions.
We refer to the book by Garey and Johnson [15] for an introduction to NP-completeness and
its flavors and leave both directions open for future work.

2.2 Fixed Candidate Reference Points
We assume that we are given a set C of m ≥ n candidates. Benkert et al. [6] observed
that in a planar labeling L, the leader λL connecting the leftmost site sL ∈ S with some
candidate cL splits the instance I into two independent sub-instances, I1 and I2, excluding
sL and cL. Therefore, we can describe a sub-instance I of I by two leaders (s1, c1) and
(s2, c2) that bound the sub-instance from above and below, respectively. We denote the
sub-instance as I = (s1, c1, s2, c2) and refer with S(I) and C(I) to the sites and candidates
in I, excluding those used in the definition of I, i.e., S(I) := {s ∈ S | x(s1) < x(s), x(s2) <

x(s), y(c2) < y(s) < y(c1)} and C(I) := {c ∈ C | y(c2) < y(c) < y(c1)}. Similarly, for a
leader λ = (s, c), we say that a site s′ with x(s) < x(s′) is above λ if y(s′) > y(c) holds and
below λ if y(s′) < y(c) holds. See also Figure 4 for an illustration of these definitions and
notions.

Two more observations about admissible labelings can be made: First, λL never splits
sites s, s′ ∈ G with sL /∈ G for a G ∈ Γ. Second, λL never splits sites s, s′ ∈ S with s above λL

and s′ below λL, for which we have s′ ≼ sL, s′ ≼ s, or sL ≼ s. Now, we could immediately

T. Depian, M. Nöllenburg, S. Terziadis, and M. Wallinger 26:7

s1

λ1 = (s1, c1)

λ2 = (s2, c2)

S(I)
C(I)

c1

c2

s2

sites below λ1

sites above λ1

Figure 4 A sub-instance I = (s1, c1, s2, c2) of our DP-algorithm and the used notation.

define a dynamic programming (DP) algorithm that evaluates the induced sub-instances
for each leader that adheres to these observations. However, we would then check every
constraint in each sub-instance and not make use of implicit constraints given by, for example,
overlapping groups. The following data structure makes these implicit constraints explicit.

PQ-A-Graphs. Every labeling L induces a permutation π of the sites by reading the labels
from top to bottom. Assume that we have at least one grouping constraint, i.e., k > 0, and
let M(S, Γ) be an n × k binary matrix with mi,j = 1 if and only if si ∈ Gj for Gj ∈ Γ. We
call M(S, Γ) the sites vs. groups matrix, and observe that L satisfies the constraint Gj if
and only if the ones in the column j of M(S, Γ) are consecutive after we order the rows of
M(S, Γ) according to π. If a permutation π exists such that this holds for all columns of
M(S, Γ), then the matrix has the so-called consecutive ones property (C1P) [13]. This brings
us to the following observation.

▶ Observation 2.2. Γ are consistent for S if and only if M(S, Γ) has the C1P.

Booth and Lueker [8] proposed an algorithm to check whether a binary matrix has the
C1P. They use a PQ-Tree to keep track of the allowed row permutations. A PQ-Tree τ ,
for a given set A of elements, is a rooted tree with one leaf for each element of A and two
different types of internal nodes t: P-nodes, that allow to freely permute the children of t, and
Q-nodes, where the children of t can only be inversed [8]. Observation 2.2 tells us that each
family of consistent grouping constraints can be represented by a PQ-Tree. Note that we
can interpret each subtree of the PQ-Tree as a grouping constraint and we call the resulting
grouping constraints canonical groups. However, while every canonical group is a grouping
constraint, not every given grouping constraint manifests in a canonical group.

While Observation 2.2 implies that PQ-Trees can represent families of consistent grouping
constraints, it is folklore that directed acyclic graphs can be used to represent partial orders,
i.e., our ordering constraints. We now combine these two data structures into PQ-A-Graphs.

▶ Definition 2.3 (PQ-A-Graph). Let S be a set of sites, Γ be a family of consistent grouping
constraints, and ≼ be a partial order on S. The PQ-A-Graph T = (τ , A) consists of the
PQ-Tree τ for Γ, on whose leaves we embed the arcs A of a directed graph representing ≼.

We denote with Ti the subtree in the underlying PQ-Tree τ rooted at the node ti and with
leaves(Ti) the leaf set of Ti. Figure 5 shows a PQ-A-Graph and the introduced terminology.
Furthermore, observe that checking on the consistency of (Γ,≼) is equivalent to solving the
Reorder problem on τ and ≼, i.e., asking whether we can re-order leaves(τ) such that the
order induced by reading them from left to right extends the partial order ≼ [22].

ISAAC 2024

26:8 Constrained Boundary Labeling

ti

P

P

P PP P

sL

ti−1 ti+1 tzt1· · · · · ·

t

PP

Q

Above sL at t Below sL at t

Canonical groups
of the subtree Tq

rooted at the Q-
node q

q

x

leaves(Tx)

Figure 5 A sample PQ-A-Graph together with the used terminology. Leaves are indicated by
squares and ordering constraints by the arrows.

▶ Lemma 2.4 (★). Let S be a set of n sites, Γ be k grouping constraints and ≼ be r

ordering constraints. We can check whether (Γ,≼) are consistent for S and, if so, create the
PQ-A-Graph T in O(n + k + r +

∑
G∈Γ |G|) time. T uses O(n + r) space.

The Dynamic Programming Algorithm. Let I = (s1, c1, s2, c2) be a sub-instance and sL the
leftmost site in S(I). Furthermore, let T (s1, s2) denote the subgraph of the PQ-A-Graph T
rooted at the lowest common ancestor of s1 and s2 in T . Note that T (s1, s2) contains at
least the sites in S(I), together with s1 and s2. Therefore, it contains all constraints relevant
for the sub-instance I. Other constraints either do not affect sites in I, i.e., are represented
by other parts of T , or are trivially satisfied. In particular, observe that all constraints
induced by nodes further up in T affect a super-set of S(I) and in particular have been
checked in some sub-instance I ′ that contains I, i.e., that contains s1, s2, c1, and c2. Now
imagine that we want to place the label ℓL for sL at the candidate cL ∈ C(I). We have to
ensure that λL = (sL, cL) does not violate planarity with respect to the already fixed labeling
and that in the resulting sub-instances there are enough candidates for the respective sites.
Let Admissible(I, T , cL) be a procedure that checks this and, in addition, verifies that cL

respects the constraints expressed by T (s1, s2). To do the latter efficiently, we make use of
the procedure RespectsConstraints(I, T , λL) defined as follows.

Let tL be the leaf for sL in T (s1, s2). There is a unique path from tL to root(T (s1, s2)),
which we traverse bottom up and consider each internal node on it. Let t be such a node
with the children t1, . . . , tz in this order from left to right. Let Ti, 1 ≤ i ≤ z, be the
subtree that contains the site sL, rooted at ti. The labels for all sites represented by
leaves(T1), . . . , leaves(Ti−1) will be placed above ℓL in any labeling L of S in which the
children of t are ordered as stated. Therefore, we call these sites above sL (at t). Analogously,
the sites represented by leaves(Ti+1), . . . , leaves(Tz) are below sL (at t). Figure 5 illustrates
this. The sites represented by leaves(Ti) are neither above nor below sL at t. It is important
to note that we use two different notions of above/below. On the one hand, sites can be
above a node t in the PQ-A-Graph T (s1, s2), which depends on the order of the children of t.
On the other hand, a site can also be above a leader λ, which depends on the (geometric)
position of λ and is independent of T (s1, s2). Recall Figure 5 and compare it with Figure 4
for the former and latter notion of above and below, respectively.

If t is a P-node, we seek a permutation π of the children t1, . . . , tz of t in which all the
sites in S(I) above sL at t (in the permutation π) are above λL, and all the sites in S(I)
below sL at t (in the permutation π) are below λL. This means that it cannot be the case
that some sites of the same subtree T that does not contain sL are above λL, while others
are below λL, as this implies that we violate the canonical grouping constraint induced by T .

T. Depian, M. Nöllenburg, S. Terziadis, and M. Wallinger 26:9

s1 s2sites above
sL at t

P

Pt

root

P

sLsites above
sL at t

(a) The PQ-A-Graph T (s1, s2), rooted at
root(T (s1, s2)), with s1 ∈ leaves(Ti).

s1

s2

sL

(b) A (sub-)instance I, where a wrong permuta-
tion of the children of t in T (s1, s2) from (a)
would label the orange sites outside I.

Figure 6 In this situation, Cabove must not contain subtrees with sites from the sub-instance.

To not iterate through all possible permutations, we distribute the children of t, except ti,
into two sets, Cabove and Cbelow, depending on whether the sites they represent should be
above or below sL at t. Unless specified otherwise, whenever we mention in the following the
site s1, then the same applies to s2, but possibly after exchanging above with below.

If Tj , rooted at a child tj of t, 1 ≤ j ≤ z, i ̸= j, only contains sites from S(I), we check
whether all the sites are above λL, or if all are below λL. In the former case, we put tj in the
set Cabove, and in the latter case in Cbelow. If neither of these cases applies, we return with
failure as λL splits a (canonical) group to which sL does not belong. If Tj contains only sites
outside the sub-instance and not s1, we immediately put it in Cabove. However, if Tj contains
s1 ∈ leaves(Tj), it can contain some sites in I and others outside I. As s1 is above sL

at t by the definition of I, we must put tj in Cabove. Hence, we check whether all sites in
leaves(Tj) ∩ S(I) are above λL, i.e., whether they are indeed above sL at t. Furthermore, if
s1 ∈ leaves(Ti) holds, then Cabove must not contain a child tj containing sites from S(I), as
they would then be labeled outside I, violating the definition of I; see Figure 6. Once t is
the root of T (s1, s2), sites from Tj but outside I can be above or below sL at t, as s1 and s2
are in the subtree rooted at t. If Tj does not contain the sites s1 and s2, and only sites
outside I, then the leaders from s1 or s2 separate the sites from Tj and S(I). As these sites
together were part of a bigger instance I ′ (that contains I), for which we already ensured
that potential constraints relating a site from Tj and one from S(I) are respected, we can
ignore tj . In any other case, we perform as described above.

The checks that have to be performed if t is a Q-node are conceptually the same, but
simpler, since Q-nodes only allow to inverse the order: Either all sites above sL at t are
above λL, and all sites below sL at t are below λL, or all sites above sL at t are below λL,
and all sites below sL at t are above λL. In the former case, we keep the order of the children
at the node t as they are. In the latter case, we inverse the order of the children at the
node t. Note that if a child of t contains the sites s1, s2, or sites outside the sub-instance I

but in T (s1, s2), one of the two allowed inversions is enforced by the definition of I.
Until now we only verified that we adhere to the grouping constraints. To ensure that

we do not violate an ordering constraint, we maintain a look-up table that stores for each
site whether it belongs to Cabove, Cbelow, or Ti. Then, we check for each of the ordering
constraints in T (s1, s2) in constant time whether we violate it or not. Note that we violate an
ordering constraint if the corresponding arc runs from Cbelow to Ti or to Cabove, or from Ti

to Cabove. We observe that we query the position of each site s O(1) times and determine
each time its position with respect to the leader λL or check whether it is in the sub-instance.

ISAAC 2024

26:10 Constrained Boundary Labeling

Afterwards, we do not consider this site anymore. As each ordering constraint can be checked
in O(1) time, we have an overall running time of O(n + r) for the checks at a node t of
T (s1, s2), which already includes the computation of the look-up tables.

We say that cL respects the constraints for sL imposed by T (s1, s2) in the sub-instance
I = (s1, c1, s2, c2) if it respects them at every node t on the path from sL to the root of
T (s1, s2). RespectsConstraints(I, T , λL) performs these checks for each node on the
path from sL to root(T (s1, s2)). The length of this path is bounded by the depth of T (s1, s2)
which is in O(n). Hence, RespectsConstraints(I, T , λL) runs in O(n (n + r)) time. In
the following lemma, we show that Admissible(I, T , cL) takes O(n2 + nr + log m) time.

▶ Lemma 2.5 (★). Let I = (s1, c1, s2, c2) be a sub-instance of our DP-Algorithm with the
constraints expressed by a PQ-A-Graph T . We can check whether the candidate cL ∈ C(I) is
admissible for the leftmost site sL ∈ S(I) using Admissible(I, T , cL) in O(n2 + nr + log m)
time, where n = |S|, m = |C|, and r is the number of ordering constraints.

For a sub-instance I = (s1, c1, s2, c2), we store in a table D the value f(L∗) of an optimal
admissible labeling L∗ on I or ∞ if none exists. If I does not contain a site we set D[I] = 0.
Otherwise, we use the following relation, where the minimum of the empty set is ∞.

D[I] = min
cL∈C(I) where

Admissible(I,T ,cL) is true

(D[(s1, c1, sL, cL)] + D[(sL, cL, s2, c2)]) + f((sL, cL))

To show correctness of our DP-Algorithm, one can use a proof analogous to the one of
Benkert et al. [6], who propose a similar dynamic program to compute a one-sided labeling
with po-leaders and a similar-structured optimization function, combined with the fact that
we consider only those candidates that are admissible for sL. By adding artificial sites s0 and
sn+1, and candidates c0 and cm+1, that bound the instance from above and below, we can
describe any sub-instance by a tuple I = (s1, c1, s2, c2), and in particular the sub-instance for
I by I0 = (s0, c0, sn+1, cm+1). As two sites and two candidates describe a sub-instance, there
are up to O(n2m2) possible sub-instances to evaluate. We then fill the table D top-down
using memoization. This guarantees us that we have to evaluate each sub-instance I at most
once, and only those that arise from admissible candidates. The running time of evaluating
a single sub-instance is dominated by the time required to determine for each candidate
whether it is admissible. Combined with the size of the table D, we get the following.

▶ Theorem 2.6 (★). 1-CBL for n sites, m fixed candidates, r ordering, and k grouping
constraints Γ can be solved in O(n5m3 log m + k +

∑
G∈Γ |G|) time and O(n2m2) space.

Real-world instances often consist of less than 50 sites [26] and we do not expect the number
of candidates to be significantly larger than the number of sites. Hence, the running time of
Theorem 2.6 does not immediately rule out the practical applicability of our results. Indeed,
initial experiments for uniform-height labels confirmed that our algorithm terminates within
a few seconds for instances with realistic sizes [1, 16] of up to 25 sites and 50 candidates; see
the full version [10] for details and Figure 1b for an example. In fact, dynamic programming
is frequently used to obtain exact polynomial-time algorithms in external labeling [5] and it
is not uncommon that such algorithms have high running times of up to O(n6) and O(n9)
for the one- and two-sided setting with po-leaders, respectively [6, 12, 21, 23]. Finally, we
observed in our experiments that the position of the candidates influenced the feasibility of
an instance, which makes considering sliding candidates interesting and relevant.

T. Depian, M. Nöllenburg, S. Terziadis, and M. Wallinger 26:11

(a) We cannot avoid crossings if we want to
respect the constraints.

(b) An alternative set of candidates to (a) which
allows for an admissible labeling.

Figure 7 An instance whose admissibility depends on the position of the candidates.

2.3 Sliding Candidate Reference Points with Uniform-Height Labels
Fixed candidates have the limitation that the admissibility of an instance depends on the
choice and position of the candidates, as Figure 7 shows. By allowing the labels to slide
along a sufficiently long vertical boundary line, we remove this limitation. To avoid the
NP-hardness shown in Section 2.1, we require that all labels now have uniform height h > 0.

In this section, we will define for each site s a set of O(n) candidates placed at multiples
of h away from y(s), building on an idea of Fink and Suri [12] shown in Figure 8a with the
crossed candidates. After extending them by some offset ε > 0 we will prove in order: That
if an instance has an admissible labeling, it also has an admissible (bend-minimal) labeling
using these candidates (Lemma 2.7), that if such an instance has an admissible labeling in
which every leader has a minimum distance to every non-incident site, then there is a labeling
with the same property using a slightly different set of candidates, which also has equal or
smaller total leader length (Lemma 2.8) and that these results in concert with Theorem 2.6
can be used to solve 1-CBL with uniform-height labels in polynomial time (Theorem 2.9).

Let d be defined as d := mins,s′∈S (|y(s) − y(s′)| − qh), where q = ⌊|y(s) − y(s′)| /h⌋,
i.e., the smallest distance one must move some site (down) in the instance such that it is
vertically a multiple of h away from some other site. For the following arguments to work,
we require d > 0. However, this can easily be ensured by enforcing that the vertical distance
|y(s) − y(s′)| between any pair of sites s and s′ is not a multiple of h, which can be achieved
by perturbating some sites slightly. As we then have d > 0, we can select an ε with 0 < ε < d.
We now define a set of O(n2) candidates such that there exists an admissible labeling on these
(fixed) candidates, if the instance with sliding candidates possesses an admissible labeling. For
each s ∈ S, we define the set C(s) := {y(s)+ih, y(s)+ih±ε, y(s)−ih, y(s)−ih±ε | 0 ≤ i ≤ n}
of candidates. Now, we define the set of canonical candidates C(S) as C(S) :=

⋃
s∈S C(s),

some of which are depicted in Figure 8a, and show the following.

▶ Lemma 2.7 (★). Let I be an instance of 1-CBL with uniform-height labels and sliding
candidates. If I possesses an admissible labeling, it also has one with candidates from C(S).

Proof Sketch. Our proof builds on arguments used by Fink and Suri for a similar result [12]
and we call a maximal set of touching (but non-overlapping) labels a stack [27]. The idea is
to transform an admissible labeling L into an admissible labeling L′ in which each candidate
is from C(S). Labels at a candidate above the candidate c ∈ C(S) with y(c) = y(st) + h for
the top-most site st are arranged in L′ as a single stack so that the bottom-most candidate
coincides with c. We arrange labels at a candidate at least h below the bottom-most site
symmetrically. As they are located above and below all sites, this cannot introduce crossings.

For the remaining labels in L, we iteratively take the bottom-most not yet moved label ℓ

and move it upwards until we either hit a candidate from C(S) or another label ℓ′. In the
latter case, we “merge” ℓ and ℓ′ into a stack and move them from now on simultaneously. We

ISAAC 2024

26:12 Constrained Boundary Labeling

h

h

(a) Induced candidates as in [12] (marked by a
cross) and the extension to canonical candidates.

s

s′

s′′

= ε < d ≤

(b) The leader of s crosses s′ after moving labels
upwards. We show the candidates from C(s′).

Figure 8 The set of reference points we construct and (b) their usage in the proofs.

continue moving the remaining labels in the same manner. Observe that we never move a
label past a site, but might introduce leader-site crossings. They can arise if in L a leader λ

from a site s passes between a candidate of C(S) and a site s′ ̸= s. There, the first candidate
that we hit for ℓ might be induced by s′ and λ could now cross s′. In such a case, we take
that label and its potential stack and move it downwards until we hit a candidate from C(S).
By our selection of ε, it is guaranteed that we will hit a candidate before any other site, since
there is at least one other candidate strictly between the end of the stack and any other
site s′′. We already indicated this in Figure 8a, but show it in more detail in Figure 8b with
the orange candidates. After moving all such labels simultaneously, we obtain the labeling L′

where each label is at a candidate from C(S). Since the relative placement of the labels in L′

is identical to L, all constraints are still respected and L′ is admissible. ◀

Observe that if we want to obtain a labeling with the minimum number of bends, then it
only matters whether a site s is labeled at a candidate c with y(s) = y(c). Labeling s at any
other candidate c′ ̸= c contributes with one bend to the labeling. As each site s ∈ S induces
a candidate c ∈ C(S) with y(s) = y(c), our set of canonical candidates allows for a bend-
minimal labeling. For length-minimal labelings, instances without optimal labelings exist.
See for example Figure 7b, where we can always move the red leader by a small ε′ > 0 closer
to the purple site marked with a red box. To ensure the existence of length-minimal labelings,
we enforce that the leaders maintain a minimum vertical distance of vmin > 0 to non-incident
sites. We define C′(s) := {y(s)+qh, y(s)+qh±vmin, y(s)−qh, y(s)−qh±vmin | 0 ≤ q ≤ n},
which is an alternative set of canonical candidates that takes vmin into account. Equipped
with C′(S) :=

⋃
s∈S C′(s), we can show Lemma 2.8, which is a variant of Lemma 2.7.

▶ Lemma 2.8 (★). Let I be an instance of 1-CBL with uniform-height labels and where the
leaders must maintain a vertical distance of at least vmin to non-incident sites. If I possesses
an admissible labeling L with sliding candidates, then we can find an admissible labeling L′

with candidates from C′(S) such that the leader length of L′ is at most the one of L.

Note that C′(S) can contain candidates for which leaders would not satisfy the requirement
on a vertical distance of at least vmin to non-incident sites. Recall that we never moved past
a candidate while sliding labels and created in C′(S) candidates that are vmin away from sites.
Hence, we ensure that L′ satisfies this additional criterion as well. This criterion can also be
patched into the DP-algorithm without affecting its running time. Finally, this additional
criterion is not a limitation, as this is already often required in real-world labelings [26].

With Lemmas 2.7 and 2.8 at hand, we can show the following theorem.

▶ Theorem 2.9. 1-CBL for n sites with uniform-height labels, k grouping, and r ordering
constraints can be solved in O(n11 log n + k +

∑
G∈Γ |G|) time and O(n6) space.

T. Depian, M. Nöllenburg, S. Terziadis, and M. Wallinger 26:13

BBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBB

R3

R2

R1

x4x4x4x4x4x4x4x4x4x4x4x4x4x4x4x4x4

x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3

x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2

x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1

(a) The constructed instance.

BBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBBB

R3

R2

R1

(b) A (non-admissible) labeling that violates an
ordering constraint.

Figure 9 The instance created by our reduction for the formula R1 ∧ R2 ∧ R3 = (x2 ∨ x3 ∨
x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4). The variable gadgets for x1, x2, x3, and x4 as well as their
occurrences in clause gadgets are drawn in blue, red, yellow, and green, respectively. Ordering
constraints between variables and their occurrences in clauses are indicated in (a). If two variables of
a clause are set to true, we violate at least one ordering constraint as highlighted with the red leader
for the purple site in the clause R3 in (b). The labeling from (b) induces the variable assignment
x1 = x4 = true and x2 = x3 = false, which does not satisfy R3 = (x1 ∨ x2 ∨ x4) as x1 and x4 are set
to true.

Proof. We note that C(S) and C′(S) consist of O(n2) canonical candidates. Lemmas 2.7
and 2.8 ensure that we can obtain on these candidates an admissible, bend-, and length-
minimal labeling, if there exists one at all. Thus, we can use our DP-Algorithm from
Section 2.2 and obtain Theorem 2.9 by plugging in m = O(n2) in Theorem 2.6. ◀

3 Constrained Two-Sided Boundary Labeling is NP-complete

In the previous section, we showed that 1-CBL, while generally NP-hard, can be solved
efficiently if we have either fixed candidates or labels of uniform height. This does not extend
to the generalization of the problem to two sides, as the following theorem underlines.

▶ Theorem 3.1 (★). Deciding if an instance of 2-CBL has an admissible labeling is
NP-complete, even for uniform-height labels and fixed candidates.

Proof Sketch. NP-membership follows from the definition of admissibility, and NP-hardness
can be shown by reducing from Positive 1-In-3 Sat, see Figure 9 for an example. The main
building block is the blocker gadget B, which consists of eight sites and uses grouping and
ordering constraints to let the orthogonal parts of its leaders span the entire width between
the two boundaries. This enforces that sites on one side of the gadget cannot be labeled on
the other side and vice versa. We use this to divide the space between the vertical boundaries
into separate strips: one per clause Ri and one at the bottom for all variables. The former
contains three clause sites, one per occurring variable, of which only one can be labeled on
the left side. The latter contains per variable two variable sites which encode if the variable
is true (a site is labeled on the right side) or false (it is labeled on the left side). Ordering
constrains force any variable site to be labeled above any corresponding clause site. The

ISAAC 2024

26:14 Constrained Boundary Labeling

blockers make this impossible, thus forcing all clause sites to be labeled on the opposite side
of their variable site, creating a correspondence to a consistent variable assignment. Finally,
as in every clause strip, there is only one candidate on the left side, exactly one clause site
can be labeled on the left, corresponding to the (single) variable satisfying this clause. ◀

4 Conclusion

We introduced and studied grouping and ordering constraints in boundary labeling. While
finding an admissible labeling is NP-hard in general, polynomial-time algorithms for one-sided
instances with fixed candidates or uniform-height labels exist. Future work could try to
speed up the admissibility checks in our dynamic program to reduce its overall running time
or investigate the incorporation of soft constraints, i.e., consider the task of maximizing the
number of satisfied constraints. Since we can also label features other than points, it is worth
studying a variant of this problem with uncertain or variable site locations. Similarly, the
support of other leader types or entire other external labeling styles should be investigated.

References
1 Lukas Barth, Andreas Gemsa, Benjamin Niedermann, and Martin Nöllenburg. On the

readability of leaders in boundary labeling. Information Visualization, 18(1):110–132, 2019.
doi:10.1177/1473871618799500.

2 Michael A. Bekos, Sabine Cornelsen, Martin Fink, Seok-Hee Hong, Michael Kaufmann, Martin
Nöllenburg, Ignaz Rutter, and Antonios Symvonis. Many-to-One Boundary Labeling with
Backbones. Journal of Graph Algorithms and Applications (JGAA), 19(3):779–816, 2015.
doi:10.7155/jgaa.00379.

3 Michael A. Bekos, Michael Kaufmann, Martin Nöllenburg, and Antonios Symvonis. Bound-
ary Labeling with Octilinear Leaders. Algorithmica, 57(3):436–461, 2010. doi:10.1007/
s00453-009-9283-6.

4 Michael A. Bekos, Michael Kaufmann, Antonios Symvonis, and Alexander Wolff. Boundary
labeling: Models and efficient algorithms for rectangular maps. Computational Geometry,
36(3):215–236, 2007. doi:10.1016/j.comgeo.2006.05.003.

5 Michael A. Bekos, Benjamin Niedermann, and Martin Nöllenburg. External Labeling: Funda-
mental Concepts and Algorithmic Techniques. Synthesis Lectures on Visualization. Springer,
2021. doi:10.1007/978-3-031-02609-6.

6 Marc Benkert, Herman J. Haverkort, Moritz Kroll, and Martin Nöllenburg. Algorithms for
Multi-Criteria Boundary Labeling. Journal of Graph Algorithms and Applications (JGAA),
13(3):289–317, 2009. doi:10.7155/jgaa.00189.

7 Satyam Bhuyan and Santanu Mukherjee (sciencefacts.net). Layers of the Sun, 2023. Accessed
on 2023-09-07. URL: https://www.sciencefacts.net/layers-of-the-sun.html.

8 Kellogg S. Booth and George S. Lueker. Testing for the Consecutive Ones Property, Interval
Graphs, and Graph Planarity Using PQ-Tree Algorithms. Journal of Computer and System
Sciences (JCSS), 13(3):335–379, 1976. doi:10.1016/S0022-0000(76)80045-1.

9 Mary Helen Briscoe. A Researcher’s Guide to Scientific and Medical Illustrations. Springer
Science & Business Media, 1990. doi:10.1007/978-1-4684-0355-8.

10 Thomas Depian, Martin Nöllenburg, Soeren Terziadis, and Markus Wallinger. Constrained
Boundary Labeling, 2024. doi:10.48550/arXiv.2402.12245.

11 Martin Fink, Jan-Henrik Haunert, André Schulz, Joachim Spoerhase, and Alexander Wolff.
Algorithms for Labeling Focus Regions. IEEE Transactions on Visualization and Computer
Graphics, 18(12):2583–2592, 2012. doi:10.1109/TVCG.2012.193.

12 Martin Fink and Subhash Suri. Boundary Labeling with Obstacles. In Proc. 28th Canadian
Conference on Computational Geometry (CCCG), pages 86–92. Simon Fraser University, 2016.

https://doi.org/10.1177/1473871618799500
https://doi.org/10.7155/jgaa.00379
https://doi.org/10.1007/s00453-009-9283-6
https://doi.org/10.1007/s00453-009-9283-6
https://doi.org/10.1016/j.comgeo.2006.05.003
https://doi.org/10.1007/978-3-031-02609-6
https://doi.org/10.7155/jgaa.00189
https://www.sciencefacts.net/layers-of-the-sun.html
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1007/978-1-4684-0355-8
https://doi.org/10.48550/arXiv.2402.12245
https://doi.org/10.1109/TVCG.2012.193

T. Depian, M. Nöllenburg, S. Terziadis, and M. Wallinger 26:15

13 Delbert Fulkerson and Oliver Gross. Incidence matrices and interval graphs. Pacific Journal
of Mathematics, 15(3):835–855, 1965.

14 Stadtförsterei Fürth. Altersbestimmung und Baumanatomie, 2021. URL: https://www.
stadtwald.fuerth.de/waldlehrpfad/baumanatomie-und-altersbestimmung. Accessed on
2024-04-16.

15 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

16 Sven Gedicke, Lukas Arzoumanidis, and Jan-Henrik Haunert. Automating the external
placement of symbols for point features in situation maps for emergency response. Cartography
and Geographic Information Science (CaGIS), 50(4):385–402, 2023. doi:10.1080/15230406.
2023.2213446.

17 Sven Gedicke, Annika Bonerath, Benjamin Niedermann, and Jan-Henrik Haunert. Zoomless
Maps: External Labeling Methods for the Interactive Exploration of Dense Point Sets at a Fixed
Map Scale. IEEE Transactions on Visualization and Computer Graphics, 27(2):1247–1256,
2021. doi:10.1109/TVCG.2020.3030399.

18 Andreas Gemsa, Jan-Henrik Haunert, and Martin Nöllenburg. Multirow Boundary-Labeling
Algorithms for Panorama Images. ACM Transactions on Spatial Algorithms and Systems
(TSAS), 1(1):1:1–1:30, 2015. doi:10.1145/2794299.

19 Timo Götzelmann, Knut Hartmann, and Thomas Strothotte. Agent-Based Annotation of
Interactive 3D Visualizations. In Proc. 6th International Symposium on Smart Graphics (SG),
volume 4073 of Lecture Notes in Computer Science (LNCS), pages 24–35. Springer, 2006.
doi:10.1007/11795018_3.

20 Timo Götzelmann, Knut Hartmann, and Thomas Strothotte. Contextual Grouping of Labels.
In Proc. 17th Simulation und Visualisierung (SimVis), pages 245–258. SCS Publishing House
e.V., 2006. URL: http://www.simvis.org/Tagung2006/sv-proceedings.html.

21 Philipp Kindermann, Benjamin Niedermann, Ignaz Rutter, Marcus Schaefer, André Schulz,
and Alexander Wolff. Multi-sided Boundary Labeling. Algorithmica, 76(1):225–258, 2016.
doi:10.1007/s00453-015-0028-4.

22 Pavel Klavík, Jan Kratochvíl, Yota Otachi, Toshiki Saitoh, and Tomás Vyskocil. Extending
Partial Representations of Interval Graphs. Algorithmica, 78(3):945–967, 2017. doi:10.1007/
s00453-016-0186-z.

23 Jonathan Klawitter, Felix Klesen, Joris Y. Scholl, Thomas C. van Dijk, and Alexander Zaft.
Visualizing Geophylogenies - Internal and External Labeling with Phylogenetic Tree Con-
straints. In Proc. 12th International Conference Geographic Information Science (GIScience),
volume 277 of Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.GIScience.2023.5.

24 Konrad Mühler and Bernhard Preim. Automatic Textual Annotation for Surgical Planning.
In Proc. 14th International Symposium on Vision, Modeling, and Visualization (VMV), pages
277–284. DNB, 2009.

25 Benjamin Niedermann and Jan-Henrik Haunert. Focus+context map labeling with optimized
clutter reduction. International Journal of Cartography, 5(2–3):158–177, 2019. doi:10.1080/
23729333.2019.1613072.

26 Benjamin Niedermann, Martin Nöllenburg, and Ignaz Rutter. Radial Contour Labeling with
Straight Leaders. In Proc. 10th IEEE Pacific Visualization Symposium (PacificVis), PacificVis
’17, pages 295–304. IEEE Computer Society, 2017. doi:10.1109/PACIFICVIS.2017.8031608.

27 Martin Nöllenburg, Valentin Polishchuk, and Mikko Sysikaski. Dynamic one-sided boundary
labeling. In Proc. 18th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (GIS), GIS ’10, pages 310–319. Association for Computing Machinery
(ACM), 2010. doi:10.1145/1869790.1869834.

28 Markus Tatzgern, Denis Kalkofen, and Dieter Schmalstieg. Dynamic Compact Visualizations
for Augmented Reality. In Proc. 20th IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), pages 3–6. IEEE Computer Society, 2013. doi:10.1109/VR.2013.6549347.

ISAAC 2024

https://www.stadtwald.fuerth.de/waldlehrpfad/baumanatomie-und-altersbestimmung
https://www.stadtwald.fuerth.de/waldlehrpfad/baumanatomie-und-altersbestimmung
https://doi.org/10.1080/15230406.2023.2213446
https://doi.org/10.1080/15230406.2023.2213446
https://doi.org/10.1109/TVCG.2020.3030399
https://doi.org/10.1145/2794299
https://doi.org/10.1007/11795018_3
http://www.simvis.org/Tagung2006/sv-proceedings.html
https://doi.org/10.1007/s00453-015-0028-4
https://doi.org/10.1007/s00453-016-0186-z
https://doi.org/10.1007/s00453-016-0186-z
https://doi.org/10.4230/LIPIcs.GIScience.2023.5
https://doi.org/10.1080/23729333.2019.1613072
https://doi.org/10.1080/23729333.2019.1613072
https://doi.org/10.1109/PACIFICVIS.2017.8031608
https://doi.org/10.1145/1869790.1869834
https://doi.org/10.1109/VR.2013.6549347

26:16 Constrained Boundary Labeling

29 Ian Vollick, Daniel Vogel, Maneesh Agrawala, and Aaron Hertzmann. Specifying label
layout style by example. In Proc. 20th ACM Symposium on User Interface Software and
Technology (UIST), UIST ’07, pages 221–230. Association for Computing Machinery (ACM),
2007. doi:10.1145/1294211.1294252.

30 Colin Ware. Chapter 6 – Static and Moving Patterns, pages 179–237. Elsevier, 2013. doi:
10.1016/b978-0-12-381464-7.00006-5.

https://doi.org/10.1145/1294211.1294252
https://doi.org/10.1016/b978-0-12-381464-7.00006-5
https://doi.org/10.1016/b978-0-12-381464-7.00006-5

Knapsack with Vertex Cover, Set Cover, and
Hitting Set
Palash Dey # Ñ

Indian Institute of Technology Kharagpur, India

Ashlesha Hota #

Indian Institute of Technology Kharagpur, India

Sudeshna Kolay # Ñ

Indian Institute of Technology Kharagpur, India

Sipra Singh #

Indian Institute of Technology Kharagpur, India

Abstract
In the Vertex Cover Knapsack problem, we are given an undirected graph G = (V, E), with
weights (w(u))u∈V and values (α(u))u∈V of the vertices, the size s of the knapsack, a target value
p, and the goal is to compute if there exists a vertex cover U ⊆ V with total weight at most s,
and total value at least p. This problem simultaneously generalizes the classical vertex cover and
knapsack problems. We show that this problem is strongly NP-complete. However, it admits a
pseudo-polynomial time algorithm for trees. In fact, we show that there is an algorithm that runs in
time O

(
2tw · n · min{s2, p2}

)
where tw is the treewidth of G. Moreover, we can compute a (1 − ε)-

approximate solution for maximizing the value of the solution given the knapsack size as input
in time O

(
2tw · poly(n, 1/ε, log

(∑
v∈V α(v)

)
)
)

and a (1 + ε)-approximate solution to minimize the
size of the solution given a target value as input, in time O

(
2tw · poly(n, 1/ε, log

(∑
v∈V w(v)

)
)
)

for every ε > 0. Restricting our attention to polynomial-time algorithms only, we then consider
polynomial-time algorithms and present a 2 factor polynomial-time approximation algorithm for
this problem for minimizing the total weight of the solution, which is optimal up to additive o(1)
assuming Unique Games Conjecture (UGC). On the other hand, we show that there is no ρ factor
polynomial-time approximation algorithm for maximizing the total value of the solution given a
knapsack size for any ρ > 1 unless P = NP.

Furthermore, we show similar results for the variants of the above problem when the solution
U needs to be a minimal vertex cover, minimum vertex cover, and vertex cover of size at most k

for some input integer k. Then, we consider set families (equivalently hypergraphs) and study the
variants of the above problem when the solution needs to be a set cover and hitting set. We show that
there are Hd and f factor polynomial-time approximation algorithms for Set Cover Knapsack
where d is the maximum cardinality of any set and f is the maximum number of sets in the family
where any element can belongs in the input for minimizing the weight of the knapsack given a
target value, and a d factor polynomial-time approximation algorithm for d-Hitting Set Knapsack
which are optimal up to additive o(1) assuming UGC. On the other hand, we show that there
is no ρ factor polynomial-time approximation algorithm for maximizing the total value of the
solution given a knapsack size for any ρ > 1 unless P = NP for both Set Cover Knapsack and
d-Hitting Set Knapsack.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Knapsack, vertex cover, minimal vertex cover, minimum vertex cover, hitting
set, set cover, algorithm, approximation algorithm, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.27

Related Version Full Version: https://arxiv.org/abs/2406.01057 [8]

© Palash Dey, Ashlesha Hota, Sudeshna Kolay, and Sipra Singh;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:palash.dey@cse.iitkgp.ac.in
https://cse.iitkgp.ac.in/~palash/
https://orcid.org/0000-0003-0071-9464
mailto:ashleshahota.23@kgpian.iitkgp.ac.in
https://orcid.org/0009-0009-8805-4583
mailto:skolay@cse.iitkgp.ac.in
https://cse.iitkgp.ac.in/~skolay/
https://orcid.org/0000-0002-2975-4856
mailto:sipra.singh@iitkgp.ac.in
https://doi.org/10.4230/LIPIcs.ISAAC.2024.27
https://arxiv.org/abs/2406.01057
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Knapsack with Vertex Cover, Set Cover, and Hitting Set

1 Introduction

A vertex cover of an undirected graph is a set of vertices that contains at least one endpoint
of every edge. For a real-world application of vertex cover, consider a city network G where
the vertices are the major localities of the city, and we have an edge between two vertices if
the distance between their corresponding locations is less than, say, five kilometers. A retail
chain wants to open a few stores in the city in such a way that everyone (including the people
living between any two major localities) in the city has a retail shop within five kilometers.
The cost of opening a store depends on location. We can see that the company needs to
compute a minimum weight vertex cover of the G to open stores with the minimum total cost,
where the weight of a vertex is the cost of opening a store at that location. However, each
store has the potential to generate non-core revenue, say from advertising. In such a scenario,
the company may like to maximize the total non-core revenue without compromising its
core business, which it will accomplish by opening stores at the vertices of a vertex cover.
This is precisely what we call Vertex Cover Knapsack. In this problem, we are given an
undirected graph G = (V, E), with weights (w(u))u∈V and values (α(u))u∈V of the vertices,
the size s of the knapsack, a target value p, and the goal is to compute if there exists a vertex
cover U ⊆ V with w(U) =

∑
u∈U w(u) ⩽ s, and α(U) =

∑
u∈U α(u) ⩾ p.

We study several natural variations of this problem: (i) k-Vertex Cover Knapsack
where the solution should be a vertex cover of size at most k for an integer input k, (ii)
Minimal Vertex Cover Knapsack where the solution should be a minimal vertex cover,
and (iii) Minimum Vertex Cover Knapsack where the solution should be a minimum
vertex cover.

We then consider the hypergraphs or equivalently set families. There, we consider the
knapsack generalization of the set cover and hitting set problems. In Set Cover Knapsack,
we are given a collection S1, . . . , Sm of subsets of a universe [n], with weights (w(j))j∈[m]
and values (α(j))j∈[m] for the sets, the size s of the knapsack, a target value p, and the goal
is to compute if there exists a set cover of total weight at most s and total value at least p.
On the other hand, we have a collection S1, . . . , Sm of d sized subsets of a universe [n] with
weights in d-Hitting Set Knapsack (w(j))j∈[n] and values (α(j))j∈[n] for the elements,
the size s of the knapsack, a target value p, and the goal is to compute if there exists a
hitting set of total weight at most s and total value at least p.

1.1 Contributions
We study these problems under the lens of classical complexity theory, parameterized
complexity, polynomial-time approximation, and FPT-approximation. We summarize our
results in Table 1.

We now give a high-level overview of the techniques used in our results. For the f -
approximation algorithm for Set Cover Knapsack, the dual LP of a configuration LP
relaxation has two types of constraints: intuitively speaking, one set of constraints handles
the knapsack part while the other set takes care of the set cover requirement. We first
increase some dual variables iteratively so that some of the dual constraints corresponding to
the knapsack part of the problem become tight. We pick the sets corresponding to these
constraints. If this gives a valid set cover, then we are done. Otherwise, we increase some
dual constraints iteratively corresponding to the set cover part of the problem until we satisfy
the set cover requirements. The first part of our Hd-approximation algorithm is the same as
the f -approximation algorithm. In the second part, we use the greedy algorithm for the set
cover problem to pick more sets if the sets picked in the first part do not form a set cover.

P. Dey, A. Hota, S. Kolay, and S. Singh 27:3

Table 1 Summary of results. tw : treewidth of the graph, s : size of knapsack, p : target value of
knapsack, ε : any real number greater than zero, n : number of vertices or size of the universe, f : the
maximum number of sets where any element belongs, d : maximum size of any set, ρ : any poly-time
computable function. ⋆ : size of knapsack is input. † : bag size is input. ‡ : target value is input.

Knapsack variant Results

Vertex Cover

• Strongly NP-complete (Observation 4)
• NP-complete for star graphs (Observation 8)
• Poly-time 2-approx. to minimize weight† (Corollary 17)
• Poly-time ρ-inapprox. to maximize value⋆ (Theorem 20)
• O

(
2tw · nO(1) · min{s2, p2}

)
(Theorem 21)

• O
(
2tw · poly(n, 1/ε, log

(∑
v∈V α(v)

)
)
)

time, (1 − ε)
approximation to maximize value⋆ (Corollary 26)
• O

(
2tw · poly(n, 1/ε, log

(∑
v∈V w(v)

)
)
)

time, (1 + ε)
approximation to minimize weight‡ (Theorem 27)

Vertex Cover of size ⩽ k

• Strongly NP-complete (Corollary 5)
• NP-complete for star graphs (Observation 9)
• O

(
2tw · nO(1) · min{s2, p2}

)
(Theorem 23)

• O
(
2tw · poly(n, 1/ε, log

(∑
v∈V α(v)

)
)
)

time, (1 − ε)
approximation to maximize value⋆ (Corollary 26)
• O

(
2tw · poly(n, 1/ε, log

(∑
v∈V w(v)

)
)
)

time, (1 + ε)
approximation to minimize weight‡ (Theorem 27)

Minimum Vertex Cover

• NP hard (Observation 7)
• NP-complete for trees (Observation 11)
• O

(
2tw · nO(1) · min{s2, p2}

)
(Theorem 22)

• O
(
2tw · poly(n, 1/ε, , log

(∑
v∈V α(v)

)
)
)

time, (1 − ε)
approximation to maximize value⋆ (Corollary 26)
• O

(
2tw · poly(n, 1/ε, log

(∑
v∈V w(v)

)
)
)

time, (1 + ε)
approximation to minimize weight‡ (Theorem 27)

Minimal Vertex Cover

• Strongly NP-complete (Observation 6)
• NP-complete for trees (Theorem 10)
• No poly-time approx. algorithm neither to
maximize value⋆ nor to minimize weight† (Theorem 20)
• O

(
16tw · nO(1) · min{s2, p2}

)
(Theorem 24)

• O
(
16tw · poly(n, 1/ε, log

(∑
v∈V α(v)

)
)
)

time, (1 − ε)
approximation to maximize value⋆ (Theorem 25)
• O

(
16tw · poly(n, 1/ε, log

(∑
v∈V w(v)

)
)
)

time, (1 + ε)
approximation to minimize weight‡ (Theorem 27)

Set Cover

• Strongly NP-complete (Observation 12)
• Poly-time f-approx. to minimize weight† (Theorem 15)
• Poly-time Hd-approx. to minimize weight† (Theorem 18)
• Poly-time ρ-inapprox. to maximize value⋆ (Theorem 20)

d-Hitting Set
• Strongly NP-complete (Observation 13)
• Poly-time d-approx. to minimize weight† (Corollary 16)
• Poly-time ρ-inapprox. to maximize value⋆ (Theorem 20)

Our fixed-parameter pseudo-polynomial time algorithms with respect to treewidth for
the variants of vertex cover knapsack combine the idea of pseudo-polynomial time algorithm
and the dynamic programming algorithm for vertex cover with respect to treewidth. Then,
we use these algorithms in a black-box fashion to obtain FPT-approximation algorithms.

ISAAC 2024

27:4 Knapsack with Vertex Cover, Set Cover, and Hitting Set

1.2 Related Work
The classical knapsack problem admits a fully polynomial time approximation scheme
(FPTAS) [25, 27]. Since our paper focuses on generalizations of knapsack to some graph
theoretic problems and their extension to hypergraphs, we discuss only those knapsack
variants directly related to ours.

Yamada et al. [28] proposed heuristics for knapsack when there is a graph on the items, and
the solutions need to be an independent set. Many intractability results in special graph classes
and heuristic algorithms based on pruning, dynamic programming, etc. have been studied
for this independent set knapsack problem [18, 19, 23, 1, 17, 5, 21, 24, 14, 13, 2, 22]. Dey et
al. [9] studied the knapsack problem with graph-theoretic constraints like - connectedness,
paths, and shortest path.

Note that our Vertex Cover Knapsack also generalizes the classical weighted vertex
cover problem, for which we know a polynomial-time 2-approximation algorithm which is the
best possible approximation factor up to additive ε > 0 that one can achieve in polynomial
time assuming Unique Games Conjecture [25, 27]. On the parameterized side, there is a long
line of work on designing a fast FPT algorithm for vertex cover parameterized by the size k of
a minimum vertex cover, with the current best being O

(
1.25284k · nO(1)) [16]. Later, Peter

Damaschke [7] proved that it is solvable in time O
(
1.62k · nO(1)). Boria et al. [4] showed

that there is a polynomial time n−1/2 approximation algorithm and inapproximable within
the ratio nε−1/2 in polynomial time unless P = NP, where ε > 0.

Various approximation algorithms have been studied for the Set Cover problem with
approximation ratios f where f is the maximum number of sets that any element can belong
and Hd where d is the maximum cardinality of any set, and Hd is the d-th harmonic number.
These approximation factors are tight up to additive ε > 0 under standard complexity-
theoretic assumptions [10, 20, 27, 25].

2 Preliminaries

We denote the set {1, 2, . . .} of natural numbers with N. For any integer ℓ, we denote the sets
{1, . . . , ℓ} and {0, 1, . . . , ℓ} by [ℓ] and [ℓ]0 respectively. We now define our problems formally.
Our first problem is Vertex Cover Knapsack, where we need to find a vertex cover that
fits the knapsack and meets a target value. A vertex cover of a graph is a subset of vertices
that includes at least one end-point of every edge. Formally, it is defined as follows.

▶ Definition 1 (Vertex Cover Knapsack). Given an undirected graph G = (V, E), weight
of vertices (w(u))u∈V , value of vertices (α(u))u∈V , size s of knapsack, and target value p, com-
pute if there exists a vertex cover U ⊆ V of G with weight w(U) =

∑
u∈U w(u) ⩽ s and value

α(U) =
∑

u∈U α(u) ⩾ p. We denote an any instance of it by (G, (w(u))u∈V , (α(u))u∈V , s, p).

The k-Vertex Cover Knapsack, Minimum Vertex Cover Knapsack, Minimal
Vertex Cover Knapsack problems are the same as Definition 1 except we require the
solution U to be respectively a vertex cover of size at most k for an input integer k, a
minimum cardinality vertex cover, a minimal vertex cover.

The treewidth of a graph quantifies the tree likeness of a graph [6]. Informally speaking,
a tree decomposition of a graph is a tree where every node of the tree corresponds to some
subsets of vertices, called bags, and the tree should satisfy three properties: (i) every vertex
of the graph should belong to some bag, (ii) both the endpoints of every edge should belong
to some bag, and (iii) the set of nodes of the tree containing any vertex should be connected.
We refer to [8] for the formal definition of a tree decomposition, a nice tree decomposition,
and the treewidth of a graph.

P. Dey, A. Hota, S. Kolay, and S. Singh 27:5

Extending the notion of vertex cover to hypergraphs, we define the
Set Cover Knapsack problem where we need to compute a set cover that fits
the knapsack and achieves a maximum value. Formally, we define it as follows.

▶ Definition 2 (Set Cover Knapsack). Given a collection F = {S1, . . . , Sm} of sub-
sets of a universe [n] with weights (wj)j∈[m] and values (αj)j∈[m] of the sets, size s of
knapsack, and target value p, compute if there exists a set cover J ⊆ [m] of weight
w(J) =

∑
j∈J wj ⩽ s and value α(J) =

∑
j∈J αj ⩾ p. We denote any instance of it

by ([n],F , (wj)j∈[m], (αj)j∈[m], s, p).

We also define d-Hitting Set Knapsack, where we need to compute a hitting set that
fits the knapsack and achieves at least the target value; here, items have weights and values.

▶ Definition 3 (d-Hitting Set Knapsack). Given a collection F = {S1, . . . , Sm} of
subsets of a universe [n] of size at most d with weights (wi)i∈[n] and values (αi)i∈[n] of the
items, size s of knapsack, and target value p, compute if there exists a hitting set I ⊆ [n] of
weight w(I) =

∑
i∈I wi ⩽ s and value α(I) =

∑
i∈I αi ⩾ p. We denote any instance of it by

([n],S, (wi)i∈[n], (αi)i∈[n], s, p).

If not mentioned otherwise, we use n to denote the number of vertices for problems
involving graphs and the size of the universe for problems involving a set family; m to
indicate the number of edges for problems involving graphs and the number of sets in the
family of sets for problems involving a set family; tw to denote the treewidth of the graph; s

to represent the size of knapsack, and p to denote the target value of solution.

3 Results: Classical NP Completeness

In this section, we present our NP-completeness results. Our first results show that Vertex
Cover Knapsack is strongly NP-complete, that is, it is NP-complete even if the weight and
value of every vertex are encoded in unary. We reduce from the classical Vertex Cover
problem, where the goal is to find a vertex cover of cardinality at most some input integer
k. Vertex Cover is known to be NP-complete even for 3 regular graphs [11, folklore]. To
reduce a Vertex Cover instance to a Vertex Cover Knapsack instance, we define the
weight and value of every vertex to be 1, and the size and target value to be k. In the interest
of space, we omit the proofs of a few of our results. They are marked (⋆). We refer to [8] for
the detailed algorithm with proof of correctness and the analysis of its running time.

▶ Observation 4. Vertex Cover Knapsack is strongly NP-complete.

The same reduction in Observation 4 also shows that k-Vertex Cover Knapsack is
strongly NP-complete.

▶ Corollary 5. k-Vertex Cover Knapsack is strongly NP-complete.

In the Maximum Minimal Vertex Cover problem, the goal is to compute if there
exists a minimal vertex cover of cardinality at least some input integer. A vertex cover of
a graph is called minimal if no proper subset of it is a vertex cover. Maximum Minimal
Vertex Cover is known to be NP-complete [15, 3]. We show that the same reduction as in
the proof of Observation 4 except starting from an instance of Maximum Minimal Vertex
Cover instead of Vertex Cover, proves that Minimal Vertex Cover Knapsack is
strongly NP-complete.

▶ Observation 6 (⋆). Minimal Vertex Cover Knapsack is strongly NP-complete.

ISAAC 2024

27:6 Knapsack with Vertex Cover, Set Cover, and Hitting Set

We show similar results for Minimum Vertex Cover Knapsack except that it does
not belong to NP unless the polynomial hierarchy collapses.

▶ Observation 7 (⋆). Minimum Vertex Cover Knapsack is strongly NP-hard.

We show next that Vertex Cover Knapsack is NP-complete even if the underlying
graph is a tree by reducing it from the classical Knapsack– simply add the knapsack items
as leaves of a star graph. However, it turns out that they are not strongly NP-complete for
trees. We will see in Section 5 that they admit pseudo-polynomial time algorithms for trees.

▶ Observation 8 (⋆). Vertex Cover Knapsack is NP-complete for star graphs.

By setting k to be the number of leaves, the reduction in the proof of Observation 8 also
shows NP-completeness for k-Vertex Cover Knapsack.

▶ Observation 9 (⋆). k-Vertex Cover Knapsack is NP-complete for star graphs.

Note that the reduction from Knapsack to Vertex Cover Knapsack for star graphs
does not work for Minimal Vertex Cover Knapsack and Minimum Vertex Cover
Knapsack. Indeed, for star graphs, both the problems admit polynomial-time algorithms.
Nevertheless, we are able to show that both the problems are (not strongly) NP-complete for
trees.

▶ Theorem 10 (⋆). Minimal Vertex Cover Knapsack is NP-complete for trees.

▶ Observation 11 (⋆). Minimum Vertex Cover Knapsack is NP-complete for trees.

Note that, since the size of a minimum vertex cover in a tree can be computed in
polynomial time thanks to König’s Theorem [26], Minimum Vertex Cover Knapsack
belongs to NP.

We show similar results for Set Cover Knapsack and d-Hitting Set Knapsack also
by reducing from respectively unweighted set cover and unweighted d-hitting set, both of
which are known to be NP-complete [12].

▶ Observation 12 (⋆). Set Cover Knapsack is strongly NP-complete.

▶ Observation 13 (⋆). d-Hitting Set Knapsack is strongly NP-complete.

4 Results: Polynomial Time Approximation Algorithms

In this section, we focus on the polynomial-time approximability of our problems. For all
the problems in this paper, we study two natural optimization versions: (i) minimizing the
weight of the solution given a target value as input and (ii) maximizing the value of the
solution given knapsack size as input. We first consider minimizing the weight of the solution.

A natural integer linear programming formulation of Vertex Cover Knapsack is the
following.

minimize
∑

u∈V w(u)xu

Subject to:
xu + xv ⩾ 1, ∀(u, v) ∈ E∑
u∈V

α(u)xu ⩾ p

xu ∈ {0, 1}, ∀u ∈ V (1)

We replace the constraints xu ∈ {0, 1}, with xu ⩾ 0, ∀u ∈ V to obtain linear programming
(abbreviated as LP) relaxation of the integer linear program (abbreviated as ILP).

P. Dey, A. Hota, S. Kolay, and S. Singh 27:7

▶ Observation 14. The relaxed LP of the ILP 1 has an unbounded integrality gap. To
see this, consider an edgeless graph on two vertices v1 and v2. Let w(v1) = 0, w(v2) = 1,
α(v1) = p− 1 and α(v2) = p. The optimal solution to ILP sets xv1 = 0, xv2 = 1, for a total
weight of 1. However, the optimal solution to the relaxed LP sets xv1 = 1, xv2 = 1/p and has
a total weight of 1/p. Thus, in this case, the integrality gap is at least 1

1/p = p.

To tackle Observation 14, we strengthen the inequality
∑

u∈V α(u)xu ⩾ p. This allows us
to obtain an f approximation algorithm even for the more general Set Cover Knapsack
problem that we present now. In particular, in addition to having a constraint for every
element of the universe, we have a constraint for every A ⊆ F of sets such that α(A) =∑

i∈A α(i) < p where p is the target value given as input. We define the residual value
pA = p − α(A). Given the set A, we simplify the problem on the sets F − A, where the
target value is now pA. We also reduce the value of each set Si ∈ F −A to be the minimum
of its own value and pA, i.e., let αA(i) = min(α(i), pA). We can now give the following
Integer linear programming formulation of the problem:

minimize
∑

i∈[m] w(i)xi

Subject to: ∑
i:ej∈Si

xi ⩾ 1, ∀ej ∈ U∑
i∈F−A

αA(i)xi ⩾ pA, ∀A ⊆ F

xi ∈ {0, 1}, ∀i ∈ [m]

We replace the constraints xi ∈ {0, 1}, with xi ⩾ 0 to obtain the LP relaxation of the ILP.
The dual of the LP relaxation is :

maximize
∑

A:A⊆F pAyA +
∑

j∈[n] yj

Subject to: ∑
j:ej∈Si

yj ⩽ w(i), ∀Si ∈ F∑
A⊆F :i̸∈A

αA(i)yA ⩽ w(i), ∀i ∈ F

yA ⩾ 0, ∀A ⊂ F

In our primal-dual algorithm, we begin with dual feasible solution y = 0 and partial
solution A = ∅. We pick one set in every iteration until the value of the set A of sets becomes
at least the target value p. We increase the dual variable yA in every iteration until the
dual constraint for some set i ∈ F −A becomes tight. We then pick that set in our solution
and continue. After this loop terminates, the value of the set A of sets is at least the target
value p. At that point, if A is a set cover, then we output A. Otherwise, till there exists an
element ej of the universe that is not covered by A, we increase the dual variable yj until
the dual constraint for some set ℓ with ej ∈ Sl becomes tight. We then include Sℓ in A and
continue. We present the pseudocode of our algorithm in Algorithm 1.

▶ Theorem 15. Algorithm 1 is an f -approximation algorithm for the Set Cover Knapsack
problem for minimizing the weight of the solution, where f is the maximum number of sets
in the family where any element belongs.

ISAAC 2024

27:8 Knapsack with Vertex Cover, Set Cover, and Hitting Set

Algorithm 1 Primal-dual f -approximation algorithm for Set Cover Knapsack.

1: y ← 0,A ← ∅
2: while α(A) < p do
3: Increase yA until for some i ∈ F −A,

∑
B⊆F :i̸∈B αB(i)yB = w(i)

4: A ← A∪ {i}
5: end while
6: X ← A,A′ ← A
7: while ∃ej ̸∈

⋃
i∈A′ Si do

8: Increase yj until there is some t with ej ∈ St such that
∑

j:ej∈St
yj = w(t)

9: A′ ← A∪ {t}
10: end while
11: return A′

Proof. Let ALG be the weight of the set cover A′ output by Algorithm 1. Then

ALG =
∑
i∈A′

w(i)xi

=
∑
i∈X

w(i)xi +
∑

i∈A′−X
w(i)xi

Let OPT be the optimal weight of the Set Cover Knapsack instance, set i picked in
the i-th iteration of the first while loop (which we can assume without loss of generality by
renaming the sets), and l the set selected by the algorithm at the last iteration of the first
while loop. Since the first while loop terminates when α(A) ⩾ p, we know that α(X) ⩾ p;
since set l was added to X , it must be the case that before l was added, the total value of
A was less than p, so that α(X − {l}) < p. For i ∈ [l], we define Ai = [i] as the set of sets
picked in the first i iterations of the first while loop and C = {Ai : i ∈ [l]}. We observe that
a dual variable yB is non-zero only if B ∈ C. Since we pick only tight sets, we have∑

i∈X
w(i) =

∑
i∈X

∑
B⊆F :i/∈B

αB(i)yB =
∑
i∈X

∑
B∈C:i/∈B

αB(i)yB.

Reversing the double sum, we have∑
i∈X

∑
B∈C:i/∈B

αB(i)yB =
∑
B∈C

yB
∑

i∈X −B
αB(i).

Note that in any iteration of the algorithm except the last one, adding the next set i

to the current sets in A did not cause the value of the knapsack to become at least p; that
is, α(i) < p− α(A) = pA at that point in the algorithm. Thus, for all sets i ∈ A except l,
αA(i) = min(α(i), pA) = α(i), for the point in the algorithm at which A was the current set
of sets. Thus, we can rewrite∑

i∈X −A
αA(i) = αA(l) +

∑
i∈X −A:i̸=l

αA(i) = αA(l) + α(X − {l})− α(A).

Note that αA(l) ⩽ pA by definition, and as argued at the beginning of the proof
α(X − {l}) < p so that α(X − {l})− α(A) < p− α(A)) = pA; thus, we have that

αA(l) + α(X − {l})− α(A) < 2pA

P. Dey, A. Hota, S. Kolay, and S. Singh 27:9

which is the same as saying∑
i∈X −B

αB(i) < 2pB for every B ∈ C.

Therefore,∑
i∈X

w(i) =
∑
B∈C

yB
∑

i∈X −B
αB(i) < 2

∑
B:B∈C

pByB = 2
∑

B⊆F :i/∈B

pByB

where the last equality follows from the fact that yB = 0 if B /∈ C.
Our algorithm picks sets in A ′ \X in the second while loop if the set of sets picked in the

first while loop does not form a set cover. We now upper bound
∑

i∈A′\X w(i) as follows.∑
i∈A′\X

w(i) =
∑

i∈A′\X

∑
j∈[n]:ej∈Si

yj =
∑

j∈[n]

|{i ∈ A′ \ X : ej ∈ Si}|yj ⩽ f
∑

j∈[n]

yj

The first equality follows from the fact that only tight sets are picked. We now bound ALG.

ALG =
∑
i∈A′

w(i)xi

=
∑
i∈X

w(i)xi +
∑

i∈A′−X
w(i)xi

⩽ 2
∑

A:A⊆I

pAyA + f
∑

j∈[n]

yj

⩽ f

 ∑
A:A⊆I

pAyA +
∑

j∈[n]

yj

= fOPT ◀

We note that our algorithm is a combinatorial algorithm based on the primal-dual
framework – in particular, we use LPs only to design and analyze our algorithm. We do not
need to solve any LP. We obtain approximation algorithms for the Vertex Cover Knapsack
and d-Hitting Set Knapsack problems as corollaries of Theorem 15 by reducing these
problems to Set Cover Knapsack.

▶ Corollary 16 (⋆). There exists a d-approximation algorithm for d-Hitting Set Knapsack
for minimizing the weight of the solution. The algorithm is combinatorial in nature and
based on the primal-dual method.

▶ Corollary 17 (⋆). There exists a 2-approximation algorithm for Vertex Cover Knapsack
for minimizing the weight of the solution. The algorithm is combinatorial in nature and
based on the primal-dual method.

We next present a Hd-approximation algorithm for Set Cover Knapsack where d is
the maximum cardinality of any set in the input instance and Hd =

∑d
i=1

1
i is the d-th

harmonic number. The idea is to run the first while loop of Algorithm 1, and then, if the
selected sets do not cover the universe, then, instead of the second while loop of Algorithm 1,
we pick sets following the standard greedy algorithm for minimum weight set cover. We show
that the algorithm achieves an approximation factor of max(2, Hd) by analyzing it using the
dual fitting technique.

ISAAC 2024

27:10 Knapsack with Vertex Cover, Set Cover, and Hitting Set

Algorithm 2 Max(2, Hd)-approximation algorithm for Set Cover Knapsack.

1: y ← 0,A ← ∅
2: while α(A) < p do
3: Increase yA until for some i ∈ F −A,

∑
B⊆F :i̸∈B αB(i)yB = w(i)

4: A ← A∪ {i}
5: end while
6: X ← A,U ′ ← U −

⋃
i∈X Si,F ′ ← F −X , I ← ∅, Ŝi ← Si for all i ∈ F ′

7: while I is not a set cover for U ′ do
8: l← arg mini:Ŝi ̸=∅

w(i)
|Ŝi|

9: I ← I ∪ {l}
10: Ŝi ← Ŝi − Sl for all i ∈ F ′

11: end while
12: return X ∪ I

▶ Theorem 18. Algorithm 2 is a max(2, Hd)-approximation algorithm for the
Set Cover Knapsack problem for minimizing the weight of the solution, where d is the
maximum cardinality of any set in the input.

Proof. We follow the same notation defined in Algorithm 2 in this proof. Since the first part
of Algorithm 2 is the same as the first part of Algorithm 1, from the proof of Theorem 15,
we have∑

i∈X
w(i) < 2

∑
B⊆F :i/∈B

pByB.

To bound the sum of weights of the sets in I, we use the dual fitting technique. In
particular, we will first construct an assignment of dual variables (yj)j∈[n] with

∑
i∈I wi =∑n

j=1 yj . However, (yj)j∈[n] may not satisfy the dual constraints involving those variables.
However, and then show that y′

j = 1
Hd

yj , j ∈ [n] satisfies all dual constraints involving those
variables. We concretize this idea below.

Whenever Algorithm 2 includes a set Ŝi in I, we define yj = w(i)
|Ŝi| for each j ∈ Ŝi. Since

each j ∈ Ŝi is uncovered in iteration when Algorithm 2 picks the set Ŝi, and is then covered
for the remaining iterations of the algorithm (because we added subset Si to I), the dual
variable yj is set to a value exactly once. Furthermore, we see that

w(i) =
∑

i:j∈Ŝi

yj , ∀i ∈ I

since the weight w(i) of the set i is distributed among yj , j ∈ Ŝi. Hence, we have,∑
j∈I

w(i) =
n∑

i=1
yj .

We claim that y′
j = 1

Hd
yj for all j ∈ [n] satisfies the dual constraints involving these

variables. For that, we need to show that for each subset Si, i ∈ [m],∑
i:j∈Si

y′
j ⩽ w(i).

Pick an arbitrary subset Si and an arbitrary iteration k of the second while loop of Algorithm 2.
Let ℓ be the number of iterations that the second while loop of Algorithm 2 makes and ak

the number of elements in this subset that is still uncovered at the beginning of the k-th

P. Dey, A. Hota, S. Kolay, and S. Singh 27:11

iteration, so that a1 = |Si|, and aℓ+1 = 0. Let Ak be the set of uncovered elements of Si

covered in the k-th iteration, so that |Ak| = ak − ak+1. If subset Sq is chosen in the k-th
iteration, then for each element j ∈ Ak covered in the k-th iteration, we have

y′
j = wq

Hd|Ŝq|
⩽

w(i)
Hdak

,

where Ŝq is the set of uncovered elements of Sq at the beginning of the k-th iteration. The
inequality follows because if Sq is chosen in the k-th iteration, it must minimize the ratio of
its weight to the number of uncovered elements it contains. Thus,

∑
i:ej∈Si

y′
j =

l∑
k=1

∑
j∈[n]:j∈Ak

y′
j

⩽
l∑

k=1
(ak − ak+1) w(i)

Hdak

⩽
w(i)
Hd

l∑
k=1

ak − ak+1

ak

⩽
w(i)
Hd

l∑
k=1

(
1
ak

+ 1
ak − 1 + · · ·+ 1

ak+1 + 1

)

⩽
w(i)
Hd

|Si|∑
i=1

1
i

= w(i)
Hd

H|Si|

⩽ w(i),

where the final inequality follows because |Si| ⩽ d. Hence, ((yB)B∈F , (y′
j)j∈[n]) is a dual

feasible solution. We now bound ALG as follows.

ALG =
∑
i∈X

w(i)xi +
∑
i∈I

w(i)xi

⩽ 2
∑

A:A⊆F

pAyA + Hd

∑
j∈[n]

yj

= max(2, Hd)

 ∑
A:A⊆F

pAyA +
∑

j∈[n]

yj

= max(2, Hd) · OPT ◀

The approximation guarantees of Theorems 15 and 18 are the best possible approximation
guarantees, up to any additive constant ε > 0, that any polynomial time algorithm hopes to
achieve, assuming standard complexity-theoretic assumptions.

▶ Theorem 19 (⋆). Let ε > 0 be any constant. Then we have the following:
1. There is no polynomial-time (1 − ε) ln n factor approximation algorithm for

Set Cover Knapsack unless every problem in NP admits a quasi-polynomial time
algorithm.

2. Assuming Unique Games Conjecture (UGC), there is no polynomial-time (1 − f) ln n

factor approximation algorithm for Set Cover Knapsack.

ISAAC 2024

27:12 Knapsack with Vertex Cover, Set Cover, and Hitting Set

3. Assuming Unique Games Conjecture (UGC), there is no polynomial-time (1 − d) ln n

factor approximation algorithm for d-Hitting Set Knapsack.

We next focus on maximizing the value of the solution given a knapsack size as input. Sur-
prisingly, for all the problems studied in this paper, we show that there is no ρ-approximation
algorithm for any of our problems for any ρ > 1.

▶ Theorem 20 (⋆). For any ρ > 1, there does not exist a ρ-approximation algorithm for max-
imizing the value of the solution given the size of the knapsack for Set Cover Knapsack,
d-Hitting Set Knapsack, Vertex Cover Knapsack, Minimal Vertex Cover Knap-
sack, Minimum Vertex Cover Knapsack, and k-Vertex Cover Knapsack unless
P = NP.

The inapproximability barriers of Theorems 19 and 20 can be overcome using the
framework of FPT-approximation. In particular, we will show FPT (1− ε)-approximation
algorithms, parameterized by the treewidth of the input graph, for all four variants of vertex
cover knapsack for maximizing the value of the solution.

5 Results: Parameterized Complexity

We study the four variants of Vertex Cover Knapsack using the framework of paramet-
erized complexity. For that, we consider the treewidth of the input graph as a parameter.
With respect to treewidth, we design algorithms that run in time single exponential in the
treewidth times polynomial in n (number of vertices), size s, and target value p of the
knapsack. We then use these algorithms to develop a (1− ε)-approximation algorithm for
maximizing the value of the solution that runs in time single exponential in the treewidth
times polynomial in the number n of vertices, 1/ε and

∑
v∈V α(v).

We know that there exists a O
(
2tw · twO(1) · n

)
time algorithm for the Vertex Cover

problem [6]. It turns out that it is relatively easy to modify that algorithm to design a
similar algorithm Vertex Cover Knapsack, k-Vertex Cover Knapsack, and Minimum
Vertex Cover Knapsack.

▶ Theorem 21 (⋆). There is an algorithm for Vertex Cover Knapsack with running
time O

(
2tw · nO(1) ·min{s2, p2}

)
.

It turns out that the main idea of the algorithm of Theorem 21 can be modified to obtain
algorithms for Minimum Vertex Cover Knapsack and k-Vertex Cover Knapsack
with similar running times.

▶ Theorem 22 (⋆). There is an algorithm for Minimum Vertex Cover Knapsack with
running time O

(
2tw · nO(1) ·min{s2, p2}

)
.

▶ Theorem 23 (⋆). There is an algorithm for k-Vertex Cover Knapsack with running
time O

(
2tw · nO(1) ·min{s2, p2}

)
.

However, the approach of Theorem 21 breaks down for Minimal Vertex Cover
Knapsack. This is so because a minimal vertex cover (unlike a vertex cover, a vertex cover
of size at most k, and a minimum vertex cover) of a graph may not be a minimal vertex
cover of some of its induced subgraphs. For this reason, it is not enough to keep track of
all minimal vertex covers of the subgraphs rooted at some tree node intersecting the bag at
certain subsets. Intuitively speaking, we tackle this problem by adding another subset of
vertices in the “indices” of the DP table that will be part of some minimal vertex cover of
some other induced subgraph.

P. Dey, A. Hota, S. Kolay, and S. Singh 27:13

▶ Theorem 24. There is an algorithm for Minimal Vertex Cover Knapsack with
running time O

(
16tw · nO(1) ·min{s2, p2}

)
.

Proof. Let (G = (V, E), (w(u))u∈V , (α(u))u∈V , s, p) be an input instance of Minimal Ver-
tex Cover Knapsack and (T = (VT, ET),X) a nice tree decomposition rotted at node r of
treewidth tw(G).

We define a function ℓ : VT → N. For a vertex t ∈ VT, ℓ(t) = distT(t, r), where r is the
root. Note that this implies that ℓ(r) = 0. Let us assume that the values that ℓ take over the
nodes of T are between 0 and L. For a node t ∈ VT, we denote the set of vertices in the bags
in the subtree rooted at t by Vt and Gt = G[Vt]. We now describe a dynamic programming
algorithm over (T,X) for Minimal Vertex Cover Knapsack.
States. We maintain a DP table D where a state has the following components:
1. t represents a node in VT.
2. V1, V2 are subsets of the bag Xt, not necessarily disjoint.
3. V1 represents the intersection of Xt with a minimal vertex cover of the subgraph Gt[(Vt \

V2) ∪ V1].
Interpretation of States. For each node t ∈ T, V1, V2 ⊆ Xt and “undominated” minimal
vertex cover S of the induced graph Gt[(Vt \ V2) ∪ V1] such that S ∩ Xt = V1, we store
(w(S), α(S)) in the list D[t, V1, V2]. We say a minimal vertex cover S1 ⊆ (Vt \ V2) ∪
V1 dominates another minimal vertex cover S2 ⊆ (Vt \ V2) ∪ V1 if w(S1) ⩽ w(S2) and
α(S1) ⩾ α(S2) with at least one inequality being strict. We say a minimal vertex cover of
Gt[(Vt \V2)∪V1] undominated if no other minimal vertex cover of Gt[(Vt \V2)∪V1] dominates
it.

For each state D[t, V1, V2], we initialize D[t, V1, V2] to the list {(0, 0)}.
Dynamic Programming on D. We first update the table for states with nodes t ∈ VT such
that ℓ(t) = L. When all such states are updated, then we update states where the level
of node t is L − 1, and so on, till we finally update states with r as the node – note that
ℓ(r) = 0. For a particular j, 0 ⩽ j < L and a state [t, V1, V2] such that ℓ(t) = j, we can
assume that D[t, V1, V2] have been evaluated for all t′, such that ℓ(t′) > j and all subsets V ′

1
and V ′

2 of Xt′ . Now we consider several cases by which D[t, V1, V2] is updated based on the
nature of t in T:
1. Suppose t is a leaf node with Xt = {v} . Then D[t, v, ∅] = (w(v), α(v)), or D[t, ∅, v] =

(0, 0) and D[t, ∅, ∅] stores the pair (0, 0).
2. Suppose t is an introduce node. Then it has an only child t′ where Xt′ ∪ {u} = Xt. Then

for all S ⊆ Xt: If S is not a vertex cover of G[Xt], we set D[t, V1, V2] = (∞,∞).
Otherwise, we have three cases:
a. Case 1: If u ̸∈ V1 ∪ V2, then we copy each pair (w, α) from D[t′, V1, V2]
b. Case 2: If u ∈ V1 \ V2, then

i. we check if N(u) \ V1 ̸= ∅, then
A. for each pair (w, α) in D[t′, V1 \ {u}, V2], if w + w(u) ⩽ s, then we put (w +

w(u), α + α(u)) in D[t′, V1 \ {u}, V2] to D[t, V1, V2].
B. for each pair (w, α) in D[t′, V1 \ {u}, V2], if w + w(u) > s, we put (w, α) to

D[t, V1, V2].
ii. Otherwise we store (∞,∞).

c. Case 3: If u ∈ V2, then we set D[t, V1, V2] = D[t′, V1, V2 \ {u}].
3. Suppose t is a forget vertex node. Then it has an only child t′ where Xt ∪ {u} = Xt′ . We

copy all the pairs from D[t′, V1∪{u}, V2], D[t′, V1, V2∪{u}] and D[t′, V1, V2] to D[t, V1, V2]
and remove all dominated pairs.

ISAAC 2024

27:14 Knapsack with Vertex Cover, Set Cover, and Hitting Set

4. Suppose t is a join node. Then it has two children t1, t2 such that Xt = Xt1 = Xt2 .
Let (w(V1 ∩ V2), α(V1 ∩ V2)) be the total weight and value of the vertices in V1 ∩ V2.
Then for all W1, W2 ⊆ V1 ⊆ Xt, consider a pair (w1, α1) in D[t1, W1, W2 ∪ V2] and a
pair (w2, α2) in D[t2, W2, W1 ∪ V2]. Suppose w1 + w2 − w(V1 ∩ V2) ⩽ s. Then we add
(w1 + w2 − w(V1 ∩ V2), α1 + α2 − α(V1 ∩ V2)) to D[t, V1, V2].

Finally, in the last step of updating D[t, V1, V2], we go through the list saved in D[t, V1, V2]
and only keep undominated pairs.
Correctness of the algorithm. Recall that we are looking for a solution U that contains the
fixed vertex v that belongs to all bags of the tree decomposition. In each state we maintain
the invariant V1, V2 ⊆ Xt such that V1 = Xt∩ minimal vertex cover knapsack of Gt\ edges
incident on V2 \ V1. First, we show that a pair (w, α) belonging to D[t, V1, V2] for a node
t ∈ VT and a subset S of Xt corresponds to a minimal vertex cover knapsack H in Gt. Recall
that Xr = {v}. Thus, this implies that a pair (w, α) belonging to D[r, V1 = {v}, V2 = ∅)]
corresponds to a minimal vertex cover knapsack of G. Moreover, the output is a pair that is
feasible and with the highest value.

In order to show that a pair (w, α) belonging to D[t, V1, V2] for a node t ∈ VT and a
subset V1 of Xt corresponds to a minimal vertex cover knapsack of Gt\ edges incident on
V2 \ V1, we need to consider the cases of what t can be:
1. Leaf node: Recall that in our modified nice tree decomposition we have added a vertex v

to all the bags. Suppose a leaf node t contains a single vertex v, D[t, v, ∅] = (w(v), α(v)),
D[t, ∅, v] = (0, 0) and D[L, ∅, ∅] stores the pair (0, 0). This is true in particular when
j = L, the base case. From now we can assume that for a node t with ℓ(t) = j < L

and all subsets V1, V2 ⊆ Xt, D[t′, V ′′
1 , V ′′

2] entries are correct and correspond to minimal
vertex cover in Gt′\ edges incident on V ′′

2 \ V ′′
1 . when ℓ(t′) > j.

2. Introduce node: When t is an introduce node, there is a child t′. We are introducing
a vertex u and the edges associated with it in Gt. Since ℓ(t′) > ℓ(t), by induction
hypothesis all entries in D[t′, V ′′

1 = V1 \ {u}, V ′′
2 = V2 \ {u}], D[t′, V ′′

1 = V1 \ {u}, V ′′
2 =

V2], and D[t′, V ′′
1 = V1, V ′′

2 = V2 \ {u}], ∀ V ′′
1 , V ′′

2 ⊆ Xt′ are already computed and
feasible. We update pairs in D[t, V1, V2] from D[t′, V1 \ {u}, V2] or D[t′, V1, V2 \ {u}] or
D[t′, V1 \ {u}, V2 \ {u}] such that either u is considered as part of a minimal solution in
Gt\ edges incident on V2 \ V1 or not.

3. Forget node: When t is a forget node, there is a child t′. We are forgetting a vertex u and
the edges associated with it in Gt. Since ℓ(t′) > ℓ(t), by induction hypothesis all entries in
D[t′, V ′′

1 = V1∪{u}, V ′′
2 = V2], D[t′, V ′′

1 = V1, V ′′
2 = V2∪{u}], and D[t′, V ′′

1 = V1, V ′′
2 = V2],

∀ V ′′
1 , V ′′

2 ⊆ Xt′ are already computed and feasible. We copy each undominated (w, α)
pair stored in D[t′, V1 ∪ {u}, V2], D[t′, V1, V2 ∪ {u}] and D[t′, V1, V2] to D[t, V1, V2].

4. Join node: When t is a join node, there are two children t1 and t2 of t, such that
Xt = Xt1 = Xt2 . For all subsets V1 ⊆ Xt we partition V1 into two subsets W1 and W2
(not necessarily disjoint) such that W1 is the intersection of Xt1 with minimal solution
in the graph Gt1\ edges incident on (W2 ∪ V2) \W1. Similarly, W2 is the intersection of
Xt2 with minimal solution in the graph Gt2\ edges incident on (W1 ∪ V2) \W2. By the
induction hypothesis, the computed entries in D[t1, W1, W2 ∪ V2] and D[t2, W2, W1 ∪ V2]
where W1∪W2 = V1 are correct and store the non redundant minimal vertex cover for the
subgraph Gt1 in W1 and similarly, W2 for Gt2 . Now we add (w1 + w2 − w(V1 ∩ V2), α1 +
α2 − α{V1 ∩ V2))) to D[t, V1, V2].

What remains to be shown is that an undominated feasible solution U of Minimal
Vertex Cover Knapsack in G is contained in D[r, {v}, ∅]. Let w be the weight of U and
α be the value. Recall that v ∈ U . For each t, we consider the subgraph Gt and observe how

P. Dey, A. Hota, S. Kolay, and S. Singh 27:15

the minimal solution S ′ interacts with Gt. Let V̂1, V̂2, . . . , V̂m be components of Gt ∩ U and
let for each 1 ⩽ i ⩽ m, Si = Xt∩ V̂i. Also, let V̂0 = Xt \U . Consider S = (V̂0, V̂1, V̂2, . . . , V̂m).
For each Si, we define subsets V1 and V2 such that V1, V2 ⊆ Si, and V1 ∪ V2 = Si, ∀i ∈ [m].
The algorithm updates in D[t, V1, V2] the pair (w′, α′) for the subsolution (Gt\ edges incident
on V2) ∩ U . Therefore, D[r, {v}, ∅] contains the pair (w, α). Thus, we are done.
Running Time. There are n choices for the fixed vertex v. Upon fixing v and adding it to
each bag of (T,X), we consider the total possible number of states. Observe that the number
of subproblems is small: for every node t, we have only 2|Xt| choices for V1 and V2. Hence,
the number of entries of the DP table is O (4tw · n). For each state, since we are keeping
only undominated pairs, for each weight w there can be at most one pair with w as the first
coordinate; similarly, for each value α there can be at most one pair with α as the second
coordinate. Thus, the number of undominated pairs in each D[t, V1, V2] is at most min{s, p}
that can be maintained in time min{s2, p2}. Updating the entries of the join nodes has the
highest time complexity among all tree nodes, which is O

(
4tw · nO(1)). Hence, the overall

running time of our algorithm is O
(
16tw · nO(1) ·min{s2, p2}

)
. ◀

We now design a fully FPT-time approximation scheme for the Minimal Vertex Cover
Knapsack problem by rounding the values of the items so that α(V) is indeed a polynomial
in n. The idea is to scale down the value of every vertex of the input instance so that the
sum of values of the vertices that can be in the solution is polynomially bounded by input
length and solve the scaled-down instance using the algorithm in Theorem 24. We usually
scale down the values by dividing by (εαmax)/n. However, this approach does not work for
our problems since αmax is a lower bound on the optimal value for classical knapsack but not
necessarily for our vertex cover knapsack variants. We tackle this issue by iteratively guessing
upper and lower bounds of OPT thereby incurring an extra factor of poly

(∑
v∈V α(v)

)
.

▶ Theorem 25 (⋆). For every ε > 0, there is an (1− ε)-factor approximation algorithm for
Minimal Vertex Cover Knapsack for optimizing the value of the solution and running
in time O

(
16tw · poly

(
n, 1/ε, log

(∑
v∈V α(v)

)))
where tw is the treewidth of the input graph.

We obtain similar results for the other three variants of vertex cover knapsack for
optimizing the value of the solution.

▶ Corollary 26 (⋆). For every ε > 0, there are (1 − ε)-factor approximation al-
gorithms for Vertex Cover Knapsack, Minimum Vertex Cover Knapsack, and
k-Vertex Cover Knapsack for optimizing the value of the solution and running in time
O
(
2tw · poly

(
n, 1/ε, log

(∑
v∈V α(v)

)))
.

It turns out that we can use a similar idea as in Theorem 25 and Corollary 26 to design an
FPT time (1 + ε)-approximation algorithm, parameterized by treewidth, for all the variants
of vertex cover knapsack for minimizing the weight of the solution for every ε > 0.

▶ Theorem 27 (⋆). For every ε > 0, we have the following.
1. There is a (1 + ε)-factor approximation algorithm for Minimal Vertex Cover

Knapsack for optimizing the weight of the solution and running in time
O
(
16tw · poly

(
n, 1/ε, log

(∑
v∈V w(v)

)))
where tw is the treewidth of the input graph.

2. There are (1 + ε)-factor approximation algorithms for Vertex Cover Knapsack,
Minimum Vertex Cover Knapsack, and k-Vertex Cover Knapsack for optimizing
the weight of the solution and running in time O

(
2tw · poly

(
n, 1/ε, log

(∑
v∈V w(v)

)))
.

ISAAC 2024

27:16 Knapsack with Vertex Cover, Set Cover, and Hitting Set

6 Conclusion

We have studied the classical Knapsack problem with the graph theoretic constraints, namely
vertex cover and its interesting variants like Minimum Vertex Cover Knapsack, Minimal
Vertex Cover Knapsack, and k-Vertex Cover Knapsack. We further generalize this
to hypergraphs and study Set Cover Knapsack and d-Hitting Set Knapsack. We
have presented approximation algorithms for minimizing the size of the solution and proved
that the approximation factors are the best possible that one hopes to achieve in polynomial
time under standard complexity-theoretic assumptions. However, to maximize the value of
the solution, we obtain strong inapproximability results. Fortunately, we show that there
exist FPT algorithms parameterized by the treewidth of the input graph (for vertex cover
variants of knapsack), which can achieve (1− ε)-approximate solution.

References
1 Andrea Bettinelli, Valentina Cacchiani, and Enrico Malaguti. A branch-and-bound algorithm

for the knapsack problem with conflict graph. INFORMS J. Comput., 29(3):457–473, 2017.
doi:10.1287/ijoc.2016.0742.

2 Flavia Bonomo and Diego de Estrada. On the thinness and proper thinness of a graph. Discret.
Appl. Math., 261:78–92, 2019. doi:10.1016/J.DAM.2018.03.072.

3 Nicolas Boria, Federico Della Croce, and Vangelis Th. Paschos. On the max min vertex cover
problem. Discret. Appl. Math., 196:62–71, 2015. doi:10.1016/J.DAM.2014.06.001.

4 Nicolas Boria, Federico Della Croce, and Vangelis Th Paschos. On the max min vertex cover
problem. Discrete Applied Mathematics, 196:62–71, 2015. doi:10.1016/J.DAM.2014.06.001.

5 Stefano Coniglio, Fabio Furini, and Pablo San Segundo. A new combinatorial branch-and-
bound algorithm for the knapsack problem with conflicts. Eur. J. Oper. Res., 289(2):435–455,
2021. doi:10.1016/j.ejor.2020.07.023.

6 Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,
2015. doi:10.1007/978-3-319-21275-3.

7 Peter Damaschke. Parameterized algorithms for double hypergraph dualization with rank
limitation and maximum minimal vertex cover. Discrete Optimization, 8(1):18–24, 2011.
doi:10.1016/J.DISOPT.2010.02.006.

8 Palash Dey, Ashlesha Hota, Sudeshna Kolay, and Sipra Singh. Knapsack with vertex cover,
set cover, and hitting set, 2024. arXiv:arXiv:2406.01057.

9 Palash Dey, Sudeshna Kolay, and Sipra Singh. Knapsack: Connectedness, path, and shortest-
path. In Latin American Symposium on Theoretical Informatics, pages 162–176. Springer,
2024. doi:10.1007/978-3-031-55601-2_11.

10 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
doi:10.1145/285055.285059.

11 Herbert Fleischner, Gert Sabidussi, and Vladimir I. Sarvanov. Maximum independent sets
in 3- and 4-regular hamiltonian graphs. Discret. Math., 310(20):2742–2749, 2010. doi:
10.1016/j.disc.2010.05.028.

12 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

13 Steffen Goebbels, Frank Gurski, and Dominique Komander. The knapsack problem with
special neighbor constraints. Math. Methods Oper. Res., 95(1):1–34, 2022. doi:10.1007/
s00186-021-00767-5.

14 Frank Gurski and Carolin Rehs. Solutions for the knapsack problem with conflict and
forcing graphs of bounded clique-width. Math. Methods Oper. Res., 89(3):411–432, 2019.
doi:10.1007/s00186-019-00664-y.

https://doi.org/10.1287/ijoc.2016.0742
https://doi.org/10.1016/J.DAM.2018.03.072
https://doi.org/10.1016/J.DAM.2014.06.001
https://doi.org/10.1016/J.DAM.2014.06.001
https://doi.org/10.1016/j.ejor.2020.07.023
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/J.DISOPT.2010.02.006
https://arxiv.org/abs/arXiv:2406.01057
https://doi.org/10.1007/978-3-031-55601-2_11
https://doi.org/10.1145/285055.285059
https://doi.org/10.1016/j.disc.2010.05.028
https://doi.org/10.1016/j.disc.2010.05.028
https://doi.org/10.1007/s00186-021-00767-5
https://doi.org/10.1007/s00186-021-00767-5
https://doi.org/10.1007/s00186-019-00664-y

P. Dey, A. Hota, S. Kolay, and S. Singh 27:17

15 Xin Han, Kazuo Iwama, Rolf Klein, and Andrzej Lingas. Approximating the maximum inde-
pendent set and minimum vertex coloring on box graphs. In Ming-Yang Kao and Xiang-Yang Li,
editors, Algorithmic Aspects in Information and Management, Third International Conference,
AAIM 2007, Portland, OR, USA, June 6-8, 2007, Proceedings, volume 4508 of Lecture Notes
in Computer Science, pages 337–345. Springer, 2007. doi:10.1007/978-3-540-72870-2_32.

16 David G. Harris and N. S. Narayanaswamy. A faster algorithm for vertex cover parameterized
by solution size. In Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and
Daniel Lokshtanov, editors, 41st International Symposium on Theoretical Aspects of Computer
Science, STACS 2024, March 12-14, 2024, Clermont-Ferrand, France, volume 289 of LIPIcs,
pages 40:1–40:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/
LIPICS.STACS.2024.40.

17 Stephan Held, William J. Cook, and Edward C. Sewell. Maximum-weight stable sets and
safe lower bounds for graph coloring. Math. Program. Comput., 4(4):363–381, 2012. doi:
10.1007/s12532-012-0042-3.

18 Mhand Hifi and Mustapha Michrafy. A reactive local search-based algorithm for the disjunct-
ively constrained knapsack problem. Journal of the Operational Research Society, 57(6):718–726,
2006. doi:10.1057/PALGRAVE.JORS.2602046.

19 Mhand Hifi and Mustapha Michrafy. Reduction strategies and exact algorithms for the
disjunctively constrained knapsack problem. Computers & operations research, 34(9):2657–
2673, 2007. doi:10.1016/J.COR.2005.10.004.

20 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci., 74(3):335–349, 2008. doi:10.1016/J.JCSS.2007.06.019.

21 Thiago Alcântara Luiz, Haroldo Gambini Santos, and Eduardo Uchoa. Cover by disjoint
cliques cuts for the knapsack problem with conflicting items. Oper. Res. Lett., 49(6):844–850,
2021. doi:10.1016/j.orl.2021.10.001.

22 Carlo Mannino, Gianpaolo Oriolo, Federico Ricci-Tersenghi, and L. Sunil Chandran. The
stable set problem and the thinness of a graph. Oper. Res. Lett., 35(1):1–9, 2007. doi:
10.1016/J.ORL.2006.01.009.

23 Ulrich Pferschy and Joachim Schauer. The knapsack problem with conflict graphs. J. Graph
Algorithms Appl., 13(2):233–249, 2009. doi:10.7155/jgaa.00186.

24 Ulrich Pferschy and Joachim Schauer. Approximation of knapsack problems with conflict and
forcing graphs. J. Comb. Optim., 33(4):1300–1323, 2017. doi:10.1007/s10878-016-0035-7.

25 Vijay V Vazirani. Approximation algorithms, volume 1. Springer, 2001.
26 Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle

River, 2001.
27 David P Williamson and David B Shmoys. The design of approximation algorithms. Cambridge

university press, 2011.
28 Takeo Yamada, Seija Kataoka, and Kohtaro Watanabe. Heuristic and exact algorithms for the

disjunctively constrained knapsack problem. Information Processing Society of Japan Journal,
43(9), 2002.

ISAAC 2024

https://doi.org/10.1007/978-3-540-72870-2_32
https://doi.org/10.4230/LIPICS.STACS.2024.40
https://doi.org/10.4230/LIPICS.STACS.2024.40
https://doi.org/10.1007/s12532-012-0042-3
https://doi.org/10.1007/s12532-012-0042-3
https://doi.org/10.1057/PALGRAVE.JORS.2602046
https://doi.org/10.1016/J.COR.2005.10.004
https://doi.org/10.1016/J.JCSS.2007.06.019
https://doi.org/10.1016/j.orl.2021.10.001
https://doi.org/10.1016/J.ORL.2006.01.009
https://doi.org/10.1016/J.ORL.2006.01.009
https://doi.org/10.7155/jgaa.00186
https://doi.org/10.1007/s10878-016-0035-7

Subsequence Matching and Analysis Problems for
Formal Languages
Szilárd Zsolt Fazekas #

Akita University, Japan

Tore Koß #

University of Göttingen, Germany

Florin Manea # Ñ

University of Göttingen, Germany

Robert Mercaş # Ñ

Loughborough University, UK

Timo Specht #

University of Göttingen, Germany

Abstract
In this paper, we study a series of algorithmic problems related to the subsequences occurring in the
strings of a given language, under the assumption that this language is succinctly represented by
a grammar generating it, or an automaton accepting it. In particular, we focus on the following
problems: Given a string w and a language L, does there exist a word of L which has w as
subsequence? Do all words of L have w as a subsequence? Given an integer k alongside L, does
there exist a word of L which has all strings of length k, over the alphabet of L, as subsequences?
Do all words of L have all strings of length k as subsequences? For the last two problems, efficient
algorithms were already presented in [Adamson et al., ISAAC 2023] for the case when L is a regular
language, and efficient solutions can be easily obtained for the first two problems. We extend that
work as follows: we give sufficient conditions on the class of input-languages, under which these
problems are decidable; we provide efficient algorithms for all these problems in the case when
the input language is context-free; we show that all problems are undecidable for context-sensitive
languages. Finally, we provide a series of initial results related to a class of languages that strictly
includes the regular languages and is strictly included in the class of context-sensitive languages,
but is incomparable to the of class context-free languages; these results deviate significantly from
those reported for language-classes from the Chomsky hierarchy.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Design and analysis of algorithms

Keywords and phrases Stringology, String Combinatorics, Subsequence, Formal Languages, Context-
Free Languages, Context-Sensitive Languages

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.28

Funding Szilárd Zsolt Fazekas: Supported by the JSPS Kakenhi Grant Number 23K10976.
Florin Manea: Supported by the German Research Foundation (Deutsche Forschungsgemeinschaft,
DFG) in the framework of the Heisenberg Programme project number 466789228.
Robert Mercaş: Supported by a Return Fellowship from the Alexander von Humboldt Foundation
for a research stay at University of Göttingen, Germany.

1 Introduction

A string v is a subsequence of a string w, denoted v ≤ w in the following, if there exist (possibly
empty) strings x1, . . . , xℓ+1 and v1, . . . , vℓ such that v = v1 · · · vℓ and w = x1v1 · · ·xℓvℓxℓ+1.
In other words, v can be obtained from w by removing some of its letters.

© Szilárd Zsolt Fazekas, Tore Koß, Florin Manea, Robert Mercaş, and Timo Specht;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 28; pp. 28:1–28:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:szilard.fazekas@ie.akita-u.ac.jp
https://orcid.org/0000-0001-5319-0395
mailto:tore.koss@uni-goettingen.de
https://orcid.org/0000-0001-6002-1581
mailto:florin.manea@cs.uni-goettingen.org
https://www.uni-goettingen.de/de/618738.html
https://orcid.org/0000-0001-6094-3324
mailto:r.g.mercas@lboro.ac.uk
http://robertmercas.com/
https://orcid.org/0000-0001-6034-433X
mailto:timo.specht@stud.uni-goettingen.de
https://orcid.org/0009-0001-0175-8345
https://doi.org/10.4230/LIPIcs.ISAAC.2024.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Subsequence Matching and Analysis Problems for Formal Languages

The concept of subsequence appears and plays important roles in many different areas
of theoretical computer science. Prime examples are the areas of combinatorics on words,
formal languages, automata theory, and logics, where subsequences are studied in connec-
tion to piecewise testable languages [71, 72, 37, 38], in connection to subword-order and
downward-closures [31, 46, 45, 76, 77, 6]), in connection to binomial equivalence, binomial
complexity, or to subword histories [66, 24, 49, 48, 69, 57, 67]. Subsequences are important
objects of study also in the area of algorithm-design and complexity; to this end, we mention
some classical algorithmic problems such as the computation of longest common subsequences
or of the shortest common supersequences [16, 34, 36, 54, 56, 62, 8, 10], the testing of the
Simon congruence of strings and the computation of the arch factorisation and universality
of strings [32, 26, 73, 74, 18, 9, 19, 21, 28, 42, 22]; see also [44] for a survey on combinatorial
pattern matching problems related to subsequences. Moreover, these algorithmic problems
and other closely related ones have recently regained interest in the context of fine-grained
complexity [12, 13, 3, 1, 2]. Nevertheless, subsequences appear also in more applied set-
tings: for modelling concurrency [65, 70, 14], in database theory (especially event stream
processing [7, 29, 78]), in data mining [50, 51], or in problems related to bioinformatics [11].
Interestingly, a new setting, motivated by database theory [39, 40, 25], considers subsequences
of strings, where the substrings occurring between the positions where the letters of the
subsequence are embedded are constrained by regular or length constraints; a series of
algorithmic results (both for upper and lower bounds) on matching and analysis problems
for the sets of such subsequences occurring in a string were obtained [20, 41, 5, 55].

The focus of this paper is the study of the subsequences of strings of a formal language,
the main idea behind it being to extend the fundamental problems related to matching
subsequences in a string and to the analysis of the sets of subsequences of a single string to
the case of sets of strings. To this end, grammars (or automata) are succinct representations
of (finite or infinite) sets of strings they generate (respectively, accept), so we are interested
in matching and analysis problems related to the set of subsequences of the strings of a
language, given by the grammar generating it (respectively, the automaton accepting it).
This research direction is, clearly, not new. To begin with, we recall the famous result of
Higman [33] which states that the downward closure of every language (i.e., the set of all
subsequences of the strings of the respective language) is regular. Clearly, it is not always
possible to compute an automaton accepting the downward closure of a given language, but
gaining a better understanding when it is computable is an important area of research, as
the set of subsequences of a language plays meaningful roles in practical applications (e.g.,
abstractions of complex systems, see [76, 77, 6] and the references therein). Computing
the downward closure of a language is a general (although, often inefficient) way to solve
subsequence-matching problems for languages; for instance, we can immediately check, using
a finite automaton for the downward closure, if a string occurs as subsequence of a string of
the respective language. However, it is often the case that more complex analysis problems
regarding the subsequences occurring in the strings of a language cannot be solved efficiently
(or, sometimes, at all) using the downward closure; such a problem is to check if a given
string occurs as subsequence in all the strings of a language (chosen from a complex enough
class, such as the class of context-free languages).

As a direct predecessor of this paper, motivated by similar questions, [4] approached
algorithmic matching and analysis problems related to the universality of regular languages
(for short, REG). More precisely, a string over Σ is called k-universal if its set of subsequences
includes all strings of length k over Σ; the study of these universal strings was the focus of
many recent works [9, 19, 68] and the motivation for studying universality properties in the

S. Z. Fazekas, T. Koß, F. Manea, R. Mercaş, and T. Specht 28:3

context of subsequences is discussed in detail in, e.g., [19, 4]. The main problems addressed
in [4] are the following: for L ∈ REG, over the alphabet Σ, and a number k, decide if there
exists a k-universal string in L (respectively, if all strings of L are k-universal). The authors
of [4] discussed efficient algorithms solving these problems and complexity lower bounds. In
this paper, we extend the work of [4] firstly by proposing a more structured approach for the
algorithmic study of the subsequences occurring in strings of formal languages and secondly
by considering more general classes of languages, both from the Chomsky hierarchy (such as
the class of context-free languages or that of context-sensitive languages) and non-classical
(the class of languages accepted by deterministic finite automata with translucent letters).

Our work on subsequence-matching and analysis problems in languages defined by
context-free grammars (for short, CFG) also extends a series of results related to matching
subsequences in strings given as a straight line program (for short, SLP; a CFG generating a
single string), or checking whether a string given as an SLP is k-universal, for some given k,
e.g., see [52, 68]. In our paper, we consider the case when the input context-free languages
and the CFGs generating them are unrestricted.

The approached problems and an overview of our results. As mentioned above, we propose
a more structured approach for matching- and analysis-problems related to subsequences of
the strings of a formal language. More precisely, we define and investigate the following five
problems.

▶ Problem 1 (∃-Subsequence). Given a language L by a machine (grammar) M accepting
(respectively, generating) it and a string w, is there a string v ∈ L such that w ≤ v?

▶ Problem 2 (∀-Subsequence). Given a language L by a machine (grammar) M accepting
(respectively, generating) it and a string w, do we have for all strings v ∈ L that w ≤ v?

▶ Problem 3 (∃-k-universal). Given a language L by a machine (grammar) M accepting
(respectively, generating) it and integer k, check if there is a k-universal string in L.

▶ Problem 4 (∀-k-universal). Given a language L by a machine (grammar) M accepting
(respectively, generating) it and integer k, check if all strings of L(M) are k-universal.

Alternatively, strictly from the point of view of designing an algorithmic solution, the
problem above can be approached via its complement: that is, deciding if there exists at
least one string in L(M) which is not k-universal.

▶ Problem 5 (∞-universal). Given a language L by a machine (grammar) M accepting
(respectively, generating it) decide if there exist m-universal strings in L, for all positive
integers m.

To give some intuition on our terminology, Problems 1 and 3 can be seen as matching
problems (find a string which contains a certain subsequence or set of subsequences), while
the other three problems are analysis problems (decide properties concerning multiple strings
of the language).

Going a bit more into details, in the main part of this paper, we investigate these
problems for the case when the language L is chosen from the class of context-free languages
(for short, CFL; given by CFGs in Chomsky normal form), or from the class of context-
sensitive languages (for short, CSL; given by context-sensitive grammars), or from the class
of languages accepted by deterministic finite automata with translucent letters (given by
an automaton of the respective kind). The choice of presentation of the languages from

ISAAC 2024

28:4 Subsequence Matching and Analysis Problems for Formal Languages

given classes, unsurprisingly, makes a big difference w.r.t. hardness. For instance, certain
singleton languages can be encoded by SLPs (essentially CFGs) exponentially more succinctly
than by classical DFA, which of course introduces significant extra computation into solving
subsequence-related queries [52, 68]. But, before approaching these classes of languages, we
provide a series of general decidability results on these five problems, for which the choice of
grammar or automaton as the way of specifying the input language L is not consequential.

For short, our results are the following. We first give (in Section 3) a series of simple
sufficient conditions on a class C of languages (related to the computation of downward
closures as well as to decidability properties for the respective class) which immediately lead
to decision procedures for the considered problems; however, these procedures are inherently
inefficient, even for classes such as CFL. In this context, generalizing the work of [4], we
approach (in subsequent sections of this paper) each of the above problems for C being the
class CFL and, respectively, the class CSL. While all the problems are undecidable for CSLs,
we present efficient algorithms for the case of CFLs. In particular, the results obtained
for CFL are similar to the corresponding results obtained for REG (i.e., if a problem was
solvable in polynomial or FPT-time for REG, we obtain an algorithm from the same class
for CFL). In that regard, it seemed natural to search for a class of languages which does not
exhibit this behaviour, while retaining the decidability of (at least some of) these problems.
To this end, we identify the class of languages accepted by deterministic finite automata
with translucent letters (a class of automata which does not process the input in a sequential
fashion) and show (in the final section of this paper) a series of initial promising results
related to them.

2 Preliminaries

Let N = {1, 2, . . .} denote the natural numbers and set N0 = N∪{0} as well as [n] = {1, . . . , n}
and [i, n] = {i, i + 1, . . . , n}, for all i, n ∈ N0 with i ≤ n.

An alphabet Σ = {1, 2, . . . , σ} is a finite set of symbols, called letters. A string w is a
finite concatenation of letters from a given alphabet with the number of these letters giving
its length |w|. The string with no letters is the empty string ε of length 0. The set of all
finite strings over the alphabet Σ, denoted by Σ∗, is the free monoid generated by Σ with
concatenation as operation. A subset L ∈ Σ∗ is called a (formal) language. Let Σn denote
all strings in Σ∗ exactly of length n ∈ N0.

For 1 ≤ i ≤ j ≤ |w| denote the ith letter of w by w[i] and the factor of w starting at position
i and ending at position j as w[i, j] = w[i] · · ·w[j]. If i = 1 the factor is also called a prefix,
while if j = |w| it is called a suffix of w. For each a ∈ Σ set |w|a = |{i ∈ [|w|] | w[i] = a}|.

Let alph(w) denote the set of all letters of Σ occurring in w. A length n string u ∈ Σ∗

is called subsequence of w, denoted u ≤ w, if w = w1u[1]w2u[2] · · ·wnu[n]wn+1, for some
w1, . . . , wn+1 ∈ Σ∗. For k ∈ N0, a string w ∈ Σ∗ is called k-universal (w.r.t. Σ) if every
u ∈ Σk is a subsequence of w. The universality-index ι(w) is the largest k such that w is
k-universal.

▶ Definition 6. The arch factorization of a string w ∈ Σ∗ is given by w =
ar1(w) · · · arι(w)(w)r(w) with ι(ari(w)) = 1 and ari(w)[|ari(w)|] /∈ alph(ari(w)[1, |ari(w)| −
1]), for all i ∈ [1, ι(w)]. Furthermore, alph(r(w)) ⊊ Σ applies. The strings ari(w) are called
arches and r(w) is called the rest of w.
The modus m(w) of w is defined as the concatenation of the last letters of each arch:
m(w) = ar1(w)[|ar1(w)|] · · · arι(w)(w)[|arι(w)(w)|].

S. Z. Fazekas, T. Koß, F. Manea, R. Mercaş, and T. Specht 28:5

As an example, in the arch factorisation w = (bca)·(accab)·(cab)·b of w ∈ {a, b, c}∗, the
parentheses denote the three arches and the rest r(w) = b. Further, we have ι(w) = 3 and
m(bcaaccabcabb) = abb. For more details about the arch factorization and the universality
index see [32, 9].

A string v is an absent subsequence of another string w if v is not a subsequence of
w [42, 43]. A shortest absent subsequence of a string w (for short, SAS(w)) is an absent
subsequence of w of minimal length, i.e., all subsequences of shorter length are found in
w. We note that, for a given word w and some letter a /∈ alph(r(w)), an SAS of w is
m(w)a [32, 42]. An immediate observation is that any string v which is an SAS(w) satisfies
|v| = ι(w) + 1.

In this paper, we work with absent subsequences of a word w which are the shortest
among all absent subsequences of w and, additionally, start with a and end with b, for some
a ∈ Σ ∪ {ε} and b ∈ Σ. Such a shortest string which starts with a and ends with b and
is an absent subsequence of w is denoted SASa,b(w). For instance, an SASε,b(w), for some
b /∈ alph(r(w)), is an SAS(w), such that its starting letter is not fixed, but the ending one
must be b.

▶ Definition 7. A grammar over an alphabet Σ is a 4-tuple G = (V, Σ, P, S) consisting of: a
set V = {A, B, C, . . . } of non-terminal symbols, a set Σ = {a, b, c, . . . } of terminal symbols
with V ∩Σ = ∅, a non-empty set P ⊆ (V ∪Σ)+× (V ∪Σ)∗ of productions and a start symbol
S ∈ V .

We represent productions (p, q) ∈ P by p→ q. In G, u = xpz with x, z ∈ (V ∪Σ)∗ is directly
derivable to v = xqz if a production (p, q) ∈ P exists; in this case, we write u ⇒G v; the
subscript G is omitted when no confusion arises. More generally, for m ∈ N, we say that u is
derivable to v in m steps (denoted w ⇒m

G v) if there exist strings w0, w1, . . . , wm ∈ (V ∪ Σ)∗

(called sentential forms) with u = w0 ⇒G w1 ∧ w1 ⇒G w2 ∧ · · · ∧ wm−1 ⇒G wm = v. If u

is derivable to v in m steps, for some m ∈ N0, we write u ⇒∗
G v, i.e., ⇒∗

G is the reflexive
and transitive closure of ⇒G. With L(G) = {w ∈ Σ∗ | S ⇒∗

G w} we denote the language
generated by G. We call a derivation a sequence S ⇒ · · · ⇒ w ∈ L(G). The number of steps
used in the derivation is the derivation’s length.

▶ Definition 8. A grammar G = (V, Σ, P, S) with P ⊆ V × (V ∪ Σ)+ is a context-free
grammar (for short, CFG). A language L is a context-free language (for short, CFL) if and
only if there is a CFG G with L(G) = L.
A grammar G = (V, Σ, P, S), where for all (p, q) ∈ P we have |p| ≤ |q|, is a context-sensitive
grammar (for short, CSG). A language L is a context-sensitive language (for short, CSL) if
and only if there is a CSG G with L(G) = L.

The definitions above tacitly assume that CFLs and CSLs do not contain the empty
string ε. Indeed, for the problems considered here, we can make this assumption. Whether
ε ∈ L or not plays no role in deciding Problems 1, 3, and 5, while ε ∈ L immediately leads
to a negative answer for Problem 2 (unless w = ε) and Problem 4 (unless k = 0). So, for
simplicity, we only address languages that, by definition, do not contain the empty string
(see also the discussions in [47, 35] about how the presence of ε in formal languages can be
handled).

Also, note that every unary CFL is regular [64], so when discussing our problems for the
class of CFLs we assume that the input languages are over an alphabet with at least two
letters.

ISAAC 2024

28:6 Subsequence Matching and Analysis Problems for Formal Languages

▶ Definition 9. A CFG G = (V, Σ, P, S) is in Chomsky normal form (CNF) if and only if
P ⊆ V × (V 2 ∪Σ) and, for all A ∈ V , there exist some wA, w′

A, w′′
A ∈ Σ∗ such that A⇒∗ wA

and S ⇒∗ w′
AAw′′

A (these last two properties essentially say that every non-terminal of G is
useful).

When we discuss our problems in the case of CFLs, we assume our input is a CFG G in
CNF. This does not change our results since, according to [47] and the references therein,
we can transform any grammar G in polynomial time into a CFG G′ in CNF such that
|G′| ∈ O(|G|2) and L(G) = L(G′), where |G| refers to the size of a grammar determined in
terms of total size of its productions.

In some cases it may be easier to view derivations in a CFG G as a derivation (parse) tree.
These are rooted, ordered trees. The inner nodes of such trees are labeled with non-terminals
and the leaf-nodes are labeled with symbols X ∈ (V ∪ Σ). An inner node A has, from
left to right, the children X1, . . . , Xk, for some integer k ≥ 1, if the grammar contains the
production A → X1 · · ·Xk. As such, if we concatenate, from left to right, the leaves of a
derivation tree T with root A we get a string α (called in the following the border of T) such
that A→∗ α. The depth of a derivation tree is the length of the longest simple-path starting
with the root and ending with a leaf (i.e., the number of edges on this path). If G is in CNF,
then all its derivation trees are binary.

▶ Definition 10. For any language L ⊂ Σ∗ the downward closure L↓ of L is defined as the
language containing all subsequences of strings of L, i.e., L↓= {v ∈ Σ∗ | ∃w ∈ L : v ≤ w}.
The complementary notion of the upward closure L↑ of a language L is the language containing
all supersequences of strings in L, i.e., L↑= {w ∈ Σ∗ | ∃v ∈ L : v ≤ w}.

Our problems focus on properties of formal languages, and Problems 3, 4 and 5 are
strongly connected to universality seen as a property of a language, therefore we extend the
concept of universality to formal languages. We distinguish between two different ways of
analyzing the universality of a language.

▶ Definition 11. Let L ⊆ Σ∗ be a language. We call L k-universal universal if for every
w ∈ L it holds that ι(w) ≥ k. The universal universality index ι∀(L) is the largest k, such
that L is k-universal universal. We call L k-existential universal if a string w ∈ L exists with
ι(w) ≥ k. The existential universality index ι∃(L) is the largest k, such that L is k-existential
universal. In all the definitions above, the universality index of words and, respectively,
languages is computed w.r.t. Σ.

In case of a singleton language L = {w} it holds that ι∃(L) = ι∀(L) = ι(w). In general
the universal universality index ι∀(L) is the infimum of the set of all universality indices of
strings in L and therefore is lower bounded by 0 and upper bounded by ι(w), for any w ∈ L

(so it is finite, for L ̸= ∅). The existential universality index ι∃(L) is the supremum of the
set of all universality indices of strings in L and, as such, can be infinite. In this setting
the answer to Problem 3 and, respectively, Problem 4, can be solved by computing ι∃(L)
and, respectively, ι∀(L), and then checking whether k ≤ ι∃(L) and, respectively, k ≤ ι∀(L).
Furthermore, Problem 5 asks whether ι∃(L) is infinite or not. The following two lemmas are
not hard to show.

▶ Lemma 12. Given a string w ∈ Σ∗, with |w| = n and |Σ| = σ, we can construct in time
O(nσ) a minimal DFA, with n + 1 states, accepting the set of strings which have w as a
subsequence.

S. Z. Fazekas, T. Koß, F. Manea, R. Mercaş, and T. Specht 28:7

▶ Lemma 13. For k > 0 and an alphabet Σ with |Σ| = σ we can construct in time
O(2σk poly(σ)) a minimal DFA, with (2σ − 1)k + 1 states, accepting the set of k-universal
strings over Σ.

The computational model we use to state our algorithms is the standard unit-cost word
RAM with logarithmic word-size ω (meaning that each memory word can hold ω bits). It is
assumed that this model allows processing inputs of size n, where ω ≥ log n; in other words,
the size n of the data never exceeds (but, in the worst case, is equal to) 2ω. Intuitively,
the size of the memory word is determined by the processor, and larger inputs require a
stronger processor (which can, of course, deal with much smaller inputs as well). Indirect
addressing and basic arithmetical operations on such memory words are assumed to work
in constant time. Note that numbers with ℓ bits are represented in O(ℓ/ω) memory words,
and working with them takes time proportional to the number of memory words on which
they are represented. This is a standard computational model for the analysis of algorithms,
defined in [23].

Our algorithms have languages as input, that is sets of strings over some finite alphabet.
Therefore, we follow a standard stringology-assumption, namely that we work with an integer
alphabet: we assume that this alphabet is Σ = {1, 2, . . . , σ}, with |Σ| = σ, such that σ fits in
one memory word. For a more detailed general discussion on the integer alphabet model
see, e. g., [17]. In all problems discussed here, the input language is given as a grammar
generating it or as an automaton accepting it. We assume that all the sets defining these
generating/accepting devices (e.g., set of non-terminals, set of states, set of final states,
relation defining the transition function or derivation, etc.) have at most 2ω elements and
their elements are integers smaller or equal to 2ω (i.e., their cardinality and elements can be
represented as integers fitting in one memory word). In some of the problems discussed in
this paper, we assume that we are given a number k. Again, we assume that this integer fits
in one memory word.

One of our algorithms (for Problem 3 in the case of CFL, stated in Theorem 23) runs in
exponential time and uses exponential space w.r.t. the size of the input. In particular, both
the space and time complexities of the respective algorithm are exponential, with constant
base, in σ (the size of the input alphabet) but polynomial w.r.t. all the other components
of the input. To avoid clutter, we assume that our exponential-time and -space algorithm
runs on a RAM model where we can allocate as much memory as our algorithms needs (i.e.,
the size of the memory-word ω is big enough to allow addressing all the memory we need
in this algorithm in constant time); for the case of σ ∈ O(1), this additional assumption
becomes superfluous, and for non-constant σ we stress out that the big size of memory words
is only used for building large data structures, but not for speeding up our algorithms by,
e.g., allowing constant-time operations on big numbers (that is, numbers represented on
more than c log N bits, for some constant c and N being the size of the input).

3 General Results

We consider the problems introduced in Section 1, for the case when the language L is chosen
from a class C, and give a series of sufficient conditions for them to be decidable.

Consider a class G of grammars (respectively, a class A of automata) generating (respect-
ively, accepting) the languages of the class C. For simplicity, for the rest of this section, we
assume that in all the problems we take as input a grammar GL such that L(GL) = L, but
note that all the results hold for the case when we consider that the languages are given by
an automaton from the class A accepting them.

ISAAC 2024

28:8 Subsequence Matching and Analysis Problems for Formal Languages

Let C′ be the class of languages L∩R, where L ∈ C and R ∈ REG. We use two hypotheses:
H1. Given a grammar G of the class G we can algorithmically construct a non-deterministic

finite automaton A accepting the downward closure of L(G).
H2. Given a grammar G of the class G and a non-deterministic finite automaton A, we can

algorithmically decide whether the language L(G) ∩ L(A) is empty.

First we show that, under H1, Problems 1, 3, and 5 are decidable.

▶ Theorem 14. If H1 holds, then Problems 1, 3, and 5 are decidable.

Proof. We start by observing that the following straightforward properties hold:
for a string w, there exists v ∈ L such that w ≤ v if and only if w ∈ L↓.
for an integer k > 0, there exists v ∈ L such that v is k-universal if and only if there
exists v′ ∈ L↓ such that v′ is k-universal.

In each of Problems 1, 3, and 5, we are given a grammar G generating the language L.
According to H1, we construct a non-deterministic automaton A accepting L↓, the downward
closure of L.

For Problem 1, it is sufficient to check if L(A) = L↓ contains the string w, which is
clearly decidable. For Problem 3 we need to decide if L contains a k-universal string. By
our observations, it is enough to check if L↓ contains a k-universal string. This can be
decided, for the automaton A, according to [4]. For Problem 5 we need to decide if L contains
a k-universal string, for all k ≤ 0. This is also decidable, for A, according to the results
of [4]. ◀

Secondly, we show that, under H2, Problems 1, 2, 3, and 4 are decidable.

▶ Theorem 15. If H2 holds, then Problems 1, 2, 3, and 4 are decidable.

Proof. In all the inputs of Problems 1, 2, 3, and 4 when considering CFL and CSL, we are
given a grammar G, which generates the language L.

For Problems 1 and 2, by Lemma 12 we construct a DFA B accepting the regular language
w↑ of strings which have w as a subsequence. If the intersection of L (given as the grammar
G which generates it) and L(B) is empty, which is decidable, under H2, then the considered
instance of Problem 1 is answered negatively; otherwise, it is answered positively. By making
the final state of B non-final, and all the other states final, we obtain a DFA B′ which accepts
Σ∗ \ w↑. If the intersection of L and L(B′) is empty, then the answer to the considered
instance of Problem 2 is positive; otherwise, it is negative.

For Problems 3 and 4, by Lemma 13 we construct a DFA B accepting the regular language
of k-universal strings. If the intersection of L and L(B) is empty, then the answer to the
considered instance of Problem 3 is negative; otherwise, it is positive. By making the final
state of B non-final, and all the other states final, we obtain a DFA B′ which accepts exactly
all strings which are not k-universal. If the intersection of L and L(B′) is empty, then the
answer to the considered instance of Problem 4 is positive; otherwise, it is negative. ◀

It is worth noting that, even for classes which fulfill both hypotheses above (such as
the CFLs [75, 35]), there are several reasons why the algorithms resulting from the above
theorems are not efficient. On the one hand, constructing an automaton which accepts the
downward closure of a language is not always possible, and even when this construction is
possible (when the language is from a class for which H1 holds) it cannot always be done
efficiently. For instance, in the case of CFLs, this may take inherently exponential time w.r.t.
the size of the input grammar [30]; in this paper, we present more efficient algorithms for

S. Z. Fazekas, T. Koß, F. Manea, R. Mercaş, and T. Specht 28:9

Problems 1, 2, 3, and 4 in the case of CFLs, which do not rely on Theorem 15. On the other
hand, the results of Theorem 15 rely, at least partly, on the construction of a DFA accepting
all k-universal strings, which takes exponential time in the worst case, as it may have an
exponential number of states (both w.r.t. the size of the input alphabet and w.r.t. the binary
representation of the number k, which is given as input for some of these problems).

Interestingly, the class CSL does not fulfil any of the above hypotheses. In fact, as our
last general result, we show that all five problems we consider here are undecidable for CSL.

▶ Theorem 16. Problems 1, 2, 3, 4, 5 are undecidable for the class of CSL, given as CSGs.

Proof. To obtain the undecidability of all the problems, we show reductions from the
emptiness problem for Context Sensitive Languages. Assume that we have a CSL L, specified
by a grammar G, as the input for the emptiness problem for CSL. Assume L is over the
alphabet Σ = {1, . . . , σ}, and that the CSG G, has the starting symbol S. Let 0 be a fresh
letter (i.e., 0 /∈ Σ).

To show the undecidability of Problems 1 and 2, we construct a new grammar G′ which
has all the non-terminals, terminals, and productions of G and, additionally, G′ has a new
starting symbol S′ and the productions S′ → σS and S′ → 0.

It is immediate that there exists a string w ∈ L(G′) which contains σ as a subsequence, if
and only if L(G) is not empty. Furthermore, all strings of L(G′) contain 0 as a subsequence
(that is, the production S′ → σS is not the first production in the derivation of any terminal
string) if and only if L(G) is empty. As the emptyness problem is undecidable for CSL
(given as grammars), it follows that Problems 1 and 2 are also undecidable for this class of
languages.

To show the undecidability of Problem 3, we construct a new grammar G′ which has all
the non-terminals, terminals, and productions of G and, additionally, G′ has a new starting
symbol S′ and the production S′ → (12 · · ·σ)S. Clearly, L(G′) contains a 1-universal string
(over Σ) if and only if L(G) ̸= ∅. Thus, it follows that Problem 3 is also undecidable for this
class of languages.

To show the undecidability of Problem 4, we construct a new grammar G′ which has all
the non-terminals, terminals, and productions of G and, additionally, G′ has a new starting
symbol S′ and the productions S′ → 012 · · ·σ and S′ → S. Clearly, all the strings of L(G′)
are 1-universal (over Σ ∪ {0}) if and only if L(G) = ∅ (as any string which would be derived
in G′ starting with the production S′ → S would not contain 0). Hence, Problem 4 is also
undecidable for CSL.

To show the undecidability of Problem 5, we construct a new grammar G′ which has
all the non-terminals, terminals, and productions of G and, additionally, G′ has a new
starting symbol S′ and a fresh non-terminal R and the productions S′ → 012 · · ·σ, S′ → RS,
R→ 01 · · ·σR, and R→ 01 · · ·σ. Clearly, L(G′) contains m-universal strings (over Σ ∪ {0}),
for all m ≥ 1, if and only if L(G) ̸= ∅ (as we can use R to pump arches in the strings of
L(G′) if and only if there exists at least one derivation where S can be derived to a terminal
string). Accordingly, Problem 5 is also undecidable for CSL. ◀

Given that all the problems become undecidable for C = CSL, we now focus our investig-
ation on classes of languages strictly contained in the class of CSLs.

4 Problems 1 and 2

For the rest of this section, assume that |w| = m and |Σ| = σ. Let us begin by noting that
Problems 1 and 2 can be solved in polynomial time for the class REG following the approach
of Theorem 15. Indeed, in this case, we assume that L is specified by the NFA A, with s

ISAAC 2024

28:10 Subsequence Matching and Analysis Problems for Formal Languages

states, with L(A) = L, and then we either have to check the emptiness of the intersection
of L = L(A) with the language accepted by the deterministic automaton constructed in
Lemma 12, or, respectively, with the complement of this language; both these tasks clearly
take polynomial time.

We now consider the two problems for the class of CFLs. We first recall the following
folklore lemma (see, e.g., [35]).

▶ Lemma 17. Let G = (V, Σ, P, S) be a CFG in CNF, and let A = (Q, Σ, q0, F, δ) be a DFA.
Then we can construct in polynomial time a CFG GA in CNF such that L(GA) = L(G)∩L(A).

We can now state the main result of this section. We can apply Lemma 17, for Problem
1, to the input CFG and the DFA constructed in Lemma 12, or, for Problem 2, to the input
CFG and the complement of the respective DFA. In both cases, we compute a CFG in CNF
generating the intersection of a CFL and a REG language, and we have to check whether
the language generated by that grammar is empty or not; all these can be implemented in
polynomial time.

▶ Theorem 18. Problems 1 and 2, for an input grammar with n non-terminals and an input
string of length m, are decidable in polynomial time for CFL.

5 Problems 3 and 5

Let us begin by noting that in [4] it was shown that for a given NFA A with s states (with
input alphabet Σ, where |Σ| = σ) and an integer k ≥ 0, we can decide whether L(A) contains
a k-universal string (i.e., Problem 3 for the class REG) in time O(poly(s, σ)2σ); in other
words, Problem 3 is fixed parameter tractable (FPT) w.r.t. the parameter σ. A polynomial
time algorithm (running in O(poly(s, σ) time) was given for Problem 5, relying on the
observation that, given an NFA A, the language L(A) contains strings with arbitrarily large
universality if and only if A contains a state q, which is reachable from the initial state and
from which one can reach a final state, and a cycle which contains this state, whose label is
1-universal. Coming back to Problem 3 for REG, the same paper shows that it is actually
NP-complete. This is proved by a reduction from the Hamiltonian Path problem (HPP,
for short), in which a graph with n vertices, the input of HPP, is mapped to an input of
Problem 3 consisting in an automaton with O(n2) states over an alphabet of size n. This
reduction also implies that, assuming that the Exponential Time Hypothesis (ETH, for short)
holds, there is no 2o(σ)poly(s, σ) time algorithm solving Problem 3 (as this would imply the
existence of an 2o(n) time algorithm solving HPP); see [53] for more details related to the
ETH and HPP.

Further, we consider Problems 3 and 5 for the class CFL, and we assume that, in both
cases, we are given a CFL L by a CFG G = (V, Σ, P, S) in CNF, with n non-terminals, over
an alphabet Σ, with σ letters, and an integer k ≥ 1 (in binary representation).

To transfer the lower bound derived for Problem 3 in the case of REG (specified as
NFAs) to the larger class of CFLs, we recall the folklore result that a CFG in CNF can be
constructed in polynomial time from an NFA (by constructing a regular grammar from the
NFA, and then putting the grammar in CNF, see [35]). So, the same reduction from [4] can
be used to show that, assuming ETH holds, there is no 2o(σ)poly(n, σ) time algorithm solving
Problem 3. This reduction shows also that Problem 3 is NP-hard; whether this problem is in
NP remains open.

S. Z. Fazekas, T. Koß, F. Manea, R. Mercaş, and T. Specht 28:11

We now focus on the design of a 2O(σ)poly(n, σ) time algorithm solving Problem 3 (which
would also show that this problem is FPT) and show that Problem 5 can be solved in
polynomial time. Let us recall that Problem 5 requires deciding whether ι∃(L) is finite, and,
if yes, Problem 3 requires checking whether ι∃(L) ≥ k.

We start by introducing a new concept which leads to a series of combinatorial observations.

▶ Definition 19. Let G = (V, Σ, P, S) be a CFG. A non-terminal A ∈ V generates a 1-
universal cycle if and only if there exists a derivation A⇒∗ w1Aw2 of the grammar G with
w1, w2 ∈ Σ∗ and max(ι(w1), ι(w2)) ≥ 1.

We can show the following result.

▶ Lemma 20. Let G = (V, Σ, P, S) be a CFG in CNF and L = L(G). Then ι∃(L) is infinite
if and only if there exists a non-terminal X ∈ V such that X generates a 1-universal cycle.

Proof. Assume we have a non-terminal A ∈ V which generates a 1-universal cycle. This
means that there exists a derivation A ⇒∗ w1Aw2 with w1, w2 ∈ Σ∗ and ι(w1) ≥ 1 or
ι(w2) ≥ 1. As G is in CNF, we have that there exist w′

A, w′′
A ∈ Σ∗ and the derivation

S ⇒∗ w′
AAw′′

A, and, also, that there exists wA ∈ Σ∗ such that A⇒∗ wA. We immediately
get that, for all n ≥ 1, the following derivation is valid: S ⇒∗ w′

AAw′′
A ⇒∗ w′

Aw1Aw2w′′
A ⇒∗

w′
A(w1)2A(w2)2w′′

A ⇒∗ w′
A(w1)nA(w2)nw′′

A ⇒∗ w′
A(w1)nwA(w2)nw′′

A = w. As ι(w1) ≥ 1 or
ι(w2) ≥ 1, it follows that ι(w) ≥ n. So, ι∃(L) is infinite.

We now show the converse implication. More precisely, we show by induction on the
number of non-terminals of G that if ι∃(L(G)) is infinite then G has at least one useful
non-terminal X ∈ V such that X has a 1-universal cycle. For this induction proof, we can
relax the restrictions on G: more precisely, we still assume that the set P of productions
of G fulfils P ⊆ V × (V 2 ∪ Σ) but do not require that every non-terminal of G is useful; it
suffices to require the starting symbol to be useful.

The result is immediate if G has a single non-terminal, i.e., the start symbol S. We
now assume that our statement holds for CFLs generated by grammars with at most m

non-terminals, and assume that L is a CFL generated by a CFG G with m + 1 non-terminals.
We want to show that G has at least one useful non-terminal X ∈ V such that X has a
1-universal cycle. We can assume, w.l.o.g., that S does not have a 1-universal cycle (otherwise,
the result already holds).

Now, consider for each useful A ∈ V \ {S} the CFG (which fulfills the requirements
of our statement) GA = (V \ {S}, Σ, A, P ′), where P ′ is obtained from P by removing all
productions involving S. Clearly, if there exists some A ∈ V such that ι∃(L(GA)) is infinite,
then, by induction, GA contains a useful non-terminal X ∈ V such that X has a 1-universal
cycle. As GA is obtained from G by removing some productions and one non-terminal, it is
clear that X also has a 1-universal cycle in G and is also useful in G, so our statement holds.
Let us now assume, for the sake of a contradiction, that, for each useful A ∈ V , there exists
an integer NA ≥ 1 such that ι∃(L(GA)) ≤ NA. Take N = 1 + max{NA | A ∈ V }. As ι∃(L) is
infinite, there exists a string w ∈ L(G) with ι(w) ≥ 2N + 3. Since w ∈ L(G), S ⇒∗ w holds.

Let TS be the derivation tree of w with root S and note that all non-terminals occurring
in TS are useful. Let p the longest simple path of TS starting in S and having the end-node
S (in the case when there are more such paths, we simply choose one of them). We denote
by T p

S the sub-tree of TS rooted in the end-node of p. If w′ is the string obtained by reading
the leaves of T p

S left-to-right, then we have the following derivation corresponding to TS :
S ⇒ vSSv′

S ⇒∗ vSw′v′
S = w, where vS , v′

S ∈ Σ∗. Since, by our assumption, S does not have
a 1-universal cycle, we get that ι(vS) = 0, ι(v′

S) = 0, and that ι(w′) ≥ 2N + 1.

ISAAC 2024

28:12 Subsequence Matching and Analysis Problems for Formal Languages

Further, we consider T p
S , and note that no other node of this tree, except the root, is

labelled with S. Assume that the first step in the derivation S ⇒∗ w′ is S ⇒ AB, for some
non-terminals A, B ∈ V and production S → AB, and that the children of the root S in the
tree T p

S are the sub-trees TA and TB . Let wA be the border of TA and wB be the border of
TB. Clearly, it follows that at least one of the strings wA and wB is N -universal. We can
assume, w.l.o.g., that ι(wA) ≥ N . But wA ∈ L(GA) and ι∃(L(GA)) < N (by the definition
of N). This is a contradiction with our assumption that ι(L(GX)) is finite, for all X ∈ V .
So, there exists X ∈ V for which ι∃(L(GX)) is infinite and, as we have seen, this means that
our statement holds. ◀

So, according to Lemma 20, if the CFG G, which is the input of our problem, contains
at least one non-terminal X ∈ V which has a 1-universal cycle, we answer positively the
instances of Problems 3 and 5 defined by G and, in the case of Problem 3, additionally by
an integer k ≥ 1. Next, we show that one can decide in polynomial time whether such a
non-terminal exists in a grammar. However, if G does not contain any non-terminal with a
1-universal cycle, while the instance of Problem 5 is already answered negatively, it is unclear
how to answer Problem 3. To address this, we try to find a way to efficiently construct a
string of maximal universality index, and, for that, we need another combinatorial result.

▶ Lemma 21. Let G = (V, Σ, P, S) be a CFG in CNF, with |V | = n, |Σ| = σ, and L = L(G).
Furthermore, assume ι∃(L) is finite. There exists a string w of L with ι(w) = ι∃(L) such
that the derivation tree of w has depth at most 4nσ.

Proof. Let w0 ∈ L be a string such that ι(w0) = ι∃(L), and let T0 be its derivation
tree. Assume that T0 has depth greater than 4nσ. Then there exists a simple-path p

in T0 from the root to a leaf of length at least 4nσ + 1 (i.e., contains 4nσ + 2 nodes
on it). By the pigeonhole-principle, there is one non-terminal A ∈ V which occurs at
least 4σ times on this path. Therefore, there exists the derivation S ⇒∗ v0Av′

0 ⇒∗

v0v1Av′
1v′

0 ⇒∗ . . . ⇒∗ v0v1 · · · v4σ−1Av′
4σ−1 · · · v′

1v′
0 ⇒∗ v0v1 · · · v4σ−1w′

0v′
4σ−1 · · · v′

1v′
0 = w0,

with v0, v′
0, . . . , v4σ−1, v′

4σ−1, w′
0 ∈ Σ∗.

As ι∃(L) is finite, by Lemma 20, A has no 1-universal cycle, so ι(v1 · · · v4σ−1) =
ι(v′

4σ−1 · · · v′
1) = 0.

We now go with i from 1 to 4σ− 1 and construct a set Mℓ as follows. For this we use the
rest of the arch factorization of a word r(·), which is the suffix not associated with any of the
arches of the respective word. We maintain a set U , which is initialized with alph(r(v0)); we
also initialize Mℓ = ∅. Then, when considering i, if alph(vi) ̸⊆ U , we let U ← U ∪ alph(vi)
and Mℓ ← Mℓ ∪ {i}; before moving on and repeating this procedure for i + 1, if U = Σ,
we set U ← ∅. Let us note that, during this process, because ι(v1 · · · v4σ−1) = 0, we set
U ← ∅ at most once. Also, since Mℓ is updated only when alph(vi) ̸⊆ U , it means that Mℓ

is updated at most 2σ − 2 times. So |Mℓ| ≤ 2σ − 2.
Similarly, to construct a set Mr, for i from 4σ − 1 downto 1, we maintain a set U ,

initialized with alph(r(v0v1 · · · v4σ−1w′
0)); we also initialize Mr = ∅. Then, when considering

i, if alph(v′
i) ̸⊆ U , we let U ← U ∪ alph(v′

i) and Mr ← Mr ∪ {i}; before moving on and
repeating this procedure for i − 1, if U = Σ, we set U ← ∅. As before, we get that Mr is
updated at most 2σ − 2 times, and |Mr| ≤ 2σ − 2.

It is worth noting that the indices stored in Mℓ and Mr indicate the strings vi and v′
i,

respectively, which contain letters that are relevant when computing the arch factorization
of w0. The indices not contained in these sets indicate strings vi or v′

i, respectively, which
are simply contained in an arch, and all the letters of these strings already appeared in that
arch before the start of vi and v′

i, respectively.

S. Z. Fazekas, T. Koß, F. Manea, R. Mercaş, and T. Specht 28:13

As |Mℓ| + |Mr| ≤ 4σ − 4, we get that there exists i ∈ [1, 4σ] such that
i /∈ Mℓ ∪ Mr. It is now immediate that the derivation S ⇒∗ v0Av′

0 ⇒∗

v0v1Av′
1v′

0 ⇒∗ . . . ⇒∗ v0v1 · · · vi−1Av′
i−1 · · · v′

1v′
0 ⇒∗ v0 · · · vi−1vi+1Av′

i+1v′
i−1 · · · v′

0 ⇒∗

v0 · · · vi−1vi+1 · · · v4σ−1w′
0v′

4σ−1 · · · v′
i+1v′

i−1 · · · v′
0 = w1 produces a string w1 such that

ι(w1) = ι(w0); let T1 be the tree corresponding to this derivation. Clearly, the total
length of the simple-paths connecting the root to leaves in the derivation tree T1 is strictly
smaller than the total length of the simple-paths connecting the root to leaves in the tree T0.
If T1 still has root-to-leaf simple-paths of length at least 4nσ, we can repeat this process and
obtain a tree where the total length of the simple-paths connecting the root to leaves is even
smaller. This process is repeated as long as we obtain trees having at least one root-to-leaf
simple-path of length at least 4nσ. Clearly, this is a finite process, whose number of iterations
is bounded by, e.g., the sum of the length of root-to-leaf simple-paths of T0. When we obtain
a tree T where all root-to-leaf simple paths are of length at most 4nσ, we stop and note that
the border of this tree is a string w, with ι(w) = ι∃(L). This concludes our proof. ◀

We now come to the algorithmic consequences of our combinatorial lemmas. For both
considered problems the language given as input is in the form of a CFG G = (V, Σ, P, S)
in CNF with |Σ| = σ ≥ 2 and |V | = n. Firstly, we show that Problem 5 can be decided in
polynomial time.

▶ Theorem 22. Problem 5 can be solved in O(max(n3, n2σ)) time.

Proof Sketch. By Lemma 20, it is enough to check whether G contains a non-terminal
X ∈ V such that X has a 1-universal cycle. More precisely, we want to check if there exists a
non-terminal X such that X ⇒∗ wXw′, where alph(w) = Σ or alph(w′) = Σ. We only show
how to decide if there is a non-terminal X such that X ⇒∗ wXw′, where alph(w) = Σ (the
case when alph(w′) = Σ is similar). The main observation is that such a non-terminal X ∈ V

exists if and only if G contains, for some non-terminal X, derivations X ⇒∗ waXw′
a, with

wa ∈ Σ∗aΣ∗ and w′
a ∈ Σ∗, for all a ∈ Σ. Determining the existence of such a non-terminal is

done in several steps. Firstly, we identify in O(n3)-time all pairs of non-terminals A, B ∈ V

with A⇒∗ αBβ, for some α, β ∈ Σ∗. Then, using the previously computed pairs, in O(n2σ),
we identify all pairs A, a, with A ∈ V and a ∈ Σ, with A ⇒∗ αaβ, for some α, β ∈ Σ∗.
Now, in O(n3) time, we identify all pairs of non-terminals A, B ∈ V , such that there exist a
production A → BC in G and a derivation C ⇒∗ αAβ, with α, β ∈ Σ∗. Finally, using all
the sets of pairs that we have computed, we can identify all pairs of A, a, of non-terminals
and terminals of G, respectively, such that there exists a derivation A ⇒∗ αaβAγ, with
α, β, γ ∈ Σ∗. We conclude that there exists a non-terminal X ∈ V for which we have
derivations X ⇒∗ waXw′

a, with wa ∈ Σ∗aΣ∗ and w′
a ∈ Σ∗, for all a ∈ Σ, if and only if

there exists such a non-terminal X where the pairs X, a were found in the last step of our
approach, for all a ∈ Σ. ◀

Further, we show that Problem 3 is FPT w.r.t. the parameter σ; this also means that
the respective problem is solvable in polynomial time for constant-size alphabets. Recall
that there is an ETH-conditional lower bound of 2o(σ)poly(n, σ) for the time complexity of
algorithms solving this problem.

▶ Theorem 23. Problem 3 can be solved in O(24σn5σ2) time.

Proof Sketch. Recall that now we also get as input an integer k > 0 (given in binary
representation).

ISAAC 2024

28:14 Subsequence Matching and Analysis Problems for Formal Languages

To solve Problem 3, we check, using the algorithm from Theorem 22, whether ι∃(L) is
finite. If ι∃(L) is infinite, then we answer the given instance positively. Otherwise, we proceed
as follows.

We use a dynamic programming approach to compute the maximal universality index of
a string of L. This essentially uses the result of Lemma 21 which states that such a string is
the border of a derivation tree of depth at most N = 4nσ. More precisely, we construct a
4-dimensional matrix M [·, ·, ·, ·], with elements M [i, A, SA

p , SA
s] with A ∈ V , SA

p , SA
s ⊊ Σ and

i ≤ N . By definition, M [i, A, SA
p , SA

s] = ℓ if ℓ is the maximum number with the property
that there exists a string w, which labels the border of a derivation tree of height at most i

rooted in A, so that w has a prefix x, with alph(x) = SA
p , followed by ℓ arches, and a suffix

y with alph(y) = SA
s .

To compute the elements M [i, ·, ·, ·] for i = 1 it is enough to consider the productions
of the form A → a. For each such production, we only have to set M [1, A, {a}, ∅] ←
0 and M [1, A, ∅, {a}]← 0.

To compute M [i, ·, ·, ·] for i > 1, we consider every production A → BC, and try to
combine derivation trees of height at most i− 1 and obtain derivation trees of height i. This
computation is structured in two phases (corresponding to two cases).

The first phase corresponds to first of the cases we need to consider. Namely, in this case,
we produce trees of height at most i whose borders have 0 arches, by combining trees of height
at most i− 1 with the same property. For that, we iterate over the productions A→ BC,
and sets S1, S2, S3, S4 ⊊ Σ such that M [i− 1, B, S1, S2] = 0 and M [i− 1, C, S3, S4] = 0. If
S1∪S2∪S3∪S4 ⊊ Σ, we set M [i, A, S1∪S2∪S3∪S4, ∅] = 0 and M [i, A, ∅, S1∪S2∪S3∪S4] = 0.
If S1∪S2∪S3 ⊊ Σ, we set M [i, A, S1∪S2∪S3, S4] = 0. If S1∪S2 ⊊ Σ and S3∪S4 ⊊ Σ, we set
M [i, A, S1∪S2, S3∪S4] = 0. Finally, if S2∪S3∪S4 ⊊ Σ, we set M [i, A, S1, S2∪S3∪S4] = 0.
Note that the elements of M [i, ·, ·, ·] set in this step might still be updated in the following.
Moreover, the case when we can join two trees of height at most i− 1 whose borders have
0 arches, and obtain a tree of height i whose border has one arch is also considered in the
following.

The second case (and corresponding phase of our computation) is, therefore, the one
where we produce trees of height at most i whose borders have at least one arch, by combining
trees of height at most i − 1. In this case, we iterate over the productions A → BC, and
sets SA

p , SA
s ⊊ Σ. Now, for every pair R, R′ ⊊ Σ, with R ∪ R′ = Σ, a possible candidate

for M [i, A, SA
p , SA

s], corresponding to the production A → BC, is obtained by adding
M [i− 1, B, SA

p , R] and M [i− 1, C, R′, SA
s], and add one for the new arch. We then take the

maximum over all these combinations of alphabets R and R′. We get

cA→BC ← max({−∞}∪{M [i−1, B, SA
p , R]+M [i−1, C, R′, SA

s]+1 | R, R′ ⊊ Σ, R∪R′ = Σ}).

If A has t productions p1, . . . , pt we compute all values cp1 , . . . , cpt
. Then M [i, A, SA

p , SA
s] is

set to be the maximum of the current value of M [i, A, SA
p , SA

s] (as potentially computed in
the first phase), cp1 , . . . , cpt

, and M [i− 1, A, SA
p , SA

s].
For each i, this process (covering both cases) requires O(n324σ) algorithm-steps, in

the worst case. So the entire matrix M is computed in O(24σn4σ) algorithm-steps, where
each algorithm-step might require O(nσ)-time (as it can involve arithmetical operations on
numbers with O(nσ) bits). We obtain, in the end, the complexity from the statement. Note
that the matrix M [·, ·, ·, ·] computed by our algorithm has O(22σn2) entries, so the space
used by our algorithm is exponential.

Then, ι∃(L) equals the maximum over the entries of M [4nσ, S, ∅, R], over all subsets
R ⊊ Σ, as we only consider strings w that lie in L, so strings that can be derived from S.
The answer of the given instance of Problem 3 is positive if and only if k ≤ ι∃(L). ◀

S. Z. Fazekas, T. Koß, F. Manea, R. Mercaş, and T. Specht 28:15

The algorithm from Theorem 23 uses exponential space (due to the usage of the matrix
M). However, there is also a simple (non-deterministic) PSPACE-algorithm solving this
problem. Such an algorithm constructs non-deterministically the left derivation (where,
at each step, the leftmost non-terminal is rewritten) of a string w ∈ L with ι(w) ≥ k; w

is non-deterministically guessed, and it is never constructed or stored explicitly by our
algorithm. During this derivation of w the number of non-terminals in each sentential form
is upper bounded by the depth of its derivation tree [35]; due to Lemma 21, we thus can
have only 4nσ such non-terminals (if this number becomes larger, we stop and reject: the
derivation tree of the guessed derivation is too deep for our purposes). During the simulation
of the leftmost derivation, at step i, we also do not keep track of the maximal prefix w′

i

consisting only of terminals of the sentential form, but only of ι(w′
i), alph(r(w′

i)), and of the
maximal suffix w′′

i consisting of non-terminals only (i.e., the part we still need to process);
this is enough for computing the universality of the derived string. The information stored
by our algorithm clearly fits in polynomial space. If, and only if, at the end of the derivation,
the maintained universality index is at least k, we accept the input grammar and number k.

6 Problem 4

Let us note that deciding Problem 4 for some input language L and integer k is equivalent
to deciding whether ι∀(L) ≥ k. In [4], it was shown that for a regular language L over an
alphabet with σ letters, accepted by an NFA with s states, Problem 4 can be decided in
O(s3σ).

For the rest of this section, we consider Problem 4 for the class CFL, and we assume that
we are given a CFL L by a CFG G in CNF, with n non-terminals, over an alphabet Σ, with
σ ≥ 2 letters. Recall that our approach is to compute ι∀(L) and compare it with the input
integer k.

As before, we start with a combinatorial observation. Intuitively, when we try to find a
word with the lowest universality index, it is enough to consider words w, whose derivation
trees do not contain root-to-leaf paths which contain twice the same non-terminal (otherwise,
such a tree could be reduced, to a derivation tree of a word with potentially lower universality
index).

▶ Lemma 24. If w ∈ L is a string with ι(w) ≤ ι(w′), for all w′ ∈ L, then there exists a
string w′′ ∈ L with ι(w′′) = ι(w) and the derivation tree of w′′ has depth at most n.

We now show that we can compute ι∀(L) in polynomial time, when the input language is
a CFL.

▶ Theorem 25. Problem 4 can be solved in O(n4σ2) time.

Proof Sketch. In order to compute ι∀(L), it is enough to compute the smallest ℓ ∈ N for
which there exists w ∈ L having an absent subsequence of length ℓ (and then we conclude
that ι∀(L) = ℓ− 1).

Our approach to computing ι∀(L) is, therefore, to define a 4-dimensional matrix M whose
elements are M [i, A, a, b], with i ∈ [n], A ∈ V , a ∈ Σ∪ {ε}, b ∈ Σ. We define M [i, A, a, b] = ℓ

if and only if there exists a word w ∈ Σ∗ such that A ⇒∗ w and this derivation has an
associated tree of depth at most i, and any SASa,b(w) has length ℓ. Based on Lemma 24,
the elements of M can be computed by dynamic programming, by considering i from 1 to n,
in O(n4σ2).

Once all elements of M are computed, we note that ι∀(L) is obtained by subtracting 1
from the minimum element of the form M [n, S, a, b], with a ∈ Σ ∪ {ε} and b ∈ Σ. ◀

ISAAC 2024

28:16 Subsequence Matching and Analysis Problems for Formal Languages

7 What Next? Conclusions and First Steps Towards Future Work

A conclusion of this work is that the complexity of the approached problems is, to a certain
extent, similar when the input language is from the classes REG and CFL and they all
become undecidable for CSL. So, a natural question is whether there are classes of languages
(defined by corresponding classes of grammars or automata) between REG and CSL which
exhibit a different, interesting behaviour.

We commence here this investigation by considering the class of languages accepted by a
model of automata, namely, the deterministic finite automata with translucent letters (or,
for short, translucent (finite) automaton – TFA), which generalizes the classical DFA by
allowing the processing of the input string in an order which is not necessarily the usual
sequential left-to-right order (without the help of an explicit additional storage unit). These
automata, first considered in [60] (see also the survey [63] for a discussion on their properties
and motivations), are strictly more powerful than classical finite automata and are part of a
class of automata-models that are allowed to jump symbols in their processing, e.g., see [58]
or [15]. From our perspective, these automata and the class of languages they accept are
interesting because, on the one hand, they seem to be a generalization of regular languages
which is orthogonal to the classical generalization provided by context-free languages, and,
on the other hand, initial results suggest that the problems considered in this paper, not
only become harder for them, but also their decidability fills the gap between the polynomial
time solubility in the case of CFLs and that of undecidability for the class of CSL.

So, in what follows, we discuss some problems from Section 1 in relation to the TFA
model, following the formalization from [59].

▶ Definition 26. A TFA M is a tuple M = (Q, Σ, q0, F, δ), just as in the case of DFA.
However, the processing of inputs is not necessarily sequential. We define the partial relation ⟳
on the set Q×Σ∗ of configurations of M : (p, xay) ⟳M (q, xy) if δ(p, a) = q, and δ(p, b) is not
defined for any b ∈ alph(x), where p, q ∈ Q, a, b ∈ Σ, x, y ∈ Σ∗. The subscript M is omitted
when it is understood from the context. The reflexive and transitive closure of ⟳ is ⟳∗ and the
language accepted by M is defined as L(M) = {w ∈ Σ∗ | (q0, w) ⟳∗ (f, ε) for some f ∈ F}.

In this model, letters a such that δ(p, a) is not defined are called translucent for p, hence
the name of the model. The machine reads and erases from the tape the letters of the input
one-by-one. Note that the definition requires that every letter of the input is read before it
can be accepted. This is slightly different from the original definition [60], which did not
require all of the letters read, and used an unerasable endmarker on the tape. TFA by our
definition can be trivially simulated by a machine with the original definition, and our results
stand for the original model, too. We chose to follow the definitions in [59], because in our
opinion it is simpler (and simpler to argue), and illustrates the difficulty of the subsequence
matching problems for nonsequential machine models just as well.

A first observation is that, in terms of execution, in each step a TFA reads (and consumes)
the leftmost unconsumed symbol which allows a transition (i.e., that has not been previously
read, and there is a transition labeled with it from the current state). Therefore, for every
individual letter, the order of the processing of its occurrences in the TFA is that in which
they appear in a string. The non-deterministic version of this automata model accepts
all rational trace languages, and all accepted languages have semi-linear Parikh images.
Moreover, the class of languages accepted by this model is incomparable to the class of CFL,
while still being CS. The class of languages accepted by the more restrictive deterministic
finite automata with translucent letters, for short TFA, strictly includes the class REG and

S. Z. Fazekas, T. Koß, F. Manea, R. Mercaş, and T. Specht 28:17

q0

q1

q2

sink

a

c

b

d

d

c

Figure 1 TFA that accepts the language w� h(w), where w ∈ {a, b}∗ and h is a morphism of
the form h(a) = c, h(b) = d.

is still incomparable with CFL and the above mentioned class of rational trace languages.
The recent survey [63] overviews the extensive literature regarding variations of these types
of machines.

▶ Example 27. The TFA in Figure 1 accepts the language L = w� h(w), where w ∈ {a, b}∗

and h : {a, b}∗ → {c, d}∗ is a morphism given by h(a) = c, h(b) = d. Here � denotes the
usual shuffle operation for words over some alphabet Σ, i.e., u� v = {u1v1 · · ·uℓvℓ | u =
u1 · · ·uℓ, v = v1 · · · vℓ, ui ∈ Σ∗ for i ∈ [ℓ], vi ∈ Σ∗ for i ∈ [ℓ]}; in our case, Σ = {a, b, c, d}.

Coming back to the TFA in Figure 1: in state q0, the machine can read only the first a

or b remaining on the tape and immediately matches it with the first c or d, respectively. If
it reads a and in the remaining input the first d comes before the first c, it goes into the
sink state. Similarly, if it reads b but the first remaining c is before the first remaining d,
it goes to sink, because the projection of the input to the {a, b} alphabet does not match
the projection to the {c, d} alphabet. The language L is not context-free. This can be,
indeed, seen by intersecting it with the regular language (a + b)∗(c + d)∗, which yields the
language {w · h(w) | w ∈ {a, b}∗}, a variant of the so called “copy language”. This language
is non-context-free, by an easy application of the Bar-Hillel pumping lemma, so L is not
context-free.

We first note that the class of languages accepted by TFA becomes incomparable to that
of CFLs only starting from the ternary alphabet case (see [61]), since, for a TFA over a
binary alphabet, one can construct a push-down automaton accepting the same language.

▶ Theorem 28. The languages accepted by TFA over binary alphabets are CF.

As a consequence of this and of the results shown in the previous sections we get the
following.

▶ Theorem 29. Over binary alphabets, all problems of Section 1 are decidable, and except
for Problem 3, all are decidable in polynomial time for a TFA A given as input.

Thus, our interest now shifts to languages accepted by TFAs, over alphabets Σ of size
σ ≥ 3. We report here a series of initial results, which suggest this to be a worthwhile
direction of investigation. We first note that we cannot apply the approach from the general
Theorem 15 to solve the problems considered, since one can encode the solution set of any
Post Correspondence Problem (for short, PCP) instance as the intersection of a regular
language and a language accepted by a TFA. This is a first significant difference w.r.t. the
status of the approached problems for the case of REG and CFL.

ISAAC 2024

28:18 Subsequence Matching and Analysis Problems for Formal Languages

▶ Theorem 30. The emptiness problem for languages defined as the intersection of the
language accepted by a TFA with a regular language (given as finite automaton) is undecidable.

The decidability of Problem 1 for larger alphabets in the case of TFA is settled by an
exponential time brute force algorithm, after establishing that if the input language contains
a supersequence of w, then it also contains one whose length is bounded by a polynomial
in the size of the input. By a reduction from the well-known NP-complete Hamiltonian
Cycle Problem [27], we can also show that Problem 1 for TFA is NP-hard over unbounded
alphabets (containment in NP follows from the same length upper bound mentioned earlier).
This is again a significant deviation w.r.t. the status of this problem for the case when the
input language is given by a finite automaton or by a CFG.

▶ Theorem 31. Problem 1 is NP-complete over unbounded alphabets.

Since our initial results deviate from the corresponding results obtained for CFL, without
suggesting that the considered problems become undecidable, completing this investigation
for all other problems seems worthwhile to us. While we have excluded the approach from
the general Theorem 15, we cannot yet say anything about the approach in Theorem 14. It
remains an interesting open problem (also of independent interest w.r.t. to our research) to
obtain an algorithm for computing the downward closure of a TFA-language, or show that
such an algorithm does not exist.

While studying the problems discussed in this paper for TFAs seems an interesting way to
understand their possible further intricacies, which cause the huge gap between their status
for CFL and CSL, respectively, another worthwhile research direction is to consider them in
the context of other well-motivated classes of languages, for which all these problems are
decidable, and try to obtain optimised algorithms in those cases.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for

LCS and other sequence similarity measures. In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 59–78,
2015. doi:10.1109/FOCS.2015.14.

2 Amir Abboud and Aviad Rubinstein. Fast and deterministic constant factor approximation
algorithms for LCS imply new circuit lower bounds. In 9th Innovations in Theoretical Computer
Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages 35:1–35:14,
2018. doi:10.4230/LIPIcs.ITCS.2018.35.

3 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages
39–51, 2014. doi:10.1007/978-3-662-43948-7_4.

4 Duncan Adamson, Pamela Fleischmann, Annika Huch, Tore Koß, Florin Manea, and Dirk
Nowotka. k-universality of regular languages. In Satoru Iwata and Naonori Kakimura,
editors, 34th International Symposium on Algorithms and Computation (ISAAC 2023), volume
283 of LIPIcs, pages 4:1–4:21, 2023. Full version: https://arxiv.org/abs/2311.10658. doi:
10.4230/LIPIcs.ISAAC.2023.4.

5 Duncan Adamson, Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer. Longest
common subsequence with gap constraints. In Anna E. Frid and Robert Mercas, editors,
Combinatorics on Words - 14th International Conference, WORDS 2023, Umeå, Sweden, June
12-16, 2023, Proceedings, volume 13899 of Lecture Notes in Computer Science, pages 60–76.
Springer, 2023. doi:10.1007/978-3-031-33180-0_5.

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.4230/LIPIcs.ITCS.2018.35
https://doi.org/10.1007/978-3-662-43948-7_4
https://doi.org/10.4230/LIPIcs.ISAAC.2023.4
https://doi.org/10.4230/LIPIcs.ISAAC.2023.4
https://doi.org/10.1007/978-3-031-33180-0_5

S. Z. Fazekas, T. Koß, F. Manea, R. Mercaş, and T. Specht 28:19

6 Ashwani Anand and Georg Zetzsche. Priority downward closures. In Guillermo A. Pérez
and Jean-François Raskin, editors, 34th International Conference on Concurrency Theory,
CONCUR 2023, September 18-23, 2023, Antwerp, Belgium, volume 279 of LIPIcs, pages
39:1–39:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.
CONCUR.2023.39.

7 Alexander Artikis, Alessandro Margara, Martín Ugarte, Stijn Vansummeren, and Matthias
Weidlich. Complex event recognition languages: Tutorial. In Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems, DEBS 2017, Barcelona,
Spain, June 19-23, 2017, pages 7–10, 2017. doi:10.1145/3093742.3095106.

8 Ricardo A. Baeza-Yates. Searching subsequences. Theoretical Computer Science, 78(2):363–376,
1991. doi:10.1016/0304-3975(91)90358-9.

9 Laura Barker, Pamela Fleischmann, Katharina Harwardt, Florin Manea, and Dirk Nowotka.
Scattered factor-universality of words. In Nataša Jonoska and Dmytro Savchuk, editors,
Developments in Language Theory, LNCS, pages 14–28, Cham, 2020. Springer International
Publishing. doi:10.1007/978-3-030-48516-0_2.

10 Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common subsequence
algorithms. In Pablo de la Fuente, editor, Seventh International Symposium on String
Processing and Information Retrieval, SPIRE 2000, A Coruña, Spain, September 27-29, 2000,
pages 39–48, , 2000. doi:10.1109/SPIRE.2000.878178.

11 Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj, and David Kofoed Wind. String matching
with variable length gaps. Theoretical Computer Science, 443:25–34, 2012. doi:10.1016/j.
tcs.2012.03.029.

12 Karl Bringmann and Bhaskar Ray Chaudhury. Sketching, Streaming, and Fine-Grained
Complexity of (Weighted) LCS. In Sumit Ganguly and Paritosh Pandya, editors, 38th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018), volume 122 of LIPIcs, pages 40:1–40:16, 2018. doi:10.4230/LIPIcs.FSTTCS.
2018.40.

13 Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In Proc. SODA 2018, pages 1216–1235, 2018. doi:10.1137/1.
9781611975031.79.

14 Sam Buss and Michael Soltys. Unshuffling a square is NP-hard. Journal of Computer and
System Sciences, 80(4):766–776, 2014. doi:10.1016/j.jcss.2013.11.002.

15 Hiroyuki Chigahara, Szilárd Zsolt Fazekas, and Akihiro Yamamura. One-way jumping finite
automata. International Journal of Foundations of Computer Science, 27(3):391–405, 2016.

16 Vaclav Chvatal and David Sankoff. Longest common subsequences of two random sequences.
Journal of Applied Probability, 12(2):306–315, 1975. URL: http://www.jstor.org/stable/
3212444.

17 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings. Cam-
bridge University Press, 2007.

18 Maxime Crochemore, Borivoj Melichar, and Zdeněk Troníček. Directed acyclic subsequence
graph — overview. Journal of Discrete Algorithms, 1(3-4):255–280, 2003. doi:10.1016/
S1570-8667(03)00029-7.

19 Joel D. Day, Pamela Fleischmann, Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer.
The Edit Distance to k-Subsequence Universality. In Markus Bläser and Benjamin Monmege,
editors, 38th International Symposium on Theoretical Aspects of Computer Science (STACS
2021), volume 187 of LIPIcs, pages 25:1–25:19, 2021. doi:10.4230/LIPIcs.STACS.2021.25.

20 Joel D. Day, Maria Kosche, Florin Manea, and Markus L. Schmid. Subsequences with gap
constraints: Complexity bounds for matching and analysis problems. In Sang Won Bae and
Heejin Park, editors, 33rd International Symposium on Algorithms and Computation, ISAAC
2022, December 19-21, 2022, Seoul, Korea, volume 248 of LIPIcs, pages 64:1–64:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ISAAC.2022.64.

ISAAC 2024

https://doi.org/10.4230/LIPICS.CONCUR.2023.39
https://doi.org/10.4230/LIPICS.CONCUR.2023.39
https://doi.org/10.1145/3093742.3095106
https://doi.org/10.1016/0304-3975(91)90358-9
https://doi.org/10.1007/978-3-030-48516-0_2
https://doi.org/10.1109/SPIRE.2000.878178
https://doi.org/10.1016/j.tcs.2012.03.029
https://doi.org/10.1016/j.tcs.2012.03.029
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.40
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.40
https://doi.org/10.1137/1.9781611975031.79
https://doi.org/10.1137/1.9781611975031.79
https://doi.org/10.1016/j.jcss.2013.11.002
http://www.jstor.org/stable/3212444
http://www.jstor.org/stable/3212444
https://doi.org/10.1016/S1570-8667(03)00029-7
https://doi.org/10.1016/S1570-8667(03)00029-7
https://doi.org/10.4230/LIPIcs.STACS.2021.25
https://doi.org/10.4230/LIPICS.ISAAC.2022.64

28:20 Subsequence Matching and Analysis Problems for Formal Languages

21 Lukas Fleischer and Manfred Kufleitner. Testing Simon’s congruence. In Igor Potapov,
Paul Spirakis, and James Worrell, editors, 43rd International Symposium on Mathematical
Foundations of Computer Science (MFCS 2018), volume 117 of LIPIcs, pages 62:1–62:13.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.MFCS.2018.
62.

22 Pamela Fleischmann, Sungmin Kim, Tore Koß, Florin Manea, Dirk Nowotka, Stefan Siemer,
and Max Wiedenhöft. Matching patterns with variables under simon’s congruence. In
Olivier Bournez, Enrico Formenti, and Igor Potapov, editors, Reachability Problems - 17th
International Conference, RP 2023, Nice, France, October 11-13, 2023, Proceedings, volume
14235 of Lecture Notes in Computer Science, pages 155–170. Springer, 2023. doi:10.1007/
978-3-031-45286-4_12.

23 Michael L. Fredman and Dan E. Willard. BLASTING through the information theoretic
barrier with FUSION TREES. In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 1–7.
ACM, 1990. doi:10.1145/100216.100217.

24 Dominik D. Freydenberger, Pawel Gawrychowski, Juhani Karhumäki, Florin Manea, and
Wojciech Rytter. Testing k-binomial equivalence. https://arxiv.org/abs/1509.00622, pages
239–248, 2015.

25 André Frochaux and Sarah Kleest-Meißner. Puzzling over subsequence-query extensions:
Disjunction and generalised gaps. In Benny Kimelfeld, Maria Vanina Martinez, and
Renzo Angles, editors, Proceedings of the 15th Alberto Mendelzon International Work-
shop on Foundations of Data Management (AMW 2023), Santiago de Chile, Chile, May
22-26, 2023, volume 3409 of CEUR Workshop Proceedings. CEUR-WS.org, 2023. URL:
https://ceur-ws.org/Vol-3409/paper3.pdf.

26 Emmanuelle Garel. Minimal separators of two words. In Alberto Apostolico, Maxime
Crochemore, Zvi Galil, and Udi Manber, editors, Combinatorial Pattern Matching, 4th Annual
Symposium, CPM 93, Padova, Italy, June 2-4, 1993, Proceedings, volume 684 of LNCS, pages
35–53. Springer, 1993. doi:10.1007/BFB0029795.

27 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA, 1990.

28 Pawel Gawrychowski, Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer. Efficiently
testing Simon’s congruence. In 38th International Symposium on Theoretical Aspects of Com-
puter Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference),
pages 34:1–34:18, 2021. doi:10.4230/LIPIcs.STACS.2021.34.

29 Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis, and Minos N.
Garofalakis. Complex event recognition in the big data era: a survey. The VLDB Journal,
29(1):313–352, 2020. doi:10.1007/s00778-019-00557-w.

30 Hermann Gruber, Markus Holzer, and Martin Kutrib. More on the size of Higman-Haines
sets: Effective constructions. Fundamenta Informaticae, 91(1):105–121, 2009. doi:10.3233/
FI-2009-0035.

31 Simon Halfon, Philippe Schnoebelen, and Georg Zetzsche. Decidability, complexity, and
expressiveness of first-order logic over the subword ordering. In Proceedings of the 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’17, pages 1–12, 2017.
doi:10.1109/LICS.2017.8005141.

32 Jean-Jacques Hébrard. An algorithm for distinguishing efficiently bit-strings by their sub-
sequences. Theoretical Computer Science, 82:35–49, 1991.

33 Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society, 3(1):326–336, 1952.

34 Daniel S. Hirschberg. Algorithms for the longest common subsequence problem. Journal of
the ACM, 24(4):664–675, 1977. doi:10.1145/322033.322044.

35 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computa-
tion. Addison-Wesley, 1979.

https://doi.org/10.4230/LIPIcs.MFCS.2018.62
https://doi.org/10.4230/LIPIcs.MFCS.2018.62
https://doi.org/10.1007/978-3-031-45286-4_12
https://doi.org/10.1007/978-3-031-45286-4_12
https://doi.org/10.1145/100216.100217
https://ceur-ws.org/Vol-3409/paper3.pdf
https://doi.org/10.1007/BFB0029795
https://doi.org/10.4230/LIPIcs.STACS.2021.34
https://doi.org/10.1007/s00778-019-00557-w
https://doi.org/10.3233/FI-2009-0035
https://doi.org/10.3233/FI-2009-0035
https://doi.org/10.1109/LICS.2017.8005141
https://doi.org/10.1145/322033.322044

S. Z. Fazekas, T. Koß, F. Manea, R. Mercaş, and T. Specht 28:21

36 James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest sub-
sequences. Communications of the ACM, 20(5):350–353, 1977. doi:10.1145/359581.359603.

37 P. Karandikar, M. Kufleitner, and P. Schnoebelen. On the index of Simon’s congruence for
piecewise testability. Information Processing Letters, 115(4):515–519, 2015. doi:10.1016/J.
IPL.2014.11.008.

38 Prateek Karandikar and Philippe Schnoebelen. The height of piecewise-testable languages and
the complexity of the logic of subwords. Logical Methods in Computer Science, 15(2), 2019.
doi:10.23638/LMCS-15(2:6)2019.

39 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, and Matthias
Weidlich. Discovering event queries from traces: Laying foundations for subsequence-queries
with wildcards and gap-size constraints. In Dan Olteanu and Nils Vortmeier, editors, 25th
International Conference on Database Theory, ICDT 2022, March 29 to April 1, 2022,
Edinburgh, UK (Virtual Conference), volume 220 of LIPIcs, pages 18:1–18:21. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ICDT.2022.18.

40 Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, and Matthias
Weidlich. Discovering multi-dimensional subsequence queries from traces - from theory to
practice. In Birgitta König-Ries, Stefanie Scherzinger, Wolfgang Lehner, and Gottfried Vossen,
editors, Datenbanksysteme für Business, Technologie und Web (BTW 2023), 20. Fachtagung des
GI-Fachbereichs „Datenbanken und Informationssysteme” (DBIS), 06.-10, März 2023, Dresden,
Germany, Proceedings, volume P-331 of LNI, pages 511–533. Gesellschaft für Informatik e.V.,
2023. doi:10.18420/BTW2023-24.

41 Maria Kosche, Tore Koß, Florin Manea, and Viktoriya Pak. Subsequences in bounded ranges:
Matching and analysis problems. In Anthony W. Lin, Georg Zetzsche, and Igor Potapov,
editors, Reachability Problems - 16th International Conference, RP 2022, Kaiserslautern,
Germany, October 17-21, 2022, Proceedings, volume 13608 of Lecture Notes in Computer
Science, pages 140–159. Springer, 2022. doi:10.1007/978-3-031-19135-0_10.

42 Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer. Absent subsequences in words.
In Paul C. Bell, Patrick Totzke, and Igor Potapov, editors, Reachability Problems - 15th
International Conference, RP 2021, Liverpool, UK, October 25-27, 2021, Proceedings, volume
13035 of LNCS, pages 115–131, 2021. doi:10.1007/978-3-030-89716-1_8.

43 Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer. Absent subsequences in words.
Fundam. Informaticae, 189(3-4):199–240, 2022. doi:10.3233/FI-222159.

44 Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer. Combinatorial algorithms for
subsequence matching: A survey. In Henning Bordihn, Géza Horváth, and György Vaszil,
editors, Proceedings 12th International Workshop on Non-Classical Models of Automata and
Applications, NCMA 2022, Debrecen, Hungary, August 26-27, 2022, volume 367 of EPTCS,
pages 11–27, , 2022. doi:10.4204/EPTCS.367.2.

45 Dietrich Kuske. The subtrace order and counting first-order logic. In Henning Fernau, editor,
Computer Science – Theory and Applications, volume 12159 of LNCS, pages 289–302, 2020.
doi:10.1007/978-3-030-50026-9_21.

46 Dietrich Kuske and Georg Zetzsche. Languages ordered by the subword order. In Mikołaj
Bojańczyk and Alex Simpson, editors, Foundations of Software Science and Computation
Structures, LNCS, pages 348–364, 2019. doi:10.1007/978-3-030-17127-8_20.

47 Martin Lange and Hans Leiß. To CNF or not to CNF? an efficient yet presentable version of
the CYK algorithm. Informatica Didact., 8, 2009. URL: http://ddi.cs.uni-potsdam.de/
InformaticaDidactica/LangeLeiss2009.

48 Marie Lejeune, Julien Leroy, and Michel Rigo. Computing the k-binomial complexity of
the Thue-Morse word. In Piotrek Hofman and Michał Skrzypczak, editors, Developments in
Language Theory, LNCS, pages 278–291, 2019. doi:10.1007/978-3-030-24886-4_21.

49 Julien Leroy, Michel Rigo, and Manon Stipulanti. Generalized Pascal triangle for binomial
coefficients of words. The Electronic Journal of Combinatorics, 24(1.44):36 pp., 2017.

ISAAC 2024

https://doi.org/10.1145/359581.359603
https://doi.org/10.1016/J.IPL.2014.11.008
https://doi.org/10.1016/J.IPL.2014.11.008
https://doi.org/10.23638/LMCS-15(2:6)2019
https://doi.org/10.4230/LIPICS.ICDT.2022.18
https://doi.org/10.18420/BTW2023-24
https://doi.org/10.1007/978-3-031-19135-0_10
https://doi.org/10.1007/978-3-030-89716-1_8
https://doi.org/10.3233/FI-222159
https://doi.org/10.4204/EPTCS.367.2
https://doi.org/10.1007/978-3-030-50026-9_21
https://doi.org/10.1007/978-3-030-17127-8_20
http://ddi.cs.uni-potsdam.de/InformaticaDidactica/LangeLeiss2009
http://ddi.cs.uni-potsdam.de/InformaticaDidactica/LangeLeiss2009
https://doi.org/10.1007/978-3-030-24886-4_21

28:22 Subsequence Matching and Analysis Problems for Formal Languages

50 Chun Li and Jianyong Wang. Efficiently Mining Closed Subsequences with Gap Constraints,
pages 313–322. SIAM, 2008. doi:10.1137/1.9781611972788.28.

51 Chun Li, Qingyan Yang, Jianyong Wang, and Ming Li. Efficient mining of gap-constrained
subsequences and its various applications. ACMTransactions on Knowledge Discovery from
Data, 6(1):2:1–2:39, 2012. doi:10.1145/2133360.2133362.

52 Markus Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complex. Cryptol.,
4(2):241–299, 2012. doi:10.1515/GCC-2012-0016.

53 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential
time hypothesis. Bull. EATCS, 105:41–72, 2011. URL: http://eatcs.org/beatcs/index.
php/beatcs/article/view/92.

54 David Maier. The complexity of some problems on subsequences and supersequences. Journal
of the ACM, 25(2):322–336, April 1978. doi:10.1145/322063.322075.

55 Florin Manea, Jonas Richardsen, and Markus L. Schmid. Subsequences with generalised
gap constraints: Upper and lower complexity bounds. In Shunsuke Inenaga and Simon J.
Puglisi, editors, 35th Annual Symposium on Combinatorial Pattern Matching, CPM 2024,
June 25-27, 2024, Fukuoka, Japan, volume 296 of LIPIcs, pages 22:1–22:17. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.CPM.2024.22.

56 William J. Masek and Mike Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980. doi:10.1016/0022-0000(80)
90002-1.

57 Alexandru Mateescu, Arto Salomaa, and Sheng Yu. Subword histories and Parikh matrices.
Journal of Computer and System Sciences, 68(1):1–21, 2004. doi:10.1016/J.JCSS.2003.04.
001.

58 Alexander Meduna and Petr Zemek. Jumping finite automata. International Journal of
Foundations of Computer Science, 23(7):1555–1578, 2012. doi:10.1142/S0129054112500244.

59 Victor Mitrana, Andrei Păun, Mihaela Păun, and José-Ramón Sánchez-Couso. Jump com-
plexity of finite automata with translucent letters. Theoretical Computer Science, 992:114450,
2024. doi:10.1016/J.TCS.2024.114450.

60 Benedek Nagy and Friedrich Otto. Finite-state acceptors with translucent letters. In
A.O. De La Puente G. Bel-Enguix, V. Dahl, editor, BILC 2011: AI Methods for Inter-
disciplinary Research in Language and Biology, pages 3–13, 2011.

61 Benedek Nagy and Friedrich Otto. Globally deterministic CD-systems of stateless R-automata
with window size 1. International Journal of Computer Mathematics, 90(6):1254–1277, 2013.
doi:10.1080/00207160.2012.688820.

62 Narao Nakatsu, Yahiko Kambayashi, and Shuzo Yajima. A longest common subsequence
algorithm suitable for similar text strings. Acta Informatica, 18:171–179, 1982. doi:10.1007/
BF00264437.

63 Friedrich Otto. A survey on automata with translucent letters. In Benedek Nagy, editor,
Implementation and Application of Automata, pages 21–50, Cham, 2023. doi:10.1007/
978-3-031-40247-0_2.

64 Rohit Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966. doi:
10.1145/321356.321364.

65 William E. Riddle. An approach to software system modelling and analysis. Computer
Languages, 4(1):49–66, 1979. doi:10.1016/0096-0551(79)90009-2.

66 Michel Rigo and Pavel Salimov. Another generalization of abelian equivalence: Binomial
complexity of infinite words. Theoretical Computer Science, 601:47–57, 2015. doi:10.1016/J.
TCS.2015.07.025.

67 Arto Salomaa. Connections between subwords and certain matrix mappings. Theoretical
Computer Science, 340(2):188–203, 2005. doi:10.1016/J.TCS.2005.03.024.

68 Philippe Schnoebelen and Julien Veron. On arch factorization and subword universality for
words and compressed words. In Anna Frid and Robert Mercaş, editors, Combinatorics on
Words, volume 13899, pages 274–287, 2023. doi:10.1007/978-3-031-33180-0_21.

https://doi.org/10.1137/1.9781611972788.28
https://doi.org/10.1145/2133360.2133362
https://doi.org/10.1515/GCC-2012-0016
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.1145/322063.322075
https://doi.org/10.4230/LIPICS.CPM.2024.22
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/J.JCSS.2003.04.001
https://doi.org/10.1016/J.JCSS.2003.04.001
https://doi.org/10.1142/S0129054112500244
https://doi.org/10.1016/J.TCS.2024.114450
https://doi.org/10.1080/00207160.2012.688820
https://doi.org/10.1007/BF00264437
https://doi.org/10.1007/BF00264437
https://doi.org/10.1007/978-3-031-40247-0_2
https://doi.org/10.1007/978-3-031-40247-0_2
https://doi.org/10.1145/321356.321364
https://doi.org/10.1145/321356.321364
https://doi.org/10.1016/0096-0551(79)90009-2
https://doi.org/10.1016/J.TCS.2015.07.025
https://doi.org/10.1016/J.TCS.2015.07.025
https://doi.org/10.1016/J.TCS.2005.03.024
https://doi.org/10.1007/978-3-031-33180-0_21

S. Z. Fazekas, T. Koß, F. Manea, R. Mercaş, and T. Specht 28:23

69 Shinnosuke Seki. Absoluteness of subword inequality is undecidable. Theoretical Computer
Science, 418:116–120, 2012. doi:10.1016/J.TCS.2011.10.017.

70 Alan C. Shaw. Software descriptions with flow expressions. IEEE Transactions on Software
Engineering, 4(3):242–254, 1978. doi:10.1109/TSE.1978.231501.

71 Imre Simon. Hierarchies of events with dot-depth one - Ph.D. thesis. University of Waterloo,
1972.

72 Imre Simon. Piecewise testable events. In H. Brakhage, editor, Automata Theory and
Formal Languages, LNCS, pages 214–222, Berlin, Heidelberg, 1975. Springer Berlin Heidelberg.
doi:10.1007/3-540-07407-4_23.

73 Imre Simon. Words distinguished by their subwords (extended abstract). In Proc. WORDS
2003, volume 27 of TUCS General Publication, pages 6–13, 2003.

74 Zdeněk Troniček. Common subsequence automaton. In Jean-Marc Champarnaud and Denis
Maurel, editors, Conference on Implementation and Application of Automata, volume 2608 of
LNCS, pages 270–275, 2002. doi:10.1007/3-540-44977-9_28.

75 Jan van Leeuwen. Effective constructions in well-partially- ordered free monoids. Discrete
Mathematics, 21(3):237–252, 1978. doi:10.1016/0012-365X(78)90156-5.

76 Georg Zetzsche. The Complexity of Downward Closure Comparisons. In Ioannis Chatzigianna-
kis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International
Colloquium on Automata, Languages, and Programming (ICALP 2016), volume 55 of LIPIcs,
pages 123:1–123:14, 2016. doi:10.4230/LIPIcs.ICALP.2016.123.

77 Georg Zetzsche. Separability by piecewise testable languages and downward closures beyond
subwords. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages
929–938. ACM, 2018. doi:10.1145/3209108.3209201.

78 Haopeng Zhang, Yanlei Diao, and Neil Immerman. On complexity and optimization of
expensive queries in complex event processing. In International Conference on Management
of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 217–228, 2014. doi:
10.1145/2588555.2593671.

ISAAC 2024

https://doi.org/10.1016/J.TCS.2011.10.017
https://doi.org/10.1109/TSE.1978.231501
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-44977-9_28
https://doi.org/10.1016/0012-365X(78)90156-5
https://doi.org/10.4230/LIPIcs.ICALP.2016.123
https://doi.org/10.1145/3209108.3209201
https://doi.org/10.1145/2588555.2593671
https://doi.org/10.1145/2588555.2593671

Coordinated Motion Planning: Multi-Agent Path
Finding in a Densely Packed, Bounded Domain
Sándor P. Fekete #

Department of Computer Science, TU Braunschweig, Germany

Ramin Kosfeld #

Department of Computer Science, TU Braunschweig, Germany

Peter Kramer #

Department of Computer Science, TU Braunschweig, Germany

Jonas Neutzner #

Department of Computer Science, TU Braunschweig, Germany

Christian Rieck #

Department of Computer Science, TU Braunschweig, Germany

Christian Scheffer #

Department of Electrical Engineering and Computer Science,
Bochum University of Applied Sciences, Germany

Abstract
We study Multi-Agent Path Finding for arrangements of labeled agents in the interior of a simply
connected domain: Given a unique start and target position for each agent, the goal is to find a
sequence of parallel, collision-free agent motions that minimizes the overall time (the makespan) until
all agents have reached their respective targets. A natural case is that of a simply connected polygonal
domain with axis-parallel boundaries and integer coordinates, i.e., a simple polyomino, which amounts
to a simply connected union of lattice unit squares or cells. We focus on the particularly challenging
setting of densely packed agents, i.e., one per cell, which strongly restricts the mobility of agents,
and requires intricate coordination of motion.

We provide a variety of novel results for this problem, including (1) a characterization of
polyominoes in which a reconfiguration plan is guaranteed to exist; (2) a characterization of shape
parameters that induce worst-case bounds on the makespan; (3) a suite of algorithms to achieve
asymptotically worst-case optimal performance with respect to the achievable stretch for cases
with severely limited maneuverability. This corresponds to bounding the ratio between obtained
makespan and the lower bound provided by the max-min distance between the start and target
position of any agent and our shape parameters.

Our results extend findings by Demaine et al. [13, 14] who investigated the problem for solid
rectangular domains, and in the closely related field of Permutation Routing, as presented by
Alpert et al. [6] for convex pieces of grid graphs.

2012 ACM Subject Classification Theory of computation → Computational geometry; Computing
methodologies → Motion path planning

Keywords and phrases multi-agent path finding, coordinated motion planning, bounded stretch,
makespan, swarm robotics, reconfigurability, parallel sorting

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.29

Related Version Full Version: https://arxiv.org/abs/2409.06486 [18]

Funding This work was partially supported by the German Research Foundation (DFG), project
“Space Ants”, FE 407/22-1 and SCHE 1931/4-1.

© Sándor P. Fekete, Ramin Kosfeld, Peter Kramer, Jonas Neutzner, Christian Rieck, and
Christian Scheffer;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 29; pp. 29:1–29:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.fekete@tu-bs.de
https://orcid.org/0000-0002-9062-4241
mailto:kosfeld@ibr.cs.tu-bs.de
https://orcid.org/0000-0002-1081-2454
mailto:kramer@ibr.cs.tu-bs.de
https://orcid.org/0000-0001-9635-5890
mailto:j.neutzner@tu-bs.de
https://orcid.org/0009-0004-0198-2840
mailto:rieck@ibr.cs.tu-bs.de
https://orcid.org/0000-0003-0846-5163
mailto:christian.scheffer@hs-bochum.de
https://orcid.org/0000-0002-3471-2706
https://doi.org/10.4230/LIPIcs.ISAAC.2024.29
https://arxiv.org/abs/2409.06486
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Multi-Agent Path Finding in a Densely Packed, Bounded Domain

1 Introduction

Problems of coordinating the motion of a set of objects occur in a wide range of applications,
such as warehouses [32], multi-agent motion planning [27, 28], and aerial swarm robotics [11].
In Multi-Agent Path Finding (MAPF) [31], we are given a set of agents, each with an
initial and a desired target position within a certain domain. The task is to determine a
coordinated motion plan: a sequence of parallel, collision-free movements such that the time
by which all agents have reached their destinations (the makespan) is minimized.

Theoretical aspects of MAPF have enjoyed significant attention. In the early days of
computational geometry, Schwartz and Sharir [29] developed methods for coordinating the
motion of disk-shaped objects between obstacles, with runtime polynomial in the complexity of
the obstacles, but exponential in the number of disks. The fundamental difficulty of geometric
MAPF was highlighted by Hopcroft et al. [21, 22], who showed that it is PSPACE-complete
to decide whether multiple agents can reach a given target configuration. In contrast, closely
related graph-based variants of the MAPF problem permit for linear time algorithms for the
same decision problem [35].

More recently, Demaine et al. [10, 13, 14] have provided methods to compute constant
stretch solutions for coordinated motion planning in unbounded environments in which
agents occupy distinct grid cells. The stretch of a solution is defined as the ratio between
its makespan and a trivial lower bound, the diameter d, which refers to maximum distance
between any agent’s origin and destination. Their work therefore obtains collision-free
motion schedules that move each agent to its target position in O(d) discrete moves, which
corresponds to a constant-factor approximation. However, their methods assume the absence
of a environmental boundary that may impose external constraints on the agents’ movements.

1.1 Our contributions

In this paper, we study Multi-Agent Path Finding for densely packed arrangements of
labeled agents that are required to remain within discrete grid domains, i.e., polyominoes.
This is a natural constraint that occurs in many important applications, but provides
considerable additional difficulties; in particular, a coordinated motion plan may no longer
exist for domains with narrow bottlenecks. We provide a variety of novel contributions:

We give a full characterization of simple polyominoes P that are universally reconfigurable.
These allow some feasible coordinated motion plan for any combination of initial and
desired target configurations, without regard for the makespan: We prove that this is the
case if and only if P has a cover by 2 × 2 squares with a connected intersection graph.
We model the shape parameters bottleneck length ζ(P) (which is the minimum length of
a cut dividing the region into non-trivial pieces) and domain depth µ(P) (which is the
maximum distance of any cell from the domain boundary). We provide refined upper
and lower bounds on the makespan and stretch factor based on these shape parameters.
For some instances, any applicable schedule may require a makespan of Ω(d + d2

/ζ(P)).
We show how to compute schedules of makespan linear in the ratio of domain area and
bottleneck, i.e., O(n/ζ(P)).
We characterize narrow instances, which feature very limited depth relative to the
diameter d, and provide an approach for asymptotically worst-case optimal schedules.

Note that (parts of) the proofs of statements marked with (⋆) have been omitted in the main
sections due to space constraints; we refer the reader to the full version [18] instead.

S. P. Fekete, R. Kosfeld, P. Kramer, J. Neutzner, C. Rieck, and C. Scheffer 29:3

1.2 Related work
Motion planning. Multi-Agent Path Finding is a widely studied problem. Due to space
constraints, we restrict our description to the most closely related work. For more detailed
references, refer to the extensive bibliography in [14] and the mentioned surveys [11, 28, 31].

Of fundamental importance to our work are the results by Demaine et al. [14], who
achieved reconfiguration with constant stretch for the special case of rectangular domains.
A key idea is to consider a partition of the rectangle into tiles whose size is linear in diameter d.
These tiles can then be reconfigured in parallel. First, flow techniques are applied to shift
agents into their target tile; afterward, agents are moved to their respective target positions.
Furthermore, they showed that computing the optimal solution is strongly NP-complete.

Fekete et al. [16, 19] considered the unconstrained problem on the infinite grid with the
additional condition that the whole arrangement needs to be connected after every parallel
motion. They considered both the labeled and the unlabeled version of the problem, providing
polynomial-time algorithms for computing schedules with constant stretch for configurations
of sufficient scale. They also showed that deciding whether there is a reconfiguration schedule
with a makespan of 2 is already NP-complete, unlike deciding the same for a makespan of 1.

Eiben, Ganian, and Kanj [15] investigated the parameterized complexity of the problem
for the variants of minimizing the makespan and minimizing the total travel distance. They
analyzed the problems with respect to two parameters: the number of agents, and the
objective target. Both variants are FPT when parameterized by the number of agents, while
minimizing the makespan becomes para-NP-hard when parameterized by the objective target.

Further related work studies (unlabeled) multi-robot motion planning problems in poly-
gons. Solovey and Halperin [30] show that the unlabeled variant is PSPACE-hard, even for
the specific case of unit-square robots moving amidst polygonal obstacles. Even in simple
polygonal domains, a feasible motion-plan for unlabeled unit-disk robots does not always
exist, if, e.g., the robots and their targets are positioned too densely. However, if there is
some minimal distance separating start and target positions, Adler et al. [1] show that the
problem always has a solution that can be computed efficiently. Banyassady et al. [8] prove
tight separation bounds for this case. Agarwal et al. [2] consider the labeled variant with
revolving areas, i.e., empty areas around start and target positions. They prove that the
problem is APX-hard, even when restricting to weakly-monotone motion plans, i.e., motion
plans in which all robots stay within their revolving areas while an active robot moves to its
target. However, they also provide a constant-factor approximation algorithm.

The computational complexity of moving two distinguishable square-shaped robots in a
polygonal environment to minimize the sum of traveled distances is still open; Agarwal et al. [3]
gave the first polynomial-time (1 + ε)-approximation algorithm.

The problem was the subject of the 2021 CG:SHOP Challenge; see [17, 12, 24, 34] for an
overview and a variety of practical computational methods and results.

Token swapping and routing via matchings. The task in the Token Swapping Problem
is to transform two vertex labelings of a graph into one another by exchanging tokens between
adjacent vertices by sequentially selecting individual edges. This problem is NP-complete
even for trees [4], and APX-hard [26] in general. Several approximation algorithms exist for
different variants and classes of graphs [20, 26, 33]. The Permutation Routing variant
allows for parallelization, by selecting disjoint edge sets to perform swaps in parallel [5, 9, 23].
The routing number of a graph describes the maximal number of necessary parallel swaps
between any two labelings. Recently, Alpert et al. [6] presented an upper bound on the
routing number of convex pieces of grid graphs, which is very closely related to our setting.

ISAAC 2024

29:4 Multi-Agent Path Finding in a Densely Packed, Bounded Domain

1.3 Preliminaries
We define the considered motion of agents in a restricted environment (domain) as follows.

Domain. Consider the infinite integer grid graph, in which each 4-cycle bounds a face of
unit area, a cell. Every planar edge cycle in this grid graph bounds a finite set of cells,
which induces a domain that we call a (simple) polyomino, see Figure 1a. We exclusively
consider simple polyominoes, i.e., those without holes. For the sake of readability, we might
not state this for each individual polyomino in later sections. The area of a polyomino P

is equal to the number of contained cells n. The bounding edge cycle and its incident cells
are therefore called is the boundary and boundary cells of P , respectively. The dual graph
of P , denoted by G(P) = (V, E), has a vertex for every cell, two of which are adjacent if
they share an edge in P , as shown in Figure 1b. The geodesic distance between two cells of a

(a) A boundary cycle. (b) A polyomino’s dual graph. (c) A cut through a polyomino.

Figure 1 A polyomino, its dual graph, and a cut. Subsequent illustrations will only show the
boundary and any relevant cuts, foregoing the underlying integer grid.

polyomino P corresponds to the length of a shortest path between the corresponding vertices
in G(P). A cut through a polyomino P is defined by a planar path between two vertices on
the boundary of P , as shown in Figure 1c. Its cut set corresponds exactly to those edges
of G(P) which cross the path. Geometrically, this induces two simple subpolyominoes Q, R

and write Q, R ⊂ P . We say that a cut is trivial if its endpoints on the boundary of P have
a connecting path on the boundary that is not longer than the cut itself.

Agents. We consider distinguishable agents that occupy the cells of polyominoes. A con-
figuration of a polyomino P with G(P) = (V, E) is a bijective mapping C : V → {1, . . . , n}
between cells and agent labels. We denote the set of all configurations of P as C(P).

In each discrete time step, an agent can either move, changing its position v to an adjacent
position w, or hold its current position. We denote this by v → w or v → v, respectively.
Two parallel moves v1 → w1 and v2 → w2 are collision-free if v1 ≠ v2 and w1 ̸= w2.
We assume that a swap, i.e., two moves v1 → v2 and v2 → v1, causes a collision, and is
therefore forbidden. Configurations can be transformed by sets of collision-free moves that are
performed in parallel. If a set of moves transforms a configuration C1 into a configuration C2,
this set is also called a transformation C1 → C2. For an illustrated example, see Figure 2.
A schedule with makespan M ∈ N is then a sequence of transformations C1 → · · · → CM+1,
also denoted by C1 ⇒ CM+1.

2 3 4

765

1

8

(a) A polyomino and a configuration.

2 3 4

765

1

8

(b) Four agents move along a cycle.

Figure 2 An illustration of an configurations and a transformations.

S. P. Fekete, R. Kosfeld, P. Kramer, J. Neutzner, C. Rieck, and C. Scheffer 29:5

Problem statement. We consider the Multi-Agent Path Finding Problem for agents
in a discrete environment bounded by a simple polyomino. Thus, an instance of the problem
is composed of two configurations C1, C2 ∈ C(P) of a simple polyomino P . We say that a
schedule is applicable to the instance exactly if it transforms C1 into C2. The diameter of an
instance is the maximum geodesic distance d between an agents’ start and target positions,
and the stretch of an applicable schedule is the ratio between its makespan and the diameter.

2 Reconfigurability

In this section, we provide a characterization of (simple) polyominoes for which any con-
figuration can be transformed into any other. We say that a polyomino P is universally
reconfigurable if there exists an applicable schedule for any two configurations C1, C2 ∈ C(P).
We prove that this is the case if and only if P has a cover by cycles that have a connected
intersection graph, and show how to compute an applicable schedule of makespan O(n).

▶ Theorem 1. A polyomino P is universally reconfigurable if and only if it has a cover by
2×2 squares with a connected intersection graph. For any C1, C2 ∈ C(P) of such a polyomino
with area n, an applicable schedule C1 ⇒ C2 of makespan O(n) can be computed efficiently.

Due to the cyclic nature of all movement, the edge connectivity of a polyomino’s dual graph
plays a significant role for universal reconfigurability. We start with a negative result.

▶ Lemma 2 (⋆). A polyomino P that does not have a cover by 2 × 2 squares with a connected
intersection graph is not universally reconfigurable.

Proof sketch. We observe that transformations are inherently cyclic, as the domain is fully
occupied and collisions (and thus, swaps) are forbidden. Using this fact, it is easy to show
that 2-edge-connectedness is necessary and sufficient for universal reconfigurability, provided
an area of at least 6 cells. From here, it is possible to show that a cover 2 × 2 square must
exist for any two adjacent cells, implying the property. ◀

Because direct swaps of adjacent agents are not possible, an important tool is the ability
to “simulate” a large number of adjacent swaps in parallel, using a constant number of
transformation steps. Polyominoes that are unions of two 2 × 2 squares form an important
primitive to achieve this. There exist two classes of such polyominoes; the squares can overlap
either in one or two cells. Clearly, either dual graph can be covered by two 4-cycles that
intersect in at least one vertex. In Figure 3, we illustrate schedules that perform adjacent
swaps at the intersection of these cycles, implying universal reconfigurability of both classes.
In fact, any instance of either class takes at most 7 or 14 transformations, respectively.

6

3

62

4

5 6

1

35

232

54

4

6

32 1

54

11

(a) A schedule that swaps the robots labeled as 1 and 2.

5

6 7

2

5

4

36

7

1

5

4

36

7

12

5

4

3

7

12 4

3

6 7

1

5 4

3

6 7

1

2

5

46

7

1

2

5

4

3

7

25

4

3

6 7

21

4

1

1

4

5

2

3

6 7

2

63

5

2

3

6

1

(b) A schedule that swaps the robots labeled as 1 and 4.

Figure 3 In polyominoes composed of two 2 × 2 squares, we can realize swaps in O(1) steps.

▶ Observation 3. Polyominoes of two overlapping 2×2 squares are universally reconfigurable.

ISAAC 2024

29:6 Multi-Agent Path Finding in a Densely Packed, Bounded Domain

Using this observation for a primitive local operation, we show the following.

▶ Lemma 4. For any matching in the dual graph of a universally reconfigurable polyomino,
we can compute a schedule of makespan O(1) which swaps the agents of all matched positions.

Proof. Let I refer to the connected intersection graph of a cover of a universally reconfigurable
polyomino P by 2 × 2 squares, which can be computed in O(n). Due to Lemma 2, the
vertices of each edge in the dual graph of P share a common 2 × 2 square in the cover.

We thus divide the edges E(I) of I into 36 classes based on each edge’s orientation and
xy-minimal coordinates mod 3. These can be represented by {↑, ↗, →, ↘} × [0, 2] × [0, 2].

For any intersection {u, v} ∈ E(I), let R({u, v}) now be the union of the vertices covered
by the squares u and v, which always corresponds exactly to one of the polyominoes outlined
in Observation 3. Such a region has a bounding box no larger than 3 × 3, which means that
the regions R(e) and R(f) are disjoint for any two edges e and f in a common class, allowing
us to apply RotateSort in parallel to all the regions within one class.

As there are constantly many classes, we can realize the adjacent swaps induced by a
matching of adjacent cells in O(1) transformations. ◀

Marberg and Gafni [25] propose an algorithm called RotateSort that sorts a two-
dimensional n×m array within O(n+m) parallel steps. Demaine et al. [14] demonstrate that
this algorithm can be applied geometrically, using the local swap mechanism illustrated in
Figure 3a. A geometric application of RotateSort is a sequence of sets of pairwise disjoint
adjacent swap operations, i.e., sets consisting of pairs of adjacent cells, where swaps can be
simulated by circular rotations. As our setting is not merely restricted to rectangular domains,
we extend their approach using Lemma 4. We give a constructive proof of Theorem 1 in the
shape of an algorithm, as follows.

Proof of Theorem 1. Our approach employs methods from Permutation Routing. In
this setting, the task is to transform two different vertex labelings of a graph into one
another by exchanging labels between adjacent vertices in parallel [5]. A solution (or routing
sequence) consists of a series of matchings, i.e., sets of independent edges, along which tokens
are exchanged. Such a routing sequence of length at most 3n can be computed in almost
linear time if the underlying graph is a tree [5]. Thus, we consider an arbitrary spanning
tree of a polyomino P ’s dual graph and compute such a routing sequence. Due to Lemma 4,
each parallel swap operation in the sequence can be realized by a schedule of makespan O(1).
We conclude that the schedule derived from the routing sequence has makespan O(n). ◀

3 The impact of the domain on the achievable makespan

Previous work has demonstrated that it is possible to achieve constant stretch for labeled
agents in a rectangular domain. However, in the presence of a non-convex boundary, such
stretch factors may not be achievable. We present the following worst-case bound.

▶ Proposition 5. For any d ≥ 5, there exist instances of diameter d in universally reconfig-
urable polyominoes, such that all applicable schedules have makespan Ω(d2).

Proof. We illustrate a class of such instances in Figure 4. In this class, agents located
on different sides of a narrow passage must trade places. Theorem 1 tells us that these
polyominoes are universally reconfigurable; however, any movement between the regions pass
through the narrow passage at the center, limiting the number of agents exchanged between
them to 2 per transformation. As the number of agents scales quadratically with d, any
schedule for this class of instances requires a makespan of Ω(d2). ◀

S. P. Fekete, R. Kosfeld, P. Kramer, J. Neutzner, C. Rieck, and C. Scheffer 29:7

d

(a) A polyomino with narrow passage.

d

(b) This class can be extended such that n > d2.

Figure 4 We illustrate a class of instances which require Ω(d2) transformations.

For a more refined characterization of features that affect the achievable makespan and to
formulate a precise lower bound, we introduce the following shape parameter for polyominoes.

Bottleneck. We say that the bottleneck of a polyomino P is the largest integer ζ(P),
such that there is no non-trivial cut through P of length less than ζ(P). This means no
interior “shortcut” of length less than ζ(P) exists between any two points on the boundary
of P . A bottleneck cut through P is therefore a non-trivial cut of length ζ(P).

We now further refine the lower bound presented in Proposition 5, as follows.

▶ Proposition 6. For any d ≥ 4 and z ∈ [2, d], there exists a universally reconfigurable
polyomino P with ζ(P) = z that has instances of diameter d, for which any applicable
schedule has a makespan of Ω(d2

/ζ(P)), i.e., a stretch factor of Ω(d/ζ(P)).

Proof. We formulate a generalized version of the instances from Proposition 5. By scaling
the boundary of the polyomino between the two regions by an arbitrary amount less or equal
to d, we can create universally reconfigurable polyominoes with the targeted bottleneck value.

The movement between the two regions must then still be realized over the narrow grey
region, limiting the number of robots exchanged between them to O(ζ(P)) per transformation.
As the number of robots that need to traverse the bottleneck cut scales quadratically with d,
any applicable schedule for this class of instances requires a makespan of Ω(d2

/ζ(P)). ◀

To further refine our understanding of the domain’s impact on achievable makespans, we
now characterize the size of widest passages, i.e., best case maneuverability. To this end, we
consider the maximum shortest distance to the boundary within the given domain, its depth.

Depth. We say that the depth of a polyomino P is the smallest integer µ(P), such that
every cell in P has geodesic distance at most µ(P) to the boundary of P .

The depth and bottleneck of a polyomino are very closely related, with depth implying a
bound on the bottleneck of any (sub-)polyomino such that ζ(P ′) ≤ 2µ(P) for any P ′ ⊆ P .
We take particular notice of the following property of depth.

▶ Lemma 7 (⋆). From any cell in a polyomino P , the maximal geodesic distance to a
non-trivial geodesic cut of length at most 2µ(P) is also at most 2µ(P).

4 Bounded makespan for narrow instances

In this section, we consider algorithms for bounded makespan in specific families of instances.
Our central result is an approach for asymptotically worst-case optimal stretch in narrow
instances, which we define as follows. An instance of diameter d in a polyomino P is narrow,
if and only if π · d ≥ µ(P) for some constant π ∈ N, i.e., µ(P) ∈ O(d). Intuitively, these
correspond to instances of large diameter relative to the domain’s depth.

ISAAC 2024

29:8 Multi-Agent Path Finding in a Densely Packed, Bounded Domain

▶ Theorem 8 (⋆). Given an instance of diameter d in a universally reconfigurable
polyomino P , we can efficiently compute an applicable schedule of makespan O((d+µ(P))2

/ζ(P)).
This is asymptotically worst-case optimal for narrow instances.

As our proof is fairly involved, we proceed with the special case of scaled polyominoes
in Section 4.1, which we extend to arbitrary polyominoes of limited depth in the sub-
sequent Section 4.2. In each section, we first establish bounds on the makespan relative to a
polyomino’s area and the corresponding shape parameter.

4.1 Bounded makespan and stretch based on scale
We now investigate scaled polyominoes, which we define as follows.

c(P)

(a) A 3-scaled polyomino P and its tiles.

c(P)

(b) The tile dual graph of P .

Figure 5 An illustration of a scaled polyomino P , its tiles, and their corresponding dual graph.

Scaled polyomino. For any c ∈ N, we say that a polyomino P is c-scaled exactly if it is
composed of c × c squares that are aligned with a corresponding c × c integer grid. We call
these grid-aligned squares tiles, which have a dual graph analogous to that of a polyomino.
Finally, the scale of a polyomino P is the largest integer c(P) such that P is c-scaled. This
additionally represents a very natural lower bound on the bottleneck, ζ(P) ≥ c(P).

▶ Proposition 9. For any two configurations of a polyomino P with area n and c(P) ≥ 3,
we can compute an applicable schedule of makespan O(n/c(P)) in polynomial time.

Proof. We model our problem as an instance of Permutation Routing, taking note of
two significant results regarding the routing number of specific graph classes. Recall that
the routing number rt(G) of a specific graph G refers to the maximum number of necessary
routing operations to transform one labeling of G into another. For the complete graph Kn

with n vertices, it was shown by Alon, Chung, and Graham [5] that rt(Kn) = 2. Furthermore,
we make use of a result by Banerjee and Richards [7] which states that for an h-connected
graph G and any connected h-vertex induced subgraph Gh of G, the routing number rt(G)
is in O(rt(Gh) · n/h). They also describe an algorithm that determines a routing sequence
that matches this bound.

Given a polyomino P and two configurations C1, C2 ∈ C(P), our goal is to define a
secondary graph over the vertices of the dual graph G(P) = (V, E) such that a routing
sequence over this graph can be transformed into a schedule C1 ⇒ C2 of makespan O(n/c(P)).

We define Gc = (V, Ec) such that {u, v} ∈ Ec exactly if the cells u and v are located in
the same c(P) × c(P) tile, or two adjacent tiles. As a result, the cells of each tile in P form
a clique, i.e., their induced subgraph is isomorphic to Kc(P)2 . Furthermore, the cliques of
cells in any two adjacent tiles are connected by a set of complete bipartite edges, so they
also form a clique. Hence, Gc is h-connected for h ≥ c(P)2 − 1 and contains n/c(P)2 cliques
of order at least c(P)2. Due to Banerjee and Richards [7], we conclude that rt(Gc) is in
O(rt(Kc2) · n/h) = O(n/c(P)2) and can therefore compute a sequence of O(n/c(P)2) matchings
to route between any two labelings of G(P), which correspond to configurations of P .

S. P. Fekete, R. Kosfeld, P. Kramer, J. Neutzner, C. Rieck, and C. Scheffer 29:9

It remains to argue that we can realize the swaps induced by any matching in Gc by
means of O(c(P)) transformations. All pairwise swaps between cells within the same tile can
be realized by applying RotateSort to all tiles in parallel, taking O(c(P)) transformations.

We therefore turn our attention to swaps between adjacent tiles. Observe that the
dual graph of the tiles of P is a minor of Gc; contracting the vertices in each of the tile-
cliques defined above will give us a corresponding grid graph. Swaps between adjacent
tiles can therefore be realized in four phases by covering this grid graph by matchings, and
applying RotateSort to the union of matched tile pairs in parallel, again taking O(c(P))
transformations. A cover by four matchings can be determined by first splitting the edges
of the dual graph into two sets of horizontal and vertical edges, respectively. Each of these
edge sets then induces a collection of paths in the tiling’s dual graph, and can therefore be
covered by two matchings.

We conclude that constantly many phases of parallel applications of RotateSort
suffice to realize any matching in Gc. As O(n/c(P)2) matchings can route between any two
configurations of P , we conclude that this method yields schedules of makespan O(n/c(P)). ◀

We now apply this intermediate result to compute schedules of bounded stretch in narrow
instances of scaled polyominoes. Our approach hinges on the ability to divide the instance
into subproblems that can be solved in parallel, which corresponds to cutting the polyomino
and performing a sequence of preliminary transformations such that each subpolyomino can
then be reconfigured locally, obtaining the target configuration.

Domain partitions. A partition of a polyomino P corresponds to a set of disjoint
subpolyominoes that cover P . We observe that not every polyomino permits a partition
into disjoint universally reconfigurable subpolyominoes. However, any subpolyomino of a
universally reconfigurable polyomino P can be made universally reconfigurable by including
cells of geodesic distance at most 2 in P .

To efficiently determine such a partition, we employ breadth-first search as follows.

Breadth-first search. For any polyomino Q, let BFS(Q, v, r) refer to the subpolyomino
of Q that contains all cells reachable from some cell v in Q by geodesic paths of length at
most r. Further, let BFS(Q, v, r) refer to the set of connected components of Q \ BFS(Q, v, r).
We define the wavefront of BFS(Q, v, r) as the set of cuts through Q that define the components
of BFS(Q, v, r). Each connected component (cut) of the wavefront is called a wavelet.

▶ Lemma 10 (⋆). For any polyomino Q, the wavefront of BFS(Q, v, r) consists of wavelets
of length O(µ(Q)) each, i.e., the wavelet length is independent of the search radius r.

Having established all necessary tools, we prove the following statement.

▶ Proposition 11. Given an instance of diameter d in a polyomino P with c(P) ≥ 3, we
can efficiently compute an applicable schedule with makespan O((d+µ(P))2

/c(P)). This is
asymptotically worst-case optimal for narrow instances.

Proof. We consider an instance of diameter d in a simple polyomino P . We proceed in three
phases, which we briefly outline before giving an in-depth description of each.

(I) We partition P into c(P)-scaled patches of area O(d2), using non-trivial cuts of bounded
length such that the partition’s dual graph is a rooted tree T .

(II) We combine parent/child patches according to T into regions with c(P) scale, allowing
us to apply Proposition 9 to reorder them in O((d+µ(P))2

/c(P)).
(III) Finally, we exploit these combined regions to place all agents at their destination.

ISAAC 2024

29:10 Multi-Agent Path Finding in a Densely Packed, Bounded Domain

Phase (I). A step-by-step illustration of Phase (I) can be found in Figure 6. For this phase,
we consider the polyomino P ′ induced by the tile dual graph of P , recall Figure 5b. This
scales the shape parameters and geodesic distance by 1/c(P):

c(P ′) = c(P)/c(P) = 1, µ(P ′) ≊ µ(P)/c(P), ζ(P ′) ≊ ζ(P)/c(P).

Let δ = 3d/c(P). We subdivide P ′ using a recursive breadth-first-search approach and
argue by induction. Given a boundary cell v0 in P ′, we determine a patch P ′

0 ⊆ P ′ based on
BFS(P ′, v0, δ) ⊆ P ′. We say that the components of BFS(P ′, v0, δ) are either small or large;
a component R is small exactly if R ⊂ BFS(P ′, v0, 2δ), and large otherwise, see Figure 6b.

We define P ′
0 as the union of the initial BFS and the small components of its complement,

meaning that for BFS(P ′, v0, δ) with large components R1, . . . , Rℓ, P ′
0 takes the shape

P ′
0 := P ′ \ (R1 ∪ . . . ∪ Rℓ).

Due to Lemma 10, the cut Γi that separates a component Ri of BFS(P ′, v0, δ) from P ′
0 has

length O(µ(P ′)). By definition, the geodesic distance from each cell in Ri to v0 is at least δ.
We now iteratively subdivide each component of P ′ \P ′

0 by simply increasing the maximal
depth of our BFS from v0 by another δ units and again considering large and small components
of the corresponding subdivision separately, as illustrated in Figures 6c and 6d.

To obtain a partition of P , we map each patch P ′
i to the tiles in P that its cells correspond

to. Since P is a simple polyomino, the dual graph of our patches forms a tree T rooted at P0.
Consider any patch P ′

i and recall that, due to Lemma 10, all cuts induced by BFS have
individual length O(µ(P ′)). Tracing along the boundaries of tiles, we conclude that the
corresponding cuts in P have individual length O(µ(P ′)c(P))) = O(µ(P)). Due to triangle
inequality, it follows that any two cells in each patch Pi have geodesic distance O(d + µ(P)).
From this, we conclude that the area of Pi is bounded by O((d + µ(P))2). It directly follows
that for any patch Pj with hop distance k ∈ N+ to Pi in T , the geodesic distance between
two cells in Pi and Pj is bounded by O(k(d + µ(P))). The union of patches in a subtree T ′

of T with height k therefore has area O((k(d + µ(P)))2).

Phase (II). We use this partition of P into patches to subdivide the instance into disjoint
tasks that can be solved in parallel; recall that our target makespan is O((d+µ(P))2

/ζ(P)). The
patches are spatially disjoint and all have scale at least c(P), as well as area O((d + µ(P))2).
Proposition 9 therefore implies that the patches can be locally reconfigured in parallel, by
schedules of makespan O((d+µ(P))2

/ζ(P)). In order to solve the original instance, it therefore
remains to make each patch a subproblem that can be solved independently.

We argue that we can efficiently move robots into their target patches. In Phase (I), we
gave an upper bound of O(k(d + µ(P))) on the geodesic distance between cells in patches
that have hop distance at most k ∈ N+ in T . We now provide a lower bound: The geodesic
distance between cells in patches that are not in a parent-child or sibling relationship in T is
at least d, as the distance between cells in any patch and its “grandparent” patch according
to T is at least d by construction, see Phase (I).

It follows that the target cell of each robot is either in the same patch as its initial cell,
or in a parent or sibling thereof. To realize the movement of agents between patches, we
thus simply form the spatial union Fi of each patch Pi and its children according to T . Each
of the resulting subpolyominoes Fi has area O((d + µ(P))2). As T is bipartite, we can split
them into two sets FA and FB , each comprised of pairwise spatially disjoint subpolyominoes.

S. P. Fekete, R. Kosfeld, P. Kramer, J. Neutzner, C. Rieck, and C. Scheffer 29:11

v0 BFS(P, v0, δ)
BFS(P, v0, 2δ)

(a) We determine v0 and compute BFS(P ′, v0, δ).

R1

small

large

(b) BFS(P ′, v0, δ) has large and small components.

v0

P0 Γ1

(c) The patch P ′
0 is the union of BFS(P ′, v0, δ) and

the small components of BFS(P ′, v0, δ).

v0

P0 Γ1

BFS(P, v0, 3δ) \ P0

BFS(P, v0, 2δ) \ P0

(d) We continue the breadth-first-search in P \ P0.

Figure 6 Phase (I): We divide P ′ into patches of area O((δ + µ(P ′))2).

Phase (III). It remains to show that we can efficiently exchange agents between patches.
Note that, as P is simple, the number of agents that need to cross any cut in either direction
is equal to that for the opposite direction.

By construction, every pair of patches that needs to exchange agents between one
another is fully contained in some Fi ∈ (FA ∪ FB). We proceed in three iterations: By
applying Proposition 9 to each of the patches in FA in parallel, we swap agents across cuts by
swapping them with agents moving in the opposite direction. We repeat this process for FB

and finally perform a parallel reconfiguration of the individual patches, which allows us to
place every robot in its target cell. Each iteration takes O((d+µ(P))2

/ζ(P)) transformations. ◀

4.2 Bounded makespan and stretch based on bottleneck
Finally, this section concerns itself with the transfer of results from Section 4.1 to arbitrary
polyominoes. As this requires significantly more intricate local mechanisms, we only provide
a high-level description of the necessary tools and modifications, and refer to the full version.

Skeleton. A skeleton of a polyomino P is a connected, λ-scaled subpolyomino S ⊆ P

with λ = ⌊ζ(P)/4⌋, as illustrated in Figure 7a. Such a skeleton can easily be determined as
the union of all λ × λ squares in P that are aligned with the same λ × λ integer grid.

Watershed. The watershed of a skeleton tile t corresponds to the union of all 2λ × 2λ

squares in P that fully contain t, see Figure 7b. We will show that at least one such square
always exists, and their union forms a convex polyomino with bottleneck at least λ.

To swap agents from P \ S into the skeleton S, we exploit the watersheds of its tiles. We
first prove the existence of a skeleton S ⊆ P as above, and that its watersheds fully cover P .
This allows us to apply techniques from Section 4.1 to arbitrary polyominoes.

▶ Lemma 12 (⋆). For any polyomino P with ζ(P) ≥ 8, we can identify a skeleton S ⊆ P

in polynomial time. The skeleton S is λ-scaled for λ = ⌊ζ(P)/4⌋, and every 2λ × 2λ square
inside P contains at least one of its scaled tiles.

ISAAC 2024

29:12 Multi-Agent Path Finding in a Densely Packed, Bounded Domain

(a) A polyomino P and its skeleton S (cyan).

t

(b) An illustration of a skeleton tile t’s watershed.

Figure 7 The central tools used in our proof of Theorem 15.

We make use of the following result obtained by Alpert et al. [6] for the routing number of
convex grid graphs, where w(P) and h(P) refer to the width and height of P , respectively.

▶ Theorem 13 (Alpert et al. [6]). Let P be a connected convex grid piece. Then the routing
number of P satisfies the bound rt(P) ≤ C(w(P) + h(P)) for some universal constant C.

Finally, we demonstrate a method for efficient reconfiguration of an arbitrary skeleton tile’s
watershed in order to swap robots into and out of the skeleton.

▶ Lemma 14. Given two configurations of a skeleton tile’s watershed in a universally
reconfigurable polyomino, we can efficiently compute an applicable schedule of makespan O(λ).

Proof. Consider a λ × λ skeleton tile t ⊂ P of a universally reconfigurable polyomino P , and
let H refer to its watershed. Recall that we assume ζ(P) ≥ 8, so λ = ⌊ζ(P)/4⌋ ≥ 2. As H

is the union of all 2λ × 2λ squares in P that contain t, it is thus universally reconfigurable
and orthoconvex. We apply Theorem 13: Alpert et al. [6] presented a constructive proof
in the form of an algorithm, which we can use to compute a routing sequence of length
O(w(H)+h(H)) = O(λ) between any two configurations of H , based on its dual graph. Such
a routing sequence corresponds to a series of matchings in the dual graph of H that exchange
tokens of adjacent vertices. Sequentially realizing these matchings by swapping adjacent
agents as outlined in Lemma 4, we can arbitrarily reorder H in O(λ) transformations. ◀

This provides us with all necessary tools to prove the following generalization of Proposi-
tion 9, which, in turn, is a central tool for our proof of Theorem 8.

▶ Theorem 15 (⋆). For any two configurations of a universally reconfigurable polyomino P

of area n, we can compute an applicable schedule of makespan O(n/ζ(P)) in polynomial time.

▶ Theorem 8 (⋆). Given an instance of diameter d in a universally reconfigurable
polyomino P , we can efficiently compute an applicable schedule of makespan O((d+µ(P))2

/ζ(P)).
This is asymptotically worst-case optimal for narrow instances.

Proof sketch. Assuming that c(P) < ζ(P), our approach consists of three phases:
(I) We compute a skeleton S ⊂ P which we split into patches Si according to Phase (I)

of Proposition 11. To each of these patches, we add cells of its skeleton tile’s watersheds.
This partitions P into patches Pi, each with a skeleton patch Si ⊂ S such that Si ⊆ Pi.

(II) We use the rooted dual tree T of the skeleton patches Si and, for each patch Si with
children Sℓ, . . . , Sℓ+k according to T , we combine the patches Pi, Pℓ, . . . , Pℓ+k to a
(not necessarily connected) region Fi that can be reordered in O((d+µ(P))2

/ζ(P)).
(III) Finally, we exploit these combined regions to place all agents at their destination.

These act analogously to Phases (I) – (III) of Proposition 11. ◀

S. P. Fekete, R. Kosfeld, P. Kramer, J. Neutzner, C. Rieck, and C. Scheffer 29:13

5 Conclusions and future work

We provide a number of novel contributions for Multi-Agent Path Finding in simple
polyominoes. We establish a characterization for the existence of reconfiguration schedules,
based on different shape parameters of the bounding polyomino. Furthermore, we establish
algorithmic methods that achieve worst-case optimal stretch for any instance in which the
polyomino’s bottleneck does not exceed the instance’s diameter by more than a constant
factor. There are a variety of directions in which these insights should give rise to further
generalizations and applications.

Non-simple polyominoes. Our results regarding universal reconfigurability are directly
applicable to non-simple polyominoes. As noted in Section 2, the geometric characterization
for simple polyominoes is formed as a special case based on the dual graph of a polyomino.

For any non-simple polyomino that is either 2-scaled or 2-square-connected, Theorem 1
and Proposition 9 are also directly applicable. The same is not true for Theorem 15, as
our definition of the bottleneck based on cuts does not work in this case. However, with a
separate definition that accounts for the minimal distance between inner and outer boundaries,
Theorem 15 may be applicable.

Permutation routing. Our results can be generalized to solid grid graph routing, which is
a generalization of the findings of Alpert et al. [6]. We provided results regarding bounded
stretch for this setting, therefore tackling a special case of their Open Question 2.

Further questions. Our work is orthogonal to that of Demaine et al. [13, 14]: Their
setting considered domains of large depth in conjunction with large bottleneck, i.e., the
case that µ(P) ∈ Ω(d) and ζ(P) ∈ Ω(d). We establish asymptotically worst-case optimal
results for narrow domains, which implies that µ(P) ∈ O(d) and ζ(P) ∈ O(d). In particular,
instances where ζ(P) ∈ O(d) while µ(P) ∈ ω(d), i.e., instances in which the gap between
bottleneck and depth is unbounded relative to d, remain a challenge even for simple domains.
We conjecture that this question for simple domains is equivalent to that of bounded stretch
for non-simple domains with limited depth; considering an instance of large depth, we can
create an analogous non-simple instance that features regularly distributed, small holes based
on some grid graph. This may motivate research into the special case of instances in which
the diameter is less or equal to the circumference of the smallest hole in the domain.

References
1 Aviv Adler, Mark de Berg, Dan Halperin, and Kiril Solovey. Efficient multi-robot motion

planning for unlabeled discs in simple polygons. IEEE Transactions on Automation Science
and Engineering, 12(4):1309–1317, 2015. doi:10.1109/TASE.2015.2470096.

2 Pankaj K. Agarwal, Tzvika Geft, Dan Halperin, and Erin Taylor. Multi-robot motion planning
for unit discs with revolving areas. Computational Geometry: Theory and Applications,
114:102019, 2023. doi:10.1016/J.COMGEO.2023.102019.

3 Pankaj K. Agarwal, Dan Halperin, Micha Sharir, and Alex Steiger. Near-optimal min-sum
motion planning for two square robots in a polygonal environment. In Symposium on Discrete
Algorithms (SODA), pages 4942–4962, 2024. doi:10.1137/1.9781611977912.176.

4 Oswin Aichholzer, Erik D. Demaine, Matias Korman, Anna Lubiw, Jayson Lynch, Zuzana
Masárová, Mikhail Rudoy, Virginia Vassilevska Williams, and Nicole Wein. Hardness of
token swapping on trees. In European Symposium on Algorithms (ESA), pages 3:1–3:15, 2022.
doi:10.4230/LIPICS.ESA.2022.3.

ISAAC 2024

https://doi.org/10.1109/TASE.2015.2470096
https://doi.org/10.1016/J.COMGEO.2023.102019
https://doi.org/10.1137/1.9781611977912.176
https://doi.org/10.4230/LIPICS.ESA.2022.3

29:14 Multi-Agent Path Finding in a Densely Packed, Bounded Domain

5 Noga Alon, Fan R. K. Chung, and Ronald L. Graham. Routing permutations on graphs
via matchings. SIAM Journal on Discrete Mathematics, 7(3):513–530, 1994. doi:10.1137/
S0895480192236628.

6 H. Alpert, R. Barnes, S. Bell, A. Mauro, N. Nevo, N. Tucker, and H. Yang. Routing
by matching on convex pieces of grid graphs. Computational Geometry, 104:101862, 2022.
doi:10.1016/j.comgeo.2022.101862.

7 Indranil Banerjee and Dana Richards. New results on routing via matchings on graphs.
In Fundamentals of Computation Theory (FCT), pages 69–81, 2017. doi:10.1007/
978-3-662-55751-8_7.

8 Bahareh Banyassady, Mark de Berg, Karl Bringmann, Kevin Buchin, Henning Fernau, Dan
Halperin, Irina Kostitsyna, Yoshio Okamoto, and Stijn Slot. Unlabeled multi-robot motion
planning with tighter separation bounds. In Symposium on Computational Geometry (SoCG),
pages 12:1–12:16, 2022. doi:10.4230/LIPICS.SOCG.2022.12.

9 Marc Baumslag and Fred S. Annexstein. A unified framework for off-line permutation
routing in parallel networks. Mathematical Systems Theory, 24(4):233–251, 1991. doi:
10.1007/BF02090401.

10 Aaron T. Becker, Sándor P. Fekete, Phillip Keldenich, Matthias Konitzny, Lillian Lin, and
Christian Scheffer. Coordinated motion planning: The video. In Symposium on Computational
Geometry (SoCG), pages 74:1–74:6, 2018. doi:10.4230/LIPICS.SOCG.2018.74.

11 Soon-Jo Chung, Aditya Avinash Paranjape, Philip Dames, Shaojie Shen, and Vijay Kumar.
A survey on aerial swarm robotics. IEEE Transactions on Robotics, 34(4):837–855, 2018.
doi:10.1109/TRO.2018.2857475.

12 Loïc Crombez, Guilherme Dias da Fonseca, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal
Lafourcade, and Luc Libralesso. Shadoks approach to low-makespan coordinated motion
planning. ACM Journal of Experimental Algorithmics, 27:3.2:1–3.2:17, 2022. doi:10.1145/
3524133.

13 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Henk Meijer, and Christian Scheffer.
Coordinated motion planning: Reconfiguring a swarm of labeled robots with bounded stretch.
In Symposium on Computational Geometry (SoCG), pages 29:1–29:15, 2018. doi:10.4230/
LIPICS.SOCG.2018.29.

14 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Henk Meijer, and Christian Scheffer.
Coordinated motion planning: Reconfiguring a swarm of labeled robots with bounded stretch.
SIAM Journal on Computing, 48(6):1727–1762, 2019. doi:10.1137/18M1194341.

15 Eduard Eiben, Robert Ganian, and Iyad Kanj. The parameterized complexity of coordinated
motion planning. In Symposium on Computational Geometry (SoCG), pages 28:1–28:16, 2023.
doi:10.4230/LIPICS.SOCG.2023.28.

16 Sándor P. Fekete, Phillip Keldenich, Ramin Kosfeld, Christian Rieck, and Christian Scheffer.
Connected coordinated motion planning with bounded stretch. Autonomous Agents and
Multi-Agent Systems, 37(2):43, 2023. doi:10.1007/S10458-023-09626-5.

17 Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B. Mitchell. Computing
coordinated motion plans for robot swarms: The CG:SHOP challenge 2021. ACM Journal of
Experimental Algorithmics, 27:3.1:1–3.1:12, 2022. doi:10.1145/3532773.

18 Sándor P. Fekete, Ramin Kosfeld, Peter Kramer, Jonas Neutzner, Christian Rieck, and
Christian Scheffer. Coordinated motion planning: Multi-agent path finding in a densely
packed, bounded domain, 2024. doi:10.48550/arXiv.2409.06486.

19 Sándor P. Fekete, Peter Kramer, Christian Rieck, Christian Scheffer, and Arne Schmidt.
Efficiently reconfiguring a connected swarm of labeled robots. Autonomous Agents and
Multi-Agent Systems, 38(2):39, 2024. doi:10.1007/S10458-024-09668-3.

20 Lenwood S. Heath and John Paul C. Vergara. Sorting by short swaps. Journal of Computational
Biology, 10(5):775–789, 2003. doi:10.1089/106652703322539097.

https://doi.org/10.1137/S0895480192236628
https://doi.org/10.1137/S0895480192236628
https://doi.org/10.1016/j.comgeo.2022.101862
https://doi.org/10.1007/978-3-662-55751-8_7
https://doi.org/10.1007/978-3-662-55751-8_7
https://doi.org/10.4230/LIPICS.SOCG.2022.12
https://doi.org/10.1007/BF02090401
https://doi.org/10.1007/BF02090401
https://doi.org/10.4230/LIPICS.SOCG.2018.74
https://doi.org/10.1109/TRO.2018.2857475
https://doi.org/10.1145/3524133
https://doi.org/10.1145/3524133
https://doi.org/10.4230/LIPICS.SOCG.2018.29
https://doi.org/10.4230/LIPICS.SOCG.2018.29
https://doi.org/10.1137/18M1194341
https://doi.org/10.4230/LIPICS.SOCG.2023.28
https://doi.org/10.1007/S10458-023-09626-5
https://doi.org/10.1145/3532773
https://doi.org/10.48550/arXiv.2409.06486
https://doi.org/10.1007/S10458-024-09668-3
https://doi.org/10.1089/106652703322539097

S. P. Fekete, R. Kosfeld, P. Kramer, J. Neutzner, C. Rieck, and C. Scheffer 29:15

21 John E. Hopcroft, Jacob T. Schwartz, and Micha Sharir. On the complexity of motion planning
for multiple independent objects; PSPACE-hardness of the warehouseman’s problem. Interna-
tional Journal of Robotics Research, 3(4):76–88, 1984. doi:10.1177/027836498400300405.

22 John E. Hopcroft and Gordon T. Wilfong. Reducing multiple object motion planning to graph
searching. SIAM Journal on Computing, 15(3):768–785, 1986. doi:10.1137/0215055.

23 Jun Kawahara, Toshiki Saitoh, and Ryo Yoshinaka. The time complexity of permutation
routing via matching, token swapping and a variant. Journal of Graph Algorithms and
Applications, 23(1):29–70, 2019. doi:10.7155/jgaa.00483.

24 Paul Liu, Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng. Coordinated motion
planning through randomized k-opt. ACM Journal of Experimental Algorithmics, 27:3.4:1–3.4:9,
2022. doi:10.1145/3524134.

25 John M. Marberg and Eli Gafni. Sorting in constant number of row and column phases on a
mesh. Algorithmica, 3:561–572, 1988. doi:10.1007/BF01762132.

26 Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Günter Rote, Antonis Thomas, and
Takeaki Uno. Approximation and hardness of token swapping. In European Symposium on
Algorithms (ESA), pages 66:1–66:15, 2016. doi:10.4230/LIPICS.ESA.2016.66.

27 Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-assembly in
a thousand-robot swarm. Science, 345(6198):795–799, 2014. doi:10.1126/science.1254295.

28 Erol Şahin and Alan F. T. Winfield. Special issue on swarm robotics. Swarm Intelligence,
2(2-4):69–72, 2008. doi:10.1007/s11721-008-0020-6.

29 Jacob T. Schwartz and Micha Sharir. On the piano movers’ problem: III. Coordinating
the motion of several independent bodies: the special case of circular bodies moving amidst
polygonal barriers. International Journal of Robotics Research, 2(3):46–75, 1983. doi:10.
1177/027836498300200304.

30 Kiril Solovey and Dan Halperin. On the hardness of unlabeled multi-robot motion plan-
ning. International Journal of Robotics Research, 35(14):1750–1759, 2016. doi:10.1177/
0278364916672311.

31 Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Barták, and Eli
Boyarski. Multi-agent pathfinding: Definitions, variants, and benchmarks. In Symposium on
Combinatorial Search (SOCS), pages 151–158, 2019. doi:10.1609/SOCS.V10I1.18510.

32 Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hundreds of
cooperative, autonomous vehicles in warehouses. AI Magazine, 29(1):9–19, 2008. doi:
10.1609/aimag.v29i1.2082.

33 Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiyomi, Yoshio
Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and Takeaki Uno. Swapping labeled
tokens on graphs. Theoretical Computer Science, 586:81–94, 2015. doi:10.1016/J.TCS.2015.
01.052.

34 Hyeyun Yang and Antoine Vigneron. Coordinated path planning through local search and
simulated annealing. ACM Journal of Experimental Algorithmics, 27:3.3:1–3.3:14, 2022.
doi:10.1145/3531224.

35 Jingjin Yu and Daniela Rus. Pebble motion on graphs with rotations: Efficient feasibility
tests and planning algorithms. In International Workshop on the Algorithmic Foundations of
Robotics (WAFR), pages 729–746, 2015. doi:10.1007/978-3-319-16595-0_42.

ISAAC 2024

https://doi.org/10.1177/027836498400300405
https://doi.org/10.1137/0215055
https://doi.org/10.7155/jgaa.00483
https://doi.org/10.1145/3524134
https://doi.org/10.1007/BF01762132
https://doi.org/10.4230/LIPICS.ESA.2016.66
https://doi.org/10.1126/science.1254295
https://doi.org/10.1007/s11721-008-0020-6
https://doi.org/10.1177/027836498300200304
https://doi.org/10.1177/027836498300200304
https://doi.org/10.1177/0278364916672311
https://doi.org/10.1177/0278364916672311
https://doi.org/10.1609/SOCS.V10I1.18510
https://doi.org/10.1609/aimag.v29i1.2082
https://doi.org/10.1609/aimag.v29i1.2082
https://doi.org/10.1016/J.TCS.2015.01.052
https://doi.org/10.1016/J.TCS.2015.01.052
https://doi.org/10.1145/3531224
https://doi.org/10.1007/978-3-319-16595-0_42

On the Complexity of Establishing Hereditary
Graph Properties via Vertex Splitting
Alexander Firbas #

TU Wien, Austria

Manuel Sorge #

TU Wien, Austria

Abstract
Vertex splitting is a graph operation that replaces a vertex v with two nonadjacent new vertices
u, w and makes each neighbor of v adjacent with one or both of u or w. Vertex splitting has been
used in contexts from circuit design to statistical analysis. In this work, we generalize from specific
vertex-splitting problems and systematically explore the computational complexity of achieving
a given graph property Π by a limited number of vertex splits, formalized as the problem Π
Vertex Splitting (Π-VS). We focus on hereditary graph properties and contribute four groups of
results: First, we classify the classical complexity of Π-VS for graph properties characterized by
forbidden subgraphs of order at most 3. Second, we provide a framework that allows one to show
NP-completeness whenever one can construct a combination of a forbidden subgraph and prescribed
vertex splits that satisfy certain conditions. Using this framework we show NP-completeness when
Π is characterized by sufficiently well-connected forbidden subgraphs. In particular, we show that
F -Free-VS is NP-complete for each biconnected graph F . Third, we study infinite families of
forbidden subgraphs, obtaining NP-completeness for Bipartite-VS and Perfect-VS, contrasting
the known result that Π-VS is in P if Π is the set of all cycles. Finally, we contribute to the study
of the parameterized complexity of Π-VS with respect to the number of allowed splits. We show
para-NP-hardness for K3-Free-VS and derive an XP-algorithm when each vertex is only allowed to
be split at most once, showing that the ability to split a vertex more than once is a key driver of the
problems’ complexity.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases NP-completeness, polynomial-time solvability, graph theory, graph trans-
formation, graph modification

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.30

Related Version Full Version: https://arxiv.org/abs/2401.16296 [15]

Funding Alexander Firbas acknowledges support from the Vienna Science and Technology Fund
(WWTF) [10.47379/ICT22029]. Manuel Sorge acknowledges partial support from the Alexander
von Humboldt Foundation.

1 Introduction

Vertex splitting is the graph operation in which we take a vertex v, remove it from the graph,
add two descendants v1, v2 of v, and make each former neighbor of v adjacent with v1, v2, or
both. Vertex splitting has been used in circuit design [28, 31], the visualization of nonplanar
graphs in a planar way [2, 4, 11,12,24,30], improving force-based graph layouts [10], in graph
clustering with overlaps [1,3,5,14], in statistics [9,20] (see [14]), in subgraph counting [18,32],
and variants of vertex splitting in which we may make the copies adjacent play roles in graph
theory [25, 29], in particular in Fleischner’s Splitting Lemma [16] and in Tutte’s theorem
relating wheels and general three-connected graphs [33]. Such a variant of vertex splitting
can also be thought of as an inverse operation of vertex contraction, which is an underlying
operation of the graph parameters twinwidth (see, e.g., [6]) and fusion-width [7, 17].

© Alexander Firbas and Manuel Sorge;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 30; pp. 30:1–30:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexander.firbas@tuwien.ac.at
https://orcid.org/0009-0007-2049-2144
mailto:manuel.sorge@tuwien.ac.at
https://orcid.org/0000-0001-7394-3147
https://doi.org/10.4230/LIPIcs.ISAAC.2024.30
https://arxiv.org/abs/2401.16296
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting

In some of the above applications, we are given a graph and want to establish a graph
property by splitting the least number of times: In circuit design, we aim to bound the longest
path length [28, 31], when visualizing non-planar graphs we aim to establish planarity [2, 11,
12,30] or pathwidth one [4], and in statistics and when clustering with overlaps we want to
obtain a cluster graph (a disjoint union of cliques) [1, 3, 9, 14,20].

This motivates generalizing these problems by letting Π be any graph property (a family
of graphs) and studying the problem Π Vertex Splitting (Π-VS): Given a graph G and an
integer k, is it possible to apply at most k vertex split operations to G to obtain a graph in Π?
The above-mentioned graph properties are closed under taking induced subgraphs and thus we
mainly focus on this case. For graph operations different from vertex splitting the complexity
of establishing graph properties Π is well studied, such as for deleting vertices (e.g., [26, 27]),
adding or deleting edges (see the recent survey [8]), or edge contractions (e.g., [19,21–23]). In
this work, we aim to start this direction for vertex splitting, that is, how can we characterize
for which graph properties Π-VS is tractable? Our main focus here is the classical complexity,
that is, NP-hardness vs. polynomial-time solvability, but we also touch on the parameterized
complexity with respect to the number of allowed splits.

Our results are as follows. Each graph property Π that is closed under taking induced
subgraphs is characterized by a family F of forbidden induced subgraphs. We also write Π
as Free≺(F). It is thus natural to begin by considering small forbidden subgraphs. We
classify for each family F that contains graphs of order at most 3 whether Free≺(F)-VS is
polynomial-time solvable or NP-complete. Indeed, it is NP-complete precisely if F contains
only the path P3 on three vertices or a triangle K3:

▶ Theorem 1.1 (⋆). Let F be a set of graphs containing graphs of at most three vertices
each. Then, Free≺(F)-VS is NP-complete if F = {P3} or F = {K3} and is in P otherwise.

The polynomial-time results use a plethora of different approaches and also extend to
Threshold-VS and Split-VS. The NP-hardness for Π = Free≺({K3}) can be shown using
a reduction from the Vertex Cover problem. In this reduction, we replace each edge of
a graph by a K3. It is then not hard to show a correspondence between splitting a set of
at most k vertices to destroy all induced K3 and a vertex cover of size at most k for the
original graph. Together with our results below, we also obtain NP-completeness for each
connected forbidden subgraph F with four vertices except for P4s and claws K1,3, for which
the complexity remains open.

Second, the hardness construction for K3-free graphs indicates that high connectivity
in forbidden subgraphs makes Π-VS hard and thus we explored this direction further. As
the naïve approach breaks down in the general setting, we reduce from a special variant of
Vertex Cover and develop a framework for showing NP-hardness of Π-VS whenever one
can use forbidden induced subgraphs to construct certain splitting configurations (Section 3).
That is, a graph H together with a recipe specifying distinguished vertices that will be
connected to the outside of H and how to split them. Essentially, if one can provide a
splitting configuration that avoids introducing new forbidden subgraphs and that decreases
the connectivity to the outside well enough, then we can use such a configuration to give a
hardness construction. We then provide ways to obtain such splitting configurations, allowing
us to show the following hardness results, where we write Free⊆(F) to exclude the graphs
in F as subgraphs, rather than induced subgraphs:

▶ Theorem 1.2 (⋆). Let F be a family of graphs.
1. If F consists of a single biconnected graph, then Free≺(F)-VS and Free⊆(F)-VS are

NP-complete.

https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296

A. Firbas and M. Sorge 30:3

2. If all graphs in F are triconnected and the family has bounded diameter, then Free≺(F)-VS
and Free⊆(F)-VS are NP-hard.

3. If all graphs in F are 4-connected, then Free≺(F)-VS and Free⊆(F)-VS are NP-hard.
NP-completeness in item 2 and 3 holds when Free≺/⊆(F) is decidable in polynomial time.

Third, the above results do not cover the case where F is the family of all cycles, and
this must be so because Forest-VS is polynomial-time solvable [4, 13]. However, we show
that if we forbid only cycles of at most a certain length, or all cycles of odd length, then
Π-VS becomes NP-complete again. This hardness extends also to perfect graphs:

▶ Theorem 1.3 (⋆). Bipartite-VS and Perfect-VS are NP-complete.

The hardness construction for Bipartite Vertex Splitting is similar to the one for
Free≺({K3})-VS mentioned above. The nontrivial part of the proof is, given a vertex cover,
how to split vertices such that the resulting graph is two-colorable. By carefully checking all
the possible configurations of vertices in the vertex cover and splitting them in the right way,
we obtain subconfigurations that are two-colorable and whose colorings can be combined
into a two-coloring for the whole graph. The reduction for Perfect Vertex Splitting
uses five-vertex cycles instead of K3’s and the correctness additionally uses a degree-based
argument to show that the graph after splitting is also odd-anti-hole-free and thereby perfect.

Finally, we contribute to the parameterized complexity of Π-VS with respect to the
number k of allowed vertex splits. Previously it was known that Π-VS is fixed-parameter
tractable when Π is closed under taking minors [30], when Π = Free≺({P3}) [13, 14], and
when Π consists of graphs of pathwidth one or when Π is MSO2-definable and of bounded
treewidth [4]. In contrast, we observe that Free≺({K3})-VS is NP-hard even for k = 2:

▶ Theorem 1.4 (⋆). Free≺({K3})-VS is NP-complete for two splits.

The idea behind this result is to reduce from 3-Coloring on K3-free graphs: Barring the
technical details, we add a universal vertex u to a graph G, and gadgets to ensure that
the vertex u must be split. Then, the constraint that two adjacent vertices v, w in G need
to be colored differently translates to the constraint that v and w need to be adjacent to
different descendants of u. The crux herein is that one can split a vertex multiple times: In
contrast, if we instead can split each vertex at most once, resulting in the problem Shallow
Triangle-Free Vertex Splitting, then we obtain an XP algorithm:

▶ Theorem 1.5 (⋆). Shallow Triangle-Free Vertex Splitting, parameterized by
the number k of splits, admits an O(

√
2k2

· nk+3)-time XP algorithm.

The basic idea is that we can guess which vertices are split and how they are split with
respect to each other. Formulating the condition that the guess was correct can then be
done using a 2-SAT formula.

Due to space constraints, we only provide details for the dichotomy result for small
forbidden subgraphs (Theorem 1.1) and the framework for proving Theorem 1.2. All remaining
results are marked with ⋆ and are proved in the full version of this paper [15].

1.1 Preliminaries
General (Graph) Notation. For a function f : A → B, we let Domain(f) := A and
Range(f) := {b | ∃a ∈ A : f(a) = b}. For a set X, we let P(X) be its power set. Unless
stated otherwise, all graphs are undirected and without parallel edges or self-loops. Let G

ISAAC 2024

https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296

30:4 On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting

be a graph with vertex set V (G) and edge set E(G). We denote the neighborhood of a
vertex v ∈ V (G) by NG(v). The graph induced by a vertex set V ′ ⊆ V (G) is written as
G[V ′]. For u, v ∈ V (G), we write uv as a shorthand for {u, v}, G − v for G[V (G) \ {v}],
degG(v) for |NG(v)|, dG(u, v) for the length of a shortest path from u to v if there is one
and ∞ otherwise, and diam(G) for the diameter of G, that is, maxu,v∈V (G) dG(u, v). We
denote the complement of G by G. The graph Kn is the complete graph on n vertices and
Cn the cycle graph of n vertices. If a graph G is isomorphic to a graph H, we write G ≃ H.
The circumference of a graph G is the length of a longest cycle of G if G it is not acyclic
and zero otherwise. A k-subdivision of a graph G is a graph obtained by replacing each of
G’s edges uv with a path u, puv

1 , puv
2 , . . . , puv

k , v, where puv
1 , puv

2 , . . . , puv
k are new vertices. We

mark directed graphs G⃗ with an arrow. For an arc uv ∈ E(G⃗), u is the source vertex and v

is the target vertex. All directed graphs are oriented, that is, for each uv ∈ E(G⃗), we have
vu ̸∈ E(G⃗). We denote the in-neighborhood by N−

G⃗
(·) and the out-neighborhood by N+

G⃗
(·).

A directed graph G⃗ is an orientation of G if the underlying undirected graph of G⃗ is G.

Vertex Splitting. Let G be a graph, v ∈ V (G), and V1, V2 subsets of NG(v) such that
V1 ∪ V2 = NG(v). Furthermore, let v1 and v2 denote two fresh vertices, that is, {v1, v2} ∩
V (G) = ∅. Consider the graph G′ that is obtained from G by deleting v, and adding v1
and v2 such that NG′(v1) = V1 and NG′(v2) = V2. Then, we say G′ was obtained from G

by splitting v (via a vertex split). If V1 ∩ V2 = ∅, we speak of a disjoint vertex split, and if
either V1 = ∅ or V2 = ∅, we say the split is trivial. Furthermore, we say v was split into v1
and v2, and call these vertices the descendants of v. Conversely, v is called the ancestor of v1
and v2. Finally, consider an edge v1w (resp. v2w) of G′. We say that the edge vw of G was
assigned to v1 (resp. v2) in the split, and call v1w (resp. v2w) a descendant edge of vw.

A splitting sequence of k splits is a sequence of graphs G0, G1, . . . , Gk, such that Gi+1 is
obtainable from Gi via a vertex split for i ∈ {0, . . . , k − 1}. The notion of descendant vertices
(resp. ancestor vertices) is extended in a transitive and reflexive way (that is, a vertex is its
own ancester and descendant) to splitting sequences.

Later, the following shorthand notation will be useful: Let H be a graph, v ∈ V (H),
X1, X2 ⊆ NH(v) with X1 ∪ X2 = NH(v), and v1, v2 two distinct vertices. Further, let H ′ be
the graph obtained by splitting v into v1 and v2 while setting NH′(v1) = X1, NH′(v2) = X2.
Then, we identify H ′ with the shorthand Split(H, v, X1, X2, v1, v2).

Embeddings and Hereditary Graph Properties. For graphs G and H , we write Emb≺(G, H)
(resp. Emb⊆(G, H)) to denote the set of all induced embeddings of G in H (resp. subgraph
embeddings), that is, the set of all injective f : V (G) → V (H) where ∀uv ∈ V (G)2 : uv ∈
E(G) ⇐⇒ f(u)f(v) ∈ E(H) (resp. ∀uv ∈ V (G)2 : uv ∈ E(G) =⇒ f(u)f(v) ∈ E(H)). In
case Emb≺(G, H) ̸= ∅ (resp. Emb⊆(G, H) ̸= ∅), we write G ≺ H (resp. G ⊆ H) and say G

is an induced subgraph (resp. a subgraph) of H.
For a set of graphs F , we write Free≺(F) (resp. Free⊆(F)) to denote the set of graphs

where G ∈ Free≺(F) (resp. G ∈ Free⊆(F)) iff Emb≺(F, G) = ∅ (resp. Emb⊆(F, G) = ∅) for
all F ∈ F . Set F is the set of forbidden induced subgraphs (resp. forbidden subgraphs) that
characterize the hereditary (graph) property Free≺(F) (resp. Free⊆(F)).

2 Properties Characterized by Small Forbidden Induced Subgraphs

We now give an outline of the characterization of Π-VS for Π characterized by families F of
forbidden induced subgraphs with at most three vertices. The full version of this section is
given in the full version of this paper [15]. First, we can make several simple observations: If

A. Firbas and M. Sorge 30:5

one of K0, K1, K2, or K2 is forbidden and it is present in the input graph, then there is no
way to destroy these forbidden subgraphs with vertex splitting and hence we can immediately
return a failure symbol. This gives a trivial algorithm if K0 ∈ F or K1 ∈ F . Moreover, if
K2 ∈ F , then the input graph is a clique or we can return failure. Since splitting introduces
a K2, instance (G, k) is positive if and only if (G, 0) is positive, which we can check in
polynomial time. Similarly, if K2 ∈ F , then the input graph is an independent set or we can
return failure. Through splitting, we can only introduce more independent vertices and thus
(G, k) is positive if and only if (G, 0) is positive.

It follows that we can focus on families F that contain subgraphs with exactly 3 vertices,
that is, F ⊆ {P3, P3, K3, K3}. If F contains P3 or K3 but neither P3 nor K3, then we have
a similar observation as above: P3 and K3 cannot be destroyed by vertex splits and thus
(G, k) is positive if and only if (G, 0) is, which is checkable in polynomial time.

It thus remains to classify families F ⊆ {P3, P3, K3, K3} that contain P3 or K3. If
F = {P3} then Free≺(F)-VS is NP-complete by a result of Firbas et al. [14, Theorem 4.4]. If
F = {K3} then NP-completeness follows from Theorem 1.2 or Theorem 1.4, which we prove
below. However, if we combine P3 and K3 or if we add P3 and/or K3 then the problems
once again become polynomial-time solvable for subtle and different reasons:

For F = {P3, K3} all solution graphs are the union of an independent set and a matching
and there is essentially only one minimal sequence of vertex splits. In the case where
{K3, K3} ⊆ F we can apply Ramsey-type arguments to show that an algorithm only needs
to check for a constant number of different yes-instances. If P3 ∈ F we can observe that
destroying any P3 or K3 necessarily introduces a P3, which cannot be removed afterwards.

This takes care of all cases for F except F = {P3, K3}. For this case we can observe that
the graphs resulting from a splitting solution are cluster graphs, disjoint unions of cliques,
with at most two clusters (cliques). As K3 cannot be destroyed by vertex splitting, the
input graph may only contain P3s. Furthermore, P3s can only be destroyed by splitting their
midpoints. It is thus intuitive that the input graph of a yes-instance must consist of two
cliques that may overlap and, furthermore, the overlap must not exceed the number k of
allowed splits. This is indeed what we can show and, moreover, such graphs can be recognized
in polynomial time. This finishes the outline of our characterization and we obtain:

▶ Theorem 1.1 (⋆). Let F be a set of graphs containing graphs of at most three vertices
each. Then, Free≺(F)-VS is NP-complete if F = {P3} or F = {K3} and is in P otherwise.

Our polynomial-time results for split- and threshold graphs (⋆) use the observation that
destroying some of their forbidden subgraphs by splitting, namely P4, C4, or C5, necessarily
creates another forbidden subgraph C4, reducing the problem to checking whether the input
graph has the respective property. This seems to be a general principle worthy of further
exploration.

3 A General Framework to Show NP-hardness

In this section, we introduce a reduction framework and employ it to show NP-hardness
of Π-VS characterized by a type of well-connected forbidden subgraphs. For each fixed
ℓ ∈ N, consider the 2ℓ-Subdivided Cubic Vertex Cover problem: Given a tuple (G∗, k),
where G∗ is a 2ℓ-subdivision of a cubic graph G and k ∈ N, is there a vertex cover C of
G∗ with |C| ≤ k? The NP-hardness of this problem for each ℓ ∈ N follows from a result by
Uehara [34] and “folklore” techniques. Nevertheless, we provide a formal proof in the the full
version of this paper [15].

ISAAC 2024

https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296

30:6 On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting

Informally, our reduction works as follows: For a given set of forbidden subgraphs F ,
to show the NP-hardness of either Free≺(F)-VS or Free⊆(F)-VS, we reduce from 2ℓ-
Subdivided Cubic Vertex Cover to the chosen problem. Here, ℓ will depend on
the choice of F .

Consider an instance (G, k) of the selected vertex cover problem. To build an instance of
the vertex-splitting problem in question, we select some H ∈ F and designate two “endpoint”
vertices of H . Then we replace each of G’s edges with a copy of H (we call this copy an edge
gadget) and keep k the same.

It is straightforward to see that, if one can split the constructed graph at most k times
while destroying all forbidden graphs F , one can find a corresponding vertex cover of G of
size at most k: Analogous to how a vertex cover needs to “hit” each edge of G, the splits
performed in the constructed graph need to destroy all the inserted forbidden copies of H.

The converse direction, that is, to show how a vertex cover of G can be used to destroy
all forbidden subgraphs in the construction, is substantially more involved. Essentially, for
each vertex in the vertex cover, we split in a particular way the corresponding vertex in the
construction where edge gadgets meet (which we call an attachment point). This way, we
can easily destroy all “original” embeddings of H. The hard part is to ensure that apart
from these embeddings of H, by performing the construction and then the splits, no new
embeddings of forbidden subgraphs of F are introduced.

To make the above outline precise, we first introduce the concept of a splitting configuration.
Intuitively, a splitting configuration consists of a graph H, a selection of two of its vertices a

and b, which we call H’s a-end and b-end, and an encoding of a specific strategy of how to
split a and b in H.

▶ Definition 3.1. Let H be a graph, a, b ∈ V (H) distinct vertices, A1, A2 ⊆ NH(a), and
B1, B2 ⊆ NH(b), such that A1 ∪ A2 = NH(a), B1 ∪ B2 = NH(b), and A1, A2, B1, B2 are
non-empty. Then, (H, a, A1, A2, b, B1, B2) is called a splitting configuration. If A1 ∩ A2 =
B1 ∩ B2 = ∅, we speak of a disjoint splitting configuration. Furthermore, we say the splitting
configuration is based on F if H ∈ F .

Going forward, we aim to show how, depending on F , one can find a suitable ℓ and
a splitting configuration based on F such that the described reduction is guaranteed to
be correct. We now make precise how to perform the construction. To specify which way
(a-end, b-end) or (b-end, a-end) to insert the edge gadgets, we arbitrarily orient the graph G

from the Vertex Cover instance to obtain a directed graph G⃗ as the “skeleton” graph.
Furthermore, we also need a splitting configuration C (that also encodes the gadget-graph
H and its a/b-ends to use). To simplify the correctness proof later on, we explain a more
general construction than used in the reduction. That is, in addition, the construction takes
a subset S of G⃗’s vertices as input; this set S specifies that the corresponding attachment
points should be split in the construction according to the splitting configuration. When
computing the reduction, we simply set S = ∅. See Figure 1 for a concrete example.

Towards defining Constr(G⃗, C, S). Below, whenever we encounter a graph G′ that is a
copy of a graph G, we use vG′ to denote the vertex that corresponds to v ∈ V (G) in G′. We
also do likewise for sets of vertices. Let G⃗ be a directed, oriented graph without loops, C a
splitting configuration with C = (H, a, A1, A2, b, B1, B2), and S ⊆ V (G). We aim to define
the graph Constr(G⃗, C, S) and the map χConstr(G⃗,C,S) which we will use to refer to particular
subsets of vertices in the construction in the correctness proofs later on. For this we first
define how to obtain the edge gadget graphs (He for each e ∈ E(G⃗)), a map α that specifies

A. Firbas and M. Sorge 30:7

Hv2v1
≃ Hv3v1

α(v2v1, 1, b)
α(v2v1, 2, b)

α(v2v1, 1, a)
α(v2v1, 2, a)

Hv3v4

α(v3v4, 2, b)
α(v3v4, 1, b)

α(v3v4, 1, a)
α(v3v4, 2, a)

Hv4v2

α(v4v2, 1, b)
α(v4v2, 2, b)

α(v4v2, 2, a)
α(v4v2, 1, a)

u3

H

u4

u1

u2

v1

v3

v2

v4

Constr(G⃗, C, S)

χ(v4)

χ(v1v2)

β(v4, 2)

β(v2, 1)β(v1, 1)

β(v3, 1)

β(v4, 1)

β(v1, 2) β(v2, 2) β(v3, 2)

G⃗

Figure 1 Example of Definition 3.2. The construction Constr(G⃗, C, S) is carried out for the
“skeleton” graph G⃗, the splitting configuration C given by (H, u2, {u1}, {u3}, u3, {u1}, {u2, u4}), and
the set of vertices S = {v4} marked in yellow. The edge gadget graph is H; its “a-end” is u2 and its
“b-end” is u3. The subscript of χ, Constr(G⃗, C, S), is dropped for brevity.

the attachment points inside the edge gadgets, and a map β that specifies which attachment
points stemming from distinct edge gadgets should be merged to form the final attachment
points where edge gadgets meet.

Towards defining He, with each arc e = vavb ∈ E(G⃗), we associate a fresh copy of H

and call it H ′
e. The vertices aH′

e , bH′
e and the sets of vertices A

H′
e

1 , A
H′

e
2 , B

H′
e

1 , B
H′

e
2 denote the

corresponding vertex (resp. set of vertices) of H in its copy, H ′
e. We obtain He by splitting a

subset of {aH′
e , bH′

e} in H ′
e. Whether we split zero, one, or two vertices is dictated by S (aH′

e

is split iff va ∈ S, bH′
e is split iff vb ∈ S); the precise manner vertices are split is dictated

by the splitting configuration C. More specifically, the neighborhoods of the descendant
vertices of aH′

e (resp. bH′
e) are given by A

H′
e

1 , A
H′

e
2 (resp. B

H′
e

1 , B
H′

e
2). With this, we can

specify formally how He is obtained from each e = vavb of E(G⃗):

He :=

H ′
e if va ̸∈ S, vb ̸∈ S,

Split(H ′
e, aH′

e , A
H′

e
1 , A

H′
e

2 , aHe
1 , aHe

2) if va ∈ S, vb ̸∈ S,

Split(H ′
e, bH′

e , B
H′

e
1 , B

H′
e

2 , bHe
1 , bHe

2) if va ̸∈ S, vb ∈ S, and
Split

(
Split(H ′

e, aH′
e , A

H′
e

1 , A
H′

e
2 , aHe

1 , aHe
2),

bH′
e , B∗

1 , B∗
2 , bHe

1 , bHe
2
)

otherwise,

where B∗
1 (resp. B∗

2) denote the descendant vertices of B
H′

e
1 (resp. B

H′
e

2) with respect to
the split described by Split(H ′

e, aH′
e , A

H′
e

1 , A
H′

e
2 , aHe

1 , aHe
2).1 The set {He | e ∈ E(G⃗)} of edge

gadgets provides the basic building blocks of Constr(G⃗, C, S). Note that the vertex sets of
all He with e ∈ E(G⃗) are disjoint; to construct the final graph Constr(G⃗, C, S), we join the
edge gadgets according to the structure of G⃗.

1 This additional care is required to cover the case when a and b are neighbors in H.

ISAAC 2024

30:8 On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting

For this purpose, we designate two numbered attachment points for the a-end, and two
numbered attachment points for the b-end of each He, where an attachment point is a
possibly empty subset of He’s vertices. We denote the attachment points with the map
α(·, ·, ·), defined as follows: For a given e ∈ E(G⃗), x ∈ {a, b}, i ∈ {1, 2} we set

α(e, i, x) :=

{xHe

i } if vx ∈ S,

{xHe} if vx ̸∈ S ∧ i = 1, and
∅ if vx ̸∈ S ∧ i = 2.

To join the edge gadgets, we define two equivalence classes for each v ∈ V (G⃗), stemming
from the circumstance that we have two attachment points per edge gadget end. The
set of equivalence classes is given by

⋃
v∈V (G⃗){β(v, 1), β(v, 2)}, where for each v ∈ V (G⃗)

and i ∈ {1, 2}, we define

β(v, i) :=
{(⋃

u∈N−
G⃗

(v)

α(uv, i, b)
)

∪

(⋃
u∈N+

G⃗
(v)

α(vu, i, a)
)}

.

See Figure 1 for a concrete example of α(·, ·, ·) and β(·, ·).

▶ Definition 3.2. The graph Constr(G⃗, C, S) is built by composing all (He)e∈E(G⃗) into a
single graph and merging all equivalent vertices into one representative vertex each.

Later on, we will need to refer to specific vertex-subsets of the construction: For G∗ =
Constr(G⃗, C, S) and a given edge e ∈ E(G⃗), we write χ(e)G∗ for the set of vertices in G∗ that
stem from e’s edge gadget (including the descendants of the gadgets “attachment”-vertices
which are in general not unique to e); For a given vertex v ∈ V (G⃗), we write χ(v)G∗ to refer
to either the set of the single “attachment”-vertex in G∗ corresponding to v if v ̸∈ S, and
the two descendants of said vertex otherwise. See Figure 1 for a concrete example of χ(·). A
formal definition of χ is provided in the full version of this paper [15].

Abstracting from a single instantiation of our construction, we also introduce notation to
capture the class of all possible constructions based on a given splitting configuration and an
undirected graph together with all of its vertex covers.

▶ Definition 3.3. Let G be a simple graph and C a splitting configuration. Then, we write
AllConstr(G, C) to describe the set of all graphs Constr(G⃗, C, S), where G⃗ is an orientation
of G and S ⊆ V (G) is a vertex cover of G.

3.1 Proving the Correctness of the Reduction
In this subsection, we define the property of admissibility for a splitting configuration C

and show that, when using an admissible splitting configuration for the construction, the
reduction outlined above is correct. The next subsection then deals with finding admissible
splitting configurations for various classes of hereditary properties.

The backward direction of the correctness proof, that is, extracting a vertex cover from
a splitting sequence that destroys all forbidden subgraphs, is straightforward and works
independently of the choice of C and ℓ (⋆). However, the forward direction, where we
use a vertex cover to find a splitting sequence that destroys all forbidden subgraphs in the
construction, is more difficult. Here, the choice of C and ℓ will matter. We are given a vertex
cover of the “skeleton graph” G⃗ and split all of the attachment points in the construction
according to a corresponding splitting configuration. In the final graph of the splitting

https://arxiv.org/abs/2401.16296

A. Firbas and M. Sorge 30:9

sequence, the whole construction needs to be free of embeddings of forbidden (induced)
subgraphs. This can be rephrased as two separate properties that a splitting configuration
must guarantee when applying our construction to any conceivable instance of 2ℓ-Subdivided
Cubic Vertex Cover and splitting it according to a vertex cover:

There are no embeddings of forbidden (induced) subgraphs reaching from one edge gadget
to a neighboring edge gadget.
There are no embeddings of forbidden (induced) subgraphs contained entirely within any
individual edge gadget.

In Definition 3.4, we formalize both these requirements. Note that the requirement on F to
be of bounded diameter will serve to guarantee that a suitable L can be found.

▶ Definition 3.4. Let F be a family of graphs of bounded diameter with H ∈ F and C =
(H, a, A1, A2, b, B1, B2) a splitting configuration. Furthermore, let L := 2 · maxF ∈F diam(F).
Then, C is called separating for F if for all graphs G that are an L-subdivision of some cubic
graph, we have

∀G∗ ∈ AllConstr(G, C) : ∀F ∈ F : ∀π ∈ Emb⊆(F, G∗) : ∃e ∈ E(G) : Range(π) ⊆ χG∗(e).

Furthermore, if AllConstr(K2, C) ⊆ Free⊆(F), we say that C is intra-edge embedding-free
for F . Finally, the splitting configuration C is called admissible for F if it is both separating
for F as well as intra-edge embedding-free for F .

If such an admissible splitting configuration is known to exist, the converse direction
of the correctness proof is straightforward (⋆). The following NP-hardness result follows
directly by combining both directions:

▶ Lemma 3.5 (⋆). Let F be a family of graphs of bounded diameter and let C be a splitting
configuration admissible for F . Then, Free≺(F)-VS and Free⊆(F)-VS are NP-hard.

3.2 Biconnected Forbidden Subgraphs and Beyond

We just established a method for obtaining NP-hardness for vertex-splitting problems,
provided an appropriate admissible splitting configuration exists. This subsection addresses
how to find such splitting configurations for the case of biconnected, triconnected, and
4-connected forbidden (induced) subgraphs.

Towards this goal, we define a last piece of notation: the width of a splitting configuration,
denoted by wdt(·), represents the minimum distance between the two descendants of a split
endpoint, a and b, respectively, after H has been split according to the splitting configuration.

First, we deal with biconnectedness. To that end we show that, given a splitting
configuration of a certain width that is not separating (for some family of graphs F of
bounded diameter and circumference), we can derive a new splitting configuration of increased
width (Lemma 3.6). Since we cannot apply this process ad infinitum (when restricted to F
of bounded circumference), we will arrive at a separating splitting configuration (⋆).

▶ Lemma 3.6. Let F be a family of biconnected graphs of bounded diameter and let C0 =
(H0, a0, A0

1, A0
2, b0, B0

1 , B0
2) be a disjoint splitting configuration of finite width with H0 ∈ F

that is not separating for F . Then, there exists a disjoint splitting configuration C1 =
(H1, a1, A1

1, A1
2, b1, B1

1 , B1
2) with H1 ∈ F of finite width satisfying wdt(C1) > wdt(C0).

ISAAC 2024

https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296

30:10 On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting

a1 b1

≥L︷ ︸︸ ︷

χG∗(v)

: G′

: G

: P ∗

x y

χG∗(vw)χG∗(vw)χG∗(uv)

u v w

...

: Range(π)

: χG∗(e) in G∗ for e ∈ E(G)

...

Figure 2 Illustration accompanying Lemma 3.6. The black ovals denote the edge gadgets in G∗,
G is displayed in green, and the underlying graph G′ is rendered in blue. The gray area shows the
range of a hypothetical embedding π of F in G∗, that has to “go around” in the construction, since
it cannot span across the intersection of edge gadgets χG∗ (v). Additionally, in yellow, the path P ∗

traversing the embedding is shown.

Proof. As C0 is not separating for F , there is a graph G that is an L-subdivision of some
cubic graph G′, G∗ ∈ AllConstr(G, C0), F ∈ F with π ∈ Emb⊆(F, G∗), as well as

L := 2 · max
F ∈F

diam(F),

Range(π) ∩ (χG∗(uv) \ χG∗(v)) ̸= ∅, and
Range(π) ∩ (χG∗(vw) \ χG∗(v)) ̸= ∅.

In other words, G∗ is a graph constructed according to Definition 3.2 using a highly subdivided
cubic graph (G) as a basis, where its edges were replaced by some forbidden graph H ∈ F ,
and was split at the “attachment points” of edge gadgets according to some vertex cover of
G′ and the splitting configuration C0. For this graph, we are provided a witness certifying
that the splitting configuration C0 is not separating with respect to F in the form of an
embedding π of F ∈ F into G∗, where the embedding of F is not constrained to a single
edge gadget, but rather uses vertices of at least two neighboring edge gadgets (of edges
uv, vw ∈ E(G′)), χG∗(uv) and χG∗(vw), such that the embedding is not entirely contained
in the shared intersection χG∗(v). Notice that π(·)−1 refers to vertices of F , whereas π(·)
refers to vertices of G∗. See Figure 2 for an illustration.

We now show that π−1(χG∗(v) ∩ Range(π)) is a vertex separator of F , that is, if these
vertices are deleted from F , the resulting graph is disconnected. We show this basically by
observing that F can be embedded into G∗ in a particular way (as witnessed by π), and
since G∗ has certain structural features, these carry over to F , leading to a contradiction.

Suppose that π−1(χG∗(v) ∩ Range(π)) is not a vertex separator of F . Then, all neighbors
of π−1(χG∗(v)∩Range(π)) in V (F)\π−1(χG∗(v)∩Range(π)) are pairwise connected via some
path in F not using any of π−1(χG∗(v)∩Range(π)) each. Select any one of these paths and call

A. Firbas and M. Sorge 30:11

it P . Without loss of generality, P starts with a vertex of π−1((χG∗(uv) \ χG∗(v))∩Range(π))
and ends in a vertex of π−1((χG∗(vw) \ χG∗(v)) ∩ Range(π)). Due to the existence of π, we
know that P ∗ := π(P) gives an isomorphic path in G∗. Since P does not use vertices of
π−1(χG∗(v) ∩ Range(π)), P ∗ does not use vertices of χG∗(v).

By construction of G∗, all paths connecting the first and last vertex of P ∗ in G∗ that are
constrained to the union of the vertex sets of both edge gadgets, that is to χG∗(uv)∪χG∗(vw),
must traverse the intersection of both edge gadgets, that is, χG∗(uv) ∩ χG∗(vw) = χG∗(v).
But P ∗ does not intersect with χG∗(v), hence it is not one of these paths. Therefore, P ∗

must traverse G∗ using edge gadgets the “other way around”, that is, not use the direct
connection.

Observe that P ∗ induces a path corresponding to the edge gadgets it traverses in G,
which in turn induces a path of length at least three in the underlying cubic graph G′. At
least one of these edges in G′, say xy, must be fully traversed by P ∗ in the corresponding part
of G∗. Thus, there are x′, y′ ∈ V (P ∗) where x′ ∈ χG∗(x) ∩ V (P ∗) and y′ ∈ χG∗(y) ∩ V (P ∗).
The distance between x′ and y′ in G∗ is at least L = 2 · maxF ∈F diam(F), the number of
times xy is subdivided in G. But then π−1(x′) and π−1(y′), vertices of F , have distance of
at least L in F as well, a contradiction to the choice of L. Thus, π−1(χG∗(v) ∩ Range(π)) is
a vertex separator of F . Furthermore, since |χG∗(v)| ≤ 2 and F is biconnected, the vertex
separator contains exactly two vertices. We shall denote its two elements by a1 and b1.

We continue exploiting the structure of F to obtain a splitting configuration satisfying the
conditions of this lemma. Let D be any connected component of F \ {a1, b1}. Suppose there
is only one edge of the form dv with d ∈ V (D) and v ∈ {a1, b1} in E(F). Then, F could not
be biconnected, for the removal of a single vertex (either a1 or b1) would suffice to render
F disconnected. Thus, there is a path P 1 from a1 to b1 in F with P 1 ⊆ V (D) ∪ {a1, b1}.
Since G∗ was constructed with respect to the splitting configuration C0, we notice that
|P 1| ≥ wdt(C0).

Let X be the vertex set of some distinct connected component of F \ {a1, b1}, and
let Y := V (F) \ ({a1, b1} ∪ X). We notice that a1b1 ̸∈ E(F), since π(a1) and π(b1) are
descendants of the same split in the construction of G∗. Furthermore, X and Y form a
partition of V (F) \ {a1, b1}. Thus, we may define a new disjoint splitting configuration C1

as follows:

C1 := (F, a1, A1
1, A1

2, b1, B1
1 , B1

2), where
A1

1 := NF (a1) ∩ X,

A1
2 := NF (a1) ∩ Y,

B1
1 := NF (b1) ∩ X, and

B1
2 := NF (b1) ∩ Y.

Remember that by definition, the width of C1 is min{dF1(a1
1, a1

2), dF2(b1
1, b1

2)}, where F1 :=
Split(F, a1, A1

1, A1
2, a1

1, a1
2) and F2 := Split(F, b1, B1

1 , B1
2 , b1

1, b1
2), such that a1

1, a1
2, b1

1, and b1
2

are fresh vertices. Consider F1: By the argument above, we deduce that there is a shortest
path through the descendant vertices of X from a1

1 to b1 in F1. Furthermore, since F \{a1, b1}
is comprised of at least two connected components, there also exists a shortest path through
one of them (using descendant vertices of Y) from b1 to a1

2. Each of the considered shortest
paths must have length at least wdt(C0), as G∗ was constructed with respect to the splitting
configuration C0. Also, note that all paths connecting a1

1 and a1
2 in F must traverse b1. Thus,

combining these paths yields that dF1(a1
1, a1

2) ≥ 2 wdt(C0). See Figure 3 for an illustration.
We proceed symmetrically for F2. Hence, we obtain that wdt(C1) > wdt(C0), and

thus C1 is a splitting configuration satisfying the required conditions. ◀

ISAAC 2024

30:12 On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting

X

≥
w
d
t(
C

0
)

Y

≥
w
d
t(C

0)

a11 a12

b1

. . .

Figure 3 The derived splitting configuration C1 has width at least 2 wdt(C0).

It remains to ensure that the separating splitting configuration is additionally intra-edge
embedding-free and therefore admissible. This property is implied when restricting F such
that when any F ∈ F is destroyed by one or two non-trivial disjoint splits, the resulting
graph is free of forbidden (induced) subgraphs. For example, each finite set of cycles satisfies
this condition, or each set {F} where F is biconnected (⋆). Finally, we can apply Lemma 3.5
to obtain NP-hardness of the corresponding vertex-splitting problems (⋆). In total, this then
concludes the proof of the first part of Theorem 1.2, i.e., Free≺/⊆({F})-VS is NP-complete
when F is biconnected. For the other parts, as we progress onward from biconnected graphs
to higher degrees of connectedness, we can use similar techniques to show NP-hardness, but
the restrictions imposed on the forbidden subgraphs relax. For the 4-connected case, no
further restrictions are required.

4 Conclusion

In summary, for large families of graph classes Π, it is the case that Π-VS is NP-hard
and, so far, nontrivial polynomial-time solvable cases are sporadic, such as Forest-VS and
Free≺(K3, P3)-VS. Hence, the line of separation between tractability and intractability is
much more jagged than in the case of Π Vertex Deletion, where a classical result by
Lewis and Yannakakis shows the problem is NP-hard for hereditary Π if and only if Π is
nontrivial, that is, Π and Π are infinite [27]. In contrast, the “complexity boundary” of
Π-VS seems much more reminiscent of the classical Π Edge Deletion problem, for which
no such characterization is known, despite extensive study since the late seventies.

Since for well-connected forbidden subgraphs our results imply hardness, a natural
direction to further trace the line of separation between tractability and intractability would
be to study more fragile forbidden subgraphs, that is, for instance, determining the complexity
of Free≺({P4})-VS and Free≺({K1,3})-VS and seeing if patterns emerge in this regime. For
the former, we can show a relation to a cograph-covering problem which we tend to believe
is NP-hard. The latter we consider fully open. On the other hand, our results pave the way
for studying broader notions of tractability instead of polynomial-time solvability such as
approximating the optimal number of splits needed and further studying the parameterized
complexity with respect to the number of splits.

In terms of approximation, our reduction for Free≺({K3})-VS implies that minimizing
the number of splits cannot be polynomial-time approximated to within an arbitrary fixed
approximation factor, that is, there is no PTAS. However, constant-factor approximations may
still exist and it would be interesting to see whether Π-VS is constant-factor approximable
in polynomial-time if Π is characterized by a finite number of forbidden induced subgraphs
or some large subfamily of such Π.

https://arxiv.org/abs/2401.16296
https://arxiv.org/abs/2401.16296

A. Firbas and M. Sorge 30:13

The parameterized complexity of Π-VS with respect to the number of splits also offers
interesting contrasts and invites further investigation: Free≺({P3})-VS is fixed-parameter
tractable [14] but Free≺({K3})-VS is para-NP-hard (Theorem 1.4). This raises the question to
classify for which hereditary classes Π problem Π-VS is fixed-parameter tractable (analogous
to the vertex-deletion version [26]). On the intractability side, it seems worthwhile to explore
generalizations of the hardness construction for Free≺({K3})-VS and constant number
of splits per vertex (Theorem 1.4): The crucial property that we have exploited in the
construction is that all constraints imposed by K3s can only be solved by mapping edges
between copies of the single vertex that we can feasibly split. If we use larger graphs instead
of K3, it is not obvious how to maintain this property. To obtain NP-hardness for a constant
number of splits per vertex is it possible to replace K3 by K4, by Kℓ for any fixed ℓ ≥ 3, or
even a fixed graph of a more general graph class?

For tractability, it is tempting to exploit the connection to Hitting Set to try and obtain
fixed-parameter tractability for Π characterized by a finite number of forbidden induced
subgraphs. However, one has to work around two problems: First, the vertices to split are
not necessarily a minimal hitting set (consider Π = K3-free and the wheel graph of six
vertices: the center vertex hits all forbidden triangles, yet at least two splits are needed to
solve the instance). One thus has to efficiently find the additional split vertices that are not
contained in an underlying minimal hitting set. Second, even after determining the vertices
to split, one has to tackle interesting, often coloring-related problems such as in the case of
Free≺({K3})-VS.

Finally, it would be interesting to carry out a complexity classification program for
Π-VS when Π is characterized by forbidden minors instead. An interesting starting point
might be the contrast between the polynomial-time solvability of Forest-VS, that is,
vertex splitting to K3-minor free graphs, and NP-hardness of Planar-VS, that is, K5 and
K3,3-minor free graphs.

References
1 Faisal N. Abu-Khzam, Judith Egan, Serge Gaspers, Alexis Shaw, and Peter Shaw. Cluster

editing with vertex splitting. In Jon Lee, Giovanni Rinaldi, and Ali Ridha Mahjoub, editors,
Proceedings of the 5th International Symposium of Combinatorial Optimization (ISCO 2018),
volume 10856 of Lecture Notes in Computer Science, pages 1–13. Springer, 2018. doi:
10.1007/978-3-319-96151-4_1.

2 Abu Reyan Ahmed, Stephen G. Kobourov, and Myroslav Kryven. An FPT algorithm
for bipartite vertex splitting. In Patrizio Angelini and Reinhard von Hanxleden, editors,
Proceedings of the 30th International Symposium Graph Drawing and Network Visualization
(GD 2022), volume 13764 of Lecture Notes in Computer Science, pages 261–268. Springer,
2022. doi:10.1007/978-3-031-22203-0_19.

3 Emmanuel Arrighi, Matthias Bentert, Pål Grønås Drange, Blair D. Sullivan, and Petra
Wolf. Cluster editing with overlapping communities. In Neeldhara Misra and Magnus
Wahlström, editors, Proceedings of the 18th International Symposium on Parameterized and
Exact Computation (IPEC 2023), volume 285 of LIPIcs, pages 2:1–2:12. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.IPEC.2023.2.

4 Jakob Baumann, Matthias Pfretzschner, and Ignaz Rutter. Parameterized complexity of
vertex splitting to pathwidth at most 1. In Proceedings of the 49th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG 2023), volume 14093 of Lecture Notes in
Computer Science, pages 30–43. Springer, 2023. doi:10.1007/978-3-031-43380-1_3.

5 Matthias Bentert, Alex Crane, Pål Grønås Drange, Felix Reidl, and Blair D. Sullivan. Cor-
relation clustering with vertex splitting. In Hans L. Bodlaender, editor, Proceedings of the
19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024), volume
294 of LIPIcs, pages 8:1–8:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
doi:10.4230/LIPICS.SWAT.2024.8.

ISAAC 2024

https://doi.org/10.1007/978-3-319-96151-4_1
https://doi.org/10.1007/978-3-319-96151-4_1
https://doi.org/10.1007/978-3-031-22203-0_19
https://doi.org/10.4230/LIPICS.IPEC.2023.2
https://doi.org/10.1007/978-3-031-43380-1_3
https://doi.org/10.4230/LIPICS.SWAT.2024.8

30:14 On the Complexity of Establishing Hereditary Graph Properties via Vertex Splitting

6 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. Journal of the ACM, 69(1):3:1–3:46, 2022. doi:10.1145/3486655.

7 Vera Chekan and Stefan Kratsch. Tight algorithmic applications of clique-width generalizations.
In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, Proceedings of the 48th
International Symposium on Mathematical Foundations of Computer Science (MFCS 2023),
volume 272 of LIPIcs, pages 35:1–35:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPICS.MFCS.2023.35.

8 Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach. A survey of
parameterized algorithms and the complexity of edge modification. Computer Science Review,
48:100556, 2023. doi:10.1016/j.cosrev.2023.100556.

9 A. Davoodi, R. Javadi, and B. Omoomi. Edge clique covering sum of graphs. Acta Mathematica
Hungarica, 149(1):82–91, 2016. doi:10.1007/s10474-016-0586-1.

10 Peter Eades and Candido Ferreira Xavier de Mendonça Neto. Vertex splitting and tension-
free layout. In Proceedings of the International Symposium on Graph Drawing (GD 1995),
volume 1027 of Lecture Notes in Computer Science, pages 202–211. Springer, 1995. doi:
10.1007/BFb0021804.

11 David Eppstein, Philipp Kindermann, Stephen Kobourov, Giuseppe Liotta, Anna Lubiw,
Aude Maignan, Debajyoti Mondal, Hamideh Vosoughpour, Sue Whitesides, and Stephen
Wismath. On the planar split thickness of graphs. Algorithmica, 80:977–994, 2018. doi:
10.1007/s00453-017-0328-y.

12 Luérbio Faria, Celina M. H. de Figueiredo, and Candido Ferreira Xavier de Mendonça Neto.
SPLITTING NUMBER is NP-complete. Discrete Applied Mathematics, 108(1-2):65–83, 2001.
doi:10.1016/S0166-218X(00)00220-1.

13 Alexander Firbas. Establishing hereditary graph properties via vertex splitting. Master’s
thesis, TU Wien, 2023. doi:10.34726/hss.2023.103864.

14 Alexander Firbas, Alexander Dobler, Fabian Holzer, Jakob Schafellner, Manuel Sorge, Anaïs
Villedieu, and Monika Wißmann. The complexity of cluster vertex splitting and company. In
Henning Fernau, Serge Gaspers, and Ralf Klasing, editors, Proceedings of the 49th International
Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2024),
volume 14519 of Lecture Notes in Computer Science, pages 226–239. Springer, 2024. doi:
10.1007/978-3-031-52113-3_16.

15 Alexander Firbas and Manuel Sorge. On the complexity of establishing hereditary graph
properties via vertex splitting, 2024. arXiv:2401.16296, doi:10.48550/arXiv.2401.16296.

16 Herbert Fleischner. Eulerian graphs and related topics. North-Holland, 1990.
17 Martin Fürer. A natural generalization of bounded tree-width and bounded clique-width. In

Alberto Pardo and Alfredo Viola, editors, Proceedings of the 11th Latin American Symposium
on Theoretical Informatics (LATIN 2014), volume 8392 of Lecture Notes in Computer Science,
pages 72–83. Springer, 2014. doi:10.1007/978-3-642-54423-1_7.

18 Leslie Ann Goldberg and Marc Roth. Parameterised and fine-grained subgraph counting,
modulo 2. Algorithmica, 86(4):944–1005, 2024. doi:10.1007/S00453-023-01178-0.

19 Petr A. Golovach, Pim van ’t Hof, and Daniël Paulusma. Obtaining planarity by contracting
few edges. Theoretical Computer Science, 476:38–46, 2013. doi:10.1016/j.tcs.2012.12.041.

20 Jens Gramm, Jiong Guo, Falk Hüffner, Rolf Niedermeier, Hans-Peter Piepho, and Ramona
Schmid. Algorithms for compact letter displays: Comparison and evaluation. Computational
Statistics & Data Analysis, 52(2):725–736, 2007. doi:10.1016/j.csda.2006.09.035.

21 Sylvain Guillemot and Dániel Marx. A faster FPT algorithm for bipartite contraction.
Information Processing Letters, 113(22-24):906–912, 2013. doi:10.1016/j.ipl.2013.09.004.

22 Chengwei Guo and Leizhen Cai. Obtaining split graphs by edge contraction. Theoretical
Computer Science, 607:60–67, 2015. doi:10.1016/j.tcs.2015.01.056.

23 Pinar Heggernes, Pim van ’t Hof, Daniel Lokshtanov, and Christophe Paul. Obtaining a
bipartite graph by contracting few edges. SIAM Journal on Discrete Mathematics, 27(4):2143–
2156, 2013. doi:10.1137/130907392.

https://doi.org/10.1145/3486655
https://doi.org/10.4230/LIPICS.MFCS.2023.35
https://doi.org/10.1016/j.cosrev.2023.100556
https://doi.org/10.1007/s10474-016-0586-1
https://doi.org/10.1007/BFb0021804
https://doi.org/10.1007/BFb0021804
https://doi.org/10.1007/s00453-017-0328-y
https://doi.org/10.1007/s00453-017-0328-y
https://doi.org/10.1016/S0166-218X(00)00220-1
https://doi.org/10.34726/hss.2023.103864
https://doi.org/10.1007/978-3-031-52113-3_16
https://doi.org/10.1007/978-3-031-52113-3_16
https://arxiv.org/abs/2401.16296
https://doi.org/10.48550/arXiv.2401.16296
https://doi.org/10.1007/978-3-642-54423-1_7
https://doi.org/10.1007/S00453-023-01178-0
https://doi.org/10.1016/j.tcs.2012.12.041
https://doi.org/10.1016/j.csda.2006.09.035
https://doi.org/10.1016/j.ipl.2013.09.004
https://doi.org/10.1016/j.tcs.2015.01.056
https://doi.org/10.1137/130907392

A. Firbas and M. Sorge 30:15

24 Nathalie y Henr, Anastasia Bezerianos, and Jean-Daniel Fekete. Improving the readability of
clustered social networks using node duplication. IEEE Transactions on Visualization and
Computer Graphics, 14(6):1317–1324, 2008. doi:10.1109/TVCG.2008.141.

25 Anthony J. W. Hilton and C. Zhao. Vertex-splitting and chromatic index critical graphs.
Discrete Applied Mathematics, 76(1-3):205–211, 1997. doi:10.1016/S0166-218X(96)00125-4.

26 Subhash Khot and Venkatesh Raman. Parameterized complexity of finding subgraphs with
hereditary properties. Theoretical Computer Science, 289(2):997–1008, 2002. doi:10.1016/
S0304-3975(01)00414-5.

27 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. doi:
10.1016/0022-0000(80)90060-4.

28 Matthias Mayer and Fikret Erçal. Genetic algorithms for vertex splitting in DAGs. In
Proceedings of the 5th International Conference on Genetic Algorithms (ICGA 1993), page 646.
Morgan Kaufmann, 1993. URL: https://scholarsmine.mst.edu/comsci_techreports/25/.

29 George B. Mertzios and Derek G. Corneil. Vertex splitting and the recognition of trapezoid
graphs. Discrete Applied Mathematics, 159(11):1131–1147, 2011. doi:10.1016/j.dam.2011.
03.023.

30 Martin Nöllenburg, Manuel Sorge, Soeren Terziadis, Anaïs Villedieu, Hsiang-Yun Wu, and Jules
Wulms. Planarizing graphs and their drawings by vertex splitting. In Proceedings of the 30th
International Symposium on Graph Drawing and Network Visualization (GD 2022), pages 232–
246, Cham, 2023. Springer International Publishing. doi:10.1007/978-3-031-22203-0_17.

31 Doowon Paik, Sudhakar M. Reddy, and Sartaj Sahni. Vertex splitting in dags and applications
to partial scan designs and lossy circuits. International Journal of Foundations of Computer
Science, 9(4):377–398, 1998. doi:10.1142/S0129054198000301.

32 Norbert Peyerimhoff, Marc Roth, Johannes Schmitt, Jakob Stix, Alina Vdovina, and Philip
Wellnitz. Parameterized counting and Cayley graph expanders. SIAM Journal on Discrete
Mathematics, 37(2):405–486, 2023. doi:10.1137/22M1479804.

33 W. T. Tutte. Connectivity in graphs. University of Toronto Press, 1966.
34 Ryuhei Uehara. NP-complete problems on a 3-connected cubic planar graph and their

applications. Tokyo Woman’s Christian University, Tokyo, Japan, Tech. Rep. TWCU-M-0004,
1996.

ISAAC 2024

https://doi.org/10.1109/TVCG.2008.141
https://doi.org/10.1016/S0166-218X(96)00125-4
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://scholarsmine.mst.edu/comsci_techreports/25/
https://doi.org/10.1016/j.dam.2011.03.023
https://doi.org/10.1016/j.dam.2011.03.023
https://doi.org/10.1007/978-3-031-22203-0_17
https://doi.org/10.1142/S0129054198000301
https://doi.org/10.1137/22M1479804

From Chinese Postman to Salesman and Beyond:
Shortest Tour δ-Covering All Points on All Edges
Fabian Frei #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Ahmed Ghazy #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
Saarland University, Saarbrücken, Germany

Tim A. Hartmann #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Florian Hörsch #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Dániel Marx #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract
A well-studied continuous model of graphs, introduced by Dearing and Francis [Transportation
Science, 1974], considers each edge as a continuous unit-length interval of points. For δ ≥ 0, we
introduce the problem δ-Tour, where the objective is to find the shortest tour that comes within a
distance of δ of every point on every edge. It can be observed that 0-Tour is essentially equivalent
to the Chinese Postman Problem, which is solvable in polynomial time. In contrast, 1/2-Tour
is essentially equivalent to the graphic Traveling Salesman Problem (TSP), which is NP-hard but
admits a constant-factor approximation in polynomial time. We investigate δ-Tour for other values
of δ, noting that the problem’s behavior and the insights required to understand it differ significantly
across various δ regimes. On the one hand, we first examine the approximability of the problem for
every fixed δ > 0:
(1) For every fixed 0 < δ < 3/2, the problem δ-Tour admits a constant-factor approximation and

is APX-hard, while for every fixed δ ≥ 3/2, the problem admits an O(log n)-approximation in
polynomial time and has no polynomial-time o(log n)-approximation, unless P = NP.

Our techniques also yield a new APX-hardness result for graphic TSP on cubic bipartite graphs.
When parameterizing by the length of a shortest tour, it is relatively easy to show that 3/2 is the
threshold of fixed-parameter tractability:
(2) For every fixed 0 < δ < 3/2, the problem δ-Tour is fixed-parameter tractable (FPT) when

parameterized by the length of a shortest tour, while it is W[2]-hard for every fixed δ ≥ 3/2.
On the other hand, if δ is considered to be part of the input, then an interesting nontrivial
phenomenon appears when δ is a constant fraction of the number of vertices:
(3) If δ is part of the input, then the problem can be solved in time f(k)nO(k), where k = ⌈n/δ⌉;

however, assuming the Exponential-Time Hypothesis (ETH), there is no algorithm that solves
the problem and runs in time f(k)no(k/ log k).

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms; Theory
of computation → Parameterized complexity and exact algorithms

Keywords and phrases Chinese Postman Problem, Traveling Salesman Problem, Continuous Graphs,
Approximation Algorithms, Inapproximability, Parameterized Complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.31

Related Version Full Version: https://arxiv.org/abs/2410.10613

© Fabian Frei, Ahmed Ghazy, Tim A. Hartmann, Florian Hörsch, and Dániel Marx;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabian.frei@cispa.de
https://orcid.org/0000-0002-1368-3205
mailto:ahmed.ghazy@cispa.de
https://orcid.org/0009-0009-7414-5871
mailto:tim.hartmann@cispa.de
https://orcid.org/0000-0002-1028-6351
mailto:florian.hoersch@cispa.de
https://orcid.org/0000-0002-5410-613X
mailto:marx@cispa.de
https://orcid.org/0000-0002-5686-8314
https://doi.org/10.4230/LIPIcs.ISAAC.2024.31
https://arxiv.org/abs/2410.10613
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 From Chinese Postman to Salesman and Beyond

1 Introduction

We consider a well-studied continuous model of graphs introduced by Dearing and Francis [4].
Each edge is seen as a continuous unit interval of points with its vertices as endpoints. For
any given graph G, this yields a compact metric space (P (G), d) with a point set P (G) and
a distance function d: P (G)2 → R≥0.

A prototypical problem in this setting is δ-Covering, introduced by Shier [28] for any
positive real δ. The task is to find in G a minimum set S of points that δ-covers the entire
graph, in the sense that each point in P (G) has distance at most δ to some point in S.
This problem, which is also often referred to as the continuous p-Center problem has been
extensively studied; we cite only a few examples: [14, 2, 24]. Observe that the problem differs
from typical discrete graph problems in two ways: the solution has to δ-cover every point of
every edge (not just the vertices) and the solution may (and for optimality sometimes must)
use points inside edges. How does the complexity of this problem depend on the distance
δ? First, the problem is polynomial-time solvable when δ is a unit fraction, i.e., a rational
with numerator 1, and NP-hard for all other rational and irrational δ [10, 13]. One can
show that VertexCover is reducible to 2/3-Covering and DominatingSet is reducible
to 3/2-Covering. Thus δ-Covering behaves very differently for different values of δ and
can express problems of different nature and complexity: for example, while vertex cover
is fixed-parameter tractable (FPT) when parameterized by the solution size, dominating
set is W[2]-hard. This is reflected also in the complexity of δ-Covering: at the threshold
of δ = 3/2, the parameterized complexity of the problem, parameterized by the size of the
solution, jumps from FPT to W[2]-hard [13]. Similarly, δ-Covering allows a constant factor
approximation for δ < 3/2 and becomes log-APX-hard for δ ≥ 3/2 [11]. The problem dual
to δ-Covering is δ-Dispersion, as studied for example by Shier and Tamir [28, 29]. The
task is to place a maximum number of points in the input graph such that they pairwise
have distance at least δ from each other. For this problem, δ = 2 marks the threshold where
the parameterized complexity for the solution size as the parameter jumps from FPT to
W[1]-hard [12]. Furthermore, the problem is polynomial-time solvable when δ is a rational
with numerator 1 or 2, and NP-hard for all other rational and irrational δ [9, 12]. With
δ-Covering being the continuous version of VertexCover and DominatingSet, and
δ-Dispersion being a continuous version of IndependentSet, we now turn to the natural
continuous variant of another famous problem.

We study the graphic Traveling Salesman Problem (TSP) with a positive real covering
range δ in the continuous model, which we call δ-Tour. A δ-tour T is a tour that may
make U-turns at arbitrary points of the graph, even inside edges, and is δ-covering, that
is, every point in the graph is within distance δ from a point T passes by. The task in our
problem δ-Tour is to find a shortest δ-tour. See Figure 1 for two examples of δ-tours that
cannot be described as graph-theoretic closed walks. Note that computing a shortest 0-tour
is equivalent to computing a shortest Chinese Postman tour (a closed walk going through
every edge), which is known to be polynomial-time solvable [26, Chapter 29]. Moreover, one
can observe that if every vertex of the input graph has degree at least two, then there is
a shortest 1/2-tour that visits every vertex and, conversely, any tour visiting every vertex
is a 1/2-tour. Thus, finding a shortest 1/2-tour is essentially equivalent to solving a TSP
problem on a graph, with some additional careful handling of degree-1 vertices.

Our Results. It turns out that finding a shortest δ-tour is NP-hard for all δ > 0; hence,
we present approximation algorithms. As is standard, an α-approximation algorithm is one
that runs in polynomial time and finds a solution of value within a factor α of the optimum.

F. Frei, A. Ghazy, T. A. Hartmann, F. Hörsch, and D. Marx 31:3

c1

c2 c3

a1

a2 a3

v1

v2

v3

x1

x2

x3y1

y2

y3

z1

z2

z3

(a) A graph and a δ-tour for δ = 1. The tour δ-covers the inner part
of this graph by peeking into three edges up to the midpoint. These
three peek points are highlighted as the thick dots. The depicted
tour (the thick dashed line) has length 18, which is shortest.

uv

x

y z

(b) The depicted shortest δ-tour for
δ = 5/3 of length 2 · 1/6 travels be-
tween the two points on edge vx at
distances 1/3 and 1/6 from x.

Figure 1 Two examples of a δ-tour in a graph. On the right, see the special case of a tour fully
contained in an edge.

As our main approximation result, for every fixed δ ∈ (0, 3/2), we give constant-factor
approximation algorithms for finding a shortest δ-tour. We list our results in Table 1 and
plot the approximation ratio against δ in Figure 3. As the complementing lower bound,
we prove APX-hardness for every fixed δ ∈ (0, 3/2). Theorem 1.1 summarizes the general
behavior; more details follow.

▶ Theorem 1.1 (Constant-Factor Approximation). For every fixed δ ∈ (0, 3/2), the problem
δ-Tour admits a constant-factor approximation algorithm and is APX-hard.

The problem behaves very differently in the various regimes of δ, even within the range
of (0, 3/2), and we exploit connections to different problems for different values of δ:

Case δ ∈ (0, 1/6]. There is a close relation between our problem and the ChinesePostman-
Problem in this range, which gives a good approximation ratio. When δ approaches 0,
our approximation ratio approaches 1. See Theorem 3.3.

Case δ ∈ (1/6, 33/40). When 1/6 < δ < 1/2, the problem can be reduced to solving TSP
on metric instances, for which we can use Christofides’ 3/2-approximation algorithm [3]
to obtain the same approximation ratio for our problem. See Theorem 3.4.
A simplification of this approach for δ = 1/2 allows us to use the better 7/5-approximation
for Graphic TSP due to Sebő and Vygen [27]. See Theorem 3.5.
Finally, for 1/2 < δ < 33/40, it turns out that a 1/2-tour is a good approximation of a
δ-tour. See Theorem 3.6.

Case δ ∈ [33/40, 3/2). The problem here is closely related to a variation of the Vertex-
Cover problem, some results on which we exploit in our approximation algorithms [1, 21].
See Theorems thm:approx:ub:one:threehalves and 3.9.

The APX-hardness results are most challenging for small values of δ, where we first prove
a lower bound for a family of cycle-covering type of problems, which we call (α, β, γ, κ)-
CycleSubpartition; see Section 3.2. Our reduction developed for δ-Tour further directly

ISAAC 2024

31:4 From Chinese Postman to Salesman and Beyond

implies a new result for graphic TSP, namely APX-hardness on cubic bipartite graphs. To
the best of our knowledge, even for graphic TSP restricted to cubic graphs without the added
restriction to bipartitness, there is only one APX-hardness result that unfortunately happens
to be flawed [19, Thm. 5.4]. In particular, the proposed tour reconfiguration argument
appears to split the original TSP tour into two disjoint ones. The issue seems to affect results
in a series of other papers [7, 8, 17, 18, 16, 15]. Fortunately, our separate approach closes
the gap and yields an even stronger hardness result.

▶ Theorem 1.2. TSP is APX-hard even on cubic bipartite graphs.

Once δ reaches 3/2, the problem δ-Tour suddenly changes character: it becomes similar
to DominatingSet, where only a logarithmic-factor approximation is possible, unless
P = NP; see Theorem 3.11 and Theorem 3.14.

▶ Theorem 1.3 (Logarithmic Approximation). For every fixed δ ≥ 3/2, the problem δ-Tour
admits an O(log n)-approximation algorithm and has no o(log n)-approximation algorithm
unless P = NP.

The above approximation ratio in fact depends on δ, which the big-O notation hides.
Thus, if δ is not fixed and is rather given as an input, this approximation guarantee can be
arbitrarily bad. We show that a polylogarithmic-factor approximation is fortunately still
possible in that setting.

▶ Theorem 1.4 (Polylogarithmic Approximation). There is a polynomial-time algorithm that,
given δ > 0 and a graph G of order n, computes a 64(log n)3-approximation of a shortest
δ-tour of G.

Furthermore, we study the problem parameterized by the solution size, which is the
length of the δ-tour. As mentioned above, when δ ≥ 3/2, then δ-Covering becomes similar
to DominatingSet and is W[2]-hard. Therefore, it is not very surprising that δ = 3/2
marks the threshold for the parameterized complexity of δ-tour as well; see Section 3.4.

▶ Theorem 1.5 (Natural Parameterization). Computing a shortest length δ-tour, parameterized
by the length of the tour, is FPT for every fixed 0 < δ < 3/2, and W[2]-hard for every fixed
δ ≥ 3/2.

It is much more surprising what happens when δ is really large, comparable to the number
of vertices. For this to make sense, we have to again consider the problem of computing a
shortest δ-tour when δ is part of the input. In this regime, the problem becomes somewhat
similar to covering the whole graph with k = ⌈ n

δ ⌉ balls of radius δ, suggesting the problem to
be solvable in large part by guessing k centers in nO(k) time. Indeed, we give an algorithm
for computing a shortest δ-tour in this runtime, and show the exponent to be essentially
optimal.

▶ Theorem 1.6 (XP Algorithm for Parameter n/δ). There is an algorithm, which, given
a connected n-vertex graph G, computes a shortest δ-tour of G in f(k) · nO(k) time where
k = ⌈n/δ⌉.

▶ Theorem 1.7 (Hardness for Parameter n/δ). There are constants α > 0 and k0 such that,
unless ETH fails, for every k ≥ k0, there is no algorithm that, given an n-vertex graph,
computes a shortest δ-tour in O(nαk/ log k) time where k = ⌈n/δ⌉. Moreover, the problem is
W[1]-hard parameterized by k.

Section 2 begins with formal notions including a thorough definition of a δ-tour. Then
Section 3 gives an extended overview of our results.

F. Frei, A. Ghazy, T. A. Hartmann, F. Hörsch, and D. Marx 31:5

2 Formal Definitions

General Definitions. For a positive integer n, we denote the set {1, . . . , n} by [n]. All
graphs in this article are undirected, unweighted and do not contain parallel edges or loops.
Let G be a graph. For a subset of vertices V ′ ⊆ V (G), we denote by G[V ′] the subgraph
induced by V ′. The neighborhood of a vertex u is NG(u) := {v ∈ V (G) | uv ∈ E(G)}. We
write uv for an edge {u, v} ∈ E(G). We denote by ln the natural logarithm and by log the
binary logarithm.

Problem Related Definitions. For a graph G, we define a metric space whose point set
P (G) contains, somewhat informally speaking, all points on the continuum of each edge,
which has unit length. We use the word vertex for the elements in V (G), whereas we use the
word point to denote elements in P (G). Note however, that each vertex of G is also a point
of G.

The set P (G) is the set of points p(u, v, λ) for every edge uv ∈ E(G) and every λ ∈ [0, 1]
where p(u, v, λ) = p(v, u, 1 − λ); p(u, v, 0) coincides with u and p(u, v, 1) coincides with v.
The distance of points p, q on the same edge uv, say p = p(u, v, λp) and q = p(u, v, λq),
is d(p, q) = |λq − λp|. The edge segment P (pq) of p and q then is the subset of points
{p(u, v, µ) | min{λp, λq} ≤ µ ≤ max{λp, λq}}. A pq-walk T between points p0 := p and
pz := q is a finite sequence of points p0p1 . . . pz where every two consecutive points lie
on the same edge, that is, formally, for every i ∈ [z] there are an edge uivi ∈ E(G) and
λi, µi ∈ [0, 1] such that pi−1 = p(ui, vi, λi) and pi = p(ui, vi, µi). When p and q are not
specified, we may simply write walk instead of pq-walk. The length ℓ(T) of a walk T is∑

i∈[z] d(pi−1, pi). A pq-walk T , whose length is minimum among all pq-walks, is called
shortest. The points in the sequence defining a walk are called its stopping points. The point
set of T is P (T) =

⋃
i∈[z] P (pi−1, pi). For some p ∈ P (T), we say that T passes p. The

distance between two points p, q ∈ P (G), denoted as d(p, q), is the length of a shortest pq-walk,
and ∞ if no such walk exists. Further, let d(p, Q) = min{d(p, q) | q ∈ Q} for p ∈ P (G) and
Q ⊆ P (G).

A tour T is a p0pz-walk with p0 = pz. For a real δ > 0, a δ-tour is a tour where
d(p, P (T)) ≤ δ for every point p ∈ P (G). We study the following minimization problem.

Optimization Problem δ-Tour, where δ ≥ 0.

Instance A connected simple graph G.

Solution Any δ-tour T .

Goal Minimize the length ℓ(T).

Further, we use the following notions for a tour T = p0p1 . . . pz. A tour segment of T is a
walk given by a contiguous subsequence of p0p1 . . . pz. The tour T stops at a point p ∈ P (G)
if p ∈ {p0, p1, . . . , pz} and traverses an edge uv if uv or vu is a tour segment of T . The
discrete length of a tour is z, that is, the length of the finite sequence of points representing
it. We denote the discrete length of a tour T by α(T).

A point p ∈ P (G) is integral if it coincides with a vertex. Similarly, p = p(u, v, λ) is
half-integral if λ ∈ {0, 1

2 , 1}.

ISAAC 2024

31:6 From Chinese Postman to Salesman and Beyond

u v

x

y

z

(a) Staying out.

u v

x

y

z

(b) Peeking in.

u v

x

y

z

(c) Traversing once.

u v

x

y

z

(d) Traversing twice.

Figure 2 The four ways a nice δ-tour defined by at least 3 points can interact with an edge uv.

The extension of a tour T = p0p1 . . . pz, denoted as ⌈T ⌉, is the integral tour where, for
every edge uv ∈ E(G) and every λ < 1, every tour segment up(u, v, λ)u is replaced by uvu.
Fruther, the truncation of a tour T , denoted as ⌊T ⌋, is the integral tour where for every
edge uv ∈ E(G), λ < 1, every tour segment up(u, v, λ)u in T is replaced by u. We note that
P (⌊T ⌋) ⊆ P (T) ⊆ P (⌈T ⌉).

3 Overview of Results

Section 3.1 provides key technical insights. We present our approximation algorithms in
Section 3.2 and our hardness results in Section 3.3. Finally we turn to the parameterized
complexity results in Section 3.4. All details are provided in the full version of this paper.

3.1 Structural Results
Because TSP in the continuous model of graphs is studied in this paper for the first time,
we need to lay a substantial amount of groundwork. Due to the continuous nature of the
problem, it is not clear a priori how to check if a solution is a valid δ-tour, or whether it is
possible to compute a shortest δ-tour by a brute force search over a finite set of plausible
tours. We clarify these issues in this section. While some of the arguments are intuitively
easy to accept, the formal proofs are delicate with many corner cases to consider; the reader
might want to skip these proofs at first reading.

Sometimes, a δ-tour has to make U-turns inside edges to be shortest; see Figure 1a.
Indeed, it can be checked that an optimal 1-tour for the graph in Figure 1a must look exactly
as depicted. Except for a single case, it is unnecessary for a tour to make more than one
U-turn inside an edge. Indeed, the only case where a shortest tour is forced to make two
U-turns in an edge is when the tour remains entirely within a single edge; see Figure 1b for
an example. Note also that there exist degenerate cases in which a shortest δ-tour consists
of a single point.

However, unless a tour is completely contained in a single edge, we can see that there
are only four reasonable ways for a δ-tour to interact with the interior of any given edge,
illustrated in Figure 2:
(a) completely avoiding the interior,
(b) peeking into the edge from one side,
(c) fully traversing the edge exactly once from one vertex to the other, or
(d) traversing the edge exactly twice.
We call a tour that restricts itself to this reasonable behavior a nice tour. The following
result allows us to restrict our search space to nice tours.

▶ Lemma 3.1 (Nice Shortest Tours). Let G be a graph and δ a constant. Further, let a
δ-tour T in G be given. Then, in polynomial time, we can compute a δ-tour T ′ in G with
ℓ(T ′) ≤ ℓ(T) and such that all stopping points of T ′ are stopping points of T and T ′ is either
nice or has at most two stopping points.

F. Frei, A. Ghazy, T. A. Hartmann, F. Hörsch, and D. Marx 31:7

Table 1 Approximation upper bounds (UB) and lower bound (LB) for δ-Tour.

δ (0, 1/6] (1/6, 1/2) 1/2 (1/2, 33/40) [33/40, 1) [1, 3/2) [3/2, ∞)
UB 1/(1−2δ) 1.5 1.4 1.4/(2 − 2δ) 4 3/(3−2δ) min{2δ, 64 log2 n} log n

Thm. 3.3 Thm. 3.4 Thm. 3.5 Thm. 3.6 Thm. 3.9 Thm. 3.8 Thms. 1.4 and 3.11
LB APX-hard APX-hard Ω(log n)

Thm. 3.12 Thm. 3.13 Thm. 3.14

Despite the continuous nature of δ-Tour, we show that we can actually study the problem
in a discrete setting instead. More precisely, we prove that there is a nice shortest δ-tour T

defined by points whose edge positions λ come from a small explicitly defined set. To show
this, the idea is that there are only three scenarios for the edge position of a non-vertex
stopping point p of T .
1. It has distance exactly δ to a vertex u. An example is that G is a long path with an end

vertex u, and p is the closest point of P (T) to u. Then p has an edge position λ that is
the fractional part of δ.

2. It has distance exactly δ to a half-integral point p(u, v, 1
2). An example is that G is a

long ww′-path with a triangle uvw attached to w, and p is a closest point of P (T) to
p(u, v, 1

2). Then p has an edge position λ which is the fractional part of δ + 1
2 .

3. It has distance exactly 2δ to a vertex u. An example is that G contains a long uv-path
P , p is the closest point of P (T) − {u} on the path P to u, and T stops at u. Then p has
an edge position λ which is the fractional part of 2δ.

Any δ-tour can efficiently be modified into one that is nice and has only such edge
positions. Our technical proof uses some theory of linear programming, in particular some
results on the vertex cover polytope.

▶ Lemma 3.2 (Discretization Lemma). For every δ > 0 and every connected graph G, there
is a shortest δ-tour such that each stopping point of the tour can be described as p(u, v, λ)
with λ ∈ Sδ where Sδ =

{
0, δ − ⌊δ⌋, 1

2 + δ − ⌊ 1
2 + δ⌋, 2δ − ⌊2δ⌋

}
.

As a consequence, we can find a shortest δ-tour by a brute-force algorithm. Using some
related arguments, we can check whether a given tour actually is a δ-tour in polynomial time.

3.2 Approximation Algorithms

Here, we overview the approximation algorithms we design for different ranges of δ. Most
of our algorithms follow a general paradigm; our approach is to design a collection of core
approximation algorithms for certain key values of δ and rely on one of the following two ideas
to extrapolate the approximation ratios we get to previous and subsequent intervals. The
first main idea uses the simple fact that a δ-tour is also (δ + x)-tour where x > 0. Having an
approximation algorithm for δ-Tour, if we are able to reasonably bound the ratio between
the lengths of a shortest δ-tour and a shortest (δ + x)-tour, we obtain an approximation
algorithm for (δ + x)-Tour essentially for free. The second main idea is complementary to
the first. Namely, we show that we may also extend a given δ-tour to obtain a (δ − x)-tour
where x > 0. Again, having an approximation algorithm for the δ-Tour, if we have a good
bound on the total length of the extensions we add, we obtain an approximation algorithm
for (δ − x)-Tour.

ISAAC 2024

31:8 From Chinese Postman to Salesman and Beyond

0 1/6 1/2 33/40 1 3/2

1
1.5

3

4

covering range δ

ap
pr

ox
im

at
io

n
ra

tio

Figure 3 The approximation ratio of our algorithms for δ-Tour plotted against δ.

Approximation for δ ∈ (0, 1/6]. The main idea is that a shortest Chinese Postman tour,
that is, a tour which traverses every edge, is a good approximation of a δ-tour. Let us denote
the length of a shortest δ-tour of a given graph by OPTδ-tour and the length of a shortest
Chinese Postman tour by OPTCP. To bound the ratio OPTCP/OPTδ-tour, we observe that
there is a shortest δ-tour that, for every edge uv, either traverses uv or contains the segment
of the form up(u, v, λ)u for some λ ∈ {1 − δ, 1 − 2δ}. We obtain a Chinese Postman tour
by replacing every such segment by a tour segment uvu. This bounds OPTCP/OPTδ-tour by
1/(1 − 2δ). Hence, outputting a shortest Chinese Postman tour, which can be computed in
polynomial time [5], yields an approximation ratio of 1/(1 − 2δ).

▶ Theorem 3.3. For every δ ∈ (0, 1/6], δ-Tour admits a 1/(1−2δ)-approximation algorithm.

Approximation for δ ∈ (1/6, 1/2). In this range, we rely on shortest δ-tours that satisfy
certain desirable discrete properties. In the following more precise description, we focus on
the case δ ≤ 1

4 , the construction needing to be slightly altered if 1
4 < δ ≤ 1

2 . Here, we prove
the existence of a nice shortest δ-tour T such that
(P1) T contains the tour segment up(u, v, 1 − δ)u for every edge uv ∈ E(G) incident to a

leaf vertex v (that is, degG(v) = 1) and
(P2) for every edge uv not incident to a leaf, either T traverses uv or the interaction of T

with uv consists of one of the segments up(u, v, 1 − 2δ)u or vp(v, u, 1 − 2δ)v.
We construct an auxiliary graph G′ on the above listed points with edge weights corresponding
to their distance in G. It turns out that TSP tours in G′ are in a one-to-one correspondence
with δ-tours in G satisfying properties (P1–P2). More precisely, we prove that an α-
approximate TSP tour T ′ of G′ can be efficiently turned into a δ-tour T of G of at most the
same length which yields ℓ(T) ≤ ℓ(T ′) ≤ α · OPTTSP, where OPTTSP denotes the length of a
shortest TSP tour of G′. Then, noting that a given δ-tour of G satisfying properties (P1)
and (P2) can be converted to a TSP tour of G′ of at most the same length, we get that T is
a δ-tour with ℓ(T) ≤ α · OPTδ-tour. The first part, that is, proving that a TSP tour T ′ of
G′ can be turned into a δ-tour of G of the same length, is based on the fact that there is a
limited number of ways a reasonable TSP tour interacts with the points corresponding to a
certain edge. More precisely, any TSP tour in G′ can easily be transformed into one which
is not longer and whose interaction with the points in any edge is in direct correspondence
with the interaction of a certain δ-tour with this edge in G.

F. Frei, A. Ghazy, T. A. Hartmann, F. Hörsch, and D. Marx 31:9

This lets us transfer known positive approximation results for metric TSP to δ-tour. We
may use the Christofides algorithm [3], yielding the following theorem.

▶ Theorem 3.4. For every δ ∈ (1/6, 1/2), δ-Tour admits a 3/2-approximation algorithm.

Approximation for δ = 1/2. Even though the idea from the previous section still applies
when δ = 1/2, interestingly, we obtain a better approximation ratio observing that the
problem further reduces to computing a graphic TSP tour on the non-leaf vertices, which
admits a 1.4-approximation algorithm due to Sebő and Vygen [27].

▶ Theorem 3.5. 1/2-Tour admits a 1.4-approximation algorithm.

Approximation for δ ∈ (1/2, 33/40). In this range, we show that computing a 1/2-tour
via Theorem 3.5 is a good approximation of a δ-tour. To that end, we characterize δ-tours
for δ ∈ [1/2, 1], showing that, in particular, the existence of a shortest δ-tour T such that
one of the following conditions hold for every edge uv.

(P1) T stops at both u and v, or
(P2) T stops at one of the endpoints, say u, and additionally stops at the point p(u, v, λ)

for some λ ∈ [1 − δ, 1], or T stops at the two points p(u, v, λ1) and p(x, v, λ2) for some
x ∈ NG(v) where λ1 + λ2 ≥ 2 − 2δ, or

(P3) T stops at neither u nor v but stops at two points p(x, v, λ1) and p(y, u, λ2) for some
x ∈ NG(v) and y ∈ NG(u) where λ1 + λ2 ≥ 3 − 2δ.

Let OPT1/2 and OPTδ-tour be the lengths of a shortest 1/2-tour and δ-tour in G, respec-
tively. To bound the ratio OPT1/2/OPTδ-tour, we observe that a given δ-tour Tδ can be
transformed into a 1/2-tour T1/2 by an appropriate replacement of every tour segment of Tδ

corresponding to one of the cases (P1-3).
It can be shown that these modifications then result in a tour T1/2 visiting every

non-leaf vertex of G and covering leaves by tour segments of length 1, so T1/2 is a 1/2-
tour. These modifications increase the tour length by at most a multiplicative factor of
max{ 1

2(1−δ) , 2
3−2δ } = 1/(2 − 2δ), so we have the following theorem.

▶ Theorem 3.6. For every δ ∈ (1/2, 33/40), δ-Tour admits a 1.4/(2 − 2δ)-approximation
algorithm.

Approximation for δ ∈ (33/40, 3/2). Here we show that a 1-tour provides constant-factor
approximations for δ-tours in this range. For δ > 1, as in the previous range, due to a
similar characterization of δ-tours, we can show an α-approximation algorithm for 1-Tour
to imply an α

3−2δ -approximation algorithm. For δ < 1, we show that starting from a 1-tour
and augmenting it with some tour segments results in a δ-tour of a bounded length. The
3-approximation algorithm for a 1-Tour works as follows. We exploit a connection to the
problem of computing a shortest vertex cover tour, which is a closed walk in a graph such
that the vertices this tour stops at form a vertex cover. This problem, introduced in [1],
admits a 3-approximation algorithm using linear programming (LP) techniques [21]. It is
easy to see that a vertex cover tour forms a 1-tour; however, a shortest 1-tour can be shorter
than a shortest vertex cover tour (e.g., this is the case in Figure 1a). Thus, the 1-tour we get
from an arbitrary 3-approximation for vertex cover tour is in general not a 3-approximate
1-tour. Instead, we closely examine the LP formulated by Könemann et al. [21], showing the
optimum for this LP to be a lower bound on the length of a 1-tour, which means that the
vertex cover tours we get using this approach yield 3-approximate 1-tours.

ISAAC 2024

31:10 From Chinese Postman to Salesman and Beyond

Given a connected graph G, let F(G) be the set of subsets F of V (G) such that both
G[F] and G[V (G) − F] induce at least one edge. For a set F ∈ F(G), let CG(F) denote the
set of edges in G with exactly one endpoint in F . The LP can then be formulated as follows:

Minimize
∑

e∈E(G)

ze

subject to
∑

e∈CG(F)

ze ≥ 2 for all F ∈ F(G) and

0 ≤ ze ≤ 2 for all e ∈ E(G).

Denoting the optimal objective value of the above LP defined for a fixed graph G by
OPTLP(G), the corollary below follows from [21].

▶ Theorem 3.7 (Consequence of [21, Thms. 2 and 3]). Given a connected graph G of order n,
in polynomial time, we can compute a vertex cover tour T of G with ℓ(T) ≤ 3 · OPTLP(G).

It remains to show that OPTLP lower-bounds OPT1-tour, the length of a shortest 1-tour.
Let T1-tour = p0 . . . pk pk = p0 be a nice 1-tour of G. For every edge uv ∈ E(G), we
define Λuv :=

∑
i∈[k]:P (pi−1pi)⊆P (u,v)

dG(pi−1, pi), indicating how much the tour T1-tour spends

inside every edge uv. The vector (min(2, Λe))e∈E(G) can then be shown to be feasible
for the above LP. We observe the length of T1-tour to be at least

∑
e∈E(G) Λe, yielding

OPT1-tour ≥ OPTLP(G) and with Theorem 3.7, we obtain the following theorem.

▶ Theorem 3.8. For any δ ∈ [1, 3/2), δ-Tour admits a 3/(3 − 2δ)-approximation algorithm.

For the remaining range δ ∈ (33/40, 1), our algorithm first uses Theorem 3.8 to obtain a
3-approximate 1-tour T that is a vertex cover tour. Then, for every vertex v ̸∈ V (T), we
choose an arbitrary neighbor u. Observe that u ∈ V (T). Then we extend T into a tour T ′ by
replacing an arbitrary occurence of u in T by the segment up(u, v, 1 − δ)u if v is a leaf vertex
and by the segment up(u, v, (1 − δ))u, otherwise. As T ′ fulfills the characterizing properties
of a δ-tour, T ′ is a δ-tour. To bound its length, using our characterization, we observe that,
given an arbitrary δ-tour T ′′, each non-leaf vertex v of G can be associated to a segment of
T ′′ of cost at least 4(1 − δ) as T ′′ either stops at v by traversing an edge, incurring a cost of
at least 1, or makes two non-vertex stops that can be associated to v with a total cost of at
least 2(2 − δ). The previous observation can be used to show that the δ-tour we construct
achieves an approximation ratio of 4.

▶ Theorem 3.9. For any δ ∈ [33/40, 1), δ-Tour admits a 4-approximation algorithm.

Approximation for δ > 3/2. Here we design polylog(n)-approximation algorithms. We
consider two different settings: one where δ is fixed and another where δ is part of the input.
We show that each of the two problems can be reduced to an appropriate dominating set
problem in an auxiliary graph. Recall that the discretization lemma (Lemma 3.2) shows,
at a high-level, that there is a shortest δ-tour T of G whose stopping points on every edge
come from a constant-sized set. Let Pδ(G) be the set of all such points in G.

In order to define our auxiliary graph, we first describe a collection IG,δ of edge segments
of G. Namely, IG,δ is the collection of minimal edge segments each of whose whose endpoints
is either a vertex of V (G) or is of distance exactly δ to a point in Pδ(G) in G. This definition
is suitable due to three properties of IG,δ:

F. Frei, A. Ghazy, T. A. Hartmann, F. Hörsch, and D. Marx 31:11

(P1) If T is a δ-tour in G whose stopping points are all contained in Pδ(G), then every
I ∈ Iδ(G) is fully covered by one stopping point of T ,

(P2) every point in P (G) is contained in some I ∈ IG,δ, and
(P3) the number of segments in IG,δ is polynomial in n.
We are now ready to describe the auxiliary graph Γ(G, δ). We let V (Γ(G, δ)) consist of
Pδ(G) and a vertex xI for every I ∈ IG,δ. We further let E(Γ(G, δ)) contain edges such that
Γ(G, δ)[Pδ(G)] is a clique and let it contain an edge pxI for p ∈ Pδ(G) and I ∈ IG,δ whenever
p covers all the points in I. The main connection between δ-tours in G and dominating sets
in Γ(G, δ) is due to the following lemma, which we algorithmically exploit in both settings,
when δ ≥ 3/2 is fixed and when δ is part of the input.

▶ Lemma 3.10. Let G be a graph and δ > 1. Further, let T be a tour in G whose stopping
points are all in Pδ(G). Then T is a δ-tour in G if and only if the stopping points of T are
a dominating set in Γ(G, δ).

Approximation for fixed δ > 3/2. By computing a dominating set Y in the auxiliary
graph Γ(G, δ) using a standard log n-approximation algorithm and connecting it into a tour
of length O(δ|Y |), we obtain the main result in this setting.

▶ Theorem 3.11. For any δ ≥ 3/2, δ-Tour admits a O(log n)-approximation algorithm.

Approximation for δ as Part of the Input. The approach from the previous section does
not yield any non-trivial approximation guarantee in this setting mainly because we get an
additional factor of roughly δ when connecting the dominating set into a tour. However, we
are able to show that a polylog(n)-approximation is attainable when δ is part of the input.
The algorithm for this is based on a reduction to another problem related to dominating sets.
Namely, a dominating tree U of a given graph H is a subgraph of H which is a tree and such
that V (U) is a dominating set of H . Kutiel [22] proves that given an edge-weighted graph H ,
we can compute a dominating tree of H of weight at most log3 n times the minimum weight
of a dominating tree of H.

In order to make use of this result, we now endow E(Γ(G, δ)) with a weight function w.
For all p, p′ ∈ Pδ(G), we set w(pp′) = dG(p, p′), and all other edges get a very large weight.
We now compute an approximate dominating tree U of Γ(G, δ) with respect to w. By the
definition of w, we obtain that U does not contain any vertex of V (Γ(G, δ)) − Pδ(G). It
follows that we can obtain a tour T from U that visits all points of V (U) and whose weight
is at most 2w(U). By Lemma 3.10, we obtain that T is a δ-tour in G.

Finally, in order to determine the quality of T , consider a shortest δ-tour T ∗ in G. It
follows from Lemma 3.10 that the set PT ∗ of points of Pδ(G) passed by T ∗ forms a dominating
set of Γ(G, δ). Further, we can easily find a tree in Γ(G, δ) spanning PT ∗ whose weight is at
most the length of T ∗. Hence, this tree is a dominating tree in Γ(G, δ), and Theorem 1.4
follows.

3.3 Inapproximability Results
Having presented our approximation algorithms providing a constant-factor approximation
for every δ > 0, we now rule out the existence of a PTAS by showing APX-hardness for
every δ > 0. The main challenge is to show the hardness for the range δ ∈ (0, 1/2]. A simple
subdivision argument then allows us to extend the hardness result to any δ > 0. Further, we
describe a stronger inapproximability result for δ ≥ 3/2.

ISAAC 2024

31:12 From Chinese Postman to Salesman and Beyond

APX-Hardness for Covering Range δ ∈ (0, 1/2]. As the first step towards the APX-
hardness of δ-Tour in the range δ ∈ (0, 1/2], we introduce a new family of optimization
problems called (α, β, γ, κ)-CycleSubpartition, that is also interesting on its own.

Optimization Problem (α, β, γ, κ)-CycleSubpartition, where α, β, γ, κ ∈ R and α, β, γ > 0.

Instance A simple graph G.

Solution Any set C of pairwise vertex-disjoint cycles in G.

Goal Minimize α|C| + β|V (G) −
⋃

C∈C V (C)| + γ|V (G)| + κ.

This bi-objective problem asks us, roughly speaking, for any given graph, to cover as many
vertices as possible with a family of as few vertex disjoint cycles as possible. The precise
balance between the two opposed optimization goals is tuned by the problem parameters.
In particular, α specifies the cost for each cycle in the solution and β for each vertex left
uncovered. Disallowing uncovered vertices (or making them prohibitively expensive), yields
the classical APX-hard minimization problem CyclePartition [25, Thm 3.1, Prob. (iv)].

The two remaining parameters γ and κ may appear artificial since their only immediate
effect is to make any solution for a given graph G more expensive by the same cost γ|V (G)|+κ.
They will prove meaningful, however, for our main goal of this section. Namely, we first
establish APX-hardness for (α, β, γ, κ)-CycleSubpartition for cubic graphs in the entire
parameter range of α, β, γ, κ ∈ R, α, β, γ > 0 and then show that on cubic graphs, for every
δ ∈ (0, 1/2], we have that δ-Tour coincides with this problem for an appropriate choice of
the parameters α, β, γ, and κ. The proof uses a reduction from VertexCover on cubic
graphs, which is known to be APX-hard [19, Thm. 5.4].

For some fixed α, β, γ, κ ∈ R with α, β, γ > 0, given an instance G of cubic VertexCover,
we create a cubic graph H which we view as an instance of (α, β, γ, κ)-CycleSubpartition.
It is not difficult to obtain a packing of cycles in H with the appropriate properties from
a vertex cover in G. The other direction, that is, obtaining a vertex cover in G from a
cycle packing in H is significantly more delicate. A collection of careful reconfiguration
arguments is needed to transform an arbitrary cycle cover in H into one that is of a certain
particular shape and not more expensive. Having a cycle cover of this shape at hand, a
corresponding vertex cover in G can easily be found. As mentioned above, we now easily
obtain APX-hardness of δ-Tour for any δ ∈ (0, 1/2] and even the previously unknown
APX-hardness for cubic bipartite graphic TSP.

▶ Theorem 3.12. On cubic bipartite graphs, δ-Tour is APX-hard for δ ∈ (0, 1/2].

TSP is APX-hard even on cubic bipartite graphs.
With Theorem 3.12 at hand, we further easily obtain a hardness result for larger values

of δ. Namely, observe that for any nonnegative integer k, any constant δ and any connected
graph G, there is a direct correspondence between the δ-tours in G and the kδ-tours in the
graph obtained from G by subdividing every edge k − 1 times, yielding the following result.

▶ Theorem 3.13. The problem δ-Tour is APX-hard for any real δ > 0.

Stronger Inapproximability for Covering Range δ ≥ 3/2. For δ ≥ 3/2, we give a lower
bound of roughly ln n on the approximation ratio, asymptotically matching our upper bound.
Like for all our inapproximability results, we prove hardness for the decision version of the
problem.

F. Frei, A. Ghazy, T. A. Hartmann, F. Hörsch, and D. Marx 31:13

▶ Theorem 3.14. Unless P = NP, for every δ ≥ 3/2, there exists an absolute constant αδ

such that there is no P-time algorithm that, given a connected graph G and a constant K,
returns “yes” if G admits a δ-tour of length at most K and “no” if G does not admit a δ-tour
of length at most αδ log(|V (G)|)K.

We start from the inapproximability of DominatingSet on split graphs, implicitly given
by Dinur and Steurer [6, Corollary 1.5]. Given a split graph G satisfying some nontriviality
condition, we can construct a graph G′ such that the minimum size of a dominating set of G

and the length of a shortest δ-tour in G′ are closely related.

3.4 Parameterized Complexity
We examine the problem’s parameterized complexity for two parameters: tour length and n/δ.

Parameterization by Tour Length. For δ ≥ 3/2, W[2]-hardness follows by a reduction from
DominatingSet on split graphs, namely the same as used to show inapproximability for
δ ≥ 3/2. We complement this result by giving an FPT-algorithm when δ < 3/2. In fact,
we give an algorithm which allows δ to be part of the input and that is fixed-parameter
tractable for δ and maximum allowed tour length α combined.

▶ Theorem 3.15. There is an algorithm that, given a graph G and reals δ ∈ (0, 3/2) and
α ≥ 0, decides whether G has a δ-tour of length at most α in f(α, δ) · nO(1) time, for some
computable function f .

Our algorithm is based on a kernelization: we either correctly conclude that G has no
δ-tour of length at most α, or output an equivalent instance of size at most f(α, δ) for a
computable function f . The key insight is a bound on the vertex cover size of f(α, δ) for
a computable function, assuming there exists a δ-tour of length at most α. Hence we may
compute an approximation C of a minimum vertex cover, and reject the instance if C is too
large. We partition the vertices in V (G) − C by their neighborhood in the vertex cover C.
Now if a set S of the partition has size larger than f(α, δ) for a computable function f , then
deleting a vertex of S yields an equivalent instance.

XP Algorithm for Large Covering Range. We here give an overview of the proof of
Theorem 1.6. The crucial idea is that, if T is a δ-tour, then, while the length of T can be
linear in n, there exists a set of points stopped at by this tour that covers all the points in
P (G) and whose size is bounded by a function depending only on k where k = n

δ . Intuitively
speaking, the remainder of the tour is needed to connect the points in this set, but not to
actually cover points in P (G). Therefore, these segments connecting the points in the set can
be chosen to be as short as possible. These observations can be subsumed in the following
lemma, crucial to the proof of Theorem 1.6.

▶ Lemma 3.16. Let G be a connected graph of order n, δ a positive real, k = ⌈ n
δ ⌉ and

suppose that n ≥ 12k. Further, let T be a shortest δ-tour in G. Then there exists a set
Z ⊆ P (G) of points stopped at by T with |Z| ≤ 12k such that for every point p ∈ P (G), we
have dG(p, Z) ≤ δ.

With Lemma 3.16 at hand, Theorem 1.6 follows easily. Assuming that the minimum
size requirement in Lemma 3.16 is met, due to the discretization lemma (Lemma 3.2), there
exists a shortest tour only stopping at points from a set of size O(n2). We then enumerate
all subsets of size at most 12k and for each of these sets, compute a shortest tour passing

ISAAC 2024

31:14 From Chinese Postman to Salesman and Beyond

through its elements and check whether it is a δ-tour. It follows from Lemma 3.16 that the
shortest tour found during this procedure is a shortest δ-tour. In the proof of Lemma 3.16,
we define Z as the union of two sets Z1 and Z2. The set Z1 is an inclusion-wise minimal set
of points stopped at by T that covers all points in P (G) whose distance to T is at least n

2k .
For each z ∈ Z1, by definition, there exists such a point pz for which dG(pz, z′) > δ holds
for all z′ ∈ Z − z. Now for every z ∈ Z1, we choose a shortest walk from pz to z. It turns
out that these walks do pairwise not share vertices of V (G) and each of them contains O(n

k)
vertices of V (G). It follows that |Z1| = O(k). We now walk along ⌊T ⌋ and, roughly speaking,
create Z2 by adding every n

3k -th vertex stopped at by ⌊T ⌋. It turns out that Z2 covers all
points in P (G) whose distance to T is at most n

2k . Further, as the length of ⌊T ⌋ is bounded
by 2n, we have |Z2| = O(k).

W[1]-Hardness for Large Covering Range. Given the XP-time algorithm running in time
f(k) · nO(k) designed for the regime δ = Ω(n), it is natural to ask whether there is an
FPT-time algorithm for the same parameter k := ⌈ n

δ ⌉. The answer is no. We show W[1]-
hardness and the running time of our algorithm for Theorem 1.6 to be close to optimal
under the Exponential Time Hypothesis (ETH). The hardness is based on the fact that
BinaryCSP on cubic constraint graphs cannot be solved in time f(k) · no(k/ log k) under
ETH; see [20, 23]. (The exact formulation we use is stronger and gives a lower bound for
every fixed k.) An instance of BinaryCSP is a graph G with k edges, where the nodes
represent variables taking values from a domain Σ = [n], and every edge is associated with a
constraint relation Ci,j ⊆ Σ × Σ over the two variables i and j. The instance is satisfiable if
there is an assignment to the variables A : V (G) → Σ such that (A(i), A(j)) ∈ Ci,j for every
constraint relation Ci,j .

In our reduction, we construct k gadgets corresponding to the constraints, with each
gadget having some number of portals. Each gadget has multiple possible states corresponding
to the satisfying assignments of its two constrained variables. If two constraints share a
variable, then the corresponding gadgets are connected by paths between appropriate portals.
These connections ensure that the selected states of the two gadgets agree on the value of the
variable. It is now easy to find a tour in the auxiliary graph given a satisfying assignment
for the formula. On the other hand, the construction is designed so that all tours in the
auxiliary graph are in a certain shape, allowing to obtain an assignment from them.

References
1 Esther M. Arkin, Magnús M. Halldórsson, and Refael Hassin. Approximating the tree and

tour covers of a graph. Inf. Process. Lett., 47(6):275–282, 1993. doi:10.1016/0020-0190(93)
90072-H.

2 Ramaswamy Chandrasekaran and Arie Tamir. An o((n log p)2) algorithm for the continuous
p-center problem on a tree. SIAM J. Algebraic Discret. Methods, 1(4):370–375, 1980. doi:
10.1137/0601043.

3 Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Operations Research Forum, 3(1):20, March 2022. doi:10.1007/s43069-021-00101-z.

4 Perino M. Dearing and Richard Lane Francis. A minimax location problem on a network.
Transportation Science, 8(4):333–343, 1974.

5 Reinhard Diestel. Graph Theory. Springer, 5th edition, 2017.
6 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In STOC, pages

624–633. ACM, 2014. doi:10.1145/2591796.2591884.
7 Lars Engebretsen and Marek Karpinski. Approximation hardness of TSP with bounded

metrics. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Automata,

https://doi.org/10.1016/0020-0190(93)90072-H
https://doi.org/10.1016/0020-0190(93)90072-H
https://doi.org/10.1137/0601043
https://doi.org/10.1137/0601043
https://doi.org/10.1007/s43069-021-00101-z
https://doi.org/10.1145/2591796.2591884

F. Frei, A. Ghazy, T. A. Hartmann, F. Hörsch, and D. Marx 31:15

Languages and Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July
8-12, 2001, Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 201–212.
Springer, 2001. doi:10.1007/3-540-48224-5_17.

8 Lars Engebretsen and Marek Karpinski. TSP with bounded metrics. Journal of Computer
and System Sciences, 72(4):509–546, 2006. doi:10.1016/j.jcss.2005.12.001.

9 Alexander Grigoriev, Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger. Dis-
persing obnoxious facilities on a graph. Algorithmica, 83(6):1734–1749, 2021. doi:10.1007/
S00453-021-00800-3.

10 Tim A. Hartmann. Facility location on graphs. Dissertation, RWTH Aachen University,
Aachen, 2022. doi:10.18154/RWTH-2023-01837.

11 Tim A. Hartmann and Tom Janßen. Approximating δ-covering (to appear). In Approximation
and Online Algorithms - 22nd International Workshop, WAOA 2024, Egham, United Kingdom,
September 5-6, 2024, Proceedings, Lecture Notes in Computer Science. Springer, 2024.

12 Tim A. Hartmann and Stefan Lendl. Dispersing obnoxious facilities on graphs by rounding
distances. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, Proceeding of the
47th International Symposium on Mathematical Foundations of Computer Science (MFCS
2022), volume 241 of LIPIcs, pages 55:1–55:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPICS.MFCS.2022.55.

13 Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger. Continuous facility location on
graphs. Math. Program., 192(1):207–227, 2022. doi:10.1007/S10107-021-01646-X.

14 Oded Kariv and S. Louis Hakimi. An algorithmic approach to network location problems. I:
The p-centers. SIAM Journal on Applied Mathematics, 37(3):513–538, 1979.

15 Marek Karpinski. Towards better inapproximability bounds for TSP: A challenge of global
dependencies. In Adrian Kosowski and Igor Walukiewicz, editors, Proceedings of the 20th
International Symposium on Fundamentals of Computation Theory (FCT 2015), volume
9210 of Lecture Notes in Computer Science, pages 3–11. Springer, 2015. doi:10.1007/
978-3-319-22177-9_1.

16 Marek Karpinski and Richard Schmied. Improved inapproximability results for the shortest
superstring and the bounded metric TSP. https://theory.cs.uni-bonn.de/ftp/reports/
cs-reports/2013/85339-CS.pdf. Accessed: 2024-04-01.

17 Marek Karpinski and Richard Schmied. On approximation lower bounds for TSP with bounded
metrics. CoRR, abs/1201.5821, 2012. arXiv:1201.5821.

18 Marek Karpinski and Richard Schmied. Improved inapproximability results for the shortest
superstring and related problems. In Anthony Wirth, editor, Nineteenth Computing: The
Australasian Theory Symposium, CATS 2013, Adelaide, Australia, February 2013, volume
141 of CRPIT, pages 27–36. Australian Computer Society, 2013. URL: http://crpit.scem.
westernsydney.edu.au/abstracts/CRPITV141Karpinski.html.

19 Marek Karpinski and Richard Schmied. Approximation hardness of graphic TSP on cubic
graphs. RAIRO – Operations Research, 49(4):651–668, 2015. doi:10.1051/ro/2014062.

20 Karthik C. S., Dániel Marx, Marcin Pilipczuk, and Uéverton S. Souza. Conditional lower
bounds for sparse parameterized 2-CSP: A streamlined proof. CoRR, abs/2311.05913, 2023.
doi:10.48550/arXiv.2311.05913.

21 Jochen Könemann, Goran Konjevod, Ojas Parekh, and Amitabh Sinha. Improved ap-
proximations for tour and tree covers. Algorithmica, 38(3):441–449, 2004. doi:10.1007/
s00453-003-1071-0.

22 Gilad Kutiel. Hardness results and approximation algorithms for the minimum dominating
tree problem. CoRR, abs/1802.04498, 2018. arXiv:1802.04498.

23 Dániel Marx. Can you beat treewidth? In FOCS, pages 169–179. IEEE Computer Society,
2007. doi:10.1109/FOCS.2007.18.

24 Nimrod Megiddo and Arie Tamir. New results on the complexity of p-center problems. SIAM
J. Comput., 12(4):751–758, 1983. doi:10.1137/0212051.

ISAAC 2024

https://doi.org/10.1007/3-540-48224-5_17
https://doi.org/10.1016/j.jcss.2005.12.001
https://doi.org/10.1007/S00453-021-00800-3
https://doi.org/10.1007/S00453-021-00800-3
https://doi.org/10.18154/RWTH-2023-01837
https://doi.org/10.4230/LIPICS.MFCS.2022.55
https://doi.org/10.1007/S10107-021-01646-X
https://doi.org/10.1007/978-3-319-22177-9_1
https://doi.org/10.1007/978-3-319-22177-9_1
https://theory.cs.uni-bonn.de/ftp/reports/cs-reports/2013/85339-CS.pdf
https://theory.cs.uni-bonn.de/ftp/reports/cs-reports/2013/85339-CS.pdf
https://arxiv.org/abs/1201.5821
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV141Karpinski.html
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV141Karpinski.html
https://doi.org/10.1051/ro/2014062
https://doi.org/10.48550/arXiv.2311.05913
https://doi.org/10.1007/s00453-003-1071-0
https://doi.org/10.1007/s00453-003-1071-0
https://arxiv.org/abs/1802.04498
https://doi.org/10.1109/FOCS.2007.18
https://doi.org/10.1137/0212051

31:16 From Chinese Postman to Salesman and Beyond

25 Sartaj Sahni and Teofilo F. Gonzalez. P-complete approximation problems. J. ACM, 23(3):555–
565, 1976. doi:10.1145/321958.321975.

26 A. Schrijver. Combinatorial Optimization – Polyhedra and Efficiency. Springer, 2003.
27 András Sebő and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-

TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica,
pages 1–34, 2014.

28 Douglas R. Shier. A min-max theorem for p-center problems on a tree. Transportation Science,
11(3):243–252, 1977. URL: http://www.jstor.org/stable/25767877.

29 Arie Tamir. Obnoxious facility location on graphs. SIAM J. Discret. Math., 4(4):550–567,
1991. doi:10.1137/0404048.

https://doi.org/10.1145/321958.321975
http://www.jstor.org/stable/25767877
https://doi.org/10.1137/0404048

When Can Cluster Deletion with Bounded Weights
Be Solved Efficiently?
Jaroslav Garvardt #

Institute of Computer Science, Friedrich Schiller University Jena, Germany

Christian Komusiewicz #

Institute of Computer Science, Friedrich Schiller University Jena, Germany

Nils Morawietz #

Institute of Computer Science, Friedrich Schiller University Jena, Germany

Abstract
In the NP-hard Weighted Cluster Deletion problem, the input is an undirected graph G = (V, E)
and an edge-weight function ω : E → N, and the task is to partition the vertex set V into cliques
so that the total weight of edges in the cliques is maximized. Recently, it has been shown that
Weighted Cluster Deletion is NP-hard on some graph classes where Cluster Deletion, the
special case where every edge has unit weight, can be solved in polynomial time. We study the
influence of the value t of the largest edge weight assigned by ω on the problem complexity for
such graph classes. Our main results are that Weighted Cluster Deletion is fixed-parameter
tractable with respect to t on graph classes whose graphs consist of well-separated clusters that are
connected by a sparse periphery. Concrete examples for such classes are split graphs and graphs that
are close to cluster graphs. We complement our results by strengthening previous hardness results
for Weighted Cluster Deletion. For example, we show that Weighted Cluster Deletion is
NP-hard on restricted subclasses of cographs even when every edge has weight 1 or 2.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Graph clustering, split graphs, cographs, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.32

Funding Jaroslav Garvardt: Supported by the Carl Zeiss Foundation, Germany, within the project
“Interactive Inference”.

1 Introduction

Graph-based clustering is one of the core applications of graphs in computer science. This
has led to a vast number of different algorithms and problem formulations for this task. One
of the most fundamental problem formulations in this context is Cluster Deletion. In
this problem, we are given an undirected graph G and ask for a partition of its vertex set into
cliques that maximizes the total number of edges inside the cliques. Cluster Deletion
is NP-hard [26] which has motivated the application of algorithmic approaches for hard
problems to Cluster Deletion. In particular, the parameterized complexity of Cluster
Deletion has been intensively studied [3, 12, 14, 16, 19, 22, 28].

Another closely related line of research is to study the complexity of Cluster Deletion
on restricted classes of input graphs.1 On the positive side, it was shown, for example,
that Cluster Deletion can be solved in polynomial time on subcubic graphs [22], on
cographs [13], on the more general class of P4-sparse graphs [4], on interval graphs [23],
and on several classes that generalize split graphs [23]. On the negative side, it was shown,
for example, that Cluster Deletion remains NP-hard on planar graphs [15], on P5-free

1 For a definition of all considered graph classes, see Section 2.

© Jaroslav Garvardt, Christian Komusiewicz, and Nils Morawietz;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 32; pp. 32:1–32:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jaroslav.garvardt@uni-jena.de
https://orcid.org/0000-0002-8762-8567
mailto:c.komusiewicz@uni-jena.de
https://orcid.org/0000-0003-0829-7032
mailto:nils.morawietz@uni-jena.de
https://orcid.org/0000-0002-7283-4982
https://doi.org/10.4230/LIPIcs.ISAAC.2024.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 When Can Cluster Deletion with Bounded Weights Be Solved Efficiently?

chordal graphs [5], and on C4-free graphs with maximum degree 4 [22]. For graph classes
defined by a single forbidden induced subgraph with at most four vertices a dichotomy into
NP-hard and polynomial-time solvable cases is known [16].

All in all, the complexity of Cluster Deletion is fairly well-understood by now. In
many applications, however, we are interested in the edge-weighted version of the problem
where the aim is to maximize the total weight of the edges inside the clusters. This problem,
called Weighted Cluster Deletion, turns out to be NP-hard for many graph classes
where Cluster Deletion is polynomial-time solvable. For example, it has been shown that
Weighted Cluster Deletion is NP-hard on cographs [5] and on split graphs [5]. Perhaps
surprisingly, the problem is even NP-hard on split graphs where the independent set contains
three vertices and every vertex of the independent set is adjacent to every vertex of the
clique [19]. A closer inspection of the NP-hardness proofs shows, however, that the reductions
construct instances where the maximum edge weight is unbounded. For example, in the
above-mentioned reduction for the restricted class of split graphs with a periphery of constant
size, the maximum edge weight is n2 where n is the number of vertices in the constructed
instance. In the vein of the deconstruction of hardness proofs [21], this observation begs
the question of whether one can solve instances with bounded weights more efficiently.
In particular, we would like to either identify graph classes on which parameterizing the
maximum edge weight t in the input graph leads to FPT-algorithms or strengthen previous
NP-hardness results to also hold in the case when the maximum edge weight is constant.

Our Results. Our results are summarized in Table 1. In a nutshell, we show that we
obtain FPT-algorithms with respect to t on graph classes where large cliques are rather
well-separated from each other. The first example of such an FPT-algorithm for t is obtained
for the class of split graphs. Another class for which we can show fixed-parameter tractability
is the class of almost cluster graphs. More precisely, we provide an FPT-algorithm for the
combined parameter cvd + t, where cvd is the vertex deletion distance of the input graph
to cluster graphs. We then generalize these results to obtain algorithms for graphs with a
bounded treewidth modulator to cliques (this generalizes split graphs) and for graphs which
are almost split cluster graphs, that is, for the combined parameter scvd + t, where scvd is
the vertex deletion distance to graphs where every connected component is a split graph.

On the negative side, we show that even very restricted cases of Weighted Cluster
Deletion remain NP-hard when all edges have weight 1 or 2. More precisely, we show
this hardness for complete tripartite graphs and complete unipolar graphs, a subclass of the
previously considered stable-like and laminar-like graphs which allow for polynomial-time
algorithms in the unweighted case [23].

In addition, we show that it is presumably impossible to strengthen our FPT-algorithms
for the parameter t to polynomial-size problem kernels. Finally, we show that Weighted
Cluster Deletion is NP-hard on proper interval graphs, albeit with unbounded edge
weights.

Due to lack of space, some proofs, marked by (*), are deferred to a full version of this
work.

2 Preliminaries and Basic Observations

Notation. For a, b ∈ N with a ≤ b we write [a, b] for the set {i ∈ N | a ≤ i ≤ b}
and [n] := [1, n]. We consider undirected graphs G = (V, E) with vertex set V and edge set E.
The neighborhood of a vertex v ∈ V is defined as NG(v) := {u ∈ V | {u, v} ∈ E} and for a set

J. Garvardt, C. Komusiewicz, and N. Morawietz 32:3

Table 1 An overview over the (parameterized) complexity of WCD on the considered graph
classes. Here, nd denotes the neighborhood diversity of the input graph, and cvd denotes its cluster
vertex deletion number. For the first three classes, FPT refers to parameterization by maximum
edge weight t plus either nd or cvd, for the other classes FPT refers to parameterization by t.

Graph class Unweighted Weighted Bounded Max Weight
nd ≤ 2 P [19] NP-h [19] FPT Corollary 4.8
nd ≥ 3 FPT [19] NP-h [19] NP-h Theorem 3.6
bounded cvd FPT [14] NP-h (for cvd = 2) [19] FPT Theorem 5.3
interval P [23] NP-h [5] NP-h Proposition 3.4
proper interval P [5] NP-h Theorem 3.5 ?
complete unipolar P [23] NP-h [19] NP-h Proposition 3.4
co-graph P [13] NP-h [5] NP-h Proposition 3.4
split P [5] NP-h [5] FPT Theorem 4.6

of vertices S ⊆ V , we define NG(S) := (
⋃

v∈S NG(v)) \ S and N∩
G(S) := (

⋂
v∈S NG(v)). The

closed neighborhood of a vertex v ∈ V is defined as NG[v] := NG(v) ∪ {v} and for a set of
vertices S ⊆ V , we define NG[S] :=

⋃
v∈S NG[v]. When the graph G is clear from the context

we may omit the subscript. The degree of a vertex v is |N(v)|. For a vertex set S ⊆ V we
write E(S) := {{u, v} ∈ E | u, v ∈ S} and denote with G[S] := (S, E(S)) the subgraph of G

induced by S. Moreover, we define G − S := G[V \ S].

Graph Classes and Graph Parameters. A vertex set K ⊆ V that induces a complete graph
is called a clique. A vertex set I ⊆ V that induces a graph with no edges is called an
independent set. A graph G = (V, E) is a cluster graph if each connected component of G

consists of a clique. A graph is a cograph if it does not contain the P4, the path on four vertices,
as an induced subgraph. A graph is an interval graph if it is the intersection graph of some
set of intervals on the real line. A graph is a proper interval graph if additionally, none of the
intervals is properly contained in another one of the intervals. A graph G = (V, E) is unipolar
if V can be partitioned into C and P such that C is a clique and G[P] is a cluster graph [11].
We refer to C as the core and to P as the periphery of G. Furthermore, G is complete
unipolar if each vertex of C is adjacent to each vertex of P . A unipolar graph G = (V, E) is
a split graph if P is an independent set. Moreover, G is a dense split graph if each vertex
of C is adjacent to each vertex of P . A graph G is a split cluster graph if every connected
component is a split graph [6]. We note the following relations between these graph classes.
A complete unipolar graph is a cograph and an interval graph but not necessarily a proper
interval graph. Also, every cluster graph is a split cluster graph.

A vertex set S ⊆ V is a vertex cover for a graph G if the graph G − S does not contain
any edges. The vertex cover number vc(G) is the size of a smallest vertex cover for G. We
say that a vertex set M ⊆ V is a cluster modulator for G if G − M is a cluster graph.
The cluster vertex deletion number cvd(G) of G is defined as the size of the smallest cluster
modulator for G. The relation ∼ with u ∼ v if N(u) = N(v) or N [u] = N [v] is an equivalence
relation and the neighborhood diversity nd(G) is the number of equivalence classes of this
relation. The treewidth of a graph G, denoted tw(G), is a parameter that, informally speaking,
measures how close the graph is to a tree. For a formal definition of treewidth refer to [8].
We make use of the fact that vc(G) ≥ tw(G) for every graph G. If the graph G is clear from
context, we omit it from the parameter notation.

ISAAC 2024

32:4 When Can Cluster Deletion with Bounded Weights Be Solved Efficiently?

Parameterized Complexity. An algorithm for a parameterized problem L is an FPT-
algorithm, if there is a computable function f such that for every instance (I, k) the
algorithm decides in f(k) · |I|O(1) time whether (I, k) is a yes-instance of L. A polynomial
(many-one) kernel for L is an algorithm that computes for each instance (I, k) in polynomial
time an equivalent instance (I ′, k′) with (|I ′| + k′) ∈ kO(1). A polynomial Turing kernel
for L is an algorithm that decides whether a given instance (I, k) is a yes-instance of L in
time (|I| + k)O(1), when given access to an oracle that decides membership in L for any
instance (I ′, k′) with (|I ′| + k′) ∈ kO(1) in constant time.

A polynomial parameter transformation is a reduction from a parameterized problem A

to a parameterized problem B that transforms each instance (I, k) of A in polynomial time
into an equivalent instance (I ′, k′) of B with k′ ∈ kO(1). Note that polynomial parameter
transformations are transitive. Moreover, if there is a polynomial parameter transformation
from A to B, where the unparameterized versions of A and B are in NP, then A admits a
polynomial (many-one/Turing) kernel if B admits a polynomial (many-one/Turing) kernel.
The Exponential Time Hypothesis (ETH) conjectures that 3-SAT cannot be solved in
2o(|F |) time where F is the input formula. For further background on these definitions, we
refer the reader to the standard monographs [8, 10].

Clusterings and Formal Problem Definition. A clustering C of a graph G = (V, E) is
a partition of V into subsets C1, . . . , Cr such that each Ci is a clique. For a clustering C
of G = (V, E) we denote with E(C) the set of edges with both endpoints in the same
cluster of C. Let ω : E → N be an edge-weight function. For a set of edges E′ ⊆ E, we
define ω(E′) :=

∑
e∈E′ ω(e) and denote with ω(C) := ω(E(C)) the weight of a clustering C.

Weighted Cluster Deletion (WCD)
Input: A graph G = (V, E), a weight function ω : E → N and a nonnegative

integer k.
Question: Is there a clustering C for G such that ω(C) ≥ k?

Some of our algorithms use brute force to find a clustering for a small subgraph of the
input graph and then extend this clustering in an optimal way. This is formalized as follows.
Let G = (V, E) be a graph, let S ⊆ V and let C and CS be clusterings for G and G[S],
respectively. We say that C extends the clustering CS if for each cluster C of CS , there is a
cluster C ′ ∈ C such that C ′ ∩ S = C. That is, restricting the clustering C to the vertices of S

results in CS . Note that C may contain clusters that contain no vertex of S.

Basic Observations. A clique C in a graph G = (V, E) is called a critical clique if all
vertices of C have the same closed neighborhood. Furthermore, C is a closed critical clique if
additionally N [C] is a clique in G.

▶ Observation 2.1. Let G = (V, E) be a graph, let ω : E → [1, t] be an edge-weight function,
and let C be a closed critical clique in G. Then, each optimal clustering for G and ω

extends {C}.

This can be seen as follows. Let C be a clustering for G which contains two distinct clusters A

and B that both contain vertices of C. Note that A ∪ B is a clique in G, since A ∪ B ⊆ N [C]
and C is a closed critical clique. Hence, replacing the clusters A and B by A ∪ B yields a
better clustering.

Note that if we try to find a clustering C that extends a clustering CS of some subgraph G[S],
then no edges between vertices of distinct clusters of CS are contained in C, due to the definition
of extending clusterings.

J. Garvardt, C. Komusiewicz, and N. Morawietz 32:5

▶ Observation 2.2. Let G = (V, E) be a graph, let S ⊆ V , let CS be a clustering of G[S],
and let G′ be the graph obtained from G by removing all edges between vertices of distinct
clusters of CS. Then G and G′ share the same clusterings that extend CS.

Hence, in the following, whenever – for a WCD instance and a clustering CS for some
subgraph G[S] – we search for a clustering that extends CS , we may implicitly assume
that G[S] is a cluster graph. In the following, we show that we can further merge each cluster
of CS to a single vertex by increasing the largest assigned edge weight.

Let G = (V, E) be a graph and let C be a clique in G. Then, merging C in G results
in the graph G′ = (V ′, E′), where C is replaced by a single vertex vC ∈ C with neighbor-
hood NG′(vC) := N∩

G(C). In other words, the vertex vC keeps only the common neighborhood
of C as neighbors.

▶ Definition 2.3. Let G = (V, E) be a graph, let ω : E → [1, t] be an edge-weight function, and
let C be a clique in G. The weighted merge of C in G yields the graph G′ = (V ′, E′) obtained
from merging C in G with edge-weight function ω′ defined as follows: For each edge e ∈ E′

which is not incident with vC , set ω′(e) := ω(e), and for each edge e = {vC , w} ∈ E′, set
ω′({vC , w}) :=

∑
v∈C ω({v, w}).

Note that the largest edge weight assigned by ω′ is at most |C| · t and that each edge not
incident with vC is assigned a weight of at most t by ω′.

Similarly, for a vertex set S ⊆ V where G[S] is a cluster graph with collection of connected
components CS , we define the clustering-merge of CS for G and ω as the consecutive merges
of all clusters of CS in G and ω. Note that the largest edge weight in the resulting instance is
at most t · maxC∈CS

|C|, since G contains no edge with endpoints in distinct clusters of CS .

▶ Lemma 2.4 (*). Let G = (V, E) be a graph, let ω : E → [1, t] be an edge-weight function,
and let S ⊆ V such that G[S] is a cluster graph with collection of connected components CS.
Moreover, let (G′ = (V ′, E′), ω′) be the graph and edge-weight function obtained by the
clustering-merge of CS for G and ω. There is a bijection π between the clusterings of G′ and
the clusterings of G that extend CS, such that for every clustering C′ of G′

ω′(C′) = ω(π(C′)) − ω(CS) and
π(C′) extends C′.

The above lemma implies in particular, that we can obtain the optimal clustering of a
graph G that extends some clustering CS for some G[S] by performing the clustering-merge
and then computing the optimal clustering in the remaining instance.

3 Hardness Results

In this section, we present a reduction from Uniform Exact Cover to WCD on dense
split graphs which implies several hardness results for WCD.

Uniform Exact Cover
Input: A set X and a collection F of size-d subsets of X.
Question: Is there a subset F ′ ⊆ F such that every element of X occurs in

exactly one member of F ′?

Note that we can assume that |X| is divisible by d, as otherwise the instance at hand is a
trivial no-instance. Our reduction is a generalization of a known reduction from X3C [5],
that is, Uniform Exact Cover with d = 3.

ISAAC 2024

32:6 When Can Cluster Deletion with Bounded Weights Be Solved Efficiently?

Construction. Let I = (X, F) be an instance of Uniform Exact Cover, where d is
the size of each set of F and n := |X| is divisible by d. We construct from I an instance
I ′ = (G, ω, k) of WCD as follows. Starting from an empty graph, we add to G a vertex vx

for each element x ∈ X and make the set VX := {vx | x ∈ X} a clique with ω(e) = 1 for
each edge e between two vertices in VX . For each set F ∈ F , we add a vertex vF together
with an edge {vF , vx} with ω({vF , vx}) = 2n for each x ∈ F and an edge {vF , vx} with
ω({vF , vx}) = n for each x ∈ X \ F . We define VF := {vF | F ∈ F}. Note that VF is an
independent set. We finish the construction by setting k := n · (2n + 1

d ·
(

d
2
)
).

Observe that the graph G in the construction above is a dense split graph with core VX

and periphery VF . Moreover, t := 2n is the highest weight present in G and the core VX

consists of n vertices. Since the core of a split graph is a vertex cover, t+vc ∈ O(n), where vc
denotes the vertex cover number of G. Moreover, G contains exactly |X| + |F| vertices.

Next, we show the equivalence of the two instances I and I ′.

▶ Lemma 3.1. I is a yes-instance of Uniform Exact Cover if and only if I ′ is a
yes-instance of WCD.

Proof. (⇒) Let I be a yes-instance and let F ′ be a solution for I. For each F ∈ F ′ let CF =
{vx ∈ VX | x ∈ F} ∪ {vF }. Consider the clustering C := {CF | F ∈ F ′} ∪ {{vF } | F /∈ F ′}.
Since F ′ is a solution for I, each x ∈ X is covered by exactly one set F ∈ F ′ and thus each
vertex of VX is in exactly one set of C. Note that VX , and thus also each subset of VX , is
a clique and each vertex vF is adjacent to each vertex in VX . Therefore, each CF ∈ C is a
clique and C is a valid clustering. Moreover, we have ω(E(C)) = n · (2n + 1

d ·
(

d
2
)
). Hence, I ′

is a yes-instance.
(⇐) Let I ′ be a yes-instance and let C be an optimal solution for I ′. Let EC(X)

denote the edges that are preserved in C between vertices of VX and let EC(F) denote
the edges that are preserved in C between a vertex of VX and a vertex of VF . Clearly,
ω(E(C)) = ω(EC(X)) + ω(EC(F)).

We now show that each vx ∈ VX is part of a cluster containing a vertex vF ∈ VF such
that x ∈ F . Let x ∈ X and let Cx ∈ C be the cluster containing vx. Note that Cx can
contain at most one vertex of VF , since VF is an independent set. This implies that there is
at most one edge of EC(F) incident with vx. Suppose that Cx does not contain a vertex vF

such that x ∈ F . If an edge {vx, vF ′} ∈ EC(F) exists, it has weight at most n, since x /∈ F ′.
Let F ∈ F be an arbitrary set such that x ∈ F and let CF denote the cluster of C that
contains vF . Moreover, let C′ be the clustering obtained by moving vertex vx in the cluster CF .
Note that C′ is a valid clustering, since each vertex of VX is adjacent to every other vertex
of G, and that the weight of the edge {vx, vF } is 2n. Since x ∈ F and vx has at most n − 1
neighbors in Cx ∩ VX , we have

ω(C′) − ω(C) ≥ ω({vx, vF }) −
∑

w∈Cx\{vx}

ω({vx, w}) ≥ 2n − (n + |Cx ∩ VX |) > 0,

which is a contradiction to C being an optimal solution.
Thus, we can now assume that ω(EC(F)) = n · 2n. Furthermore, since each vx is part

of a cluster containing a vertex vF ∈ VF with x ∈ F , and each F ∈ F contains exactly d

elements, at most d vertices from VX can be in the same cluster in C. More precisely, for
each x ∈ X let Cx ∈ C be the cluster containing vx. We have |(Cx ∩ VX) \ {vx}| ≤ d − 1 for
each x ∈ X.

Recall that edges between vertices of VX have weight 1 and each edge in EC(X) has
two endpoints in VX . If for some x ∈ X we have |(Cx ∩ VX) \ {vx}| < d − 1, then

ω(EC(X)) =
∑

x∈X
|(Cx∩VX)\{vx}|

2 < n·(d−1)
2 and hence ω(E(C)) = ω(EC(X)) + ω(EC(F)) <

n·(d−1)
2 + n · 2n = k, a contradiction to C being a solution.

J. Garvardt, C. Komusiewicz, and N. Morawietz 32:7

Therefore, for each x ∈ X we have |(Cx ∩ VX) \ {vx}| = d − 1. Hence, each cluster C of C
that contains at least one vertex of VX fulfills C = {vF } ∪ {vx | x ∈ F} for some set F ∈ F .
Thus, the set F ′ := {F ∈ F | CF ∩ VX ̸= ∅, CF ∈ C, vF ∈ CF } contains all elements in X

exactly once and is a solution for I ′. ◀

Lemma 3.1 and the bound on t and the vertex cover number of G directly give the
following.

▶ Proposition 3.2. There is a polynomial parameter transformation from Uniform Ex-
act Cover with parameter n (size of the universe) to WCD on dense split graphs with
parameter t + vc, where vc denotes the vertex cover number of the input graph.

Due to Lemma 3.1 and the fact that Uniform Exact Cover cannot be solved in
2o(|X|+|F|) · |I|O(1) time, unless the ETH fails [20]2, we also derive the following.

▶ Corollary 3.3. Even on dense split graphs, WCD cannot be solved in 2o(n+t) · nO(1) time,
unless the ETH fails.

We can adapt the construction above in order to show that WCD is hard on a restricted
subclass of cographs even if all edges have weight 1 or 2.

▶ Proposition 3.4. On complete unipolar graphs WCD remains NP-hard even if t = 2 and
cannot be solved in 2o(cvd+t) · nO(1) time, unless the ETH fails.

Proof. To show the statement, we adapt the construction above so that we obtain from I ′ =
(G = (V, E), ω, k) an equivalent instance I ′′ = (G′ = (V ′, E′), ω′, k′) of WCD where G′

is a complete unipolar graph and all edges have weight 1 or 2. We obtain I ′′ from I ′ as
follows. Each vertex vF ∈ VF is replaced by a clique KF of size n with ω′({u, v}) = 1 for
each u, v ∈ KF . We add edges such that KF is fully connected to VX and set ω′({u, vx}) = 2
for each u ∈ KF and vx ∈ VX with ω({vF , vx}) = 2n as well as ω′({u, vy}) = 1 for
each u ∈ KF and vy ∈ VX with ω({vF , vy}) = n. Moreover, we set k′ = k + |F| ·

(
n
2
)
.

Note that in G′ the sets KF are disjoint cliques, each fully connected to the clique VX .
Therefore, G′ is a complete unipolar graph. Furthermore, each edge in G′ has weight either 1
or 2. Moreover, since G′ is unipolar, VX is a cluster modulator of size n. Hence, cvd(G′) ≤ n.

It remains to show that I ′ and I ′′ are equivalent instances. Observe that in G′ for
each F ∈ F the clique KF is a closed critical clique and thus in every optimal clustering for G′

each vertex of KF is part of the same cluster due to Observation 2.1. Since the edges within
these critical cliques all have weight 1, they have a total weight of |F|·

(
n
2
)
. Let S :=

⋃
F ∈F KF

and let CS :=
⋃

F ∈F {KF }. Per construction CS is a clustering for G′[S]. Observe that (G, ω)
can be obtained by the clustering-merge of CS for G′ and ω′. Clearly, G′[S] is a cluster graph
and each cluster KF of CS is merged into the vertex vF in G with NG(vF) = VX = N∩

G′(KF).
Moreover, we have ω({vF , vx}) =

∑
v∈KF

ω′({vF , v}).
By the above facts, Lemma 2.4 and Observation 2.1 imply that I ′ and I ′′ are equivalent

instances. ◀

In addition, we obtain the following hardness results on graph classes that are unrelated
to complete unipolar graphs.

▶ Theorem 3.5 (*). WCD is NP-hard on proper interval graphs.

2 Note that Theorem 3.1 in [20] shows an ETH lower bound for 3D-Matching, which is a special case of
Uniform Exact Cover.

ISAAC 2024

32:8 When Can Cluster Deletion with Bounded Weights Be Solved Efficiently?

▶ Theorem 3.6 (*). WCD is NP-hard on complete tripartite graphs even for t = 2.

Note that complete tripartite graphs are cographs with neighborhood diversity 3. Hence,
we obtain NP-hardness also for this class of graphs.

4 Split Graphs with Bounded Weights

We now show that WCD can be solved in FPT-time on split graphs when parameterized
by the largest edge weight t. The algorithm is based on several properties concerning the
interaction of the optimal clustering with the core of the split graphs. These properties will
also be helpful for our algorithms on generalizations of split graphs.

As an auxiliary result, we first present an algorithm for WCD on split graphs, when
parameterized by the size of the core of the split graph. The algorithm uses dynamic
programming over subsets of the core.

▶ Lemma 4.1. Let G = (V, E) be a split graph with core C and let ω be an edge-weight
function. One can find an optimal clustering for G and ω in 3|C| · nO(1) time.

Proof. Let P := {p1, . . . , p|P |} be the periphery of G. We describe a dynamic program that
finds an optimal clustering for G and ω in 3|C| · nO(1) time.

The dynamic programming table T has entries of type T [i, S] for each S ⊆ C and
each i ∈ [0, |P |] and stores the weight of an optimal clustering for G[S ∪ {pj | 1 ≤ j ≤ i}].
Hence, the base case for i = 0 and each S ⊆ C is defined as T [i, S] := ω(E(S)). This is
correct, since C is a clique in G. For each other entry of the dynamic programming table,
that is, for each i ∈ [1, |P |] and each S ⊆ C, the recurrence to compute the entry T [i, S] is

T [i, S] := max
S′⊆S

S′⊆N(pi)

ω(E(S′ ∪ {pi})) + T [i − 1, S \ S′].

Intuitively, we search for the best way to assign a subset S′ of S to the cluster with vertex pi

and combine this with an optimal clustering for G[(S \ S′) ∪ {pj | 1 ≤ j < i}] and ω. This
is correct, since P is an independent set in G, and thus, in each valid clustering for G, the
cluster containing pi contains no other vertex of P . The total weight of an optimal clustering
for G and ω is stored in T [|P |, C] and a corresponding clustering can be found via traceback.

It thus remains to show the running time. Since each entry T [i, S] can be computed in
2|S| · nO(1) time and there are

(|C|
ℓ

)
subsets S of C of size exactly ℓ, all entries of the dynamic

programming table T can be computed in
∑|C|

ℓ=0
(|C|

ℓ

)
· 2ℓ · nO(1) = 3|C| · nO(1) time. ◀

Next, we show the first property for optimal clusterings of split graphs. Roughly speaking,
the lemma shows that for each optimal clustering C and each subset C′ ⊆ C, at least one
of C′ and C \ C′ contains at most 2t vertices of the core. This for example implies that the
vertices of the core are only contained in O(t) clusters in any optimal clustering.

▶ Lemma 4.2. Let G = (V, E) be a split graph and let ω : E → [1, t] be an edge-weight
function. Moreover, let C be an optimal clustering for G and ω. Then, for each subset C′ ⊆ C,
C′ contains at most 2t vertices of the core of G or C \ C′ contains at most 2t vertices of the
core of G.

Proof. Let C and P denote the core and the periphery of G, respectively. We show the
contrapositive, that is, we show that C is not an optimal clustering for G and ω, if there
is a subset C′ ⊆ C, such that C′ and C \ C′ contain at least 2t + 1 vertices of the core C

J. Garvardt, C. Komusiewicz, and N. Morawietz 32:9

each. To this end, we show that keeping the whole core as a cluster yields a better clustering
than C. That is, we show that C∗ := {C} ∪ {{p} | p ∈ P} is a better clustering than C. Note
that C∗ is a valid clustering for G. It thus remains to show that ω(C∗) − ω(C) > 0. To
this end, we first analyze the edges of E(C) \ E(C∗). Since G is a split graph, each cluster
of C contains at most one vertex of the periphery P . Hence, E(C) \ E(C∗) contains for each
vertex v ∈ C at most one edge incident with v. Since each edge has weight at most t, this
implies that ω(E(C) \ E(C∗)) ≤ |C| · t. Next, we analyze the edges of E(C∗) \ E(C). Let C1
denote the vertices of C that are contained in C′ and let C2 denote the vertices of C that are
contained in C \ C′ and assume without loss of generality that |C1| ≥ |C2|. Hence, |C1| ≥ |C|

2 .
Moreover, note that all edges of E(C1, C2) are contained in E(C∗) \ E(C) which implies
that E(C∗) \ E(C) contains at least |E(C1, C2)| = |C1| · |C2| ≥ |C|

2 · (2t + 1) > |C| · t edges of
weight at least one each. Consequently,

ω(C∗) − ω(C) = ω(E(C∗) \ E(C)) − ω(E(C) \ E(C∗)) > |C| · t − |C| · t = 0.

This implies that C is not an optimal clustering for G and ω. ◀

This has the following implications for any optimal clustering C: There is at most one
cluster of size more than 2t in C and there are O(t) clusters of size more than one in C. We
also derive the following.

▶ Lemma 4.3. Let G = (V, E) be a split graph with core C and let ω : E → [1, t] be an
edge-weight function. Moreover, let C be an optimal clustering for G and ω. If |C| > 6t, then
there is a cluster C∗ ∈ C that misses at most 2t vertices of C, that is, |C∗ ∩ C| ≥ |C| − 2t.

Proof. Let C∗ be a cluster of C that contains the most vertices of C. First, we show that C∗

contains at least 2t + 1 vertices of C. Assume towards a contradiction that C∗ contains at
most 2t vertices of C, which then implies that every cluster of C contains at most 2t vertices
of C. Let C′ be an arbitrary subset of C such that C′ contains at least 2t + 1 vertices of C and
no proper subset of C′ contains at least 2t + 1 vertices of C. Note that this implies that C′

contains at most 4t vertices of C, since each cluster of C contains at most 2t vertices of C.
Since C has size at least 6t + 1, this implies that C \ C′ contains at least 2t + 1 vertices of C.
Due to Lemma 4.2, this contradicts the fact that C is an optimal clustering for G and ω.
Hence, C∗ contains at least 2t + 1 vertices of C.

Now, consider the subset of clusters C′ := {C∗}. Since C is an optimal clustering for G

and ω and C′ contains more than 2t vertices of C, Lemma 4.2 implies that C \ C′ contains at
most 2t vertices of C. Consequently, C∗ contains at least |C| − 2t vertices of C. ◀

Based on this lemma, we can now show that there are only linearly many options for the
largest cluster of any optimal clustering, if the core has size at least 2t2 + 4t + 1.

▶ Lemma 4.4. Let G = (V, E) be a split graph with core C and periphery P , let ω : E → [1, t]
be an edge-weight function, and let C be an optimal clustering for G and ω. If |C| ≥ 2t2+4t+1,
then either C contains the cluster C or there is some periphery vertex v ∈ P with degree at
least |C| − 2t such that C contains the cluster N [v].

Proof. Assume towards a contradiction that the statement does not hold. Then, C contains
neither the cluster C nor the cluster N [v] for any periphery vertex v ∈ P with degree at
least |C| − 2t. Let C∗ be a cluster of C with the most vertices of C. Since C has size at
least 6t + 1 and C is an optimal clustering for G and ω, Lemma 4.3 implies that C∗ contains
at least |C| − 2t ≥ 2t2 + 1 vertices of C.

ISAAC 2024

32:10 When Can Cluster Deletion with Bounded Weights Be Solved Efficiently?

Let v∗ be the unique periphery vertex of C∗ if such a vertex exists and an arbitrary
vertex of C∗, otherwise. In both cases, there is a vertex v ∈ (N(v∗) ∩ C) \ C∗, since C is
not a cluster in C and for no periphery vertex w ∈ P with degree at least |C| − 2t, N [w] is a
cluster of C. We show that we can obtain a better clustering by moving vertex v to C∗. Note
that C∗ ∪ {v} is a clique in G, since v is adjacent to v∗ and all vertices of (C∗ \ {v∗}) ∪ {v}
are from C. Let C′ be the clustering for G obtained from C by moving vertex v to C∗. We
show that C′ is a better clustering for G and ω than C. To this end, we analyze the total
weight incident with vertex v under both C and C′. Let Cv be the cluster of C containing v.
Since C \ {C∗} contains at most 2t vertices of C, Cv has size at most 2t + 1. Hence, v is
incident with at most 2t edges in E(C), each of weight at most t. Moreover, v is incident
with |C∗| ≥ 2t2 + 1 edges of weight at least one each in E(C′). Hence, C′ is a better clustering
for G and ω than C. This contradicts the fact that C is an optimal clustering for G and ω. ◀

With this property at hand, we are now able to show that WCD can be solved in
2O(t) · nO(1) time on split graphs with a small or a very large core.

▶ Lemma 4.5. Let G = (V, E) be a split graph with core C and let ω : E → [1, t] be an
edge-weight function. One can find an optimal clustering for G and ω in 2O(t) · nO(1) time
if |C| ≤ 6t or |C| ≥ 2t2 + 4t + 1.

Proof. If |C| ≤ 6t, then we can find an optimal clustering for G and ω in 3|C| · nO(1) =
2O(t) · nO(1) time due to Lemma 4.1.

Otherwise, if |C| ≥ 2t2 + 4t + 1, Lemma 4.4 implies that each optimal clustering for G

and ω contains a cluster C∗ such that C∗ = C or C∗ = N [v] for some periphery vertex v ∈ P

with degree at least |C| − 2t. Since these are at most |P | + 1 ∈ O(n) possibilities, we can
perform an initial branching for the choice of C∗. For each such choice for C∗, we find an
optimal clustering C∗ for G − C∗ and ω and return the best clustering C∗ ∪ {C∗} over all
choices of C∗. Note that this algorithm is correct due to Lemma 4.4. The initial branching
can be done in nO(1) time and for each branching-instance we can find an optimal solution
for G − C∗ and ω in 2O(t) · nO(1) time, since G − C∗ is a split graph with a core C \ C∗ of
size at most 2t.

Hence, in both cases, we find an optimal solution for I in the desired running time. ◀

Thus, to obtain an algorithm for WCD on split graphs, we now show how to solve the
case that the core has size at least 6t + 1 and at most 2t2 + 4t and use this to bound the
total running time.

▶ Theorem 4.6. WCD can be solved in tO(t) · nO(1) time on split graphs, where t denotes
the largest edge weight.

Proof. Let I = (G = (V, E), ω : E → [1, t], k) be an instance of WCD, where G is a split
graph with core C and periphery P . We show how to obtain an optimal clustering for G

and ω in time tO(t) · nO(1).
By Lemma 4.5, we can achieve this running time if |C| ≤ 6t or |C| ≥ 2t2 + 4t + 1. Hence,

in the following, we assume that 6t + 1 ≤ |C| ≤ 2t2 + 4t. Due to Lemma 4.3, this implies
that each optimal clustering for G and ω contains a cluster C∗ such that |C∗ ∩ C| ≥ |C| − 2t.
Based on this fact, we can find an optimal clustering for G and ω by iterating over all Ĉ ⊆ C

of size at least |C| − 2t and finding for each cluster C∗ ∈ {Ĉ} ∪ {Ĉ ∪ {v} | v ∈ P, Ĉ ⊆ N(v)}
an optimal clustering for G − C∗ and ω. Over all such choices of C∗, we return the best
clustering {C∗} ∪ C∗, where C∗ is an optimal clustering for G − C∗. Due to Lemma 4.3, this
algorithm finds an optimal clustering for G and ω.

J. Garvardt, C. Komusiewicz, and N. Morawietz 32:11

It remains to show the running time. Since there are at most |C|2t = (2t2 +4t+1)2t ∈ tO(t)

distinct subsets Ĉ of C with |Ĉ| ≥ |C| − 2t and for each such subset we consider at
most |P | + 1 ∈ O(n) possible clusters C∗, we have to find an optimal clustering for at
most tO(t) ·nO(1) subgraphs G−C∗ of G. For each choice for C∗, G−C∗ is a split graph with a
core of size |C\C∗| ≤ 2t. We can thus find an optimal clustering for G−C∗ in 2O(t) ·nO(1) time
due to Lemma 4.5. Hence, the total running time is tO(t) · 2O(t) · nO(1) = tO(t) · nO(1). ◀

On dense split graphs, we obtain an even faster algorithm.

▶ Theorem 4.7. WCD can be solved in 2O(t) · nO(1) time on dense split graphs, where t

denotes the largest edge weight.

Proof. Let I = (G = (V, E), ω : E → [1, t], k) be an instance of WCD, where G is a dense
split graph with core C and periphery P . We show how to obtain an optimal clustering
for G and ω in time 2O(t) · nO(1).

Due to Lemma 4.5, we can achieve this running time if |C| ≤ 6t. Hence, assume in the
following, that |C| > 6t. Let C be an optimal clustering for G and ω. Due to Lemma 4.3,
C contains a cluster C∗ such that |C∗∩C| ≥ |C|−2t > 4t. We show that C∗ := N [p] = {p}∪C

for some periphery vertex p. To this end, we first show that C∗ contains all core vertices.
Let C ′ := C \ C∗ denote the core vertices that are not in C∗. Since G is a dense split graph,
each vertex of C ′ is adjacent to each vertex of C∗. Hence, moving all vertices of C ′ to the
cluster C∗ yields a valid clustering C′. If C ′ ̸= ∅, this clustering improves over C, since each
vertex of C ′ was adjacent to at most one periphery vertex, which implies that

ω(E(C) \ E(C′)) ≤ |C ′| · t < |C ′| · 4t ≤ |C ′| · |C∗| ≤ ω(E(C′) \ E(C)).

Since C is an optimal clustering for G and ω, this implies that C ′ = ∅ and thus C∗ contains
all core vertices. Moreover, due to the optimality of C, C∗ contains one periphery vertex, as
otherwise adding an arbitrary periphery vertex to C∗ would yield a better valid clustering,
since G is a dense split graph. Hence, C∗ = N [p] = C ∪ {p} for some periphery vertex p ∈ P .
This implies that C∗ is the only cluster of C that contains any edges, which further implies
that ω(C) = ω(E(C∗)) = ω(E(N [p])).

Hence, to find an optimal clustering for G and ω it suffices to find a periphery vertex p ∈ P

that maximizes ω(E(N [p])). This can be done in polynomial time. ◀

The result also gives a dichotomy with respect to the neighborhood diversity: Theorem 3.6
showed NP-hardness for neighborhood diversity 3 and t = 2. We now show an FPT-algorithm
with respect to t for neighborhood diversity at most 2. Note that the graphs with neighborhood
diversity at most 2 are a subset of the cographs but not a subset of the split graphs, since
complete bipartite graphs have neighborhood diversity 2.

▶ Corollary 4.8. On graphs with neighborhood diversity at most 2, WCD can be solved in
2O(t) · nO(1) time.

Proof. Note that if a graph is already a cluster graph, an optimal clustering of that graph
simply contains all edges. The only graphs of neighborhood diversity at most 2 that are not
cluster graphs are complete bipartite graphs and dense split graphs. On bipartite graphs,
WCD asks simply for a maximum weight matching which can be solved in polynomial
time [24]. For dense split graphs, Theorem 4.7 implies that we can solve WCD in the stated
running time. ◀

ISAAC 2024

32:12 When Can Cluster Deletion with Bounded Weights Be Solved Efficiently?

5 Further FPT-Algorithms

Bounded-Treewidth Modulators to Clique. In the following, we extend ideas of the FPT-
algorithm for split graphs to a generalization of split graphs. Namely, we show that WCD
can be solved in FPT-time when parameterized by t + r on graphs when a treewidth-r
clique modulator is provided. Here, a clique modulator in a graph G is a vertex set M such
that G − M is a complete graph. The treewidth of a clique modulator M is defined to be the
treewidth of G[M]. We now consider the parameter treewidth r of a given clique modulator
of G and show that WCD admits an FPT-algorithm for this parameter.

▶ Lemma 5.1 (*). Let G be a graph with edge-weight function ω : E → [1, t] and let M be a
treewidth-r modulator in G to a clique C. Then, if |C| ≥ 2 · (t · (r + 1))2 + 4t · (r + 1) + 1, any
optimal clustering C for G and ω contains the cluster C or there is some clique K ⊆ M such
that C contains the cluster K ∪(N∩(K)∩C) and this cluster contains at least |C|−2(t ·(r+1))
vertices of C.

Note that this statement is a direct generalization of Lemma 4.4, since the periphery of a
split graph G is a treewidth-0 modulator to the core of G.

With this lemma at hand, we are now able to present an algorithm for WCD when
parameterized by t and the treewidth of a given clique modulator.

▶ Theorem 5.2. WCD can be solved in time 2O(t2·r2) · nO(1) when given a treewidth-r clique
modulator M for the input graph G.

Proof. First, assume that C := V \ M has size at most 2(t · (r + 1))2 + 4t · (r + 1) then
the input graph has treewidth O(t2 · r2) and we can solve WCD on this graph in time
2O(t2·r2) · nO(1) [25].3

Otherwise, C has size at least 2(t · (r + 1))2 + 4t · (r + 1) + 1. Then, by Lemma 5.1, for
each optimal clustering C, either (a) C contains C or (b) there is a clique K in G[M] such
that C has a cluster consisting of K plus all of the (at least |C| − 2(t · (r + 1)) many) common
neighbors of K in C. Now observe that in Case (a) we may simply remove C from G and
compute an optimal clustering for G − C = G[M] which has treewidth at most r. This
can be done in 2O(r) · nO(1) time [25]. Otherwise, in Case (b), since G[M] has treewidth at
most r, we can enumerate all cliques K of G[M] in 2O(r) · nO(1) time, for example using the
fact that G[M] has degeneracy at most r. Now, for each clique K, we consider the case that
the optimal clustering contains a cluster C ′ consisting of K and of all common neighbors
of K in C. To compute the optimal clustering in that case, we may remove C ′ and find
an optimal clustering for the remaining graph G − C ′ = G[M ∪ C \ C ′]. This graph has
treewidth at most 2(t · (r + 1)) + r since |C \ C ′| ≤ 2(t · (r + 1)) and G[M] has treewidth r.
Thus, an optimal clustering for this graph can be computed in time 2O(t·r) · nO(1). The total
running time for Case (b) is thus 2r · nO(1) · 2O(t·r) · nO(1). ◀

Parameterization by (Split) Cluster Vertex Deletion Number. Next, we focus on the
cluster vertex deletion number cvd of the input graph, that is, the minimum number of
vertices to remove from G to obtain a cluster graph. Recently, it was shown that Cluster
Deletion admits an FPT-algorithm when parameterized by cvd [14]. In contrast, WCD

3 The algorithm described in [25] solves the unweighted problem via dynamic programming on tree
decompositions; it can be easily adapted to the weighted case by summing up over edge weights instead
of counting edges inside clusters.

J. Garvardt, C. Komusiewicz, and N. Morawietz 32:13

is known to be NP-hard even on graphs with cvd = 2 [19]. This motivates the study of
the combined parameter cvd and the maximum edge weight t. We show an FPT-algorithm
for WCD parameterized by this combined parameter.

To this end, we first provide some additional notation. Let G = (V, E) be a graph. For a
cluster modulator M , let B(M) be the collection of connected components of G − M , that
is, the clusters of the cluster graph G − M . The individual clusters of B(M) are referred to
as bags. If the cluster modulator is clear from the context, we may also only write B.

▶ Theorem 5.3. WCD can be solved in (t · cvd)O(t·cvd) · nO(1) time.

Proof. Let I := (G := (V, E), ω, k) be an instance of WCD with ω : E → [1, t]. The
algorithm consists of two steps. First, we compute a minimum-size cluster modulator M

for G. Second, we iterate over all possible clusterings of G[M] and compute for each such
clustering CM the best clustering of G that extends CM . To solve the latter task, we use
dynamic programming over subsets to find an optimal way to distribute the vertices of the
bags of B(M) among the clusters of CM .

Let M be a minimum-size cluster modulator for G with collection of bags B and let CM

be a fixed clustering of G[M]. We fix an arbitrary ordering of the bags of B and let Bi denote
the ith bag according to this fixed ordering. The dynamic programming table T has entries
of type T [i, C′

M] with i ∈ [0, |B|] and C′
M ⊆ CM and stores the total edge weight of an optimal

way to distribute the vertices of the first i bags among the clusters of C′
M . Hence, the base

case for i = 0 and each C′
M ⊆ CM is defined as T [0, C′

M] := ω(C′
M). The key observation

for the dynamic program is the fact that no cluster in any clustering for G can contain
vertices of more than one bag. Hence, to find an optimal way to distribute the vertices of the
first i bags among the clusters of C′

M it is sufficient to check for each subset C′′
M ⊆ C′

M for an
optimal distribution of the vertices of the ith bag among the clusters of C′′

M and combine
it with an optimal way to distribute the vertices of the first i − 1 bags among the clusters
of C′

M \ C′′
M . This leads to the following recurrence, where OPT(Bi, C′′

M) denotes an optimal
way to distribute the vertices of the ith bag among the clusters of C′′

M :

T [i, C′
M] := max

C′′
M

⊆C′
M

OPT(Bi, C′′
M) + T [i − 1, C′

M \ C′′
M].

By the above argumentation, this recurrence is correct. Hence, a total weight of a best
clustering for G that extends CM is stored in T [|B|, CM]. Moreover, a corresponding clustering
can be found via trace back.

It thus remains to show the running time of the dynamic program. To this end, we first
need to show that the value OPT(Bi, C′′

M) for each i ∈ [1, |B|] and each C′′
M ⊆ CM can be

computed in the desired running time with respect to cvd + t.
Let Gi := G[Bi ∪

⋃
C′∈C′′

M
]. Due to Observation 2.2, we can assume without loss of

generality that Gi[M] is a cluster graph. Hence, Gi is unipolar, since Gi − M is a clique
on the vertices of Bi. Let (G′

i, k′) be the graph and edge-weight function obtained from
performing the clustering-merge of C′′

M for Gi and ω. Note that G′
i is a split graph and the

largest assigned weight by ω′ is at most |M | · t = cvd · t. Hence, we can find an optimal
clustering C′

i for G′
i and ω′ in time (cvd · t)O(cvd·t) · nO(1) due to Theorem 4.6. By Lemma 2.4,

we can then find a best clustering for Gi and ω that extends C′′
M in polynomial time.

Hence, for each i ∈ [1, |B|] and each C′′
M ⊆ CM , the value OPT(Bi, C′′

M) can be computed in
(cvd · t)O(cvd·t) · nO(1) time.

Concluding, the whole algorithm runs in the desired running time, since (a) M can
be computed in 1.811cvd · nO(1) time [27], (b) all clusterings for G[M] can be enumerated
in |M ||M | = cvdcvd time, (c) for each clustering CM for G[M], the dynamic programming
table T has 2|CM | · n ≤ 2cvd · n entries, and (d) each such entry can be computed in
(cvd · t)O(cvd·t) · nO(1) time. ◀

ISAAC 2024

32:14 When Can Cluster Deletion with Bounded Weights Be Solved Efficiently?

We can extend the idea of the above algorithm to the even smaller parameter split cluster
vertex deletion number scvd, that is the minimum number of vertices to remove from G

such that in the remaining graph each connected component is a split graph. More formally,
let G = (V, E) be a graph. We say that a vertex set M ⊆ V is a split cluster modulator for G

if G−M is a split cluster graph. The split cluster vertex deletion number scvd of G is defined
as the size of the smallest split cluster modulator for G. For a split cluster modulator M ,
let B(M) be the collection of connected components of G − M , that is, the maximal induced
split graphs of the split cluster graph G − M . The individual maximal induced split graphs
of B(M) are referred to as bags. If the split cluster modulator is clear from the context, we
may also only write B.

Note that scvd is a smaller parameter than cvd, since each cluster graph is also a split
cluster graph. We now show that WCD can be solved in FPT-time on general graphs
when parameterized by the largest edge weight t and scvd. To this end, we first give an
algorithm for computing a clustering when given a vertex set S such that G − S is a split
graph with core C and periphery P . In that case, S ∪ P is a treewidth-|S| modulator to the
core of G − S which is a clique. Thus, Theorem 5.2 implies the following.

▶ Corollary 5.4. Let G = (V, E) be a graph and let ω : E → [1, t] be an edge-weight function.
Let S ⊆ V such that G − S is a split graph. One can find an optimal clustering for G and ω

in 2O((t·|S|)2) · nO(1) time.

We now use this algorithm as a subroutine in an algorithm similar to the one of Theorem 5.3.

▶ Theorem 5.5. WCD can be solved in 2O(scvd2·t2) · nO(1) time.

Proof. After computing a smallest split cluster modulator M in 2O(scvd) · nO(1) time [6], we
perform the same dynamic program as in the proof of Theorem 5.3 over the bags resulting
from the modulator M . Note that each bag is now a split graph instead of a clique. The only
difference then lies in computing the value OPT(Bi, C′′

M) for each bag Bi and each C′′
M ⊆ CM .

Due to Corollary 5.4, this can be done in 2O((t·|M |)2) · nO(1) time. Hence, the whole algorithm
also runs in 2O((t·|M |)2) · nO(1) time. ◀

6 Kernelization lower bounds

Given the FPT-algorithms for parameter t presented in Section 4, a natural next question is to
ask for a polynomial kernel for t. In this section, we show that WCD on (dense) split graphs
does not admit a polynomial kernel when parameterized by t + vc, unless NP ⊆ coNP/poly.
Moreover, we show that even a polynomial Turing kernel for WCD on (dense) split graphs
when parameterized by t+vc is unlikely, by showing that the problem is WK[1]-hard. Roughly
speaking, WK[1]-hardness for a parameterized problem means that a polynomial Turing
kernel for this problem is unlikely [18].

To show our kernelization lower bounds, we present a chain of polynomial parameter
transformations starting from Set Cover when parameterized by the size of the universe.

Set Cover
Input: A set X, a collection F of subsets of X, and an integer k.
Question: Is there a subset F ′ ⊆ F of size at most k, such that every element of

X occurs in at least one set of F ′?

Since Set Cover when parameterized by the size of the universe, is WK[1]-hard [18] and
does not admit a polynomial kernel, unless NP ⊆ coNP/poly [9], this then implies that WCD
on (dense) split graphs when parameterized by t + vc is WK[1]-hard and does not admit a
polynomial kernel, unless NP ⊆ coNP/poly.

J. Garvardt, C. Komusiewicz, and N. Morawietz 32:15

▶ Lemma 6.1 ([18]). There is a polynomial parameter transformation from Set Cover
parameterized by the size of the universe to Exact Cover parameterized by the size of the
universe.

This statement follows, since both Set Cover and Exact Cover parameterized by the
size of the universe are WK[1]-complete, and the class of WK[1]-complete problems is closed
under polynomial parameter transformations [18].

We now present a polynomial parameter transformation from Exact Cover to Uniform
Exact Cover, both parameterized by size of the universe.

▶ Proposition 6.2 (*). There is a polynomial parameter transformation from Exact Cover
parameterized by the size of the universe to Uniform Exact Cover parameterized by the
size of the universe.

Based on the observed polynomial parameter transformation from Exact Cover param-
eterized by size of the universe to WCD on dense split graph when parameterized by t + vc
in Proposition 3.2, we conclude the following due to the chain of polynomial parameter
transformations (Lemma 6.1, Proposition 6.2, and Proposition 3.2) and the kernelization
lower bounds for Set Cover.

▶ Theorem 6.3. WCD on dense split graphs when parameterized by t + vc does not admit
a polynomial kernel, unless NP ⊆ coNP/poly. Moreover, WCD on dense split graphs
is WK[1]-hard when parameterized by t + vc.

Additionally, due to Lemma 6.1, Proposition 6.2, and the kernelization lower bounds for Set
Cover, we also derive the following.

▶ Corollary 6.4. Uniform Exact Cover when parameterized by the size of the universe
does not admit a polynomial kernel, unless NP ⊆ coNP/poly. Moreover, Uniform Exact
Cover is WK[1]-hard when parameterized by the size of the universe.

7 Conclusion

The most immediate open question is whether Weighted Cluster Deletion is polynomial-
time solvable for constant values of t when the input graph is a proper interval graph. Another
direction would be to improve the running time for the FPT-algorithm on split graphs to
close the gap between the upper and lower bound. Finally it would be interesting to consider
other NP-hard edge-weighted problems using the parameter t. A good candidate would
be Cluster Editing [1, 26] where the task is to obtain a cluster graph by modifying
as few edges as possible. The weighted version of this problem has also received a lot of
attention over the years [2, 7]. As for Weighted Cluster Deletion, such a study would
need to focus on graph classes where unweighted Cluster Editing is polynomial-time
solvable. Another direction could be to consider problems related to Cluster Deletion,
where each cluster is demanded to fulfill some relaxed cluster definition, for example being a
so-called s-plex [17].

References
1 Sebastian Böcker and Jan Baumbach. Cluster editing. In Paola Bonizzoni, Vasco Brattka,

and Benedikt Löwe, editors, Proceedings of the 9th Conference on Computability in Europe
(CiE ’13), volume 7921 of Lecture Notes in Computer Science, pages 33–44. Springer, 2013.
doi:10.1007/978-3-642-39053-1_5.

ISAAC 2024

https://doi.org/10.1007/978-3-642-39053-1_5

32:16 When Can Cluster Deletion with Bounded Weights Be Solved Efficiently?

2 Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, and Anke Truß. Going
weighted: Parameterized algorithms for cluster editing. Theoretical Computer Science,
410(52):5467–5480, 2009. doi:10.1016/J.TCS.2009.05.006.

3 Sebastian Böcker and Peter Damaschke. Even faster parameterized cluster deletion and cluster
editing. Information Processing Letters, 111(14):717–721, 2011. doi:10.1016/J.IPL.2011.05.
003.

4 Flavia Bonomo, Guillermo Durán, Amedeo Napoli, and Mario Valencia-Pabon. A one-to-one
correspondence between potential solutions of the cluster deletion problem and the minimum
sum coloring problem, and its application to P4-sparse graphs. Information Processing Letters,
115(6-8):600–603, 2015. doi:10.1016/J.IPL.2015.02.007.

5 Flavia Bonomo, Guillermo Durán, and Mario Valencia-Pabon. Complexity of the cluster
deletion problem on subclasses of chordal graphs. Theoretical Computer Science, 600:59–69,
2015. doi:10.1016/j.tcs.2015.07.001.

6 Sharon Bruckner, Falk Hüffner, and Christian Komusiewicz. A graph modification approach
for finding core-periphery structures in protein interaction networks. Algorithms for Molecular
Biology, 10:16, 2015. doi:10.1186/S13015-015-0043-7.

7 Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. Algorithmica,
64(1):152–169, 2012. doi:10.1007/S00453-011-9595-1.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

9 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through
colors and ids. ACM Transactions on Algorithms, 11(2):13:1–13:20, 2014. doi:10.1145/
2650261.

10 Rodney G. Downey and Michael Ralph Fellows. Fundamentals of Parameterized Complexity.
Springer Science & Business Media, 2013.

11 Elaine M. Eschen and Xiaoqiang Wang. Algorithms for unipolar and generalized split graphs.
Discrete Applied Mathematics, 162:195–201, 2014. doi:10.1016/J.DAM.2013.08.011.

12 Wen-Yu Gao and Hang Gao. 2k-vertex kernels for cluster deletion and strong triadic clo-
sure. Journal of Computer Science and Technology, 38:1431–1439, 2023. doi:10.1007/
s11390-023-1420-1.

13 Yong Gao, Donovan R. Hare, and James Nastos. The cluster deletion problem for cographs.
Discrete Mathematics, 313(23):2763–2771, 2013. doi:10.1016/j.disc.2013.08.017.

14 Jaroslav Garvardt, Nils Morawietz, André Nichterlein, and Mathias Weller. Graph clustering
problems under the lens of parameterized local search. In Neeldhara Misra and Magnus
Wahlström, editors, Proceedings of the 18th International Symposium on Parameterized and
Exact Computation (IPEC ’23), volume 285 of LIPIcs, pages 20:1–20:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.IPEC.2023.20.

15 Petr A. Golovach, Pinar Heggernes, Athanasios L. Konstantinidis, Paloma T. Lima, and
Charis Papadopoulos. Parameterized aspects of strong subgraph closure. Algorithmica,
82(7):2006–2038, 2020. doi:10.1007/S00453-020-00684-9.

16 Niels Grüttemeier and Christian Komusiewicz. On the relation of strong triadic closure and
cluster deletion. Algorithmica, 82(4):853–880, 2020. doi:10.1007/S00453-019-00617-1.

17 Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. A more relaxed
model for graph-based data clustering: s-plex cluster editing. SIAM Journal on Discrete
Mathematics, 24(4):1662–1683, 2010. doi:10.1137/090767285.

18 Danny Hermelin, Stefan Kratsch, Karolina Soltys, Magnus Wahlström, and Xi Wu. A
completeness theory for polynomial (Turing) kernelization. Algorithmica, 71(3):702–730, 2015.
doi:10.1007/S00453-014-9910-8.

19 Giuseppe F. Italiano, Athanasios L. Konstantinidis, and Charis Papadopoulos. Structural
parameterization of cluster deletion. In Chun-Cheng Lin, Bertrand M. T. Lin, and Giuseppe
Liotta, editors, Proceedings of the 17th International Conference and Workshops on Algorithms
and Computation (WALCOM ’23), volume 13973 of Lecture Notes in Computer Science, pages
371–383. Springer, 2023. doi:10.1007/978-3-031-27051-2_31.

https://doi.org/10.1016/J.TCS.2009.05.006
https://doi.org/10.1016/J.IPL.2011.05.003
https://doi.org/10.1016/J.IPL.2011.05.003
https://doi.org/10.1016/J.IPL.2015.02.007
https://doi.org/10.1016/j.tcs.2015.07.001
https://doi.org/10.1186/S13015-015-0043-7
https://doi.org/10.1007/S00453-011-9595-1
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/2650261
https://doi.org/10.1145/2650261
https://doi.org/10.1016/J.DAM.2013.08.011
https://doi.org/10.1007/s11390-023-1420-1
https://doi.org/10.1007/s11390-023-1420-1
https://doi.org/10.1016/j.disc.2013.08.017
https://doi.org/10.4230/LIPICS.IPEC.2023.20
https://doi.org/10.1007/S00453-020-00684-9
https://doi.org/10.1007/S00453-019-00617-1
https://doi.org/10.1137/090767285
https://doi.org/10.1007/S00453-014-9910-8
https://doi.org/10.1007/978-3-031-27051-2_31

J. Garvardt, C. Komusiewicz, and N. Morawietz 32:17

20 Klaus Jansen, Felix Land, and Kati Land. Bounding the running time of algorithms for
scheduling and packing problems. SIAM J. Discret. Math., 30(1):343–366, 2016. doi:10.
1137/140952636.

21 Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. Deconstructing intractabil-
ity – A multivariate complexity analysis of interval constrained coloring. Journal of Discrete
Algorithms, 9(1):137–151, 2011. doi:10.1016/J.JDA.2010.07.003.

22 Christian Komusiewicz and Johannes Uhlmann. Cluster editing with locally bounded modifi-
cations. Discrete Applied Mathematics, 160(15):2259–2270, 2012. doi:10.1016/J.DAM.2012.
05.019.

23 Athanasios L. Konstantinidis and Charis Papadopoulos. Cluster deletion on interval graphs and
split related graphs. Algorithmica, 83(7):2018–2046, 2021. doi:10.1007/s00453-021-00817-8.

24 Harold W. Kuhn. The Hungarian Method for the Assignment Problem. In 50 Years of Integer
Programming 1958-2008 - From the Early Years to the State-of-the-Art, pages 29–47. Springer,
2010. doi:10.1007/978-3-540-68279-0_2.

25 Sebastian Ochs. Cluster deletion on unit disk graphs. Master’s thesis, Philipps-
Universität Marburg, 2023. URL: https://www.fmi.uni-jena.de/fmi_femedia/
fakultaet/institute-und-abteilungen/informatik/algorithm-engineering/
master-thesis-sebastian-ochs.pdf.

26 Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1-2):173–182, 2004. doi:10.1016/J.DAM.2004.01.007.

27 Dekel Tsur. Faster parameterized algorithm for cluster vertex deletion. Theory of Computing
Systems, 65(2):323–343, 2021. doi:10.1007/s00224-020-10005-w.

28 Dekel Tsur. Cluster deletion revisited. Information Processing Letters, 173:106171, 2022.
doi:10.1016/J.IPL.2021.106171.

ISAAC 2024

https://doi.org/10.1137/140952636
https://doi.org/10.1137/140952636
https://doi.org/10.1016/J.JDA.2010.07.003
https://doi.org/10.1016/J.DAM.2012.05.019
https://doi.org/10.1016/J.DAM.2012.05.019
https://doi.org/10.1007/s00453-021-00817-8
https://doi.org/10.1007/978-3-540-68279-0_2
https://www.fmi.uni-jena.de/fmi_femedia/fakultaet/institute-und-abteilungen/informatik/algorithm-engineering/master-thesis-sebastian-ochs.pdf
https://www.fmi.uni-jena.de/fmi_femedia/fakultaet/institute-und-abteilungen/informatik/algorithm-engineering/master-thesis-sebastian-ochs.pdf
https://www.fmi.uni-jena.de/fmi_femedia/fakultaet/institute-und-abteilungen/informatik/algorithm-engineering/master-thesis-sebastian-ochs.pdf
https://doi.org/10.1016/J.DAM.2004.01.007
https://doi.org/10.1007/s00224-020-10005-w
https://doi.org/10.1016/J.IPL.2021.106171

Robust Bichromatic Classification Using Two Lines
Erwin Glazenburg #

Utrecht University, The Netherlands

Thijs van der Horst #

Utrecht University, The Netherlands
TU Eindhoven, The Netherlands

Tom Peters #

TU Eindhoven, The Netherlands

Bettina Speckmann #

TU Eindhoven, The Netherlands

Frank Staals #

Utrecht University, The Netherlands

Abstract
Given two sets R and B of n points in the plane, we present efficient algorithms to find a two-line
linear classifier that best separates the “red” points in R from the “blue” points in B and is robust
to outliers. More precisely, we find a region WB bounded by two lines, so either a halfplane, strip,
wedge, or double wedge, containing (most of) the blue points B, and few red points. Our running
times vary between optimal O(n log n) up to around O(n3), depending on the type of region WB

and whether we wish to minimize only red outliers, only blue outliers, or both.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Geometric Algorithms, Separating Line, Classification, Bichromatic, Duality

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.33

Related Version Full Version: https://arxiv.org/abs/2401.02897 [14]

1 Introduction

Let R and B be two sets of at most n points in the plane. Our goal is to best separate the
“red” points R from the “blue” points B using at most two lines. That is, we wish to find a
region WB bounded by lines ℓ1 and ℓ2 containing (most of) the blue points B so that the
number of points kR from R in the interior int(WB) of WB and/or the number of points kB

from B in the interior of the region WR = R2 \ WB is minimized. We refer to these subsets
ER = R ∩ int(WB) and EB = B ∩ int(WR) as the red and blue outliers, respectively, and
define E = ER ∪ EB and k = kR + kB .

The region WB is either: (i) a halfplane, (ii) a strip bounded by two parallel lines ℓ1 and
ℓ2, (iii) a wedge, i.e., one of the four regions induced by a pair of intersecting lines ℓ1 and
ℓ2, or (iv) a double wedge, i.e., two opposing regions induced by a pair of intersecting lines

double wedgehalfplane

`
`2

`1

strip

`1

`2

wedge

`1

`2

`1

`2

Figure 1 We consider separating R and B by at most two lines. This gives rise to four types of
regions WB : halfplanes, strips, wedges, and two types of double wedges: hourglasses and bowties.

© Erwin Glazenburg, Thijs van der Horst, Tom Peters, Bettina Speckmann, and Frank Staals;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 33; pp. 33:1–33:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:e.p.glazenburg@uu.nl
https://orcid.org/0009-0003-6645-4240
mailto:t.w.j.vanderhorst@uu.nl
https://orcid.org/0009-0002-6987-4489
mailto:t.peters1@tue.nl
https://orcid.org/0000-0002-2702-7532
mailto:b.speckmann@tue.nl
https://orcid.org/0000-0002-8514-7858
mailto:f.staals@uu.nl
https://orcid.org/0009-0004-8522-1351
https://doi.org/10.4230/LIPIcs.ISAAC.2024.33
https://arxiv.org/abs/2401.02897
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Robust Bichromatic Classification Using Two Lines

ℓ1 and ℓ2 (we further distinguish hourglass double wedges, that contain a vertical line, and
the remaining bowtie double wedges), see Figure 1. We can reduce the case that WB would
consist of three regions to the single-wedge case by recoloring the points. For each of these
cases for the shape of WB we consider three problems: allowing only red outliers (kB = 0)
and minimizing kR, allowing only blue outliers (kR = 0) and minimizing kB, or allowing
both outliers and minimizing k = kR + kB . We present efficient algorithms for each of these
problems, as shown in Table 1.

Motivation and related work. Classification is a key problem in computer science. The
input is a labeled set of points and the goal is to obtain a procedure that, given an unlabeled
point, assigns it a label that “fits it best”, considering the labeled points. Classification has
many direct applications, e.g. identifying SPAM in email messages, or tagging fraudulent
transactions [20, 22], but is also the key subroutine in other problems such as clustering [1].

We restrict our attention to binary classification where our input is a set R of red points
and a set B of blue points. We can compute whether R and B can be perfectly separated by
a line (and compute such a line if it exists) in O(n) time using linear programming. This
extends to finding a separating hyperplane in case of points in Rd, for some constant d [19].

Clearly, it is not always possible to find a hyperplane that perfectly separates the red and
the blue points, see for example Figure 2, in which the blue points are actually all contained
in a wedge. Hurtato et al. [16, 17] consider separating R and B in R2 using at most two lines
ℓ1 and ℓ2. In this case, linear programming is unfortunately no longer applicable. Instead,
they present O(n log n) time algorithms to compute a perfect separator (i.e., a strip, wedge,
or double wedge containing all blue points but no red points), if it exists. These results
were shown to be optimal [5], and can be extended to the case where B and R contain other
geometric objects such as segments or circles, or to include constraints on the slopes [16].
Similarly, Hurtado et al. [18] considered similar strip and wedge separability problems for
points in R3. Arkin et al. [4] show how to compute a 2-level binary space partition (a line
ℓ and two rays starting on ℓ) separating R and B in O(n2) time, and a minimum height
h-level tree, with h ≤ log n, in nO(log n) time. Even today, computing perfect bichromatic
separators with particular geometric properties remains an active research topic [2].

Alternatively, one can consider separation with a (hyper-)plane but allow for outliers.
Chan [8] presented algorithms for linear programming in R2 and R3 that allow for up to k

violations –and thus solve hyperplane separation with up to k outliers– that run in O((n +
k2) log n) and O(n log n + k11/4n1/4 polylog n) time, respectively. In higher (but constant)
dimensions, only trivial solutions are known. For arbitrary (non-constant) dimensions the
problem is NP-hard [3]. There is also a fair amount of work that aims to find a halfplane
that minimizes some other error measure, e.g. the distance to the farthest misclassified point,
or the sum of the distances to misclassified points [7, 15].

ℓ1

ℓ2

perfect

ℓ1

ℓ2

minimize kR

ℓ1

ℓ2

minimize kB

ℓ1

ℓ2

minimize k

Figure 2 Perfectly separating R and B may require more than one line. When considering
outliers, we may allow ‘(and minimize) only red outliers, only blue outliers, or both.

E. Glazenburg, T. van der Horst, T. Peters, B. Speckmann, and F. Staals 33:3

Table 1 An overview of our results. Results shown in the full version [14] are marked with “full”.
Expected running times are marked with a ‡.

region WB minimize kR minimize kB minimize k

halfplane O(n log n) full O(n log n) full O((n + k2) log n) [8]

strip O(n log n) [21] O(n2 log n) full O(n2 log n) full

wedge O(n2) [21] O(n5/2 log n)‡ §5.2
O(n log n) §5.1 O(nk2

B log2 n log kB) §5.3 O(nk2 log3 n log k) §5.3

double bowtie O(n2) §6 O(n2 log n) §6 O(n2k log3 n log k) §6

Separating points using more general non-hyperplane separators and outliers while
incorporating guarantees on the number of outliers seems to be less well studied. Seara [21]
showed how to compute a strip containing all blue points, while minimizing the number of
red points in the strip in O(n log n) time. Similarly, he presented an O(n2) time algorithm for
computing a wedge with the same properties. Armaselu and Daescu [6] show how to compute
and maintain a smallest circle containing all red points and the minimum number of blue
points. In this paper, we take some further steps toward the fundamental but challenging
problem of computing a robust non-linear separator that provides performance guarantees.

Results. We present efficient algorithms for computing a region WB = WB(ℓ1, ℓ2) defined
by at most two lines ℓ1 and ℓ2 containing only the blue points, that are robust to outliers.
Our results depend on the type of region WB we are looking for, i.e., halfplane, strip, wedge,
or double wedge, as well as on the type of outliers we allow: red outliers (counted by kR),
blue outliers (counted by kB), or all outliers (counted by k). Refer to Table 1 for an overview.

Our main contributions are efficient algorithms for when WB is really bounded by two
lines. All these versions can be solved by a simple O(n4) time algorithm that explicitly
considers all candidate regions. However, we show that we can do significantly better in
every case.

In particular, in the versions where we minimize the number of red outliers kR we achieve
significant speedups. For example, we can compute an optimal wedge WB containing B and
minimizing kR in optimal Θ(n log n) time (which improves an earlier O(n2) time algorithm
from Seara [21]). We use two types of duality transformations that allow us to map each
point p ∈ R ∪ B into a forbidden region Ep in a low-dimensional parameter space, such that:
i) every point s in this parameter space corresponds to a region WB(s), and ii) this region
WB(s) misclassifies point p if and only if this point s lies in Ep. This allows us to solve the
problem by computing a point that lies in the minimum number of forbidden regions.

Surprisingly, the versions of the problem in which we minimize the number of blue outliers
kB are much more challenging. For none of these versions we can match our running times
for minimizing kR, while needing more advanced tools. For example, for the single wedge
version, we use dynamic lower envelopes to obtain a batched query problem that we solve
using spanning-trees with low stabbing number [10]. See Section 5.2.

For the case where both red and blue outliers are allowed and we minimize k, we present
output-sensitive algorithms whose running time depends on the optimal value of k. We
essentially fix one of the lines ℓ1, and use linear programming (LP) with violations [8, 13]
to compute an optimal line ℓ2 that together with ℓ1 defines WB. We show that by using
results on ≤ k-levels, a recent data structure for dynamic LP with violations [13], and binary
searching, we can achieve algorithms with running times around O(n2k polylog n).

ISAAC 2024

33:4 Robust Bichromatic Classification Using Two Lines

Outline. We give some additional definitions and notation in Section 2, and in Section 3 we
present a characterization of optimal solutions that lead to our simple O(n4) time algorithm
for any type of wedges. In Sections 4, 5, and 6 we discuss the case when WB is, respectively,
a strip, wedge, or double wedge. In each of these sections we separately go over minimizing
the number of red outliers kR, the number of blue outliers kB, and the total number of
outliers k. We wrap up with some concluding remarks and future work in Section 7. Omitted
proofs can be found in the full version [14].

2 Preliminaries

In this section we discuss some notation and concepts used throughout the paper. For ease
of exposition we assume B ∪ R contains at least three points and is in general position, i.e.,
that all coordinate values are unique, and that no three points are colinear.

Notation. Let ℓ− and ℓ+ be the two halfplanes bounded by line ℓ, with ℓ− below ℓ (or left
of ℓ if ℓ is vertical). Any pair of lines ℓ1 and ℓ2, with the slope of ℓ1 smaller than that of
ℓ2, subdivides the plane into at most four interior-disjoint regions: North(ℓ1, ℓ2) = ℓ+

1 ∩ ℓ+
2 ,

East(ℓ1, ℓ2) = ℓ+
1 ∩ ℓ−

2 , South(ℓ1, ℓ2) = ℓ−
1 ∩ ℓ−

2 and West(ℓ1, ℓ2) = ℓ−
1 ∩ ℓ+

2 . When ℓ1 and ℓ2
are clear from the context we may simply write North to mean North(ℓ1, ℓ2), etc. We assign
each of these regions to either B or R, so that WB = WB(ℓ1, ℓ2) and WR = WR(ℓ1, ℓ2) are
the union of some elements of {North, East, South, West}. In case ℓ1 and ℓ2 are parallel, we
assume that ℓ1 lies below ℓ2, and thus WB = East.

Duality. We make frequent use of the standard point-line duality [11], where we map objects
in primal space to objects in a dual space. In particular, a primal point p = (a, b) is mapped
to the dual line p∗ : y = ax − b and a primal line ℓ : y = ax + b is mapped to the dual point
ℓ∗ = (a, −b). If in the primal a point p lies above a line ℓ, then in the dual the line p∗ lies
below the point ℓ∗.

For a set of points P with duals P ∗ = {p∗ | p ∈ P}, we are often interested in the
arrangement A(P ∗), i.e., the vertices, edges, and faces formed by the lines in P ∗. Two
unbounded faces of A(P ∗) are antipodal if their unbounded edges have the same two
supporting lines. Since every line contributes to four unbounded faces, there are O(n) pairs
of antipodal faces. We denote the upper envelope of P ∗, i.e., the polygonal chain following
the highest line in A(P ∗), by U(P ∗), and the lower envelope by L(P ∗).

3 Properties of an optimal separator

Next, we prove some structural properties about the lines bounding the region WB containing
(most of) the blue points in B.

▶ Lemma 3.1. For the strip classification problem there exists an optimum where one line
goes through two points and the other through at least one point.

Proof. Clearly, we can shrink an optimal strip WB(ℓ1, ℓ2) so that both ℓ1 and ℓ2 contain
a (blue) point, say b1 and b2, respectively. Now rotate ℓ1 around b1 and ℓ2 around b2 in
counter-clockwise direction until either ℓ1 or ℓ2 contains a second point. ◀

▶ Lemma 3.2. For any wedge classification problem there exists an optimum where both
lines go through a blue and a red point.

E. Glazenburg, T. van der Horst, T. Peters, B. Speckmann, and F. Staals 33:5

U(B)

L(B)

a

d
b

c

a1
a2

b1

b2

c1

c2
a1 b1 c1 c2 a2 b2

a
b
c
d

p

p

ℓ∗2

ℓ∗1

Figure 3 The four types of red lines and their forbidden region.

Proof sketch. Similar to the proof for strips, we show that any (double) wedge can be
adjusted until both its lines go through a blue and a red point, without misclassifying any
more points. Since this also holds for a given optimum, the lemma follows. ◀

A simple general algorithm. Lemma 3.2 tells us we only have to consider lines through red
and blue points. Hence, there is a simple brute-force O(n4) time algorithm that considers all
pairs of such lines, which works for both wedges and double wedges and any type of outliers.
Refer to the full version for details.

4 Separation with a strip

In this section we consider the case where lines ℓ1 and ℓ2 are parallel, with ℓ2 above ℓ1, and
thus WB(ℓ1, ℓ2) forms a strip. We want B to be inside the strip, and R outside. We work in
the dual, where we want to find two points ℓ∗

1 and ℓ∗
2 with the same x-coordinate such that

vertical segment ℓ∗
1ℓ∗

2 intersects the lines in B∗ but not the lines in R∗. We briefly summarize
our approach and our results.

Strip separation with red outliers. In this version, we wish to find a vertical line segment
ℓ∗

1ℓ∗
2 that intersects all lines in B∗ and minimizes the number of lines from R∗ it intersects.

So we can assume that ℓ∗
1 lies on the upper envelope U(B∗) of B∗ and ℓ∗

2 lies on the lower
envelope L(B∗), since shortening ℓ∗

1ℓ∗
2 can only decrease the number of red lines intersected.

There is only one degree of freedom for choosing our segment, its x-coordinate, so our
parameter space is R. We parameterize U(B∗) and L(B∗) over R, so that each point p ∈ R
in the parameter space corresponds to the vertical segment ℓ∗

1ℓ∗
2 on the line x = p. See

Figure 3. We map every red line r to a forbidden region (an interval) in this parameter space,
in which ℓ∗

1ℓ∗
2 would intersect r. Our goal is then to compute a point p that is contained in

the minimum number of such forbidden intervals. We can do so in O(n log n) time by sorting
and scanning. This matches an existing result by Seara [21].

Strip separation with blue outliers. In this version, the vertical segment ℓ∗
1ℓ∗

2 may intersect
no red lines and as many blue lines as possible. That means that there is a ℓ∗

1ℓ∗
2 that is a

maximal vertical segment in a face of A(R∗). We sweep a vertical line ℓ over A(R∗) while,
for each face F (defining a candidate segment F ∩ ℓ for ℓ∗

1ℓ∗
2) we maintain the number of

blue lines that intersect the candidate segment. This leads to an O(n2 log n) time algorithm
for computing an optimal segment, and thus an optimal strip.

Strip separation with both outliers. In this version, the vertical segment ℓ∗
1ℓ∗

2 may misclas-
sify both red and blue lines, but as few as possible. There is much less structure for where
an optimal segment can be than before, since an optimal segment can now intersect any

ISAAC 2024

33:6 Robust Bichromatic Classification Using Two Lines

U(B∗)

L(B∗)

`∗1

`∗2

a

c

e

b

a1

a2

b1
b2

c2

c1

d

d1

d2

`∗1

`∗2

a1 a2

b1

b2

c1

c2

d2

d1

2

1

1

2

3
z

Figure 4 The arrangement of B∗ ∪ R∗ with its parameter space and forbidden regions.

number of blue or red lines. We sweep over the full arrangement A(R∗ ∪ B∗) with a vertical
line. We maintain a datastructure that, given a point ℓ∗

2 on the sweepline, can find a second
point ℓ∗

1 such that the number of outliers |E(ℓ1, ℓ2)| is minimized. Each time the sweepline
crosses a vertex of A(R∗ ∪ B∗) we update the datastructure and perform one query, both in
O(log n) time, resulting in an O(n2 log n) algorithm.

▶ Theorem 4.1. Given two sets of n points B, R ⊂ R2, we can construct a strip WB

minimizing (i) the number of red outliers kR in O(n log n) time, (ii) the number of blue
outliers kB in O(n2 log n) time, or (iii) the number of outliers k in O(n2 log n) time.

5 Separation with a wedge

We consider the case where the region WB is a single wedge and WR is the other three
wedges. In Sections 5.1, 5.2, and 5.3 we show how to minimize kR, kB , and k, respectively.

5.1 Wedge separation with red outliers
We distinguish between WB being an East or West wedge, and a North or South wedge. In
either case we can compute optimal lines ℓ1 and ℓ2 defining WB in O(n log n) time.

Finding an East or West wedge. We wish to find two lines ℓ1 and ℓ2 such that every blue
point and as few red points as possible lie above ℓ1 and below ℓ2. In the dual this corresponds
to points ℓ∗

1 and ℓ∗
2 such that all blue lines and as few red lines as possible lie below ℓ∗

1 and
above ℓ∗

2, as in Figure 4.
Clearly ℓ∗

1 must lie above U(B∗), and ℓ∗
2 below L(B∗), and again we can assume they lie

on U(B∗) and L(B∗), respectively. We now have two degrees of freedom, one for choosing ℓ∗
1

and one for choosing ℓ∗
2. Again we parameterize U(B∗) and L(B∗), but this time over R2,

such that a point (p, q) in this parameter space corresponds to two dual points ℓ∗
1 and ℓ∗

2,
with ℓ∗

1 on U(B∗) at x = p and ℓ∗
2(y) on L(B∗) at x = q, as illustrated in Figure 4. We wish

to find a value in our parameter space whose corresponding segment minimizes the number
of red misclassifications. Recall the forbidden regions of a red line r are those regions in the
parameter space in which corresponding segments misclassify r. We distinguish between five
types of red lines, as in Figure 4:

Line a intersects U(B∗) in points a1 and a2, with a1 left of a2. Only segments with ℓ∗
1 left of

a1 or right of a2 misclassify a. This produces two forbidden regions: (−∞, a1) × (−∞, ∞)
and (a2, ∞) × (−∞, ∞).
Line b intersects L(B∗) in points b1 and b2, with b1 left of b2. Symmetric to line a this
produces forbidden regions (−∞, ∞) × (−∞, b1) and (−∞, ∞) × (b2, ∞).

E. Glazenburg, T. van der Horst, T. Peters, B. Speckmann, and F. Staals 33:7

L(R+∗)

ℓ∗1b ℓ∗2

ℓ2

ℓ1

Figure 5 Left: in the primal we need to consider only the points above ℓ1. Right: in the dual we
need to consider only the lines below ℓ∗

1. In particular, ℓ∗
1 should lie below (on) L(R+∗).

Line c intersects U(B∗) in c1 and L(B∗) in c2, with c1 left of c2. Only segments with
endpoints after c1 and before c2 misclassify c. This produces the region (c1, ∞)×(−∞, c2).
(Segments with endpoints before c1 and after c2 do intersect c, but do not misclassify it.)
Line d intersects U(B∗) in d1 and L(B∗) in d2, with d1 right of d2. Symmetric to line c

it produces the forbidden region (−∞, d1) × (d2, ∞).
Line e intersects neither U(B∗) nor L(B∗). All segments misclassify e. In the primal this
corresponds to red points inside the blue convex hull. This produces one forbidden region;
the entire plane R2.

The forbidden regions generated by the red lines r∗ ∈ R∗ divide the parameter space in
axis-aligned orthogonal regions. Our goal is again to find a point with minimum ply, i.e. a
point that is contained in the minimum number of these forbidden regions.

▶ Lemma 5.1. Given a set R of n constant complexity, axis-aligned, orthogonal regions, we
can compute the point with minimum ply in O(n log n) time.

Proof sketch. We sweep through the plane with a vertical line z while maintaining a minimum
ply point on z. See Figure 4 (right) for an illustration. We maintain the regions intersected
by the sweep line in a slightly augmented segment tree [11]. In particular, each node v

in the tree stores the size s(v) of its canonical subset, the minimum ply ply(v) within the
subtree of v, and a point attaining this minimum ply. Since there are O(n) forbidden regions
(rectangles), each of which is added and removed once in O(log n) time, this leads to a
running time of O(n log n). ◀

We construct U(B∗) and L(B∗) in O(n log n) time. For every red line r, we calculate
its intersections with U(B∗) and L(B∗) in O(log n) time, determine its type (a − e), and
construct its forbidden regions. By Lemma 5.1 we can find a point with minimum ply in
these forbidden regions in O(n log n) time. We thus obtain an O(n log n) time algorithm for
finding an optimal East or West wedge. We can find an optimal North or South wedge in a
similar manner, and thus obtain:

▶ Theorem 5.2. Given two sets of n points B, R ⊂ R2, we can construct a wedge WB

containing all points of B and the fewest points of R in O(n log n) time.

5.2 Wedge separation with blue outliers
We now consider the case where all red points must be classified correctly, and we minimize
the number of blue outliers kB. We show how to find an optimal North wedge; finding
optimal South, East, or West wedges can be done analogously.

ISAAC 2024

33:8 Robust Bichromatic Classification Using Two Lines

Fix line ℓ1 and consider the problem of finding an optimal corresponding line ℓ2. All
points below ℓ1 lie outside the North wedge, regardless of our choice of ℓ2, and thus we have
to consider only the points B+ ⊆ B and R+ ⊆ R above ℓ1. See Figure 5. We do not allow
red points in the North wedge, so ℓ2 must lie above all red points R+ and below as many blue
points B+ as possible. This is exactly the halfplane separation problem with blue outliers
we solve in the full version in O(n log n) time. We can iterate through all O(n2) options for
ℓ1 (by walking through A(B∗ ∪ R∗)) and compute the corresponding line ℓ2 in O(n log n)
time, which would lead to an O(n3 log n) time algorithm. Below we describe an algorithm
that avoids recomputing ℓ2 from scratch every time, giving an O(n5/2 log n) time algorithm.

Let L be a set of lines, and let the level lL(p) of a point p (with respect to L) be the
number of lines of L that lie below p. We define the level lL(s) = maxp∈s lL(p) of a segment
s (with respect to L) as the maximum level of any point p on s.

Consider the dual, where we are looking for two points ℓ∗
1 and ℓ∗

2 such that no red line
and as many blue lines as possible lie below both ℓ∗

1 and ℓ∗
2. By Lemma 3.2 we can assume

both ℓ∗
1 and ℓ∗

2 lie on a red-blue intersection. For a fixed point ℓ∗
1 we are interested only

in the set of lines B+∗ and R+∗ below ℓ∗
1, and since ℓ∗

2 must lie below all of R+∗ we can
assume it lies on its lower envelope L(R+∗). See Figure 5. The wedge North(ℓ1, ℓ2) correctly
classifies exactly lB+∗(ℓ∗

2) points. We are thus looking for the pair of points ℓ∗
1 and ℓ∗

2 that
maximize the level lB+∗(ℓ∗

2).
We now show that we can compute ℓ∗

2 efficiently for every candidate point ℓ∗
1, provided

that there is an oracle that can answer (a batch of) the following queries: given a point ℓ∗
1

and a line segment s lying on a red line, compute the level lB+∗(s). We then show that we
can implement an oracle that answers all O(n2) queries in O(n5/2 log n) time. This yields an
O(n5/2 log n) time algorithm to compute an optimal north wedge.

Using an oracle to maintain ℓ∗
2. Consider any blue line b ∈ B∗ and assume w.l.o.g. that

it is horizontal. We will shift ℓ∗
1 from left to right along b, maintaining the set of red lines

R+∗ below ℓ∗
1. During this shift ℓ∗

1 crosses each of the other lines at most once. We wish to
maintain L(R+∗) and a point with maximum level w.r.t. B+∗ over all edges of L(R+∗). Such
a point corresponds to an optimal second point ℓ∗

2 for the current point ℓ∗
1. By repeating

this shift for every blue line b ∈ B∗ we consider all O(n2) candidate points for ℓ∗
1 and their

corresponding optimal point ℓ∗
2. This thus allows us to report an optimal solution.

We first show that we may keep an explicit representation of L(R+∗) while shifting ℓ∗
1

along b. We store the edges of L(R+∗) in the leaves of a binary tree (ordered on increasing
x-coordinate), which we refer to as the explicit tree of L(R+∗). We then augment this explicit
tree to additionally maintain the maximum level over all its edges. We show that we can
maintain this tree in near-linear time in total; see the full version for details.

▶ Lemma 5.3. While shifting ℓ∗
1 along b we can maintain an explicit tree of L(R+∗) in

O(n log n) total time.

With the explicit tree at hand, we require only O(n) queries to the oracle during the
entire shifting process to maintain an optimal point ℓ∗

2. Refer to the full version for details.

▶ Lemma 5.4. We can maintain an edge of L(R+∗) with maximum level w.r.t. B+∗ while
shifting ℓ∗

1 along b using O(n) queries to the oracle and O(n log n) additional time.

Collecting queries to the oracle. What remains is to describe how to implement the oracle
that answers the queries. Observe that the set of queries to the oracle is fixed. That is, the
answer to an oracle query is independent of the answers to earlier queries, and the answers of

E. Glazenburg, T. van der Horst, T. Peters, B. Speckmann, and F. Staals 33:9

queries do not influence which future queries will be performed. Therefore, we can perform a
“dry”-run of the algorithm where we collect all queries, and then answer them in bulk. As we
will see, this allows us to answer these queries efficiently.

Since each blue line generates O(n) queries (Lemma 5.4), we have a total of O(n2) queries.
Once we have the answers to all these queries, we once again run the algorithm for each
blue line b. In this “real”-run of the algorithm we can answer queries in O(1) time, and thus
compute an optimal pair of points ℓ∗

1 and ℓ∗
2 with ℓ∗

1 on b in O(n log n) time (Lemma 5.4).
This then leads the following result.

▶ Lemma 5.5. Given two sets of n points B, R ⊂ R2, we can construct a wedge containing
as many points of B as possible and no points of R in O(T (n) + n2 log n) time, where T (n)
is the total time required to answer O(n2) oracle queries.

Implementing the oracle. We will now show how to implement the oracle that can answer
(a batch of) the following queries efficiently. Given a query (ℓ∗

1, s) consisting of a point ℓ∗
1

and a red segment s, we wish to find the maximum level of any point on s w.r.t. the set B+∗

of blue lines below ℓ∗
1. Maintaining the set B+∗ and answering queries fully dynamically is

difficult, so we will instead answer them in bulk.
We consider a red line r and assume w.l.o.g. that it is horizontal. Let Q be the set of

queries whose line segment s lies on r, let qr = |Q|, and let P be the set of query points ℓ∗
1

corresponding to the queries in Q. See Figure 6.
We pick an arbitrary query (ℓ∗

1, s) ∈ Q. Let b ∈ B+∗ be a blue line with negative slope;
the other case is analogous. Consider the intersection point i between b and r. For points
p ∈ s left of i, b lies above p and thus b does not add to the level of p. For points p ∈ s

right of i, b lies below i and thus b does add to the level of p. Consider all intersections
between r and lines in B+∗. We build a balanced binary tree on these intersections, ordered
by x-coordinate, augmented such that each node also stores the point with the highest level
in its subtree. Recall that s is a line segment on r, and thus represents an x-interval on
r. We can easily answer the query (s, ℓ∗

1) by finding the O(log n) nodes representing that
interval and returning the maximum level of any point inside their subtrees.

To answer the other queries we can shift the point ℓ∗
1 through the arrangement A(B∗).

When we cross into a different face, one blue line is inserted into or deleted from B+∗. We can
update the binary tree in O(log n) time, meaning that when we reach a point p ∈ P we can
answer the corresponding query, again in O(log n) time. So, if we can walk through A(B∗)
crossing s lines while visiting all points P , we can answer all queries Q in O((s + |P |) log n)
time.

Consider a spanning tree on P . The stabbing number of a spanning tree is the maximum
number of edges of the tree that can be intersected by a single line. With high probability
(whp; in particular with probability 1−1/qc

r for some arbitrarily large constant c) we can build
a spanning tree T on P with stabbing number O(√qr) in O(qr log qr) time [9]. Thus, each
blue line intersects T at most O(√qr) times, and therefore there are O(n√

qr) intersections
between T and B (whp).

If we follow the spanning tree while walking through A(B∗) we will thus cross O(n√
qr)

blue lines in total while visiting all points P , meaning we can answer all queries Q on r in
O(n√

qr log n) time (note that the O(qr log qr) time to build the spanning tree is dominated by
O(n√

qr log n) for any qr = O(n2)). Doing this for all lines r ∈ R takes O(
∑

r(n√
qr log n))

time. Recall we have O(n2) queries in total, so we have
∑

r qr = O(n2). Since
√

· is
a concave function, we have

√
a +

√
b ≤

√
2(a + b) for any non-negative values a and

ISAAC 2024

33:10 Robust Bichromatic Classification Using Two Lines

ℓ∗1

s

r
bi

Figure 6 A set of queries on a red line r, with
a spanning tree on P . Line b contributes to the
level of all points right of i.

`2

`1

Figure 7 All points above ℓ1 lie outside
the South wedge. After fixing ℓ1, we are
left with a halfplane separation problem.

b. More generally,
∑

i

√
xi ≤

√
n (

∑
i xi) for any n non-negative values xi. In particular,∑

r

√
qr ≤

√
n (

∑
r qr) = O(n3/2). Therefore, we have an O(

∑
r(n√

qr log n)) = O(n5/2 log n)
time algorithm to answer all queries over all red lines.

▶ Lemma 5.6. We can answer O(n2) queries in expected O(n5/2 log n) time.

Together with Lemma 5.5 this yields an expected O(n5/2 log n + n2 log n) = O(n5/2 log n)
time algorithm to find an optimal North wedge. We can symmetrically find an optimal South
wedge by assuming the wedge lies below both ℓ1 and ℓ2. Similarly by assuming the wedge
lies below ℓ1 and above ℓ2 we can find an optimal West or East wedge.

▶ Theorem 5.7. Given two sets of n points B, R ⊂ R2, we can construct a wedge containing
as many points of B as possible and no points of R in expected O(n5/2 log n) time.

5.3 Wedge separation with both outliers
We now consider the case where we allow and minimize both red and blue outliers. We show
how to find an optimal South wedge; finding an optimal West, North, or East wedge can be
done symmetrically. We first study the decision version of this problem: given an integer k′,
does there exist a South wedge WB with at most k′ outliers? We present an O(nk′2 log3 n)
time algorithm to solve this decision problem. Using exponential search to guess the optimal
value k (i.e. guessing k′ = 1, 2, 4, 8 . . . and binary searching in the remaining interval) then
leads to an O(nk2 log3 n log k) time algorithm to compute a wedge WB that minimizes k.

In Lemma 5.8 we construct a small candidate set of lines that contains a line ℓ1 that is
used by an optimal wedge. Then our algorithm considers each line in this set and constructs
an optimal wedge using it.

▶ Lemma 5.8. In O(nk′ log n) time, we can construct a set of O(nk′) lines that contains a
line ℓ1 used by an optimal wedge.

Proof. Consider any line ℓ and suppose it is used in a South wedge as the line ℓ1. Let B+ and
B− be the set of blue points above, respectively below, ℓ1. Since we are looking for a South
wedge, all k1 = |B+| blue points above ℓ1 are misclassified, regardless of line ℓ2 (see Figure 7).
Therefore, any line with k1 > k′ blue points above it is not a suitable candidate for ℓ1. In
the dual plane, this means ℓ∗

1 must lie in the (≤ k′)-level L≤k′(B∗) of B∗, the set of points
with at most k′ lines of B∗ below them. With a slight abuse of notation, we use L≤k′(B∗)
to refer to the sub-arrangement of A(B∗) that lies in the (≤ k′)-level. The complexity of
L≤k′(B∗) is O(nk′), and we can construct L≤k′(B∗) in O(nk′ + n log n) time [12].

E. Glazenburg, T. van der Horst, T. Peters, B. Speckmann, and F. Staals 33:11

Consider any line r ∈ R∗, and observe that it intersects L≤k′(B∗) at most O(k′) times.
This follows from the fact that we can decompose L≤k′(B∗) into O(k′) concave chains [8],
and that r intersects each such chain at most twice. We can thus explicitly compute all
the O(nk′) red-blue intersections in L≤k′(B∗) in O(nk′ log n) time, and by Lemma 3.2 these
red-blue intersections contain the dual of a line used in an optimal wedge. ◀

Fix ℓ1 to be any candidate line from Lemma 5.8. We wish to find another line ℓ2 such
that the wedge South(ℓ1, ℓ2) misclassifies at most k′ blue points. Since all points above ℓ1
are outside the wedge regardless of the line ℓ2, we need to consider only the points B− and
R− below ℓ1. Recall that the choice of ℓ1 already misclassifies k1 blue points. Thus, we wish
to find a line ℓ2 that misclassifies at most k2 = k′ − k1 points from B− and R−. That is, a
line ℓ2 such that the number of points from R− below it plus the number of points from B−

above it is at most k2. This is exactly the halfplane separation problem with both outliers,
which we can solve using Chan’s algorithm in O((n + (k2)2) log n) time [8]. Doing this for
all O(nk′) candidate lines results in an O(nk′(n + k2) log n) = O((n2k′ + nk′3) log n) time
algorithm. Below we improve on this, by avoiding to recompute ℓ2 from scratch every time.

Solving the halfplane separation problem dynamically. Consider again the set of candidate
lines of Lemma 5.8, and in particular their dual points. By walking through the arrangement
L≤k′(B∗), we can visit all O(nk′) candidate points ℓ∗

1 in O(nk′) steps, such that at each step
we cross only one (red or blue) line. This means that only a single point is inserted in or
deleted from the sets B− and R− per step. Rather than computing ℓ2 from scratch after
every step now, we maintain it dynamically.

We build the data structure of [13] that, given a value k′, maintains a line ℓ2 that
misclassifies as few points from R− and B− as possible under insertions and deletions of red
and blue points; if no line misclassifying at most k′ points exists, the data structure reports
this. The updates for the data structure have to be given in a ’semi-online’ manner, which
means that whenever a point is inserted we have to know when it is going to be deleted. This
is not a problem in our case, since we can precompute all insertions and deletions on R− and
B− by completing the walk through L≤k′(B∗) before actually updating the data structure.

The data structure reports an optimal line ℓ2 that misclassifies k2 ≤ k′ points of R− and
B−, so the wedge South(ℓ1, ℓ2) then misclassifies k1 + k2 points. If k1 + k2 ≤ k′ then we have
found a wedge misclassifying at most k′ points, so we are done with the decision problem,
otherwise we move on to the next candidate for ℓ1. If the data structure reports that there
exists no line ℓ2 misclassifying at most k′ points, then we also move on to the next candidate.

The data structure has update time O(k′ log3 n) per insertion and deletion, and there
are O(nk′) updates. Therefore, given a value k′, we can find a South wedge with at most k′

outliers, if it exists, in O(nk′2 log3 n) time. Using exponential search for the optimal value k

then gives an optimal South wedge in O(nk2 log3 n log k) time. As in the previous section,
we can similarly find North, West, and East wedges.

▶ Theorem 5.9. Given two sets of n points B, R ⊂ R2, we can construct a wedge WB

minimizing the total number of outliers k in O(nk2 log3 n log k) time.

With similar techniques to the above, we can improve (for some values of kB) our
algorithm for allowing blue outliers only to have an output-sensitive running time, see the
full version for details.

▶ Theorem 5.10. Given two sets of n points B, R ⊂ R2, we can construct a wedge WB

minimizing the number of blue outliers kB in O(nk2
B log2 n log kB) time.

ISAAC 2024

33:12 Robust Bichromatic Classification Using Two Lines

6 Separation with a double wedge

The final setting we study is that of finding a double wedge. We summarize our approach
and results for all three cases.

Double wedge separation with red outliers. We consider finding a bowtie wedge WB while
minimizing red outliers, i.e. all of B and as little of R as possible lies in the West and East
wedge. In the dual this corresponds to a line segment intersecting all of B∗, and as little of
R∗ as possible.

Observe that a segment intersecting all lines of B∗ must have endpoints in antipodal
outer faces of A(B∗), i.e. two opposite outer faces sharing the same two infinite bounding
lines. For all O(n) pairs of antipodal faces, we could apply a very similar algorithm to the
wedge algorithm in Section 5.1, resulting in O(n · n log n) = O(n2 log n) time.

Alternatively, we construct the entire arrangement A(B∗ ∪ R∗) of all lines explicitly in
O(n2) time (see e.g. [11]). Consider a pair of faces P and Q that are antipodal in A(B∗),
and assume w.l.o.g. they are separated by the x-axis, with P above Q. There are two types
of red lines: splitting lines that intersect both P and Q once, and stabbing lines that intersect
at most one of P and Q, see Figure 8. A red line is a splitting line for exactly one pair of
antipodal faces, while it can be a stabbing line for multiple pairs. Recall that we wish to find
a segment from P to Q intersecting as few red lines as possible. The s splitting lines divide
the boundary of P and Q into s + 1 chains P0..Ps (Q0..Qs). Within one such chain Pi on P

we only need to consider the point pi with the most stabbing lines above it: a segment from
pi to Q will not intersect those lines, since Q is below Pi. Similarly, we only need to consider
point qj on chain Qj with the most stabbing lines below it. Using dynamic programming
we can then find the pair of chains Pi, Qj such that piqj intersects the fewest red lines in
O(n + s2) time. Doing so for all pairs of antipodal faces yields a total running time of O(n2).

P

Q

r1 r2

r3

r4

P2

P1

P0

Q0

Q1

Q2

p

q

Figure 8 Two antipodal faces P and Q, with
two splitting lines r1, r2 and two stabbing lines
r3, r4, and an optimal segment pq from P to Q.

ℓ2

ℓ1 B+

B−

R+R−

Figure 9 If we want B to lie in the
North and South wedges, then B+ and
R− should be above ℓ2, and B− and R+

should be below ℓ2.

▶ Theorem 6.1. Given two sets of n points B, R ⊂ R2, we can construct the bowtie double
wedge WB minimizing the number of red outliers kR in O(n2) time.

Double wedge separation with blue outliers. We wish to find a bowtie wedge WB while
minimizing blue outliers, i.e. none of R and as much of B as possible should lie in the West
and East wedge. In the dual this corresponds to a line segment intersecting none of R∗,

E. Glazenburg, T. van der Horst, T. Peters, B. Speckmann, and F. Staals 33:13

and as much of B∗ as possible. This means the segment must lie in a single face of A(R∗).
For each face F of A(R∗) we thus wish to find a segment intersecting as many blue lines as
possible. Let B∗

F be the set of blue lines intersecting F . Then we can find such a segment in
O(|B∗

F | log |B∗
F |) time with a parameter space approach similar to Section 5.1. We do this

for each face F in A(R∗), yielding an O(n2 log n) algorithm.

Double wedge separation with both outliers. We show how to find an hourglass wedge
WB while minimizing both types of outliers; by recolouring we can also find an optimal
bowtie wedge. We use a similar approach as in Section 5.2, by considering a set of O(n2)
candidate lines ℓ1 and computing an optimal line ℓ2 for each. For a fixed line ℓ1, let B+ and
R+ be the points above ℓ1, and B− and R− be the points below ℓ1, and let P = B+ ∪ R−

and Q = B− ∪ R+. See Figure 9. Then we wish to find a line ℓ2 separating P and Q. Using
the same dynamic datastructure for halfplane separation as used in Section 5.3, we can
compute an optimal ℓ2 for each ℓ1 in O(n2k log3 n log k) time.

7 Concluding Remarks

We presented efficient algorithms for robust bichromatic classification of R ∪ B with at most
two lines. Our results depend on the shape of the region containing (most of the) blue points
B, and whether we wish to minimize the number of red outliers, blue outliers, or both. See
Table 1. Several of our algorithms reduce to the problem of computing a point with minimum
ply with respect to a set of regions. We can extend these algorithms to support weighted
regions, and thus we may support classifying weighted points (minimizing the weight of the
misclassified points). It is interesting to see if we can support other error measures as well.

There are also still many interesting open questions. Most prominently whether we
can obtain faster algorithms for minimizing the number of blue outliers kB or the total
number of outliers k. Alternatively, it would be interesting to establish lower bounds for the
various problems. In particular, are our algorithms for computing a halfplane minimizing kR

optimal, and in case of wedges (where the problem is asymmetric) is minimizing the number
of blue outliers kB really more difficult then minimizing kR? For the strip case, the running
time of our algorithm for minimizing k matches the worst case running time for halfplanes
(O((n + k2) log n), which is O(n2 log n) when k = O(n)), but it would be interesting to see if
we can also obtain algorithms sensitive to the number of outliers k.

References
1 Charu C. Aggarwal, editor. Data Classification: Algorithms and Applications. CRC Press,

2014. doi:10.1201/B17320.
2 Carlos Alegría, David Orden, Carlos Seara, and Jorge Urrutia. Separating bichromatic point

sets in the plane by restricted orientation convex hulls. Journal of Global Optimization,
85(4):1003–1036, 2023. doi:10.1007/s10898-022-01238-9.

3 Edoardo Amaldi and Viggo Kann. The complexity and approximability of finding maximum
feasible subsystems of linear relations. Theoretical Computer Science, 147(1&2):181–210, 1995.
doi:10.1016/0304-3975(94)00254-G.

4 Esther M. Arkin, Delia Garijo, Alberto Márquez, Joseph S. B. Mitchell, and Carlos Seara.
Separability of point sets by k-level linear classification trees. International Journal of Com-
putational Geometry & Applications, 22(2):143–166, 2012. doi:10.1142/S0218195912500021.

5 Esther M. Arkin, Ferran Hurtado, Joseph S. B. Mitchell, Carlos Seara, and Steven Skiena.
Some lower bounds on geometric separability problems. International Journal of Computational
Geometry & Applications, 16(1):1–26, 2006. doi:10.1142/S0218195906001902.

ISAAC 2024

https://doi.org/10.1201/B17320
https://doi.org/10.1007/s10898-022-01238-9
https://doi.org/10.1016/0304-3975(94)00254-G
https://doi.org/10.1142/S0218195912500021
https://doi.org/10.1142/S0218195906001902

33:14 Robust Bichromatic Classification Using Two Lines

6 Bogdan Armaselu and Ovidiu Daescu. Dynamic minimum bichromatic separating circle.
Theoretical Computer Science, 774:133–142, 2019. doi:10.1016/j.tcs.2016.11.036.

7 Boris Aronov, Delia Garijo, Yurai Núñez Rodríguez, David Rappaport, Carlos Seara, and
Jorge Urrutia. Minimizing the error of linear separators on linearly inseparable data. Discrete
Applied Mathematics, 160(10-11):1441–1452, 2012. doi:10.1016/j.dam.2012.03.009.

8 Timothy M. Chan. Low-dimensional linear programming with violations. SIAM Journal on
Computing, 34(4):879–893, 2005. doi:10.1137/S0097539703439404.

9 Timothy M. Chan. Optimal partition trees. Discrete & Computational Geometry, 47(4):661–
690, 2012. doi:10.1007/s00454-012-9410-z.

10 Bernard Chazelle and Emo Welzl. Quasi-optimal range searching in space of finite vc-dimension.
Discret. Comput. Geom., 4:467–489, 1989. doi:10.1007/BF02187743.

11 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
geometry: algorithms and applications, 3rd Edition. Springer, 2008.

12 Hazel Everett, Jean-Marc Robert, and Marc van Kreveld. An optimal algorithm for the
(≤ k)-levels, with applications to separation and transversal problems. In Proceedings of
the ninth annual symposium on Computational geometry, pages 38–46, 1993. doi:10.1145/
160985.160994.

13 Erwin Glazenburg, Frank Staals, and Marc van Kreveld. Robust classification of dynamic
bichromatic point sets in r2, 2024. arXiv:2406.19161, doi:10.48550/arXiv.2406.19161.

14 Erwin Glazenburg, Thijs van der Horst, Tom Peters, Bettina Speckmann, and Frank Staals.
Robust bichromatic classification using two lines, 2024. arXiv:2401.02897, doi:10.48550/
arXiv.2401.02897.

15 Sariel Har-Peled and Vladlen Koltun. Separability with outliers. In Proc. 16th International
Symposium on Algorithms and Computation, volume 3827 of Lecture Notes in Computer
Science, pages 28–39. Springer, 2005. doi:10.1007/11602613_5.

16 Ferran Hurtado, Mercè Mora, Pedro A. Ramos, and Carlos Seara. Separability by two lines
and by nearly straight polygonal chains. Discrete Applied Mathematics, 144(1-2):110–122,
2004. doi:10.1016/j.dam.2003.11.014.

17 Ferran Hurtado, Marc Noy, Pedro A. Ramos, and Carlos Seara. Separating objects in
the plane by wedges and strips. Discrete Applied Mathematics, 109(1-2):109–138, 2001.
doi:10.1016/S0166-218X(00)00230-4.

18 Ferran Hurtado, Carlos Seara, and Saurabh Sethia. Red-blue separability problems in 3D.
International Journal of Computational Geometry & Applications, 15(2):167–192, 2005. doi:
10.1142/S0218195905001646.

19 Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. Journal of
the ACM, 31(1):114–127, 1984. doi:10.1145/2422.322418.

20 D. Sculley and Gabriel M. Wachman. Relaxed online SVMs for spam filtering. In Proc. 30th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’07, pages 415–422. Association for Computing Machinery, 2007. doi:
10.1145/1277741.1277813.

21 Carlos Seara. On geometric separability. PhD thesis, Univ. Politecnica de Catalunya, 2002.
22 Aihua Shen, Rencheng Tong, and Yaochen Deng. Application of classification models on credit

card fraud detection. In Proc. 2007 International conference on service systems and service
management, pages 1–4. IEEE, 2007.

https://doi.org/10.1016/j.tcs.2016.11.036
https://doi.org/10.1016/j.dam.2012.03.009
https://doi.org/10.1137/S0097539703439404
https://doi.org/10.1007/s00454-012-9410-z
https://doi.org/10.1007/BF02187743
https://doi.org/10.1145/160985.160994
https://doi.org/10.1145/160985.160994
https://arxiv.org/abs/2406.19161
https://doi.org/10.48550/arXiv.2406.19161
https://arxiv.org/abs/2401.02897
https://doi.org/10.48550/arXiv.2401.02897
https://doi.org/10.48550/arXiv.2401.02897
https://doi.org/10.1007/11602613_5
https://doi.org/10.1016/j.dam.2003.11.014
https://doi.org/10.1016/S0166-218X(00)00230-4
https://doi.org/10.1142/S0218195905001646
https://doi.org/10.1142/S0218195905001646
https://doi.org/10.1145/2422.322418
https://doi.org/10.1145/1277741.1277813
https://doi.org/10.1145/1277741.1277813

Robust Classification of Dynamic Bichromatic
Point Sets in R2

Erwin Glazenburg #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Marc van Kreveld #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Frank Staals #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Abstract
Let R ∪ B be a set of n points in R2, and let k ∈ 1..n. Our goal is to compute a line that “best”
separates the “red” points R from the “blue” points B with at most k outliers. We present an
efficient semi-online dynamic data structure that can maintain whether such a separator exists
(“semi-online” meaning that when a point is inserted, we know when it will be deleted). Furthermore,
we present efficient exact and approximation algorithms that compute a linear separator that is
guaranteed to misclassify at most k, points and minimizes the distance to the farthest outlier. Our
exact algorithm runs in O(nk + n log n) time, and our (1 + ε)-approximation algorithm runs in
O(ε−1/2((n + k2) log n)) time. Based on our (1 + ε)-approximation algorithm we then also obtain a
semi-online data structure to maintain such a separator efficiently.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases classification, duality, data structures, dynamic, linear programming

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.34

Related Version Full Version: https://arxiv.org/abs/2406.19161 [13]

Funding Erwin Glazenburg: Supported by the Dutch Research Council (NWO) under project
OCENW.M20.135.

1 Introduction

Classification is a well known and well studied problem: given a training set of n data
items with known classes, decide which class to assign to a new query item. Support Vector
Machines (SVMs) [8] are a popular method for binary classification in which there are just
two classes: red and blue. An SVM maps the input data items to points in Rd, and constructs
a hyperplane s that separates the red points R from the blue points B “as well as possible”.
Intuitively, it tries to minimize the distance from s to the set X(s, B ∪ R) ⊆ R ∪ B of points
misclassified by s while maximizing the distance to the closest correctly classified points.
A red point r ∈ R is misclassified if it lies strictly inside the halfspace s+ above (left of) s,
whereas a blue point b ∈ B is misclassified if it lies strictly inside the halfspace s− below s. See
Figure 1 for an illustration. An SVM is typically modeled as a convex quadratic programming
problem with linear constraints. However, this cannot provide guarantees on the number of
misclassifications nor on the running time.1 In practice, solving such optimization problems
is possible, but it is computationally expensive as it involves n + d variables [17]. This
problem is magnified as training a high-quality classifier typically requires computing many

1 When we restrict the coefficients in the SVM formulation to be rational numbers with bounded bit
complexity such a problem can be solved in polynomial time [14, 23, 18]. However, it is unclear if they
can be extended to allow for arbitrary real valued costs.

© Erwin Glazenburg, Marc van Kreveld, and Frank Staals;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 34; pp. 34:1–34:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:e.p.glazenburg@uu.nl
https://orcid.org/0009-0003-6645-4240
mailto:m.j.vankreveld@uu.nl
https://orcid.org/0000-0001-8208-3468
mailto:f.staals@uu.nl
https://orcid.org/0009-0004-8522-1351
https://doi.org/10.4230/LIPIcs.ISAAC.2024.34
https://arxiv.org/abs/2406.19161
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Robust Classification of Dynamic Bichromatic Point Sets in R2

k = 1

k = 3

s

Figure 1 Red and blue points, and two optimal separators for Mmax with 1 and 3 misclassification.

classifiers, each trained on a large subset of the input data, during cross-validation. Similarly,
in streaming settings, the labeled input points arrive on the fly, and old data points should
be removed due to concept drift [25]. Each such update requires recomputing the classifier.
Hence, this limits the applicability of SVMs in these settings, even when the input data is
low-dimensional.

The goal. We aim to tackle both these problems. That is, we wish to develop an “SVM-like”
linear classifier that can provide guarantees on the number of misclassified points k, and can
be constructed and updated efficiently. As the problem of minimizing k is NP-complete in
general [1], we restrict our attention to the setting where the input points are low-dimensional.
As it turns out, even for points in the plane, this is a challenging problem.

For a separator s, let Mmis(s) = |X(s, B ∪ R)| be the number of points misclassified
by s. Let Sk(B ∪ R) = {s | Mmis(s) ≤ k} denote the set of hyperplanes that misclassify
at most k points from B ∪ R, and let dist(p, q) denote the Euclidean distance between
geometric objects p and q. When the point sets are linearly separable, we want to compute
a maximum-margin separator sstrip ∈ S0(R ∪ B) that correctly classifies all points and
maximizes the distance Mstrip(sstrip) = minp∈R∪B dist(sstrip, p) to the closest points, exactly
as in an SVM. Moreover, we would like to efficiently maintain such a separator when we
insert or delete a point from B ∪ R. The main challenge occurs when the point sets are not
linearly separable. In this case, given a maximum k on the number of misclassified points,
our aim is to find a separator sopt ∈ Sk(R ∪ B) that minimizes the (Euclidean) distance
Mmax(s) = maxp∈X(s,B∪R) dist(p, s) to the furthest misclassified point. This thus asks for
a minimum width strip containing the k outliers. We again would like to maintain such a
separator when points are inserted or deleted. Furthermore, we may want to compute the
smallest number kmin for which there exists a separator smin that misclassifies at most kmin
points. Note that decreasing the number of outliers may increase the value of Mmax, i.e.
when kmin < k we may have Mmax(smin) > Mmax(sopt), see Figure 1.

By the above discussion we distinguish four general variations of the problem:
MaxStrip: find a separator sstrip = argmaxs∈S0(R∪B)Mstrip(s)
MinMax: find a separator smax = argminsMmax(s)
MinMis: find a separator smis = argminsMmis(s)
k-mis MinMax: given a value k, find a separator sopt = argmins∈Sk(B∪R)Mmax(s)

Related Work. It is well known that for points in Rd, for constant d, we can test if R and B

can be linearly separated in O(n) time by linear programming (LP) [22]. The problem becomes
much more challenging when we allow a limited number of misclassifications. Everett et
al. [12] show that for point sets R and B in the plane, one can find a line that separates R

and B while allowing for at most k misclassifications in O(n log n + nk) time. Matoušek [20]
shows how to solve LP-type problems while allowing at most k violated constraints. In
particular, for linear programming in R2, his algorithm runs in O(n log n + k3 log2 n) time.
Chan [3] improves this to O((n + k2) log n) time, and can compute the smallest number

E. Glazenburg, M. van Kreveld, and F. Staals 34:3

k for which the points can be separated (the MinMis problem) in the same time. Aronov
et al. [2] consider computing optimal separators with respect to other error measures as
well. In particular, they consider minimizing the distance Mmax(s) from s to the furthest
misclassified point, as well as minimizing the average (squared) distance to a misclassified
point Mβ

avg(s) =
∑

p∈X(s,B∪R)(dist(s, p))β . For n points in R2, their running times for
computing an optimal separator vary from O(n log n) for the Mmax measure (the MinMax
problem), to O(n4/3) for the M1

avg measure, to O(n2) for Mmis (the MinMis problem) and the
M2

avg measures. Some of their results extend to points in higher dimensions. Har-Peled and
Koltun [16] consider similar measures, and present both exact and approximation algorithms.
For example, they present an exact O(nkd+1 log n) time algorithm to find a hyperplane
that minimizes the number of outliers (for points in Rd), and an O(n(ε−2 log n)d+1) time
algorithm to compute a (1+ε)-approximation of that number.2 Their exact and approximation
algorithms for computing a hyperplane minimizing Mmax run in O(nd) and O(nε(d−1)/2)
time, respectively. Matheny and Phillips [19] consider computing a separating hyperplane s,
so that the discrepancy (the fraction of red points in s− minus the fraction of blue points
in s−) is maximized. They present an O(n + ε−d log4(ε−1)) time algorithm that makes an
additive error of at most ε (and thus misclassifies at most εn points more than an optimal
(with respect to discrepancy) classifier).

Results. We can show that for points in R1 we can achieve both our goals: minimizing
Mmax with a hard guarantee on the number of outliers and efficiently supporting updates.
In particular, in the full version [13] we present an optimal linear space solution:

▶ Theorem 1. Let B ∪ R be a set of n points in R1. There is an O(n) space data structure
that, given a query value k ∈ 1..n can compute an optimal separator sopt ∈ Sk(R ∪ B) with
respect to Mmax in O(log n) time, and supports inserting or deleting a point in O(log n) time.

The main focus of our paper is to establish whether we can achieve similar results for
points in R2. If the points are separable, we can maintain a maximum-margin separator –
essentially a maximum width strip – in O(log2 n) time per update.

The problem gets significantly more complicated when the point sets are not separable,
and we thus wish to compute, and maintain, a separator sopt ∈ Sk(B ∪ R) minimizing
the distance Mmax to the farthest misclassified point. We can test whether a separator
s ∈ Sk(B ∪ R) exists (and find the smallest k for which a separator exists) using LP with
violations. In Section 3 we show how to dynamize Chan’s approach [3] to maintain such
a separator when the set of points changes. In particular, given a static linear objective
function f : R2 → R and a dynamic set H of halfplanes that is given in a semi-online manner
(at the time we insert a halfplane h into H we are told when we will delete h), we show how
to efficiently maintain a point p minimizing f that lies outside at most k halfplanes from H:

▶ Theorem 2. Let H be a set of n halfplanes in R2, let f be a linear objective function, and
let k ∈ 1..n. There is an O(n + k2 log2 n) space data structure that maintains a point p that
violates at most k constraints of H (if it exists) and minimizes f , and supports semi-online
updates in expected amortized O(k log3 n) time.

This then also allows us to maintain whether a separator that misclassifies at most k

points exists in amortized O(k log3 n) time per (semi-online) update, as well as maintain
the minimum value k for which this is the case. Since linear programming queries have

2 Here and throughout the rest of the paper, ε > 0 is an arbitrarily small constant.

ISAAC 2024

34:4 Robust Classification of Dynamic Bichromatic Point Sets in R2

many other applications, e.g. finding extremal points and tangents, we believe this result
to be of independent interest. For example, given a threshold δ, our data structure also
allows us to maintain a line ℓ that minimizes the number of points k at vertical distance
exceeding δ from ℓ in amortized O(k log3 n) time per update. Note that the best update
time we can reasonably expect with this approach is O((1 + k2/n) log n). For values of k

that are small (e.g. polylogarithmic) or very large (near linear) our approach is relatively
close to this bound.

In Section 4, we incorporate finding the best separator from Sk(B ∪ R); i.e. a separator
that minimizes Mmax. We first tackle the algorithmic problem of computing such an optimal
separator. Our main result here is:

▶ Theorem 3. Let B ∪ R be a set of n points in R2, and let k ∈ 1..n. We can compute a
separator sopt ∈ Sk(B ∪ R) minimizing Mmax in

O(nk + n log n) time,
O((n + |Sk(B ∪ R)| + k3) log2 n) time, or
when k = kmin in O(k4/3n2/3 log n + (n + k2) log n) time.

Here |Sk(B ∪ R)| denotes the complexity of (the region in the dual plane representing)
Sk(B ∪ R). The key challenge is that this region Sk(B ∪ R) may consist of Θ(k2) connected
components, and each one has very little structure. While in the linear programming
approach we can efficiently find one local minimum per connected component, that is
no longer the case here. Instead, we explicitly construct the boundary of this region.
Unfortunately, the total complexity of Sk(B ∪ R) is rather large: Chan [4] gives an upper
bound of |Sk(B ∪ R)| = O(nk1/3 + n5/6−εk2/3+2ε + k2). We give two different algorithms
to construct Sk(B ∪ R), and then efficiently find an optimal separator. When we restrict
to the case where k = kmin, i.e. finding an separator that minimizes Mmax among all
lines that misclassify the least possible number of outliers, each connected component of
Sk(B ∪ R) is a single face in an arrangement of lines. This then gives us a slightly faster
O(k4/3n2/3 log2/3(n/k) + (n + k2) log n) time algorithm as well.

Unfortunately, even when k = kmin, dynamization appears very challenging. In the full
version we present an O((k4/3n2/3 + n) log5 n) space data structure that supports insertions
in amortized O(kn3/4+ε) time, provided that the convex hulls of R and B remain the same.
While the applicability of this result is limited, we use and develop an interesting combination
of techniques here. For example, we develop a near linear space data structure that stores
the the lower envelope of surfaces and allows for sub-linear time vertical ray shooting queries.

In Section 5, we slightly relax our goal and consider approximating the distance Mmax
instead. Our key idea is to replace the Euclidean distance by a convex distance function.
This avoids some algebraic issues, as the distance between a point and a line now no longer
has a quadratic dependency on the slope of the line. Instead the dependency becomes linear.
We now obtain a much more efficient algorithm for finding a good separator:

▶ Theorem 4. Let B ∪ R be a set of n points in R2, let k ∈ 1..n, and let ε > 0. We can
compute a separator s ∈ Sk(B ∪ R) that is a (1 + ε) approximation with respect to Mmax in
O(ε−1/2((n + k2) log n)) time.

We essentially “guess” the width δ of a strip “separating” the point sets, and show that
we can use the linear programming machinery to efficiently test whether there exists such a
strip containing at most k outliers . This involves extending the algorithm to deal with both
“soft constraints” that may be violated, as well as “hard constraints” that cannot be violated,
and using parametric search [21] to find the smallest δ for which such a strip exists.

E. Glazenburg, M. van Kreveld, and F. Staals 34:5

▶ Theorem 5. Let B ∪ R be a set of n points in R2, let k ∈ 1..n, and let ε > 0. There is
an O(ε−1/2(k2 log2 n + n)) space data structure that maintains a separator s ∈ Sk(B ∪ R)
that is a (1 + ε)-approximation with respect to Mmax, and supports semi-online updates in
expected amortized O(ε−1/2k log4 n) time.

Applications. Our data structure from Theorem 5 can reduce the total time in a leave-out-
one cross validation process by roughly a linear factor in comparison to Theorem 4. For
m-fold cross validation we gain a factor m. Similarly, in a streaming setting in which we
maintain a window of width w, we gain a factor of roughly w. Note that in both these
settings, the semi-online updates indeed suffice.

2 Preliminaries

General definitions. We use the standard point-line duality that maps any point p = (px, py)
in the primal plane to a line p∗ : y = pxx − py in the dual plane, and any line ℓ : y = mx + c

in the primal plane into a point (m, −c) in the dual plane.
Let A be a set of n lines, and let k ∈ 1..n. Let the lower ≤ k-level L≤k(A) ⊂ R2 of A

be the set of points for which there are at most k lines below it. Similarly let the upper
≤ k-level L′

≤k(A) be set of points for which there are at most k lines above it. Let Lk(A) be
the k-level, the boundary of L≤k(A). Note that a k-level lies exactly on existing lines in A.
Although these terms refer to a region in the plane, with a slight abuse of notation we will
also use them to refer to the part of the arrangement A of the lines in A that lies in this
region. The complexity of (A restricted to) L≤k(A) is O(nk), and it can be computed in
O(nk + n log n) time [12]. Note that the lower 0-level L0(A) and the upper 0-level L′

0(A)
denote the lower envelope and the upper envelope of the set of lines, respectively.

In O(n log k) time we can compute a concave chain decomposition [3, 6] of L≤k(A): a
set of O(k) concave chains of total complexity O(n) that together cover all edges of A in
L≤k(A). See Figure 2a. A convex chain decomposition is defined similarly for L′

≤k(A).
Throughout this paper we assume points above a separating line s should be blue, and

points below should be red. In the dual this means that lines above separating point s∗

should be red, and lines below should be blue. In particular, we describe algorithms for
finding the optimal separator that classifies in this way. We can then repeat the algorithm
to find the best separator that classifies the other way around, and finally output the best
of the two. For ease of description we assume all points in R ∪ B are in general position,
meaning that all coordinates are unique, and no three points lie on a line.

Valid separators. Fix a value k ∈ 1..n. A separator s and its dual s∗ are valid with respect
to k if (and only if) s ∈ Sk(B ∪ R). Line s misclassifies all red points above s and all blue
points below s. In the dual, this means all red lines below s∗ and all blue lines above s∗ are
misclassified. Consider the dual arrangement of lines R∗ ∪ B∗. For any two separators s1
and s2 whose duals lie in the same face of the arrangement, Mmis(s1) = Mmis(s2). Let a face
containing valid points be a valid face, and note that points on the boundary of a valid face
are also valid. A valid region is the union of a maximal set of adjacent valid faces, and the
boundary of a valid region is composed of valid edges (note that we ignore edges that are
fully contained within a valid region). Now observe that Sk(B ∪ R) thus corresponds to the
union of these valid regions. With some abuse of notation we use Sk(B ∪ R) to refer to this
union of regions in the dual plane as well.

ISAAC 2024

34:6 Robust Classification of Dynamic Bichromatic Point Sets in R2

cr

3
2 1

2 1
2
3

p
(a) (b)

Figure 2 (a) A concave chain decomposition of L≤2(B∗). (b): Blue chains create intervals on a
red chain cr. The blue ply of a point p on cr is the number of endpoints (open) before p plus the
number of startpoints (closed) after p.

We observe the following useful properties (refer to the full version for omitted proofs):

▶ Lemma 6 (Chan [4]). The set Sk(B ∪ R) is contained in L≤k(R∗) ∩ L′
≤k(B∗), consists of

O(k2) valid regions, and its total complexity is O(nk1/3 + n5/6−εk2/3+2ε + k2).

▶ Lemma 7. There may be Ω(k2) valid regions of total complexity Ω(k2 + ne
√

log k).

▶ Lemma 8. There are O(k2) red-blue intersections in L≤k(R∗) ∩ L′
≤k(B∗).

▶ Lemma 9. A line ℓ has O(k) intersections with L≤k(R∗) ∩ L′
≤k(B∗).

▶ Lemma 10. A valid region V is bounded by red lines on the top and blue lines on the
bottom. The leftmost point of V is a red-blue intersection, or V is unbounded towards the
left. The rightmost point in V is a red-blue intersection, or V is unbounded to the right.

3 Dynamic linear programming with violations

In this section we consider the following problem: given a set of n constraints (halfplanes)
H in R2, an objective function f , and an integer k, find a point p that violates at most
k constraints and minimizes f(p). We assume without loss of generality that f(p) = px,
so we are looking for the leftmost valid point, that is, a point that violates at most k

constraints. Chan solves this problem in O((n + k2) log n) time [3]. In the same time bounds,
their approach can find the minimum number kmin of constraints violated by any point.
We give an overview of their techniques below, and then show how to make the approach
semi-dynamic. We maintain an optimal point p under semi-online insertions and deletions of
constraints. “Semi-online” means that when a constraint is inserted we are told when it will
be deleted. We first do so for a given value k, and then extend the result to maintain kmin.

The above linear programming problem is a generalization of (the dual of) our MinMis
problem. Point p violates a constraint h ∈ H if it lies outside of the halfplane. Let R be
the set of lines bounding lower halfplanes, and B be the set lines bounding upper halfplanes.
Point p violates all blue constraints above, and all red constraints below, and thus p violates
exactly the Mmis(p) lines in X(p, R ∪ B). This means we can solve the MinMis problem and
compute smis = argminsMmis(s) in O((n + k2) log n) time.

3.1 Chan’s algorithm
Chan considers the decision version of the problem: given an integer k, find the leftmost
point that violates at most k constraints. Their algorithm actually generates all local minima
that violate fewer than k constraints as well, so by guessing k =

√
n, 2

√
n, 4

√
n . . . we can

find the minimum value kmin for which a valid point exists in the same time bounds.

E. Glazenburg, M. van Kreveld, and F. Staals 34:7

We first assume that there are no valid regions that are unbounded towards the left. By
Lemma 10, the leftmost valid point in a valid region must then be a red-blue intersection, and
by Lemma 8 there are only O(k2) of them. We construct the concave chain decomposition
of L≤k(R) and the convex chain decomposition of L′

≤k(B) in O(n log n) time, and compute
their intersections in O(k2 log n) time; this gives us all candidate optima.

Consider a red chain cr, as in Figure 2b. Every blue chain cb defines a (possibly empty)
interval on cr, such that points inside the interval lie above cb and points outside the interval
lie below cb. The blue ply of a point p on cr is the number of blue chains above p (and thus
the number of violated blue constraints above p). This is the number of blue intervals not
containing p, and thus the number of intervals ending before p or starting after p. By storing
the start points and end points of all blue intervals in two balanced binary trees we can thus
find the blue ply of any point p on cr in O(log k) time. We call this the chromatic ply data
structure of cr. The chromatic ply data structure of a blue chain cb is defined symmetrically.

For an intersection point p between red chain cr and blue chain cb we can now calculate
its Mmis(p) value: query cr for the blue ply and query cb for the red ply, both in O(log k)
time, and sum them up. For all O(k2) red-blue intersections this takes O(k2 log k) time.
Among them we then find the leftmost valid intersection and return it, if it exists.

If the optimum was unbounded, then part of the leftmost segment of one of the chains
must be valid. We can check this in O(k log k) time using the chromatic ply data structures.

3.2 A semi-dynamic data structure for a fixed k

We now make the above algorithm dynamic under semi-online insertions and deletions: given
a fixed value k, we maintain the leftmost point that violates at most k constraints.

We first show how to maintain the concave chain decomposition of L≤k(R) (and similarly
the convex chain decomposition of L′

≤k(B)) using an extension of the logarithmic method [10,
26], then show how to maintain the chromatic ply datastructures, and lastly use these chains
to actually maintain the leftmost valid separator.

Maintaining the concave chain decomposition. We maintain the concave chain decompos-
ition of L≤k(R) using Dobkin and Suri’s extension of the logarithmic method [10, 26]. We
maintain a partition of R into z = O(log n) subsets R0, R1..Rz, such that for each layer i:
(1) none of the lines in set Ri will be deleted for at least 2i updates after the set is created.
(2) |Ri| = O(2i).

For each set Ri we store the concave chain decomposition of L≤k(Ri). Since each such
structure contains O(k) chains, we have O(k log n) chains in total. The union of these chains
also covers L≤k(R): if a line ℓ is among the lowest k lines in R at some x-coordinate, it must
also be among the lowest k lines in any subset R′ ⊆ R, including the subset Ri containing ℓ.

The basic idea is the following. After set Ri is created, by condition (1) no items will be
deleted from it for at least 2i updates, so it remains fixed for 2i updates and gets rebuilt
after that. As such, the smaller data structures are rebuilt quite often, and the larger data
structures remain fixed for a long time. By construction, deletions happen only at layer 0
from set R0, which contains O(1) lines. Lines are inserted in layer 0, and gradually move to
higher layers where they remain fixed for an ever increasing number of updates. When a line
is to be deleted soon, it gradually moves down to layer 0 again.

▶ Lemma 11. We can maintain O(k log n) concave chains of total complexity O(n) that
cover L≤k(R) under semi-online insertions and deletions in O(log2 n) amortized time.

ISAAC 2024

34:8 Robust Classification of Dynamic Bichromatic Point Sets in R2

In fact, we can maintain a slightly altered version of the above data structure within the
same time and space bounds. Let 2x be the smallest power of two that is at least k log n, i.e.
2x−1 < k log n ≤ 2x. We store the 2x lines that are the first to be deleted in a separate list,
the leftover list. We do not build a chain data structure on the leftover lines, but instead we
let each leftover line forms a trivial chain, so we still have O(k log n) chains covering L≤k(R).
This way all sets Rj with j < x are empty. We can thus perform 2x cheap updates without
having to modify any of the sets Rj : we can simply insert directly in (or delete directly from)
the leftover list, without having to rebuild any data structure, in O(1) time. Once every 2x

updates we perform an expensive update, destroying all sets up to some layer i′ (the largest
set that no longer adheres to invariant (1)), and redistributing all the lines in them over the
layers 0 through i′ again. Each set Ri still has an amortized update time of O(i), and thus
the total amortized update time remains O(log2 n).

Maintaining intersections and chromatic ply data structures. Next, we show how to
maintain the chromatic ply data structures on the chains, which also gives us the set I≤k of
O(k2) red-blue intersections in L≤k(R∗) ∩ L′

≤k(B∗).
We maintain a concave chain decomposition of L≤k(R∗) and a convex chain decomposition

of L′
≤k(B∗) using Lemma 11, with O(k log n) leftover lines. Whenever we perform an

expensive update on one of the two (i.e. rebuilding the chains), we do so on the other as
well. On each red chain cr we maintain a blue chromatic ply data structure. Similarly on
each blue chain cb we maintain a red ply data structure. Additionally, we maintain a set I of
the O(k2 log2 n) red-blue intersections between the chains. This is a superset of I≤k.

Consider the insertion of a line r. Depending on the type of update, we do the following:
Cheap update: line r is added to the leftover list, and forms a trivial chain cr. We compute

all O(k log n) intersections between cr and the blue chains, insert them in I, and build
the blue ply data structure on cr. For each intersected blue chain cb we insert the interval
induced on cb by cr into the red ply data structure of cb. This takes O(k log2 n) time.

Expensive update: some number of chains are rebuilt. We rebuild the set I and the chromatic
ply data structures on all chains from scratch. Since we have O(k log n) red and blue
chains, this takes O(k2 log3 n) time.

Every 2x = O(k log n) updates we have 2x − 1 cheap updates, taking O(k log2 n) time
each, and one expensive update, taking O(k2 log3 n) time. This thus takes O(k2 log3 n) time
for 2x updates, making the amortized updates time O(k log2 n). We thus have:

▶ Lemma 12. We can maintain a set I ⊇ I≤k of O(k2 log2 n) bichromatic intersection points
under semi-online updates in amortized O(k log2 n) time. This uses O(n + k2 log2 n) space.

Maintaining the leftmost valid point. The last step is to maintain the leftmost valid point
s for a fixed value k. We know s is contained in the set I maintained by Lemma 12, but
simply iterating through the entire set each update would take too long. We store I in a data
structure that maintains Mmis(p) for each p ∈ I, and can handle the following operations:
Insertion/Deletion: Inserting or deleting a point (a red-blue intersection).
Halfplane update: Update Mmis(p) for each p ∈ I after the insertion or deletion of a

constraint, e.g. increment Mmis(p) by one for all points p in the halfplane above an
inserted line r (or in the halfplane below an inserted line b).

Query: Given a query value k′ ≤ k, return the leftmost point p ∈ I with Mmis(p) ≤ k′.

We can achieve the above using a binary search tree on I sorted by x-coordinate, and a
partition tree [5] on I where each node u stores (a point attaining) the minimum number of
constraints violated by a point in its canonical subset. We use the logarithmic method to

E. Glazenburg, M. van Kreveld, and F. Staals 34:9

handle insertions on the partition tree, and perform deletion of a point p ∈ I implicitly by
setting Mmis(p) = ∞. A halfplane update corresponds to one “query” in the partition tree,
where we only recurse on intersected triangles. Using the binary search tree and the partition
tree, we can then binary search for the leftmost point that violates at most k′ constraints.

▶ Lemma 13. We can build a data structure on a set of O(k2 log2 n) points I that can
perform insertions and deletions in O(log k log n) amortized time, halfplane updates in
expected O(k log2 n) time, and queries in expected O(k log3 n) time. The data structure uses
O(k2 log2 n) space.

We can now dynamically maintain the solution to an LP with at most k violations by using
Lemmas 11, 12 and 13 as follows. For each cheap update, e.g. the insertion of a line r, we find
the O(k log n) intersections between r and blue chains, and insert them in O(k log2 n log k)
total time. We then perform one halfplane update in O(k log2 n) time. For each expensive
update we discard the data structures from Lemmas 12 and 13 and rebuild them from scratch.
This takes O(k2 log3 n) time, and thus O(k log2 n) amortized time. After every update we
perform one query with k′ = k in O(k log3 n) time. This establishes Theorem 2. In the full
version, we extend the data structure to maintain the minimum number kmin of constraints
violated by any point as well.

4 Exact algorithms for k-mis MinMax

For the k-mis MinMax problem we are given point sets R and B and an integer k and wish to
compute a separator sopt = argmins∈Sk(R∪B)Mmax(s) that misclassifies at most k points and
minimizes the distance to the furthest misclassified point. In this section we present an exact
algorithm for this problem. In Section 4.1 we first discuss some useful geometric properties.
In Section 4.2 we then present algorithms to construct the valid regions Sk(R ∪ B). Finally,
in Section 4.3, we show how we can then compute an optimal separator.

4.1 Geometric properties

The MinMax problem. We first consider the MinMax problem. Here, we wish to compute
smax = argminsMmax(s), a separator with minimal distance to the farthest misclassified
point. Consider the dual plane. At a fixed x-coordinate, this point lies exactly in the middle
of the envelopes L0(R∗) and L′

0(B∗). Let the MinMax curve be the polygonal curve in the
middle of L0(R∗) and L′

0(B∗), and observe that it consists of O(n) segments. See Figure 3.

▶ Lemma 14. Let s be a point in the interior of an edge e of the MinMax curve. Moving s

left or moving s right along e decreases the error Mmax(s).

MinMax

m L0(R
∗)slope

L′
0(B

∗)

s∗1

s∗2

s1
s2

in
te
rc
ep
t

Figure 3 Some primal points (left) with their dual (right). Valid faces for k = 2 are green.

ISAAC 2024

34:10 Robust Classification of Dynamic Bichromatic Point Sets in R2

b1

r1

b2 b3

r2 r3

MinMax
b d c a

a∗ r1

b1
r2

b∗ b3 b2

r3

c∗
r2 b1

r3

d∗
b1r3

b2

Figure 4 Left: the cases a, b, c, d for s∗
opt in the dual plane; the red/blue regions represent some

number of correctly classified lines. Right: the cases a, b, c, d for sopt in the primal plane.

The k-min MinMax problem. For the k-mis MinMax problem, we wish to compute
sopt = argmins∈Sk(B∪R)Mmax(s), a valid separator with minimal Mmax(sopt). At a fixed
x-coordinate, this is the valid separator (if it exists) with the smallest vertical distance to
the MinMax curve. This fact and Lemma 14 lead to the following characterization:

▶ Lemma 15. A point s∗
opt dual to an optimal separator is one of the following:

a. A vertex of a valid face, vertically closest to MinMax.
b. A (valid) vertex of MinMax.
c. The first valid point directly above or below a vertex of MinMax.
d. The intersection of a MinMax edge e with a valid edge, closest to one of e’s endpoints.

Proof sketch. In the primal plane, the optimal separator sopt has to be “bounded” by at
least three points, otherwise we can rotate or translate sopt slightly to decrease Mmax(sopt).
These bounding points can either be extremal points that we want the separator to be as
close to as possible, or points that the separator is not allowed to cross because that would
make it invalid. The four ways in which sopt can be bounded are shown in Figure 4. ◀

4.2 Constructing the valid regions
We present three algorithms for constructing the valid regions Sk(B ∪ R).

First, by Lemma 6 all valid points lie inside L≤k(R∗) ∩ L′
≤k(B∗), so we present a simple

algorithm that constructs this part of the arrangement, and prunes all invalid regions. Since
L≤k(R∗) and L′

≤k(B∗) have complexity O(nk), this gives an O(n log n + nk) time algorithm.
Second, we present a much more involved output sensitive O((nk1/3 + n5/6−εk2/3+2ε +

k3) log2 n) time algorithm, which is faster for k < n2/3. It is based on an approach sketched
by Chan [4] to compute the valid region in an output-sensitive manner, by first computing
the bichromatic intersection points of L≤k(R∗) ∩ L′

≤k(B∗), and then tracing Sk(B ∪ R),
starting from these bichromatic intersection points “as in a standard k-level algorithm”. They
claim this results in a running time of O(|Sk(B ∪ R)| polylog n) time, but do not provide
details. The k-level in an arrangement of lines is connected, whereas here Sk(B ∪ R) may
consist of Ω(k2) disconnected pieces (Lemma 7). This unfortunately provides some additional
difficulties in initializing the data structure used in the tracing process. Hence, it is not
clear that it can indeed be done in O(|Sk(B ∪ R)| polylog n) time. Instead, we present an
algorithm that runs in O((|Sk(B ∪ R)| + n + k3) log2 n) time, the stated time bound.

Finally, if we care only about the case where k = kmin = Mmis(smis), i.e. where we are
required to misclassify as few points as possible, we observe that each valid region is a single
face. By Lemma 6 there are O(k2) valid regions, so now there are O(k2) valid faces. Clarkson
et al. [7] show that m faces in an arrangement have a complexity of O(m2/3n2/3 + n), and
we can construct them in O(k4/3n2/3 log2/3(n/k) + (n + k2) log n) time [27].

E. Glazenburg, M. van Kreveld, and F. Staals 34:11

MinMax

b

c

c
d

d

Figure 5 Two valid faces with their vertical decomposition and type b, c and d points.

4.3 An algorithm for solving the k-mis MinMax problem

We now show how, given the valid regions, we can compute an optimal separator sopt ∈
Sk(B ∪ R) efficiently. We start by constructing L0(R) and L′

0(B), and simultaneously scan
through them to construct the MinMax curve s∗

max. This takes O(n log n) time [9]. By
Lemma 15 an optimal separator is of type a, b, c, or d. So, we will now compute all these
candidate optima, and iterate through them to find the one with lowest error.

Type a points. Since we are given Sk(B ∪ R), we can simply scan through its vertices,
keeping track of the vertex with the smallest error. To calculate the error of a vertex, we
need to know which segment of s∗

max it lies above/below; then the error can be calculated
in O(1) time. We can compute this in O(log n) time per vertex using binary search (since
MinMax is x-monotone). Hence, this step takes O(|Sk(B ∪ R)| log n) time.

Type b and c points. Recall type b points are MinMax vertices, and type c points are the first
valid points above or below MinMax vertices. We construct the trapezoidal decomposition
of Sk(B ∪ R) in O(|Sk(B ∪ R)| log n) time, which supports O(log n) time point location
queries [24]. Each trapezoid has vertical left and right sides, see Figure 5.

For each vertex of MinMax we perform one point location query, which tells us what
trapezoid the vertex lies in. If this trapezoid is inside a valid region, the vertex is a type b

point. Otherwise the closest valid edges vertically above and below this vertex are simply
the edges bounding that trapezoid, giving us up to two type c points. Since MinMax has
O(n) vertices, this gives us all type b and c points in O(n log n) time. Including the time to
build the decomposition, this thus takes O(|Sk(B ∪ R)| + n) log n) time.

Type d points. Recall type d points are intersections between MinMax and edges bounding
Sk(B∪R). In particular, for every MinMax edge we care only about its outermost intersection
points. We walk along MinMax from left to right through the vertical decomposition until we
find the leftmost intersection on an edge; we then continue the walk from the next MinMax
vertex. We find the rightmost intersection symmetrically. After locating the MinMax vertices
in O(n log n) time, this takes O(n + |Sk(B ∪ R)|) time, since MinMax is x-monotone.

▶ Lemma 16. Given Sk(B∪R), we can compute a separator sopt = argmins∈Sk(B∪R)Mmax(s)
in O((|Sk(B ∪ R)| + n) log n) time.

By combining Lemma 16 with the three algorithms from Section 4.2 we thus obtain an
O((nk + n) log n) (which we can reduce to O(nk + n log n)) and an O((|Sk(B ∪ R)| + n +
k3) log2 n) time algorithm for the general problem, and an O(k4/3n2/3 log n + (n + k2) log n)
time algorithm for when k = kmin. These results together establish Theorem 3.

ISAAC 2024

34:12 Robust Classification of Dynamic Bichromatic Point Sets in R2

p

vs
L0(R

∗)

L′
0(B

∗)

δ

δδ-chain

Jv

δ-region

δ-chain

δ-region

pmin

(a) (b) (c)

T

Figure 6 (a) The Euclidean unit circle and convex unit 4-gon. (b) The convex and concave
δ-chain forming a δ-region. (c) A δ-region, with candidate red-blue intersections marked.

5 An ε-approximation algorithm

Let sopt ∈ Sk(B ∪ R) be an optimal valid separator minimizing Mmax, and let ε ∈ (0, 1)
be some given threshold. Our goal is to compute a (1 + ε)-approximation of sopt: that is,
we want to find a valid separator ŝ with Mmax(ŝ) ≤ (1 + ε)Mmax(sopt). The main idea is
to replace the Euclidean distance function dist by some convex distance function d̂ that
approximates dist, and compute a separator ŝ that minimizes M̂(ŝ) = maxp∈X(ŝ,B∪R) d̂(p, ŝ).

Let p be a point and s be a line, let t = Θ(1/
√

ε), and let T be a convex regular
t-gon centered at the origin inscribed by a unit disk. See Figure 6a. We then define the
convex distance function d̂(p, s) = min{λ | s ∩ (p + λT) ̸= ∅} to be the smallest scaling
factor for which a scaled copy of T centered at p intersects s. It can be shown that
dist(p, s) ≤ d̂(p, s) ≤ (1 + ε)dist(p, s) [11, 15], and thus Mmax(s) ≤ M̂(s) ≤ (1 + ε)Mmax(s).
It follows that the separator ŝ minimizing M̂ is a (1 + ε)-approximation of sopt.

Observe that this distance d̂(p, s) is realized in a corner v of the t-gon; i.e. the t-gon
scaled by a factor d̂(p, s) intersects s in a corner point v of the t-gon. We say v is a realizer
for the line s. More specifically, there is some interval of slopes Jv such that v is the realizer
for all lines with a slope in the interval Jv. For each slope interval Jv we will compute a valid
separator ŝv with slope in Jv minimizing M̂(ŝv), and finally ŝ = argminvMmax(ŝv).

We consider one such slope interval Jv. Assume w.l.o.g. that v is vertically below the
center point of the t-gon (we can rotate the plane to achieve this). This means interval Jv is
centered at slope 0, so Jv = (−π/t, π/t), and the distance d̂(p, s) between a point p and line
s is the vertical distance between p and s. Since vertical distance is preserved by dualizing,
this means that for all points s in the x-interval Jv, the value M̂(s) expresses the vertical –
and thus convex t-gon – distance from s to L0(R∗) or L′

0(B∗), whichever is larger.

The algorithmic problem. Extending Chan’s algorithm from Section 3.1, we build a data
structure that, for a given value δ, can find a valid separator s ∈ Jv × R with M̂(s) ≤ δ if it
exists. We then use parametric search [21] to find the optimal value δ, and a separator ŝv.

Fix a value δ, and observe that all points with error at most δ lie at most δ below L′
0(B).

This can be imagined as moving L′
0(B) down by δ. Let the resulting chain be the convex

δ-chain, see Figure 6(b). Similarly, let the concave δ-chain be L0(R) moved up by δ. All
points with error at most δ must thus lie above the convex δ-chain, and below the concave
δ-chain: the δ-region. The question now becomes: does a valid point exist in the δ-region?

In Section 3.1 we considered only red-blue intersections. Similarly, we can show that now
we need to consider only intersections between convex chains (a blue chain or the convex
δ-chain) and concave chains (a red chain or the concave δ-chain). There are O(k2) such
convex-concave intersections (see Figure 6(c)). We can compute them all during preprocessing,
find the valid point pmin among them with smallest error, and simply forget about all others.

E. Glazenburg, M. van Kreveld, and F. Staals 34:13

The data structure consists of three parts. First, a concave chain decomposition of
L≤k(R), and a convex chain decomposition of L′

≤k(B), with a chromatic ply data structure
for every chain. Second, the point pmin. Third, the envelopes L0(R) and L′

0(B). This can all
be built in O((n + k2) log n) time using Chan’s method, and uses O(n + k2) space.

We answer a query with value δ as follows. We check if M̂(pmin) ≤ δ, and if so, return
pmin. If not, we find the O(k) convex-concave intersections involving the δ-chains, and build
a red ply data structure for the convex δ-chain, and a blue ply data structure for the concave
δ-chain. For each intersection p we compute Mmis(p) using the chromatic ply data structures,
and compute Mmax(p) using the envelopes. Finally we return the valid intersection with
lowest error if its error is at most δ, otherwise there exists no point with error at most δ.

Using parametric search on the above data structure gives us a valid separator with slope
in Jv with the lowest error in O((n + k2) log n) time. Doing this for all t = Θ(1/

√
ε) slope

intervals Jv proves Theorem 4.

A dynamic data structure. Using the dynamic chain decomposition data structure from
Lemma 11, we can maintain the data structure under semi-online updates, and perform the
parametric search after every update to maintain an optimum ŝ, thus proving Theorem 5.

References
1 Edoardo Amaldi and Viggo Kann. The complexity and approximability of finding maximum

feasible subsystems of linear relations. Theor. Comput. Sci., 147(1&2):181–210, 1995. doi:
10.1016/0304-3975(94)00254-G.

2 Boris Aronov, Delia Garijo, Yurai Núñez Rodríguez, David Rappaport, Carlos Seara, and
Jorge Urrutia. Minimizing the error of linear separators on linearly inseparable data. Discret.
Appl. Math., 160(10-11):1441–1452, 2012. doi:10.1016/j.dam.2012.03.009.

3 Timothy M. Chan. Low-dimensional linear programming with violations. SIAM J. Comput.,
34(4):879–893, 2005. doi:10.1137/S0097539703439404.

4 Timothy M. Chan. On the bichromatic k-set problem. ACM Trans. Algorithms, 6(4):62:1–62:20,
2010. doi:10.1145/1824777.1824782.

5 Timothy M Chan. Optimal partition trees. In Proceedings of the twenty-sixth annual symposium
on Computational geometry, pages 1–10, 2010. doi:10.1145/1810959.1810961.

6 Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d
and 3-d shallow cuttings. Discret. Comput. Geom., 56(4):866–881, 2016. doi:10.1007/
S00454-016-9784-4.

7 Kenneth L Clarkson, Herbert Edelsbrunner, Leonidas J Guibas, Micha Sharir, and Emo
Welzl. Combinatorial complexity bounds for arrangements of curves and spheres. Discrete &
Computational Geometry, 5(2):99–160, 1990. doi:10.1007/BF02187783.

8 Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297,
1995. doi:10.1007/BF00994018.

9 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
geometry: algorithms and applications, 3rd Edition. Springer, 2008. URL: https://www.
worldcat.org/oclc/227584184.

10 David Dobkin and Subhash Suri. Dynamically computing the maxima of decomposable
functions, with applications. In 30th Annual Symposium on Foundations of Computer Science,
pages 488–493. IEEE Computer Society, 1989. doi:10.1109/SFCS.1989.63523.

11 Richard M Dudley. Metric entropy of some classes of sets with differentiable boundaries.
Journal of Approximation Theory, 10(3):227–236, 1974.

12 Hazel Everett, Jean-Marc Robert, and Marc J. van Kreveld. An optimal algorithm for the (≤
k)-levels, with applications to separation and transversal problems. Int. J. Comput. Geom.
Appl., 6(3):247–261, 1996.

ISAAC 2024

https://doi.org/10.1016/0304-3975(94)00254-G
https://doi.org/10.1016/0304-3975(94)00254-G
https://doi.org/10.1016/j.dam.2012.03.009
https://doi.org/10.1137/S0097539703439404
https://doi.org/10.1145/1824777.1824782
https://doi.org/10.1145/1810959.1810961
https://doi.org/10.1007/S00454-016-9784-4
https://doi.org/10.1007/S00454-016-9784-4
https://doi.org/10.1007/BF02187783
https://doi.org/10.1007/BF00994018
https://www.worldcat.org/oclc/227584184
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1109/SFCS.1989.63523

34:14 Robust Classification of Dynamic Bichromatic Point Sets in R2

13 Erwin Glazenburg, Frank Staals, and Marc van Kreveld. Robust classification of dynamic
bichromatic point sets in r2, 2024. arXiv:2406.19161, doi:10.48550/arXiv.2406.19161.

14 D. Goldfarb and S. Liu. An O(n3L) primal interior point algorithm for convex quadratic
programming. Mathematical Programming, 49(1):325–340, 1990.

15 Sariel Har-Peled and Mitchell Jones. Proof of dudley’s convex approximation. arXiv preprint,
2019. arXiv:1912.01977.

16 Sariel Har-Peled and Vladlen Koltun. Separability with outliers. In Algorithms and Computa-
tion, 16th International Symposium, ISAAC 2005, Sanya, Hainan, China, December 19-21,
2005, Proceedings, volume 3827 of Lecture Notes in Computer Science, pages 28–39. Springer,
2005. doi:10.1007/11602613_5.

17 Cho-Jui Hsieh, Si Si, and Inderjit Dhillon. A divide-and-conquer solver for kernel support
vector machines. In International conference on machine learning, pages 566–574. PMLR,
2014. URL: http://proceedings.mlr.press/v32/hsieha14.html.

18 M. K. Kozlov, S. P. Tarasov, and L. G. Khachiyan. The polynomial solvability of convex
quadratic programming. USSR Comp. Math. and Math. Phys., 20(5):223–228, 1980.

19 Michael Matheny and Jeff M. Phillips. Approximate maximum halfspace discrepancy. In
Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms
and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs,
pages 4:1–4:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/
LIPICS.ISAAC.2021.4.

20 Jirí Matousek. On geometric optimization with few violated constraints. Discret. Comput.
Geom., 14(4):365–384, 1995. doi:10.1007/BF02570713.

21 Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
Journal of the ACM (JACM), 30(4):852–865, 1983. doi:10.1145/2157.322410.

22 Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. J. ACM,
31(1):114–127, 1984. doi:10.1145/2422.322418.

23 R. D. C. Monteiro and I. Adler. Interior path following primal-dual algorithms. Part II:
Convex quadratic programming. Mathematical Programming, 44(1):43–66, 1989. doi:10.
1007/BF01587076.

24 Neil Sarnak and Robert E Tarjan. Planar point location using persistent search trees. Com-
munications of the ACM, 29(7):669–679, 1986. doi:10.1145/6138.6151.

25 Jeffrey C Schlimmer and Richard H Granger Jr. Beyond incremental processing: Tracking
concept drift. In Proceedings of the Fifth AAAI National Conference on Artificial Intelligence,
pages 502–507, 1986.

26 Michiel Smid. A worst-case algorithm for semi-online updates on decomposable problems.
Technical report, Univeristät des Saarlandes, 1990. doi:10.22028/D291-26450.

27 Haitao Wang. Constructing many faces in arrangements of lines and segments. In Proceedings
of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3168–3180.
SIAM, 2022. doi:10.1137/1.9781611977073.123.

https://arxiv.org/abs/2406.19161
https://doi.org/10.48550/arXiv.2406.19161
https://arxiv.org/abs/1912.01977
https://doi.org/10.1007/11602613_5
http://proceedings.mlr.press/v32/hsieha14.html
https://doi.org/10.4230/LIPICS.ISAAC.2021.4
https://doi.org/10.4230/LIPICS.ISAAC.2021.4
https://doi.org/10.1007/BF02570713
https://doi.org/10.1145/2157.322410
https://doi.org/10.1145/2422.322418
https://doi.org/10.1007/BF01587076
https://doi.org/10.1007/BF01587076
https://doi.org/10.1145/6138.6151
https://doi.org/10.22028/D291-26450
https://doi.org/10.1137/1.9781611977073.123

Generating All Invertible Matrices by Row
Operations
Petr Gregor # Ñ

Department of Theoretical Computer Science and Mathematical Logic,
Charles University, Prague, Czech Republic

Hung P. Hoang # Ñ

Algorithm and Complexity Group, Faculty of Informatics, TU Wien, Austria

Arturo Merino # Ñ

Institute of Engineering Sciences, Universidad de O’Higgins, Rancagua, Chile

Ondřej Mička # Ñ

Department of Theoretical Computer Science and Mathematical Logic,
Charles University, Prague, Czech Republic

Abstract
We show that all invertible n × n matrices over any finite field Fq can be generated in a Gray code
fashion. More specifically, there exists a listing such that (1) each matrix appears exactly once, and
(2) two consecutive matrices differ by adding or subtracting one row from a previous or subsequent
row, or by multiplying or dividing a row by the generator of the multiplicative group of Fq. This
even holds in the more general setting where the pairs of rows that can be added or subtracted
are specified by an arbitrary transition tree that has to satisfy some mild constraints. Moreover,
we can prescribe the first and the last matrix if n ≥ 3, or n = 2 and q > 2. In other words, the
corresponding flip graph on all invertible n × n matrices over Fq is Hamilton connected if it is not a
cycle. This solves yet another special case of Lovász conjecture on Hamiltonicity of vertex-transitive
graphs.

2012 ACM Subject Classification Mathematics of computing → Combinatorics; Mathematics of
computing → Graph theory

Keywords and phrases Hamilton cycle, combinatorial Gray code, invertible matrices, finite field,
general linear group, generation algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.35

Related Version Full proofs are provided in the preprint version of this extended abstract.
arXiv Version: https://arxiv.org/abs/2405.01863 [8]

Funding This work was supported by Czech Science Foundation grant GA 22-15272S.
Hung P. Hoang: Austrian Science Foundation (FWF, project Y1329 START-Programm)
Arturo Merino: This work is part of the project TIPEA that has received funding from the
European Research Council (ERC) under the European Unions Horizon 2020 research and innovation
programme (grant agreement No. 850979).

Acknowledgements This work was initiated at the 2nd Combinatorics, Algorithms, and Geometry
workshop in Dresden, Germany in 2022. We would like to thank the organizers and participants for
the inspiring atmosphere.

1 Introduction

Combinatorial generation is one of the most basic tasks we can perform on combinatorial
objects and a key topic in Volume 4A of Knuth’s seminal series The Art of Computer
Programming [11]. In this task, we are given an implicit description of the objects and need
to produce a listing of all objects fitting the description, with each object appearing exactly
once. The goal is to develop an algorithm that can generate these objects at a fast rate.

© Petr Gregor, Hung P. Hoang, Arturo Merino, and Ondřej Mička;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 35; pp. 35:1–35:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gregor@ktiml.mff.cuni.cz
https://ktiml.mff.cuni.cz/~gregor/
https://orcid.org/0000-0002-3608-2533
mailto:phoang@ac.tuwien.ac.at
https://pelluceed.github.io/
https://orcid.org/0000-0001-7883-4134
mailto:arturo.merino@uoh.cl
https://amerino.cl/
https://orcid.org/0000-0002-1728-6936
mailto:micka@ktiml.mff.cuni.cz
https://ktiml.mff.cuni.cz/~micka/
https://orcid.org/0000-0003-3143-4955
https://doi.org/10.4230/LIPIcs.ISAAC.2024.35
https://arxiv.org/abs/2405.01863
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Generating All Invertible Matrices by Row Operations

If consecutive objects produced by a generation algorithm differ by large changes, the
algorithm must spend a lot of time updating its data structures. Therefore, a natural first
step towards creating an efficient generation algorithm is to ensure that consecutive objects
differ by only a small change. Such a listing is known as a (combinatorial) Gray code;
see Mütze’s survey [13] for many Gray codes of various objects. In addition to combinatorial
generation, Gray codes are also relevant in the field of combinatorial reconfiguration, which
examines the relationships between combinatorial objects through their local changes; see,
e.g., Nishimura’s recent introduction on reconfiguration [14].

In this paper, we study Gray codes for invertible matrices over a finite field. A natural
attempt for enumerating all invertible n × n matrices over a finite field Fq, is to choose any
nonzero first row and then selecting the following rows to be independent to the previous
rows. However, this attempt is not efficient as it requires multiple checks for independence
to generate even a single matrix. Furthermore, consecutive matrices in this listing may differ
in multiple rows. Instead, we focus on generating matrices in a Gray code order, i.e., every
matrix is obtained from the previous one by a single elementary row operation. We note
that generating invertible matrices with specific properties has applications in cryptography,
e.g., in McEliece cryptosystems [7].

1.1 Strong Lovász conjecture
All invertible n × n matrices over Fq with matrix multiplication form the general linear
group GL(n, q). Each elementary row operation can be represented by multiplying on the
left by a matrix that corresponds to this row operation. Hence, we are interested in finding a
Hamilton path in an (undirected) Cayley graph on GL(n, q) generated by the allowed row
operations, which is in turn an instance of Lovász conjecture [12] on the Hamiltonicity of
vertex-transitive graphs.1

Stronger versions of Lovász conjecture have been considered in the literature. For example,
Dupuis and Wagon [6] asked which non-bipartite vertex-transitive graphs are not Hamilton
connected. A graph is Hamilton connected if there is a Hamilton path between any two
vertices. Similarly, they asked which bipartite vertex-transitive graphs are not Hamilton
laceable [6]. A bipartite graph is Hamilton laceable if there is a Hamilton path between
any two vertices from different bipartite sets. Note that the bipartite sets must be of equal
size, which is true for all vertex-transitive bipartite graphs except K1.

▶ Conjecture 1 (Strong Lovász conjecture). For every finite connected vertex-transitive graph
G it holds that G is Hamilton connected, or Hamilton laceable, or a cycle, or one of the five
known counterexamples.

The five known counterexamples are the dodecahedron graph, the Petersen graph, the
Coxeter graph, and the graphs obtained from the latter two by replacing each vertex
with a triangle. The dodecahedron graph is a non-bipartite vertex-transitive graph that
has a Hamilton cycle, but it is not Hamilton connected [6]. The other four well-known
counterexamples are non-bipartite vertex-transitive graphs that do not admit a Hamilton
cycle. Note that except when G ∈ {K1, K2, C3, C4} the cases in the conjecture are mutually
exclusive.

There are many results in line with Conjecture 1. Particularly relevant to us is a result of
Tchuente [18] showing that the Cayley graph of the symmetric group Sn, generated by any
connected set of transpositions, is Hamilton laceable when n ≥ 4. Another relevant example is

1 A graph is vertex-transitive if its automorphism group acts transitively on the vertices.

P. Gregor, H. P. Hoang, A. Merino, and O. Mička 35:3

Chen and Quimpo’s Theorem [4] showing that all Abelian Cayley graphs satisfy Conjecture 1.
Nevertheless, Conjecture 1 remains open even for Cayley graphs of the symmetric group
with every generator an involution [16]. Note that none of the five counterexamples to
Conjecture 1 is a Cayley graph, leading to Cayley graph variants of Conjecture 1 (e.g., [15]).

1.2 Row operations
Our aim when generating all invertible matrices by row operations is to restrict the allowed
operations as much as possible. Note that for q > 2 we must allow row multiplications by
some scalar to be able to generate all 1 × 1 matrices. Thus, we allow row multiplications by
a fixed generator α of the multiplicative group of nonzero elements of Fq. We will also allow
row multiplication by α−1; i.e., division by α, to have an inverse operation for an undirected
version of the problem. Furthermore, we specify allowed row additions and subtractions
by a directed transition graph T on the vertex set [n], where [n] := {1, . . . , n}. An edge
(i, j) ∈ E(T) specifies that we can add to or subtract from the j-th row the i-th row. Then,
each allowed row operation above corresponds to the left multiplication by a corresponding
matrix from a set ops(T), formally defined by (2).

Observe that to generate all invertible matrices by the allowed operations, the transition
graph T must be strongly connected; see Lemma 3 below. For our main result we require
the following stronger condition.

▶ Definition 1 (Bypass transition graph). A transition graph T on the vertex set [n] is a
bypass transition graph if either (i) n = 1, or (ii) n ≥ 2 and

there exist an edge (i, n) and an edge (n, j) for some i, j ∈ [n − 1], and
the graph T − n obtained by removing n from T is also a bypass transition graph.

In other words, a bypass transition graph is obtained from a single vertex 1 by repeatedly
adding a directed path (a ‘bypass’) from some vertex i to some vertex j via a new vertex n.
An example of a transition graph with the above property is the one comprised by edges
(i, i + 1) and (i + 1, i) for all i ∈ [n − 1]; i.e., a bidirectional path. In the language of row
operations, this corresponds to allowing row additions or subtractions between any two
consecutive rows. It can be easily seen by induction that a bypass transition graph is strongly
connected.

1.3 Our results
For any integer n ≥ 1, a finite field Fq, and an n-vertex transition graph T we define the
(undirected) Cayley graph

G(n, q, T) := Cay(GL(n, q), ops(T)),

where the set ops(T) is given by (2). Our main result is as follows.

▶ Theorem 1. Let n ≥ 2 be an integer and q be a prime power such that q ≥ 3 if n = 2. Let T

be an n-vertex bypass transition graph. Then the graph G(n, q, T) is Hamilton connected.

Note that for n = 1 the transition graph T has no edges, so G(1, q, T) for any q ≥
3 is simply a (q − 1)-cycle and G(1, 2, T) = K1. For n = q = 2, we have that T =
({1, 2}, {(1, 2), (2, 1)}) is the only bypass transition graph, so G(n, q, T) is a 6-cycle, which is
not Hamilton connected. Thus, we may restate our result as follows.

▶ Corollary 2. Let n ≥ 1 be an integer and q be a prime power, and let T be an n-vertex
bypass transition graph. Then the graph G(n, q, T) is Hamilton connected unless it is a cycle.

ISAAC 2024

35:4 Generating All Invertible Matrices by Row Operations

(
2a 2b
2c 2d

)

(
a b
c d

) (
2a 2b
c d

)

(
a b
2c 2d

)
(
a b
c d

)

(
1 0
0 1

)

(
1 0
2 1

)

(
1 0
1 1

)

(
1 1
0 1

)

(
1 1
2 0

)

(
1 1
1 2

)(
0 1
1 0

)

(
0 1
1 2

)

(
0 1
1 1

)

(
1 2
0 1

)

(
1 2
2 2

)

(
1 2
1 0

)(
1 0
0 1

)

(
1 0
2 1

)

(
1 0
1 1

)

(a)

(b)

(c)

M1,M
−1
1

M2,M
−1
2

A1,2

A1,2

A1,2

A2,1, A
−1
2,1

A2,1, A
−1
2,1

A2,1, A
−1
2,1

Figure 1 The part (c) illustrates a Hamilton path in the graph G(2, 3, ([2], {(1, 2), (2, 1)})). Four
vertices around a matrix Z are those obtained from Z by multiplying or dividing a row by α (which
is 2 for q = 3); see the part (a). The part (b) shows the edges within a shaded component, where the
black solid edges are row multiplications/divisions, while the (directed) dashed edges are additions
from the first row to the second row. Note that the other directions of the latter edges indicate
subtractions of the first row from the second row. Furthermore, while these shaded components
exhibit a Cartesian product structure, the same does not hold for the whole graph.

This shows that the family of graphs G(n, q, T) where T is a bypass transition graph is
yet another example of a family of Cayley graphs satisfying Conjecture 1. A particularly
interesting example is when T is a bidirectional path. See Figure 1 for an illustration for
n = 2 and q = 3.

Moreover, we discuss how to turn the proof of Theorem 1 algorithmic in Section 7.

1.4 Related work

Permutations of [n] can be represented as (invertible binary) permutation matrices forming
a subgroup of GL(n, 2). Thus, all the vast results on generating permutations such as in
[17, 18] can be directly translated into the context of generating permutation matrices. In
particular, there is a general permutation framework developed in [10] that allows us to
generate many combinatorial classes by encoding them into permutations avoiding particular
patterns. However, the row operations that we consider here do not preserve the subgroup of
permutation matrices, so our results do not fall into this framework.

A related task to generation is random sampling. The construction of a random invertible
n × n matrix over Fq is usually done by constructing a uniformly random matrix and
checking whether it is non-singular. The success probability is lower-bounded by a constant
independent of n but dependent on q (e.g., see [5] and the citations therein). Hence, there is
only a constant factor overhead for random sampling of an invertible matrix over a finite
field compared to that of a matrix over the same field. The latter task can be achieved, for
example, by independently constructing each row (or column).

P. Gregor, H. P. Hoang, A. Merino, and O. Mička 35:5

2 Preliminaries

The (undirected) Cayley graph of a group Γ with a generator set S is the graph
Cay(Γ, S) := (Γ, {{x, sx} : x ∈ Γ, s ∈ S}), assuming that S is closed under inverses and does
not contain the neutral element. Note that we apply generators on the left as it is more
natural for row operations on matrices.

The general linear group GL(n, q) is the group of all invertible n × n matrices over the
finite field Fq with matrix multiplication. Note that for Fq to be a field, q has to be a prime
power. For example, GL(1, 2) is the trivial group, GL(2, 2) ≃ S3, and GL(3, 2) ≃ PSL(2, 7)
is also known as the group of automorphisms of the Fano plane. The number of elements in
GL(n, q) is an := (qn − 1)(qn − q) · · · (qn − qn−1), which is obtained by counting choices for
(nonzero) rows that are not spanned by the previous rows. It also satisfies the recurrence

an = (qn − 1)qn−1an−1, (1)

for n ≥ 2, and a1 = q − 1 (i.e., the number of nonzero elements of Fq).
By Gaussian elimination, the group GL(n, q) can be generated by row additions and

row multiplications by a scalar. As we consider the Cayley graph to be undirected, we also
consider the inverse operations, which we call row subtractions and row divisions by a scalar.
The formal definitions of these operations are as follows.

For i ∈ [n] := {1, . . . , n}, let ri = ri(A) denote the i-th row in A. For distinct x, y ∈ [n],
we denote by Axy = (aij) the binary matrix with aij = 1 if and only if i = j, or (i = y and
j = x). Note that left multiplication by Axy corresponds to adding the x-th row to the y-th
row; i.e., the operation rx + ry → ry. Similarly, multiplication by A−1

xy then corresponds to
subtracting the x-th row to the y-th row; i.e., the operation −rx + ry → ry.

Let α be a generator of the multiplicative group of Fq. For x ∈ [n], we denote by
Mx = (aij) the matrix with aij = α if i = j = x, aij = 1 if i = j ̸= x, and aij = 0 otherwise.
Left multiplication by Mx corresponds to multiplying the x-th row by α; i.e., the operation
αrx → rx, and multiplication by M−1

x corresponds to the inverse operation α−1rx → rx that
we call dividing the x-th row by α. Note that for q = 2 the multiplicative group is trivial,
that is, Mx = I, where I denotes the identity matrix.

A transition graph T is any directed graph on the vertex set [n] with the edge set
E(T). For a transition graph T and a field Fq we define

ops(T) := {Aij , A−1
ij : (i, j) ∈ E(T)} ∪ {Mi, M−1

i : i ∈ [n]}, (2)

for q > 2, and ops(T) := {Aij , A−1
ij : (i, j) ∈ E(T)} for q = 2. In other words, ops(T) contains

the row additions and subtractions induced by the edges of T , and all row multiplications
and divisions by α if they are nontrivial. A directed graph is strongly connected if for any
two vertices i, j, there is a directed path from i to j. A (strongly connected) component of
a directed graph is a maximal induced subgraph that is strongly connected. We make the
following observation, whose proof can be found in [8].

▶ Lemma 3. For every transition graph T , the set ops(T) generates the group GL(n, q) if
and only if T is strongly connected.

We denote by Fn
q the vector space of all n-tuples over the field Fq. The span of u1, . . . , uk ∈

Fn
q is denoted by ⟨u1, . . . , uk⟩. Its orthogonal space ⟨u1, . . . , uk⟩⊥ is the kernel of the matrix

with rows u1, . . . , uk.
For k ≥ 3 we denote by Ck a cycle on k vertices, and for k ∈ {1, 2} we define Ck as the

complete graph Kk. We also denote the path on k vertices by Pk for k ≥ 1. The Cartesian
product G □ H of two graphs G and H is the graph with the vertex set V (G) × V (H) and

ISAAC 2024

35:6 Generating All Invertible Matrices by Row Operations

the edge set {(u, v)(u′, v) : uu′ ∈ E(G), v ∈ V (H)} ∪ {(u, v)(u, v′) : u ∈ V (G), vv′ ∈ E(H)}.
For a graph G and a subset U of vertices, we denote by G[U] the subgraph of G induced
by U . Similarly, for a graph G and two subsets of vertices U1, U2 ⊆ V , we use E[U1, U2] to
denote the set of edges between U1 and U2, i.e., E[U1, U2] = {xy ∈ E : x ∈ U1, y ∈ U2}.

For an edge-colored graph, a trail in a graph is alternating if any two consecutive edges
on the trail differ in color.

3 Joining lemma for Hamilton connectivity

In this section, we present a lemma that joins many Hamilton connected graphs into a larger
one. This lemma seems quite versatile. Not only is it useful in our proof in the next section,
but it also allows us to easily reprove several classical results on Hamilton connectivity, for
example for the permutahedron [18].

▶ Lemma 4 (Joining lemma). Let G be a graph with the vertex set partitioned into k ≥ 2
disjoint subsets V1, . . . , Vk such that following conditions hold.
(1) G[Vi] is Hamilton connected for every i ∈ [k];
(2) Every vertex in every set Vi has a neighbor in some different set Vj;
(3) There are at least three pairwise disjoint edges between every two sets Vi, Vj.2

Then G is Hamilton connected.

Proof. Let x, y ∈ V be two vertices to be connected by a Hamilton path. First we consider
the case when they are in different sets Vi. We can assume that x ∈ V1 and y ∈ Vk, otherwise
we rename the sets. We select vertices xi, yi ∈ Vi for every i ∈ [k] so that x1 = x, yk = y,
xi ̸= yi for every i ∈ [k], and yi is a neighbor of xi+1 for every i ∈ [k − 1]. Such vertices
exist since there are at least three edges between Vi and Vi+1 for every i ∈ [k − 1] by the
condition (3). Then we concatenate Hamilton paths in G[Vi] between xi and yi for each
i = 1, . . . , k that exist by the condition (1) into a Hamilton xy-path in G. Note that in this
case we did not use the condition (2).

In the second case x and y are in the same set Vi. We can assume that x, y ∈ V1. Let P

be a Hamilton path in G[V1] between x and y. If k = 2, let ab be an edge of P such that
the neighbors a′ and b′ of a and b in V2, respectively, are distinct. Such neighbors exist by
the condition (2), and such an edge ab exists, because otherwise all vertices in V1 are only
adjacent to one vertex in V2, a contradiction to the condition (3). By replacing the edge ab

with the edge aa′, a Hamilton path of G[V2] between a′ and b′, and the edge b′b we obtain a
Hamilton xy-path in G.

If k > 2, let ab be an edge of P such that a and b have neighbors a′ and b′, respectively,
in different sets Vi for i > 1. Such an edge ab exists since every vertex of V1 has a neighbor
in some other set Vi by the condition (2), and they cannot be all from the same set, say
V2, for otherwise, the condition (3) for the sets V1 and V3 would not hold. By the same
argument as in the first case, there exists a Hamilton path R between a′ and b′ in the
subgraph G[V2 ∪ · · · ∪ Vk]. Finally, replacing the edge ab on P with the edge aa′, the path
R, and the edge b′b yields a Hamilton xy-path in G. ◀

2 We could weaken the condition (3) for k ≥ 4 so that we only need two disjoint edges between all pairs
of sets except for two disjoint pairs.

P. Gregor, H. P. Hoang, A. Merino, and O. Mička 35:7

4 Proof of Theorem 1

We will prove the theorem by induction on n, and let Gn := G(n, q, T). We say that an edge
{X, AijX} of Gn is labeled ij and an edge {X, MiX} of Gn is labeled i.

The proof of the base cases for q = 2 and n = 3, and for q ≥ 3 and n = 2 is deferred to
Section 5; see Lemmas 5 and 6. Here, we prove the inductive step, so we assume that q = 2
and n ≥ 4, or q ≥ 3 and n ≥ 3, and that the statement holds for the graph G(n − 1, q, T − n).
Our main tool is the joining lemma from the previous section (Lemma 4).

Proof of the inductive step. We view rows of an invertible n × n matrix A as an ordered
basis (r1, . . . , rn) of the vector space Fn

q . The first n − 1 rows span a subspace of dimension
n − 1 which is orthogonal to some subspace of dimension 1. That is,

⟨r1, . . . , rn−1⟩ = ⟨u⟩⊥

for a nonzero u ∈ Fn
q that satisfies RuT = 0, where R is the (n − 1) × n matrix whose rows

are r1, . . . , rn−1.
We denote by Su the set of all the (n − 1) × n matrices whose rows form a basis of ⟨u⟩⊥.

Observe that this operation gives a bijection between Su and GL(n − 1, q): Remove the i-th
column of every matrix in Su, where i is the index of the first nonzero element of u (which
exists, as u is not the zero vector). Furthermore, for every matrix X in Su, we can add any
vector as the last row to form an n × n invertible matrix, as long as this added vector is
independent of the rows of X (i.e., any vector in Fn

q \ ⟨u⟩⊥).
Note that this tallies with the count in (1). Recall that an−1 denotes the number of

elements in GL(n − 1, q). There are (qn − 1)/(q − 1) choices for the one-dimensional subspace
⟨u⟩. For each subspace (with a representative basis u), Su has an−1 elements, due to the
aforementioned bijection. Lastly, for each matrix X in Su, there are qn−1(q − 1) possible last
rows, which can be obtained by adding a linear combination of the rows of X to an initial
last row and then multiplying the sum by a power of α. Together, we recover the recurrence
statement (1).

Following the above analysis, we prove the inductive step in four smaller steps.
First, given a one dimensional subspace with a basis u and a vector v independent of the

rows of any matrix in Su, we denote by the tuple (Su, v) the set of all matrices in GL(n, q)
formed by adding v as the last row to each of the matrices in Su. Since the aforementioned
bijection is an isomorphism of Gn[(Su, v)] and G(n − 1, q, T − n), by inductive hypothesis we
conclude that Gn[(Su, v)] is Hamilton connected.

Before we proceed, we note that row multiplications, divisions, and row additions that do
not involve the last row only transform a matrix into another matrix in the same set (Su, v)
for some u, v. Next, adding a row to the last row transforms a matrix in (Su, v) into another
matrix in (Su, v′) for v ̸= v′. Lastly, adding the last row to another row transforms a matrix
in (Su, v) into another matrix in (Su′ , v), where ⟨u⟩ ̸= ⟨u′⟩.

Second, we denote by (Su, ⟨v⟩) the set of all matrices in GL(n, q) formed by adding
any multiple of v as the last row to each of the matrices in Su. Since multiplication by α

generates all nonzero elements of Fq, the edges of label n that multiply the last row form
a cycle of length q − 1. Hence, the graph Gn[(Su, ⟨v⟩)] ≃ Gn[(Su, v)] □ Cq−1, which can be
easily showed to be Hamilton connected (see [8]).

Third, given a one dimensional subspace with a basis u, we denote by (Su, ∗) the set of
all matrices in GL(n, q) whose first n − 1 rows form a matrix in Su. Here, we use Lemma 4
to join the subgraphs Gn[(Su, ⟨v⟩)] for all applicable v to prove the Hamilton connectivity of
Gn[(Su, ∗)]. The joining edges between these subgraphs have label in for i ∈ [n − 1] (such

ISAAC 2024

35:8 Generating All Invertible Matrices by Row Operations

an i is guaranteed by the bypass property of T). In order to use the lemma, we show that
all of its conditions hold. The condition (1) follows the second step above. The condition
(2) is satisfied, because for every u, v ∈ Fn

q and a matrix X in (Su, v) ⊆ (Su, ⟨v⟩), AinX

is a neighbor of X in Gn and in (Su, ⟨v + ri(X)⟩), a different set than (Su, ⟨v⟩). For the
condition (3), given u and two distinct v, v′ /∈ ⟨u⟩⊥ such that ⟨v⟩ ̸= ⟨v′⟩, we have that v is a
linear combination of a basis of ⟨u⟩⊥ and v′, and consequently v = x + av′ for some nonzero
x ∈ ⟨u⟩⊥ and a nonzero a ∈ Fq. As Su contains all matrices whose rows form a basis in ⟨u⟩⊥,
there exist three matrices X1, X2, and X3 in Su such that their i-th row is x = v − av′. We
can guarantee three matrices in Su, because in the inductive step, n ≥ 3 and q ≥ 3, or n ≥ 4
and q = 2, and hence, when we fix the n − 2 rows including the i-th row, there are at least
three different choices for the remaining row. Then the edges {X1, AinX1}, {X2, AinX2},
and {X3, AinX3} are the three distinct edges as required by the condition (3). We can now
apply Lemma 4 and conclude that Gn[(Su, ∗)] is Hamilton connected.

Last, we again apply Lemma 4 to join the different subgraphs Gn[(Su, ∗)] for all subspaces
⟨u⟩ to complete the inductive step. Here, the joining edges have the label nj for some
j ∈ [n − 1], which exist because T is a bypass transition graph. The condition (1) of the
lemma follows the previous step. The condition (2) is satisfied, because for any X in some
(Su, ∗), AnjX is a neighbor of X in Gn and belongs to a different set (Su′ , ∗). For the
condition (3), given u, u′ not in the same one-dimensional subspace, ⟨u, u′⟩⊥ is a subspace of
dimension n − 2.

If n ≥ 4, or n = 3 and q > 3, there exist three distinct matrices B, B′, and B′′ whose
rows form bases of this (n − 2)-dimensional subspace. The remaining case n = 3 and q = 3 is
considered separately below. Let vu ∈ ⟨u⟩⊥ \ ⟨u′⟩⊥ and vu′ ∈ ⟨u′⟩⊥ \ ⟨u⟩⊥. Clearly, we have
that vu′ − vu is independent of the rows of each matrix B, B′, and B′′. Let B̃, B̃′, and B̃′′

be the n × n matrix obtained from B, B′, and B′′ respectively by inserting a new row vu at
the j-th position and vu′ − vu as the last row.

If n = 3 and q = 3 we have ⟨u⟩⊥ ∩ ⟨u′⟩⊥ = ⟨w⟩ = {0, w, 2w} for some nonzero w ∈ F3
3, so

there are only two distinct matrices whose rows form bases of this 1-dimensional subspace,
in particular B = (w) and B′ = (2w). In this case, we define B̃ and B̃′ as in the previous
case, but for B̃′′ we take the matrix obtained from B by inserting a new row 2vu at the j-th
position and 2vu′ − 2vu as the last row.

In both cases, {B̃, AnjB̃}, {B̃′, AnjB̃′}, and {B̃′′, AnjB̃′′} are the three edges as required
by the condition (3). This completes all the conditions of Lemma 4 and completes the
inductive step. ◀

5 Base cases for the induction

We verify the case when n = 3 and q = 2 by computer search in SageMath; see [8].

▶ Lemma 5. For every bypass transition graph T , the graph G(3, 2, T) is Hamilton connected.

Since the only bypass transition graph T for n = 2 is the complete graph T =
([2], {(1, 2), (2, 1)}), the remaining base cases for q ≥ 3 and n = 2 are captured in the
following lemma.

▶ Lemma 6. For a prime power q ≥ 3, G(2, q, ([2], {(1, 2), (2, 1)})) is Hamilton connected.

To prove Lemma 6, we first consider the graph that arises by removing the edges that
add the second row to the first row; i.e., for a prime power q ∈ N, we define G′(q) :=
G(2, q, ([2], {(1, 2)})). The graph G′(q) is disconnected, and thus, we consider the connected
component in G′(q) that contains the identity matrix and denote it by H(q). We will usually
write H and G′ for H(q) and G′(q) whenever there is no risk of confusion.

P. Gregor, H. P. Hoang, A. Merino, and O. Mička 35:9

It is easy to see that the vertices of H are of the form:

V (H) =
{(

αi 0
αja αj

)
: i, j ∈ {0, . . . , q − 2}, a ∈ Fq

}
.

Furthermore, the graph H has a simple structure when analyzing the components by fixing
a ∈ Fq, as described in the following. Let us define

Va =
{(

αi 0
αja αj

)
: i, j ∈ {0, . . . , q − 2}

}
and let Ha be the graph induced by fixing a in H; i.e., Ha := H[Va]. We have the following
simple observations regarding H and its decomposition by fixing a ∈ Fq.

(p1) (H splits into copies of Ha.) Removing the edges that add the first row to the second
row in H disconnects H and splits it into the connected components {Ha : a ∈ Fq}.

(p2) (The graphs Ha have good Hamiltonicity properties.) For every a ∈ Fq, we get that Ha

is a toroidal grid of dimensions (q −1)× (q −1) where each dimension of the grid is given
by multiplication by α in the respective row; i.e., Ha

∼= Cq−1 □Cq−1. In particular, Ha

is isomorphic to Hb for every a, b ∈ Fq.
(p3) (The components Ha are well-connected.) For every i ∈ {0, . . . , q − 2} and a, b ∈ Fq

such that a ̸= b, we have that

a. αi

(
a − b 0

a 1

)
∈ Va and αi

(
a − b 0

b 1

)
∈ Vb are connected by an edge,

b. αi

(
b − a 0

a 1

)
∈ Va and αi

(
b − a 0

b 1

)
∈ Vb are connected by an edge,

and no other edges between Va and Vb exist. In particular, for every a, b ∈ Fq such that
a ̸= b we have that |E[Va, Vb]| = 2(q − 1) with all the edges being disjoint.

We exploit these properties as follows: We split H into the components Ha for a ∈ Fq,
then since the graphs Ha are either Hamilton laceable or connected and the components
Ha are well-connected we can glue the corresponding Hamilton paths in each Ha to form a
Hamilton path in H.

If q is even, for every a ∈ Fq the graphs Ha are Hamilton connected. This makes it
easier to lift the Hamilton paths from Ha to a Hamilton path in H. However, when q is
odd, the picture is much different. In particular, there are parity constraints given by the
fact that for every a ∈ Fq the graph Ha is now bipartite. To make this formal, we partition

V (H) into two colors. We say that x =
(

αi 0
αja αj

)
is blue whenever i + j is even, and it

is red whenever i + j is odd. We denote the color of a vertex x ∈ V (H) by col(x). It
is easy to show that if x ∈ Va, y ∈ Vb for some a ̸= b and there is an edge xy ∈ E[Va, Vb],
then col(x) = col(y). Thus, for every edge xy ∈ E[Va, Vb] we can define its (edge) color as
col(xy) := col(x) = col(y).

If q ≡ 3 (mod 4), a simple computation shows that whenever there is a red or blue edge
between Va and Vb for a, b ∈ Fq we also have an edge of the opposite color. Thus, the coloring
does not impose any extra restrictions.

The problematic case occurs whenever q ≡ 1 (mod 4). In this case, all the edges between
Va and Vb have the same color for a, b ∈ Fq. Hence, it is natural to consider the graph where
we contract every Va for a ∈ Fq. Thus, we obtain a new graph K̄q with Fq as vertices, and
for the edges xy ∈ E[Va, Vb] we put a new edge ab colored with col(xy). This graph is a
complete graph on Fq where the coloring of the edges can be succinctly described as follows:
(*) For x and y in Fq, the edge xy has color red (blue) if there exists an odd (even) z ∈ Z,

such that x − y = αz. (See Figure 2 for an example.)

ISAAC 2024

35:10 Generating All Invertible Matrices by Row Operations

0

1

2

3

4

Figure 2 The graph K̄5 for α = 2.

If we plan to have a Hamilton path of H that traverses each set Va at a time for a ∈ Fq,
then for any a, b ∈ Fq, there is at most one edge of the Hamilton path that crosses between
Va and Vb. Further, as each Va has even size, this means that as we traverse this Hamilton
path, any two consecutive such “crossing” edges have to differ in color. This translates to
the requirement that we should have an alternating Hamilton path in K̄q. We show in the
next lemma that this holds, even for Hamilton connectivity.

▶ Lemma 7. Let q be a prime power, q ≡ 1 (mod 4). For any two distinct vertices a, b ∈ Fq

and a color c of either red or blue, there exists an alternating Hamilton ab-path of K̄q such
that a is incident to an edge of color c on the path.

We defer the proof of Lemma 7 to Section 6. We can use Lemma 7 to prove Hamiltonicity
properties of subgraphs of H. To this end, we have the following definition.

▶ Definition 1. An induced subgraph H ′ of H is structured if and only if the following
holds:
1. For every a ∈ Fq we have that H ′[Va] is isomorphic to either Cq−1 □ Cq−1 or Cq−1 □ Pℓ

for ℓ ≥ (q − 1)/2, and
2. For every distinct a, b ∈ Fq, there is at least one edge between H ′[Va] and H ′[Vb].

▶ Lemma 8. Let q ≥ 5 be an odd integer and H ′ be a structured induced subgraph of H(q).
Let x, y ∈ V (H(q)) be two vertices of different colors such that x ∈ Va, y ∈ Vb with distinct
a, b ∈ Fq. Then there exists a Hamilton xy-path in H ′.

The reader may notice similarities between Lemma 8 and the joining lemma (Lemma 4).
In particular, they may wonder why we require only one edge between components, instead
of the three needed in the joining lemma. Recall that the need for three edges in the joining
lemma was in the case where we want to have an xy-subpath that spans two consecutive
components, but the edges that cross between these two components are incident to either x

or y. However, this cannot happen for structured graphs, because the coloring conditions
force these endpoints not to be used in crossing edges. The proof of this lemma is presented
in [8].

Equipped with Lemmas 4 and 8, we can show the following lemma, whose full proof is
also presented in [8].

▶ Lemma 9. For every q ≥ 3 the graph H(q) is Hamilton connected.

We are now ready to prove Lemma 6.

P. Gregor, H. P. Hoang, A. Merino, and O. Mička 35:11

Proof of Lemma 6. Let us denote S = {(a, 1) : a ∈ Fq} ∪ {(1, 0)} ⊆ F2
q. For any nonzero

vector u ∈ S, let us define V u ⊆ V (G) to be the set of all matrices in G with the first row in
⟨u⟩. Note that each V u corresponds to a unique component of G′, with V (1,0) = V (H).

We apply Lemma 4 with partitioning {Vu : u ∈ S}.
We begin by simplifying our arguments using symmetry. Note that any two components

of G′ are isomorphic via fA : x 7→ xA for some A ∈ GL(2, q). Moreover, for any A the
mapping fA is an automorphism of G that preserves operations on the edges; i.e., if an edge
corresponds to the operation M1, then it will be mapped to some edge that also corresponds
to M1. In particular, H is isomorphic to every other component.

For the condition (1) of Lemma 4, we know that H is Hamilton connected by Lemma 9,
so by isomorphism the same holds for every G[V u]. The condition (2) is satisfied simply by
adding the second row to the first row. For the condition (3), we first observe that if there is
an edge between G[V u] and G[V u′], there are actually at least q − 1 disjoint edges as we can
multiply both matrices by αi. By isomorphism, it is enough to show that there is an edge
between H and any V u distinct from V (1,0). Since u = (a, 1) for some a ∈ Fq, we can use

the edges between
(

1 0
a − 1 1

)
∈ V (H) and

(
a 1

a − 1 1

)
∈ V (a,1). ◀

6 Alternating path in two-edge-colored complete graph

In this section, we prove Lemma 7, which is needed in the proof of Lemma 8.
We start with a brief recap of the context needed for this lemma. Suppose q is a prime

power and q ≡ 1 (mod 4). We remind the reader that α is a generator of the multiplicative
group of Fq. Recall that K̄q is the complete graph on the vertex set Fq with edges colored
by the following scheme:
(*) For x and y in Fq, the edge xy has color red (blue) if there exists an odd (even) z ∈ Z

such that x − y = αz.
Our goal is to find an alternating Hamilton path between two prescribed vertices a and b

with a prescribed color of the edge incident to a.
We begin by arguing that K̄q is well-defined. Let 0 be the additive identity and 1 be the

multiplicative identity of Fq. By the definition of α, the nonzero elements of Fq are exactly
α0, . . . , αq−2. Furthermore, αi = αq−1+i for all integers i ∈ Z. Since q is odd, we conclude
that if αz = αz′ for some z, z′, then z and z′ have the same parity. Thus, for x and y in Fq,
there exists a unique p ∈ {0, 1} such that if x − y = αz then z ≡ p (mod 2). Further, since
α(q−1)/2 = −1, if x − y = αz, then y − x = αz′ for z′ = z + (q − 1)/2. As q ≡ 1 (mod 4), z

and z′ have the same parity. Therefore, the color of each edge of K̄q is well-defined.
The problem of finding an alternating cycle/path in a graph has a long history and a wide

range of applications; see the survey by Bang-Jensen and Gutin [1]. However, the existing
results on alternating Hamilton cycles/paths in two-edge-colored complete graphs (e.g., [2, 3])
cannot be readily applied in our setting. Furthermore, we also specify the color of the first
edge of the path, which is not guaranteed by these results. Therefore, we provide a direct
and constructive proof of an alternating Hamilton path in our special complete graph.

In the following proof, we use the observation that the operation of adding a constant to
all vertex labels preserves edge colors since the difference between any two vertices remains
the same.

▶ Lemma 7. Let q be a prime power, q ≡ 1 (mod 4). For any two distinct vertices a, b ∈ Fq

and a color c of either red or blue, there exists an alternating Hamilton ab-path of K̄q such
that a is incident to an edge of color c on the path.

ISAAC 2024

35:12 Generating All Invertible Matrices by Row Operations

Proof. For i ∈ {0, . . . , q − 1}, define vi :=
∑i

j=0 αj . Note that vq−2 = 0, and v0 = vq−1 = 1.
It is easy to see that (v0, . . . , vq−2) forms an alternating cycle C in K̄q. The only missing
vertex in C is u := −(α − 1)−1. Indeed, if this vertex is on the cycle, then for some t, we
must have (αt+1 − 1)(α − 1)−1 = −(α − 1)−1, which implies αt+1 = 0, a contradiction with
the fact that α generates nonzero elements of Fq.

For any i ∈ {0, . . . , q−2} we have vi −u = (αi+1 −1)(α−1)−1 +(α−1)−1 = αi+1(α−1)−1.
By a similar argument, we have that vi+1 − u = αi+2(α − 1)−1 = α(vi − u). Thus, by the
coloring scheme (*), uvi and uvi+1 have different colors.

▷ Claim. For any vertex v in C, there exists an alternating Hamilton uv-path such that on
the path, u is incident to an edge whose color is different from that of uv.

u

vi

vi+1vi−1

Figure 3 Illustration of the claim’s proof. The outer cycle is the cycle C, and the bold edges
indicate an alternating Hamilton path.

Proof. Suppose v = vi for some i ∈ {0, . . . , q − 2}. By the argument above, uvi−1 and uvi+1
have the same color. Further, since C is an alternating cycle, vi−1vi and vivi+1 have different
colors. Hence, one of these two edges have the same color as uvi−1 and uvi+1. Without loss of
generality, suppose this edge is vivi+1. Then we have (u, vi+1, vi+2 . . . , vq−2, v0, . . . , vi−1, vi)
is the desired alternating Hamilton path. See Figure 3 for an illustration. ◁

Consider adding b − u to all vertex labels. The missing vertex from the cycle C above
is now b. By the claim above, we obtain an alternating Hamilton ba-path such that the
incident edge to b has different color than that of ba. Since q is odd, this implies that the
edge incident to a on this path has the same color as ba. Next, we add a − u to all original
vertex labels. The missing vertex from C is now a. Again by the claim above, we obtain
another alternating Hamilton ab-path such that the incident edge to a has different color
than that of ab.

Since the two alternating Hamilton paths above have different colors for the edge incident
to a, the lemma follows. ◀

7 Algorithmization

The proof of Theorem 1 can be easily turned into an algorithm that computes a Hamilton
path in G(n, q, T) running in time polynomial in |GL(n, q)|. This can be obtained by a
straightforward recursion based on the joining lemma. More specifcally, the main idea of
the proof is to split the graph and proceed recursively. Close examination of the proof of
the joining lemma and its applications along our proof shows that such a recursion can be
computed in time polynomial in |GL(n, q)|; we omit the details.

P. Gregor, H. P. Hoang, A. Merino, and O. Mička 35:13

However, the typical goal from a generation perspective is to have an algorithm that
outputs objects one by one with a small delay and preprocessing time. Here, the delay
is the worst-case time the algorithm takes between consecutively generated objects and
the preprocessing time is the time before generating any objects. Thus, the natural
objective from generation perspective for invertible matrices is an enumeration algorithm
running in delay poly(n, q) := nO(1)qO(1) with poly(n, q) preprocessing. Note that such an
algorithm immediately gives a solution to computing Hamilton paths in G(n, q, T) in time
poly(n, q)|GL(n, q)|.

The naive implementation of our inductive proof uses a call stack that needs space
exponential in n and takes exponential time in n to put the recursive calls in the stack.
Despite that, it is still possible to obtain a polynomial delay algorithm by following the
recursive structure of the main proof. As highlighted in the stack approach, we cannot store
all the information given by the recursion. Instead, we only store information related to the
current path in the recursion tree. More specifically, if we are at a vertex z, we trace back
the ℓ recursive calls, each utilizing the joining lemma. The i-th call indicates a pair of a
source xi and a target yi for which we traverse a Hamilton path. For every i ∈ [ℓ] we store
xi, yi and a small amount of extra bits serving as a compressed history. It turns out that
this is enough information to reconstruct the path of z in the recursion tree and decide how
to proceed; more details are given in [8].

8 Open questions

We conclude with several remarks and open questions.
1. Non-bypass transition graphs. Does Theorem 1 hold for any strongly connected

(and not necessarily bypass) transition graph, in particular for the directed n-cycle? We
verified by computer that the result holds for the directed cycle if q = 2 and n = 3.

2. Other generators. Does Theorem 1 hold for other generators of the group GL(n, q)?
For example, there is the generator {M2A1,n, P2...n1} of size 2, where P2...n1 refers to
the permutation matrix corresponding to the permutation 2 . . . n1 [19]. This problem is
similar to the sigma-tau problem for permutations solved by Sawada and Williams [17].

3. Subgroups of GL(n, q). As an intermediate step, we show that Cayley graphs of certain
subgroups of GL(n, q) are Hamilton connected. Can we prove it for other subgroups that
correspond to given restrictions of matrices?

4. Symmetric Hamilton cycles. Instead of Hamilton connectivity we may ask for
Hamilton cycles that are preserved under a large cyclic subgroup of automorphisms.
This problem was recently studied by Gregor, Merino, and Mütze [9] for several highly
symmetric graphs. The graphs considered here are also highly symmetric.

5. Matrices over rings. Another natural extension is to explore if our results extend to
invertible matrices in the ring setting. This is particularly interesting for cyclic rings; i.e.,
checking Hamiltonicity of Cayley graphs of invertible matrices in Zk for k ∈ N. Naturally,
the methods will highly depend on the chosen generators for which there does not seem
to be an obvious choice.

6. Alternating Hamilton paths in 2-colored K2n+1. Despite our efforts and many
existing results on properly colored Hamilton cycles in complete graphs (see a survey [1]),
we did not find an answer to the following question. Is it true that the complete graph
K2n+1 with 2-colored edges so that every vertex is incident with exactly n edges of each
color contains an alternating Hamilton path between any two vertices?

7. Efficient algorithms. Is there a generating algorithm that achieves O(n) delay? Is
there a simple greedy algorithm?

ISAAC 2024

35:14 Generating All Invertible Matrices by Row Operations

References
1 J. Bang-Jensen and G. Gutin. Alternating cycles and paths in edge-coloured multigraphs: a

survey. Discrete Math., 165/166:39–60, 1997. doi:10.1016/S0012-365X(96)00160-4.
2 J. Bang-Jensen, G. Gutin, and A. Yeo. Properly coloured Hamiltonian paths in edge-coloured

complete graphs. Discrete Appl. Math., 82(1-3):247–250, 1998. doi:10.1016/S0166-218X(97)
00062-0.

3 M. Bánkfalvi and Zs. Bánkfalvi. Alternating Hamiltonian circuit in two-coloured complete
graphs. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 11–18. Academic Press,
New York-London, 1968.

4 C. C. Chen and N. F. Quimpo. On strongly Hamiltonian abelian group graphs. In Combinatorial
mathematics, VIII (Geelong, 1980), volume 884 of Lecture Notes in Math., pages 23–34.
Springer, Berlin-New York, 1981. doi:10.1007/BFb0091805.

5 C. Cooper. On the rank of random matrices. Random Structures Algorithms, 16(2):209–232,
2000. doi:10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1.

6 M. Dupuis and S. Wagon. Laceable knights. Ars Math. Contemp., 9:115–124, 2015. doi:
10.26493/1855-3974.420.3C5.

7 T. Fabšič, O. Grošek, K. Nemoga, and P. Zajac. On generating invertible circulant binary
matrices with a prescribed number of ones. Cryptogr. Commun., 10(1):159–175, 2018. doi:
10.1007/s12095-017-0239-4.

8 P. Gregor, H. P. Hoang, A. Merino, and O. Mička. Generating all invertible matrices by row
operations. arXiv preprint, 2024. Full preprint version of the present article. arXiv:2405.01863.

9 P. Gregor, A. Merino, and T. Mütze. The Hamilton Compression of Highly Symmetric
Graphs. In S. Szeider, R. Ganian, and A. Silva, editors, 47th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2022), volume 241 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 54:1–54:14, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2022.54.

10 E. Hartung, H. P. Hoang, T. Mütze, and A. Williams. Combinatorial generation via permutation
languages. I. Fundamentals. Trans. Amer. Math. Soc., 375(4):2255–2291, 2022. doi:10.1090/
tran/8199.

11 D. E. Knuth. The Art of Computer Programming. Vol. 4A. Combinatorial algorithms. Part 1.
Addison-Wesley, Upper Saddle River, NJ, 2011.

12 L. Lovász. Problem 11. In Combinatorial Structures and Their Applications (Proc. Calgary
Internat. Conf., Calgary, AB, 1969). Gordon and Breach, New York, 1970.

13 T. Mütze. Combinatorial Gray codes—an updated survey. Electron. J. Combin., Dynamic
Surveys DS26:93 pp., 2023. doi:10.37236/11023.

14 Naomi Nishimura. Reasons to fall (more) in love with combinatorial reconfiguration. In
WALCOM: algorithms and computation, volume 14549 of Lecture Notes in Comput. Sci., pages
9–14. Springer, Singapore, 2024. doi:10.1007/978-981-97-0566-5_2.

15 David J. Rasmussen and Carla D. Savage. Hamilton-connected derangement graphs on Sn.
Discrete Math., 133(1-3):217–223, 1994. doi:10.1016/0012-365X(94)90028-0.

16 Frank Ruskey and Carla Savage. Hamilton cycles that extend transposition matchings in
Cayley graphs of Sn. SIAM J. Discrete Math., 6(1):152–166, 1993. doi:10.1137/0406012.

17 J. Sawada and A. Williams. Solving the sigma-tau problem. ACM Trans. Algorithms, 16(1):Art.
11, 17 pp., 2020. doi:10.1145/3359589.

18 M. Tchuente. Generation of permutations by graphical exchanges. Ars Combin., 14:115–122,
1982.

19 W. C. Waterhouse. Two generators for the general linear groups over finite fields. Linear and
Multilinear Algebra, 24(4):227–230, 1989. doi:10.1080/03081088908817916.

https://doi.org/10.1016/S0012-365X(96)00160-4
https://doi.org/10.1016/S0166-218X(97)00062-0
https://doi.org/10.1016/S0166-218X(97)00062-0
https://doi.org/10.1007/BFb0091805
https://doi.org/10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1
https://doi.org/10.26493/1855-3974.420.3C5
https://doi.org/10.26493/1855-3974.420.3C5
https://doi.org/10.1007/s12095-017-0239-4
https://doi.org/10.1007/s12095-017-0239-4
https://arxiv.org/abs/2405.01863
https://doi.org/10.4230/LIPIcs.MFCS.2022.54
https://doi.org/10.1090/tran/8199
https://doi.org/10.1090/tran/8199
https://doi.org/10.37236/11023
https://doi.org/10.1007/978-981-97-0566-5_2
https://doi.org/10.1016/0012-365X(94)90028-0
https://doi.org/10.1137/0406012
https://doi.org/10.1145/3359589
https://doi.org/10.1080/03081088908817916

Kernelization Complexity of Solution Discovery
Problems
Mario Grobler #

University of Bremen, Germany

Stephanie Maaz #

University of Waterloo, Canada

Amer E. Mouawad #

American University of Beirut, Lebanon

Naomi Nishimura #

University of Waterloo, Canada

Vijayaragunathan Ramamoorthi #

University of Bremen, Germany

Sebastian Siebertz #

University of Bremen, Germany

Abstract
In the solution discovery variant of a vertex (edge) subset problem Π on graphs, we are given an
initial configuration of tokens on the vertices (edges) of an input graph G together with a budget b.
The question is whether we can transform this configuration into a feasible solution of Π on G

with at most b modification steps. We consider the token sliding variant of the solution discovery
framework, where each modification step consists of sliding a token to an adjacent vertex (edge).
The framework of solution discovery was recently introduced by Fellows et al. [ECAI 2023] and for
many solution discovery problems the classical as well as the parameterized complexity has been
established. In this work, we study the kernelization complexity of the solution discovery variants of
Vertex Cover, Independent Set, Dominating Set, Shortest Path, Matching, and Vertex
Cut with respect to the parameters number of tokens k, discovery budget b, as well as structural
parameters such as pathwidth.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Fixed parameter tractability; Mathematics of computing → Combinatorics

Keywords and phrases solution discovery, kernelization, cut, independent set, vertex cover, domin-
ating set

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.36

Related Version Full Version: https://arxiv.org/abs/2409.17250

Funding Naomi Nishimura, Stephanie Maaz : Research supported by the Natural Sciences and
Engineering Research Council of Canada.
Vijayaragunathan Ramamoorthi : Funded by the “Mind, Media, Machines” high-profile area at the
University of Bremen.

1 Introduction

In the realm of optimization, traditional approaches revolve around computing optimal
solutions to problem instances from scratch. However, many practical scenarios can be
formulated as the construction of a feasible solution from an infeasible starting state. Examples
of such scenarios include reactive systems involving human interactions. The inherent
dynamics of such a system is likely to lead to an infeasible state. However, computing a

© Mario Grobler, Stephanie Maaz, Amer E. Mouawad, Naomi Nishimura,
Vijayaragunathan Ramamoorthi, and Sebastian Siebertz;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 36; pp. 36:1–36:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grobler@uni-bremen.de
https://orcid.org/0000-0001-8103-6440
mailto:smaaz@uwaterloo.ca
https://orcid.org/0000-0001-7188-8834
mailto:aa368@aub.edu.lb
https://orcid.org/0000-0003-2481-4968
mailto:nishi@uwaterloo.ca
https://orcid.org/0000-0001-7893-4813
mailto:vira@uni-bremen.de
https://orcid.org/0000-0001-8554-6392
mailto:siebertz@uni-bremen.de
https://orcid.org/0000-0002-6347-1198
https://doi.org/10.4230/LIPIcs.ISAAC.2024.36
https://arxiv.org/abs/2409.17250
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Kernelization Complexity of Solution Discovery

solution from scratch may lead to a solution that may differ arbitrarily from the starting
state. The modifications required to reach such a solution from the starting state may be
costly, difficult to implement, or sometimes unacceptable.

Let us examine a specific example to illustrate. A set of workers is assigned tasks so
that every task is handled by a qualified worker. This scenario corresponds to the classical
matching problem in bipartite graphs. Suppose one of the workers is now no longer available
(e. g., due to illness); hence, the schedule has to be changed. An optimal new matching could
be efficiently recomputed from scratch, but it is desirable to find one that is as close to the
original one as possible, so that most of the workers keep working on the task that they were
initially assigned.

Such applications can be conveniently modeled using the solution discovery framework,
which is the central focus of this work. In this framework, rather than simply finding a
feasible solution to an instance I of a source problem Π, we investigate whether it is possible
to transform a given infeasible configuration into a feasible one by applying a limited number
of transformation steps. In this work we consider vertex (edge) subset problems Π on graphs,
where the configurations of the problem are sets of vertices (edges). These configurations
are represented by the placement of tokens on the vertices (edges) of the configuration. An
atomic modification step consists of moving one of the tokens and the question is whether
a feasible configuration is reachable after at most b modification steps. Inspired by the
well-established framework of combinatorial reconfiguration [4, 16, 15], commonly allowed
modification steps are the addition/removal of a single token, the jumping of a token to an
arbitrary vertex/edge, or the slide of a token to an adjacent vertex (edge).

Problems defined in the solution discovery framework are useful and have been appearing
in recent literature. Fellows et al. [11] introduced the term solution discovery, and along with
Grobler et al. [13] initiated the study of the (parameterized) complexity of solution discovery
problems for various NP-complete source problems including Vertex Cover (VC), Inde-
pendent Set (IS), Dominating Set (DS), and Coloring (Col) as well as various source
problems in P such as Spanning Tree (ST), Shortest Path (SP), Matching (Mat),
and Vertex Cut (VCut) / Edge Cut (ECut).

Fellows et al. [11] and Grobler et al. [13] provided a full classification of polynomial-
time solvability vs. NP-completeness of the above problems in all token movement models
(token addition/removal, token jumping, and token sliding). For the NP-complete solution
discovery problems, they provided a classification of fixed-parameter tractability vs. W[1]-
hardness. Recall that a fixed-parameter tractable algorithm for a problem Π with respect to
a parameter p is one that solves Π in time f(p) · nO(1), where n is the size of the instance
and f is a computable function dependent solely on p, while W[1]-hardness provides strong
evidence that the problem is likely not fixed-parameter tractable (i. e., does not admit a
fixed-parameter tractable algorithm) [9].

A classical result in parameterized complexity theory is that every problem Π that admits
a fixed-parameter tractable algorithm necessarily admits a kernelization algorithm as well [5].
A kernelization algorithm for a problem Π is a polynomial-time preprocessing algorithm
that, given an instance x of the problem Π with parameter p, produces a kernel – an
equivalent instance x′ of the problem Π with a parameter p′, where both the size of x′ and
the parameter p′ are bounded by a computable function depending only on p [9]. Typically,
kernelization algorithms generated using the techniques of Cai et al. [5] yield kernels of
exponential (or even worse) size. In contrast, designing problem-specific kernelization
algorithms frequently yields more efficiently-sized kernels, often quadratic or even linear
with respect to the parameter. Note that once a decidable problem Π with parameter p

M. Grobler et al. 36:3

admits a kernelization algorithm, it also admits a fixed-parameter tractable algorithm, as a
kernelization algorithm always produces a kernel of size that is simply a function of p. The
fixed-parameter tractable solution discovery algorithms of Fellows et al. [11] and Grobler et
al. [13] are not based on kernelization algorithms.

Unfortunately, it is unlikely that all fixed-parameter tractable problems admit polynomial
kernels. Bodlaender et al. [2, 3] developed the first framework for proving kernel lower bounds
and Fortnow and Santhanam [12] showed a connection to the hypothesis NP ̸⊆ coNP/poly.
Specifically, for several NP-hard problems, a kernel of polynomial size with respect to a
parameter would imply that NP ⊆ coNP/poly, and thus an unlikely collapse of the polynomial
hierarchy to its third level [18]. Driven by the practical benefits of kernelization algorithms,
we explore the size bounds on kernels for most of the above-mentioned solution discovery
problems in the token sliding model, particularly those identified as fixed-parameter tractable
in the works of Fellows et al. [11] and Grobler et al. [13].

1.1 Results Overview
We focus on the kernelization complexity of solution discovery in the token sliding model
for the following source problems: Vertex Cover, Independent Set, Dominating Set,
Shortest Path, Matching, and Vertex Cut. For a base problem Π we write Π-D for
the discovery version in the token sliding model.

Figure 1 summarizes our results. All graph classes and width parameters appearing in
this introduction are defined in the preliminaries. Fellows et al. [11] and Grobler et al. [13]
gave fixed-parameter tractable algorithms with respect to the parameter k for IS-D on
nowhere dense graphs, for VC-D, SP-D, Mat-D, and VCut-D on general graphs and for
DS-D on biclique-free graphs.

We show that IS-D, VC-D, DS-D, and Mat-D parameterized by k admit polynomial
size kernels (on the aforementioned classes), while VCut-D does not admit kernels of size
polynomial in k. For SP-D, we show that the problem does not admit a kernel of polynomial
size parameterized by k + b unless NP ⊆ coNP/poly.

As NP-hardness provides strong evidence that a problem admits no polynomial-time
algorithm, W[t]-hardness (for a positive integer t) with respect to a parameter p provides
strong evidence that a problem admits no fixed-parameter tractable algorithm with respect
to p. Fellows et al. [11] proved that VC-D, IS-D, and DS-D are W[1]-hard with respect
to parameter b on d-degenerate graphs but provided fixed-parameter tractable algorithms
on nowhere dense graphs. They also showed that these problems are slicewise polynomial
(XP) with respect to the parameter treewidth and left open the parameterized complexity of
these problems with respect to the parameter treewidth alone. We show that these problems
remain XNLP-hard (which implies W[t]-hardness for every positive integer t) for parameter
pathwidth (even if given a path decomposition realising the pathwidth), which is greater
than or equal to treewidth, and that they admit no polynomial kernels (even if given a path
decomposition realising the pathwidth) with respect to the parameter b + pw, where pw is
the pathwidth of the input graph, unless NP ⊆ coNP/poly.

Finally, we also consider the parameter feedback vertex set number (fvs), which is an
upper bound on the treewidth of a graph, but is incomparable to pathwidth. We complement
the parameterized complexity classification for the results of Fellows et al. [11] by showing
that IS-D, VC-D, and DS-D are W[1]-hard for the parameter fvs.

Several interesting questions remain open. For instance, while their parameterized
complexity was determined, the kernelization complexity of Col-D and ECut-D remains
unsettled. Similarly, the kernelization complexity of IS-D and DS-D with respect to
parameter k is unknown on d-degenerate and semi-ladder-free graphs, respectively, where

ISAAC 2024

36:4 Kernelization Complexity of Solution Discovery

polynomial size kernels

IS-D: (k)-nowhere dense (Thm. 11)

VC-D: (k)-general

DS-D: (k)-biclique-free

Mat-D: (k)-general
no poly kernels (assum-

ing NP ̸⊆ coNP/poly)

VCut-D: (k)-general (Thm. 18, [13])

SP-D: (k + b)-general

VC-D: (b + pw)-general

DS-D: (b + pw)-general

IS-D: (b + pw)-general (Thm. 17, [11])

W[1]-hard

IS-D: (fvs)-general,
(pw)-general (Thm. 14)

VC-D: (fvs)-general,
(pw)-general

DS-D: (fvs)-general,
(pw)-general

Figure 1 A classification of problems into three categories: (yellow, alternatively grid) problems
for which we obtain polynomial kernels, (white) those for which polynomial kernels are unlikely, and
(grey, alternatively lines) those for which fixed-parameter tractable algorithms are unlikely. Each
entry in a category mentions a solution discovery problem, one or more parameters (in parentheses
and followed by a dash), and the graph class with respect to which the problem falls into the category.
A reference in the parentheses indicates that the fixed-parameter tractability of that problem was
established in the cited work. pw denotes the pathwidth and fvs denotes the feedback vertex set
number of the input graph.

the problems are known to be fixed-parameter tractable. In addition, it remains open
whether VCut-D parameterized by k + b admits a polynomial kernel or whether Mat-D
parameterized by b admits polynomial kernels on restricted classes of graphs.

1.2 Paper Outline
Due to space constraints we cannot present all results in the conference version of the
paper. We have chosen to present some results for IS-D and VCut-D to give an overview
of some of our techniques. All other results can be found in the full version. We collect
necessary background in Section 2. We show that IS-D has a polynomial size kernel with
respect to parameter k on nowhere dense classes in Section 3. Then, in Section 4 we prove
XNLP-hardness with respect to pathwidth. In Section 5, we prove that polynomial kernels
with respect to k are unlikely for VCut-D.

2 Preliminaries

We use the symbol N for the set of non-negative integers (including 0), Z for the set of all
integers, and Z+ for the set of positive non-zero integers. For k ∈ N, we define [k] = {1, . . . , k}
with the convention that [0] = ∅.

2.1 Graphs
We consider finite and simple graphs only. We denote the vertex set and the edge set of a
graph G by V (G) and E(G), respectively, and denote an undirected edge between vertices u

and v by uv (or equivalently vu) and a directed edge from u to v by (u, v). We use N(v) to

M. Grobler et al. 36:5

denote the set of all neighbors of v and E(v) to denote the set of all edges incident with v.
Furthermore, we define the closed neighborhood of v as N [v] = N(v) ∪ {v}. For a set X of
vertices we write G[X] for the subgraph induced by X.

A sequence of edges e1 . . . eℓ for some ℓ ≥ 1 is a (simple) path of length ℓ if every two
consecutive edges in the sequence share exactly one endpoint and each other pair of edges
share no endpoints. For vertices u and v, we denote the length of a shortest path e1 . . . eℓ

that connects u to v by d(u, v), where d(v, v) = 0 for all v ∈ V (G). For a vertex v ∈ V (G)
and a non-negative integer i, we denote by V (v, i) = {u ∈ V (G) | d(u, v) = i}.

The complete graph (clique) on n vertices is denoted by Kn and a complete bipartite
graph (biclique) with parts of size m and n, respectively, by Km,n. We present other relevant
graph classes properties in what follows and refer the reader to the textbook by Diestel [7]
for an in-depth review of general graph theoretic definitions.

A tree decomposition of a graph G is a pair T = (T, (Xi)i∈V (T)) where T is a tree
and Xi ⊆ V (G) for each i ∈ V (T), such that
1.

⋃
i∈V (T) Xi = V (G),

2. for every edge uv = e ∈ E(G), there is an i ∈ V (T) such that u, v ∈ Xi, and
3. for every v ∈ V (G), the subgraph Tv of T induced by {i ∈ V (T) | v ∈ Xi} is connected,

i. e., Tv is a tree.
We refer to the vertices of T as the nodes of T . For a node i, we say that the corresponding
set Xi is the bag of i. The width of the tree decomposition (T, (Xi)i∈V (T)) is maxi∈V (T)|Xi|−1.
The treewidth of G, denoted tw(G), is the smallest width of any tree decomposition of G. A
path decomposition of a graph G is a tree decomposition P = (T, (Xi)i∈V (T)) in which T is a
path. We represent a path decomposition P by the sequence of its bags only. The pathwidth
of G, denoted pw(G), is the smallest width of any path decomposition of G.

▶ Definition 1. A class C of graphs has bounded treewidth (bounded pathwidth) if there
exists a constant t such that all G ∈ C have treewidth (pathwidth) at most t.

For a graph G, the feedback vertex set number of G (fvs(G)) is the minimum size of
a vertex set whose deletion leaves the graph acyclic. We say a graph H is a minor of a
graph G, denoted H ⪯ G, if there exists a mapping that associates each vertex v of H with
a non-empty connected subgraph Gv of G such that Gu and Gv are disjoint for u ̸= v and
whenever there is an edge between u and v in H, there is an edge between a vertex of Gu

and a vertex of Gv. The subgraph Gv is referred to as the branch set of v. We call H a
depth-r minor of G, denoted H ⪯r G, if each branch set of the mapping induces a graph of
radius at most r.

▶ Definition 2. A class C is nowhere dense if there exists a function t : N → N such
that Kt(r) ̸⪯r G for all r ∈ N and all G ∈ C.

An r-independent set in a graph G is a set of vertices I such that the distance between
any two vertices of I is at least r + 1. We make use of the fact that nowhere dense classes
are uniform quasi-wide, as clarified by the following theorem.

▶ Theorem 3 ([14, 17]). Let C be a nowhere dense class of graphs. For all r ∈ N, there
is a polynomial Nr : N → N and a constant xr ∈ N such that following holds. Let G ∈ C

and let A ⊆ V (G) be a vertex subset of size at least Nr(m), for a given m ∈ N. Then
there exists a set X ⊆ V (G) of size |X| ≤ xr and a set B ⊆ A \ X of size at least m that
is r-independent in G − X. Moreover, given G and A, such sets X and B can be computed
in time O(|A| · |E(G)|).

ISAAC 2024

36:6 Kernelization Complexity of Solution Discovery

A graph is said to be d-biclique-free it excludes the biclique Kd,d, as a subgraph.

▶ Definition 4. A class C of graphs is biclique-free if there exists a number d such that
all G ∈ C are d-biclique-free.

2.2 Solution Discovery
A vertex (edge) subset problem Π is a problem defined on graphs such that a solution consists
of a subset of vertices (edges) satisfying certain requirements. For a vertex (edge) subset
problem Π on an instance with an input graph G, a configuration C on G is a subset of
its vertices (edges). Alternatively, a configuration can be seen as the placement of tokens
on a subset of vertices (edges) in G. In the token sliding model, a configuration C ′ can be
obtained (in one step) from a configuration C, written C ⊢ C ′, if C ′ = (C \ {y}) ∪ {x} for
elements y ∈ C and x /∈ C such that x and y are neighbors in G, that is, if x, y ∈ V (G),
then xy ∈ E(G); and if x, y ∈ E(G), then they share an endpoint. Alternatively, when
a token slides from a vertex to an adjacent one or from an edge to an incident one, we
get C ⊢ C ′. A discovery sequence of length ℓ in G is a sequence of configurations C0C1 . . . Cℓ

of G such that Ci ⊢ Ci+1 for all 0 ≤ i < ℓ.
The Π-Discovery problem is defined as follows. We are given a graph G, a configura-

tion S ⊆ V (G) (resp. S ⊆ E(G)) of size k (which at this point is not necessarily a solution
for Π), and a budget b (a non-negative integer). We denote instances of Π-Discovery
by (G, S, b). The goal is to decide whether there exists a discovery sequence C0C1 . . . Cℓ in G

for some ℓ ≤ b such that S = C0 and Cℓ is a solution for Π. When a path decomposition is
given as part of the input, the instances are denoted by (G, PG, S, b) to highlight that the
path decomposition PG of G is provided.

2.3 Parameterized Complexity and Kernelization
Downey and Fellows [8] developed a framework for parameterized problems which include
a parameter p in their input. A parameterized problem Π has inputs of the form (x, p)
where |x| = n and p ∈ N. Fixed-parameter tractable problems belong to the complexity
class FPT. The class XNLP consists of the parameterized problems that can be solved with a
non-deterministic algorithm that uses f(p)·log n space and f(p)·nO(1) time. The W-hierarchy
is a collection of parameterized complexity classes FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XNLP where
inclusions are conjectured to be strict.

For parameterized problems Π and Π′, an FPT-reduction from Π to Π′ is a reduction that
given an instance (x, p) of Π produces (x′, p′) of Π′ in time f(p)·|x|O(1) and such that p′ ≤ g(p)
where f, g are computable functions. A pl-reduction from Π to Π′ is one that additionally
computes (x′, p′) using O(h(p) + log |x|) working space where h is a computable function.
We write Π ≤FPT Π′ (resp. Π ≤pl Π′) if there is an FPT-reduction (resp. pl-reduction) from Π
to Π′. If Π is W[t]-hard for a positive integer t and Π ≤FPT Π′, then Π′ is also W[t]-hard.
If Π is XNLP-hard and Π ≤pl Π′, then Π′ is XNLP-hard and, in particular, W[t]-hard for
all t ≥ 1.

Every problem that is in FPT admits a kernel, although it may be of exponential size
or larger. Under the complexity-theoretic assumption that NP ̸⊆ coNP/poly, we can rule
out the existence of a polynomial kernel for certain fixed-parameter tractable problems Π.
The machinery for such kernel lower bounds heavily relies on composing instances that are
equivalent according to a polynomial equivalence relation [6].

M. Grobler et al. 36:7

▶ Definition 5. An equivalence relation R on the set of instances of a problem Π is called a
polynomial equivalence relation if the following two conditions hold.
1. There is an algorithm that given two instances x and y of Π decides whether x and y

belong to the same equivalence class in time polynomial in |x| + |y|.
2. For any finite set S of instances of Π, the equivalence relation R partitions the elements

of S into at most (maxx∈S |x|)O(1) classes.

We can compose equivalent instances in more than one way. We focus here on or-cross-
compositions.

▶ Definition 6 ([3]). Let Π′ be a problem and let Π be a parameterized problem. We say
that Π or-cross-composes into Π′ if there is a polynomial equivalence relation R on the
set of instances of Π and an algorithm that, given t instances (where t ∈ Z+) x1, x2, . . . , xt

belonging to the same equivalence class of R, computes an instance (x∗, p∗) in time polynomial
in Σt

i=1|xi| such that the following properties hold.
1. (x∗, p∗) ∈ Π if and only if there exists at least one i such that xi is a yes-instance of Π′.
2. p∗ is bounded above by a polynomial in maxt

i=1 |xi| + log t.

The inclusion NP ⊆ coNP/poly holds if an NP-hard problem or-cross-composes into a
parameterized problem Π having a polynomial kernel. As this inclusion is believed to be
false, we will constantly make use of the following theorem to show that the existence of a
polynomial kernel is unlikely.

▶ Theorem 7 ([3]). If a problem Π′ is NP-hard and Π′ or-cross-composes into the paramet-
erized problem Π, then there is no polynomial kernel for Π unless NP ⊆ coNP/poly.

We refer the reader to textbooks [6, 9] for more on parameterized complexity and
kernelization.

3 IS-D on Nowhere Dense Classes

Fellows et al. [11] showed that IS-D is in FPT with respect to parameters k and b on nowhere
dense classes of graphs. We show in this section that IS-D has a polynomial kernel with
respect to parameter k on the same.

▶ Definition 8. For any instance I = (G, S, b) of a Π-Discovery problem for some vertex
(resp. edge) selection problem Π, we call a vertex v ∈ V (G)\S (resp. e ∈ E(G)\S) irrelevant
with respect to s ∈ S if there exists a configuration Cℓ such that ℓ ≤ b, Cℓ is a solution for Π,
and the token on s is not on v (resp. e) in Cℓ.

The kernelization algorithm for nowhere dense graphs uses Theorem 3, along with other
structural properties of the input graph, to form a “sunflower” and find an irrelevant vertex.
It then removes from the graph some of the vertices that are irrelevant with respect to
every token. A sunflower with p petals and a core Y is a family of sets F1, . . ., Fp such
that Fi ∩ Fj = Y for all i ̸= j; the sets Fi \ Y are petals and we require none of them to be
empty [10].

▶ Lemma 9. Let (G, S, b) be an instance of IS-D where |S| = k, and let G′ be the subgraph
of G induced by the vertices of

⋃
s∈S,i∈[3k] V (s, i) ∪ S. Then (G′, S, b) is equivalent to

(G, S, b).

ISAAC 2024

36:8 Kernelization Complexity of Solution Discovery

Figure 2 An example of a sunflower (with beige, yellow and grey green petals) formed by the
closed neighborhoods of the vertices in Bj of Theorem 11. The vertices in Bj are 2-independent
in G − X and they have the same closed neighborhood in X (the white colored vertices).

▶ Lemma 10. Let (G, S, b) be an instance of IS-D where |S| = k, and let V = {v1, v2, . . . , vt}
be a set of vertices of G \ S such that for a given token on a vertex s ∈ S, d(s, vi) = d(s, vj)
for i ̸= j ∈ [t]. If A = {N [v1], . . . , N [vt]} contains a sunflower with k + 1 petals, then any
vertex whose closed neighborhood corresponds to one of those petals is irrelevant with respect
to s.

▶ Theorem 11. IS-D has a polynomial kernel with respect to parameter k on nowhere dense
graphs.

Proof. Let (G, S, b) be an instance of IS-D where G is nowhere dense. Without loss of
generality, we assume the graph G to be connected. For each vertex s ∈ S and integer i ∈ [3k],
we compute V (s, i). We maintain the invariant that we remove from V (s, i) for each s ∈ S

and i ∈ [3k], irrelevant vertices with respect to s (note that a vertex can appear in multiple
sets V (s, i)).

We remove an irrelevant vertex with respect to a vertex s ∈ S from V (s, i) for an
integer i ∈ [3k] as follows. If |V (s, i)| > N2(2x2 ·(k+1)), where N2 and x2 are as per Theorem 3
(here V (s, i) plays the role of the set A), we can compute sets X, B ⊆ V (s, i) such that |X| ≤
x2, |B| ≥ 2x2 · (k + 1) and B is 2-independent in G − X. Let B′ = {B′

1, B′
2, . . .} be a family

of sets that partitions the vertices in B such that for any two vertices u, v ∈ B, u, v ∈ B′
j

if and only if N [u] ∩ X = N [v] ∩ X. Since |B| ≥ 2x2 · (k + 1) and |X| ≤ x2, at least one
set Bj ∈ B, for a specific j, contains at least k + 1 vertices of B. All vertices in Bj have the
same neighborhood in X and they are 2-independent G−X (i. e., no vertex from outside of X

can be in the closed neighborhood of two vertices in Bj); thus their closed neighborhoods
form a sunflower with at least k + 1 petals and a core that is contained in X (Figure 2).
By Lemma 10, one vertex of Bj is irrelevant with respect to s and can be removed from V (s, i).
We can repeatedly apply Theorem 3 on the set V (s, i) until |V (s, i)| ≤ N2(2x2 · (k + 1)).

We form the kernel (G′, S, b) of the original instance (G, S, b) as follows. We set V (G′) =⋃
s∈S,i∈[3k] V (s, i) ∪ S. By Lemma 9, any vertex v ∈ V (G) such d(s, v) > 3k for every s ∈ S

is irrelevant with respect to every s ∈ S and not required in the kernel (G′, S, b). For each
vertex v ∈ V (s, i), for s ∈ S and i ∈ [3k], we add to V (G′) at most i vertices that are on
the shortest path from s to v, if such vertices are not already present in V (G′). G′ is the
subgraph of G induced by the vertices in V (G′). By the end of this process, |V (G′)| ≤
k + [9k3 · N2(2x2 · (k + 1))], as for each s ∈ S and i ∈ [3k], V (s, i) ≤ N2(2x2 · (k + 1)) and
for each vertex in the latter sets, we added to V (G′) at most 3k − 1 vertices that are on a
shortest path from that vertex to the vertex s. (G′, S, b) is a kernel as only vertices that are
irrelevant with respect to every token in S might not be in V (G′) and all vertices needed to
move tokens from vertices in S towards an independent set using only b slides are present
in V (G′). ◀

M. Grobler et al. 36:9

4 IS-D for Parameters b and Pathwidth

We now show that IS-D is XNLP-hard with respect to parameter pathwidth. By a small
modification of the proof we obtain that IS-D does not have a polynomial kernel with
respect to the parameter b + pw, where pw is the pathwidth of the input graph, unless NP ⊆
coNP/poly.

4.1 The Minimum Maximum Outdegree Problem and Foundational
Gadgets

An orientation of a graph H is a mapping λ : E(H) → V (H) × V (H) such that λ(uv) ∈
{(u, v), (v, u)}. Given an undirected weighted graph H, a path decomposition PH of H of
width pw, an edge weighting σ : E(H) → Z+ and a positive integer r (such that all integers
are given in unary), the Minimum Maximum Outdegree (MMO) asks whether there exists
an orientation of H such that for each v ∈ V (H), the total weight of the edges directed away
from v is at most r. We use the problem in the reductions that establish the XNLP-hardness
of IS-D, VC-D, and DS-D with respect to parameter pw and the or-cross-compositions
that render it unlikely for any of these problems to have a polynomial kernel with respect to
parameter b + pw. Bodlaender et al. [1] showed that MMO is XNLP-complete with respect
to pathwidth given a path decomposition realising the pathwidth.

For an instance (H, PH , σ, r) of MMO, we define σ =
∑

e∈E(H) σ(e), n = |V (H)|
and m = |E(H)|. We construct for an instance (H, PH , σ, r) of MMO, a graph G consisting
of disjoint subgraphs Ge for each e ∈ E(H) and Gv for each v ∈ V (H). We refer to the
edge-based and vertex-based subgraphs as MMO-edge-gadgets and MMO-vertex-gadgets,
respectively. For an edge e ∈ E(H) we refer to Ge as MMO-edge-e. Similarly, for a
vertex v ∈ V (H) we refer to Gv as MMO-vertex-v.

MMO-edge-e. For an edge e = uv ∈ E(H), an MMO-edge-e Ge contains σ(e) + 1 edges
with endpoints ai

e and bi
e for i ∈ [σ(e) + 1], and an edge euev such that b

σ(e)+1
e is adjacent

to each of eu and ev. We define Ae = ∪i∈[σ(e)] ai
e and Be = ∪i∈[σ(e)] bi

e. We refer to the
connected component inside Ge (or any subdivision of Ge) containing eu and ev by Gsel

e . ⌟

MMO-vertex-v. For a vertex v in V (H), an MMO-vertex-v Gv contains a representative
vertex of v denoted by wv, adjacent to r target vertices of v denoted by x1

v, x2
v, . . . , xr

v and one
extra vertex xr+1

v . Additionally, for each edge e ∈ E(H) incident to v, the MMO-vertex-v
contains σ(e) edges with endpoints y

v(i)
e and z

v(i)
e for i ∈ [σ(e)] such that y

v(i)
e is adjacent

to wv, the representative vertex of v. We define Xv = ∪i∈[r] xi
v, Y v

e = ∪i∈[σ(e)] y
v(i)
e , Zv

e =
∪i∈[σ(e)] z

v(i)
e , Y v = ∪e∈E(H) Y v

e , and Zv = ∪e∈E(H) Zv
e . ⌟

The Graph G. We let A = ∪e∈E(H) Ae, A+ = ∪e∈E(H) a
σ(e)+1
e , B = ∪e∈E(H) Be, B+ =

∪e∈E(H) b
σ(e)+1
e , X = ∪v∈V (H) Xv, X+ = ∪v∈V (H) xr+1

v , Y = ∪v∈V (H) Y v, and Z =
∪v∈V (H) Zv. We form G by connecting its MMO-edge-gadget vertices to its MMO-vertex-
gadget vertices as follows. For a vertex v ∈ V (H) and edge e ∈ E(H) incident to v, we
connect each vertex of Be to a corresponding distinct vertex in Zv

e (in other words, each bi
e

to z
v(i)
e for i ∈ [σ(e)]). Similarly, we connect ev to each vertex of Y v

e (see Figure 3 for an
example). ⌟

Our reductions must use at most O(h(pw) + log |x|) working space, for an input instance
of size |x| and parameter pw, and a computable function h. We show that our reductions/-
compositions can be performed on a log-space transducer and are pl-reductions. A log-space

ISAAC 2024

36:10 Kernelization Complexity of Solution Discovery

a1
e b1

e

a2
e b2

e

eu

ev

a3
e b3

e

wu
x1

u

x2
u

x3
u

x4
u

x5
u

y
u(1)
ez

u(1)
e

y
u(2)
ez

u(2)
e

y
u(2)
e′z

u(2)
e′

y
u(1)
e′z

u(1)
e′

wv
x1

v

x2
v

x3
v

x4
v

x5
v

y
v(1)
ez

v(1)
e1

y
v(2)
ez

v(2)
e

y
v(1)
e′′z

v(1)
e′′

Figure 3 Edges from one MMO-edge-e, for an edge e = uv for a graph H, edge weight function σ,
and integer r of an MMO instance, to the MMO-vertex-u and MMO-vertex-v subgraphs in G.
Brown is used for edges between vertices in B and Z and yellow is used for edges between vertices
in {eu, ev} and Y . σ(e) = 2 and r = 4.

transducer is a type of Turing machine with a read-only input tape, a read/write work tape
of logarithmic size and a write-only, write-once output tape. For the graph G, we show the
following lemma.

▶ Lemma 12. Let (H, PH , w, r) be an instance of MMO. Then, there exists a log-space
transducer that transforms a path decomposition of H to one of G with width at most pw(H)+6.
Thus, pw(G) ≤ pw(H) + 6.

▶ Corollary 13. Given an MMO instance (H, PH , σ, r), one can build a log-space transducer
that outputs a path decomposition of G with width at most pw(H) + 6, along with a repres-
entation of the graph, any subset of its vertices, and an integer with at most a polynomial (in
the input size) number of bits.

4.2 Lower Bound Proofs
▶ Theorem 14. IS-D is XNLP-hard with respect to parameter pathwidth.

Proof. We present an fpt-reduction from MMO. Let (H, PH , σ, r) be an instance of MMO
where H is a bounded pathwidth graph, |V (H)| = n, |E(H)| = m, σ : E(H) → Z+
such that

∑
e∈E(H) σ(e) = σ and r ∈ Z+ (integers are given in unary). We construct an

instance (G, PG, S, b) of IS-D where G is exactly as described in Section 4.1. See Figure 4.
We set S = A ∪ A+ ∪ B ∪ B+ ∪ Y ∪ X+ and b = m + 3σ. Given that all integers
are given in unary, the construction of the graph G, or its path decomposition (as described
in Lemma 12), and as a consequence the reduction, take time polynomial in the size of the
input instance. Additionally, by Corollary 13, this reduction is a pl-reduction. We claim
that (H, PH , σ, r) is a yes-instance of MMO if and only if (G, PG, S, b) is a yes-instance of
IS-D.

▷ Claim 15. If (H, PH , σ, r) is a yes-instance of MMO, then (G, PG, S, b) is a yes-instance
of IS-D.

Proof. Let λ : E(H) → V (H) × V (H) be an orientation of the graph H such that for
each v ∈ V (H), the total weight of the edges directed out of v is at most r. In (H, PH , σ, r),
the vertices in A and B contain tokens. The same applies for the vertices in A+ and B+. To
fix that, for each edge e ∈ E(H) such that λ(e) = (v, u):

M. Grobler et al. 36:11

wu

ww

wv

x1
u

x2
u

x3
u

x1
w

x2
w

x3
w

x1
v

x2
v

x3
v

x4
u

x4
w

x4
v

y
w(1)
e2z

w(1)
e2

y
u(2)
e1z

u(2)
e1

y
u(1)
e1z

u(1)
e1

y
u(3)
e1z

v(3)
e1

y
v(2)
e1z

v(2)
e1

y
v(3)
e1z

v(3)
e1

y
v(1)
e1z

v(1)
e1

y
v(1)
e2z

v(1)
e2

a1
e1

b1
e1

a2
e1

b2
e1

a3
e1

b3
e1

ev
1

eu
1

a4
e1

b4
e1

a1
e2

b1
e2

ew
2

eu
2

a2
e2

b2
e2

Figure 4 Parts of the graph G constructed by the reduction of Theorem 14 given an in-
stance (H, PH , σ, r), where H has three vertices u, v and w, and two edges e1 = uv and e2 = uw,
and r = 3. Additionally, σ(e1) = 3 and σ(e2) = 1. For clarity, the edges between the vertices in Be1

and Zu
e1 are missing. The same applies for the edges between ev

1 and the vertices of Y v
e1 and the

edges between eu
1 and the vertices of Y u

e1 . Brown and yellow edges are used to highlight the different
types of edges used to connect the subgraphs Ge1 , Ge2 , Gu, Gv and Gw of G, vertices in black are
in S and those in white are not.

1. we slide, for each i ∈ [σ(e)], the token on bi
e to z

v(i)
e (this consumes σ(e) slides),

2. we move, for each i ∈ [σ(e)], the token on y
v(i)
e to any free vertex of Xv (this consumes 2σ(e)

slides),
3. we slide the token on b

σ(e)+1
e to ev (this consumes 1 slide).

This constitutes m + 3σ slides and we get an independent set in G. Step 2 above is
possible (i. e., a token-free vertex exists in Xv) since λ is an orientation of the graph H such
that for each v ∈ V (H), the total weight of the edges directed out of v is at most r. Step 3
is possible for each edge e ∈ E(H) since in Step 2 all tokens were removed from the vertices
in Y v

e . ◁

▷ Claim 16. If (G, PG, S, b) is a yes-instance of IS-D, then (H, PH , σ, r) is a yes-instance of
MMO.

Proof. The minimum number of slides used inside any induced subgraph Ge for an edge uv =
e ∈ E(H) is one and it can only be achieved by sliding the token on b

σ(e)+1
e to one of either eu

or ev. Thus, at least m slides are required inside the MMO-edge-gadgets and the budget
remaining is 3σ. Additionally, each token on a vertex bi

e in Be, for an edge uv = e ∈ E(H)
and an integer i ∈ [σ(e)] must slide to either z

u(i)
e or z

v(i)
e , consuming σ slides. Since a

solution that moves the token on a
σ(e)+1
e but not the token on b

σ(e)+1
e is not minimal, we

can safely assume that the described m + σ slides are executed in any minimal solution.
In the same solutions, each token on a vertex z

u(i)
e for an edge uv = e ∈ E(H) and an

integer i ∈ [σ(e)] requires the token on y
u(i)
e to slide to either eu or wu, utilizing as a result σ

other slides. A token that slides from y
u(i)
e to the vertex wu must slide again at least once,

since any independent set that is achieved through the minimal number of slides would never
require the sliding of the tokens on the vertices in X+ (the token that moves to the vertex wu

ISAAC 2024

36:12 Kernelization Complexity of Solution Discovery

can be moved, using one less slide, to the vertex the token on xr+1
u moves to). Since Gsel

e can
contain at most 2 tokens, a token on y

u(i)
e that slides to the vertex eu must either slide again

at least once to a vertex, denoted y
u(i1)
e (for an integer i1 ∈ [σ(e)]) in Y u

e , or require another
token on a vertex in Gsel

e to slide at least once to either a vertex, denoted y
u(i2)
e (for an

integer i2 ∈ [σ(e)]) in Y u
e , or a vertex, denoted y

v(i2)
e (for an integer i2 ∈ [σ(e)]) in Y v

e , while
the token initially on y

u(i)
e stays on eu. Given that at most σ slides remain in any minimal

solution, and that each of the σ tokens initially on vertices in Y that moved to either vertices
of the form e1

u1 or wu1 , for an edge e1 ∈ E(H) incident to a vertex u1 ∈ V (H), uses or
requires at least one additional slide, each one such token can use or require exactly one
additional slide. If the token on y

u(i)
e slides to wu, then either in exactly one more slide

it can move to a free vertex in Xu, or it can slide back to a vertex, denoted y
u(i3)
e2 (for an

edge e2 adjacent to u in H and an integer i3 ∈ [σ(e1)]) in Y u. However, either y
u(i3)
e2 (resp.

y
u(i1)
e , y

u(i2)
e , or y

v(i2)
e) or its adjacent vertex, denoted z

u(i3)
e2 in Zu (resp. z

u(i1)
e in Zu

e , z
u(i2)
e

in Zu
e , or z

v(i2)
e in Zv

e), contains a token, thus requiring at least one other additional slide,
which is impossible. As a result, it can only be the case that a token on y

u(i)
e slides to wu

and then in exactly one more slide it moves to a free vertex in Xu.
For any edge uv = e ∈ E(H), if ev ∈ Cℓ (resp. eu ∈ Cℓ), then no vertex of Y v

e (resp. Y u
e)

appears in Cℓ and the tokens on the vertices of Y v
e (resp. Y u

e) have been moved to some
of the free vertices of Xv (resp. Xu). Given the latter, we produce an orientation λ to H,
where λ(e) = (v, u) (resp. λ(e) = (u, v)) if ev ∈ Cℓ (resp. eu ∈ Cℓ). Since |Xv| = |Xu| ≤ r, λ

is such that the total weight directed out of any vertex v ∈ V (H) is at most r. ◁

This concludes the proof of the theorem. ◀

We compose multiple MMO instances utilizing the construction presented in Theorem 14,
and show the following.

▶ Theorem 17. IS-D does not admit a polynomial kernel with respect to b + pw, where pw

denotes the pathwidth of the input graphs, unless NP ⊆ coNP/poly.

5 VCut-D for Parameter k

Grobler et al. [13] showed that VCut-D is W[1]-hard with respect to parameter b on 2-
degenerate bipartite graphs but is in FPT with respect to the parameter k on general graphs.
We show that the problem admits no polynomial kernels unless NP ⊆ coNP/poly. We denote
an instance of VCut-D by (G, S, b, a1, b1) to emphasize that the solution must be a vertex
cut between the vertices a1 and b1 in V (G).

Given a graph H and an edge coloring ϕ : E(H) → [c], we say ϕ is proper if, for all
distinct edges e, e1 ∈ E(H), ϕ(e) ̸= ϕ(e1) whenever e and e1 share a vertex. We form our
or-cross-composition from the Rainbow Matching problem, which is NP-complete even
on properly colored 2-regular graphs and where every i ∈ [c] is used exactly twice in the
coloring [15]. Given a graph H, a proper edge coloring ϕ and an integer κ, the Rainbow
Matching problem asks whether (H, ϕ, κ) has a a rainbow matching of size κ, i. e., a
matching whose edges have distinct colors, with at least κ edges.

▶ Theorem 18. There exists an or-cross-composition from Rainbow Matching into
VCut-D where the parameter is the number of tokens, k. Consequently, VCut-D does not
admit a polynomial kernel with respect to k, unless NP ⊆ coNP/poly.

M. Grobler et al. 36:13

...

...

...

E2
1(1)

E2
2(1)

E2
3(1)

E1
1(2)

E1
2(2)

E1
3(2)

E1
1(1)

E1
2(1)

E1
3(1)

u(3, .) u(2, .) u(1, .)
a1

s8s7s6s5s4s3s2s1

v2

v1

v3

t1 t2 t3 t4 t5 t6 t7 t8

b1

Figure 5 An illustration of the graph G formed as per the composition of Theorem 18 given
input instances (Hr, ϕr, κr) for r ∈ [8], where κr = κ ≥ 3. For clarity, each graph Gr for r ∈ [8]
was replaced by a rectangle incident to two vertices sr and tr of Gr. Grey edges are used to
illustrate how the vertices vd for d ∈ [3] connect to the vertices of T . Dashed lines represent paths of
length m3 + log t between the vertices and thick edges are used to represent that a vertex is adjacent
to all vertices in a set of vertices. The yellow, grey, and beige rectangular areas on the left provide a
zoomed-in view of some of the content of G1, G2, and G3, respectively. Particularly, they show the
sets of vertices E1

1(1), E1
1(2), E2

1(1), E1
2(1), E1

2(2), E2
2(1), E1

3(1), E1
3(2), and E2

3(1). For clarity, not
all (dotted line) edges between vertices of the form u(i, j) for i ∈ [2(κ − 1)] and j ∈ [m − 1], and
both vertices sr and tr for r ∈ [8] are shown.

Proof. By choosing an appropriate polynomial equivalence relation R, we may assume that
we are given a family of t Rainbow Matching instances (Hr, ϕr, κr), where Hr is a 2-regular
graph, |V (Hr)| = n, |E(Hr)| = m, κr = κ ∈ N, and ϕr : E(Hr) → [c] is a mapping that
properly colors Hr and in which every i ∈ [c] is used exactly twice. We may duplicate some
input instances so that t = 2s for some integer s. Note that this step at most doubles the
number of input instances. The construction of the instance (G, S, b, a1, b1) of VCut-D is
twofold.

For each instance (Hr, ϕr, κr), we create Gr, formed of two vertices, sr and tr, as well
as κ − 1 sets {E1

r , . . . , Eκ−1
r } of 2m + 2 vertices each. A set Ep

r for p ∈ [κ − 1] contains 2m

vertices, denoted edge-vertices, that represent the edges in Hr twice and two other vertices
which are denoted by sp

r and tp
r (see Figure 6). We denote the edge-vertices in a set Ep

r

as vp,r
eh

(1) (vp,r
eh

(2)) to refer to the first (second) vertex representing the same edge eh

of E(Hr) in Ep
r . We denote by Ep

r (1) the set of all vertices vp,r
eh

(1), and by Ep
r (2) the set of

all vertices vp,r
eh

(2). In Gr, we connect through paths of length m3 + log t:
sr to each of sp

r for p ∈ [κ − 1] and tr to each of tp
r for p ∈ [κ − 1],

sp
r to all vertices vp,r

eh
(1) and tp

r to all vertices vp,r
eh

(2) for each eh ∈ E(Hr) and each p ∈
[κ − 1],
all vertices vp,r

eh
(1) and vq,r

eg
(2) such that ϕr(eh) = ϕr(eg) for each p ≤ q ∈ [κ − 1],

vp,r
eh

(1) and vq,r
eg

(2), for each p ≤ q ∈ [κ − 1], whenever eh and eg are incident in Hr,
vp,r

eh
(2) and vq,r

eg
(1), for each p ∈ [κ − 2], q = p + 1, whenever eh ̸= eg.

We form G of all Gr for r ∈ [t] as follows (see Figure 5). We create two global vertices a1
and b1 such that b1 is connected through paths of length m3 + log t to tr for r ∈ [t].
Additionally, we create a binary tree T rooted at a1, with log t + 1 levels, and whose leaves

ISAAC 2024

36:14 Kernelization Complexity of Solution Discovery

constitute sr for r ∈ [t]. For each depth d of T for d ∈ {1, . . . , log t}, we create a vertex vd that
contains a token and is connected through a single edge to each vertex of T that is at depth d.
The edges of T are all replaced by paths of length m3 + log t. Finally, we create 2(κ − 1)
sets {M1, . . . , M2(κ−1)}, of m−1 edges each. We connect each edge e(i,j) ∈ Mi for i ∈ [2(κ−1)]
and j ∈ [m − 1], from one of its endpoints, denoted u(i,j), to each vertex v

⌈i/2⌉,r
eh (1) for

each r ∈ [t] if i is odd, and to each vertex v
⌈i/2⌉,r
eh (2) for each r ∈ [t] if i is even. Additionally,

we connect through paths of length m3 + log t, each sr and tr for r ∈ [t] to all of u(i,j)

for i ∈ [2(κ − 1)] and j ∈ [m − 1]. All vertices in the sets {M1, . . . , M2(κ−1)} contain tokens.
Setting b = log t + 2(2κ − 2) · (m − 1) finalizes the construction of (G, S, b, a1, b1). Since we
perform only a polynomial number of operations per instance as well as some polynomial
in t other operations while creating the tree T and connecting some vertices, the reduction
is polynomial in Σt

i=1|xi|. Additionally, k is O(m2 + log t) since κ ≤ m.

▷ Claim 19. If for some r ∈ [t], (Hr, ϕr, κr) is a yes-instance of Rainbow Matching, then
the constructed instance (G, S, b, a1, b1) is a yes-instance of VCut-D.

Proof. Let Mr be a solution to the instance (Hr, ϕr, κr). Mr ⊆ E(Hr) forms a matching in Hr

such that ϕr(eh) ̸= ϕr(eg), for all eh, eg ∈ Mr. We apply the following slides in (G, S, b, a1, b1)
to disconnect a1 from b1. First, we choose one edge eh of Mr and using m − 1 slides, we
slide the tokens on u(1,j) for j ∈ [m − 1] onto all vertices in E1

r (1) except v1,r
eh

(1). Then,
using (2κ − 1) · (m − 1) slides, for each i ∈ [κ − 1], we choose one other edge es ∈ Mr and
slide the tokens on u(2i,j) and u(2i+1,j) (when applicable) for j ∈ [m − 1] onto all vertices
in Ei

r(2) and Ei+1
r (1) except vi,r

es
(2) and vi+1,r

es
(1), respectively. We slide onto u(i,j) for

all i ∈ [2(κ − 1)] and j ∈ [m − 1] the tokens adjacent to the latter vertices, on the edges
in {M1, . . . , M2(κ−1)}, using (2κ − 2) · (m − 1) slides. Finally, in T , we use the tokens on
the vertices vd for d ∈ {1, . . . , log t}, to disconnect all paths from the root a1 to all of sr

for r ∈ [t] − {r}, using one slide per token. This ensures that, through at most log t slides,
all paths from a1 to b1 go through only both sr and tr. Following the described steps, we
have executed a total of b slides. To see that a1 and b1 are now disconnected, note that after
the slides of the tokens on vd for d ∈ {1, . . . , log t} are performed, all paths from a1 to b1
in G go through sr and tr. Thus it suffices to argue that the remaining 2(2κ − 2) · (m − 1)
slides disconnect sr and tr. First, if this is not the case, then no path between sr and tr
goes through any u(i,j) for all i ∈ [2(κ − 1)] and j ∈ [m − 1] since the tokens that left those
vertices have been replaced. Also, the last four vertices on any path between sr and tr must
be vp,r

eh
(1) for some p ∈ [κ − 1] and some eh ∈ E(Hr), vq,r

eg
(2) for some q ∈ {p, . . . , κ − 1}

and some eg ∈ E(Hr), tq
r and tr. However, by construction, there exists no paths between

all vertices vp,r
eh

(1) and vq,r
eg

(2) for each p ≤ q ∈ [κ − 1], such that ϕr(eh) ̸= ϕr(eg) and eh

and eg are non-adjacent. Thus, given our choice of the free vertices remaining in Ep
r (.) for

all p ∈ [κ − 1], no path exists between sr from tr and therefore between a1 and b1. ◁

▷ Claim 20. If (G, S, b, a1, b1) is a yes-instance of VCut-D, then there exists an integer r ∈ [t]
for which (Hr, ϕr, κr) is a yes-instance of Rainbow Matching.

Proof. Assume Cℓ for ℓ ≤ b, is a solution to (G, S, b, a1, b1) that is reached with only 2(2κ−2)·
(m − 1) + log t slides and disconnects a1 from b1, then any token that slides in G slides at
most once, given that everything except:

for d ∈ {1, . . . , log t}, the vertex vd and each vertex of T that is at level d,
u(i,j) for i ∈ [2(κ − 1)] and j ∈ [m − 1], to each vertex v

⌈i/2⌉,r
eh (1) for each r ∈ [t] if i is

odd, and to each vertex v
⌈i/2⌉,r
eh (2) for each r ∈ [t] if i is even,

the endpoints of each edge e(i,j) ∈ Mi for i ∈ [2(κ − 1)] and j ∈ [m − 1],

M. Grobler et al. 36:15

s1
1 t1

1

v
(1,1)
a (1)

v
(1,1)
b

(1)

v
(1,1)
c (1)

v
(1,1)
d

(1)

v
(1,1)
e (1)

v
(1,1)
f

(1)

v
(1,1)
g (1)

v
(1,1)
h

(1)

v
(1,1)
i

(1)

v
(1,1)
j

(1)

E1
1 (1) E1

1 (2)

v
(1,1)
a (2)

v
(1,1)
b

(2)

v
(1,1)
c (2)

v
(1,1)
d

(2)

v
(1,1)
e (2)

v
(1,1)
f

(2)

v
(1,1)
g (2)

v
(1,1)
h

(2)

v
(1,1)
i

(2)

v
(1,1)
j

(2)

s2
1 t2

1

v
(2,1)
a (1)

v
(2,1)
b

(1)

v
(2,1)
c (1)

v
(2,1)
d

(1)

v
(2,1)
e (1)

v
(2,1)
f

(1)

v
(2,1)
g (1)

v
(2,1)
h

(1)

v
(2,1)
i

(1)

v
(2,1)
j

(1)

v
(2,1)
a (2)

v
(2,1)
b

(2)

v
(2,1)
c (2)

v
(2,1)
d

(2)

v
(2,1)
e (2)

v
(2,1)
f

(2)

v
(2,1)
g (2)

v
(2,1)
h

(2)

v
(2,1)
i

(2)

v
(2,1)
j

(2)

Figure 6 An illustration of E1
1 , E2

1 , s1
1, t1

1, s2
1, and t2

1 of G1 of the or-cross-composition of
Theorem 18. In H1, the vertices are a, b, c, d, e, f , g, h, i, and j. For simplification purposes, the
figure illustrates the types of edges but does not contain all edges between the illustrated vertices.
Length m3 + log t paths are represented by the edges (regular, dotted or dashed). Vertices in
grey brackets are in E1

1(1) and those in brown brackets are in E1
1(2). Yellow edges are between

vertices representing edges of the same color in H1 and dotted ones between all vp,r
eh

(2) and vq,r
eg

(1)
for q = p + 1, whenever eh ̸= eg. Finally, the dashed edge shows that the edges, represented by the
edge-vertices incident to it in G1, are adjacent in H1. In G1, length m3 + log t paths exist between s1

and both of s1
1 and s2

1 and between t1 and both of t1
1 and t2

1. No vertex in this figure contains a
token (colored vertices display the colors of the edges in the instance (H1, ϕ1, r1)).

ISAAC 2024

36:16 Kernelization Complexity of Solution Discovery

is connected by paths of length (m3 + log t) > b. Thus, we know that the tokens on the
vertices vd for d ∈ {1, . . . , log t} will have to leave some paths that go from a1 to b1 at least
through one pair of vertices sr and tr for some r ∈ [t] and can use at most log t slides. We
know that in G \ Cℓ, no path exists between sr and tr. Since no token can reach sr and tr
in the allocated budget, the remaining slides can only disconnect sr from tr. Note also
that u(i,j) ∈ Cℓ, for i ∈ [2(κ − 1)] and j ∈ [m − 1] as otherwise, a path from a1 to b1 that
goes through sr, u(i,j) and tr will remain tokens-free. This implies that at most m − 1 tokens
can be slid into any one level {E1

r (·), . . . , Eκ−1
r (·)}. We show via an inductive argument that

the set of edges in Hr represented by the vertices in {E1
r (·), . . . , Eκ−1

r (·)} but not in Cℓ must
form a matching Mr in Hr of size κr = κ, such that for eh, eg ∈ Mr, ϕr(eh) ̸= ϕr(eg) and
the claim follows. Let P (q) be the proposition that the set Eq of edges represented by vertices
in {E1

r (·), . . . , Eq
r (·)} but not in Cℓ form a matching such that for eh, eg ∈ Eq, ϕr(eh) ̸= ϕr(eg)

and that vertices that remain free in Eq+1
r (1) for q < κ − 1 represent the same edges as

the vertices that remain free in Eq
r (2). We show that P (q) holds by induction on the

levels q = {1, . . . , κ − 1}.
We prove the base case by contradiction and assume that a vertex v1,r

eg
(2) that remains

free in E1
r (2) either represents an edge eg that is incident to an edge eh represented by a

vertex v1,r
eh

(1) that remains free in E1
r (1) or it holds that ϕr(eg) = ϕr(eh). This implies that

there exists a path between sr and tr that goes from sr to s1
r , to v1,r

eh
(1), v1,r

eg
(2), t1

r and to tr
and thus Cℓ is not a solution to (G, S, b, a1, b1). As for the second part of the statement,
assume that a vertex v1,r

eh
(2) that remains free in E1

r (2) does not represent the same edge as
any of the vertices that remain free in E2

r (1), then there exists a path between sr and tr that
goes through, s2

r , then any of the latter vertices, followed by v1,r
eh

(2) and t1
r and thus Cℓ is

not a solution to (G, S, b, a1, b1). Note that the same arguments used in the base case apply
for the inductive step.

In other words, given the second part of the statement, we may assume (for contradiction
purposes) that a vertex vi,r

eg
(2) for i ≤ q (that remains free in Ei

r(2)) either represents an
edge eg that is incident to an edge eh represented by a vertex vi′,r

eh
(1) for i′ ≤ i (that remains

free in Ei′

r (1)) or it holds that ϕr(eg) = ϕr(eh). By construction, this implies that there
exists a path from sr and tr that goes from sr to si′

r , vi′,r
eh

(1), vi,r
eg

(2), ti
r, and to tr and thus Cℓ

is not a solution to (G, S, b, a1, b1). As for the second part of the statement, assume that a
vertex vq,r

eh
(2) (that remains free in Eq

r (2)) does not represent the same edge as any of the
vertices that remain free in Eq+1

r (1), then there exists a path between sr and tr that goes
through, sq+1

r , then any of the latter vertices, followed by vq,r
eh

(2) and tq
r and thus Cℓ is not a

solution to (G, S, b, a1, b1).
Thus, P (κ − 1) holds and the set Eκ−1 of edges represented by vertices

in {E1
r (·), . . . , Eκ−1

r (·)} but not Cℓ form a matching of size κ such that for eh, eg ∈
Eκ−1, ϕr(eh) ̸= ϕr(eg). ◁

This concludes the proof of the theorem. ◀

References
1 Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. Problems hard for

treewidth but easy for stable gonality. Computing Research Repository (CoRR), abs/2202.06838,
2022. arXiv:2202.06838.

2 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. Journal of Computer and System Sciences (J. Comput.
Syst. Sci.), 75(8):423–434, 2009. doi:10.1016/J.JCSS.2009.04.001.

https://arxiv.org/abs/2202.06838
https://doi.org/10.1016/J.JCSS.2009.04.001

M. Grobler et al. 36:17

3 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds
by cross-composition. SIAM Journal on Discrete Mathematics (SIAM J. Discret. Math.),
28(1):277–305, 2014. doi:10.1137/120880240.

4 Nicolas Bousquet, Amer E. Mouawad, Naomi Nishimura, and Sebastian Siebertz. A survey
on the parameterized complexity of the independent set and (connected) dominating set
reconfiguration problems. Computing Research Repository (CoRR), abs/2204.10526, 2022.
doi:10.48550/arXiv.2204.10526.

5 Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes
of parameterized tractability. Annals of Pure and Applied Logic (Ann. Pure Appl. Log.),
84(1):119–138, 1997. doi:10.1016/S0168-0072(95)00020-8.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

7 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

8 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

9 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

10 Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of the London
Mathematical Society (J. Lond. Math.), s1-35(1):85–90, 1960. doi:10.1112/jlms/s1-35.1.85.

11 Michael R. Fellows, Mario Grobler, Nicole Megow, Amer E. Mouawad, Vijayaragunathan
Ramamoorthi, Frances A. Rosamond, Daniel Schmand, and Sebastian Siebertz. On solution
discovery via reconfiguration. In Kobi Gal, Ann Nowé, Grzegorz J. Nalepa, Roy Fairstein, and
Roxana Radulescu, editors, ECAI 2023 - 26th European Conference on Artificial Intelligence,
September 30 - October 4, 2023, Kraków, Poland - Including 12th Conference on Prestigi-
ous Applications of Intelligent Systems (PAIS 2023), volume 372 of Frontiers in Artificial
Intelligence and Applications, pages 700–707. IOS Press, 2023. doi:10.3233/FAIA230334.

12 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct pcps
for NP. Journal of Computer and System Sciences (J. Comput. Syst. Sci.), 77(1):91–106, 2011.
doi:10.1016/J.JCSS.2010.06.007.

13 Mario Grobler, Stephanie Maaz, Nicole Megow, Amer E. Mouawad, Vijayaragunathan
Ramamoorthi, Daniel Schmand, and Sebastian Siebertz. Solution discovery via reconfig-
uration for problems in P. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola
Svensson, editors, 51st International Colloquium on Automata, Languages, and Programming,
ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pages 76:1–76:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.ICALP.2024.76.

14 Stephan Kreutzer, Roman Rabinovich, and Sebastian Siebertz. Polynomial kernels and
wideness properties of nowhere dense graph classes. ACM Transactions on Algorithms (ACM
Trans. Algorithms), 15(2):24:1–24:19, 2019. doi:10.1145/3274652.

15 Van Bang Le and Florian Pfender. Complexity results for rainbow matchings. Theoretical
Computer Science (Theor. Comput. Sci.), 524:27–33, 2014. doi:10.1016/J.TCS.2013.12.013.

16 Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. doi:10.3390/
A11040052.

17 Michal Pilipczuk, Sebastian Siebertz, and Szymon Torunczyk. On the number of types in
sparse graphs. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,
2018, pages 799–808. ACM, 2018. doi:10.1145/3209108.3209178.

18 Chee-Keng Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical
Computer Science (Theor. Comput. Sci.), 26:287–300, 1983. doi:10.1016/0304-3975(83)
90020-8.

ISAAC 2024

https://doi.org/10.1137/120880240
https://doi.org/10.48550/arXiv.2204.10526
https://doi.org/10.1016/S0168-0072(95)00020-8
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1112/jlms/s1-35.1.85
https://doi.org/10.3233/FAIA230334
https://doi.org/10.1016/J.JCSS.2010.06.007
https://doi.org/10.4230/LIPICS.ICALP.2024.76
https://doi.org/10.1145/3274652
https://doi.org/10.1016/J.TCS.2013.12.013
https://doi.org/10.3390/A11040052
https://doi.org/10.3390/A11040052
https://doi.org/10.1145/3209108.3209178
https://doi.org/10.1016/0304-3975(83)90020-8
https://doi.org/10.1016/0304-3975(83)90020-8

Approximating the Fréchet Distance When Only
One Curve Is c-Packed
Joachim Gudmundsson #

School of Computer Science, University of Sydney, Australia

Tiancheng Mai #

School of Computer Science, University of Sydney, Australia

Sampson Wong #

Department of Computer Science, University of Copenhagen, Denmark

Abstract
One approach to studying the Fréchet distance is to consider curves that satisfy realistic assumptions.
By now, the most popular realistic assumption for curves is c-packedness. Existing algorithms for
computing the Fréchet distance between c-packed curves require both curves to be c-packed. In
this paper, we only require one of the two curves to be c-packed. Our result is a nearly-linear time
algorithm that (1 + ε)-approximates the Fréchet distance between a c-packed curve and a general
curve in Rd, for constant values of ε, d and c.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Fréchet distance, c-packed curve, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.37

Related Version Full Version: https://arxiv.org/abs/2407.05114 [15]

1 Introduction

The Fréchet distance [13] is a popular similarity measure between curves. The Fréchet
distance has a variety of applications, from geographic information science [23, 24, 26] to
computational biology [21, 29] and data mining [22, 28]. The Fréchet distance can be seen
as the minimum leash length of a dog walking problem.

Suppose a person and a dog walk along two polygonal curves P and Q, respectively. The
goal of both the person and the dog is to walk along the path, independently and at possibly
different speeds, but without leaving the path or going backwards. The leash length of a
given walk is defined to be the maximum distance attained between the person and the dog.
The Fréchet distance is the globally minimum leash length over all possible walks.

The Fréchet distance can be computed between a pair of polygonal curves in nearly-
quadratic time. Alt and Godau [1] provided an O(n2 log n) time exact algorithm for computing
the Fréchet distance. Buchin, Buchin, Meulemans and Mulzer [6] provided a randomised
exact algorithm that computes the Fréchet distance in time O(n2√

log n(log log n)3/2) on a
pointer machine, and in time O(n2(log log n)2)) on word RAM.

Conditional lower bounds imply that the Fréchet distance problem is unlikely to admit
a strongly subquadratic time algorithm. Bringmann [2] showed that, under the Strong
Exponential Time Hypothesis, the Fréchet distance cannot be computed in time O(n2−δ)
for any δ > 0, if we allow for approximation factors up to 1.001. Buchin, Ophelders and
Speckmann [7] showed the same conditional lower bound even if we allow for approximation
factors up to 3, and even if the curves are one dimensional.

One approach to circumvent the conditional lower bounds on the Fréchet distance is to
focus on curves that satisfy realistic assumptions. Realistic assumptions reflect the spatial
distribution of curves from real-world data sets [17]. The most popular realistic input

© Joachim Gudmundsson, Tiancheng Mai, and Sampson Wong;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 37; pp. 37:1–37:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joachim.gudmundsson@sydney.edu.au
https://orcid.org/0000-0002-6778-7990
mailto:tiancheng.mai@sydney.edu.au
https://orcid.org/0009-0001-1945-1069
mailto:sawo@di.ku.dk
https://orcid.org/0000-0003-3803-3804
https://doi.org/10.4230/LIPIcs.ISAAC.2024.37
https://arxiv.org/abs/2407.05114
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Approximating the Fréchet Distance When Only One Curve Is c-Packed

assumption for curves under the Fréchet distance is c-packedness [12]. A curve π ∈ Rd

is c-packed if for all r > 0, the total length of π inside any ball of radius r is upper bounded
by cr.

Driemel, Har-Peled and Wenk [12] introduced the c-packedness assumption and presented
a (1 + ε)-approximation algorithm for the Fréchet distance between a pair of c-packed
curves. Their algorithm runs in O(cn/ε + cn log n) time for curves in Rd. Bringmann and
Künnemann [3] improved the running time of the algorithm to O(cn√

ε
log2(1/ε) + cn log n)

for curves in Rd. Assuming the Strong Exponential Time Hypothesis, Bringmann [2] showed
that (i) for sufficiently small constants ε > 0 there is no (1 + ε)-approximation in time
O((cn)1−δ) for any δ > 0, and (ii) in any dimension d ≥ 5 there is no (1 + ε)-approximation
in time O((cn/

√
ε)1−δ) for any δ > 0.

Existing algorithms [3, 12] for computing the Fréchet distance between c-packed curves
require that both curves are c-packed. An open problem is whether the Fréchet distance
can be approximated efficiently when only one curve is c-packed. This asymmetric case may
occur if the two curves come from two different data sets. For example, in error detection we
may want to match a curve containing errors to a curve close to the ground truth.

▶ Problem 1. Can the Fréchet distance be approximated efficiently if only one of the
two curves is c-packed? In particular, for constant values of ε, d and c, can we obtain a
subquadratic time (1 + ε)-approximation of the Fréchet distance between a c-packed curve and
a general curve in Rd?

We resolve Problem 1 in the affirmative. Our result is an O(c3(n + m) log2d+1(n) log m)
time algorithm that (1 + ε)-approximates the Fréchet distance between a c-packed curve
with n vertices in Rd and a general curve with m vertices in Rd, where ε is a constant. In
other words, to (1 + ε)-approximate the Fréchet distance in nearly-linear time, our result
implies that it suffices to assume that only one of the two curves is c-packed. Our result is
stated formally in Theorem 11. Note that for constant values of d, the running time is also
polynomial in c and ε.

1.1 Related work
By now, the most popular realistic input assumption for curves under the Fréchet distance is
c-packedness. The c-packedness assumption has been applied to a wide variety of Fréchet
distance problems. Typically, these algorithms incur an approximation factor of (1 + ε), and
have a polynomial dependence on ε−1. Chen, Driemel, Guibas, Nguyen and Wenk [8] study
the map matching problem between a c-packed curve and realistic graph, that is, to compute
a path in the graph that is most similar to the c-packed curve. Har-Peled and Raichel [19]
compute the mean curve of a set of c-packed curves. The mean curve is a curve that minimises
its maximum weak Fréchet distance to the set of curves. Driemel and Har-Peled [11] consider
a variant of the Fréchet distance on c-packed curves, where any subcurve of the c-packed curve
can be replaced by a shortcut segment. Brüning, Conradi and Driemel [4] and Gudmundsson,
Huang, van Renssen and Wong [14] study two distinct variants of the subtrajectory clustering
problem on c-packed curves, that is, to detect trajectory patterns by computing clusters
of subcurves. Van der Hoog, Rotenberg and Wong [27] study data structures for c-packed
curves under the discrete Fréchet distance. Conradi, Driemel and Kolbe [9] consider the
approximate nearest neighbour problem for c-packed curves in doubling metrics. Conradi,
Driemel and Kolbe [10] compute the Fréchet distance between c-packed piecewise continuous
smooth curves.

J. Gudmundsson, T. Mai, and S. Wong 37:3

Given a polygonal curve, the problem of computing its packedness value c has been
considered. Gudmundsson, Sha and Wong [17] provide a 6.001-approximation algorithm that
runs in O(n4/3 log9 n) time for curves in R2. They also provided an implementation for a
2-approximation algorithm that runs in O(n2), and verified that c < 50 for a majority of data
sets that were tested. Har-Peled and Zhou [20] provide a randomised 288.001-approximation
algorithm that runs in O(n log2 n) time and succeeds with high probability.

The c-packedness assumption can be applied to any set of edges, as a result, c-packed
graphs have also been studied. Gudmundsson and Smid [18] study the map matching problem
between a curve with long edges and a c-packed graph with long edges. They consider the
data structure variant, where the graph is known in preprocessing time and the curve is only
known at query time. Gudmundsson, Seybold and Wong [16] generalise the result of [18]
and provide a map matching data structure for any c-packed graph and for any query curve.

1.2 Notation
Let ε > 0 be a positive real number. Without loss of generality, we can assume 0 < ε < 1

2 , as
providing a (1+ε)-approximation for smaller values of ε also provides a (1+ε)-approximation
for larger values of ε.

Let d be a fixed positive integer, and let Rd be d-dimensional Euclidean space. A polygonal
curve P = p1 . . . pn in Rd consists of n vertices {pi}n

i=1 connected by n − 1 straight line
segments {pipi+1}n−1

i=1 , where pi ∈ Rd and pipi+1 ⊂ Rd.
We define c-packedness. Let c be a positive real number. A polygonal curve P in Rd is

c-packed if, for any radius r > 0 and for any ball B(p, r) centred at p ∈ Rd with radius r,
the set of segments in P ∩ B(p, r) has total length upper bounded by cr.

Next, we define the Fréchet distance. Let P = p1 . . . pn. With slight abuse of notation,
define the function P : [1, n] → Rd so that P (i) = pi for all integers i ∈ {1, . . . , n}, and
P (i + x) = (1 − x)pi + xpi+1 for all reals x ∈ [0, 1]. Let Γ(n) be the space of all continuous,
non-decreasing, surjective functions from [0, 1] → [1, n]. For a pair of polygonal curves
P = p1, . . . , pn and Q = q1, . . . , qm, we define the Fréchet distance to be

dF (P, Q) = inf
α∈Γ(n)
β∈Γ(m)

max
µ∈[0,1]

d(P (α(µ)), Q(β(µ)))

where d(·, ·) denotes the Euclidean distance in Rd.

2 Decision algorithm

In this section, we solve the decision version of the Fréchet distance problem. We defer the
optimisation version of the Fréchet distance problem to Section 3. Both the decision and
optimisation versions will incur an approximation factor of (1 + ε).

We formally define the decision version. First we define the exact decision version.
Let r be a positive real number. Let P = p1p2 . . . pn be a c-packed curve in Rd and let
Q = q1q2 . . . qm be a general curve in Rd. Given P , Q and r, the exact decision problem is
to answer whether (i) dF (P, Q) ≤ r or (ii) dF (P, Q) > r, where dF (·, ·) denotes the Fréchet
distance. Unfortunately, in our case, we will not be able to decide between (i) and (ii)
exactly. Therefore, we instead solve the approximate decision version. In the approximate
decision problem, we are additionally allowed a third option, that is (iii) to provide a
(1 + ε)-approximation for dF (P, Q).

ISAAC 2024

37:4 Approximating the Fréchet Distance When Only One Curve Is c-Packed

We will build a decider for the approximate decision version, for any fixed 0 < ε < 1
2 .

Given any P , Q and r, the decider returns either (i), (ii) or (iii). The decider requires
the c-packed curve to be simplified. We will first describe the simplification procedure
(Section 2.1), then we will construct the fuzzy decider (Section 2.2), and finally we will
combine two fuzzy deciders into a complete approximate decider (Section 2.3).

2.1 Simplification
The first step in the decision algorithm is to simplify the c-packed curve P . We will use the
simplification algorithm in Driemel, Har-Peled and Wenk [12].

▶ Fact 2 ([12]). Given µ > 0 and a polygonal curve π = p1p2p3...pk in Rd, we can compute
in O(k) time a simplification simpl(π, µ) with the following properties:
a) for any vertex p ∈ π there exists a vertex q ∈ simpl(π, µ) such that d(p, q) ≤ µ,
b) dF (π, simpl(π, µ)) ≤ µ,
c) all segments in simpl(π, µ) have length at least µ (except the last),
d) if π is c-packed, then simpl(π, µ) is 6c-packed.

Proof. We state Algorithm 2.1 from [12], since we will use it in Section 3.1 to determine the
critical values of our algorithm. Mark the initial vertex p1 and set it as the current vertex.
Scan the polygonal curve from the current vertex until it reaches the first vertex pi that is at
least µ away from the current vertex. Mark pi and set it as the current vertex. Repeat this
until the final vertex, and mark the final vertex. Set the marked vertices to be the simplified
curve, and denote it as simpl(π, µ). See Figure 1. Fact 2a follows from Algorithm 2.1 in [12].
Facts 2b, 2c and 2d follow from Lemma 2.3, Remark 2.2 and Lemma 4.3 in [12]. ◀

start

end

Figure 1 A polygonal trajectory P (blue) and its µ-simplification (red dashed). The vertices
marked with blue squares are on P but not included in the simplification.

2.2 Fuzzy decider
The second step in the decision algorithm is to construct a fuzzy decider. Let ε′ = ε/30.
Given P , Q and r, the fuzzy decision problem is to answer whether (i) dF (P, Q) ≤ (1+ε′/2)r,
or (ii) dF (P, Q) > (1 − 2ε′)r. We call the decision problem fuzzy as there is a fuzzy region
((1 − 2ε′) r, (1 + ε′/2) r] where it would be acceptable to return either (i) or (ii). Note that
unlike the complete approximate decider, for the fuzzy decider, there is no option (iii).

J. Gudmundsson, T. Mai, and S. Wong 37:5

The overall approach in the fuzzy decider is to approximate the optimal walks along K

and Q, where K is the simplification of P from Fact 2. In particular, our approach is to
guess how far along K we are when we reach vertex qi on Q. We use a layered directed graph
to model the walk along K, where each layer corresponds to the walk reaching qi on Q.

The fuzzy decision algorithm constructs a layered directed graph and searches it for a
suitable walk. We divide the fuzzy decision algorithm into three steps. The first step is to query
a range searching data structure [25] to construct the vertices of the graph (Section 2.2.1).
The second step is to query an approximate Fréchet distance data structure [11] to construct
the directed edges of the graph (Section 2.2.2). The third step is to run a breadth first search
and then to return either (i) or (ii) (Section 2.2.3).

2.2.1 Constructing the vertices
The first step in the fuzzy decider is to construct the vertices of the layered directed graph.
Let δ = ε′/2 = ε/60. Construct the simplification K = simpl(P, δr) using Fact 2. Recall that
layer i corresponds to candidate positions on K when we reach qi on Q. Formally, define
layer i to be Wi = {wi,j}. All points wi,j ∈ Wi satisfy wi,j ∈ K and d(wi,j , qi) ≤ 2r. Note
that wi,j is not necessarily a vertex of P , but rather a point on an edge of K = simpl(P, δr).
To construct Wi, we require the data structure of Schwarzkopf and Vleugels [25], which is a
range searching data structure for low density environments.

▶ Definition 3. A set of objects Σ is k-low density if, for every box H, there are at most k

objects in H that intersect it and are larger than it. The size of an object is the size of its
smallest enclosing box.

▶ Fact 4 (Theorem 3 in [25]). A k-low density environment Σ of n objects in Rd can be
stored in a data structure of size O(n logd−1 n + kn), such that it takes O(logd−1 n + k) time
to report all E ∈ Σ that contains a given query point q ∈ Rd. The data structure can be
computed in O(n logd n + kn log n) time.

We apply Fact 4 to the curve K. In particular, we turn K into a low-environment in Rd+1

by using the trough construction of Gudmundsson, Seybold and Wong [16]. The same trough
construction was also used in [5].

▶ Lemma 5. Let δ > 0 be fixed. Let P be a c-packed curve with n vertices in Rd. Let K =
simpl(P, δr). We can preprocess K into a data structure of O(n logd n + cδ−1n) size, so
that given a query point q ∈ Rd, the data structure can return in O(logd n + cδ−1) time
all O(cδ−1) edges of K that are within a distance of 2r from q. The preprocessing time is
O(n logd+1 n + cδ−1n log n).

Proof. The curve K is 6c-packed by Fact 2d. Next, we generalise the trough construction of
Gudmundsson, Seybold and Wong [16] to (d + 1)-dimensions. We define a trough object in
Rd+1 for every segment e ∈ K by trough(e, δ) = {(x1, . . . , xd, z) : d ((x1, . . . , xd) , e) ≤ 4z ≤
8δ−1|e|}, where d(·, ·) and | · | are measured under the Euclidean metric in Rd. Let T be the
set of all trough objects. By Lemma 23 in [17], T is an O(cδ−1)-low-density environment.
We apply the data structure from Fact 4 on the environment T .

Given a query point q = (x1, . . . , xd), we query the data structure for all troughs that
contain the (d + 1)-dimensional point (x1, . . . , xd, r/2). Suppose the data structure returns
a set of k objects {trough(ei, δ)}k

i=1. Then k = O(cδ−1), since T is an O(cδ−1)-low-density
environment, and q has zero size. From the set of k troughs we extract the set of k edges
{ei}k

i=1.

ISAAC 2024

37:6 Approximating the Fréchet Distance When Only One Curve Is c-Packed

The running times follow from Fact 4 and from T being an O(cδ−1)-low-density environ-
ment. It remains to prove the correctness of the query. Recall the definition of the trough
that (x1, . . . , xd, r/2) ∈ trough(e, δ) if and only if d ((x1, . . . , xd) , e) ≤ 4 · r

2 ≤ 8δ−1|e|. In
particular, d (q, e) ≤ 2r covers all edges in K that intersect a ball of radius 2r centred at q

and 4δ−1|e| ≥ r covers all edges of length at least δr/4. Since K is also (δr)-simplified, all
edges of K (except for the last edge) are at least of length δr by Fact 2c. We can check the
last edge of K separately. ◀

We use Lemma 5 to construct Wi for all 1 ≤ i ≤ m. Recall that Q = q1 . . . qm. Query
the data structure in Lemma 5 to obtain all edges in K = simpl(P, δr) that are within a
distance of 2r from qi. Let this set of edges be Ti. Note that |Ti| = O(cδ−1), since K is
6c-packed and each edge in Ti has length at least δr. For each edge ei,j ∈ Ti, we choose
O(δ−1) evenly spaced points on the chord ei,j ∩ B(qi, 2r), so that the distance between two
consecutive points on the chord is less than δr. We add these evenly spaced points to Wi for
each ei,j ∈ Ti, so that in total, |Wi| = O(cδ−2). See Figure 2.

qi

qi+1

2r

Wi

Wi+1

wi+1,k

wi+1,k′

wi,j

ai,j

bi,j

bi+1,k

ai+1,k

Figure 2 The general curve Q (black), the (δr)-simplification K (blue) and two candidate sets Wi

and Wi+1 (red dots). The coloured arrows indicate the order of vertices on the curve. A candidate
set Wi (red dots) contains evenly spaced points on K chords that are at most a distance 2r away
from qi, i.e., in the violet shading. The point wi,j is on the edge ai,jbi,j and the point wi+1,k is on
the edge ai+1,kbi+1,k.

This completes the construction of Wi for 1 ≤ i ≤ m. Since q1, qm must be matched to
p1, pn respectively, we can simplify the sets W1 = {p1} and Wm = {pn}. The vertices of our
graph are ∪m

i=1Wi, which completes the first step of the construction of the fuzzy decider.

2.2.2 Constructing the edges
The second step in the fuzzy decider is to construct the edges of the layered directed graph.
Each edge in the graph is a directed edge from Wi to Wi+1 for some 1 ≤ i ≤ m − 1. A
directed edge from wi,j ∈ Wi to wi+1,k ∈ Wi+1 models a simultaneous walk, from wi,j to
wi+1,k and from qi to qi+1, on K and Q respectively. We only add this directed edge into
the graph if its associated walk is feasible. To decide whether the walk is feasible, we check
two conditions. The first condition is that wi,j preceeds wi+1,k along the curve K. The
second condition is whether the Fréchet distance between the subcurve K⟨wi,j , wi+1,k⟩ and
the segment qiqi+1 is at most r. See Figure 3. To efficiently check the second condition, we
require the approximate Fréchet distance data structure of Driemel and Har-Peled [11].

J. Gudmundsson, T. Mai, and S. Wong 37:7

q

qi+1

wi,j

wi+1,k

K〈wi,j, wi+1,k〉

dF

Wi

Wi+1

Figure 3 The Fréchet distance (purple), between a segment (qi, qi+1) (black) and subcurve
K⟨wi,j , wi+1,k⟩ (blue). A candidate set Wi (red dots) contains evenly spaced points on K chords
that are at most a distance 2r away from qi, i.e., in the green shading.

▶ Fact 6 (Theorem 5.9 in [11]). Given δ > 0 and a polygonal curve Z with n vertices in Rd, one
can construct a data structure in O(δ−2d log2(1/δ)n log2 n) time that uses O(δ−2d log2(1/δ)n)
space, such that for a query segment pq, and any two points u and v on the curve, one can
(1 + δ)-approximate the distance dF (Z⟨u, v⟩, pq) in O(δ−2 log n log log n) query time.

We construct the data structure in Fact 6 on the curve K. Let 1 ≤ i ≤ m − 1, wi,j ∈ Wi

and wi+1,k ∈ Wi+1. We query the data structure in Fact 6 to compute a (1+δ)-approximation
of dF (K⟨wi,j , wi+1,k⟩, qiqi+1). If the reported value is at most r, then we insert the directed
edge from wi,j to wi+1,k. We repeat this for all 1 ≤ i ≤ m − 1, wi,j ∈ Wi and wi+1,k ∈ Wi+1.
This completes the construction of the edges in the directed graph, and completes the second
step of the fuzzy decider.

2.2.3 Returning either (i) or (ii)
The third step of the fuzzy decider is to run a breadth first search on the layered directed
graph. Recall that W1 = {p1} and Wm = {pn}. We use the breadth first search to decide
whether there is a directed path from p1 to pn. Recall that ε′ = ε/30 and δ = ε/60.
If there is a directed path, we return (i) dF (P, Q) ≤ (1 + ε′/2)r. Otherwise, we return
(ii) dF (P, Q) > (1 − 2ε′)r. Next, we prove the correctness of the fuzzy decider. We have two
cases.

There is a directed path from p1 to pn in the layered directed graph. Let the directed
path be c1 . . . cm. Then ci ∈ Wi for all 1 ≤ i ≤ m. We match the vertex qi to ci

for all 1 ≤ i ≤ m. We match the segment qiqi+1 to the subcurve K⟨ci, ci+1⟩ for all
1 ≤ i ≤ m − 1. Since there is a directed edge from ci to ci+1, we have that the estimated
Fréchet distance between the segment qiqi+1 and the subcurve dF (K⟨ci, ci+1⟩, qiqi+1) is
at most r. Formally, we have Ci ≤ r, where

dF (K⟨ci, ci+1⟩, qiqi+1) ≤ Ci ≤ (1 + δ) · dF (K⟨ci, ci+1⟩, qiqi+1).

In particular, we have dF (K⟨ci, ci+1⟩, qiqi+1) ≤ r. Taking the maximum over all 1 ≤ i ≤
m − 1, we get

dF (K, Q) ≤ max
i=1,...,m−1

dF (K⟨ci, ci+1⟩, qiqi+1) ≤ r.

ISAAC 2024

37:8 Approximating the Fréchet Distance When Only One Curve Is c-Packed

By Fact 2b, we have dF (P, K) ≤ δr. Since the Fréchet distance obeys the triangle
inequality, we have

dF (P, Q) ≤ dF (P, K) + dF (K, Q) ≤ r + δr ≤ (1 + ε′/2)r.

Therefore, it is correct to return (i) dF (P, Q) ≤ (1 + ε′/2)r in the case where there is a
directed path from p1 to pn.
There is no directed path from p1 to pn in the layered directed graph. Let r∗ = dF (P, Q).
Suppose that for the optimal Fréchet distance between P and Q, we match qi ∈ Q to
p∗

i ∈ P for all 1 ≤ i ≤ m. Therefore d(qi, p∗
i) ≤ r∗. Let r′ = dF (K, Q). Suppose that

for the optimal Fréchet distance between K and Q, we match qi ∈ Q to k∗
i ∈ K for

all 1 ≤ i ≤ m. Therefore d(qi, k∗
i) ≤ r′. Since the Fréchet distance obeys the triangle

inequality, we have r′ = dF (K, Q) ≤ dF (P, Q) + dF (K, P) = r∗ + δr.
Assume for the sake of contradiction that r∗ ≤ (1 − 2ε′)r. Then, we have

r′ ≤ r∗ + δr ≤ (δ + 1 − 2ε′) r < r < 2r.

Therefore, d(qi, k∗
i) ≤ r′ < 2r. Thus, there exists k∗

i ∈ K that is at most a distance 2r

away from qi and the edge that k∗
i resides on is also at most 2r away from qi. Hence,

Wi is non-empty, and there exists ui ∈ Wi such that ui and k∗
i share the same chord

(edge) in K and dK(ui, k∗
i) ≤ δr. In particular, there exists ui, vi ∈ Wi where k∗

i is on
the subcurve K⟨ui, vi⟩, so that dK(ui, k∗

i) ≤ δr, dK(vi, k∗
i) ≤ δr, and dK(ui, vi) ≤ δr.

See Figure 4.

ui

k∗

i

vi

ui+1

k∗

i+1

vi+1

qi

qi+1

K

Figure 4 The point k∗
i marked with a green cross, and its immediate neighbour points ui and

vi, marked with blue dots. Note that k∗
i is on the subcurve K⟨ui, vi⟩, so that dK(ui, k∗

i) ≤ δr,
dK(vi, k∗

i) ≤ δr, and dK(ui, vi) ≤ δr.

Consider r′
i = dF (K⟨ui, ui+1⟩, qiqi+1) when qi ∈ Q is matched to ui ∈ Wi ⊂ K and

qi+1 ∈ Q is matched to ui+1 ∈ Wi+1 ⊂ K. Then

r′
i ≤ dF (K⟨k∗

i , k∗
i+1⟩, qiqi+1) + dF (K⟨k∗

i , k∗
i+1⟩, K⟨ui, ui+1⟩)

≤ r′ + dF (K⟨k∗
i , k∗

i+1⟩, K⟨ui, ui+1⟩)
≤ r′ + dF (k∗

i ◦ K⟨k∗
i , ui+1⟩ ◦ ui+1k∗

i+1, uik
∗
i ◦ K⟨k∗

i , ui+1⟩ ◦ ui+1)
≤ r′ + max

{
dF (k∗

i , uik
∗
i), dF (K⟨k∗

i , ui+1⟩, K⟨k∗
i , ui+1⟩), dF (ui+1k∗

i+1, ui+1)
}

≤ r′ + max
{

dK(k∗
i , ui), 0, dK(k∗

i+1, ui+1)
}

≤ r′ + max {δr, 0, δr}
≤ r′ + δr

where ◦ denotes the concatenation of polygonal curves. Therefore,

r′
i ≤ r′ + δr ≤ (δ + 1 − 2ε′ + δ) r = (2δ + 1 − 2ε′) r ≤ (1 − ε′) r.

J. Gudmundsson, T. Mai, and S. Wong 37:9

Let Ci be the (1 + δ)-approximation of dF (K⟨ui, ui+1⟩, qiqi+1) returned by the data
structure in Fact 6. Then, r′

i ≤ Ci ≤ (1 + δ)r′
i. Therefore, Ci ≤ (1 + δ)r′

i < (1 + ε′)r′
i ≤

(1 + ε′)(1 − ε′)r < r for all 1 ≤ i ≤ m. Hence, there is a directed edge from ui to ui+1 in
the layered directed graph, for all 1 ≤ i ≤ m−1. In particular, u1 . . . um is a directed path
from p1 to pn, which is a contradiction. We conclude that our assumption r∗ ≤ (1 − 2ε′)r
cannot hold, and it is correct to return r∗ > (1 − 2ε′)r in the case where there is no
directed path from p1 to pn.

We obtain the following theorem.

▶ Theorem 7 (Fuzzy decider). Given a positive real number r, 0 < ε < 1
2 , and a c-

packed curve P with n vertices in Rd, one can construct a data structure in O(n logd+1 n +
cε−1n log n + ε−2d log2(1/ε)n log2 n) time that uses O(n logd n + cε−1n + ε−2d log2(1/ε)n)
space, so that given a query curve Q with m vertices, the data structure returns in O(logd n +
mc2ε−6 log n log log n) query time either (i) dF (P, Q) ≤ (1 + ε′/2)r or (ii) dF (P, Q) >

(1 − 2ε′)r.

Proof. First, we summarise the preprocessing procedure. Let δ = ε/60. We use Fact 2
to construct the simplification K = simpl(P, δr). We use Lemma 5 to construct a range
searching data structure on K, and we use Fact 6 to construct an approximate distance
data structure on K. Next, we summarise the query procedure. We query Lemma 5 to
construct Wi for 1 ≤ i ≤ m, we query Fact 6 to construct the edges between Wi and Wi+1
for 1 ≤ i ≤ m − 1, and finally we run a breadth first search. We argued correctness in
Section 2.2.3. It remains to analyse preprocessing time, space, and query time.

The preprocessing time of Fact 2, Lemma 5 and Fact 6 is O(n logd+1 n + cδ−1n log n +
δ−2d log2(1/δ)n log2 n). The space of the data structures in Lemma 5 and Fact 6 is O(n logd n+
cδ−1n + δ−2d log2(1/δ)n). Substituting δ−1 = O(ε−1) yields the stated preprocessing time
and space.

We analyse the query time. Constructing the set Wi for all 1 ≤ i ≤ m takes O(m(logd n +
cδ−2)) time, since using Lemma 5 to query the set of edges close to qi takes O(logd n + cδ−1)
time, and constructing evenly spaced points takes O(cδ−2) time. Since |Wi| = O(cδ−2), the
number of pairs ∪m−1

i=1 (Wi × Wi+1) is O(mc2δ−4). Querying Fact 6 to decide whether there
is a directed edge takes O(δ−2 log n log log n) time per pair. In total, constructing the edges
in the layered directed graph takes O(mc2δ−6 log n log log n) time. Running breadth first
search takes O(mc2δ−4) time. The total query time is O(logd n + c2δ−6m log n log log n).
Substituting δ−1 = O(ε−1) yields the stated query time. ◀

2.3 Complete approximate decider
The third step in the decision algorithm is to use the fuzzy decider to construct a complete
approximate decider. Recall that, given ε, P , Q and r, the complete approximate decider
returns either (i) dF (P, Q) ≤ r, (ii) dF (P, Q) > r, or (iii) a (1 + ε)-approximation for
dF (P, Q).

▶ Theorem 8 (Complete approximate decider). Given a positive real number r, 0 < ε < 1
2 , and

a c-packed curve P with n vertices in Rd, one can construct a data structure in O(n logd+1 n+
cε−1n log n + ε−2d log2(1/ε)n log2 n) time that uses O(n logd n + cε−1n + ε−2d log2(1/ε)n)
space, so that given a query curve Q with m vertices in Rd, the data structure returns in
O(logd n + mc2ε−6 log n log log n) query time either (i) dF (P, Q) ≤ r, (ii) dF (P, Q) > r, or
(iii) a (1 + ε)-approximation for dF (P, Q).

ISAAC 2024

37:10 Approximating the Fréchet Distance When Only One Curve Is c-Packed

Proof. Let r1 = 1
1+ε′/2 r and r2 = 1

1−2ε′ r, where ε′ = ε/30. First, given r1, ε, and P ,
construct the data structure in Theorem 7, and query the data structure on Q. Second, given
r2, ε, and P , construct the data structure in Theorem 7, and query the data structure on Q.
If the first query returns (i), we return (i). If both the first and second queries return (ii),
we return (ii). Otherwise, if the first query returns (ii) and the second query returns (i), we
return (iii). We prove correctness in three cases.

The first query returns (i). Then by Theorem 7, dF (P, Q) ≤ (1 + ε′/2)r1 = r, so
returning (i) in the complete approximate decider is correct.
Both the first and second queries return (ii). Then by Theorem 7, dF (P, Q) > (1−2ε′)r2 =
r, so returning (ii) in the complete approximate decider is correct.
The first query returns (ii) and the second query returns (i). The first query implies
dF (P, Q) > (1 − 2ε′) · r1 = (1 − 2ε′) · 1

1+ε′/2 · r. The second query implies dF (P, Q) ≤
(1 + ε′/2) · r1 = (1 + ε′/2) · 1

1−2ε′ · r. Putting these together, we have

dF (P, Q) ∈
(

1 − 2ε′

1 + ε′/2r,
1 + ε′/2
1 − 2ε′ r

]
.

Note that
1+ε′/2
1−2ε′ r
1−2ε′

1+ε′/2 r
=

(
1 + ε′/2
1 − 2ε′

)2
< ((1 + ε′/2)(1 + 4ε′))2

< (1 + 6ε′)2 < 1 + 30ε′ = 1 + ε.

Hence, 1−2ε′

1+ε′/2 r is a (1 + ε)-approximation of dF (P, Q), so returning (iii) in the complete
approximate decider is correct.

Finally, the preprocessing time, space, and query time follow from Theorem 7. ◀

This completes the decision version of the approximate Fréchet distance problem. Next,
we consider the optimisation version of the approximate Fréchet distance problem.

3 Optimisation algorithm

In Section 3.1, we apply a binary search to compute the optimal simplification. In Section 3.2,
we apply parametric search to compute the Fréchet distance. In both steps, we use the
complete approximate decider in Theorem 8, which incurs an approximation factor of (1 + ε).

3.1 Approximating the optimal simplification
First, we provide an algorithm to compute the optimal simplification of P . In particular,
the optimal simplification is K∗ = simpl(P, δr∗), where δ = ε/60 and r∗ = dF (P, Q). Our
approach is to search over the critical values of the µ-simplification algorithm in Fact 2. A
critical value of the µ-simplification algorithm is a value of µ where the simplification changes.
Define the set of pairwise distances of P to be L(P) = {d(pi, pj) : 1 ≤ i < j ≤ n}. We can
observe that the set of pairwise distances L breaks up the positive real line into

(
n
2
)

+ 1
intervals, such that within each interval the µ-simplification does not change. This observation
follows from the algorithm in Fact 2, and the same observation is made in Section 3.3.3 in [12].
Unfortunately, |L| = O(n2). To overcome this, we use approximate distance selection.

▶ Fact 9 (Lemma 3.9 in [12]). Given a set P of n points in Rd, one can compute in O(n log n)
time a set Z of O(n) numbers, such that for any y ∈ L(P), there exists numbers x, x′ ∈ Z

such that x ≤ y ≤ x′ ≤ 2x.

J. Gudmundsson, T. Mai, and S. Wong 37:11

We can refine Fact 9 to obtain Corollary 10. We replace the 8-WSPD in Lemma 3.9
of [12] with an 8/ε-WSPD.

▶ Corollary 10. Given a set P of n points in Rd, one can compute in O(n/εd + n log n) time
a set Z of O(n/εd) numbers, such that for any y ∈ L(P), there exists numbers x, x′ ∈ Z such
that x ≤ y ≤ x′ ≤ (1 + ε)x.

Next, we perform binary search on the set Z in Corollary 10. In particular, for x ∈ Z, we
decide whether δr∗ < x or δr∗ > x by running the complete approximate decider in Theorem 8
on r = x/δ, δ = ε/60, P and Q. After O(log n) applications of the complete approximate
decider, we obtain δr∗ ∈ [x, x′] for a consecutive pair of elements x, x′ ∈ Z. We have two cases.
In the first case, we compute the optimal simplification of P , that is, K∗ = simpl(P, δr∗). In
the second case, we compute a (1 + ε)-approximation of r∗ = dF (P, Q).

If x′ > (1 + ε)x. By the contrapositive of Corollary 10, there is no y ∈ L(P) ∩ [x, x′]. In
other words, within the interval [x, x′] the simplification of P does not change. Therefore,
K∗ = simpl(P, x) = simpl(P, δr∗).
If x′ ≤ (1 + ε)x. Therefore, x′/δ is a (1 + ε)-approximation of r∗ = dF (P, Q), as required.

Therefore, we can compute K∗ = simpl(P, δr∗), as otherwise we would have a (1 + ε)-
approximation of r∗. The running time is dominated by the O(log n) applications of the
complete approximate decider.

3.2 Approximating the Fréchet distance
From Section 3.1, we computed the simplification K∗ = simpl(P, δr∗). Let r∗

1 =
1

1+ε′/2 r∗, r∗
2 = 1

1−2ε′ r∗. We can use the same procedure to compute the simplifica-
tions K∗

1 = simpl(P, δr∗
1) and K∗

2 = simpl(P, δr∗
2). If K∗

1 ≠ K∗, then there must be an
element x ∈ Z in the interval [δr∗

1 , δr∗], so x/δ would be a (1 + ε)-approxmation of r∗.
Therefore, K∗ = K∗

1 , and similarly, K∗ = K∗
2 .

We proceed with parametric search. Note that in Section 3.1, we did not apply parametric
search to compute K∗ due to efficiency reasons. It is not straightforward to parallelise Fact 2,
moreover, since the simplification K∗ = K∗

1 = K∗
2 does not change during the execution

of the parametric search, we can avoid reconstructing the data structures in Lemma 5 and
Fact 6. We obtain the following theorem.

▶ Theorem 11. Given ε > 0, a c-packed curve P in Rd, and a general curve Q in Rd, one
can compute a (1 + ε)-approximation of dF (P, Q) in O(TsTp log m) time, where

Ts = n logd+1 n + cε−1n log n + ε−2d log2(1/ε)n log2 n + mc2ε−6 log n log log n,

Tp = logd n + cε−1 + ε−2 log n log log n.

Proof. First, we summarise the preprocessing procedure. We compute the simplification
K∗ = simpl(P, δr∗) using the procedure described in Section 3.1. We build the data structures
in Lemma 5 and Fact 6 on the simplified curve K∗.

Second, we summarise the query procedure. Here, we use parametric search. We use
the algorithm in Theorem 8 as both the decision algorithm and the simulated algorithm.
We describe the simulated algorithm. Let r be the search parameter. Let r1 = 1

1+ε′/2 r

and r2 = 1
1−2ε′ r. We simulate the complete approximate decider by simulating the fuzzy

decider in Theorem 7 on r1 and r2. We divide the simulation of the fuzzy decider on r1 into
three steps. First, we compute Wi by querying the data structure in Lemma 5. We use

ISAAC 2024

37:12 Approximating the Fréchet Distance When Only One Curve Is c-Packed

parametric search and the decision algorithm (Theorem 8) to resolve the critical values in
the query. Second, we compute the directed edges from Wi to Wi+1 by querying the data
structure in Fact 6. We apply parametric search in the same way. Third, we run a breadth
first search on the layered directed graph. There are no critical values in this step, so we do
not need to apply parametric search. We repeat the simulation of the fuzzy decider on r2.
Finally, by parametric search, we return the optimal value r∗.

Third, we argue correctness. If Theorem 8 returns (iii) at any point, we obtain a (1 + ε)-
approximation of r∗, and we are done. If Theorem 8 never returns (iii) at any point, we will
show that the decision algorithm and the simulated algorithm are both correct. The decision
algorithm is correct since we either return r∗ ≤ r or r∗ > r. We show the preprocessing
and query procedures of the simulated algorithm are correct. In particular, we will show
that we correctly simulate the execution of Theorem 8 as though r = r∗. The preprocessing
procedure is correct, since K∗ = K∗

1 = K∗
2 , so our data structures are correct for r∗

1 and r∗
2 .

The query procedure is correct, since we can use the correct decision algorithm to resolve
all critical values, and simulate the correct execution path as though r = r∗. Moreover,
Theorem 8 (without (iii)) acts discontinuously at r = r∗, so r∗ is a critical value of the
simulated algorithm. Therefore, parametric search is able to locate r∗ and return it.

Fourth, we analyse the running time. The preprocessing time is dominated by O(log n)
calls to Theorem 8. The query time is dominated by parametric search. The running time of
parametric search is O(PpTp + TpTs log Pp), where Ts is the sequential running time of the
decision algorithm, Pp is the number of processors used in the simulated algorithm, and Tp

is the number of parallel steps used by the simulated algorithm. The sequential running
time is Ts = O(n logd+1 n + cε−1n log n + ε−2d log2(1/ε)n log2 n + mc2ε−6 log n log log n) by
Theorem 8. The simulated algorithm can be efficiently parallelised. In particular, the
simulated algorithm computes Wi by querying Lemma 5, and computes the directed edges
from Wi to Wi+1 by querying Lemma 6; these can be queried in parallel for all 1 ≤ i ≤ m.
Given Pp = m processors, we can perform all of these queries in in Tp = O(logd n + cδ−1 +
δ−2 log n log log n) parallel steps. The overall running time is dominated by O(TsTp log m),
which the stated running time. ◀

We can simplify the running time if ε is constant.

▶ Corollary 12. Given a constant ε > 0, a c-packed curve P with n vertices in Rd, and a
general curve Q with m vertices in Rd, one can (1 + ε)-approximate dF (P, Q) in O(c3(n +
m) log2d+1(n) log m) time.

4 Conclusion

In this paper, we provide an O(c3(n + m) log2d+1(n) log m) time algorithm to (1 + ε)-
approximate the Fréchet distance between two curves in Rd, in the case when only one curve
is c-packed and ε is constant. The running time is nearly-linear if c and d are also constant.
An open problem is whether the running time can be improved, in particular, whether the
dependence on ε, c, d, log n or log m can be reduced. Another open problem is whether we
can obtain results for related problems when only one of the two curves is c-packed. Yet
another open problem is whether similar results can be obtained for other realistic input
curves. In particular, can the Fréchet distance be (1 + ε)-approximated in subquadratic time
when only one of the curves is κ-bounded, or when only one of the curves is ϕ-low density?

J. Gudmundsson, T. Mai, and S. Wong 37:13

References

1 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 05:75–91, 1995.
doi:10.1142/s0218195995000064.

2 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquad-
ratic algorithms unless SETH fails. In Proceedings of the IEEE 55th Annual Symposium on
Foundations of Computer Science. IEEE, 2014. doi:10.1109/focs.2014.76.

3 Karl Bringmann and Marvin Künnemann. Improved approximation for Fréchet distance on
c-packed curves matching conditional lower bounds. International Journal of Computational
Geometry & Applications, 27:85–119, 2017. doi:10.1142/s0218195917600056.

4 Frederik Brüning, Jacobus Conradi, and Anne Driemel. Faster approximate covering of
subcurves under the Fréchet distance. In Proceedings of the 30th Annual European Symposium
on Algorithms, ESA 2022, volume 244 of LIPIcs, pages 28:1–28:16. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ESA.2022.28.

5 Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Aleksandr Popov, and Sampson Wong.
Map-matching queries under Fréchet distance on low-density spanners. In Proceedings of
the 40th International Symposium on Computational Geometry, SoCG 2024, volume 293 of
LIPIcs, pages 27:1–27:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:
10.4230/LIPICS.SOCG.2024.27.

6 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four Soviets walk
the dog: Improved bounds for computing the Fréchet distance. Discrete & Computational
Geometry, 58(1):180–216, 2017. doi:10.1007/s00454-017-9878-7.

7 Kevin Buchin, Tim Ophelders, and Bettina Speckmann. SETH says: Weak Fréchet distance
is faster, but only if it is continuous and in one dimension. In Proceedings of the 30th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pages 2887–2901. SIAM, 2019.
doi:10.1137/1.9781611975482.179.

8 Daniel Chen, Anne Driemel, Leonidas J. Guibas, Andy Nguyen, and Carola Wenk. Approximate
map matching with respect to the Fréchet distance. In Proceedings of the 13th Workshop
on Algorithm Engineering and Experiments, ALENEX 2011, pages 75–83. SIAM, 2011. doi:
10.1137/1.9781611972917.8.

9 Jacobus Conradi, Anne Driemel, and Benedikt Kolbe. (1+ϵ)-ANN data structure for curves
via subspaces of bounded doubling dimension. Comput. Geom. Topol., 3(2):6:1–6:22, 2024.
URL: https://www.cgt-journal.org/index.php/cgt/article/view/45.

10 Jacobus Conradi, Anne Driemel, and Benedikt Kolbe. Revisiting the Fréchet distance between
piecewise smooth curves. CoRR, abs/2401.03339, 2024. doi:10.48550/arXiv.2401.03339.

11 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the Fréchet distance with
shortcuts. SIAM Journal on Computing, 42(5):1830–1866, 2013. doi:10.1137/120865112.

12 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. Discrete & Computational Geometry, 48(1):94–127, 2012.
doi:10.1007/s00454-012-9402-z.

13 M. Maurice Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo
Matematico di Palermo, 22(1):1–72, 1906. doi:10.1007/bf03018603.

14 Joachim Gudmundsson, Zijin Huang, André van Renssen, and Sampson Wong. Computing
a subtrajectory cluster from c-packed trajectories. In Proceedings of the 34th International
Symposium on Algorithms and Computation, ISAAC 2023, volume 283 of LIPIcs, pages
34:1–34:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.
ISAAC.2023.34.

15 Joachim Gudmundsson, Michael Mai, and Sampson Wong. Approximating the Fréchet distance
when only one curve is c-packed. CoRR, abs/2407.05114, 2024. doi:10.48550/arXiv.2407.
05114.

ISAAC 2024

https://doi.org/10.1142/s0218195995000064
https://doi.org/10.1109/focs.2014.76
https://doi.org/10.1142/s0218195917600056
https://doi.org/10.4230/LIPICS.ESA.2022.28
https://doi.org/10.4230/LIPICS.SOCG.2024.27
https://doi.org/10.4230/LIPICS.SOCG.2024.27
https://doi.org/10.1007/s00454-017-9878-7
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1137/1.9781611972917.8
https://doi.org/10.1137/1.9781611972917.8
https://www.cgt-journal.org/index.php/cgt/article/view/45
https://doi.org/10.48550/arXiv.2401.03339
https://doi.org/10.1137/120865112
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1007/bf03018603
https://doi.org/10.4230/LIPICS.ISAAC.2023.34
https://doi.org/10.4230/LIPICS.ISAAC.2023.34
https://doi.org/10.48550/arXiv.2407.05114
https://doi.org/10.48550/arXiv.2407.05114

37:14 Approximating the Fréchet Distance When Only One Curve Is c-Packed

16 Joachim Gudmundsson, Martin P. Seybold, and Sampson Wong. Map matching queries on
realistic input graphs under the Fréchet distance. ACM Trans. Algorithms, 20(2):14, 2024.
doi:10.1145/3643683.

17 Joachim Gudmundsson, Yuan Sha, and Sampson Wong. Approximating the packedness of
polygonal curves. Comput. Geom., 108:101920, 2023. doi:10.1016/J.COMGEO.2022.101920.

18 Joachim Gudmundsson and Michiel H. M. Smid. Fast algorithms for approximate Fréchet
matching queries in geometric trees. Comput. Geom., 48(6):479–494, 2015. doi:10.1016/J.
COMGEO.2015.02.003.

19 Sariel Har-Peled and Benjamin Raichel. The Fréchet distance revisited and extended. ACM
Trans. Algorithms, 10(1):3:1–3:22, 2014. doi:10.1145/2532646.

20 Sariel Har-Peled and Timothy Zhou. How packed is it, really? CoRR, abs/2105.10776, 2021.
arXiv:2105.10776.

21 Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure–structure alignment with discrete
Fréchet distance. Journal of Bioinformatics and Computational Biology, 06(01):51–64, 2008.
doi:10.1142/s0219720008003278.

22 Richard J. Kenefic. Track clustering using Fréchet distance and minimum description length.
Journal of Aerospace Information Systems, 11(8):512–524, 2014. doi:10.2514/1.i010170.

23 Patrick Laube. Computational Movement Analysis. Springer International Publishing, 2014.
doi:10.1007/978-3-319-10268-9.

24 Peter Ranacher and Katerina Tzavella. How to compare movement? A review of physical
movement similarity measures in geographic information science and beyond. Cartography and
Geographic Information Science, 41(3):286–307, 2014. doi:10.1080/15230406.2014.890071.

25 Otfried Schwarzkopf and Jules Vleugels. Range searching in low-density environments. In-
formation Processing Letters, 60(3):121–127, 1996. doi:10.1016/s0020-0190(96)00154-8.

26 Kevin Toohey and Matt Duckham. Trajectory similarity measures. SIGSPATIAL Special,
7(1):43–50, 2015. doi:10.1145/2782759.2782767.

27 Ivor van der Hoog, Eva Rotenberg, and Sampson Wong. Data structures for approximate
discrete Fréchet distance. CoRR, abs/2212.07124, 2022. doi:10.48550/arXiv.2212.07124.

28 Haozhou Wang, Han Su, Kai Zheng, Shazia Sadiq, and Xiaofang Zhou. An effectiveness study
on trajectory similarity measures. In Proceedings of the 24th Australasian Database Conference
– Volume 137, ADC ’13, pages 13–22. Australian Computer Society, Inc., 2013.

29 Tim Wylie and Binhai Zhu. Protein chain pair simplification under the discrete Fréchet distance.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(6):1372–1383,
2013. doi:10.1109/tcbb.2013.17.

https://doi.org/10.1145/3643683
https://doi.org/10.1016/J.COMGEO.2022.101920
https://doi.org/10.1016/J.COMGEO.2015.02.003
https://doi.org/10.1016/J.COMGEO.2015.02.003
https://doi.org/10.1145/2532646
https://arxiv.org/abs/2105.10776
https://doi.org/10.1142/s0219720008003278
https://doi.org/10.2514/1.i010170
https://doi.org/10.1007/978-3-319-10268-9
https://doi.org/10.1080/15230406.2014.890071
https://doi.org/10.1016/s0020-0190(96)00154-8
https://doi.org/10.1145/2782759.2782767
https://doi.org/10.48550/arXiv.2212.07124
https://doi.org/10.1109/tcbb.2013.17

Basis Sequence Reconfiguration in the Union of
Matroids
Tesshu Hanaka #

Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan

Yuni Iwamasa #

Graduate School of Informatics, Kyoto University, Japan

Yasuaki Kobayashi #

Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan

Yuto Okada #

Graduate School of Informatics, Nagoya University, Japan

Rin Saito #

Graduate School of Information Sciences, Tohoku University, Sendai, Japan

Abstract
Given a graph G and two spanning trees T and T ′ in G, Spanning Tree Reconfiguration
asks whether there is a step-by-step transformation from T to T ′ such that all intermediates are
also spanning trees of G, by exchanging an edge in T with an edge outside T at a single step.
This problem is naturally related to matroid theory, which shows that there always exists such
a transformation for any pair of T and T ′. Motivated by this example, we study the problem of
transforming a sequence of spanning trees into another sequence of spanning trees. We formulate
this problem in the language of matroid theory: Given two sequences of bases of matroids, the goal
is to decide whether there is a transformation between these sequences. We design a polynomial-time
algorithm for this problem, even if the matroids are given as basis oracles. To complement this
algorithmic result, we show that the problem of finding a shortest transformation is NP-hard to
approximate within a factor of c log n for some constant c > 0, where n is the total size of the ground
sets of the input matroids.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms

Keywords and phrases Combinatorial reconfiguration, Matroids, Polynomial-time algorithm, Inap-
proximability

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.38

Funding Tesshu Hanaka: Supported by JSPS KAKENHI Grant Numbers JP21K17707, JP21H05852,
JP22H00513, and JP23H04388.
Yuni Iwamasa: Supported by JSPS KAKENHI Grant Numbers JP22K17854, JP24K02901,
JP24K21315.
Yasuaki Kobayashi: Supported by JSPS KAKENHI Grant Numbers JP20H00595, JP23K28034,
JP24H00686, and JP24H00697.
Yuto Okada: Supported by JST SPRING Grant Number JPMJSP2125.
Rin Saito: Supported by JST SPRING Grant Number JPMJSP2114.

1 Introduction

In reconfiguration problems (see [8, 15] for introductory material), given two (feasible)
configurations in a certain system, the objective is to determine whether there exists a step-
by-step transformation between these configurations such that all intermediate configurations
are also feasible. Among numerous reconfiguration problems studied in the literature, one
of the first problems explicitly recognized as a reconfiguration problem is Spanning Tree

© Tesshu Hanaka, Yuni Iwamasa, Yasuaki Kobayashi, Yuto Okada, and Rin Saito;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 38; pp. 38:1–38:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hanaka@inf.kyushu-u.ac.jp
https://orcid.org/0000-0001-6943-856X
mailto:iwamasa@i.kyoto-u.ac.jp
https://orcid.org/0000-0002-6794-3543
mailto:koba@ist.hokudai.ac.jp
https://orcid.org/0000-0003-3244-6915
mailto:okada.yuto.b3@s.mail.nagoya-u.ac.jp
https://orcid.org/0000-0002-1156-0383
mailto:rin.saito@dc.tohoku.ac.jp
https://orcid.org/0000-0002-3953-4339
https://doi.org/10.4230/LIPIcs.ISAAC.2024.38
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Basis Sequence Reconfiguration in the Union of Matroids

Reconfiguration. In this problem, given two spanning trees T, T ′ in a (multi)graph G, one
is asked to find a transformation from one spanning tree T into the other spanning tree T ′ by
repeatedly exchanging a single edge (i.e., T−e+f for an edge e ∈ E(T) and f ∈ E(G)\E(T)),
such that all intermediates are also spanning trees in G. Ito et al. [9]1 observed that one
can always find such a transformation with exactly |E(T) \E(T ′)| exchanges by exploiting a
well-known property of matroids.

Let E be a finite set and let B ⊆ 2E be a nonempty collection of subsets of E that
satisfies the following basis exchange axiom: for distinct B, B′ ∈ B and x ∈ B \ B′, there
is y ∈ B′ \ B satisfying B − x + y ∈ B. Then, the pair M = (E,B) is called a matroid,
and each set in B is called a basis of M . For a connected graph G with edge set E(G), let
T be the collection of all edge subsets, each of which induces a spanning tree in G. Then
it is well known that T satisfies the basis exchange axiom: for each e ∈ E(T) \ E(T ′),
there is an edge f ∈ E(T ′) \ E(T) such that T − e + f is a spanning tree of G. Hence,
the pair (E(G), T) is a matroid, called a graphic matroid. This also allows us to find a
transformation of |E(T) \E(T ′)| exchanges for Spanning Tree Reconfiguration. Since
every transformation between T and T ′ requires at least |E(T) \ E(T ′)| exchanges, this is a
shortest one among all transformations.

In this paper, we address a natural extension of Spanning Tree Reconfiguration. Let
G be a (multi)graph. We say that a sequence of k spanning trees (T1, . . . , Tk) of G is feasible
if the spanning trees are edge-disjoint. A pair of two feasible sequences of spanning trees
T = (T1, . . . , Tk) and T′ = (T ′

1, . . . , T ′
k) is said to be adjacent if there is an index 1 ≤ i ≤ k

such that Tj = T ′
j for 1 ≤ j ≤ k with i ≠ j and T ′

i = Ti − e + f for some e ∈ E(Ti) and
f ∈ E(G) \ E(Ti). Given two feasible sequences of k spanning trees T = (T1, . . . , Tk) and
T′ = (T ′

1, . . . , T ′
k) of a graph G = (V, E), Spanning Tree Sequence Reconfiguration

asks whether there are feasible sequences T0, . . . ,Tℓ such that T0 = T, Tℓ = T′, and Ti−1
and Ti are adjacent for all 1 ≤ i ≤ ℓ. This type of problem naturally extends conventional
reconfiguration problems by enabling a “simultaneous transformation” of multiple mutually
exclusive solutions.

To address Spanning Tree Sequence Reconfiguration, we consider a more general
problem, called Basis Sequence Reconfiguration. Let M = (M1, . . . , Mk) be a sequence
of matroids, where Mi = (Ei,Bi) for 1 ≤ i ≤ k. Let us note that Ei and Ej may not be
disjoint for distinct i and j. A basis sequence of M is a sequence B = (B1, . . . , Bk) such that
Bi is a basis of Mi (i.e., Bi ∈ Bi). A basis sequence B = (B1, . . . , Bk) is said to be feasible
for M if Bi ∩Bj = ∅ for 1 ≤ i < j ≤ k. A pair of feasible basis sequences B = (B1, . . . , Bk)
and B′ = (B′

1, . . . , B′
k) is said to be adjacent if there is an index 1 ≤ i ≤ k such that Bj = B′

j

for 1 ≤ j ≤ k with i ̸= j and B′
i = Bi − x + y for some x ∈ Bi and y ∈ Ei \Bi. A feasible

basis sequence B is reconfigurable to a feasible basis sequence B′ if there are feasible basis
sequences B0, . . . ,Bℓ of M such that B0 = B, Bℓ = B′, and Bi−1 and Bi are adjacent for all
1 ≤ i ≤ ℓ. We refer to such a sequence ⟨B0, . . . ,Bℓ⟩ as a reconfiguration sequence between B
and B′. Our problem is formally defined as follows.

Basis Sequence Reconfiguration
Input: A tuple M = (M1, . . . , Mk) of k matroids and feasible basis sequences B =

(B1, . . . , Bk) and B′ = (B′
1, . . . , B′

k).
Question: Determine if B is reconfigurable to B′.

1 More specifically, they considered a weighted version of this problem.

T. Hanaka, Y. Iwamasa, Y. Kobayashi, Y. Okada, and R. Saito 38:3

(a) (b)

Figure 1 The figure illustrates an instance in which a pair of edge-disjoint spanning trees (a)
cannot be transformed into the other pair (b), where the spanning trees are indicated by dashed
blue lines and solid red lines.

Note that if Mi = (E(G), T) for every i, B = T, and B′ = T′, Basis Sequence
Reconfiguration is equivalent to Spanning Tree Sequence Reconfiguration.

We also consider an optimization variant of Basis Sequence Reconfiguration:
Given an instance of Basis Sequence Reconfiguration, the goal is to find a shortest
reconfiguration sequence between B and B′. We refer to this problem as Shortest Basis
Sequence Reconfiguration.

We investigate the computational complexity of Basis Sequence Reconfiguration.
In this paper, matroids are sometimes given as basis oracles, that is, given a set X ⊆ E of a
matroid M = (E,B), the basis oracle (of M) returns true if and only if X ∈ B. In such a
case, we can access B through this oracle and assume that the basis oracle can be evaluated
in polynomial in |E|. Our main contribution is as follows.

▶ Theorem 1. Basis Sequence Reconfiguration can be solved in polynomial time,
assuming that the input matroids are given as basis oracles. Moreover, if the answer is
affirmative, we can compute a reconfiguration sequence between given two feasible basis
sequences in polynomial time as well.

This result nontrivially generalizes the previous result of [9]. It would be worth mentioning
that, in contrast to Spanning Tree Reconfiguration, our problem Spanning Tree
Sequence Reconfiguration has infinitely many no-instances (see Figure 1 for an example).

A natural extension of Basis Sequence Reconfiguration is to find a shortest recon-
figuration sequence. Unfortunately, we show that it is hard to find it in polynomial time,
even for approximately shortest reconfiguration sequences.

▶ Theorem 2. Shortest Basis Sequence Reconfiguration is NP-hard even if the
input sequence M consists of two partition matroids. Furthermore, unless P = NP, Shortest
Basis Sequence Reconfiguration cannot be approximated in polynomial time within a
factor of c log n for some constant c > 0, where n is the total size of the ground sets of the
input matroids.

Related work

Due to the property of “one-by-one exchange” in combinatorial reconfiguration, various
reconfiguration problems are naturally related to matroids [1, 5, 9, 11, 12, 13]. As mentioned
above, Ito et al. [9] studied Spanning Tree Reconfiguration and showed that every
spanning tree can be transformed into any other spanning tree in a graph. Given this fact,
Ito et al. [12] further considered a directed analogue of this problem, in which the objective
is to determine whether two arborescences (i.e., directed spanning trees) in a directed graph
are transformed into each other. Contrary to the undirected counterpart, for a (weakly)

ISAAC 2024

38:4 Basis Sequence Reconfiguration in the Union of Matroids

connected directed graph D = (V, A), the pair (A,F) is not a matroid in general, where
F denotes the family of arc sets F ⊆ A, each of which forms an arborescence of D, while
it is the collection of common bases of two matroids, i.e., F = B1 ∩ B2 for some matroids
(A,B1) and (A,B2). They still showed that every arborescence can be transformed into any
other arborescence in a directed graph. As a generalization of [12], Kobayashi, Mahara, and
Schwarcz [13] studied the reconfiguration problem of (not the sequence of but) the union
of disjoint arborescences. Namely, in their setting, a feasible solution is the union

⋃k
i=1 Fi

of disjoint arborescences F1, F2, . . . , Fk, and two feasible solutions
⋃k

i=1 Fi and
⋃k

i=1 F ′
i are

adjacent if and only if there are x ∈
⋃k

i=1 Fi \
⋃k

i=1 F ′
i and y ∈

⋃k
i=1 F ′

i \
⋃k

i=1 Fi such that⋃k
i=1 Fi − x + y =

⋃k
i=1 F ′

i . We note that even if two feasible solutions
⋃k

i=1 Fi and
⋃k

i=1 F ′
i

are adjacent in the sense of [13], the corresponding tuples (F1, F2, . . . , Fk) and (F ′
1, F ′

2, . . . , F ′
k)

may not be adjacent in our sense. It is worth mentioning that the reconfiguration problem
of the union of disjoint bases is trivially solvable, since it is just the reconfiguration problem
of bases of the union of matroids; see Section 2 for the definition of the matroid union. For
other reconfiguration problems related to (common bases of) matroids, see [5, 12].

Our work is highly related to a recent work of Bérczi, Mátravölgyi, and Schwarcz [1].
They considered the symmetric exchange version of our problem, where two (not necessarily
feasible) basis sequences B = (B1, . . . , Bk) and B′ = (B′

1, . . . , B′
k) are adjacent if there are

x ∈ Bi \Bj and y ∈ Bj \Bi such that

B′ = (B1, . . . , Bi−1, Bi − x + y, Bi+1, . . . , Bj−1, Bj − y + x, Bj+1, . . . , Bk).

This reconfiguration problem has received considerable attention as its reconfigurability is
essentially equivalent to White’s conjecture [20]. (See [1] for a comprehensive overview of
White’s conjecture.) In particular, the conjecture states that for any pair of two feasible
basis sequences B = (B1, . . . , Bk) and B′ = (B′

1, . . . , B′
k), B is reconfigurable to B′ (by

symmetric exchanges) if and only if
⋃k

i=1 Bi =
⋃k

i=1 B′
i. The conjecture is confirmed for

graphic matroids [2, 6], which means that for every pair of sequences of edge-disjoint k

spanning trees (T1, . . . , Tk) and (T ′
1, . . . , T ′

k) in a graph, one is reconfigurable to the other by
symmetric exchanges if

⋃k
i=1 E(Ti) =

⋃k
i=1 E(T ′

i). This is in contrast to our setting, having
an impossible case as seen in Figure 1.

We would like to emphasize that our setting is also quite natural as it can be seen as a
reconfiguration problem in the token jumping model, which is best studied in the context
of combinatorial reconfiguration [8, 15]. In particular, our problem can be regarded as a
reconfiguration problem for multiple solutions. One of the most well-studied problems in this
context is Coloring Reconfiguration [3, 4, 7], which can be seen as a multiple solution
variant of Independent Set Reconfiguration. There are several results working on recon-
figuration problems for multiple solutions, such as Disjoint Paths Reconfiguration [10]
and Disjoint Shortest Paths Reconfiguration [18].

2 Preliminaries

For a positive integer n, let [n] := {1, 2, . . . , n}. For integers p and q with p ≤ q, let
[p, q] := {p, p + 1, . . . , q − 1, q}. For sets X and Y , the symmetric difference of X and Y is
defined as X △ Y := (X \ Y) ∪ (Y \X).

Let E be a finite set and let B ⊆ 2E be a nonempty collection of subsets of E. We
say that M = (E,B) is a matroid if for B, B′ ∈ B and x ∈ B \ B′, there is y ∈ B′ \ B

satisfying (B \ {x}) ∪ {y} ∈ B. For notational convenience, we may write B − x + y instead
of (B \ {x})∪ {y}. Each set in B is called a basis of M . It is easy to verify that each basis of

T. Hanaka, Y. Iwamasa, Y. Kobayashi, Y. Okada, and R. Saito 38:5

M has the same cardinality, which is called the rank of M . In this paper, we may assume
that, unless explicitly stated otherwise, matroids are given as basis oracles. In this model, we
can access a matroid M = (E,B) through an oracle that decides whether X ∈ B for given
X ⊆ E.2 We also assume that we can evaluate this query in time |E|O(1).

Let M1 = (E1,B1), . . . , Mk = (Ek,Bk) be k matroids and let M = (M1, . . . , Mk). For
i ∈ [k], let Bi be a basis of Mi. A tuple B = (B1, . . . , Bk) of bases is called a basis sequence
of M. Since Ei and Ej may have an intersection for distinct i and j, Bi and Bj are not
necessarily disjoint. We say that B is feasible if Bi ∩ Bj = ∅ for distinct i, j ∈ [k]. For
two feasible basis sequences B = (B1, . . . , Bk) and B′ = (B′

1, . . . , B′
k) of M, we say that

B is adjacent to B′ if there is an index i ∈ [k] such that Bj = B′
j for j ∈ [k] \ {i} and

B′
i = Bi − x + y for some x ∈ Bi and y ∈ Ei \Bi. A reconfiguration sequence between B and

B′ is a tuple of feasible basis sequences ⟨B0,B1, . . . ,Bℓ⟩ such that B0 = B, Bℓ = B′, and Bi−1
and Bi are adjacent for all i ∈ [ℓ]. The length of the reconfiguration sequence is defined as ℓ.

Let M = (E,B) be a matroid. The dual of M is a pair M∗ = (E, {E \ B | B ∈ B}),
which also forms a matroid [16]. A coloop of a matroid M is an element e ∈ E that belongs
to all the bases of M , that is, e ∈ B for all B ∈ B. Let M = (E,B) and M ′ = (E′,B′) be
matroids and let B∗ be the family of maximal sets in {B ∪B′ | B ∈ B, B′ ∈ B′}. Then, the
pair (E ∪ E′,B∗) is the matroid union of M and M ′, which is denoted M ∨M ′. It is well
known that M ∨M ′ is also a matroid [16]. We can generalize this definition for more than
two matroids: For k matroids M1, . . . , Mk, the matroid union of M1, . . . , Mk is denoted by∨k

i=1 Mi. If the ground sets E and E′ of M and M ′ are disjoint, then M ∨M ′ is called the
direct sum of M and M ′, and we write M ⊕M ′ instead of M ∨M ′.

In our proofs, we use certain matroids. Let E be a finite set. For an integer r with
0 ≤ r ≤ |E|, the rank-r uniform matroid on E is the pair (E, {B ⊆ E | |B| = r}), that is,
the set of bases consists of all size-r subsets of E. Let {E1, . . . , Ek} be a partition of E (i.e.,
E =

⋃k
i=1 Ei and Ei ∩ Ej = ∅ for distinct i, j ∈ [k]). For each i ∈ [k], we set ri as an integer

with 0 ≤ ri ≤ |Ei|. If B ⊆ 2E consists of the sets B satisfying |B ∩ Ei| = ri for each i ∈ [k],
then the pair (E,B) forms a matroid, called the partition matroid. We can construct such a
partition matroid by taking the direct sum of the rank-ri uniform matroids on Ei for i.

Let D = (V, A) be a directed graph. For an arc a ∈ A, we write head(a) to denote the
head of e and tail(a) to denote the tail of e. A matching of D is a set N ⊆ A of arcs such
that no pair of arcs in N share a vertex. A walk in D is a sequence (v0, a1, v1, a2, . . . , aℓ, vℓ)
such that tail(ai) = vi−1 and head(ai) = vi for all i ∈ [ℓ]. When no confusion is possible, we
may identify the directed graph with its arc set.

3 Polynomial-time algorithm

This section is devoted to a polynomial-time algorithm for Basis Sequence Reconfigu-
ration, implying Theorem 1. Let M1 = (E1,B1), M2 = (E2,B2), . . . , Mk = (Ek,Bk) be k

matroids that are given as basis oracles. We denote by M = (M1, M2, . . . , Mk) the tuple of
matroids M1, . . . , Mk.

Let B = (B1, . . . , Bk) and B′ = (B′
1, . . . , B′

k) be two feasible basis sequences of M. Take
any coloop x of the matroid union

∨k
i=1 Mi. Since all bases in B are mutually disjoint,⋃k

i=1 Bi is a basis of
∨k

i=1 Mi. This implies that x ∈ Bi for some i. Suppose that there
is a feasible basis sequence (B1, . . . , Bi−1, Bi − x + y, Bi+1, . . . , Bk) of M obtained from B

2 Our algorithm also runs in polynomial time even when the input matroids are given as independence or
rank oracles.

ISAAC 2024

38:6 Basis Sequence Reconfiguration in the Union of Matroids

by exchanging x ∈ Bi with y ∈ Ei \ Bi in Mi. As it is feasible,
⋃k

i=1 Bi − x + y is also a
basis of

∨k
i=1 Mi, contradicting the fact that x is a coloop. This implies that every coloop

in
∨k

i=1 Mi belongs to a basis in a feasible basis sequence that is reconfigurable from B.
More formally, let K denote the set of coloops in

∨k
i=1 Mi. If B is reconfigurable to B′, we

have (K ∩B1, . . . , K ∩Bk) = (K ∩B′
1, . . . , K ∩B′

k). The following theorem says that this
necessary condition is also sufficient.

▶ Theorem 3. Let K be the set of coloops of
∨k

i=1 Mi. For feasible basis sequences B =
(B1, . . . , Bk) and B′ = (B′

1, . . . , B′
k) of M, one is reconfigurable to the other if and only if

(K ∩B1, . . . , K ∩Bk) = (K ∩B′
1, . . . , K ∩B′

k).

The proof of Theorem 3 is given in Section 3.2 below. Before the proof, we introduce the
concept of exchangeability graphs and present its properties in Section 3.1.

3.1 Exchangeability graph
For a matroid M = (E,B) and a basis B ∈ B, the exchangeability graph of M with respect
to B, denoted as D(M, B), is a directed graph whose vertex set is the ground set E of M

and whose arc set A is

A := {(x, y) | x ∈ B and y ∈ E \B such that B − x + y ∈ B}.

Note that D(M, B) is bipartite; all arcs go from B to E \B.
Let N = {(x1, y1), (x2, y2), . . . , (xn, yn)} ⊆ A be a matching of D(M, B) and let B△N :=

B \{x1, x2, . . . , xn}∪{y1, y2, . . . , yn}. We say that N is unique if there is no perfect matching
N ′ other than N in the subgraph of D(M, B) induced by {x1, . . . , xn, y1, . . . , yn}. The
following is a well-known lemma in matroid theory, called the unique-matching lemma.

▶ Lemma 4 (e.g., [14, Lemma 2.3.18]). If N = {(x1, y1), (x2, y2), . . . , (xn, yn)} is a unique
matching in the subgraph of D(M, B) induced by {x1, . . . , xn, y1, . . . , yn}, then B △N ∈ B.

The exchangeability graph of M with respect to B, denoted as D(M,B), is the union of
the exchangeability graphs D(Mi, Bi) = (Ei, Ai) of Mi with respect to Bi for all i ∈ [k]. In
the following, the vertex set of D(M,B) is denoted by E, that is, E =

⋃k
i=1 Ei. We note

that, for distinct i, j ∈ [k], the two arc sets Ai and Aj are disjoint, since Bi ∩Bj = ∅. A walk
W in D(M,B) is called a tadpole-walk if W is of the form

(x0, a1, x1, . . . , xm−1, am, xm = x0, am+1, xm+1, am+2, . . . , an, xn) (1)

for some 0 ≤ m < n such that the former part (x0, a1, x1, . . . , xm−1, am, xm = x0) forms
a directed cycle and the latter part (xm = x0, am+1, xm+1, . . . , xn) forms a directed path
with xn ∈ E \

⋃k
i=1 Bi, where x0, x1, . . . , xn are distinct except for x0 = xm if m > 0. See

Figure 2 for an illustration. The former part can be empty; in this case, W is just a directed
path ending at some vertex in E \

⋃k
i=1 Bi. We introduce a total order ≺ on the vertex set

of W as: The smallest vertex is x0(= xm) and xi ≺ xj if and only if i < j for other vertices
xi, xj . We say that W is shortcut-free if, for all i ∈ [k] and two arcs a, a′ ∈ W ∩ Ai with
tail(a) ≺ tail(a′), we have (tail(a), head(a′)) /∈ Ai. A subgraph W ′ of D(M,B) is said to be
valid if it is the disjoint union of a (possibly empty) directed path ending at some vertex
in E \

⋃k
i=1 Bi and a (possibly empty) directed cycle. For a valid subgraph W ′ of D(M,B),

we define B△W ′ := (B1 △ (W ′ ∩A1), B2 △ (W ′ ∩A2), . . . , Bk △ (W ′ ∩Ak)). Observe first
that W ′ ∩Ai forms a matching in D(Mi, Bi) for each i. To see this, suppose that there are
two arcs a and a′ in W ′ ∩ Ai that share a vertex x. Since each component of W ′ is either

T. Hanaka, Y. Iwamasa, Y. Kobayashi, Y. Okada, and R. Saito 38:7

xm = x0

x1

x2

a1

a2

am

xm+1 xm+2

am+1

xn

am+2

Figure 2 A tadpole-walk starting from x0 and ending at xn.

a directed path or a directed cycle, we can assume that head(a) = tail(a′) = x. However,
x /∈ Bi as head(a) = x and x ∈ Bi as tail(a′) = x, a contradiction. Observe next that
|
⋃k

i=1 Bi| = |
⋃k

i=1(Bi △ (W ′ ∩ Ai))|. This follows from the fact that the path component
has a sink vertex in E \

⋃k
i=1 Bi (if it is nonempty).

The following two lemmas play important roles in the proof of Theorem 3.

▶ Lemma 5. Suppose that W is a shortcut-free tadpole-walk in D(M,B) and W ′ is a valid
subgraph of W . Then B△W ′ is a feasible basis sequence of M.

Proof. We first observe that Bi △ (W ′ ∩ Ai) and Bj △ (W ′ ∩ Aj) are disjoint for distinct
i, j ∈ [k]. This follows from the following facts: |Bi| = |Bi △ (W ′ ∩ Ai)| for each i and
|
⋃k

i=1 Bi| = |
⋃k

i=1(Bi △ (W ′ ∩Ai))|. Thus, it suffices to show that Bi △ (W ′ ∩Ai) ∈ Bi for
each i.

Let b1, b2, . . . , bℓ be the arcs in the matching W ′ ∩Ai; we may assume that i < j if and
only if tail(bi) ≺ tail(bj). Since W is shortcut-free, we have (tail(bi), head(bj)) /∈ Ai for any
distinct i, j ∈ [ℓ] with i < j. Observe that W ′ ∩Ai forms a unique matching in D(Mi, Bi).
This can be seen by considering the other case that W ′ ∩ Ai is not unique in D(Mi, Bi),
yielding that D(Mi, Bi) has an arc (tail(bi), head(bj)) for some i, j ∈ [ℓ] with i < j. Thus
Bi △ (W ′ ∩Ai) ∈ Bi by Lemma 4. ◀

▶ Lemma 6. Let B = (B1, . . . , Bk) be a feasible basis sequence of M and B :=
⋃k

i=1 Bi. For
y ∈ E \ B, we denote by Ty the set of vertices that are reachable to y in D(M,B), that is,
the set of vertices x in E such that there is a directed path from x to y in D(M,B). Then
the set of coloops of M :=

∨k
i=1 Mi is equal to B \

⋃
y∈E\B Ty.

Proof. Clearly B contains all coloops of M as B is a basis of M . By considering the basis
exchange axiom for the dual matroid M∗ of M , an element x ∈ B is not a coloop of M if and
only if there is y ∈ E \B such that B−x + y is a basis of M . Here, it easily follows from [19,
Theorem 42.4] that, for x ∈ B and y ∈ E \B, the set B − x + y is a basis of M if and only if
there is a directed path from x to y in D(M,B). Hence the existence of such y ∈ E \B can
be rephrased as the existence of a directed path from x to some vertex y ∈ E \B in D(M,B).
This implies that the set of coloops of M is equal to B \

⋃
y∈E\B Ty, where Ty denotes the

set of vertices that are reachable to y in D(M,B). ◀

Using Lemma 6, we can decide in polynomial time whether the condition (K∩B1, . . . , K∩
Bk) = (K∩B′

1, . . . , K∩B′
k) in Theorem 3 holds as follows. Let E =

⋃k
i=1 Ei. We can construct

the exchangeability graph D(M,B) with
∑k

i=1 |Ei|2 ≤ k|E|2 oracle calls. By Lemma 6, we
can compute the set K of coloops of M in time O(|E|2) using a standard graph search
algorithm.

ISAAC 2024

38:8 Basis Sequence Reconfiguration in the Union of Matroids

3.2 Proof of Theorem 3
In this subsection, we provide the proof of Theorem 3, and then we also see that Theorem 1
follows from our proof of Theorem 3.

We define the distance d(B,B′) between B and B′ by d(B,B′) :=
∑k

i=1 |Bi △B′
i|. As we

have already seen the only-if part of Theorem 3 in the previous subsection, in the following,
we show the if part by induction on d(B,B′).

It is easy to see that d(B,B′) = 0 if and only if B = B′. Suppose that d(B,B′) > 0. If
there is a feasible basis sequence B′′ = (B′′

1 , B′′
2 , . . . , B′′

k) of M such that B is reconfigurable
to B′′ and d(B′′,B′) < d(B,B′), we have (B′

1 ∩K, . . . , B′
k ∩K) = (B1 ∩K, . . . , Bk ∩K) =

(B′′
1 ∩K, . . . , B′′

k ∩K). Hence B′′ is reconfigurable to B′ by induction, which implies that
B is reconfigurable to B′. Thus, our goal is to find such a feasible basis sequence B′′. To
this end, we first compute a shortcut-free tadpole-walk W in D(M,B) and then transform B
to B′′ one-by-one along this W . A crucial observation in this transformation is that each
intermediate basis sequence is of the form B△W ′ for some valid subgraph W ′ of W , meaning
that it is a feasible basis sequence of M by Lemma 5.

Take any x0 ∈
⋃k

i=1 Bi \B′
i, say, x0 ∈ Bi0 \B′

i0
. Then there is x1 ∈ B′

i0
\Bi0 such that

Bi0 − x0 + x1 ∈ Bi0 . Hence we have a1 = (x0, x1) ∈ Ai0 . If x1 ∈ E \
⋃k

i=1 B, we obtain a
tadpole-walk (x0, a1, x1); we are done. Otherwise, this vertex x1 belongs to Bi1 for some
i1 (̸= i0). In particular, by x1 ∈ B′

i0
, we have x1 ∈ Bi1 \B′

i1
. Hence there is x2 ∈ B′

i1
\Bi1

such that Bi1 − x1 + x2 ∈ Bi1 , implying a2 = (x1, x2) ∈ Ai1 . By repeating this argument, we
can find either of the following subgraphs of D(M,B):
Type I: a directed path (x0, a1, x1, . . . , an, xn) satisfying that xn ∈ E \

⋃k
i=1 Bi and that

xℓ ∈ Biℓ
\B′

iℓ
, xℓ+1 ∈ B′

iℓ
\Biℓ

, and aℓ+1 ∈ Aiℓ
for all ℓ ∈ [0, n− 1].

Type II: a directed cycle (xp, ap+1, xp+1, . . . , xq−1, aq, xq = xp) satisfying that xℓ ∈ Biℓ
\B′

iℓ
,

xℓ+1 ∈ B′
iℓ
\Biℓ

, and aℓ+1 ∈ Aiℓ
for all ℓ ∈ [p, q − 1].

In the former case (Type I), the resulting directed path is a tadpole-walk. Consider the latter
case (Type II). By the assumption that (B1 ∩K, . . . , Bk ∩K) = (B′

1 ∩K, . . . , B′
k ∩K), none

of the vertices xp, . . . , xq belongs to the set K of coloops. This implies that, by Lemma 6,
D(M,B) has a directed path from each vertex in the cycle to a vertex in E \

⋃k
i=1 Bi. We

can choose such a directed path (xr, b1, y1, . . . , bm, ym) from a vertex xr in the cycle to a
vertex ym in E \

⋃k
i=1 Bi so that the path is arc-disjoint from the cycle, by taking a shortest

one among all such paths. Then, the walk (xr, ar, xr+1, . . . , xr, b1, y1, . . . , bm, ym) forms a
tadpole-walk. We denote by W the tadpole-walk obtained in these ways (Type I and II). In
the following, by rearranging the indices, we may always assume that W is of the form (1),
where the former part C = (x0, a1, x1, . . . , xm−1, am, xm = x0) is a directed cycle and the
later part P = (xm = x0, am+1, xm+1, . . . , xn) is a directed path in D(M,B). Note that the
directed cycle C can be empty, which corresponds to Type I.

We next update the above W so that W becomes shortcut-free. Suppose that W is
not shortcut-free. Then there are arcs a, a′ ∈W ∩Ai such that tail(a) ≺ tail(a′) satisfying
a′′ := (tail(a), head(a′)) ∈ Ai. Let a = (xp, xp+1) and let a′ = (xq, xq+1). Since W ∩ Ai is
a matching in D(M,B), we have p + 1 ̸= q. We then execute one of the following update
procedure:

If a and a′ belong to the directed path P , then update W as

W ← (x0, . . . , xm−1, am, xm = x0, am+1, . . . , ap, xp, a′′, xq+1, . . . , xn).

If a and a′ belong to the directed cycle C, then update W as

W ← (x0, a1, . . . , ap, xp, a′′, xq+1, . . . , xm = x0, am+1, xm+1, . . . , xn).

T. Hanaka, Y. Iwamasa, Y. Kobayashi, Y. Okada, and R. Saito 38:9

xm = x0

x1

x2

xn

xp
xp+1

xq
xq+1

a′′

xm−1

xm = x0

x1

x2

xn

xp

xq+1

a′′

xm−1

xm = x0

x1

x2

xnxp xp+1 xq xq+1

a′′xm−1

xm = x0

x1

x2

xnxp xq+1

a′′xm−1

xm = x0

x1

x2

xn

xp
xp+1

xq xq+1

xm−1

xm = x0

x1

x2

xn

xp
xp+1

xq+1

xm−1
a′′ a′′

Figure 3 The figure depicts tadpole-walks (with shortcuts) and their updated tadpole-walks.

If a belongs to C and a′ belongs to P , then update W as

W ← (xp, ap+1, . . . , ap, xp, a′′, xq+1, . . . , xn).

See Figure 3 for illustrations.
Suppose that W is a tadpole-walk of Type I. In this case, the second and third cases

never occur. By the choice of a = (xp, xp+1), a′ = (xq, xq+1), and a′′ = (xp, xq+1), we have
xp ∈ Bi \B′

i, xq+1 ∈ B′
i \Bi, and (xp, xq+1) ∈ Ai. Moreover, the updated W is a directed

path ending at xn ∈ E \
⋃k

i=1 Bi, which implies that W is still a tadpole-walk of Type I.
Suppose next that W is of Type II. In the first and third cases, the cycle part does not
change; the updated W is still of a tadpole-walk Type II. In the second case, the cycle part
is shortened by a′′ but the updated W is still a tadpole-walk as well. By the choice of a, a′,
and a′′, we have xp ∈ Bi \B′

i, xq+1 ∈ B′
i \Bi, and (xp, xq+1) ∈ Ai. Hence the resulting W is

still a tadpole-walk of Type II. Since this update procedure strictly reduces the size of W ,
we can eventually obtain a shortcut-free tadpole-walk in polynomial time.

Finally, we construct a reconfiguration sequence based on a shortcut-free tadpole-walk W

of each type. Suppose that W is of Type I, i.e., W = (x0, a1, x1, . . . , xn) is a directed path
with n ≥ 1. For p ∈ [n− 1], let Wp denote the subgraph of W induced by {an−p+1, . . . , an}.
Then Wp forms a directed path (xn−p, an−p+1, xn−p+1, . . . , xn), which implies that Wp is
valid. By Lemma 5, B△Wp is a feasible basis sequence for each p. Furthermore, we have
B△Wp = (B△Wp−1)△ (xn−p+1, xn−p) (in which (xn−p+1, xn−p), the reverse of an−p+1,
can be viewed as an arc in D(M,B△Wp−1)). This implies that B△Wp−1 and B△Wp are
adjacent for all p ∈ [n− 1], where W0 := ∅. Hence

⟨B = B△W0,B△W1,B△W2, . . . ,B△Wn−1 = B△W ⟩

is a reconfiguration sequence from B to B △ W . In addition, since xℓ ∈ Biℓ
\ B′

iℓ
and

xℓ+1 ∈ B′
iℓ
\Biℓ

for each ℓ ∈ [0, n− 1], we have d(B△W,B′) = d(B,B′)− 2n < d(B,B′).

ISAAC 2024

38:10 Basis Sequence Reconfiguration in the Union of Matroids

xm = x0

x1

x2

a1

a2

am

xm+1 xm+2

am+1

xn

am+2

xm = x0

x1

x2

a1

a2

am

xm+1 xm+2

am+1

xn

am+2

Figure 4 The bold red walk in the upper digraph represents Wp for p = n − 1, and that in the
lower digraph for p = n.

Suppose next that W is of Type II, i.e., W is of the form (1) with 0 < m < n,
where the (nonempty) former part C = (x0, a1, x1, . . . , xm−1, am, xm = x0) is a directed
cycle and the later part P = (xm = x0, am+1, xm+1, . . . , xn) is a directed path. For
p ∈ [n − 1], let Wp denote the subgraph of W induced by {an−p+1, . . . , an}, which forms
a directed path (xn−p, an−p+1, xn−p+1, . . . , xn) as in the case of Type I and is valid. For
p ∈ [n, 2n − m − 1], let Wp denote the subgraph of W induced by {a1, a2, . . . , am} ∪
{a(m−n+2)+p, a(m−n+2)+(p+1), . . . , an}, where W2n−m−1 is defined as C. In this case, Wp

forms the disjoint union of the directed cycle C and the subpath of P starting from xm−n+1+p

ending at xn ∈ E \
⋃k

i=1 Bi; the subpath is empty if p = 2n−m− 1. Thus Wp is also valid.
By Lemma 5, B△Wp is feasible for each p ∈ [2n−m− 1]. Furthermore, we have

B△Wp =

(B△Wp−1)△ (xn−p+1, xn−p) if p ∈ [n− 1],
(B△Wp−1)△ (xm+1, x1) if p = n,

(B△Wp−1)△ a(m−n+1)+p if p ∈ [n + 1, 2n−m− 1].

See Figure 4 for the case of p = n. This implies that B△Wp−1 and B△Wp are adjacent for
all p ∈ [2n−m− 1], where W0 := ∅. Hence

⟨B = B△W0,B△W1,B△W2, . . . ,B△W2n−m−1 = B△ C⟩

is a reconfiguration sequence from B to B △ C. In addition, since xℓ ∈ Biℓ
\ B′

iℓ
and

xℓ+1 ∈ B′
iℓ
\ Biℓ

for each ℓ ∈ [m], we have d(B△ C,B′) = d(B,B′) − 2m < d(B,B′). This
completes the proof of Theorem 3.

The above proof immediately turns into an algorithm for finding a feasible basis sequence
B′′ with d(B′′,B′) < d(B,B′) in polynomial time. As shown in the previous subsection, we
can construct the exchangeability graph D(M,B) using k|E|2 oracle calls. We can compute
a shortcut-free tadpole-walk in D(M,B) in O(|E|2) time. Thus, we can compute a feasible
basis sequence B′′ of M with d(B′′,B′) < d(B,B′) such that B is reconfigurable to B′′ in
O(|E|2) time and |E|2 oracle calls. Since d(B,B′) is at most 2|E|, we can obtain an entire
reconfiguration sequence from B to B′ in O(|E|3) time and |E|3 oracle calls in the case where
B is reconfigurable to B′. Note that the length of the above reconfiguration sequence is
O(|E|2). Therefore, Theorem 1 follows.

T. Hanaka, Y. Iwamasa, Y. Kobayashi, Y. Okada, and R. Saito 38:11

4 Inapproximability of finding a shortest reconfiguration sequence

In this section, we prove Theorem 2, that is, Shortest Basis Sequence Reconfiguration
is hard to approximate in polynomial time under P ̸= NP. To show this inapproximability
result, we perform a reduction from Set Cover, which is notoriously hard to approximate.

Let S ⊆ 2U be a family of subsets of a finite set U where n = |U | and m = |S|. We say
that a subfamily S ′ ⊆ S covers U (or S ′ is a set cover of U) if U =

⋃
S∈S′ S. Set Cover is

the problem that, given a set U and a family S ⊆ 2U of subsets of U , asks to find a minimum
cardinality subfamily S ′ ⊆ S that covers U . Set Cover is known to be hard to approximate:
Raz and Safra [17] showed that there is a constant c∗ > 0 such that it is NP-hard to find
a c∗ log(n + m)-approximate solution of Set Cover. Throughout this section, we assume
that the whole family S covers U .

From an instance (U,S) of Set Cover, we construct two partition matroids M1 = (E1,B1)
and M2 = (E2,B2) such that there is a set cover of U of size at most k if and only if there
is a reconfiguration sequence between feasible basis sequences Bs and Bt of M = (M1, M2)
with length at most ℓ for some ℓ.

4.1 Construction

To construct the partition matroids M1 and M2, we use several uniform matroids and
combine them into M1 and M2. In the following, we assume that the sets in S are ordered
in an arbitrary total order ⪯. For each element u ∈ U , we define f(u) + 3 elements
e1

u, e2
u, e3

u, c1
u, . . . , c

f(u)
u and three sets:

E1
u := {e1

u, e2
u}, E2

u := {e1
u, e2

u, e3
u}, E3

u := {e3
u} ∪ {c1

u, c2
u, . . . , cf(u)

u },

where f(u) := |{S ∈ S | u ∈ S}| is the number of occurrences of u in S. We denote by M i
u

the rank-1 uniform matroid over Ei
u for 1 ≤ i ≤ 3, that is, each basis of M i

u contains exactly
one element in Ei

u. For each set S ∈ S, we denote by M0
S the uniform matroid of rank |S|

with ground set E0
S := {cf(u,S)

u | u ∈ S} ∪ {s1
S}, where f(u, S) = |{S′ | S′ ⪯ S, u ∈ S′}|.

Note that E0
S ∩ E0

S′ = ∅ for distinct S, S′ ∈ S. We let L := 2n2. For 1 ≤ i ≤ L, we denote
by M i

S the rank-1 matroid with ground set Ei
S := {si

S , si+1
S }. Then, we define two partition

matroids M1 and M2 as:

M1 :=
⊕
u∈U

M1
u ⊕

⊕
u∈U

M3
u ⊕

⊕
S∈S

n2⊕
i=1

M2i−1
S , M2 :=

⊕
u∈U

M2
u ⊕

⊕
S∈S

M0
S ⊕

⊕
S∈S

n2⊕
i=1

M2i
S .

The matroids M1 and M2 are illustrated in Figure 5. We denote by E1 and E2 the ground
sets and by B1 and B2 the collections of bases of M1 and M2, respectively. Each uniform
matroid constituting these partition matroids is called a block. Since M1 and M2 are partition
matroids, the following observation follows.

▶ Observation 7. Let (B1, B2) be a feasible basis sequence of (M1, M2) and let x ∈ B1 be
arbitrary. Then, for any element y ∈ E1 \ (B1 ∪ B2) that belongs to the same block as x

in M1, (B1 − x + y, B2) is a feasible basis sequence of (M1, M2). Similarly, let x ∈ B2 be
arbitrary. Then, for any element y ∈ E2 \ (B1 ∪B2) that belongs to the same block as x in
M2, (B1, B2 − x + y) is a feasible basis sequence of (M1, M2).

ISAAC 2024

38:12 Basis Sequence Reconfiguration in the Union of Matroids

e1u

e2u

e1v

e2v

e3u

e3v

e1w

e2w

e3w

s1S s2S s3S s4S sL+1
SsLS

M 1
u

M 1
v

M 1
w

M 3
u

M 3
v

M 3
w

· · ·M 1
S M 3

S ML
SM 2

S

M 2
u

M 2
v

M 2
w

M 0
S

c1u, . . . , c

f(u)
uc3u

c2v

c4w

Figure 5 The figure depicts (hypergraph representations of) two partition matroids M1 and M2.
A set S ∈ S contains three elements u, v, w ∈ U with f(u, S) = 3, f(v, S) = 2, and f(w, S) = 4.
Solid black circles represent elements in Bs

1, and solid red circles represent elements in Bs
2.

Let Bs = (Bs
1, Bs

2) be a feasible basis sequence such that

Bs
1 = {e1

u | u ∈ U} ∪ {e3
u | u ∈ U} ∪

⋃
S∈S
{s2i−1

S | i ∈ [n2]},

Bs
2 = {e2

u | u ∈ U} ∪
⋃

S∈S
{cf(u,S)

u | u ∈ S} ∪
⋃

S∈S
{s2i

S | i ∈ [n2]}.

It is easy to verify that Bs
1 and Bs

2 are bases of M1 and M2, respectively. Similarly, let
Bt = (Bt

1, Bt
2) be a feasible basis sequence such that

Bt
1 = {e2

u | u ∈ U} ∪ {e3
u | u ∈ U} ∪

⋃
S∈S
{s2i−1

S | i ∈ [n2]},

Bt
2 = {e1

u | u ∈ U} ∪
⋃

S∈S
{cf(u,S)

u | u ∈ S} ∪
⋃

S∈S
{s2i

S | i ∈ [n2]}.

Let us note that sL+1
S /∈ Bs

1 ∪ Bs
2 ∪ Bt

1 ∪ Bt
2 for all S ∈ S. Moreover, we have Bs

1 \ Bt
1 =

Bt
2 \Bs

2 = {e1
u | u ∈ U} and Bt

1 \Bs
1 = Bs

2 \Bt
2 = {e2

u | u ∈ U}.

4.2 Correctness
Before proceeding to our proof, we first give the intuition behind our construction. Suppose
that there are tokens on the elements in Bs

1 ∪Bs
2. As observed in the previous subsection, we

have e1
u ∈ Bs

1 \ Bt
1 and e1

u ∈ Bt
2 \ Bs

2 for u ∈ U . Moreover, e2
u ∈ Bt

1 \ Bs
1 and e2

u ∈ Bs
2 \ Bt

2
for u ∈ U . Thus, in order to transform Bs to Bt, we need to “swap” the tokens on e1

u

and e2
u. However, as all the elements except for sL+1

S for S ∈ S are occupied by tokens in
Bs

1 ∪ Bs
2, this requires to move an “empty space” initially placed on sL+1

S to e3
u for some

S ∈ S with u ∈ S, and then swap the tokens on e1
u and e2

u using the empty space on e3
u. By

the construction of M1 and M2, this can be done by (1) shifting the tokens along the path
between sL+1

S and s1
S one by one, (2) moving the empty space from s1

S to c
f(u,S)
u , and then

(3) moving the empty space from c
f(u,S)
u to e3

u, which requires at least L exchanges. As L is
sufficiently large, we need to cover the elements in U with a small number of sets in S for a
short reconfiguration sequence. The following lemma gives an upper bound on the length of
a shortest reconfiguration sequence.

T. Hanaka, Y. Iwamasa, Y. Kobayashi, Y. Okada, and R. Saito 38:13

Algorithm 1 An algorithm for constructing a reconfiguration sequence between Bs and
Bt from a set cover S∗ ⊆ S of U .

Input: A set cover S∗ ⊆ S of U .
Output: A reconfiguration sequence between Bs and Bt.

1 Ũ ← ∅, B← Bs

2 foreach S ∈ S∗ do
3 for i = L, L− 1, . . . , 1 do
4 B← B△ (si

S , si+1
S)

5 foreach S ∈ S∗ do
6 if S \ Ũ ̸= ∅ then
7 foreach u ∈ S \ Ũ do
8 B← B△ (cf(u,S)

u , s1
S)

9 B← B△ (e3
u, c

f(u,S)
u)

10 B← B△ (e2
u, e3

u)
11 B← B△ (e1

u, e2
u)

12 B← B△ (e3
u, e1

u)
13 B← B△ (cf(u,S)

u , e3
u)

14 B← B△ (s1
S , c

f(u,S)
u)

15 Ũ ← Ũ ∪ S

16 foreach S ∈ S∗ do
17 for i = 1, 2, . . . , L do
18 B← B△ (si+1

S , si
S)

▶ Lemma 8. Let S∗ ⊆ S be a set cover of U of size at most k. Then, there is a reconfiguration
sequence between Bs and Bt with length at most 2kL + 7n.

Proof. Given a set cover S∗ ⊆ S, we construct a reconfiguration sequence between Bs and
Bt by applying the algorithm described in Algorithm 1. Let B = (B1, B2) be a feasible basis
sequence of (M1, M2). For x, y ∈ E1 ∪ E2, we call (x, y) a valid pair if either
(1) x ∈ B1 and y ∈ E1 \ (B1 ∪B2) belong to the same block in M1; or
(2) x ∈ B2 and y ∈ E2 \ (B1 ∪B2) belong to the same block in M2.
For a valid pair (x, y), we define

B△ (x, y) =
{

(B1 − x + y, B2) if (x, y) satisfies (1),
(B1, B2 − x + y) if (x, y) satisfies (2).

By Observation 7, B△ (x, y) is a feasible basis sequence of (M1, M2).
When we update a feasible basis sequence B = (B1, B2) with B △ (x, y) for some

x, y ∈ E1 ∪ E2 in the algorithm, the pair (x, y) is always assured to be valid. Thus, all the
pairs B = (B1, B2) appearing in the execution of the algorithm are feasible basis sequences
of (M1, M2). Since S∗ is a set cover of U , we have Ũ = U when the algorithm terminates.
Thus, for each u ∈ U , the steps from line 8 to line 14 are executed exactly once. This implies
that the algorithm correctly computes a reconfiguration sequence between Bs and Bt with
length 2kL + 7n. ◀

▶ Lemma 9. Suppose that there is a reconfiguration sequence between Bs and Bt of length ℓ.
Then, there is a set cover S∗ ⊆ S of U with |S∗| ≤ ⌊ℓ/2L⌋.

ISAAC 2024

38:14 Basis Sequence Reconfiguration in the Union of Matroids

Proof. Let σ = ⟨B0, . . . ,Bℓ⟩ be a reconfiguration sequence between Bs and Bt of length ℓ.
For a feasible basis sequence B = (B1, B2), an element e ∈ E1 ∪ E2 is said to be free in B
if e /∈ B1 ∪ B2. We define S∗ := {S ∈ S | s1

S is free in Bi for some i}. Then the following
holds.

▷ Claim 10. The subfamily S∗ of S is a set cover of U .

Proof. Let Bi = (Bi
1, Bi

2) for i ∈ [0, ℓ]. We first observe that, for S ∈ S and i ∈ [0, ℓ], if
s1

S ∈ Bi
1, then {cf(u,S)

u | u ∈ S} ⊆ Bi
2. This can be seen as follows. Since s1

S ∈ Bi
1, we have

s1
S /∈ Bi

2. As Bi
2 must contain a basis B0

S of M0
S , which is the uniform matroid of rank |S|

with the ground set {cf(u,S)
u | u ∈ S} ∪ {s1

S}, the basis B0
S must be {cf(u,S)

u | u ∈ S}. That
is, we have {cf(u,S)

u | u ∈ S} ⊆ Bi
2.

We then show the assertion of Claim 10. Suppose for contradiction that there is an
element u∗ ∈ U that is not covered by S∗. Then, for S ∈ S with u∗ ∈ S, the element s1

S

is not free in Bi for any 0 ≤ i ≤ ℓ, which implies that s1
S belongs to Bi

1. Thus, for each
i, we have Bi

2 ⊇
⋃

S∈S:u∗∈S{c
f(u,S)
u | u ∈ S} ⊇ {c1

u∗ , . . . , c
f(u∗)
u∗ }, where the first inclusion

follows from the above observation. By this inclusion with the fact that M3
u∗ is the uniform

matroid of rank 1 with the ground set {e3
u∗} ∪ {c1

u∗ , . . . , c
f(u∗)
u∗ }, the basis Bi

1 must contain
e3

u∗ for each i. Hence, during the reconfiguration sequence σ = ⟨B0, . . . ,Bℓ⟩, we cannot move
any element in E1

u∗ = {e1
u∗ , e2

u∗} (or more precisely E1
u∗ ∪ E2

u∗ ∪ E3
u∗). This contradicts

that σ is a reconfiguration sequence from Bs to Bt; recall e1
u∗ ∈ Bs

1 \ Bt
1 = Bt

2 \ Bs
2 and

e2
u∗ ∈ Bt

1 \Bs
1 = Bs

2 \Bt
2. ◁

In the reconfiguration sequence σ = ⟨B0, . . . ,Bℓ⟩, for each S ∈ S∗, the element sL+1
S must

be free in B0 and Bℓ, and s1
S must be free at least once. Hence, the length ℓ of σ is at least

2L · |S∗|, where L is equal to the number of required steps to move from a feasible basis
sequence such that sL+1

S (resp. s1
S) is free to another feasible basis sequence such that s1

S

(resp. sL+1
S) is free. Since S∗ is a set cover by Claim 10, we can conclude that there is a set

cover of size at most ⌊ℓ/2L⌋. ◀

Proof of Theorem 2. To prove the NP-hardness, we give a polynomial-time reduction from
Set Cover. We claim that I = (U,S) has a set cover of size at most k if and only if there
is a reconfiguration sequence between Bs and Bt of length at most (2k + 1) · L. We may
assume n ≥ 4.

Suppose that I has a set cover of size at most k. Then, by Lemma 8 and 7n ≤ 2n2 = L,
we can construct a reconfiguration sequence from Bs to Bt of length at most 2kL + 7n ≤
2kL + 2n2 = (2k + 1) · L, proving the forward implication.

Conversely, assume that there is a reconfiguration sequence between Bs and Bt of length
at most (2k + 1) · L. Then, by Lemma 9, we obtain a set cover for I of the size at most
⌊(2k + 1) · L/2L⌋ = ⌊k + 1/2⌋ = k.

To prove the inapproximability, let N =
∑k

i=1 |Ei| and suppose that there exists a
c′ log N -approximation algorithm A′ for Shortest Basis Sequence Reconfiguration for
some constant c′ > 0. Then we construct an algorithm A that, given an instance I = (U,S)
of Set Cover, outputs a set cover of I as follows.

1. Construct an instance I ′ = (M,Bs,Bt) of Shortest Basis Sequence Reconfigura-
tion from an instance I = (U,S) of Set Cover using the construction in Section 4.1.

2. Compute a reconfiguration sequence σ′ of I ′ by applying A′.
3. Compute a set cover S∗ for I from σ′ by Lemma 9.

T. Hanaka, Y. Iwamasa, Y. Kobayashi, Y. Okada, and R. Saito 38:15

▷ Claim 11. For some constant c > 0, algorithm A produces a c log(n + m)-approximation
solution for Set Cover.

Proof. Since S covers U , by Lemma 8, there is a reconfiguration sequence between Bs and
Bt) of length at most 2L · OPT(I) + 7n, where OPT(I) is the minimum cardinality of a
set cover of U . Moreover, we have N ≤ (n + m)d for some constant d. Thus, A′ outputs
a reconfiguration sequence σ′ of length at most ℓ := c′ log N · (2L · OPT(I) + 7n) in time
(n + m)O(1). Finally, by Lemma 9, we can compute a set cover S∗ ⊆ S of U from σ′ with
size at most ℓ/2L = c′ log N · (OPT(I) + o(1)) ≤ 2c′ log N · OPT(I). Since N ≤ (n + m)d,
we have |A(I)| ≤ c log(n + m) ·OPT(I) for any constant c > 2c′d. ◁

By choosing the constant c′ as c′ < c∗/2d, we derive a polynomial-time c∗ log(n + m)-
approximation algorithm for Set Cover, completing the proof of Theorem 2. ◀

5 Conclusion

In this paper, we studied Basis Sequence Reconfiguration, which is a generalization of
Spanning Tree Sequence Reconfiguration. For this problem, we first showed that
Basis Sequence Reconfiguration can be solved in polynomial time, assuming that the
input matroids are given as basis oracles. Second, we showed that the shortest variant of
Basis Sequence Reconfiguration is hard to approximate within a factor of c log n for
some constant c > 0 unless P = NP.

For future work, it is interesting to investigate the computational complexity of the
special settings of Basis Sequence Reconfiguration. It would be interesting to design
faster or simpler algorithms for Basis Sequence Reconfiguration with graphic matroids,
that is, for Spanning Tree Sequence Reconfiguration. Our hardness result for the
shortest variant uses two distinct partition matroids. Thus, it would be worth considering
the case for two identical matroids. Finally, the computational complexity of Shortest
Spanning Tree Sequence Reconfiguration is another promising direction.

References
1 Kristóf Bérczi, Bence Mátravölgyi, and Tamás Schwarcz. Reconfiguration of basis pairs in

regular matroids. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors, Proceedings
of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC,
Canada, June 24-28, 2024, pages 1653–1664. ACM, 2024. doi:10.1145/3618260.3649660.

2 Jonah Blasiak. The toric ideal of a graphic matroid is generated by quadrics. Comb.,
28(3):283–297, 2008. doi:10.1007/S00493-008-2256-6.

3 Marthe Bonamy and Nicolas Bousquet. Recoloring graphs via tree decompositions. Eur. J.
Comb., 69:200–213, 2018. doi:10.1016/J.EJC.2017.10.010.

4 Paul S. Bonsma and Luis Cereceda. Finding paths between graph colourings: Pspace-
completeness and superpolynomial distances. Theor. Comput. Sci., 410(50):5215–5226, 2009.
doi:10.1016/J.TCS.2009.08.023.

5 Nicolas Bousquet, Felix Hommelsheim, Yusuke Kobayashi, Moritz Mühlenthaler, and Akira
Suzuki. Feedback vertex set reconfiguration in planar graphs. Theor. Comput. Sci., 979:114188,
2023. doi:10.1016/J.TCS.2023.114188.

6 Martin Farber, B. Richter, and H. Shank. Edge-disjoint spanning trees: A connectedness
theorem. J. Graph Theory, 9(3):319–324, 1985. doi:10.1002/JGT.3190090303.

7 Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou. The coloring reconfiguration problem
on specific graph classes. IEICE Trans. Inf. Syst., 102-D(3):423–429, 2019. doi:10.1587/
TRANSINF.2018FCP0005.

ISAAC 2024

https://doi.org/10.1145/3618260.3649660
https://doi.org/10.1007/S00493-008-2256-6
https://doi.org/10.1016/J.EJC.2017.10.010
https://doi.org/10.1016/J.TCS.2009.08.023
https://doi.org/10.1016/J.TCS.2023.114188
https://doi.org/10.1002/JGT.3190090303
https://doi.org/10.1587/TRANSINF.2018FCP0005
https://doi.org/10.1587/TRANSINF.2018FCP0005

38:16 Basis Sequence Reconfiguration in the Union of Matroids

8 Jan van den Heuvel. The complexity of change. In Surveys in Combinatorics 2013, volume 409
of London Mathematical Society Lecture Note Series, pages 127–160. Cambridge University
Press, 2013. doi:10.1017/CBO9781139506748.005.

9 Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems. Theor.
Comput. Sci., 412(12-14):1054–1065, 2011. doi:10.1016/J.TCS.2010.12.005.

10 Takehiro Ito, Yuni Iwamasa, Naonori Kakimura, Yusuke Kobayashi, Shun-ichi Maezawa, Yuta
Nozaki, Yoshio Okamoto, and Kenta Ozeki. Rerouting planar curves and disjoint paths. In
Proceedings of the 50th International Colloquium on Automata, Languages, and Programming
(ICALP 2023), volume 261 of LIPIcs, pages 81:1–81:19. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPICS.ICALP.2023.81.

11 Takehiro Ito, Yuni Iwamasa, Naoyuki Kamiyama, Yasuaki Kobayashi, Yusuke Kobayashi,
Shun-ichi Maezawa, and Akira Suzuki. Reconfiguration of time-respecting arborescences. In
Proceedings of the 18th Algorithms and Data Structures Symposium (WADS 2023), volume
14079 of Lecture Notes in Computer Science, pages 521–532. Springer, 2023. doi:10.1007/
978-3-031-38906-1_34.

12 Takehiro Ito, Yuni Iwamasa, Yasuaki Kobayashi, Yu Nakahata, Yota Otachi, and Kunihiro
Wasa. Reconfiguring (non-spanning) arborescences. Theor. Comput. Sci., 943:131–141, 2023.
doi:10.1016/J.TCS.2022.12.007.

13 Yusuke Kobayashi, Ryoga Mahara, and Tamás Schwarcz. Reconfiguration of the union
of arborescences. In Proceedings of the 34th International Symposium on Algorithms and
Computation, (ISAAC 2023), volume 283 of LIPIcs, pages 48:1–48:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ISAAC.2023.48.

14 Kazuo Murota. Matrices and Matroids for Systems Analysis. Springer, Berlin, Heidelberg,
2010. doi:10.1007/978-3-642-03994-2.

15 Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. doi:10.3390/
A11040052.

16 James G. Oxley. Matroid Theory (Oxford Graduate Texts in Mathematics). Oxford University
Press, Inc., USA, 2006.

17 Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proceedings of the 29th Annual
ACM Symposium on the Theory of Computing (STOC 1997), pages 475–484. ACM, 1997.
doi:10.1145/258533.258641.

18 Rin Saito, Hiroshi Eto, Takehiro Ito, and Ryuhei Uehara. Reconfiguration of vertex-disjoint
shortest paths on graphs. In Proceedings of the 17th International Conference and Workshops
on Algorithms and Computation (WALCOM 2023), volume 13973 of Lecture Notes in Computer
Science, pages 191–201. Springer, 2023. doi:10.1007/978-3-031-27051-2_17.

19 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidel-
berg, 2003.

20 Neil L. White. A unique exchange property for bases. Linear Algebra and its Applications,
31:81–91, 1980. doi:10.1016/0024-3795(80)90209-8.

https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.1016/J.TCS.2010.12.005
https://doi.org/10.4230/LIPICS.ICALP.2023.81
https://doi.org/10.1007/978-3-031-38906-1_34
https://doi.org/10.1007/978-3-031-38906-1_34
https://doi.org/10.1016/J.TCS.2022.12.007
https://doi.org/10.4230/LIPICS.ISAAC.2023.48
https://doi.org/10.1007/978-3-642-03994-2
https://doi.org/10.3390/A11040052
https://doi.org/10.3390/A11040052
https://doi.org/10.1145/258533.258641
https://doi.org/10.1007/978-3-031-27051-2_17
https://doi.org/10.1016/0024-3795(80)90209-8

Core Stability in Additively Separable Hedonic
Games of Low Treewidth
Tesshu Hanaka #

Kyushu University, Fukuoka, Japan

Noleen Köhler #

University of Leeds, UK

Michael Lampis #

Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France

Abstract
Additively Separable Hedonic Games (ASHGs) are coalition-formation games where we are given a
directed graph whose vertices represent n selfish agents and the weight of each arc uv denotes the
preferences from u to v. We revisit the computational complexity of the well-known notion of core
stability of symmetric ASHGs, where the goal is to construct a partition of the agents into coalitions
such that no group of agents would prefer to diverge from the given partition and form a new coalition.
For Core Stability Verification (CSV), we first show the following hardness results: CSV
remains coNP-complete on graphs of vertex cover 2; CSV is coW[1]-hard parameterized by vertex
integrity when edge weights are polynomially bounded; and CSV is coW[1]-hard parameterized
by tree-depth even if all weights are from {−1, 1}. We complement these results with essentially
matching algorithms and an FPT algorithm parameterized by the treewidth tw plus the maximum
degree ∆ (improving a previous algorithm’s dependence from 2O(tw∆2) to 2O(tw∆)). We then move on
to study Core Stability (CS), which one would naturally expect to be even harder than CSV. We
confirm this intuition by showing that CS is Σp

2-complete even on graphs of bounded vertex cover
number. On the positive side, we present a 22O(∆tw)

nO(1)-time algorithm parameterized by tw + ∆,
which is essentially optimal assuming Exponential Time Hypothesis (ETH). Finally, we consider the
notion of k-core stability: k denotes the maximum size of the allowed blocking (diverging) coalitions.
We show that k-CSV is coW[1]-hard parameterized by k (even on unweighted graphs), while k-CS
is NP-complete for all k ≥ 3 (even on graphs of bounded degree with bounded edge weights).

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Hedonic games, Treewidth, Core stability

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.39

Related Version Full Version: https://arxiv.org/abs/2402.10815

Funding Tesshu Hanaka: Partially supported by JSPS KAKENHI Grant Numbers JP21H05852,
JP21K17707, JP22H00513, JP23H04388.
Noleen Köhler : Partially supported by ANR project ANR-18-CE40-0025-01 (ASSK).
Michael Lampis: Supported by ANR project ANR-21-CE48-0022 (S-EX-AP-PE-AL).

1 Introduction

Coalition-formation games model situations where a subset of selfish agents need to be
partitioned into teams (coalitions) in such a way that takes into account their preferences.
Because such games capture a vast array of interesting situations in the real world [40], they
have been a subject of intense study in computational social choice and the social sciences
at large. One particularly interesting and natural special case of such games is when the
preferences of each agent only depend on the other agents that she is placed together with in

© Tesshu Hanaka, Noleen Köhler, and Michael Lampis;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 39; pp. 39:1–39:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hanaka@inf.kyushu-u.ac.jp
https://orcid.org/0000-0001-6943-856X
mailto:scsnk@leeds.ac.uk
https://orcid.org/0000-0002-1023-6530
mailto:michail.lampis@lamsade.dauphine.fr
https://orcid.org/0000-0002-5791-0887
https://doi.org/10.4230/LIPIcs.ISAAC.2024.39
https://arxiv.org/abs/2402.10815
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Core Stability in Additively Separable Hedonic Games of Low Treewidth

the same coalition (and not on the placement of agents on other coalitions). Such games are
referred to in the literature as hedonic games and have also attracted much interest from
the computer science perspective [1, 2, 6, 7, 10, 12, 13, 20, 30, 35, 42], thanks in part to
their numerous applications in, for example, social network analysis [36], scheduling group
activities [18], and allocating tasks to wireless agents [41]. For more information we refer the
reader to [14] and the relevant chapters of standard computational social choice texbooks [4].

Hedonic games are extremely general. Unfortunately, this generality renders them hard
to study from the computer science perspective – indeed, even listing the preferences of all n
agents takes space exponential in n as the naïve approach would require listing an ordering of
all coalitions for each agent. This motivates the study of natural restrictions of hedonic games.
In this paper we focus on one of the most natural such restrictions: Additively Separable
Hedonic Games (ASHGs) introduced in [11], where the input is an edge-weighted directed
graph, vertices represent the agents, and the weight of the arc uv denotes the preference
of u for v, that is, the utility that agent u derives from being in the same coalition as v.
The utility of an agent u in a coalition C can then be succinctly encoded as the sum of the
weights of edges incident on u with their other endpoint in C. If the weights of uv and vu are
the same for every pair of agents u, v, ASHGs are called symmetric. For symmetric ASHGs,
the input graph becomes undirected.

In any situation where agents behave selfishly, it becomes critical to look for stable
outcomes, that is, outcomes which the agents are likely to accept, based on their preferences.
In the context of ASHGs, the question then becomes: given an edge-weighted graph G

representing the agents’ preferences, can we find a stable partition of the agents into coalitions
(possibly also optimizing some other social welfare goal)? The computational complexity of
such questions has been amply studied [3, 5, 21, 27, 36, 37, 44] and several natural notions
of stability have been proposed. In this paper we revisit the computational complexity of
one of the most widely-studied such notions, which is called core stability ([35, 39, 43, 45]).
Intuitively, a partition of n agents is called core stable, if a group of agents does not want
to leave their coalitions to form a coalition together. More formally, given a partition P
of the agents, a blocking coalition is a set of agents X such that all v ∈ X have strictly
higher utility in X than in the initial partition P. Hence, if a blocking coalition X exists,
the initial partition is unstable, because the agents of X would prefer to form a new coalition.
A partition is then called core stable if no blocking coalition (of any size) exists. Notice that
core stability is a very strong (and hence very desirable) notion of stability, compared with
simpler notions, such as Nash stability (which only precludes divergence by a single agent).

Attractive though it may be from the game theory point of view, the notion of core
stability presents some serious drawbacks from the point of view of computational complexity.
In particular, deciding if an ASHG admits a core stable outcome is not just NP-hard, but in
fact Σp

2-complete, that is, complete for the second level of the polynomial hierarchy [45], even
if the preferences are symmetric (i.e., the input graph is undirected), has bounded degree,
and edge weights are bounded by a constant [39]. Compared to simpler notions of stability,
such as Nash stability (which is “only” NP-complete [23]), core stability is therefore highly
intractable, and this strongly motivates the search for a better understanding of what the
source of this intractability is and for ways to deal with it. The focus of this paper is on using
notions of graph structure from parameterized complexity to achieve a more fine-grained
understanding of the complexity of this problem. Throughout the paper we will concentrate
on the case where agent preferences are symmetric, that is, the given graphs are undirected.
Since most of our results are negative, this (natural) restriction only renders them stronger.

T. Hanaka, N. Köhler, and M. Lampis 39:3

vc

vi

td

pw

tw

coNP-complete (vc = 2)

(vcwmax)O(vc)∆2 + O(vcn)

f(vi + wmax)nO(1)

coW[1]-hard (wmax = nO(1))

coW[1]-hard (w ∈ {−1, 1})

(∆wmax)O(tw)nO(1)

2O(tw∆)(n + logwmax)O(1)

Σp
2-complete (vc = 12)

6 ∃22o(pw)
nO(1) (∆ = O(1))

22O(∆tw)
nO(1)

CSV CS

Figure 1 The complexity of Core Stability (CS) and Core Stability Verification (CSV)
with respect to graph parameters: treewidth (tw), pathwidth (pw), tree-depth (td), vertex integrity
(vi), and vertex cover (vc). We denote by wmax the maximum absolute weight. The hardness results
are colored in red and the algorithmic results are colored in blue. The connection between the upper
parameter p and the lower parameter q indicates that q ≤ p + 1 holds for any graph G.

Our results. In this paper we present several results that improve and clarify the state of
the art on the complexity of finding core stable outcomes in ASHGs (see Figure 1). We study
two closely related problems: Core Stability (CS) and Core Stability Verification
(CSV), which correspond to deciding if a core stable partition exists and deciding if a given
partition is indeed core stable respectively. Intuitively, the reason CS is complete for the
second level of the polynomial hierarchy (and not just NP-complete) is that CSV is also
known to be intractable (coNP-complete [16, 43]). Our high-level aim is to understand which
parts of the combinatorial structure of the input are responsible for the complexity of these
two problems. In order to quantify the input structure we will use standard structural tools
from the toolbox of parameterized complexity, such as the notions of treewidth and related
parameters1.

We begin our investigation with CSV and ask the question which restrictions on the
input are likely to render the problem tractable (or conversely, what are the sources of the
problem’s intractability). We identify two possible culprits: the problem could become easy
if we either impose restrictions on the graph structure, for example by requiring that the
input be of low treewidth or degree, or if we impose restrictions on the allowed edge weights.
Our results indicate that these two sources of intractability interact in non-trivial ways:
placing restrictions of one type is typically not enough to render the problem tractable, but
the problem does sometimes become tractable if we restrict both the graph structure and
the allowed weights. More precisely, we show that:

If we place absolutely no restrictions on the allowed weights, CSV remains hard even on
severely restricted instances, that is, graphs of vertex cover 2 (Theorem 2). We find this
rather surprising, as this class of graphs (which are essentially stars with one additional
vertex) is rarely general enough to render problems intractable.
One may be tempted to interpret the previous result as an artifact of the exponentially
large weights we allow in the input. However, we show that even if we place the restriction
that weights are polynomially bounded in the input size, CSV still remains quite hard from

1 Throughout the paper we assume the reader is familiar with the basics of parameterized complexity, as
given for example in [17].

ISAAC 2024

39:4 Core Stability in Additively Separable Hedonic Games of Low Treewidth

the parameterized perspective, and more precisely coW[1]-hard parameterized by vertex
integrity (Theorem 3). Note that graphs with small vertex integrity are graphs where
there exists a small separator whose removal breaks down the graph into components
of bounded size, so this parameterization is again rather restrictive because it usually
easily renders most graph problems almost as tractable as parameterizing by vertex
cover [25, 33].
Finally, we show that even if we insist on weights only being selected from the set {−1, 1},
CSV is coW[1]-hard parameterized by tree-depth (Theorem 4).

Taken together these results show that CSV is an unusually intractable problem where
hardness comes from a combination of two factors: the complexity of dealing with the edge
weights and the complexity of dealing with the graph-theoretic structure of the input. We
complement the above with several algorithms that paint a clearer picture of the complexity
of CSV showing that: (i) CSV is polynomial-time solvable on trees (Theorem 5), hence
Theorem 2 cannot be extended to graphs of vertex cover 1 (i.e., stars) (ii) CSV is FPT
parameterized by vertex integrity plus the maximum edge weight (Theorem 7), so the hardness
result of Theorem 4 cannot be extended to vertex integrity (iii) Theorem 4 is matched by an
XP algorithm parameterized by treewidth with parameter dependence (∆wmax)O(tw), that
is, an XP algorithm when weights are polynomially bounded (Theorem 8) (iv) the former
algorithm can be improved to an FPT running time (even for unbounded weights) if we
parameterize by tw+∆ (this was already observed by Peters [38], who gave an algorithm with
parameter dependence 2O(∆2tw), but we improve this complexity to 2O(∆tw) in Theorem 9).

The results above paint a comprehensive and rather negative picture on the complexity
of CSV, which seems to imply that our main problem, that is, finding core-stable partitions,
is likely to be even more intractable. We confirm this intuition by showing that CS remains
Σp

2-complete even on graphs of bounded vertex cover (Theorem 10). One encouraging
piece of news, however, is that we did manage to obtain an FPT algorithm when CSV is
parameterized by tw + ∆, so this seems like a case worth considering for CS. Indeed, Peters
[38] already showed that CS is FPT for this parameterization, without, however, giving an
explicit algorithm (his argument was based on Courcelle’s theorem). We improve upon this
by giving an explicit algorithm whose dependence is double-exponential on tw + ∆, using the
technique of reducing to ∃∀-SAT advocated in [31] (Theorem 11). Despite fixed-parameter
tractability, it is fair to say that the running time of our algorithm is quite disappointing.
Our main contribution in this part is to show that this is, unfortunately, likely to be optimal:
even for instances of bounded degree, the existence of an algorithm with better than double-
exponential dependence on treewidth would violate the ETH (Theorem 16). This shows
another aspect where core-stability is significantly harder than Nash stability, which has
“just” slightly super-exponential dependence in tw + ∆ [28]. Note that the phenomenon that
problems complete for the second level of the polynomial hierarchy tend to have double-
exponential complexity in treewidth has been observed before [22, 32, 34, 8]. Along the way,
we provide a fine-grained analysis of the complexity of solving ∃∀-SAT parameterized by
treewidth, which may be of independent interest.

Finally, we conclude our paper by considering one last relevant parameter: the size of the
allowed blocking coalition. We say that a partition is k-core stable if no blocking coalition of
size at most k exists. The concept of k-core stability was first proposed in [20] for handling
more practical scenarios. For small values of k this is a natural variation of the problem,
which could potentially render it more tractable – indeed, for k fixed, CSV is trivially in P
and CS is trivially in NP. Unfortunately, we show that not much more is gained from these

T. Hanaka, N. Köhler, and M. Lampis 39:5

parameterizations: CSV is coW[1]-hard parameterized by k (even on unweighted graphs);
while k-CS is NP-complete for all fixed k ≥ 3, even on graphs of bounded maximum degree
and with bounded weights.

The full version of this paper is available on arXiv, where all missing proofs can be found.

2 Preliminaries

We use standard graph-theoretic notation and focus on undirected graphs. An Additively
Separable Hedonic Game (ASHG) is represented by a directed graph G = (V,E), where
vertices of V represent the agents, and a weight function w : E → Z. To simplify notation we
will extend w to all pairs of vertices and assume that w(uv) = 0 whenever uv ̸∈ E. We also
assume that the self-utility of an agent is 0, that is, w(uu) = 0. If w(uv) = w(vu) for every
pair of u, v, an ASHG is called symmetric and the input graph is undirected. A partition
P of V is a collection of disjoint subsets of V whose union includes all of V . We will call
the sets of such a partition coalitions. Slightly abusing notation, we will write, for u ∈ V ,
P(u) to denote the set of P that contains u. The utility of an agent u ∈ X in a set X ⊆ V

is defined as ut(X,u) =
∑

v∈X w(uv), while the utility of u in a partition P is defined as
utP(u) = ut(P(u), u) =

∑
v∈P(u) w(uv). Even though we defined w as a function to the

integers, we will sometimes allow rational edge weights, but with denominators sufficiently
small that it will always be easy to obtain an equivalent integer instance by multiplying all
weights by an appropriate integer. We use wmax to denote the maximum absolute weight of
a given ASHG instance. Unless otherwise stated, we assume that w is given to us encoded in
binary (and hence wmax may have value exponential in the input size).

We are chiefly interested in the following notion of stability.

▶ Definition 1 (Core stability). A partition P of an ASHG (G,w) is core stable, if there
exists no X ⊆ V (G) such that for all u ∈ X we have ut(X,u) > utP(u).

If the set X mentioned in Definition 1 does exist, then we say that P is unstable and
that X is a blocking coalition. For fixed integer values of k, we will also study the notion of
k-Core Stability: a partition is k-core stable if no blocking coalition of size at most k exists.

The two computational problems we are interested in are Core Stability (CS) and
Core Stability Verification (CSV). In the former problem we are given as input an
ASHG and are asked if there exists a core stable partition; in the latter we are also given a
specific partition P and are asked if P is core stable.

We say that a partition P of V (G) is connected if G[P] is connected for every P ∈ P.
Notice that for both CSV and CS we may assume that the partition P we seek or we are
given is connected, as replacing a disconnected coalition P ∈ P with a coalition for each of
its components does not change utP(u) for any u ∈ V and hence does not affect stability.

Graph parameters and Parameterized Complexity. We assume the reader is familiar with
the basics of parameterized complexity, such as the classes FPT and W[1], as given for
example in [17]. We assume that the reader is also familiar with standard structural graph
parameters. The parameters we will focus on are treewidth (tw), pathwidth (pw), tree-depth
(td), vertex integrity (vi), and vertex cover (vc). For the definitions of treewidth and
pathwidth, as well as the corresponding (nice) decompositions we refer the reader to [17].
The vertex integrity vi(G) of a graph G is defined as the minimum k such that there exists
a set S ⊆ V (G) (called a vi(k)-set) such that the largest component of G− S has order at
most k−|S|. The tree-depth of a graph G is defined inductively as follows: an isolated vertex

ISAAC 2024

39:6 Core Stability in Additively Separable Hedonic Games of Low Treewidth

v1

v2

vn

s/2

3s/2

s
+

ϵ

a1
+ ϵ

−a
1

a2 + ϵ

−a
2

a
n
+
ϵ

−an

x′

y′

x

y

Figure 2 The graph (G, w) constructed in the proof of Theorem 2. The vertex cover is marked
by blue squares. The initial partition is given by dot-dashed boxes.

has tree-depth 1; the tree-depth of a disconnected graph is the maximum of the tree-depth of
its components; the tree-depth of a connected graph G is defined as minv∈V (G) td(G− v) + 1.
The vertex cover of G is the size of the smallest set of vertices of G that intersects all edges.

It is well known that for all graphs G we have tw(G) ≤ pw(G) ≤ td(G) ≤ vi(G) ≤
vc(G) + 1 where the second relationship is shown in [9] and the others follow immediately
from the definition of the respective parameters. In terms of parameterized complexity these
parameters therefore form a hierarchy: if a problem is FPT for a smaller parameter, then it
is FPT for the larger ones and conversely if a problem is intractable for a large parameter,
then it is intractable for a smaller one. We therefore say that larger parameters are more
restrictive, with vertex cover being the most restrictive parameter we consider. We use ∆(G)
to denote the maximum degree of a graph G and omit G when it is clear from the context.

3 Core Stability Verification

In this section we study the complexity of Core Stability Verification (CSV). What
we discover is that this is an unusually intractable problem, even for quite restricted para-
meterizations. We complete the picture by giving complementing algorithms.

3.1 Hardness Results
We first prove the following three hardness results.

▶ Theorem 2. Core Stability Verification is weakly coNP-complete on graphs of vertex
cover number 2.

Proof. First note that CSV is in coNP as it is polynomial to verify that a given coalition
is blocking. We give a reduction from Partition. Given a set of positive integers A =
{a1, . . . , an}, the Partition problem asks whether there exists a subset A′ of A such
that

∑
a∈A′ a = s/2 where s =

∑
a∈A a. This problem is well-known to be weakly NP-

complete [24].
We construct an instance of CSV. The construction is depicted in Figure 2. First, we

create n vertices v1, . . . , vn corresponding to a1, . . . , an ∈ A and four vertices x, y, x′, y′. Then
we add edges vix of weight ai + ϵ, viy of weight −ai, xx′ of weight 3s/2, yy′ of weight s/2,

T. Hanaka, N. Köhler, and M. Lampis 39:7

and xy of weight s+ ϵ. Here, without loss of generality, let ϵ be an integer sufficiently smaller
than mini ai; this can be achieved for example by multiplying all elements of A (and s) by n,
and setting ϵ = 1. Let (G,w) be the constructed graph. The partition P to verify consists of
{x, x′}, {y, y′} and singletons {v1}, . . . , {vn}. Also note that {x, y} is a vertex cover of G.

If there exists A′ ⊆ A such that
∑

a∈A′ a = s/2, then the coalition X = {vi : ai ∈
A′} ∪ {x, y} blocks P. To see this, observe that the utility of each vertex in X increases by
at least ϵ and thus X is a blocking coalition of P.

Conversely, suppose that there exists a blocking coalition X of P. Clearly, X contains
neither x′ nor y′. If X does not contain x, no vertex can have positive utility in X. Thus,
they also do not join X as they have non-negative utility in P. Thus, X must contain x.
To increase the utility of x, y must be contained in X. In particular, if y was not contained
in X, then the utility of x would be at most s + nϵ < 3s/2. Since y must have utility
more than s/2 in X, it holds that

∑
vi∈X ai ≤ s/2. Finally, since x obtains at least s + ϵ

utility in X from y ∈ X, and x has 3/2s utility in P , we have that s+ ϵ+
∑

vi∈X ai > 3/2s,
that is

∑
vi∈ai

> 1/2s − ϵ. Since ϵ is sufficiently smaller than mini ai, this implies that∑
vi∈X ai = s/2 and hence there exists a subset A′ of A such that

∑
a∈A′ a = s/2. ◀

We use a similar but more involved construction to reduce Bin Packing to CSV.

▶ Theorem 3. Core Stability Verification is coW[1]-hard parameterized by vertex
integrity, even if all weights are bounded by a polynomial in the input size.

We prove the third hardness result by a reduction from Bounded Degree Deletion.

▶ Theorem 4. Core Stability Verification is coW[1]-hard parameterized by tree-depth,
even if all weights are in {−1, 1}.

3.2 Algorithms
In this section, we prove the algorithmic results complementing the hardness results of the
previous section.

▶ Theorem 5. Core Stability Verification is polynomial time solvable on trees.

▶ Theorem 6. Core Stability Verification can be solved in time (vcwmax)O(vc)∆2 +
O(vcn).

Proof. Given a graph (G,w) and a partition P of V (G), we check whether there is a blocking
coalition X ⊆ V (G) of P. In the algorithm, we first compute a minimum vertex cover S of
size vc in time O(1.25284vc + vcn) [29]. Then we guess the intersection S′ of X and S. The
number of possible candidates of the intersection S′ is at most 2|S|. Let I ′ ⊆ V (G) \S be the
set of vertices in V (G)\S such that each vertex u ∈ I ′ satisfies

∑
v∈NG(u)∩S′ w(uv) > utP(u).

The vertices in I ′ could form a blocking coalition of P by cooperating with the vertices in
S′. In order for X to become a blocking coalition, all the vertices in S′ must have larger
utility in X than their utility in P after some vertices in I ′ joined X. This condition can be
represented as an Integer Linear Program (ILP) as follows:∑

v∈I′

w(uv)xv +
∑

v∈NG(u)∩S′

w(uv) ≥ utP(u) + 1 ∀u ∈ S′ (1)

xv ∈ {0, 1} ∀v ∈ I ′ (2)

ISAAC 2024

39:8 Core Stability in Additively Separable Hedonic Games of Low Treewidth

where the variable xv represents whether vertex v ∈ I ′ joins X. On the left hand side of
(1),

∑
v∈NG(u)∩S′ w(uv) represents the contribution of edge weights in S′ to the utility of u.

Clearly, the ILP is feasible if and only if there is a blocking coalition X because the utility of
each agent in X strictly increases. Note that we suppose that each edge weight is an integer.

Here, the feasibility check of an ILP {Ax = b, x ≥ 0, x ∈ Zn} can be solved in time
(m · Λ)O(m) · ||b||2∞ where A ∈ Zn×m, b ∈ Zm, and Λ is an upper bound on each absolute
value of an entry in A [19]. By adding a slack variables in Z to each inequality in (1),
the ILP can be transformed into the form {Ax = b, x ≥ 0, x ∈ Zn} where n = |I ′| + |S′|
and m = |S′|. Since the maximum absolute value of coefficients of variables is wmax, the
range of utP(u) and

∑
v∈NG(u)∩S′ w(uv) is [−wmax∆, wmax∆], the ILP can be solved in time

(vcwmax)O(vc)(wmax∆)2 = (vcwmax)O(vc)∆2. Thus, the total running time is O(1.25284vc +
vcn) + 2vc(vcwmax)O(vc)∆2 = (vcwmax)O(vc)∆2 +O(vcn). ◀

▶ Theorem 7. Core Stability Verification is in FPT parameterized by vi + wmax.

▶ Theorem 8. Core Stability Verification can be computed in time (∆wmax)O(tw)nO(1).

▶ Theorem 9. Core Stability Verification can be computed in time 2O(tw∆)(n +
logwmax)O(1).

4 Core Stability

In this section we study the complexity of Core Stability (CS). We first show that CS
remains Σp

2-complete even on graphs of bounded vertex cover number (Theorem 10).
The second part of this section is dedicated to extending our understanding of the

complexity of CS parameterized by tw + ∆. We give an algorithm for CS running in time
22O(∆tw)

n (Theorem 11) improving on the previous algorithm based on Courcelle’s Theorem by
Peters [38]. In order to avoid having to formulate a tedious dynamic programming algorithm,
we instead obtain our algorithm via a reduction to ∃∀-SAT, which is known to be solvable in
double-exponential time (in treewidth) [15]. We complement these results by giving an ETH
based lower bound of 22o(pw) on graphs of bounded degree (Theorem 16). This shows that
the double-exponential dependence of our algorithm on treewidth is in fact inevitable, and
confirms a pattern shown by other Σp

2-complete problems [32].

4.1 Core stability on graphs of bounded vertex cover number
In this section we prove the following result.

▶ Theorem 10. Core Stability is Σp
2-complete on graphs of vertex cover number 12.

To obtain this result we use a variation of the constructions used to prove Theorem 2
and Theorem 3; however reducing from an appropriate variant of Partition namely ∃∀-
partition. To control how core stable partitions behave we use a gadget utilizing the non-core
stable graph given in [3]. Details of this auxiliary gadgets construction and behaviour is
omitted due to space limitation.

4.2 Core stability parameterized by maximum degree and treewidth
We first prove the algorithmic result of the section.

▶ Theorem 11. Core Stability can be solved in time 22O(∆tw)
nO(1).

T. Hanaka, N. Köhler, and M. Lampis 39:9

Before we prove Theorem 11, let us sketch our high-level strategy. Given an instance of
Core Stability, we want to produce an equivalent instance ϕ of ∃∀-SAT, such that ϕ
has treewidth roughly ∆tw, where ∆ and tw are the maximum degree and treewidth of
the original instance. We could then use the known (double-exponential) algorithm for
∃∀-SAT [15] to solve our problem. Intuitively, we would then attempt to use the existential
part of ϕ to encode the “there exists a partition” part of the problem, and the universal part
to encode the “all blocking coalitions fail to be blocking” part.

Fundamentally, this strategy is sound and works in a relatively straightforward way for
the universal part: we use a boolean variable for each vertex (to encode whether it belongs in
the potential blocking coalition) and to check that a coalition fails to be blocking for a vertex
v we need to place a constraint on v and all its (at most ∆) neighbors. This means that a
tree decomposition of ϕ should be constructible from a tree decomposition of the square of
the original graph, which would have width at most ∆tw.

Where we run into some more difficulties, however, is in encoding the existential part.
Intuitively, this is because encoding the partition of the vertices of a bag into coalitions
requires a super-linear number of bits, hence it is not sufficient to define a variable for each
vertex. Indeed, to simplify things, we define a variable for each pair of vertices that appear
together in a bag, encoding whether they are together in a coalition. This means that the
treewidth of the formula ϕ we construct is in fact not O(∆tw), but actually can only be
upper-bounded by O(tw2 + ∆tw).

Nevertheless, we insist on obtaining an algorithm that is double-exponential “only” in
∆tw, and not in tw2. In order to circumvent this difficulty we observe that the term that is
super-linear in treewidth only depends on existentially quantified variables. Thankfully, we
manage to show, via an argument that is more careful than that of [15], that ∃∀-SAT has
a time complexity that only needs to be double-exponential in the number of universally
quantified variables of each bag (Proposition 12). Using this, we are able to show that the
second exponent of the running time is “only” O(∆tw), which as we show later is optimal,
even when ∆ = O(1), under the ETH.

Let us now give some more details. We first recall that ∃∀-SAT is a variant of the SAT
problem where we aim to decide the satisfiability of a given quantified Boolean formula
(QBF) ϕ which is of the form ∃x1 . . . ∃xk∀y1 . . . ∀yℓψ where ψ is a DNF formula on variables
x1, . . . , xk, y1, . . . , yℓ. Two common ways of associating structure of satisfiability problems is
to consider the primal or incidence graph of the formula. The primal graph of a formula ϕ
(in CNF or DNF) is a graph on the set of variables of ϕ where two variables are adjacent if
they appear in the same clause. Similarly, the incidence graph is a bipartite graph on the set
of variables and clauses of ϕ where a variable is adjacent to all clauses it appears in. For
convenience, we use a variant of ∃∀-SAT. We say that a QBF ϕ is in ∃3 CNF ∀ DNF if ϕ can
be written as

ϕ = ∃x1 . . . ∃xk

k′∧
i=1

di ∀y1 . . . ∀yℓ

ℓ′∨
i=1

ci

for some k, k′, ℓ, ℓ′ ∈ N where di are disjunctive clause over variables x1, . . . , xk containing at
most 3 literals per clause and ci are conjunctive clauses over variables x1, . . . , xk, y1, . . . , yℓ.
We present an algorithm for ∃3 CNF ∀ DNF in several steps. First, we give an algorithm with
an improved running time than that of [15].
▶ Proposition 12. There is an algorithm that takes as input an instance of ∃∀-SAT
∃x∀yϕ(x, y), where x, y are tuples of boolean variables, ϕ is in 3-DNF, and a tree decom-
position of the primal graph of ϕ where each bag contains at most t∃ existentially quantified
variables and at most t∀ universally quantified variables and decides if the input is satisfiable
in time 2O(t∃+2t∀)|ϕ|O(1).

ISAAC 2024

39:10 Core Stability in Additively Separable Hedonic Games of Low Treewidth

▶ Proposition 13. There is an algorithm that takes as input an ∃3 CNF ∀ DNF-SAT instance
ϕ and a tree decomposition of its incidence graph of width t that contains at most t∀ universally
quantified variables in each bag and at most 2 clauses in each bag, and decides ϕ in time
2O(t2t∀)|ϕ|.

Proof of Theorem 11. We prove Theorem 11 by a reduction to ∃3 CNF ∀ DNF-SAT. Let
(G,w) be an instance of CS and (T, β) be a rooted tree decomposition of G. Here, we denote
the bag of a node t ∈ T by β(t). First we let (G′, w′) be the graph obtained from (G,w)
by adding edges uv of weight 0 for every pair of vertices u, v appearing in a bag together.
It is straightforward to see that (G,w) is a YES-instance of CS if and only if (G′, w′) is a
YES-instance of CS. Additionally, G′ is chordal and (T, β) is a tree decomposition of G′.

We construct an instance ϕ of ∃3 CNF ∀ DNF-SAT. We introduce a variable xe for every
e ∈ E(G′) and a variable yu for every vertex u ∈ V (G′). An assignment αX : {xe : e ∈
E(G′)} → {0, 1} represents a subset of E(G′) and an assignment αY : {yu : u ∈ V (G′)} →
{0, 1} represents a subset of V (G′). Intuitively, a partition of V (G′) corresponds to a
set of edges, i.e., by including all edges that are incident to vertices from the same part.
For every t ∈ V (T) we define a formula ϕt essentially expressing transitivity. We use
formula ϕt to enforce sufficient criteria for the set of edges represented by an assignment
αX : {xe : e ∈ E(G′)} → {0, 1} to correspond to a partition of V (G′). Let

ϕt =
∧

u1,u2,u3∈β(t)

(
xu1u2 ∧ xu2u3

)
→ xu1u3 =

∧
u1,u2,u3∈β(t)

(
¬xu1u2 ∨ ¬xu2u3 ∨ xu1u3

)
.

For a fixed partition P represented by some assignment αX : {xe : e ∈ E(G′)} → {0, 1} our
formula needs to ensure that no blocking coalitions exist. This is realized by guaranteeing
that for each assignment αY : {yu : u ∈ V (G′)} → {0, 1} the set corresponding to αY is not
blocking. Intuitively, the formula ϕu defined below ensures that the utility of vertex u in P is
at least as large as the utility of u in the coalition represented by αY . To realize this, we make
sure that the set N of neighbors of u which are in the coalition represented by αY and the set
Ñ of neighbors of u which are in the same part as u in P satisfy

∑
v∈N w(uv) ≤

∑
v∈Ñ w(uv).

For u ∈ V (G′) let

ϕu =
∨

N,Ñ⊆N
G′ (u),∑

v∈N
w(uv)≤

∑
v∈Ñ

w(uv)

(
yu∧

∧
v∈N

yv ∧
∧

v∈NG′ (u)\N

¬yv ∧
∧

v∈Ñ

xuv ∧
∧

v∈NG′ (u)\Ñ

¬xuv

)
.

We now define the formula ϕ to be

ϕ = ∃xe1 . . . ∃xem

∧
t∈V (T)

ϕt ∀yv1 . . . ∀yvn

(
¬yv1 ∧ · · · ∧ ¬yvn

)
∨

∨
u∈V (G′)

ϕu.

Observe that ϕ is in ∃3 CNF ∀ DNF. In the following we prove that (G′, w′) is a YES-instance
of CS if and only if ϕ is satisfiable.

First assume that P is a core stable partition of V (G′). We define an assignment
αX : {xe : e ∈ E(G′)} → {0, 1} by setting αX(xe) = 1 if e is incident to two vertices
residing in the same part of P and αX(xe) = 0 otherwise. This assignment satisfies ϕt for
every t ∈ V (T) as for any three vertices u1, u2, u3 ∈ β(t) it holds that if αX(xu1u2) = 1 and
αX(xu2u3) = 1, then u1, u2 and u3 must reside in the same part of P and hence αX(xu1u3) = 1.
Furthermore, consider any assignment αY : {yu : u ∈ V (G′)} → {0, 1} and let X = {u ∈
V (G′) : αY (yu) = 1}. We have to argue that the formula

(
¬yv1 ∧ · · · ∧ ¬yvn

)
∨

∨
u∈V (G′) ϕu is

T. Hanaka, N. Köhler, and M. Lampis 39:11

satisfied under the assignments αX and αY . In case thatX = ∅, the clause
(
¬yv1 ∧ · · · ∧ ¬yvn

)
is satisfied. On the other hand, if X ̸= ∅, then there must be a vertex u ∈ X whose utility
in P is at least as large as its utility in X as the set X cannot be a blocking coalition.
Hence, for the sets N = NG′(u) ∩ X and Ñ = NG′(u) ∩ P , where P ∈ P is the part
containing u, we have that

∑
v∈N w(uv) ≤

∑
v∈Ñ w(uv). Therefore, ϕu contains the clause(

yu∧
∧

v∈N yv ∧
∧

v∈NG′ (u)\N ¬yv ∧
∧

v∈Ñ xuv ∧
∧

v∈NG′ (u)\Ñ ¬xuv

)
and this clause is satisfied

under the assignment αX and αY by choice of N and Ñ . This shows that ϕ is satisfiable.

On the other hand, assume that ϕ is satisfiable and let αX : {xe : e ∈ E(G′)} → {0, 1} be
an assignment such that

∧
t∈V (T) ϕt as well as ∀yv1 . . . ∀yvn

(
¬yv1 ∧ · · · ∧ ¬yvn

)
∨

∨
u∈V (G′) ϕu

is satisfied under αX . We let EX = {e ∈ E(G′) : αX(xe) = 1} and define a partition P by
letting every part of P correspond to the vertices of a connected component of the graph
(V (G′), EX). To show that the partition P is core stable we use the following claim.

▷ Claim 14. For every edge uv ∈ E(G′) it holds that uv ∈ EX if and only if u and v are
contained in the same part of P.

Towards a contradiction assume that P is not core stable and let X be a blocking coalition.
We define an assignment αY : {yu : u ∈ V (G′)} → {0, 1} by setting αY (yu) = 1 if u ∈ X and
αY (yu) = 0 otherwise. By assumption, the DNF formula

(
¬yv1 ∧ · · · ∧ ¬yvn

)
∨

∨
u∈V (G′) ϕu

is satisfied under assignment αX and αY . As X cannot be empty there is at least one
u ∈ V (G′) such that αY (yu) = 1 and hence the clause

(
¬yv1 ∧ · · · ∧ ¬yvn

)
cannot be

satisfied under the assignment αY which implies that some clause in
∨

u∈V (G′) ϕu must be
satisfied. Let u ∈ V (G′) and N, Ñ ⊆ NG′(u) with

∑
v∈N w(uv) ≤

∑
v∈Ñ w(uv) such that the

clause
(
yu∧

∧
v∈N yv ∧

∧
v∈NG′ (u)\N ¬yv ∧

∧
v∈Ñ xuv ∧

∧
v∈NG′ (u)\Ñ ¬xuv

)
is satisfied under

assignments αX and αY . This implies that N = NG′(u)∩X and Ñ = {v ∈ V (G′) : uv ∈ EX}.
Since by Claim 14, {v ∈ V (G′) : uv ∈ EX} = NG′(u)∩P , where P is the part of P containing
u, this implies that the utility of u in X is less or equal to the utility of u in P. As this
contradicts our assumption that X is a blocking coalition it follows that P is core stable.

▷ Claim 15. The formula ϕ has incidence treewidth at most ∆(G′)tw(G′) + tw(G′)2 + 2.
Furthermore, we can construct a decomposition of that width which contains at most 2
clauses per bag and at most (∆(G′) + 1)tw(G′) universally quantified variables per bag.

As (T, β), G′ and the formula ϕ can be computed in time O(tw(G′)2n), combining the
reduction with the algorithm from Proposition 13 yields a 22O(∆tw)

nO(1) time algorithm. ◀

Finally, we prove our ETH based lower bound.

▶ Theorem 16. Unless the ETH fails, there is no algorithm for Core stability running
in time 22o(pw)

nO(1) even if G has bounded degree and weights are constant.

We give an overview of our construction. Given an instance ϕ of (3, 3)-SAT (each variable
appears at most 3 times) we construct a graph (G,w) and show that ϕ is satisfiable if and
only if (G,w) is core stable. Firstly, we use a gadget based on the non-core stable graph
given in [3] to control potential core stable partitions. The auxiliary gadget is a non-core
stable graph H that we attach with positive weight edges at a set S of vertices. Because
H is not core stable any partition must place some vertex of H in a part with some s ∈ S.
Using negative weight edges we can control this behaviour even further. We achieve that
{h, s} must be in any core stable partition for one vertex s ∈ S where h ∈ V (H) is a fixed
vertex of H.

ISAAC 2024

39:12 Core Stability in Additively Separable Hedonic Games of Low Treewidth

We now describe the construction. Every variable xi, i ∈ [n] of ϕ is represented by
two vertices yi and ¬yi and for each i ∈ [n] we attach one auxiliary gadget at {yi,¬yi}.
We add further vertices (details follow in the next paragraph). Each of these additional
vertices v either has its private auxiliary gadget attached at {v} or is not connected to any
auxiliary gadgets. We define a special set of partitions of V (G) which we refer to as candidate
partitions as follows. Any candidate partition P has to contain either {h, yi} or {h,¬yi}
(but not both) where h is a vertex of the respective auxiliary gadget. For any other vertex v
without an attached auxiliary gadget (excluding vertices of auxiliary gadgets) any candidate
parition P has to contain {v}. For any vertex v with an auxiliary gadget attached at {v} any
candidate partition P has to contain the set {h, v} where h is a vertex of respective auxiliary
gadget. Using the properties of the auxiliary gadget, we can argue that any core stable
partition has to be a candidate partition. By the construction, there is a correspondence
between assignments and candidate partitions, i.e., α(xi) = 1 if and only if {h, yi} ∈ P for
candidate partition P and the corresponding assignment α.

Any blocking coalition of a candidate partition allows us to find a clause which is not
satisfied under the assignment which corresponds to the candidate partition and vice versa.
This is realized as follows. We take 2m+ 1 cycles U1, . . . , Um, V 1, . . . , V m, Z of length 3n
where 2m ≤ 3n is the number of clauses of ϕ. By choosing suitable edge weights, we enforce
that any blocking coalition of any candidate partition contains Z and either Uk or V k (but
not both) for every k ∈ [m]. For now, we call any set containing Z, Uk or V k (but not both)
for every k ∈ [m] (and some other vertices we neglect here) a candidate blocking coalition.
We number the clauses of ϕ in such a way that each candidate blocking coalition corresponds
to a clause. More sprecifically, the j-th clause corresponds to the candidate blocking coalition
X in which Uk ∈ X if and only if the k-th bit of j in binary is 0.

Each vertex in Z corresponds to the appearance of a variable. Assume z ∈ Z corresponds
to the appearance of variable xi in clause cj . We connect z to either yi or ¬yi dependent
on whether xi appears negated in cj . We connect z to either Uk or V k for every k ∈ [m]
dependent on whether the k-th bit of j in binary is 0 or 1 using a gadget we call clause
selection gadget. The gadget enforces that z obtains a +1 towards its total utility in X if
and only if the candidate blocking coalition X does not encode the clause cj . By choice of
edge weights, we ensure that vertex z can only be convinced to join a blocking coalition if it
either gets utility +1 from its clause selection gadget or utility +1 from yi (or ¬yi, resp.).
On the other hand, yi (¬yi, resp.) can only be convinced to join a blocking coalition if it
appears as a singleton in the partition we are trying to block and hence the corresponding
literal is false. In conclusion, for any candidate partition P there is a blocking coalition X

if and only if for the clause corresponding to X each literal is false. Hence, (G,w) is core
stable if and only if ϕ is satisfiable.

5 k-Core Stability

In this section we consider the complexity of finding and verifying k-core stable partitions,
when the size of the allowed blocking coalitions k is a parameter. Even though the two
problems do become easier when k is a fixed constant (because we can check all possible
blocking coalitions in polynomial time), we show that it is likely that not much more can
be gained from this assumption: k-CSV is coW[1]-hard parameterized by k (Theorem 17),
while k-CS is NP-complete even if k ≥ 3 is a fixed constant (Theorem 19). On the positive
side, we do show that finding 2-core stable partitions is in P, but it is worth noting that the
fact that we consider undirected graphs is crucial to obtain even this small tractable case.

T. Hanaka, N. Köhler, and M. Lampis 39:13

▶ Theorem 17. k-Core Stability Verification is in XP when parameterized by k

whereas coW[1]-hard even on unweighted graphs.

Proof. The upper bound can be easily shown by brute force. That is, given a coalition
structure P , for each coalition X of size at most k, we check if each agent v in X has higher
utility than in P. The running time of brute force is nO(k).

Then we show that k-CSV is W[1]-hard even on unweighted graphs. We give a reduction
from k-Clique. Given a graph G, we attach k − 2 pendant vertices for each vertex in V (G).
Let Pv be the set of pendant vertices for v. We set P = {Pv ∪ {v} : v ∈ V (G)} as a coalition
structure to verify.

In the following, we show that there exists a k-clique in G if and only if there exists
a blocking coalition for P. Let C be a clique of size k in G. For C, each vertex in C has
the utility k − 1. Since v ∈ V has the utility k − 2 in P, C is a blocking coalition for P.
Conversely, let X be a blocking coalition for P . Since vertices in

⋃
v∈V (G) Pv have maximum

utility 1 in P , they do not join X. Thus, X is a subset of V (G). Since the utility of v ∈ V (G)
is k − 2 in P and |X| = k, X is a clique of size k. ◀

▶ Theorem 18. Every graph admits a 2-core stable partition and 2-Core Stability can be
solved in polynomial time.

Proof. Given a weighted graph (G,w), start with the partition where every vertex is a
singleton. Order the positive-weight edges in non-increasing order e1, e2, . . . , em. For each ei,
do the following: if the endpoint of ei are currently singletons, merge them into a cluster of
size 2; otherwise move to the next edge. The resulting partition P is 2-core stable because if
there was a blocking coalition of size 2, it would have to induce an edge ei = uv. However,
when ei is considered, at least one of u, v was not a singleton. Therefore, the utility of that
vertex must be larger in P than in the coalition {u, v} contradicting the assumption that
{u, v} is a blocking coalition. ◀

▶ Theorem 19. For any fixed k ≥ 3, k-Core Stability is NP-complete on bounded degree
graphs, even if the weights are constant.

6 Conclusion

The general tenor of our results indicates that core stability is an algorithmically highly
intractable notion: even for very restricted input structures, obtaining efficient algorithms
seems out of reach; and even for the few cases where positive fixed-parameter tractability
results can be obtained, complexity lower bounds still push the parameter dependence
to prohibitive levels. Despite the above, we believe that a promising avenue for future
research may be the further investigation of k-core stability. Even though we have shown
that parameterizing the problem by k alone does not help, it would be interesting to ask
whether parameterizing at the same time by both k and a structural parameter (such as
treewidth) could help us evade the lower bounds that apply to each case individually. Finally,
investigating the parameterized complexity of core stability in other variants of hedonic
games such as fractional hedonic games [2, 26, 20] is another promising direction.

ISAAC 2024

39:14 Core Stability in Additively Separable Hedonic Games of Low Treewidth

References
1 Alessandro Aloisio, Michele Flammini, and Cosimo Vinci. The impact of selfishness in

hypergraph hedonic games. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 1766–1773. AAAI Press, 2020.
doi:10.1609/AAAI.V34I02.5542.

2 Haris Aziz, Florian Brandl, Felix Brandt, Paul Harrenstein, Martin Olsen, and Dominik
Peters. Fractional hedonic games. ACM Trans. Economics and Comput., 7(2):6:1–6:29, 2019.
doi:10.1145/3327970.

3 Haris Aziz, Felix Brandt, and Hans Georg Seedig. Computing desirable partitions in additively
separable hedonic games. Artif. Intell., 195:316–334, 2013. doi:10.1016/j.artint.2012.09.
006.

4 Haris Aziz and Rahul Savani. Hedonic games. In Handbook of Computational Social Choice,
pages 356–376. Cambridge University Press, 2016. doi:10.1017/CBO9781107446984.016.

5 Coralio Ballester. NP-completeness in hedonic games. Games Econ. Behav., 49(1):1–30, 2004.
doi:10.1016/J.GEB.2003.10.003.

6 Nathanaël Barrot, Kazunori Ota, Yuko Sakurai, and Makoto Yokoo. Unknown agents in friends
oriented hedonic games: Stability and complexity. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019,
pages 1756–1763. AAAI Press, 2019. doi:10.1609/aaai.v33i01.33011756.

7 Nathanaël Barrot and Makoto Yokoo. Stable and envy-free partitions in hedonic games.
In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 67–73. ijcai.org,
2019. doi:10.24963/ijcai.2019/10.

8 Ivan Bliznets and Markus Hecher. Tight double exponential lower bounds. In Xujin Chen and
Bo Li, editors, Theory and Applications of Models of Computation - 18th Annual Conference,
TAMC 2024, Hong Kong, China, May 13-15, 2024, Proceedings, volume 14637 of Lecture Notes
in Computer Science, pages 124–136. Springer, 2024. doi:10.1007/978-981-97-2340-9_11.

9 Hans L Bodlaender, John R Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algorithms, 18(2):238–
255, 1995. doi:10.1006/JAGM.1995.1009.

10 Niclas Boehmer and Edith Elkind. Individual-based stability in hedonic diversity games. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 1822–1829. AAAI Press, 2020. doi:10.1609/AAAI.V34I02.
5549.

11 Anna Bogomolnaia and Matthew O Jackson. The stability of hedonic coalition structures.
Games and Economic Behavior, 38(2):201–230, 2002. doi:10.1006/GAME.2001.0877.

12 Felix Brandt, Martin Bullinger, and Anaëlle Wilczynski. Reaching individually stable coalition
structures. ACM Trans. Economics and Comput., 11:4:1–4:65, 2023. doi:10.1145/3588753.

13 Martin Bullinger and Stefan Kober. Loyalty in cardinal hedonic games. In Zhi-Hua Zhou,
editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pages 66–72. ijcai.org,
2021. doi:10.24963/ijcai.2021/10.

14 Katarína Cechlárová. Stable partition problem. In Encyclopedia of Algorithms, pages 2075–2078.
Springer, 2016. doi:10.1007/978-1-4939-2864-4_397.

https://doi.org/10.1609/AAAI.V34I02.5542
https://doi.org/10.1145/3327970
https://doi.org/10.1016/j.artint.2012.09.006
https://doi.org/10.1016/j.artint.2012.09.006
https://doi.org/10.1017/CBO9781107446984.016
https://doi.org/10.1016/J.GEB.2003.10.003
https://doi.org/10.1609/aaai.v33i01.33011756
https://doi.org/10.24963/ijcai.2019/10
https://doi.org/10.1007/978-981-97-2340-9_11
https://doi.org/10.1006/JAGM.1995.1009
https://doi.org/10.1609/AAAI.V34I02.5549
https://doi.org/10.1609/AAAI.V34I02.5549
https://doi.org/10.1006/GAME.2001.0877
https://doi.org/10.1145/3588753
https://doi.org/10.24963/ijcai.2021/10
https://doi.org/10.1007/978-1-4939-2864-4_397

T. Hanaka, N. Köhler, and M. Lampis 39:15

15 Hubie Chen. Quantified constraint satisfaction and bounded treewidth. In Ramón López
de Mántaras and Lorenza Saitta, editors, Proceedings of the 16th Eureopean Conference on
Artificial Intelligence, ECAI’2004, including Prestigious Applicants of Intelligent Systems,
PAIS 2004, Valencia, Spain, August 22-27, 2004, pages 161–165. IOS Press, 2004.

16 Jiehua Chen, Gergely Csáji, Sanjukta Roy, and Sofia Simola. Hedonic games with friends,
enemies, and neutrals: Resolving open questions and fine-grained complexity. In Noa Agmon,
Bo An, Alessandro Ricci, and William Yeoh, editors, Proceedings of the 2023 International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2023, London, United
Kingdom, 29 May 2023 - 2 June 2023, pages 251–259. ACM, 2023. doi:10.5555/3545946.
3598644.

17 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

18 Andreas Darmann, Edith Elkind, Sascha Kurz, Jérôme Lang, Joachim Schauer, and Gerhard J.
Woeginger. Group activity selection problem with approval preferences. Int. J. Game Theory,
47(3):767–796, 2018. doi:10.1007/s00182-017-0596-4.

19 Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for
integer programming using the Steinitz lemma. ACM Trans. Algorithms, 16(1):5:1–5:14, 2020.
doi:10.1145/3340322.

20 Angelo Fanelli, Gianpiero Monaco, and Luca Moscardelli. Relaxed core stability in fractional
hedonic games. In Zhi-Hua Zhou, editor, Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27
August 2021, pages 182–188. ijcai.org, 2021. doi:10.24963/ijcai.2021/26.

21 Michele Flammini, Bojana Kodric, Gianpiero Monaco, and Qiang Zhang. Strategyproof
mechanisms for additively separable and fractional hedonic games. J. Artif. Intell. Res.,
70:1253–1279, 2021. doi:10.1613/JAIR.1.12107.

22 Florent Foucaud, Esther Galby, Liana Khazaliya, Shaohua Li, Fionn Mc Inerney, Roohani
Sharma, and Prafullkumar Tale. Tight (double) exponential bounds for NP-complete problems:
Treewidth and vertex cover parameterizations. CoRR, abs/2307.08149, 2023. doi:10.48550/
arXiv.2307.08149.

23 Martin Gairing and Rahul Savani. Computing stable outcomes in symmetric additively
separable hedonic games. Math. Oper. Res., 44(3):1101–1121, 2019. doi:10.1287/MOOR.2018.
0960.

24 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

25 Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and Yota Otachi. Ex-
ploring the gap between treedepth and vertex cover through vertex integrity. Theor. Comput.
Sci., 918:60–76, 2022. doi:10.1016/j.tcs.2022.03.021.

26 Tesshu Hanaka, Airi Ikeyama, and Hirotaka Ono. Maximizing utilitarian and egalitarian
welfare of fractional hedonic games on tree-like graphs. In Weili Wu and Jianxiong Guo, editors,
Combinatorial Optimization and Applications - 17th International Conference, COCOA 2023,
Hawaii, HI, USA, December 15-17, 2023, Proceedings, Part I, volume 14461 of Lecture Notes
in Computer Science, pages 392–405. Springer, 2023. doi:10.1007/978-3-031-49611-0_28.

27 Tesshu Hanaka, Hironori Kiya, Yasuhide Maei, and Hirotaka Ono. Computational complexity
of hedonic games on sparse graphs. In PRIMA, volume 11873 of Lecture Notes in Computer
Science, pages 576–584. Springer, 2019. doi:10.1007/978-3-030-33792-6_43.

28 Tesshu Hanaka and Michael Lampis. Hedonic games and treewidth revisited. In Shiri Chechik,
Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual European
Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany,
volume 244 of LIPIcs, pages 64:1–64:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ESA.2022.64.

ISAAC 2024

https://doi.org/10.5555/3545946.3598644
https://doi.org/10.5555/3545946.3598644
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/s00182-017-0596-4
https://doi.org/10.1145/3340322
https://doi.org/10.24963/ijcai.2021/26
https://doi.org/10.1613/JAIR.1.12107
https://doi.org/10.48550/arXiv.2307.08149
https://doi.org/10.48550/arXiv.2307.08149
https://doi.org/10.1287/MOOR.2018.0960
https://doi.org/10.1287/MOOR.2018.0960
https://doi.org/10.1016/j.tcs.2022.03.021
https://doi.org/10.1007/978-3-031-49611-0_28
https://doi.org/10.1007/978-3-030-33792-6_43
https://doi.org/10.4230/LIPIcs.ESA.2022.64

39:16 Core Stability in Additively Separable Hedonic Games of Low Treewidth

29 David G. Harris and N. S. Narayanaswamy. A faster algorithm for vertex cover parameterized
by solution size. In Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and
Daniel Lokshtanov, editors, 41st International Symposium on Theoretical Aspects of Computer
Science, STACS 2024, March 12-14, 2024, Clermont-Ferrand, France, volume 289 of LIPIcs,
pages 40:1–40:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/
LIPICS.STACS.2024.40.

30 Ayumi Igarashi, Kazunori Ota, Yuko Sakurai, and Makoto Yokoo. Robustness against agent
failure in hedonic games. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019,
pages 364–370. ijcai.org, 2019. doi:10.24963/ijcai.2019/52.

31 Michael Lampis, Stefan Mengel, and Valia Mitsou. QBF as an alternative to Courcelle’s
theorem. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors, Theory and Applications
of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT 2018, Held as Part
of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings,
volume 10929 of Lecture Notes in Computer Science, pages 235–252. Springer, 2018. doi:
10.1007/978-3-319-94144-8_15.

32 Michael Lampis and Valia Mitsou. Treewidth with a quantifier alternation revisited. In Daniel
Lokshtanov and Naomi Nishimura, editors, 12th International Symposium on Parameterized
and Exact Computation, IPEC 2017, September 6-8, 2017, Vienna, Austria, volume 89 of
LIPIcs, pages 26:1–26:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.IPEC.2017.26.

33 Michael Lampis and Valia Mitsou. Fine-grained meta-theorems for vertex integrity. In Hee-
Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms and
Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs, pages
34:1–34:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
ISAAC.2021.34.

34 Dániel Marx and Valia Mitsou. Double-exponential and triple-exponential bounds for choos-
ability problems parameterized by treewidth. In Ioannis Chatzigiannakis, Michael Mitzen-
macher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy,
volume 55 of LIPIcs, pages 28:1–28:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.ICALP.2016.28.

35 Kazunori Ohta, Nathanaël Barrot, Anisse Ismaili, Yuko Sakurai, and Makoto Yokoo. Core
stability in hedonic games among friends and enemies: Impact of neutrals. In Carles Sierra,
editor, Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 359–365. ijcai.org, 2017. doi:
10.24963/ijcai.2017/51.

36 Martin Olsen. Nash stability in additively separable hedonic games and community structures.
Theory Comput. Syst., 45(4):917–925, 2009. doi:10.1007/S00224-009-9176-8.

37 Martin Olsen, Lars Bækgaard, and Torben Tambo. On non-trivial Nash stable partitions
in additive hedonic games with symmetric 0/1-utilities. Inf. Process. Lett., 112(23):903–907,
2012. doi:10.1016/J.IPL.2012.08.016.

38 Dominik Peters. Graphical hedonic games of bounded treewidth. In Dale Schuurmans and
Michael P. Wellman, editors, Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pages 586–593. AAAI Press, 2016.
doi:10.1609/AAAI.V30I1.10046.

39 Dominik Peters. Precise complexity of the core in dichotomous and additive hedonic games. In
Jörg Rothe, editor, Algorithmic Decision Theory - 5th International Conference, ADT 2017,
Luxembourg, Luxembourg, October 25-27, 2017, Proceedings, volume 10576 of Lecture Notes in
Computer Science, pages 214–227. Springer, 2017. doi:10.1007/978-3-319-67504-6_15.

40 Debraj Ray. A game-theoretic perspective on coalition formation. Oxford University Press,
2007.

https://doi.org/10.4230/LIPICS.STACS.2024.40
https://doi.org/10.4230/LIPICS.STACS.2024.40
https://doi.org/10.24963/ijcai.2019/52
https://doi.org/10.1007/978-3-319-94144-8_15
https://doi.org/10.1007/978-3-319-94144-8_15
https://doi.org/10.4230/LIPIcs.IPEC.2017.26
https://doi.org/10.4230/LIPIcs.IPEC.2017.26
https://doi.org/10.4230/LIPIcs.ISAAC.2021.34
https://doi.org/10.4230/LIPIcs.ISAAC.2021.34
https://doi.org/10.4230/LIPIcs.ICALP.2016.28
https://doi.org/10.24963/ijcai.2017/51
https://doi.org/10.24963/ijcai.2017/51
https://doi.org/10.1007/S00224-009-9176-8
https://doi.org/10.1016/J.IPL.2012.08.016
https://doi.org/10.1609/AAAI.V30I1.10046
https://doi.org/10.1007/978-3-319-67504-6_15

T. Hanaka, N. Köhler, and M. Lampis 39:17

41 Walid Saad, Zhu Han, Tamer Basar, Mérouane Debbah, and Are Hjørungnes. Hedonic coalition
formation for distributed task allocation among wireless agents. IEEE Trans. Mob. Comput.,
10(9):1327–1344, 2011. doi:10.1109/TMC.2010.242.

42 Jakub Sliwinski and Yair Zick. Learning hedonic games. In Carles Sierra, editor, Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017, pages 2730–2736. ijcai.org, 2017. doi:10.24963/
ijcai.2017/380.

43 Shao Chin Sung and Dinko Dimitrov. On core membership testing for hedonic coalition
formation games. Oper. Res. Lett., 35(2):155–158, 2007. doi:10.1016/j.orl.2006.03.011.

44 Shao Chin Sung and Dinko Dimitrov. Computational complexity in additive hedonic games.
Eur. J. Oper. Res., 203(3):635–639, 2010. doi:10.1016/J.EJOR.2009.09.004.

45 Gerhard J. Woeginger. A hardness result for core stability in additive hedonic games. Math.
Soc. Sci., 65(2):101–104, 2013. doi:10.1016/j.mathsocsci.2012.10.001.

ISAAC 2024

https://doi.org/10.1109/TMC.2010.242
https://doi.org/10.24963/ijcai.2017/380
https://doi.org/10.24963/ijcai.2017/380
https://doi.org/10.1016/j.orl.2006.03.011
https://doi.org/10.1016/J.EJOR.2009.09.004
https://doi.org/10.1016/j.mathsocsci.2012.10.001

Crossing Number Is NP-Hard for Constant
Path-Width (And Tree-Width)
Petr Hliněný #

Masaryk University, Brno, Czech Republic

Liana Khazaliya #

Technische Universität Wien, Austria

Abstract
Crossing Number is a celebrated problem in graph drawing. It is known to be NP-complete
since the 1980s, and fairly involved techniques were already required to show its fixed-parameter
tractability when parameterized by the vertex cover number. In this paper we prove that computing
exactly the crossing number is NP-hard even for graphs of path-width 12 (and as a result, for simple
graphs of path-width 13 and tree-width 9).

Thus, while tree-width and path-width have been very successful tools in many graph algorithm
scenarios, our result shows that general crossing number computations unlikely (under P ̸= NP) could
be successfully tackled using graph decompositions of bounded width, what has been a “tantalizing
open problem” [S. Cabello, Hardness of Approximation for Crossing Number, 2013] till now.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Computational geometry

Keywords and phrases Graph Drawing, Crossing Number, Tree-width, Path-width

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.40

Related Version Full Version: https://arxiv.org/abs/2406.18933

Funding Liana Khazaliya acknowledges support from the Austrian Science Fund (FWF) [Y1329]
and the European Union’s Horizon 2020 COFUND programme [LogiCS@TUWien, grant agreement
No.101034440].

1 Introduction

The notion of a crossing number originally arose during WWII by Turán [16] for completed
bipartite graphs in the context of the minimization of the number of crossings between tracks
connecting brick kilns to storage sites. Formally, the crossing number cr(G) of a graph G is
the minimum number of pairwise edge crossings in a drawing of G in the plane. Determining
the crossing number of a graph is one of the most prominent combinatorial optimization
problems in graph theory.

Back in the 1980s, Garey and Johnson [8] showed that the crossing number minimization is
NP-hard. Their result has been extended even to fairly restrictive graph classes, in particular
the problem is NP-hard even for cubic graphs [10], and also for a fixed rotation scheme [14].
Moreover, Crossing Number is APX-hard [2] (does not admit a PTAS unless P = NP) in
its general setting.

Another direction of the extensive research is on computation of the crossing number for
graphs that are initially close to planar graphs. Surprisingly, Crossing Number remains
NP-hard for almost planar graphs (graphs that can be made planar and hence crossing-free
by the removal of just a single edge) [3], and remains NP-hard on almost planar graphs even
when only 3 vertices are of degree greater than 3 [11,12]. This means that with respect to
the maximum degree of the graph, as well as with respect to the number of edges to remove
from the graph to make it planar, Crossing Number is para-NP-hard.

© Petr Hliněný and Liana Khazaliya;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 40; pp. 40:1–40:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hlineny@fi.muni.cz
https://orcid.org/0000-0003-2125-1514
mailto:lkhazaliya@ac.tuwien.ac.at
https://orcid.org/0009-0002-3012-7240
https://doi.org/10.4230/LIPIcs.ISAAC.2024.40
https://arxiv.org/abs/2406.18933
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Crossing Number Is NP-Hard for Constant Path-Width (And Tree-Width)

One more way to deal with the hardness of Crossing Number, is exploiting the structure
of the input to get an understanding of how it affects the computational feasibility of the
problem. From this side, if the input graph has a vertex cover of bounded size, then the
crossing number can be computed exactly in FPT-time (some function of the parameter, i.e.
vertex cover number, multiplied by a polynomial of the input size) [13]. Thus, investigation
of the Crossing Number for other structural parameters (in particular, feedback vertex set
number, tree-depth, path-width, and tree-width) not once was mentioned as an interesting
research venue to explore [1, 2, 17]. In this direction, it is known that the problem is solvable
in linear time on maximal graphs of path-width 3, admits a 2-approximation algorithm on
(general) graphs of path-width 3, and admits a 4w3-approximation on maximal graphs of
path-width w [1]. For a more involved overview of the results on Crossing Number, we
refer the reader to a recent survey by Zehavi [17].

In this paper, we present a hardness result: Crossing Number is NP-hard even on a
graphs of constant path-width (and, respectively, tree-width), namely, for path-width 12 (and
tree-width 9). That also immediately closes the question of whether Crossing Number is
FPT or XP on aforementioned graph classes under usual complexity assumptions, since our
result shows that the problem is para-NP-hard.

▶ Theorem 1.1 (cf. Theorem 3.1 and Theorem 3.2). Given a graph G and an integer k, the
problem to decide whether a graph G can be drawn with at most k crossings is NP-complete
even when G is required to have path-width at most 12, and when G is required to be simple
of path-width at most 13 and tree-width at most 9.

In Section 2 we define the basic concepts, i.e., of a drawing, the crossing number, width
decompositions, and the problem itself. In Section 3 we describe a hardness reduction from
Satisfiability. Since the proof is rather technical, we propose separately the construction
(Section 3.3), necessary conditions for an existence of a drawings with some predefined
crossing number (Section 3.4), correctness of the reduction (Section 3.5), and, lastly, that
the width parameters, i.e. path-width and tree-width, of the constructed graph are constant
(Section 3.6). We conclude with Section 4.

2 Preliminaries

We will consider finite graphs with possible parallel edges throughout the paper. We begin
with the standard terminology of graph theory [7], including the notions of tree-width and
path-width [5] which are commonly used parameters to capture the complexity of a graph,
and of graph drawing concepts [6].

Furthermore, for an integer n ∈ N, we denote by [n] = {1, . . . , n}.

2.1 Drawings
A drawing G of a graph G in the plane is a mapping of the vertices V (G) to distinct points
in the plane, and of the edges E(G) to simple curves connecting their respective endpoints
but not containing any other vertex point. When convenient, we will refer to the elements
(vertices and edges) of the drawing by the corresponding elements of G. A crossing is the
intersection (a common point) of two distinct edge curves, other than their common endpoint.
It is well established that the search for an optimal solution to the crossing number problem
can be restricted to so called good drawings: any pair of edges crosses at most once, adjacent
edges do not cross, and there is no crossing point in common to three or more edges.

P. Hliněný and L. Khazaliya 40:3

A drawing G is planar (or a plane graph) if G has no crossings, and a graph in planar if it
has a planar drawing. The number of crossings in a particular drawing G is denoted by cr(G)
and the minimum over all good drawings G of a graph G by cr(G). We call cr(GG) and cr(G)
the crossing number of the drawing GG and the graph G, respectively. The Crossing
Number problem for a given graph G asks for a good drawing G with the least possible
number of crossings.

We will also use a common artifice in crossing number research. In a weighted graph,
each edge is assigned a positive number (the weight or thickness of the edge, usually an
integer). Now the weighted crossing number is defined as the ordinary crossing number, but
a crossing between edges e1 and e2, say of weights t1 and t2, contributes the product t1 · t2
to the weighted crossing number. For the purpose of computing the crossing number, an
edge of integer weight t can be equivalently replaced by t parallel edges of weights 1; this is
since we can easily redraw each of the t edges closely along one with the least number of
crossings. Hence, from now on, we will use weighted edges instead of parallel edges, and
shortly say crossing number to the weighted crossing number.

2.2 Tree-width and Path-width
A tree decomposition T of an undirected graph G is a pair (T, χ), where T is a tree (whose
vertices we call nodes) rooted at a node r and χ is a function that assigns to each node t ∈ T
a set χ(t) ⊆ V (G) such that the following holds:

For every {u, v} ∈ E(G) there is a node t such that u, v ∈ χ(t).
For every vertex v ∈ V (G), the set of nodes t satisfying v ∈ χ(t) forms a nonempty
subtree of T .

The sets χ(t), for t ∈ V (T), are called bags of the tree decomposition. The width of a tree
decomposition (T, χ) is the size of a largest set χ(t) minus 1, and the tree-width of the
graph G, denoted tw(G), is the minimum width of a tree decomposition of G.

The path decomposition and path-width are defined analogously with the only difference
that the tree T is required to be a path.

We are going to use the following cops-and-robber game characterization on the graph G.
The robber player can freely move along cop-free paths in the graph.
The cops fly in a helicopter; can land on a vertex or be lifted back up. When the helicopter
shows above a vertex v, the robber has time to escape wherever they chooses to.
The robber is caught whenever a cop lands on the robber’s vertex v.

Such a game is called monotone if the robber never gets a chance to reach a vertex previously
occupied by a cop.

The cited characterization is as follows.

▶ Theorem 2.1 (Seymour and Thomas [15]).
(1) The tree-width of G is at most t if and only if t + 1 cops can always catch the robber in

G in a monotone game if the robber is visible to the cop player.
(2) The path-width of G is at most t if and only if t + 1 cops can always catch the robber in

G in a monotone game provided the robber is not visible to the cops.

3 Hardness Reduction

In this section, we present and prove a polynomial time reduction that given an instance
I = (C, V) of Satisfiability, constructs an equivalent instance (G, k) of Crossing Number
on a graph of constant path-width (and tree-width).

ISAAC 2024

40:4 Crossing Number Is NP-Hard for Constant Path-Width (And Tree-Width)

Satisfiability
Input: A set of clauses C = {C1, . . . , Cℓ} over variables V = {x1, . . . , xn}
Question: Does there exist an assignment of the variables τ : V → {True, False}
satisfying all clauses in C?

Crossing Number
Input: A graph G, and k ∈ Z≥0
Question: Does G admit a drawing G in the plane such that G has at most k crossings?

▶ Theorem 3.1. There is a polynomial-time algorithm that, given an instance I of Satis-
fiability, outputs an equivalent instance of Crossing Number on a graph G of path-width
at most 12 and tree-width at most 9 (where G is allowed to have parallel edges).

If simplicity of the graph G is desirable, we immediately conclude:

▶ Corollary 3.2. There is a polynomial-time algorithm that, given an instance I of Satis-
fiability, outputs an equivalent instance of Crossing Number on a simple graph G of
path-width at most 13 and tree-width at most 9.

Proof. For any graph G and e ∈ E(G), the same drawing as a point set may be used both
for G and for G with the edge e subdivided; informally, subdivisions of edges do not matter
for Crossing Number. Hence, if the graph G of Theorem 3.1 contains parallel edges, we
form a graph G′ by subdividing each such edge of G once and obtain cr(G′) = cr(G). The
tree-width does not change, and the path-width of G′ grows by at most 1 compared to G. ◀

3.1 High-level Idea
Naturally, for interpreting a Satisfiability instance I = (V, C) in an instance (G, k) of
Crossing Number, one would use a large “grid structure”. Such structure would allow to
separately interpret values of the variables V, and to let all clauses C interact with their
variables; one could imagine, e.g., variables in columns and clauses in rows of the grid
structure, and their interaction happening in specially crafted cells in which the row and the
column intersect.

However, if a graph contains a large grid as a minor, then its tree-width is also large, and
our aim here is to obtain a graph G of constant tree-width and path-width. Thus, we are
instead going to base our reduction on a frame graph F with many small separators (here of
size 4 + 4) ordered from left to right, in order to achieve constant path-width of resulting G.
The crucial thing is that for each of the separators X, there are three components of (F − X)
– the “left”, “middle” and “right” ones – such that the left and right components are forced
to cross with the middle component many times (see Figure 1 and Figure 2 for a brief
illustration). This way we enforce the sought large grid structure in any optimal drawing of
the frame F , and consequently in any optimal drawing of G.

At the same time, the frame is constructed such that there is certain drawing flexibility
possible, namely we can perform “vertical flips” of the middle components of separators
mentioned in the previous paragraph (see Figure 1), and these will form a part of the variable
gadgets in our reduction. We will use this drawing flexibility of our variable gadgets to
encode the truth values of variables in Satisfiability (see Figure 4 for a brief illustration of
this encoding). Specific small gadgets (see Figure 3) will be added to the variable gadgets in
G to encode in which clauses they participate, and a satisfying assignment of the variables
will then be checked as a possibility to draw added global clause edges of G (one edge per

P. Hliněný and L. Khazaliya 40:5

Table 1 Color-encoding of the weights of the corresponding edges; and Θn,ℓ(ω1) denotes the
class of functions f such that C1 · ω1 ≤ f(ω1) ≤ C2 · ω1 for positive constants C1, C2 dependent on
n and ℓ, but not on ω.

Color Usage Weight

Heavy-brown (HB) The frame and Var-gadgets attachments ω8

Light-black (LB) Var-gadgets interior skeletons ω6

Red (R) Paths in Var-gadgets (vertical) ω4 + Θn,ℓ(ω1)

(R’) Stairs interconnecting Var-gadgets (horizontal) ω3

Blue (B) Paths in Var-gadgets (vertical) ω4 + Θn,ℓ(ω1)

(B’) Stairs connecting within Var-gadgets (horizontal) ω3

Cyan (C) Clauses Encoding within Var-gadgets ω2

Green (G) (Global) Clause Edges ω0 = 1

each clause, see the green edges in Figure 2) with minimum crossing cost across the whole
picture. This is an idea similar to the one used in [3]. The crucial point of the construction,
however, is how to enforce the unique right crossing pattern between the frame components
as in Figure 1, and for this we build upon an idea originally introduced in [12] and now
detailed within Section 3.4.

3.2 Auxiliary Graphs
To facilitate the presentation, we use colors, i.e. heavy-brown (HB), light-black (LB), red (R),
blue (B), cyan (C), green (G), to encode the future order of the weights of the corresponding
edges (see in Section 3.2). The weights of the edges will play a crucial role in the future
description of possible drawings of the constructing graph. The weight values are assigned with
respect to a sufficiently large (still polynomial in |C| + |V|) edge weight ω, e.g., ω = |E(G)|2.
Then, informally, even one crossing of weight ωt+1 “outweighs” all crossings of G of weight ωt.
Observe that, importantly, all weights used in our construction will be bounded by a
polynomial in |I|.

Further, we present auxiliary graphs for use as building blocks (Figure 1), before describing
the whole construction of the crossing number instance G.

Variable gadgets. We start by defining Var-gadgets. For each i ∈ [n], we construct a
Vari-gadget of height h ∈ Z>0 (see an example of Vari for h = 4 in Figure 1a, the value of h

to be defined later).
First, we introduce the vertex set of Vari as

V (Vari) = {bi
j,P , bi

j,N , vi
j,P , vi

j,N }j∈[h+2] ∪ {ri
j,L, ri

j,R}j∈[h+3] ∪ {wi
0, ui

0, wi
1, ui

1}.

We add 6 paths as follows:
two B-paths (constructed on B-edges) go through vertices {bi

j,P }j∈[h+2] and
{bi

j,N }j∈[h+2], and we will refer to the paths as B-pos and B-neg respectively;
two LB-paths go through vertices {vi

j,P }j∈[h+2] (LB-pos) and {vi
j,N }j∈[h+2] (LB-neg);

two R-paths go through vertices {ri
j,L}j∈[h+3] (R-left) and {ri

j,R}j∈[h+3] (R-right).
We make these paths adjacent (with HB-edges) to the vertices wi

0, ui
0, wi

1, ui
1 as follows:

both B-pos and B-neg paths by their corner vertices to wi
0 and ui

0;

ISAAC 2024

40:6 Crossing Number Is NP-Hard for Constant Path-Width (And Tree-Width)

ri
2,L ri

2,R

ri
3,L ri

3,R

ri
4,L ri

4,R

ri
5,L ri

5,R

ri
6,L ri

6,R

bi
1,P bi

1,N

bi
6,P bi

6,N

ri
1,L ri

1,R

ri
7,L ri

7,R

bi
2,P bi

2,N

bi
3,P bi

3,N

bi
4,P bi

4,N

bi
5,P bi

5,N

vi
2,P vi

2,N

vi
3,P vi

3,N

vi
4,P vi

4,N

vi
5,P vi

5,N

ui
0

wi
0

ui
1

wi
1

(a) The variable gadget Vari, h = 4.

r0
2,R r4

2,L

r0
3,R r4

3,L

r0
4,R r4

4,L

r0
5,R r4

5,L

r0
6,R r4

6,L

x1
0 = u1

0

x1
1 = w1

0

x2
0 = u2

0

x2
1 = w2

0

x3
0 = u3

0

x3
1 = w3

0

uBL uBR

uT RuT L

(b) The frame with n variable gadgets for n = 3, h = 4.

Figure 1 Auxiliary graphs. Note that for each i ∈ [n], the 8-tuple {ui
0, ui

1, ri
1,L, ri

1,R,

wi
0, wi

1, ri
h+3,L, ri

h+3,R} is a vertex cut in the frame graph.

both LB-pos and LB-neg, analogously, to wi
1 and ui

1; and
both R-left and R-right paths to both wi

0, ui
0 and wi

1, ui
1

(see Figure 1a).
Lastly, for each j ∈ [2, h + 1], we add stairs between pairs of -pos and -neg paths, i.e.,
pairwise connecting B-/LB-pos and B-/LB-neg paths with B’-edges bi

j,P vi
j,P and bi

j,N vi
j,N

respectively.
The weight of each edge of Vari is as specified in Section 3.2; in particular, for the R-paths,
the weight of the edges ri

j,Lri
j+1,L and ri

j,Rri
j+1,R is exactly ω4 + j(j + 1)ω, and for the

B-paths, the weight of the edges bi
j,P bi

j+1,P and bi
j,N bi

j+1,N is exactly ω4 + j(j + 2)ω.

The frame. We construct the frame for n Var-gadgets of height h, where n, h ∈ Z>0.
First, we introduce the HB-cycle (with HB-edges) on 4 vertices uBL (bottom-left), uT L

(top-left), uT R (top-right), uBR (bottom-right) in the specified order.
Then, we subdivide (n times) the edge between uBL and uBR by adding vertices {xi

0}i∈[n];
analogously we subdivide the edge between uT L and uT R by adding {xi

1}i∈[n].
Further, we add another HB-edge between uBL and uT L (resp., between uT R and uBR) and
subdivide it h times by adding vertices {r0

j,R}j∈[2,h+2] (resp., by adding {rn+1
j,L }j∈[2,h+2]).

We call the resulting graph of this construction (see Figure 1b) the frame F .
Now, we attach n Var-gadgets to the frame F .
For each i ∈ [n], we introduce a Vari-gadget (as described in Section 3.2) and pairwise
identify vertices ui

0, wi
0 of Vari with vertices xi

0, xi
1 of the frame respectively.

Lastly, we add stairs (interconnections) between R-paths of the neighboring Var-gadgets
and the frame, i.e. for each i ∈ [n + 1] and j ∈ [2, h + 2], we add R’-edge ri−1

j,R ri
j,L. Thus,

for each i ∈ [n + 1], we make stairs between the R-right path of Vari−1 (or, if i = n + 1,
with a subdivision of the frame’s side uT RuBR) and the R-left path of Vari (or, if i = 1,
with a subdivision of the frame’s side uT LuBL).

The weights of all new edges are again as specified in Section 3.2.

P. Hliněný and L. Khazaliya 40:7

This finishes the construction of our frame with n Var-gadgets G′ (see G′ for h = 4, n = 3
in Figure 1b). Note that G′ still lacks the clause edges (see in further Figure 2) and an
interpretation of variable occurrences in clauses (the cells of further Figure 3).

So far, for simplicity, we allow ourselves to refer to Figure 1b to illustrate the defined
graph G′. Observe the natural meaning the R-left and R-right paths in each gadget Vari;
in order to facilitate their connections to Vari−1 and to Vari+1, R-left is naturally drawn
to the left of R-right. On the other hand, the B-/LB-pos and B-/LB-neg paths of Vari

are symmetric and not adjacent outside of Vari, and hence they can be flexibly drawn –
B-/LB-pos to the left or to the right of B-/LB-neg; this is what will later define the truth
value of the variable represented by Vari.

3.3 The Full Reduction
Consider an instance (C, V) of Satisfiability (with |C| = ℓ, |V| = n). We construct an
instance (G, k) of Crossing Number as follows. See Figure 2 for a schematic representation.

First, we introduce G′, the frame with n Var-gadgets of height h = 4ℓ + n − 2.
Then, for each i ∈ [n], we encode the occurrence of the variable xi in clauses C. For that
purpose, for each j ∈ [ℓ], between LB-pos and LB-neg paths of the existing Vari-gadget we
add a cell. Each cell is defined by two horizontal LB-edges and 3 edges inside, depending
on the type (pos, neg, neut) of the cell: pos if x ∈ C; neg if x ∈ C; neut if neither x nor
x is in C. A cell of each type is shown in Figure 3.

C1

C2

C3

C1

C2

C3

x1 x2 x3 x4 x5

Figure 2 For an example instance of Satisfiability, given by V = {x1, x2, x3, x4, x5} and
C = {(x1 ∨ x2 ∨ x4 ∨ x5), (x1 ∨ x3 ∨ x5), (x2 ∨ x3 ∨ x4)}; the depicted graph G is constructed as an
input of the sought reduction to Crossing Number of G. Notice, in particular, the addition of the
clause edges (drawn in green from left to right across the frame) and the shaded areas in which the
clause edges will presumably be drawn.

ISAAC 2024

40:8 Crossing Number Is NP-Hard for Constant Path-Width (And Tree-Width)

LB-pos LB-neg

(a) Cpos: x ∈ C.

LB-pos LB-neg

(b) Cneg: x ∈ C.

LB-pos LB-neg

(c) Cneut: neither x nor x is in C.

Figure 3 Cell types; for cases of variable x occurrence in clause C.

Cells inside the same Vari-gadget are separated with additional LB-edges as shown in
Figure 2. For a formal description, we start with LB-edges (again, all weights are as
specified in Section 3.2) inside Var-gadgets which separate cells. For each i ∈ [n], we add

an LB-path from vi
1,N to vi

1+i,P (below all cells of this Vari-gadget), precisely on vertices
vi

1,N , vi
2,P , vi

2,N , . . . , vi
i,N , vi

1+i,P in this order;
another LB-path from vi

4ℓ+i−1,N to vi
h+2,P (above all cells in Vari), precisely on vertices

vi
4ℓ+i−1,N , vi

4ℓ+i,P , vi
4ℓ+i,N , . . . , vi

h+1,N , vi
h+2,P ; and

for each j ∈ [ℓ − 1], a LB-path on vertices vi
4j+i−1,N , vi

4j+i,P , vi
4j+i,N , vi

4j+i+1,P

(between cells number j and j + 1).
After that, we add cells themselves in the bottom-up order. For all j ∈ [ℓ], we introduce
two LB-edges vi

4j+i−3,P vi
4j+i−3,N and vi

4j+i−1,P vi
4j+i−1,N , and then we proceed with

encoding of our Satisfiability instance (C, V) it the following way:
if xi ∈ Cj , we introduce a Cpos cell (Figure 3a), i.e. we add three C-edges as a path
through vi

4j+i−3,P , vi
4j+i−2,N , vi

4j+i−2,P , vi
4j+i−1,N ;

in case xi ∈ Cj , we introduce a Cneg cell (Figure 3b), i.e. we add three C-edges as a
path through vi

4j+i−3,N , vi
4j+i−2,P , vi

4j+i−2,N , vi
4j+i−1,P ;

lastly, if neither xi nor xi is in Cj , we introduce a Cneut cell (Figure 3c),
formed by one LB-edge vi

4j+i−2,P vi
4j+i−2,N and two C-edges vi

4j+i−3,P vi
4j+i−2,N and

vi
4j+i−2,N vi

4j+i−1,P .
Finally, for each j ∈ [ℓ], we add a G-edge that corresponds to the clause Cj itself. Here,
we subdivide two vertical HB-edges of the frame and connect these newly added vertices.
Precisely, for each j ∈ [ℓ], we subdivide the edge between r0

4j−2,R, r0
4j−1,R (on the left

vertical side uBLuT L of the frame, cf. Figure 1b) and the edge between rn+1
4j+n−1,L, rn+1

4j+n,L

(on the right vertical side uBRuT R). Note the shift in the indices of the subdivided edges,
up by n + 1 from left to right.

This concludes the construction of G.
The reduction returns (G, k) as an instance of Crossing Number where, for h = 4ℓ+n−2,

k = 2n(2h+1)ω7 +2nℓω6 +4nℓω4 +2n
h+1∑
j=2

j(j +1)ω4 +2n
h+1∑
j=1

j(j +2)ω4 +nℓω2 +(ω2 −1).

3.4 Drawings Claims
Until this point, all Figures were provided as an illustration without arguing why a certain
drawing of the corresponding graph was selected. This subsection is dedicated to shed light
on the conditions that necessarily have to be satisfied for a drawing G of the previously
constructed instance (G, k) of the Crossing Number unless G is not a solution.

So, we are considering the constructed instance (G, k) of Crossing Number from
Section 3.3. Following the way the graph G was introduced, we begin to formulate observations
and claims that every drawing of the graph with at most k crossings has to satisfy. Naturally,

P. Hliněný and L. Khazaliya 40:9

C1

C2

C3

C1

C2

C3

x1 = True x2 = True x3 = False x4 = False x5 = False

Figure 4 A drawing of the graph G from Figure 2, constructed from an instance of Satisfiability
given by V = {x1, x2, x3, x4, x5} and C = {(x1 ∨ x2 ∨ x4 ∨ x5), (x1 ∨ x3 ∨ x5), (x2 ∨ x3 ∨ x4)}.
The depicted drawing G of G corresponds to the satisfying assignment x1 = x2 = True, x3 = x4 =
x5 = False. The clause C1 = (x1 ∨ x2 ∨ x4 ∨ x5) is satisfied by the variable x5 (observe that the
G-edge of C1 makes an extra jump-up in the drawing area of Var5 to the right, yet crossing only one
C-edge there – same as in other gadgets), C2 = (x1 ∨x3 ∨x5) is satisfied by x3 and C3 = (x2 ∨x3 ∨x4)
is satisfied by x2. See Figure 5 for a drawing representing an unsatisfying assignment.

we start with conditions for the heaviest edges, for the frame and Var-gadgets, and after
that we argue about the clauses encoding. Due to space restrictions, we leave proofs of the
(*)-marked statements to the full arXiv version of the paper.

▶ Observation 3.3. (*) If there exists a drawing G of G such that cr(G) ≤ k, then G has no
crossing that involves any of HB-edges.

▶ Observation 3.4. (*) Let H is a subgraph of G. If (H, k) is a no-instance of the Crossing
Number, then (G, k) is a no-instance of the Crossing Number.

Based on Theorem 3.4, we now show some claims that speak only about a subgraph of G.
As in Section 3.2, let F be the frame and G′ be the frame with n Var-gadgets (Figure 1) of
the graph G; so, we are going to speak about properties which hold regardless of our clauses
encoding in G. However, both next claims still follow from the same type of argument,
namely, any crossing between the considered edges would be more costly than the selected
value of k allows.

▶ Claim 3.5. (*) If there exists a drawing G′ of G′ such that cr(G′) ≤ k, then there are no
other crossings than crossings between R- or B-edges with R’- or B’-edges in G′.

ISAAC 2024

40:10 Crossing Number Is NP-Hard for Constant Path-Width (And Tree-Width)

C1

C2

C3

C1

C2

C3

x1 = True x2 = True x3 = True x4 = False x5 = False

Figure 5 Another drawing of the graph G from Figure 2, constructed from an instance of
Satisfiability given by V = {x1, x2, x3, x4, x5} and C = {(x1 ∨ x2 ∨ x4 ∨ x5), (x1 ∨ x3 ∨ x5), (x2 ∨
x3 ∨ x4)}, for comparison with the drawing in Figure 4.
The depicted drawing G′ of G corresponds to the unsatisfying assignment x1 = x2 = x3 = True,
x4 = x5 = False. The clause C1 = (x1 ∨ x2 ∨ x4 ∨ x5) is satisfied by the variable x5 and
C3 = (x2 ∨ x3 ∨ x4) is satisfied by x2, same as in Figure 4. The difference for the unsatisfied clause
C2 = (x1 ∨ x3 ∨ x5) is that here the G-edge of C2 has no way to make the required extra jump-up
without crossing more than one C-edge inside one of Var-gadgets (or other heavier edges). Hence,
here the G-edge of C2 makes extra crossing with two C-edges in the drawing area of Var3, and this
unavoidably leads to cr(G′) > k.

▶ Claim 3.6. (*) If a drawing G′ of G′ is a solution of the instance (G′, k), then, for all
u, v ∈ V (G′ \ F), both u and v are lying in the same face of the frame F in G′, and the
selection of such a face is uniquely predetermined.

Theorem 3.6 allows us, without loss of generality, fix a drawing of the frame F as it is
shown in Figure 1b. So, we define a positioning of left and right sides. This way, the fixed
drawing of the frame determines a linear order of gadgets Vari (from left to right following
increasing order of i ∈ [n]).

Furthermore, we already almost fixed a drawing of Var-gadgets inside the frame. Still,
the fact that we have not enough budget for any other crossing (namely, crossings between
R’- and B’-edges of weight ω3 have not been covered yet) needs some proper counting that
we will provide further. By now, according to Theorem 3.5, the R/B/LB-paths of Var-gadgets
are not allowed to cross each other in any solution if such a one exists.

Lastly, let us notice that the positioning of the vertical R-paths is also fixed.

P. Hliněný and L. Khazaliya 40:11

▶ Claim 3.7. (*) If a drawing G′ of G′ is a solution of the instance (G′, k), then, for all
i ∈ [n], the R-left path of the Vari is drawn to the left from both LB-paths of Vari, while the
R-right path is to the right.

Now, let us check how crossings of R- and B-edges with R’- and B’-edges behave. Briefly
saying, by the following Theorem 3.8, we show that crossings between the R- and B-edges
are also predefined by a construction. For this purpose, while constructing the graph G, we
played a bit with additional adjustment weight of order ω1 for the vertical R- and B-edges.
This adjustment weight selection forces the unique alternation of crossings exactly as shown
in Figure 1b and subsequent figures.

▶ Lemma 3.8. (*) If a drawing G′ of G′ is a solution of the instance (G′, k), then each B-edge
(R-edge) crosses exactly one R’-edge (B’-edge). The total weight of all crossings between B(R)-

and R’(B’)-edges adds 2n

(
(2h + 1)ω7 +

h+1∑
j=2

j(j + 1)ω4 +
h+1∑
j=1

j(j + 2)ω4

)
to the count cr(G′).

Next, we return back to the full reduction graph G, and investigate properties of its
admissible drawings.

▶ Lemma 3.9. (*) If the crossing number of a drawing G of G does not exceed k, then the
G-edges add at least 2nℓω6 + 4nℓω4 + nℓω2 more crossings. In particular, every G-edge in G
crosses precisely one C-edge of every Vari-gadget.

For each G-edge, we define its cells area as a connected region (union) of faces in a
drawing G of G as it is shown in Figure 4 with a grey fill, i.e. for each j ∈ [ℓ], there is a
single connected horizontal block of faces that includes all cells of the clause Cj and will
correspond to the cells area for the G-edge which is jth in bottom-up order. For each such a
cells area we furthermore define its up- and down-level as the subsets of faces that are higher
and lower, respectively, by subscripts of their vertices. To clarify the last point, by the next
lemma we show that for each j ∈ [ℓ], if the crossing number of the drawing G of the graph G

does not exceed k, then the jth G-edge does not leave its cells area. Now, we proceed with
that formally.

▶ Lemma 3.10. (*) If the crossing number of a drawing G of G does not exceed k, then any
G-edge cannot be drawn (even partially) outside of its cells area (see Figure 4).

3.5 Correctness
Before proceeding with the correctness arguments, let us look back and see that, indeed, all
drawing claims imply that if some drawing G of G with cr(G) ≤ k exists, then almost all
possible crossings are predefined. Practically the only freedom still left is the possibility to
flip (independently of others) each Var-gadget. By flips of the Var-gadget we mean its two
possible embeddings, which differ only by the order of B- and LB-paths, e.g. going from left
to right in our Figures. As an example, let us consider Figure 4: here, we meet first from left

either a pair of B-pos, LB-pos paths and then call such an embedding a pos-side flip
(see Var3-gadget in the middle in Figure 5);
or a pair of B-neg, LB-neg paths and then call such an embedding a neg-side flip (see
Var3-gadget in the middle in Figure 4).

And this is exactly the intuition behind transferring a possible variable assignment from
Satisfiability instance to a possible drawing of the Crossing Number instance, and back.

Suppose, given an instance (C, V) of Satisfiability, that the reduction from the previous
subsection returns (G, k) as an instance of Crossing Number.

ISAAC 2024

40:12 Crossing Number Is NP-Hard for Constant Path-Width (And Tree-Width)

▶ Lemma 3.11. If (C, V) is a satisfiable instance of Satisfiability, then the graph G of
the constructed instance (G, k) admits a drawing G such that cr(G) ≤ k.

Proof. Again, let G′ be the frame with n Var-gadgets which is a subgraph of G. We start
with the drawing of G′ as specified by Figure 1, which actually corresponds to the “minimal
drawing” investigated in Theorem 3.8. We are going to show that this drawing has exactly
the same number of crossings as claimed in Theorem 3.8.

Indeed, for every i ∈ [n], the R-left and R-right paths of the Vari-gadget each are
crossed by h B’-edges in our drawing, and the B-pos and B-neg paths of the Vari-gadget each
are crossed by (h + 1) R’-edges. Taking into account the alternating order of these crossings
and the exact weights of the edges of these paths (see in Section 3.2), we count exactly

2ω3

(
hω4 + (h + 1)ω4 +

h+1∑
j=2

j(j + 1)ω1 +
h+1∑
j=1

j(j + 2)ω1

)
crossings on Vari. Summing over

all i ∈ [n], we get 2n

(
(2h + 1)ω7 +

h+1∑
j=2

j(j + 1)ω4 +
h+1∑
j=1

j(j + 2)ω4

)
crossings. There are

no more crossings in our drawing of G′.
Now we add the cell gadgets of G to every Var-gadget, without additional crossings, and

the G-edges denoted by ej of all clauses Cj ∈ C. The goal is to show that G is (can be)
drawn with at most k crossings. Each G-edge ej crosses every Var-gadget in total weight of
2ω6 + 4ω4 + Θn,ℓ(ω1) crossings, together giving another 2nℓω6 + 4nℓω4 + Θn,ℓ(ω1) crossings
in our drawing. It only remains to estimate the weight of crossings of the G-edges ej with
the cell gadgets. If we can achieve the state that each G-edge ej additionally crosses only one
C-edge (of weight ω2) of cell gadgets in every Var-gadget, then, comparing the full count to
the reduction parameter definition

k = 2n(2h+1)ω7 +2nℓω6 +4nℓω4 +2n
h+1∑
j=2

j(j +1)ω4 +2n
h+1∑
j=1

j(j +2)ω4 +nℓω2 +(ω2 −1),

we see that it is enough to have Θn,ℓ(ω1) ≤ ω2 − 1. The latter holds true by our (sufficiently
large) choice of the base weight ω.

It thus remains to show that aforementioned desired drawings of the G-edges ej are
simultaneously possible. Since the given Satisfiability instance is satisfiable, there is a
truth assignment τ of V such that for every clause Cj ∈ C, an occurrence of some variable
xi ∈ V in Cj satisfies Cj in τ . If the variable xi ∈ V, i ∈ [n], is valued True, then the
Vari-gadget is pos-side flipped in our drawing of G′, i.e., that the LB-pos path of Vari is to
the left of the LB-neg path of Vari. If xi is False, then the Vari-gadget is neg-side flipped,
i.e., with LB-pos to the right.

Now, for every Cj ∈ C, the edge ej is drawn in the down-level of its cells area (as defined
in Section 3.4), until we reach the cell in the Vari-gadget where i is the least index such that
an occurrence of xi satisfies Cj in τ . Then, inside this Vari-gadget, the edge ej jumps up to
the up-level of its cells area, as depicted in Figure 3a if xi ∈ Cj , resp. in Figure 3b if xi ∈ Cj .
The Figure shows that this jump-up is also possible with crossing only one C-edge in the cells
gadget of Vari. For the rest, the edge ej is drawn in the up-level of its cells area. This is the
sought solution to a drawing of the reduction graph G with at most k crossings; indeed, the
edge ej arrives to the right side of the frame by n + 1 levels higher that its beginning on the
left side. ◀

▶ Lemma 3.12. If G admits a drawing G such that cr(G) ≤ k, then the original Satisfiab-
ility instance (C, V) is satisfiable.

P. Hliněný and L. Khazaliya 40:13

Proof. If cr(G) ≤ k, then G satisfies the drawings claims of Section 3.4 and, in particular,
Theorem 3.9 and Theorem 3.10. We define a valuation τ : V → {True, False} as follows;
xi ∈ V is set True if Vari pos-side flipped in G (the LB-pos path of Vari is drawn to the left
of the LB-neg path of Vari), and xi is set False otherwise.

Now, for every clause Cj ∈ C, the edge ej in G starts in the down-level of its cells area
and ends in the up-level. By Theorem 3.10, there has to be a Vari-gadget, i ∈ [n], such
that ej jumps up to the up-level of its cells area within the subdrawing of Vari in G. By
the definition of the cell types in the construction of G, see in Figure 3, this is possible in
accordance with Theorem 3.9 (only one crossing with a C-edge) only if xi ∈ Cj and xi is set
to True, or if xi ∈ Cj and xi is set to False. In other words, if every Cj ∈ C is satisfied by
our valuation τ . And this completes the proof. ◀

3.6 On Path-width of the Resulting Instance
The last missing ingredient in the proof of Theorem 3.1 (and hence, of Theorem 1.1) is an
estimate of the path-width and tree-width of the constructed instance G. To obtain it, we
will use the cops-and-robber game characterization from Theorem 2.1.

We start with an auxiliary technical claim.

▶ Lemma 3.13. (*) Let H be a graph whose vertex set is partitioned into m disjoint parts
V (H) = A1 ∪ . . . ∪ Am, and for some ai ≤ bi, i ∈ {1, . . . , m}, let Ai = {vi,j : ai ≤ j ≤ bi}.
Assume that
a) each Ai induces a path in H in the natural order of vertices, i.e. vi,ai

, vi,ai+1, . . . , vi,bi
;

b) if an edge vi,jvi′,j′ exists in H for i ̸= i′, then |i − i′| = 1 and |j − j′| ≤ 1; and
c) there are no indices i ̸= i′, j ̸= j′ such that both vi,jvi′,j′ ∈ E(H) and vi,j′vi′,j ∈ E(H).1
Then there exists a valid monotone search strategy for the cop player on H using m + 1 cops
against an invisible robber. Furthermore, this strategy can be assumed to start with the cop
player occupying the vertex subset {v1,a1 , . . . , vm,am

}.

▶ Proposition 3.14. For any given Satisfiability instance, the graph G constructed in
Section 3.3 (for the proof of Theorem 3.1) is of path-width at most 12 and of tree-width at
most 9.

Proof. The proof would be finished if we find a monotone search strategy for the cop player
on G using 13 cops against an invisible robber (implies path-width at most 12), and one
using 10 cops against a visible robber (implies tree-width at most 9). We start with the
former.

Firstly, let us place 8 cops (see Figure 1) on vertices r1
1,L, r1

h+3,L, uBL, uT L (left side of G)
and rn

1,R, rn
h+3,R, uBR, uT R (right side of G). Note (see Figure 4) that such a placement of

cops separates the set U0 ⊆ V (G) formed by the vertices of the left and right HB-paths of the
frame, and of the R-left path of Var1 and the R-right path of Varn from the rest of the
graph G. We can now use additional 4 + 1 = 5 cops to search the subgraph induced by U0
by using Theorem 3.13. Notice, however, that in this application the levels dealt with in
Theorem 3.13 are shifted against the natural indexing from the construction of G.

After the previous initial phase, we continue the search by induction on i = 1, 2, . . . , n.
We assume 8 cops placed on vertices ri

1,L, ri
h+3,L, ui−1

0 , wi−1
0 (the latter two being uBL, uT L

if i = 1) and, again, rn
1,R, rn

h+3,R, uBR, uT R. Further, we assume that V (Vari−1) (if i > 1)

1 The graph H can be easily pictured as having a planar drawing with the paths on A1, . . . , Am drawn
vertically in order from left to right, and other edges joining only neighboring verticals on the same
horizontal level or between two consecutive levels.

ISAAC 2024

40:14 Crossing Number Is NP-Hard for Constant Path-Width (And Tree-Width)

is already robber-free. We place 4 of the remaining cops onto vertices ui
0, ui

1, wi
1, wi

0, and
subsequently lift the cops from ri

1,L, ri
h+3,L, ui−1

0 , wi−1
0 . We now have 5 free cops which can

be used to search the B-/LB-pos and B-/LB-neg paths of Vari by using Theorem 3.13. Then,
we place 2 of the free cops onto ri+1

1,L , ri+1
h+3,L, and use the remaining 3 cops to search the

R-right path of Vari and the R-left path of Vari+1, again by Theorem 3.13. After finishing
previous, we may lift the cops from ui

1 and wi
1, and we are back in the induction assumption

with i + 1 instead of i.
It is easy to verify that the described procedure is a valid monotone search strategy

against an invisible robber.

Regarding the tree-width subcase, we use knowledge of robber’s position for a slight
improvement of the previous search strategy. At the beginning, after placing cops on r1

1,L,
r1

h+3,L, uBL, uT L and rn
1,R, rn

h+3,R, uBR, uT R, we look at whether the robber is trapped
inside the set U0 and if this is the case, we throw in 9-th cop to catch the robber in U0 by
Theorem 3.13 while using also the 4 cops starting on r1

1,L, uBL, rn
1,R, uBR.

In the induction phase, whenever the robber is trapped inside the B-/LB-pos and
B-/LB-neg paths of Vari, we may instead use the 4 cops from rn

1,R, rn
h+3,R, uBR, uT R to

perform the catch by Theorem 3.13. We do likewise in the other subcase of the R-right
path of Vari and the R-left path of Vari+1. When moving cops from the position on ri

1,L,
ri

h+3,L, ui−1
0 , wi−1

0 to next ui
0, ui

1, wi
1, wi

0, we now move cops in pairs – place onto ui
0, ui

1
and lift from ri

1,L, ui−1
0 , and then do the other pairs. We observe that the maximum number

of cops needed in this strategy is 4 + 4 + 2 = 10, and this is tight at the moment just before
trapping the robber in the R-right/R-left paths. ◀

4 Conclusion

We have shown that the Crossing Number problem is NP-hard for graphs of path-width 12
(and as a result, even of tree-width 9). It is worth to remark that, since the measures
clique-width and rank-width are bounded by O(2tw), their width decompositions are also too
much general to help deal with the Crossing Number problem. On the other hand, there
are more restrictive parameterizations worth trying, e.g. treedepth, distance to linear forest
(distance to disjoint paths), feedback vertex set number (distance to a forest), or cut-width
or bandwidth.

Barely any of the existing results could be extended for the parameters above. Thus,
investigation whether any of them could yield fixed-parameter tractability (or W-hardness)
of Crossing Number is an interesting venue to explore. However, as it is known that
Crossing Number is in FPT when parameterized by the solution value (k) [4, 9], it only
makes sense to investigate those parameters which do not bound the crossing number itself.

References
1 Therese Biedl, Markus Chimani, Martin Derka, and Petra Mutzel. Crossing number

for graphs with bounded pathwidth. Algorithmica, 82(2):355–384, 2020. doi:10.1007/
S00453-019-00653-X.

2 Sergio Cabello. Hardness of approximation for crossing number. Discrete Comput. Geom.,
49(2):348–358, March 2013. doi:10.1007/S00454-012-9440-6.

3 Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs makes crossing number
and 1-planarity hard. SIAM J. Comput., 42(5):1803–1829, 2013. doi:10.1137/120872310.

4 Éric Colin de Verdière and Thomas Magnard. An FPT algorithm for the embeddability
of graphs into two-dimensional simplicial complexes. In Proceedings of the 29th European

https://doi.org/10.1007/S00453-019-00653-X
https://doi.org/10.1007/S00453-019-00653-X
https://doi.org/10.1007/S00454-012-9440-6
https://doi.org/10.1137/120872310

P. Hliněný and L. Khazaliya 40:15

Symposium on Algorithms (ESA), pages 32:1–32:17, 2021. See also arXiv:2107.06236. arXiv:
2107.06236.

5 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

6 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

7 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012. doi:10.1007/978-3-662-53622-3.

8 Michael R. Garey and David S. Johnson. Crossing number is NP-complete. SIAM J. Algebr.
Discrete Methods, 4(3):312–316, September 1983. doi:10.1137/0604033.

9 Martin Grohe. Computing crossing numbers in quadratic time. J. Comput. Syst. Sci.,
68(2):285–302, 2004. doi:10.1016/J.JCSS.2003.07.008.

10 Petr Hliněný. Crossing number is hard for cubic graphs. J. Comb. Theory, Ser. B, 96(4):455–
471, 2006. doi:10.1016/j.jctb.2005.09.009.

11 Petr Hliněný. Complexity of anchored crossing number and crossing number of almost planar
graphs. CoRR, abs/2306.03490, 2023. doi:10.48550/arXiv.2306.03490.

12 Petr Hliněný and Gelasio Salazar. On hardness of the joint crossing number. In ISAAC,
volume 9472 of Lecture Notes in Computer Science, pages 603–613. Springer, 2015. doi:
10.1007/978-3-662-48971-0_51.

13 Petr Hliněný and Abhisekh Sankaran. Exact crossing number parameterized by vertex cover.
In Daniel Archambault and Csaba D. Tóth, editors, Graph Drawing and Network Visualization
- 27th International Symposium, GD 2019, Prague, Czech Republic, September 17-20, 2019,
Proceedings, volume 11904 of Lecture Notes in Computer Science, pages 307–319. Springer,
2019. doi:10.1007/978-3-030-35802-0_24.

14 Michael J. Pelsmajer, Marcus Schaefer, and Daniel Stefankovic. Crossing numbers and
parameterized complexity. In Seok-Hee Hong, Takao Nishizeki, and Wu Quan, editors, Graph
Drawing, 15th International Symposium, GD 2007, Sydney, Australia, September 24-26, 2007.
Revised Papers, volume 4875 of Lecture Notes in Computer Science, pages 31–36. Springer,
2007. doi:10.1007/978-3-540-77537-9_6.

15 Paul D. Seymour and Robin Thomas. Graph searching and a min-max theorem for tree-width.
J. Comb. Theory B, 58(1):22–33, 1993. doi:10.1006/jctb.1993.1027.

16 Paul Turán. A note of welcome. Journal of Graph Theory, 1(1):7–9, 1977. doi:10.1002/jgt.
3190010105.

17 Meirav Zehavi. Parameterized analysis and crossing minimization problems. Comput. Sci.
Rev., 45:100490, 2022. doi:10.1016/J.COSREV.2022.100490.

ISAAC 2024

https://arxiv.org/abs/2107.06236
https://arxiv.org/abs/2107.06236
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1137/0604033
https://doi.org/10.1016/J.JCSS.2003.07.008
https://doi.org/10.1016/j.jctb.2005.09.009
https://doi.org/10.48550/arXiv.2306.03490
https://doi.org/10.1007/978-3-662-48971-0_51
https://doi.org/10.1007/978-3-662-48971-0_51
https://doi.org/10.1007/978-3-030-35802-0_24
https://doi.org/10.1007/978-3-540-77537-9_6
https://doi.org/10.1006/jctb.1993.1027
https://doi.org/10.1002/jgt.3190010105
https://doi.org/10.1002/jgt.3190010105
https://doi.org/10.1016/J.COSREV.2022.100490

A Polynomial Kernel for Deletion to the Scattered
Class of Cliques and Trees
Ashwin Jacob #

National Institute of Technology Calicut, Kozhikode, India

Diptapriyo Majumdar #

Indraprastha Institute of Information Technology Delhi, New Delhi, India

Meirav Zehavi #

Ben-Gurion University of The Negev, Beersheba, Israel

Abstract
The class of graph deletion problems has been extensively studied in theoretical computer science,
particularly in the field of parameterized complexity. Recently, a new notion of graph deletion
problems was introduced, called deletion to scattered graph classes, where after deletion, each
connected component of the graph should belong to at least one of the given graph classes. While
fixed-parameter algorithms were given for a wide variety of problems, little progress has been made
on the kernelization complexity of any of them. Here, we present the first non-trivial polynomial
kernel for one such deletion problem, where, after deletion, each connected component should be a
clique or a tree - that is, as dense as possible or as sparse as possible (while being connected). We
develop a kernel of O(k5) vertices for the same.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Parameterized complexity and exact algorithms

Keywords and phrases Parameterized Complexity, Kernelization, Scattered Graph Classes, New
Expansion Lemma, Cliques or Trees Vertex Deletion

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.41

Related Version Full Version: https://arxiv.org/abs/2409.14209

Funding Diptapriyo Majumdar : Supported by Science and Engineering Research Board (SERB)
grant SRG/2023/001592.
Meirav Zehavi: Supported by European Research Council (ERC) starting grant titled PARAPATH.

1 Introduction

Graph modification problems form one of the most fundamental problem classes in algorithms
and graph theory. The input instance of a graph modification problem consists of an
undirected/directed graph, and a non-negative integer k, and the objective is to decide if
there exists a set of at most k vertices/edges/non-edges whose deletion/addition yields in a
graph belonging to some special graph class. A specific graph modification problem allows
to perform a specific graph operation, usually being vertex deletion or edge deletion or edge
addition or edge editing. Each of these operations, and vertex-deletion in particular, have
been extensively studied from the perspective of classical and parameterized complexity. For
example, some vertex deletion graph problems that have received intense attention in the
past three decades include Vertex Cover, Feedback Vertex Set, Cluster Vertex
Deletion Set, Interval Vertex Deletion Set, Chordal Vertex Deletion Set,
and more (see [3, 6, 7, 8, 9, 14, 17, 20, 32, 28, 38]).

A graph class Π is said to be hereditary if Π is closed under taking induced subgraphs.
There are several hereditary graph classes Π such that the corresponding Π-Vertex Dele-
tion problem is well-studied. Such examples include all of the problems listed above.

© Ashwin Jacob, Diptapriyo Majumdar, and Meirav Zehavi;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 41; pp. 41:1–41:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ashwinjacob@nitc.ac.in
https://orcid.org/0000-0003-4864-043X
mailto:diptapriyo@iiitd.ac.in
https://orcid.org/0000-0003-2677-4648
mailto:meiravze@bgu.ac.il
https://orcid.org/0000-0002-3636-5322
https://doi.org/10.4230/LIPIcs.ISAAC.2024.41
https://arxiv.org/abs/2409.14209
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Polynomial Kernel for Deletion to Cliques and Trees

Formally, the Π-Vertex Deletion is defined as follows: given a graph G and a non-
negative integer k, we ask whether G contains at most k vertices whose deletion results in
a graph belonging to class Π. Lewis and Yannakakis [35] proved that for every non-trivial
Π, the Π-Vertex Deletion problem is NP-complete. Later, Cai [5] has proved that if a
hereditary graph class Π can be described by a finite set of forbidden subgraphs containing all
minimal forbidden subgraphs in the class, then vertex deletion to Π becomes fixed-parameter
tractable (FPT).

Most of the computational problems that are NP-hard in general graphs can often be
solved in polynomial time when restricted to special graph classes. For example, Vertex
Cover is NP-hard on general graphs, but can be solved in polynomial time in forests,
bipartite graphs, interval graphs, chordal graphs, claw-free graphs, and bounded treewidth
graphs (see [12, 13, 23, 37]). Additionally, several other graph theoretic problems have
also been studied in special graph classes (see [2, 4, 11, 18, 22, 24, 30, 31, 33, 36] for some
examples). If your input graph is such that each of its connected components belong to one
of those special graph classes where the problem is solvable, then the problem can be solved
by solving it over each component of the graph. Therefore, such a graph where each of the
components belong to different graph classes are interesting. We say that such graphs belong
to a scattered graph class. Vertex deletion problems are useful to find a set of few vertices
whose removal results in a graph class where the problem of our interest is tractable. Since
the same problem is tractable in scattered graph classes (i.e. tractable in each of the graph
class), vertex deletion to scattered graph classes are interesting to look at as well.

Many of the graph classes can be characterized by a set of forbidden graphs [15, 34, 23, 10].
Vertex deletion problems for such graph classes boils down to hitting such forbidden subgraphs
occuring as induced subgraphs of the input graph. Unlike this, for deletion to a scattered
graph class, the deletion set X might separate the vertices of the union of the forbidden
subgraphs for each of the graph classes (instead of hitting them) so that all such graphs
do not occur in any of the connected components of the graph G − X. This ramps up the
difficulty for coming up with FPT, approximation and kernelization algorithms for deletion
to scattered graph classes. A naive approach of finding the solutions (or kernels) for each of
the deletion problems separately and “combining” them is unlikely to work.

Ganian et al. [21] studied backdoors to scattered classes of CSP problems. Subsequently,
Jacob et al. [25, 26] built on the works by Ganian et al. [21] and initiated a systematic study
of vertex deletion to scattered graph classes. They considered the (Π1, . . . , Πd)-Deletion
problem where the input instance is a graph G a parameter k with respect to d (constant)
hereditary graph classes Π1, . . . , Πd. The objective is to decide if there is a set of at most k

vertices S such that every connected component of G − S is in Πi for some i ∈ [d]. After
that, Jacob et al. [26] considered specific pairs of hereditary graph classes Π1 and Π2
and have provided singly exponential-time fixed-parameter tractable (FPT) algorithms and
approximation algorithms for (Π1, Π2)-Deletion problems. Very recently, Jansen et al. [29]
conducted a follow-up work on (Π1, . . . , Πd)-Deletion problems and have improved the
results appearing in [25]. A common theme for the FPT algorithms for deletion to scattered
graph classes is a non-trivial “unification” of the techniques used in the deletion problems of
each of the graph classes.

Our Problem and Results. To the best of our knowledge, vertex deletion to scattered graph
classes is essentially unexplored from the perspective of polynomial kernelization that is
a central subfield of parameterized complexity. The only folklore result that follows from
Jacob et al. [26] states that if there are two hereditary graph classes Π1 and Π2 such that

A. Jacob, D. Majumdar, and M. Zehavi 41:3

both Π1 and Π2 can be described by finite forbidden families and Pd (the induced path of d

vertices) is a forbidden induced subgraph for Π1 for some fixed constant d, then the problem
(Π1, Π2)-Deletion can be formulated as a d-Hitting Set problem and hence admits a
polynomial kernel. This folklore result is very restrictive and does not capture any hereditary
graph class whose forbidden sets are not bounded by a fixed constant.

In this paper, we initiate the study of vertex deletion to scattered graph classes from
the perspective of polynomial kernelization. We consider the problem Cliques or Trees
Vertex Deletion where given a graph G and a non-negative integer k, we ask if G contains
a set S of at most k vertices, such that G−S is a simple graph and every connected component
of it is either a clique or a tree – that is, as dense as possible or as sparse as possible (while
being connected). Naturally, we are specifically interested in the case where the input graph
is already a simple graph. However, our preprocessing algorithm can produce intermediate
multigraphs. Hence, we directly consider this more general formulation. Formally, we define
our problem as follows.

Cliques or Trees Vertex Deletion (CTVD) Parameter: k

Input: An undirected (multi)graph G = (V, E) and a non-negative integer k.
Question: Does G contain a set S of at most k vertices such that G − S is a simple
graph and every connected component of G − S is either a clique or a tree?

This problem is particularly noteworthy as it captures the essence of scattered classes:
allowing the connected components to belong to vastly different graph classes and ideally
the simplest ones where various computational problems are polynomial-time solvable. Here,
we indeed consider the extremes: the simplest densest graph (cliques) and the most natural
class of sparsest connected graphs (trees). If X is a feasible solution to Cliques or Trees
Vertex Deletion for a graph G, then we call X a (clique, tree)-deletion set of G. We
consider the (upper bound on the) solution size k as the most natural parameter. Jacob et
al. [26] proved that Cliques or Trees Vertex Deletion is in FPT - specifically, that it
admits an algorithm that runs in O∗(4k)-time. In this paper, we prove the following result
on the polynomial kernelization for this problem.

▶ Theorem 1.1. Cliques or Trees Vertex Deletion (CTVD) admits a kernel with
O(k5) vertices.

Our theorem is the first non-trivial result on a polynomial kernel for vertex deletion to pairs
of graph classes. The proof of this kernelization upper bound is based on several non-trivial
insights, problem specific reduction rules, and structural properties of the solutions.

Organization of the Paper. In Section 2, we introduce basic terminologies and notations.
Section 3 is devoted to the proof of our main result (Theorem 1.1). Finally, in Section 4, we
conclude with some future research directions.

2 Preliminaries

We use standard graph theoretic terminologies from Diestel’s book [15]. For a vertex v in
G, let dG(v) denote the degree of v in G, which is the number of edges in G incident to v.
When we look at the number of edges incident on v, we take the multiplicity of every edge
into account. A pendant vertex in a graph G is a vertex having degree one in G. A pendant
edge in a graph G is the edge incident to a pendant vertex in G. A path P in a graph is a
sequence of distinct vertices (v1, . . . , vr) such that for every 1 ≤ i ≤ r − 1, vivi+1 is an edge.

ISAAC 2024

41:4 Polynomial Kernel for Deletion to Cliques and Trees

A degree-2-path in G is a path P such that all its internal vertices have degree exactly 2 in
G. If a graph G has a degree-2-path P = (v1, . . . , vr) such that v1 is a pendant vertex, for
every i ∈ {2, . . . , r − 1}, dG(vi) = 2 and dG(vr) > 2, then we call P a degree-2-tail of length
r. If G has a degree-2-path P = (v1, . . . , vr) such that for all i ∈ {2, . . . , r − 1}, dG(vi) = 2,
and dG(v1), dG(vr) > 2, then we call P a degree-2-overbridge of length r. Sometimes, for
simplicity, we use P = v1 − v2 − . . . − vr to denote the same path P of r vertices. The graph
Kt for integer t ≥ 1 is the clique of t vertices. For a non-negative integer c, the graph cK1
is the collection of c isolated vertices. The graphs Ct and Pt for integer t ≥ 1 are the cycle
and path of t vertices respectively. We define a paw graph as the graph with four vertices
u1, u2, u3 and u4 where u1, u2, u3 form a triangle, and u1 alone is adjacent to u4 (thus, u4 is
a pendant vertex). We define a diamond graph as the graph with four vertices u1, u2, u3 and
u4 where u1, u2, u3 form a triangle, and u1, u2 are adjacent to u4. Note that both paw and
diamond contain a triangle as well as a 2K1 as induced subgraphs. We say that a vertex
x ∈ V (G) is adjacent to a subgraph G[Y] for some x /∈ Y if x has a neighbor in Y in the
graph G. A cut of G is a bipartition (X, Y) of V (G) into nonempty subsets X and Y . The set
EG(X, Y) is denoted as the edges crossing the cut. We omit the subscript when the graph is
clear from the context. Let C be a cycle having r vertices We use C = v1 − v2 − . . . − vr − v1
to denote the cycle with edges vivi+1 for every 1 ≤ i ≤ r − 1 and the edge vrv1.

▶ Definition 2.1 (v-flower). For a graph G and a vertex v in G, a v-flower is the structure
formed by a family of ℓ cycles C1, C2, . . . Cℓ in G all containing v and no two distinct cycles
Ci and Cj sharing any vertex except v. We refer to the Cis’ as the petals and to v as the
core. The number of cycles ℓ is the order of the v-flower.

▶ Proposition 2.2 ([13], Lemma 9.6). Given a graph G with v ∈ V (G) and an integer k,
there exists a polynomial-time algorithm that either provides a v-flower of order k + 1 or
compute a set Z ⊆ V (G) \ {v} with at most 2k vertices satisfying the following properties: Z

intersects every cycle of G that passes through v, and there are at most 2k edges incident to
v and with second endpoint in Z.

Let q be a positive integer and G be a bipartite graph with vertex bipartition (A, B). For
Â ⊆ A and B̂ ⊆ B, a set M ⊆ E(G) of edges is called a q-expansion of Â into B̂ if

(i) every vertex of Â is incident to exactly q edges of M , and
(ii) exactly q|Â| vertices of B̂ are incident to the edges in M .

The vertices of Â and B̂ that are the endpoints of the edges of M are said to be saturated
by the q-expansion M . We would like to clarify that by definition of q-expansion M of Â

into B̂, all vertices of Â are saturated by M , and |B̂| ≥ q|Â|. But not all vertices of B̂ are
guaranteed to be saturated by M .

▶ Lemma 2.3 (q-Expansion Lemma [39, 13]). Let q ∈ N and G be a bipartite graph with
vertex bipartition (A, B) such that |B| ≥ q|A|, and there is no isolated vertex in B. Then,
there exist non-empty vertex sets X ⊆ A and Y ⊆ B such that

(i) there is a q-expansion M of X into Y , and
(ii) no vertex in Y has a neighbor outside X, that is, N(Y) ⊆ X.

Furthermore, the sets X and Y can be found in time O(mn1.5).

Recently, Fomin et al. [19] have designed the following generalization of the Lemma 2.3
(q-Expansion Lemma) as follows.

▶ Lemma 2.4 (New q-Expansion Lemma [19, 1, 27]). Let q be a positive integer and G be a
bipartite graph with bipartition (A, B). Then there exists Â ⊆ A and B̂ ⊆ B such that there
is a q-expansion M of Â into B̂ in G such that

A. Jacob, D. Majumdar, and M. Zehavi 41:5

(i) N(B̂) ⊆ Â, and
(ii) |B \ B̂| ≤ q|A \ Â|.

Furthermore, the sets Â, B̂ and the q-expansion M can be computed in polynomial-time.

Observe that the Lemma 2.4 statement does not require the two conditions that B has
no isolated vertex and |B| ≥ q|A| that were required for the Lemma 2.3. In particular, if
|B| > q|A|, then it must be that |B̂| > q|Â| and B̂ will contain some vertex that is not
saturated by the q-expansion M .

Forbidden Subgraph Characterization. Given a graph class G, any (induced) subgraph
that is not allowed to appear in any graph of G is called an obstruction for G (also known
as forbidden subgraphs or forbidden induced subgraphs). We first identify the obstructions
for Cliques or Trees Vertex Deletion. Clearly, on simple graphs, we cannot have an
obstruction for both a tree and a clique in the same connected component. If G is the class
of all cliques, then the obstruction for G is 2K1 and if G is the class of all forests, then any
cycle Ct with t ≥ 3 is an obstruction for G. Note that a cycle Ct with t ≥ 4 contains 2K1 as
an induced subgraph. Throughout the paper, we sometimes abuse the notation where an
obstruction (or a forbidden induced subgraph) is viewed as a set and sometimes it is viewed
as an (induced) subgraph.

▶ Observation 2.5. For every integer t ≥ 4, the cycles Ct contains 2K1 as induced subgraph.

Thus, we can conclude that the obstructions for Cliques or Trees Vertex Deletion
are cycles Ct with t ≥ 4 and connected graphs with both 2K1 and C3 as induced subgraphs.
For multigraphs, a vertex with a self-loop and two vertices with two (or more) edges are
obstructions as well. If a connected graph has both 2K1 and C3 as induced subgraphs, a
(clique, tree)-deletion set either intersects the union of the vertex sets of these subgraphs or
contains a subset separating them. The following lemma claims that if a connected graph
contains both 2K1 and C3 as induced subgraphs, then it contains a paw or a diamond.

▶ Lemma 2.6 (⋆).1 A connected graph G with both 2K1 and C3 as induced subgraphs
contains either a paw or a diamond as an induced subgraph.

From Lemma 2.6, we get a forbidden subgraph characterization for the class of graphs
where each connected component is a clique or a tree.

▶ Lemma 2.7 (⋆). Let G be the class of all simple graphs where each connected component
is a clique or a tree. Then, a simple graph G belongs to G if and only if G does not contain
any paw, diamond or cycle Ci with i ≥ 4 as an induced subgraph.

Parameterized Complexity and Kernelization. A parameterized problem L is a set of
instances (x, k) ∈ Σ∗ × N where Σ is a finite alphabet and k ∈ N is a parameter. The notion
of “tractability” in parameterized complexity is defined as follows.

▶ Definition 2.8 (Fixed-Parameter Tractability). A parameterized problem L is said to be
fixed-parameter tractable (or FPT) if given (x, k) ∈ Σ∗ × N, there is an algorithm A that
correctly decides if (x, k) ∈ L in f(k)|x|O(1)-time for some computable function f : N → N.
This algorithm A is called fixed-parameter algorithm (or FPT algorithm) for the problem L.

1 Due to lack of space, the proofs that are omitted or marked ⋆ can be found in the full version.

ISAAC 2024

41:6 Polynomial Kernel for Deletion to Cliques and Trees

Observe in the above definition that we allow combinatorial explosion with respect to the
parameter k while the algorithm runs in polynomial-time with respect to |x|. We say that
two instances (x, k) of L and (x′, k′) of L are equivalent if (x, k) ∈ L if and only if (x′, k′) ∈ L.
The notion of kernelization (also known as parameterized preprocessing) is defined as follows.

▶ Definition 2.9 (Kernelization). A kernelization for a parameterized problem L ⊆ Σ∗ × N
is an algorithm that given an instance (x, k) of L, outputs an equivalent instance (x′, k′)
(called kernel) of L in time polynomial in |x| + k such that |x′| + k′ ≤ g(k) for some function
g : N → N. If g(k) is kO(1), then L is said to admit a polynomial kernel.

A kernelization algorithm usually consists of a collection of reduction rules that have
to be applied exhaustively in sequence. A reduction rule is safe if given an instance (x, k)
of L, one application of the reduction rule outputs an equivalent instance (x′, k′) of L. It
is well known that “a decidable parameterized problem is FPT if and only if it admits a
kernelization”. For more details, we refer to [13, 16, 19] for more formal definitions about
parameterized complexity and kernelization.

3 A Polynomial Kernel for Cliques and Trees

This section is devoted to a polynomial kernel for Cliques or Trees Vertex Deletion.
As the first step, we invoke the following proposition by Jacob et al. [26] that computes a
(clique, tree)-deletion set S ⊆ V (G) with at most 4k vertices.

▶ Proposition 3.1 ([26], Theorem 6). Cliques or Trees Vertex Deletion admits a
4-approximation algorithm.

We begin with the following observation, whose proof is trivial.

▶ Observation 3.2. For any subset Z ⊆ V (G), if (G, k) is a yes-instance for Cliques or
Trees Vertex Deletion with solution X, then (G − Z, k) is a yes-instance for Cliques
or Trees Vertex Deletion with solution X \ Z.

Overview of the Kernelization Algorithm. We start with invoking the 4-approximation
algorithm for Cliques or Trees Vertex Deletion(Proposition 3.1) to get a (clique,
tree)-deletion set S of size at most 4k. In Section 3.1, we provide some reduction rules that
guarantee that every connected component of G − S has a neighbor in S, and the graph has
no degree-2-path of G has more than four vertices. Subsequently, in Section 3.2, we provide
some reduction rules and prove that the number of vertices in the connected components of
G − S that are cliques is O(k5). Finally, in Section 3.3, we reduce the number of vertices in
the connected components of G − S that are trees to O(k2). For this, we prove a variant of
Proposition 2.2 and use reduction rules related to that using New q-Expansion Lemma (i.e.
Lemma 2.4).

3.1 Initial Preprocessing Rules
Let S be a 4-approximate (clique, tree)-deletion set of G obtained from Proposition 3.1.
If |S| > 4k, we conclude that (G, k) is a no-instance and return a trivial constant sized
no-instance. Hence, we can assume without loss of generality that |S| ≤ 4k. We also assume
without loss of generality that G has no connected component that is a clique or a tree.
If such components are there, we can delete those components. Hence, we can naturally
assume from now onwards, that every connected component of G − S (that is either a clique

A. Jacob, D. Majumdar, and M. Zehavi 41:7

or a tree) has some neighbor in S. But some of our subsequent reduction rules can create
some component in G − S that is neither a clique nor a tree. So, we state the following
reduction rule for the sake of completeness. In this following reduction rule, we delete isolated
connected components C in G − S, whose safeness easily follows. All the obstructions for
Cliques or Trees Vertex Deletion are connected graphs and intersect with S. Thus,
no obstruction can be part of isolated component C, and also S.

▶ Reduction Rule 3.3. If there exists a connected component C in G − S such that no vertex
in C has a neighbor in S, then remove C from G. The new instance is (G − C, k).

Since one of our subsequent reduction rules can create parallel edges. As parallel edges
are also obstructions, we state the following reduction rule whose safeness is also trivial.

▶ Reduction Rule 3.4. If there is an edge with multiplicity more than two, reduce the
multiplicity of that edge to exactly two.

We also have the following reduction rule that helps us to bound the number of pendant
vertices attached to any vertex.

▶ Reduction Rule 3.5. If there exists a vertex u in G adjacent to vertices v and v′ that are
pendants in G, then remove v from G. The new instance is (G − v, k).

▶ Lemma 3.6 (⋆). Reduction Rule 3.5 is safe.

We can conclude that if Reduction Rule 3.5 is not applicable, then every vertex in G is
adjacent to at most one pendant vertex in G. From now, we assume that every vertex in G

is adjacent to at most one pendant vertex. Our next two reduction rules help us to reduce
the length (the number of vertices) of a degree-2-path in G. Note that a degree-2-path can
be of two types, either a degree-2-tail or a degree-2-overbridge. The following two reduction
rules handle both such types.

▶ Reduction Rule 3.7. Let P = (v1, v2, . . . , vℓ) be degree-2-tail of length ℓ such that dG(v1) >

2, dG(vℓ) = 1 and Z = {v3, v4, . . . , vℓ}. Then, remove Z from G. The new instance is
(G − Z, k).

▶ Lemma 3.8 (⋆). Reduction Rule 3.7 is safe.

Our previous reduction rule has illustrated that we can shorten a long degree-2-tail to
length at most two. Now, we consider a degree-2-overbridge P of length ℓ. Our next lemma
gives us a structural characterization that if we delete all but a few vertices of P , then the
set of all paws and diamonds remain the same even after deleting those vertices.

▶ Lemma 3.9 (⋆). Let P = (v1, v2, . . . , vℓ) be a degree-2-overbridge of length ℓ in G and
Z = {v3, v4, . . . , vℓ−2}. Consider the graph G′ obtained from G by deleting the vertices of Z

and then adding the edge v2vℓ−1. Then the following statements hold true.
(i) Every paw and every diamond of G is disjoint from Z.
(ii) Every paw and every diamond of G′ is disjoint from {v2, vℓ−1}.
(iii) The set of paws and diamonds in both G and G − Z are the same.

Our next reduction rule exploits the above lemma and reduces the length of a degree-2-
overbridge to at most four.

▶ Reduction Rule 3.10. Let P = (v1, v2, . . . , vℓ) be a degree-2-overbridge of length ℓ in G

and Z = {v3, v4, . . . , vℓ−2}. Let G′ be the graph obtained from G by removing Z and adding
the edge v2vℓ−1. The new instance is (G′, k). We refer to Figure 1 for an illustration.

▶ Lemma 3.11 (⋆). Reduction Rule 3.10 is safe.

ISAAC 2024

41:8 Polynomial Kernel for Deletion to Cliques and Trees

v1

v2

v3 vℓ−2

vℓ−1

vℓ vℓ

vℓ−1

v1 v2

Figure 1 An illustration of applying Reduction Rule 3.10.

3.2 Bounding the Clique Vertices in G − S

Let V1 ⊆ V (G) \ S denote the set of vertices of the connected components of G − S that
form cliques of size at least 3. We now bound the number of connected components in G[V1]
(which are cliques). Let us create an auxiliary bipartite graph H = (S, C) with S on one side
and C having a vertex set corresponding to each of the clique connected components in V1
on the other side. We add an edge (s, C) with s ∈ S and C ∈ C if s is adjacent to at least
one vertex in C. We now show how to ensure that |C| ≤ 2|S|. Note that by Reduction Rule
3.3, no component in C is an isolated vertex in H. So, we have the following reduction rule,
where we rely on the Expansion Lemma.

▶ Reduction Rule 3.12. If |C| ≥ 2|S|, then call the algorithm provided by the q-Expansion
Lemma with q = 2 (Lemma 2.3) to compute sets X ⊆ S and Y ⊆ C such that there is a
2-expansion M of X into Y in H and NH(Y) ⊆ X. The new instance is (G − X, k − |X|).

▶ Lemma 3.13 (⋆). Reduction Rule 3.12 is safe.

Thus, we have the following observation.

▶ Observation 3.14. After exhaustive applications of Reduction Rules 3.3- 3.12, |C| ≤ 8k.

We now give one of the most crucial reduction rules that gives us an upper bound the
size of every clique in G[V1]. We have the following marking scheme for each of the cliques
in G[V1].

Procedure 1 Mark-Clique-K.

For every non-empty subset Z of size at most 3 of S, for every function f : Z → {0, 1}, let
KZ,f be the set of vertices v in K such that for each z ∈ Z,

if f(z) = 1, then v is adjacent to z.
if f(z) = 0, then v is not adjacent to z.

We arbitrarily mark min{|KZ,f |, k + 4} vertices of KZ,f . Note that we have marked at
most ε(k) = (23(4k

3
)

+ 22(4k
2

)
+ 2

(4k
1

)
)(k + 4) vertices in K. Let v ∈ K be a vertex that is

not marked by the above procedure Mark-Clique-K. The following set of lemmas illustrate
that v is an irrelevant vertex of G.

▶ Lemma 3.15 (⋆). Let S be a (clique, tree)-deletion set of at most 4k vertices and K be a
connected component of G − S that is a clique. Moreover, let v ∈ K be a vertex that is not
marked by the procedure Mark-Clique-K and X ⊆ V (G) \ {v} be a set of at most k vertices.
If G − X has a vertex subset O and G[O] is isomorphic to C4, or a diamond or a paw then
G − (X ∪ {v}) also contains a C4, or a diamond, or a paw as an induced subgraph.

Our previous lemma has illustrated that if G − X has a paw or a diamond or a C4 as an
induced subgraph, then G − (X ∪ {v}) also has a paw or a diamond or a C4 respectively.
We will now illustrate and prove an analogous statement when G − X has an induced cycle
of length larger than 4. We begin with the following observation.

A. Jacob, D. Majumdar, and M. Zehavi 41:9

▶ Observation 3.16 (⋆). Let C = v − u − u1 − u2 − . . . − u′ − v be a cycle of length at least
5 in G where the path P = u − u1 − u2 − . . . − u′ is an induced path in G. Then there exists
a cycle of length at least 4 or a diamond as an induced subgraph in G.

Using the above observation, we can prove the following lemma.

▶ Lemma 3.17. Let S be a (clique, tree)-deletion set set of at most 4k vertices and K be a
connected component of G − S that is a clique. Moreover, let v ∈ K be a vertex that is not
marked by the procedure Mark-Clique-K and X ⊆ V (G) \ {v} be a set of at most k vertices.
If G − X has an induced cycle of length at least 5, then there exists a cycle of length at least
4 or a diamond as an induced subgraph in G − (X ∪ {v}).

Proof. Suppose that the premise of the statement is true but for the sake of contradiction,
we assume that G − (X ∪ {v}) does not have cycles of length at least 4 and diamonds as
induced subgraphs. Since v is the only vertex that is in G but not in G − {v}, it follows
that there is an induced cycle C of length at least 5 in G − X such that v ∈ C. Note that
C has at most two vertices from K including v as K is a clique. Furthermore, it must
have two non-adjacent vertices from S as otherwise C contains a triangle or an induced C4,
contradicting that C is an induced cycle of length at least 5. Let z1, z2 ∈ C ∩ S that are
non-adjacent. There are two cases.
Case (i): The first case is |C ∩ K| = 1 and let C ∩ K = {v}. Then, both z1 and z2 are

adjacent to v ∈ C. Let us define a function f : {z1, z2} → {0, 1} with f(z1) = 1 and
f(z2) = 1. For the set {z1, z2} and the function f , the vertex v is unmarked by the
procedure Mark-Clique-K. Hence, there are k +4 vertices that are adjacent to both z1 and
z2 and are marked by the procedure. All the marked vertices are in K \ {v} out of which
at most k vertices are in X. Hence, there is v′ ∈ K \ X such that v′ is adjacent to both
z1 and z2 and is marked by the procedure. Let us look at the cycle C ′ = (C \ {v}) ∪ {v′}.
Note that C ′ is a cycle where the path from z1 to z2 is an induced path in G − X. There
could be edges from v′ to other vertices of C ′. By Observation 3.16, C ′ is either an
induced cycle of length at least 4 in G or it induces a diamond. Since C ′ ∩ (X ∪ {v}) = ∅,
this contradicts our initial assumption that G − (X ∪ {v}) does not have cycles of length
at least 4 and diamonds as induced subgraphs.

Case (ii): The second and last case is |C ∩ K| = 2. Let v, x ∈ C ∩ K. Observe that v and x

are two consecutive vertices in C. Since vx ∈ E(G), it must be that v is adjacent to z1
and x is adjacent to z2. As C is an induced cycle of length at least 5, it must be that z1
is not adjacent to x and z2 is not adjacent to v.
Let us define a function f : {z1, z2} → {0, 1} with f(z1) = 1 and f(z2) = 0. For the set
{z1, z2} and the function f , the vertex v is unmarked by the procedure Mark-Clique-K.
Hence, there are k + 4 vertices that is adjacent to z1 and not adjacent to z2 that are
marked by the procedure. All the marked vertices are in K \ {v} out of which at most
k vertices are in X. Hence, there is v′ ∈ K \ X such that v′ is adjacent to z1 and not
adjacent to z2 that is marked by the procedure.
We replace v in C by v′ to get a new cycle C ′ that has the same number of vertices as C

(see Figure 2 for an illustration). Note that C ′ is a cycle where the path from z1 to x

is an induced path in G − X. There could be edges from v′ to other vertices of C ′. By
Observation 3.16, C ′ is either an induced cycle of length at least 4 in G or it induces
a diamond. This contradicts our initial assumption that G − (X ∪ {v}) does not have
cycles of length at least 4 and diamonds as induced subgraphs.

Since the above cases are mutually exhaustive, this completes the proof. ◀

ISAAC 2024

41:10 Polynomial Kernel for Deletion to Cliques and Trees

v

v
′

x

C \ (K ∪ {z1, z2}) C \ (K ∪ {z1, z2})v v
′

z1 z2 z1 z2

Figure 2 An illustration of C5.

Consider a connected component K of G − S such that S is a (clique, tree)-deletion set
of G with at most 4k vertices and K is a clique. Lemma 3.15 and Lemma 3.17 illustrate
that if a vertex v ∈ K is not marked by the procedure Mark-Clique-K, then deleting v from
the graph is safe. As a consequence of this, we have the following reduction rule the safeness
of which follows from the above two lemmas.

▶ Reduction Rule 3.18. Let K be a connected component in G[V1]. If v ∈ K is an unmarked
vertex after invoking the procedure Mark-Clique-K, then remove v from G. The new instance
is (G − v, k).

▶ Lemma 3.19. Reduction Rule 3.18 is safe.

Proof. The forward direction (⇒) is trivial as if X is a solution of size at most k in G, then
by Observation 3.2, X \ {v} is a solution of size at most k in G − v.

For the backward direction (⇐), let X be a solution of size at most k in G − v. Targeting
a contradiction, suppose X is not a solution in G. Then, there exists an obstruction O of
Cliques or Trees Vertex Deletion in G − X containing v that is a diamond, or a paw,
or Ci where i ≥ 4 due to Lemma 2.7. If O is isomorphic to a C4, or a diamond, or a paw,
then by Lemma 3.15, G − (X ∪ {v}) also contains a C4, or a diamond, or a paw as induced
subgraph. It contradicts Lemma 2.7 that X is a solution to G − {v}. Else, O is isomorphic
to Ci where i ≥ 5. By Lemma 3.17, G − (X ∪ {v}) contains a Cj , where j ≥ 4, or a diamond
as induced subgraph. This contradicts Lemma 2.7 as X is a solution to G − {v}. Hence X is
a solution to G. ◀

We have the following lemma that bounds |V1|, i.e. the number of vertices that are part
of cliques of size at least 3 in G − S.

▶ Lemma 3.20. Let G be the graph obtained after exhaustive application of Reduction Rules
3.3 to 3.18. Then |V1| ≤ 8kε(k) where ε(k) = (k + 4)(8

(4k
3

)
+ 4

(4k
2

)
+ 2

(4k
1

)
).

Proof. Since Reduction Rules 3.3-3.12 are not applicable, it follows from Observation 3.14
that the number of connected components in G[V1] is at most 8k. Every connected component
of G[V1] is a clique. For every connected component K of G[V1], observe that the procedure
Mark-Clique-K marks at most ε(k) vertices from K. Since Reduction Rule 3.18 is not
applicable, G[V1] has no unmarked vertices. As G[V1] has at most 8k connected components,
it follows that |V1| ≤ 8kε(k). ◀

3.3 Bounding the Tree Vertices in G − S

In this section, we describe the set of reduction rules that we use to reduce the number of
vertices that participate in the forests of G − S. Let V2 = V \ (S ∪ V1). Note that G[V2] is
the collection of trees in G − S.

A. Jacob, D. Majumdar, and M. Zehavi 41:11

▶ Reduction Rule 3.21. Let v be a leaf in a connected component C of G[V2] such that
neither v nor its neighbor in C is adjacent to any vertex of S. Then, delete v from G and
the new instance is (G − v, k′) with k′ = k.

▶ Lemma 3.22 (⋆). Reduction Rule 3.21 is safe.

Let C be a connected component of G[V2]. We say that C is a pendant tree of G[V2] if
either C consists of pendant vertex of G or has a unique vertex u that has a unique neighbour
in S and no other vertex of C has any neighbor in S. We have the following observation.

▶ Observation 3.23 (⋆). Let C be a connected component of G[V2]. Then, C is a pendant
tree if and only if E(C, V (G) \ C) contains a single edge.

Given a pendant tree C of G[V2], we call x ∈ S the unique S-neighbor of C if NG(C) = {x}
and |NG(x) ∩ C| = 1. Furthermore, given a vertex x ∈ S, we call C a pendant tree-neighbor
of x if C is a pendant tree of G[V2] and x is the unique S-neighbor of C.

▶ Reduction Rule 3.24. Let C be a pendant tree in G[V2] such that x ∈ S is a unique
S-neighbor of C. Then, delete all the vertices of C except for the vertex u that has the unique
S-neighbor x ∈ S in C to obtain the graph G′. Let (G′, k′) be the output instance such that
k′ = k.

▶ Lemma 3.25 (⋆). Reduction Rule 3.24 is safe.

▶ Lemma 3.26 (⋆). If Reduction Rule 3.24 is not applicable to the input instance (G, k),
then any pendant tree of G[V2] is a pendant vertex of G.

Recall from Definition 2.1 that a v-flower of order r is a collection of r cycles that pairwise
intersect at v and are pairwise disjoint otherwise. Our next reduction rule uses the concept
of v-flower and Proposition 2.2 as follows.

▶ Reduction Rule 3.27. For v ∈ S, we invoke Proposition 2.2 in G[V2 ∪ {v}]. If this gives a
v-flower of order 3k + 2, then delete v from G and the new instance is (G − v, k − 1).

▶ Lemma 3.28 (⋆). Reduction Rule 3.27 is safe.

Since Reduction Rule 3.27 is not applicable, invoking Proposition 2.2 of order (3k + 2)
at G[{v} ∪ V2] gives us a set Hv ⊆ V2 of at most 6k + 4 vertices that intersects all cycles of
G[{v} ∪ V2] that passes through v. Our following lemma proves that the same vertex subset
Hv also intersects all paws and diamonds of G[{v} ∪ V2] passing through v.

▶ Lemma 3.29 (⋆). If Reduction Rule 3.27 is not applicable, then polynomial time, we can
obtain a vertex subset Hv ⊆ V2 with |Hv| ≤ 6k + 4 such that Hv intersects every cycle, every
paw, and every diamond in G[{v} ∪ V2] that passes through v.

When the above mentioned reduction rules are not applicable, we have the following
lemma which bounds the number of connected components of the graph G[V2 \ Hv] that is
adjacent to only v.

Construction of Auxiliary Bipartite Graph. If none of the above reduction rules are
applicable, we exploit the structural properties of the graph using the above mentioned
lemmas and construct an auxiliary bipartite graph that we use in some reduction rules later.
Let C denote the connected components of G[V2 \ (Hv ∪ {v})] that are adjacent to v. In
other words, if D ∈ C, then D is a connected component of G[V2 \ (Hv ∪ {v})] such that v is
adjacent to D.

ISAAC 2024

41:12 Polynomial Kernel for Deletion to Cliques and Trees

▶ Definition 3.30. Given v ∈ S, let Hv denote the set of at most 6k + 4 vertices obtained
by Lemma 3.29 for the graph G[{v} ∪ V2]. Consider the graph G[V2 \ (Hv ∪ {v})] that is a
forest. We define an auxiliary bipartite graph H = (Hv ∪ (S \ {v}), C) where Hv ∪ (S \ {v})
is on one side, and C on the other side. The set C contains a vertex for each connected
component C of G[V2 \ (Hv ∪ {v})] that has a vertex adjacent to v. We add an edge between
h ∈ Hv ∪ (S \ {v}), and connected component C ∈ C if h is adjacent to a vertex in component
C ∈ C.

We prove the following observation that is crucial to the next reduction rule which reduces
the number of edges incident to a vertex v ∈ S with other endpoint being V2.

▶ Observation 3.31 (⋆). Let H = (Hv ∪ (S \ {v}), C) be the auxiliary bipartite graph as
defined in Definition 3.30. If v has degree more than 60(k + 1) in G[{v} ∪ V2], then C has
more than 4(|S| + |Hv|) components.

Applying the New Expansion Lemma. If there is a vertex v ∈ S such that there are at
least 60(k + 1) edges incident to v with the other endpoints being in V2, then Observation
3.31 implies that |C| > 4(|S|+ |Hv|). Suppose that we apply new 4-expansion lemma (Lemma
2.4 with q = 4) on H to obtain A ⊆ (S \ {v}) ∪ Hv, B ⊆ C with a 4-expansion M̂ of A into B.
Then, it satisfies that (i) |C \B| ≤ 4|(S ∪Hv)\A| and NH(B) ⊆ A. As |C \B| ≤ 4|(S ∪Hv)\A|
and |C| > 4(|S| + |Hv|), it must be that |B| > 4|A|. Then, there must be a component
C∗ ∈ B such that C∗ is not an endpoint of M̂ (or not saturated by M̂). Let B̂ ⊆ B denote
the components of B that are saturated by M̂ . As some component of B is not in B̂, it must
be that B̂ ⊂ B. We use these characteristics crucially to prove that our next reduction rule
is safe.

▶ Reduction Rule 3.32. Let v ∈ S be a vertex with degree at least 60(k + 1) in G[{v} ∪ V2]
and let H be the auxiliary bipartite graph as illustrated in Definition 3.30. We invoke the
algorithm provided by Lemma 2.4 (i.e. new q-expansion lemma with q = 4) to compute sets
A ⊆ Hv ∪(S \{v}) and B ⊆ C such that A has a 4-expansion M̂ into B in H and NH(B) ⊆ A.
Let B̂ ⊆ B denotes the vertices of B that are saturated by M̂ (endpoints of M̂ in B). Remove
the edges between v and the connected components in B̂ in G and create a double edge between
v and every vertex in A to obtain the graph G′. The new instance is (G′, k′) with k = k′.
We refer to the Figure 3 for an illustration.

Before we prove the safeness of the above reduction rule, we prove the following lemma.

▶ Lemma 3.33. Let X be an optimal (clique, tree)-deletion set of G of size at most k and
A, B, B̂ denote the vertex subsets obtained from Reduction Rule 3.32. Then, v ∈ X or A ⊆ X.

Proof. Let X be an optimal (clique, tree)-deletion set of G of size at most k. As the Lemma
2.4 (new q-expansion lemma) with q = 4 has been already applied in Reduction Rule 3.32
and the obtained sets are A ⊆ (S ∪ Hv) \ {v} and B ⊆ C such that NH(B) ⊆ A (due to item
(ii) of Lemma 2.4), any connected component C ∈ B can have neighbors only in A ∪ Hv ∪ {v}
in G. By Definition 3.30, every connected component C ∈ C has a vertex that is adjacent to
v. If some component C∗ ∈ C has two vertices adjacent to v, then there is a cycle that passes
through v and the vertices of C∗ but avoids Hv. This contradicts with Lemma 3.29 that Hv

intersects all cycles passing through v. Hence, for every connected component C ∈ C, there
is exactly one vertex that is adjacent to v.

Suppose for the sake of contradiction that there is an optimal (clique, tree)-deletion
set X∗ of G of size at most k such that v /∈ X∗ and A ̸⊂ X∗. Let X∗

B denotes the
intersection of X∗ with the vertices that are in the connected components in B. We set

A. Jacob, D. Majumdar, and M. Zehavi 41:13

v ∈ S v ∈ S

A ∩ S

A ∩Hv

A ∩ S A ∩Hv

B B

Figure 3 An illustration of Reduction Rule 3.32. The blue components are the components of
B and the red component is the chosen component C for which the edge between u and C is not
deleted. The blue components of B are the ones that are the endpoints of expansion M̂ .

X̂ = (X∗ \ X∗
B) ∪ (A \ X∗) ∪ {v}. We claim that X̂ is a (clique, tree)-deletion set of G and

|X̂| < |X∗|. For the first part, note that the cycles hit by X∗ but not X̂ must contain a vertex
from X∗

B. Such cycles must contain a vertex in NH(B) as each component of B is a forest. It
follows from the item (i) of Lemma 2.4 that NH(B) ⊆ A and A ⊆ Hv ∪ (S \ {v}). Therefore,
the neighbors of all vertices spanned by the connected components of B are contained in
A ∪ {v}. By construction of X̂, as A ∪ {v} ⊆ X̂, it follows that X̂ is a (clique, tree)-deletion
set of G.

Now, we claim that |X̂| < |X∗|. Since A ̸⊂ X∗ and v /∈ X∗, there is x ∈ A \ X∗.
Due to Lemma 2.4, there are four connected components C1, C2, C3, C4 in B̂ such that v is
adjacent to one vertex from each of C1, C2, C3, C4 and x is adjacent to some vertex in each
of C1, C2, C3, C4. If v is adjacent to x, then G[{v, x} ∪ C1 ∪ C2 ∪ C3 ∪ C4] has several cycles
with a chord (or subdivision of diamonds) that contains {x, v} and vertices from exactly two
connected components from {C1, C2, C3, C4}. In particular for every pair i, j ∈ {1, 2, 3, 4},
there is a cycle with a chord containing v, x and vertices from Ci and Cj . Since v, x /∈ X∗,
it must be that X∗ must have at least one vertex from at least three of these connected
components {C1, C2, C3, C4}. As our updating procedure removes the vertices of B from
X∗ and adding vertices of A \ X∗, it follows that for every x ∈ A \ X∗, one vertex is added
and at least three additional vertices appearing in the components of {C1, C2, C3, C4} are
removed from X∗. This ensures that X̂ has strictly lesser vertices than X∗ contradicting the
optimality of X∗. This completes the proof. ◀

We use the above lemma to prove that Reduction Rule 3.32 is safe.

▶ Lemma 3.34. Reduction Rule 3.32 is safe.

Proof. For the forward direction (⇒), let X be a (clique, tree)-deletion set of G with at most
k vertices. We assume without loss of generality that X is an optimal (clique, tree)-deletion
set of G. Due to Lemma 3.33, it follows that either v ∈ X or A ⊆ X. For both the cases,
observe that G′ − X is a subgraph of G − X. Hence, X is a (clique, tree)-deletion set of G′

of size at most k′.
For the backward direction (⇐), let X ′ be a (clique, tree)-deletion set of G′ of size at

most k′(= k). Note that in G′, we have double edge between v and every vertex in A. Thus,
v ∈ X ′ or A ⊆ X ′ to hit the cycles formed by these double edges. In case v ∈ X ′, then the
graphs G − X ′ and G′ − X ′ are precisely the same. Therefore, X ′ is a (clique, tree)-deletion
set of G as well. For the other case, we have that A ⊆ X ′ but v /∈ X ′. Suppose for the
sake of contradiction that some component of G − X ′ is neither a clique, nor a tree. Then,
G − X ′ has an obstruction O. Since for any connected component C ′ ∈ B, it must be that
NH(C ′) ⊆ A, it follows that NG(C ′) ⊆ A ∪ {v}. By construction of G′, an edge uv ∈ E(G)

ISAAC 2024

41:14 Polynomial Kernel for Deletion to Cliques and Trees

is not an edge of G′ if u ∈ C ′ for some connected component C ′ ∈ B̂. The obstruction
O must contain an edge uv ∈ E(G) such that uv /∈ E(G′). Such an edge is possible only
for some C ′′ ∈ B̂. As v can have at most one neighbor in every component C ′′ ∈ B and
the vertices of C ′′ are adjacent to only A ∪ {v} with A ⊆ X ′, the only possible way uv

edge can be part of an obstruction in G − X ′ is a paw. Then, this obstruction O is a paw
containing u and v. Since |C| > 4(|S| + |Hv|), and due to the condition (ii) of Proposition
2.4, |C \ B| ≤ 4|(S ∪ Hv) \ A|, it must be that |B| > 4|A|. Therefore, there is at least one
connected component C ∈ B \ B̂. Furthermore, Reduction Rule 3.32 has chosen not to delete
the edge vu∗ such that u∗ ∈ C and vu∗ ∈ E(G). But by construction of G′, vu∗ ∈ E(G′).
Observe that O∗ = (O \ {u}) ∪ {u∗}) also induces a paw in the graph G. Then, u∗ must
be in the set X ′ as otherwise it would contradict that X ′ is a (clique, tree)-deletion set of
X ′. So, we set X∗ = (X ′ \ {u∗}) ∪ {v} and clearly by construction |X∗| = |X ′|. Since the
neighrborhood of any connected component of B is contained in A ∪ {v}, this ensures us that
X∗ is a (clique, tree)-deletion set of G. This completes the proof of the lemma. ◀

Observe that the above mentioned reduction rules do not increase the degree of v. When
none of the above mentioned reduction rules are applicable, no connected component C

(with at least three vertices) of G[V2] can have two leaves u and v both of which are pendant
vertices in G. But, it is possible that C has one leaf u that is a pendant vertex of the whole
graph G.

▶ Lemma 3.35. Let G be the graph obtained after applying Reduction Rules 3.3-3.32
exhaustively. Then the number of vertices in V2 is at most 1525k|S|.

Proof. We use N to denote the vertices of V2 that are adjacent to some vertex of S. As
Reduction Rule 3.32 is not applicable, for every v ∈ S, there are at most 60(k + 1)(≤ 61k)
edges incident to v with the other endpoint being in V2 (hence in N). Hence, the number of
vertices of N is at most 61k|S|.

Let us bound the number of leaves in the forest G[V2] that is not in N . Since Reduction
Rule 3.21 is exhaustively applied, such a leaf is adjacent to a vertex that is adjacent to some
vertex in S (therefore, such vertices are in N). Since Reduction Rule 3.5 is exhaustively
applied, two such leaves are not adjacent to the same vertex. Hence, we can define an
injective function from the leaves of G[V2 \ N] to the internal vertices in the forest G[V2]
that is in N .

Thus, the total number leaves in G[V2] is at most 2|N |. Since, the number of vertices
with degree at least 3 in G[V2] is at most the number of leaves in G[V2], the number of
vertices of G[V2] with degree at least three is at most 2|N |. Therefore, the sum of the number
leaves in G[V2], and the number of vertices with degree at least 3 of G[V2] is at most 4|N |.
Additionally, there are some vertices of N that are neither counted as a leaf of G[V2] nor is
counted as a vertex of degree at least three in G[V2]. Number of such vertices is at most |N |.

It remains to bound the number of degree 2 vertices in the forest G[V2] that is not in N .
Note that such vertices are also degree 2 vertices in G. Since Reduction Rules 3.7 and 3.10
are exhaustively applied, any degree-2-overbridge of G[V2] has size at most four. Each such
degree-2-overbridge connects two vertices of G[V2] such that those two vertices are leaves, or
vertices from N . We replace all such degree-2-overbridges by edges to get a forest H with at
most 5|N | vertices, and thus edges. Since each edge of H corresponds to at most 4 vertices,
we have at most 20|N | vertices of V2 each of which have degree exactly two in G.

Thus the total number of vertices in G[V2] is bounded by 25|N |. Since |N | ≤ 61k|S|, the
the total number of vertices in the forest G[V2] is bounded by 1525k|S|. ◀

A. Jacob, D. Majumdar, and M. Zehavi 41:15

Combining Lemma 3.20 and Lemma 3.35, we are ready to prove our final result that we
restate below.

▶ Theorem 1.1. Cliques or Trees Vertex Deletion (CTVD) admits a kernel with
O(k5) vertices.

Proof. Given the input instance (G, k), the kernelization algorithm invokes Reduction Rules
3.3-3.32 exhaustively. Let (G′, k′) denotes the output instance such that S′ is a (clique, tree)-
deletion set of G′ with at most 4k vertices. Suppose that V1 ⊆ G′ − S′ denotes the vertices
such that every connected component of G[V1] is a clique and V2 ⊆ G′−S′ denotes the vertices
such that every connected component of G[V2] is a tree. Since Reduction Rules 3.3-3.18 are
not applicable, it follows from Lemma 3.20 that |V1| is O(k5). Additionally, as Reduction
Rules 3.3-3.32 are not applicable, it follows from Lemma 3.35 that |V2| ≤ 1525k|S′| = 6100k2.
Therefore, the total number of vertices in G′ is |S′| + |V1| + |V2| which is O(k5). ◀

4 Conclusions and Future Research

Our paper initiates a study of polynomial kernelization for vertex deletion to pairs of scattered
graph classes. One natural open question is to improve the size of our kernel, e.g. to O(k3)
vertices. We believe that such a result is possible to achieve, but we suspect that it would
require new techniques to develop such results. Jacob et al. [26] have provided an O∗(4k)-time
algorithm for Cliques or Trees Vertex Deletion. It would also be interesting to design
an FPT algorithm where the base of the exponent is (substantially) improved from 4. On a
broader level, it would be interesting to explore the possibility of getting a polynomial kernel
for problems where the objective is to delete a set of at most k vertices so that the connected
components would belong to other interesting pairs of graph classes, such as (interval graph,
trees), and (chordal graph, bipartite permutation). In addition, vertex/edge deletion to
scattered graph classes are also interesting from approximation algorithms perspective. In
fact, it would be interesting to improve the approximation guarantee of Proposition 3.1
that is also an open problem. Additionally, the dual version of this problem, i.e. “packing
vertex-disjoint obstructions to the scattered class of cliques and trees” is also interesting
from the perspective of parameterized complexity. The same problem can be considered as
packing vertex-disjoint induced subgraphs that are paws or diamonds or cycles of length at
least 4. A natural approach to solve this problem requires to design an Erdos-Posa style
theorem for packing obstructions for scattered class of cliques and trees. Finally, a more
general open problem is to identify pairs of graph classes (Π1, Π2) for which vertex deletion
to Π1 as well as vertex deletion to Π2 admits polynomial sized kernels, but (Π1, Π2)-Deletion
does not admit a polynomial kernel.

References
1 Jasine Babu, R. Krithika, and Deepak Rajendraprasad. Packing arc-disjoint 4-cycles in oriented

graphs. In Anuj Dawar and Venkatesan Guruswami, editors, 42nd IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2022,
December 18-20, 2022, IIT Madras, Chennai, India, volume 250 of LIPIcs, pages 5:1–5:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.FSTTCS.2022.
5.

2 Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, and Daniël Paulusma.
Independent feedback vertex set for P5-free graphs. Algorithmica, 81(4):1342–1369, 2019.
doi:10.1007/S00453-018-0474-X.

ISAAC 2024

https://doi.org/10.4230/LIPICS.FSTTCS.2022.5
https://doi.org/10.4230/LIPICS.FSTTCS.2022.5
https://doi.org/10.1007/S00453-018-0474-X

41:16 Polynomial Kernel for Deletion to Cliques and Trees

3 Anudhyan Boral, Marek Cygan, Tomasz Kociumaka, and Marcin Pilipczuk. A fast branching
algorithm for cluster vertex deletion. Theory Comput. Syst., 58(2):357–376, 2016. doi:
10.1007/S00224-015-9631-7.

4 Hajo Broersma, Jirí Fiala, Petr A. Golovach, Tomás Kaiser, Daniël Paulusma, and Andrzej
Proskurowski. Linear-time algorithms for scattering number and hamilton-connectivity of
interval graphs. J. Graph Theory, 79(4):282–299, 2015. doi:10.1002/JGT.21832.

5 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett., 58(4):171–176, 1996. doi:10.1016/0020-0190(96)00050-6.

6 Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM Trans.
Algorithms, 11(3):21:1–21:35, 2015. doi:10.1145/2629595.

7 Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. Algorithmica,
75(1):118–137, 2016. doi:10.1007/S00453-015-0014-X.

8 Jianer Chen. Vertex cover kernelization. In Encyclopedia of Algorithms, pages 2327–2330.
Springer, 2016. doi:10.1007/978-1-4939-2864-4_460.

9 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor.
Comput. Sci., 411(40-42):3736–3756, 2010. doi:10.1016/J.TCS.2010.06.026.

10 Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect
graph theorem. Annals of mathematics, pages 51–229, 2006.

11 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

12 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

13 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

14 Jan Derbisz, Lawqueen Kanesh, Jayakrishnan Madathil, Abhishek Sahu, Saket Saurabh, and
Shaily Verma. A polynomial kernel for bipartite permutation vertex deletion. Algorithmica,
84(11):3246–3275, 2022. doi:10.1007/S00453-022-01040-9.

15 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

16 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

17 Maël Dumas and Anthony Perez. An improved kernelization algorithm for trivially perfect
editing. In Neeldhara Misra and Magnus Wahlström, editors, 18th International Symposium
on Parameterized and Exact Computation, IPEC 2023, September 6-8, 2023, Amsterdam, The
Netherlands, volume 285 of LIPIcs, pages 15:1–15:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPICS.IPEC.2023.15.

18 Bruno Escoffier, Laurent Gourvès, and Jérôme Monnot. Complexity and approximation results
for the connected vertex cover problem in graphs and hypergraphs. J. Discrete Algorithms,
8(1):36–49, 2010. doi:10.1016/J.JDA.2009.01.005.

19 Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and
Meirav Zehavi. Subquadratic kernels for implicit 3-hitting set and 3-set packing problems.
ACM Trans. Algorithms, 15(1):13:1–13:44, 2019. doi:10.1145/3293466.

20 Fedor V Fomin, Saket Saurabh, and Yngve Villanger. A polynomial kernel for proper
interval vertex deletion. SIAM Journal on Discrete Mathematics, 27(4):1964–1976, 2013.
doi:10.1137/12089051X.

21 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Discovering archipelagos of tractability
for constraint satisfaction and counting. ACM Trans. Algorithms, 13(2):29:1–29:32, 2017.
doi:10.1145/3014587.

22 Petr A. Golovach, Daniël Paulusma, and Erik Jan van Leeuwen. Induced disjoint paths in
claw-free graphs. SIAM J. Discret. Math., 29(1):348–375, 2015. doi:10.1137/140963200.

https://doi.org/10.1007/S00224-015-9631-7
https://doi.org/10.1007/S00224-015-9631-7
https://doi.org/10.1002/JGT.21832
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1145/2629595
https://doi.org/10.1007/S00453-015-0014-X
https://doi.org/10.1007/978-1-4939-2864-4_460
https://doi.org/10.1016/J.TCS.2010.06.026
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/S00453-022-01040-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.4230/LIPICS.IPEC.2023.15
https://doi.org/10.1016/J.JDA.2009.01.005
https://doi.org/10.1145/3293466
https://doi.org/10.1137/12089051X
https://doi.org/10.1145/3014587
https://doi.org/10.1137/140963200

A. Jacob, D. Majumdar, and M. Zehavi 41:17

23 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs, volume 57. Elsevier,
2004.

24 Pinar Heggernes, Dieter Kratsch, and Daniel Meister. Bandwidth of bipartite permutation
graphs in polynomial time. J. Discrete Algorithms, 7(4):533–544, 2009. doi:10.1016/J.JDA.
2008.11.001.

25 Ashwin Jacob, Jari J. H. de Kroon, Diptapriyo Majumdar, and Venkatesh Raman. Deletion
to scattered graph classes I - case of finite number of graph classes. J. Comput. Syst. Sci.,
138:103460, 2023. doi:10.1016/J.JCSS.2023.05.005.

26 Ashwin Jacob, Diptapriyo Majumdar, and Venkatesh Raman. Deletion to scattered graph
classes II - improved FPT algorithms for deletion to pairs of graph classes. J. Comput. Syst.
Sci., 136:280–301, 2023. doi:10.1016/J.JCSS.2023.03.004.

27 Ashwin Jacob, Diptapriyo Majumdar, and Venkatesh Raman. Expansion lemma - variations
and applications to polynomial-time preprocessing. Algorithms, 16(3):144, 2023. doi:10.3390/
A16030144.

28 Hugo Jacob, Thomas Bellitto, Oscar Defrain, and Marcin Pilipczuk. Close relatives (of feedback
vertex set), revisited. In Petr A. Golovach and Meirav Zehavi, editors, 16th International
Symposium on Parameterized and Exact Computation, IPEC 2021, September 8-10, 2021,
Lisbon, Portugal, volume 214 of LIPIcs, pages 21:1–21:15. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPICS.IPEC.2021.21.

29 Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Wlodarczyk. Single-exponential FPT
algorithms for enumerating secluded f-free subgraphs and deleting to scattered graph classes.
In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms
and Computation, ISAAC 2023, December 3-6, 2023, Kyoto, Japan, volume 283 of LIPIcs,
pages 42:1–42:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/
LIPICS.ISAAC.2023.42.

30 Matthew Johnson, Giacomo Paesani, and Daniël Paulusma. Connected vertex cover for
(sP1 + P5)-free graphs. Algorithmica, 82(1):20–40, 2020. doi:10.1007/S00453-019-00601-9.

31 Tereza Klimosová, Josef Malík, Tomás Masarík, Jana Novotná, Daniël Paulusma, and Veronika
Slívová. Colouring (Pr + Ps)-free graphs. Algorithmica, 82(7):1833–1858, 2020. doi:10.1007/
S00453-020-00675-W.

32 Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set. Inf.
Process. Lett., 114(10):556–560, 2014. doi:10.1016/J.IPL.2014.05.001.

33 Dieter Kratsch, Haiko Müller, and Ioan Todinca. Feedback vertex set on at-free graphs.
Discret. Appl. Math., 156(10):1936–1947, 2008. doi:10.1016/J.DAM.2007.10.006.

34 Cornelis Lekkeikerker and Johan Boland. Representation of a finite graph by a set of intervals
on the real line. Fundamenta Mathematicae, 51(1):45–64, 1962.

35 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is np-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

36 Barnaby Martin, Daniël Paulusma, and Erik Jan van Leeuwen. Disconnected cuts in claw-free
graphs. J. Comput. Syst. Sci., 113:60–75, 2020. doi:10.1016/J.JCSS.2020.04.005.

37 George J Minty. On maximal independent sets of vertices in claw-free graphs. Journal of
Combinatorial Theory, Series B, 28(3):284–304, 1980. doi:10.1016/0095-8956(80)90074-X.

38 Venkatesh Raman, Saket Saurabh, and C. R. Subramanian. Faster fixed parameter tractable
algorithms for finding feedback vertex sets. ACM Trans. Algorithms, 2(3):403–415, 2006.
doi:10.1145/1159892.1159898.

39 Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms, 6(2):32:1–
32:8, 2010. doi:10.1145/1721837.1721848.

ISAAC 2024

https://doi.org/10.1016/J.JDA.2008.11.001
https://doi.org/10.1016/J.JDA.2008.11.001
https://doi.org/10.1016/J.JCSS.2023.05.005
https://doi.org/10.1016/J.JCSS.2023.03.004
https://doi.org/10.3390/A16030144
https://doi.org/10.3390/A16030144
https://doi.org/10.4230/LIPICS.IPEC.2021.21
https://doi.org/10.4230/LIPICS.ISAAC.2023.42
https://doi.org/10.4230/LIPICS.ISAAC.2023.42
https://doi.org/10.1007/S00453-019-00601-9
https://doi.org/10.1007/S00453-020-00675-W
https://doi.org/10.1007/S00453-020-00675-W
https://doi.org/10.1016/J.IPL.2014.05.001
https://doi.org/10.1016/J.DAM.2007.10.006
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/J.JCSS.2020.04.005
https://doi.org/10.1016/0095-8956(80)90074-X
https://doi.org/10.1145/1159892.1159898
https://doi.org/10.1145/1721837.1721848

Hardness Amplification for Dynamic Binary Search
Trees
Shunhua Jiang #

Columbia University, New York, NY, USA

Victor Lecomte #

Stanford University, CA, USA

Omri Weinstein #

The Hebrew University of Jerusalem, Israel

Sorrachai Yingchareonthawornchai #

The Hebrew University of Jerusalem, Israel

Abstract
We prove direct-sum theorems for Wilber’s two lower bounds [Wilber, FOCS’86] on the cost of
access sequences in the binary search tree (BST) model. These bounds are central to the question of
dynamic optimality [Sleator and Tarjan, JACM’85]: the Alternation bound is the only bound to
have yielded online BST algorithms beating log n competitive ratio, while the Funnel bound has
repeatedly been conjectured to exactly characterize the cost of executing an access sequence using the
optimal tree [Wilber, FOCS’86, Kozma’16], and has been explicitly linked to splay trees [Levy and
Tarjan, SODA’19]. Previously, the direct-sum theorem for the Alternation bound was known only
when approximation was allowed [Chalermsook, Chuzhoy and Saranurak, APPROX’20, ToC’24].

We use these direct-sum theorems to amplify the sequences from [Lecomte and Weinstein,
ESA’20] that separate between Wilber’s Alternation and Funnel bounds, increasing the Alternation
and Funnel bounds while optimally maintaining the separation. As a corollary, we show that Tango
trees [Demaine et al., FOCS’04] are optimal among any BST algorithms that charge their costs to
the Alternation bound. This is true for any value of the Alternation bound, even values for which
Tango trees achieve a competitive ratio of o(log log n) instead of the default O(log log n). Previously,
the optimality of Tango trees was shown only for a limited range of Alternation bound [Lecomte
and Weinstein, ESA’20].

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Online algorithms

Keywords and phrases Data Structures, Amortized Analysis

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.42

Related Version Full Version: https://arxiv.org/pdf/2411.14387

Funding This research was supported by the European Research Council (ERC) Starting grant
CODY 101039914.

Acknowledgements This work was done in part while the authors (SJ, OW, SY) were visiting the
Simons Institute for the Theory of Computing, UC Berkeley.

1 Introduction

Direct Sum theorems assert a lower bound on a certain complexity measure C of a composed1

problem f ◦ g in terms of the individual complexities of f and g, ideally of the form
C(f ◦ g) ≈ C(f) + C(g). Direct Sums have a long history in complexity theory, as they provide

1 Formally speaking, direct-sum problems pertain to the complexity of solving k separate copies of a
problem f , rather than computing a composed function of k copies g(f(x1), . . . , f(xk)), but it is common
to refer to both variations of the k-fold problem as direct-sums [23].

© Shunhua Jiang, Victor Lecomte, Omri Weinstein, and Sorrachai Yingchareonthawornchai;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 42; pp. 42:1–42:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sj3005@columbia.edu
https://orcid.org/0000-0003-2226-7980
mailto:vlecomte@stanford.edu
https://orcid.org/0000-0002-6585-6980
mailto:omriwe@cs.huji.ac.il
https://orcid.org/0000-0002-9357-2299
mailto:sorrachai.cp@gmail.com
https://orcid.org/0000-0002-7169-0163
https://doi.org/10.4230/LIPIcs.ISAAC.2024.42
https://arxiv.org/pdf/2411.14387
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Hardness Amplification for Dynamic Binary Search Trees

a black-box technique for amplifying the hardness of computational problems C(f◦k) ≳ k ·C(f),
and are the most promising approach for proving several holy-grail lower bounds in complexity
theory [23, 20, 35, 2, 24]. Moreover, a “tensorization” property of C under composition
allows to “lift” the problem and leverage its asymptotic behavior (e.g., concentration),
which is not present in the single-copy problem – this feature has been demonstrated and
exploited in various models, including combinatorial Discrepancy [28, 38], Richness of data
structure problems [33], decision trees [35] and rank [24] to mention a few. Despite their
powerful implications, (strong) direct-sum scaling of composed problems are often simply
false [34, 39, 37], and highly depend on the underlying computational model.

In this paper, we study direct sums in the online BST model, motivated by the dynamic
optimality conjecture of Sleator and Tarjan [40]. The dynamic optimality conjecture postulates
the existence of an instance optimal binary search tree algorithm (BST), namely, an online self-
adjusting BST whose running time2 matches the best possible running time in hindsight for
any sufficiently long sequence of queries. More formally, denoting by T (X) the operational
time of a BST algorithm T on an access sequence X = (x1, . . . , xm) ∈ [n]m of keys to
be searched, the conjecture says that there is an online BST T such that ∀X, T (X) ≤
O(OPT(X)), where OPT(X) := minT ′ T ′(X) denotes the optimal offline cost for X. In their
seminal paper, Sleator and Tarjan [40] conjectured that splay trees are O(1)-competitive; A
more recent competitor, the GreedyFuture algorithm [30, 15, 31], also forms a compelling
candidate for constant-competitive dynamic optimality. However, the near-optimality of both
Splay trees and GreedyFuture was proven only in special cases [41, 18, 32, 7, 8, 21, 10, 13],
and they are not known to be o(log n)-competitive for general access sequences X (note
that every balanced BST is trivially O(log n)-competitive). After 35 years of active research,
the best provable bound to date is an O(log log n)-competitive BST, starting with Tango
trees [16], among other O(log log n)-competitive BST algorithms [5, 42, 6]. Interestingly, this
progress was made possible due the development of lower bounds in the BST model, as we
discuss next.

Indeed, a remarkable feature of the BST model – absent from general computational
models (e.g., word-RAM) – is that it allows for nontrivial lower bounds on the search time of
a fixed query sequence X: In general models, lower bounds against a specific input X do not
make much sense as the best algorithm in hindsight can simply “store and read-off the answer”
for X. Nevertheless, in the BST model, even an all-knowing binary search tree must pay
the cost of traversing the root-to-leaf path to retrieve keys. For example, there are classical
examples of deterministic access sequences (e.g., bit-reversal sequence [43]) that require the
worst case Ω(m log n) total search time. This feature is what makes instance-optimality in
the BST model an intriguing possibility. Our work focuses on two classic lower bounds due
to Wilber [43], the Alternation and Funnel bounds (a.k.a, Wilber’s first and second bounds),
which are central to the aforementioned developments.

The Alternation and Funnel Bounds. Essentially all BST lower bounds are derived from
a natural geometric interpretation of the access sequence X = (X1, . . . , Xm) as a point
set on the plane, mapping the ith access Xi to point (Xi, i) ([15, 22], see Figure 1). The
earliest lower bounds on OPT(X) were proposed in an influential paper of Wilber [43].
The alternation bound AltT (X) counts the total number of left/right alternations obtained
by searching the keys X = (X1, . . . , Xm) on a fixed (static) binary search tree T , where
alternations are summed up over all nodes v ∈ T of the “reference tree” T (see Figure 3

2 i.e. the number of pointer movements and tree rotations performed by the BST

S. Jiang, V. Lecomte, O. Weinstein, and S. Yingchareonthawornchai 42:3

and the formal definition in Section 2). Thus, the Alternation bound is actually a family
of lower bounds, optimized by the choice of the reference tree T , and we henceforth define
Alt(X) := maxT AltT (X). The Alternation bound plays a key role in the design and analysis
of Tango trees and their variants [16, 42]. In fact, all non-trivial o(log n)-competitive BST
algorithms [16, 5, 42, 6, 11] rely on the Alternation bound.

In the same paper, Wilber proposed another lower bound – the Funnel Bound Funnel(X) –
which is less intuitive and can be defined by the following process: Consider the geometric
view {(Xi, i)}i∈[m] of the simple “move-to-root” algorithm that simply rotates each searched
key Xi to the root by a series of single rotations. Then Funnel(Xi, i) is exactly the number of
turns on the path from the root to Xi right before it is accessed [1, 22]. The Funnel bound
is then defined as Funnel(X) :=

∑m
i=1 Funnel(Xi, i). This view emphasizes the amortized

nature of the Funnel bound: at any point, there could be linearly many keys in the tree that
are only one turn away from the root, so one can only hope to achieve this bound in some
amortized fashion.

The Funnel bound has been repeatedly conjectured to tightly characterize the cost of
an offline optimal algorithm [43, 25, 6, 27]. Recently, Lecomte and Weinstein [27] proved
that the funnel bound is rotation-invariant, meaning that the bound is preserved when
the geometric representation of the input sequence is rotated by 90 degrees. This property
also holds for an optimal algorithm [15], giving another evidence that the Funnel bound
might give a tight characterization of the cost of an offline optimal algorithm. While the
Funnel bound does not have an algorithmic interpretation like Alt(X), Levy and Tarjan [29]
recently observed interesting similarities between Splay trees and the Funnel bound. The
core difficulty in converting Funnel(X) into a BST algorithm is its highly amortized nature
(also a feature of Splay trees), compared to the Alternation bound which gives a point-wise
lower bound on the retrieval time of Xi ∈ X. As such, understanding the mathematical
properties of the Funnel bound is important in its own right.

Access Sequence Composition and Known Direct-Sum Results. Informally, Direct Sum
theorems assert a lower bound on the complexity measure of solving R copies of a problem
in a given computational model, in terms of the cost of solving a single copy, ideally
C(f◦R) ≳ Ω(R) · C(f), where f◦R denotes certain R-copy composed problem. Indeed, the
precise notion of composition we use here (a-la [9]) is crucial, as direct-sum theorems are
subtle and often turn out to be false [34].

A natural definition of sequence-composition in the BST model was introduced by Chalerm-
sook et al. [9]. Let X(1), . . . , X(ℓ) be a sequence of ℓ access sequences where X(i) ∈ [ni]mi .
That is, each sequence X(i) has ni keys and mi accesses where m :=

∑
i mi, n :=

∑
i ni.

We view each sequence X(i) as the ith queue where we dequeue elements by the order of
the sequence X(i) (i.e., in FIFO order). Let X̃ ∈ [ℓ]m be a sequence with keys in [ℓ] such
that every j ∈ [ℓ] appears exactly mj times. We can view X̃ as a template which defines
the ordering of dequeue operations among the ℓ queues. We define the composed sequence
X := X̃(X(1), . . . , X(ℓ)) ∈ [n]m as follows. For each t = 1 to m, Xt := qt +

∑
i<X̃t

ni where
qt is the next element dequeued from X(X̃t). We refer the reader to Section 2 for the precise
definition.

The direct sum results for the optimal cost are well understood with applications to proving
non-trivial bounds of binary search trees. In [9], they prove (approximate) subadditivity of
the optimal cost on composed sequences. That is,

OPT(X) ≤ 3 · OPT
(

X̃
)

+
∑

j

OPT
(

X(j)
)

.

ISAAC 2024

42:4 Hardness Amplification for Dynamic Binary Search Trees

The subadditivity of optimal cost finds application in proving the linear optimal bounds for
“grid” sequences, and a strong separation in the hierarchy of lazy finger bounds [9]. On the
other hand, [6] recently proved superadditivity of the optimal cost on composed sequences.
That is,

OPT(X) ≥ OPT
(

X̃
)

+
∑

j

OPT
(

X(j)
)

. (1)

The superadditivity of optimal cost finds an application in designing a new O(log log n)-
competitive online BST algorithm based on purely geometric formulation [6].

However, the direct sum results for Wilber’s bounds are poorly understood despite their
importance to the pursuit of dynamic optimality. The only published work that we are aware
of is the approximate subadditivity of the Alternation bound [6]. That is, they proved that

Alt(X) ≤ 4 · Alt
(

X̃
)

+ 8 ·
∑

j

Alt
(

X(j)
)

+ O(|X|). (2)

Their proof is quite involved, and it is based on geometric arguments and the probabilistic
method. This finds applications in proving the separation between the Alternation and Funnel
bounds. In [6], they used approximate subadditivity of the Alternation bound (Equation (2))
to prove a near-optimal separation between the Alternation and Funnel bounds. That is,
they constructed a sequence Y such that the gap between Alt(Y) and Funnel(Y) is as large
as Ω(log log n

log log log n). This gap is nearly optimal because the upper bound of Tango tree [16]
implies that the gap must be O(log log n). This gap has been closed by an independent work
by Lecomte and Weinstein [27], proving the optimal separation between the Alternation and
Funnel bounds. That is, they constructed an instance Y such that the gap between Alt(Y)
and Funnel(Y) is as large as Ω(log log n).

Furthermore, [6] also used the approximate subadditivity of the Alternation bound
(Equation (2)) to prove the Ω(log log n

log log log n) gap between Alt(Y) and cGB(Y) where cGB(Y)
denotes the Consistent Guillotine Bound (cGB), a lower bound measure that is an extension
of Alt(Y).

1.1 Our Results
We prove that the Alternation bound is subadditive whereas the Funnel bound is superadditive
for composed sequences. More precisely, we prove the following theorem.

▶ Theorem 1 (Direct-Sum Theorem for Wilber’s Bounds). Let X := X̃(X(1), . . . , X(l)) be a
composed sequence. Then

Alt(X) ≤ Alt
(

X̃
)

+
∑

j Alt
(
X(j)) + O(|X|), and

Funnel(X) ≥ Funnel
(

X̃
)

+
∑

j Funnel
(
X(j)) − O(|X|).

Our proof of the subadditivity of the Alternation bound is simpler and yields stronger
bounds than the proof in [6] (Theorem 3.6 in their arXiv version). Direct sum theorems
are a natural black-box tool for hardness amplification, as they effectively reduce complex
lower bounds to a simpler “one-dimensional” problem. Indeed, as a showcase application, we
use the base-case separation proved in [27] along with Theorem 1 to amplify both Wilber’s
bounds. Let Alt(X) := Alt(X)/|X|, and Funnel(X) := Funnel(X)/|X|. They proved that
there is a sequence Y such that

Alt(Y) ≤ O(1), but
Funnel(Y) ≥ Ω(log log n).

S. Jiang, V. Lecomte, O. Weinstein, and S. Yingchareonthawornchai 42:5

Note that the sequence Y is easy w.r.t. the Alternation bound since Alt(Y) ≤ O(1). We use
the sequence Y as a base-case and apply Theorem 1 to construct hard sequence w.r.t. the
funnel bound while maintaining the separation as in the following theorem 3.

▶ Theorem 2 (Hardness Amplification). There is a constant K > 0 such that for any n of the
form 22r and any power-of-two R ≤ log n

K , there is a sequence Y ◦R
n ∈ [n]m′ with m′ ≤ poly(n)

such that

Alt
(
Y ◦R

n

)
≤ O(R)

Funnel
(
Y ◦R

n

)
≥ Ω

(
R log

(
log n

R

))
.

Remark 1. We emphasize that the approximate subadditivity of the Alternation bound
(Equation (2)) is not sufficient for such hardness amplification. On the other hand, one could
also use the superadditivity of the optimal cost (Equation (1)) instead of the Funnel bound
to prove hardness amplification.

Tightness of the Separation. As a corollary of Theorem 2, we can derive the following
trade-offs between the multiplicative and additive factors for the Alternation bound.

▶ Theorem 3. Let α, β : N → R≥1 be any functions such that some BST algorithm achieves
an amortized cost of α(n)Alt(X) + β(n) for all access sequences X over n keys. Then
α(n) ≥ Ω

(
log

(
log n
β(n)

))
.

As we discuss below, the trade-offs are tight with the matching upper bounds from
Tango Trees (which can be derived directly from Tango trees). For convenience, we present
self-contained BST algorithms with the matching upper bounds .

▶ Lemma 4. There is a BST algorithm that takes an integer k ≤ log n as a parameter and
serve the sequence X = (X1, · · · , Xm) with the total access time of

O

((
Alt(X) + m · log n

k

)
· (log k + 1)

)
.

For the reason of space, we defer the proof of Lemma 4 to the full version.
In this algorithm, the additive cost is Θ

(
log n log k

k

)
and multiplicative cost Θ(log k). By

Theorem 3, if β(n) = Θ
(

log n log k
k

)
, then we have

α(n) ≥ Ω
(

log
(

log n

β(n)

))
= Ω

(
log

(
k

log k

))
= Ω(log k),

so our trade-off is optimal for any sufficiently large k ≤ log n.

Optimality of Tango Trees. As another corollary of Theorem 2, we prove the optimality
of Tango Trees among any algorithm charging its cost to Wilber’s Alternation bound for
all values of the Alt(X). Note that Alt(X) ≤ O(log n). Previously, the optimality of Tango
trees is known only when Alt(X) = O(1) [27].

3 This can be viewed as hardness amplification because the new sequence becomes harder from the
optimum’s point of view without losing the gap too much.

ISAAC 2024

42:6 Hardness Amplification for Dynamic Binary Search Trees

The basic idea of Tango Trees is to “mimic” Wilber’s alternation bound via a BST, by
dynamically maintaining a partition of the reference tree T into disjoint paths, formed by
designating, for each node x ∈ T , the unique “preferred” descendant in T (left or right) which
was acessed most recently. Since each “preferred path” has length |p| ≤ depth(T) ≤ log n,
every path can itself be stored in a BST, so assuming these paths can be dynamically
maintained (under split and joins), searching for the predecessor of a key xi inside each
path only takes O(log log n) time, until the search “falls-off” the current preferred path
and switches to a different one. The key observation is that this “switch” can be charged
to AltT (X), as it certifies a new alternation in Wilber’s lower bound, hence OPT must
pay for this move as well. This elegant argument directly leads to the aforementioned
O(log log n) · OPT(X) search time.

The analysis of Tango trees relies on charging the algorithm’s cost to the Alternation
bound. One may ask if the bound can be improved using a clever algorithm (not necessarily
Tango trees) so that we can charge o(log log n) factor to the Alternation bound. Unfortunately,
the answer is no as there are known examples of access sequences X̃ with Alt(X̃) = O(m)
but OPT(X̃) = Θ(m log log n) [27, 6]. In light of this, Tango trees are indeed off by a factor
Θ(log log n) from Alt(X̃). Interestingly, when OPT(X) ≳ m log n

2o(log log n) , one can do somewhat
better. Let OPT(X) := OPT(X)/|X|. The Tango tree, presented by [16] (see the discussion
in their Section 1.5), has a competitive ratio of

O

(
1 + log log n

OPT(X)

)
= o(log log n). (3)

The condition that allows o(log log n)-competitiveness is rather narrow: the amortized
optimal cost OPT(X) must be very close to log n to achieve o(log log n)-competitiveness.
Can we achieve o(log log n)-competitiveness with a wider range of OPT(X) using Alt(X)?

Unfortunately, the answer is no. More generally, we prove a matching lower bound:
the competitive ratio of any BST algorithm based on the Alternation bound must be at
least Ω(log log n

OPT(X)
), matching to the upper bound of the Tango tree by Equation (3). More

precisely, we prove the following theorem whose proof is a small modification of the proof in
Theorem 3.

▶ Theorem 5. Let α : N × R≥1 → R≥1 be any function such that some BST algorithm
achieves an amortized cost of α

(
n, OPT(X)

)
·
(
Alt(X) + 1

)
for all access sequences X over

n keys. Then α(n, s) ≥ Ω
(

log
(

log n
s

))
.

As a corollary of Theorem 5,4 the lower bound of Ω(log log n

OPT(X)
) follows by setting s to

be within constant factor of OPT(X). This holds for every BST algorithm based on the
Alternation bound. With the matching upper bound by Equation (3), Tango tree optimally
utilizes the Alternation bound.

1.2 Further Related Work
Splay trees and GreedyFuture are prime candidates for the dynamic optimality conjecture
since they both satisfy many important properties of dynamic trees including static optimal-
ity [40], working-set property [40, 19], dynamic finger property [14, 12], and more (see the

4 We remark that we cannot set β(n) = OPT(X) in Theorem 3 because β(n) does not depend on X and,
even if OPT(X) is a function of n, the construction of the sequence X depends on β(n). We need the
lower bound of Theorem 5.

S. Jiang, V. Lecomte, O. Weinstein, and S. Yingchareonthawornchai 42:7

surveys [22, 25] for an overview of the results in the field). Although they are not yet known
to have o(log n)-competitiveness, they have substantially better bounds for special cases. For
example, both Splay trees and GreedyFuture are dynamically optimal for sequential access
sequences [18, 19]. For deque sequences, Splay trees are O(α∗(n))-competitive [32] whereas
GreedyFuture is O(α(n))-competitive [10]. Here, α(n) denotes the inverse Ackermann func-
tion and α∗(n) is the iterated function of α(n). The sequential and deque sequences are
special cases of the pattern-avoiding access sequences [8]. For any fixed-size pattern, Greedy-
Future is O(2(1+o(1))α(n))-competitive for pattern-avoiding access sequences [13]. It was
shown recently that an optimal BST algorithm takes O(n) total cost for any fixed pattern [3].
The bounds for specific classes of patterns can be improved if preprocessing is allowed [8, 21]
(i.e., the initial tree can be set before executing the online search sequences). Recently,
a slight modification of GreedyFuture was shown to be O(

√
log n)-competitive [11]. An

important application of GreedyFuture (or any competitive online BSTs) includes adaptive
sorting using treesort [4, 13] and heapsort [26].

The lower bounds in the literature other than Wilber’s bounds include the maximum
independent rectangle and SignedGreedy bounds [15], which subsume Wilber’s Alternation
and Funnel bounds. A similar lower bound was presented by Derryberry et al. [17]. Recently,
Guillotine Bound [6] was introduced, which is a generalization of Wilber’s Alternation bound.
Unfortunately, it is unclear how to design an algorithm that utilizes these bounds. Recently,
Sadeh and Kaplan [36] proved that the competitive ratio of GreedyFuture cannot be less
than 2 for the multiplicative factor, or o(m log log n) for the additive factor.

1.3 Paper Organization
We first describe terminologies and notations in Section 2. We prove the direct-sum results for
Wilber’s bounds (Theorem 1) in Section 3. In Section 4, we prove the hardness amplification
of Wilber’s bounds while maintaining their separation (Theorem 2) and we also prove
Theorem 3.

2 Preliminaries

We follow notations and terminologies from [27].

▶ Definition 6 (access sequence). An access sequence is a finite sequence X = (X1, . . . , Xm) ∈
Sm of values from a finite set of keys S ⊆ R. Usually, we let S := [n].

To make our definitions and proofs easier, we will work directly in the geometric repres-
entation of access sequences as (finite) sets of points in the plane R2.

▶ Definition 7 (geometric view). Any access sequence X = (X1, . . . , Xm) ∈ Sm can be
represented as the set of points GX := {(Xt, t) | t ∈ [m]}, where the x-axis represents the key
and the y-axis represents time (see Figure 1).

By construction, in GX , no two points share the same y-coordinate. We will say such a
set has “distinct y-coordinates”. In addition, we note that it is fine to restrict our attention
to sequences X without repeated values.5 The geometric view GX of such sequences also
has no two points with the same x-coordinate. We will say that such a set has “distinct x-
and y-coordinates”.

5 Indeed, Appendix E in [8] gives a simple operation that transforms any sequence X into a sequence
split(X) without repeats such that OPT(split(X)) = Θ(OPT(X)). Thus if we found a tight lower bound
L(X) for sequences without repeats, a tight lower bound for general X could be obtained as L(split(X)).

ISAAC 2024

42:8 Hardness Amplification for Dynamic Binary Search Trees

X = (4, 1, 3, 5, 4, 2) −→

keys

time

(4, 1)
(1, 2)

(3, 3)
(5, 4)

(4, 5)
(2, 6)

GX

Figure 1 transforming X into its geometric view GX .

▶ Definition 8 (x- and y-coordinates). For a point p ∈ R2, we will denote its x- and y-
coordinates as p.x and p.y. Similarly, we define P.x := {p.x | p ∈ P} and P.y := {p.y | p ∈ P}.

We start by defining the mixing value of two sets: a notion of how many two sets of
numbers are interleaved. It will be useful in defining both the alternation bound and the
funnel bound. We define it in a few steps.

▶ Definition 9 (mixing string). Given two disjoint finite sets of real numbers L, R, let
mix(L, R) be the string in {L, R}∗ that is obtained by taking the union L ∪ R in increasing
order and replacing each element from L by L and each element from R by R. For example,
mix({2, 3, 8}, {1, 5}) = RLLRL.

▶ Definition 10 (number of switches). Given a string s ∈ {L, R}∗, we define #switches(s) as
the number of side switches in s. Formally,

#switches(s) := #{t | st ̸= st+1}.

For example, #switches(LLLRLL) = 2. Note that if we insert characters into s, #switches(s)
can only increase.

▶ Definition 11 (mixing value). Let mixValue(L, R) := #switches(mix(L, R)) (see Figure 2).

1 3 7

4 6 8 9

L

R

Figure 2 a visualization of mixValue({1, 3, 7}, {4, 6, 8, 9}) = 3.

The mixing value has some convenient properties, which we will use later:

▶ Fact 12 (properties of mixValue). Function mixValue(L, R) is:
(a) symmetric: mixValue(L, R) = mixValue(R, L);
(b) monotone: if L1 ⊆ L2 and R1 ⊆ R2, then mixValue(L1, R1) ≤ mixValue(L2, R2);
(c) superadditive under concatenation: if L1, R1 ⊆ (−∞, x] and L2, R2 ⊆ [x, +∞), then

mixValue(L1 ∪ L2, R1 ∪ R2) ≥ mixValue(L1, R1) + mixValue(L2, R2).
Finally, mixValue(L, R) ≤ 2 · min(|L|, |R|) + 1.

The definitions of Wilber’s Alternation and Funnel bounds (Alt(X), Funnel(X)) are
standard in the literature.

S. Jiang, V. Lecomte, O. Weinstein, and S. Yingchareonthawornchai 42:9

We now give precise definitions of Wilber’s two bounds.6

u

v w

x1

2 3

4 5

L R

L R L R

L R

reference tree T

Node Link used by each access Group by letter #

u R, L, L, R, R, L [R], [L, L], [R, R], [L] 3
v L, R, R [L], [R, R] 1
w L, R, L [L], [R], [L] 2
x R, L [R], [L] 1

Total 7

Figure 3 For access sequence X = (4, 1, 3, 5, 4, 2) and reference tree T , AltT (X) = 7.

▶ Definition 13 (alternation bound). Let P be a point set with distinct y-coordinates, and
let T be a binary search tree over the values P.x. We define AltT (P) using the recursive
structure of T . If T is a single node, let AltT (P) := 0. Otherwise, let TL and TR be the
left and right subtrees at the root. Partition P into two sets PL := {p ∈ P | p.x ∈ TL} and
PR := {p ∈ P | p.x ∈ TR} and consider the quantity mixValue(PL.y, PR.y), which describes
how much PL and PR are interleaved with time (we call each switch between PL and PR a
“preferred child alternation”). Then

AltT (P) := mixValue(PL.y, PR.y) + AltTL(PL) + AltTR(PR). (4)

The alternation bound is then defined as the maximum over all trees:

Alt(P) := max
T

AltT (P).

In addition, for an access sequence X, let AltT (X) := AltT (GX) and Alt(X) := Alt(GX).

For the reason of space, we describe Wilber’s Funnel bounds in the full version.

▶ Definition 14 (amortized bounds). For any sequence X ∈ Sm, define amortized versions
of the optimal cost and the Wilber bounds:

OPT(X) := OPT(X)
m

, Alt(X) := Alt(X)
m

, Funnel(X) := Funnel(X)
m

.

▶ Definition 15 (composed sequence, see [9]). Let S1, . . . , Sl be disjoint sets of keys with
increasing values (i.e. ∀x ∈ Sj , x′ ∈ Sj+1, we have x < x′). For each j ∈ [l], let X(j) ∈ S

mj

j

be an access sequence with keys in Sj , and let X̃ be a sequence with keys in [l] such that every
j ∈ [l] appears exactly mj times (its total length is m := m1 + · · · + ml). Then we define the
composed sequence

X = X̃(X(1), . . . , X(l)) ∈ (S1 ∪ · · · ∪ Sl)m

as the sequence that interleaves X(1), . . . , X(l) according to the order given by X̃: that is,

Xt = X

(
X̃t

)
σ(t) where σ(t) := #

{
t′ ≤ t

∣∣∣ X̃t′ = X̃t

}
.

6 These definitions may differ by a constant factor or an additive ±O(m) from the definitions the reader
has seen before. We will ignore such differences, because the cost of a BST also varies by ±O(m)
depending on the definition, and the interesting regime is when OPT(X) = ω(m).

ISAAC 2024

42:10 Hardness Amplification for Dynamic Binary Search Trees

Note that [6] defines the decomposition operation, which is the inverse operation of the
composition. We will use Definition 15 throughout this paper.

▶ Definition 16 (jx). In the context of Definition 15, for any key x ∈ S1 ∪ · · · ∪ Sl, let jx be
the unique index such that x ∈ Sjx .

3 Effect of Composition on Wilber’s bounds

We prove Theorem 1 in this section. Namely, we show that Wilber’s bounds act nicely under
composition, allowing us to boost the separation between them in Section 4. We divide the
proofs into the following two theorems.

▶ Theorem 17 (subadditivity of Alt). Let X := X̃(X(1), . . . , X(l)) be a composed sequence
with |X(1)| = · · · = |X(l)|.7 Then

Alt(X) ≤ Alt
(

X̃
)

+
∑

j

Alt
(

X(j)
)

+ O(m).

▶ Theorem 18 (superadditivity of Funnel). Let X := X̃(X(1), . . . , X(l)) be a composed
sequence. Then

Funnel(X) ≥ Funnel
(

X̃
)

+
∑

j

Funnel
(

X(j)
)

− O(m).

For the reason of space, we postpone the proof of Theorem 18 to the full version.

3.1 Subadditivity of the alternation bound
We prove Theorem 17 in this section.

Proof plan

We will show that for any binary search tree T over S1 ∪ · · · ∪ Sl,

AltT (X) ≤ Alt
(

X̃
)

+
∑

j

Alt
(

X(j)
)

+ O(m).

We will do this by
decomposing T into the corresponding binary trees T̃ over [l] and Tj over Sj for all j;
classifying preferred child alternations in T into 4 types, which correspond to either

alternations in T̃ ,
alternations in Tj for some j,
or to some other events that happen at most O(m) times in aggregate.

That is, we will show that

AltT (X) ≤ AltT̃

(
X̃

)
+

∑
j

AltTj

(
X(j)

)
+ O(m).

7 We make this assumption so that the proof is simpler.

S. Jiang, V. Lecomte, O. Weinstein, and S. Yingchareonthawornchai 42:11

3.1.1 Decomposing the tree
For a tree T , we write x ≺T b if x is a descendent of b in T , and we write S ≺T b if x ≺T b

for all x ∈ S.

▶ Definition 19. Let Tj be the unique binary search tree over Sj such that if b, x ∈ Sj and
x ≺T b then x ≺Tj

b.

Tj is constructed by running the following recursive algorithm, which builds a tree Tout:
Start at the root of T , and let x be the current node.
If x ∈ Sj , then

make x the root of Tout;
form x’s left subtree in Tout by recursing on x’s left subtree in T ;
form x’s right subtree in Tout by recursing on x’s right subtree in T .

If x ̸∈ Sj then since Sj is contiguous, at most one of x’s left and right subtrees in T can
contain elements from Sj .

If there is one such subtree, form Tout by recursing on it.
Otherwise let Tout be the empty tree.

This algorithm clearly has the desired properties:
Clearly, by construction, Tj is a binary search tree and its set of keys is Sj .
If b, x ∈ Sj and x ≺T b, then x ≺Tj b, because the only way to get to x is to first pass
through b, add it as a root of the current subtree, then recurse on b’s subtree that contains
x, which eventually adds x to Tj as a descendent of b.
Tj is unique since the only nontrivial choice the algorithm makes is to add x as a root,
but this is necessary since it must be an ancestor of all of the keys that later get added
to this part of Tj .

▶ Definition 20. Let T̃ be the unique binary search tree over [l] such that if x ≺T b and
Sjb

, Sjx
≺T b then jx ≺T̃ jb.

T̃ is constructed by running the following recursive algorithm, which builds a tree Tout:
Start at the root of T , and let x be the current node.
If jx hasn’t already been seen earlier in the algorithm (which happens iff x is the lowest
common ancestor of all of Sjx in T), then

make jx the root of Tout;
form jx’s left subtree in Tout by recursing on x’s left subtree in T ;
form jx’s right subtree in Tout by recursing on x’s right subtree in T .

If jx has already been seen earlier in the algorithm, then some ancestor of x was also in
Sjx

, and Sjx
is contiguous, so Sjx

must contain either x’s entire left subtree, or x’s entire
right subtree. That means that at most one of x’s subtrees can contain elements *not* in
Sjx

.
If there is one such subtree, form Tout by recursing on it.
Otherwise, let Tout be the empty tree.

This algorithm clearly has the desired properties:
Clearly, by construction, T̃ is a binary search tree and its set of keys is [l].
If x ≺T b and Sjb

, Sjx
≺T b then:

We can assume jx ̸= jb and thus x ̸= b, otherwise the claim is trivially true.
Since Sjb

≺T b, b must be the lowest common ancestor of all of Sjb
in T , so jb gets

added to T̃ when the algorithm is looking at node b.

ISAAC 2024

42:12 Hardness Amplification for Dynamic Binary Search Trees

Also, since Sjx ≺T b and jx ≠ jb, that means that all the elements from Sjx are
descendents of b, so jx will be added to T̃ in one of the recursive branches launched
when looking at b.
Therefore jx will be a descendent of jb in T̃ .

T̃ is unique since the only nontrivial choice the algorithm makes is to add jx as root
when it first sees an element from Sjx , but this is necessary since for any j which will
eventually be added to this part of the tree, Sj must have been completely contained in
x’s subtree, and therefore jx must be an ancestor of j.

3.1.2 Stating the classification

Consider some left-to-right8 preferred child alternation that X produces in T . That is, take
some value b ∈ S1 ∪ · · · ∪ Sl and some times tx < ty ∈ [m] such that

x := Xtx
is in the left subtree of b in T ,

y := Xty
is in the right subtree of b in T ,

and none of the accesses Xtx+1, . . . , Xty−1 made in the interim were to values that are
strict descendents of b.

Let a be the lowest ancestor of b such that a < b and c be the lowest ancestor of b such that
b < c.9 This means that the left and right subtrees of b correspond to the keys in intervals
(a, b) and (b, c). We have x, y ≺T b, x ∈ (a, b), and y ∈ (b, c).

▷ Claim 21. One of the following must hold (from most “local” to most “global”):
1. All of b, x, y are in the same range Sjb

, so x and y are in the left and right subtrees of b

in Tjb
, and this corresponds to an alternation in Tjb

.
2. b is either the highest ancestor of x such that b ∈ Sjx and x < b, or the highest ancestor

of y such that b ∈ Sjy
and b < y.

3. Sjb
≺T b, and either jx is the closest (in key value) ancestor of jb in T̃ such that jx < jb,

or jy is the closest (in key value) ancestor of jb in T̃ such that jb < jy.
4. All of b, x, y are in different ranges (i.e. jx < jb < jy), jx is in jb’s left subtree in T̃ , and

jy is in jb’s right subtree in T̃ , so this corresponds to an alternation in T̃ .

3.1.3 Proving the classification
Proof of Claim 21. Let us prove that every alternation is of one of these four types.

First, suppose that jx = jb = jy. Then by construction of Tjb
, x and y are still descendents

of b in Tjb
, and since Tjb

is a binary search tree, x must be in b’s left subtree and y must
be in b’s right subtree. So this is type 1.
Now suppose that exactly one of jx = jb and jb = jy holds. By symmetry, suppose that
it is the former, and thus jx = jb < jy. Then we trivially have b ∈ Sjx

. And on the other
hand, consider any ancestor b′ of x which is higher than b and satisfies x < b′. Then b′

would have to satisfy y < b′ as well, and in particular jy ≤ jb′ , so it could not lie in Sjx .
Therefore b is the highest ancestor of x which lies in Sjx

and satisfies x < b. So this is
type 2.

8 The case where the alternation occurs from right to left is analogous.
9 If either a or c doesn’t exist, let a := −∞ or c := +∞ by convention.

S. Jiang, V. Lecomte, O. Weinstein, and S. Yingchareonthawornchai 42:13

type 1 type 2 type 3 type 4
a

•

c

b

x y

Sjb

a

•

c

b

x y

Sjb

a

•

c

b

x y

Sja Sjb

a

•

c

b

x y

Sja Sjb Sjc

charge to Tjb
charge to tx charge to jb charge to T̃

Figure 4 A preferred child alternation in T : b’s preferred child changes from the left side (due to
an access to x) to the right side (due to an access to y). There are four qualitatively different ways in
which the alternation can happen depending on which ranges S1, . . . , Sl the keys a, b, c, x, y belong.

From now on we can assume that jx < jb < jy, which means in particular that ja < jb < jc,
that Sjb

is contained entirely in b’s subtree in T , and therefore b is the highest member
of Sjb

in T . Now, the lowest common ancestor of Sja
(resp. Sjc

) must be an ancestor
of a (resp. c) and therefore an ancestor of b, so by the properties of T̃ , ja (resp. jc) is
an ancestor of jb in T̃ . Furthermore, any ancestor of jb in T̃ must be of the form jz for
some ancestor z of b in T , so since a (resp. c) is the closest (in key value) ancestors of b

on its left (resp. right) side in T , ja (resp. jc) must be the closest ancestor of jb on its
left (resp. right) side in T̃ .

Suppose that at least one of ja = jx or jy = jc holds. By symmetry suppose that it is
the former. Then just by virtue of the fact that jx = ja, jx is the closest ancestor of
jb on its left side in T̃ . So this is type 3.
Otherwise, we have ja < jx < jb < jy < jc. This implies that Sjx lies entirely
within b’s left subtree, and Sjy

lies entirely within b’s right subtree, thus jx and jy are
descendents of jb in T̃ . So this is type 4. ◀

3.1.4 Using the classification to prove Theorem 17

Proof of Theorem 17. Let T be any binary search tree over S1 ∪ · · · ∪ Sl, and let Tj and T̃
be the corresponding trees defined in Definition 19 and Definition 20. We will show that

AltT (X) ≤ AltT̃

(
X̃

)
+

∑
j

AltTj

(
X(j)

)
+ O(m).

Let us use Claim 21: we charge type 1 alternations to AltTj

(
X(j)), type 4 alternations to

AltT̃

(
X̃

)
, and we show below that there are only O(m) alternations of types 2 and 3.

For type 2, this is because we can charge it uniquely to the access made to x or y (formally,
we charge it to tx or ty).

Let us take the first subcase: b is the highest ancestor of x such that b ∈ Sjx
and x < b.

x can only have one highest ancestor with a given property, so it has only one highest
“ancestor b such that b ∈ Sjx and x < b”. So this can apply to at most one of the
alternations that occurred when accessing x, and thus we can charge it to tx.

ISAAC 2024

42:14 Hardness Amplification for Dynamic Binary Search Trees

Let us take the second subcase: b is the highest ancestor of y such that b ∈ Sjy and b < y.
Again, y can only have one highest “ancestor b such that b ∈ Sjy

and b < y”. The access
to x is the first time that the preferred child switches back from b’s left child to b’s right
child after accessing y. So this event is unique from the perspective of this particular
access to y, and thus we can charge it to ty.

Finally, we will bound the total number of occurrences of type 3 alternations by charging
them to jb, not uniquely but in a l

m -to-1 manner. Let us take the case where jx is the closest
ancestor of jb in T̃ such that jx < jb (the other case is analogous). Clearly, jb determines
jx uniquely. And since b’s subtree contains Sjb

in its entirety, jb determines b uniquely too.
So once you know jb, the only uncertainty left about this alternation is which access within
X(jx) caused it. So the total number of alternations of this type is bounded by

l︸︷︷︸
which jb?

max
jx

∣∣∣X(jx)
∣∣∣︸ ︷︷ ︸

which access within X(jx)?

= l
m

l
= m,

where the first equality uses our assumption that |X(1)| = · · · = |X(l)|.
Overall, we have shown that

AltT (X) ≤ AltT̃

(
X̃

)
︸ ︷︷ ︸

type 4

+
∑

j

AltTj

(
X(j)

)
︸ ︷︷ ︸

type 1

+ O(m)︸ ︷︷ ︸
type 2 (charge to tx or ty)

+ O(m)︸ ︷︷ ︸
type 3 (charge to jb)

,

so we can now take the maximum over T to conclude

Alt(X) := max
T

AltT (X)

≤ max
T

AltT̃

(
X̃

)
+

∑
j

AltTj

(
X(j)

)
+ O(m)

≤ max

T̃
AltT̃

(
X̃

)
+

∑
j

max
Tj

AltTj

(
X(j)

)
+ O(m)

= Alt
(

X̃
)

+
∑

j

Alt
(

X(j)
)

+ O(m).

◀

4 Boosting the separation between Wilber’s bounds

We prove Theorem 2 in this section. We now use the composition properties of Alt and
Funnel we proved in Section 3 to show that Tango tree makes an optimal trade-off between
fixed costs and variable costs that depend on the alternation bound.

4.1 What boosting can we get?
Lecomte and Weinstein [27] show an Ω(log log n) separation between Alt and Funnel.

▶ Theorem 22 (Theorem 2 in [27]). For any n of the form 22k , there is a sequence Yn ∈ [n]m
where m ≤ poly(n), each element appears O(m/n) times, and

Alt(Yn) ≤ O(1)
Funnel(Yn) ≥ Ω(log log n).

S. Jiang, V. Lecomte, O. Weinstein, and S. Yingchareonthawornchai 42:15

We can use the tight composition results from Section 3 to show the following boosted
separation. We emphasize that the approximate subadditivity of the Alternation bound [6]
is insufficient to boost the separation.

▶ Theorem 23 (Hardness Amplification, Restatement of Theorem 2). There is a constant
K > 0 such that for any n of the form 22k and any power-of-two R ≤ log n

K , there is a
sequence Y ◦R

n ∈ [n]m′ with m′ ≤ poly(n) such that

Alt
(
Y ◦R

n

)
≤ O(R)

Funnel
(
Y ◦R

n

)
≥ Ω

(
R log

(
log n

R

))
.

Proof. Let Yn be the sequence stated in Theorem 22. First, pad Yn so that each key appears
exactly m/n times, by adding each key one by one the appropriate number of times, in
ascending order. It is easy to see that this maintains the bounds

Alt(Yn) ≤ O(1)
Funnel(Yn) ≥ Ω(log log n).

Now, let CO, CΩ > 0 be constants such that

Alt(Yn) ≤ CO

Funnel(Yn) ≥ CΩ log log n

(we will allow ourselves to make CO even larger later on).
Let Y ◦1

n := Yn, and for all power-of-two R ≥ 1, let

Y ◦2R
n :=

(
Y ◦R√

n

)⊗
√

n(
Y ◦R√

n , . . . , Y ◦R√
n

)
,

where “X⊗
√

n” means “X repeated
√

n times”, and with an abuse of notation we assume
that the

√
n sequences Y ◦R√

n
, . . . , Y ◦R√

n
that are being composed each contains a distinct range

of keys. We can check that∣∣Y ◦R
n

∣∣ = n1−1/R|Yn1/R | ≤ n1−1/R poly
(

n1/R
)

≤ poly(n)

as desired. We will show by induction that

Alt
(
Y ◦R

n

)
≤ CO(2R − 1)

Funnel
(
Y ◦R

n

)
≥ CΩ

R + 1
2 log

(
log n

R

)
.

Base case: R = 1. We verify that indeed

Alt(Yn) ≤ CO

= CO(2 · 1 − 1)
= CO(2R − 1)

and

Funnel(Yn) ≥ CΩ log log n

= CΩ
1 + 1

2 log
(

log n

1

)
= CΩ

R + 1
2 log

(
log n

R

)
.

ISAAC 2024

42:16 Hardness Amplification for Dynamic Binary Search Trees

Inductive case: R → 2R. Suppose this is true for some R ≥ 1, for all n. Then for Alt, by
Theorem 17 we have

Alt
(
Y ◦2R

n

)
≤ Alt

(
Y ◦R√

n

)
+

√
n · Alt

(
Y ◦R√

n

)
√

n
+ O(1)

≤ 2CO(2R − 1) + O(1)
= CO(4R − 1) − CO + O(1)
≤ CO(4R − 1),

where the last step holds as long as CO is large enough.
For Funnel, by Theorem 18 we have

Funnel
(

Y ◦R√
n

)
≥ Funnel

(
Y ◦R√

n

)
+

√
n · Funnel

(
Y ◦R√

n

)
√

n
− O(1)

≥ CΩ(R + 1) log
(

log
√

n

R

)
− O(1)

= CΩ
2R + 1

2 log
(

log n

2R

)
+ CΩ

2 log
(

log n

2R

)
− O(1)

≥ CΩ
2R + 1

2 log
(

log n

2R

)
+ CΩ

2 log
(

K

2

)
− O(1)

≥ CΩ
2R + 1

2 log
(

log n

2R

)
,

where the penultimate step holds because R ≤ log n
K , and the last step holds as long as K is

large enough. ◀

5 Optimality of Tango Trees

We are ready to prove Theorem 3.

▶ Theorem 24 (Restatement of Theorem 3). Let α, β : N → R≥1 be any functions and let A

be some BST algorithm. Denote the amortized cost of A on an access sequence X as A(X).
Suppose that for all access sequences X over n keys, we have

A(X) ≤ α(n)Alt(X) + β(n).

Then α(n) ≥ Ω
(

log
(

log n
β(n)

))
for infinitely many values of n.

Proof. In fact we will show that the result holds under the weaker assumption that the
theorem holds for the optimal amortized cost:

OPT(X) ≤ α(n)Alt(X) + β(n).

The above inequality must in particular hold for the access sequence Y ◦R
n from Theorem 2,

where we let R be the largest power of two such that R ≤ β(n). This gives us
OPT

(
Y ◦R

n

)
≤ α(n)Alt(X) + β(n) ≤ O(R(α(n) + 1))

OPT
(
Y ◦R

n

)
≥ Ω

(
Funnel

(
Y ◦R

n

))
≥ Ω

(
R log

(
log n

R

))
.

S. Jiang, V. Lecomte, O. Weinstein, and S. Yingchareonthawornchai 42:17

Combining these inequalities, we obtain

R(α(n) + 1) ≥ Ω
(

R log
(

log n

R

))
=⇒ α(n) ≥ Ω

(
log

(
log n

R

))
≥ Ω

(
log

(
log n

β(n)

))
(where the implication uses the fact that α(n) ≥ 1). ◀

References
1 Brian Allen and Ian Munro. Self-organizing binary search trees. J. ACM, 25(4):526–535,

October 1978. doi:10.1145/322092.322094.
2 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. Direct sums in randomized com-

munication complexity. Electron. Colloquium Comput. Complex., TR09-044, 2009. URL:
https://eccc.weizmann.ac.il/report/2009/044, arXiv:TR09-044.

3 Benjamin Aram Berendsohn, László Kozma, and Michal Opler. Optimization with pattern-
avoiding input. CoRR, abs/2310.04236, 2023. doi:10.48550/arXiv.2310.04236.

4 Guy E. Blelloch and Magdalen Dobson. The geometry of tree-based sorting. In ICALP,
volume 261 of LIPIcs, pages 26:1–26:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPICS.ICALP.2023.26.

5 Prosenjit Bose, Karim Douïeb, Vida Dujmovic, and Rolf Fagerberg. An O(log log n)-
competitive binary search tree with optimal worst-case access times. In Algorithm Theory -
SWAT 2010, 12th Scandinavian Symposium and Workshops on Algorithm Theory, Bergen, Nor-
way, June 21-23, 2010. Proceedings, pages 38–49, 2010. doi:10.1007/978-3-642-13731-0_5.

6 Parinya Chalermsook, Julia Chuzhoy, and Thatchaphol Saranurak. Pinning down the strong
wilber 1 bound for binary search trees. In APPROX-RANDOM, volume 176 of LIPIcs, pages
33:1–33:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.
APPROX/RANDOM.2020.33.

7 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. Greedy is an almost optimal deque. In WADS, volume 9214 of Lecture Notes in
Computer Science, pages 152–165. Springer, 2015. doi:10.1007/978-3-319-21840-3_13.

8 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. Pattern-avoiding access in binary search trees. In Venkatesan Guruswami, editor,
IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley,
CA, USA, 17-20 October, 2015, pages 410–423. IEEE Computer Society, 2015. doi:10.1109/
FOCS.2015.32.

9 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. The landscape of bounds for binary search trees. arXiv preprint, 2016. arXiv:
1603.04892.

10 Parinya Chalermsook, Manoj Gupta, Wanchote Jiamjitrak, Nidia Obscura Acosta, Akash
Pareek, and Sorrachai Yingchareonthawornchai. Improved pattern-avoidance bounds for
greedy bsts via matrix decomposition. In SODA, pages 509–534. SIAM, 2023. doi:10.1137/
1.9781611977554.CH22.

11 Parinya Chalermsook, Manoj Gupta, Wanchote Jiamjitrak, Akash Pareek, and Sorra-
chai Yingchareonthawornchai. The group access bounds for binary search trees. CoRR,
abs/2312.15426, 2023. doi:10.48550/arXiv.2312.15426.

12 Parinya Chalermsook and Wanchote Po Jiamjitrak. New binary search tree bounds via
geometric inversions. In ESA, volume 173 of LIPIcs, pages 28:1–28:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.ESA.2020.28.

13 Parinya Chalermsook, Seth Pettie, and Sorrachai Yingchareonthawornchai. Sorting pattern-
avoiding permutations via 0-1 matrices forbidding product patterns. In SODA, pages 133–149.
SIAM, 2024. doi:10.1137/1.9781611977912.7.

14 Richard Cole. On the dynamic finger conjecture for splay trees. part II: the proof. SIAM J.
Comput., 30(1):44–85, 2000. doi:10.1137/S009753979732699X.

ISAAC 2024

https://doi.org/10.1145/322092.322094
https://eccc.weizmann.ac.il/report/2009/044
https://arxiv.org/abs/TR09-044
https://doi.org/10.48550/arXiv.2310.04236
https://doi.org/10.4230/LIPICS.ICALP.2023.26
https://doi.org/10.1007/978-3-642-13731-0_5
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2020.33
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2020.33
https://doi.org/10.1007/978-3-319-21840-3_13
https://doi.org/10.1109/FOCS.2015.32
https://doi.org/10.1109/FOCS.2015.32
https://arxiv.org/abs/1603.04892
https://arxiv.org/abs/1603.04892
https://doi.org/10.1137/1.9781611977554.CH22
https://doi.org/10.1137/1.9781611977554.CH22
https://doi.org/10.48550/arXiv.2312.15426
https://doi.org/10.4230/LIPICS.ESA.2020.28
https://doi.org/10.1137/1.9781611977912.7
https://doi.org/10.1137/S009753979732699X

42:18 Hardness Amplification for Dynamic Binary Search Trees

15 Erik D. Demaine, Dion Harmon, John Iacono, Daniel M. Kane, and Mihai Patrascu. The
geometry of binary search trees. In Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 496–
505, 2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496825, doi:10.1137/1.
9781611973068.55.

16 Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Patrascu. Dynamic optimality -
almost. SIAM J. Comput., 37(1):240–251, 2007. doi:10.1137/S0097539705447347.

17 Jonathan Derryberry, Daniel Dominic Sleator, and Chengwen Chris Wang. A lower bound
framework for binary search trees with rotations. Technical report, 2005.

18 Amr Elmasry. On the sequential access theorem and deque conjecture for splay trees. Theor.
Comput. Sci., 314(3):459–466, 2004. doi:10.1016/J.TCS.2004.01.019.

19 Kyle Fox. Upper bounds for maximally greedy binary search trees. In WADS, volume
6844 of Lecture Notes in Computer Science, pages 411–422. Springer, 2011. doi:10.1007/
978-3-642-22300-6_35.

20 Oded Goldreich, Noam Nisan, and Avi Wigderson. On yao’s xor-lemma. In Oded Goldreich, ed-
itor, Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness
and Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi
Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan,
Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, volume 6650 of Lecture Notes
in Computer Science, pages 273–301. Springer, 2011. doi:10.1007/978-3-642-22670-0_23.

21 Navin Goyal and Manoj Gupta. Better analysis of greedy binary search tree on decomposable
sequences. Theor. Comput. Sci., 776:19–42, 2019. doi:10.1016/J.TCS.2018.12.021.

22 John Iacono. In pursuit of the dynamic optimality conjecture. In Space-Efficient Data
Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the Occasion of
His 66th Birthday, pages 236–250, 2013. doi:10.1007/978-3-642-40273-9_16.

23 Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower bounds
via the direct sum in communication complexity. Comput. Complex., 5(3/4):191–204, 1995.
doi:10.1007/BF01206317.

24 Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. Log-rank and lifting for
and-functions. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021, pages 197–208. ACM, 2021. doi:10.1145/3406325.3450999.

25 László Kozma. Binary search trees, rectangles and patterns, 2016.
26 László Kozma and Thatchaphol Saranurak. Smooth heaps and a dual view of self-adjusting

data structures. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 801–814, 2018.
doi:10.1145/3188745.3188864.

27 Victor Lecomte and Omri Weinstein. Settling the relationship between wilber’s bounds for
dynamic optimality. In ESA, volume 173 of LIPIcs, pages 68:1–68:21. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.ESA.2020.68.

28 Troy Lee, Adi Shraibman, and Robert Spalek. A direct product theorem for discrepancy. In
CCC, pages 71–80. IEEE Computer Society, 2008. doi:10.1109/CCC.2008.25.

29 Caleb C. Levy and Robert E. Tarjan. A new path from splay to dynamic optimality. In
Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
1311–1330. SIAM, 2019. doi:10.1137/1.9781611975482.80.

30 Joan Marie Lucas. Canonical forms for competitive binary search tree algorithms. Rutgers
University, Department of Computer Science, Laboratory for Computer Science Research,
1988.

31 J. Ian Munro. On the competitiveness of linear search. In Mike Paterson, editor, Algorithms -
ESA 2000, 8th Annual European Symposium, Saarbrücken, Germany, September 5-8, 2000,
Proceedings, volume 1879 of Lecture Notes in Computer Science, pages 338–345. Springer,
2000. doi:10.1007/3-540-45253-2_31.

http://dl.acm.org/citation.cfm?id=1496770.1496825
https://doi.org/10.1137/1.9781611973068.55
https://doi.org/10.1137/1.9781611973068.55
https://doi.org/10.1137/S0097539705447347
https://doi.org/10.1016/J.TCS.2004.01.019
https://doi.org/10.1007/978-3-642-22300-6_35
https://doi.org/10.1007/978-3-642-22300-6_35
https://doi.org/10.1007/978-3-642-22670-0_23
https://doi.org/10.1016/J.TCS.2018.12.021
https://doi.org/10.1007/978-3-642-40273-9_16
https://doi.org/10.1007/BF01206317
https://doi.org/10.1145/3406325.3450999
https://doi.org/10.1145/3188745.3188864
https://doi.org/10.4230/LIPICS.ESA.2020.68
https://doi.org/10.1109/CCC.2008.25
https://doi.org/10.1137/1.9781611975482.80
https://doi.org/10.1007/3-540-45253-2_31

S. Jiang, V. Lecomte, O. Weinstein, and S. Yingchareonthawornchai 42:19

32 Seth Pettie. Splay trees, davenport-schinzel sequences, and the deque conjecture. In Proceedings
of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1115–1124,
2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347204.

33 Mihai Puatracscu and Mikkel Thorup. Higher lower bounds for near-neighbor and further
rich problems. SIAM J. Comput., 39(2):730–741, 2009. doi:10.1137/070684859.

34 Ran Raz. A counterexample to strong parallel repetition. SIAM J. Comput., 40(3):771–777,
2011. doi:10.1137/090747270.

35 Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Comb., 19(3):403–
435, 1999. doi:10.1007/S004930050062.

36 Yaniv Sadeh and Haim Kaplan. Dynamic binary search trees: Improved lower bounds for the
greedy-future algorithm. In STACS, volume 254 of LIPIcs, pages 53:1–53:21. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.STACS.2023.53.

37 Ronen Shaltiel. Towards proving strong direct product theorems. In Proceedings of the 16th
Annual Conference on Computational Complexity, CCC ’01, page 107, USA, 2001. IEEE
Computer Society.

38 Alexander A. Sherstov. Strong direct product theorems for quantum communication and
query complexity. SIAM J. Comput., 41(5):1122–1165, 2012. doi:10.1137/110842661.

39 Yaroslav Shitov. A counterexample to comon’s conjecture. SIAM J. Appl. Algebra Geom.,
2(3):428–443, 2018. doi:10.1137/17M1131970.

40 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM,
32(3):652–686, July 1985. doi:10.1145/3828.3835.

41 Rajamani Sundar. On the deque conjecture for the splay algorithm. Comb., 12(1):95–124,
1992. doi:10.1007/BF01191208.

42 Chengwen Chris Wang, Jonathan Derryberry, and Daniel Dominic Sleator. O(log log n)-
competitive dynamic binary search trees. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, SODA ’06, pages 374–383, Philadelphia, PA, USA, 2006.
Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?
id=1109557.1109600.

43 R. Wilber. Lower bounds for accessing binary search trees with rotations. SIAM J. Comput.,
18(1):56–67, February 1989. doi:10.1137/0218004.

ISAAC 2024

http://dl.acm.org/citation.cfm?id=1347082.1347204
https://doi.org/10.1137/070684859
https://doi.org/10.1137/090747270
https://doi.org/10.1007/S004930050062
https://doi.org/10.4230/LIPICS.STACS.2023.53
https://doi.org/10.1137/110842661
https://doi.org/10.1137/17M1131970
https://doi.org/10.1145/3828.3835
https://doi.org/10.1007/BF01191208
http://dl.acm.org/citation.cfm?id=1109557.1109600
http://dl.acm.org/citation.cfm?id=1109557.1109600
https://doi.org/10.1137/0218004

Reconfiguration of Labeled Matchings in Triangular
Grid Graphs
Naonori Kakimura #

Department of Mathematics, Keio University, Yokohama, Japan

Yuta Mishima #

The Japan Research Institute, Limited, Tokyo, Japan

Abstract
This paper introduces a new reconfiguration problem of matchings in a triangular grid graph. In
this problem, we are given a nearly perfect matching in which each matching edge is labeled, and
aim to transform it to a target matching by sliding edges one by one. This problem is motivated
to investigate the solvability of a sliding-block puzzle called “Gourds” on a hexagonal grid board,
introduced by Hamersma et al. [ISAAC 2020]. The main contribution of this paper is to prove that,
if a triangular grid graph is factor-critical and has a vertex of degree 6, then any two matchings
can be reconfigured to each other. Moreover, for a triangular grid graph (which may not have a
degree-6 vertex), we present another sufficient condition using the local connectivity. Both of our
results provide broad sufficient conditions for the solvability of the Gourds puzzle on a hexagonal
grid board with holes, where Hamersma et al. left it as an open question.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases combinatorial reconfiguration, matching, factor-critical graphs, sliding-block
puzzles

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.43

Related Version arXiv Version: https://arxiv.org/abs/2409.11723 [19]

Funding Naonori Kakimura: Supported by JSPS KAKENHI Grant Numbers JP22H05001,
JP20H05795, and 23K21646, Japan and JST ERATO Grant Number JPMJER2301, Japan.

Acknowledgements The authors are grateful to Yushi Uno for valuable discussions. We are also
grateful for the anonymous referees of ISAAC 2024 for their helpful comments.

1 Introduction

Combinatorial reconfiguration is a fundamental research subject that studies the solution
space of combinatorial problems. A typical example is solving sliding-block puzzles such as
the 15-puzzle. The 15-puzzle can be viewed as the transformation between the arrangement
of puzzle pieces, and the goal is to transform an initial arrangement of pieces to a given
target arrangement. Combinatorial reconfiguration has applications in a variety of fields
such as mathematical puzzles, operations research, and computational geometry. See the
surveys by Nishimura [23] and van den Heuvel [28].

Hamersma et al. [13] introduced a new sliding-block puzzle on a hexagonal grid, which
they call Gourds. The name “gourd” refers to the shape of the puzzle pieces, which are
essentially 1 × 2 pieces on a board. Like in the 15-puzzle, only one grid cell is empty. The
goal is to obtain a target configuration of pieces on the board by moving pieces one-by-one,
similar to the 15-puzzle. Here we allow a piece to make three different kinds of moves: slide,
turn, and pivot (see [13] for the details). They characterized hexagonal grid boards without
holes such that the Gourds puzzle1 is always solvable, and left it as a main open question to
characterize boards with holes.

1 In this paper, the Gourds puzzle refers to the numbered type in [13] where each piece has numbers.

© Naonori Kakimura and Yuta Mishima;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 43; pp. 43:1–43:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kakimura@math.keio.ac.jp
https://orcid.org/0000-0002-3918-3479
mailto:missymissy1104@icloud.com
https://doi.org/10.4230/LIPIcs.ISAAC.2024.43
https://arxiv.org/abs/2409.11723
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Reconfiguration of Labeled Matchings in Triangular Grid Graphs

Motivated by the study of the Gourds puzzle, we introduce a reconfiguration problem
of matchings in a triangular grid graph. In the problem, we are given a matching that
exposes only one vertex, which is called a nearly perfect matching. Each matching edge,
which corresponds to a puzzle piece, is labeled. We are allowed to slide a matching edge
toward the exposed vertex. The goal is to move matching edges one-by-one to obtain a target
labeled matching. It should be emphasized that each edge in the given matching has to be
moved to the edge with the same label in the target matching. See Section 2 for the formal
definition. We remark that our problem can be defined on a general graph, which may be of
independent interest. The problem setting is different from the matching reconfiguration
problems studied in the literature. See Section 1.1.

In this paper, we investigate the reconfigurability of the above reconfiguration problem
of labeled matchings on a triangular grid graph. In particular, we aim to characterize a
triangular grid graph such that any two labeled matchings can be reconfigured to each other.
We call such a graph reconfigurable.

As mentioned in Section 3, it is not difficult to observe that, if a graph is reconfigurable,
then it is 2-connected and factor-critical. A graph is factor-critical if it has a nearly perfect
matching that exposes any vertex. These two conditions, however, are not sufficient, as there
exists a 2-connected factor-critical graph that is not reconfigurable.

The main contribution of this paper is to prove that, if a 2-connected factor-critical
triangular grid graph has at least one vertex of degree 6, then it is reconfigurable. Our results
can be adapted to the Gourds puzzle by taking the dual of a triangular grid graph, which
implies that the Gourds puzzle can always be solved when at least one hexagonal cell on the
board does not touch the holes or the outer face.

The key idea to prove the main result is to exploit the ear decomposition in matching
theory. A factor-critical graph is known to have a constructive characterization using
ear decomposition with odd paths and cycles. Using the ear structure, we show that, if
an ear decomposition starts from a reconfigurable subgraph, then we can recursively find
reconfiguration steps between any two labeled matchings. However, every ear decomposition
does not necessarily satisfy the above assumption. We then investigate the matching
structure of a triangular grid graph to identify simple reconfigurable subgraphs such that
every triangular grid graph with a vertex of degree 6 admits an ear decomposition starting
from one of them.

In addition, for a triangular grid graph (which may not have a vertex of degree 6), we
present another sufficient condition for the reconfigurability using the local connectivity. A
graph is said to be locally-connected if the neighbor vertices of any vertex induce a connected
graph. We prove that, if a triangular grid graph is locally-connected, but not isomorphic to
the Star of David graph (Figure 1), then it is reconfigurable. Moreover, we show that, for a
graph with 2n + 1 vertices, we can find in polynomial time reconfiguration steps with length
O(n3).

The characterization for the Gourds puzzle by Hamersma et al. [13] implies that a
triangular grid graph is reconfigurable if it is 2-connected, but not isomorphic to the Star of
David graph, and has no holes, where a hole is a face with boundary length at least 6. Our
conditions, which allow to have a hole, are much broader than theirs, as the local connectivity
and the 2-connectivity are equivalent for a graph with no holes.

Due to the space limitation, we omit the proofs of statements with the symbol ⋆ marks,
which may be found in the full version of this paper [19].

N. Kakimura and Y. Mishima 43:3

Figure 1 The Star of David graph. Figure 2 A triangular grid graph with 2 holes.

1.1 Related Work

A factor-critical graph plays an important role in matching theory. It is known that any
non-bipartite graph can be decomposed in terms of maximum matching, called the Gallai-
Edmonds decomposition. It essentially decomposes a given graph into factor-critical graphs,
graphs with perfect matchings, and bipartite graphs. Also, factor-critical graphs are used to
describe facets of the matching polytope of a given graph. See [21, 26] for the details.

Sliding-block puzzles have been investigated in both recreational mathematics and al-
gorithms research. The 15-puzzle was introduced as a prize problem by Sam Loyd in 1878 [27].
In the 15-puzzle, it is characterized by odd/even permutations whether any configuration
can be realized or not [18]. However, it is NP-complete for n × n boards to compute the
smallest number of steps to reach a given configuration [10, 24]. There are many variants of
the 15-puzzle such as Rush Hour [6, 11] and rolling-block puzzles [7]. Many puzzles have
been shown NP-hard or PSPACE-hard (see e.g., [15]).

In the literature of combinatorial reconfiguration, the reconfiguration of matchings has
been studied extensively. Ito et al. [16] initiated to study a reconfiguration problem of
matchings. The aim is to decide whether a given matching can be transformed to a target
matching by adding/removing a matching edge in each step. They showed that the problem
can be solved in polynomial time with the aid of the Gallai-Edmonds decomposition. On
reconfigurating perfect matchings, Ito et al. [17] studied the shortest transformation of perfect
matchings by taking the symmetric difference along an alternating cycle, motivated by the
study of a diameter of the matching polytope (see also [8, 25]). Bonamy et al. [3] restricts
the length of alternating cycles used in the transformations to be 4. We remark that all the
above mentioned problems aim to transform an initial (perfect) matching to a target one in
which their matching edges are not labeled.

By taking the line graph of a given graph, reconfiguration problems of matchings can be
viewed as reconfiguration problems of independents sets. Our problem setting is related to its
variant known as the token sliding problem. The token sliding problem is PSPACE-complete,
even on restricted graph classes such as planar graphs [14]. On the other hand, the problem
can be solved in linear time on trees [9], and it is fixed-parameter tractable on bounded
degree graphs [2]. See also [5] for the survey on the independent set and dominating set
reconfiguration problems. Another related problem is the token swapping problem. In the
problem, we are given tokens on each vertex of a graph, and we want to move every token to
its target position by swapping two adjacent tokens. See e.g., [1, 4, 20, 22] and references
therein.

ISAAC 2024

43:4 Reconfiguration of Labeled Matchings in Triangular Grid Graphs

Figure 3 Slide operations. The colored, thick edges correspond to pieces.

2 Preliminaries

Let G = (V, E) be an undirected graph with 2n + 1 vertices. For a vertex u, we denote by
N(u) the set of vertices adjacent to u. For a vertex subset X, the subgraph induced by X in
G is denoted by G[X]. A path or a cycle is odd if it has an odd number of edges.

A matching is a subset of edges that have no common end vertices. A matching is nearly
perfect if its size is n. A vertex is covered by a matching M if it is the end vertex of some
edge in M , and exposed by M if it is not covered by M . A cycle is M -alternating if edges in
M and E \ M appear alternatively along C, except for one vertex (when the cycle is odd).

Reconfiguration of Labeled Matching in Triangular Grid Graphs

Consider the 2-dimensional triangular lattice of infinite size. A triangular grid graph is a
subgraph induced by a finite number of points in the triangular lattice. See Figure 2 for
example. In this paper, we also assume that a triangular grid graph is always connected. A
hole of a triangular grid graph is a face of the graph whose boundary is a cycle of length at
least 6.

We here formally define our reconfiguration problem. Let G = (V, E) be a triangular grid
graph with 2n + 1 vertices. We denote V = [2n + 1], where, for a positive integer x, we write
[x] = {1, 2, . . . , x}.

A placement is a mapping p : [n] → E such that p(i) and p(j) have no common end
vertices for every distinct i, j. We call each p(i) a piece. Then {p(i) | i ∈ [n]} ⊆ E forms a
nearly perfect matching in G, which is denoted by Mp. Let vp be the unique vertex exposed
by Mp. We also say that a mapping p exposes vp.

We define the following operations on a placement, which we call slide (see Figure 3).
Suppose that there exists an integer j ∈ [n] such that p(j) = (u, v) and (v, vp) ∈ E. Then we
transform p to a placement ps defined as

ps(i) =
{

p(i) (i ̸= j)
(v, vp) (i = j).

The obtained placement ps exposes the vertex u. In this case, we write p⇝ ps.
Let p, q be two distinct placements. If there exists a sequence of placements µ0, µ1, . . . , µℓ

such that (1) µ0 = p, µℓ = q, (2) µt ⇝ µt+1 for every integer t ∈ {0, 1, . . . , ℓ − 1}, then
we say that p is reconfigured to q. A graph is reconfigurable if any two placements can be
reconfigured to each other.

We remark that, in the Gourds puzzle, a piece has a pair of labels (numbers), meaning
that each piece has an orientation. That is, a mapping is defined from [n] to {(u, v), (v, u) |
(u, v) ∈ E}. This requires us to define another operation to change the orientation of pieces.
Specifically, when a piece with the exposed vertex induces a triangle, we are allowed to
change the orientation of the piece. Our problem does not distinguish (u, v) and (v, u), and

N. Kakimura and Y. Mishima 43:5

b

…

b

1 2

3

45

6

7 1 2

3

45

6

7 1 2

3

45

6

7

b

1 2

3

45

6

7

Figure 4 Rotation operations for a placement aligned with an odd cycle when k = 3.

a placement is defined on a mapping from [n] to E. It should be noted, however, that our
results can be adapted to the Gourds puzzle case with orientation. See Sections 3.1 and 4 for
the details.

Rotation along a Cycle

We define a sequence of slide operations, called rotation, which will be used in the subsequent
sections. Let C be an odd cycle. We say that a placement p is aligned with C if C is an odd
Mp-alternating cycle and C has the exposed vertex vp.

Let p be a placement aligned with C. In what follows, we assume for simplicity that
V (C) = [2k + 1] for some integer k ∈ [n], and that the vertices of C are aligned in the
anti-clockwise order along C. We also assume that the first k pieces p(1), p(2), . . . , p(k) of p

are located on the cycle C.
For an odd integer j ∈ [2k + 1], we define a placement pj as, for i ∈ [k],

pj(i) =
{

(2i − 1, 2i) (2i < j)
(2i, 2i + 1) (j < 2i),

and pj(i) = p(i) for i ≥ k + 1. Thus pj exposes the vertex j. Moreover, for two integers
h, j ∈ [2k + 1] such that h ≡ j (mod 2), define pj,h as, for i ∈ [k],

pj,h(i) =
{

(h + 2i − 2, h + 2i − 1) (h + 2i − 1 < j)
(h + 2i − 1, h + 2i) (j < h + 2i − 1),

where these vertex labels are defined on Z2k+1 (i.e., modulo 2k + 1), and pj,h(i) = p(i) for
i ≥ k + 1.

Figure 4 is an example when k = 3. The left-most figure depicts a placement p3,1 = p3
where (p3,1(1), p3,1(2), p3,1(3)) = ((1, 2), (4, 5), (6, 7)). By applying slide to p3,1 once, we
obtain p1,1 = p1, that is, (p1,1(1), p1,1(2), p1,1(3)) = ((2, 3), (4, 5), (6, 7)). The right-most
figure depicts a placement p6,4, which is (p6,4(1), p6,4(2), p6,4(3)) = ((4, 5), (7, 1), (2, 3)).

The following observation asserts that pj,h’s can be reconfigured to each other in O(k2)
slide operations along C. Such a sequence of slide operations is called rotation along C, or
we say that we rotate p along C.

▶ Observation 2.1. For any two odd integers j, j′ ∈ [2k + 1], we can reconfigure pj to
pj′ using at most k slide operations. Moreover, for any four integers j, j′ ∈ [2k + 1] and
h, h′ ∈ [2k + 1] such that j ≡ h and j′ ≡ h′ (mod 2), we can reconfigure pj,h to pj′,h′ using
at most k2 + k slide operations.

Proof. Observe that, applying slide to pj along C, the exposed vertex j is moved to j − 2 or
j + 2 (mod 2k + 1). This means that pj ⇝ pj−2 and pj ⇝ pj+2 hold. Hence, by repeating
slide operations at most k times, pj can be reconfigured to pj′ . We next show the second

ISAAC 2024

43:6 Reconfiguration of Labeled Matchings in Triangular Grid Graphs

Figure 5 A factor-critical graph that is not
reconfigurable. We cannot change the ordering
of the pieces by slide.

Figure 6 A factor-critical graph that is re-
configurable.

statement. Similarly to the first statement, we can reconfigure pj,h to ph,h in at most k slide
operations. Applying slide to ph,h along C, we obtain a placement ph−2,h+1. Repeating this
procedure at most k times, we can reconfigure pj,h to ph′−3,h′ . Since we can reconfigure
ph′−3,h′ to pj′,h′ in at most k slide operations, the total number of slide operations is at most
k2 + k. ◀

3 Reconfiguration on Factor-Critical Graphs

In this section, we discuss the reconfigurability of a factor-critical graph. Recall that a graph
is factor-critical if, for any vertex v, G has a nearly perfect matching that does not cover v.

As mentioned in Introduction, being a factor-critical graph is a necessary condition for
reconfigurability.

▶ Observation 3.1. If a triangular grid graph G is reconfigurable, then it is factor-critical.

Proof. If G is not factor-critical, then G has some vertex u such that every nearly perfect
matching covers u. Then we cannot move the piece covering u in an initial placement so that
u becomes exposed. Hence there exist two placements such that one cannot be reconfigured
to the other. Thus the observation holds. ◀

Moreover, as observed in Hamersma et al. [13], the 2-connectivity is necessary for a graph
to be reconfigurable. We remark that, even if a graph is 2-connected and factor-critical, it
may not be reconfigurable. See Figure 5.

The main theorem of this section is the following. We show that a graph is reconfigurable
if it has a vertex of degree 6, which corresponds to a vertex not on the boundary cycles of
the holes or the outer face.

▶ Theorem 3.2. Let G = (V, E) be a 2-connected factor-critical triangular grid graph. If G

has a vertex of degree 6, then G is reconfigurable.

We remark that our condition is not necessary, as there exists a 2-connected factor-critical
graph such that it does not have a vertex of degree 6, but it is reconfigurable. See Figure 6 (see
also Lemma 3.14 and Section 5).

3.1 Proof Overview
In this section, we present the proof overview of Theorem 3.2. The proof makes use of the
ear decomposition of a factor-critical graph to design a reconfiguration sequence.

An ear decomposition of a graph G is a sequence of subgraphs G1, G2, . . . , Gk = G starting
from a subgraph G1 such that Gi+1 is obtained from Gi by adding an ear Pi for each i ≥ 1,
where an ear P of a subgraph G′ is a path of G with end vertices in G′ such that P is

N. Kakimura and Y. Mishima 43:7

Figure 7 An ear decomposition and a matching aligned with the ear decomposition.

internally disjoint from G′. We denote by G′ + P the subgraph obtained from G′ by adding
the ear P . Thus, in the ear decomposition, it holds that Gi+1 = Gi + Pi for each i ∈ [k − 1].
See Figure 7 for an example.

An ear decomposition is proper if the end vertices of each ear are distinct, and odd if each
ear is of odd length. It is known that a 2-connected factor-critical graph is characterized by
odd and proper ear decomposition.

▶ Proposition 3.3 (Theorem 5.5.2 in Lovász–Plummer [21]). A graph G is 2-connected and
factor-critical if and only if G has an odd and proper ear decomposition starting from an odd
cycle.

Let p be a placement of G. Recall that Mp denotes a nearly perfect matching {p(i) ∈ E |
i ∈ [n]}, and vp is the vertex exposed by Mp. We say that a placement p is aligned with an
ear decomposition G1, . . . , Gk if it satisfies the following two conditions (Figure 7).
(a) G1 is an odd Mp-alternating cycle with the exposed vertex vp.
(b) For each i ∈ [k − 1], the ear Pi is Mp-alternating and its end vertices are not covered by

Mp ∩ E(Pi).

We show that any placement p can be reconfigured so that the obtained placement p′ is
aligned with a given ear decomposition G1, . . . , Gk. See Section 3.2 for the proof.

▶ Lemma 3.4. Let G be a 2-connected factor-critical triangular grid graph with 2n+1 vertices.
Let G1, . . . , Gk be an odd and proper ear decomposition of G. Then we can reconfigure any
placement p to a placement aligned with G1, . . . , Gk in O(kn) slide operations.

Let q be a target placement of G. Applying Lemma 3.4 to q as well, we can reconfigure
q so that the obtained placement q′ is aligned with G1, . . . , Gk. By taking the inverse of
the reconfiguration steps, we see that q′ can be reconfigured to q in O(kn) slide operations.
Therefore, in order to reconfigure p to q, it suffices to reconfigure p′ to q′.

We now present how to find a reconfiguration sequence between two placements aligned
with G1, . . . , Gk. Since Gi is factor-critical for any i ∈ [k], the ear structure suggests to design
a reconfiguration sequence recursively. In fact, we will show in Lemma 3.9 (Section 3.3) that,
if Gj is a reconfigurable graph with at least 5 vertices for some j < k, then so is Gk = G.
Note that the lemma holds even if a graph is not a triangular grid graph. However, Gj ’s
may not necessarily be reconfigurable, as there exists a factor-critical graph which is not
reconfigurable. To overcome the difficulty, we introduce a special kind of ear decomposition
starting from simple reconfigurable subgraphs.

We say that an odd and proper ear decomposition G1, G2, . . . , Gk is admissible if it
satisfies either

(i) G1 is a cycle of length 5 (Figure 8), or
(ii) P1 is of length 3 and has the end vertices u, v which are adjacent in G1 (Figure 9).

ISAAC 2024

43:8 Reconfiguration of Labeled Matchings in Triangular Grid Graphs

Figure 8 A pentagon. Figure 9 An odd cycle with a diamond.

Consider the case when (i) is satisfied. Since the ordering of ears with length 1 may be
changed in the ear decomposition, we may assume that the first 2 ears P1 and P2 are the
inner edges of G1. Then G3 = G1 + P1 + P2 induces a pentagon in G, where a pentagon is a
subgraph induced by three adjacent triangles. It is not difficult to see that the pentagon is
reconfigurable in a constant number of slide operations. On the other hand, consider the
case when (ii) is satisfied. Similarly to the case (i), we may assume that the second ear P2 is
the inner edge of P1. The subgraph G3 = G1 + P1 + P2 induces an odd cycle attached to a
diamond, where a diamond is a subgraph induced by two adjacent triangles. The subgraph
is shown to be reconfigurable in Lemma 3.14.

Therefore, G3 in an admissible ear decomposition is reconfigurable. Hence, if there exists
an admissible ear decomposition, we can find a reconfiguration sequence as below. See
Section 3.3 for the details.

▶ Lemma 3.5. Let G1, . . . , Gk = G be an admissible ear decomposition of G. Then any two
placements aligned with the ear decomposition can be reconfigured to each other.

We remark that the length of a reconfiguration sequence obtained in the above lemma is
at most n2n for a graph with 2n + 1 vertices, which is not bounded by a polynomial in n. It
may be interesting to find the optimal bound on the length of reconfiguration sequences. It
is known in [13] that the length is Ω(n2).

Finally, we show that there always exists an admissible ear decomposition in a triangular
grid graph with a vertex of degree 6.

▶ Theorem 3.6 (⋆). Let G be a 2-connected factor-critical triangular grid graph such that it
has a vertex of degree 6. Then G has an admissible ear decomposition.

Theorem 3.6 is a graph-theoretical result independent of designing a reconfiguration
sequence. Theorem 3.6 can be proved by investigating the matching structure of factor-critical
triangular grid graphs.

In summary, a reconfiguration sequence from an initial placement p to a target placement
q can be realized as below, which completes the proof of Theorem 3.2.

1. Reconfigure p to a placement aligned with an admissible ear decomposition G1, . . . , Gk,
denoted by p′, by Lemma 3.4.

2. Using Lemma 3.5, reconfigure p′ to another placement q′ aligned with G1, . . . , Gk, where
q′ is a placement obtained from q by Lemma 3.4.

3. Reconfigure q′ to the target placement q.

We remark that the proof of Theorem 3.2 above can be adapted to the Gourds puzzle in
which a piece has an orientation. This is because the structures (i) and (ii) in an admissible
ear decomposition can also be used to change the orientation of pieces in an arbitrary way.
Thus we have the following corollary.

N. Kakimura and Y. Mishima 43:9

▶ Corollary 3.7. Let B be a hexagonal grid such that the dual triangular grid graph is a
2-connected factor-critical graph with a vertex of degree 6. Then any two configurations of
the same set of pieces on B can be reconfigured to each other.

3.2 Reconfiguration to a Placement Aligned with Ear Decomposition
In this subsection, we will show Lemma 3.4, that is, we will show that we can reconfigure an
initial placement p to a placement aligned with a given odd and proper ear decomposition
G1, . . . , Gk.

We first prove that we can reconfigure so that any vertex is exposed.

▶ Lemma 3.8. Let G be a 2-connected factor-critical triangular grid graph with 2n + 1
vertices. For any vertex v, we can reconfigure a placement p so that v is the exposed vertex,
in O(n) slide operations.

Proof. Since G is factor-critical, G has a nearly perfect matching Mv that exposes v. The
symmetric difference Mp∆Mv contains an Mp-alternating path P from vp to v, which is of
even length. We reconfigure p by sliding the pieces on the path P one-by-one. The resulting
placement exposes v. The number of slide operations is |P |/2, which is O(n). ◀

To obtain a placement aligned with the ear decomposition, we first reconfigure so that an
end vertex of the last ear Pk−1 is exposed using Lemma 3.8. Then, since each inner vertex
of the last ear Pk−1 is of degree 2 in G, the obtained placement is aligned with Pk−1. By
applying this procedure repeatedly for each ear, we can obtain a placement aligned with
G1, . . . , Gk. This implies Lemma 3.4 as below.

Proof of Lemma 3.4. Let vi be an end vertex of ear Pi for i ∈ [k −1]. The basic observation
is that, each inner vertex of the last ear Pk−1 is of degree 2, and hence, if a nearly perfect
matching M exposes vk−1, the last ear Pk−1 is an M -alternating path such that the end
vertices are not covered by edges of M ∩ E(Pk−1).

We perform the following procedure for each i = k − 1, k − 2, . . . , 1. Note that Gi is
factor-critical for any i ∈ [k].
1. Applying Lemma 3.8 to Gi+1, we reconfigure the current placement of Gi+1 so that vi is

exposed. Then the resulting placement is aligned with Pi by the above observation.
In the end of the above procedure, the obtained placement of the original graph G is
aligned with Pk−1, . . . , P1. Moreover, the exposed vertex is on G1. Thus this is a desired
placement. The necessary number of slide operations is O(kn), since we repeat the procedure
of Lemma 3.8 k − 1 times. ◀

3.3 Reconfiguration using Ear Decomposition
We next present how to reconfigure a placement aligned with an ear decomposition. Using the
ear structure, we can find a reconfiguration sequence if the subgraph Gk−1 is reconfigurable.

▶ Lemma 3.9. Let G1, . . . , Gk be an odd and proper ear decomposition of a graph G with
2n + 1 vertices. Suppose that Gk−1 has at least 5 vertices, and that, in Gk−1, any placement
aligned with the ear decomposition G1, . . . , Gk−1 can be reconfigured to another placement
aligned with G1, . . . , Gk−1, using t slide operations. Then there exists a reconfiguration
sequence between any two placements along with G1, . . . , Gk in G, which requires O(n2(t+n))
slide operations.

ISAAC 2024

43:10 Reconfiguration of Labeled Matchings in Triangular Grid Graphs

Figure 10 Proof of Claim 3.11: An example when j = 2.

Proof. For simplicity, we denote Gk−1 = G′ and Pk−1 = Q in the proof. Let u, v be the end
vertices of Q. Let p be an initial placement of G and q be a target placement of G, both
of which are aligned with the ear decomposition. It follows from Lemma 3.8 that we can
reconfigure p (and q, resp.) so that v is exposed. Hence we may assume that both p and q

expose v. Moreover, by changing the indices of the pieces if necessary, we may assume that
the pieces q(1), . . . , g(ℓ) are placed on the ear Q in the order from v to u.

▷ Claim 3.10. There exists an Mp-alternating path P of even length from v to u in G′.

Proof. Since G′ is factor-critical, there exists a nearly perfect matching Mu that exposes u.
Taking Mp△Mu, we see that there exists an even Mp-alternating path P from v to u in G′.

◁

Let C be the cycle consisting of P and Q. Then C is an odd M -alternating cycle in G.
We will show that we can reconfigure p so that the first ℓ pieces are on the ear Q, using the
cycle C. We consider the following two cases, depending on whether C is a Hamilton cycle
or not.

▷ Claim 3.11. Suppose that C is not a Hamilton cycle of G. Then we can reconfigure p

to a placement p′ so that p′(1), . . . , p′(ℓ) are placed on Q in this order from v to u, using
O(ℓ(t + n2)) slide operations.

Proof. In this case, the graph G′ has an edge e ̸∈ E(P) such that e ∈ Mp. Let e1 be the
edge of Mp covering u, and e2 be the edge of of Mp covering the vertex adjacent to u on Q.
See Figure 10.

We may assume that p(1) is on the cycle C, as otherwise p(1) is contained in G′, and
hence we can reconfigure the current placement in G′ so that p(1) is on P , keeping v exposed,
using t slide operations by the assumption.

We reconfigure p by the following 4 steps for j = 2, . . . , ℓ. Initially, we set p̃ = p.
1. We move the piece p̃(j) so that p̃(j) is on P as follows.

a. If p̃(j) is on Q, we rotate the current placement p̃ along C so that p̃(j) is located on P .
b. If p̃(j) is contained in G′ but not on P , then we reconfigure the current placement p̃

on G′ so that p̃(j) is located on P , keeping that p̃(1), . . . , p̃(j − 1) are on C.

N. Kakimura and Y. Mishima 43:11

2. We reconfigure the current placement p̃ on G′ to swap p̃(j) and the piece on e. Thus
p̃(j) = e.

3. We rotate the current placement p̃ along C so that p̃(j − 1) is e2.
4. We reconfigure the current placement p̃ on G′ to swap p̃(j) and the piece on e1. Thus

p̃(j) has been changed to e1.
In the end of the j-th iteration, p̃(1), . . . , p̃(j) are located on C in this order from v to u.

Therefore, in the end of the above procedure, the pieces p̃(1), . . . , p̃(ℓ) are located on C in
this order from v to u. Thus we can rotate p̃ along C so that they are on Q.

In the above procedure, for each j, we reconfigure the placement restricted on G′ in a
constant number of times, and we rotate the placement along C at most twice. Therefore,
the total number of slide operations is O(ℓ(t + n2)) by Observation 2.1. ◁

▷ Claim 3.12. Suppose that C is a Hamilton cycle of G. Then we can reconfigure p to
a placement p′ so that p′(1), . . . , p′(ℓ) are placed on Q in this order from v to u, using
O(ℓn(t + n)) slide operations.

Proof. Since G′ has at least 5 vertices, P has at least 2 edges of Mp. Let e1, e2 be two edges
in Mp ∩ E(P) such that e1, e2 appear consecutively along P . We can swap the 2 pieces on
e1 and e2 by reconfiguring on G′, using t slide operations. By using the strategy similar to
the bubble sort algorithm, we can obtain a placement p′ such that p′(1), . . . , p′(ℓ) are on C

in this order from v to u. This requires O(ℓn) swaps. Since each swap takes O(t + n) slide
operations, it takes O(ℓn(t + n)) slide operations in total. ◁

In each case, we can reconfigure p to a placement p′ so that the pieces p′(1), . . . , p′(ℓ)
are located on Q in this order from v to u. Since we can reconfigure the placement on
G′ to any placement, we can reconfigure p′ to q. The total number of slide operations is
O(ℓn(t + n)) = O(n2(t + n)). ◀

By applying Lemma 3.9 recursively, we see that, if Gj is a reconfigurable subgraph with
at least 5 vertices for some j < k, then Gk = G is reconfigurable. In particular, if a given ear
decomposition is admissible, then G is shown to be reconfigurable.

Below we upper-bound the number of operations to reconfigure two placements aligned
with an admissible ear decomposition. We will show each case of the definition of an
admissible ear decomposition separately. We assume that a graph has 2n + 1 vertices for
n ≥ 2.

▶ Lemma 3.13 (⋆). Let G1, . . . , Gk be an admissible ear decomposition such that G1 is a
cycle of length 5 (Figure 8). Then we can reconfigure an arbitrary placement p aligned with
G1, . . . , Gk to another placement aligned with G1, . . . , Gk in at most n2n slide operations.

We next discuss the second case of an admissible ear decomposition. The following lemma
says that the base case is reconfigurable.

Let G̃ = (V, E) be a triangular grid graph with 2n + 1 vertices for n ≥ 3 as in Figure 11.
More specifically, V = [2n + 1], and it consists of an odd cycle C of length 2n − 1 with vertex
set [2n − 1], attached to a diamond D with vertex set {2n − 2, 2n − 1, 2n, 2n + 1}.

▶ Lemma 3.14. The graph G̃ defined above with 2n + 1 vertices (n ≥ 3) is reconfigurable in
at most n3 + n2 operations.

Proof. Let p and q be an initial and target placements of G̃, respectively. We may assume
that the target pieces q(1), . . . , q(n − 1) are located in the anti-clockwise order along C, and
that D has pieces q(n − 1) and q(n). Let C ′ be the Hamilton cycle of length 2n + 1 in G̃.

ISAAC 2024

43:12 Reconfiguration of Labeled Matchings in Triangular Grid Graphs

1 2

3

Figure 11 A factor-critical graph that is reconfigurable.

We present a reconfiguration sequence as follows: Initially, we set p̃ = p. For j = 1, 2, . . . , n,
we do the following 2 steps.
1. We rotate the current placement p̃ along C ′ so that p̃(j) is equal to the edge (2n, 2n + 1).
2. We rotate the current placement p̃ along C so that p̃(j − 1) is equal to the edge (2n − 1, 1).

Then p̃(1), . . . , p̃(j) are located on C ′ in the anti-clockwise order.

In the end of the procedure, p̃(1), . . . , p̃(n) are located on C ′ in the anti-clockwise order,
which is the desired placement q. In each iteration, we rotate the current placement along C

or C ′. By choosing the shorter one between the clockwise rotation and the anti-clockwise
rotation, it requires at most n2 + n slide operations by Observation 2.1. Hence the total
number of slide operations is at most n3 + n2. ◀

We next show the case when an admissible ear decomposition satisfies the second case.
This, together with Lemma 3.13, proves Lemma 3.5.

▶ Lemma 3.15 (⋆). Let G1, . . . , Gk be an admissible ear decomposition such that P1 is of
length 3 and has the end vertices u, v which are adjacent in G1 (Figures 9 and 11). Then we
can reconfigure an arbitrary placement p aligned with G1, . . . , Gk to another placement in at
most n2n slide operations.

4 Reconfiguration on Locally-Connected Graphs

In this section, we consider a triangular grid graph which is locally-connected. A vertex u

in a graph G is said to be locally-connected if the subgraph G[N(u)] is connected. A graph
G is called locally-connected if every vertex is locally-connected. It is observed that, if G is
locally-connected, then it is 2-connected, since, for a cut vertex u, the subgraph G[N(u)] is
disconnected.

The following theorem says that a locally-connected triangular grid graph, except for
the Star of David graph (Figure 1), is Hamiltonian. We note that, since their proof is
constructive, a Hamilton cycle can be found in polynomial time.

▶ Theorem 4.1 (Gordon, Orlovich, and Werner [12]). Let G be a triangular grid graph. If G

is locally-connected, but not isomorphic to the Star of David graph, then it has a Hamilton
cycle.

It follows from the above theorem that a locally-connected triangular grid graph, except
for the Star of David graph, is factor-critical, as it has an odd and proper ear decomposition
starting from a Hamilton cycle such that all the ears are single edges. On the other hand, the
Star of David graph is not factor-critical, and hence it is not reconfigurable (see also [13]).

The main theorem of this section is the following.

N. Kakimura and Y. Mishima 43:13

𝑐𝑏

𝑑𝑎
𝐻

𝑐𝑏

𝑑𝑎
𝐻

Figure 12 Diamonds and Hamilton cycles satisfying the condition in Lemma 4.5.

▶ Theorem 4.2. Let G = (V, E) be a triangular grid graph with 2n + 1 vertices. If G is
locally-connected, but not isomorphic to the Star of David graph, then G is reconfigurable.
Moreover, a reconfiguration sequence using O(n3) slide operations can be found in polynomial
time.

The proof for Theorem 4.2 exploits a Hamilton cycle in G to design a reconfiguration
sequence. We note that the proof for 2-connected graphs with no holes by Hamersma et
al. [13] also uses a Hamilton cycle. Our proof refines their proof so that we can deal with
holes.

Suppose that we are given two placements p and q. The proposed algorithm to reconfigure
p to q consists of the following three phases.
1. Reconfigure p to a placement aligned with a Hamilton cycle H, denoted by p′.
2. Reconfigure p′ to another placement q′ aligned with H.
3. Reconfigure q′ to the target placement q.

In Phase 1, we first reconfigure the initial placement p to a placement aligned with the
Hamilton cycle H, which is denoted by p′. Applying the same procedure to the target
placement q, we obtain a placement aligned with H, denoted by q′. We then reconfigure p′

to q′ in Phase 2. In Phase 3, the placement q′ can be reconfigured to the target placement q

by taking the inverse of Phase 1 operations for q.
It was shown in Hamersma et al. [13] that we can reconfigure a placement to a placement

aligned with a Hamilton cycle. We recall that a locally-connected graph is 2-connected.

▶ Theorem 4.3 (Hamersma et al. [13]). Let G be a 2-connected triangular grid graph with
2n + 1 vertices. Then we can reconfigure any placement to a placement aligned with a
Hamilton cycle H, using O(n2) slide operations.

Therefore, Phases 1 and 3 can be implemented in O(n2) slide operations. Thus it suffices
to implement Phase 2 to reconfigure any placement aligned with H to another placement
aligned with H. This step is realized by the following theorem.

▶ Theorem 4.4. Let G be a triangular grid graph with 2n + 1 vertices, which is locally-
connected, but not isomorphic to the Star of David graph. Let H be a Hamilton cycle. For a
pair of placements p, q aligned with H, we can reconfigure p to q in O(n3) slide operations.

The proof of Theorem 4.4 adopts a similar strategy to that of Theorem 3.2, where we
employs a Hamilton cycle instead of an ear decomposition. We identify a small subgraph
that can be used to reconfigure placements aligned with H.

▶ Lemma 4.5 (⋆). Let G be a triangular grid graph with 2n + 1 vertices. Let H be a
Hamilton cycle of G. Suppose that G has a diamond, whose vertices are a, b, c, d aligned in
the anti-clockwise order (Figure 12), such that either

(i) H contains the edges (a, b) and (c, d), but does not contain (a, c), or
(ii) H contains the edges (a, b) and (b, c).

Then we can reconfigure any placement aligned with H to another placement aligned with H

in O(n3) slide operations.

ISAAC 2024

43:14 Reconfiguration of Labeled Matchings in Triangular Grid Graphs

Figure 13 An odd cycle with one chord.

We then show that such a diamond with a Hamilton cycle always exists if G is a locally-
connected triangular grid graph, which is not isomorphic to the Star of David graph. This
shows Theorem 4.4.

▶ Lemma 4.6 (⋆). Let G be a triangular grid graph with 2n + 1 vertices. If G is a locally-
connected triangular grid graph, which is not isomorphic to the Star of David graph, then there
exist a Hamilton cycle H and a diamond, whose vertices are denoted by a, b, c, d (Figure 12),
that satisfy either (i) or (ii) in Lemma 4.5.

This section is concluded with stating our results on the Gourds puzzle.

▶ Corollary 4.7. Let B be a hexagonal grid such that the dual graph is locally-connected, but
not isomorphic to the Star of David graph. Then any two configurations of the same set of n

pieces on B can be reconfigured to each other, using O(n3) moves.

5 Concluding Remarks

In this paper, we introduced a new reconfiguration problem of labeled matchings in a
triangular grid graph. We provided sufficient conditions for a graph to be reconfigurable
using a factor-critical graphs and a locally-connected graphs. It remains open to characterize
a reconfigurable triangular grid graph, when it is a factor-critical graph with no vertex
of degree 6, but not locally-connected. Let us here discuss the difficulty to obtain the
characterization. For example, consider a graph G consisting of an odd cycle C of length
2n + 1 with one chord (u, v) (Figure 13). Let C ′ be the odd cycle of G with the edge (u, v).
The length of C ′ is denoted by 2m + 1. Then we can observe that the reconfigurability of
G depends on m and n. Specifically, G is reconfigurable if and only if n − 1 and m − 1
are mutually prime. Indeed, since we can only rotate a placement along C ′ and C, which
correspond to cyclic permutations on [m] and [n], respectively, any permutation can be
realized if and only if n − 1 and m − 1 are mutually prime. This observation would imply
that it requires algebraic conditions to characterize a reconfigurable graph, like the 15-puzzle.

References
1 Oswin Aichholzer, Erik D. Demaine, Matias Korman, Anna Lubiw, Jayson Lynch, Zuzana

Masárová, Mikhail Rudoy, Virginia Vassilevska Williams, and Nicole Wein. Hardness of
token swapping on trees. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz
Herman, editors, 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9,
2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 3:1–3:15. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ESA.2022.3.

https://doi.org/10.4230/LIPICS.ESA.2022.3

N. Kakimura and Y. Mishima 43:15

2 Valentin Bartier, Nicolas Bousquet, and Amer E. Mouawad. Galactic token sliding. J. Comput.
Syst. Sci., 136:220–248, 2023. doi:10.1016/J.JCSS.2023.03.008.

3 Marthe Bonamy, Nicolas Bousquet, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Arnaud
Mary, Moritz Mühlenthaler, and Kunihiro Wasa. The perfect matching reconfiguration problem.
In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26-
30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 80:1–80:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.MFCS.2019.80.

4 Édouard Bonnet, Tillmann Miltzow, and Pawel Rzazewski. Complexity of token swapping
and its variants. Algorithmica, 80(9):2656–2682, 2018. doi:10.1007/S00453-017-0387-0.

5 Nicolas Bousquet, Amer E. Mouawad, Naomi Nishimura, and Sebastian Siebertz. A survey
on the parameterized complexity of the independent set and (connected) dominating set
reconfiguration problems. CoRR, abs/2204.10526, 2022. doi:10.48550/arXiv.2204.10526.

6 Josh Brunner, Lily Chung, Erik D. Demaine, Dylan H. Hendrickson, Adam Hesterberg, Adam
Suhl, and Avi Zeff. 1 X 1 rush hour with fixed blocks is pspace-complete. In Martin Farach-
Colton, Giuseppe Prencipe, and Ryuhei Uehara, editors, 10th International Conference on
Fun with Algorithms, FUN 2021, May 30 to June 1, 2021, Favignana Island, Sicily, Italy,
volume 157 of LIPIcs, pages 7:1–7:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPICS.FUN.2021.7.

7 Kevin Buchin and Maike Buchin. Rolling block mazes are pspace-complete. J. Inf. Process.,
20(3):719–722, 2012. doi:10.2197/IPSJJIP.20.719.

8 Jean Cardinal and Raphael Steiner. Inapproximability of shortest paths on perfect matching
polytopes. In Alberto Del Pia and Volker Kaibel, editors, Integer Programming and Combin-
atorial Optimization - 24th International Conference, IPCO 2023, Madison, WI, USA, June
21-23, 2023, Proceedings, volume 13904 of Lecture Notes in Computer Science, pages 72–86.
Springer, 2023. doi:10.1007/978-3-031-32726-1_6.

9 Erik D. Demaine, Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro Ito, Hirotaka
Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada. Linear-time algorithm for sliding
tokens on trees. Theor. Comput. Sci., 600:132–142, 2015. doi:10.1016/J.TCS.2015.07.037.

10 Erik D. Demaine and Mikhail Rudoy. A simple proof that the (n2 − 1)-puzzle is hard. Theor.
Comput. Sci., 732:80–84, 2018. doi:10.1016/J.TCS.2018.04.031.

11 Gary William Flake and Eric B. Baum. Rush hour is pspace-complete, or "why you should
generously tip parking lot attendants". Theor. Comput. Sci., 270(1-2):895–911, 2002. doi:
10.1016/S0304-3975(01)00173-6.

12 Valery S. Gordon, Yury L. Orlovich, and Frank Werner. Hamiltonian properties of triangular
grid graphs. Discret. Math., 308(24):6166–6188, 2008. doi:10.1016/J.DISC.2007.11.040.

13 Joep Hamersma, Marc J. van Kreveld, Yushi Uno, and Tom C. van der Zanden. Gourds: A
sliding-block puzzle with turning. In Yixin Cao, Siu-Wing Cheng, and Minming Li, editors,
31st International Symposium on Algorithms and Computation, ISAAC 2020, December 14-18,
2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs, pages 33:1–33:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.ISAAC.2020.33.

14 Robert A. Hearn and Erik D. Demaine. Pspace-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation. Theor.
Comput. Sci., 343(1-2):72–96, 2005. doi:10.1016/J.TCS.2005.05.008.

15 Robert A. Hearn and Erik D. Demaine. Games, puzzles and computation. A K Peters, 2009.
16 Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha

Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems. Theor.
Comput. Sci., 412(12-14):1054–1065, 2011. doi:10.1016/J.TCS.2010.12.005.

17 Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, and Yoshio Okamoto.
Shortest reconfiguration of perfect matchings via alternating cycles. SIAM J. Discret. Math.,
36(2):1102–1123, 2022. doi:10.1137/20M1364370.

ISAAC 2024

https://doi.org/10.1016/J.JCSS.2023.03.008
https://doi.org/10.4230/LIPICS.MFCS.2019.80
https://doi.org/10.1007/S00453-017-0387-0
https://doi.org/10.48550/arXiv.2204.10526
https://doi.org/10.4230/LIPICS.FUN.2021.7
https://doi.org/10.2197/IPSJJIP.20.719
https://doi.org/10.1007/978-3-031-32726-1_6
https://doi.org/10.1016/J.TCS.2015.07.037
https://doi.org/10.1016/J.TCS.2018.04.031
https://doi.org/10.1016/S0304-3975(01)00173-6
https://doi.org/10.1016/S0304-3975(01)00173-6
https://doi.org/10.1016/J.DISC.2007.11.040
https://doi.org/10.4230/LIPICS.ISAAC.2020.33
https://doi.org/10.1016/J.TCS.2005.05.008
https://doi.org/10.1016/J.TCS.2010.12.005
https://doi.org/10.1137/20M1364370

43:16 Reconfiguration of Labeled Matchings in Triangular Grid Graphs

18 Wm. Woolsey Johnson and William E. Story. Notes on the “15” puzzle. American Journal of
Mathematics, 2(4):397–404, 1879. URL: http://www.jstor.org/stable/2369492.

19 Naonori Kakimura and Yuta Mishima. Reconfiguration of labeled matchings in triangular grid
graphs, 2024. arXiv:2409.11723.

20 Dohan Kim. Sorting on graphs by adjacent swaps using permutation groups. Comput. Sci.
Rev., 22:89–105, 2016. doi:10.1016/J.COSREV.2016.09.003.

21 L. Lovász and M.D. Plummer. Matching Theory. AMS Chelsea Publishing Series. AMS
Chelsea Pub., 2009.

22 Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Günter Rote, Antonis Thomas, and
Takeaki Uno. Approximation and hardness of token swapping. In Piotr Sankowski and
Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA 2016,
August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 66:1–66:15. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPICS.ESA.2016.66.

23 Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. doi:10.3390/
a11040052.

24 Daniel Ratner and Manfred K. Warmuth. Finding a shortest solution for the N × N extension of
the 15-puzzle is intractable. In Tom Kehler, editor, Proceedings of the 5th National Conference
on Artificial Intelligence. Philadelphia, PA, USA, August 11-15, 1986. Volume 1: Science,
pages 168–172. Morgan Kaufmann, 1986. URL: http://www.aaai.org/Library/AAAI/1986/
aaai86-027.php.

25 Laura Sanità. The diameter of the fractional matching polytope and its hardness implications.
In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, pages 910–921, 2018. doi:10.1109/FOCS.2018.00090.

26 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin,
2003.

27 J. Slocum and D. Sonneveld. The 15 Puzzle Book: How It Drove the World Crazy. Slocum
Puzzle Foundation, 2006.

28 Jan van den Heuvel. The complexity of change. In Simon R. Blackburn, Stefanie Gerke, and
Mark Wildon, editors, Surveys in Combinatorics 2013, volume 409 of London Mathematical
Society Lecture Note Series, pages 127–160. Cambridge University Press, 2013. doi:10.1017/
CBO9781139506748.005.

http://www.jstor.org/stable/2369492
https://arxiv.org/abs/2409.11723
https://doi.org/10.1016/J.COSREV.2016.09.003
https://doi.org/10.4230/LIPICS.ESA.2016.66
https://doi.org/10.3390/a11040052
https://doi.org/10.3390/a11040052
http://www.aaai.org/Library/AAAI/1986/aaai86-027.php
http://www.aaai.org/Library/AAAI/1986/aaai86-027.php
https://doi.org/10.1109/FOCS.2018.00090
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.1017/CBO9781139506748.005

Composition Orderings for Linear Functions and
Matrix Multiplication Orderings
Susumu Kubo #

General Education Center, Tottori University of Environmental Studies, Japan

Kazuhisa Makino #

Research Institute for Mathematical Sciences, Kyoto University, Japan

Souta Sakamoto
Acompany Co., Ltd., Nagoya, Japan

Abstract
We first consider composition orderings for linear functions of one variable. Given n linear functions
f1, . . . , fn : R → R and a constant c ∈ R, the objective is to find a permutation σ : [n] → [n]
that minimizes/maximizes fσ(n) ◦ · · · ◦ fσ(1)(c), where [n] = {1, . . . , n}. It was first studied in the
area of time-dependent scheduling, and known to be solvable in O(n log n) time if all functions
are nondecreasing. In this paper, we present a complete characterization of optimal composition
orderings for this case, by regarding linear functions as two-dimensional vectors. We also show the
equivalence between local and global optimality in optimal composition orderings. Furthermore, by
using the characterization above, we provide a fixed-parameter tractable (FPT) algorithm for the
composition ordering problem with general linear functions, with respect to the number of decreasing
linear functions.

We next deal with matrix multiplication as a generalization of composition of linear functions.
Given n matrices M1, . . . , Mn ∈ Rm×m and two vectors w, y ∈ Rm, where m is a positive integer,
the objective is to find a permutation σ : [n] → [n] that minimizes/maximizes w⊤Mσ(n) · · · Mσ(1)y.
The matrix multiplication ordering problem has been studied in the context of max-plus algebra,
but despite being a natural problem, it has not been explored in the conventional algebra to date.
By extending the results for composition orderings for linear functions, we show that the matrix
multiplication ordering problem with 2 × 2 matrices is solvable in O(n log n) time if all the matrices
are simultaneously triangularizable and have nonnegative determinants, and FPT with respect to the
number of matrices with negative determinants, if all the matrices are simultaneously triangularizable.
As the negative side, we prove that three possible natural generalizations are NP-hard. In addition,
we derive the existing result for the minimum matrix multiplication ordering problem with 2 × 2
upper triangular matrices in max-plus algebra, which is an extension of the well-known Johnson’s
rule for the two-machine flow shop scheduling, as a corollary of our result in the conventional algebra.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases function composition, matrix multiplication, ordering problem, scheduling

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.44

Related Version Full Version: https://arxiv.org/abs/2402.10451 [18]

Funding This work was partially supported by the joint project of Kyoto University and Toyota
Motor Corporation, titled “Advanced Mathematical Science for Mobility Society.”
Susumu Kubo: Partially supported by the Ministry of Education, Culture, Sports, Science and Techno-
logy (MEXT) Leading Initiative for Excellent Young Researchers Grant Number JPMXS0320200347.
Kazuhisa Makino: Partially supported by JSPS KAKENHI Grant Numbers JP20H05967 and
JP19K22841.

Acknowledgements The authors thank Kristóf Bérczi (Eötvös Loránd Univ.), Yasushi Kawase (Univ.
of Tokyo), and Takeshi Tokuyama (Kwansei Gakuin Univ.) for their helpful comments on the first
version of this paper.

© Susumu Kubo, Kazuhisa Makino, and Souta Sakamoto;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 44; pp. 44:1–44:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s-kubo@kankyo-u.ac.jp
https://orcid.org/0000-0003-1780-9677
mailto:makino@kurims.kyoto-u.ac.jp
https://doi.org/10.4230/LIPIcs.ISAAC.2024.44
https://arxiv.org/abs/2402.10451
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Composition Orderings for Linear Functions and Matrix Multiplication Orderings

1 Introduction

We first consider composition orderings for linear functions, that is, polynomial functions of
degree one or zero. Namely, given a constant c ∈ R and n linear functions f1, . . . , fn : R → R,
each of which is expressed as fi(x) = aix + bi for some ai, bi ∈ R, we find a permutation
σ : [n] → [n] that minimizes/maximizes fσ(n) ◦ · · · ◦ fσ(1)(c), where [n] = {1, . . . , n} for a
positive integer n. Since composition of functions is not commutative even for linear functions,
i.e., fσ(2) ◦ fσ(1) ≠ fσ(1) ◦ fσ(2) holds in general, it makes sense to investigate the problem.
For example, let f1(x) = −(1/2)x+ 3/2, f2(x) = x− 3, f3(x) = 3x− 1, and c = 0, then the
identity σ (i.e., σ(1) = 1, σ(2) = 2 and σ(3) = 3) provides f3 ◦ f2 ◦ f1(0) = f3(f2(f1(0))) =
f3(f2(3/2)) = f3(−3/2) = −11/2, while the permutation τ with τ(1) = 2, τ(2) = 1 and
τ(3) = 3 provides f3 ◦ f1 ◦ f2(0) = 8 . In fact, we can see that σ and τ are respectively
minimum and maximum permutations for the problem. The composition ordering problem
is natural and fundamental in many fields such as combinatorial optimization, computer
science, and operations research. This problem, which was introduced by Kawase, Makino
and Seimi [17], had been dealt with implicitly in the field of scheduling.

The problem was first studied from an algorithmic point of view under the name of
time-dependent scheduling (e.g., [8, 9]). We are given n jobs with processing times p1, . . . , pn.
Unlike the classical scheduling, the processing time pi is not constant, depending on the
starting time of job i. Here each pi is assumed to satisfy pi(s) ≤ t + pi(s + t) for any
positive reals s and t, since we should be able to finish processing job i earlier if it starts
earlier. The model was introduced to deal with learning and deteriorating effects. As the
most fundamental setting of the time-dependent scheduling, we consider the linear model
of single-machine makespan minimization, where the makespan denotes the time when all
the jobs have been processed, and we assume that the machine can handle only one job at a
time and preemption is not allowed. The linear model means that the processing time pi is
linear in the starting time s, i.e., pi(s) = ãis+ b̃i for some constants ãi and b̃i. Then it is not
difficult to see that the model can be regarded as the minimum composition ordering problem
with linear functions fi(x) = (ãi + 1)x+ b̃i, since fi represents the time to finish job i if the
processing of the job starts at time x. Mosheiov [20] showed the makespan is independent of
the schedule, i.e., any permutation provides the same composite, if b̃i = 0 for any i ∈ [n].
Gawiejnowicz and Pankowska [13], Gupta and Gupta [14], Tanaev et al. [23], and Wajs [24]
studied the linear deterioration model, that is, ãi, b̃i > 0 (i.e., ai > 1 and bi > 0) for any
i ∈ [n]. Here ãi and b̃i are respectively called the deterioration rate and the basic processing
time of job i. It can be shown that a minimum permutation can be obtained by arranging the
jobs nonincreasingly with respect to ãi/b̃i (= (ai − 1)/bi). Gawiejnowicz and Pankowska [13]
also considered the cases ãi = 0 or b̃i = 0 for some i. Gawiejnowicz and Lin [12] dealt with
the linear models with nonnegative coefficients for various criteria. On the other hand, Ho,
Leung and Wei [15] considered the linear learning model, that is, 0 > ãi > −1, b̃i > 0 (i.e.,
1 > ai > 0 and bi > 0) for any i ∈ [n] and showed that a minimum permutation can be
obtained again by arranging the jobs nonincreasingly with respect to ãi/b̃i (= (ai − 1)/bi).
Gawiejnowicz, Kurc and Pankowska [11] discussed the relations between the deterioration
model and the learning model. Later, Kawase et al. [17] introduced the composition ordering
problem, showed that the maximization problem can be formulated as the minimization one,
and proposed an O(n log n)-time algorithm if all fi’s are nondecreasing, i.e., ai ≥ 0 for any
i ∈ [n]. However, it is still open whether it is polynomially computable for general linear
functions. Moreover, it is not known even when constantly many functions are decreasing.

S. Kubo, K. Makino, and S. Sakamoto 44:3

We remark that the time-dependent scheduling with the ready time and the deadline
can be regarded as the composition ordering problem with piecewise linear functions, and
is known to be NP-hard, and Kawase et al. [17] also studied the composition ordering
for non-linear functions as well as the related problems such as partial composition and
k-composition. We also remark that the free-order secretary problem, which is closely related
to a branch of the problems such as the full-information secretary problem [6], knapsack and
matroid secretary problems [1, 2, 22] and stochastic knapsack problems [4, 5], can also be
regarded as the composition ordering problem [17].

Main results obtained in this paper

We first characterize the minimum composition orderings for increasing linear functions. In
order to describe our result, we need to define three important concepts: counterclockwiseness,
collinearity, and potential identity.

We view a linear function f(x) = ax + b as the vector
(

b

1 − a

)
in R2, and its angle,

denoted by θ(f), is defined as the polar angle in [0, 2π) of the vector, where we define θ(f) = ⊥

if the vector of f is the origin
(

0
0

)
, i.e., f is the identity function. For linear functions

f1, . . . , fn, a permutation σ : [n] → [n] is called counterclockwise if there exists an integer
k ∈ [n] such that θ(fσ(k)) ≤ · · · ≤ θ(fσ(n)) ≤ θ(fσ(1)) ≤ · · · ≤ θ(fσ(k−1)), where identity
functions fi (i.e., θ(fi) = ⊥) are ignored and the inequalities are assumed to be transitive.
For example, we consider inequalities such as θ(fσ(1)) ≤ θ(fσ(3)) if θ(fσ(2)) = ⊥. Linear
functions f1, . . . , fn are called collinear if the corresponding vectors lie in some line through
the origin, i.e., there exists an angle λ such that θ(fi) ∈ {λ, λ + π,⊥} for all i ∈ [n], and
potentially identical if there exists a counterclockwise permutation σ : [n] → [n] such that the
corresponding composite is the identity function, i.e., fσ(n) ◦· · ·◦fσ(1)(x) = x. A permutation
is called minimum (resp., maximum) if the corresponding composite is the minimum (resp.,
maximum). Then we have the following complete characterization of minimum permutations.

▶ Theorem 1. For the minimum composition ordering problem with increasing linear
functions f1, . . . , fn, one of the following three statements holds.

(i) They are collinear if and only if any permutation is minimum.
(ii) If they are not collinear, then the following statements are equivalent:

(ii-1) They are potentially identical.
(ii-2) A permutation is minimum if and only if it is counterclockwise.

(iii) If they are neither collinear nor potentially identical, then a permutation σ is minimum
if and only if it is a counterclockwise permutation such that θ(fσ(n) ◦ · · · ◦ fσ(1)) + π ∈
[θ(fσ(t)), θ(fσ(s))]2π, where s and t denote the first and last integers i such that fσ(i) is
not the identity function.

Here we define [θ1, θ2]2π = {θ ∈ [λ1, λ2] | λ1 =2π θ1, λ2 =2π θ2, λ2 − λ1 ∈ [0, 2π)}, where for
two angles θ1, θ2 ∈ R, we write θ1 =2π θ2 if they are congruent on the angle, i.e., θ1 −θ2 ∈ 2πZ.

Although a single minimum permutation can be computed efficiently [17], the structure of
the minimum permutations has not been clarified. Therefore, it has been difficult to construct
an efficient algorithm for the minimum composition ordering problem in general (including
decreasing linear functions). Theorem 1 provides an interesting achievement that clarifies
the structure. Moreover, we can obtain the characterization of the minimum permutations
for nondecreasing linear functions by extending Theorem 1.

ISAAC 2024

44:4 Composition Orderings for Linear Functions and Matrix Multiplication Orderings

We note that Theorem 1 can also characterize maximum permutations by replacing
“counterclockwise” by “clockwise”, which is obtained from a transformation between minimiz-
ation and maximization. (See (2) in Section 2 and Remark 16 in Section 3). Incidentally,
the lexicographical orderings which Kawase et al. [17] introduced can be interpreted as
counterclockwise permutations, and they showed the existence of counterclockwise minimum
permutations.

These results enable us to count and enumerate all minimum/maximum permutations
efficiently.

▶ Corollary 2. The number of the minimum permutations of the minimum composition
ordering problem with increasing linear functions can be computed in polynomial time and
there exists a polynomial delay algorithm for enumerating all of them.

We also show the equivalence between the (global) minimality and the local minimality
for increasing linear functions, which is of independent interest from an optimization point
of view. To introduce the neighborhood of a permutation, let σ : [n] → [n] be a permutation.
For three positive integers ℓ, m and r with ℓ ≤ m < r, define a permutation σℓ,m,r : [n] → [n]
by

σℓ,m,r(i) =

σ(i) if 1 ≤ i < ℓ, r < i ≤ n,

σ(i− ℓ+m+ 1) if ℓ ≤ i < ℓ−m+ r,

σ(i+m− r) if ℓ−m+ r ≤ i ≤ r,

which is illustrated in Figure 1.

σ σ(1) . . . σ(l − 1)

l−1
︷ ︸︸ ︷

σ(l) . . . σ(m)

m−l+1
︷ ︸︸ ︷

σ(m+ 1) . . . σ(r)

r−m
︷ ︸︸ ︷

σ(r + 1) . . . σ(n)

n−r
︷ ︸︸ ︷

σl,m,r σ(1) . . . σ(l − 1) σ(m+ 1) . . . σ(r) σ(l) . . . σ(m) σ(r + 1) . . . σ(n)

Figure 1 Permutation σl,m,r obtained from σ by swapping two adjacent intervals.

The neighborhood N(σ) of σ is defined by N(σ) = {σℓ,m,r | ℓ ≤ m < r}, that is, the set of
permutations obtained from σ by swapping two adjacent intervals in σ. Note that swapping
jobs and considering partial schedules (intervals) can be found in the context of a single
machine time-dependent scheduling problem of minimizing the total completion time of
linearly deteriorating jobs [10, 21]. A permutation σ is locally minimum if fσ ≤ fµ for any
µ ∈ N(σ), where fσ is the composite by σ, that is, fσ(n) ◦ · · · ◦ fσ(1).

▶ Theorem 3. For the minimum composition ordering problem with increasing linear
functions, a permutation is (globally) minimum if and only if it is locally minimum.

The theorem reveals an interesting structural property of composition orderings. We remark
that the same results hold if “minimum” is replaced by “maximum” in Corollary 2 and
Theorem 3, similarly with Theorem 1. The results also hold if “increasing” is replaced by
“nondecreasing”.

We then deal with composition orderings for general linear functions. We provide several
structural properties of minimum permutations. These, together with the characterization
for increasing linear functions, provide a fixed-parameter tractable (FPT) algorithm for the
minimum composition ordering problem with general linear functions, with respect to the
number of decreasing linear functions.

S. Kubo, K. Makino, and S. Sakamoto 44:5

▶ Theorem 4. A minimum permutation of the minimum composition ordering problem with
n linear functions can be computed in O(k2kn6) time, where k (> 0) denotes the number of
decreasing linear functions.

We remark that the FPT algorithm can be modified to count and enumerate all minimum
permutations efficiently.

We next consider the multiplication orderings for matrices as a generalization of the
composition orderings for linear functions. The problem with matrices is to find a permutation
σ : [n] → [n] that minimizes/maximizes w⊤Mσ(n) · · ·Mσ(1)y for given n matrices M1, . . . ,

Mn ∈ Rm×m and two vectors w,y ∈ Rm, where m is a positive integer. The problem has
been studied in the context of max-plus algebra [3], but despite being a natural problem, to
our best knowledge, it has not been explored in the conventional algebra to date.

If we set w =
(

1
0

)
, y =

(
0
1

)
, and Mi =

(
ai bi

0 1

)
for any i ∈ [n], then the matrix

multiplication ordering problem is (mathematically) equivalent to the composition ordering
problem with linear functions fi(x) = aix+ bi, which shows that the matrix multiplication
ordering problem is a natural generalization of the composition ordering problem with linear
functions.

We obtain the following generalization of the results for linear functions. Matrices
M1, . . . ,Mn ∈ Rm×m are called simultaneously triangularizable if there exists an invertible
matrix P ∈ Rm×m such that P−1MiP is an upper triangular matrix for any i ∈ [n].

▶ Theorem 5. For the minimum matrix multiplication ordering problem with n simultaneously
triangularizable 2 × 2 matrices, the following statements hold.

(i) If all matrices have nonnegative determinants, then a minimum permutation can be
computed in O(n log n) time.

(ii) If some matrix has a negative determinant, then a minimum permutation can be
computed in O(k2kn6) time, where k denotes the number of matrices with negative
determinants.

As the negative side, we show that all possible natural generalizations turn out to be
intractable unless P = NP.

▶ Theorem 6.
(i) The minimum matrix multiplication ordering problem with 2 × 2 matrices is strongly

NP-hard, even if all matrices are nonnegative (i.e., all the elements are nonnegative)
and have nonnegative determinants.

(ii) The minimum matrix multiplication ordering problem with m×m matrices with m ≥ 3
is strongly NP-hard, even if all matrices are nonnegative and upper triangular.

We also deal with the target version of the matrix multiplication ordering problem, i.e.,
minimizing the objective function |w⊤Mσ(n) · · ·Mσ(1)y − t| for a given target t ∈ R.

▶ Theorem 7. Given matrices M1, . . . ,Mn, two vectors w,y and a target t ∈ R, the
problem to decide whether there exists a permutation σ such that |w⊤Mσ(n) · · ·Mσ(1)y − t| ≤
c1 · minρ |w⊤Mρ(n) · · ·Mρ(1)y − t| + c2 for any positive c1 and c2 is strongly NP-complete.

This means that the target version is non-approximable. We can show that the target version
is also non-approximable, even if the matrices correspond to increasing linear functions.

We then consider the relationship to matrices in max-plus algebra. Let Rmax be the set
R ∪ {−∞} with two binary operations max and + denoted by ⊕ and ⊗ respectively, i.e., for
a, b ∈ Rmax, a⊕ b = max{a, b} and a⊗ b = a+ b. The triple (Rmax,⊕,⊗) is called max-plus

ISAAC 2024

44:6 Composition Orderings for Linear Functions and Matrix Multiplication Orderings

algebra. We denote by 0 the additive identity −∞, and denote by 1 the multiplicative identity
0. This notation makes it easier for us to see the correspondence between max-plus algebra
and the conventional algebra. The two operations ⊕ and ⊗ are naturally extended to the
matrices on Rmax.

Bouquard, Lenté and Billaut [3] dealt with the problem to minimize the objective function

(
1 0 . . . 0

)
⊗Nσ(n) ⊗ · · · ⊗Nσ(1) ⊗

0
...
0
1

 , (1)

where each Ni is an upper triangular matrix in Rm×m
max . They showed that the problem in the

case m = 2 is a generalization of the two-machine flow shop scheduling problem to minimize
the makespan, and is solvable in O(n log n) time by using an extension of Johnson’s rule [16]
for the two-machine flow shop scheduling. Kubo and Nishinari referred to the relationship
between the flow shop scheduling and the conventional matrix multiplication [19]. Focusing
on this relationship, we show that the following result equivalent to the one of Bouquard et

al. is obtained as a corollary of Theorem 5 (i). For a max-plus matrix N =
(
a b

0 d

)
, where

a, b, d ̸= 0, we introduce κ(N) as follows:

κ(N) =

(−1, b− a) (a > d),
(0, 0) (a = d),
(1, d− b) (a < d).

▶ Theorem 8. For the minimum max-plus matrix multiplication ordering problem with
w =

(
1 0

)⊤, y =
(
0 1

)⊤, and 2 × 2 upper triangular matrices, that is, the objective
function (1) in the case m = 2, a minimum permutation can be obtained in the lexicographic
order for κ.

The organization of the paper

The rest of this paper is organized as follows. Section 2 provides some notation and basic
properties needed in the paper. In Section 3, we consider composition orderings for increasing
linear functions and provide an outline of the proof of Theorem 1. In Section 4 we deal
with general linear functions and make the exposition of ideas for an FPT algorithm to
prove Theorem 4. In Section 5 we generalize composition of linear functions to matrix
multiplication in the conventional algebra and max-plus algebras, and outline the proofs of
Theorems 5 and 8.

2 Notation and Basic Properties

In this section, we first fix notation and present several basic properties of linear functions,
which will be used in this paper. We then mention that minimum and maximum compositions
are polynomially equivalent.

We view a linear function f(x) = ax + b as the vector
−→
f =

(
b

1 − a

)
in R2, and its

angle, denoted by θ(f), is defined as the polar angle in [0, 2π) of the vector, where we define

θ(f) = ⊥ if the vector of f is the origin
(

0
0

)
, i.e., f is the identity function.

S. Kubo, K. Makino, and S. Sakamoto 44:7

For two reals ℓ and r with ℓ < r, let [ℓ, r] = {x ∈ R | l ≤ x ≤ r}. Similarly, we
denote semi-open intervals by (ℓ, r] and [ℓ, r), and open intervals by (ℓ, r). For a linear
function f(x) = ax + b, we respectively denote by α(f) and β(f) the slope and intercept
of f(x), i.e., α(f) = a and β(f) = b. A linear function f is respectively called increasing,
constant, and decreasing if α(f) > 0, α(f) = 0, and α(f) < 0. Since the result of arithmetic
operations on angles may take a value outside of [0, 2π), we provide some notation to deal with
such situations, some of which have already been used in the introduction. For two angles
θ1, θ2 ∈ R, we write θ1 =2π θ2 if they are congruent on the angle, i.e., θ1−θ2 ∈ 2πZ, and define
[θ1, θ2]2π = {θ ∈ [λ1, λ2] | λ1 =2π θ1, λ2 =2π θ2, λ2−λ1 ∈ [0, 2π)}. For example, if θ1 = 3π/2
and θ2 = π/3 then [3π/2, π/3]2π = · · · ∪ [−π/2, π/3] ∪ [3π/2, 7π/3] ∪ [7π/2, 13π/3] ∪ · · · . We
similarly define open and semi-open intervals such as (θ1, θ2)2π, [θ1, θ2)2π, and (θ1, θ2]2π. For
a non-interval set S, we define S2π = {θ | θ =2π λ for λ ∈ S}.

We next state four basic properties of linear functions. Note that Lemmas 9, 10, and 11
do not assume increasing linear functions.

▶ Lemma 9. Let g be the identity function, i.e., g(x) = x. Then for any function h, we
have h ◦ g = g ◦ h = h.

▶ Lemma 10. For two non-identical linear functions g and h, we have the following two
equivalences. The inequality for functions means that the inequality holds for any argument.

(i) h ◦ g < g ◦ h ⇔ θ(h) − θ(g) ∈ (0, π)2π.
(ii) h ◦ g = g ◦ h ⇔ θ(h) − θ(g) ∈ {0, π}2π.

▶ Lemma 11. Let g and h be two linear functions. Then
−−→
h ◦ g = h⃗+ α(h)g⃗.

▶ Lemma 12. For non-identical increasing linear functions g and h, we have the following
statements.

(i) θ(h) − θ(g) ∈ (0, π)2π ⇔ θ(h ◦ g) ∈ (θ(g), θ(h))2π ⇔ θ(g ◦ h) ∈ (θ(g), θ(h))2π.
(ii) θ(h) − θ(g) ∈ {0, π}2π ⇔ θ(h ◦ g) ∈ {θ(g), θ(h),⊥} ⇔ θ(g ◦ h) ∈ {θ(g), θ(h),⊥}.
(iii) θ(h) = θ(g) ⇒ θ(h ◦ g) = θ(g ◦ h) = θ(h) (= θ(g)).
(iv) θ(h ◦ g) = ⊥ ⇔ θ(g ◦ h) = ⊥ ⇒ θ(h) − θ(g) =2π π.

For linear functions f1, . . . , fn and a permutation σ : [n] → [n], we denote fσ(n) ◦· · ·◦fσ(1)
by fσ. Before ending this section, we provide a linear-time transformation between the
maximization problem and the minimization problem [17]. For a linear function f(x) = ax+b,
we define a linear function f̃ by

f̃(x) = ax− b. (2)

Note that the slope of f̃ is the same as that of f . For linear functions f1, . . . , fn and a
permutation σ : [n] → [n], we have β(fσ) = −β(f̃σ). Since any permutation σ : [n] → [n]
provides α(fσ) = α(f̃σ) =

∏
i∈[n] α(fi), we can see that the maximization problem with

f1, . . . , fn is equivalent to the minimization problem with f̃1, . . . , f̃n. Therefore, we mainly
deal with the minimization problem with linear functions.

3 Composition of Increasing Linear Functions

In this section, we consider composition orderings for increasing linear functions. Especially,
we provide an outline of the proof of Theorem 1.

We first prove Theorem 1 (i), which can be easily obtained from basic properties in
Section 2.

ISAAC 2024

44:8 Composition Orderings for Linear Functions and Matrix Multiplication Orderings

Proof of Theorem 1 (i). Let us first show the only-if part. For any i ∈ [n− 1], let ρi : [n] →
[n] be the i-th adjacent transposition, i.e., the transposition of two consecutive integers i
and i+ 1. Let id : [n] → [n] denote the identity permutation. Then we have fρi = f id, since
fi ◦ fi+1 = fi+1 ◦ fi by Lemmas 9 and 10 (ii). It is well-known that any permutation can be
obtained by a product of adjacent transpositions and therefore for any permutation σ we
obtain fσ = f id, which is minimum.

For the if part, suppose, without loss of generality, that f1 and f2 are not collinear. Then
we have f1 ◦ f2 ̸= f2 ◦ f1 by Lemma 10 (ii), which implies that f1 ◦ f2 ◦ (fn ◦ · · · ◦ f3) ̸=
f2 ◦ f1 ◦ (fn ◦ · · · ◦ f3), which completes the proof of the if part. ◀

Note that in fact Theorem 1 (i) does not require increasing linear functions, and hence it is
true even if fi’s are general linear functions.

The next lemma plays an important role throughout the paper.

▶ Lemma 13. A locally minimum permutation for non-collinear increasing linear functions
is counterclockwise.

By this and the following lemma, we can obtain the proof of Theorem 1 (ii).

▶ Lemma 14. Let σ : [n] → [n] be a counterclockwise permutation for increasing linear func-
tions f1, . . . , fn. If it provides the identity, i.e., fσ(x) = x, then any of the counterclockwise
permutations provides the identity.

Proof. Let a permutation τ : [n] → [n] provide the identity, i.e., fτ (x) = x. By Lemma 12
(iv), (fτ(n) ◦ · · · ◦ fτ(k+1)) ◦ (fτ(k) ◦ · · · ◦ fτ(1)) = (fτ(k) ◦ · · · ◦ fτ(1)) ◦ (fτ(n) ◦ · · · ◦ fτ(k+1)) for
any k ∈ {0, 1, . . . , n− 1}. The permutation producing the right-hand side is τ1,k,n, which we
will denote by τk and call k-shift of τ . The equality means that the composite by τ coincides
with the one by its k-shift, that is, fτ = fτk .

Moreover, for any permutation ν : [n] → [n], θ(fν(k)) = θ(fν(k+1)) for k ∈ [n− 1] implies
that fν = fνk,k,k+1 by Lemma 10 (ii).

Since any of the counterclockwise permutations is obtained by repeatedly applying
adjacent transpositions for the same angles and k-shift of σ, the two claims provide the
proof. ◀

Proof of Theorem 1 (ii). (ii-1) =⇒ (ii-2) follows from Lemmas 13 and 14.
For the converse direction, by Lemma 13 we suppose, on the contrary, that all counter-

clockwise permutations provide the same non-identical function g. Since fi’s are not collinear,
there exists a non-identical linear function fi such that

θ(fi) ̸∈ {θ(g), θ(g) + π}2π. (3)

Consider a counterclockwise permutation σ : [n] → [n] with σ(1) = i, and let h = fσ(n) ◦ · · · ◦
fσ(2). Then we have g = h◦fi. Since θ(h) ̸∈ {θ(fi), θ(fi) +π}2π ∪ {⊥} by (3) and Lemma 11,
Lemma 10 (i) implies that h ◦ fi ̸= fi ◦ h, which contradicts the assumption. ◀

Example 15 demonstrates the optimal condition in Theorem 1 (iii). Since the proof of
Theorem 1 (iii) is also involved, we only mention that it relies on the unimodality of fσ for
counterclockwise permutations σ.

▶ Example 15. Consider the following five increasing linear functions:

f1 = 1
2x+ 1, f2 = 1

3x− 1, f3 = 2x− 2, f4 = 2x− 1, and f5 = 3x.

S. Kubo, K. Makino, and S. Sakamoto 44:9

Then their vectors are given as follows (See Figure 2):

−→
f1 =

(
1

1/2

)
,

−→
f2 =

(
−1
2/3

)
,

−→
f3 =

(
−2
−1

)
,

−→
f4 =

(
−1
−1

)
, and

−→
f5 =

(
0

−2

)
.

Note that the identity permutation id : [n] → [n] is counterclockwise for fi’s, and moreover,
by Lemma 13, we can see that it is minimum, since

f id = 2x− 23, f id1 = 2x− 27
2 , f

id2 = 2x− 19
6 , f

id3 = 2x− 13
3 , f

id4 = 2x− 23
3 ,

which also shows that (f id, f id1 , f id2 , f id3 , f id4) is unimodal.
We can also see that the identity permutation satisfies θ(f id) + π ∈ [θ(f5), θ(f1)]2π.

O b

1 − a

f1
f2

f3
f4

f5

θ(f id)
θ(f id) + π

Figure 2 The vector representation for f1, . . . , f5.

▶ Remark 16. As discussed in Section 2, the maximization for fi’s is equivalent to the
minimization for f̃i’s given by (2). Thus all the results for increasing functions are applicable
for the maximization problem. Since the transformation (2) is the reflection across the
(1 − a)-axis in the vector representation, we can obtain the results by exchanging the term
“counterclockwise” by “clockwise”.

Corollary 2 is an immediate and direct conclusion of Theorem 1. Theorem 3 is proved by
using Theorem 1.

We can generalize increasing linear functions to nondecreasing linear functions in Theorems
1 and 3, and Corollary 2.

4 Composition of General Linear Functions

In this section, we discuss the composition of general linear functions f1, . . . , fn, where an
example of composition for general linear functions is given in Example 17. Let k denote
the number of decreasing functions in them, i.e., k = |{i ∈ [n] | α(fi) < 0}|. In Section 3
we provided structural characterizations for the minimum permutations when k = 0. We
present several structural properties for minimum permutations for general linear functions
and show ideas for FPT with respect to k for the minimization problem, whose complexity
status was open [17].

In the rest of this section, we restrict our attention to the case where no linear function
is identity or constant, i.e., fi(x) ̸= x and α(fi) ̸= 0 for all i ∈ [n]. Note that the identity
function plays no role in minimum composition. For a constant function f(x) = b, we
consider f (ϵ)(x) = ϵx+ b for some ϵ > 0 (we set f (ϵ) = f for a non-constant function) and
can reduce the case containing constant functions to the case of increasing functions. In

ISAAC 2024

44:10 Composition Orderings for Linear Functions and Matrix Multiplication Orderings

other words, we can show that the minimality for f (ϵ)
1 , . . . , f

(ϵ)
n implies the one for f1, . . . , fn,

if |ϵ| is sufficiently small. We remark that our algorithm does not make use of ϵ explicitly,
since the orderings of angles θ(f (ϵ)

i)’s are only needed.

▶ Example 17. Consider the following seven linear functions:

f1 = 1
3x, f2 = 2

3x+ 1, f3 = x+ 1
2 , f4 = −x− 3, f5 = x− 1, f6 = 3

2x, f7 = 2x+ 1.

All but f4 are increasing. The vector representation is shown in Figure 3.

b

1 − a

1
f1

f2

f3

f4

f5

f6 f7

O

Figure 3 The vector representation for f1, ..., f7.

Note that the identity permutation is minimum. Recall that θ(fσ(i+1)) − θ(fσ(i)) ∈ [0, π]2π

holds for any minimum permutation σ for increasing linear functions by Theorem 3 and
Lemma 10. However, this crucial property for increasing linear functions does not hold
in general. For example, θ(f2) − θ(f1) ∈ (π, 2π)2π. Instead, we point out the following
properties: f3 ◦ f2 ◦ f1 before f4 is provided by a maximum permutation for f1, f2, and f3,
while f7 ◦ f6 ◦ f5 after f4 is provided by a minimum permutation for f5, f6, and f7. We also
note that f4 is not suitable for processing time, since both coefficients are negative.

We define two sets Lσ and Uσ of increasing linear functions. For a permutation σ : [n] →
[n], let nσ

1 , . . . , n
σ
k be integers such that nσ

1 < · · · < nσ
k and α(fσ(nσ

j
)) < 0 for all j ∈ [k].

For j ∈ {0, 1, . . . , k}, let Iσ
j = {i ∈ [n] | nσ

j < i < nσ
j+1}, where nσ

0 = 0 and nσ
k+1 = n + 1,

and define

Lσ =
⋃

k−j:even
Iσ

j and Uσ =
⋃

k−j:odd
Iσ

j .

By definition, the set of indices of all increasing functions {i ∈ [n] | α(fσ(i)) ≥ 0} is
partitioned into Lσ and Uσ. In Example 17, we have Lid = I id

1 = {5, 6, 7} and U id = I id
0 =

{1, 2, 3}.
The following lemma states that Lσ and Uσ are permuted counterclockwisely and clock-

wisely, respectively, if σ is minimum. Let Lσ = {ℓ1, . . . , ℓ|Lσ|} and Uσ = {u1, . . . , u|Uσ|},
where ℓ1 < · · · < ℓ|Lσ| and u1 < · · · < u|Uσ|, and let

pi = fσ(ℓi) for i ∈ [|Lσ|] and qi = fσ(ui) for i ∈ [|Uσ|].

▶ Lemma 18. Let σ : [n] → [n] be a minimum permutation for non-constant and non-
identical linear functions f1, . . . , fn. Let pi (i ∈ [|Lσ|]) and qi (i ∈ [|Uσ|]) denote increasing
linear functions defined as above. Then we have the following two statements.

(i) The identity id : [|Lσ|] → [|Lσ|] is counterclockwise for pi’s, unless they are collinear.
(ii) The identity id : [|Uσ|] → [|Uσ|] is clockwise for qi’s, unless they are collinear.

S. Kubo, K. Makino, and S. Sakamoto 44:11

Outline of Proof. We only prove the case where k is even and (i), since the odd case or (ii)
can be treated similarly.

fσ =
Iσ

k︷ ︸︸ ︷
p|Lσ| ◦ · · · ◦ p|Lσ|−|Iσ

k
|+1 ◦ gk/2 ◦ · · · ◦ g2 ◦

Iσ
2︷ ︸︸ ︷

p|Iσ
0 |+|Iσ

2 | ◦ · · · ◦ p|Iσ
0 |+1 ◦ g1 ◦

Iσ
0︷ ︸︸ ︷

p|Iσ
0 | ◦ · · · ◦ p1

where gj = fσ(nσ
2j

) ◦ fσ(nσ
2j

−1) ◦ · · · ◦ fσ(nσ
2j−1) for j ∈ {1, . . . , ⌈k/2⌉} ,and we set fσ(n+1) =

fσ(0) = x. Note that only two linear functions at both ends are decreasing.
Since all the linear functions in the right-hand side are increasing, Theorem 1 implies (i)

of the lemma. ◀

Moreover, the following crucial lemma (iii) shows that Lσ and Uσ are partitioned by two
angles ψ1 and ψ2. For an set I ⊆ [n], let θ(I) = {θ(fσ(i)) | i ∈ I}.

▶ Lemma 19. There exists a minimum permutation σ : [n] → [n] for non-constant and
non-identical linear functions f1, . . . , fn such that

(i) fσ(ℓ) (ℓ ∈ Lσ) are permuted counterclockwisely,
(ii) fσ(u) (u ∈ Uσ) are permuted clockwisely,
(iii) θ(Lσ) ⊆ [ψ1, ψ2] and θ(Uσ) ⊆ (ψ2, ψ1)2π for some two angles ψ1 ∈ (0, π) and ψ2 ∈

(π, 2π),
(iv) θ(Iσ

s) ∩ θ(Iσ
t) = ∅ for any distinct s and t.

This directly implies that a minimum permutation for linear functions f1, . . . , fn can be
computed in O(k!nk+4) time, where k denotes the number of decreasing fi’s. The reason is as
follows. Assume first that no fi is identity and we utilize f (ϵ)

i ’s instead of fi’s. By Lemma 19
(iii), we essentially have n2 possible angles ψ1 and ψ2. Based on such angles, we partition
the set of indices of increasing linear functions into I0, . . . , Ik. By Lemma 19 (i), (ii), and
(iv), we have at most nk+1 many such partitions. Since there exist k! orderings of decreasing
functions, by checking at most k!nk+3(= n2 × nk+1 × k!) permutations σ, we obtain a
minimum permutation for fi’s. Note that each such permutation σ and the composite fσ can
be computed in O(n) time, after sorting θ(f (ϵ)

i)’s. Since θ(f (ϵ)
s) and θ(f (ϵ)

t) can be compared
in O(1) time for sufficiently small ϵ > 0 without exactly computing their angles, we can
sort θ(f (ϵ)

i)’s in O(n log n) time. Thus in total we require O(k!nk+4 + n log n) = O(k!nk+4)
time. If some fi’s are identities, then we can put them into I0, where I0 is obtained in the
procedure above for the non-identical functions. Therefore, a minimum permutation can be
computed in O(k!nk+4) time.

In order to improve this XP result, namely, to have an FPT algorithm with respect to k,
we apply the dynamic programming approach to the following problem.

Problem LU-Ordered Minimum Composition
Input: Two sets of increasing linear functions L = {p1, . . . , p|L|} and U = {q1, . . . , q|U |},
and decreasing linear functions g1, . . . , gk with k > 0.
Output: A minimum permutation σ for linear functions in L ∪ U ∪ {g1, . . . , gk} such that

(i) Lσ = L and Uσ = U ,
(ii) the restriction of σ on L produces the ordering (p1, . . . , p|L|), and
(iii) the restriction of σ on U produces the ordering (q1, . . . , q|U |).

Note that a minimum permutation for the original problem can be computed by solving
Problem LU-Ordered Minimu Composition O(n4) times for |L| + |U | ≤ n− k. Since
the problem can be solved in O(2kk(|L| + |U | + k)2) time, we obtain Theorem 4.

ISAAC 2024

44:12 Composition Orderings for Linear Functions and Matrix Multiplication Orderings

5 Matrix Multiplication

In this section, we consider matrix multiplication orderings as a generalization of composition
orderings for linear functions. We provide outlines of the proofs of Theorems 5 and 8, and
refer to the problems we use to prove Theorems 6 and 7.

In order to prove Theorem 5, we first assume that matrices M1, . . . ,Mn in R2×2 are all
upper triangular. Then we have the following lemma.

▶ Lemma 20. The minimum matrix multiplication ordering problem with 2 × 2 upper
triangular matrices can be reduced to the one with w⊤ =

(
1 0

)
, y⊤ =

(
0 1

)
, and 2 × 2

upper triangular matrices with positive (2, 2)-entries.

Thus we can assume that a given upper triangular matrix Mi =
(
ai bi

0 di

)
has a positive

di for i ∈ [n]. We then have

(
1 0

)
Mσ

(
0
1

)
=
(

n∏
i=1

di

)
fσ(0),

where fi(x) = (ai/di)x+ bi/di for i ∈ [n]. This implies that the minimum matrix multiplic-
ation ordering problem with 2 × 2 upper triangular matrices can be solved by solving the
minimum composition ordering problem with linear functions. We remark that our algorithm

concerns the comparison of polar angles θ(fi)’s, but not of the vectors
(

bi/di

1 − ai/di

)
, and

hence we do not need to care about the case where di = ϵ. Therefore, we have the following
lemma.

▶ Lemma 21. For the minimum matrix multiplication ordering problem with n 2 × 2 upper
triangular matrices, we have the following statements.

(i) If all matrices have nonnegative determinants, then a minimum permutation can be
computed in O(n log n) time.

(ii) If some matrix has a negative determinant, then a minimum permutation can be
computed in O(k2kn6) time, where k denotes the number of matrices with negative
determinants.

This immediately implies Theorem 5.
Unfortunately, this positive results cannot be extended to 1) the nonnegative determinant

case for m = 2, 2) the case of m ≥ 3, and 3) the target version; see Theorem 6 (i), (ii) and
Theorem 7. We use the 3-partition problem to prove Theorems 6 (i) and 7.

Bouquard et al. [3] showed that the problem to minimize (1) for the case m ≥ 3 is
strongly NP-hard by reduction from the three-machine flow shop scheduling problem to
minimize the makespan, which is known to be strongly NP-hard [7]. We use the former
problem to prove Theorem 6 (ii).

References
1 Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. A knapsack secretary

problem with applications. In Moses Charikar, Klaus Jansen, Omer Reingold, and José D. P.
Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 16–28, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. doi:
10.1007/978-3-540-74208-1_2.

https://doi.org/10.1007/978-3-540-74208-1_2
https://doi.org/10.1007/978-3-540-74208-1_2

S. Kubo, K. Makino, and S. Sakamoto 44:13

2 Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems,
and online mechanisms. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA07, pages 434–443, USA, 2007. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=1283383.1283429.

3 J.-L. Bouquard, C. Lenté, and J.-C. Billaut. Application of an optimization problem in
max-plus algebra to scheduling problems. Discrete Applied Mathematics, 154(15):2064–2079,
2006. doi:10.1016/j.dam.2005.04.011.

4 Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Adaptivity and approximation for
stochastic packing problems. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA05, pages 395–404, USA, 2005. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=1070432.1070487.

5 Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Approximating the stochastic knapsack
problem: The benefit of adaptivity. Mathematics of Operations Research, 33(4):945–964, 2008.
doi:10.1287/MOOR.1080.0330.

6 Thomas S. Ferguson. Who Solved the Secretary Problem? Statistical Science, 4(3):282–289,
1989. doi:10.1214/ss/1177012493.

7 Michael R. Garey, David S. Johnson, and Ravi Sethi. The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research, 1:117–129, 1976. doi:10.1287/moor.1.2.
117.

8 Stanisław Gawiejnowicz. Models and Algorithms of Time-Dependent Scheduling. Springer, 2
edition, 2020. doi:10.1007/978-3-662-59362-2.

9 Stanisław Gawiejnowicz. A review of four decades of time-dependent scheduling: main
results, new topics, and open problems. Journal of Scheduling, 23:3–47, February 2020.
doi:10.1007/s10951-019-00630-w.

10 Stanisław Gawiejnowicz and Wiesław Kurc. New results for an open time-dependent
scheduling problem. Journal of Scheduling, 23:733–744, December 2020. doi:10.1007/
s10951-020-00662-7.

11 Stanisław Gawiejnowicz, Wiesław Kurc, and Lidia Pankowska. Conjugate problems in time-
dependent scheduling. Journal of Scheduling, 12:543–553, October 2009. doi:10.1007/
s10951-009-0121-0.

12 Stanisław Gawiejnowicz and Bertrand M.T. Lin. Scheduling time-dependent jobs under
mixed deterioration. Applied Mathematics and Computation, 216:438–447, March 2010.
doi:10.1016/j.amc.2010.01.037.

13 Stanisław Gawiejnowicz and Lidia Pankowska. Scheduling jobs with varying processing times.
Information Processing Letters, 54(3):175–178, 1995. doi:10.1016/0020-0190(95)00009-2.

14 Jatinder N.D. Gupta and Sushil K. Gupta. Single facility scheduling with nonlinear processing
times. Computers & Industrial Engineering, 14(4):387–393, 1988. doi:10.1016/0360-8352(88)
90041-1.

15 Kevin I-J. Ho, Joseph Y-T. Leung, and W-D. Wei. Complexity of scheduling tasks with
time-dependent execution times. Information Processing Letters, 48(6):315–320, 1993. doi:
10.1016/0020-0190(93)90175-9.

16 Selmer Martin Johnson. Optimal two-and three-stage production schedules with setup times
included. Naval research logistics quarterly, 1(1):61–68, 1954. doi:10.1002/nav.3800010110.

17 Yasushi Kawase, Kazuhisa Makino, and Kento Seimi. Optimal composition ordering problems
for piecewise linear functions. Algorithmica, 2018. doi:10.1007/s00453-017-0397-y.

18 Susumu Kubo, Kazuhisa Makino, and Souta Sakamoto. Composition orderings for linear
functions and matrix multiplication orderings. arXiv, 2024. arXiv:2402.10451, doi:10.
48550/arXiv.2402.10451.

19 Susumu Kubo and Katsuhiro Nishinari. Applications of max-plus algebra to flow shop
scheduling problems. Discrete Applied Mathematics, 247:278–293, 2018. doi:10.1016/j.dam.
2018.03.045.

ISAAC 2024

http://dl.acm.org/citation.cfm?id=1283383.1283429
https://doi.org/10.1016/j.dam.2005.04.011
http://dl.acm.org/citation.cfm?id=1070432.1070487
https://doi.org/10.1287/MOOR.1080.0330
https://doi.org/10.1214/ss/1177012493
https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.1007/978-3-662-59362-2
https://doi.org/10.1007/s10951-019-00630-w
https://doi.org/10.1007/s10951-020-00662-7
https://doi.org/10.1007/s10951-020-00662-7
https://doi.org/10.1007/s10951-009-0121-0
https://doi.org/10.1007/s10951-009-0121-0
https://doi.org/10.1016/j.amc.2010.01.037
https://doi.org/10.1016/0020-0190(95)00009-2
https://doi.org/10.1016/0360-8352(88)90041-1
https://doi.org/10.1016/0360-8352(88)90041-1
https://doi.org/10.1016/0020-0190(93)90175-9
https://doi.org/10.1016/0020-0190(93)90175-9
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1007/s00453-017-0397-y
https://arxiv.org/abs/2402.10451
https://doi.org/10.48550/arXiv.2402.10451
https://doi.org/10.48550/arXiv.2402.10451
https://doi.org/10.1016/j.dam.2018.03.045
https://doi.org/10.1016/j.dam.2018.03.045

44:14 Composition Orderings for Linear Functions and Matrix Multiplication Orderings

20 Gur Mosheiov. Scheduling jobs under simple linear deterioration. Computers & Operations
Research, 21(6):653–659, 1994. doi:10.1016/0305-0548(94)90080-9.

21 Krzysztof M. Ocetkiewicz. Partial dominated schedules and minimizing the total completion
time of deteriorating jobs. Optimization, 62:1341–1356, October 2013. doi:10.1080/02331934.
2013.836647.

22 Shayan Oveis Gharan and Jan Vondrák. On variants of the matroid secretary problem. In
Camil Demetrescu and Magnús M. Halldórsson, editors, Algorithms – ESA 2011, pages 335–346,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. doi:10.1007/978-3-642-23719-5_29.

23 V. S. Tanaev, V. S. Gordon, and Y. M. Shafransky. Scheduling Theory. Single-Stage Systems.
Springer, 1994.

24 Wiesław Wajs. Polynomial algorithm for dynamic sequencing problem. Archiwum Automatyki
i Telemechaniki, 31:209–213, January 1986.

https://doi.org/10.1016/0305-0548(94)90080-9
https://doi.org/10.1080/02331934.2013.836647
https://doi.org/10.1080/02331934.2013.836647
https://doi.org/10.1007/978-3-642-23719-5_29

A Simple Distributed Algorithm for Sparse
Fractional Covering and Packing Problems
Qian Li #

Shenzhen International Center For Industrial And Applied Mathematics,
Shenzhen Research Institute of Big Data, China

Minghui Ouyang #

School of Mathematical Sciences, Peking University, Beijing, China

Yuyi Wang #

Lambda Lab, China Railway Rolling Stock Corporation Zhuzhou Institute, China

Abstract
This paper presents a distributed algorithm in the CONGEST model that achieves a (1 + ϵ)-
approximation for row-sparse fractional covering problems (RS-FCP) and the dual column-sparse
fraction packing problems (CS-FPP). Compared with the best-known (1 + ϵ)-approximation CON-
GEST algorithm for RS-FCP/CS-FPP developed by Kuhn, Moscibroda, and Wattenhofer (SODA’06),
our algorithm is not only much simpler but also significantly improves the dependency on ϵ.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases CONGEST model, row-sparse fractional covering, column-sparse fractional
packing, positive linear programming, simple algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.45

Related Version Full Version: https://arxiv.org/abs/2409.16168

Funding Qian Li’s work is supported by the National Key R&D Program of China under Grant
2022YFA1003900, the Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation
Zone Project (No.HZQSWS-KCCYB-2024016), and the National Natural Science Foundation of
China Grants No.62002229. Minghui Ouyang’s work is supported in part by the National Natural
Science Foundation of China Grants No.62002229. Yuyi Wang’s work is supported by the Natural
Science Foundation of Hunan Province 2024JJ5128.

1 Introduction

A fractional covering problem (FCP) and its dual fractional packing problem (FPP) are
positive linear programs (LP) of the canonical form:

min
x

cT x (FCP, the primal LP) max
y

bT y (FPP, the dual LP)

s.t. Ax ≥ b s.t. AT y ≤ c

x ≥ 0 y ≥ 0,

where all Aij , bi, and cj are non-negative. This paper particularly focuses on k-row-sparse
FCPs (k-RS-FCP) and k-column-sparse FPPs (k-CS-FPP). These are FCPs and FPPs in
which the matrix A contains at most k non-zero entries per row. They are still fairly general
problems and can model a broad class of basic problems in combinatorial optimization, such
as the fractional version of vertex cover, bounded-frequency weighted set cover, weighted
k-uniform hypergraph matching, stochastic matching, and stochastic k-set packing.

This paper studies distributed algorithms for FCPs and FPPs in the CONGEST model.
The CONGEST model features a network G = (V, E), where each node corresponds to a
processor and each edge (u, v) represents a bidirectional communication channel between

© Qian Li, Minghui Ouyang, and Yuyi Wang;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 45; pp. 45:1–45:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:liqian.ict@gmail.com
https://orcid.org/0000-0002-2047-8146
mailto:ouyangminghui1998@gmail.com
https://orcid.org/0000-0002-3439-3653
mailto:yuyiwang920@gmail.com
https://doi.org/10.4230/LIPIcs.ISAAC.2024.45
https://arxiv.org/abs/2409.16168
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Distributed Algorithm for Sparse Fractional Covering/Packing

processors u and v. The computation proceeds in rounds. In one round, each processor first
executes local computations and then sends messages to its neighbors. Each of the messages
is restricted to O(log |V |) bits. The algorithm complexity is measured in the number of
rounds it performs.

For an FCP/FPP instance with m primal variables and n dual variables (i.e., A has
dimensions n × m), the network is a bipartite graph G = ([m], [n], E). Each primal variable
xj is associated with a left node j ∈ [m], and each dual variable yi is associated with a right
node i ∈ [n]. An edge (i, j) exists if and only if Aij > 0. At the beginning of a CONGEST
algorithm, each left node j only knows its corresponding cost cj and the column vector
(Aij : i ∈ [n]), and each right node i only knows bi and the row vector (Aij : j ∈ [m]). At
the end of the algorithm, each left node j is required to output a number x̂j and each right
node i to output a ŷi, which together are supposed to form approximate solutions to the
FCP and FPP respectively.

Let 1k denote the k-dimensional all-ones vector. The subscript k will be dropped if it
is implicit. Without loss of generality, this paper considers FCP and FPP instances of the
following normal forms:

min
x

1T x s.t. Ax ≥ 1 and x ≥ 0 (1)

and

max
y

1T y s.t. AT y ≤ 1 and y ≥ 0 (2)

where Aij is either 0 or ≥ 1. The reduction to the normal form proceeds as follows:
First, we can assume that each bi > 0 since otherwise we can set yi to zero and delete
the i-th row of A;
similarly, we can assume each cj > 0 since otherwise we can set xj to +∞ and delete the
j-th column of A, and then set yi to zero and delete the i-th row for all i with Aij > 0.
Then, we can replace Aij by Âij = Aij

bicj
, replace b and c by all-ones vector, and work

with variables x̂j = cjxj and ŷi = biyi.
Finally, we replace Âij with Ãij = Âij

min{Âi′j′ |Âi′j′>0} and work with x̃j = x̂j · min{Âi′j′ |

Âi′j′>0} and ỹi = ŷi · min{Âi′j′ | Âi′j′>0}.

Papadimitriou and Yannakakis [12] initiated the research on approximating FCPs/FPPs in
the CONGEST model. Bartal, Byers, and Raz [3] proposed the first constant approximation
ratio algorithm with polylog(m + n) rounds. After designing a distributed algorithm for
a specific FCP/FPP scenario, namely the fractional dominating set problem [10], Kuhn,
Moscibroda, and Wattenhofer [8] finally developed an efficient (1+ϵ)-approximation algorithm
for general FCP/FPP instances, running in O(log Γp·log Γd/ϵ4) round for normalized instances
where

Γp := max
j

n∑
i=1

Aij , and Γd := max
i

m∑
j=1

Aij .

Particularly, for RS-FCPs/CS-FPPs, the round complexity becomes O
(
log Amax · log Γp/ϵ4)

.
Later, Awerbuch and Khandekar [2] proposed another (1 + ϵ)-approximation algorithm for
general normalized FCP/FPP instances running in Õ(log2(nAmax) log2(nmAmax)/ϵ5) rounds,
which has worse bound than [8] but enjoys the features of simplicity and statelessness.

Several works studied the lower bound for CONGEST algorithms to approximate linear
programming. Bartal, Byers, and Raz [3] showed that (1 + ϵ)-approximation algorithms for
general FCPs/FPPs require at least Ω(1/ϵ) rounds. Kuhn, Moscibroda, and Wattenhofer

Q. Li, M. Ouyang, and Y. Wang 45:3

proved that [5, 6, 7, 8, 11] no constant round, constant-factor approximation CONGEST
algorithms exist for the LP relaxation of minimum vertex cover, minimum dominating set,
or maximum matching in general graphs. Later, they improved this lower bound by showing
that [9] no o(

√
log(m + n)/ log log(m + n)) rounds CONGEST algorithms can constant-

factor approximate the LP relaxation of minimum vertex cover, maximum matching, or by
extension, the general binary RS-FCPs or CS-FPPs (i.e., Aij ∈ {0, 1}) as well.

In this paper, we propose a CONGEST algorithm (Algorithm 1) for approximating general
RS-FCP/CS-FPP instances, which is much simpler than the algorithm of [8]. Moreover,
our algorithm exhibits a worse dependency on Amax but improves the dependency on ϵ.
In particular, for the binary RS-FCPs or CS-FPPs, which include LP relaxations of many
combinatorial problems such as minimum vertex cover, minimum dominating set, maximum
matching, and maximum independent set, our algorithm runs in O(log Γp/ϵ2) rounds, which
is a 1/ϵ2 factor improvement over the algorithm of [8].

▶ Theorem 1 (Main Theorem). For any ϵ > 0, Algorithm 1 computes (1 + ϵ)-approximate
solutions to RS-FCP and CS-FPP at the same time, running in O(Amax · log Γp/ϵ2) rounds.

▶ Remark 2. In 2018, Ahmadi et al. [1] proposed a simple (1 + ϵ)-approximation distributed
algorithm for the LP relaxation of minimum vertex cover and maximum weighted matching
problems, which are special classes of 2-RS-FCPs and 2-CS-FPPs. They claimed the algorithm
runs in O(log Γp/ϵ2) rounds, an O(Amax) factor faster than our algorithm. Unfortunately,
there is a flaw in their proof1, and we do not know how to correct the proof to achieve the
claimed bound.

2 Algorithms

In this section, we present our algorithm (Algorithm 1) and the analysis. Indeed, our
algorithm applies to general FCP/FPP instances, and we will prove the following theorem:

▶ Theorem 3. For any ϵ > 0, Algorithm 1 computes (1 + ϵ)-approximate solutions to (1)
and (2) at the same time, running in O

(
Γd · log Γp/ϵ2)

rounds.

Our algorithm is based on the sequential fractional set cover algorithm by Eisenbrand et
al. [4] and the fractional weighted bipartite matching by Ahmadi et al. [1]. It will be helpful
to view (1) as a generalization of the fractional set cover problem. Specficially, there is a
universe U = {e1, · · · , en} of n elements, a collection S = {S1, S2, · · · , Sm} of subsets of U ,
and a matrix {AeS : e ∈ U, S ∈ S} indicating the covering efficiency of S on e. We say e ∈ S

if AeS > 0. Then (1) can be recast as the following generalization of the fractional set cover
problem:

min
x≥0

∑
S∈S

xS s.t.
∑
S∋e

AeS · xS ≥ 1 for any e. (3)

The dual (2) can be recast as:

max
y≥0

∑
e∈U

ye s.t.
∑
e∈S

AeS · ye ≤ 1 for any S. (4)

1 In the proof of Lemma 5.2 in the full version, Y +
v should be defined as y+

e /we rather than y+
e ;

α1/we

α1/we −1 ≤ α
α−1 seems doubtful since 1

we
> 1 in their setting.

ISAAC 2024

45:4 Distributed Algorithm for Sparse Fractional Covering/Packing

Algorithm 1 An (1 + ϵ)-approximation algorithm for the normalized FCP/FPP.

1 Parameter: α, f ∈ R≥0 and L ∈ N defined as in (5);
2 Initialize xS := 0 for any S, and ye := 0 and re := 1 for any e;
3 for ℓ = 1 to L do
4 for each all S in parallel do
5 if ρS ≥ 1

α · maxS′∩S ̸=∅ ρS′ then
6 xS := xS + 1;
7 for all e ∈ S do
8 ye := ye + AeS · re/

(∑
e∈S AeS · re

)
and re := re/αAeS ;

9 if re ≤ α−f then re := 0;

10 Return: x/f and y/(f · (1 + ϵ)) as the approximate solutions to (3) and (4)
respectively.

Our algorithm maintains a variable xS for each subset S, and two variables ye and re

for each element e. xS and ye are initially 0 and their values can only increase throughout
the algorithm; the variable re is initially 1 and its value can only decreases. Intuitively,
re denotes the “requirement” of element e. Furthermore, we define the efficiency of S as
ρS :=

∑
e∈S AeS · re.

Our algorithm consists of L phases. α and f are two other algorithmic parameters. The
values of L, α, f will be determined later. In the ℓ-th phase, the algorithm picks all subsets
S with

ρS ≥ 1
α

· max
S′∩S ̸=∅

ρ′
S .

and update the primal variable

xS := xS + 1,

as well as: for each e ∈ S,

ye := ye + AeS · re∑
e∈S AeS · re

, and re := re/αAeS .

In other words, let Ξℓ(e) := {S ∋ e | S is selected in the ℓ-th phase}, then after the ℓ-th
phase, we have

ye := ye + ∆ye = ye +
∑

S∈Ξℓ(e)

AeS · re∑
e∈S AeS · re

, and re := re/α

∑
S∈Ξℓ(e)

AeS
.

Besides, we set re = 0 as soon as re ≤ α−f . Finally, the algorithm returns x/f and
y/ ((1 + ϵ) · f) as the approximation solutions. See Algorithm 1 for a formal description.
▶ Remark 4. The two algorithms in [8] and [1] both have a similar greedy fashion: it
starts with all xS set to 0, always increases the xS whose “efficiency” is maximum up to a
certain factor, and then distributes the increment of xS among its elements and decreases
the requirements re. Our algorithm and the two algorithms of [8] and [1] differ in specific
implementations: the definition of efficiency, the distribution of increments, and the reduction
of requirements. In particular, the algorithm of [8] consists of two levels of loops: the goal of
the first-level loop is to reduce the maximum “weighted primal degree”, and one complete

Q. Li, M. Ouyang, and Y. Wang 45:5

run of the second-level loop can be seen as one parallel greedy step. This two-level structure
complicates the algorithm of [8]. The algorithm of [1] only works for the LP relaxation
of minimum vertex cover and maximum weighted matching problems, which are special
classes of 2-RS-FCPs and 2-CS-FPPs. The distribution of increments and the reduction of
requirements in our implementation is similar to [1], and the main difference is the definition
of efficiency.

Before analyzing the correctness and efficiency of the algorithm, we present some helpful
observations about its behavior.

▶ Proposition 5. Throughout the algorithm, we always have
(a)

∑
S xS =

∑
e ye.

(b) For any S, the value of ρS is non-increasing, and lies within
(
α−f , Γp

]
∪ {0}.

(c) After each phase, maxS ρS decreases by a factor of at least α.

Proof.

Part (a). Initially,
∑

S xS =
∑

e ye = 0. Then, whenever we increase xS by 1, we increase∑
e ye by

∑
e∈S

AeS ·re∑
e∈S

AeS ·re
= 1.

Part (b). Since re is non-increasing, so is ρS :=
∑

e∈S AeS · re. Besides, the initial value
of ρS is

∑
e∈S AeS , which is upper-bounded by Γp. Furthermore, for any non-zero re where

e ∈ S, it should be strictly greater than α−f , since otherwise it will be set to 0. Recalling
that AeS ≥ 1, we have ρS > α−f or ρS = 0.

Part (c). Define ρmax := maxS ρS . Note that every S with ρS ≥ ρmax/α will be picked.
Then for any such S, re will decrease by a factor of α

∑
S′∈Ξℓ(e)

AeS ≥ αAeS ≥ α for any e ∈ S,
so ρS =

∑
e∈S AeS · re decreases by a factor of at least α as well. ◀

By Proposition 5 (b) and (c), it is easy to see that after ⌈logα Γp + f⌉ phases, all ρS and
re will become zero. We choose 2

α := 1 + ϵ

c · Γd
, and f := 2

ϵ · ln α
· ln Γp, and L := ⌈logα Γp + f⌉. (5)

where c is a sufficiently large constant. Note that each phase can be implemented in constant
rounds. So the following lemma holds.

▶ Lemma 6. Algorithm 1 runs in O(Γd · log Γp/ϵ2) rounds. When it terminates, all re = 0
and all ρS = 0.

What remains is to prove its correctness. Let xL and yL denote the values of x and y right
after the L-th phase. We first prove the feasibility.

▶ Theorem 7. xL/f and yL/ ((1 + ϵ) · f) are feasible solutions to (3) and (4) respectively.

Proof. We first show the feasibility of xL/f . Obviously, xL/f are non-negative. Given
any e, whenever we increase xS by 1 for some S ∋ e, we divide re by a factor αAeS . The

2 The reason behind the choices of parameters is that α should sufficiently close to 1 and f should
sufficiently large, such that αΓd+1 = 1 + O(ϵ) and ln Γp

ln α ≪ f . See the proof of Theorem 7 for details.

ISAAC 2024

45:6 Distributed Algorithm for Sparse Fractional Covering/Packing

initial value of re is 1; and by Lemma 6, finally re becomes ≤ α−f , and then is set to 0. We
therefore have∑

S∋e

AeS · xL
S ≥ f,

and then conclude the feasibility of xL/f .
In the following, we prove the feasibility of yL/f . Obviously, yL/((1 + ϵ) · f) are

non-negative. What remains is to show that for any S∑
e∈S

AeS · yL
e ≤ (1 + ϵ) · f.

For the convenience of presentation, define YS :=
∑

e∈S AeS · ye, which only increases during
the algorithm’s execution. The idea is to upper bound the increment ∆YS of YS in terms of
the decrement ∆ρS of ρS in each phase.

On the one hand, recalling that the increment of ye is

∆ye =
∑

S′∈Ξℓ(e)

AeS′ · re∑
e∈S′ AeS′ · re

=
∑

S′∈Ξℓ(e)

1
ρS′

· AeS′ · re,

we have

∆YS =
∑
e∈S

AeS · ∆ye =
∑
e∈S

∑
S′∈Ξℓ(e)

1
ρS′

· AeS · AeS′ · re ≤
∑
e∈S

∑
S′∈Ξℓ(e)

α

ρS
· AeS · AeS′ · re

= α

ρS

∑
e∈S

∑
S′∈Ξℓ(e)

AeS · AeS′ · re.

On the other hand,

∆ρS =
∑
e∈S

AeS · ∆re =
∑
e∈S

AeS · re ·
(

1 − 1/α

∑
S′∈Ξℓ(e)

AeS′
)

=
∑
e∈S

AeS · re · 1

α

∑
S′∈Ξℓ(e)

AeS′

(
α

∑
S′∈Ξℓ(e)

AeS′ − 1
)

≥
∑
e∈S

AeS · re · 1

α

∑
S′∈Ξℓ(e)

AeS′

 ∑
S′∈Ξℓ(e)

ln α · AeS′

≥ ln α

αΓd

∑
e∈S

∑
S′∈Ξℓ(e)

AeS · AeS′ · re

Combining the two inequalities above, we get

∆YS ≤ αΓd+1

ln α
· ∆ρS

ρS
.

Then, summing this inequality up over all phases, we have

Y end
S =

∑
each phase

∆YS ≤ αΓd+1

ln α

∑
each phase

∆ρS

ρS
≤ αΓd+1

ln α

∫ ρinitial
S

ρend
S

1
ρ

dρ

= αΓd+1

ln α
·
(
ln ρinitial

S − ln ρend
S

)
≤ αΓd+1

ln α
· (ln α · f + ln Γp)

= αΓd+1f + αΓd+1 ln Γp

ln α
≤ (1 + ϵ)f. ◀

Q. Li, M. Ouyang, and Y. Wang 45:7

By Proposition 5 (a), we have
∑

S xL
S =

∑
e yL

e , which means∑
e

yL
e / ((1 + ϵ) · f) ≤ (1 + ϵ)

∑
S

xL
S/f.

We therefore conclude that xL/f and yL/ ((1 + ϵ) · f) are (1 + ϵ)-approximate solutions
to (3) and (4) respectively. By putting it and Lemma 6 together, we finish the proof of
Theorem 3.

3 Conclusion

This paper proposes a simple (1 + ϵ)-approximation CONGEST algorithm for row-sparse
fractional covering problems and column-sparse fractional packing problems. It runs in
O

(
Amax · log Γp/ϵ2)

rounds, where Γp = maxj

∑
i Aij and Γd = maxi

∑
j Aij . Our algorithm

is simpler than the algorithm of [8], worsens the Amax-dependency, but improves the ϵ-
dependency. For future work, it is an intriguing open problem, proposed by Suomela [13],
whether constant round, constant-factor approximation CONGEST algorithms exist for
row-sparse, column-sparse FCP/FPP instances – a special kind of RS-FCP/CS-FPP where
the number of nonzero entries in each column of A is also bounded. Our algorithm and the
algorithm of [8] are both such algorithms for instances where Amax is bounded.

References
1 Mohamad Ahmadi, Fabian Kuhn, and Rotem Oshman. Distributed approximate maximum

matching in the CONGEST model. In Ulrich Schmid and Josef Widder, editors, 32nd
International Symposium on Distributed Computing, DISC 2018, New Orleans, LA, USA,
October 15-19, 2018, volume 121 of LIPIcs, pages 6:1–6:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPICS.DISC.2018.6.

2 Baruch Awerbuch and Rohit Khandekar. Stateless distributed gradient descent for positive
linear programs. SIAM J. Comput., 38(6):2468–2486, 2009. doi:10.1137/080717651.

3 Yair Bartal, John W. Byers, and Danny Raz. Global optimization using local information
with applications to flow control. In 38th Annual Symposium on Foundations of Computer
Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, pages 303–312. IEEE
Computer Society, 1997. doi:10.1109/SFCS.1997.646119.

4 Friedrich Eisenbrand, Stefan Funke, Naveen Garg, and Jochen Könemann. A combinatorial
algorithm for computing a maximum independent set in a t-perfect graph. In Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003,
Baltimore, Maryland, USA, pages 517–522. ACM/SIAM, 2003. URL: http://dl.acm.org/
citation.cfm?id=644108.644194.

5 Fabian Kuhn. The price of locality: exploring the complexity of distributed coordination
primitives. PhD thesis, ETH Zurich, 2005. URL: https://d-nb.info/977273725.

6 Fabian Kuhn. Local approximation of covering and packing problems. In Encyclopedia of
Algorithms, pages 1129–1132. Springer New York, 2016. doi:10.1007/978-1-4939-2864-4_
209.

7 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot be computed locally!
In Soma Chaudhuri and Shay Kutten, editors, Proceedings of the Twenty-Third Annual ACM
Symposium on Principles of Distributed Computing, PODC 2004, St. John’s, Newfoundland,
Canada, July 25-28, 2004, pages 300–309. ACM, 2004. doi:10.1145/1011767.1011811.

8 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being near-sighted.
In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 980–989. ACM Press, 2006.
URL: http://dl.acm.org/citation.cfm?id=1109557.1109666.

ISAAC 2024

https://doi.org/10.4230/LIPICS.DISC.2018.6
https://doi.org/10.1137/080717651
https://doi.org/10.1109/SFCS.1997.646119
http://dl.acm.org/citation.cfm?id=644108.644194
http://dl.acm.org/citation.cfm?id=644108.644194
https://d-nb.info/977273725
https://doi.org/10.1007/978-1-4939-2864-4_209
https://doi.org/10.1007/978-1-4939-2864-4_209
https://doi.org/10.1145/1011767.1011811
http://dl.acm.org/citation.cfm?id=1109557.1109666

45:8 Distributed Algorithm for Sparse Fractional Covering/Packing

9 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and
upper bounds. J. ACM, 63(2):17:1–17:44, 2016. doi:10.1145/2742012.

10 Fabian Kuhn and Roger Wattenhofer. Constant-time distributed dominating set approximation.
Distributed Comput., 17(4):303–310, 2005. doi:10.1007/S00446-004-0112-5.

11 Christoph Lenzen and Roger Wattenhofer. Minimum dominating set approximation in graphs
of bounded arboricity. In Nancy A. Lynch and Alexander A. Shvartsman, editors, Distributed
Computing, 24th International Symposium, DISC 2010, Cambridge, MA, USA, September
13-15, 2010. Proceedings, volume 6343 of Lecture Notes in Computer Science, pages 510–524.
Springer, 2010. doi:10.1007/978-3-642-15763-9_48.

12 Christos H. Papadimitriou and Mihalis Yannakakis. Linear programming without the matrix.
In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA,
USA, pages 121–129. ACM, 1993. doi:10.1145/167088.167127.

13 Jukka Suomela. Survey of local algorithms. ACM Comput. Surv., 45(2):24:1–24:40, 2013.
doi:10.1145/2431211.2431223.

https://doi.org/10.1145/2742012
https://doi.org/10.1007/S00446-004-0112-5
https://doi.org/10.1007/978-3-642-15763-9_48
https://doi.org/10.1145/167088.167127
https://doi.org/10.1145/2431211.2431223

Uniform Polynomial Kernel for Deletion to K2,p

Minor-Free Graphs
William Lochet # Ñ

LIRMM, Université de Montpellier, CNRS, Montpellier, France

Roohani Sharma # Ñ

Department of Informatics, University of Bergen, Norway

Abstract
In the F-Deletion problem, where F is a fixed finite family of graphs, the input is a graph G and an
integer k, and the goal is to determine if there exists a set of at most k vertices whose deletion results
in a graph that does not contain any graph of F as a minor. The F-Deletion problem encapsulates
a large class of natural and interesting graph problems like Vertex Cover, Feedback Vertex
Set, Treewidth-η Deletion, Treedepth-η Deletion, Pathwidth-η Deletion, Outerplanar
Deletion, Vertex Planarization and many more. We study the F-Deletion problem from the
kernelization perspective. In a seminal work, Fomin et al. [FOCS 2012] gave a polynomial kernel
for this problem when the family F contains at least one planar graph. The asymptotic growth of
the size of the kernel is not uniform with respect to the family F : that is, the size of the kernel is
kf(F), for some function f that depends only on F . Later Giannopoulou et al. [TALG 2017] showed
that the non-uniformity in the kernel size bound is unavoidable as Treewidth-η Deletion cannot
admit a kernel of size O(k

η+1
2 −ϵ), for any ϵ > 0, unless NP ⊆ coNP/poly. On the other hand it was

also shown that Treedepth-η Deletion admits a uniform kernel of size f(F) · k6 depicting that
there are subclasses of F where the asymptotic kernel sizes do not grow as a function of the family
F . This work led to the question of determining classes of F where the problem admits uniform
polynomial kernels.

In this paper, we show that if all the graphs in F are connected and F contains K2,p (a bipartite
graph with 2 vertices on one side and p vertices on the other), then the problem admits a uniform
kernel of size f(F) · k10. The graph K2,p is one natural extension of the graph θp, where θp is a
graph on two vertices and p parallel edges. The case when F contains θp has been studied earlier
and serves as (the only) other example where the problem admits a uniform polynomial kernel.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Uniform polynomial kernel, F-minor-free deletion, complete bipartite minor-
free graphs, K2,p, protrusions

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.46

1 Introduction

For any fixed finite family of (multi-)graphs F , in the F-Deletion problem, given as input
a graph G and a positive integer k, the task is to determine whether the deletion of a set of
at most k vertices results in a graph that does not contain any graph of F as a minor. The
F-Deletion problem encompasses various natural and interesting problems such as Vertex
Cover, Feedback Vertex Set, Treewidth-η Deletion, Treedepth-η Deletion,
Pathwidth-η Deletion, Outerplanar Deletion, Vertex Planarization and much
more. As a result of the seminal work of Lewis and Yannakakis [18] the problem is known to
be NP-complete. By a celebrated result of Robertson and Seymour [22] every F-Deletion
problem is non-uniformly FPT, that is, for every integer k, there exists an algorithm that
solves the problem in f(k) · n3 time, where n is the number of vertices in the input graph.
However, when the family F is given explicitly, the problem is uniformly FPT because the
excluded minors for the graphs that are YES instances of the problem can be computed

© William Lochet and Roohani Sharma;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 46; pp. 46:1–46:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:william.lochet@gmail.com
https://www.lirmm.fr/~wlochet/
https://orcid.org/0000-0002-8711-1170
mailto:r.sharma@uib.no
http://sites.google.com/view/roohanisharma
https://orcid.org/0000-0003-2212-1359
https://doi.org/10.4230/LIPIcs.ISAAC.2024.46
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Uniform Polynomial Kernel for Deletion to K2,p Minor-Free Graphs

explicitly from the result by Adler et al. [1]. Another breakthrough result by Fomin et
al. [12] shows that the problem admits an algorithm with running time 2O(k) · nO(1) when
all the graphs in F are connected and F contains a planar graph. The class considered
by Fomin et al. seems a little restrictive at first, but it already encapsulates the classical
problems mentioned above except for Vertex Planarization. In fact, the class of problems
considered by Fomin et al. [12] are essentially about deleting k vertices to get to a graph of
constant treewidth, since graphs that exclude a planar graph H as a minor have treewidth
at most |V (H)|O(1) [3].

One of the major highlights of the result by Fomin et al. [12] is also a polynomial (in
k) kernel for the F-Deletion problem when F contains a planar graph. A noteworthy
feature of their kernelization algorithm is that the size of the kernel is f(F) · kg(F), for some
functions f, g that depend only on the family F . In particular, the exponent of the size
of the kernel depends on the family F . Such kernels are called non-uniform kernels as the
asymptotic size of the kernel varies with the family F . Such a result opens up questions
about the existence of a kernel of size f(F) · kO(1) for F-Deletion. Such a kernel is called
a uniform polynomial kernel.

Soon after the result of Fomin et al., Giannopoulou et al. [14] showed that the size of the
polynomial kernel by Fomin et al. is essentially tight in the sense that F-Deletion cannot
admit a kernel of size f(F) · kO(1), under reasonable complexity assumptions. In particular,
they showed that Treewidth-η Deletion, a special case of F-Deletion where F contains
a planar graph, cannot admit a uniform polynomial kernel unless NP ⊆ coNP/poly, even
when the parameter is the vertex cover of the graph. More specifically they showed that
Treewidth-η Deletion cannot admit a kernel on O(x

η+1
2 −ϵ) vertices, for any ϵ > 0, where

x is the size of the vertex cover in the input graph. They also complemented this result
by showing that Treedepth-η Deletion, another special case of F-Deletion when F
contains a path, admits a (uniform) kernel of size f(η) · k6 for some function f .

Other than Treedepth-η Deletion, the only other family F for which F-Deletion is
known to admit a uniform polynomial kernel (of size f(F) · k2 log3/2 k)) is when the graph
θp ∈ F [11]. Here θp is a graph with two distinct vertices and p parallel edges between them.

This contrast in the behaviour of the asymptotic size of polynomial kernels, obtained for
different specializations of F-Deletion, leads to the question- under what restrictions of F ,
does the F-Deletion problem admit uniform kernels? Our study investigates this direction
and exhibits an infinite collection of families F for which the F-Deletion problem admits
a uniform polynomial kernel.

Our Result. We show that F-Deletion admits a kernel of size f(F) · k10, when all the
graphs in F are connected and K2,p ∈ F , where K2,p is a complete bipartite graph on 2
vertices on one side and p vertices on the other. Henceforth, for any positive integer p,
let Fp denote an arbitrary finite family of connected graphs such that K2,p ∈ Fp. The
Fp-Deletion problem is formally defined as follows: given a graph G and an integer k, does
there exist X ⊆ V (G), |X| ≤ k such that G − X has no graph of Fp as a minor?

In the remaining paper we subsume the factors depending on Fp in the O(·) notation.
Also, a polynomial running time refers to a running time that is polynomial in the input size
where the exponent of the polynomial is an absolute constant (and hence does not depend
on Fp or k). Thus, our kernelization algorithm runs in “purely” polynomial time.

▶ Theorem 1.1. Fp-Deletion admits a kernel of size O(k10).

W. Lochet and R. Sharma 46:3

K2,p-free graphs. The class Fp-Deletion that we consider is, and has to be, more restrict-
ive than what is considered by Fomin et al. [12], given the hardness result by Giannopoulou
et al. [14]. In the following points we motivate our interests in the study of the chosen
family Fp.
(1) Generalizes outerplanarity. A graph is called outerplanar if there exists a planar em-
bedding of it where all the vertices lie on the outer face. In the Outerplanar Deletion
problem, given as input a graph G and an integer k the goal is to decide if the deletion of
at most k vertices results in an outerplanar graph. A well-known consequence of Wagner’s
characterization of planar graphs implies that the Outerplanar Deletion problem is
equivalent to the F-Deletion problem where F = {K2,3, K4}, where K4 is a complete
graph on 4 vertices. Clearly, Fp-Deletion encapsulates and generalizes the Outerplanar
Deletion problem.
(2) Challenge in extension from θp. As mentioned earlier, prior to the polynomial kerneliza-
tion result of Fomin et al. [12] for general families F containing some planar graph, Fomin
et al. [11] gave a uniform polynomial kernel for F-Deletion when θp ∈ F . Such families
already encapsulate classical problems like Vertex Cover, Feedback Vertex Set and
Diamond Hitting [11].

Observe that K2,p is a natural extension of θp as it can be obtained from θp by subdividing
each of its edges once. This seemingly simple extension of θp already poses great technical
challenges, thereby disallowing to lift the kernelization techniques used in the θp case to the
K2,p case. As we describe in detail later (see Section 3), the challenge in making a uniform
polynomial kernel for special cases of F-Deletion lie in what we call the degree reduction
phase of [12]. We elaborate on this later but let us give some overview of it already here.
Let S be some approximate solution to the problem of size kO(1). Let C be some connected
component of G − S. If one can bound the degree of each vertex of x ∈ S in the set C by
f(F) · kO(1) (where the degree of k is independent of F), then following the approach of [12],
one can get a uniform polynomial kernel for the F-Deletion problem.

Using the above, a uniform polynomial kernel for F-Deletion when θp ∈ F follows very
easily: let S be a 1-redundant solution to the problem of size O(k2), that is for each x ∈ S,
S \ x is a solution to the problem. As we will see later such sets of O(k2) size can be found
easily. Let C be a connected component of G − S. Then for any x ∈ S, the degree of x in C

is at most p − 1, as otherwise there would be θp as a minor in G[C ∪ {x}], contradicting that
S \ {x} is a solution. Thus, in this case one can in fact, bound the degree of x in C by O(1).

The above simple argument for bounding the degree of x fails completely when the
forbidden minor is a subdivided θp, that is a K2,p. For example, consider a graph containing
n + 1 vertices, where one vertex is adjacent to all the other n vertices and these n vertices
are connected to form a path. This graph has θn as a minor but no K2,3 as a minor.
(3) Interesting structural graph properties of K2,p-free graphs. From a graph theoretic
viewpoint, excluding certain classes of graphs as minors seem to give close connections
to some interesting graph properties. One of the most interesting conjectures at present
demonstrating this is the Hadwiger’s Conjecture which states that the chromatic number
of any graph that avoids Kt as a minor is at most t − 1. Following this line of work, graph
theorists have developed a special interest in the class of graphs that exclude a complete
bipartite graph as a minor [10, 7, 23, 5, 20, 6, 9]. Together with connectivity requirements, and
possibly other assumptions, graphs with no Kq,p as a minor can be shown to have interesting
properties relating to toughness, hamiltonicity, and other traversability properties [4, 5, 21].
Particular attention has been given to the case when q = 2, as most of these properties
appear to hold for this special case too. Note that any graph avoiding K2,p as a minor is at

ISAAC 2024

46:4 Uniform Polynomial Kernel for Deletion to K2,p Minor-Free Graphs

most p − 1-connected. Results in the literature show that 3-connected K2,4-free graphs are
Hamiltonian and the 2-connected K2,4-free graphs have a Hamiltonian Path [10]. Also [7]
shows that every 2-connected K2,4-free graph contains two vertices whose deletion results in
an outerplanar graph. Graphs on n vertices that are K2,p-free are known to have long cycles,
in particular, cycles of length at least n/pp−1 [5]. Another result shows that the number
of edges in an n-vertex K2,p-free graph, for p ≥ 2, is at most (1/2)(p + 1)(n − 1) [6]. This
literature thus suggests that the class of K2,p-free graphs exhibit interesting graph theoretic
properties and hence, it could be worth to study this graph class algorithmically.
(4) Extremal limit before encapsulating planarization. In continuation of the above point, at
the front of avoiding a Kq,p as a minor, it must be noted that the case when q = 3 already
encompasses the classical and notorious Vertex Planarization problem. In this problem,
the goal is to delete at most k vertices such that the resulting graph is a planar graph.
This problem is equivalent to F-Deletion when F = {K3,3, K5} because of Wagner’s
characterization of planar graphs. Note that none of the graphs in F are planar. The first
constructive FPT algorithm for this problem was given by Marx and Schlotter in 2007 [19],
which was followed by an improved algorithm by Kawarabayashi [17]. This was followed by
the current best known algorithm for the problem by Jansen et al. [16] in 2014 that runs in
time 2O(k log k) · n. Over this long period of improvements, one important open question that
has intrigued the community is the question about the existence of a polynomial kernel for
the problem. Recently Jansen and Wlodarczyk [15] gave a lossy polynomial kernel for this
problem. But it seems for now that getting a (non-lossy) polynomial kernel for this problem
may require more novel ideas. Thus, on the front of avoiding complete bipartite minors,
avoiding anything beyond K2,p must first confront the Vertex Planarization problem.

Roadmap. In Section 2 we define basic notations and definitions. In Section 3 we describe
all the (five) steps of our kernelization algorithm. In particular, we state formally the five
main lemmas that we prove to give the complete proof of Theorem 1.1. In Section 4 we focus
on our main technical contribution of this work which is what we call the degree reduction
phase of the kernelization algorithm (step 2 of the 5 steps). We give an overview of the key
ideas of this phase, followed by formal proofs. In Section 5 we conclude with some open
questions. The details of the 4 other phases of the algorithm that are described in Section 3
have been omitted because of space constraints. Also the proofs of lemmas marked with ⋆

have been omitted due to space constraints.

2 Preliminaries

For standard notations and terminology that is not defined here, we refer to [8]. For the
definition of kernelization and related terminology we refer to the book [13]. Throughout the
paper, h = maxH∈Fp |V (H)|.

General. For positive integers i < j, [i] denotes the set {1, . . . , i} and [i, j] denote the set
{i, i + 1, . . . , j}. Given a sequence, an interval is a set of consecutive entries of the sequence.
The length of the interval is the number of entries in it.

Graphs. For u, v ∈ V (G) a (u, v)-path in G is a path from u to v. The internal vertices of a
path are the vertices of the path that are not its end-points. For X ⊆ V (G), a path is called
X-free if none of the vertices of X appear as internal vertices of the path. For X, Y ⊆ V (G),
Z ⊆ V (G) is called an (X, Y)-cut if G − Z has no path from a vertex of X to a vertex of Y .
When X or Y are singletons we drop the braces around them in this notation.

W. Lochet and R. Sharma 46:5

Boundaried graphs and boundaried minors. For any positive integer t, a t-boundaried
graph is a graph G together with a specially assigned vertex set of size at most t called the
boundary of G. Also each vertex in the boundary is labelled with a distinct integer from [t].
A t-boundaried graph H is a minor of a t-boundaried graph G if H can be obtained from G

by deleting vertices or edges or contracting edges, but never contracting edges with both
endpoints being the vertices in the boundary. If we contract an edge between a boundary
vertex u and a non-boundary vertex v, the resulting vertex is a boundary vertex with the
same label as that of u. For a t-boundaried graph G, for any positive integer δ, the δ-folio(G)
is the set of all t-boundaried graphs of size at most δ that can be obtained as boundaried
minors in G.

3 The steps of the kernelization algorithm

The kernelization algorithm of Theorem 1.1 has five phases which we term as (1) redundant
solution, (2) degree reduction, (3) component reduction, (4) protrusion decomposition, and
(5) protrusion replacement. We emphasize here that the degree reduction phase is our main
technical contribution of this work and our special choice of starting with a redundant
solution in phase one is key for the second phase. Other than this, the overall structure
of our kernelization algorithm follows the footprints of that of [12]. For any graph G,
let cc(G) denote the set of connected components of G. Throughout the presentation,
h := maxF ∈Fp

|V (F)|. Let (G, k) be an instance of Fp-Deletion problem.

Redundant solution. In the first phase, we find a 1-redundant solution S in G of size
O(k2). A 1-redundant solution in G is a set of vertices S such that for every x ∈ S, S \ {x}
is a solution of Fp-Deletion. This step is different from that of [12] where any solution
modulator (for example, any approximate solution) works. Formally, we prove the following
lemma.

▶ Lemma 3.1 (⋆, Redundant solution). Given an instance (G, k) of Fp-Deletion, there is
a polynomial-time algorithm that either outputs x ∈ V (G) such that (G − {x}, k − 1) is an
equivalent instance of (G, k), or outputs a 1-redundant solution of (G, k) of size O(k2), or
concludes correctly that (G, k) is a NO instance of Fp-Deletion.

If Lemma 3.1 outputs x ∈ V (G) then we apply a reduction rule and output the instance
(G−{x}, k −1) as an equivalent instance. If it outputs NO, then we output a trivial constant
sized NO instance of Fp-Deletion. Otherwise, we have a 1-redundant solution of size
O(k2), that we denote by S in all the subsequent phases.

Degree reduction. The input to this phase is the instance (G, k) together with a 1-redundant
solution S. The goal is to design a reduction rule that bounds the size of the set of neighbours
of x in C, for each x ∈ S and C ∈ cc(G − S), by kO(1). An edge uv in G is called irrelevant
if the instance (G, k) is equivalent to the instance (G − uv, k).

Let a denote the number of 2-boundaried graphs on at most 2h+6 vertices. Let g : [a] → N
be a function such that g(1) := 18 · (2h + 6) and for each i > 1, g(i) := 18 · (2h + 6) · g(i − 1).
Also let degree-bound := p3 · (|S| · (p + k + 1) + 1) · g(a). We prove the following lemma.

▶ Lemma 3.2 (Irrelevant edge). Let (G, k) be an instance of Fp-Deletion and S be a
1-redundant solution in G. Let x ∈ S and C ∈ cc(G − S). If |N(x) ∩ C| ≥ degree-bound,
then there exists u ∈ N(x) ∩ C, such that xu is irrelevant. Moreover, such a vertex u can be
found in polynomial time.

ISAAC 2024

46:6 Uniform Polynomial Kernel for Deletion to K2,p Minor-Free Graphs

The key insights and the proof of Lemma 3.2 are delegated to Section 4. We use Lemma 3.2
as long as there exists x ∈ S and C ∈ cc(G − S) such that |N(x) ∩ C| ≥ degree-bound.
If u is the vertex reported by Lemma 3.2, then we apply a reduction rule and output an
equivalent instance (G − uv, k). Therefore at the end of this stage we can assume that for
each x ∈ S and C ∈ cc(G − S), |N(x) ∩ C| < degree-bound = O(k3). It is crucial to note
here that the exponent of k in degree-bound is independent of F .

Component reduction. In this phase, we design a reduction rule whose exhaustive applica-
tion guarantees that |cc(G − S)| = O(|S|2 · k) = O(k5). Formally we prove the following
lemma. Let comp-boundh := (10 + p) · (h + 1)2 · 2(h+1

2). Note that comp-boundh depends
only on h, p (and therefore only on Fp).

▶ Lemma 3.3 (⋆, Component reduction). Let (G, k) be an instance of Fp-Deletion and S

be some solution of Fp-Deletion (not necessarily optimal). If |cc(G − S)| ≥ comp-boundh ·
|S|2 · k 1, then there exists C ∈ cc(G − S) such that the instance (G, k) is equivalent to
(G − C, k). Moreover, such a component C can be found in polynomial time.

Apply Lemma 3.3 on the instance (G, k) and the set S from phase 1 until |cc(G − S)| =
O(k5).

Protrusion decomposition. Note that at the end of phase three, we can bound the size
of the set of neighbours of S (|N(S)|) by O(k10): indeed from phase three (Lemma 3.3)
|cc(G − S)| = O(k5), from phase 2, for each x ∈ S, |N(x) ∩ C| = O(k3) and |S| = O(k2).
We use this to obtain a protrusion decomposition of G with O(k10) protrusions. This is
defined below.

For a graph G, let tw(G) denote the treewidth (see [8] for the definition) of G. For a
positive integer a, an a-protrusion in G is a set of vertices X ⊆ V (G) such that tw(G[X]) ≤ a

and |NG(X)| ≤ a. For positive integers a, b, c, an (a, b, c)-protrusion decomposition of G is a
partition of V (G) = V0 ⊎ V1 ⊎ . . . ⊎ Vr such that the following holds: (1) |V0| ≤ a, (2) r ≤ b,
(3) for each i ∈ [c], N(Vi) ⊆ V0, and, (4) for each i ∈ [c], Vi is a c-protrusion in G.

In this phase, we prove the following lemma.

▶ Lemma 3.4 (⋆, Protrusion decomposition). Let G be a graph and S ⊆ V (D) such that
tw(G − S) ≤ η and G − S has at most ζ connected components. If |N(S) ∩ C| ≤ α for every
connected component of G−S, then G admits a (|S|+2αηζ, 6αζ, 2η)-protrusion decomposition
and can be computed in polynomial time.

We use Lemma 3.4 on G and the set S from phase 1. Since S is a solution to Fp-Deletion,
K2,p ∈ Fp and K2,p is planar, tw(G − S) = O((p + 2)9) [3]. Thus, in Lemma 3.4, on input
G, S, η = O((p + 2)9), from phase 3 ζ = O(k5) and, from phase 2 α = O(k3) · |S| = O(k5).
Thus, we get an (O(k10), O(k10), O(1))-protrusion decomposition of G.

Protrusion replacement. Let V0 ⊎ V1 ⊎ . . . Vr be the (O(k10), O(k10), O(1))-protrusion
decomposition of G obtained from the previous phase. Note that in order to bound the size
of the whole graph G, it remains to bound the size of protrusion Vi for each i ∈ {1, . . . , r}.
This is done in this final phase. To reduce the size of the protrusions, we use the fact that the
Fp-Deletion problem has Finite Integer Index. This allows one to “replace” each protrusion
Vi with a vertex set whose size depends only on Fp.

1 The bound on comp-boundh has not been optimized.

W. Lochet and R. Sharma 46:7

Recall η, ζ, α from Lemma 3.4. The following proposition from [2, 12] implies a reduction
rule if the size of any Vi, i ∈ {1, . . . , r}, is larger than a fixed constant q that depends only
on Fp.

▶ Proposition 3.5 (Protrusion replacer, [2, 12]). Let (G, k) be an instance of Fp-Deletion
and let Vi ⊆ V (G) be a 2η-protrusion in G of size at least q, where q is a fixed constant that
depends only on Fp. Then there exists a polynomial-time algorithm that outputs an equivalent
instance (G′, k′) such that |V (G′)| < |V (G)| and k′ ≤ k.

Finally this implies the following corollary. Again recall η, ζ, α from Lemma 3.4 and q

from Proposition 3.5.

▶ Corollary 3.6. If |V (G)| ≥ |S| + 2αηζ + 6qαζk, then the reduction rule implied by
Proposition 3.5 is applicable.

This implies that when the reduction rule of Lemma 3.5 is not applicable, |V (G)| = O(k10).
The proof of Theorem 1.1 follows from Lemmas 3.1,3.2,3.3,3.4 and Corollary 3.6.

4 The degree reduction phase

In this section we elaborate on the degree reduction phase that we described in Section 3.
Recall that (G, k) is an instance of Fp-Deletion and S ⊆ V (G) is a 1-redundant solution,
that is for each x ∈ S, S \ {x} is a solution. Fix x ∈ S and C ∈ cc(G − S) such that
|N(x) ∩ C| ≥ degree-bound. Because S is 1-redundant, G[C ∪ {x}] is K2,p-free. Set
X := N(x) ∩ C. The goal is to design a reduction rule that bounds the size of X by kO(1).

4.1 Overview and key insights

We give an overview of the key insights in the proof of Lemma 3.2. The degree reduction
phase has two main steps. In this first step we find a subset of C that has a very nice
structure and in the second step we exploit this structure to “re-build” minor models of small
graphs so that they avoid an irrelevant edge.

A nicely structured set Cσ ⊆ C. As a first step, we exploit the fact that G[C ∪ {x}] is
K2,p-free to obtain a subset Cσ ⊆ C containing g(a) (recall a, g from Section 3) neighbours
of x such that Cσ has a very nice “chain-like” structure. The definition of the structure
is formalized in Definition 4.1 as an x-good sequence. Also see Figure 1. The proof of its
existence is given in Lemma 4.3. Below we state informally the nice structure of Cσ that we
achieve.

The chain structure: The set Cσ contains g(a) vertices of X, say ordered (u1, . . . , ug(a)).
For each other vertex v ∈ Cσ, v is on some X-free (ui, ui+1)-walk in C. For each i ∈ [g(a)−1],
let V σ

i be the set of vertices on some X-free (ui, ui+1)-walk in C. Then V σ
i ̸= ∅. For each

i, j ∈ [g(a) − 1], i ̸= j, V σ
i ∩ V σ

j = ∅. The set {ui, ui+1} ∪ V σ
i is called a block of Cσ.

The boundary to C: The vertices u1, ug(a) are the boundary vertices of Cσ in C. That is,
no vertex of Cσ \ {u1, ur} has any neighbour in C \ Cσ.

Neighbours in S after removing a solution: Lastly, for any Fp-Deletion solution T of
size at most k + 1, in G − T , the N(Cσ) ∩ S ⊆ {x}.

ISAAC 2024

46:8 Uniform Polynomial Kernel for Deletion to K2,p Minor-Free Graphs

Figure 1 The structure of Cσ: The part with the grey background is a connected component C

of G − S. The blue edges connect x to its neighbours in C.

The structure of minors of small graphs in Fp restricted to Cσ. In the second step, we
exploit this structure of Cσ to find a vertex u ∈ Cσ ∩ X such that xu is an irrelevant edge.
To show that xu is irrelevant, we want to show that if there is a set of at most k vertices T

in G − xu such that (G − xu) − T is Fp-free, then G − T is also Fp-free. In particular we
will show that if G − T has any graph H on at most h vertices as a minor, and there is a
minor model of H in G − T that uses the edge xu, then there is also a minor model of H in
G − T that does not use the edge xu (Lemmas 4.14 and 4.16).

For doing the above, the key insight is to focus on the minor model of H restricted to
Cσ ∪ {x}.

4.2 Proof of Lemma 3.2 (Irrelevant edge)
The goal of this section is to prove Lemma 3.2.

▶ Lemma 3.2 (Irrelevant edge). Let (G, k) be an instance of Fp-Deletion and S be a
1-redundant solution in G. Let x ∈ S and C ∈ cc(G − S). If |N(x) ∩ C| ≥ degree-bound,
then there exists u ∈ N(x) ∩ C, such that xu is irrelevant. Moreover, such a vertex u can be
found in polynomial time.

An x-sequence is a sequence σ of a subset of vertices of X. If σ = (u1, . . . , ur) is an
x-sequence, for each i ∈ [r − 1], the set V σ

i contains each vertex that appears on some X-free
(ui, ui+1)-walk in C. An i-block of σ refers to the set {ui, ui+1} ∪ V σ

i . An r-block is simply
the vertex ur. By a block of σ we simply refer to some i-block of σ. By the endpoints of
an i-block, we refer to the vertices ui and ui+1. Further Cσ :=

⋃r−1
i=1 V σ

i ∪
⋃r

i=1{ui}. The
length of the x-good sequence σ is r.

▶ Definition 4.1 (x-good sequence). An x-sequence σ = (u1, . . . , ur) is called an x-good
sequence if the following holds.
1. For every i ∈ [r − 1], there is an X-free (ui, ui+1)-walk in C.
2. For every i ∈ [2, r − 1], {ui−1, ui+1} is a (ui, X)-cut.
3. For any Fp-Deletion set T in G of size at most k + 1, if x ̸∈ T , N(Cσ) ∩ (S \ T) = {x}.
4. No vertex of Cσ \ {u1, ur} has a neighbour in C \ Cσ.

W. Lochet and R. Sharma 46:9

▶ Lemma 4.2 (⋆). If σ = (u1, . . . , ur) is an x-good sequence then, for any minimal
Fp-Deletion solution T in G of size at most k + 1 that does not contain x, {x} ⊆
N(Cσ \ {u1, ur}) \ T ⊆ {x, u1, ur}. Also, there exists a minimum Fp-Deletion solution T ∗

in G such that |T ∗ ∩ Cσ| ≤ 3.

In Section 4.2.1 we show that if X is large then there is a large x-good sequence
(Lemma 4.3). In Section 4.2.2 we show how to find an irrelevant edge xu, where u ∈ σ, given
a large x-good sequence σ.

4.2.1 Finding a large x-good sequence
The goal of this section is to prove the following lemma.

▶ Lemma 4.3. If |X| ≥ p3 · (|S| · (p + k + 1) + 1) · g(a), then there exists an x-good sequence
of length g(a). In fact, such a sequence can be found in polynomial time.

We start by taking some natural steps towards the construction of some x-sequence
that has Property 1 of Definition 4.1. We later perform more steps towards proving other
properties of Definition 4.1. Let us define an ordered partition of X = (L0, . . . , Ll) inductively
as follows. Fix an arbitrary vertex x0 ∈ X and let L0 be {x0}. Now suppose L0, . . . , Li

are defined, we define Li+1 as the set of vertices of X \ {
⋃

j∈[0..i] Lj} that are reachable
from Li by X-free paths in G[C]. We next prove a series of claims about this partition
X = (L0, . . . , Ll). Observe that each vertex of C is on some X-free (Li, Li+1)-walk.

▶ Lemma 4.4 (⋆). For every i ∈ [0, l], |Li| ≤ p − 1.

Observe that, if |X| ≥ p3 · (|S| · (p + k + 1) + 1) · g(a), then l ≥ p2(|S| · (p + k + 1) + 1)g(a).
The next definition and the upcoming steps help to ensure Property 2 of Definition 4.1

(this is formally proved in Lemma 4.11). For every i ∈ [0, l − 1], we say that a vertex v ∈ Li

is dangerous if the set of vertices in X that are reachable from Li \ v by paths whose internal
vertex set is disjoint from (X \ Li+1), is exactly Li+1. Observe that for any vertex v ∈ Li

which is not dangerous, there is a vertex v′ in Li+1 such that v′ is not reachable from Li \ v

by an (X \ Li+1)-free path. Such a vertex v′ is called a witness of a non dangerous vertex v.

▶ Lemma 4.5 (⋆). The number of indices i ∈ [0, l] such that Li contains a dangerous vertex
is at most p − 1.

▶ Lemma 4.6 (⋆). For every i ∈ [0, l − 1], if no vertex of Li is dangerous, then |Li| ≤ |Li+1|.

▶ Lemma 4.7 (⋆). Let t = (|S| · (p + k + 1) + 1)g(a). There exists i ∈ [l − t] such that none
of Li, . . . , Li+t contains dangerous vertices and |Li| = |Li+s| for all s ∈ [t].

Without loss of generality, let L1, . . . , Lt denote the interval of (L0, . . . , Ll) from
Lemma 4.7 that do not contain a dangerous vertex, where t = (|S| · (p + k + 1) + 1)g(a).
Using this consecutive sequence of t sets, we will now define an x-sequence σ⋆ = (u1, . . . , ut)
of length t. The vertices uj in this sequence are defined inductively as follows. Let u1 be
any vertex of L1. Then for any j ∈ [t − 1], uj+1 is the witness for the non dangerous vertex
uj . Note that σ⋆ might not be an x-good sequence. In what follows, we prove some nice
properties of σ⋆ and then use them to refine σ⋆ to obtain an x-good sequence. We would like
to remark that this refinement procedure is required to prove Property 3 of Definition 4.1.
We begin by proving a claim which will lead to the refinement. We will first show that these
sets are disjoint.

ISAAC 2024

46:10 Uniform Polynomial Kernel for Deletion to K2,p Minor-Free Graphs

▶ Lemma 4.8. For every j ∈ [t − 1], (uj , uj+1) is a (V σ⋆

j , X)-cut in G[C].

Proof. For the sake of contradiction, suppose that this is not the case and let P be a minimal
(V σ⋆

j , u)-path for some u ∈ X, in G[C] − {uj , uj+1}. If u ∈ Ls for s ≤ j − 1, then this
contradicts the fact that uj+1 is in Lj+1, and if u ∈ Ls for s ≥ j + 2, then this contradicts
the fact that u is not in Lj+1. If u ∈ Lj , then this contradicts the fact that uj is the witness
of uj−1 and if u ∈ Lj+1, this contradicts the fact that uj+1 is the witness of uj . ◀

As a corollary of Lemma 4.8, we conclude the following.

▶ Lemma 4.9. For each i, j ∈ [t], where i ̸= j, we have V σ⋆

i ∩ V σ⋆

j = ∅.

Let S1 ⊆ S be the set of all those vertices s of S such that there exists I ⊆ [t] of size at
least k + p + 2 and for each b ∈ I, s is adjacent to some vertex of V σ⋆

b ∪ ub (or to ub when
b = t). Let S2 = (S \ S1) \ x. An index b ∈ [t] is called affected if there exists s ∈ S2 such
that s is adjacent to V σ⋆

b ∪ ub (or to ub when b = t). By the definition of S2, the number
of affected indices is at most |S2| · (k + p + 1) ≤ |S| · (k + p + 1). Since the length of σ⋆ is
t = (|S| · (p+k +1)+1)g(a) and the number of affected indices is at most |S|(p+k +1), there
exists an interval σ of σ⋆ of length g(a) such that none of the indices corresponding to the
subscripts of the vertices in σ are affected. Without loss of generality, let σ = (u1, . . . , ug(a)).
We will now show that σ has Property 3 of Definition 4.1.

▶ Lemma 4.10 (Property 3). Let T be some Fp-Deletion set of size at most k + 1 such
that x ̸∈ T . Then N(Cσ) ∩ (S \ T) = {x}.

Proof. By the definition of Cσ, N(Cσ) ∩ (S \ T) contains x. For the sake of contradiction,
say s ∈ S \ x belongs to N(Cσ) ∩ (S \ T). Since none of the indices corresponding to the
vertices in σ are affected, we conclude that s ∈ S1 \ T . Since |T | ≤ k + 1, σ is an interval of
σ⋆ and from Lemma 4.9, there exists at least p indices in [t] such that for each of these p

indices, say b, T ∩ (V σ⋆

b ∪ ub) = ∅ (or ub ̸∈ T , if b = t) and s is a neighbour of each of these p

sets V σ⋆

b ∪ ub. Then the graph induced by G − T on x, s and p of these sets contains K2,p as
a minor in G − T , which is a contradiction as T is an Fp-Deletion set. ◀

▶ Lemma 4.11 (Property 2). For every j ∈ [2, t − 1], {uj−1, uj+1} is a (uj , X)-cut in C.

Proof. Suppose there is a path in C between uj and some vertex u ∈ X different from
{uj−1, uj+1}. By definition of the Li’s, u belongs to either Lj−1, Lj or Lj+1. If u belongs
to Lj−1 or Lj , this contradicts the fact that uj is the witness of uj−1. If u belongs to Lj+1,
this contradicts the fact that u is the witness of a vertex different from uj in Lj , so we reach
a contradiction. ◀

▶ Lemma 4.12 (Property 4). (N(Cσ) \ {u1, ug(a)}) ∩ C ⊆ {u1, ug(a)}.

Proof. Fix i ∈ [g(a) − 1]. We will first show that no vertex of V σ
i has a neighbour in C \ Cσ.

For the sake of contradiction say v ∈ V σ
i is a neighbour of w ∈ C \ Cσ. Since w is on some

walk between two vertices of X \ {u1, . . . , ug(a)}, this implies that there is a path from v to
a vertex in X that does not intersect {u1, . . . , ug(a)}. This contradicts Lemma 4.8.

It remains to show that none of the vertices in {u2, . . . , ug(a)−1} have a neighbour in
C \ Cσ. We show this in two parts. Note from the construction of the sets Li, that for
any ui ∈ Li, its neighbours in X are either in Li−1, Li or Li+1. Because no vertex of Li

is dangerous and |Li−1| = |Li|, Li is an independent set and the only potential neighbour
of ui in Li−1 and Li+1 is ui−1 and ui+1 respectively. Thus we conclude that no vertex in
{u2, . . . , ug(a)−1} has a neighbour in (C \ Cσ) ∩ X.

W. Lochet and R. Sharma 46:11

To finish the proof we need to show that no vertex of {u2, . . . , ug(a)−1} has a neighbour
in (C \ Cσ) \ X. For the sake of contradiction, say ui, for i ∈ [2, g(a) − 1], has a neighbour
w ∈ (C \ Cσ) \ X. Since w is on some walk between two vertices of X \ {u1, . . . , ug(a)}, this
would imply a walk from a vertex of X \ {u2, . . . , ug(a)−1} to ui, i ∈ [2, g(a) − 1]. This either
contradicts that ui ∈ Li or that w ̸∈ Cσ. ◀

From the construction of the sequence (L0, . . . , Ll), observe that σ satisfies Property 1 of
Definition 4.1. This together with Lemmas 4.10, 4.11 and 4.12 and the fact that the length
of σ is g(a), proves Lemma 4.3.

4.2.2 Finding an irrelevant edge
The goal of this section is to complete the proof of Lemma 3.2 using Lemma 4.3. Let
σ = (u1, . . . , ur) be an x-good sequence. The graph induced by σ, denoted by G[σ], is a
2-boundaried graph G[Cσ] with boundary u1, ur. By G[σi] we denote the 2-boundaried graph
induced by the i-block of σ, with boundary ui, ui+1. Let Ĝ = G[σ] ∪ x be a boundaried
graph with boundary that is a subset of {x, u1, ur}. Let h′ = 2(h + 3). The folio-set of G[σ],
denoted by folio-set(G[σ]), is the collection of {∪i∈[r]{h′-folio(G[σi])}}, where r is the length
of σ.

In order to prove Lemma 3.2, it is enough to show that there is a vertex ured ∈ X, such
that for any T ⊆ V (G) of size at most k, if there exists a graph H on h vertices that is
a minor of G − T and whose minor model uses the edge xured, then there exists a minor
model of H in G − T that does not use the edge xu. From Lemma 4.2 and Lemma 23 of [12]
(stated below) this will follow from Lemma 4.14.

▶ Proposition 4.13 (Lemma 23, [12]). Let G1 and G2 be t-boundaried graphs and G = G1⊕G2.
A graph H is a minor of G if and only if there exist H1 ≤m G1 and H2 ≤m G2 such that
|V (H1)| ≤ |V (H)| + t, |V (H2)| ≤ |V (H)| + t and H ≤m H1 ⊕ H2.

▶ Lemma 4.14. If the length of σ is g(a), then one can find a vertex ured ∈ σ in polynomial
time such that the following holds. Let H be a 3-boundaried graph with boundary {x} ⊆ B ⊆
{x, u1, ur} of size at most h + 3 that is present as a (boundaried) minor in Ĝ − T , where
T ⊆ V (Ĝ) \ x and |T | ≤ 3. Then there exists a minor model of H in Ĝ − T that does not
use the edge xured.

▶ Proposition 4.15 ([12]). If ϕ is a minimal minor model of H in G, then every vertex in
the minor model has degree at most |V (H)| in the minor model.

Let H be a 3-boundaried graph with boundary {x} ⊆ B ⊆ {x, u1, ur} in G. Let ϕ be a
minimal minor model of H in G. Let ϕ′ = ϕ \ x and H ′ be the (boundaried) graph witnessed
by ϕ′. By Proposition 4.15, |V (H ′)| ≤ 2|V (H)|. Let ϕ1 and ϕ2 be two minor models of
some 2-boundaried graph H in G[σ]. Then ϕ2 is said to be σ-compatible with ϕ1, if for every
branch set of ϕ1 that has a vertex of σ, the corresponding branch set of ϕ2 also has a vertex
of σ. Recall that all the vertices of σ are the vertices of X and hence they are neighbours of
x. With the discussion above, it is not difficult to see that to prove Lemma 4.14, it is enough
to prove Lemma 4.16.

▶ Lemma 4.16. If the length of σ is g(a), then one can find a vertex ured ∈ σ in polynomial
time such that the following holds. Let H be a 2-boundaried graph with boundary B ⊆ {u1, ur}
of size at most h′ that is present as a (boundaried) minor in Ĝ − T , where T ⊆ V (G[σ]) and
|T | ≤ 3. Let ϕ be a minor model of H in Ĝ − T . Then there exists a minor model ϕ′ of H

in Ĝ − T that does not use the edge xured and is σ-compatible with ϕ.

ISAAC 2024

46:12 Uniform Polynomial Kernel for Deletion to K2,p Minor-Free Graphs

The following lemma will be crucially used in the arguments that follow. It depicts the
structure of minors in G[σ]. Let H be a 2-boundaried minor in G[σ]. Let ϕ be a minor model
of H in G[σ]. The blocks of σ used by ϕ refers to the collection of blocks of σ that have a
non-empty intersection with the vertices of the minor model ϕ. The crucial blocks used by
ϕ refers to those blocks which have a branch set of ϕ fully contained in it. Note that the
number of crucial blocks of ϕ is at most |V (H)|.

▶ Lemma 4.17 (⋆). Let H be a connected 2-boundaried minor in G[σ]. Let ϕ be some minor
model of H in G[σ]. Then there exists a minor model ϕ′ of H in G[σ] obtained from ϕ by
replacing the vertices in the non-crucial blocks used by ϕ with any arbitrary path between the
endpoints of the block.

▶ Definition 4.18 (Chunk partition of σ). Let σ be an x-good sequence. A chunk of σ is an
interval of σ. A chunk partition of σ is a partition of the blocks of σ into intervals. Let σ′

be a chunk of σ. Then folio-set(σ′) is a set containing the h′- folio(G[σi]), for each i-block in
σ′. A chunk partition of σ is called uniform if the folio-sets of all chunks in the partition
are same. In particular, for any j ∈ [a], a chunk partition of σ is called j-uniform if it is
uniform and the size of the folio-set of each chunk is exactly j.

▶ Lemma 4.19 (⋆, Finding an i-uniform chunk partition). Let σ be an x-good sequence and let
the size of the folio-set(σ) be exactly i. If the length of σ is g(i) then there exists an interval
of σ, say σ′, which admits a j-uniform chunk partition of length 18h′, for some j ∈ [i].

▶ Lemma 4.20 (⋆, Replacement Lemma). Let σ be an x-good sequence and χ = (χ1, . . . , χs)
be an i-uniform chunk partition of σ, for some i ∈ [a]. Let s ≥ h′. Let H be a 2-boundaried
minor in G[σ] of size at most h′. Then H is present as a 2-boundaried minor in every
graph that is induced on any h′ sized interval of χ. Moreover, the later minor model of H is
σ-compatible with the former minor model of H.

▶ Lemma 4.21 (⋆). Let σ be an x-good sequence of length g(a) that admits an i-uniform
chunk partition, for some i ∈ [a], of length 18h′. Then Lemma 4.16 holds.

From Lemmas 4.21 and 4.19, Lemma 4.16 follows. Lemma 4.16 together with Lemma 4.3
finishes the proof of Lemma 3.2.

5 Conclusion

In this article we showed that F-Deletion where all graphs in F are connected and F
contains K2,p admits a uniform polynomial kernel of size O(k10). This result is the third
example where F-Deletion admits a uniform polynomial kernel; the first two being the
Treedepth-η Deletion and the case when F contains θp. The most interesting aspect of
our result is defining and obtaining an extremely structured set of vertices that have a small
effective boundary. This structure is exploited to reduce the degree of the vertices to kO(1).

We conclude with some intriguing open questions. Our result does not extend to the case
when F is allowed to contain disconnected graphs. The first question is: can one obtain a
uniform polynomial kernel when F contains K2,p and other possibly disconnected graphs? In
fact, handling disconnected graphs in the kernelization algorithm of [12] is one point which
introduces non-uniform bounds. Can this step of the kernelization algorithm of [12] be made
to work without introducing non-uniformity? Or even more specifically, can we find some
non-trivial families F which contain disconnected graphs but admit uniform polynomial
kernels? Lastly, can we characterize the families F that admit a uniform polynomial kernel?

W. Lochet and R. Sharma 46:13

As long as we do not resolve the last question completely, one would be interested in finding
more and more non-trivial families for which the problem admits a uniform polynomial
kernel.

References

1 Isolde Adler, Martin Grohe, and Stephan Kreutzer. Computing excluded minors. In Shang-
Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages 641–650.
SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347153.

2 Hans L Bodlaender, Fedor V Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and
Dimitrios M Thilikos. (Meta) kernelization. Journal of the ACM (JACM), 63(5):1–69, 2016.
doi:10.1145/2973749.

3 Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem. Journal
of the ACM (JACM), 63(5):1–65, 2016. doi:10.1145/2820609.

4 Guantao Chen, Yoshimi Egawa, Ken-ichi Kawarabayashi, Bojan Mohar, and Katsuhiro Ota.
Toughness of-minor-free graphs. The Electronic Journal of Combinatorics [electronic only],
18(1):Research–Paper, 2011.

5 Guantao Chen, Laura Sheppardson, Xingxing Yu, and Wenan Zang. The circumference of a
graph with no K3,t-minor. Journal of Combinatorial Theory, Series B, 96(6):822–845, 2006.
doi:10.1016/J.JCTB.2006.02.006.

6 Maria Chudnovsky, Bruce Reed, and Paul Seymour. The edge-density for K2,t minors. Journal
of Combinatorial Theory, Series B, 101(1):18–46, 2011. doi:10.1016/J.JCTB.2010.09.001.

7 Youssou Dieng. Décomposition arborescente des graphes planaires et routage compact. PhD
thesis, Bordeaux 1, 2009.

8 Reinhard Diestel. Graph theory. Springer Publishing Company, Incorporated, 2018.
9 Guoli Ding. Graphs without large K2,n-minors. arXiv preprint, 2017. arXiv:1702.01355.

10 Mark N Ellingham, Emily A Marshall, Kenta Ozeki, and Shoichi Tsuchiya. A characterization
of K2,4-minor-free graphs. SIAM Journal on Discrete Mathematics, 30(2):955–975, 2016.
doi:10.1137/140986517.

11 Fedor V Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket Saurabh.
Hitting forbidden minors: Approximation and kernelization. SIAM Journal on Discrete
Mathematics, 30(1):383–410, 2016. doi:10.1137/140997889.

12 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar f-deletion:
Approximation, kernelization and optimal FPT algorithms. In 53rd Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23,
2012, pages 470–479. IEEE Computer Society, 2012. See http://www.ii.uib.no/~daniello/
papers/PFDFullV1.pdf for the full version. doi:10.1109/FOCS.2012.62.

13 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory
of parameterized preprocessing. Cambridge University Press, 2019.

14 Archontia C Giannopoulou, Bart MP Jansen, Daniel Lokshtanov, and Saket Saurabh. Uniform
kernelization complexity of hitting forbidden minors. ACM Transactions on Algorithms
(TALG), 13(3):1–35, 2017. doi:10.1145/3029051.

15 Bart M. P. Jansen and Michal Wlodarczyk. Lossy planarization: a constant-factor approximate
kernelization for planar vertex deletion. In Stefano Leonardi and Anupam Gupta, editors,
STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy,
June 20 - 24, 2022, pages 900–913. ACM, 2022. doi:10.1145/3519935.3520021.

16 Bart MP Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms, pages 1802–1811. SIAM, 2014.

ISAAC 2024

http://dl.acm.org/citation.cfm?id=1347082.1347153
https://doi.org/10.1145/2973749
https://doi.org/10.1145/2820609
https://doi.org/10.1016/J.JCTB.2006.02.006
https://doi.org/10.1016/J.JCTB.2010.09.001
https://arxiv.org/abs/1702.01355
https://doi.org/10.1137/140986517
https://doi.org/10.1137/140997889
http://www.ii.uib.no/~daniello/papers/PFDFullV1.pdf
http://www.ii.uib.no/~daniello/papers/PFDFullV1.pdf
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1145/3029051
https://doi.org/10.1145/3519935.3520021

46:14 Uniform Polynomial Kernel for Deletion to K2,p Minor-Free Graphs

17 Ken-ichi Kawarabayashi. Planarity allowing few error vertices in linear time. In 2009 50th
Annual IEEE Symposium on Foundations of Computer Science, pages 639–648. IEEE, 2009.
doi:10.1109/FOCS.2009.45.

18 John M Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. doi:
10.1016/0022-0000(80)90060-4.

19 Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica,
62(3-4):807–822, 2012. doi:10.1007/S00453-010-9484-Z.

20 Joseph Samuel Myers. The extremal function for unbalanced bipartite minors. Discrete
mathematics, 271(1-3):209–222, 2003. doi:10.1016/S0012-365X(03)00051-7.

21 Katsuhiro Ota and Kenta Ozeki. Spanning trees in 3-connected K3,t-minor-free graphs. Journal
of Combinatorial Theory, Series B, 102(5):1179–1188, 2012. doi:10.1016/J.JCTB.2012.07.
002.

22 Neil Robertson and PD Seymour. Graph minors. Xlll. The disjoint paths problem. J. Combin.
Theory Ser. B, 63:65–110, 1995.

23 Noah Streib and Stephen J Young. Dimension and structure for a poset of graph minors.
University of Louisville Department of Mathematics, 2010.

https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1007/S00453-010-9484-Z
https://doi.org/10.1016/S0012-365X(03)00051-7
https://doi.org/10.1016/J.JCTB.2012.07.002
https://doi.org/10.1016/J.JCTB.2012.07.002

Complexity Framework for Forbidden Subgraphs II:
Edge Subdivision and the “H”-Graphs
Vadim Lozin #

University of Warwick, Coventry, UK

Barnaby Martin #

Durham University, UK

Sukanya Pandey #

Utrecht University, The Netherlands

Daniël Paulusma #

Durham University, UK

Mark Siggers #

Kyungpook National University, Daegu, Republic of Korea

Siani Smith #

University of Bristol, UK
Heilbronn Institute for Mathematical Research, Germany

Erik Jan van Leeuwen #

Utrecht University, The Netherlands

Abstract

For a fixed set H of graphs, a graph G is H-subgraph-free if G does not contain any H ∈ H as a (not
necessarily induced) subgraph. A recent framework gives a complete classification on H-subgraph-free
graphs (for finite sets H) for problems that are solvable in polynomial time on graph classes of
bounded treewidth, NP-complete on subcubic graphs, and whose NP-hardness is preserved under
edge subdivision. While a lot of problems satisfy these conditions, there are also many problems
that do not satisfy all three conditions and for which the complexity in H-subgraph-free graphs is
unknown. We study problems for which only the first two conditions of the framework hold (they are
solvable in polynomial time on classes of bounded treewidth and NP-complete on subcubic graphs,
but NP-hardness is not preserved under edge subdivision). In particular, we make inroads into the
classification of the complexity of four such problems: Hamilton Cycle, k-Induced Disjoint
Paths, C5-Colouring and Star 3-Colouring. Although we do not complete the classifications,
we show that the boundary between polynomial time and NP-complete differs among our problems
and also from problems that do satisfy all three conditions of the framework, in particular when we
forbid certain subdivisions of the “H”-graph (the graph that looks like the letter “H”). Hence, we
exhibit a rich complexity landscape among problems for H-subgraph-free graph classes.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Graph algorithms analysis; Theory of computation → Problems, reductions and completeness

Keywords and phrases forbidden subgraph, complexity dichotomy, edge subdivision, treewidth

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.47

Related Version Full Version: https://doi.org/10.48550/arXiv.2211.14214

Acknowledgements We are grateful to Matthew Johnson, Jelle J. Oostveen and Hans Bodlaender
for useful discussions.

© Vadim Lozin, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Mark Siggers, Siani Smith, and
Erik Jan van Leeuwen;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 47; pp. 47:1–47:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:v.lozin@warwick.ac.uk
https://orcid.org/0000-0003-2464-7389
mailto:barnaby.d.martin@durham.ac.uk
https://orcid.org/0000-0002-4642-8614
mailto:s.pandey1@uu.nl
https://orcid.org/0000-0001-5728-1120
mailto:daniel.paulusma@durham.ac.uk
https://orcid.org/0000-0001-5945-9287
mailto:mhsiggers@knu.ac.kr
https://orcid.org/0000-0001-7070-9021
mailto:siani.smith@bristol.ac.uk
https://orcid.org/0000-0003-0797-0512
mailto:e.j.vanleeuwen@uu.nl
https://orcid.org/0000-0001-5240-7257
https://doi.org/10.4230/LIPIcs.ISAAC.2024.47
https://doi.org/10.48550/arXiv.2211.14214
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Complexity Framework for Forbidden Subgraphs II

1 Introduction

Graph containment relations, such as the (topological) minor and induced subgraph relations,
have been extensively studied both from a graph-structural and algorithmic point of view. In
this paper, we focus on the subgraph relation. If a graph H can be obtained from a graph G

by a sequence of vertex deletions and edge deletions, then G contains H as a subgraph;
otherwise, G is H-subgraph-free. For a set of graphs H, a graph G is H-subgraph-free if G

is H-subgraph-free for every H ∈ H; if H = {H1, . . . , Hp}, then we also write that G is
(H1, . . . , Hp)-subgraph-free. Graph classes closed under deletion of edge and vertices are
called monotone [2, 8], and every monotone graph class G can be characterized by a unique
(and possibly infinite) set of forbidden induced subgraphs HG . We determine the complexity
of two connectivity problems Hamilton Cycle and k-Induced Disjoint Paths, and two
colouring problems C5-Colouring and Star 3-Colouring on H-subgraph-free graphs for
various families H. We focus on families H consisting of certain subdivided “H”-graphs Hi,
where H1 looks like the letter “H” (see Fig. 1 for the definition of the graphs Hi). At first
sight, these problems appear to have not much in common. Moreover, the graphs Hi might
also seem arbitrary. However, these problems turn out to be well suited for a combined study,
as they fit in a more general framework, in which the graphs Hi play a crucial role.

Context

If a graph problem is computationally hard, it is natural to restrict the input to some special
graph class. Ideally we would like to know exactly which properties P such a graph class G
must have such that any hard graph problem that satisfies some conditions C becomes easy
on G. The distinction between “easy” and “hard” means, in this paper, P versus NP-complete,
but could also mean P versus ΠP

2k-complete [13], or almost-linear versus at-least-quadratic [20].
We first discuss some natural conditions C.

A graph is subcubic if every vertex has degree at most 3, or equivalently if is K1,4-subgraph-
free, where K1,4 denotes the 5-vertex star. For p ≥ 1, the p-subdivision of an edge e = uv of
a graph G replaces e by a path of p + 1 edges with endpoints u and v. The p-subdivision of a
graph G is the graph obtained from G after p-subdividing each edge; see also Fig. 1. For
a graph class G and an integer p, we let Gp be the class consisting of the p-subdivisions of
the graphs in G. A graph problem Π is hard under edge subdivision of subcubic graphs if for
every j ≥ 1 there is an ℓ ≥ j such that: if Π is hard for the class G of subcubic graphs, then
Π is hard for Gℓ. We can now say that a graph problem Π has property:

C1 if Π is easy for every graph class of bounded tree-width;
C2 if Π is hard for subcubic graphs (or equivalently, K1,4-subgraph-free graphs);
C3 if Π is hard under edge subdivision of subcubic graphs;
C4 if Π is hard for planar graphs;
C5 if Π is hard for planar subcubic graphs.

We say that Π is a C123-problem if it satisfies C1, C2 and C3, while for example Π is a
C1̸3-problem if it satisfies C1 but not C3, and so on.

Classical results of Robertson and Seymour [29] yield the following two meta-classifications.
For all sets H, a C14-problem Π is easy on H-minor-free graphs if H contains a planar graph,
or else it is hard. For all sets H, a C15-problem Π is easy on H-topological-minor-free graphs
if H contains a planar subcubic graph, or else it is hard. No meta-classification for the
induced subgraph relation exists (apart from a limited one [20] that is a direct consequence
of the treewidth dichotomy [26]). However, for the subgraph relation, known results on
Independent Set [3], Dominating Set [3], Long Path [3], Max-Cut [22] and List

V. Lozin et al. 47:3

Figure 1 [7] Left: A graph in S: the graph S3,3,3 + P2 + P3 + P4, where S3,3,3 is the 2-subdivision
of the claw K1,3. Right: the “H”-graph H1 and the graph H3; for i ≥ 2, the graph Hi (i ≥ 2) is
obtained from H1 by (i − 1)-subdividing the edge that joins the middle vertices of the two P3s.

Colouring [17] for monotone graph classes that are finitely defined (so, where the associated
set of forbidden subgraphs H is finite) were recently unified and extended in [20]. This led
to a new meta-classification, where the set S consists of all graphs, in which every connected
component is either a path or a subcubic tree with exactly one vertex of degree 3 (see Fig. 1).

▶ Theorem 1 ([20]). For any finite set of graphs H, a C123-problem Π is easy on H-
subgraph-free graphs if H contains a graph from S, or else it is hard.

The easy part of Theorem 1 holds because a class of H-subgraph-free graphs satisfies C1 if
and only if H contains a graph from S [28]. The hard part follows from combining C2 and
C3, as discussed below. In [20], 20 C123-problems were identified on top of the five above.

Our Focus

Many graph problems are not C123. See [6] and [7] for partial complexity classifications
of the C̸123-problems Subgraph Isomorphism and Steiner Forest, respectively, for
H-subgraph-free graphs and [21] for partial complexity classifications of the C1̸23-problems
(Independent) Feedback Vertex Set, Connected Vertex Cover, Colouring (see
also [18]) and Matching Cut for H-subgraph-free graphs (note that if a problem does
not satisfy C2, then C3 is implied). Here, we consider the question: Can we classify the
complexity of C12̸3-problems on monotone graph classes?

Why the Graphs Hi

All C1-problems are easy on H-subgraph-free graphs if H has a graph from S [28]. The
infinite set M = {C3, C4, . . . , K1,4,H1,H2, . . .} of minimal graphs not in S is a maximal
antichain in the poset of connected graphs under the subgraph relation. Conditions C2 and
C3 ensure that for every finite set M′, C123-problems are hard on M′-subgraph-free graphs
if M′ ⊆ M. If C3 is not satisfied, this is no longer guaranteed. Hence, a natural starting
point to answer our research question is to determine for which finite subsets M′ ⊆ M,
C12-problems are still easy on M′-subgraph-free graphs. So consider a C12-problem Π
that is not C3. Let M′ be a finite subset of M. If M′ = {K1,4}, then Π is hard for
M′-subgraph-free graphs due to C2. Hence, M′ must contain at least one Cs or Hi. The
girth of a graph (that is not a forest) is the length of a shortest cycle in it. We say that Π
has property:

C2’ if for all g ≥ 3, Π is hard for subcubic graphs of girth at least g.

A graph is subcubic and of girth g ≥ 4 if and only if it is (K1,4, C3, . . . , Cg−1)-subgraph-
free. So if Π is not only C12, but even a C12’-problem, then Π is hard on M′-subgraph-free
graphs unless M′ contains some Hi. This makes studying the graphs Hi even more pressing.

ISAAC 2024

47:4 Complexity Framework for Forbidden Subgraphs II

s s ss ss s ss
Figure 2 The tree T .

Our Testbed Problems

We take, as mentioned, the following four testbed problems:
(i) Hamilton Cycle, which is to decide if a graph G has a Hamiltonian cycle, i.e., a

cycle through all vertices of G. This problem satisfies C1 [4], and it is NP-complete
even for bipartite subcubic graphs of girth g, for every g ≥ 3 [2]. Hence, it is even a
C12’-problem.

(ii) k-Induced Disjoint Paths, which is to decide, given a graph G and pairwise disjoint
vertex pairs (s1, t1), (s2, t2), . . . (sk, tk) for some fixed k ≥ 2, if G has k mutually induced
si-ti-paths P i, i.e., P 1, . . . , P k are pairwise vertex-disjoint and there are no edges
between vertices from different P i and P j . For every k ≥ 2, this problem satisfies C1
due to Courcelle’s Theorem [10] and also satisfies C2 [24]. Hence, it is a C12-problem
for all k ≥ 2.

(iii) C5-Colouring, which is to decide if a graph G has a homomorphism (C5-colouring)
to the 5-cycle C5 , i.e., a mapping f : V (G) → V (C5) such that for every uv ∈ E(G), it
holds that f(u)f(v) ∈ E(C5). The problem satisfies C1 [12] and C2 [15]. Hence, it is a
C12-problem.

(iv) Star 3-Colouring, which is to decide if a graph G has a star 3-colouring, i.e.,
a mapping f : V (G) → {1, 2, 3} such that for every i, the set Ui of vertices of G

mapped to i is independent (so, f is a 3-colouring), and moreover, U1 ∪ U2, U1 ∪ U3,
U2 ∪ U3 all induce a disjoint union of stars. The problem satisfies C1 due to Courcelle’s
Theorem [10], and it is NP-complete for bipartite planar subcubic graphs of girth at
least g, for every g ≥ 3 [31]. Hence, it is even a C12’-problem.

We do not know if k-Induced Disjoint Paths and C5-Colouring are C12’, even though
C5-Colouring is NP-complete for graphs of maximum degree 6 · 513 and girth at least g,
for all g ≥ 3 (see Section 2.1).

All four problems violate C3. For p ≥ 3, C5-Colouring and Star 3-Colouring
become true (all yes-instances) under p-subdivision, while Hamilton Cycle becomes false
(all no-instances, unless we started with a cycle), and k-Induced Disjoint Paths reduces
to the polynomial-time solvable problem k-Disjoint Paths [30, 33], which only requires
the paths in a solution to be pairwise vertex-disjoint. See Section 3. We also note the
following. First, when k is part of the input, Disjoint Paths and Induced Disjoint
Paths are C123-problems [20]. Second, instead of C5-Colouring we could have considered
C2i+1-Colouring, which is a C12-problem for all i ≥ 2 [12, 15]. Third, Star-k-Colouring
does not satisfy C2 for large k, as all subcubic graphs are star 10-colourable (as shown in
Section 3).

Our Results

We show that the complexity of our four problems differ from each other and also from
C123-problems, when we forbid certain graphs Hi. We first show that C1-problems, and
thus C12-problems, are easy on (Hℓ,Hℓ+1, . . .)-subgraph-free graphs for every ℓ ≥ 1 and on
(Hi,H2i,H3i, . . .)-subgraph-free graphs for every i ≥ 1 (so, in particular if we forbid all even
Hi), as all these graph classes have bounded treewidth, as we show in Section 4. In contrast,

V. Lozin et al. 47:5

any hard problem for bipartite graphs in which one partition class has maximum degree 2 is
hard on (H1,H3, . . .)-subgraph-free graphs (so, if we forbid all odd Hi): every path between
vertices of degree at least 3 has even length. The NP-hardness reduction in [1] shows that
Star 3-Colouring is such a problem (see also Section 2.2).

The above results immediately give us Theorem 5. For the other three problems, we prove
additional results. In Section 5 we show that Hamilton Cycle is polynomial-time solvable
for Hℓ-subgraph-free graphs if ℓ = 3 by doing this for the superclass of T -subgraph-free graphs
(T is the tree shown in Figure 2). For ℓ ∈ {1, 2} this was proven in [25]. On a side note, there
exist trees T ∗ for which Hamilton Cycle is NP-complete over T ∗-subgraph-free graphs.
We refer to [23, 25] for examples of such trees T ∗, which are not subdivided “H”-graphs Hi.

In Section 6 we prove that for all k ≥ 2, k-Induced Disjoint Paths is polynomial-
time solvable for Hℓ-subgraph-free graphs for ℓ ∈ {1, 2}, but NP-complete for subcubic
(H4, . . . ,Hℓ)-subgraph-free graphs for all ℓ ≥ 4. For the first result, we first apply the
algorithm for k-Disjoint Paths [30]. If this yields a solution that is not mutually induced,
we apply a reduction rule and repeat the process on a smaller instance. For the second result,
we carefully adapt the proof of [24] that shows that the problem of deciding if a subcubic
graph contains an induced cycle between two given degree 2-vertices is NP-complete.

In Section 7 we determine all C5-critical H3-subgraph-free graphs, which are not C5-
colourable unlike every proper subgraph of them. We show that this leads to a polynomial-time
algorithm for H3-subgraph-free graphs that is even certifying. In contrast, the problem is
NP-complete for the “complementary” class of (H1,H2,H4,H5,H7,H8, . . .)-subgraph-free
graphs (see Section 2.3).

The above results yields the following state-of-the-art summaries:

▶ Theorem 2. Hamilton Cycle is polynomial-time solvable for (Hℓ,Hℓ+1, . . .)-subgraph-free
graphs (ℓ ≥ 1), for (Hi,H2i,H3i, . . .)-subgraph-free graphs (i ≥ 1) and for Hℓ-subgraph-free
graphs (ℓ ∈ {1, 2, 3}).

▶ Theorem 3. For all k ≥ 2, k-Induced Disjoint Paths is polynomial-time solvable for
Hℓ-subgraph-free graphs (ℓ ∈ {1, 2}), for (Hℓ,Hℓ+1, . . .)-subgraph-free graphs (ℓ ≥ 1) and for
(Hi,H2i,H3i, . . .)-subgraph-free graphs (i ≥ 1), but NP-complete for subcubic (H4, . . . ,Hℓ)-
subgraph-free graphs (ℓ ≥ 4).

▶ Theorem 4. C5-Colouring is polynomial-time solvable for H3-subgraph-free graphs, for
(Hℓ,Hℓ+1, . . .)-subgraph-free graphs (ℓ ≥ 1) and for (Hi,H2i,H3i, . . .)-subgraph-free graphs
(i ≥ 1), but NP-complete for (H1,H2,H4,H5,H7,H8, . . .)-subgraph-free graphs.

▶ Theorem 5. Star 3-Colouring is polynomial-time solvable for (Hℓ,Hℓ+1, . . .)-subgraph-
free graphs (ℓ ≥ 1) and (Hi,H2i,H3i, . . .)-subgraph-free graphs (i ≥ 1), but NP-complete for
(H1,H3,H5 . . .)-subgraph-free graphs.

We note that the complexity classifications above indeed differ except perhaps for Hamilton
Cycle and k-Induced Disjoint Paths. Hence, Theorems 2–5 give clear evidence of a
rich landscape for C12-problems on H-subgraph-free graphs. In Section 8 we discuss open
problems resulting from our study.

2 Some Basic Results

In this section, we provide further details for some statements made in Section 1.

ISAAC 2024

47:6 Complexity Framework for Forbidden Subgraphs II

2.1 C5-Colouring for Bounded Degree and Large Girth
The k-Colouring problem is to decide if a graph G has a k-colouring, which is a mapping
c : V (G) → {1, . . . , k} such that c(u) ̸= c(v) for any two adjacent vertices u and v of G. We
need a result of Emden-Weinert, Hougardy and Kreuter:

▶ Theorem 6 ([14]). For all k ≥ 3 and all g ≥ 3, k-Colouring is NP-complete for graphs
with girth at least g and with maximum degree at most 6k13.

We now repeat the proof of Chudnovsky et al. [9], which comes down to replacing each
edge of an input graph G of 5-Colouring, which we may assume has girth at least g and
maximum degree at most 6 · 513 due to Theorem 6, by a path of length 3. This yields a new
graph G′ of girth at least g, such that G and G′ have the same maximum degree. Hence, we
derive the following result.

▶ Proposition 7. For every g ≥ 3, C5-Colouring is NP-complete for graphs with girth at
least g and with maximum degree at most 6 · 513.

2.2 The Standard NP-hardness Reduction to Star-3-Colouring
For reference, we explain the gadget from Albertson et al. [1] that yields the following result.

▶ Theorem 8 ([1]). Star 3-Colouring is NP-complete for planar bipartite graphs in which
one partition class has size 2.

Proof. Reduce from 3-Colourability which is known to be NP-complete even for planar
graphs [11]. Let G be a planar graph. Replace each edge e by three new vertices ae, be,
ce that are made adjacent only to the two end-vertices of e in G. Let G′ be the resulting
graph. Then every vertex of V (G′) \ V (G) has degree 2 in G. Moreover, G′ is planar and
bipartite with partition classes V (G′) \ V (G) and V (G). It remains to observe that G has a
3-colouring if and only if G′ has a star 3-colouring. ◀

2.3 The Standard NP-hardness Reduction to C5-Colouring
We make the following observation.

▶ Proposition 9. C5-Colouring is NP-complete for (H1,H2,H4,H5, . . .)-subgraph-free
graphs.

Proof. It is well known [19] and easy to see that there is a reduction from K5-Colouring,
which is to decide if a graph has a K5-colouring, that is, a homomorphism from G to the
complete graph K5 on five vertices. This problem is well known to be NP-complete [19]. Let
G be a graph, and let G′ be the 2-subdivision of G. We note that G′ is (H1,H2,H4,H5, . . .)-
subgraph-free (but may contain many instances of Hℓ where ℓ = 0 mod 3). Moreover, G

has a K5-colouring if and only if G′ has a C5-colouring. ◀

3 The Four Testbed Problems Do Not Satisfy C3

In this section we show that none of our four problems satisfy C3. We use the following
notation in this section: for a graph G and an integer p ≥ 1, let Gp be the p-subdivision of
G (which we recall is the graph obtained from G after subdividing each edge of G exactly p

times).

V. Lozin et al. 47:7

▶ Proposition 10. Hamilton Cycle does not satisfy C3.

Proof. We observe that for every graphs G and every p ≥ 1, Gp is a no-instance of Hamilton
Cycle unless G was a cycle. ◀

▶ Proposition 11. k-Induced Disjoint Paths does not satisfy C3.

Proof. Under any kind of subdivision, k-Induced Disjoint Paths reduces to k-Disjoint
Paths over the same graph, which is in P for all k ≥ 2, as shown in [33] for k = 2 and in [30]
for every k ≥ 3. ◀

▶ Proposition 12. C5-Colouring does not satisfy C3.

Proof. We first prove that for all p ≥ 4, and for all x, y ∈ V (C5), there is a walk of length
p in C5 from x to y. First let p = 4. To walk a distance of zero: walk two forward then
two back. To walk at distance one (without loss of generality) forward: walk four backward.
To walk at distance two (without loss of generality) forward: walk one back, one forward,
and two forward. Now let p = 5. To walk a distance of zero: walk five forward. To walk
at distance one (without loss of generality) forward: walk two forward, two back and one
forward. To walk at distance two (without loss of generality) forward: walk one back, one
forward, and three back. Finally, let p ≥ 6. Keep moving one forward then one back until
one of the two previous cases applies.

Now let G be a graph. We give each vertex in G a label from {1, . . . , 5}. From the above
it follows that for every p ≥ 3, we can extend c to a homomorphism from Gp to C5; in other
words, Gp is a yes-instance of C5-Colouring. ◀

▶ Proposition 13. Star 3-Colouring does not satisfy C3.

Proof. Let G be a graph. We show that for all p ≥ 3, Gp is a yes-instance of Star 3-
Colouring. We do this by giving each vertex in G a label from {1, 2, 3}. The resulting
labelling c might not be a 3-colouring, but this is not important: we will show that we can
extend c to a star 3-colouring of Gp as follows.

Consider an edge e in G and let P be the corresponding path (of p + 1 edges) in Gp. It
suffices to give two star 3-colourings of this path, so that the first three vertices are distinct
colours and the last three vertices are distinct colours: one in which the first and last vertices
are the same colour and one in which they are a different colour. Let us identify a 3-colouring
of P by a sequence of length p + 1 over {1, 2, 3}. If p + 1 is a multiple of three, then use
(123)

p+1
3 for the different colour and (123)

p+1
3 −1231 for the same colour. If p + 1 is 1 mod 3,

then use (123)
p
3 −12132 for the different colour and (123)

p
3 1 for the same colour. If p + 1 is

2 mod 3, then use (123)
p−1

3 12 for the different colour and (123)
p−1

3 21 for the same colour. ◀

We finish this section with another small observation. Namely, we cannot generalise our
result for Star 3-Colouring to Star k-Colouring for any k ≥ 3, as for large k the
problem no longer satisfies C2. In fact, we prove even a stronger statement. A k-colouring of
a graph G is said to be injective if for every vertex u ∈ V (G), every neighbour of u is assigned
a different colour, or in other words, the union of any two colour-classes induce a disjoint
union of isolated vertices and edges. So, any injective k-colouring is a star k-colouring (but
the reverse does not necessarily hold, for instance the P3 is star 2-colourable but has no
injective 2-colouring).

▶ Proposition 14. For k ≥ 10, all subcubic graphs have an injective 10-colouring.

ISAAC 2024

47:8 Complexity Framework for Forbidden Subgraphs II

Proof. It suffices to prove the statement for k = 10. We do this by induction. For the
base case, a graph with one vertex is star 10-colourable. Now take a vertex v in a graph G

and assume G \ {v} has an injective 10-colouring. As G is subcubic, v has at most three
neighbours, each of which have at most two more neighbours each. Thus there are at most
nine vertices whose colour we wish to avoid. As we have ten colours in total, this means that
we can safely colour v. ◀

4 Bounded Treewidth Results

A graph G contains H as a minor if G can be modified to H by a sequence of vertex deletions,
edge deletions and edge contractions; if not, then G is H-minor-free.

▶ Proposition 15. For every ℓ ≥ 1, the class of (Hℓ,Hℓ+1, . . .)-subgraph-free graphs has
bounded treewidth.

Proof. For ℓ ≥ 1, a (Hℓ,Hℓ+1, . . .)-subgraph-free graph is Hℓ-minor-free. For every forest F ,
all F -minor-free graphs have pathwidth, and thus treewidth, at most |V (F)| − 2 [5]. ◀

▶ Proposition 16. For every n ≥ 1, the class of (Hn,H2n,H3n, . . .)-subgraph-free graphs has
bounded treewidth.

Proof. If a class of graphs has unbounded treewidth, then every grid appears as a minor in
some graph [29]. Let us explain the argument for n = 2 first. We consider that the 3 × 3-grid
appears as a minor in some graph G in our class and let f be the minor map from G to the
3 × 3-grid. Consider the three vertices in the 3 × 3-grid that form the central row as u, v, w

(in succession). Choose u′ ∈ f−1(u), v′ ∈ f−1(v), w′ ∈ f−1(w) so that u′, v′, w′ have degree
greater than 2, noting that such vertices must exist. If the distance in G between u′ and v′

is even, of length 2i, then there is an H2i subgraph in G with central path from u′ to v′. If
the distance in G between v′ and w′ is even, of length 2i, then there is an H2i subgraph in G

with central path from v′ to w′. Else, there is a path of even length 4i from u′ to w′ and
then there is an H4i subgraph in G with central path from u′ to w′.

For (Hn,H2n, . . .)-subgraph-free graphs, we consider the Abelian group (Z/nZ). The
Davenport constant of an Abelian group G is the minimum d so that any sequence of elements
of G contains a non-empty consecutive subsequence of zero-sum (that adds to the identity
element 0). It is known that for (Z/nZ) the Davenport constant is n (see page 24 in [16]). Take
an (n+1)×(n+1)-grid and consider some row not at the top or bottom of the grid with vertices
w1, . . . , wn+1 in succession. Consider some w′

1 ∈ f−1(w1), . . . , w′
n+1 ∈ f−1(wn+1) where f is

the minor map as before, and the distances xi between w′
i+1 and w′

i. Using the Davenport
constant, there is a subsequence xj , . . . , xj′ (j′ > j) such that xj + . . . + xj′ = 0 mod n. Now
choose w′

j , . . . , w′
j′+1 as the central path in some Hin. ◀

5 Hamilton Cycle

In this section we show Theorem 17. Due to the page limit we have omitted the proofs of
some of the claims in the proof of Theorem 17.

▶ Theorem 17. Hamilton Cycle is polynomial-time solvable for T -subgraph-free graphs.

Proof. Let G be a T -subgraph-free graph. We call vertices of degree 2 in G white and vertices
of degree at least 3 black. The black graph is a subgraph of G induced by black vertices and
a black component is a connected component in the black graph.

V. Lozin et al. 47:9

We first describe some helpful rules to solve the problem and a set of reductions simplifying
the input graph, i.e. reductions transforming G into a graph G′ that has fewer edges and/or
vertices and that has a Hamiltonian cycle if and only if G has. We emphasize that by deleting
an edge or a vertex from an H-subgraph-free graph, we obtain an H-subgraph-free graph
again.

We start with some obvious rules:
(R1) if the graph has vertices of degree 0 or 1, then stop: G has no Hamiltonian cycle.
(R2) if the graph contains a vertex adjacent to more than two white vertices, then stop: G

has no Hamiltonian cycle.
(R3) if the graph is disconnected, then stop: G has no Hamiltonian cycle.
(R4) if the graph contains a vertex v adjacent to exactly two white vertices, then delete the

edges connecting v to all other its neighbours (if there are any).
Now we introduce a reduction applicable to a graph G containing an induced subgraph shown
on the left in Figure 3, in which vertices a, b, c have degree 3 in G. The reduction depends
on the degree of x. If the degree of x is also 3, the reduction consists in deleting the edges ab

and xc. Otherwise, it transforms the graph as shown in Figure 3. We refer to this reduction
as the diamond reduction and denote it by (R5).

s
s
s s�

��

❅
❅❅

✲

a b c

x

s
s

s�
��

❅
❅❅

a c

x

Figure 3 The diamond reduction: it is applicable to a graph G containing an induced subgraph
shown on the left, in which vertices a, b, c have degree 3 in G. If the degree of x is also 3, the
reduction consists in deleting the edges ab and xc. Otherwise, the reduction consists in deleting
vertex b and introducing the edge ac.

We omit the proof of the next two claims.

▷ Claim 18. Let G′ be a graph obtained from G by the diamond reduction. Then G has a
Hamiltonian cycle if and only if G′ has a Hamiltonian cycle. Moreover, if G is T -subgraph-free,
then so is G′.

In Figure 4, we illustrate the butterfly reduction denoted by (R6).

✉ ✉✉✉ ✉
❅❅��

❅❅ ��
a

b c

d

x
✲ ✉ ✉✉✉ ✉

❅❅
��

a

b c

d

x

Figure 4 The butterfly reduction: it is applicable to a graph G with an induced subgraph shown
on the left, in which vertices a, b, c have degree 3 in G, and moreover, a and b have white neighbours.

▷ Claim 19. Let G′ be a graph obtained from G by the butterfly reduction. Then G has a
Hamiltonian cycle if and only if G′ has a Hamiltonian cycle.

In our algorithm we implement the above rules and reductions whenever they are applicable.
We now develop more reductions allowing us to bound the number of vertices in black
components. We assume that none of the above rules and reductions is applicable to G.

We omit the proof of the next claim.

ISAAC 2024

47:10 Complexity Framework for Forbidden Subgraphs II

▷ Claim 20. Let x be a vertex of degree at least 13. If the neighbourhood of x does not
contain two adjacent vertices of degree 3, then G has no Hamiltonian cycle. Otherwise, G

has a Hamiltonian cycle if and only if G − x has.

Application of Claim 20 to vertices of large degree either shows that G has no Hamiltonian
cycle or reduces the input graph to a graph of maximum degree 12. We will refer to this
reduction as the large degree reduction and will denote it by (R7).

We omit the proof of the next claim.

▷ Claim 21. The black graph has no induced paths of length 8.

Since graphs of diameter D and maximum degree ∆ have fewer than ∆
∆−2 (∆ − 1)D vertices,

we conclude that after eliminating vertices of large degree, every black component has fewer
than 12

10 117 vertices.
To develop more rules and reductions, assume G has a Hamiltonian cycle C. We can

further assume that not all vertices of the graph are black, since otherwise the graph contains
fewer than 12

10 117 vertices, in which case we can solve the problem by brute-force. A sequence
of consecutive vertices of C surrounded by white vertices will be called a black interval.
Observe that each black interval consists of at least two vertices (according to (R4)).

Let K be a black component of G. We will call the vertices of K that have white
neighbours the contact vertices. Note that K may consists of one or more intervals. Each
interval gives rise to exactly two contact vertices. Hence, the number of contact vertices in
K is even.

In our next claim, whose proof we omit, we show that for T -subgraph-free graphs, the
number of intervals is at most 2.

▷ Claim 22. Any black component consists of at most two intervals.

By Claim 22, if G has a Hamiltonian cycle, then every black component has two or four
contact vertices.

(R8) If a black component K has exactly two contact vertices, check if K has a Hamiltonian
path connecting the contact vertices. If such a path does not exist, then stop: the
input graph has no Hamiltonian cycle. Otherwise, choose arbitrarily a Hamiltonian path
connecting the contact vertices, include the edges of the path in the solution and delete
all other edges from K.

Rule (R8) destroys black components with two contact vertices, i.e. after its implementation
all vertices in such components become white.

Now we discuss the case where each black component has exactly four contact vertices.
Let K be such a component with contact vertices v1, v2, v3, v4. If G has a Hamiltonian
cycle, then the vertices of K can be partitioned into two parts each of which forms a path
connecting a pair of contact vertices. We will call such a partition a pairing (of contact
vertices) and will refer to a pairing as the set of edges in the two paths. Also, we will say
that two pairings are of the same type, if they pair the contact vertices in the same way.
Clearly, if all possible pairings in K have the same type, then it is irrelevant which one to
choose, since non-contact vertices of K have no neighbours outside of K.

The above discussion justifies the following two rules.

(R9) If a black component K with four contact vertices does not admit any pairing, then
stop: the input graph has no Hamiltonian cycle.

V. Lozin et al. 47:11

(R10) If in a black component K with four contact vertices all possible pairings have the
same type, then choose arbitrarily any such pairing and delete all other edges from K. If
this procedure disconnects the graph, then stop: the input graph has no Hamiltonian
cycle.

Finally, we analyse the situation when each black component of G admits pairings of at least
two different types.

▷ Claim 23. If each black component of the (connected) graph G admits pairings of at least
two different types, then G has a Hamiltonian cycle.

Proof. Let K be a black component with contact vertices v1, v2, v3, v4 and let B and R be
two pairings of different types, say B pairs v1 with v2 and v3 with v4, while R pairs v1 with
v3 and v2 with v4. Assume that
(1) the deletion of all edges of K except for the edges of B disconnects the graph into two

components C12 (containing vertices v1 and v2) and C34 (containing vertices v3 and v4),
and

(2) the deletion of all edges of K except for the edges of R disconnects the graph into two
components C13 (containing vertices v1 and v3) and C24 (containing vertices v2 and v4).

Note that (1) separates v1 from v3 and v4, while (2) separates v1 from v4. Therefore, after
the deletion of all edges of K vertex v1 is separated from all other contact vertices. In other
words, after the deletion of all edges of K, vertices v1, v2, v3, v4 belong to pairwise different
connected components, say V1, V2, V3, V4, respectively.

We observe that in each connected component Vi vertex vi has degree 1 (it is adjacent
to a white vertex only). Any other vertex of odd degree in Vi (if there is any) is black, i.e.
appears in some black component K ′. In the graph G[K ′] the number of odd vertices is even
(by the Handshake lemma). Attaching to G[K ′] four white neighbours changes the parity of
exactly four vertices of K ′ and hence leaves the number of vertices of K ′ with odd degrees
in the graph G even. Since all vertices of K ′ belong to only one of the components Vi, we
conclude that in each component Vi the number of vertices of odd degree is odd. This is not
possible by the Handshake lemma and hence either (1) or (2) is not valid, i.e. we can keep
one of the pairings and delete all other edges of K without disconnecting G. This operation
destroys K, i.e. makes all vertices of K white.

Applying the above arguments to all black components, one by one, we transform G into
a connected graph in which all vertices are white, i.e. to a Hamiltonian cycle. ◁

We summarize the discussion in the following algorithm to solve the problem.

1. Apply rules and reductions (R1) – (R7) as long as they are applicable.
2. If the algorithm did not stop at Step 1 and the graph has fewer than 12

10 117 vertices, then
solve the problem by brute-force. Otherwise, check the number of contact vertices in
black components. If there is a black component with the number of contact vertices
different from 2 or 4, then stop: G has no Hamiltonian cycle.

3. If the algorithm did not stop at Step 2, then apply (R8) to black components with two
contact vertices, and (R9) and (R10) to black components with four contact vertices.

4. If the algorithm did not stop at Step 3, then find a Hamiltonian cycle according to
Claim 23.

Reductions (R8), (R9), (R10) can be implemented in constant time, because the number
of vertices in each black component is bounded by a constant. It is also obvious that all
other rules, and hence all steps of the algorithm can be implemented in polynomial time.
The correctness of the algorithm follows from the proofs of the claims. ◀

ISAAC 2024

47:12 Complexity Framework for Forbidden Subgraphs II

s1

s2

t1

t2

x1

x2

z1 z3

z4z2

s1

s2

z1

z2

x

z3

z4

t1

t2

Figure 5 Rule 1. Possible connections in our subgraph (left). What we replace this subgraph
with (right). Dotted lines are possible additional edges.

s1

s2

t1

t2

x1

x2

z1 z3

z4z2

s1

s2

z1

z2

x

z3

z4

t1

t2

Figure 6 Rule 2. Possible connections in our subgraph (left). What we replace this subgraph
with (right). Dotted lines are possible additional edges.

6 k-Induced Disjoint Paths

The case H = H1 follows from the observation that solutions of k-Induced Disjoint Paths
with long paths are solutions of k-Disjoint Paths, which is polynomial-time solvable [30].
We omit the proof details. The case H = H2 is more involved.

▶ Theorem 24. For all k ≥ 2, k-Induced Disjoint Paths is polynomial-time solvable for
H1-subgraph-free graphs.

▶ Theorem 25. For all k ≥ 2, k-Induced Disjoint Paths is polynomial-time solvable for
H2-subgraph-free graphs.

Proof. First, branch on all O(2kn3k) options (so a polynomial number, as k is fixed) of
solution paths that have at most three internal vertices. For each branch, we remove the
guessed solution paths and the neighbours of the vertices on these paths. Let k still be the
number of terminal pairs. We now only look for solution paths with at least four vertices.
Branch on all O(n4k) options of choosing the first two vertices az, bz on the solution path
from every terminal z ∈ {si, ti} for i ∈ {1, . . . , k}. In each branch, we remove all other
neighbours of z, az from the graph, so every terminal z now has degree 1, while az has
degree 2. We discard the branch if (†) {az, bz} ∩ {az′ , bz′} ̸= ∅ for some terminals z, z′ or
one of az, bz is the same or neighbours one of az′ , bz′ for some terminals z, z′ not from the
same terminal pair.

We now start a recursive procedure. We first preprocess the input. If bsi
and bti

are
adjacent for some i ∈ {1, . . . , k}, then we remove the solution path si, asi , bsi , bti , ati , ti and
their neighbours from the graph. If bz and bz′ are adjacent for some terminals z, z′ that do
not form a terminal pair, we discard the branch.

We run the polynomial-time algorithm for k-Disjoint Paths from [30] on the remaining
terminal pairs. If this results in a no-answer, we discard the branch. Else, we found a
solution P1, . . . , Pk. We may assume that each path Pi is induced, or we may shortcut it. If
P1, . . . , Pk is also a solution of k-Induced Disjoint Paths, then we return “yes”. Otherwise,
there is (say) an edge (x1, x2) between paths x1 ∈ P1 and x2 ∈ P2. We pick x1 such that it
is closest to t1 on P1 and under that condition we pick x2 such that it is closest to t2 on P2.

V. Lozin et al. 47:13

Let z1, z3 be the two neighbours of x1 on P1 and z2, z4 the two neighbours of x2 on P2. We
let S = {z1, x1, z3, z2, x2, z4}. Observe that S contains no terminal by † and the preprocessing.
If any z ∈ {z1, z2, z3, z4} has two neighbours outside of S, then G has a H2 as a subgraph.
Thus we may assume (‡) that each z ∈ {z1, z2, z3, z4} has at most one neighbour not in S.

By the choice of (x1, x2) and as P1 is induced, z3 has no neighbours in S except x1.
Suppose the edge (z1, z2) exists and one of {x1, x2} has a neighbour outside of S. Then there
is an H2 with middle path x1, z1, z2 since s2 ̸∈ S. Suppose the edge (z1, z4) exists and one of
{x1, x2} has a neighbour outside of S. Then there is an H2 with middle path x1, z1, z4 since
s2 ̸∈ S. Now either the edges (z1, z2) and (z1, z4) do not exist (see Figure 5), or at least one
of them exists and x1, x2 have no neighbours outside S (see Figure 6). In the former case, we
apply Rule 1, while in the latter case, we apply Rule 2; see Fig. 5 and 6 for their description.

Rule 1 is safe: Suppose that we have a solution to k-Induced Disjoint Paths in G. If this
solution uses no vertices in S, then it is already a solution to k-Induced Disjoint Paths
in G′. Thus, it must use some vertex in S. If the solution does not use x1 nor x2, then recall
that by ‡, each of z1, z2, z3, z4 has at most one neighbour outside of S, and thus the solution
must avoid thus S entirely, a contradiction. If the solution uses both x1 and x2, then it must
use the edge (x1, x2). We can substitute the edge (x1, x2) in the solution to k-Induced
Disjoint Paths in G with x to obtain a solution to k-Induced Disjoint Paths in G′.
Hence, without loss of generality, suppose the solution uses x1. We can substitute this for x

to obtain a solution to k-Induced Disjoint Paths in G′, unless some other solution path
runs through a neighbour q of x2. Note q cannot be a terminal due to our preprocessing.
Hence it has two neighbours p and r on this other solution path, and these are outside
of {z1, x1, z3} because this path must avoid x1 and any of its neighbours. But now p, q, r,
q, x2, x1, z1, x1, z3 forms an H2 (with middle path q, x2, x1), a contradiction.

Suppose we have a solution to k-Induced Disjoint Paths in G′. If this solution does
not involve x, then it maps to a solution of k-Induced Disjoint Paths in G. Suppose
now it does involve x. Suppose mapping x to either of x1 or x2 does not produce a solution
to k-Induced Disjoint Paths in G. Then mapping x to either the edge (x1, x2) (or the
symmetric (x2, x1)) must produce a solution to k-Induced Disjoint Paths in G.

Rule 2 is safe: Suppose we have a solution to k-Induced Disjoint Paths in G. If it uses
no vertices in S, then it is already a solution to k-Induced Disjoint Paths in G′. Thus, it
must use some vertex in S. Suppose the edge (z1, z2) exists, and the solution uses (z1, z2).
Then by ‡, the solution does not use any other vertex from S and we can keep this edge to
obtain a solution for k-Induced Disjoint Paths in G′. Suppose the edge (z1, z4) exists
and the solution uses (z1, z4). Then by ‡, the solution does not use any other vertex from S

and we can keep this edge to obtain a solution for k-Induced Disjoint Paths in G′.
If the solution uses both x1 and x2, then it must use the edge (x1, x2), and we can

substitute (x1, x2) in the solution to k-Induced Disjoint Paths in G with x to obtain a
solution to k-Induced Disjoint Paths in G′. Suppose it uses neither x1 nor x2. Then by
‡ and the fact that S is used, the solution must use either the edge (z1, z4) or (z1, z2) and
we are in a previous case. Hence, without loss of generality, suppose the solution uses x1.
We can substitute this for x to obtain a solution to k-Induced Disjoint Paths in G′. This
is safe, as x1, x2 have no neighbours outside S.

Suppose we have a solution to k-Induced Disjoint Paths in G′. If this solution does
not involve x then it maps to a solution of k-Induced Disjoint Paths in G. Suppose
now it does involve x. Suppose mapping x to either of x1 or x2 does not produce a solution
to k-Induced Disjoint Paths in G. Then mapping x to either the edge (x1, x2) (or the
symmetric (x2, x1)) must produce a solution to k-Induced Disjoint Paths in G.

ISAAC 2024

47:14 Complexity Framework for Forbidden Subgraphs II

Next, we show that any graph G′ obtained after applying Rule 1 or 2 is also H2-subgraph-free.
Suppose G′ has an H2. Then this H2 must contain x. If x is a leaf in H2, then G already had
this H2 involving either x1 or x2. Suppose x is a degree-3 vertex in this H2. If the neighbours
of x in the H2 were all neighbours of x1 or all neighbours of x2 in G, then G already had
this H2, a contradiction. Let z′

1 and z′
2 be the leafs of the H2 adjacent to x in G′.

Suppose z′
1 and z′

2 are both adjacent to x2 and both not to x1. Then the middle vertex
of the H2 is only adjacent to x1. Ideally, we would replace x by x1, z′

1 by z1 and z′
2 by z3.

This does not work if (say) z1 is part of the H2. However, z′
1 and z′

2 are both not z1, as z1 is
adjacent to x1, and we would contradict our assumption on the adjacency of z′

1 and z′
2. We

now consider three cases, depending on where z1 is in the H2.
Suppose z1 is a leaf of the H2. By ‡ and the inducedness of paths, its neighbouring

degree-3 vertex cannot be one of z2, z3, z4. Hence, this must be the unique neighbour p of z1
outside S. The other neighbours q, r of p on the H2, where r is the middle vertex, are both
not z3, as P1 is induced. Hence, q, p, z1, p, r, x1, x2, x1, z3 form an H2, a contradiction.

Suppose that z1 is the middle vertex of the H2. By ‡, the other degree-3 vertex of the
H2 cannot be z2 or z4, so it must be the unique neighbour p of z1 outside S. The other
neighbours q, r of p on the H2, which are both leafs of the H2, are both not z3 since P1 is
induced. Hence, G has a H2 formed by q, p, r, p, z1, x1, x2, x1, z3, a contradiction.

Suppose that z1 is a degree-3 vertex of the H2. Let p be the unique neighbour of z1
outside S; it is unique by ‡. Then one of p, z2, z3 must be the middle vertex of the H2 and
the other two the leafs neighbouring z1. If the middle vertex is z2, then z′

1, x2, z′
2, x2, z2, z1,

p, z1, z4 is a H2 in G, a contradiction. The other cases are similar. This concludes the
argument when z′

1 and z′
2 are both adjacent to x2 and both not to x1.

Suppose instead that, say z′
1, is adjacent to x1 and the other, z′

2, is adjacent to x2. Let
x′, x′′, z′′

1 , z′′
2 form the remaining vertices of the H2 where x, x′, x′′ and z′′

1 , x′′, z′′
2 are both

paths of length 2 in this H2. Thus, z′
1, x, z′

2, x, x′, x′′ and z′′
1 , x′′, z′′

2 form the H2 in G′.
Without loss of generality, suppose x′ was adjacent to x1 in G. Now it is clear that z′

1, x1, x2,
x1, x′, x′′ and z′′

1 , x′′, z′′
2 formed an H2 in G.

Finally, suppose that x is the degree-2 vertex in H2. Let z′
1, x′, z′

2, x′, x, x′′, z′′
1 , x′′, z′′

2 be
the paths that form the H2 in G′. Suppose, without loss of generality, that x′ was adjacent
to x1 in G. If x′′ was also adjacent to x1 in G, then z′

1, x′, z′
2, x′, x1, x′′, z′′

1 , x′′, z′′
2 are paths

that form an H2 in G. Suppose now that x′′ was adjacent to x2 but not x1 in G and we
may also assume that x′ is adjacent to x1 but not x2. Now z′

1, x′, z′
2, x′, x1, x2, z2, x2, z4 are

paths that form a H2 in G, unless {z2, z4} ∩ {z′
1, z′

2} ≠ ∅. Without loss of generality, suppose
z2 = z′

1. Note that z2 ̸= s2 (recall that S does not contain any terminal). Let p be the next
vertex on the path from t2 to s2 after z2. Then p, z2, x2, z2, x′, x1, z1, x1, z3 is an H2 in G

(note that {z1, z3} ∩ {x′, z2, p} = ∅), a contradiction.

Finally, note that x1 and x2 cannot be z or az for some terminal z, as these vertices have
degree 1 and 2 respectively, while x1, x2 have degree at least 3. Moreover, {x1, x2} ≠ {bz, b′

z}
for some terminals z, z′ by our preprocessing. Hence, Rules 1 and 2 preserve †.

We can recognize and apply Rules 1 and 2 in polynomial time. This decreases the size of
the graph by one vertex and we recurse. Hence, our algorithm runs in polynomial time. ◀

For our next result we follow the proof from Section 2.4 in [24] by carefully p-subdividing
some of the edges of that construction. We omit the proof details.

▶ Theorem 26. For all k ≥ 2, k-Induced Disjoint Paths is NP-complete for subcubic
(H4, . . . ,Hℓ)-subgraph-free graphs for all ℓ ≥ 4.

V. Lozin et al. 47:15

...
E1 E2 E3

Figure 7 The C5-flower Fn and the H3-subgraph-free C5-critical graphs E1, E2 and E3.

7 C5-Colouring

In this section, we give our polynomial-time certifying algorithm for C5-Colouring on
H3-subgraph-free graphs. The C5-flower Fn is the graph (see Figure 7) that we get from
C3n (for n ≥ 3) by adding a new central vertex with an edge to every third vertex of C3n. If
n is odd, we call Fn an odd C5-flower, and if it is even we call Fn an even C5-flower. We
refer to the graphs E1, E2 and E3 shown in Figure 7 as exceptional graphs.

The following lemma (whose proof is a simple exercise) shows that all these graphs are
C5-critical, that is, they are not C5-colourable but every proper subgraph of them is.

▶ Lemma 27. The graph K3, the odd flowers Fn for odd n ≥ 3 and the exceptional graphs
E1, E2 and E3 are all H3-subgraph-free and C5-critical.

We can now show a structural result, which we use to prove our algorithmic result. We
omit its proof.

▶ Theorem 28. The only H3-subgraph-free C5-critical graphs are K3, odd flowers Fn (n ≥ 3)
and exceptional graphs E1, E2, E3. Equivalently, the following statements all hold:
1. All H3-subgraph-free graphs of girth at least 6 are C5-colourable.
2. The only H3-subgraph-free C5-critical graphs of girth 5 are E1, E2 and odd C5-flowers Fn.
3. The only H3-subgraph-free C5-critical graph of girth 4 is E3.

▶ Theorem 29. There exists a polynomial-time certifying algorithm for C5-Colouring on
H3-subgraph-free graphs.

Proof. As every graph that does not map to C5 must contain a C5-critical subgraph, it
suffices, due to Theorem 28, to detect the non-existence of the graphs K3, E1, E2, E3 and Fn

(odd n ≥ 3) in a H3-subgraph-free graph G. For the graphs K3, E1, E2 and E3 we can simply
use brute force. To detect an odd C5-flower Fn in polynomial time, we observe that for a
fixed centre vertex, v0 we can make an auxiliary graph on its neighbours putting an edge
between two if there is a path on three edges between them in G. Now, G contains an odd
C5-flower with centre v0 if and only if this auxiliary graph has an odd cycle. We can check
this in polynomial time for each v0, so can find an odd C5-flower in G polynomial time. ◀

8 Conclusions

We took four classic problems, Hamilton Cycle, k-Induced Disjoint Paths, C5-
Colouring and Star 3-Colouring, that are “easy” on bounded treewidth, but for
which we showed that their hardness on subcubic graphs is not preserved under edge subdivi-
sion. We gave polynomial and NP-completeness results for H-subgraph-free graphs when H
is some subset of {H1,H2, . . .}, but we need to better understand the case H = {Hi} (i ≥ 1).

ISAAC 2024

47:16 Complexity Framework for Forbidden Subgraphs II

▶ Open Problem 1. Is there a graph Hℓ such that Hamilton Cycle is NP-complete for
Hℓ-subgraph-free graphs?

We note that the case H3 is the only missing case for obtaining a dichotomy for k-Induced
Disjoint Paths on Hi-subgraph-free graphs,

▶ Open Problem 2. What is the complexity of k-Induced Disjoint Paths for H3-subgraph-
free graphs?

If C5-Colouring on Hi-subgraph-free graphs is polynomial-time solvable when i = 0 mod 3,
then we would get a dichotomy for C5-Colouring on Hi-subgraph-free graphs based on
i mod 3.

▶ Open Problem 3. What is the complexity of C5-Colouring for Hi-subgraph-free graphs,
when i = 0 mod 3?

If Star 3-Colouring on H2i-subgraph-free graphs is polynomial-time solvable for i ≥ 1,
then we would get a dichotomy for Star 3-Colouring on Hi-subgraph-free graphs based
on i mod 2.

▶ Open Problem 4. What is the complexity of Star 3-Colouring for H2i-subgraph-free
graphs for i ≥ 1?

Moreover, even though Star k-Colouring is not C2 for k ≥ 10 (Proposition 14), this is not
known for 4 ≤ k ≤ 9. In particular, Shalu and Antony asked about the case k = 4 in [31],
and we recall their open problem.

▶ Open Problem 5. What is the complexity of Star 4-Colouring for subcubic graphs?

We also still need to determine whether the C12-problems k-Induced Disjoint Paths and
C5-Colouring are even C12’ just like Hamilton Cycle and Star 3-Colouring. In order
to know this, we must solve the following two problems.

▶ Open Problem 6. What is the complexity of k-Induced Disjoint Paths for subcubic
graphs of girth g for g ≥ 3?

▶ Open Problem 7. What is the complexity of C5-Colouring for subcubic graphs of girth g

for g ≥ 3?

We also do not know the complexity of k-Induced Disjoint Paths, for k ≥ 2, on
graphs of girth at least g with an additional degree bound, whereas the best degree bound
for C5-Colouring is 6 · 513. Namely, for every g ≥ 3, C5-Colouring is NP-complete for
graphs with girth at least g and with maximum degree at most 6 · 513 (Theorem 6).

Finally, there exist other problems that are NP-complete for bipartite graphs in which
one partition class has maximum degree 2 and thus on (H1,H3, . . .)-subgraph-free graphs.
One example of such a problem is Matching Cut [27]. Another example is Acyclic 3-
Colouring, for which we can show the same results as for Star 3-Colouring in Theorem 5
by using the same arguments. However, in contrast to Star 3-Colouring, we do not know
if Acyclic 3-Colouring satisfies C2 and we recall the following open problem from Shalu
and Antony [32].

▶ Open Problem 8. What is the complexity of Acyclic 3-Colouring for subcubic graphs?

V. Lozin et al. 47:17

References
1 Michael O. Albertson, Glenn G. Chappell, Henry A. Kierstead, André Kündgen, and Radhika

Ramamurthi. Coloring with no 2-colored P4’s. Electronic Journal of Combinatorics, 11, 2004.
2 Vladimir E. Alekseev, Rodica Boliac, Dmitry V. Korobitsyn, and Vadim V. Lozin. NP-hard

graph problems and boundary classes of graphs. Theoretical Computer Science, 389:219–236,
2007. doi:10.1016/J.TCS.2007.09.013.

3 Vladimir E. Alekseev and Dmitry V. Korobitsyn. Complexity of some problems on hereditary
graph classes. Diskretnaya Matematika, 4:34–40, 1992.

4 Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard problems
restricted to partial k-trees. Discrete Applied Mathematics, 23:11–24, 1989. doi:10.1016/
0166-218X(89)90031-0.

5 Daniel Bienstock, Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly ex-
cluding a forest. Journal of Combinatoral Theory, Series B, 52:274–283, 1991. doi:
10.1016/0095-8956(91)90068-U.

6 Hans L. Bodlaender, Tesshu Hanaka, Yasuaki Kobayashi, Yusuke Kobayashi, Yoshio Okamoto,
Yota Otachi, and Tom C. van der Zanden. Subgraph isomorphism on graph classes that exclude
a substructure. Algorithmica, 82:3566–3587, 2020. doi:10.1007/S00453-020-00737-Z.

7 Hans L. Bodlaender, Matthew Johnson, Barnaby Martin, Jelle J. Oostveen, Sukanya Pandey,
Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Complexity framework for forbidden
subgraphs IV: The Steiner Forest problem. Proc. IWOCA 2024, LNCS, 14764:206–217, 2024.
doi:10.1007/978-3-031-63021-7_16.

8 Rodica Boliac and Vadim V. Lozin. On the clique-width of graphs in hereditary classes. Proc.
ISAAC 2022, LNCS, 2518:44–54, 2002. doi:10.1007/3-540-36136-7_5.

9 Maria Chudnovsky, Shenwei Huang, Pawe ł Rzążewsk, Sophie Spirkl, and Mingxian Zhong.
Complexity of Ck-coloring in hereditary classes of graphs. Proc. ESA 2019, LIPIcs, 144:31:1–
31:15, 2019. doi:10.4230/LIPICS.ESA.2019.31.

10 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Information and Computation, 85:12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

11 David P. Dailey. Uniqueness of colorability and colorability of planar 4-regular graphs are
NP-complete. Discrete Mathematics, 30:289–293, 1980. doi:10.1016/0012-365X(80)90236-8.

12 Rina Dechter and Judea Pearl. Tree clustering for constraint networks. Artificial Intelligence,
38:353–366, 1989. doi:10.1016/0004-3702(89)90037-4.

13 Tala Eagling-Vose, Barnaby Martin, Daniël Paulusma, and Siani Smith. Graph homomorphism,
monotone classes and bounded pathwidth. Proc. CiE 2024, LNCS, 14773:233–251, 2024.
doi:10.1007/978-3-031-64309-5_19.

14 Thomas Emden-Weinert, Stefan Hougardy, and Bernd Kreuter. Uniquely colourable graphs and
the hardness of colouring graphs of large girth. Combinatorics, Probability & Computing, 7:375–
386, 1998. URL: http://journals.cambridge.org/action/displayAbstract?aid=46667.

15 Anna Galluccio, Pavol Hell, and Jaroslav Nešetřil. The complexity of H-colouring of bounded
degree graphs. Discrete Mathematics, 222:101–109, 2000. doi:10.1016/S0012-365X(00)
00009-1.

16 Alfred Geroldinger and Imre Z. Ruzsa. Combinatorial Number Theory and Additive Group
Theory. Birkhäuser, 2009.

17 Petr A. Golovach and Daniël Paulusma. List coloring in the absence of two subgraphs. Discrete
Applied Mathematics, 166:123–130, 2014. doi:10.1016/J.DAM.2013.10.010.

18 Petr A. Golovach, Daniël Paulusma, and Bernard Ries. Coloring graphs characterized by a
forbidden subgraph. Discrete Applied Mathematics, 180:101–110, 2015. doi:10.1016/J.DAM.
2014.08.008.

19 Pavol Hell and Jaroslav Nesetril. On the complexity of H-coloring. Journal of Combinatorial
Theory, Series B, 48:92–110, 1990. doi:10.1016/0095-8956(90)90132-J.

ISAAC 2024

https://doi.org/10.1016/J.TCS.2007.09.013
https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/10.1016/0095-8956(91)90068-U
https://doi.org/10.1016/0095-8956(91)90068-U
https://doi.org/10.1007/S00453-020-00737-Z
https://doi.org/10.1007/978-3-031-63021-7_16
https://doi.org/10.1007/3-540-36136-7_5
https://doi.org/10.4230/LIPICS.ESA.2019.31
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0012-365X(80)90236-8
https://doi.org/10.1016/0004-3702(89)90037-4
https://doi.org/10.1007/978-3-031-64309-5_19
http://journals.cambridge.org/action/displayAbstract?aid=46667
https://doi.org/10.1016/S0012-365X(00)00009-1
https://doi.org/10.1016/S0012-365X(00)00009-1
https://doi.org/10.1016/J.DAM.2013.10.010
https://doi.org/10.1016/J.DAM.2014.08.008
https://doi.org/10.1016/J.DAM.2014.08.008
https://doi.org/10.1016/0095-8956(90)90132-J

47:18 Complexity Framework for Forbidden Subgraphs II

20 Matthew Johnson, Barnaby Martin, Jelle J. Oostveen, Sukanya Pandey, Daniël Paulusma,
Siani Smith, and Erik Jan van Leeuwen. Complexity framework for forbidden subgraphs I:
The framework. CoRR, 2211.12887, 2022.

21 Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and
Erik Jan van Leeuwen. Complexity framework for forbidden subgraphs III: When problems
are tractable on subcubic graphs. Proc. MFCS 2024, LIPIcs, 272:57:1–57:15, 2023. doi:
10.4230/LIPICS.MFCS.2023.57.

22 Marcin Kamiński. Max-Cut and containment relations in graphs. Theoretical Computer
Science, 438:89–95, 2012. doi:10.1016/J.TCS.2012.02.036.

23 Nicholas Korpelainen, Vadim V. Lozin, Dmitriy S. Malyshev, and Alexander Tiskin. Boundary
properties of graphs for algorithmic graph problems. Theoretical Computer Science, 412:3545–
3554, 2011. doi:10.1016/J.TCS.2011.03.001.

24 Benjamin Lévêque, David Y. Lin, Frédéric Maffray, and Nicolas Trotignon. Detecting induced
subgraphs. Discrete Applied Mathematics, 157:3540–3551, 2009. doi:10.1016/J.DAM.2009.
02.015.

25 Vadim V. Lozin. The hamiltonian cycle problem and monotone classes. Proceedings of IWOCA
2024, LNCS, 14764:460–471, 2024. doi:10.1007/978-3-031-63021-7_35.

26 Vadim V. Lozin and Igor Razgon. Tree-width dichotomy. European Journal of Combinatorics,
103:103517, 2022. doi:10.1016/J.EJC.2022.103517.

27 Augustine M. Moshi. Matching cutsets in graphs. Journal of Graph Theory, 13:527–536, 1989.
doi:10.1002/JGT.3190130502.

28 Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. Journal of
Combinatorial Theory, Series B, 36:49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

29 Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a planar graph. Journal
of Combinatorial Theory, Series B, 41:92–114, 1986. doi:10.1016/0095-8956(86)90030-4.

30 Neil Robertson and Paul D. Seymour. Graph minors. XIII. The Disjoint Paths problem.
Journal of Combinatorial Theory, Series B, 63:65–110, 1995. doi:10.1006/JCTB.1995.1006.

31 M. A. Shalu and Cyriac Antony. Star colouring of bounded degree graphs and regular graphs.
Discrete Mathematics, 345:112850, 2022. doi:10.1016/J.DISC.2022.112850.

32 M. A. Shalu and Cyriac Antony. Hardness transitions and uniqueness of acyclic colouring.
Discrete Applied Mathematics, 345:77–98, 2024. doi:10.1016/J.DAM.2023.11.030.

33 Yossi Shiloach. A polynomial solution to the undirected Two Paths problem. Journal of the
ACM, 27:445–456, 1980. doi:10.1145/322203.322207.

https://doi.org/10.4230/LIPICS.MFCS.2023.57
https://doi.org/10.4230/LIPICS.MFCS.2023.57
https://doi.org/10.1016/J.TCS.2012.02.036
https://doi.org/10.1016/J.TCS.2011.03.001
https://doi.org/10.1016/J.DAM.2009.02.015
https://doi.org/10.1016/J.DAM.2009.02.015
https://doi.org/10.1007/978-3-031-63021-7_35
https://doi.org/10.1016/J.EJC.2022.103517
https://doi.org/10.1002/JGT.3190130502
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1006/JCTB.1995.1006
https://doi.org/10.1016/J.DISC.2022.112850
https://doi.org/10.1016/J.DAM.2023.11.030
https://doi.org/10.1145/322203.322207

Complexity of Local Search for Euclidean
Clustering Problems
Bodo Manthey # Ñ

Faculty of Electrical Engineering, Mathematics, and Computer Science,
University of Twente, The Netherlands

Nils Morawietz #

Institute of Computer Science, Friedrich Schiller University Jena, Germany

Jesse van Rhijn # Ñ

Faculty of Electrical Engineering, Mathematics, and Computer Science,
University of Twente, The Netherlands

Frank Sommer # Ñ

Institute of Logic and Computation, TU Wien, Austria

Abstract
We show that the simplest local search heuristics for two natural Euclidean clustering problems are
PLS-hard. First, we show that the Hartigan–Wong method, which is essentially the Flip heuristic,
for k-Means clustering is PLS-hard, even when k = 2. Second, we show the same result for the Flip
heuristic for Max Cut, even when the edge weights are given by the (squared) Euclidean distances
between the points in some set X ⊆ Rd; a problem which is equivalent to Min Sum 2-Clustering.

2012 ACM Subject Classification Theory of computation → Problems, reductions and complete-
ness; Theory of computation → Graph algorithms analysis; Theory of computation → Discrete
optimization; Theory of computation → Facility location and clustering

Keywords and phrases Local search, PLS-complete, max cut, k-means, partitioning problem, flip-
neighborhood

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.48

Related Version Full Version: https://arxiv.org/abs/2312.14916

Funding Jesse van Rhijn: Supported by NWO grant OCENW.KLEIN.176.
Frank Sommer : Supported by the Alexander von Humboldt Foundation.

1 Introduction

Clustering problems arise frequently in various fields of application. In these problems, one is
given a set of objects, often represented as points in Rd, and is asked to partition the set into
clusters, such that the objects within a cluster are similar to one another by some measure.
For points in Rd, a natural measure is the (squared) Euclidean distance between two objects.
In this paper, we consider two Euclidean clustering problems that use this similarity measure:
k-Means clustering and Squared Euclidean Max Cut.

k-Means. One well-studied clustering problem is k-Means [10, 23]. In this problem, one is
given a set of points X ⊆ Rd and an integer k. The goal is to partition X into exactly k

clusters such that the total squared distance of each point to the centroid of its cluster is
minimized. Formally, one seeks to minimize the clustering cost

k∑
i=1

∑
x∈Ci

∥x − cm(Ci)∥2 where cm(Ci) = 1
|Ci|

∑
x∈Ci

x.

© Bodo Manthey, Nils Morawietz, Jesse van Rhijn, and Frank Sommer;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 48; pp. 48:1–48:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.manthey@utwente.nl
https://people.utwente.nl/b.manthey
https://orcid.org/0000-0001-6278-5059
mailto:nils.morawietz@uni-jena.de
https://orcid.org/0000-0002-7283-4982
mailto:j.vanrhijn@utwente.nl
https://people.utwente.nl/j.vanrhijn
https://orcid.org/0000-0002-3416-7672
mailto:fsommer@ac.tuwien.ac.at
https://www.ac.tuwien.ac.at/people/fsommer/
https://orcid.org/0000-0003-4034-525X
https://doi.org/10.4230/LIPIcs.ISAAC.2024.48
https://arxiv.org/abs/2312.14916
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Complexity of Local Search for Euclidean Clustering Problems

Being NP-hard even when k = 2 [3] or when X ⊆ R2 [31], k-Means has been extensively
studied from the perspective of approximation algorithms [8, 21, 26, 34]. Nevertheless, local
search remains the method of choice for practitioners [10, 23].

The most well-known local search algorithm for k-Means is Lloyd’s method [30]. Here,
one alternates between two steps in each iteration. In the first step, each point is assigned to
its closest cluster center, and in the second step the cluster centers are recalculated from the
newly formed clusters.

This algorithm was shown to have worst-case super-polynomial running time by Arthur
and Vassilvitskii [7], with the result later improved to exponential running time even in
the plane by Vattani [45]. Moreover, Roughgarden and Wang [39] showed it can implicitly
solve PSPACE-complete problems. On the other hand, Arthur et al. [6] proved that Lloyd’s
method has smoothed polynomial running time on Gaussian-perturbed point sets, providing
a degree of explanation for its effectiveness in practice.

Recently Telgarsky and Vattani [44] revived interest in another, older local search method
for k-Means due to Hartigan and Wong [20]. This algorithm, the Hartigan–Wong method,
is much simpler: one searches for a single point that can be reassigned to some other cluster
for a strict improvement in the clustering cost. In other words, the Hartigan–Wong method
is the Flip heuristic. In the following, we always use Flip instead of Hartigan–Wong to
indicate that this is the most simple heuristic for this problem and to keep the name for
the used heuristic consistent. Despite this simplicity, Telgarsky and Vattani [44] show that
the Flip heuristic is more powerful than Lloyd’s method, in the sense that the former can
sometimes improve clusterings produced by the latter, while the converse does not hold.

A similar construction to that of Vattani for Lloyd’s method shows that there exist
instances on which the Flip heuristic can take exponentially many iterations to find a local
optimum, even when all points lie on a line [33]. However, this example follows a contrived
sequence of iterations. Moreover, k-Means can be solved optimally for instances in which
all points lie on a line. Thus, the question remains whether stronger worst-case examples
exist, and what the complexity of finding locally optimal clusterings is.

Squared Euclidean Max Cut. Another clustering problem similar to k-Means is Squared
Euclidean Max Cut. Recall that Max Cut asks for a subset of vertices S of a weighted
graph G = (V, E), such that the total weight of the edges with one endpoint in S and one
in V \S is maximized. This problem emerges in numerous applications, from graph clustering
to circuit design to statistical physics [9, 12].

In Squared Euclidean Max Cut, one identifies the vertices of G with a set X ⊆ Rd,
and assigns each edge a weight equal to the squared Euclidean distance between its endpoints.
This problem is equivalent to Min Sum 2-Clustering (although not in approximation),
where one seeks to minimize∑

x,y∈X

∥x − y∥2 +
∑

x,y∈Y

∥x − y∥2

over all partitions (X, Y) of X . Also this special case of Max Cut is NP-hard [2]. In a
clustering context, the problem was studied by Schulman [42] and Hasegawa et al. [21],
leading to exact and approximation algorithms.

Given the computational hardness of Max Cut, practitioners often turn to heuristics.
Some of the resulting algorithms are very successful, such as the Kernighan-Lin heuristic [27]
and the Fiduccia-Mattheyses algorithm [19]. Johnson et al. [24] note that the simple Flip
heuristic, where one moves a single vertex from one side of the cut to the other, tends
to converge quickly in practice. Schäffer and Yannakakis [40] later showed that it has
exponential running time in the worst case.

B. Manthey, N. Morawietz, J. van Rhijn, and F. Sommer 48:3

One may wonder whether Flip performs better for Squared Euclidean Max Cut.
Etscheid and Röglin [17, 16] performed a smoothed analysis of Flip in this context, showing
a smoothed running time of 2O(d) · poly(n, 1/σ) for Gaussian-perturbed instances, where
σ denotes the standard deviation of the Gaussian noise. On the other hand, they also
exhibited an instance in R2 on which there exists an exponential-length improving sequence
of iterations, with the caveat that not all edges are present in the instance. Like for k-Means,
one may ask whether stronger examples exist (e.g. on complete graphs), and what the
complexity of finding Flip-optimal solutions is.

Complexity of Local Search. The existence of instances with worst-case exponential running
time is common for local search heuristics. To investigate this phenomenon, and local search
heuristics in general, Johnson et al. [24] defined a complexity class PLS, for polynomial
local search. The class is designed to capture the properties of commonly used local search
heuristics and contains pairs consisting of an optimization problem P and a local search
heuristic N . In the following we denote such a pair as P/N . PLS-complete problems have the
property that their natural local search algorithms have worst-case exponential running
time. Johnson et al. [24] showed that the Kernighan-Lin heuristic for the Max Bisection
problem (a variant of Max Cut, where the parts of the partition must be of equal size) is
PLS-complete. This stands in contrast to the empirical success of this algorithm [27].

Building on this work, Schäffer and Yannakakis [40] later proved that a host of very
simple local search heuristics are PLS-complete, including the Flip heuristic for Max Cut.
This refuted a conjecture by Johnson et al., who doubted that such simple heuristics could
be PLS-complete. Elsässer and Tscheuschner [15] later showed that this remains true even in
the very restricted variant where the input graph has maximum degree five, which we will
refer to as Max Cut-5.

Schäffer and Yannakakis defined a new type of PLS-reduction called a tight reduction.
In addition to showing completeness for PLS, this type of reduction also transfers stronger
properties on the running time of local search heuristics between PLS problems.

Since the introduction of PLS, many local search problems have been shown to be PLS-
complete, including such successful heuristics as Lin-Kernighan’s algorithm for the TSP [38]
or the k-Swap-neighborhood heuristic for Weighted Independent Set [28] for k ≥ 3. For
a non-exhaustive list, see Michiels, Korst and Aarts [36, Appendix C].

Our Contribution. Given the existence of k-Means instances where the Flip heuristic has
worst-case exponential running time, one may ask whether this heuristic is PLS-hard. In this
work, we answer this question in the affirmative.

▶ Theorem 1.1. For each k ≥ 2, k-Means/Flip is PLS-hard.

Just as with k-Means/Flip, we ask whether Squared Euclidean Max Cut with the
Flip heuristic is PLS-hard. Again, we answer this question affirmatively. In addition, we
show the same result for Euclidean Max Cut, where the distances between the points are
not squared.

▶ Theorem 1.2. Euclidean Max Cut/Flip and Squared Euclidean Max Cut/Flip
are PLS-hard.

We note that PLS-hardness results for Euclidean local optimization problems are rather
uncommon. We are only aware of one earlier result by Brauer [13], who proved PLS-
completeness of a local search heuristic for a discrete variant of k-Means. This variant

ISAAC 2024

48:4 Complexity of Local Search for Euclidean Clustering Problems

chooses k cluster centers among the set of input points, after which points are assigned to
their closest center. The heuristic they consider removes one point from the set of cluster
centers and adds another. In their approach, they first construct a metric instance, and then
show that this instance can be embedded into Rd using a theorem by Schoenberg [41]. In
contrast, we directly construct instances in Rd.

In addition to showing PLS-hardness of k-Means/Flip and Squared Euclidean Max
Cut/Flip, we also show that there exist specific hard instances of these problems, as well as
all other problems considered in this paper.

▶ Theorem 1.3. Each local search problem L considered in this work (see Section 2.2) fulfills
the following properties:
1. L is PLS-hard.
2. For each n, one can compute in polynomial time an instance of L of size nO(1) with an

initial solution that is exponentially far away from any local optimum.
3. The problem of computing the locally optimal solution obtained from performing a standard

local search algorithm based on the neighborhood of L is PSPACE-hard for L.

A formal definition of Property 3 is given in Section 2.1. In particular, this result shows
that there exists an instance of k-Means such that there exists an initial solution to this
instance that is exponentially many iterations away from all local optima [40]. By contrast,
the earlier result [33] only exhibits an instance with a starting solution that is exponentially
many iterations away from some local optimum. Moreover, Theorem 1.3 yields instances
where Flip has exponential running time in Squared Euclidean Max Cut on complete
geometric graphs, unlike the older construction which omitted some edges [16].

2 Preliminaries and Notation

Throughout this paper, we will consider all graphs to be undirected unless explicitly stated
otherwise. Let G = (V, E) be a graph. For v ∈ V , we denote by d(v) the degree of v in G,
and by N(v) the set of neighbors of v.

Let S, T ⊆ V . We write E(S, T) for the set of edges with one endpoint in S and one
endpoint in T . For S ⊆ V , we write δ(S) = E(S, V \ S) for the cut induced by S. We will
also refer to the partition (S, V \ S) as a cut; which meaning we intend will be clear from
the context. If | |S| − |V \ S| | ≤ 1, we will call the cut (S, V \ S) a bisection. Given v ∈ V

we will also write δ(v) = δ({v}), which is the set of edges incident to v.
Let F ⊆ E. Given a function f : E → R, we denote by f(F) =

∑
e∈F f(e) the total value

of f on the set of edges F . If F = E(X, Y) for some sets X, Y ⊆ V , we will abuse notation
to write f(X, Y) = f(F).

2.1 The Class PLS
For convenience, we summarize the formal definitions of local search problems and the
associated complexity class PLS, as devised by Johnson et al. [24].

A local search problem P is defined by a set of instances I, a set of feasible solutions FI(x)
for each instance x ∈ I, a cost function c that maps pairs of a solution of FI(x) and an
instance x to Z, and a neighborhood function N that maps a solution of FI(x) and an
instance x to a subset of FI(x). Typically, the neighborhood function is constructed so that
it is easy to compute some s′ ∈ N (s, x) for any given s ∈ FI(x).

This characterization of local search problems gives rise to the transition graph defined
by an instance of such a problem.

B. Manthey, N. Morawietz, J. van Rhijn, and F. Sommer 48:5

▶ Definition 2.1. Given an instance x ∈ I of a local search problem P , we define the
transition graph T (x) as the directed graph with vertex set FI(x), with an edge from s to s′

if and only if s′ ∈ N (s, x) and c(s, x) < c(s′, x) (assuming P is a maximization problem;
otherwise, we reverse the inequality). The height of a vertex s in T (x) is the length of the
shortest path from s to a sink of T (x).

The class PLS is defined to capture the properties of local search problems that typically
arise in practical applications. Formally, P is contained in PLS if the following are all true:
1. There exists a deterministic polynomial-time algorithm A that, given an instance x ∈ I,

computes some solution s ∈ FI(x).
2. There exists a deterministic polynomial-time algorithm B that, given x ∈ I and s ∈ FI(x),

computes the value of c(s, x).
3. There exists a deterministic polynomial-time algorithm C that, given x ∈ I and s ∈

FI(x), either computes a solution s′ ∈ N (s, x) with c(s′, x) > c(s, x) (in the case of a
maximization problem), or outputs that such a solution does not exist.

Intuitively, algorithm A gives us some initial solution from which to start an optimization
process, algorithm B ensures that we can evaluate the quality of solutions efficiently, and
algorithm C drives the local optimization process by either determining that a solution is
locally optimal or otherwise giving us an improving neighbor. Based on the algorithms A

and C, one can define the “standard algorithm problem” for P as follows.

▶ Definition 2.2. Let P be a local search problem and let I be an instance of P. Moreover,
let s∗(I) be the unique local optimum obtained by starting with the solution outputted by
algorithm A and replacing the current solution by the better solution outputted by C, until
reaching a local optimum. The standard algorithm problem for P asks for a given instance I

of P and a locally optimal solution s′ for I with respect to N , whether s′ is exactly the
solution s∗(I).

It was shown that for many local search problems the standard algorithm problem
is PSPACE-complete [13, 36, 37, 40].

Given problems P, Q ∈ PLS, we say that P is PLS-reducible to Q (written P ≤PLS Q) if
the following is true.
1. There exist polynomial-time computable functions f, g, such that f maps instances x of P

to instances f(x) of Q, and g maps pairs (solution s of f(x), x) to feasible solutions of P .
2. If a solution s of f(x) is locally optimal for f(x), then g(s, x) is locally optimal for x.

The idea is that, if Q ∈ PLS is efficiently solvable, then P is also efficiently solvable:
simply convert an instance of P to Q using f , solve Q, and convert the resulting solution
back to a solution of P using g. As usual in complexity theory, if P is complete for PLS
and P ≤PLS Q, then Q is also complete for PLS.

In addition to this standard notion of a PLS-reduction, Schäffer and Yannakakis [40]
defined so-called tight reductions. Given PLS problems P and Q and a PLS-reduction (f, g)
from P to Q, the reduction is called tight if for any instance x of P we can choose a subset R
of the feasible solutions of f(x) of Q such that:
1. R contains all local optima of f(x).
2. For every feasible solution s of x, we can construct a feasible solution q ∈ R of f(x) such

that g(q, x) = s.
3. Suppose the transition graph T (f(x)) of f(x) contains a directed path from s to s′ such

that s, s′ ∈ R, but all internal vertices lie outside of R, and let q = g(s, x) and q′ = g(s′, x).
Then either q = q′, or the transition graph T (x) of x contains an edge from q to q′.

ISAAC 2024

48:6 Complexity of Local Search for Euclidean Clustering Problems

The set R is typically called the set of reasonable solutions to f(x). Here, the intuition is
that tight reductions make sure that the height of a vertex s of T (f(x)) is not smaller than
that of g(s, x) in T (x). Note that a reduction (f, g) is trivially tight if T (f(x)) is isomorphic
to T (x).

Tight PLS-reductions have two desired properties [1, Chapter 2]. Suppose P reduces to Q

via a tight reduction. First, if the standard algorithm problem for P is PSPACE-complete,
then the standard algorithm problem for Q is PSPACE-complete as well. Second, if there
exists an instance x of P such that there exists a solution of x that is exponentially far away
from any local optimum, then such an instance exists for Q as well. Note that this first
property holds irrespective of the choices made by the algorithm C for Q [40].

2.2 Definitions of Local Search Problems
We will be concerned with various local search problems. In the following we provide a
summary of the problems that appear in this paper, and provide definitions for each. Some
of the problems considered in this paper are not the most natural ones, but we need them as
intermediate problems for our reductions. Moreover, these problems might be useful to show
PLS-hardness of other problems having cardinality constraints.

Before introducing the problems themselves, we first provide a more abstract view of the
problems, since they have many important aspects in common. Each problem in the list
below is a type of partitioning problem, where we are given a finite set S and are asked to
find the “best” partition of S into k sets (indeed, for all but one problem, we have k = 2).
What determines whether some partition is better than another varies; this is determined by
the cost function of the problem in question.

▶ Definition 2.3. Given a partition P = {S1, . . . , Sk} of S, a partition P ′ is a neighbor
of P in the Flip neighborhood if P ′ can be obtained by moving exactly one element from
some Si ∈ P to some other Sj ∈ P. In other words, if P ′ = {S1, . . . , S′

i, . . . , S′
j , . . . , Sk}

where for some v ∈ Si we have S′
i = Si \ {v} and S′

j = Sj ∪ {v}.

The Flip neighborhood as defined above is perhaps the simplest neighborhood structure
for a partitioning problem. For each problem in the list below, we consider only the Flip
neighborhood in this paper. Recall that the Flip heuristic for k-Means is also referred to
as the Hartigan–Wong method [20].

Max Cut

Input: A graph G = (V, E) with non-negative edge weights w : E → Z≥0.
Output: A partition (X, Y) of V such that w(X, Y) is maximal.

We will mainly be concerned with several variants of Max Cut. For some fixed integer d,
by Max Cut-d we denote the restriction of the problem to graphs with maximum degree d.
In Densest Cut, one aims to maximize w(X,Y)

|X|·|Y | rather than just w(X, Y). The minimization
version of this problem is called Sparsest Cut. The problem Odd Max Bisection is
identical to Max Cut, with the added restrictions that the number of vertices must be odd
and that the two halves of the cut differ in size by exactly one. The minimization version of
the problem is called Odd Min Bisection.

The definitions of Odd Max/Min Bisection are somewhat unconventional, as one
usually considers these problem with an even number of vertices and with the Swap neighbor-
hood, where two solutions are neighbors if one can be obtained from the other by swapping

B. Manthey, N. Morawietz, J. van Rhijn, and F. Sommer 48:7

a pair of vertices between parts of the partition. Hardness of Max Bisection/Swap was
shown by Schäffer and Yannakakis [40] in a short reduction from Max Cut/Flip, providing
as a corollary also a simple hardness proof for the Kernighan-Lin heuristic [27]. The reason
we require the Flip neighborhood is that we aim to reduce this problem to Squared Eu-
clidean Max Cut/Flip, where we run into trouble when we use the Swap neighborhood
(see Section 3 for details).

Squared Euclidean Max Cut

Input: A set of n points X ⊆ Rd.
Output: A partition (X, Y) of X such that

∑
x∈X

∑
y∈Y ∥x − y∥2 is maximal.

Euclidean Max Cut is defined similarly; the only difference is that the actual distances
between points enter the objective function, rather than the squared distances.

k-Means

Input: A set of n points X ⊆ Rd and an integer k ≥ 2.
Output: A partition (C1, . . . , Ck) of X such that

∑k
i=1

∑
x∈Ci

∥x − cm(Ci)∥2 is
minimal.

The sets {C1, . . . , Ck} are called clusters. Note that in this formulation, both k-
Means/Flip and Squared Euclidean Max Cut/Flip are not contained in PLS, as their
cost functions can take non-integer values. However, we still obtain PLS-hardness for each of
these problems, and the existence of specific hard instances (cf. Theorem 1.3). Moreover,
this hardness still holds for restricted versions of the problems which do belong to PLS. More
technical details are given in the full version.

Positive Not-All-Equal k-Satisfiability (Pos NAE k-SAT)

Input: A boolean formula with clauses of the form NAE(x1, . . . , xℓ) with ℓ ≤ k,
where each clause is satisfied if its constituents, all of which are positive,
are neither all true nor all false. Each clause C has a weight w(C) ∈ Z.

Output: A truth assignment of the variables such that the sum of the weights of
the satisfied clauses is maximized.

In Odd Half Pos NAE k-SAT, additionally the number of variables is odd and it
is required that the number of true variables and the number of false variables in any
solution differ by exactly one. This is analogous to the relationship between Max Cut and
Odd Max Bisection.

2.3 Strategy
Both Squared Euclidean Max Cut and k-Means are NP-hard [2, 3]. The reductions
used to prove this are quite similar, and can be straightforwardly adapted into PLS-reductions:
In the case of Squared Euclidean Max Cut/Flip, we obtain a reduction from Odd Min
Bisection/Flip, while for k-Means/Flip we obtain a reduction from Densest Cut/Flip.
The latter reduction even works for k = 2. These results are given in Lemma 4.3 (k-Means),
and Lemmas 4.5 and 4.6 ((Squared) Euclidean Max Cut).

What remains then is to show that the problems we reduce from are also PLS-complete,
which takes up the bulk of the work. Figure 1 shows the reduction paths we use.

ISAAC 2024

48:8 Complexity of Local Search for Euclidean Clustering Problems

Max Cut-5/Flip

Distinct Max Cut-5/Flip

Odd Half Pos NAE 3-SAT/Flip

Odd Half Pos NAE 2-SAT/Flip

Odd Max Bisection/Flip

Odd Min Bisection/Flip

(Squared) Euclidean Max Cut/Flip

Densest Cut/Flip

2-Means/Flip

k-Means/Flip

Sparsest Cut/Flip

Lemma 3.1

Lemma 3.2

Lemma 3.3

Lemma 3.5

Lemma 3.5

Lemmas 4.5 and 4.6

Lemma 4.1

Lemma 4.4

Lemma 4.3 Corollary 4.2

Figure 1 Graph of the PLS-reductions used in this paper. Reductions represented by solid lines
are tight, reductions represented by dashed lines are not.

The starting point will be the PLS-completeness of Max Cut-5/Flip, which was shown
by Elsässer and Tscheuschner [15]. An obvious next step might then be to reduce from this
problem to Max Bisection/Swap, and then further reduce to Odd Max Bisection/Flip.
Unfortunately, this turns out to be rather difficult, as the extra power afforded by the Swap
neighborhood is not so easily reduced back to the Flip neighborhood. Using this strategy,
we can only obtain PLS-hardness of the 2-Flip neighborhood for Squared Euclidean
Max Cut, where two points may flip in a single iteration.

We thus take a detour through Odd Half Pos NAE 3-SAT/Flip in Lemma 3.2, which
then reduces down to Odd Half Pos NAE 2-SAT/Flip in Lemma 3.3 and finally to Odd
Max Bisection/Flip in Lemma 3.5, using a reduction by Schäffer and Yannakakis [40].

From this point, hardness of Squared Euclidean Max Cut/Flip (and with a little
extra work, Euclidean Max Cut/Flip) is easily obtained. For k-Means/Flip, we need
some more effort, as we still need to show hardness of Densest Cut/Flip. Luckily, this
can be done by reducing from Odd Max Bisection/Flip as well, as proved in Lemma 4.1.

Due to space constraints, our proofs are deferred to the full version.

3 Reduction to Odd Min/Max Bisection

The goal of this section is to obtain PLS-completeness of Odd Min/Max Bisection/Flip,
from which we can reduce further to our target problems; see Figure 1. We will first
construct a PLS-reduction from Max Cut-5/Flip to Odd Half Pos NAE 3-SAT/Flip
in Lemma 3.2.

A subtlety is that the reduction only works when we assume that the Max Cut-5
instance we reduce from has distinct costs for any two neighboring solutions. The following
lemma ensures that we can make this assumption.

B. Manthey, N. Morawietz, J. van Rhijn, and F. Sommer 48:9

▶ Lemma 3.1. Distinct Max Cut-5/Flip is PLS-complete. More precisely, there exists a
PLS-reduction from Max Cut-5/Flip to Distinct Max Cut-5/Flip.

Unfortunately, this reduction is not tight. Hence, to prove the last two items of Theo-
rem 1.3, simply applying the reductions from Figure 1 is not sufficient, as these properties
(viz. PSPACE-completeness of the standard algorithm problem and the existence of certain
hard instances) do not necessarily hold for Distinct Max Cut-5/Flip. We must instead
separately prove that they hold for this problem. To accomplish this, we recall a construction
by Monien and Tscheuschner [37] that shows these properties for Max Cut-4/Flip. It
can be verified straightforwardly that the construction they use is already an instance of
Distinct Max Cut-4/Flip.

In the remainder of this work, we present a sequence of tight reductions starting from
Distinct Max Cut-5/Flip to all of our other considered problems. First, we reduce from
Distinct Max Cut-5/Flip to Odd Half Pos NAE 3-SAT/Flip.

▶ Lemma 3.2. There exists a tight PLS-reduction from Distinct Max Cut-5/Flip to
Odd Half Pos NAE 3-SAT/Flip.

As mentioned in Section 2.3, it may seem more straightforward to reduce from Min
Bisection/Swap to Odd Min Bisection/Flip. The problem with this approach is that
a solution to Odd Min Bisection/Flip can be locally optimal for two reasons: either
no vertex can flip to obtain a cut of larger weight, or the vertices that could are in the
smaller part of the partition. This makes the Flip neighborhood much less powerful than
Swap in this problem variant; we were thus not able to find a direct reduction from Min
Bisection/Swap. Instead, we apply a new technique that allows us to prove PLS-hardness
for this very restricted problem.

We first prove PLS-hardness of Odd Half Pos NAE 3-SAT/Flip, and subsequently use
existing reductions to obtain hardness of Odd Min Bisection/Flip. With the expressiveness
of this SAT variant we gain a great deal of freedom to handle the problem restrictions. The
main challenge is in encoding the restriction that the number of true and false variables must
differ by exactly one without weakening the neighborhood.

Next, we briefly sketch and motivate some of the ideas in the reduction in more detail.
See also Figure 2.

Sketch of Proof for Lemma 3.2. We first embed the Distinct Max Cut-5 instance, given
by a weighted graph G = (V, E), in Pos NAE SAT. This can be done rather straightforwardly,
by a reduction used by Schäffer and Yannakakis [40]: each vertex becomes a variable, and
an edge uv becomes a clause NAE(u, v). This instance is directly equivalent to the original
Distinct Max Cut-5 instance. We call these variables the level 1 variables, and the clauses
the level 1 clauses. A level 1 clause NAE(u, v) gets a weight M · w(uv) for some large
integer M .

A solution to the original Distinct Max Cut-5 instance is obtained by placing the
true level 1 variables in a feasible truth assignment on one side of the cut, and the false
level 1 variables on the other side.

Given the reduction so far, suppose we have some locally optimal feasible truth assign-
ment s. We partition the variables into the sets T and F of true and false variables; thus,
(T, F) is the cut induced by s. Suppose |T | = |F | + 1. If no level 1 variable can flip from T

to F , then also no vertex can flip from T to F in the induced cut. However, we run into
trouble when there exists some v ∈ F that can flip in the cut. Since |F | < |T |, we are not
allowed to flip the level 1 variable v, and so the truth assignment may be locally optimal
even though the induced cut is not.

ISAAC 2024

48:10 Complexity of Local Search for Euclidean Clustering Problems

NAE(v, u1)
NAE(v, u2)
NAE(v, u3)

weight: M

weight: 8M

weight: 3M

Level1

NAE(qv, u1)
NAE(qv, u2)
NAE(qv, u3)

weight: −L

weight: −8L

weight: −3L

Level2

NAE(v, qv, ai)
NAE(v, qv, ai)
NAE(v, qv, ai)
NAE(v, qv, ai)
NAE(v, qv, ai)
NAE(v, qv, ai)
NAE(v, qv, ai)
NAE(v, qv, ai)

{u1, u2, u3}
{u1, u2}
{u1, u3}
{u2, u3}
{u1}
{u2}
{u3}
∅

weight: −1
weight: −1
weight: 0
weight: −1
weight: 0
weight: −1
weight: 0
weight: 0

Level3

v

u1

u2

u3

1

8

3

Figure 2 Schematic overview of the reduction used in the proof of Lemma 3.2. On the left we
have a vertex v ∈ V and its neighbors {u1, u2, u3} in a Max Cut instance, with weights on the edges
between v and its neighbors. The NAE clauses on the right are the clauses constructed from v. In
the actual reduction, these clauses are added for all level 3 variables. The right-most column shows
the weights assigned to the clauses. The middle column shows for the level 3 clauses which subset
of N(v) corresponds to which clause. The constants L and M are chosen so that 1 ≪ L ≪ M .

To deal with this situation, we will introduce two more levels of variables and clauses.
The weights of the clauses at level i will be scaled so that they are much larger than those
at level i + 1. In this way, changes at level i dominate changes at level i + 1, so that the
Distinct Max Cut-5 instance can exist independently at level 1.

For each vertex v ∈ V , we add a variable qv to the instance, and for each u ∈ N(v), we
add a clause NAE(qv, u) with weight proportional to −w(uv). We call these variables the
level 2 variables, and these clauses the level 2 clauses.

Finally, we add N = 2n + 1 more variables {ai}N
i=1, which we call the level 3 variables.

The number N is chosen so that for any truth assignment such that the number of true
and false variables differ by one, there must exist a level 3 variable in the larger of the two
sets. We then add more clauses as follows: for each level 3 variable ai, for each v ∈ V , for
each Q ⊆ N(v), we add a clause Ci(v, Q) = NAE(v, qv, ai). We give this clause a weight
of −1 if and only if v can flip when each of the vertices in Q are present in the same half of
the cut as v. We call these the level 3 clauses

Now consider the aforementioned situation, where a truth assignment s is locally optimal,
but there exists some v ∈ V ∩ F that can flip in the induced cut. Carefully investigating
the structure of such a locally optimal truth assignment shows that some level 2 or level 3
variable can flip for a strict improvement in the cost. This contradicts local optimality, and
so we must conclude that locally optimal truth assignments induce locally optimal cuts,
satisfying the essential property of PLS-reductions. ◀

As far as we are aware, this technique for overcoming size constraints in local search
problems is novel. We believe that it may be useful to prove PLS-hardness results for simple
heuristics for other size-constrained problems, such as balanced clustering problems.

B. Manthey, N. Morawietz, J. van Rhijn, and F. Sommer 48:11

A reduction from Pos NAE 3-SAT/Flip to Max Cut/Flip was provided by Schäffer
and Yannakakis [40]. Since Max Cut is equivalent to Pos NAE 2-Sat, we can use the
same reduction to reduce from Odd Half Pos NAE 3-SAT/Flip to Odd Half Pos NAE
2-SAT/Flip.

▶ Lemma 3.3 (Schäffer and Yannakakis [40]). There exists a tight PLS-reduction from Odd
Half Pos NAE 3-SAT/Flip to Odd Half Pos NAE 2-SAT/Flip.

While our reductions so far have used negative-weight clauses in Odd Half Pos NAE
k-SAT/Flip, it may be of interest to have a PLS-completeness result also when all clauses
have non-negative weight.

▶ Corollary 3.4. Odd Half Pos NAE 2-SAT/Flip is PLS-complete even when all clauses
have non-negative weight. More precisely, there exists a tight PLS-reduction from Odd Half
Pos NAE 2-SAT/Flip to Odd Half Pos NAE 2-SAT/Flip where all clauses have
non-negative weight.

Finally, we reduce from Odd Half Pos NAE 2-SAT/Flip to Odd Min Bisec-
tion/Flip.

▶ Lemma 3.5. There exists a tight PLS-reduction from Odd Half Pos NAE 2-SAT/Flip
to both Odd Max Bisection/Flip and Odd Min Bisection/Flip.

A reduction from Pos NAE 2-SAT/Flip to Max Cut/Flip is given by Schäffer and
Yannakakis [40]. It is easy to see that this reduction also works with our constraint on the
number of true and false variables, which yields a reduction to Odd Max Bisection/Flip.

4 Reduction to Clustering Problems

Armed with the PLS-completeness of Odd Min Bisection/Flip (see Lemma 3.5), we now
proceed to prove hardness of the Euclidean clustering problems of interest.

k-Means. We provide a tight PLS-reduction from Odd Min Bisection/Flip to k-
Means/Flip. This is done in three steps (see Figure 1). First, we show PLS-completeness
of Densest Cut/Flip. The construction of the proof of our PLS-completeness of Densest
Cut/Flip is rather simple (we only add a large set of isolated edges), but the analysis
of the correctness is quite technical. Second, we show PLS-hardness of 2-Means/Flip by
slightly adapting an NP-hardness reduction of 2-Means [3]. Finally, we extend this result to
k-Means/Flip.

Now, we show PLS-completeness of Densest Cut/Flip. We impose the additional con-
straint that there are no isolated vertices in the reduced instance. This is a technical condition
which is utilized in Lemma 4.3 for the PLS-hardness of k-Means/Flip.

For an illustration of the reduction of Lemma 4.1 we refer to Figure 3.

▶ Lemma 4.1. There exists a tight PLS-reduction from Odd Max Bisection/Flip to
Densest Cut/Flip without isolated vertices.

Next, we show that also the closely related Sparsest Cut is PLS-complete under the
Flip neighborhood. Note that Densest Cut and Sparsest Cut are both NP-hard [35].
Sparsest Cut is studied intensively in terms of approximation algorithms [5] and integrality
gaps [25], and is used to reveal the hierarchical community structure of social networks [32]
and in image segmentation [43].

ISAAC 2024

48:12 Complexity of Local Search for Euclidean Clustering Problems

G G . . .M M M

B

A

n4

Figure 3 Schematic overview of the reduction used in the proof of Lemma 4.1. On the left side
we have an instance of Odd Max Bisection/Flip and on the right side we have the corresponding
instance of Densest Cut/Flip. The edges inside of G together with their weights are not depicted
but are identical in both instances. Let (A, B) be the partition corresponding to some locally optimal
solution of the Densest Cut/Flip instance. Then, A contains exactly one endpoint of each of the
n4 isolated edges and | |A ∩ V (G)| − |B ∩ V (G)| | = 1.

▶ Corollary 4.2. There exists a tight PLS-reduction from Densest Cut/Flip to Sparsest
Cut/Flip.

The penultimate step is to show that 2-Means/Flip is PLS-hard. We achieve this by
modifying a proof of NP-hardness of 2-Means by Alois et al. [3].

▶ Lemma 4.3. There exists a tight PLS-reduction from Densest Cut/Flip without isolated
vertices to 2-Means/Flip.

Finally, we provide a generic reduction to show PLS-hardness for general k.

▶ Lemma 4.4. For each k ≥ 2, there exists a tight PLS-reduction from k-Means/Flip to
(k + 1)-Means/Flip.

Now, Theorem 1.1 follows by applying the tight PLS-reductions according to Figure 1.

Squared Euclidean Max Cut. We construct a PLS-reduction from Odd Min Bisec-
tion/Flip to Squared Euclidean Max Cut/Flip. The reduction is largely based on the
NP-hardness proof of Euclidean Max Cut of Ageev et al. [2]. The main difference is that
we must incorporate the weights of the edges of the Odd Min Bisection/Flip instance
into the reduction.

▶ Lemma 4.5. There exists a tight PLS-reduction from Odd Min Bisection/Flip to
Squared Euclidean Max Cut/Flip.

With a few modifications, the proof can be adapted to a reduction to Euclidean Max
Cut/Flip. The main challenge in adapting the proof is that the objective function is now of
the form

∑
∥x−y∥, rather than

∑
∥x−y∥2. However, by suitably modifying the coordinates

of the points, the distances ∥x − y∥ in the Euclidean Max Cut instance can take the same
value as ∥x − y∥2 in the Squared Euclidean Max Cut instance.

▶ Lemma 4.6. There exists a tight PLS-reduction from Odd Min Bisection/Flip to
Euclidean Max Cut/Flip.

B. Manthey, N. Morawietz, J. van Rhijn, and F. Sommer 48:13

5 Discussion

Theorems 1.1 and 1.3 show that no local improvement algorithm using the Flip heuristic
can find locally optimal clusterings efficiently, even when k = 2. This result augments an
earlier worst-case construction [33]. Theorem 1.2 demonstrates that finding local optima in
Squared Euclidean Max Cut is no easier than for general Max Cut under the Flip
neighborhood. Thus, the Euclidean structure of the problem yields no benefits with respect
to the computational complexity of local optimization.

Smoothed Analysis. Other PLS-hard problems have yielded under smoothed analysis.
Chiefly, Max Cut/Flip has polynomial smoothed complexity in complete graphs [4, 11]
and quasi-polynomial smoothed complexity in general graphs [14, 18]. We hope that our
results here serve to motivate research into the smoothed complexity of k-Means/Flip and
Squared Euclidean Max Cut/Flip, with the goal of adding them to the list of hard
local search problems that become easy under perturbations.

Reducing the Dimensionality. Our reductions yield instances of k-Means and (Squared)
Euclidean Max Cut in Ω(n) dimensions. Seeing as our reductions cannot be obviously
adapted for d = o(n), we raise the question of whether the hardness of Squared Euclidean
Max Cut/Flip and k-Means/Flip is preserved for d = o(n). This seems unlikely for
Squared Euclidean Max Cut/Flip for d = O(1), since there exists an O(nd+1)-time
exact algorithm due to Schulman [42]. A direct consequence of PLS-hardness for d = f(n)
would thus be an O

(
nf(n))-time general-purpose local optimization algorithm. Concretely,

PLS-hardness for d = polylog n would yield a quasi-polynomial time algorithm for all problems
in PLS.

For k-Means/Flip, the situation is similar: For d = 1, k-Means is polynomial-time
solvable for any k. However, already for d = 2, the problem is NP-hard [31] when k is arbitrary.
When both k and d are constants, the problem is again polynomial-time solvable, as an
algorithm exists that finds an optimal clustering in time nO(kd) [21]. Thus, PLS-hardness for
kd ∈ O(f(n)) would yield an nO(f(n))-time algorithm for all PLS problems in this case.

Euclidean Local Search. There appear to be very few PLS-hardness results for Euclidean
local optimization problems, barring the result of Brauer [13] and now Theorem 1.1 and
Theorem 1.2. A major challenge in obtaining such results is that Euclidean space is very
restrictive; edge weights cannot be independently set, so the intricacy often required for
PLS-reductions is hard to achieve. Even in the present work, most of the work is done in a
purely combinatorial setting. It is then useful to get rid of the Euclidean structure of the
problem as quickly as possible, which we achieved by modifying the reductions of Ageev et
al. [2] and Alois et al. [3].

With this insight, we pose the question of what other local search problems remain
PLS-hard for Euclidean instances. Specifically, is TSP with the k-opt neighborhood still
PLS-hard in Euclidean (or squared Euclidean) instances, for sufficiently large k? This is
known to be the case for general metric instances for some large constant k [29] (recently
improved to all k ≥ 17 [22]), but Euclidean instances are still a good deal more restricted.

ISAAC 2024

48:14 Complexity of Local Search for Euclidean Clustering Problems

References
1 Emile Aarts and Jan Karel Lenstra, editors. Local Search in Combinatorial Optimization.

Princeton University Press, 2003. doi:10.2307/j.ctv346t9c.
2 A. A. Ageev, A. V. Kel’manov, and A. V. Pyatkin. Complexity of the weighted max-cut in

Euclidean space. Journal of Applied and Industrial Mathematics, 8(4):453–457, October 2014.
doi:10.1134/S1990478914040012.

3 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Eu-
clidean sum-of-squares clustering. Machine Learning, 75(2):245–248, May 2009. doi:
10.1007/s10994-009-5103-0.

4 Omer Angel, Sébastien Bubeck, Yuval Peres, and Fan Wei. Local max-cut in smoothed
polynomial time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, pages 429–437, New York, NY, USA, June 2017. Association for
Computing Machinery. doi:10.1145/3055399.3055402.

5 Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and
graph partitioning. Journal of the ACM, 56(2):5:1–5:37, April 2009. doi:10.1145/1502793.
1502794.

6 David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed Analysis of the k-Means Method.
Journal of the ACM, 58(5):19:1–19:31, October 2011. doi:10.1145/2027216.2027217.

7 David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In Proceedings
of the Twenty-Second Annual Symposium on Computational Geometry, SoCG ’06, pages
144–153, New York, NY, USA, June 2006. Association for Computing Machinery. doi:
10.1145/1137856.1137880.

8 David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful seeding. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’07, pages 1027–1035, USA, January 2007. Society for Industrial and Applied Mathematics.
URL: http://dl.acm.org/citation.cfm?id=1283383.1283494.

9 Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt. An Application
of Combinatorial Optimization to Statistical Physics and Circuit Layout Design. Operations
Research, 36(3):493–513, June 1988. doi:10.1287/opre.36.3.493.

10 P. Berkhin. A Survey of Clustering Data Mining Techniques. In Grouping Multidimensional
Data: Recent Advances in Clustering, pages 25–71. Springer, Berlin, Heidelberg, 2006. doi:
10.1007/3-540-28349-8_2.

11 Ali Bibak, Charles Carlson, and Karthekeyan Chandrasekaran. Improving the Smoothed
Complexity of FLIP for Max Cut Problems. ACM Transactions on Algorithms, 17(3):19:1–
19:38, July 2021. doi:10.1145/3454125.

12 Y.Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region
segmentation of objects in N-D images. In Proceedings Eighth IEEE International Con-
ference on Computer Vision. ICCV 2001, volume 1, pages 105–112 vol.1, July 2001.
doi:10.1109/ICCV.2001.937505.

13 Sascha Brauer. Complexity of Single-Swap Heuristics for Metric Facility Location and Related
Problems. In Algorithms and Complexity, Lecture Notes in Computer Science, pages 116–127,
Cham, 2017. Springer International Publishing. doi:10.1007/978-3-319-57586-5_11.

14 Xi Chen, Chenghao Guo, Emmanouil V. Vlatakis-Gkaragkounis, Mihalis Yannakakis, and
Xinzhi Zhang. Smoothed complexity of local max-cut and binary max-CSP. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages
1052–1065, New York, NY, USA, June 2020. Association for Computing Machinery. doi:
10.1145/3357713.3384325.

15 Robert Elsässer and Tobias Tscheuschner. Settling the Complexity of Local Max-Cut (Almost)
Completely. In International Colloquium on Automata, Languages, and Programming, Lecture
Notes in Computer Science, pages 171–182, Berlin, Heidelberg, 2011. Springer. doi:10.1007/
978-3-642-22006-7_15.

https://doi.org/10.2307/j.ctv346t9c
https://doi.org/10.1134/S1990478914040012
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1145/3055399.3055402
https://doi.org/10.1145/1502793.1502794
https://doi.org/10.1145/1502793.1502794
https://doi.org/10.1145/2027216.2027217
https://doi.org/10.1145/1137856.1137880
https://doi.org/10.1145/1137856.1137880
http://dl.acm.org/citation.cfm?id=1283383.1283494
https://doi.org/10.1287/opre.36.3.493
https://doi.org/10.1007/3-540-28349-8_2
https://doi.org/10.1007/3-540-28349-8_2
https://doi.org/10.1145/3454125
https://doi.org/10.1109/ICCV.2001.937505
https://doi.org/10.1007/978-3-319-57586-5_11
https://doi.org/10.1145/3357713.3384325
https://doi.org/10.1145/3357713.3384325
https://doi.org/10.1007/978-3-642-22006-7_15
https://doi.org/10.1007/978-3-642-22006-7_15

B. Manthey, N. Morawietz, J. van Rhijn, and F. Sommer 48:15

16 Michael Etscheid. Beyond Worst-Case Analysis of Max-Cut and Local Search. PhD the-
sis, Universitäts- und Landesbibliothek Bonn, August 2018. URL: https://bonndoc.ulb.
uni-bonn.de/xmlui/handle/20.500.11811/7613.

17 Michael Etscheid and Heiko Röglin. Smoothed Analysis of the Squared Euclidean Maximum-
Cut Problem. In Algorithms - ESA 2015, Lecture Notes in Computer Science, pages 509–520,
Berlin, Heidelberg, 2015. Springer. doi:10.1007/978-3-662-48350-3_43.

18 Michael Etscheid and Heiko Röglin. Smoothed Analysis of Local Search for the Maximum-Cut
Problem. ACM Transactions on Algorithms, 13(2):25:1–25:12, March 2017. doi:10.1145/
3011870.

19 C.M. Fiduccia and R.M. Mattheyses. A Linear-Time Heuristic for Improving Network
Partitions. In 19th Design Automation Conference, pages 175–181, June 1982. doi:10.1109/
DAC.1982.1585498.

20 J. A. Hartigan and M. A. Wong. Algorithm AS 136: A K-Means Clustering Algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979.
doi:10.2307/2346830.

21 Susumu Hasegawa, Hiroshi Imai, Mary Inaba, and Naoki Katoh. Efficient Algorithms for
Variance-Based k-Clustering. Proceedings of Pacific Graphics 1993, February 2000.

22 Sophia Heimann, Hung P. Hoang, and Stefan Hougardy. The k-Opt algorithm for the Traveling
Salesman Problem has exponential running time for k ≥ 5. In International Colloquium on
Automata, Languages, and Programming, volume 297 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 84:1–84:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2024. doi:10.4230/LIPICS.ICALP.2024.84.

23 Anil K. Jain. Data clustering: 50 years beyond K-means. Pattern Recognition Letters,
31(8):651–666, June 2010. doi:10.1016/j.patrec.2009.09.011.

24 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, August 1988. doi:10.1016/
0022-0000(88)90046-3.

25 Daniel M. Kane and Raghu Meka. A PRG for lipschitz functions of polynomials with
applications to sparsest cut. In Proceedings of the Forty-Fifth Annual ACM Symposium on
Theory of Computing, STOC ’13, pages 1–10, New York, NY, USA, June 2013. Association for
Computing Machinery. doi:10.1145/2488608.2488610.

26 T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, and A.Y. Wu. An
efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(7):881–892, July 2002. doi:10.1109/TPAMI.
2002.1017616.

27 B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell
System Technical Journal, 49(2):291–307, February 1970. doi:10.1002/j.1538-7305.1970.
tb01770.x.

28 Christian Komusiewicz and Nils Morawietz. Finding 3-Swap-Optimal Independent Sets and
Dominating Sets Is Hard. In 47th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2022), volume 241 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 66:1–66:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.MFCS.2022.66.

29 M.W. Krentel. Structure in locally optimal solutions. In 30th Annual Symposium on Founda-
tions of Computer Science, pages 216–221, October 1989. doi:10.1109/SFCS.1989.63481.

30 S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2):129–137, March 1982. doi:10.1109/TIT.1982.1056489.

31 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means problem
is NP-hard. Theoretical Computer Science, 442:13–21, July 2012. doi:10.1016/j.tcs.2010.
05.034.

ISAAC 2024

https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/7613
https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/7613
https://doi.org/10.1007/978-3-662-48350-3_43
https://doi.org/10.1145/3011870
https://doi.org/10.1145/3011870
https://doi.org/10.1109/DAC.1982.1585498
https://doi.org/10.1109/DAC.1982.1585498
https://doi.org/10.2307/2346830
https://doi.org/10.4230/LIPICS.ICALP.2024.84
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1145/2488608.2488610
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.4230/LIPIcs.MFCS.2022.66
https://doi.org/10.1109/SFCS.1989.63481
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/j.tcs.2010.05.034
https://doi.org/10.1016/j.tcs.2010.05.034

48:16 Complexity of Local Search for Euclidean Clustering Problems

32 Charles F. Mann, David W. Matula, and Eli V. Olinick. The use of sparsest cuts to reveal
the hierarchical community structure of social networks. Social Networks, 30(3):223–234, July
2008. doi:10.1016/j.socnet.2008.03.004.

33 Bodo Manthey and Jesse van Rhijn. Worst-Case and Smoothed Analysis of the Hartigan-Wong
Method for k-Means Clustering. In 41st International Symposium on Theoretical Aspects of
Computer Science (STACS 2024). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
doi:10.4230/LIPIcs.STACS.2024.52.

34 J. Matoušek. On Approximate Geometric k -Clustering. Discrete & Computational Geometry,
24(1):61–84, January 2000. doi:10.1007/s004540010019.

35 David W. Matula and Farhad Shahrokhi. Sparsest cuts and bottlenecks in graphs. Discrete
Applied Mathematics, 27(1):113–123, May 1990. doi:10.1016/0166-218X(90)90133-W.

36 Wil Michiels, Jan Korst, and Emile Aarts. Theoretical Aspects of Local Search. Monographs
in Theoretical Computer Science, An EATCS Series. Springer, Berlin, Heidelberg, 2007.
doi:10.1007/978-3-540-35854-1.

37 Burkhard Monien and Tobias Tscheuschner. On the Power of Nodes of Degree Four in the
Local Max-Cut Problem. In Algorithms and Complexity, Lecture Notes in Computer Science,
pages 264–275, Berlin, Heidelberg, 2010. Springer. doi:10.1007/978-3-642-13073-1_24.

38 Christos H. Papadimitriou. The Complexity of the Lin–Kernighan Heuristic for the Traveling
Salesman Problem. SIAM Journal on Computing, 21(3):450–465, June 1992. doi:10.1137/
0221030.

39 Tim Roughgarden and Joshua R. Wang. The Complexity of the k-means Method. In 24th
Annual European Symposium on Algorithms (ESA 2016), volume 57 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 78:1–78:14, Dagstuhl, Germany, 2016. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2016.78.

40 Alejandro A. Schäffer and Mihalis Yannakakis. Simple Local Search Problems that are Hard
to Solve. SIAM Journal on Computing, 20(1):56–87, February 1991. doi:10.1137/0220004.

41 I. J. Schoenberg. Metric spaces and positive definite functions. Transactions of the American
Mathematical Society, 44(3):522–536, 1938. doi:10.1090/S0002-9947-1938-1501980-0.

42 Leonard J. Schulman. Clustering for edge-cost minimization (extended abstract). In Proceedings
of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC ’00, pages
547–555, New York, NY, USA, May 2000. Association for Computing Machinery. doi:
10.1145/335305.335373.

43 Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888–905, August 2000. doi:10.1109/34.
868688.

44 Matus Telgarsky and Andrea Vattani. Hartigan’s Method: K-means Clustering without
Voronoi. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, pages 820–827. JMLR Workshop and Conference Proceedings, March 2010.
URL: https://proceedings.mlr.press/v9/telgarsky10a.html.

45 Andrea Vattani. K-means Requires Exponentially Many Iterations Even in the Plane. Discrete
& Computational Geometry, 45(4):596–616, June 2011. doi:10.1007/s00454-011-9340-1.

https://doi.org/10.1016/j.socnet.2008.03.004
https://doi.org/10.4230/LIPIcs.STACS.2024.52
https://doi.org/10.1007/s004540010019
https://doi.org/10.1016/0166-218X(90)90133-W
https://doi.org/10.1007/978-3-540-35854-1
https://doi.org/10.1007/978-3-642-13073-1_24
https://doi.org/10.1137/0221030
https://doi.org/10.1137/0221030
https://doi.org/10.4230/LIPIcs.ESA.2016.78
https://doi.org/10.1137/0220004
https://doi.org/10.1090/S0002-9947-1938-1501980-0
https://doi.org/10.1145/335305.335373
https://doi.org/10.1145/335305.335373
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/34.868688
https://proceedings.mlr.press/v9/telgarsky10a.html
https://doi.org/10.1007/s00454-011-9340-1

Online Multi-Level Aggregation with Delays and
Stochastic Arrivals
Mathieu Mari #

LIRMM, University of Montpellier, France

Michał Pawłowski #

University of Warsaw, Poland
IDEAS NCBR, Warsaw, Poland
Sapienza University of Rome, Italy

Runtian Ren #

IDEAS NCBR, Warsaw, Poland
University of Wrocław, Poland

Piotr Sankowski #

University of Warsaw, Poland
IDEAS NCBR, Poland
MIM Solutions, Warsaw, Poland

Abstract
This paper presents a new research direction for online Multi-Level Aggregation (MLA) with delays.
Given an edge-weighted rooted tree T as input, a sequence of requests arriving at its vertices needs
to be served in an online manner. A request r is characterized by two parameters: its arrival time
t(r) > 0 and location l(r) being a vertex in tree T . Once r arrives, we can either serve it immediately
or postpone this action until any time t > t(r). A request that has not been served at its arrival
time is called pending up to the moment it gets served. We can serve several pending requests at
the same time, paying a service cost equal to the weight of the subtree containing the locations of
all the requests served and the root of T . Postponing the service of a request r to time t > t(r)
generates an additional delay cost of t − t(r). The goal is to serve all requests in an online manner
such that the total cost (i.e., the total sum of service and delay costs) is minimized. The MLA
problem is a generalization of several well-studied problems, including the TCP Acknowledgment
(trees of depth 1), Joint Replenishment (depth 2), and Multi-Level Message Aggregation (arbitrary
depth). The current best algorithm achieves a competitive ratio of O(d2), where d denotes the depth
of the tree.

Here, we consider a stochastic version of MLA where the requests follow a Poisson arrival process.
We present a deterministic online algorithm that achieves a constant ratio of expectations, meaning
that the ratio between the expected costs of the solution generated by our algorithm and the optimal
offline solution is bounded by a constant. Our algorithm is obtained by carefully combining two
strategies. In the first one, we plan periodic oblivious visits to the subset of frequent vertices, whereas,
in the second one, we greedily serve the pending requests in the remaining vertices. This problem is
complex enough to demonstrate a very rare phenomenon that “single-minded” or “sample-average”
strategies are not enough in stochastic optimization.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases online algorithms, online network design, stochastic model, Poisson arrivals

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.49

Related Version Full Version: https://arxiv.org/abs/2404.09711 [57]

Funding This work is supported by ERC CoG grant TUgbOAT no 772346, NCN grant no 2020/37/B/
ST6/04179, and NCN grant no 2022/45/B/ST6/00559.

© Mathieu Mari, Michał Pawłowski, Runtian Ren, and Piotr Sankowski;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 49; pp. 49:1–49:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mathieu.mari@lirmm.fr
https://orcid.org/0000-0001-8074-0241
mailto:michal.pawlowski@ideas-ncbr.pl
https://orcid.org/0000-0001-5289-469X
mailto:runtian.ren@ideas-ncbr.pl
https://orcid.org/0000-0002-8640-0421
mailto:piotr.sawkowski@ideas-ncbr.pl
https://orcid.org/0000-0002-0907-3754
https://doi.org/10.4230/LIPIcs.ISAAC.2024.49
https://arxiv.org/abs/2404.09711
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Online Multi-Level Aggregation with Delays and Stochastic Arrivals

1 Introduction

Imagine the manager of a factory in charge of delivering products from the factory to the
stores’ locations. Once some products are in shortage for a store, its owner informs the
factory for replenishment. From the factory’s perspective, each time a service is created to
deliver the products, a truck has to travel from the factory to the requested stores’ locations
and then return to the factory. A cost proportional to the total traveling distance is paid
for this service. For the purpose of saving delivery costs, it is beneficial to accumulate the
replenishment requests from many stores and then deliver the ordered products altogether in
one service. However, this accumulated delay in delivering products may leave the stores
unsatisfied, and the complaints will negatively influence future contracts between the stores
and the factory. Typically, for each request ordered from a store, the time gap between
ordering the products and receiving the products is known as the delay cost. The goal of the
factory manager is to plan the delivery service schedule in an online manner such that the
total service cost and the total delay cost are minimized.

The above is an example of an online problem called Multi-level Aggregation (MLA)
with linear delays. Formally, the input is an edge-weighted rooted tree T and a sequence of
requests, with each request r specified by an arrival time t(r) and a location at a particular
vertex. Once a request r arrives, its service does not have to be processed immediately but
can be delayed to any time t ≥ t(r) at a delay cost of t − t(r). The benefit of delaying
requests is that several requests can be served together to save some service costs. To serve
any set of requests R at time t, a subtree T ′ containing the tree root and locations of all the
requests in R needs to be bought at a service cost equal to the total weight of edges in T ′.
The goal is to serve all requests in an online manner such that the total cost (i.e., the total
service cost plus the total delay cost) is minimized.

Due to many real-life applications ranging from logistics, supply chain management, and
data transmission in sensor networks, the MLA problem has recently drawn considerable
attention [22, 16, 27, 13]. Besides, two classic problems in this area, TCP-acknowledgment
(also known as a lot-sizing problem) and Joint Replenishment (JRP), are special cases
of MLA with tree depths of 1 and 2, respectively. They were also extensively studied
[32, 45, 63, 1, 47, 28, 21, 3, 60, 20]. Particularly for MLA, the current best online algorithm
achieves a competitive ratio of O(d2) [13], where d denotes the depth of the given tree.

However, it is often too pessimistic to assume no stochastic information on the input
is available in practice – again, consider our delivery example. The factory knows all the
historical orders and can estimate the request frequencies from the stores of all locations. It
is reasonable to assume that the requests follow some stochastic distribution. Therefore, the
following question is natural: if the input follows some stochastic distribution, can we devise
online algorithms for MLA with better performance guarantees?

In this paper, we provide an affirmative answer to this question. We study a stochastic
online version of MLA, assuming that the requests arrive following a Poisson arrival process.
More precisely, the waiting time between any two consecutive requests arriving at the same
vertex u follows an exponential distribution Exp(λ(u)) with parameter λ(u). In this model,
the goal is to minimize the expected cost produced by an algorithm ALG for a random input
sequence generated in a long time interval [0, τ]. To evaluate the performance of ALG on
stochastic inputs, we use the ratio of expectations (RoE) by comparing the expected cost of
ALG with the expected cost of the optimal offline solution OPT (see Definition 6).

M. Mari, M. Pawłowski, R. Ren, and P. Sankowski 49:3

Our contribution. We prove that the performance guarantee obtained in the Poisson arrival
model is significantly better compared with the current best competitiveness obtained in the
adversarial model. More specifically, we propose a non-trivial deterministic online algorithm
that achieves a constant ratio of expectations.

▶ Theorem 1. For MLA with linear delays in the Poisson arrival model, there exists a
deterministic online algorithm that achieves a constant ratio of expectations.

Our algorithm is obtained by synergistically merging two carefully crafted strategies. The
first strategy incorporates periodic oblivious visits to a subset of frequently accessed vertices,
while the second strategy employs a proactive, greedy approach to handle pending requests
in the remaining vertices. The complexity of this problem unveils a rare phenomenon – the
inadequacy of “single-minded” or “sample-average” strategies in stochastic optimization. In
this paper, we not only address this challenge but also point to further complex problems
(such as facility location with delays [13] or online service with delays [9]) that require a
similar approach in stochastic environments.

Previous works. The MLA problem has been only studied in the adversarial model. Bien-
kowski et al. [16] introduced a general version of MLA, assuming that the cost of delaying a
request r by a duration t is fr(t). Here, fr(·) denotes the delay cost function of r, which
needs to be non-decreasing and satisfy fr(0) = 0. They proposed an O(d42d)-competitive
online algorithm for this general delay cost version problem, where d denotes the tree depth
[16, Theorem 4.2]. Later, the competitive ratio is further improved to O(d2) by Azar and
Touitou [13, Theorem IV.2] (for the general delay cost version). However, no matching lower
bound has been found for the delay cost version of MLA – the current best lower bound on
MLA (with delays) is 4 [16, Theorem 6.3], restricted to a path case with linear delays. Thus
far, no previous work has studied MLA in the stochastic input model.

Organization. We give the notations and preliminaries in Section 2. As a warm-up, we
study a special single-edge tree instance in Section 3. We show that there are two different
situations, we call them heavy case and light case, and to achieve a constant ratio of
expectations, the ideas for the two cases are different. In Section 4, we give an overview of
our deterministic online algorithm (Theorem 1). This algorithm is the combination of two
different strategies for two different types of instances.1 In Section 5, we study the heavy
instances as a generalization of heavy single-edge trees. In Section 6, we prove the main
Theorem 1. In Section 7, we provide some extra related works in detail. We finish the paper
by discussing some future directions in Section 8.

2 Notations and preliminaries

Weighted tree. Consider an edge-weighted tree T rooted at vertex γ (T). We refer to its
vertex set by V (T) and its edge set by E(T). When the context is clear, we denote the root
vertex, vertex set, and edge set by γ, V , and E, respectively. We assume that each edge
e ∈ E has a positive weight we. For any vertex u ∈ V , except for the root vertex γ, we
denote its parent vertex as par(u) ∈ V , and eu = (u, par(u)) as the edge connecting u and
its parent. We also define Tu as the subtree of T rooted at vertex u. In addition to the edge
weights, we use the term vertex weight to refer to wu := w(eu), where u ∈ V and u ̸= γ.

1 Due to the space limits, all the results for the light instances are ignored here but can be found in the
full version [57].

ISAAC 2024

49:4 Online Multi-Level Aggregation with Delays and Stochastic Arrivals

Given any two vertices u, v ∈ V (T), we denote the path length from u to v in T by dT (u, v),
i.e., it is the total weight of the edges along this path. Finally, we use T [U] to denote the
forest induced by vertices of U ⊆ V (T) in T .

Problem description. An MLA instance is characterized by a tuple (T, σ), where T is a
weighted tree rooted at γ and σ is a sequence of requests. Each request r is described by
a tuple (t(r), l(r)) where t(r) ∈ R+ denotes r’s arrival time and l(r) ∈ V (T) denotes r’s
location. Thus, denoting by m the number of requests, we can rewrite σ := (r1, . . . , rm) with
the requests sorted in increasing order of their arrival times, i.e., t(r1) ≤ t(r2) ≤ · · · ≤ t(rm).
Given a sequence of requests σ, a service s = (t(s), R(s)) is characterized by the service
time t(s) and the set of requests R(s) ⊆ σ it serves. A schedule S for σ is a sequence of
services. We call schedule S valid for σ if each request r ∈ σ is assigned a service s ∈ S that
does not precede r’s arrival. In other words, a valid S for σ satisfies (i) ∀ s ∈ S ∀ r ∈ R(s)
t(r) ≤ t(s); (ii) {R(s) : s ∈ S} forms a partition of σ. Given any MLA instance (T, σ), an
MLA algorithm ALG needs to produce a valid schedule S to serve all the requests in σ.
Particularly, for an online MLA algorithm ALG, at any time t, the decision to create a
service to serve a set of pending request(s) cannot depend on the requests arriving after
time t. For each request r ∈ σ, let S(r) denote the service in S which serves r, i.e., for each
s ∈ S, S(r) = s if and only if r ∈ R(s). Given a sequence of requests σ and a valid schedule
S, the delay cost for a request r ∈ σ is defined as delay(r) := t(S(r)) − t(r). Using this
notion, we define the delay cost for a service s ∈ S and the delay cost for the schedule S as
delay(s) :=

∑
r∈R(s) delay(r) and delay(S) :=

∑
s∈S delay(s). Besides, given any r ∈ σ,

if it is pending at time t, let delay(r, t) = t − t(r) denote its delay cost at this moment.
The weight (also called service cost) of a service s ∈ S, denoted by weight(s, T), is

defined as the weight of the minimal subtree of T that contains root γ and all locations
of requests R(s) served by s. The weight (or service cost) of a schedule S is defined as
weight(S, T) :=

∑
s∈S weight(s, T). To compute the cost of a service s, we sum its delay

cost and weight, i.e., cost(s, T) := delay(s) + weight(s, T). Similarly, we define the cost
(or total cost) of a schedule S for σ as cost(S, T) := delay(S) + weight(S, T). When the
context is clear, we simply write cost(S) = cost(S, T). Moreover, given an MLA instance
(T, σ), let ALG(σ) denote the schedule of algorithm ALG for σ and let OPT(σ) denote the
optimal schedule for σ with minimum total cost. Note that without loss of generality, we
can assume that no request in σ arrives at the tree root γ since such a request can be served
immediately at its arrival with zero cost.

Poisson arrival model. Instead of using an adversarial model, we assume that the requests
arrive according to some stochastic process. A stochastic instance is characterized by a tuple
(T, λ), where T denotes an edge-weighted rooted tree, and λ : V (T) → R+ is a function that
assigns each vertex u ∈ V (T) an arrival rate λ(u) ≥ 0. With no loss we assume λ(γ(T)) = 0,
i.e., no request arrives at the tree root. Formally, such a tuple defines the following process.

▶ Definition 2 (Poisson arrival model). Given any stochastic MLA instance (T, λ) and any
τ > 0, we say that a (random) requests sequence σ follows a Poisson arrival model over time
interval [0, τ], if (i) for each vertex u ∈ V (T) with λ(u) > 0 the waiting time between any two
consecutive requests arriving at u follows an exponential distribution with parameter λ(u); 2

(ii) variables representing waiting times are mutually independent; (iii) all the requests in σ

arrive within time interval [0, τ]. We denote this fact by writing σ ∼ (T, λ)τ .

2 For the first request r arriving at u, the waiting time from 0 to t(r) follows the distribution Exp(λ(u)).
Similarly, for the last request r′ arriving at u, denoting by Wr′ ∼ Exp(λ(u)) its waiting time, we require
that τ − t(r′) < Wr′ .

M. Mari, M. Pawłowski, R. Ren, and P. Sankowski 49:5

Given any subtree T ′ of T , we use both λ|T ′ and λ|V (T ′) to denote the arrival rates
restricted to the vertices of T ′. Similarly, given a random sequence of requests σ ∼ (T, λ)τ ,
we use σ|T ′ ⊆ σ and σ|I ⊆ σ for I ⊆ [0, τ] to denote the sequences of all requests in σ that
arrive inside the subtree T ′ and within the time interval I, respectively.

In the following, we introduce three more properties of the Poisson arrival model. To
simplify their statements, we denote the random variable representing the number of requests
in sequence σ ∼ (T, λ)τ by N(σ). The first property describes the expected value of N(σ) for
a fixed time horizon τ . The second one describes our model’s behavior under the assumption
that we are given the value of N(σ). Finally, the third one presents the value of the expected
waiting time generated by all the requests arriving before a fixed time horizon. All the proofs
can be found in [62] or the full version of this paper [57].

▶ Proposition 3. Given any stochastic MLA instance (T, λ) and a random sequence of requests
σ ∼ (T, λ)τ , it holds that: (i) N(σ) ∼ Poiss(λ(T) · τ); (ii) E[N(σ) | σ ∼ (T, λ)τ] = λ(T) · τ ;
(iii) if λ(T) · τ ≥ 1, then P(N(σ) ≥ E[N(σ)]) ≥ 1/2.

▶ Proposition 4. Given n requests arriving during time interval [0, τ] according to Poisson
arrival model, the n arrival times (in sequence) have the same distribution as the order
statistics corresponding to n independent random variables uniformly distributed over [0, τ].

▶ Proposition 5. Given any stochastic MLA instance (T, λ) and a random sequence of
requests σ ∼ (T, λ)τ , the expected delay cost of all the requests in σ ∼ (T, λ)τ , assuming that
no service was issued before τ , is E[

∑N(σ)
i=1 (τ − t(ri))] = E[N(σ)] · τ/2 = λ(T) · τ2/2.

Benchmark description. To measure the performance of an online algorithm ALG in this
stochastic version of MLA, we use the ratio of expectations. Let E[cost(ALG(σ), T)] denote
the expected cost of the schedule ALG generates for a random sequence σ ∼ (T, λ)τ .

▶ Definition 6 (ratio of expectations). An online algorithm ALG has a ratio of expectations
(RoE) C ≥ 1 if lim

τ→∞
E[cost(ALG(σ),T)]
E[cost(OPT(σ),T)] ≤ C for any stochastic MLA instance (T, λ).

3 Warm-up: single edge instances

We start by considering the case of a single-edge tree in the stochastic model. That is, we
fix a tree T that consists of a single edge e = (u, γ) of weight w > 0 and denote the arrival
rate of u by λ > 0. In such a setting, the problem of finding the optimal schedule to serve
the requests arriving at vertex u is known as TCP acknowledgment. It is worth mentioning
that in the adversarial setting, a 2-competitive deterministic and a (1 − 1/e)−1-competitive
randomized algorithms are known for this problem [32, 45].

Let us stress that the goal of this section is not to improve the best-known competitive
ratio for a single-edge case but to illustrate the efficiency of two opposite strategies and
introduce some important concepts of this paper. The first strategy, called the instant
strategy, is to serve each request as soon as it arrives. Intuitively, this approach is efficient
when the requests are not so frequent so that, on average, the cost of delaying a request to
the arrival time of the next request is enough to compensate for the service cost. The second
strategy, called the periodic approach, is meant to work in the opposite case where requests
are frequent enough so that it is worth grouping several of them for the same service. In
this way, the weight cost of a service can be shared between the requests served. Assuming
that requests follow some stochastic assumptions, it makes sense to enforce that services are
ordered at regular time steps, where the time between any two consecutive services is a fixed
number p, which depends only on the instance’s parameters.

ISAAC 2024

49:6 Online Multi-Level Aggregation with Delays and Stochastic Arrivals

There are two challenges here. First, when should we use each strategy? Second, what
should be the value of p that optimizes the performance of the periodic strategy? For the
first one, we show that it depends on the value of π := wλ that we call the heaviness of the
instance. Specifically, we show that if π > 1, i.e., the instance is heavy, and the periodic
strategy is more efficient. On the other hand, if π ≤ 1, the instance is light, and the instant
strategy is essentially better. For the second one, we show that the right value for the period,
up to a constant in the ratio of expectations, is p =

√
2w/λ. With no loss, in what follows,

we assume that the time horizon τ is always a multiple of the period chosen, which simplifies
the calculation and does not affect the ratio of expectations.

▶ Lemma 7. Given a stochastic instance where the tree is a single edge of weight w and
the leaf has an arrival rate λ > 0, let π = wλ and let σ be a random sequence of requests of
duration τ > 0. Then,
1. the instant strategy on σ has an expected cost of τπ;
2. the periodic strategy on σ, with period p =

√
2w/λ, has an expected cost of τ

√
2π.

Note that the instant strategy incurs an expected cost equal to the expected number
of requests arriving within the time horizon τ multiplied by the cost of serving one. By
Proposition 3, we have that on average λτ requests arrive within the time interval [0, τ]. Thus,
since the cost of serving one equals w, the total expected cost is λτw = τπ. For the periodic
strategy, we know that within each period p =

√
2w/λ, we generate the expected delay cost

of 1
2 · λp2 = w (Proposition 5). The service cost we pay at the end of each period equals w

as well. Thus, the total expected cost within [0, τ] is equal to τ
p · 2w = τ ·

√
2λw = τ

√
2π,

which ends the proof.
We now compare these expected costs with the expected cost of the optimal offline

schedule. The bounds obtained imply that the instant strategy has constant RoE when
π ≤ 1, and the periodic strategy (with p =

√
2w/λ) has a constant RoE when π > 1.

▶ Lemma 8. Given a stochastic instance where the tree is a single edge of weight w and
the leaf has an arrival rate λ > 0, let π = wλ and let σ be a random sequence of requests of
duration τ > 0. For the lower bounds on the optimal offline schedule, OPT(σ), it holds that
1. if π ≤ 1, it has an expected cost of at least 1−e−1

2 τπ;
2. if π > 1, it has an expected cost of at least 3

16 τ
√

2π.
Due to the space limit, we only provide a proof sketch of Lemma 8 as follows. The main idea is
to partition the initial time horizon [0, τ] into a collection of shorter intervals {I1, I2, . . . , Ik}
of length p each, for some value p that will be defined later. Denoting by σi := σ|Ii for i ∈ [k],
we know that all σi are independent and follow the same Poisson arrival model (T, λ)p. Let
D(σ1) denote the total delay cost of σ1 at time p when no services are issued during [0, p].
Note that OPT either serves some requests during [0, p] and incurs the service cost of at
least w or issues no services during [0, p] and pays the delay cost of D(σ1). The total cost of
OPT within [0, p] is thus at least min(w, D(σ1)) and hence

E
[
cost(OPT(σ))

]
≥ τ

p · E
[

min(w, D(σ1)) | σ1 ∼ (T, λ)p
]
.

Define Uj = p − t(rj) for the j-th request rj in σ1. If π ≤ 1, we choose p = 1
λ , for which

P(N(σ1) ≥ 1) = 1 − e−1 and E[min(w, U1)] ≥ w
2 . This implies that

E[cost(OPT(σ))] ≥ 1−e−1

2 · τ · λw.

If wλ > 1, we set p =
√

2w/λ and n0 = ⌈λp⌉, for which P(N(σ) ≥ n0) ≥ 1
2 and

E[min(w,

n0∑
j=1

Uj)] ≥ 1 − w

2n0p
≥ 3

4 .

M. Mari, M. Pawłowski, R. Ren, and P. Sankowski 49:7

This implies

E[cost(OPT(σ))] ≥ 3
16 · τ ·

√
2wλ.

See the appendix in the full version [57] for a detailed proof.

4 Overview

We now give an overview of the following sections. Inspired by the two strategies for the
single edge instance, we define two types of stochastic instances: the light instances, for
which the strategy of serving requests instantly achieves a constant RoE, and the heavy
instances, for which the strategy of serving requests periodically achieves a constant RoE.
Heavy and light instances are defined precisely below (Definitions 9 and 13) and generalize
the notions of heavy and light single-edge trees studied in the previous section.

We define the light instances by extending the notion of heaviness for an arbitrary tree.

▶ Definition 9. A stochastic MLA instance (T, λ) is called light if π(T, λ) ≤ 1, where
π(T, λ) :=

∑
u∈V (T) λ(u) · d(u, γ(T)) is called the heaviness of the instance.

For a light instance, serving the requests immediately at the their arrival time achieves a
constant ratio of expectations. We refer to the schedule produced with this strategy (see
Algorithm INSTANT in the full version [57]) on a sequence of requests σ by INSTANT(σ).

▶ Theorem 10. INSTANT has O(1)-RoE for light instances.

The theorem follows immediately from the following two lemmas (due to space limit, see the
full version [57] for their proofs).

▶ Lemma 11. If (T, λ) is light, then E [cost(INSTANT(σ)) | σ ∼ (T, λ)τ] = τ · π(T, λ).

▶ Lemma 12. If (T, λ) is light, then E [cost(OPT(σ)) | σ ∼ (T, λ)τ] = Ω(1) · τ · π(T, λ).

We now turn our attention to heavy instances. An instance (T, λ) is heavy if for every
subtree T ′ ⊆ T , we have π(T ′, λ) > 1. By monotonicity of π(·, λ), we obtain the following
equivalent definition. Recall that for a vertex u ∈ V (U), wu denotes the weight of the edge
incident to u on the path from γ(T) to u.

▶ Definition 13. A stochastic MLA instance (T, λ) is called heavy if wu ≥ 1/λ(u) for all
u ∈ V (T) with λ(u) > 0.

To give some intuition, suppose that u is a vertex of a heavy instance, and r and r′ are
two consecutive (random) requests located on u. Then, the expected duration between their
arrival times is 1/λ(u) < wu. This suggests that to minimize the cost, we should, on average,
gather r and r′ into the same service in order to avoid paying twice the weight cost wu. Since
we expect services to serve a group of two or more requests, our stochastic assumptions
suggest that the services must follow some form of regularity.

In Section 5, we present an algorithm called PLAN, that given a heavy instance (T, λ),
computes for each vertex u ∈ V (T) a period pu > 0, and will serve u at every time that is a
multiple of pu. One intuitive property of these periods {pu : u ∈ V (T)} is that the longer
the distance to the root, the longer the period. While losing only a constant fraction of the
expected cost, we choose the periods to be (scaled) powers of 2. This enables us to optimize
the weights of the services in the long run. One interesting feature of our algorithm is that it
acts “blindly”: the algorithm does not need to know the requests, but only the arrival rate
of each point. Indeed, our algorithm may serve a vertex where there are no pending requests.
For the details of the PLAN algorithm, see Section 5.

ISAAC 2024

49:8 Online Multi-Level Aggregation with Delays and Stochastic Arrivals

▶ Theorem 14. PLAN has O(1)-RoE for heavy instances.

We remark that light instances and heavy instances are not complementary: there are
instances that are neither light nor heavy.3 In Section 6, we focus on the general case of
arbitrary instances. The strategy here is to partition the tree (and the sequence of requests)
into two groups of vertices (two groups of requests) so that the first group corresponds to a
light instance where we can apply the instant strategy while the second group corresponds to
a heavy instance where we can apply a periodic strategy. However, this correspondence for
the heavy group is not straightforward. For this, we need to define an augmented tree that is
a copy of the original tree, with the addition of some carefully chosen vertices. Each new
vertex is associated with a subset of vertices of the original tree called part. We then define
an arrival rate for each of these new vertices that is equal to the sum of the arrival rates of
the vertices in the corresponding part. We show that this defines a heavy instance on which
we can apply the algorithm PLAN. For each service made by PLAN on each of these new
vertices, we serve all the pending requests in the corresponding part. The full description of
this algorithm, called GEN, is given in Section 6. We show that this algorithm achieves a
constant ratio of expectations.

▶ Theorem 15. GEN has O(1)-RoE for arbitrary stochastic instances.

5 Heavy instances

In this section, we analyze heavy MLA instances. Recall that an instance (T, λ) is called
heavy if wu ≥ 1/λ(u) for all u ∈ V (T) with λ(u) > 0. To serve this type of MLA instances,
we devise an algorithm PLAN and prove that it achieves a constant ratio of expectations.
Our approach can be seen as a generalization of the periodical strategy for a single-edge case.
Once again, we serve the requests periodically, although this time, we may assign different
periods for different vertices. Intuitively, vertices closer to the root and having a greater
arrival rate should be served more frequently. For this reason, PLAN generates a partition
P of a given tree T into a family of subtrees (clusters) and assigns them specific periods.

The partition procedure allows us to analyze each cluster separately. Thus, it is sufficient
to estimate the performance of PLAN algorithm when restricted to a given subtree T ′ ∈ P .
To lower bound the cost generated by OPT on T ′, we split the weight of T ′ among its vertices
using a saturation procedure. Then we say that for each vertex v, the optimal algorithm
either covers the delay cost of all the requests arriving at v within a given time horizon or it
pays some share of the service cost. The last step is to round the periods assigned to the
subtrees in P to minimize the cost of PLAN. In what follows, we present the details.

Periodical algorithm PLAN

As mentioned before, the main idea is to split tree T rooted at vertex γ into a family of
subtrees and serve each of them periodically. In other words, we aim to find a partition
P = {T1, T2, . . . , Tk} of T where each subtree Ti besides the one containing γ is rooted at the
leaf vertex of another subtree. At the same time, we assign each subtree Ti some period pi.
To decide how to choose the values of pis, recall how we picked the period for a single-edge
case. In that setting, for the period p, we had an equality between the expected delay cost
λ/2 · p2 at the leaf u and the weight w of the edge. Thus, the intuition behind the PLAN
algorithm is as follows.

3 There exists a stochastic MLA instance where the ratio of expectations are both unbounded if INSTANT
or PLAN is directed applied to deal with. See the appendix in the full version [57] for details.

M. Mari, M. Pawłowski, R. Ren, and P. Sankowski 49:9

We start by assigning each vertex v ∈ T a process that saturates the edge connecting it
to the parent at the pace of λ(v)/2 · t2, i.e., within the time interval [t, t + ϵ] it saturates the
weight of λ(v)/2 · ((t + ϵ)2 − t2). By saturation, here we mean assigning a part of the edge
weight to the vertex. In other words, at time t each vertex v has a budget that is equal to
its expected delay cost, i.e., λ(v)/2 · t2, and uses it to cover some part of the edge weight.
Whenever an edge gets saturated, the processes that contributed to this outcome start
working together with the processes that are still saturating the closest ancestor edge. As the
saturation procedure within the whole tree T reaches the root γ, we cluster all the vertices
corresponding to the processes that made it possible into the first subtree T1. Moreover, we
set the period of T1 to the time it got saturated. After this action, we are left with a partially
saturated forest having the leaves of T1 as the root vertices. The procedure, however, follows
the same rules, splitting the forest further into subtrees T2, . . . , Tk.

To simplify the formal description of our algorithm, we first introduce some new notations.
Let p(v) denote the saturation process defined for a given vertex v. As mentioned before, we
define it to saturate the parent edge at the pace of λ(v)/2 · t2. Moreover, we extend this
notation to the subsets of vertices, i.e., we say that p(S) is the saturation process where all the
vertices in S cooperate to cover the cost of an edge. The pace this time is equal to λ(S)/2 · t2.
To trace which vertices cooperate at a given moment and which edge they saturate, we
denote the subset of vertices that v works with by S(v) and the edge they saturate by e(v).
We also define a method join(u, v) that takes as the arguments two vertices and joins the
subsets they belong to. It can be called only when the saturation process of S(u) reaches v.
Formally, at this moment, the join method merges subset S(u) with S(v) and sets e(v) as
the outcome of the function e on all the vertices in the new set. It also updates the saturation
pace of the new set. We present the pseudo-code for PLAN as Algorithm 1 and an example
as a visual support shown in Figure 1, followed by some properties of the partition generated
by this algorithm (see the appendix in the full version [57] for the detailed proof) and the
lower bounding scheme (Lemma 17).

▶ Proposition 16. Let (T, λ) be a heavy instance and let P = {T1, T2, . . . , Tk} be the
partition generated on it by Algorithm 1. We denote the period corresponding to Ti by pi.
Assuming that Tis are listed in the order they were added to P , it holds that:
1. each Ti is a rooted subtree of T ;
2. the periods are increasing, i.e., 1 ≤ p1 ≤ p2 ≤ . . . ≤ pk;
3. each vertex v ∈ Ti saturated exactly λ(v)/2 · p2

i along the path to the root of Ti.

▶ Lemma 17. Let (T, λ) be a heavy instance. We denote the partition generated for it by
Algorithm 1 by P = {T1, T2, . . . , Tk} and the period corresponding to Ti by pi for all i ∈ [k].
Let Ti be any subtree in P , and let us define σi as a random sequence of requests arriving
within the MLA instance restricted to Ti over a time horizon τ . We assume that τ is a
multiple of pi. It holds that E[cost(OPT(σi), Ti) | σi ∼ (Ti, λ|Ti

)τ] ≥ 3
16 · w(Ti) · τ

pi
.

The main idea is to use the same approach as in Section 3 and lower bound the cost incurred
by OPT within a shorter time interval. The proof of Lemma 17 can be found in the full
version [57].

PLAN has RoE ≤ 64/3 = 21.34 for heavy instances

In Algorithm 1, each subtree Ti is served periodically with periods pi. In this setting, to serve
any cluster besides the one containing the root vertex γ, not only do we need to cover the
service cost of the cluster vertices but also the cost of the path connecting them to γ. Since

ISAAC 2024

49:10 Online Multi-Level Aggregation with Delays and Stochastic Arrivals

Algorithm 1 PLAN (part I).

Input: an heavy instance (T, λ) with tree T rooted at γ

Output: a partition P = {T1, T2, . . . , Tk} of T , each subtree Ti assigned a period pi

1 let R be the set of roots, initially R = {γ}
2 for each vertex v ∈ V (T) do
3 define the saturation process p(v) as described before
4 set S(v) := {v} and e(v) := par(v)
5 end
6 start the clock at time 0
7 while there exist some unclustered vertices in T do
8 wait until the first time te when an edge e = (u, v) gets saturated
9 if v ̸∈ R then

10 join(u, v)
11 end
12 else
13 add cluster C := S(u) ∪ {v} to partition P

14 set the period p for C to be equal to te

15 set the saturation pace for C to 0
16 extend R by the leaves in C

17 end
18 end

w1

w2

w3

w4

w5 w6

w7

λ1

λ2
λ3

λ4

λ5
λ6 λ7

γ

p1

p4p2 p3

t

Figure 1 Here is an example to show how Algorithm 1 works on an heavy instance. Given the
tree consisting of 7 vertices (with wi ≥ 1/λi for each vertex i ∈ [7] marked in different color), we use
the length of the colored line to denote the saturated amount (i.e., λi/2 · t2) of a vertex i at any time
t. At time p1, the subtree T1 including vertices 1 and 3 is determined; similarly, T2 includes vertices
2 and 5 at time t2; T3 includes vertices 4 and 6 at time p3; and T4 includes vertex 7 at time p4.

M. Mari, M. Pawłowski, R. Ren, and P. Sankowski 49:11

we only know how to lower bound the cost incurred by OPT on the clusters, we improve the
PLAN algorithm to get rid of this issue. The idea is to round the periods pis to be of form
2eip1 for some positive integers ei. Thus, whenever we need to serve some cluster Si, we
know that we get to serve all the clusters generated before it as well. Due to the space limits,
the formal pseudo-codes of the rounding procedures (Algorithm PLAN, part 2) and serving a
random sequence of requests (Algorithm PLAN, part 3) can be found in the full version [57].

Let (T, λ) be a heavy instance and let P = {T1, . . . , Tk} be the partition generated for it
by Algorithm 1. Let (p1, . . . , pk) and (p̂1, . . . , p̂k) denote the periods obtained from Algorithm
1 and rounded periods (by Algorithm PLAN, part 2), respectively. Now we analyze the cost
of PLAN on σ ∼ (T, λ)τ , where the time horizon τ is a multiple of 2p̂k. Since we align the
periods to be of form 2lp̂1 for some positive integer l, whenever PLAN serves some tree Ti,
it serves all the trees containing the path from Ti to γ at the same time. Thus, the service
cost can be estimated on the subtree level. Moreover, since for each i ∈ [k] we round pi such
that p̂i ≤ pi, the expected delay cost incurred within [0, p̂i] does not exceed w(Ti). Denoting
by σi ∼ (Ti, λ|Ti)p̂i for i ∈ [k], we have

E[cost(PLAN(σ), T)] =
∑k

i=1
τ
p̂i

· E[cost(PLAN(σi), Ti)] =
∑k

i=1
τ
p̂i

· 2w(Ti).

On the other hand, the expected cost of OPT for σ, i.e., E[cost(OPT(σ), T)], is at least∑k
i=1 E[cost(OPT(σ|Ti

), Ti)] ≥
∑k

i=1
τ
pi

3
16 w(Ti).

By definition, it holds that pi < 2p̂i for i ∈ [k]. We can rewrite the above as

E[cost(OPT(σ), T)] >
∑k

i=1
τ

2p̂i

3
16 w(Ti) = 3

32
∑k

i=1
τ
p̂i

w(Ti),

and hence establishing RoE(PLAN) = 64/3.

6 General instances

Now we devise an algorithm GEN for an arbitrary stochastic instance (T, λ), which achieves
a constant ratio of expectations. The main idea is to distinguish two types of requests and
apply a different strategy for each type. The first type is the requests that are located
close to the root. These requests will be served immediately at their arrival times, i.e., we
apply INSTANT to the corresponding sub-sequence. The second type includes all remaining
requests, and they are served in a periodic manner. To determine the period of these vertices,
we will use the algorithm PLAN on a specific heavy instance (T ′, λh). The construction of
this heavy instance relies on a partition of the vertices of T into balanced parts. Intuitively, a
part is balanced when it is light (or close to being light), but if we merge all vertices of the
part into a single vertex whose weight corresponds to the average distance to the root of the
part, then we obtain a heavy edge. This “merging” process is captured by the construction of
the augmented tree T ′, which is part of the heavy instance. The augmented tree is essentially
a copy of T with the addition of one (or two) new vertices for each balanced part.

Once determining the corresponding heavy instance, we can compute the periods of each
vertex of the heavy instance using PLAN. The vertex period in the original instance is equal
to the corresponding vertex period in the heavy instance. For the full description of GEN,
see Algorithm 2 in the appendix of the full version [57]. The main challenge is to analyze the
ratio of expectations and in particular, to establish good lower bounds on the expected cost
of the optimal offline schedule. Due to the space limits, check the full version [57], where we
prove two lower bounds that depend on the heaviness of each part of the balanced partition.

ISAAC 2024

49:12 Online Multi-Level Aggregation with Delays and Stochastic Arrivals

Notations and additional assumptions. Given the edge-weighted tree T rooted at γ and
a set of vertices U ⊆ V (T), T [U] denotes the forest induced on U in T . We say that a
subset U ⊆ V (T) is connected if T [U] is connected (i.e., T [U] is a subtree of T but not a
forest). If U ⊆ V (T) is connected, we write γ(U) = γ(T [U]) to denote the root vertex of
T [U], i.e., the vertex in U which has the shortest path length to γ in the original tree T .
Given any vertex u ∈ V (T), let Vu ⊆ V (T) denote all the descendant vertices of u in T

(including u). For simplicity, set wγ(T) = ∞. Given T = (V, E), λ : V (T) → R+ and U ⊆ V ,
we denote λ|U : U → R+ such that λ|U (u) = λ(u) for each u ∈ U . For a sequence of requests
σ ∼ (T, λ), we use σ|U = {r ∈ σ | ℓ(r) ∈ U} to denote the corresponding sequence for T [U].
In this section, we assume λ(γ) = 0 and γ has only one child.

Balanced partition of V (T). Recall that π(T, λ) =
∑

u∈V (T) λ(u) · d(u, γ(T)). When the
context is clear we simply write π(T) = π(T, λ), and for a connected subset U ⊆ V (T) we
simply write π(U) := π(T [U], λ|U).

▶ Definition 18. Given a stochastic instance (T, λ), we say that U ⊆ V (T) is balanced if U

is connected and if one of the following conditions holds:
(1) U is of type-I: π(U) ≤ 1, and either γ(U) = γ(T) or π(U ∪ {par(γ(U))}) > 1;
(2) U is of type-II: π(U) > 1, and for each child vertex y of γ(U) in T [U], we have

π({γ(U)} ∪ (U ∩ Vy)) < 1.
Remark that the root γ(U) of a balanced type-II part U must have at least two children in
T [U].

▶ Definition 19. Given a stochastic instance (T, λ) and a partition P of the vertices V (T),
we say that P is a balanced partition of tree T if every part U ∈ P is balanced.

See Figure 2 for an example of a balanced partition. If P is a balanced partition of T , then
the part U ∈ P containing γ(T) is called the root part in P . Since we assume that γ(T) has
only one child vertex, we deduce from the previous remark that the root part is necessarily
of type-I. Given a balanced partition P, we denote P∗ := P \ {γ(P)}; P1 ⊆ P the set of
type-I parts; P∗

1 := P1 ∩ P∗ and P2 ⊆ P the set of type-II parts.

▶ Lemma 20. Given any stochastic instance (T, λ), there exists a balanced partition of T .
Moreover, such a partition can be computed in O(|V (T)|2) time.

The algorithm to construct a partition P works as follows. We order the vertices u1, . . . , un

by decreasing distances from the root, i.e., for 1 ≤ i < j, d(ui, γ(T)) ≥ d(uj , γ(T)). Let
P(0) = ∅. For each i ∈ [n], let Ci ⊆ {1, . . . , n − 1} be the subset of indexes j s.t. (i) uj is a
child of ui; (ii) uj /∈

⋃
U∈P(i−1) U . Define Ui := (

⋃
j∈Ci

Uj)
⋃

{ui} recursively. If i = n (i.e.,
if ui is the root of T) or π(Ui ∪ {par(ui)}) > 1, then define P(i) := P(i−1) ∪ {Ui}. Otherwise,
define P(i) := P(i−1). See Figure 3 for a visual support.

The heavy instance. Given a stochastic instance (T, λ), and a balanced partition P of T ,
we construct a tree T ′ that we call the augmented tree of T . This tree is essentially a copy of
T with additional one or two vertices for each part of P∗.4 Then, we define arrival rates λh

on T ′ in a way that the stochastic instance (T ′, λh) is heavy. Finally, we construct from a
request sequence σ, the corresponding heavy sequence σh for the augmented tree.

4 Recall that P∗ = P \ {γ(P)}, where γ(P) denotes the particular part in P including the tree root γ(T).

M. Mari, M. Pawłowski, R. Ren, and P. Sankowski 49:13

.2

.2

.2

.3

.3 .3

.3

.2

.4
.4

.4

.4

.4.4

.4

.4

.4

.4

.5

.5

.5

.5

.5

.5

.5

.3
.4

.6

.4

.6

.7

.9

.9

.5

.7

.6

.4

.2

.2

5

1

1
4

3

.5

.53

0

01

3

4

1

1

1

2 .2

1

.3

.5

1

.5

.2

1

.5

3

3 2

3

.5

.1

.1

.2

0

.5.5

1

π =
2.1

5

π
=
0.8

π = 0.95

π =
0.4π =

1.8
5

π =
0.5

γ

Figure 2 An example of a balanced partition (Definition 19). The weight of each edge is shown
in black, and the arrival rate of each vertex is shown in red. Green subsets corresponds to parts of
type-I while purple ones correspond to parts of type-II. Some value of π are shown for the top-left
type-I part and for the top-right type-II part.

1

2

3

4

5

6

7

8

9

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

3940

γ

14

Figure 3 Construction of a balanced partition in the proof of Lemma 20. The weights of the
edges and the arrival rates of the vertices are the same as in Figure 2. The numbers represent an
ordering of the vertices. The gray sets corresponds to Ui, for i ∈ [40]. We illustrate the step i = 30
of the algorithm. We have C30 = {24, 26} and U30 = {u30} ∪ U24 ∪ U30 = {u30, u24, u19, u20, u26}.
Since π(U30 ∪ {u25}) = 2.65 > 1, we add U30 into P(29) to create P(30) (red stoke). We remark
that U30 is a balanced subset of type-II and U27 is a balanced subset of type-II, while U25 is not a
balanced subset.

ISAAC 2024

49:14 Online Multi-Level Aggregation with Delays and Stochastic Arrivals

π = 2.1
5,

λ = 5.2

π =
0.4

, λ
=
2

π =
1.4, λ =

7

π = 1.35, λ = 8.5

π = 0.2, λ = 3.5

π = 0
λ = 5

π = 0
λ = 3

π = 0
λ = 3 π =

0.8, λ =
5

π = 0.82
λ = 1.4

π(U
1)

=
0.5

, λ
(U1)

=
1.5

U2

π(U2) = 1.25
λ(U2) = 2.5

U1

π = 0.5

λ = 2.5

z′U1

zU1

z′U2

zU2

π(
U2

)

λ(
U2

)
=
0.
5

1

λ(
U1

)
=
0.
67

1−π(U1)
λ(U1)

= 0.33

.2

.2

.2
.41

.3

.5

.3

.29

.23
.37

.16

.2

.04

.46

.2

.4

.5 .2

.33

.33

.57

.33

.33

.17

Figure 4 The construction of the augmented tree associated with the instance and the balanced
partition of Figure 2. The new edges and vertices are shown in red. The illustrate the calculation of
the length of these edges for a part U1 of type-I and for a part U2 of type-II. For each part U of the
partition, we indicate the values of λ(U) and π(U). For simplicity, we have rounded the values to
their second decimal.

To construct the augmented tree, define T ′ = (V ′, E′) where V ′ = V (T) ∪ {zU , z′
U :

U ∈ P∗}, and the edge set E′ is constructed based on E(T) as follows. First, for each
U ∈ P∗

1 , replace the edge (γ(U), par(γ(U))) of length wγ(U) by two edges (γ(U), z′
U) and

(z′
U , par(γ(U))) of respective lengths (1 − π(U))/λ(U) and wγ(U) − (1 − π(U))/λ(U), where

par(γ(U)) denotes the parent of γ(U) in T . Then, add an edge (zU , z′
U) of weight 1/λ(U).

Finally, for each U ∈ P2, set z′
U = γ(U), and add an edge (zU , z′

U) of weight π(U)/λ(U).
This completes the construction of the augmented tree (see Figure 4 for visual support).

Note that if a part U = {u} in P contains only one vertex, then we have π(U) = 0, and thus
part U is necessarily of type-I. To simplify, in the following, we identify vertices in T with
their copy in T ′ and consider that V (T) is a subset of V (T ′). For the arrival rates of the
heavy instance, recall that P∗ = P \ {γ(P)}, where γ(P) denotes the part in P containing
the root γ(T). We define λh : V (T ′) → R+ as follows: for each U ∈ P∗, set λh(zU) = λ(U);
and λh(u) = 0 otherwise.5

▶ Definition 21. Given a stochastic instance (T, λ), a balanced partition P of tree T , the
corresponding augmented tree T ′, and a sequence of request σ ∼ (T, λ)τ , we construct the
heavy sequence associated with σ for T ′ and denoted by σh as follows: for each request
r = (u, t) ∈ σ located on some part U ∈ P∗ (i.e., u ∈ U), there is a request (zU , t) in σh.

The algorithm GEN. The input is a stochastic instance (T, λ), known in advance, and a
sequence of requests σ for T , revealed over time. In the pre-processing step, GEN computes
a balanced partition P of T (Lemma 20), a light instance (T [γ(P)], σ|γ(P)), and the heavy
instance (T ′, σh). At each request arrival, GEN updates the sequences of requests σ|γ(P) and
σh. The algorithm runs PLAN (Algorithm 1) on input (T ′, σh). Suppose that PLAN serves
at time t a set of vertices {zU , U ∈ P ′} ⊆ V (T ′) for some subset P ′ ⊆ P∗. Then, GEN serves
at time t all pending requests on vertices

(⋃
U∈P′ U

)
⊆ V (T).

5 It is important to notice that σh can be constructed in an online fashion: for any time t, the restriction
of the σh to the requests that arrives before t only depends on the requests that arrives before t in σ.

M. Mari, M. Pawłowski, R. Ren, and P. Sankowski 49:15

In parallel, the algorithm runs INSTANT on input (T [γ(P)], σ|γ(P)), and performs the
same services. This finishes the description of the algorithm GEN see the formal pseudo-code
of GEN (Algorithm 2) and a visual support in Figures 2, 3 and 4. The detailed proof of
GEN achieving a constant ratio of expectations can be found in the appendix of the full
version [57].

Algorithm 2 GEN.

Input: stochastic instance (T, λ) and σ ∼ (T, λ)τ

Output: a valid schedule of σ

1 – – pre-processing the given instance —–
2 produce a balanced partition P for T (see Lemma 20);
3 construct the heavy instance (T ′, λh);
4 use PLAN (Algorithm 1) to determine the period of the vertices of T ′;
5 —– Serve the requests —–
6 for each request r ∈ σ do
7 if r arrives in γ(P) then
8 serve r immediately.
9 end

10 if r arrives in a vertex of U ∈ P∗ then
11 serve r at time t(r′) where r′ ∈ σh is the corresponding request located on zU

and t(r′) is the time at which r′ is served by PLAN(σh).
12 end
13 end

7 Other related works

The MLA problem was first introduced by Bienkowski et al. [16] and they study a more
general version in their paper, where the cost of delaying a request r by a duration t is
fr(t). Bienkowski et al. proposed an O(d42d)-competitive online algorithm for this general
delay cost version problem, where d denotes the depth of the given tree. A deadline version
of MLA is also considered in [16], where each request r has a time window (between its
arrival and its deadline) and it has to be served no later than its deadline. The target is
to minimize the total service cost for serving all the requests. For this deadline version
problem, they proposed an online algorithm with a better competitive ratio of d22d. Later,
the competitiveness of MLA was further improved to O(d2) [13] for the general delay cost
version and to O(d) [27, 58] for the deadline version. However, for the delay cost version,
no matching lower bound has been found thus far – the current best lower bound on MLA
with delays is only 4 [16, 17, 18], restricted to a path case with linear delays. In the offline
setting, MLA is NP-hard in both delay and deadline versions [3, 15], and a 2-approximation
algorithm was proposed by Becchetti et al. [15] for the deadline version. For a special path
case of MLA with the linear delay, Bienkowski et al. [22] proved that the competitiveness is
between 3.618 and 5, improving on an earlier 8-competitive algorithm given by Brito et al.
[26]. Thus far, no previous work has studied MLA in the stochastic input model, no matter
the delay or deadline versions.

Two special cases of MLA with linear delays, one called TCP-acknowledgment (d = 1)
and one called Joint Replenishment (abbr. JRP, d = 2) are of particular interests: TCP-
acknowledgment (a.k.a. single item lot-sizing problem, [25, 41, 61, 29, 44]) models the data

ISAAC 2024

49:16 Online Multi-Level Aggregation with Delays and Stochastic Arrivals

transmission issue from sensor networks [68, 51], while JRP models the inventory control issue
from supply chain management [5, 37, 42, 64, 48]. For TCP-acknowledgment, in the online
setting there exists an optimal 2-competitive deterministic algorithm [32] and an optimal
e/(e−1)-competitive randomized algorithm [45, 63]; in the offline setting, the problem can be
solved in O(n log n) time, n denoting the number of requests [1]. For JRP, the competitiveness
is between 3 [28] and 2.754 [21]; in the offline setting, JRP is NP-hard [3] and also APX-hard
[60, 20]. The current best approximation ratio for JRP is 1.791 [53, 54, 52, 21]. For a deadline
version of JRP, Bienkowski et al. [21] proposed an optimal 2-competitive algorithm.

Another problem, called online service with delays (OSD), first introduced by Azar et
al. [9], is closely related to MLA (with linear delays). In this OSD problem, a n-points
metric space is given as input. The requests arrive at metric points over time, and a server
is available to serve the requests. The target is to serve all the requests in an online manner
such that their total delay cost plus the total distance traveled by the server is minimized.
Note that MLA can be seen as a special case of OSD when the given metric is a tree, and
the server has to always come back to a particular tree vertex immediately after serving
some requests elsewhere. For OSD, Azar et al. [9] proposed an O(log4 n)-competitive online
algorithm in their paper. Later, the competitive ratio for OSD is improved from O(log2 n)
(by Azar and Touitou [13]) to O(log n) (by Touitou [67]).

Recently, many other online problems with delays/deadline have also drawn a lot of
attention besides MLA, such as online matching with delays [33, 6, 4, 24, 23, 34, 10, 31, 55,
12, 59, 56, 49], online service with delays [9, 13, 66, 67], facility location with delays/deadline
[19, 13, 14], Steiner tree with delays/deadline [14], bin packing with delays [8, 35, 36, 2],
set cover with delays [7, 65, 50], paging with delays/deadline [38, 39], list update with
delays/deadline [11], and many others [59, 30, 66, 40, 43, 46].

8 Concluding remarks

In this paper, we studied MLA with additional stochastic assumptions on the sequence of
the input requests. In the following, we briefly discuss some potential future directions.

Does the greedy algorithm achieve a constant ratio of expectations? An intuitive
heuristic algorithm for MLA is Greedy, which works as follows: each time when a set of
requests R arriving at vertices U ⊆ V (T) have the total delay cost equal to the weight of the
minimal subtree of T including γ and U , serve all the requests R. Does this greedy algorithm
achieve a constant ratio of expectations?

Is it possible to generalize MLA with edge capacity and k tree roots? One practical
scenario on MLA is that each edge has a capacity on the maximum number of requests
served in one service if this edge is used, such as [61, 44, 64]. We conjecture that some
O(1)-RoE online algorithm can be proposed for this generalized MLA with edge capacity.
Another generalized version of MLA is to assume k tree roots available for serving requests
concurrently. That is, a set of pending requests can be served together by connecting to any
of k servers. The question is, how to design an online algorithm for this k-MLA problem?
Does there exist O(1)-RoE algorithm still?

What about the other online network design problems with delays in the Poisson arrival
model? Recall that the online problems of service with delays (and its generalization called
k-services with delays), facility location with delays, Steiner tree/forest with delays are all
closely related to MLA. Does there exist online algorithm with O(1)-RoE for each problem?

M. Mari, M. Pawłowski, R. Ren, and P. Sankowski 49:17

References
1 Alok Aggarwal and James K. Park. Improved algorithms for economic lot size problems.

Operations research, 41(3):549–571, 1993. doi:10.1287/OPRE.41.3.549.
2 Lauri Ahlroth, André Schumacher, and Pekka Orponen. Online bin packing with delay and

holding costs. Operations Research Letters, 41(1):1–6, 2013. doi:10.1016/J.ORL.2012.10.006.
3 Esther Arkin, Dev Joneja, and Robin Roundy. Computational complexity of uncapacitated

multi-echelon production planning problems. Operations research letters, 8(2):61–66, 1989.
4 Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim Kaplan,

Rahul Makhijani, Yuyi Wang, and Roger Wattenhofer. Min-cost bipartite perfect matching
with delays. In Proc. APPROX / RANDOM, pages 1:1–1:20, 2017. doi:10.4230/LIPICS.
APPROX-RANDOM.2017.1.

5 Y. Askoy and S. S. Erenguk. Multi-item inventory models with coordinated replenishment: a
survey. International Journal of Operations and Production Management, 8:63–73, 1988.

6 Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. Polylogarithmic bounds on the compet-
itiveness of min-cost perfect matching with delays. In Proc. SODA, pages 1051–1061, 2017.
doi:10.1137/1.9781611974782.67.

7 Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou. Set cover with delay–
clairvoyance is not required. In Proc. ESA, pages 8:1–8:21, 2020. doi:10.4230/LIPICS.ESA.
2020.8.

8 Yossi Azar, Yuval Emek, Rob van Stee, and Danny Vainstein. The price of clustering in
bin-packing with applications to bin-packing with delays. In Proc. SPAA, pages 1–10, 2019.
doi:10.1145/3323165.3323180.

9 Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online service with delay. In
Proc, STOC, pages 551–563, 2017. doi:10.1145/3055399.3055475.

10 Yossi Azar and Amit Jacob-Fanani. Deterministic min-cost matching with delays. Theory of
Computing Systems, 64(4):572–592, 2020. doi:10.1007/S00224-019-09963-7.

11 Yossi Azar, Shahar Lewkowicz, and Danny Vainstein. List update with delays or time windows.
In Proc. ICALP, pages 15:1–15:20, 2024. doi:10.4230/LIPICS.ICALP.2024.15.

12 Yossi Azar, Runtian Ren, and Danny Vainstein. The min-cost matching with concave delays
problem. In Proc. SODA, pages 301–320, 2021. doi:10.1137/1.9781611976465.20.

13 Yossi Azar and Noam Touitou. General framework for metric optimization problems with
delay or with deadlines. In Proc. FOCS, pages 60–71, 2019. doi:10.1109/FOCS.2019.00013.

14 Yossi Azar and Noam Touitou. Beyond tree embeddings–a deterministic framework for
network design with deadlines or delay. In Proc. FOCS, pages 1368–1379, 2020. doi:
10.1109/FOCS46700.2020.00129.

15 Luca Becchetti, Alberto Marchetti-Spaccamela, Andrea Vitaletti, Peter Korteweg, Martin
Skutella, and Leen Stougie. Latency-constrained aggregation in sensor networks. ACM
Transactions on Algorithms, 6(1):1–20, 2009. doi:10.1145/1644015.1644028.

16 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarcznỳ, Łukasz Jeż, Jiří Sgall, Nguyen Kim Thang, and Pavel Veselỳ. Online algorithms
for multi-level aggregation. In Proc. ESA, pages 12:1–12:17, 2016.

17 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarcznỳ, Łukasz Jeż, Jiří Sgall, Nguyen Kim Thang, and Pavel Veselỳ. Online algorithms
for multilevel aggregation. Operations Research, 68(1):214–232, 2020. doi:10.1287/OPRE.
2019.1847.

18 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarcznỳ, Łukasz Jeż, Jiří Sgall, Nguyen Kim Thang, and Pavel Veselỳ. New results on
multi-level aggregation. Theoretical Computer Science, 861:133–143, 2021. doi:10.1016/J.
TCS.2021.02.016.

19 Marcin Bienkowski, Martin Böhm, Jarosław Byrka, and Jan Marcinkowski. Online facility
location with linear delay. In Proc. APPROX/RANDOM, pages 45:1–45:17, 2022. doi:
10.4230/LIPICS.APPROX/RANDOM.2022.45.

ISAAC 2024

https://doi.org/10.1287/OPRE.41.3.549
https://doi.org/10.1016/J.ORL.2012.10.006
https://doi.org/10.4230/LIPICS.APPROX-RANDOM.2017.1
https://doi.org/10.4230/LIPICS.APPROX-RANDOM.2017.1
https://doi.org/10.1137/1.9781611974782.67
https://doi.org/10.4230/LIPICS.ESA.2020.8
https://doi.org/10.4230/LIPICS.ESA.2020.8
https://doi.org/10.1145/3323165.3323180
https://doi.org/10.1145/3055399.3055475
https://doi.org/10.1007/S00224-019-09963-7
https://doi.org/10.4230/LIPICS.ICALP.2024.15
https://doi.org/10.1137/1.9781611976465.20
https://doi.org/10.1109/FOCS.2019.00013
https://doi.org/10.1109/FOCS46700.2020.00129
https://doi.org/10.1109/FOCS46700.2020.00129
https://doi.org/10.1145/1644015.1644028
https://doi.org/10.1287/OPRE.2019.1847
https://doi.org/10.1287/OPRE.2019.1847
https://doi.org/10.1016/J.TCS.2021.02.016
https://doi.org/10.1016/J.TCS.2021.02.016
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2022.45
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2022.45

49:18 Online Multi-Level Aggregation with Delays and Stochastic Arrivals

20 Marcin Bienkowski, Jarosław Byrka, Marek Chrobak, Neil Dobbs, Tomasz Nowicki, Maxim
Sviridenko, Grzegorz Świrszcz, and Neal E. Young. Approximation algorithms for the joint
replenishment problem with deadlines. Journal of Scheduling, 18(6):545–560, 2015. doi:
10.1007/S10951-014-0392-Y.

21 Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Łukasz Jeż, Dorian Nogneng, and Jiří
Sgall. Better approximation bounds for the joint replenishment problem. In Proc. SODA,
pages 42–54, 2014.

22 Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Łukasz Jeż, Jiří Sgall, and Grzegorz
Stachowiak. Online control message aggregation in chain networks. In Proc. WADS, pages
133–145, 2013.

23 Marcin Bienkowski, Artur Kraska, Hsiang-Hsuan Liu, and Paweł Schmidt. A primal-dual
online deterministic algorithm for matching with delays. In Proc. WAOA, pages 51–68, 2018.

24 Marcin Bienkowski, Artur Kraska, and Paweł Schmidt. A match in time saves nine: Determ-
inistic online matching with delays. In Proc. WAOA, pages 132–146, 2017.

25 Nadjib Brahimi, Stéphane Dauzere-Peres, Najib M Najid, and Atle Nordli. Single item
lot sizing problems. European Journal of Operational Research, 168(1):1–16, 2006. doi:
10.1016/J.EJOR.2004.01.054.

26 Carlos Fisch Brito, Elias Koutsoupias, and Shailesh Vaya. Competitive analysis of organization
networks or multicast acknowledgment: How much to wait? Algorithmica, 64:584–605, 2012.
doi:10.1007/S00453-011-9567-5.

27 Niv Buchbinder, Moran Feldman, Joseph Naor, and Ohad Talmon. O (depth)-competitive
algorithm for online multi-level aggregation. In Proc. SODA, pages 1235–1244, 2017.

28 Niv Buchbinder, Tracy Kimbrelt, Retsef Levi, Konstantin Makarychev, and Maxim Sviridenko.
Online make-to-order joint replenishment model: primal dual competitive algorithms. In Proc.
SODA, pages 952–961, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347186.

29 Maxim A. Bushuev, Alfred Guiffrida, M.Y. Jaber, and Mehmood Khan. A review of inventory
lot sizing review papers. Management Research Review, 38(3):283–298, 2015.

30 Ryder Chen, Jahanvi Khatkar, and Seeun William Umboh. Online weighted cardinality joint
replenishment problem with delay. In Proc. ICALP, 2022.

31 Lindsey Deryckere and Seeun William Umboh. Online matching with set and concave delays.
In Proc. APPROX/RANDOM, pages 17:1–17:17, 2023. doi:10.4230/LIPICS.APPROX/RANDOM.
2023.17.

32 Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. On-line analysis of the tcp
acknowledgment delay problem. Journal of the ACM, 48(2):243–273, 2001. doi:10.1145/
375827.375843.

33 Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: haste makes waste! In
Proc. STOC, pages 333–344, 2016. doi:10.1145/2897518.2897557.

34 Yuval Emek, Yaacov Shapiro, and Yuyi Wang. Minimum cost perfect matching with delays
for two sources. Theoretical Computer Science, 754:122–129, 2019. doi:10.1016/J.TCS.2018.
07.004.

35 Leah Epstein. On bin packing with clustering and bin packing with delays. Discrete Optimiz-
ation, 41:100647, 2021. doi:10.1016/J.DISOPT.2021.100647.

36 Leah Epstein. Open-end bin packing: new and old analysis approaches. Discrete Applied
Mathematics, 321:220–239, 2022. doi:10.1016/J.DAM.2022.07.003.

37 Suresh K. Goyal and Ahmet T. Satir. Joint replenishment inventory control: deterministic
and stochastic models. European journal of operational research, 38(1):2–13, 1989.

38 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Caching with time windows. In Proc.
STOC, pages 1125–1138, 2020. doi:10.1145/3357713.3384277.

39 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. A hitting set relaxation for k-server
and an extension to time-windows. In Proc. FOCS, pages 504–515, 2022.

https://doi.org/10.1007/S10951-014-0392-Y
https://doi.org/10.1007/S10951-014-0392-Y
https://doi.org/10.1016/J.EJOR.2004.01.054
https://doi.org/10.1016/J.EJOR.2004.01.054
https://doi.org/10.1007/S00453-011-9567-5
http://dl.acm.org/citation.cfm?id=1347082.1347186
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.17
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.17
https://doi.org/10.1145/375827.375843
https://doi.org/10.1145/375827.375843
https://doi.org/10.1145/2897518.2897557
https://doi.org/10.1016/J.TCS.2018.07.004
https://doi.org/10.1016/J.TCS.2018.07.004
https://doi.org/10.1016/J.DISOPT.2021.100647
https://doi.org/10.1016/J.DAM.2022.07.003
https://doi.org/10.1145/3357713.3384277

M. Mari, M. Pawłowski, R. Ren, and P. Sankowski 49:19

40 Sungjin Im, Benjamin Moseley, Chenyang Xu, and Ruilong Zhang. Online dynamic ac-
knowledgement with learned predictions. In Proc. INFOCOM, pages 1–10, 2023. doi:
10.1109/INFOCOM53939.2023.10228882.

41 Raf Jans and Zeger Degraeve. Modeling industrial lot sizing problems: a review. International
Journal of Production Research, 46(6):1619–1643, 2008.

42 Dev Joneja. The joint replenishment problem: new heuristics and worst case performance
bounds. Operations Research, 38(4):711–723, 1990. doi:10.1287/OPRE.38.4.711.

43 Naonori Kakimura and Tomohiro Nakayoshi. Deterministic primal-dual algorithms for on-
line k-way matching with delays. In Proc. ICCC, pages 238–249, 2023. doi:10.1007/
978-3-031-49193-1_18.

44 Behrooz Karimi, S.M.T. Fatemi Ghomi, and J.M. Wilson. The capacitated lot sizing problem:
a review of models and algorithms. Omega, 31(5):365–378, 2003.

45 Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic tcp acknowledgement and other
stories about e/(e-1). In Proc. STOC, pages 502–509, 2001. doi:10.1145/380752.380845.

46 Yasushi Kawase and Tomohiro Nakayoshi. Online matching with delays and size-based costs.
arXiv preprint arXiv:2408.08658, 2024. doi:10.48550/arXiv.2408.08658.

47 Sanjeev Khanna, Joseph Seffi Naor, and Dan Raz. Control message aggregation in group
communication protocols. In Proc. ICALP, pages 135–146, 2002.

48 Moutaz Khouja and Suresh Goyal. A review of the joint replenishment problem literature:
1989–2005. European journal of operational Research, 186(1):1–16, 2008. doi:10.1016/J.
EJOR.2007.03.007.

49 Tung-Wei Kuo. Online deterministic minimum cost bipartite matching with delays on a line.
arXiv preprint, 2024. doi:10.48550/arXiv.2408.02526.

50 Ngoc Mai Le, Seeun William Umboh, and Ningyuan Xie. The power of clairvoyance for
multi-level aggregation and set cover with delay. In Proc. SODA, pages 1594–1610, 2023.
doi:10.1137/1.9781611977554.CH59.

51 Ka-Cheong Leung, Victor OK Li, and Daiqin Yang. An overview of packet reordering in
transmission control protocol (tcp): problems, solutions, and challenges. IEEE Transactions
on Parallel and Distributed Systems, 18(4):522–535, 2007. doi:10.1109/TPDS.2007.1011.

52 Retsef Levi, Robin Roundy, David Shmoys, and Maxim Sviridenko. A constant approximation
algorithm for the one-warehouse multiretailer problem. Management Science, 54(4):763–776,
2008. doi:10.1287/MNSC.1070.0781.

53 Retsef Levi, Robin Roundy, and David B Shmoys. Primal-dual algorithms for deterministic
inventory problems. In Proc. STOC, pages 353–362, 2004. doi:10.1145/1007352.1007410.

54 Retsef Levi and Maxim Sviridenko. Improved approximation algorithm for the one-warehouse
multi-retailer problem. In Proc. APPROX-RANDOM, pages 188–199, 2006. doi:10.1007/
11830924_19.

55 Xingwu Liu, Zhida Pan, Yuyi Wang, and Roger Wattenhofer. Impatient online matching. In
Proc. ISAAC, volume 123, pages 62:1–62:12, 2018. doi:10.4230/LIPICS.ISAAC.2018.62.

56 Mathieu Mari, Michał Pawłowski, Runtian Ren, and Piotr Sankowski. Online matching with
delays and stochastic arrival times. In Proc. AAMAS, pages 976–984, 2023.

57 Mathieu Mari, Michał Pawłowski, Runtian Ren, and Piotr Sankowski. Online multi-level
aggregation with delays and stochastic arrivals. arXiv preprint arXiv:2404.09711, 2024.

58 Jeremy McMahan. A d-competitive algorithm for the multilevel aggregation problem with
deadlines. arXiv preprint arXiv:2108.04422, 2021. arXiv:2108.04422.

59 Darya Melnyk, Yuyi Wang, and Roger Wattenhofer. Online k-way matching with delays and
the h-metric. arXiv preprint arXiv:2109.06640, 2021. arXiv:2109.06640.

60 Tim Nonner and Alexander Souza. Approximating the joint replenishment problem with
deadlines. Discrete Mathematics, Algorithms and Applications, 1(02):153–173, 2009. doi:
10.1142/S1793830909000130.

61 Daniel Quadt and Heinrich Kuhn. Capacitated lot-sizing with extensions: a review. Operation
Research, 6(1):61–83, 2008. doi:10.1007/S10288-007-0057-1.

ISAAC 2024

https://doi.org/10.1109/INFOCOM53939.2023.10228882
https://doi.org/10.1109/INFOCOM53939.2023.10228882
https://doi.org/10.1287/OPRE.38.4.711
https://doi.org/10.1007/978-3-031-49193-1_18
https://doi.org/10.1007/978-3-031-49193-1_18
https://doi.org/10.1145/380752.380845
https://doi.org/10.48550/arXiv.2408.08658
https://doi.org/10.1016/J.EJOR.2007.03.007
https://doi.org/10.1016/J.EJOR.2007.03.007
https://doi.org/10.48550/arXiv.2408.02526
https://doi.org/10.1137/1.9781611977554.CH59
https://doi.org/10.1109/TPDS.2007.1011
https://doi.org/10.1287/MNSC.1070.0781
https://doi.org/10.1145/1007352.1007410
https://doi.org/10.1007/11830924_19
https://doi.org/10.1007/11830924_19
https://doi.org/10.4230/LIPICS.ISAAC.2018.62
https://arxiv.org/abs/2108.04422
https://arxiv.org/abs/2109.06640
https://doi.org/10.1142/S1793830909000130
https://doi.org/10.1142/S1793830909000130
https://doi.org/10.1007/S10288-007-0057-1

49:20 Online Multi-Level Aggregation with Delays and Stochastic Arrivals

62 Sheldon M. Ross. Stochastic processes, volume 2. Wiley New York, 1996.
63 Steven S. Seiden. A guessing game and randomized online algorithms. In Proc. STOC, pages

592–601, 2000. doi:10.1145/335305.335385.
64 Sombat Sindhuchao, H. Edwin Romeijn, Elif Akçali, and Rein Boondiskulchok. An integrated

inventory-routing system for multi-item joint replenishment with limited vehicle capacity.
Journal of Global Optimization, 32:93–118, 2005. doi:10.1007/S10898-004-5908-0.

65 Noam Touitou. Nearly-tight lower bounds for set cover and network design with deadlines/delay.
In Proc. ISAAC, pages 53:1–53:16, 2021. doi:10.4230/LIPICS.ISAAC.2021.53.

66 Noam Touitou. Frameworks for nonclairvoyant network design with deadlines or delay. In
Proc. ICALP, pages 105:1–105:20, 2023. doi:10.4230/LIPICS.ICALP.2023.105.

67 Noam Touitou. Improved and deterministic online service with deadlines or delay. In Proc.
STOC, pages 761–774, 2023. doi:10.1145/3564246.3585107.

68 Wei Yuan, Srikanth V. Krishnamurthy, and Satish K. Tripathi. Synchronization of multiple
levels of data fusion in wireless sensor networks. In Proc. GLOBECOM, volume 1, pages
221–225, 2003. doi:10.1109/GLOCOM.2003.1258234.

https://doi.org/10.1145/335305.335385
https://doi.org/10.1007/S10898-004-5908-0
https://doi.org/10.4230/LIPICS.ISAAC.2021.53
https://doi.org/10.4230/LIPICS.ICALP.2023.105
https://doi.org/10.1145/3564246.3585107
https://doi.org/10.1109/GLOCOM.2003.1258234

On the Parameterized Complexity of Diverse SAT
Neeldhara Misra #

Department of Computer Science and Engineering, Indian Institute of Technology Gandhinagar,
India

Harshil Mittal #

Department of Computer Science and Engineering,
Indian Institute of Technology Gandhinagar, India

Ashutosh Rai #

Department of Mathematics, Indian Institute of Technology Delhi,
New Delhi, India

Abstract
We study the Boolean Satisfiability problem (SAT) in the framework of diversity, where one
asks for multiple solutions that are mutually far apart (i.e., sufficiently dissimilar from each other)
for a suitable notion of distance/dissimilarity between solutions. Interpreting assignments as bit
vectors, we take their Hamming distance to quantify dissimilarity, and we focus on the problem
of finding two solutions. Specifically, we define the problem Max Differ SAT (resp. Exact
Differ SAT) as follows: Given a Boolean formula ϕ on n variables, decide whether ϕ has two
satisfying assignments that differ on at least (resp. exactly) d variables. We study the classical and
parameterized (in parameters d and n− d) complexities of Max Differ SAT and Exact Differ
SAT, when restricted to some classes of formulas on which SAT is known to be polynomial-time
solvable. In particular, we consider affine formulas, Krom formulas (i.e., 2-CNF formulas) and
hitting formulas.

For affine formulas, we show the following: Both problems are polynomial-time solvable when
each equation has at most two variables. Exact Differ SAT is NP-hard, even when each equation
has at most three variables and each variable appears in at most four equations. Also, Max Differ
SAT is NP-hard, even when each equation has at most four variables. Both problems are W[1]-hard
in the parameter n− d. In contrast, when parameterized by d, Exact Differ SAT is W[1]-hard,
but Max Differ SAT admits a single-exponential FPT algorithm and a polynomial-kernel. For
Krom formulas, we show the following: Both problems are polynomial-time solvable when each
variable appears in at most two clauses. Also, both problems are W[1]-hard in the parameter d (and
therefore, it turns out, also NP-hard), even on monotone inputs (i.e., formulas with no negative
literals). Finally, for hitting formulas, we show that both problems can be solved in polynomial-time.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Diverse solutions, Affine formulas, 2-CNF formulas, Hitting formulas

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.50

Funding Neeldhara Misra: Supported by IIT Gandhinagar and the SERB ECR grant ECR/2018/
002967.
Harshil Mittal: Supported by IIT Gandhinagar and Google as an ISAAC sponsor.
Ashutosh Rai: Supported by IIT Delhi.

Acknowledgements We thank Saraswati Girish Nanoti for helpful discussions.

1 Introduction

We initiate a study of the problem of finding two satisfying assignments to an instance of
SAT, with the goal of maximizing the number of variables that have different truth values
under the two assignments, in the parameterized setting. This question is motivated by
the broader framework of finding “diverse solutions” to optimization problems. When a

© Neeldhara Misra, Harshil Mittal, and Ashutosh Rai;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 50; pp. 50:1–50:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:neeldhara.m@iitgn.ac.in
https://orcid.org/0000-0003-1727-5388
mailto:mittal_harshil@iitgn.ac.in
mailto:ashutosh.rai@maths.iitd.ac.in
https://orcid.org/0000-0003-2429-750X
https://doi.org/10.4230/LIPIcs.ISAAC.2024.50
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 On the Parameterized Complexity of Diverse SAT

real-world problem is modelled as a computational problem, some contextual side-information
is often lost. So, while two solutions may be equally good for the theoretical formulation,
one of them may be better than the other for the actual practical application. A natural
fix is to provide multiple solutions (instead of just one solution) to the user, who may then
pick the solution that best fulfills her/his need. However, if the solutions so provided are all
quite similar to each other, they may exhibit almost identical behaviours when judged on the
basis of any relevant external factor. Thus, to ensure that the user is able to meaningfully
compare the given solutions and hand-pick one of them, she/he must be provided a collection
of diverse solutions, i.e., a few solutions that are sufficiently dissimilar from each other. This
framework of diversity was proposed by Baste et. al. [3]. Since the late 2010s, several
graph-theoretic and matching problems have been studied in this setting from an algorithmic
standpoint. These include diverse variants of vertex cover [4], feedback vertex set [4], hitting
set [4], perfect/maximum matching [17], stable matching [20], weighted basis of matroid [18],
weighted common independent set of matroids [18], minimum s-t cut [11], spanning tree [22]
and non-crossing matching [33].

The Boolean Satisfiability problem (SAT) asks whether a given Boolean formula
has a satisfying assignment. This problem serves a crucial role in complexity theory [27],
cryptography [32] and artificial intelligence [37]. In the early 1970s, SAT became the
first problem proved to be NP-complete in independent works of Cook [8] and Levin [30].
Around the same time, Karp [27] built upon this result by showing NP-completeness of
twenty-one graph-theoretic and combinatorial problems via reductions from SAT. In the late
1970s, Schaefer [35] formulated the closely related Generalized Satisfiability problem
(SAT(S)), where each constraint applies on some variables, and it forces the corresponding
tuple of their truth-values to belong to a certain Boolean relation from a fixed finite set S.
His celebrated dichotomy result listed six conditions such that SAT(S) is polynomial-time
solvable if S meets one of them; otherwise, SAT(S) is NP-complete.

Since SAT is NP-complete, it is unlikely to admit a polynomial-time algorithm, unless
P = NP. Further, in the late 1990s, Impaglliazo and Paturi [25] conjectured that SAT is
unlikely to admit even sub-exponential time algorithms, often referred to as the exponential-
time hypothesis. To cope with the widely believed hardness of SAT, several special classes of
Boolean formulas have been identified for which SAT is polynomial-time solvable. In the late
1960s, Krom [29] devised a quadratic-time algorithm to solve SAT on 2-CNF formulas. In the
late 1970s, follow-up works of Even et. al. [16] and Aspvall et. al. [2] proposed linear-time
algorithms to solve SAT on 2-CNF formulas. These algorithms used limited back-tracking
and analysis of the strongly-connected components of the implication graph respectively.
In the late 1980s, Iwama [26] introduced the class of hitting formulas, for which he gave a
closed-form expression to count the number of satisfying assignments in polynomial-time. It
is also known that SAT can be solved in polynomial-time on affine formulas using Gaussian
elimination [21]. Some other polynomial-time recognizable classes of formulas for which
SAT is polynomial-time solvable include Horn formulas [12, 36], CC-balanced formulas [7],
matched formulas [19], renamable-Horn formulas [31] and q-Horn DNF formulas [5, 6].

Diverse variant of SAT. In this paper, we undertake a complexity-theoretic study of SAT
in the framework of diversity. We focus on the problem of finding a diverse pair of satisfying
assignments of a given Boolean formula, and we take the number of variables on which
the two assignments differ as a measure of dissimilarity between them. Specifically, we
define the problem Max Differ SAT (resp. Exact Differ SAT) as follows: Given a
Boolean formula ϕ on n variables and a non-negative integer d, decide whether there are
two satisfying assignments of ϕ that differ on at least d (resp. exactly d) variables. That is,

N. Misra, H. Mittal, and A. Rai 50:3

Table 1 Classical and parameterized (in parameters d and n − d) complexities of
Exact Differ SAT, when restricted to affine formulas, 2-CNF formulas and hitting formulas.

Classical complexity Parameter d Parameter n− d

Affine formulas NP-hard, even on (3, 4)-affine formulas W[1]-hard W[1]-hard
(Theorem 1) (Theorem 4) (Theorem 7)
Polynomial-time on 2-affine formulas
(Theorem 3)

2-CNF formulas Polynomial-time on (2, 2)-CNF formulas W[1]-hard ?
(Theorem 9) (Theorem 10)

Hitting formulas Polynomial-time − −
(Theorem 11)

Table 2 Classical and parameterized (in parameters d and n− d) complexities of Max Differ
SAT, when restricted to affine formulas, 2-CNF formulas and hitting formulas.

Classical complexity Parameter d Parameter n− d

Affine formulas NP-hard, even on 4-affine formulas Single-exponential FPT W[1]-hard
(Theorem 2) (Theorem 5) (Theorem 7)
Polynomial-time on 2-affine formulas Polynomial kernel
(Theorem 3) (Theorem 6)

2-CNF formulas Polynomial-time on (2, 2)-CNF formulas W[1]-hard ?
(Theorem 8) (Theorem 10)

Hitting formulas Polynomial-time − −
(Theorem 11)

this problem asks whether there are two satisfying assignments of ϕ that overlap on at most
n− d (resp. exactly n− d) variables. Note that SAT can be reduced to its diverse variant
by setting d to 0. Thus, as SAT is NP-hard in general, so is Max/Exact Differ SAT.
So, it is natural to study the diverse variant on those classes of formulas for which SAT is
polynomial-time solvable. In particular, we consider affine formulas, 2-CNF formulas and
hitting formulas. We refer to the corresponding restrictions of Max/Exact Differ SAT as
Max/Exact Differ Affine-SAT, Max/Exact Differ 2-SAT and Max/Exact Differ
Hitting-SAT respectively. We analyze the classical and parameterized (in parameters d

and n− d) complexities of these problems.

Related work. This paper is not the first one to study algorithms to determine the maximum
number of variables on which two solutions of a given SAT instance can differ. Several
exact exponential-time algorithms are known to find a pair of maximally far-apart satisfying
assignments. In the mid 2000s, Angelsmark and Thapper [1] devised an O(1.7338n) time
algorithm to solve Max Hamming Distance 2-SAT. Their algorithm involved a careful
analysis of the micro-structure graph and used a solver for weighted 2-SAT as a sub-
routine. Around the same time, Dahlöff [10] proposed an O(1.8348n) time algorithm for
Max Hamming Distance XSAT. In the late 2010s, follow-up works of Hoi et. al. [24, 23]
developed algorithms for the same problem with improved running times, i.e., O(1.4983n)
for the general case, and O(1.328n) for the case when every clause has at most three literals.

Parameterized complexity. In the 1990s, Downey and Fellows [14] laid the foundations
of parameterized algorithmics. This framework measures the running time of an algorithm
as a function of both the input size and a parameter k, i.e., a suitably chosen attribute

ISAAC 2024

50:4 On the Parameterized Complexity of Diverse SAT

of the input. Such a fine-grained analysis helps to cope with the lack of polynomial-time
algorithms for NP-hard problems by instead looking for an algorithm with running time
whose super-polynomial explosion is confined to the parameter k alone. That is, such an
algorithm has a running time of the form f(k) · nO(1), where f(·) is any computable function
(could be exponential, or even worse) and n denotes the input size. Such an algorithm is
said to be fixed-parameter tractable (FPT) because its running time is polynomially-bounded
for every fixed value of the parameter k. For more on this paradigm, see [9].

Our findings. We summarize our findings in Table 1 and Table 2. In Section 3, we show
that

Exact Differ Affine-SAT is NP-hard, even on (3, 4)-affine formulas,
Max Differ Affine-SAT is NP-hard, even on 4-affine formulas,
Exact/Max Differ Affine-SAT is polynomial-time solvable on 2-affine formulas,
Exact Differ Affine-SAT is W[1]-hard in the parameter d,
Max Differ Affine-SAT admits a single-exponential FPT algorithm in the parameter d,
Max Differ Affine-SAT admits a polynomial kernel in the parameter d, and
Exact/Max Differ Affine-SAT is W[1]-hard in the parameter n− d.

In Section 4, we show that Exact/Max Differ 2-SAT can be solved in polynomial-time
on (2, 2)-CNF formulas, and Exact/Max Differ 2-SAT is W[1]-hard in the parameter d.
In Section 5, we show that Exact/Max Differ Hitting-SAT is polynomial-time solvable.

2 Preliminaries

A Boolean variable can take one of the two truth values: 0 (False) and 1 (True). We use n

to denote the number of variables in a Boolean formula ϕ. An assignment of ϕ is a mapping
from the set of all its n variables to {0, 1}. A satisfying assignment of ϕ is an assignment
σ such that ϕ evaluates to 1 under σ, i.e., when every variable x is substituted with its
assigned truth value σ(x). We say that two assignments σ1 and σ2 differ on a variable x if
they assign different truth values to x. That is, one of them sets x to 0, and the other sets x

to 1. Otherwise, we say that σ1 and σ2 overlap on x. That is, either both of them set x to 0,
or both of them set x to 1.

A literal is either a variable x (called a positive literal) or its negation ¬x (called a negative
literal). A clause is a disjunction (denoted by ∨) of literals. A Boolean formula in conjunctive
normal form, i.e., a conjunction (denoted by ∧) of clauses, is called a CNF formula. A
2-CNF formula is a CNF formula with at most two literals per clause. A (2, 2)-CNF formula
is a 2-CNF formula in which each variable appears in at most two clauses. An affine formula
is a conjunction of linear equations over the two-element field F2. We use ⊕ to denote the
XOR operator, i.e., addition-modulo-2. A 2-affine formula is an affine formula in which
each equation has at most two variables. Similarly, a 3-affine (resp. 4-affine) formula is an
affine formula in which each equation has at most three (resp. four) variables. A (3, 4)-affine
formula is a 3-affine formula in which each variable appears in at most four equations.

The solution set of a system of linear equations can be obtained in polynomial-time using
Gaussian elimination [21]. It may have no solution, a unique solution or multiple solutions.
When it has multiple solutions, the solution set is described as follows: Some variables are
allowed to take any value; we call them free variables. The remaining variables take values
that are dependent on the values taken by the free variables; we call them forced variables.
That is, the value taken by any forced variable is a linear combination of the values taken by
some free variables. For example, consider the following system of three linear equations over

N. Misra, H. Mittal, and A. Rai 50:5

F2: x⊕ y⊕ z = 1, u⊕ y = 1,w⊕ z = 1. This system has multiple solutions, and its solution
set can be described as

{(
x,y, z,u,w

)
| y ∈ F2, z ∈ F2, x = y⊕ z⊕ 1,u = y⊕ 1,w = z⊕ 1

}
.

Here, y and z are free variables. The remaining variables, i.e., x,u and w, are forced variables.
A hitting formula is a CNF formula such that for any pair of its clauses, there is some

variable that appears as a positive literal in one clause, and as a negative literal in the other
clause. That is, no two of its clauses can be simultaneously falsified. Note that the number
of unsatisfying assignments of a hitting formula ϕ on n variables can be expressed as follows:∑
C: C is a clause of ϕ

∣∣{σ | σ is an assignment of ϕ that falsifies C
}∣∣ = ∑

C: C is a clause of ϕ

2n−|vars(C)|

Here, we use vars(C) to denote the set of all variables that appear in the clause C.
We use the following as source problems in our reductions:
Independent Set. Given a graph G and a positive integer k, decide whether G has an
independent set of size k. This problem is known to be NP-hard on cubic graphs [34],
and W[1]-hard in the parameter k [15].
Multicolored Clique. Given a graph G whose vertex set is partitioned into k color-
classes, decide whether G has a k-sized clique that picks exactly one vertex from each
color-class. This problem is known to be NP-hard on r-regular graphs [9].
Exact Even Set. Given a universe U, a family F of subsets of U and a positive integer
k, decide whether there is a set X ⊆ U of size exactly k such that |X ∩ S| is even for all
sets S in the family F. This problem is known to be W[1]-hard in the parameter k [13].
Odd Set (resp. Exact Odd Set). Given a universe U, a family F of subsets of U and
a positive integer k, decide whether there is a set X ⊆ U of size at most k (resp. exactly
k) such that |X ∩ S| is odd for all sets S in the family F. Both these problems are known
to be W[1]-hard in the parameter k [13].

We use a polynomial-time algorithm for the following problem as a sub-routine:
Subset Sum problem. Given a multi-set of integers

{
w1, . . . ,wp

}
and a target sum k,

decide whether there exists X ⊆ [p] such that
∑

i∈X wi = k. This problem is known to
be polynomial-time solvable when the input integers are specified in unary [28].

We use the notation O⋆(·) to hide polynomial factors in running time.

3 Affine formulas

In this section, we focus on Exact Differ Affine-SAT, i.e, finding two different solutions
to affine formulas. To begin with, we show that finding two solutions that differ on exactly d

variables is hard even for (3, 4)-affine formulas: recall that these are instances where every
equation has at most three variables and every variable appears in at most four equations.

▶ Theorem 1. Exact Differ Affine-SAT is NP-hard, even on (3, 4)-affine formulas.

Proof. We describe a reduction from Independent Set on Cubic graphs. Consider an
instance (G, k) of Independent Set, where G is a cubic graph. We construct an affine
formula ϕ as follows: For every vertex v ∈ V(G), introduce a variable xv, its 3k copies (say
x1
v, . . . , x3k

v), and 3k equations: xv⊕x1
v = 0, x1

v⊕x2
v = 0, . . . , x3k−1

v ⊕x3k
v = 0. For every edge

e = uv ∈ E(G), introduce variable ye and equation xu ⊕ xv ⊕ye = 0. We set d = k · (3k+ 4).
For every vertex v ∈ V(G), the variable xv appears in four equations (i.e., xv⊕x1

v = 0 and the
three equations corresponding to the three edges incident to v in G), each of x1

v, . . . , x3k−1
v

appears in two equations, and x3k
v appears in one equation. For every edge e ∈ E(G), the

variable ye appears in one equation. So, overall, every variable appears in at most four
equations. Also, the equation corresponding to any edge contains three variables, and the
remaining equations contain two variables each. Therefore, ϕ is a (3, 4)-affine formula.

ISAAC 2024

50:6 On the Parameterized Complexity of Diverse SAT

Now, we prove that (G, k) is a YES instance of Independent Set if and only if (ϕ,d) is
a YES instance of Exact Differ Affine-SAT. At a high level, we argue this equivalence
as follows: In the forward direction, we show that the two desired satisfying assignments
are the all 0 assignment, and the assignment that i) assigns 1 to every x variable (and also,
its 3k copies) that corresponds to a vertex of the independent set, ii) assigns 1 to every y

variable that corresponds to an edge that has one endpoint inside the independent set and
the other endpoint outside it, iii) assigns 0 to every x variable (and also, its 3k copies) that
corresponds to a vertex outside the independent set, and iv) assigns 0 to every y variable
that corresponds to an edge that has both its endpoints outside the independent set. In the
reverse direction, we show that the desired k-sized independent set consists of those vertices
that correspond to the x variables on which the two assignments differ. We now turn to a
proof of equivalence.

Forward direction. Suppose that G has a k-sized independent set, say S. Let σ1 and σ2
be assignments of ϕ defined as follows: For every vertex v ∈ V(G) \ S, both σ1 and σ2
set xv, x1

v, . . . , x3k
v to 0. For every vertex v ∈ S, σ1 sets xv, x1

v, . . . , x3k
v to 0, and σ2 sets

xv, x1
v, . . . , x3k

v to 1. For every edge e ∈ E(G) that has both its endpoints in V(G) \ S, both
σ1 and σ2 set ye to 0. For every edge e ∈ E(G) that has one endpoint in S and the other
endpoint in V(G) \ S, σ1 sets ye to 0, and σ2 sets ye to 1.

As σ1 sets all variables to 0, it is clear that it satisfies ϕ. Now, we show that σ2 satisfies ϕ.
Consider any edge e = uv ∈ E(G) and its corresponding equation xu ⊕ xv ⊕ ye = 0. If both
endpoints of e belong to V(G)\S, then σ2 sets xu, xv and ye to 0. Also, if e has one endpoint
(say u) in S, and the other endpoint in V(G) \ S, then σ2 sets xu to 1, xv to 0 and ye to 1.
Therefore, in both cases, xu ⊕ xv ⊕ ye takes the truth value 0 under σ2. Also, for any vertex
v ∈ V(G), since σ2 gives the same truth value to xv, x1

v, . . . , x3k
v (i.e., all 1 if v ∈ S, and all 0

if v ∈ V(G) \ S), it also satisfies the equations xv ⊕ x1
v = 0, x1

v ⊕ x2
v = 0, . . . , x3k−1

v ⊕ x3k
v = 0.

Thus, σ2 is a satisfying assignment of ϕ.
As G is a cubic graph, every vertex in S is incident to three edges in G. Also, as S is an

independent set, none of these edges has both endpoints in S. Therefore, there are 3 · |S| edges
that have one endpoint in S and the other endpoint in V(G)\S. Note that σ1 and σ2 differ on
the y variables that correspond to these 3 · |S| edges. Also, they differ on |S| many x variables,
and their 3k · |S| copies. Therefore, overall, they differ on (3k+ 1) · |S|+ 3 · |S| = k · (3k+ 4)
variables. Hence, (ϕ,d) is a YES instance of Exact Differ Affine SAT.

Reverse direction. Suppose that (ϕ,d) is a YES instance of Exact Differ Affine-SAT.
That is, there exist satisfying assignments σ1 and σ2 of ϕ that differ on k · (3k+ 4) variables.
Let S :=

{
v ∈ V(G) | σ1 and σ2 differ on xv

}
. We show that S is a k-sized independent set

of G. Let e(S, S̄) denote the number of edges in G that have one endpoint in S and the other
endpoint in V(G) \ S. Now, let us express the number of variables on which σ1 and σ2 differ
in terms of |S| and e(S, S̄).

Consider any edge e = uv ∈ E(G). First, suppose that e has both its endpoints in S.
Then, as σ1 and σ2 differ on both xu and xv, the expression xu ⊕ xv takes the same truth
value under σ1 and σ2. So, as both of them satisfy the equation xu ⊕ xv ⊕ ye = 0, it follows
that σ1 and σ2 must overlap on ye. Next, suppose that e has both its endpoints in V(G) \ S.
Then, as σ1 and σ2 overlap on both xu and xv, the expression xu ⊕ xv takes the same truth
value under σ1 and σ2. So, again, σ1 and σ2 must overlap on ye. Next, suppose that e has
one endpoint (say u) in S and the other endpoint in V(G) \ S. Then, as σ1 and σ2 differ on
xu and overlap on xv, the expression xu ⊕ xv takes different truth values under σ1 and σ2.
So, as both σ1 and σ2 satisfy the equation xu ⊕ xv ⊕ ye = 0, it follows that σ1 and σ2 must
differ on ye. So, overall, σ1 and σ2 differ on e(S, S̄) many y variables.

N. Misra, H. Mittal, and A. Rai 50:7

For any vertex v ∈ V(G), since any satisfying assignment satisfies the equations xv⊕x1
v =

0, x1
v ⊕ x2

v = 0, . . . , x3k−1
v ⊕ x3k

v = 0, it must assign the same truth value to xv, x1
v, . . . , x3k

v .
So, for any v ∈ S, as σ1 and σ2 differ on xv, they also differ on x1

v, . . . , x3k
v . Similarly, for any

v ∈ V(G) \ S, as σ1 and σ2 overlap on xv, they also overlap on x1
v, . . . x3k

v . So, overall, σ1 and
σ2 differ on |S| many x variables and their 3k · |S| copies. Now, summing up the numbers of
y variables and x variables (and their copies) on which σ1 and σ2 differ, we get

e(S, S̄) + (3k+ 1) · |S| = k · (3k+ 4) (1)

Let e(S, S) denote the number of edges in G that have both endpoints in S. Note that∑
v∈S

degreeG(v) = 2 · e(S, S) + e(S, S̄)

Also, as G is a cubic graph, we know that degreeG(v) = 3 for all v ∈ S. Therefore, we get
e(S, S̄) = 3 · |S|− 2 · e(S, S). Putting this expression for e(S, S̄) in Equation (1), we have

(3k+ 4) ·
(
|S|− k

)
= 2 · e(S, S) (2)

If |S| ⩾ k + 1, then LHS of Equation (1) becomes ⩾ (3k + 1) · (k + 1) = k · (3k + 4) + 1,
which is greater than its RHS. So, we must have |S| ⩽ k. Also, as RHS of Equation (2) is
non-negative, so must be its LHS. This gives us |S| ⩾ k. Therefore, it follows that |S| = k.
Putting |S| = k in Equation (2), we also get e(S, S) = 0. That is, S is an independent set of
G. Hence, (G, k) is a YES instance of Independent Set.

This proves Theorem 1. ◀

We now turn to Max Differ Affine-SAT, i.e, finding two solutions that differ on at
least d variables. We show that this is hard for affine formulas of bounded arity.

▶ Theorem 2. Max Differ Affine-SAT is NP-hard, even on 4-affine formulas.

Proof. We describe a reduction from Multicolored Clique on Regular graphs.
Consider an instance (G, k) of Multicolored Clique, where G is a r-regular graph. We
assume that each color-class of G has size N := 2 · 3q. It can be argued that a suitably-sized
r-regular graph exists whose addition to the color-class makes this assumption hold true. We
construct an affine formula ϕ as follows: For every vertex v ∈ V(G), introduce a variable xv
and its ℓ copies

(
say x1

v, x2
v, . . . xℓv

)
, where ℓ := k · (r− k+ 1) + k · q. We force these copies to

take the same truth value as xv via the equations xv ⊕ x1
v = 0, x1

v ⊕ x2
v = 0, . . . , xℓ−1

v ⊕ xℓv =

0. For every edge e = uv ∈ E(G), we add variables ye and ze, and also the equation
xu ⊕ xv ⊕ ye ⊕ ze = 1.

For any 1 ⩽ i ⩽ k, consider the ith color-class, say Vi = {v1
i , v2

i , . . . , vNi }. First, we
add N/3 many Stage 1 dummy variables

(
say d1

i,1, d2
i,1,. . .,dN/3

i,1
)
, group the x variables

corresponding to the vertices of Vi into N/3 triplets, and add N/3 equations that equate the
xor of a triplet’s variables and a dummy variable to 0. More precisely, we add the following
N/3 equations:(
xv1

i
⊕xv2

i
⊕xv3

i

)
⊕d1

i,1 = 0,
(
xv4

i
⊕xv5

i
⊕xv6

i

)
⊕d2

i,1 = 0, . . . ,
(
xvN−2

i
⊕xvN−1

i
⊕xvN

i

)
⊕d

N/3
i,1 = 0

Next, we repeat the same process as follows: We introduce N/32 many Stage 2 dummy
variables

(
say d1

i,2, d2
i,2, . . ., dN/32

i,2
)
, group the N/3 many Stage 1 dummy variables into

N/32 triplets, and add N/32 equations that equate the xor of a triplet’s Stage 1 dummy
variables and a Stage 2 dummy variable to 0. More precisely, we add the following N/32

equations:

ISAAC 2024

50:8 On the Parameterized Complexity of Diverse SAT

(
d1
i,1 ⊕ d2

i,1 ⊕ d3
i,1

)
⊕ d1

i,2 = 0,
(
d4
i,1 ⊕ d5

i,1 ⊕ d6
i,1

)
⊕ d2

i,2 = 0, . . . ,
(
d
N/3−2
i,1 ⊕ d

N/3−1
i,1 ⊕ d

N/3
i,1

)
⊕ d

N/32

i,2 = 0

Repeating the same procedure, we add the following N/33, N/34, . . ., N/3q = 2 equations:(
d1
i,2 ⊕ d2

i,2 ⊕ d3
i,2

)
⊕ d1

i,3 = 0,
(
d4
i,2 ⊕ d5

i,2 ⊕ d6
i,2

)
⊕ d2

i,3 = 0, . . . ,
(
d
N/32−2
i,2 ⊕ d

N/32−1
i,2 ⊕ d

N/32

i,2
)
⊕ d

N/33

i,3 = 0(
d1
i,3 ⊕ d2

i,3 ⊕ d3
i,3

)
⊕ d1

i,4 = 0,
(
d4
i,3 ⊕ d5

i,3 ⊕ d6
i,3

)
⊕ d2

i,4 = 0, . . . ,
(
d
N/33−2
i,3 ⊕ d

N/33−1
i,3 ⊕ d

N/33

i,3
)
⊕ d

N/34

i,4 = 0

...(
d1
i,q−1 ⊕ d2

i,q−1 ⊕ d3
i,q−1

)
⊕ d1

i,q = 0,
(
d4
i,q−1 ⊕ d5

i,q−1 ⊕ d6
i,q−1

)
⊕ d2

i,q = 0

Next, we add B+ 1 auxiliary variables
(
say D1

i , . . . ,DB+1
i

)
and the following equations:(

d1
i,q ⊕ d2

i,q
)
⊕D1

i = 0,
(
d1
i,q ⊕ d2

i,q
)
⊕D2

i = 0, . . . ,
(
d1
i,q ⊕ d2

i,q
)
⊕DB+1

i = 0,

where B := k · (ℓ+ 1) + k · (r− k+ 1) + k · q is the budget that we set on the total number of
overlaps. That is, we set d = n − B, where n denotes the number of variables in ϕ. Now,
we prove that (G, k) is a YES instance of Multicolored Clique if and only if (ϕ,d) is a
YES instance of Max Differ Affine-SAT.

We first argue the forward direction. In the first assignment, we set i) all x and y variables
to 0, ii) all z variables to 1, and iii) all dummy and auxiliary variables to 0. In the second
assignment, we assign i) 0 to the k many x variables that correspond to the multi-colored
clique’s vertices, ii) 1 to the remaining x variables, iii) 0 to all z variables, iv) 0 to the
k · (r − k + 1) many y variables that correspond to those edges that have one endpoint
inside the multi-colored clique and the other endpoint outside it, v) 1 to the remaining
y variables, and vi) 1 to all auxiliary variables. Also, in the second assignment, for each
1 ⩽ i ⩽ k, we assign i) 0 to that Stage 1 dummy variable which was grouped with the x

variable corresponding to the multi-colored clique’s vertex from the ith color-class, 0 to that
Stage 2 dummy variable which was grouped with this Stage 1 dummy variable, 0 to that
Stage 3 dummy variable which was grouped with this Stage 2 dummy variable, and so on . . .,
and ii) 1 to the remaining dummy variables. It can be verified that these two assignments
satisfy ϕ, and they overlap on B many variables.

We argue the reverse direction of the equivalence. First, we show that each of the k

color-classes has at least one vertex on whose corresponding x variable the two assignments
overlap. Consider any 1 ⩽ i ⩽ k. Since the B+ 1 auxiliary variables are forced to take the
same truth value and there are only at most B overlaps, the two assignments must differ on
them. This forces the two assignments to overlap on one of the two Stage q dummy variables.
Further, this forces at least one overlap amongst the three Stage q− 1 dummy variables that
were grouped with this Stage q dummy variable. This effect propagates to lower-indexed
stages, and eventually forces at least one overlap amongst the x variables corresponding to
the vertices of the ith color-class.

Next, we show that each of the k color-classes has at most one vertex on whose corres-
ponding x variable the two assignments overlap. Suppose not. Then, there are at least two
overlaps amongst the x variables corresponding to the vertices of some color class. Also, based
on the previous paragraph, we know that there is at least one overlap amongst the x variables
corresponding to the vertices of each of the remaining k− 1 color classes. Therefore, overall,
there are at least k+ 1 many overlaps amongst the x variables. So, the contribution of these
x variables and their copies to the total number of overlaps becomes ⩾ (k+1) · (ℓ+1) = B+1.
However, this exceeds the budget B on the number of overlaps, which is a contradiction.

N. Misra, H. Mittal, and A. Rai 50:9

Based on the previous two paragraphs, we know that for each 1 ⩽ i ⩽ k, there is exactly
one overlap amongst the x variables corresponding to the vertices of the ith color class.
Finally, we show that the set, say S, formed by these k vertices is the desired multi-colored
clique. Suppose not. Then, there are > k · (r− k+ 1) edges that have one endpoint in S and
the other endpoint outside S. Also, for each such edge, the two assignments must overlap
on one of its corresponding y and z variables. Therefore, we have > k · (r− k+ 1) overlaps
on the y and z variables. Also, k · q overlaps are forced on the dummy variables via the
equations added in the grouping procedure. Thus, overall, the total number of overlaps
exceeds B, which is a contradiction. This concludes a proof sketch of Theorem 2. ◀

If, on the other hand, all equations in the formula have at most two variables, then both
problems turn out to be tractable. We describe this algorithm next.

▶ Theorem 3. Both Exact Differ Affine-SAT and Max Differ Affine-SAT are
polynomial-time solvable on 2-affine formulas.

Proof. Consider an instance (ϕ,d) of Exact Differ Affine-SAT, where ϕ is a 2-affine
formula. First, we construct a graph G0 as follows: Introduce a vertex for every variable
of ϕ. For every equation of the form x ⊕ y = 0 in ϕ, add the edge xy. We compute the
connected components of G0. Observe that for each component C of G0, the equations of
ϕ corresponding to the edges of C are simultaneously satisfied if and only if all variables
of C take the same truth value. So, any pair of satisfying assignments of ϕ either overlap
on all variables in C, or differ on all variables in C. Thus, we replace all variables in C by
a single variable, and set its weight to be the size of C. More precisely, i) we remove all
but one variable (say z) of C from the variable-set of ϕ, ii) we remove all those equations
from ϕ that correspond to the edges of C, iii) for every variable v ∈ C \ {z}, we replace the
remaining appearances of v in ϕ (i.e., in equations of the form v⊕ = 1) with z, and iv) we
set the weight of z to be the number of variables in C. Let ϕ ′ denote the variable-weighted
affine formula so obtained. Then, our goal is to decide whether ϕ ′ has a pair of satisfying
assignments such that the weights of the variables at which they differ add up to exactly d.

Note that all equations in ϕ ′ are of the form x ⊕ y = 1. Next, we construct a vertex-
weighted graph G1 as follows: Introduce a vertex for every variable of ϕ ′, and assign it
the same weight as that of its corresponding variable. For every equation x ⊕ y = 1 of
ϕ ′, add the edge xy. We compute the connected components of G1. Then, we run a
bipartiteness-testing algorithm on each component of G1. Suppose that there is a component
C of G1 that is not bipartite. Then, there is an odd-length cycle in C, say with vertices
x1, x2, . . . , x2ℓ, x2ℓ+1 (in that order). Note that the edges of this cycle correspond to the
equations x1 ⊕ x2 = 1, x2 ⊕ x3 = 1, . . . , x2ℓ ⊕ x2ℓ+1 = 1, x2ℓ+1 ⊕ x1 = 1 in ϕ ′. Adding
(modulo 2) these 2ℓ+ 1 equations, we get LHS = (2 · x1 + 2 · x2 + . . . + 2 · x2ℓ+1) mod 2 = 0,
and RHS = (2ℓ+ 1) mod 2 = 1. So, these 2ℓ+ 1 equations of ϕ ′ cannot be simultaneously
satisfied. Thus, we return NO. Now, assume that all components of G1 are bipartite. See
Figure 1 for an example.

Let C1, . . . ,Cp denote the connected components of G1. Consider any 1 ⩽ i ⩽ p. Let
A and B denote the parts of the bipartite component Ci. Observe that the equations of
ϕ ′ corresponding to the edges of Ci are simultaneously satisfied if and only if either i) all
variables in A are set to 1, and all variables in B are set to 0, or ii) all variables in A are set
to 0, and all variables in B are set to 1. So, any pair of satisfying assignments of ϕ ′ either
overlap on all variables in Ci, or differ on all variables in Ci. Thus, our problem amounts to
deciding whether there is a subset of components of G1 whose collective weight is exactly d.
That is, our goal is to decide whether there exists X ⊆ [p] such that

∑
i∈X weight(Ci) = d,

ISAAC 2024

50:10 On the Parameterized Complexity of Diverse SAT

Figure 1 This figure shows the bipartite components of the graph G1 constructed in the proof of
Theorem 3, when the 2-affine formula ϕ ′ consists of the following equations: u⊕ a = 1, u⊕ b = 1,
u ⊕ c = 1, v ⊕ a = 1, v ⊕ b = 1, v ⊕ c = 1, s ⊕ p = 1, s ⊕ q = 1, t ⊕ p = 1, t ⊕ q = 1, r ⊕ f = 1,
g⊕w = 1, g⊕ f = 1, g⊕ z = 1, h⊕ f = 1, h⊕ z = 1.

where weight(Ci) denotes the sum of the weights of the variables in Ci. To do so, we use the
algorithm for Subset Sum problem with

{
weight(C1), . . . ,weight(Cp)

}
as the multi-set

of integers and d as the target sum. This proves Theorem 3. The algorithm described here
works almost as it is for Max Differ Affine-SAT too. In the last step, instead of reducing
to Subset Sum problem, we simply check whether the collective weight of all components
of G1 is at least d. That is, if

∑p
i=1 weight(Ci) ⩾ d, we return YES; otherwise, we return

NO. Thus, Max Differ Affine-SAT is polynomial-time solvable on 2-affine formulas. ◀

We now turn to the parameterized complexity of Exact Differ Affine-SAT and Max
Differ Affine-SAT when parameterized by the number of variables that differ in the
two solutions. It turns out that the exact version of the problem is W[1]-hard, while the
maximization question is FPT. We first show the hardness of Exact Differ Affine-SAT
by a reduction from Exact Even Set.

▶ Theorem 4. Exact Differ Affine-SAT is W[1]-hard in the parameter d.

Proof. We describe a reduction from Exact Even Set. Consider an instance (U,F, k) of
Exact Even Set. We construct an affine formula ϕ as follows: For every element u in the
universe U, introduce a variable xu. For every set S in the family F, introduce the equation
⊕
u∈S

xu = 0. We set d = k. We prove that (U,F, k) is a YES instance of Exact Even Set if

and only if (ϕ,d) is a YES instance of Exact Differ Affine-SAT. At a high level, we
argue this equivalence as follows: In the forward direction, we show that the two desired
satisfying assignments are i) the all 0 assignment, and ii) the assignment that assigns 1 to
the variables that correspond to the elements of the given even set, and assigns 0 to the
remaining variables. In the reverse direction, we show that the desired even set consists
of those elements of the universe that correspond to the variables on which the two given
satisfying assignments differ. We now argue the equivalence.

Forward direction. Suppose that (U,F, k) is a YES instance of Exact Even Set. That is,
there is a set X ⊆ U of size exactly k such that |X ∩ S| is even for all sets S in the family F.
Let σ1 and σ2 be assignments of ϕ defined as follows: For every u ∈ X, σ1 sets xu to 0, and
σ2 sets xu to 1. For every u ∈ U \X, both σ1 and σ2 set xu to 0. Note that σ1 and σ2 differ
on exactly |X| = k variables. Consider any set S in the family F. The equation corresponding
to S in the formula ϕ is ⊕

u∈S

xu = 0. All variables in the left-hand side are set to 0 by σ1.

Also, the number of variables in the left-hand side that are set to 1 by σ2 is |X ∩ S|, which is
an even number. Therefore, the left-hand side evaluates to 0 under both σ1 and σ2. So, σ1
and σ2 are satisfying assignments of ϕ. Hence, (ϕ, k) is a YES instance of Exact Differ
Affine-SAT.

N. Misra, H. Mittal, and A. Rai 50:11

Reverse direction. Suppose that (ϕ, k) is a YES instance of Exact Differ Affine-SAT.
That is, there are satisfying assignments σ1 and σ2 of ϕ that differ on exactly k variables.
Let X denote the k-sized set

{
u ∈ U | σ1 and σ2 differ on xu

}
. Consider any set S in the

family F. The equation corresponding to S in the formula ϕ is ⊕
u∈S

xu = 0. We split the

left-hand side into two parts to express this equation as ⊕
u∈S\X

xu

A

⊕ ⊕
u∈X∩S

xu

B

= 0. Note that

σ1 and σ2 overlap on all variables in the first part, i.e., A. So, A evaluates to the same truth
value under both assignments. Thus, as both σ1 and σ2 satisfy this equation, they must
assign the same truth value to the second part, i.e., B, as well. Also, σ1 and σ2 differ on all
variables in B. So, for its truth value to be same under both assignments, B must have an
even number of variables. That is, |X ∩ S| must be even. Hence, (U,F, k) is a YES instance
of Exact Even Set.

This proves Theorem 4. ◀

We now turn to the FPT algorithm for Max Differ Affine-SAT, which is based on
obtaining solutions using Gaussian elimination and working with the free variables: if the
set of free variables F is “large”, we can simply set them differently and force the dependent
variables, and guarantee ourselves a distinction on at least |F| variables. Note that this is the
step that would not work as-is for the exact version of the problem. If the number of free
variables is bounded, we can proceed by guessing the subset of free variables on which the
two assignments differ. We make these ideas precise in the proof of Theorem 5. Also, in the
proof of Theorem 6, we show that Max Differ Affine-SAT has a polynomial kernel in
the parameter d.

▶ Theorem 5. Max Differ Affine-SAT admits an algorithm with running time O⋆(2d).

Proof. Consider an instance (ϕ,d) of Max Differ Affine-SAT. We use Gaussian elimin-
ation to find the solution set of ϕ in polynomial-time. If ϕ has no solution, we return NO. If
ϕ has a unique solution and d = 0, we return YES. If ϕ has a unique solution and d ⩾ 1,
we return NO. Now, assume that ϕ has multiple solutions. Let F denote the set of all free
variables. Suppose that |F| ⩾ d. Let σ1 denote the solution of ϕ obtained by setting all free
variables to 0, and then setting the forced variables to take values as per their dependence
on the free variables. Similarly, let σ2 denote the solution of ϕ obtained by setting all free
variables to 1, and then setting the forced variables to take values as per their dependence on
the free variables. Note that σ1 and σ2 differ on all free variables (and possibly some forced
variables too). So, overall, they differ on at least |F| ⩾ d variables. Thus, we return YES.
Now, assume that |F| ⩽ d − 1. We guess the subset D ⊆ F of free variables on which two
desired solutions (say σ1 and σ2) differ. Note that there are 2|F| ⩽ 2d−1 such guesses.

First, consider any forced variable x that depends on an odd number of free variables
from D. That is, the expression for its value is the XOR of an odd number of free variables
from D (possibly along with the constant 1 and/or some free variables from F \D). Then,
note that this expression takes different truth values under σ1 and σ2. That is, σ1 and σ2
differ on x. Next, consider any forced variable x that depends on an even number of free
variables from D. That is, the expression for its value is the XOR of an even number of free
variables from D (possibly along with the constant 1 and/or some free variables from F \D).
Then, note that this expression takes the same truth value under σ1 and σ2. That is, σ1 and
σ2 overlap on x. Thus, overall, these two solutions differ on i) all free variables from D, and
ii) all those forced variables that depend upon an odd number of free variables from D. If
the total count of such variables is ⩾ d for some guess D, we return YES. Otherwise, we
return NO. This concludes the proof. ◀

ISAAC 2024

50:12 On the Parameterized Complexity of Diverse SAT

▶ Theorem 6. Max Differ Affine-SAT admits a kernel with O(d2) variables and O(d2)

equations.

Proof. Consider an instance (ϕ,d) of Max Differ Affine-SAT. We use Gaussian elimin-
ation to find the solution set of ϕ in polynomial-time. Then, as in the proof of Theorem 5, i)
we return NO if ϕ has no solution, or if ϕ has a unique solution and d ⩾ 1, ii) we return
YES if ϕ has a unique solution and d = 0, or if ϕ has multiple solutions with at least d

free variables. Now, assume that ϕ has multiple solutions with at most d− 1 free variables.
Note that the system of linear equations formed by the expressions for the values of forced
variables is an affine formula (say ϕ ′) that is equivalent to ϕ. That is, ϕ ′ and ϕ have the
same solution sets. So, we work with the instance (ϕ ′,d) in the remaining proof.

Suppose that there is a free variable, say x, such that at least d − 1 forced variables
depend on x. That is, there are at least d− 1 forced variables such that the expressions for
their values are the XOR of x (possibly along with the constant 1 and/or some other free
variables). Let σ1 denote the solution of ϕ ′ obtained by setting all free variables to 0, and
then setting the forced variables to take values as per their dependence on the free variables.
Let σ2 denote the solution of ϕ ′ obtained by setting x to 1 and the remaining free variables
to 0, and then setting the forced variables to take values as per their dependence on the free
variables. Note that σ1 and σ2 differ on x, and also on each of the ⩾ d− 1 forced variables
that depend on x. So, overall, σ1 and σ2 differ on at least d variables. Thus, we return YES.

Now, assume that for every free variable x, there are at most d− 2 forced variables that
depend on x. So, as there are at most d− 1 free variables, it follows that there are at most
(d− 1) · (d− 2) forced variables that depend on at least one free variable. The remaining
forced variables are the ones that do not depend on any free variable. That is, any such
forced variable y is set to a constant (i.e., 0 or 1) as per the expression for its value. We
remove the variable y and its corresponding equation (i.e., y = 0 or y = 1) from ϕ ′, and we
leave d unchanged. This is safe because y takes the same truth value under all solutions of
ϕ ′. Note that the affine formula so obtained has at most d− 1 free variables and at most
(d− 1) · (d− 2) forced variables. So, overall, it has at most (d− 1)2 variables. Also, it has at
most (d− 1) · (d− 2) equations. This concludes the proof. ◀

We finally turn to the “dual” parameter, n− d: the number of variables on which the
two assignments sought overlap. We show that both the exact and maximization variants for
affine formulas are W[1]-hard in this parameter by reductions from Exact Odd Set and
Odd Set, respectively.

▶ Theorem 7. The problems Exact Differ Affine-SAT and Max Differ Affine-SAT
are W[1]-hard in the parameter n− d.

Proof. We describe a reduction from Exact Odd Set. Consider an instance (U,F, k)
of Exact Odd Set. We construct an affine formula ϕ as follows: For every element
u in the universe U, introduce a variable xu. For every odd-sized set S in the family F,
introduce the equation ⊕

u∈S

xu = 1. For every even-sized set S in the family F, introduce k+ 1

variables yS, z1
S, z2

S, . . . , zkS, and the equations yS ⊕ z1
S = 0,yS ⊕ z2

S = 0, . . . ,yS ⊕ zkS = 0 and
⊕
u∈S

xu ⊕ yS = 0. The number of variables in ϕ is n = |U| + (k+ 1)·
∣∣{S ∈ F

∣∣ |S| is even
}∣∣.

We set d = n − k. We prove that (U,F, k) is a YES instance of Exact Odd Set if and
only if (ϕ,d) is a YES instance of Exact Differ Affine-SAT. At a high level, we argue
this equivalence as follows: In the forward direction, we show that the two desired satisfying
assignments are i) the assignment that sets all y and z variables to 0 and all x variables

N. Misra, H. Mittal, and A. Rai 50:13

to 1, and ii) the assignment that sets all y and z variables to 1, assigns 1 to all those x

variables that correspond to the elements of the given odd set, and assigns 0 to the remaining
x variables. In the reverse direction, we show that the two assignments must differ on all y
and z variables (and so, all k overlaps are restricted to occur at x variables), and the desired
odd set consists of those elements of the universe that correspond to the x variables on which
the two assignments overlap. We present a full proof of this equivalence in Theorem 7. This
reduction also works with Odd Set as the source problem and Max Differ Affine-SAT
as the target problem. So, Max Differ Affine-SAT is also W[1]-hard in the parameter
n− d.

Forward direction. Suppose that (U,F, k) is a YES instance of Exact Differ Affine-
SAT. That is, there is a set X ⊆ U of size exactly k such that |X ∩ S| is odd for all sets S in
the family F. Let σ1 and σ2 be assignments of ϕ defined as follows: For every even-sized
set S in the family F, σ1 sets yS, z1

S, z2
S, . . . , zkS to 0, and σ2 sets yS, z1

S, z2
S, . . . , zkS to 1. For

every u ∈ X, both σ1 and σ2 set xu to 1. For every u ∈ U \ X, σ1 sets xu to 1, and σ2 sets
xu to 0. Note that σ1 and σ2 overlap on exactly |X| = k variables (and so, they differ on
exactly n− k variables). Now, we show that σ1 and σ2 are satisfying assignments of ϕ.

First, we argue that σ1 and σ2 satisfy the equations of ϕ that were added corresponding
to odd-sized sets of the family F. Consider any odd-sized set S in the family F. The equation
corresponding to S in the formula ϕ is ⊕

u∈S

xu = 1. The number of variables in the left-hand

side that are set to 1 by σ2 is |X ∩ S|, which is an odd number. Also, all |S| (again, which is
an odd number) variables in the left-hand side are set to 1 by σ1. Therefore, the left-hand
side evaluates to 1 under both σ1 and σ2. So, both these assignments satisfy the equation
⊕
u∈S

xu = 1.

Next, we argue that σ1 and σ2 satisfy the equations of ϕ that were added corresponding
to even-sized sets of the family F. Consider any even-sized set S in the family F. The k+ 1
equations corresponding to S in the formula ϕ are yS ⊕ z1

S = 0,yS ⊕ z2
S = 0, . . . ,yS ⊕ zkS = 0

and ⊕
u∈S

xu ⊕yS = 0. Consider any of the first k equations, say yS ⊕ ziS = 0, where 1 ⩽ i ⩽ k.

Both variables on the left-hand side, i.e., yS and ziS, are assigned the same truth value, i.e.,
both 0 by σ1 and both 1 by σ2. So, both these assignments satisfy the equation yS ⊕ ziS = 0.
Next, consider the last equation, i.e., ⊕

u∈S

xu ⊕ yS = 0. The number of variables amongst

xu
∣∣
u∈S

that are set to 1 by σ2 is |X∩ S|, which is an odd number. Also, the variable yS is set
to 1 by σ2. Therefore, overall, the number of variables in the left-hand side that are set to 1
by σ2 is even. Also, σ1 sets all variables on the left-hand side to 1 except yS. That is, it sets
all the |S| (again, which is an even number) variables xu

∣∣
u∈S

to 1. Therefore, the left-hand
side evaluates to 0 under both σ1 and σ2. So, both these assignments satisfy the equation
⊕
u∈S

xu ⊕ yS = 0.

Hence, (ϕ,n− k) is a YES instance of Exact Differ Affine-SAT.

Reverse direction. Suppose that (ϕ,n− k) is a YES instance of Exact Differ Affine-
SAT. That is, there are satisfying assignments σ1 and σ2 of ϕ that overlap on exactly k

variables. Consider any even-sized set S in the family F. As σ1 satisfies the equations
yS ⊕ z1

S = 0,yS ⊕ z2
S = 0, . . . ,yS ⊕ zkS = 0, it must assign the same truth value to all

the k + 1 variables yS, z1
S, z2

S, . . . , zkS. Similarly, σ2 must assign the same truth value to
yS, z1

S, z2
S, . . . , zkS. Therefore, either σ1 and σ2 overlap on all these k+ 1 variables, or they

differ on all these k+ 1 variables. So, as there are only k overlaps, σ1 and σ2 must differ on
yS, z1

S, z2
S, . . . , zkS. Thus, all the k overlaps occur at x variables. Let X denote the k-sized set{

u ∈ U | σ1 and σ2 differ on xu
}

. Now, we show that |X ∩ S| is odd for all sets S in F.

ISAAC 2024

50:14 On the Parameterized Complexity of Diverse SAT

First, we argue that X has odd-sized intersection with all odd-sized sets of the family
F. Consider any odd-sized set S in the family F. The equation corresponding to S in the
formula ϕ is ⊕

u∈S

xu = 1. We split the left-hand side into two parts to express this equation

as ⊕
u∈X∩S

xu

A

⊕ ⊕
u∈S\X

xu

B

= 1. Note that σ1 and σ2 overlap on all variables in the first part,

i.e., A. So, A evaluates to the same truth value under both assignments. Thus, as both σ1
and σ2 satisfy this equation, they must assign the same truth value to the second part, i.e.,
B, as well. Also, σ1 and σ2 differ on all variables in B. So, for its truth value to be same
under both assignments, B must have an even number of variables. That is, |S \ X| must be
even. Now, as |S| is odd and |S \ X| is even, we infer that |X ∩ S| = |S|− |S \ X| is odd.

Next, we argue that X has odd-sized intersection with all even-sized sets of the family F.
Consider any even-sized set S in the family F. Amongst the k+ 1 equations corresponding to
S in the formula ϕ, consider the last equation, i.e., ⊕

u∈S

xu ⊕ yS = 0. We split the left-hand

side into two parts to express this equation as ⊕
u∈X∩S

xu

A

⊕ ⊕
u∈S\X

xu ⊕ yS

B

= 0. Note that σ1

and σ2 overlap on all variables in the first part, i.e., A. So, A evaluates to the same truth
value under both assignments. Thus, as both σ1 and σ2 satisfy this equation, they must
assign the same truth value to the second part, i.e., B. Also, σ1 and σ2 differ on all variables
in B. So, for its truth value to be same under both assignments, B must have an even number
of variables. That is, |S \ X|+ 1 must be even. Now, as |S| is even and |S \ X| is odd, we infer
that |X∩S| = |S|− |S \X| is odd. Hence, (U,F, k) is a YES instance of Exact Odd Set. ◀

4 2-CNF formulas

In this section, we explore the classical and parameterized complexity of Max Differ 2-SAT
and Exact Differ 2-SAT. We first show that these problems are polynomial time solvable
on (2, 2)-CNF formulas by constructing a graph corresponding to the instance and observing
some structural properties of that graph. Then we show that both of these problems are
W[1]-hard with respect to the parameter d. We begin by proving the following theorem.

▶ Theorem 8. Max Differ 2-SAT is polynomial-time solvable on (2, 2)-CNF formulas.

We use similar ideas in the proof of Theorem 8 to show that Exact Differ 2-SAT
can also be solved in polynomial time on (2, 2)-CNF formulas. This requires more careful
analysis of the graph constructed and a reduction to Subset Sum problem, as we want the
individual contributions, in terms of number of variables where the assignments differ, to
sum up to an exact value. We show the result in the following theorem.

▶ Theorem 9. Exact Differ 2-SAT is polynomial-time solvable on (2, 2)-CNF formulas.

Due to lack of space, the proofs of these results are deferred to a full version of the paper.
Looking at the parameterized complexity of Exact Differ 2-SAT and Max Differ 2-SAT
with respect to the parameter d, we establish the following hardness result.

▶ Theorem 10. Exact/Max Differ 2-SAT is W[1]-hard in the parameter d.

We describe a reduction from Independent Set. Consider an instance (G, k) of Independ-
ent Set. We construct a 2-CNF formula ϕ as follows: For every vertex v ∈ V(G), introduce
two variables xv and yv; we refer to them as x-variable and y-variable respectively. For every

N. Misra, H. Mittal, and A. Rai 50:15

edge uv ∈ E(G), i) we add a clause that consists of the x-variables corresponding to the
vertices u and v, i.e., xu ∨ xv, and ii) we add a clause that consists of the y-variables corres-
ponding to the vertices u and v, i.e., yu ∨ yv. For every pair of vertices u, v ∈ V(G), we add
a clause that consists of the x-variable corresponding to u and the y-variable corresponding
to v, i.e., xu ∨ yv. We set d = 2k. We prove that (G, k) is a YES instance of Independent
Set if and only if (ϕ,d) is a YES instance of Exact Differ 2-SAT.

At a high level, we argue this equivalence as follows: In the forward direction, we show that
the two desired satisfying assignments are i) the assignment that assigns 0 to all x-variables
corresponding to the vertices of the given independent set, and 1 to the remaining variables,
and ii) the assignment that assigns 0 to all y-variables corresponding to the vertices of the
given independent set, and 1 to the remaining variables. In the reverse direction, we partition
the set of variables on which the two given assignments differ into two parts: i) one part
consists of those variables that are set to 1 by the first assignment, and 0 by the second
assignment, and ii) the other part consists of those variables that are set to 0 by the first
assignment, and 1 by the second assignment. Then, we show that at least one of these two
parts has the desired size, and it is not a mix of x-variables and y-variables. That is, either
it has only x-variables, or it has only y-variables. Finally, we show that the vertices that
correspond to the variables in this part form the desired independent set. A detailed proof
of equivalence is deferred to a full version of the paper.

5 Hitting formulas

In this section, we consider hitting formulas, and we show that both its diverse variants,
i.e., Exact Differ Hitting-SAT and Max Differ Hitting-SAT, are polynomial-time
solvable.

▶ Theorem 11. Exact Differ Hitting-SAT admits a polynomial-time algorithm.

Proof. Consider an instance (ϕ,d) of Exact Differ Hitting-SAT, where ϕ is a hitting
formula with m clauses (say C1, . . . ,Cm) on n variables. For every 1 ⩽ i ⩽ m, let vars(Ci)

denote the set of all variables that appear in the clause Ci. For every 1 ⩽ i, j ⩽ m, let λ(i, j)
denote the number of variables x ∈ vars(Ci) ∩ vars(Cj) such that x appears as a positive
literal in one clause, and as a negative literal in the other clause. Note that∣∣{(σ1,σ2) | σ1 and σ2 differ on d variables, and both σ1 and σ2 satisfy ϕ

}∣∣
=

∣∣{(σ1,σ2) | σ1 and σ2 differ on d variables
}∣∣

−
∣∣{(σ1,σ2) | σ1 and σ2 differ on d variables, and σ1 falsifies ϕ

}∣∣
−
∣∣{(σ1,σ2) | σ1 and σ2 differ on d variables, and σ2 falsifies ϕ

}∣∣
+
∣∣{(σ1,σ2) | σ1 and σ2 differ on d variables, and both σ1 and σ2 falsify ϕ

}∣∣
= 2n ·

(
n

d

)
−
∣∣{σ1 | σ1 falsifies ϕ

}∣∣ · (n
d

)
−
∣∣{σ2 | σ2 falsifies ϕ

}∣∣ · (n
d

)
+

m∑
i=1

m∑
j=1

∣∣{(σ1,σ2) | σ1 and σ2 differ on d variables, σ1 falsifies Ci, and σ2 falsifies Cj

}∣∣︸ ︷︷ ︸
α(i,j)

=
(

2n − 2 ·
m∑
i=1

2n−|vars(Ci)|
)
·
(
n

d

)
+

m∑
i=1

m∑
j=1

α(i, j)

Consider any 1 ⩽ i, j ⩽ m. Let us find an expression for α(i, j). That is, let us count the
number of pairs (σ1,σ2) of assignments of ϕ such that σ1 and σ2 differ on d variables, σ1
falsifies Ci, and σ2 falsifies Cj. Since σ1 falsifies Ci, it must set every variable in vars(Ci)

ISAAC 2024

50:16 On the Parameterized Complexity of Diverse SAT

such that its corresponding literal in the clause Ci is falsified. That is, for every x ∈ vars(Ci),
if x appears as a positive literal in Ci, then σ1 must set x to 0; otherwise, it must set x

to 1. Similarly, since σ2 falsifies Cj, it must set every variable in vars(Cj) such that its
corresponding literal in the clause Cj is falsified.

There is just one choice for the truth values assigned to the variables in vars(Ci)∩vars(Cj)

by σ1 and σ2. Also, note that for every variable x in vars(Ci) ∩ vars(Cj), if x appears as a
positive literal in one clause and as a negative literal in the other clause, then σ1 and σ2
differ on x; otherwise, they overlap on x. So, overall, σ1 and σ2 differ on λ(i, j) variables
amongst the variables in vars(Ci) ∩ vars(Cj).

We go over all possible choices for the numbers of variables on which σ1 and σ2 differ
(say d1,d2 and d3 many variables) amongst the variables in vars(Ci) \ vars(Cj), vars(Cj) \

vars(Ci) and vars(ϕ) \ (vars(Ci)∪ vars(Cj)) respectively, where vars(ϕ) denotes the set of
all variables of ϕ. As σ1 and σ2 differ on d variables in total, we have λ(i, j)+d1+d2+d3 = d.

There is just one choice for the truth values assigned to the variables in vars(Ci)\vars(Cj)

by σ1, and there are
(
|vars(Ci)\vars(Cj)|

d1

)
choices for the truth values assigned to the variables

in vars(Ci) \ vars(Cj) by σ2. Similarly, there is just one choice for the truth values assigned
to the variables in vars(Cj) \ vars(Ci) by σ2, and there are

(
|vars(Cj)\vars(Ci)|

d2

)
choices for

the truth values assigned to the variables in vars(Cj) \ vars(Ci) by σ1.
There are

(
n−|vars(Ci)∪vars(Cj)|

d3

)
choices for the d3 variables on which σ1 and σ2 differ

amongst the variables in vars(ϕ) \ (vars(Ci)∪ vars(Cj)). For each variable x amongst these
d3 variables, there are two ways in which σ1 and σ2 can assign truth values to x. That
is, either i) σ1 sets x to 0 and σ2 sets x to 1, or ii) σ1 sets x to 1 and σ2 sets x to 0. For
each variable x amongst the remaining n − |vars(Ci) ∪ vars(Cj)| − d3 variables, there are
again two ways in which σ1 and σ2 can assign truth values to x. That is, either i) both
σ1 and σ2 set x to 1, or ii) both σ1 and σ2 set x to 0. So, overall, the number of ways in
which σ1 and σ2 can assign truth values to the variables in vars(ϕ) \ (vars(Ci) ∪ vars(Cj))

is
(
n−|vars(Ci)∪vars(Cj)|

d3

)
· 2d3 · 2n−|vars(Ci)∪vars(Cj)|−d3 .

Thus, we get the following expression for α(i, j):

2n−|vars(Ci)∪vars(Cj)| ·
∑

d1,d2,d3⩾0:
d1+d2+d3=d−λ(i,j)

(
|vars(Ci)\vars(Cj)|

d1

)(
|vars(Cj)\vars(Ci)|

d2

)(
n−|vars(Ci)∪vars(Cj)|

d3

)

Plugging this into the previously obtained equality, we get an expression to count
the number of pairs (σ1,σ2) of satisfying assignments of ϕ that differ on d variables. This
expression can be evaluated in polynomial-time. If the count so obtained is non-zero, we return
YES; otherwise, we return NO. This proves Theorem 11. Note that (ϕ,d) is a YES instance
of Max Differ Hitting-SAT if and only if at least one of (ϕ,d), (ϕ,d+ 1), . . . , (ϕ,n) is a
YES instance of Exact Differ Hitting-SAT. Thus, as Exact Differ Hitting-SAT is
polynomial-time solvable, so is Max Differ Hitting-SAT. ◀

6 Concluding remarks

In this work, we undertook a complexity-theoretic study of the problem of finding a diverse
pair of satisfying assignments of a given Boolean formula, when restricted to affine, 2-CNF
and hitting formulas. This problem can also be studied for i) other classes of formulas on
which SAT is polynomial-time solvable, ii) more than two solutions, and iii) other notions of
distance between assignments. An immediate open problem is to resolve the parameterized
complexities of Exact Differ 2-SAT and Max Differ 2-SAT in the parameter n− d.

N. Misra, H. Mittal, and A. Rai 50:17

References
1 Ola Angelsmark and Johan Thapper. Algorithms for the maximum Hamming distance problem.

In International Workshop on Constraint Solving and Constraint Logic Programming, pages
128–141. Springer, 2004. doi:10.1007/11402763_10.

2 Bengt Aspvall, Michael F Plass, and Robert Endre Tarjan. A linear-time algorithm for testing
the truth of certain quantified boolean formulas. Information processing letters, 8(3):121–123,
1979. doi:10.1016/0020-0190(79)90002-4.

3 Julien Baste, Michael R Fellows, Lars Jaffke, Tomáš Masařík, Mateus de Oliveira Oliveira,
Geevarghese Philip, and Frances A Rosamond. Diversity of solutions: An exploration through
the lens of fixed-parameter tractability theory. Artificial Intelligence, 303:103644, 2022.
doi:10.1016/j.artint.2021.103644.

4 Julien Baste, Lars Jaffke, Tomáš Masařík, Geevarghese Philip, and Günter Rote. FPT
algorithms for diverse collections of hitting sets. Algorithms, 12(12):254, 2019. doi:10.3390/
a12120254.

5 Endre Boros, Yves Crama, and Peter L Hammer. Polynomial-time inference of all valid
implications for horn and related formulae. Annals of Mathematics and Artificial Intelligence,
1:21–32, 1990. doi:10.1007/BF01531068.

6 Endre Boros, Peter L Hammer, and Xiaorong Sun. Recognition of q-Horn formulae in linear
time. Discrete Applied Mathematics, 55(1):1–13, 1994. doi:10.1016/0166-218X(94)90033-7.

7 Michele Conforti, Gérard Cornuéjols, Ajai Kapoor, Kristina Vuškovic, and MR Rao. Balanced
matrices. Mathematical Programming: State of the Art, pages 1–33, 1994.

8 Stephen A Cook. The complexity of theorem-proving procedures. In Logic, Automata, and
Computational Complexity: The Works of Stephen A. Cook, pages 143–152. Association for
Computing Machinery, 2023. doi:10.1145/3588287.3588297.

9 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,
2015. doi:10.1007/978-3-319-21275-3.

10 Vilhelm Dahllöf. Algorithms for max Hamming exact satisfiability. In Proceedings of the 16th
International Symposium on Algorithms and Computation (ISAAC), pages 829–838. Springer,
2005. doi:10.1007/11602613_83.

11 Mark de Berg, Andrés López Martínez, and Frits C. R. Spieksma. Finding diverse minimum
s-t cuts. In Proceedings of the 34th International Symposium on Algorithms and Computation
ISAAC, volume 283 of LIPIcs, pages 24:1–24:17, 2023. doi:10.4230/LIPIcs.ISAAC.2023.24.

12 William F Dowling and Jean H Gallier. Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. The Journal of Logic Programming, 1(3):267–284, 1984.
doi:10.1016/0743-1066(84)90014-1.

13 Rod G Downey, Michael R Fellows, Alexander Vardy, and Geoff Whittle. The parametrized
complexity of some fundamental problems in coding theory. SIAM Journal on Computing,
29(2):545–570, 1999. doi:10.1137/S0097539797323571.

14 Rodney G Downey and Michael R Fellows. Fixed-parameter intractability. In 1992 Seventh
Annual Structure in Complexity Theory Conference, pages 36–37. IEEE Computer Society,
1992.

15 Rodney G Downey, Michael R Fellows, et al. Fundamentals of Parameterized Complexity,
volume 4. Springer, 2013.

16 S. Even, A. Shamir, and A. Itai. On the complexity of time table and multi-commodity flow
problems. In Proceedings of the 16th Annual Symposium on Foundations of Computer Science
(SFCS), pages 184–193. IEEE Computer Society, 1975. doi:10.1109/SFCS.1975.21.

17 Fedor V Fomin, Petr A Golovach, Lars Jaffke, Geevarghese Philip, and Danil Sagunov. Diverse
pairs of matchings. In 31st International Symposium on Algorithms and Computation (ISAAC
2020). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

18 Fedor V Fomin, Petr A Golovach, Fahad Panolan, Geevarghese Philip, and Saket Saurabh.
Diverse collections in matroids and graphs. Mathematical Programming, pages 1–33, 2023.

ISAAC 2024

https://doi.org/10.1007/11402763_10
https://doi.org/10.1016/0020-0190(79)90002-4
https://doi.org/10.1016/j.artint.2021.103644
https://doi.org/10.3390/a12120254
https://doi.org/10.3390/a12120254
https://doi.org/10.1007/BF01531068
https://doi.org/10.1016/0166-218X(94)90033-7
https://doi.org/10.1145/3588287.3588297
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/11602613_83
https://doi.org/10.4230/LIPIcs.ISAAC.2023.24
https://doi.org/10.1016/0743-1066(84)90014-1
https://doi.org/10.1137/S0097539797323571
https://doi.org/10.1109/SFCS.1975.21

50:18 On the Parameterized Complexity of Diverse SAT

19 John Franco and Allen Van Gelder. A perspective on certain polynomial-time solvable
classes of satisfiability. Discrete Applied Mathematics, 125(2-3):177–214, 2003. doi:10.1016/
S0166-218X(01)00358-4.

20 Aadityan Ganesh, HV Vishwa Prakash, Prajakta Nimbhorkar, and Geevarghese Philip. Disjoint
stable matchings in linear time. In Proceedings of the 47th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG), pages 94–105. Springer, 2021. doi:
10.1007/978-3-030-86838-3_7.

21 Joseph F Grcar. How ordinary elimination became Gaussian elimination. Historia Mathematica,
38(2):163–218, 2011.

22 Tesshu Hanaka, Yasuaki Kobayashi, Kazuhiro Kurita, and Yota Otachi. Finding diverse trees,
paths, and more. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 3778–3786, 2021. doi:10.1609/aaai.v35i5.16495.

23 Gordon Hoi, Sanjay Jain, and Frank Stephan. A fast exponential time algorithm for max
hamming distance x3sat. arXiv preprint, 2019. arXiv:1910.01293.

24 Gordon Hoi and Frank Stephan. Measure and conquer for max Hamming distance XSAT.
In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

25 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer
and System Sciences (JCSS), 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

26 Kazuo Iwama. CNF-satisfiability test by counting and polynomial average time. SIAM Journal
on Computing, 18(2):385–391, 1989. doi:10.1137/0218026.

27 Richard M Karp. Reducibility among combinatorial problems. Springer, 2010. doi:10.1007/
978-3-540-68279-0_8.

28 Konstantinos Koiliaris and Chao Xu. Faster pseudopolynomial time algorithms for subset sum.
ACM Transactions on Algorithms (TALG), 15(3):1–20, 2019. doi:10.1145/3329863.

29 Melven R Krom. The decision problem for a class of first-order formulas in which all disjunctions
are binary. Mathematical Logic Quarterly, 13(1-2):15–20, 1967.

30 Leonid Anatolevich Levin. Universal sequential search problems. Problemy peredachi informat-
sii, 9(3):115–116, 1973.

31 Harry R Lewis. Renaming a set of clauses as a Horn set. Journal of the ACM (JACM),
25(1):134–135, 1978. doi:10.1145/322047.322059.

32 Ilya Mironov and Lintao Zhang. Applications of sat solvers to cryptanalysis of hash functions.
In Proceedings of the 9th International Conference on Theory and Applications of Satisfiability
Testing (SAT), pages 102–115. Springer, 2006. doi:10.1007/11814948_13.

33 Neeldhara Misra, Harshil Mittal, and Saraswati Nanoti. Diverse non crossing matchings. In
CCCG, pages 249–256, 2022.

34 Bojan Mohar. Face covers and the genus problem for apex graphs. Journal of Combinatorial
Theory (JCT), Series B, 82(1):102–117, 2001. doi:10.1006/jctb.2000.2026.

35 Thomas J Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth annual
ACM Symposium on Theory of Computing, pages 216–226, 1978. doi:10.1145/800133.804350.

36 Maria Grazia Scutella. A note on Dowling and Gallier’s top-down algorithm for propositional
horn satisfiability. The Journal of Logic Programming, 8(3):265–273, 1990. doi:10.1016/
0743-1066(90)90026-2.

37 Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfiability solvers and
their applications in model checking. Proceedings of the IEEE, 103(11):2021–2035, 2015.
doi:10.1109/JPROC.2015.2455034.

https://doi.org/10.1016/S0166-218X(01)00358-4
https://doi.org/10.1016/S0166-218X(01)00358-4
https://doi.org/10.1007/978-3-030-86838-3_7
https://doi.org/10.1007/978-3-030-86838-3_7
https://doi.org/10.1609/aaai.v35i5.16495
https://arxiv.org/abs/1910.01293
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1137/0218026
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1145/3329863
https://doi.org/10.1145/322047.322059
https://doi.org/10.1007/11814948_13
https://doi.org/10.1006/jctb.2000.2026
https://doi.org/10.1145/800133.804350
https://doi.org/10.1016/0743-1066(90)90026-2
https://doi.org/10.1016/0743-1066(90)90026-2
https://doi.org/10.1109/JPROC.2015.2455034

Easier Ways to Prove Counting Hard:
A Dichotomy for Generalized #SAT, Applied to
Constraint Graphs
MIT Hardness Group1

MIT Computer Science and Artificial Intelligence
Laboratory, Cambridge, MA, USA

Josh Brunner #

MIT Computer Science and Artificial Intelligence
Laboratory, Cambridge, MA, USA

Erik D. Demaine #

MIT Computer Science and Artificial Intelligence
Laboratory, Cambridge, MA, USA

Jenny Diomidova #

MIT Computer Science and Artificial Intelligence
Laboratory, Cambridge, MA, USA

Timothy Gomez #

MIT Computer Science and Artificial Intelligence
Laboratory, Cambridge, MA, USA

Markus Hecher #

MIT Computer Science and Artificial Intelligence
Laboratory, Cambridge, MA, USA

Frederick Stock #

Miner School of Computer & Information
Sciences, University of Massachusetts, Lowell,
MA, USA

Zixiang Zhou #

MIT Computer Science and Artificial Intelligence
Laboratory, Cambridge, MA, USA

Abstract
To prove #P-hardness, a single-call reduction from #2SAT needs a clause gadget to have exactly
the same number of solutions for all satisfying assignments – no matter how many and which literals
satisfy the clause. In this paper, we relax this condition, making it easier to find #P-hardness
reductions. Specifically, we introduce a framework called Generalized #SAT where each clause
contributes a term to the total count of solutions based on a given function of the literals. For two-
variable clauses (a natural generalization of #2SAT), we prove a dichotomy theorem characterizing
when Generalized #SAT is in FP versus #P-complete.

Equipped with these tools, we analyze the complexity of counting solutions to Constraint Graph
Satisfiability (CGS), a framework previously used to prove NP-hardness (and PSPACE-hardness)
of many puzzles and games. We prove CGS ASP-hard, meaning that there is a parsimonious
reduction (with algorithmic bijection on solutions) from every NP search problem, which implies
#P-completeness. Then we analyze CGS restricted to various subsets of features (vertex and edge
types), and prove most of them either easy (in FP) or hard (#P-complete). Most of our results also
apply to planar constraint graphs. CGS is thus a second powerful framework for proving problems
#P-hard, with reductions requiring very few gadgets.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Complexity theory and logic

Keywords and phrases Counting, Computational Complexity, Sharp-P, Dichotomy, Constraint
Graph Satisfiability

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.51

Funding Markus Hecher : The author was funded by the Austrian Science Fund (FWF), grants
J4656, the Society for Research Funding in Lower Austria (GFF NOE) grant ExzF-0004, as well
as the Vienna Science and Technology Fund (WWTF) grant ICT19-065. Part of the research was
carried out while visiting Simons Inst./UC Berkeley.

1 Artificial first author to highlight that the other authors (in alphabetical order) worked as an equal
group. Please include all authors (including this one) in your bibliography, and refer to the authors as
“MIT Hardness Group” (without “et al.”).

© MIT Hardness Group, Josh Brunner, Erik D. Demaine, Jenny Diomidova, Timothy Gomez,
Markus Hecher, Frederick Stock, and Zixiang Zhou;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 51; pp. 51:1–51:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:brunnerj@mit.edu
https://orcid.org/0009-0001-0741-5239
mailto:edemaine@mit.edu
https://orcid.org/0000-0003-3803-5703
mailto:diomidova@mit.edu
mailto:tagomez7@mit.edu
mailto:hecher@mit.edu
https://orcid.org/0000-0003-0131-6771
mailto:Frederick_Stock@student.uml.edu
mailto:zpeter@mit.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2024.51
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 Easier Ways to Prove Counting Hard: A Dichotomy for Generalized #SAT

1 Introduction

Counting solutions to NP search problems (i.e., problems in the complexity class #P) is an
algorithmic analog of the field of combinatorics. Counting (#P) is also provably harder than
deciding (NP): by a consequence of Toda’s Theorem [10], any problem in the polynomial
hierarchy has a deterministic polynomial-time reduction to a single counting problem in #P.
Already from the foundational work by Valiant in the late 1970s [13, 14], we have problems
where decision is in P yet counting is #P-hard. One notable example is 2SAT, where finding
one solution is easy, but counting the solutions (#2SAT) is #P-hard.

How do we prove a problem #P-hard? Ideally, we would find a parsimonious (single-call)
reduction that preserves the number of solutions (and provides a polynomial-time bijection
on the solutions). In addition to preserving #P-hardness, parsimonious reductions preserve
a stronger property called ASP-hardness [15], meaning that all NP search problems have a
parsimonious reduction to the problem. In addition to #P-hardness, ASP-hardness implies
NP-hardness of the decision problem as well as the 𝑘-ASP problem: given 𝑘 solutions to an
instance, find another solution. The weaker notion of 𝒄-monious reduction increases the
number of solutions by exactly a factor of 𝑐. Such a reduction implies both NP-hardness and
#P-hardness (but not ASP-hardness), as zero-solution instances are preserved and we can
recover the answer to our initial counting problem by dividing by 𝑐.

But even a 𝑐-monious reduction from #2SAT (say) can be difficult, compared to a
standard NP-hardness reduction. A 𝑐-monious reduction built from standard variable and
clause gadgets must have exactly the same number of solutions to every gadget; then 𝑐 is the
product of these counts. In particular, a clause gadget must have exactly the same number
of solutions no matter how it is satisfied – no matter whether it is satisfied by the first clause,
the second clause, or both clauses. This property often does not come without substantial
effort. For example, in Lichtenstein’s reductions from (planar) 3SAT to Hamiltonicity and
vertex cover [6], the number of solutions to each clause is equal to the number of true
literals that satisfy the clause. In this paper, we prove that such a reduction still establishes
#P-hardness.

1.1 Our Results: Generalized #SAT
Specifically, we define a framework called Generalized #SAT, where a clause can contribute
a count of not just 0 or 1. A clause type is defined by a function from literal truth values to
nonnegative integers, indicating the number of ways the clause is satisfied by that assignment.
The number of solutions to the formula is then defined to be the product of the clause
function outputs, summed over all possible assignments. In particular, if a clause function
outputs zero, then that assignment still does not contribute to the number of solutions
(similar to #SAT).

In Section 3, we present a complete complexity dichotomy of Generalized #SAT for
the case of 2 variables per clause, precisely characterizing the computational hardness of
every clause type as either in FP or #P-hard. In particular, Generalized #SAT is #P-
complete for the function 𝑓 (𝑥, 𝑦) = 𝑥 + 𝑦 counting the number of satisfying literals. Thus
Lichtenstein’s reductions [6], adapted to reduce from 2SAT instead of 3SAT, prove #P-
hardness of Hamiltonicity and vertex cover. While these results have been proved in other
ways since [9, 7],2 it is comforting to know that existing NP-hardness reductions can be

2 The first proof, by Valiant [12], seems to have never been published.

MIT Hardness Group 51:3

more easily extended to #P-hardness, potentially saving time in the future. In some cases,
a 𝑐-monious clause gadget may be very difficult or even impossible to construct, while
Generalized #SAT provides the flexibility necessary for a reduction from #2SAT.

1.2 Our Results: Constraint Graph Satisfiability
We show the applicability of our Generalized #SAT framework by using it to solve another
open problem: analyzing the complexity of counting solutions to the Constraint Graph
Satisfiability (CGS) problem [3]. A constraint graph is a graph, usually 3-regular, together
with edge weights of 1 and 2, also referred to as edge colors red and blue respectively. Given
such a constraint graph, the goal in CGS is to find an orientation of the graph (direction
of the edges) such that every vertex has a total incoming weight of at least 2. Constraint
graphs are the foundation of Nondeterministic Constraint Logic (the reconfiguration version
of CGS according to edge reversals), which is a popular framework for proving puzzles and
games PSPACE-hard [3]. CGS was shown NP-complete over 15 years ago [3, Section 5.1.3],
but the complexity of its counting problem remained unsolved.

In Section 4, we prove that CGS is ASP-complete in general, implying #P-completeness
of #CGS. Then we analyze subproblems of #CGS, where the graph is restricted to only
certain vertex and edge types, providing an almost-complete complexity characterization for
these various subproblems, as summarized in Table 1. Specifically, there are three interesting
degree-3 vertices in CGS:
1. maj (majority) vertices have three incident red edges (at least two of which must point

in to reach an incoming weight of 2);
2. or vertices have three incident blue edges (at least one of which must point in); and
3. and vertices have two incident red edges and one incident blue edge (where the blue edge

can point out only if both red edges point in).
The original NP-completeness proof of CGS [3, Theorem 5.4] uses just and and or vertices
(while other Constraint Logic proofs in [3] use maj vertices, under the name “choice”). In
addition to restricting to an arbitrary subset of these vertex types, we can consider two types
of edges. In matching edge weights, each edge is uniformly red or blue, so both endpoints
view the edge as having the same weight. In arbitrary edge weights, we allow an edge to
have red/weight 1 at one endpoint and blue/weight 2 at the other endpoint. In [3], the latter
type of edge is called a “red-blue conversion”. While red-blue conversion can be simulated
with matching edge weights [3, Figure 2.4] this simulation is not parsimonious, so for our
analysis the problems differ.

▶ Conjecture 1. There exists no 𝑐-monious red-blue conversion gadget unless #P = FP.

Fortunately, most reductions from Constraint Logic or CGS do not care whether edge
weights are matching. Only vertex gadgets depend on their incident edge colors, while there
is only one distinct edge gadget independent of color. Thus, arbitrary edge weights are of
primary interest, and in this case, we provide a complete characterization of complexity. We
start by showing that CGS with only and vertices can be reduced from Generalized #SAT
to show #P-hardness, while the decision problem is easy. If we have only maj vertices, then
even counting is easy. (We leave open the case of only or vertices.) Next, we show that
when allowing all three vertex types, we can design a parsimonious reduction from Exactly
1-in-3 SAT, proving ASP- and #P-completeness. By a slight modification, the reduction
can be made 𝑐-monious with only ands and ors, achieving #P-completeness in this case.
Finally, for all pairs of vertex types, we show that counting is easy.

ISAAC 2024

51:4 Easier Ways to Prove Counting Hard: A Dichotomy for Generalized #SAT

Table 1 Known and new results for Constraint Graph Satisfiability (CGS). The first three
columns indicate allowed gadgets (✓). The fourth column specifies whether edge weights must be
matching at either endpoint, or whether they can be arbitrary on either end (equivalently, allowing
red-blue conversions). ASP-c(omplete) means that the reduction is parsimonious, which implies
#P-c(ompleteness) as well. All hardness results except Theorem 19 can be encoded as planar graphs.

and or maj Edge Weights CGS #CGS

✓ ✓ ✓ Arbitrary NP-c [3] ASP-c (Thm. 15)
✓ ✓ ✓ Matching NP-c [3] (open)
✓ ✓ × Arbitrary NP-c [3] #P-c (Thm. 11)
✓ ✓ × Matching NP-c [3] (open)
× ✓ ✓ Arbitrary P (Thm. 17) #P-c (Thm. 19)
× ✓ ✓ Matching P (Thm. 17) (open)
✓ × ✓ Arbitrary P (Thm. 18) #P-c (Thm. 11)
✓ × ✓ Matching P (Thm. 18) FP (Thm. 21)
✓ × × Arbitrary P (Thm. 18) #P-c (Thm. 11)
✓ × × Matching P (Thm. 18) FP (Thm. 12)
× ✓ × (Matching) P (Thm. 17) #P-c [1]
× × ✓ (Matching) P (Thm. 17) FP (Thm. 13)

Most of our hardness results hold when restricted to planar constraint graphs, making
them particularly amenable for reductions to games and puzzles. The only exception is the
case of or and maj vertices with arbitrary edge weights, for which we have been unable to
build a crossover gadget.

2 Preliminaries

2.1 Generalized #SAT
We define Generalized #SAT as follows. Each version of Generalized #SAT is specified
by a clause type, a nonnegative integer function 𝑓 : {0, 1}𝑘 → Z≥0, which describes the
number of ways a given assignment of 𝑘 literals satisfies the clause. We allow negations of
variables, denoted with a bar (like 𝑥), to be used freely in clauses. An input to Generalized
#SAT consists of a number 𝑛, the number of variables (denoted 𝑥 = (𝑥1, . . . , 𝑥𝑛)), and a set
of 𝑚 clauses 𝐶 = {𝜙1, . . . , 𝜙𝑚}. Each 𝜙𝑖 is a 𝑘-tuple of literals, like (𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘). Let 𝑥𝜙

denote the restriction of a variable assignment 𝑥 to the variables in a clause 𝜙. The goal is
to compute the number of ways to satisfy all clauses:∑︁

(𝑥1 ,...,𝑥𝑛) ∈{0,1}𝑛

∏
𝜙∈𝐶

𝑓 (𝑥𝜙). (1)

Previous work has proved that #2SAT [13] and #Max Cut [8] are #P-complete.

2.2 Constraint Graph Satisfiability
A constraint graph node (𝐸,𝑊, 𝑐) consists of a set 𝐸 of incident edges, an assignment
𝑊 of nonnegative weights to the edges, and a lower bound 𝑐 on the total incoming weight.
Usually we restrict edge weights to either 1, which we call red, or 2, which we call blue. A
constraint graph 𝐺 is a set of constraint graph nodes and edges, where each edge appears
in exactly two nodes. A configuration of 𝐺 is an assignment of directions to the edges such
that, for each node (𝐸,𝑊, 𝑐), the total weight of incoming edges among 𝐸 is at least 𝑐.

MIT Hardness Group 51:5

AND: 

OR: 

MAJ :

AND:

OR:

RED-BLUE conversion :

RED-RED crossover (gadget, see Figure 5 ):

Figure 1 Overview of the Constraint Graph Satisfiability node types and, or, maj, and red-blue
conversion, as well as their allowed edge orientations. Thereby the total in-weight has to be at
least 2 (except for red-blue conversion), achievable by a single blue in-edge (weight 2) or two red
in-edges (two times weight 1). The crossover gadget internally uses and, or, maj, and red-blue
conversion, as depicted in Figure 5.

▶ Problem 1 (Constraint Graph Satisfiability (CGS)). Given a constraint graph 𝐺 does there
exists a legal configuration?

▶ Problem 2 (Counting Constraint Graph Satisfiability (#CGS)). Given a constraint graph 𝐺,
how many legal configurations of 𝐺 exist?

The definitions above are more general than the standard definitions [3]. In particular,
they allow the notion of edge weight to be local to a vertex, instead of being specified at the
graph level. If an edge can have different weights at each end, we call the problem arbitrary
edge weights, while if an edge is required to have the same weight at both ends, we call
the problem matching edge weights. Equivalently, we can think of arbitrary edge weights
as equivalently allowing for a red-blue conversion gadget – an edge that is red on one end
and blue on the other.

In the standard formulation of constraint graph satisfiability, three types of degree-3
vertices: and, or, and maj. Figure 1 gives an overview of these types and all allowed edge
orientations. An and vertex has two red edges and one blue edge, so it is satisfied only when
both red edges are in-edges or the blue edge is an in-edge. Therefore, it mimics a boolean
and, where if both red edges are inward, then the vertex is “true” (the blue edge can be
outward) and otherwise, it is “false” (the blue edge must be inward). An or vertex has three
blue edges, so it is satisfied as along at least one edge is inward, similar to a boolean or. A
maj vertex has only red edges, so it is only satisfied if at least two (the majority) of its three
edges are inward.

CGS is also a special case of Graph Orientation [4] where the valid configurations are
shown in Figure 1.

In many cases, we would like the constraint graph to be planar. A useful tool for this is
a crossing vertex allows us to build non-planar graph out of planar graphs. If two edges
cross, we put a crossing vertex at their intersection point. This vertex mimics the standard
crossover gadget used in graph reductions.

3 Generalized #SAT Dichotomy

In this section we outline our size-2 dichotomy results. We begin with some definitions that
help describe the easy cases. Throughout this section, we let 𝑓 : {0, 1}2 → Z≥0 be a 2-variable
clause type.

ISAAC 2024

51:6 Easier Ways to Prove Counting Hard: A Dichotomy for Generalized #SAT

▶ Definition 2. 𝑓 is factorable if there exist functions 𝑔 and ℎ such that 𝑓 (𝑥, 𝑦) = 𝑔(𝑥)ℎ(𝑦)
for all (𝑥, 𝑦) ∈ {0, 1}2.

▶ Definition 3. 𝑓 is 2-color if either 𝑓 (0, 0) = 𝑓 (1, 1) = 0 or 𝑓 (0, 1) = 𝑓 (1, 0) = 0.

Our main theorem of this section is the following dichotomy result.

▶ Theorem 4 (Dichotomy Theorem). Generalized #SAT with a single 2-variable clause type
𝑓 is in FP if 𝑓 is either factorable or 2-color. Otherwise, it is #P-complete.

3.1 Easy Cases
First, we describe polynomial-time algorithms for the factorable and 2-color cases.

▶ Lemma 5. If 𝑓 is factorable, Generalized #SAT can be solved in polynomial time.

Proof. Let 𝑓 (𝑥, 𝑦) = 𝑔(𝑥)ℎ(𝑦). The product
∏

𝜙∈𝐶 𝑓 (𝑥𝜙) can be expanded as a prod-
uct of 𝑔s and ℎs,

∏
𝜙∈𝐶 𝑓 (𝑥𝜙) =

∏𝑛
𝑖=1 𝑔(𝑥𝑖)𝑎𝑖𝑔(𝑥𝑖)𝑏𝑖 ℎ(𝑥𝑖)𝑐𝑖 ℎ(𝑥𝑖)𝑑𝑖 , for some exponents

𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖. The sum of this expression over all (𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 is equal to∏𝑛
𝑖=1

∑
𝑥𝑖∈{0,1} 𝑔(𝑥𝑖)𝑎𝑖𝑔(𝑥𝑖)𝑏𝑖 ℎ(𝑥𝑖)𝑐𝑖 ℎ(𝑥𝑖)𝑑𝑖 , which can be evaluated in polynomial time. ◀

▶ Lemma 6. If 𝑓 is 2-color, Generalized #SAT can be solved in polynomial time.

Proof. Each clause 𝜙 = 𝑓 (𝑥, 𝑦) ∈ 𝐶 forces 𝑥 and 𝑦 to be either equal to each or not
equal to each other. Consider a graph on 𝑛 nodes one for each variable, and add an edge
between 𝑥 and 𝑦 for all 𝜙 ∈ 𝐶. Within each connected component of this graph, fixing an
assignment to any one variable forces all the others. There are at most 2 ways to satisfy each
connected component, and the answer is the product of the answers for each component
independently. ◀

3.2 Hardness
Next, we prove that all remaining cases are #P-complete, we will show that all hard clause
types reduce to one of the two following cases.

▶ Definition 7 (2SAT-like). 𝑓 is 2SAT-like if 𝑓 (0, 0) = 0, 𝑓 (0, 1) = 𝑓 (1, 0) = 𝑎 > 0,
𝑓 (1, 1) = 𝑏 > 0.

▶ Definition 8 (Max-Cut-like). 𝑓 is Max-Cut-like if 𝑓 (0, 0) = 𝑓 (1, 1) = 𝑎 > 0, 𝑓 (0, 1) =
𝑓 (1, 0) = 𝑏 > 0, 𝑎 ≠ 𝑏

▶ Lemma 9. If 𝑓 is 2SAT-like, then Generalized #SAT is #P-complete.

Proof. We reduce from #2SAT. For each clause 𝜑 = 𝑥∨𝑦 in the #2SAT instance (where 𝑥 and
𝑦 are literals), add a unique new variable 𝑧 and three clauses 𝜙1, 𝜙2, 𝜙3 = 𝑓 (𝑥, 𝑦), 𝑓 (𝑥, 𝑧), 𝑓 (𝑦, 𝑧)
to the generalized #SAT formula. The number of ways to satisfy the clause is 0 if 𝑥 ∨ 𝑦 is
false and 𝑎2𝑏 otherwise:

If (𝑥, 𝑦) = (0, 0), 𝑓 (0, 0) = 0, so 𝑓 (𝑥, 𝑦) 𝑓 (𝑥, 𝑧) 𝑓 (𝑦, 𝑧) = 0.
If (𝑥, 𝑦) = (0, 1) or (1, 0), then

∑
𝑧∈{0,1} 𝑓 (𝑥, 𝑦) 𝑓 (𝑥, 𝑧) 𝑓 (𝑦, 𝑧) = 𝑓 (𝑥, 𝑦)∑𝑧∈{0,1} 𝑓 (0, 𝑧) 𝑓 (1, 𝑧)

= 𝑎2𝑏.
If (𝑥, 𝑦) = (1, 1), then

∑
𝑧∈{0,1} 𝑓 (𝑥, 𝑦) 𝑓 (𝑥, 𝑧) 𝑓 (𝑦, 𝑧) = 𝑓 (𝑥, 𝑦)∑𝑧∈{0,1} 𝑓 (0, 𝑧) 𝑓 (0, 𝑧) = 𝑎2𝑏.

Therefore, this reduction is (𝑎2𝑏)𝑚-monious, where there are 𝑚 clauses in the #2SAT instance,
so Generalized #SAT is #P-complete. ◀

MIT Hardness Group 51:7

▶ Lemma 10 (Max-Cut-like). If 𝑓 is Max-Cut-like, Then Generalized #SAT is #P-complete.

Proof. We reduce from #Max Cut. Let the input of a #Max Cut instance be a graph
𝐺 = (𝑉, 𝐸), and calculate the number 𝑀 := 1 + ⌈logmax(𝑎/𝑏,𝑏/𝑎) (2 |𝑉 |)⌉ ∈ 𝑂 (|𝑉 |). Associate a
boolean variable to each vertex in 𝑉 . For each edge (𝑥, 𝑦) ∈ 𝐸, add 𝑀 clauses of the form
𝑓 (𝑥, 𝑦) 𝑓 (𝑥, 𝑦). The answer to this Generalized #SAT instance is

𝑁 :=
∑︁

𝑆⊔𝑇=𝑉
𝑏𝑀cut(𝑆,𝑇)𝑎𝑀 (|𝐸 |−cut(𝑆,𝑇)) =

|𝐸 |∑︁
𝑐=0

𝑘𝑐𝑏
𝑀𝑐𝑎𝑀 (|𝐸 |−𝑐) ,

where cut(𝑆, 𝑇) := #{(𝑢, 𝑣) ∈ 𝐸 | 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇} and 𝑘𝑐 := #{(𝑆, 𝑇) | 𝑆 ⊔ 𝑇 = 𝑉, cut(𝑆, 𝑇) = 𝑐}.
Note that 0 ≤ 𝑘𝑐 ≤ 2 |𝑉 | and the ratios of adjacent coefficients 𝑏𝑀𝑐𝑎𝑀 (|𝐸 |−𝑐)

𝑏𝑀 (𝑐+1) 𝑎𝑀 (|𝐸 |− (𝑐+1)) =
(
𝑎
𝑏

)𝑀 differ
by more than 2 |𝑉 | . Therefore, it is possible to exactly extract all the numbers {𝑘𝑐}0≤𝑐≤ |𝐸 |
from 𝑁, and the answer to #Max Cut is 𝑘max(𝑐 : 𝑘𝑐>0) . ◀

3.3 Main Dichotomy Result
We now present the complete proof of our size-2 dichotomy, based on our four clause types
each defined in relevant theorems, factorable, 2-colorable for easy cases, and #2SAT-like and
Max-Cut-like for the hard cases.

Proof of Theorem 4. If 𝑓 is factorable or 2-colorable, Generalized #SAT is in FP by Lemma
5 or Lemma 6. Suppose 𝑓 is not one of these cases. Then at most one of the values 𝑓 (𝑥, 𝑦)
for (𝑥, 𝑦) ∈ {0, 1}2 can be 0.

If one of these values is 0, we reduce from Lemma 9. By negating one or both arguments
of 𝑓 , without loss of generality we let 𝑓 (0, 0) = 0 and 𝑓 (0, 1), 𝑓 (1, 0), 𝑓 (1, 1) > 0. Replace
each 2SAT-like clause 𝑓2 (𝑥, 𝑦) with two clauses, 𝑓 (𝑥, 𝑦) 𝑓 (𝑦, 𝑥).

If none of these values is 0, we reduce from Lemma 10. Replace each Max-Cut-like clause
with two clauses, 𝑓 (𝑥, 𝑦) 𝑓 (𝑥, 𝑦). ◀

4 Counting Constraint Graph Configurations (#CGS)

Having established the generalized #SAT dichotomy, we now use these results as a tool to
prove hardness of #CGS. Specifically, we establish the many results of Table 1, which we hope
will enable further use of CGS for many puzzles and games. First, we establish easy cases with
single vertex types and also prove that this problem is already #P-complete on graphs using
and nodes with general edge weights. Then, in Section 4.2 we prove ASP-hardness when
allowed all three vertex types – and, or, and maj– and general edge weights. Finally we
restrict the set of allowed vertex types, and present bounds and complexity characterizations
when counting solutions is hard.

4.1 Constraint Graphs with a Single Vertex Type
We show that #CGS on graphs with just and vertices in #P-complete with general edge
weights. But if we enforce matching edge weights, then #CGS is in FP. We also show that
for just maj vertices, #CGS is in FP. (Because maj vertices have just one edge type, the
notion of matching or general edge weights is irrelevant.)

To show that and vertices with general edge weights is #P-complete, we reduce from
#SAT. In the following, we design a (parsimonious) variable gadget for every variable 𝑥, as
depicted in Figure 2. The gadget uses 𝑂 (𝑘) nodes where 𝑘 is the number of times 𝑥 appears,

ISAAC 2024

51:8 Easier Ways to Prove Counting Hard: A Dichotomy for Generalized #SAT

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Variable gadget (left) showing an equal number of positive and negative variable
occurrences. Using red-blue conversion vertex types, we can construct an odd number of out-going
edges (right). Note that at most one red-blue conversion is needed (in case of different parity of 𝑥
and ¬𝑥 occurrences), as 𝑥’s and ¬𝑥’s can be linked by a red edge (depicted above).

thus each vertex functions as a literal, with the edge orientation propagating the value. Every
variable occurrence is thereby connected to an and node such that if the edge is directed
towards 𝑥 (¬𝑥) the literal 𝑥 (¬𝑥) evaluates to true. By construction, the variable gadget has
only two legal edge orientations. One of which is shown in Figure 2 (𝑥 is true), the other
configuration is its complement, where all edges are inverted (𝑥 is false).

This gadget and Section 3 are sufficient ingredients to establish the following tight result.

▶ Theorem 11 (#P-Hardness). Counting with just and is #P-complete if we do not enforce
matching edge weights.

Proof. We reduce from 2SAT-like Generalized #SAT with clause type 𝑓 (𝑥, 𝑦) = 𝑥 + 𝑦 (see
Lemma 9) and construct a #CGS instance as follows. We reuse the variable gadget of
Figure 2. However, the clause gadget for a binary clause 𝑐 = (ℓ ∨ ℓ′) (ℓ, ℓ′ are two distinct
literals) is simply a red edge connecting literal ℓ to literal ℓ′. Indeed, by construction, the
clause gadget requires that the edge is directed either to ℓ (i.e. ℓ is true) or to ℓ′ (i.e. ℓ′ is
true). Consequently, if both ℓ and ℓ′ are true, clause 𝑐 is considered with weight 2, as we can
always direct the edge from ℓ to ℓ′ or from ℓ′ to ℓ. This is as required by Equation (1), which
coincides with the number of CGS solutions of the constructed instance and establishes the
result. ◀

This result immediately works for planar graphs as well, as in Lemma 9 we can alternatively
reduce from planar (monotone) #2SAT, which is #P-complete [11]. This result is tight, as
the counting problem #CGS is easy for just and nodes if we enforce matching edge weights.

   

Figure 3 and vertices must pair along blue edges if matching edge weights are enforced.

▶ Theorem 12. #CGS with just and with matching edge weights is in FP.

Proof. Note that since matching edge weights is enforced, each and vertex must pair off
with exactly one other and vertex. They connect to each other via their blue input and form
a “super-vertex” with four red inputs/outputs (Figure 3). For any such pair of and vertices,
𝐴 and 𝐵, clearly, their shared blue edge can only be directed into one of them. Without

MIT Hardness Group 51:9

loss of generality, assume it is directed into 𝐴. Then, for 𝐵 to be satisfied, the red edges
of 𝐵 must point into itself. Note that this implies each degree 4 super-vertex must have
in-degree at least 2. Our assumption of the blue edge pointing into 𝐴 fixes the direction of
the red edges of 𝐵. It also forces that the red edges of 𝐴 must point outwards. Assume one
of 𝐴’s red edges points inwards; this super vertex has in-degree 3. This implies there must be
some other corresponding super vertex with an in-degree of exactly 1, which is unsatisfied.
Therefore, for any pair of and vertices, if we set the direction of their shared blue edge, the
direction of their red edges is forced, and those edges then force the direction of the edges
of other pairs of ands, and so forth. Therefore, a connected graph of and vertices with
matching edge weights has either no solutions or two solutions (we can reverse the edges of
one solution to get a second). Hence, for a graph of and vertices with matching edge weights
with 𝑘 connected components, the number of solutions is either 0 or 2𝑘 . ◀

Additionally, #CGS on a graph of just maj vertices is also in P, by a relatively simple
proof that such a graph is never satisfied.

▶ Theorem 13. #CGS with just maj is in FP.

Proof. maj vertices require an in-degree of 2 to be satisfied. However, a graph of only maj
vertices is 3-regular. Therefore, the average in-degree is exactly 1.5 so at least one vertex
must have in-degree less than two. Therefore, there are always 0 solutions. ◀

For the case of only ORs, an equivalent version of #3SAT was shown to be #P-complete [1].
We can view each OR vertex as a 3CNF clause and each edge as a variable that appears
once with each sign, i.e., for each variable 𝑥, there exists exactly one 𝑥 literal and exactly
one 𝑥 literal in the formula.3

▶ Theorem 14 ([1]). #CGS with just or is #P-complete even when restricted to planar
graphs.

4.2 Parsimonious Reduction from #1-in-3SAT to #CGS
First, we discuss a parsimonious reduction that uses and, or, maj, and red-blue conversion
vertex types. This reduction then yields ASP-hardness for CGS, which makes this formalism
a perfect tool to prove that for puzzles and games, finding a second solution is still hard. To
this end, we directly reuse the variable gadget of Figure 2. Figure 4 (left) depicts the clause
gadget for the clause 𝑥 ∨ ¬𝑦 ∨ 𝑧, which works via the three 1-in-3SAT cases. Both gadgets
are then used in the reduction below.

▶ Theorem 15 (ASP-hardness). The another-solution problem for CGS is ASP-hard, even if
restricted to the vertex types and, or, and maj.

Proof. The reduction consisting of variables gadgets (Figure 2) and clause gadgets (Figure 4)
is correct. By construction, the variable gadget for a variable 𝑥 in Figure 2, which is attached
at the bottom, prevents that there are both outgoing 𝑥 and ¬𝑥 edges (simultaneously).
The clause gadget for a clause 𝑐 shown in Figure 4 ensures that precisely one of the cases
𝑐1, 𝑐2, 𝑐3 holds. Indeed, each pairwise combination of the three cases is by construction
contradicting. However, in a solution every edge direction is pinned down as either the
case 𝑐𝑖 holds (outgoing blue edge, which requires all outgoing red edges towards 𝑐𝑖), or

3 This version of #3SAT is named #Pl-Rtw-Opp-3CNF.

ISAAC 2024

51:10 Easier Ways to Prove Counting Hard: A Dichotomy for Generalized #SAT

           

 

     

SAT

 

variable gadgets 

           

 

     

SAT

variable gadgets

Figure 4 Clause gadget (left), where for a 1-in-3SAT clause of the form 𝑐 = 𝑥 ∨ ¬𝑦 ∨ 𝑧 we
parsimoniously preserve solutions by expressing three cases (terms) 𝑐1 = (𝑥 ∧ (𝑦 ∧ ¬𝑧)), 𝑐2 =

(¬𝑦 ∧ (¬𝑥 ∧ ¬𝑧)), 𝑐3 = (𝑧 ∧ (¬𝑥 ∧ 𝑦)), where the first literal of each 𝑐𝑖 is the one from 𝑐 being true
(and the two remaining literals occur negated in 𝑐). Indeed these three cases allow us to preserve a
bijective relationship between 1-in-3SAT solutions and satisfying edge orientations. However, it is
crucial that the brackets are precisely as above, as this pins down edge orientations for maj vertex
types connected to 𝑐𝑖 . Roughly, in 𝑐𝑖 the literals of 𝑐 that are supposed to be false are connected by
a maj vertex. If we replace the maj vertices by and vertices (right), the orientation of the dark red
edges is free. While this does not preserve parsimony, for 𝑚 clauses the reduction is still 4𝑚-monious.

there is precisely one outgoing edge of the maj vertex. Indeed, by construction the pairwise
intersections of literals in 𝑐𝑖, 𝑐 𝑗 for 𝑖 ≠ 𝑗 are of size 1. Hence, if 𝑐 𝑗 does not hold then
exactly one of the two literals of 𝑐 𝑗 that are negated in 𝑐 are true. This literal therefore is a
predecessor of the maj vertex attached to 𝑐 𝑗 .

Since this reduction is parsimonious and 1-in-3SAT is ASP-hard [15], we conclude the
result. ◀

Observe from the variable gadget in Figure 2 that if for every variable 𝑥, the number
of occurrences of 𝑥 and ¬𝑥 are identical, red-blue conversion vertex types are not needed.
However, if we do not use maj vertex types, we need red-blue conversion in the clause
gadget, as depicted in Figure 4 (right). Further, this leaves 2 free edges per clause, resulting
in a reduction that is 22𝑚 = 4𝑚-monious.

Crossover Gadget for Planarity. Theorem 15 immediately works for planar graphs, since
we can construct a parsimonious crossover gadget as depicted in Figure 5 and eliminate all
crossings with a gadget.

▶ Corollary 16 (ASP-hardness for Planar CGS). The another-solution problem for CGS is
ASP-hard, even if restricted to planar graphs over the vertex types and, or, and maj.

Proof. Figure 5 depicts a planar red-red crossing gadget. Indeed we only need to eliminate
red-red crossings as there is no face completely built out of blue edges (see Figures 2 and 4).
Observe further that the gadget in Figure 5 is parsimonious, i.e., there is no free edge,
assuming the original north/south and east/west edges are fixed as well. Therefore the result
follows from Theorem 15. ◀

4.3 Constraint Graphs with Two Vertex Types
We now discuss what happens when our graph consists of exactly two vertex types. First,
we establish easiness for the decision problems. Then, we consider counting.

MIT Hardness Group 51:11

Figure 5 Parsimonious red-red crossover gadget that consists of a leaky main part (left) that is
leaky in the sense that it still allows the case where both north/south vertices are directed inward and
east/west are directed outward. In order to fix this, one can add a degree-4-vertex type simulation
gadget (right), as shown. This gadget simulates a degree-4-vertex requiring a total in-flow of weight
at least 2 if there shall be out-flow (as depicted).

4.3.1 Decision Easiness
For the decision problem CGS we obtain the following easiness results.

▶ Theorem 17. CGS with or and maj is in P.

Proof. We may reduce from CGS over or and maj vertices to the Max Flow problem, which
is known to be in P. Each or vertex will be replaced by sink of weight 1 and each maj will
be replaced by a sink of weight 2. At the center of each edge add a source of weight 1.

A flow which satisfies all the sinks can be used to assign orientations on the edges of the
constraint graph. The direction taken by edges out of the source is in the direction of the
edge in the CGS solution. Since each sink has a weight equal to the number of incoming
edges needed by the constraint node each node will be satisfied. A set of edge orientation
which satisfy each edge can be used to assign the flow of each edge in the same way. ◀

▶ Theorem 18. CGS for and and maj is in P.

Proof. We reduce to 2-SAT, which is in P [5]. Note that an and vertex with inputs labeled
𝑏, 𝑟1, 𝑟2, where 𝑏 is its blue input, and 𝑟1, 𝑟2 are its red inputs, can be represented by
the boolean equation (𝑏) ∨ (𝑟1 ∧ 𝑟2) = (𝑟1 ∨ 𝑏) ∧ (𝑟2 ∨ 𝑏), where a variable is true if its
corresponding edge is directed into the vertex. Additionally, a maj vertex with inputs 𝑎, 𝑏, 𝑐

can be represented by (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐) ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) ∧ (𝑏 ∨ 𝑐). So each
vertex can be represented with a set of 2-SAT clauses. Note that each variable represents an
edge that connects two vertices. Therefore, each variable will only appear in sets of clauses
corresponding to the two vertices it is incident to. We negate a set of these literals so that
only one may be true to simulate the edge only pointing in one direction. Therefore we can
write any constraint graph of and and maj vertices as a 2-SAT formula. ◀

4.3.2 #CGS Hardness
In this section we show that, if we have exactly two vertex types (and/or, and/maj, or
or/maj) and do not enforce matching edge weights, then #CGS is hard.

ISAAC 2024

51:12 Easier Ways to Prove Counting Hard: A Dichotomy for Generalized #SAT

▶ Theorem 19 (#P-Hardness for Two Vertex Types). #CGS is #P-hard if we do not enforce
matching edge weights and are restricted to and/or vertices, and/maj vertices, or or/maj
vertices, with at least one vertex of each of the two types.

Note that #P-hardness for the cases including and vertices follows already from Theorem 11.
Consequently, it suffices to establish the following lemma.

▶ Lemma 20. #CGS with or and maj is #P-complete, even when there exists a connected
component which contains both vertex types.

Proof. We reduce from counting the number of perfect matchings in a 3-regular bipartite
graph (𝑉 = {𝑂⋃

𝑀}, 𝐸), which has been shown to be #P-hard [2]. We will replace one
partition of vertices 𝑂 with or vertices and the other 𝑀 with maj.

The set of edges in the matching correspond to edges directed from a node in 𝑀 to a
node in 𝑂. Each 𝑂 node requires edge pointed in to satisfy its inflow. Each 𝑀 node can only
be used in a single matching as it requires 2 edges pointed in. ◀

4.3.3 #CGS Easiness
However, with matching edge weights #CGS is in FP if we have two vertex types, one of
which must be maj. This further strengthens Theorems 17 and 18.

▶ Theorem 21 (Counting is easy maj). #CGS can be solved in polynomial time if we enforce
matching edge weights and are restricted to two vertex types, one of which is maj (either
maj/or or maj/and).

Each pair of vertices has a separate proof, hence we prove this theorem via the following
lemmas.

▶ Lemma 22. #CGS can be done in polynomial time if we enforce matching edge weights
and are restricted to only maj and or vertices, and there is a nonzero number of maj vertices.

Proof. Since we enforce matching edge weights, or and maj vertices cannot connect to each
other as or vertices only take blue inputs, and maj vertices only take red inputs. Therefore,
any constraint graph with or and maj will have multiple components, ones made up of only
or vertices and ones made up of only maj vertices. By Theorem 13, we know each maj
component can never be satisfied; hence, the number of solutions to CGS with only maj and
or vertices with matching edge weights is always 0. ◀

Note that in Lemma 22 we require the number of maj vertices to be nonzero as otherwise
the graph has only or vertices, which we leave an open problem, as discussed in section 4.1.

▶ Lemma 23. #CGS can be done in polynomial time if we enforce matching edge weights
and are restricted to only maj and and vertices.

Proof. By enforcing matching edge weights, an argument similar to Theorem 12 applies, as
maj vertices have no blue inputs; therefore, each and vertex must pair with another and
through a blue edge. Note that the average in-degree in each of these and pairs is ≥ 1.5.
Further, each maj vertex requires in-degree > 2 to be satisfied. Therefore, if a constraint
graph contains and and maj vertices, the average in-degree must be > 1.5, or else it is
not satisfied. But this is impossible; if the graph is 3-regular, the average in-degree is 1.5.
Hence, if there is a nonzero number of maj vertices, the number of solutions is 0. Otherwise
Theorem 12 applies and else the number of solutions is either again 0 or 2𝑘 where 𝑘 is the
number of components of the graph. ◀

MIT Hardness Group 51:13

5 Conclusion and Future Work

In this work we presented a novel generalized #SAT framework as well as a dichotomy for
two variables. These results then serve as the basis for novel insights into the counting
complexity of graph orientation problems (constraint graph satisfiability), where we discuss
an almost-complete classification (see also Table 1). We expect that counting solutions to
constraint graph satisfiability (#CGS) is an interesting source to support the development
and characterization of challenging puzzles, riddles, and games. Indeed, given our insights we
expect many further insights into counting solutions and solving another-solution problems.

Based on our dichotomy result for 2-variable clauses, we conjecture that Generalized
#SAT is in FP if 𝑓 factors into a product of single-variable and 2-color functions, or it is a
multiple of an affine function, and is #P-complete in all other cases. Our understanding is
that for any given 𝑓 , it is probably not difficult to prove this via taking “slices” with fewer
variables, but we lack a systematic method to prove the dichotomy for all 𝑓 that does not
rely on ad-hoc casework.

References
1 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Holographic reduction, interpolation and hardness.

Computational Complexity, 21:573–604, 2012. doi:10.1007/S00037-012-0044-6.
2 Paul Dagum and Michael Luby. Approximating the permanent of graphs with large factors.

Theoretical Computer Science, 102(2):283–305, 1992. doi:10.1016/0304-3975(92)90234-7.
3 Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. CRC Press, 2009.
4 Takashi Horiyama, Takehiro Ito, Keita Nakatsuka, Akira Suzuki, and Ryuhei Uehara. Com-

plexity of tiling a polygon with trominoes or bars. Discrete & Computational Geometry,
58(3):686–704, October 2017. doi:10.1007/s00454-017-9884-9.

5 M. R. Krom. The decision problem for a class of first-order formulas in which all disjunctions are
binary. Mathematical Logic Quarterly, 13(1-2):15–20, 1967. doi:10.1002/malq.19670130104.

6 David Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11(2):329–
343, 1982. doi:10.1137/0211025.

7 MIT Hardness Group, Josh Brunner, Lily Chung, Erik D. Demaine, Della Hendrickson, and
Andy Tockman. ASP-completeness of Hamiltonicity in grid graphs, with applications to loop
puzzles. In Proceedings of the 12th International Conference on Fun with Algorithms, pages
30:1–30:20, 2024. doi:10.4230/LIPICS.FUN.2024.23.

8 J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM Journal on Computing, 12(4):777–788, 1983.
doi:10.1137/0212053.

9 Takahiro Seta. The complexities of puzzles, Cross Sum, and their Another Solu-
tion Problems (ASP). Senior thesis, University of Tokyo, 2002. URL: https://web.
archive.org/web/20221007013910/www-imai.is.s.u-tokyo.ac.jp/˜seta/paper/senior_
thesis/seniorthesis.pdf.

10 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991. doi:10.1137/0220053.

11 Salil P. Vadhan. The Complexity of Counting in Sparse, Regular, and Planar Graphs. SIAM
J. Comput., 31(2):398–427, 2001. doi:10.1137/S0097539797321602.

12 Leslie G. Valiant. A polynomial reduction from satisfiability to Hamiltonian circuits that
preserves the number of solutions. Manuscript, 1974.

13 Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201,
1979. doi:10.1016/0304-3975(79)90044-6.

ISAAC 2024

https://doi.org/10.1007/S00037-012-0044-6
https://doi.org/10.1016/0304-3975(92)90234-7
https://doi.org/10.1007/s00454-017-9884-9
https://doi.org/10.1002/malq.19670130104
https://doi.org/10.1137/0211025
https://doi.org/10.4230/LIPICS.FUN.2024.23
https://doi.org/10.1137/0212053
https://web.archive.org/web/20221007013910/www-imai.is.s.u-tokyo.ac.jp/~seta/paper/senior_thesis/seniorthesis.pdf
https://web.archive.org/web/20221007013910/www-imai.is.s.u-tokyo.ac.jp/~seta/paper/senior_thesis/seniorthesis.pdf
https://web.archive.org/web/20221007013910/www-imai.is.s.u-tokyo.ac.jp/~seta/paper/senior_thesis/seniorthesis.pdf
https://doi.org/10.1137/0220053
https://doi.org/10.1137/S0097539797321602
https://doi.org/10.1016/0304-3975(79)90044-6

51:14 Easier Ways to Prove Counting Hard: A Dichotomy for Generalized #SAT

14 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3):410–421, 1979. doi:10.1137/0208032.

15 Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another so-
lution and its application to puzzles. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, 86(5):1052–1060, 2003. URL: http:
//search.ieice.org/bin/summary.php?id=e86-a_5_1052.

https://doi.org/10.1137/0208032
http://search.ieice.org/bin/summary.php?id=e86-a_5_1052
http://search.ieice.org/bin/summary.php?id=e86-a_5_1052

Single Family Algebra Operation on BDDs and
ZDDs Leads to Exponential Blow-Up
Kengo Nakamura #

NTT Communication Science Laboratories, Kyoto, Japan

Masaaki Nishino #

NTT Communication Science Laboratories, Kyoto, Japan

Shuhei Denzumi #

NTT Communication Science Laboratories, Kyoto, Japan

Abstract
Binary decision diagram (BDD) and zero-suppressed binary decision diagram (ZDD) are data
structures to represent a family of (sub)sets compactly, and it can be used as succinct indexes
for a family of sets. To build BDD/ZDD representing a desired family of sets, there are many
transformation operations that take BDDs/ZDDs as inputs and output BDD/ZDD representing the
resultant family after performing operations such as set union and intersection. However, except for
some basic operations, the worst-time complexity of taking such transformation on BDDs/ZDDs
has not been extensively studied, and some contradictory statements about it have arisen in the
literature. In this paper, we show that many transformation operations on BDDs/ZDDs, including
all operations for families of sets that appear in Knuth’s book, cannot be performed in worst-case
polynomial time in the size of input BDDs/ZDDs. This refutes some of the folklore circulated in
past literature and resolves an open problem raised by Knuth. Our results are stronger in that such
blow-up of computational time occurs even when the ordering, which has a significant impact on the
efficiency of treating BDDs/ZDDs, is chosen arbitrarily.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases Binary decision diagrams, family of sets, family algebra

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.52

Related Version Full Version: https://arxiv.org/abs/2403.05074

Funding This work was generally supported by JSPS KAKENHI Grant Number JP20H05963 and
JST CREST Grant Number JPMJCR22D3.
Shuhei Denzumi: was supported by JSPS KAKENHI Grant Number JP23H04391.

Acknowledgements We thank Hiromi Emoto and Shou Ooba for pointing out the issues regarding
the complexity of performing family algebra operations on ZDDs. We also thank Shin-ichi Minato,
Jun Kawahara, and Norihito Yasuda for valuable discussions on this topic. I am grateful to the
reviewers of ISAAC for the comments to improve the manuscript.

1 Introduction

Combinatorial problems, i.e., the problems dealing with combinations of a set, frequently
arise in several situations such as operations research, network analysis, and LSI design.
In solving such problems, it is often convenient to consider the set of combinations, i.e.,
the family of (sub)sets. For example, many combinatorial optimization problems can be
formulated as selecting the best combination (subset) from the family of sets satisfying
constraints. However, the number of sets in a family is possibly exponential, precluding us
from explicitly retaining the family of sets.

© Kengo Nakamura, Masaaki Nishino, and Shuhei Denzumi;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 52; pp. 52:1–52:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kengo.nakamura@ntt.com
https://orcid.org/0000-0002-9615-3479
mailto:masaaki.nishino@ntt.com
https://orcid.org/0000-0001-6489-5446
mailto:shuhei.denzumi@ntt.com
https://orcid.org/0000-0002-0794-4157
https://doi.org/10.4230/LIPIcs.ISAAC.2024.52
https://arxiv.org/abs/2403.05074
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Single Family Algebra Operation on BDDs and ZDDs Leads to Exponential Blow-Up

To alleviate this issue, we can use binary decision diagram (BDD) [2] or zero-suppressed
binary decision diagram (ZDD) [14] that is a variant of BDD. BDD and ZDD are data
structures that compactly represent a Boolean function and a family of sets, respectively.
Since a Boolean function f can be regarded as a family of sets by considering the set of
assignments of input Boolean variables that evaluates f to true, BDD can also be regarded
as a succinct representation of a family of sets. Moreover, they support many queries about
the represented family of sets, e.g., counting the number of sets and performing linear
optimization over the family. Thus, BDD and ZDD can be used as succinct indexes for a
family of sets.

BDDs and ZDDs also support a number of transformation operations. For example, when
we have two BDDs representing two families of sets, we can construct a BDD representing the
set union of them without extracting each set from the input families. Using such operations,
we can construct a BDD or a ZDD representing the desired family of sets. By collecting
such transformation operations, Minato [15] considered an algebraic system called unate cube
set algebra, whose element is a family of sets. After that, many operations were introduced,
and now the system is widely called family algebra, whose name was given by Knuth [13].
With the algorithms performing operations on BDDs and ZDDs, every operation in the
family algebra provides a useful way to construct a BDD or a ZDD representing the desired
family of sets in many applications. Many of these operations have been implemented in
standard BDD and ZDD manipulation packages [8, 18], and they are used in a wide range of
applications, including formal verification of circuits [7, 10], analyses of power distribution
networks [9, 19], and data mining [16].

However, the complexity of performing family algebra operations on BDDs and ZDDs has
not been well studied, except for basic set operations. This is because some operations require
complicated recursion procedures that make complexity analysis difficult. In particular,
revealing worst-case time complexity is important to us. If the worst-case time complexity is
large, it takes an unexpectedly long time to carry out even a single operation for certain
kinds of input. If so, we should pay attention to the possibility of such input when we use
BDDs and ZDDs as a way to implement the manipulation of families of sets. Therefore, we
investigated the worst-case time complexity of executing a single family algebra operation on
BDDs and ZDDs. Since it is known that, as described later, the sizes of a BDD and a ZDD
representing the same family of sets differ in only a linear factor, this paper mainly focused
on the complexity of ZDDs. After that, we mention the complexity on BDDs.

1.1 Related Work
Since the invention of ZDD [14], many family algebra operations have been proposed. Table 1
lists basic operations. As related work, we first describe the origins of these operations.

The first four operations in Table 1 are the most fundamental set operations set described
by Minato [14]. The join, quotient, and remainder operations appeared in Minato’s next
paper [15], where the join operation is called “product” because a join can be considered
to be the multiplication of two families when we view the union operation as an addition
operation. These operations are peculiar to the families of sets and also fundamental in
defining other family algebra operations. Later, the disjoint join and joint join operations
were proposed by Kawahara et al. [12] through an extension of the join; their usage is to
implicitly enumerate all of the subgraphs having a particular shape.

Restrict and permit operations were originally proposed by Coudert et al. [5], where they
were called SupSet and SubSet and used for solving set cover problems or performing logic
circuit minimization. The names “restrict” and “permit” come from a study by Okuno et

K. Nakamura, M. Nishino, and S. Denzumi 52:3

Table 1 List of operations on family algebra.

Operation Definition Is polytime in DD sizes?
Union F ∪ G {S | S ∈ F ∨ S ∈ G} Yes [14]
Intersection F ∩ G {S | S ∈ F ∧ S ∈ G} Yes [14]
Difference F \ G {S | S ∈ F ∧ S /∈ G} Yes [14]
Symmetric difference F ⊕ G (F \ G) ∪ (G \ F) Yes [14]
Join F ⊔ G {F ∪ G | F ∈ F , G ∈ G} No (Theorem 7)∗

Disjoint join F ▷̇◁ G {F ∪ G | F ∈ F , G ∈ G, F ∩ G = ∅} No (Theorem 7)
Joint join F ▷̂◁ G {F ∪ G | F ∈ F , G ∈ G, F ∩ G ̸= ∅} No (Theorem 7)
Meet F ⊓ G {F ∩ G | F ∈ F , G ∈ G} No (Theorem 7)∗

Delta F ⊞G {F ⊕ G | F ∈ F , G ∈ G} No (Theorem 7)∗

Quotient F / G {S | ∀G ∈ G : S ∪ G ∈ F ∧ S ∩ G = ∅} No (Theorem 9)
Remainder F % G F \ (G ⊔ (F / G)) No (Theorem 9)
Restrict F △ G {F ∈ F | ∃G ∈ G : G ⊆ F } No (Theorem 10)∗

Permit F ⊘ G {F ∈ F | ∃G ∈ G : F ⊆ G} No (Theorem 10)
Nonsuperset F ↘ G {F ∈ F | ∀G ∈ G : G ⊈ F } No (Theorem 10)
Nonsubset F ↗ G {F ∈ F | ∀G ∈ G : F ⊈ G} No (Theorem 10)

Maximal F↑ {F ∈ F | ∀F ′ ∈ F : F ⊆ F ′ ⇒ F = F ′} No (Theorem 11)
Minimal F↓ {F ∈ F | ∀F ′ ∈ F : F ′ ⊆ F ⇒ F = F ′} No (Theorem 11)
Minimal hitting set F♯ {S | ∀F ∈ F : S ∩ F ̸= ∅}↓ No (Theorem 12)
Closure F∩ {

⋂
S∈F′ S | F ′ ⊆ F} No (Theorem 12)

∗Previous studies [17, 13] stated that they can be performed in worst-case polynomial time.

al. [17]. Later, nonsuperset, nonsubset, maximal, and minimal operations were introduced
by Coudert [4] to solve various optimization problems on graphs. Furthermore, meet,
delta, minimal hitting set, and closure operations were introduced by Knuth [13, §7.1.4
Ex.203,236,243] to solve various graph problems. Table 1 contains all of the transformation
operations for families of sets that appeared in Knuth’s book [13, §7.1.4 Ex. 203,204,236,243].

Compared to the operations themselves, the time complexity of performing them on ZDDs
has not been well investigated. Minato [14] proved that the first four operations in Table 1
can be performed in polynomial time with respect to the size of input ZDDs. However, the
complexity of a join operation, the most basic one among the rest, has not been fully clarified.
Knuth [13, §7.1.4 Ex. 206] claimed that join, as well as meet and delta, can be performed
in worst-case polynomial time, but this claim lacks proof. Conversely, Kawahara et al. [12]
suggested that join, as well as disjoint join and joint join, take worst-case exponential time,
again without proof. In addition to those reports, Okuno et al. [17] claimed that restrict
can be performed in polynomial time, but they used the unproven proposition that join can
be performed in polynomial time. Furthermore, Knuth [13, §7.1.4 Ex. 206] stated that the
worst-case complexity of the quotient operation was an open problem.

1.2 Our Contribution

In this paper, we prove that, for the operations in Table 1 aside from the first four operations,
there exist polynomial-sized ZDDs such that after taking the operation, the ZDD size becomes
exponential. For example, for the join operation, we prove that there exist sequences of
families of sets {Fm} and {Gm} such that the ZDD sizes representing Fm and Gm are
polynomial in m, while the ZDD size representing Fm ⊔ Gm is exponential in m. This result
implies that these operations cannot be performed in worst-case polynomial time with respect
to the size of input ZDDs. Thus, we refute the statement raised by Knuth [13] and Okuno et
al. [17] that join, meet, delta, and restrict can be performed in worst-case polynomial time.

ISAAC 2024

52:4 Single Family Algebra Operation on BDDs and ZDDs Leads to Exponential Blow-Up

We also resolve the worst-case complexity of the quotient operation. Moreover, we also prove
that the operations in Table 1, except for the first four operations, cannot be performed in
polynomial time even when families are represented by BDDs. Since Table 1 contains all the
family algebra operations raised by Knuth [13], this paper concludes what kind of family
algebra operations can be performed in polynomial time on BDDs and ZDDs.

Our result is stronger in that the resultant BDD/ZDD’s size remains exponential for any
order of elements. BDD/ZDD structures follow a total order of the elements in the base set,
and it is known that this element order has a significant impact on the BDD/ZDD size. For
example, it is known that a multiplexer function can be represented in linear-sized BDD by
managing the ordering while its size becomes exponential when the ordering is terrible [13,
p.235]. However, we also prove that for the sequences used in proving the above, the resultant
BDD/ZDD’s size is exponential in m regardless of the order of elements. This suggests that
we cannot shrink the BDD/ZDD size after taking an operation by managing the element
order. Some famous BDD manipulation packages such as CUDD [18] implemented dynamic
reordering, the reordering of elements after executing operations to shrink the BDD/ZDD
size and thus increase the efficiency of BDD/ZDD manipulations. Nevertheless, our results
suggest that the worst-case complexity of carrying out operations cannot be polynomial,
even if we employ dynamic reordering.

Note that this follows the research line of Bollig [1] as follows. Yoshinaka et al. [20]
refuted Bryant’s conjecture, which is about the complexity of performing operations on BDDs,
but their counterexample was somewhat weak in that the order of elements they used was
unfavorable for BDD representations. Bollig [1] later resolved this issue by proposing simpler
counterexamples. Similar to this, our results imply that the exponential blow-up in taking
an operation on BDDs/ZDDs occurs not only when the order of elements is unfavorable but
also when it is good for BDD/ZDD representations.

From the viewpoint of applications, BDDs/ZDDs are usually built by applying multiple
family algebra operations in combination with some direct construction methods such as
Simpath [13] and frontier-based search [11], which are fixed-parameter tractable algorithms
with pathwidth. However, the number of required operations stays constant in many
applications. If every operation can be performed in polynomial time, we can enjoy the
polynomial time complexity in BDD/ZDD sizes even for these applications. However, our
results suggest this is not the case except for the first four operations. In addition, although
we rely on specific input examples to prove non-polynomial lower bounds, we later discuss
that such blow-up may occur for other input; the detailed discussions are in Section 3.5.
Therefore, our theoretical results have practical importance.

2 Preliminaries

2.1 Zero-suppressed Binary Decision Diagram
A zero-suppressed binary decision diagram (ZDD) [14] is a rooted directed acyclic graph
(DAG)-shaped data structure for representing a family of sets. First, we describe the structure
of ZDD. ZDD Z consists of node set N and arc set A, where the node set contains terminal
nodes ⊤, ⊥ and other internal nodes. Terminal nodes have no outgoing arcs, while every
internal node has two outgoing arcs called lo-arc and hi-arc. The nodes pointed by the lo-arc
and the hi-arc outgoing from a node n are called lo-child lo(n) and hi-child hi(n) of n. Every
internal node n is associated with an element called label that is denoted by lb(n). ZDDs
must follow the ordered property: Given a total order of elements <, the label of the parent

K. Nakamura, M. Nishino, and S. Denzumi 52:5

(a) x1

x2 x2

x3 x3

x4 x4

x5

⊥ >

(b)
x x

y
z

→
x

y
z

(c)
x

y

⊥

→ y

⊥

Figure 1 (a) Example of a ZDD representing the family of subsets of {x1, . . . , x5} such that the
cardinality is less than 3. (b) Schematic of node sharing. (c) Schematic of zero suppression.

node must precede that of the child node, i.e., lb(n) < lb(lo(n)) and lb(n) < lb(hi(n)) must
hold for every internal node n. Note that the child node is always allowed to be a terminal
node. Finally, the size of a ZDD is defined by its number of nodes.

Next, we describe the semantics of ZDD.

▶ Definition 1. For ZDD node n, the family Fn of sets represented by n is defined as
follows. (i) If n = ⊤, then Fn = {∅}. (ii) If n = ⊥, then Fn = ∅. (iii) Otherwise,
Fn = Flo(n) ∪ ({{lb(n)}} ⊔ Fhi(n)). Furthermore, the family of sets represented by Z is that
represented by root node r, where the root node is the only node having no incoming arcs.

Note that {∅} and ∅ are different families; the former is the family consisting of only an
empty set, while the latter is the family containing no set. For example, Figure 1a is the
ZDD representing the family of subsets of {x1, . . . , x5} whose cardinality is less than 3. Solid
and dashed lines represent hi- and lo-arcs, and the element inside a circle indicates its label.

Without restrictions on the structure, there exist many ZDDs representing the same
family of sets. However, by imposing restrictions, we can obtain a canonical ZDD, i.e., an
identical ZDD structure, for every family of subsets. This canonical form is called reduced
ZDD, and a reduced ZDD can be obtained from any ZDD by repetitively applying the
following two rules. The first rule is node sharing: If there exist two nodes n and m whose
lo-child, hi-child, and label are equal, we merge these two nodes into one (Figure 1b). The
second rule is zero suppression: If there exists a node n whose hi-child is ⊥, we eliminate n
and let all of the arcs pointed to n also point to hi(n) (Figure 1c). In the reduced ZDD, no
node can be eliminated by applying the above two rules. Since applying these rules strictly
decreases the size of ZDD, i.e., the number of nodes, we can deduce that the reduced ZDD
of a family F is the smallest ZDD representing F given the total order < of elements. The
size of the reduced ZDD of the family F , given the total order <, is denoted by Z<(F). If it
is clear from the context, we omit < and simply write it as Z(F).

We briefly compare ZDDs with BDDs. BDD [2] has the same structure (syntax) as ZDD,
although its semantics is slightly different. BDDs also follow the ordered property and have
the smallest canonical form called reduced BDD. Given the total order < of elements, the size
of the reduced BDD of the family F is denoted by B<(F). The following is a famous result.

▶ Lemma 2 ([13, Eq. (126)]). For any family F of subsets of a set of n elements and any
order < of elements, B<(F) = O(nZ<(F)) and Z<(F) = O(nB<(F)).

2.2 Family Algebra Operations on ZDDs
In this section, we explain how the family algebra operations are performed using ZDDs and
point out what makes the difference between the basic set operations (union, intersection,
difference, and symmetric difference) and the other operations.

ISAAC 2024

52:6 Single Family Algebra Operation on BDDs and ZDDs Leads to Exponential Blow-Up

As explained in Section 2.1, ZDD represents a family of sets in a recursive manner. Let us
consider the situation in which there are two ZDDs whose root nodes are n and m and lb(n) =
lb(m) = x. Then, the family of sets represented by them are Fn = Flo(n) ∪ ({{x}} ⊔ Fhi(n))
and Fm = Flo(m) ∪ ({{x}} ⊔ Fhi(m)). The union of them is

Fn ∪ Fm = [Flo(n) ∪ Flo(m)] ∪ [{{x}} ⊔ (Fhi(n) ∪ Fhi(m))]. (1)

This means that the ZDD representing Fn ∪ Fm can be described as follows: The root node’s
label is x, its lo-child represents Flo(n) ∪ Flo(m), and its hi-child represents Fhi(n) ∪ Fhi(m). If
lb(n) < lb(m), we have a simpler recursion:

Fn ∪ Fm = [Flo(n) ∪ Fm] ∪ [{{lb(n)}} ⊔ (Fhi(n) ∪ Fm)]. (2)

The case of lb(m) < lb(n) can be handled in the same way. By recursively expanding Fn∪Fm by
(1) and (2), we eventually reach terminal nodes where the union is trivial, e.g., F⊥ ∪F⊤ = {∅}.
Therefore, by caching the resultant ZDD nodes of Fn′ ∪ Fm′ , where n′ and m′ are the child
nodes of n and m, respectively, we can efficiently compute the ZDD representing Fn ∪ Fm.
With the cache, one can show that we can build a ZDD representing the union of two ZDDs
in a time proportional to the product of input ZDD sizes. The intersection, difference, and
symmetric difference operations can be handled in almost the same way.

The other operations can also be performed in a recursive manner. However, the
recursion becomes more complicated. Let us consider, for example, the join operation. When
lb(n) = lb(m) = x, the join becomes

Fn ⊔ Fm =[Flo(n) ∪ ({{x}} ⊔ Fhi(n))] ⊔ [Flo(m) ∪ ({{x}} ⊔ Fhi(m))]
=[Flo(n) ⊔ Flo(m)] ∪ [Flo(n) ⊔ ({{x}} ⊔ Fhi(m))]∪

[({{x}} ⊔ Fhi(n)) ⊔ Flo(m)] ∪ [({{x}} ⊔ Fhi(n)) ⊔ ({{x}} ⊔ Fhi(m))]
=[Flo(n) ⊔ Flo(m)] ∪ [{{x}} ⊔ (Flo(n) ⊔ Fhi(m))]∪

[{{x}} ⊔ (Fhi(n) ⊔ Flo(m))] ∪ [{{x}} ⊔ (Fhi(n) ⊔ Fhi(m))]
=[Flo(n)⊔Flo(m)]∪[{{x}} ⊔ ((Flo(n)⊔Fhi(m)) ∪ (Fhi(n)⊔Flo(m)) ∪ (Fhi(n)⊔Fhi(m)))].

(3)

Here, the second equality holds because join distributes over the union. This means that we
should build a ZDD where the root node’s lo-child represents Flo(n) ⊔ Flo(m) and its hi-child
represents (Flo(n) ⊔ Fhi(m)) ∪ (Fhi(n) ⊔ Flo(m)) ∪ (Fhi(n) ⊔ Fhi(m)). Thus, in the recursion, we
should also compute the union ∪ of families, which also needs a recursion like that above.
Another example is the restrict operation. Restrict can be computed as

Fn △ Fm =[Flo(n) △ Flo(m)] ∪ [{{x}} ⊔ (Fhi(n) △ (Flo(m) ∪ Fhi(m)))]. (4)

Thus, it is also necessary to compute the union of families as well as restrict.
Compared to the simple recursion for the computation of basic set operations, the

complexity of such “double recursion” procedures are difficult to analyze.

3 Blow-Up Operations

3.1 High-Level Idea
As described in Section 2.2, the ZDD size after performing union or intersection can be
bounded by the product of the sizes of operand ZDDs, i.e., Z(F ∪ G) = O(Z(F)Z(G)) and
Z(F ∩ G) = O(Z(F)Z(G)). Thus, the ZDD of the union or intersection of two ZDDs remains

K. Nakamura, M. Nishino, and S. Denzumi 52:7

polynomial-sized when the operand ZDDs have polynomial size. However, this does not hold
for a non-constant number of ZDDs: even if Z(Fk) = O(poly(m)) for k = 1, . . . , m, both
Z(
⋃m

k=1 Fk) and Z(
⋂m

k=1 Fk) may become exponential in m.
We use such families to constitute examples of blow-up. More specifically, for each

operation, we constitute an example such that performing this operation incurs the union
or intersection of multiple families. Since we prove that the reduced ZDD representing the
result of an operation will become exponential in size, we can confirm that any algorithm for
computing the resultant ZDD incurs worst-case non-polynomial complexity. Combined with
concrete instances, we prove that the worst-case complexity of family algebra operations is
lower-bounded by an exponential factor.

We use the specific families of sets, hidden weighted bit function and permutation function,
as explained below. Note that they are called “function” because they are originally defined
as a Boolean function, but we here describe them as equivalent families of sets.

▶ Definition 3. A hidden weighted bit function Hm is a family of sets defined as {S ⊆
{y1, . . . , ym} | y|S| ∈ S}.

The hidden weighted bit function Hm can be represented as a union of elementary families.
Define Em,k := {S ⊆ {y1, . . . , ym} | |S| = k, yk ∈ S}, i.e., Em,k consists of the subsets of
{y1, . . . , ym} where the cardinality is k and yk is contained. Then, Hm =

⋃m
k=1 Em,k. It

can be easily verified that the size of the ZDD representing Z(Em,k) is O(m2) for any order
of elements (see Section 3.4). However, it is known that the ZDD representing Hm must
become exponential in size.

▶ Theorem 4 ([3]). For any order < of elements, B<(Hm) = Ω(2m/5). Thus, by Lemma 2,
Z<(Hm) = Ω(2m/5/m).

▶ Definition 5. A permutation function Pm is a family of subsets of {y1, . . . , ym2} such that
(i) there is exactly one element from ym(i−1)+1, ym(i−1)+2, . . . , ym(i−1)+m for i = 1, . . . , m, and
(ii) there is exactly one element from yj , ym+j , . . . , ym(m−1)+j for j = 1, . . . , m.

The permutation function Pm is equivalent to the set of permutations: For S ⊆ {y1, . . . , ym2},
we associate a binary m × m matrix where the (i, j)-element is 1 if and only if ym(i−1)+j ∈ S.
Then, S ∈ Pm if and only if the associated matrix is a permutation matrix.

For k = 1, . . . , m, let Qm,k be the family of subsets of {y1, . . . , ym2} such that there is
exactly one element from ym(k−1)+1, ym(k−1)+2, . . . , ym(k−1)+m, and let Qm,m+k be those such
that there is exactly one element from yk, ym+k, . . . , ym(m−1)+k. Then, Pm =

⋂2m
k=1 Qm,k.

Here, Z(Qm,k) = O(m2) for any order of elements, as proved in Section 3.4. However, it is
again proved that the ZDD representing Pm must become exponential in size.

▶ Theorem 6 ([13, Theorem K]). For any order < of elements, B<(Pm) = Ω(m2m). Thus,
by Lemma 2, Z<(Pm) = Ω(2m/m).

We first show the exponential blow-up cases for a specific order of elements in Section 3.2.
However, we see that the size of ZDD representing the hidden weighted bit function or
the permutation function is exponential regardless of the order of elements. Therefore, in
Section 3.3, we prove that for each family generated by the operation in Section 3.2, the
ZDD size representing it remains exponential regardless of the order of elements. This
means that for each operation, there exists an instance in which the input ZDD size can be
polynomial by managing the element order but the output ZDD size must be exponential for
any order. Section 3.4 completes the proof by showing that some families can be represented
by polynomial-sized ZDDs. Finally, Section 3.5 gives some discussions on the obtained result.

ISAAC 2024

52:8 Single Family Algebra Operation on BDDs and ZDDs Leads to Exponential Blow-Up

Fm

x1

x2

· · ·
xm

Em,1 Em,2 · · · Em,m

t

Gm
x1

x2

···

xm

>
=

x1

x2

···

xm

⋃
k Em,k = Hm

Fm

x1

x2

· · ·
xm

E ′m,1 E ′m,2 · · · E ′m,m

/

Gm
x1

x2

· · ·
xm

>
= ⋂

k E ′m,k = H′
m

Figure 2 Example of blow-up for join (left) and quotient (right) operations. Blue triangles mean
that the ZDD size representing this family is polynomial in m, while red triangle means that its size
is exponential in m. Arcs going to ⊥ terminal are omitted.

3.2 Proofs with Specific Element Order
3.2.1 Join, Disjoint Join, Joint Join, Meet, and Delta
For these operations, we constitute a pair of families that incur the union of O(m) subfamilies.
Combined with Em,k, the result after taking an operation contains

⋃
k Em,k = Hm, which is

the hidden weighted bit function for which the ZDD size is exponential in m.

▶ Theorem 7. Let ⋄ be a binary operator chosen from join (⊔), disjoint join (▷̇◁), joint join
(▷̂◁), meet (⊓), and delta (⊞). Then, there exists a sequence of families Fm and Gm such that
(i) Fm and Gm are families of subsets of a set of O(m) elements, (ii) Z(Fm)+Z(Gm) = O(m3),
and (iii) Z(Fm ⋄ Gm) = Ω(2m/5/m).

Proof. Let us consider the families of subsets of X ∪ Y , where X := {x1, . . . , xm} and
Y := {y1, . . . , ym}. We determine the order of elements as x1, . . . , xm, y1, . . . , ym. We define
Fm as

Fm :=
m⋃

k=1
({{xk}} ⊔ Em,k).

Since Z(Em,k) = O(m2) and the ZDD representing Fm becomes the left one of Figure 2
according to this order, Z(Fm) = O(m3).

For the join operation, we let Gm := {X}, where Z(Gm) = O(m). Then,

Fm ⊔ Gm = (
⋃m

k=1({{xk}} ⊔ Em,k)) ⊔ {X} =
⋃m

k=1(({{xk}} ⊔ Em,k) ⊔ {X})
=
⋃m

k=1({X} ⊔ Em,k) = {X} ⊔ (
⋃m

k=1 Em,k) = {X} ⊔ Hm,

where the second and fourth equalities hold because join distributes over union and the third
equality holds because {{xk}} ⊔ {X} = {X}. Thus, the ZDD representing Fm ⊔ Gm becomes
the right one of Figure 2, meaning that the ZDD size is at least Z(Hm) = Ω(2m/5/m). Since
every subset in Fm has at least one element from X, the result of joint join Fm ▷̂◁ Gm also
becomes {X} ⊔ Hm, leading to an exponential-sized ZDD.

For the disjoint join operation, we let Gm :=
⋃m

k=1{X \{xk}}, where again Z(Gm) = O(m).
Then, every subset in {{xk}} ⊔ Em,k has intersection with all of the subsets in Gm, except
for X \ {xk}. Then,

Fm ▷̇◁ Gm =
⋃m

k=1(({xk} ∪ (X \ {xk})) ⊔ Em,k) = {X} ⊔ (
⋃m

k=1 Em,k) = {X} ⊔ Hm,

meaning that Z(Fm ▷̇◁ Gm) = Ω(2m/5/m).

K. Nakamura, M. Nishino, and S. Denzumi 52:9

For the meet operation, we let Gm := {Y }, where Z(Gm) = O(m). Similar to join, we
have Fm ⊓ Gm = Hm, meaning that Z(Fm ⊓ Gm) = Ω(2m/5/m).

For the delta operation, we let Gm = 2X . Since {{xk}}⊞ 2X = 2X for any k, we have

Fm ⊞Gm =
⋃m

k=1(({{xk}}⊞ 2X) ⊔ Em,k) = 2X ⊔ (
⋃m

k=1 Em,k) = 2X ⊔ Hm.

The ZDD size of Fm ⊞Gm is at least Z(Hm) = Ω(2m/5/m). ◀

3.2.2 Quotient and Remainder
For the quotient operation, we constitute a pair of families such that performing an operation
incurs the intersection of O(m) subfamilies. Here, let E ′

m,k := 2Y \ Em,k be the complement
of Em,k regarding the family of subsets of Y . By De Morgan’s laws, we have

⋂
k E ′

m,k =
2Y \ (

⋃
k Em,k) = 2Y \ Hm =: H′

m. The ZDD size representing H′
m can be lower bounded by

the following lemma.

▶ Lemma 8. Suppose that two families F , G of subsets of the same set satisfy Z(F) =
O(f(m)), Z(G) = Ω(g(m)), and F ⊇ G. Then, Z(F \ G) = Ω(g(m)/f(m)).

Proof of Lemma 8. F ⊇ G implies F \ (F \ G) = G. Since the ZDD size after taking
the difference can be bounded by the product of the sizes of operand ZDDs, we have
Z(G) = O(Z(F)Z(F \ G)). Suppose Z(F \ G) = o(g(m)/f(m)). Then, Z(G) = o(f(m) ·
(g(m)/f(m))) = o(g(m)), refuting the assumption Z(G) = Ω(g(m)). Therefore, Z(F \ G) =
Ω(g(m)/f(m)). ◀

Since Z(2Y) = O(m) and Z(Hm) = Ω(2m/5/m), we have Z(H′
m) = Ω(2m/5/m2).

▶ Theorem 9. Let ⋄ be a binary operator chosen from quotient (/) and remainder (%).
Then, there exists a sequence of families Fm and Gm such that (i) Fm and Gm are families
of subsets of a set of O(m) elements, (ii) Z(Fm) + Z(Gm) = O(m3), and (iii) Z(Fm ⋄ Gm) =
Ω(2m/5/poly(m)).

Proof. We again consider the families of subsets of X ∪ Y , where X := {x1, . . . , xm} and
Y := {y1, . . . , ym}. We use the same order of elements: x1, . . . , xm, y1, . . . , ym. We define
Fm as

Fm :=
m⋃

k=1
({{xk}} ⊔ E ′

m,k).

We have Z(E ′
m,k) = O(m2) as proved in Section 3.4, and thus Z(Fm) = O(m3). We also

define Gm := {{x1}, . . . , {xm}}, where Z(Gm) = O(m).
Let us consider Fm / Gm. By definition, Y ′ ∈ Fm / Gm if and only if Y ′ ⊆ Y and

{xk} ∪ Y ′ ∈ Fm for k = 1, . . . , m. From the definition of Fm, it is equivalent to Y ′ ∈⋂m
k=1 E ′

m,k. Thus, Fm / Gm =
⋂m

k=1 E ′
m,k = H′

m. This means Z(Fm / Gm) = Ω(2m/5/m2).
The ZDDs involved are depicted in Figure 2.

For the remainder operation, we prepared the same families. Since Gm ⊔ (Fm / Gm) =
{{x1}, . . . , {xm}} ⊔ H′

m, Z(Gm ⊔ (Fm / Gm)) = Ω(2m/5/m2). Also, since S ∈ Fm / Gm if
and only if S ∪ G ∈ Fm for all G ∈ Gm, all of the subsets in Gm ⊔ (Fm / Gm) are also
contained in Fm. In other words, Fm ⊇ Gm ⊔ (Fm / Gm). Therefore, by using Lemma 8,
Z(Fm % Gm) = Ω((2m/5/m2)/m3) = Ω(2m/5/m5). ◀

ISAAC 2024

52:10 Single Family Algebra Operation on BDDs and ZDDs Leads to Exponential Blow-Up

Fm

Cm
�

Gm
x1

x2

· · ·
x2m

Tm,1 Tm,2 · · ·Tm,2m

= ⋃
k Tm,k = Cm \ Pm

Fm

w
Gm
x1

x2

· · ·
x2m

Cm Tm,1 Tm,2 · · ·Tm,2m

↑

=

w

x1

x2

· · ·
x2m

Cm ↗ Gm = Pm Tm,1 Tm,2 · · ·Tm,2m

Figure 3 Example of blow-up for permit (left) and maximal (right) operations.

3.2.3 Restrict, Permit, Nonsuperset, and Nonsubset
These operations include inclusion relations of subsets in their definitions, which makes it
difficult to generate a hidden weighted bit function as a result of the operation. This is due
to the fact that Hm includes the universal set Y as well as a singleton {y1}. For example, if
F is the family of subsets of Y and the universal set Y is included in the result of F ⊘ G, all
of the subsets in F must be included in F ⊘ G due to the definition of the permit operation.

Instead, we use the permutation function. Because every set in Pm has cardinality m, the
above issue can be alleviated. More specifically, we prepared the complement of the families:

Cm := {S ⊆ {y1, . . . , ym2} | |S| = m}, Tm,k := Cm \ Qm,k(= Cm ∩ (2Y \ Qm,k)).

Here, Cm is the family of subsets with cardinality m, and thus Tm,k also contains only the
subsets with cardinality m. Moreover, by De Morgan’s laws,

2m⋃
k=1

Tm,k = Cm ∩

(2m⋃
k=1

(2Y \ Qm,k)
)

= Cm ∩

(
2Y \

(2m⋂
k=1

Qm,k

))
= Cm \ Pm.

We use these families Tm,k to prove the following.

▶ Theorem 10. Let ⋄ be a binary operator chosen from restrict (△), permit (⊘), nonsuperset
(↘), and nonsubset (↗). Then, there exists a sequence of families Fm and Gm such that (i)
Fm and Gm are families of subsets of a set of O(m2) elements, (ii) Z(Fm)+Z(Gm) = O(m4),
and (iii) Z(Fm ⋄ Gm) = Ω(2m/poly(m)).

Proof. Let us consider the families of subsets of X ∪ Y , where X := {x1, . . . , x2m} and
Y := {y1, . . . , ym2}. The order of elements is x1, . . . , x2m followed by y1, . . . , ym2 .

We first consider the permit operation. We define Fm := Cm and

Gm :=
2m⋃
k=1

({{xk}} ⊔ Tm,k).

As proved in Section 3.4, Z(Cm) = O(m3) and Z(Tm,k) = O(m3). Thus, Z(Fm) = O(m3)
and Z(Gm) = O(m4). Any set in Fm = Cm consists of m elements chosen from y1, . . . , ym2 ,
and any set in Gm consists of m elements from y1, . . . , ym2 plus one element from x1, . . . , x2m.
Thus, set S ∈ Fm is a subset of some set in Gm if and only if {xk} ∪ S ∈ Gm for some
k. In other words, S ∈ Fm ⊘ Gm if and only if S is included in Tm,k for some k. Since
Cm ⊃ Tm,k for any k by definition, this means Fm ⊘ Gm =

⋃2m
k=1 Tm,k = Cm \ Pm. Since

Z(Cm) = O(m3) and Z(Pm) = Ω(2m/m), we have Z(Fm ⊘ Gm) = Ω(2m/m4) by Lemma 8.
The ZDDs involved are depicted in Figure 3.

K. Nakamura, M. Nishino, and S. Denzumi 52:11

The nonsubset operation can be treated with the same families. Since Fm ↗ Gm =
Fm \ (Fm ⊘ Gm) by definition, we have Fm ↗ Gm = Cm \ (Cm \ Pm) = Pm, where the last
equality holds due to Cm ⊃ Pm. Thus, Z(Fm ↗ Gm) = Ω(2m/m).

The restrict and nonsuperset operations can be handled by nearly the same families. We
define the same Gm and let Fm := {X}⊔Cm. Similar to the proof of the permit operation, set
X ∪S ∈ Fm (S ⊆ Y) is a superset of some sets in Gm if and only if {xk}∪S ∈ Gm for some k.
This means Fm △Gm = {X}⊔(

⋃2m
k=1 Tm,k) = {X}⊔(Cm \Pm), whose ZDD size is Ω(2m/m4).

For the nonsuperset operation, we have Fm ↘ Gm = Fm \ (Fm △ Gm) = {X} ⊔ Pm, yielding
Z(Fm ↘ Gm) = Ω(2m/m). ◀

3.2.4 Maximal and Minimal
For these operations, we use the close relationship with the nonsuperset and nonsubset
operations. We prepare a family having Fm and Gm appearing in the proof of Theorem 10
as a subfamily.

▶ Theorem 11. Let ⋄ be a unary operator chosen from maximal (↑) and minimal (↓). Then,
there exists a sequence of families Fm such that (i) Fm is a family of subsets of a set of
O(m2) elements, (ii) Z(Fm) = O(m4), and (iii) Z(F⋄

m) = Ω(2m/poly(m)).

Proof. Let us consider the family of subsets of {w} ∪ X ∪ Y , where X := {x1, . . . , x2m} and
Y := {y1, . . . , ym2}. The order of elements is w, x1, . . . , x2m followed by y1, . . . , ym2 .

We first consider the maximal operation. We define Fm as

Fm := Cm ∪ [{{w}} ⊔ Gm] , where Gm :=
2m⋃
k=1

({{xk}} ⊔ Tm,k).

Here, we observe that this Gm is the same as that appearing in the proof of Theorem 10.
The ZDD size is bounded as Z(Fm) = O(Z(Cm) + Z(Gm)) = O(m4). Every set in Cm has
m elements and every set in {{w}} ⊔ Gm has m + 2 elements. Thus, every set in the latter
family is maximal, while a set in the former family is maximal if and only if it is not a subset
of any set included in the latter family. Therefore, we have

F↑
m = [Cm ↗({{w}} ⊔ Gm)]∪[{{w}} ⊔ Gm] = [Cm ↗ Gm]∪[{{w}} ⊔ Gm] = Pm ∪ [{{w}} ⊔ Gm] ,

where the second equality holds because all of the sets in Cm do not include w and the last
equality follows from the proof of Theorem 10. The resultant ZDD is like the right one in
Figure 3, which implies Z(F↑

m) ≥ Z(Pm) = Ω(2m/m).
The minimal can be treated in a similar way. We define

Fm := Gm ∪ [{{w}} ⊔ {{x1, . . . , x2m}} ⊔ Cm] ,

where Gm is the same family as that above. We again have Z(Fm) = O(m4). Every set in
Gm has m + 1 elements and every set in {{w}} ⊔ {X} ⊔ Cm has 3m + 1 elements. Thus, every
set in the former family is minimal, while a set in the latter family is minimal if and only if
it is not a superset of any set included in the former family. Now we have

F↓
m = Gm ∪ [({{w}} ⊔ {X} ⊔ Cm) ↘ Gm]

= Gm ∪ [{{w}} ⊔ (({X} ⊔ Cm) ↘ Gm)] = Gm ∪ [{{w}} ⊔ {X} ⊔ Pm] ,

where the second equality holds because none of the sets in Gm includes w and the last equality
follows from the proof of Theorem 10. This again implies Z(F↓

m) ≥ Z(Pm) = Ω(2m/m). ◀

ISAAC 2024

52:12 Single Family Algebra Operation on BDDs and ZDDs Leads to Exponential Blow-Up

3.2.5 Minimal Hitting Set and Closure
For these operations, we can constitute much simpler examples.

▶ Theorem 12. Let ⋄ be a unary operator chosen from minimal hitting set (♯) and closure
(∩). Then, there exists a sequence of families Fm such that (i) Fm is a family of subsets of a
set of O(m2) elements, (ii) Z(Fm) = O(m4), and (iii) Z(F⋄

m) = Ω(2m/poly(m)).

Proof. Let X := {x1, . . . , x2m} and Y := {y1, . . . , ym2}. For k = 1, . . . , m, we set Sk :=
{ym(k−1)+1, ym(k−1)+2, . . . , ym(k−1)+m}, and Sm+k := {yk, ym+k, . . . , ym(m−1)+k}.

For minimal hitting set operation, we consider a family of subsets of Y . We define
Fm := {S1, . . . , S2m}. Since the ZDD size can be bounded by the sum of cardinality of a set
in the family [16], Z(Fm) ≤

∑
i |Si| = O(m2). For S ⊆ {y1, . . . , ym2}, we associate a binary

m × m matrix, where the (i, j)-element is 1 if and only if ym(i−1)+j ∈ S. Then, S ∩ Sk ̸= ∅
means that the k-th row of the matrix has at least one 1 and S ∩ Sm+k ̸= ∅ means that the
k-th column of the matrix has at least one 1. Thus, S ∈ F ♯

m if and only if the corresponding
matrix has at least one 1 for any column or row and no proper subset of S satisfies this
property. The minimal matrix having this property is the permutation matrix, and thus
F ♯

m = Pm, that is, the permutation function. This implies Z(F ♯
m) = Ω(2m/m).

For closure operation, we consider a family of subsets of X ∪ Y . For k = 1, . . . , m

and ℓ = 1, . . . , m, we define Rk,ℓ := (X \ {xk, xm+ℓ}) ∪ ((Y \ Sk \ Sm+ℓ) ∪ {ym(k−1)+ℓ}). We
define Fm := {Rk,ℓ | k, ℓ = 1, . . . , m}. Again, since the ZDD size can be bounded by
the sum of cardinality of a set in the family [16], Z(Fm) ≤

∑
k,ℓ |Rk,ℓ| = O(m4). Then,

we show that F∩
m ∩ Cm = Pm, where Pm is the permutation function. If it is shown,

Z(F∩
m ∩ Cm) = Z(Pm) = Ω(2m/m). On the other hand, Z(F∩

m ∩ Cm) = O(Z(F∩
m)Z(Cm)).

Since Z(Cm) = O(m3), we can deduce that Z(F∩
m) = Ω(2m/poly(m)).

We now prove F∩
m ∩ Cm = Pm. First, we show that F∩

m ∩ Cm ⊆ Pm. Rk,ℓ does not contain
any element in Sk and Sm+ℓ except for ym(k−1)+ℓ. By fixing k, if F ′ ⊆ F contains at least one
Rk,ℓ for some ℓ, S =

⋂
S′∈F ′ S′ contains at most one element from Sk. Moreover, S does

not contain xk if and only if F ′ contains at least one Rk,ℓ for some ℓ. Similarly, by fixing ℓ,
if F ′ contains at least one Rk,ℓ for some k, which is equivalent to that S does not contain
xm+ℓ, S contains at most one element from Sm+ℓ. Now we can say that when S contains
no element in X, S contains at most one element in Sk for any k = 1, . . . , 2m. This means
that if S contains no element in X and m elements in Y , S ∈ Pm. Thus, F∩

m ∩ Cm ⊆ Pm.
Next, we show that F∩

m ∩ Cm ⊇ Pm. Let σ be an arbitrary permutation of 1, . . . , m. Then,
{yσ(1), ym+σ(2), . . . , y(m−1)m+σ(m)} = R1,σ(1) ∩ R2,σ(2) ∩ · · · ∩ Rm,σ(m). This means that any
set in Pm is in F∩

m. Thus, F∩
m ∩ Cm ⊇ Pm. This concludes F∩

m ∩ Cm = Pm. ◀

3.3 Consideration for Element Order
The above proofs fix the order of elements for each operation. Thus, there is still a possibility
that the resultant ZDD size becomes smaller by managing the order of elements. However, it
seems that the size of resultant ZDD remains exponential regardless of the order of elements,
since every resultant family contains a hidden weighted bit function, a permutation function,
or similar families as a subfamily. In the following, we prove that every resultant family has
an exponential ZDD size regardless of the order of elements.

▶ Definition 13. Let F be a family of subsets of set X, and let Y, Y ′ be the subsets of X

satisfying Y ∩ Y ′ = ∅. We define F|Y,Y ′ as the family of subsets of X \ (Y ∪ Y ′) such that
S ∈ F|Y,Y ′ if and only if S ∪ Y ∈ F .

K. Nakamura, M. Nishino, and S. Denzumi 52:13

In other words, F|Y,Y ′ is the family of sets generated from F by first extracting the sets
containing every element of Y , but no element of Y ′, and then eliminating all of the elements
of Y from every set. This operation is called conditioning and it is a famous result that this
can be performed in polynomial time with BDDs [6]. For the sake of completeness, we show
this can also be performed in polynomial time with ZDDs, and then we prove the following.

▶ Lemma 14. Let F be a family of subsets of a set X of O(f(m)) elements. If there
exist Y, Y ′ ⊆ X such that Z<(F|Y,Y ′) = Ω(g(m)) for any order < of elements, we have
Z<(F) = Ω(g(m)/f(m)) for any order < of elements.

If this lemma holds, we can show that the resultant families in Section 3.2 all have an
exponential ZDD size regardless of the order of elements. This is because the resultant
families in Section 3.2 all have a hidden weighted bit function, a permutation function, or its
complements as a subfamily and all of them have an exponential ZDD size regardless of the
order of elements; a detailed discussion is given later.

Proof of Lemma 14. If we can show Z<(F|Y,Y ′) = O(Z<(F)f(m)) for any Y, Y ′ ⊆ X and
any order < of elements, Lemma 14 can be proved as follows: Suppose that there is an
order < of elements satisfying Z<(F) = o(g(m)/f(m)). Then, by the above equation, we
have Z<(F|Y,Y ′) = o((g(m)/f(m)) · f(m)) = o(g(m)). This contradicts the assumption that
Z<(F|Y,Y ′) = Ω(g(m)) for any order < of elements.

Next, we fix an arbitrary order < of elements and show Z<(F|Y,Y ′) = O(Z<(F)f(m)).
Here, we consider the operations for constructing a ZDD representing F|Y,Y ′ from the ZDD
of F . We first extract the sets that contain every element of Y but do not contain any
element of Y ′. Then, we eliminate all elements of Y .

The former step can be achieved by the intersection operation. Let G be the family of
subsets of X such that S ∈ G if and only if S contains all of the elements in Y but does
not contain any element in Y ′. In other words, G := {S ⊆ X | S ∩ Y = Y ∧ S ∩ Y ′ = ∅}.
Then, F ∩ G is the desired family. The ZDD representing G has the following form: (i) For
any x ∈ Y , there is only one ZDD node labeled x whose lo-child is ⊥ while its hi-child is
the next-level node. (ii) For any x ∈ Y ′, there is no node labeled x by the reduction rule of
ZDD. (iii) for any x ∈ X \ (Y ∪ Y ′), there is only one ZDD node labeled x whose lo-child and
hi-child are both the next-level node. Thus, we have Z<(G) = O(f(m)) because the base
set X of F has O(f(m)) elements and, for any element x ∈ X, there is at most one node
labeled x. Finally, Z<(F ∩ G) = O(Z<(F)f(m)).

The latter can be achieved by eliminating the nodes labeled x ∈ Y and replacing the
branches heading it. For a node labeled x ∈ Y , its lo-child must be ⊥, since the ZDD is
reduced and every set in F ∩ G must contain x. For this node, we first make all of the
arcs heading to it point to its hi-child. Then, we eliminate this node. By performing this
operation for every node labeled x ∈ Y , we finally obtain the ZDD of F|Y,Y ′ . Since this
operation does not increase the size of ZDD, we have Z<(F|Y,Y ′) = O(Z<(F)f(m)). ◀

Now we can show that the resultant families in the proof of Section 3.2 have exponential
ZDD size regardless of the order of elements. For example, for the join operation, ({X} ⊔
Hm)|X,∅ = Hm and Z(Hm) = Ω(2m/5/m) for any order of elements of Y (and thus that of
X ∪ Y). Therefore, by Lemma 14, Z(Fm ⊔ Gm) = Ω(2m/5/m2) for any order of elements of
X ∪ Y . Similar arguments hold for the other operations. We here show that all the resultant
families in the proof of Section 3.2 have exponential ZDD size regardless of the order of
elements.

ISAAC 2024

52:14 Single Family Algebra Operation on BDDs and ZDDs Leads to Exponential Blow-Up

Disjoint join ▷̇◁ and joint join ▷̂◁: The resultant family of these operations in the proof of
Theorem 7 is ({X} ⊔ Hm). Here, ({X} ⊔ Hm)|X,∅ = Hm.

Meet ⊓: In the proof of Theorem 7, we already have Fm ⊓ Gm = Hm. Thus, Z(Fm ⊓ Gm) =
Ω(2m/5/m) for any order of elements.

Delta ⊞: In the proof of Theorem 7, we have Fm ⊞Gm = 2X ⊔ Hm. Since (2X ⊔ Hm)|X,∅ =
Hm, Z(Fm ⊞Gm) = Ω(2m/5/poly(m)) for any order of elements.

Quotient /: Z(2Y) = O(m) and Z(Hm) = Ω(2m/5/m) for any order of elements, and
Z(H′

m) = Ω(2m/5/m2) for any order of elements by Lemma 8. This also holds for
Fm / Gm in the proof of Theorem 9 since it equals H′

m.
Remainder %: Since Fm =

⋃
k({{xk}}⊔E ′

m,k) and Gm⊔(Fm / Gm) = {{x1}, . . . , {xm}}⊔H′
m,

Fm % Gm =
⋃

k({{xk}} ⊔ (E ′
m,k \ H′

m)). Thus, (Fm % Gm)|{x1},X\{x1} = E ′
m,1 \ H′

m.
Here, Z(E ′

m,1) = O(m2) and Z(H′
m) = Ω(2m/5/m2) for any order of elements, and

Z(E ′
m,1 \ H′

m) = Ω(2m/5/m4) for any order of elements by Lemma 8. Thus, by Lemma 14,
Z(Fm % Gm) = Ω(2m/5/m6) for any order of elements because it is a family of subsets of
a set with O(m2) elements.

Permit ⊘ and nonsubset ↗: We already have Fm ⊘ Gm = Cm \ Pm and Fm ↗ Gm = Pm

in the proof of Theorem 10. Since Z(Cm) = O(m3) and Pm = Ω(2m/m) for any order of
elements, Z(Cm \ Pm) = Ω(2m/m4) for any order of elements by Lemma 8.

Restrict △ and nonsuperset ↘: We have ({X} ⊔ (Cm \ Pm))|X,∅ = Cm \ Pm and ({X} ⊔
Pm)|X,∅ = Pm; see the proof of Theorem 10.

Maximal ↑ : In the proof of Theorem 11, we have F↑
m|∅,{w}∪X = Pm.

Minimal ↓: In the proof of Theorem 11, we have F↓
m|{w}∪X,∅ = Pm.

Minimal hitting set ♯: In the proof of Theorem 12, we already have F ♯
m = Pm.

Closure ∩: In the proof of Theorem 12, we have F∩
m ∩ Cm = Pm. Since Z(Cm) = O(m3) for

any order of elements, Z(F∩
m) = Ω(2m/poly(m)) for any order of elements.

3.4 Polynomially Bounded ZDDs
We complete the proof of this section by showing that the ZDD sizes of some families
appearing in the previous proofs are bounded by a polynomial of m. To prove the size bound,
we consider the following linear network model to distinguish whether a set is contained in
the family F . Note that the idea of a linear network model comes from Knuth’s book [13,
Theorem M], where it was used to prove the bound of BDD size. Suppose that the order of
elements is x1 < x2 < · · · < xn. There are n computational modules M1, . . . , Mn. Module
Mi receives an input of one bit indicating whether xi is included in the set. Module Mi

sends ai+1 bits of information to module Mi+1. Overall, every module Mi receives an input
xi and ai bits of information from Mi−1 and sends ai+1 bits of information to Mi+1. Since
module M1 has no preceding module, we set a1 = 0. The final module, Mn, outputs one bit
indicating whether the set is included in the family F . An overview of the linear network
model is drawn in Figure 4. The following lemma suggests that if we can construct a small
linear network for the family F , the ZDD size of F can be bounded.

▶ Lemma 15. For family F of subsets of {x1, . . . , xn}, assume that we can construct the
linear network model described above to distinguish whether a set is contained in F . Then,
the size of ZDD representing F is bounded by Z(F) ≤ 2 +

∑n
i=1 2ai .

Proof. For k = 1, . . . , n, we consider the number of distinct subfamilies F|X,Y , where
X ∪ Y = {x1, . . . , xk−1}. This is because by the node sharing rule, the number of nodes
labeled xk is upper-bounded by the number of possible distinct subfamilies.

K. Nakamura, M. Nishino, and S. Denzumi 52:15

x1 x2 xn

M1

a2 bits

M2

a3 bits

· · ·
an bits

Mn Output

Figure 4 Schematic overview of linear network model.

We observe that the input to module Mi is ai bits. This means that, regardless of the
inclusion of x1, . . . , xk−1, the subfamily F|X,Y is completely determined by the information
of ai bits. Therefore, there are at most 2ai distinct subfamilies, yielding the result that the
number of nodes labeled xk is upper-bounded by 2ai . Since there are two terminal nodes ⊤
and ⊥, the overall ZDD size is bounded by Z(F) ≤ 2 +

∑n
i=1 2ai . ◀

By Lemma 15, we only have to consider a small linear network for every family.
Em,k in Section 3.1: The family Em,k is defined as {S ⊆ {y1, . . . , ym} | |S| = k, yk ∈ S}.

In judging whether S ∈ Em,k with a linear network, the module Mt is only concerned
with the number of elements from y1, . . . , yt in S and whether yk is in S. The former
information can be represented with ⌈log(m + 1)⌉ bits and the latter can be represented
with 1 bit. Thus, we can construct a linear network with at = ⌈log(m + 1)⌉ + 1 bits. By
Lemma 15, we have Z(Em,k) ≤ 2 + m2⌈log(m+1)⌉+1 = O(m2).

Qm,k in Section 3.1: Each of the families Qm,k (k = 1, . . . , 2m) is the family of subsets of
{y1, . . . , ym2} such that there is exactly one element from a set of m selected elements.
In constructing a linear network, the module Mt is only concerned with the number of
selected elements in S: zero, one, or more than one. This information can be represented
with 2 bits. Thus, we have Z(Qm,k) ≤ 2 + m222 = O(m2).

E ′
m,k in Section 3.2.2: The linear network for E ′

m,k = 2Y \ Em,k can be the same as that for
Em,k, except that the output is inverted. Thus, Z(E ′

m,k) = O(m2).
Cm in Section 3.2.3: The family Cm is defined as {S ⊆ {y1, . . . , ym2} | |S| = m}. Similar

to the case of Qm,k, every module only retains the number of elements from y1, . . . , yt in
S. Moreover, we should only count this number until m; if the count exceeds m, we can
immediately determine that S is not in Cm. This count value can be represented with
⌈log(m + 2)⌉ bits. Thus, we have Z(Cm) ≤ 2 + m22⌈log(m+2)⌉ = O(m3).

Tm,k in Section 3.2.3: For Tm,k = Cm \ Qm,k, we can construct a linear network by com-
bining the networks for Cm and Qm,k. We have ⌈log(m + 2)⌉ bits for Cm and 2 bits for
Qm,k. Thus, we have Z(Tm,k) ≤ 2 + m22⌈log(m+2)⌉+2 = O(m3).

We finally note that the ZDD sizes of the above families remain polynomial in m even if
the order of elements is different from y1 < y2 < · · · < ym < · · · < ym2 . Since the cardinality
constraint is symmetric, we can reuse the same linear network for different orders of elements.
The existence of specific elements can also be treated by changing the input that is watched.

3.5 Discussion
Finally, we give some discussions for the presented results. First, we argue theoretical results
for BDDs. As stated in Lemma 2, the sizes of BDD and ZDD differ only by a linear factor
of the size of the base item set. All the results in Section 3.2 have the same form that the
number of elements is O(poly(m)), the input ZDD sizes are O(poly(m)), and the output
ZDD size is exponential in m. Therefore, even if these families are represented by BDDs,

ISAAC 2024

52:16 Single Family Algebra Operation on BDDs and ZDDs Leads to Exponential Blow-Up

the input BDD sizes are all O(poly(m)), and the output BDD sizes are all exponential in
m. Moreover, the output BDD sizes remain exponential in m for any order < of elements
since Lemma 2 holds for any order < of elements. This constitutes the theoretical result
that the family algebra operations in Table 1, except for the first four operations, cannot be
performed in polynomial time in the input BDD sizes.

Second, we discuss how often such exponential blow-up occurs. Although we rely on
specific families, the hidden weighted bit function Hm and the permutation function Pm, the
heart of the above proofs is that even a single operation may cause us to compute the union
or intersection of multiple subfamilies. Apart from these families, it is usual that taking the
union or intersection of multiple families leads to exponential blow-up. To imagine this, we
consider encoding a family described by polynomial-sized conjunctive normal form (CNF)
into BDD/ZDD. Every clause can be encoded into a polynomial-sized BDD/ZDD. Moreover,
if the entire CNF is encoded into BDD/ZDD, we can solve SAT, or even more difficult
#SAT, in linear time with respect to the size of BDD/ZDD [13]. However, it is a famous
fact that SAT and #SAT are in NP-complete and #P-complete, respectively, meaning that
they are believed not to be solved in polynomial time. This means that for many CNFs, the
BDD/ZDD after taking intersection of clauses does not remain polynomial-sized. Therefore,
apart from the specific examples used in the proof, there are many cases yielding the blow-up
of BDD/ZDD size after single family algebra operation.

Finally, we argue the limitation of some of the above results that the permutation function
is not such a “devilish” example. The permutation function is a family of subsets of a set with
O(m2) elements and its ZDD size can only be lower bounded by Ω(2m/poly(m)). Since the
ZDD size of the family of subsets of a set with O(m2) can be at most Ω(2m2

/poly(m)), it is far
from being the worst-case. We should investigate whether there is a family of sets generated
by restrict or similar operations whose ZDD size is lower bounded by Ω(αn/poly(n)), where
α > 1 and n is the number of elements in the base set.

4 Conclusion

We proved that the worst-case complexity of carrying out certain kinds of a family algebra
operation on BDDs/ZDDs once is lower bounded by an exponential factor. These include
all of the operations raised by Knuth [13, §7.1.4 Ex. 203,204,236,243] except for the basic
set operations. In particular, we resolved the controversy over the complexity of the join
operation, which had arisen prominently in past literature. We also resolved the open problem
regarding the worst-case complexity of the quotient operation.

Future directions include the followings. First, we only prove the lower-bound of the
complexity of carrying out a single operation. It should be investigated whether we can
obtain a non-trivial upper-bound of the complexity. Second, it is unknown whether a “double
recursion” procedure like those in Section 2.2 always leads to an exponential worst-case
complexity. It is important to investigate whether there are non-trivial operations that should
require a double recursion procedure even though the worst-case complexity is polynomial.

References

1 B. Bollig. A simpler counterexample to a long-standing conjecture on the complexity of Bryant’s
apply algorithm. Inf. Process. Lett., 114(3):124–129, 2014. doi:10.1016/j.ipl.2013.11.003.

2 R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans.
Comput., C-35(8):677–691, 1986. doi:10.1109/TC.1986.1676819.

https://doi.org/10.1016/j.ipl.2013.11.003
https://doi.org/10.1109/TC.1986.1676819

K. Nakamura, M. Nishino, and S. Denzumi 52:17

3 R. E. Bryant. On the complexity of VLSI implementations and graph representations of Boolean
functions with application to integer multiplication. IEEE Trans. Comput., 40(2):205–213,
1991. doi:10.1109/12.73590.

4 O. Coudert. Solving graph optimization problems with ZBDDs. In Proc. of the European Design
& Test Conference (ED&TC 97), pages 224–228, 1997. doi:10.1109/EDTC.1997.582363.

5 O. Coudert, J. C. Madre, and H. Fraisse. A new viewpoint on two-level logic minimization. In
Proc. of the 30th ACM/IEEE Design Automation Conference (DAC 1993), pages 625–630,
1993. doi:10.1145/157485.165071.

6 A. Darwiche and P. Marquis. A knowledge compilation map. J. Artif. Intell. Res., 17(1):229–
264, 2002. doi:10.1613/jair.989.

7 U. Gupta, P. Kalla, and V. Rao. Boolean Gröbner basis reductions on finite field datapath
circuits using the unate cube set algebra. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., 38(3):576–588, 2019. doi:10.1109/TCAD.2018.2818726.

8 T. Inoue, H. Iwashita, J. Kawahara, and S. Minato. Graphillion: software library for very
large sets of labeled graphs. Int. J. Softw. Tools Technol. Trans., 18(1):57–66, 2016. doi:
10.1007/s10009-014-0352-z.

9 T. Inoue, N. Yasuda, S. Kawano, Y. Takenobu, S. Minato, and Y. Hayashi. Distribution
network verification for secure restoration by enumerating all critical failures. IEEE Trans.
Smart Grid, 6(2):843–852, 2015. doi:10.1109/TSG.2014.2359114.

10 A. Ito, R. Ueno, and N. Homma. Efficient formal verification of Galois-Field arithmetic circuits
using ZDD representation of Boolean polynomials. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst., 41(3):794–798, 2022. doi:10.1109/TCAD.2021.3059924.

11 J. Kawahara, T. Inoue, H. Iwashita, and S. Minato. Frontier-based search for enumerating
all constrained subgraphs with compressed representation. IEICE Trans. Fundamentals,
E100-A(9):1773–1784, 2017. doi:10.1587/transfun.E100.A.1773.

12 J. Kawahara, T. Saitoh, H. Suzuki, and R. Yoshinaka. Solving the longest oneway-ticket
problem and enumerating letter graphs by augmenting the two representative approaches with
ZDDs. In Proc. of the Computational Intelligence in Information System (CIIS 2016), pages
294–305, 2016. doi:10.1007/978-3-319-48517-1_26.

13 D. E. Knuth. The Art of Computer Programming: Vol. 4A. Combinatorial Algorithms, Part 1,
volume 4A: Combinatorial Algorithms, Part I. Addison-Wesley Professional, 2011.

14 S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. In Proc.
of the 30th ACM/IEEE Design Automation Conference (DAC 1993), pages 272–277, 1993.
doi:10.1145/157485.164890.

15 S. Minato. Calculation of unate cube set algebra using zero-suppressed BDDs. In Proc.
of the 31st ACM/IEEE Design Automation Conference (DAC 1994), pages 420–424, 1994.
doi:10.1145/196244.196446.

16 S. Minato, T. Uno, and H. Arimura. LCM over ZBDDs: Fast generation of very large-scale
frequent itemsets using a compact graph-based representation. In Proc. of Advances in
Knowledge Discovery and Data Mining (PAKDD 2008), pages 234–246, 2008. doi:10.1007/
978-3-540-68125-0_22.

17 H. G. Okuno, S. Minato, and H. Isozaki. On the properties of combination set operations. Inf.
Process. Lett., 66(4):195–199, 1998. doi:10.1016/S0020-0190(98)00067-2.

18 F. Somenzi. CUDD: CU decision diagram package, 1997. URL: https://github.com/ivmai/
cudd.

19 Y. Takenobu, N. Yasuda, S. Kawano, S. Minato, and Y. Hayashi. Evaluation of annual energy
loss reduction based on reconfiguration scheduling. IEEE Trans. Smart Grid, 9(3):1986–1996,
2018. doi:10.1109/TSG.2016.2604922.

20 R. Yoshinaka, J. Kawahara, S. Denzumi, H. Arimura, and S. Minato. Counterexamples to
the long-standing conjecture on the complexity of BDD binary operations. Inf. Process. Lett.,
112(16):636–640, 2012. doi:10.1016/j.ipl.2012.05.007.

ISAAC 2024

https://doi.org/10.1109/12.73590
https://doi.org/10.1109/EDTC.1997.582363
https://doi.org/10.1145/157485.165071
https://doi.org/10.1613/jair.989
https://doi.org/10.1109/TCAD.2018.2818726
https://doi.org/10.1007/s10009-014-0352-z
https://doi.org/10.1007/s10009-014-0352-z
https://doi.org/10.1109/TSG.2014.2359114
https://doi.org/10.1109/TCAD.2021.3059924
https://doi.org/10.1587/transfun.E100.A.1773
https://doi.org/10.1007/978-3-319-48517-1_26
https://doi.org/10.1145/157485.164890
https://doi.org/10.1145/196244.196446
https://doi.org/10.1007/978-3-540-68125-0_22
https://doi.org/10.1007/978-3-540-68125-0_22
https://doi.org/10.1016/S0020-0190(98)00067-2
https://github.com/ivmai/cudd
https://github.com/ivmai/cudd
https://doi.org/10.1109/TSG.2016.2604922
https://doi.org/10.1016/j.ipl.2012.05.007

A Fast Algorithm for Computing a Planar Support
for Non-Piercing Rectangles
Ambar Pal #

Johns Hopkins University, Baltime, MD, USA

Rajiv Raman #

Indraprastha Institute of Information Technology Delhi, New Delhi, India

Saurabh Ray #

NYU Abu Dhabi, UAE

Karamjeet Singh #

Indraprastha Institute of Information Technology Delhi, New Delhi, India

Abstract
For a hypergraph H = (X, E) a support is a graph G on X such that for each E ∈ E , the induced
subgraph of G on the elements in E is connected. If G is planar, we call it a planar support. A set
of axis parallel rectangles R forms a non-piercing family if for any R1, R2 ∈ R, R1 \ R2 is connected.

Given a set P of n points in R2 and a set R of m non-piercing axis-aligned rectangles, we give an
algorithm for computing a planar support for the hypergraph (P, R) in O(n log2 n + (n + m) log m)
time, where each R ∈ R defines a hyperedge consisting of all points of P contained in R.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Algorithms, Hypergraphs, Computational Geometry, Visualization

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.53

1 Introduction

Given a hypergraph H = (V, E), a support is a graph G on V such that for all E ∈ E , the
subgraph induced by E in G, denoted G[E] is connected. The notion of a support was
introduced by Voloshina and Feinberg [30] in the context of VLSI circuits. Since then,
this notion has found wide applicability in several areas, such as visualizing hypergraphs
[6, 7, 8, 9, 11, 19, 21], in the design of networks [1, 3, 4, 13, 20, 23, 26], and similar
notions have been used in the analysis of local search algorithms for geometric problems
[2, 5, 15, 24, 25, 27].

Any hypergraph clearly has a support: the complete graph on all vertices. In most
applications however, we require a support with an additional structure. For example, we
may want a support with the fewest number of edges, or a support that comes from a
restricted family of graphs (e.g., outerplanar graphs).

Indeed, the problem of constructing a support has been studied by several research
communities. For example, Du, et al., [16, 17, 18] studied the problem of minimizing the
number of edges in a support, motivated by questions in the design of vacuum systems. The
problem has also been studied under the topic of “minimum overlay networks” [20, 14] with
applications to distributed computing. Johnson and Pollack [22] showed that it is NP-hard
to decide if a hypergraph admits a planar support.

© Ambar Pal, Rajiv Raman, Saurabh Ray, and Karamjeet Singh;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 53; pp. 53:1–53:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ambar@jhu.edu
https://orcid.org/0000-0001-6775-4980
mailto:rajiv@iiitd.ac.in
https://orcid.org/0009-0000-8013-9421
mailto:saurabh.ray@nyu.edu
mailto:karamjeets@iiitd.ac.in
https://orcid.org/0009-0006-3696-4567
https://doi.org/10.4230/LIPIcs.ISAAC.2024.53
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 A Fast Algorithm for Computing a Planar Support for Non-Piercing Rectangles

In another line of work, motivated by the analysis of approximation algorithms for packing
and covering problems on geometric hypergraphs1, several authors have considered the problem
of constructing supports that belong to a family having sublinear sized separators2 such
as planar graphs, or graphs of bounded genus [27, 28, 29]. For this class of problems, the
problem of interest is only to show the existence of a support from a restricted family of
graphs.

Our contribution. So far there are very few tools or techniques to construct a support for a
given hypergraph or even to show that a support with desired properties (e.g., planarity)
exists. Our paper presents a fast algorithm to construct a planar support for a restricted
setting, namely hypergraphs defined by axis-parallel rectangles that are non-piercing, i.e.,
for each pair of intersecting rectangles, one of them contains a corner of the other. This may
seem rather restrictive. However, even if we allow each rectangle to belong to at most one
piercing pair of rectangles, it is not difficult to construct examples where for any r ≥ 3, any
support must have Kr,r as a topological minor. To see this, consider a geometric drawing of
Kr,r in the usual manner, i.e., the two partite sets on two vertical lines, and the edges as
straight-line segments. Replace each edge of the graph by a long path, and then replace each
edge along each path by a small rectangle that contains exactly two points. Where the edges
cross, a pair of rectangles corresponding to each edge cross. Since each rectangle contains two
points, it leaves us no choice as to the edges we can add. It is easy to see that the resulting
support contains Kr,r as a topological minor. Further, even for this restricted problem, the
analysis of our algorithm is highly non-trivial, and we hope that the tools introduced in this
paper will be of wider interest.

Raman and Ray [27], showed that the hypergraph defined by non-piercing regions 3 in
the plane admits a planar support. Their proof implies an O(m2(min{m3, mn}+ n)) time
algorithm to compute a planar support where m is the number of regions and n is the
number of points in the arrangement of the regions. While their algorithm produces a plane
embedding, the edges may in general be arbitrarily complicated curves i.e., they may have
an arbitrary number of bends. It can be shown that if the non-piercing regions are convex
then there exists an embedding of the planar support with straight edges but it is not clear
how to find such an embedding efficiently.

We present a simple and fast algorithm for drawing plane supports with straight-line
edges for non-piercing rectangles. More precisely, the following is the problem definition:
Support for non-piercing rectangles:
Input: A set of m axis-parallel non-piercing rectangles R and a set P of n points in R2.
Output: A plane graph G on P s.t. for each R ∈ R, G[R∩P], namely the induced subgraph
on the points in R ∩ P , is connected.

Our algorithm runs in O(n log2 n + (n + m) log m) time, and can be easily implemented
using existing data structures. The embedding computed by our algorithm not only has
straight-line edges but also for each edge e, the axis-parallel rectangle with e as the diagonal
does not contain any other point of P – this makes the visualization cleaner.

1 In a geometric hypergraph, the elements of the hypergraph are points in the plane, and the hyperedges
are defined by geometric regions in the plane, where each region defines a hyperedge consisting of all
points contained in the region.

2 A family of graphs G admits sublinear sized separators if there exist 0 < α, β < 1 s.t. for any G ∈ G,
there exists a set S ⊆ V (G) s.t. G[V \ S] consists of two parts A and B with |A|, |B| ≤ α|V |, and there
is no path in G[V \ S] between a vertex in A to a vertex in B. Further, |S| ≤ |V |1−β .

3 A family of simply connected regions R, each of whose boundary is defined by a simple Jordan curve is
called non-piercing if for every pair of regions A, B ∈ R, A \ B and B \ A are connected. The result of
[27] was for more general families.

A. Pal, R. Raman, S. Ray, and K. Singh 53:3

In order to develop a faster algorithm, we need to find a new construction (different
from [27]), and the proof of correctness for this construction is not so straightforward. We
use a sweep line algorithm. However, at any point in time, it is not possible to have the
invariant that the current graph is a support for the portions of the rectangles that lie to
the left of the sweep line. Instead, we show that certain slabs within each rectangle induce
connected components of the graph and only after we sweep over a rectangle completely
do we finally have the property that the set of points in that rectangle induce a connected
subgraph.

Organization. The rest of the paper is organized as follows. We start in Section 2 with
related work. In Section 3, we present preliminary notions required for our algorithm. In
Section 4, we present a fast algorithm to construct a planar support. We show in Section 4.1
that the algorithm is correct, i.e., it does compute a planar support. We present the
implementation details in Section 4.2.

2 Related work

The notion of the existence of a support, and in particular a planar support arose in the field
of VLSI design [30]. A VLSI circuit is viewed as a hypergraph where each individual electric
component corresponds uniquely to a vertex of the hypergraph, and sets of components
called nets correspond uniquely to a hyperedge. The problem is to connect the components
with wires so that for every net, there is a tree spanning its components. Note that planarity
in this context is natural as we don’t want wires to cross.

Thus, a motivation to study supports was to define a notion of planarity suitable for
hypergraphs. Unlike for graphs, there are different notions of planarity of hypergraphs, not
all equivalent to each other. Zykov [32] defined a notion of planarity that was more restricted.
A hypergraph is said to be Zykov-planar if its incidence bipartite graph is planar [32, 31].

Johnson and Pollack [22] showed that deciding if a hypergraph admits a planar support
is NP-hard. The NP-hardness result was sharpened by Buchin, et al., [11] who showed
that deciding if a hypergraph admits a support that is a k-outerplanar graph, for k ≥ 2
is NP-hard, and showed that we can decide in polynomial time if a hypergraph admits a
support that is a tree of bounded degree. Brandes, et al., [8] showed that we can decide in
polynomial time if a hypergraph admits a support that is a cactus4.

Brandes et al., [9], motivated by the drawing of metro maps, considered the problem of
constructing path-based supports, which must satisfy an additional property that the induced
subgraph on each hyperedge contains a Hamiltonian path on the vertices of the hyperedge.

Another line of work, motivated by the analysis of approximation algorithms for packing
and covering problems on geometric hypergraphs started with the work of Chan and Har-
Peled [12], and Mustafa and Ray [25]. The authors showed, respectively, that for the
Maximum Packing5 of pseudodisks6, and for the Hitting Set7 problem for pseudodisks, a
simple local search algorithm yields a PTAS. These results were extended by Basu Roy, et

4 A cactus is a graph where each edge of the graph lies in at most one cycle.
5 In a Maximum Packing problem, the goal is to select the largest subset of pairwise disjoint hyperedges

of a hypergraph.
6 A set of simple Jordan curves is a set of pseudocircles if the curves pairwise intersect twice or zero times.

The pseudocircles along with the bounded region defined by the curves is a collection of pseudodisks.
7 In the Hitting Set problem, the goal is to select the smallest subset of vertices of a hypergraph so that

each hyperedge contains at least one vertex in the chosen subset.

ISAAC 2024

53:4 A Fast Algorithm for Computing a Planar Support for Non-Piercing Rectangles

al., [5] to work for the Set Cover and Dominating Set8 problems defined by points and non-
piercing regions, and by Raman and Ray [27], who gave a general theorem on the existence of
a planar support for any geometric hypergraph defined by two families of non-piercing regions.
This result generalized and unified the previously mentioned results, and for a set of m

non-piercing regions, and a set of n points in the plane, it implies that a support graph can be
constructed in time O(m2(min{m3, mn}+ n)). It follows that for non-piercing axis-parallel
rectangles, a planar support can be constructed in time O(m2(min{m3, mn}+ n)). However,
in the embedding of the support thus constructed, the edges may be drawn as arbitrary
curves.

3 Preliminaries

Let R = {R1, . . . , Rm} denote a set of axis-parallel rectangles and let P = {p1, . . . , pn}
denote a set of points in the plane. We assume that the rectangles and points are in general
position, i.e., the points in P have distinct x and y coordinates, and the boundaries of any
two rectangles in R are defined by distinct x-coordinates and distinct y-coordinates. Further,
we assume that no point in P lies on the boundary of a rectangle in R.

Piercing, Discrete Piercing. A rectangle R′ is said to pierce a rectangle R if R \R′ consists
of two connected components. A collection R of rectangles is non-piercing if no pair of
rectangles pierce. A rectangle R′ discretely pierces a rectangle R if R′ pierces R and each
component of R \R′ contains a point of P . Since we are primarily concerned with discrete
piercing, the phrase “R pierces R′” will henceforth mean discrete piercing, unless stated
otherwise. Note that while piercing is a symmetric relation, discrete piercing is not.

“L”-shaped edge. We construct a drawing of a support graph G on P using “L”-shaped
edges of type: or . Henceforth, the term edge will mean one of the two “L”-shaped
edges joining two points. The embedded graph may not be planar due to the overlap of
the edges along their horizontal/vertices segments. However, as we show, G satisfies the
additional property that for each edge, the axis-parallel rectangle defined by the edge has
no points of P in its interior (formal definition below), and that no pair of edges cross.
Consequently, replacing each edge with the straight segment joining its end-points yields a
plane embedding of G.

Delaunay edge, Valid edge, R(·), h(·), v(·). For an edge between points p, q ∈ P , let
R(pq) denote the rectangle with diagonally opposite corners p and q. The edge pq is a
Delaunay edge if the interior of R(pq) does not contain a point of P . We say that an edge pq

(discretely) pierces a rectangle R if R \ {pq} consists of two regions, and each region contains
a point of P . An edge pq is said to be valid if it does not discretely pierce any rectangle
R ∈ R, and does not cross any existing edge. For an edge pq, we use h(pq) for the horizontal
segment of pq, and v(pq) for the vertical segment of pq.

Monotone Path, Point above Path. A path π is said to be x-monotone if a vertical line,
i.e., a line parallel to the y-axis, does not intersect the path in more than one point. We
modify this definition slightly for our purposes – we say that a path consisting of a sequence

8 In the Set Cover problem, the input is a set system (X, S) and the goal is to select the smallest
sub-collection S′ that covers the elements in X. For a graph, a subset of vertices S is a dominating set
if each vertex in the graph is either in S, or is adjacent to a vertex in S.

A. Pal, R. Raman, S. Ray, and K. Singh 53:5

of , or edges is x-monotone if any vertical line intersects the path in at most one
vertical segment (which may in some cases be a single point). Let π be a path and q be a
point not on the path. We say that “q lies above π” if ℓq, the vertical line through q intersects
π at point(s) below q. We define the notion that “q lies below π” analogously. Note that
these notions are defined only if ℓq intersects π.

Left(Right)-Neighbor, Left(Right)-Adjacent. For a point q ∈ P and a set P ′ ⊆ P , the
right-neighbor of q in P ′ is q1, where q1 = argminq′∈P ′{x(q′) : x(q′) > x(q)}. The left-neighbor
of q in P ′ is defined similarly, i.e., q0 is the left-neighbor of q, where q0 = argmaxq′∈P ′{x(q′) :
x(q′) < x(q)}. Note that being a left- or right-neighbor is a geometric notion, and not related
to the support graph we construct. We use the term left-adjacent to refer to the neighbors of
q in a plane graph G that lie to the left of q. The term right-adjacent is defined analogously.

4 Algorithm

In this section, we present an algorithm to compute a planar support for the hypergraph
defined by points and non-piercing axis-parallel rectangles in R2: perform a left-to-right
vertical line sweep and at each input point encountered, add all possible valid Delaunay edges
to previous points. The algorithm, presented as Algorithm 1, draws edges having shapes
in { , }. We prove correctness of Algorithm 1 in Section 4.1, and show how it can be
implemented to run in O(n log2 n + (n + m) log m)) time in Section 4.2.

Algorithm 1 The algorithm outputs a graph G on P embedded in R2, whose edges are
valid Delaunay edges of type { , }. Replacing each Delaunay edge {p, q} by the diagonal
of R(pq) yields a plane embedding of G.

Input: A set P of points, and a set R of non-piercing axis-parallel rectangles in R2.
Output: Embedded Planar Support G = (P, E)
Order P in increasing order of x-coordinates: (p1, . . . , pn)
E = ∅
for each point pi in sorted order, i ∈ {2, 3, . . . , n} do

E = E ∪ {eij = pipj | j < i, and eij is a valid Delaunay edge.}
end

4.1 Correctness
In this section, we show that the graph G constructed on P by Algorithm 1 is a support graph
for the rectangles in R, and this is sufficient as planarity follows directly by construction.
The proof is technical, and we start with some necessary notation.

For a rectangle R, we denote the y-coordinates of the lower and upper horizontal sides
by y−(R) and y+(R), respectively. Similarly, x−(R) and x+(R) denote respectively the
x-coordinates of the left and right vertical sides. We denote the vertical line through any
point p by ℓp.

We use Piece(R, H) to denote the rectangle R ∩ H for a halfplane H defined by a
vertical line. We abuse notation and use Piece(R, p) to denote the rectangle R ∩H−(ℓp),
the intersection of R with the left half-space defined by the vertical line through the point p.

We also use the notation R[x−, x+] to denote the sub-rectangle of rectangle R, that lies
between x-coordinates x− and x+. Similarly, we use R[y−, y+] to denote the sub-rectangle
of R that lies between the y-coordinates y− and y+.

ISAAC 2024

53:6 A Fast Algorithm for Computing a Planar Support for Non-Piercing Rectangles

To avoid boundary conditions in the definitions that follow, we add two rectangles:
Rtop above all rectangles in R, and Rbot below all rectangles in R, that is y−(Rtop) >

maxR∈R y+(R), and y+(Rbot) < minR∈R y−(R). The rectangles Rtop, and Rbot span the
width of all rectangles, i.e., x−(Rtop) = x−(Rbot) < minR∈R x−(R), and x+(Rtop) =
x+(Rbot) > maxR∈R x+(R). We add two points Ptop = {p+

1 , p+
2 } to the interior of Rtop, and

two points Pbot = {p−
1 , p−

2 } to the interior of Rbot, such that x(p+
1) = x(p−

1) < minp∈P x(p),
and x(p+

2) = x(p−
2) > maxp∈P x(p). Let R′ = R ∪ {Rtop, Rbot}, and P ′ = P ∪ Ptop ∪ Pbot.

For ease of notation, we simply use R and P to denote R′ and P ′ respectively, and implicitly
assume the existence of Rtop, Rbot, Ptop and Pbot.

For a vertical segment s, a rectangle R ∈ R′ is said to be active at s if it is either discretely
pierced by s i.e., R \ s is not connected and each of the two components contains a point
of P , or there is a point of P ∩ s in R. We denote the set of all active rectangles at s by
Active(s). For a point p ∈ P ∩ s, we define Contain(s, p) to be the set of rectangles in
Active(s) that contains the point p. We define Above(s, p) to be the set of rectangles in
Active(s) that lie strictly above p, i.e., Above(s, p) = {R ∈ Active(s) : y−(R) > y(p)}.
Similarly, Below(s, p) = {R ∈ Active(s) : y+(R) < y(p)}. It follows that for any point
p ∈ s, Active(s) = Contain(s, p) ⊔Above(s, p) ⊔Below(s, p), where ⊔ denotes disjoint
union.

Note that for the vertical line ℓp through p ∈ P , Active(ℓp) ̸= ∅, as Active(ℓp)
contains the rectangles Rtop and Rbot. Similarly, Above(ℓp, p) ̸= ∅ and Below(ℓp, p) ̸= ∅.
Abusing notations slightly, we write Active(p) instead of Active(ℓp), and likewise with
Contain(·), Above(·) and Below(·).

For a point p ∈ P , we now introduce the notion of barriers. Any active rectangle R′

in Above(p) prevents a valid Delaunay edge incident on p from being incident to a point
to the left of p above y+(R′), as such an edge would discretely pierce R′. Hence, among
all rectangles R′ ∈ Above(p), the one with lowest y+(R′) is called the upper barrier at p,
denoted Ub(p). Thus, Ub(p) = argminR′∈Above(p) y+(R′).

Similarly, we define the lower barrier of p, Lb(p) = argmaxR′∈Below(p) y−(R′).
Note that Ub(p) and Lb(p) exist for any p ∈ P since Above(p) and Below(p) are

non-empty.
While the rectangles in R′ are non-piercing, a rectangle R′ ∈ Active(p) can be discretely

pierced by Piece(R, p). We thus define the upper piercing barrier Upb(R, p) as the rectangle
R′ ∈ Above(p) with the lowest y+(R′) that is pierced by Piece(R, p), and we define the
lower piercing barrier Lpb(R, p) analogously. That is,

Upb(R, p) = argmin
R′∈Above(p)

Piece(R,p) pierces R′

y+(R′)
and

Lpb(R, p) = argmax
R′∈Below(p)

Piece(R,p) pierces R′

y−(R′)

For a point p ∈ P and a rectangle R ∈ Contain(p), if Upb(R, p) or Lpb(R, p) exist, then
the horizontal line containing y+(Upb(R, p)) together with the horizontal line containing
y−(Lpb(R, p)) naturally split Piece(R, p) into at most three sub-rectangles called slabs.
The point p lies in exactly one of these slabs, denoted Slab(R, p). Thus, Slab(R, p) is the
sub-rectangle of R whose left and right-vertical sides are respectively defined by x−(R) and
ℓp, and the upper and lower sides are respectively defined by

y+(Slab(R, p)) =
{

y+(Upb(R, p)), if Upb(R, p) exists
y+(R), otherwise

and similarly,

y−(Slab(R, p)) =
{

y−(Lpb(R, p)), if Lpb(R, p) exists
y−(R), otherwise

A. Pal, R. Raman, S. Ray, and K. Singh 53:7

p

Ub(p)

Upb(R, p)

Lb(p)

Lpb(R, p)

lp
R

Subslab(R, p)

Slab(R, p)

Piece(R, p)

Figure 1 The figure above shows Ub(p), Lb(p), and the upper and lower piercing barriers
Lpb(R, p) and Upb(R, p) of Piece(R, p). The slab Slab(R, p) containing p defined by Upb(R, p)
and Lpb(R, p) is shaded. The dark grey part shows the Subslab(R, p).

By definition, for a point p and R ∈ Contain(p), if Upb(R, p) exists, then y+(Upb(R, p))
≥ y+(Ub(p)). Similarly, if Lpb(R, p) exists, then y−(Lpb(R, p)) ≤ y−(Lb(p)). Thus,
y+(Ub(p)) and y−(Lb(p)) together split Slab(R, p) further into at most 3 sub-rectangles
called sub-slabs whose vertical sides coincide with the vertical sides of Slab(R, p), and the
horizontal sides are defined by y+(Ub(p)) and y−(Lb(p)). Let Subslab(R, p) denote the
sub-slab containing p. Figure 1 illustrates the notions defined thus far. Note that the
left-adjacent vertices of p in G that are contained in R, only lie in Subslab(R, p).

Proof Strategy. To prove that the graph G constructed by Algorithm 1 is a support for R,
we proceed in two steps. First (and the part that requires most of the work) we show that
for each R ∈ R and p ∈ P ∩ R, the subgraph of G induced by the points in Slab(R, p) is
connected. Second, we show that if p is the rightmost point in R, then Slab(R, p) contains
all points in R ∩ P which, by the first part, is connected.

When processing a point p, Algorithm 1 only adds valid Delaunay edges from p to points
to its left. That is, we only add edges to a subset of points in Subslab(R, p). To show that
Slab(R, p) is connected, one approach could be to show that the Slab(R, p) is covered by
sub-slabs defined by points in Slab(R, p), adjacent sub-slabs share a point of P , and that
points in a sub-slab induce a connected subgraph. Unfortunately, this is not true, and we
require a finer partition of a slab. We proceed as follows: First, we define a sequence of
sub-rectangles of Slab(R, p) called strips, denoted Strip(R, p, i) for i ∈ {−t, . . . , k}, where
the strips that lie above p have positive indices, the strips that lie below p have negative
indices, and the unique strip that contains p has index 0. Further, each strip shares its vertical
sides with Slab(R, p). In the following, since R and p are fixed, we refer to Strip(R, p, i) as
Stripi. We define the strips so that they satisfy the following conditions:

(s-i) Each strip is contained in the slab, i.e, Stripi ⊆ Slab(R, p) for each i ∈ {−t, . . . , k}.
(s-ii) The union of strips cover the slab, i.e., Slab(R, p) ⊆ ∪k

i=−tStripi, and
(s-iii) Consecutive strips contain a point of P in their intersection, i.e., Stripi ∩Stripi−1 ∩

P ̸= ∅ for all i ∈ {−t + 1, . . . , k}. Consequently, each strip contains a point of P .

In order to prove that Slab(R, p) is connected, we describe below a strategy that does
not quite work but, as we show later, can be fixed.

Let Stripi ∩ P = Pi. By Condition (s-iii), Pi ̸= ∅ for any i ∈ {−t, . . . , k}. For a
strip Stripi, let pi denote the rightmost point in it. Let us assume for now that for each
i ∈ {−t, . . . , k}, and each point q ∈ Pi, there is a path from q to pi that lies entirely

ISAAC 2024

53:8 A Fast Algorithm for Computing a Planar Support for Non-Piercing Rectangles

in Stripi.9 Now, consider an arbitrary point q ∈ Slab(R, p). By Condition (s-ii) each
point in P ∩ Slab(R, p) is contained in at least one strip. Therefore, q ∈ Stripi for some
i ∈ {−t, . . . , k}. By our assumption, there is a path π1

i from q to pi that lies entirely in
Stripi. If i ≥ 0 (a symmetric argument works when i < 0), since Condition (s-iii) implies
consecutive strips intersect at a point in P , there is a path π2

i from pi to a point q′ ∈ Pi∩Pi−1
that lies entirely in Stripi. Again, by our assumption, there is a path π1

i−1 from q′ to pi−1
that lies entirely in Stripi−1. Repeating the argument above with i− 1, i− 2, . . ., until i = 0,
and concatenating the paths π1

i , π2
i , π1

i−1, . . ., we obtain a path π from q to p, each sub-path
of which is a path from a point in a strip to the rightmost point in that strip such that each
point in the path lies entirely in the strip. By Condition (s-i), Stripi ⊆ Slab(R, p) for each
i ∈ {−t, . . . , k}. Therefore, π lies entirely in Slab(R, p). Since q was arbitrary, this implies
that Slab(R, p) is connected.

Consider a slab Slab(R, p) corresponding to a rectangle R ∈ R and a point p ∈ P ∩R.
The strips corresponding to Slab(R, p) are defined as follows: Let s denote the open segment
of ℓp between p and y+(Slab(R, p)) of ℓp, the vertical line through p. Let Rs = (R0, . . . , Rh)
be the rectangles in Active(s) ordered by their upper sides i.e., y+(Ri) < y+(Rj), for
0 ≤ i < j ≤ h. Similarly, let s′ denote the open segment of ℓp between p and y−(Slab(R, p))
and let Rs′ = (R′

0, . . . , R′
h′) denote the rectangles in Active(s′) ordered by their lower sides

y−(R′
i) > y−(R′

j) for 0 ≤ i < j ≤ h′.
We define Strip0 = Slab(R, p)[y−(R′

0), y+(R0)], if Active(s) ̸= ∅ and Active(s′) ̸= ∅.
If Active(s) = ∅, we set y+(Strip0) = y+(Slab(R, p)). Similarly, if Active(s′) = ∅, we set
y−(Strip0) = y−(Slab(R, p)). We set p0 = p. Having defined Strip0, we set Rs = Rs \R0
and Rs′ = Rs′ \R′

0.

Strip2

p2

p

R2

Figure 2 The figure shows the construction of the strips Strip0, Strip1 and Strip2. The vertical
line segment through pi, i ∈ {1, 2} shows that pi is the rightmost point among the points in the
strip i.

For i > 0, having constructed Stripj for j = 0, . . . , i − 1, we do the following while
Rs ≠ ∅: Let Si = argminR′∈Rs

y−(R′), and let y− = y−(Si). Let Ri = argmin{y+(R′) :
R′ ∈ Rs : y−(R′) > y−}, and let y+ = min{y+(Slab(R, p)), y+(Ri)}. Set y−(Stripi) = y−
and y+(Stripi) = y+. Let pi = argmax{x(p′) : p′ ∈ P ∩ Slab(R, p) : y− < y(p′) < y+}.
Note that pi exists since Si ∈ Active(s). Set Rs = Rs \ {R′ : y−(R′) < y−(Ri)}.

For i < 0, the construction is symmetric. Having constructed Strip(R, p, j) for j =
0,−1, . . . ,−i + 1, we do the following until Rs′ = ∅. Let S′

i = argmaxR′∈Rs′ y+(R′),
and let y+ = y+(S′

i). Let R′
i = argmax{y−(R′) : R′ ∈ Rs′ , y+(R′) < y+}. Let y− =

max{y−(R′
i), y−(Slab(R, p))}. Set y−(Stripi) = y− and y+(Stripi) = y+. Let pi =

argmax{x(p′) : p′ ∈ P ∩ Slab(R, p), y− < y(p′) < y+}. Again, pi exists since S′
i ∈

Active(s′). Set Rs′ = Rs′ \ {R′ ∈ Rs′ : y+(R′) > y+(R′
i)}. Figure 2 illustrates the

construction of the strips.

9 This assumption is incorrect but will be remedied later.

A. Pal, R. Raman, S. Ray, and K. Singh 53:9

▶ Proposition 1. For i ∈ {−t, . . . , k},

y−(Lb(pi)) ≤ y−(Stripi) < y+(Stripi) ≤ y+(Ub(pi))

Proof. Fix i ∈ {−t, . . . , k} and assume i ≥ 0. For i < 0, the proof is symmetric. Since
pi ∈ Stripi and by the definition of the lower barrier, y+(Lb(pi)) < y(pi) < y+(Stripi).
If y−(Lb(pi)) > y−(Stripi), since Lb(pi) ∈ Rs and y+(Stripi) ≤ min{y+(R′) ∈ Rs :
R′ ∈ Rs and y−(R′) > y−(Stripi)}, it implies y+(Stripi) ≤ y+(Lb(pi)), contradicting
pi ∈ Stripi.

Now we argue about Ub(pi). If y+(Ub(pi)) > y+(Slab(R, p)), since y+(Slab(R, p)) ≥
y+(Stripi), we have y+(Ub(pi)) ≥ y+(Stripi). Otherwise, we have Ub(pi) ∈ Rs. Since
pi ∈ Stripi and by definition of the upper barrier, we have y−(Ub(pi)) > y(pi) > y−(Stripi).
Since y+(Stripi) ≤ min{y+(R′) : R′ ∈ Rs and y−(R′) > y−(Stripi)}, it follows that
y+(Stripi) ≤ y+(Ub(pi)). ◀

▶ Lemma 2. The strips constructed as above satisfy the following conditions: (i) Stripi ⊆
Slab(R, p) for each i ∈ {−t, . . . , k}. (ii) Slab(R, p) = ∪k

i=−tStripi, and (iii) Stripi ∩
Stripi−1 ∩ P ̸= ∅ for all i ∈ {−t + 1, . . . , k}.

Proof. Item (i) and (ii) follow directly by construction. For (iii), note that adjacent strips
contain a piece of an active rectangle and hence their intersection contains a point of P . ◀

Unfortunately, our assumption that every point in a strip has a path to its rightmost
point in the strip is not correct. To see this, consider a strip that is pierced by a rectangle
R′, whose intersection with the strip does not contain a point of P . Therefore, a point in the
strip that lies to the left of R′ cannot have a path to pi that lies in the strip unless some of
its edge is allowed to pierce R′. In order to remedy this situation, we introduce the notion of
a corridor. A corridor corresponding to a strip is a region of Slab(R, p) that contains all
points in the strip, and such that each point in the strip has a path to the rightmost point in
it that lies entirely in the corridor. Since each corridor lies in Slab(R, p), the proof strategy
can be suitably modified to show that Slab(R, p) is connected.

We now define the corridors associated with each strip. Recall that G = (P, E) is the
graph constructed by Algorithm 1. For a point q ∈ P , recall that the neighbors of q in G that
lie to its left are called its left-adjacent points. If q lies on a path π, and q′ is the left-adjacent
point of q on π, then we say that q′ is left-adjacent to q on π. We start with the following
proposition that will be useful in constructing the corridors.

▶ Proposition 3. For a point q ∈ P , if (q1, . . . , qr, qr+1, . . . , qs) is the sequence of its left-
adjacent points in G s.t. y(q1) > . . . > y(qr) > y(q) and y(qr+1) < . . . < y(qs) < y(q). Then,
for 1 ≤ i < j ≤ r, x(qi) > x(qj), and for r + 1 ≤ i < j ≤ s, x(qi) < x(qj).

Proof. This follows directly from the fact that each edge in G is Delaunay. ◀

For a strip Stripi, we define its corresponding corridor Corridori as follows: The
corridor is the region of Slab(R, p) bounded by two paths: an upper path πu

i , and a lower
path πℓ

i , defined as follows.
The upper path πu

i = (q0, q1, q2, . . . ,) is constructed by starting with j = 0, q0 = pi, and
repeating (1) set qj+1 ← q′ where q′ has the highest y(q′) among the left-adjacent points
of qj . (2) j ← j + 1. We stop when we cannot find such a q′ for the current qj in G that
lies in Slab(R, p), where we complete the path by following the edge to the left-adjacent
vertex qj+1 of qj with highest y-coordinate. Thus, the last vertex of πu

i possibly does not lie
in Slab(R, p).

ISAAC 2024

53:10 A Fast Algorithm for Computing a Planar Support for Non-Piercing Rectangles

The lower path πℓ
i = (q′

0, . . . ,) is constructed similarly. For j = 0, set q′
0 = pi, and

repeating (1) set q′
j+1 ← q′, where q′ has the lowest y(q′) among the left-adjacent points

of q′
j . We stop when we cannot find such a q′ in Slab(R, p) for the current q′

j , where we
complete the path by following the edge from q′

j its left-adjacent vertex q′
j+1 with smallest

y-coordinate. Thus, the last vertex of πℓ
i possibly does not lie in Slab(R, p).

Corridori is the region of Slab(R, p) that lies between the upper and lower paths
πu

i and πℓ
i . Figure 3 shows a corridor corresponding to a strip. We start with some basic

observations about the corridors thus constructed.

Stripi

Corridori

Slab(R, p)

pi

π
ℓ
i

Figure 3 The figure above shows the strip Stripi, the slab Slab(R, p) in grey, and the corridor
Corridori as the region shaded in red between πu

i and πℓ
i .

▶ Proposition 4. For i ∈ {−t, . . . , k}, πu
i and πℓ

i are x-monotone.

Proof. This follows directly by construction since at each step we augment the path by
adding to it, the left-adjacent neighbor to the current vertex of the path. ◀

The graph G constructed by Algorithm 1 do not cross. We say that two paths π1 and
π2 in G cross if there is an x-coordinate at which π1 lies above π2, and an x-coordinate at
which π2 lies above π1.

▶ Proposition 5. For i ∈ {−t, . . . , k}, πl
i does not lie above πu

i , and πℓ
i and πu

i do not cross.

Proof. Let πu
i = (q0, q1, . . . , qr) and πℓ

i = (q′
0, . . . , q′

s), where q0 = q′
0 = pi. Since q1 is the

left-adjacent of pi in Slab(R, p) with highest y-coordinate and q′
1 is the left-adjacent point

of pi with lowest y-coordinate, y(q′
1) ≤ y(q1). Thus, πℓ

i does not lie above πu
i at x(pi). If at

some x-coordinate x′, πℓ
i lies above πu

i , then the paths must have crossed to the right of x′.
Let qi = q′

j = q be a point of P common to πu
i and πℓ

i lying to the left of pi. Again,
since qi+1 = arg max{y(q′′) : q′′ ∈ Slab(R, p) ∩ P, x(q′′) < x(q), {q, q′′} ∈ E(G)}, and
q′

j+1 = arg min{y(q′′) : q′′ ∈ Slab(R, p) ∩ P, x(q′′) < x(q), {q, q′′} ∈ E(G)}, it follows that
y(q′

j+1) ≤ y(qi+1). Hence, the paths do not cross, and since πℓ
i does not lie above πu

i at x(pi),
it does not do so at any x-coordinate to the left of pi either. ◀

Recall that the left-neighbor of a point q in a set P ′ is the point p′ = argmaxp′′∈P ′ x(p′′) <

x(q). The right-neighbor is defined similarly. Note that the left and right neighbors are
defined geometrically, and they may not be adjacent to q in the graph G. For a point q ∈ P

and i ∈ {−t, . . . , k}, we let r0 and r1 denote respectively, the left- and right-neighbors of q on
πu

i . Similarly, we let r′
0 and r′

1 denote respectively, the left- and right-neighbors of q on πℓ
i .

▶ Proposition 6. For i ∈ {−t, . . . , k} and q ∈ P , if q lies above πu
i , then y(q) >

max{y(r0), y(r1)}. Similarly, if q lies below πℓ
i , then y(q) < min{y(r′

0), y(r′
1)}.

A. Pal, R. Raman, S. Ray, and K. Singh 53:11

Proof. We assume q lies above πu
i . The other case follows by an analogous argument. By

Proposition 4, since πu
i is x-monotone, it follows that r0 and r1 are consecutive along πu

i , and
thus, r0r1 is a valid Delaunay edge in G. If either y(r0) > y(q) > y(r1), or y(r0) < y(q) <

y(r1), then it contradicts the fact that r0r1 is Delaunay. Hence, y(q) > max{y(r0), y(r1)} as
q lies above πu

i . ◀

We now show that the corridors constructed satisfy the required conditions. The first
condition below, follows directly from construction.

▶ Lemma 7. For i ∈ {−t, . . . , k}, Corridori ⊆ Slab(R, p).

Proof. Follows directly by construction. ◀

Next, we show that for each strip, its corresponding corridor contains all its points, that
is all points in P ∩ Stripi are contained between the upper and lower paths of Corridori.
Before we do that, we need the following two technical statements.

▶ Proposition 8. Let q, q′ ∈ P , with x(q) < x(q′) s.t. qq′ is Delaunay. If qq′ ̸∈ E(G),
then either (i) h(qq′) pierces a rectangle, or crosses an existing edge, or (ii) v(qq′) pierces a
rectangle. In particular, v(qq′) does not cross an existing edge.

Proof. The points in P are processed by Algorithm 1 in increasing order of their x-coordinates,
and when a point is being processed, we add edges of type { , } to points to its left.
Therefore, while processing q′, no edge from points of P to the right of q′ have been added.
Hence, v(qq′) does cross an existing edge. ◀

▶ Lemma 9. For i ∈ {−t, . . . , k}, let q ∈ Slab(R, p) ∩ P s.t. q lies above πu
i . Let q1

be the right-neighbor of q on πu
i . If qq1 is Delaunay but not valid, then v(qq1) pierces a

rectangle. In particular, h(qq1) does not pierce a rectangle or cross an edge. Similarly, let
q′ ∈ Slab(R, p) ∩ P s.t. q′ lies below πℓ

i , q′
1 is the right-neighbor of q′ on πℓ

i . If q′q′
1 is

Delaunay but not valid, then v(q′q′
1) pierces a rectangle. In particular h(q′q′

1) does not pierce
a rectangle or cross an edge.

Proof. We prove the case when q lies above πu
i . The other case follows by an analogous

argument. Since qq1 is not valid, either the horizontal segment of qq1 pierces a rectangle, or
crosses an existing edge; or v(qq1) pierces a rectangle since by Proposition 8, v(qq1) does not
cross an existing edge.

Let q0 be left-adjacent to q1 on πu
i . By Proposition 6, y(q) > max{y(q0), y(q1)}. Hence

qq1 is of type . Suppose h(qq1) pierces a rectangle or crosses an edge of type . Then,
there is a point z that lies below the h(qq1). But, z cannot lie below the h(q0q1), as that
contradicts the fact that q0q1 is valid. Hence, z lies above h(q0q1). This implies that z lies
either in R(q0q1) (if y(q0) < y(q1)), or z lies in R(qq1). If z ∈ R(q0q1), it contradicts the
fact that q0q1 is Delaunay. Also, z ̸∈ R(qq1), as qq1 is Delaunay by assumption. Therefore,
h(qq1) does not pierce a rectangle, or crosses an edge of type . If h(qq1) crossed an edge e

of type , then either qq1 is not Delaunay, violating our assumption, or e is not Delaunay,
a contradiction. ◀

▶ Lemma 10. For i ∈ {−t, . . . , k}, Pi ⊆ Corridori, where Pi = P ∩ Stripi.

ISAAC 2024

53:12 A Fast Algorithm for Computing a Planar Support for Non-Piercing Rectangles

piq

R′

q1
π
u
i

(a) R′ cannot be empty if pi is
above R′.

pi

q

R′

q1
π
u
i

ub(pi)

(b) If R′ does not contain a point
of P between x(q) and x+(R),
then y(q) > y+(Stripi).

π
u
i

(c) Since qq1 and qq2 are Delaunay,
then R2 pierces v(qq1).

Figure 4 The three cases in the proof showing that Pi ⊆ Corridori.

Proof. Suppose Pi \ Corridori ̸= ∅. By Proposition 5, any such point either lies above
πu

i or below πℓ
i . We assume the former. The latter follows by an analogous argument. Let

P ′
i = {q ∈ Slab(R, p) : y(q) < y+(Stripi) and q lies above πu

i }. It suffices to show that
P ′

i = ∅. For the sake of contradiction, suppose P ′
i ̸= ∅.

We impose the following partial order on Pi: for a, a′ ∈ Pi, a ≺ a′ ⇔ x(a) > x(a′) ∧ y(a) <

y(a′). Let q be a minimal element in P ′
i according to ≺. In the following, when we refer to a

minimal element, we impicitly assume this partial order.
We show that there is a valid Delaunay edge between q and a point q′ on πu

i . By
assumption, q lies above πu

i . Let q0 and q1 denote, respectively, the left- and right-neighbors
of q on πu

i .
Since q is minimal in P ′

i , qq1 is Delaunay. By Proposition 6, it follows that y(q) > y(q0)
and y(q) > y(q1). Since q is not left-adjacent to q1 on πu

i , it implies qq1 is not valid.
Since qq1 is Delaunay but not valid, by Lemma 9, v(qq1) pierces a rectangle. Let R′ denote

the set of rectangles pierced by qq1. Suppose ∃R′ ∈ R′ s.t. R′[x(q1), min{x(p), x+(R′)}]∩P =
∅. Then, we call R′ a bad rectangle. Otherwise, we say that R′ is good. Now we split the
proof into two cases depending on whether R′ contains a bad rectangle or not. In the two
cases below, we use Proposition 4 that πu

i is x-monotone.

Case 1. R′ contains a bad rectangle. Let R′ ∈ R′ be a bad rectangle. First, observe
that x+(R′) > x(p) as otherwise, R′ is not pierced by v(qq1). Now, suppose y(pi) > y+(R′),
where pi is the rightmost point in Stripi. We have that x(q1) < x(pi), both pi and q1 lie
on πu

i and, πu
i is x-monotone. But, this implies πu

i pierces R′. But this is impossible as by
construction πu

i consists of valid Delaunay edges. Hence, since R′ is bad, we can assume that
y(pi) < y−(R′). But the definition of the upper barrier implies that y+(R′) ≥ y+(Ub(pi)).
Since v(qq1) pierces R′, it implies y(q) > y+(R′), and hence y(q) > y+(Ub(pi)). But, this
contradicts the assumption that q ∈ Stripi, since by Proposition 1, y+(Ub(pi)) ≥ y+(Stripi)
and hence y(q) > y+(Stripi).

Case 2. All rectangles in R′ are good. Let R1 = arg max{y−(R′) : R′ ∈ R′}. Let q2
be the leftmost point in R1 s.t. x(q2) > x(q1). Since q2 lies to the right, and below q,
q2 ≺ q. Since q is a minimal element in P ′

i , it implies that q2 lies on or below πu
i . We

claim that q2 cannot lie below πu
i . Suppose it did. Let q′

2 be the left-neighbor of q2 on πu
i .

Then, x(q′
2) < x(q2). Since q2 is the leftmost point of R1 to the right of v(qq1), then either

y(q′
2) < y−(R1), or y(q′

2) > y+(R1). However, in either case, we obtain that πu
i must cross

R1 between q2 and q1, which implies that πu
i pierces R1, as πu

i is x-monotone, and the edges
in πu

i are of the form { , }, a contradiction.
Since q is minimal, qq2 is Delaunay. By Lemma 9, the only reason qq2 is not valid is that

v(qq2) pierces a rectangle. But, any such rectangle R2 is also pierced by v(qq1), as qq2 is
Delaunay. But, this implies y−(R2) > y−(R1), contradicting the choice of R1. Therefore,
qq2 is a valid Delaunay edge. Now, the only reason that q is not the left-adjacent point of q2

A. Pal, R. Raman, S. Ray, and K. Singh 53:13

on πu
i then, is that q′

2, the left-adjacent point of q2 on πu
i lies in Slab(R, p), but above q,

i.e., y(q′
2) > y(q), as the construction of πu

i dictates that we choose the left-adjacent point
with highest y-coordinate that lies in Slab(R, p). Showing that this leads to a contradiction
completes the proof.

So suppose y(q′
2) > y(q), then y(q′

2) > y+(R1). Further, by Proposition 3, x(q′
2) > x(q).

Again this implies the x-monotone curve πu
i cannot contain both q′

2 and q1 without piercing
R1. Hence, y(q′

2) < y−(R1) < y(q), but this contradicts the choice of q′
2 as the left-adjacent

point of q2 on πu
i since qq2 is a valid Delaunay edge with y(q′

2) < y(q2) < y(q). See Figure 4
for the different cases in this proof. ◀

The key property of a corridor is that if the upper or lower path of a corridor crosses
a rectangle R′, then there must be a point of R′ ∩ P that lies on that path of the corridor.
Using this, we can show that any point in the strip has an adjacent point to its right in G

that lies in the corridor. This implies that every point in a strip has a path to the rightmost
point in the strip that lies entirely in its corresponding corridor.

▶ Lemma 11. For each q ∈ Corridori, there is a path π(q, pi) between q and pi that lies
in Corridori, where pi ∈ Pi is the rightmost point in Stripi.

Proof. If q lies on the upper path πu
i or the lower path πℓ

i defining Corridori, the lemma is
immediate. So we can assume by Proposition 5 that q lies below πu

i , and above πℓ
i . Suppose

the lemma is false. Let q be the rightmost point of Corridori that does not have a path to
pi lying in Corridori. To arrive at a contradiction, it is enough to show that q is adjacent
to a point q′ ∈ Corridori that lies to the right of q.

Starting from ℓq, the vertical line through q, sweep to the right until the first point r

that lies on both πu
i and πℓ

i . Such a point exists since pi lies on both πu
i and πℓ

i . Let Q′
i

denote the set of points in Corridori whose x-coordinates lie between x(q) and x(r). This
set is non-empty as it contains q and r. Hence, either Q+

i = {q′ ∈ Q′
i : y(q′) > y(q)} ≠ ∅, or

Q−
i = {q′ ∈ Q′

i : y(q′) < y(q)} ≠ ∅. If both are non-empty, let Qi denote the set that contains
a point with smallest x-coordinate. Otherwise, we let Qi denote the unique non-empty set.
Assume Qi = Q+

i . An analgous argument holds when Qi = Q−
i .

Define a partial order on Qi, where for a, b ∈ Qi, a ≺ b⇔ x(a) < x(b) and y(a) < y(b).
Let Qmin

i = (q1, . . . , qt) denote the sequence of minimal elements of Qi ordered linearly such
that y(qk) > y(qj) for k < j. It follows that x(qk) < x(qj) for k < j. Observe that qqi is
Delaunay for i = 1, . . . , t by the minimality of qi. Our goal is to show that qqi is a valid
Delaunay edge for some i ∈ {1, . . . , t}. We start with the following claim that v(qqt) and
h(qq1) do not pierce a rectangle in R, or cross an edge of G.

▷ Claim 12. h(qq1) does not pierce a rectangle in R or cross an edge of G, and v(qqt) does
not pierce a rectangle in R or cross an edge of G.

Proof. Suppose h(qq1) pierced a rectangle R′. Since πu
i consists of valid Delaunay edges,

and the choice of Qi, R′ contains a point a that lies in Corridori. Since h(qq1) pierces R′,
x(q) < x(a) < x(q1). If y(a) < y(q1), then it contradicts the fact that q1 is minimal, and if
y(a) > y(q1), it contradicts the fact that q1 is the minimal element with highest y-coordinate.
A similar argument shows that h(qq1) does not cross an edge of G.

If v(qqt) pierced a rectangle R′ ∈ R, then R′ has a point to the right of v(qqt). Further,
by Proposition 4, πu

i and πℓ
i are x-monotone paths and by construction, they consist of valid

Delaunay edges meeting at r. If r = qt and v(qqt) pierced a rectangle, since qqt is Delaunay,
and the edges are of type { , }, it implies that the left-adjacent point of r on πu

i or πℓ
i is

not a valid Delaunay edge. Hence, we can assume qt ̸= r. Again, since the edges of πu
i and

ISAAC 2024

53:14 A Fast Algorithm for Computing a Planar Support for Non-Piercing Rectangles

πℓ
i are valid Delaunay edges, it implies that R′ has a point a s.t. x(qt) < x(a) ≤ x(r), and a

lies in Corridori. Since v(qqt) pierces R′, y(a) < y(qt). But this contradicts the fact that
qt is the point in Qmin

i with the smallest y-coordinate. Therefore, v(qqt) can not pierce any
rectangle. Since qqt is Delaunay, by Proposition 8, v(qqt) does not cross an edge of G. ◁

We now define a point x1 on the x-axis and a point y1 on the y-axis as follows:

x1 = min {{x+(R′) : R′ pierced by h(qqt)}, {v(e) : e crosses h(qqt)}}
y1 = min {{y+(R′) : R′ pierced by v(qq1)}, {h(e) : e crosses v(qq1)}}

By Claim 12 and the assumption that qqt and qq1 are not valid edges, it follows that x1
and y1 exist. We argue when x1 and y1 correspond to x+(R′) and y+(R′′), respectively for
rectangles R′, R′′ ∈ R. If they were instead defined by the vertical/horizontal side of edges,
the arguments are similar.

q1

q2

q′

qt

v(qqt)

h(qq1)

R′

R′′

x1 = x+(R
′)

y1 = y+(R
′′)

π
u
i

q

z

Figure 5 The edge qq′ is a valid Delaunay edge.

Observe that x−(R′′) < x(q), while x−(R′) > x(q), and y−(R′′) > y(q) and y−(R′) < y(q).
Now, from the fact that the rectangles are non-piercing, it implies that either x+(R′′) < x1
or y+(R′) < y1. Suppose wlog, the former is true. Since R′ is pierced by h(qqt) and πu

i

consists of valid Delaunay edges, there are points in R′ that lie in Corridori, and these
points lie below y1.

Let z denote the intersection of the vertical line through x1 and the hoizontal line through
y1. By the argument above, the rectangle with diagonal qz contains points of P , and hence
a point q′ ∈ Qmin

i . We claim that qq′ is a valid Delaunay edge. To see this, note that h(qq′)
does not pierce a rectangle in R as such a rectangle contradicts the definition of x1. If v(qq′)
pierced a rectangle, such a rectangle R̃ must have y+(R̃) < y1, as qq′ is Delaunay. This
contradicts the choice of y1. Therefore, qq′ is a valid Delaunay edge. ◀

The lemma below follows the description in the proof strategy at the start of this section.

▶ Lemma 13. For a rectangle R and point p ∈ R, after Algorithm 1 has processed point p,
the points in Slab(R, p) induce a connected subgraph, all of whose edges lie in Slab(R, p).

Proof. Let G[Slab(R, p)] denote the induced subgraph of G on the points in Slab(R, p). By
Condition (ii) of Lemma 2, since Slab(R, p) ⊆ ∪k

i=−tStripi, each point in P ∩ Slab(R, p)
is contained in ∪k

i=−tStripi. If the statement of the lemma does not hold, consider an
extremal strip, i.e., the smallest positive index, or largest negative index of a strip such that it
contains a point q that does not lie in the connected component of G[Slab(R, p)] containing
p. Assume without loss of generality that i ≥ 0. An analogous argument holds if i < 0.
By Lemma 10, q ∈ Corridori, and by Lemma 11, q has a path π1 to pi, the rightmost

A. Pal, R. Raman, S. Ray, and K. Singh 53:15

point in Corridori that lies entirely in Corridori. By Condition (ii) of Lemma 2, there
is a point q′ ∈ Stripi ∩ Stripi−1 ∩ P . By Lemma 10, q′ ∈ Corridori, and by Lemma 11,
there is a path π2 between q′ and pi. Since q′ ∈ Stripi−1, q′ lies in the same connected
component as p in G[Slab(R, p)], and hence there is a path π′ from q′ to p in G[Slab(R, p)].
Concatenating π1, π2 and π′ we obtain a path π from q to p that lies in Slab(R, p). ◀

We now argue that if p is the rightmost point in a rectangle R, then Piece(R, p) consists
of a single slab.

▶ Lemma 14. If p is the last point in R according to the x-coordinates of the points, then
Piece(R, p) consists of a single slab.

Proof. Assume for the sake of contradiction that Upb(R, p) exists. By definition of Upb(R, p),
there are two points a, b ∈ Upb(R, p), such that x(a) < x−(R) < x(p) < x+(R) < x(b), as p

is the last point in R. But this implies Upb(R, p) is pierced by R, a contradiction. Therefore,
Upb(R, p) does not exist. Similarly, Lpb(R, p) does not exist, and hence Piece(R, p) consists
of a single slab. ◀

▶ Theorem 15. Algorithm 1 constructs a planar support.

Proof. By construction, the edges of the graph G constructed by Algorithm 1 are valid
Delaunay edges of type { , }. To obtain a plane embedding, we replace each edge
e = {p, q} by the diagonal of the rectangle R(pq) joining p and q. We call these the diagonal
edges. It is clear that no diagonal edge pierces a rectangle. If two diagonal edges cross, then
it is easy to check that either the corresponding edges cross, or they are not Delaunay. For
a rectangle R ∈ R, let p be the last point in R. Lemma 14 implies that there is only one
slab, namely R, and Lemma 13 implies Slab(R, p) is connected. Since R was arbitrary, this
implies Algorithm 1 constructs a support. ◀

4.2 Implementation
In this section, we show that Algorithm 1 can be implemented to run in O(n log2 n + (m +
n) log m) time with appropriate data structures, where |R| = m, and |P | = n. At any point
in time, our data structure maintains a subset of points that lie to the left of the sweep line ℓ.
It also maintains for each rectangle R intersecting ℓ, the interval [y−(R), y+R] corresponding
to R. When the sweep line arrives at the left side of a rectangle, the corresponding interval
is inserted into the data structure. The interval is removed from the data structure when
the sweep line arrives at the right side of the rectangle. Similarly, whenever we sweep over
a point p, we insert it into the data structure. In addition, we do the following when the
sweep line arrives at a point p:
1. Find the upper and lower barriers at p.
2. Query the data structure to find the set Q of points q which i) lie to the left of p and

between the upper and lower barriers at p (orthogonal range query) so that ii) qp is a
Delaunay edge.

3. We add the edge qp for every q ∈ Q to our planar support. For each edge we add, we
remove the points in the data structure that are occluded by the edges. These are the
points whose y-coordinates lie in the range corresponding to the vertical side of the
L-shape for qp.

Our data structure is implemented by combining three different existing data structures.
For Step 1, we use a balanced binary search tree T u

1 augmented so that it can answer
range minima or maxima queries. For any rectangle R intersecting the sweep line ℓ, let

ISAAC 2024

53:16 A Fast Algorithm for Computing a Planar Support for Non-Piercing Rectangles

(y1, y2) denote the interval corresponding to the projection of R on the y-axis. T u
1 stores the

key-value pair (y1, y2) with y1 as the key and y2 as the value. To find the upper barrier at a
point p = (x, y) we need to find the smallest value associated with keys that are at least x.
If we augment a standard balanced binary search tree so that at each node we also maintain
the smallest value associated with the keys in the subtree rooted at that node, such a query
takes O(log m) time. An analogous search tree T b

1 is used to find the lower barrier at any
point.

To implement Step 2, we use a dynamic data structure T b
2 due to Brodal [10] which

maintains a subset of the points to the left of ℓ and can report points in any query rectangle
Q that are not dominated by any of the other points in time O(log2 n + k) where k is the
number of reported points. We say that a point u is dominated by a point v if both x and y

coordinates of u are smaller than those of v. The data structure also supports insertions or
deletions of points in O(log2 n) time. When the sweep line arrives at a point p, we can use
T b

2 to find all points q that lie to the left of p and below p so that the edge qp is a Delaunay
edge (as qp of shape is Delaunay iff there is no other point in the range below and to
the left of p that dominates q). An analogous data structure T u

2 is used to find the points q

which lie above and to the left of p so that qp (of shape) is Delaunay.

To implement Step 3, we use a dynamic 1D range search data structure T3 which also
stores a subset of the points to the left of ℓ, supports insertions and deletions in O(log n)
time and can report in O(log n + k) time the subset of stored points that lie in a given range
of y-coordinates (corresponding the vertical side of each added edge), where k is the number
of points reported. The points identified are removed from T u

2 , T b
2 and T3.

By the correctness of Algorithm 1 proved in Section 4.1, at any point in time, the current
graph is a support for the set of rectangles that lie completely to the left of the sweep
line. Thus, if the sweep line ℓ is currently at a point p and q is a point to the left of ℓ,
the only rectangles that qp may discretely pierce are those that intersect ℓ. A simple but
important observation is that if qp is Delaunay then qp pierces a rectangle iff the vertical
portion of L-shape forming the edge pq pierces the rectangle. To see this note that the
horizontal portion of the L-shape cannot pierce any rectangle since such a rectangle would
not intersect ℓ. The L-shape also cannot (discretely) pierce a rectangle containing the corner
of the L-shape since then the edge qp would not be a Delaunay edge. Thus, in order to
avoid edges that pierce other rectangles, it suffices to restrict q to lie between the upper and
lower barriers at p. Thus Step 1 above ensures that edges found in Step 2 don’t pierce any
of the rectangles. Similarly, Step 3 ensures that the edges we add in Step 2 don’t intersect
previously added edges.

The overall time taken by the data structures used by Step 1 is O((m + n) log m) since
it takes O(log m) time to insert or delete the key-value pair corresponding to any of the m

rectangles, and it takes O(log m) time to query the data structure for the upper and lower
barriers at any of the n points. The overall time taken by the data structure in Step 2 is
O(n log2 n) since there are most O(n) insert, delete, and query operations, and the total
number of points reported in all the queries together is O(n). The overall time taken by
the data structure in Step 3 is O(n log n) we only add O(n) edges in the algorithm and
the query corresponding to each edge takes O(log n) time. Each of the reported points is
removed from the data structure but since each point is removed only once, the overall time
for such removals is also O(n log n). The overall running time of our algorithm is therefore
O(n log2 n + (m + n) log m).

A. Pal, R. Raman, S. Ray, and K. Singh 53:17

References
1 Emmanuelle Anceaume, Maria Gradinariu, Ajoy Kumar Datta, Gwendal Simon, and Ant-

onino Virgillito. A semantic overlay for self-peer-to-peer publish/subscribe. In 26th IEEE
International Conference on Distributed Computing Systems (ICDCS’06), pages 22–22. IEEE,
2006.

2 Daniel Antunes, Claire Mathieu, and Nabil H. Mustafa. Combinatorics of local search: An
optimal 4-local Hall’s theorem for planar graphs. In 25th Annual European Symposium
on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, pages 8:1–8:13, 2017.
doi:10.4230/LIPICS.ESA.2017.8.

3 Roberto Baldoni, Roberto Beraldi, Vivien Quema, Leonardo Querzoni, and Sara Tucci-
Piergiovanni. Tera: topic-based event routing for peer-to-peer architectures. In Proceedings of
the 2007 inaugural international conference on Distributed event-based systems, pages 2–13,
2007.

4 Roberto Baldoni, Roberto Beraldi, Leonardo Querzoni, and Antonino Virgillito. Efficient
publish/subscribe through a self-organizing broker overlay and its application to SIENA. The
Computer Journal, 50(4):444–459, 2007. doi:10.1093/COMJNL/BXM002.

5 Aniket Basu Roy, Sathish Govindarajan, Rajiv Raman, and Saurabh Ray. Packing and
covering with non-piercing regions. Discrete & Computational Geometry, 2018.

6 Sergey Bereg, Krzysztof Fleszar, Philipp Kindermann, Sergey Pupyrev, Joachim Spoerhase,
and Alexander Wolff. Colored non-crossing Euclidean Steiner forest. In Algorithms and
Computation: 26th International Symposium, ISAAC 2015, Nagoya, Japan, December 9-11,
2015, Proceedings, pages 429–441. Springer, 2015. doi:10.1007/978-3-662-48971-0_37.

7 Sergey Bereg, Minghui Jiang, Boting Yang, and Binhai Zhu. On the red/blue spanning tree
problem. Theoretical computer science, 412(23):2459–2467, 2011. doi:10.1016/J.TCS.2010.
10.038.

8 Ulrik Brandes, Sabine Cornelsen, Barbara Pampel, and Arnaud Sallaberry. Blocks of hy-
pergraphs: applied to hypergraphs and outerplanarity. In Combinatorial Algorithms: 21st
International Workshop, IWOCA 2010, London, UK, July 26-28, 2010, Revised Selected Papers
21, pages 201–211. Springer, 2011. doi:10.1007/978-3-642-19222-7_21.

9 Ulrik Brandes, Sabine Cornelsen, Barbara Pampel, and Arnaud Sallaberry. Path-based
supports for hypergraphs. Journal of Discrete Algorithms, 14:248–261, 2012. doi:10.1016/J.
JDA.2011.12.009.

10 Gerth Stølting Brodal and Konstantinos Tsakalidis. Dynamic planar range maxima queries. In
International Colloquium on Automata, Languages, and Programming, pages 256–267. Springer,
2011. doi:10.1007/978-3-642-22006-7_22.

11 Kevin Buchin, Marc J van Kreveld, Henk Meijer, Bettina Speckmann, and KAB Verbeek. On
planar supports for hypergraphs. Journal of Graph Algorithms and Applications, 15(4):533–549,
2011. doi:10.7155/JGAA.00237.

12 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. Discret. Comput. Geom., 48(2):373–392, 2012. doi:10.1007/
S00454-012-9417-5.

13 Raphaël Chand and Pascal Felber. Semantic peer-to-peer overlays for publish/subscribe
networks. In Euro-Par 2005 Parallel Processing: 11th International Euro-Par Conference,
Lisbon, Portugal, August 30-September 2, 2005. Proceedings 11, pages 1194–1204. Springer,
2005. doi:10.1007/11549468_130.

14 Gregory Chockler, Roie Melamed, Yoav Tock, and Roman Vitenberg. Constructing scalable
overlays for pub-sub with many topics. In Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing, pages 109–118, 2007. doi:10.1145/1281100.
1281118.

15 Vincent Cohen-Addad and Claire Mathieu. Effectiveness of local search for geometric optimiz-
ation. In Proceedings of the Thirty-first International Symposium on Computational Geometry,
SoCG ’15, pages 329–343, Dagstuhl, Germany, 2015. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPICS.SOCG.2015.329.

ISAAC 2024

https://doi.org/10.4230/LIPICS.ESA.2017.8
https://doi.org/10.1093/COMJNL/BXM002
https://doi.org/10.1007/978-3-662-48971-0_37
https://doi.org/10.1016/J.TCS.2010.10.038
https://doi.org/10.1016/J.TCS.2010.10.038
https://doi.org/10.1007/978-3-642-19222-7_21
https://doi.org/10.1016/J.JDA.2011.12.009
https://doi.org/10.1016/J.JDA.2011.12.009
https://doi.org/10.1007/978-3-642-22006-7_22
https://doi.org/10.7155/JGAA.00237
https://doi.org/10.1007/S00454-012-9417-5
https://doi.org/10.1007/S00454-012-9417-5
https://doi.org/10.1007/11549468_130
https://doi.org/10.1145/1281100.1281118
https://doi.org/10.1145/1281100.1281118
https://doi.org/10.4230/LIPICS.SOCG.2015.329

53:18 A Fast Algorithm for Computing a Planar Support for Non-Piercing Rectangles

16 Ding-Zhu Du. An optimization problem on graphs. Discrete applied mathematics, 14(1):101–
104, 1986. doi:10.1016/0166-218X(86)90010-7.

17 Ding-Zhu Du and Dean F Kelley. On complexity of subset interconnection designs. Journal of
Global Optimization, 6(2):193–205, 1995. doi:10.1007/BF01096768.

18 Ding-Zhu Du and Zevi Miller. Matroids and subset interconnection design. SIAM journal on
discrete mathematics, 1(4):416–424, 1988. doi:10.1137/0401042.

19 Frédéric Havet, Dorian Mazauric, Viet-Ha Nguyen, and Rémi Watrigant. Overlaying a
hypergraph with a graph with bounded maximum degree. Discrete Applied Mathematics,
319:394–406, 2022. doi:10.1016/J.DAM.2022.05.022.

20 Jun Hosoda, Juraj Hromkovič, Taisuke Izumi, Hirotaka Ono, Monika Steinová, and Koichi
Wada. On the approximability and hardness of minimum topic connected overlay and its
special instances. Theoretical Computer Science, 429:144–154, 2012. doi:10.1016/J.TCS.
2011.12.033.

21 Ferran Hurtado, Matias Korman, Marc van Kreveld, Maarten Löffler, Vera Sacristán, Akiyoshi
Shioura, Rodrigo I Silveira, Bettina Speckmann, and Takeshi Tokuyama. Colored spanning
graphs for set visualization. Computational Geometry, 68:262–276, 2018. doi:10.1016/J.
COMGEO.2017.06.006.

22 David S Johnson and Henry O Pollak. Hypergraph planarity and the complexity of drawing
Venn diagrams. Journal of graph theory, 11(3):309–325, 1987. doi:10.1002/JGT.3190110306.

23 Ephraim Korach and Michal Stern. The clustering matroid and the optimal clustering tree.
Mathematical Programming, 98:385–414, 2003. doi:10.1007/S10107-003-0410-X.

24 Erik Krohn, Matt Gibson, Gaurav Kanade, and Kasturi Varadarajan. Guarding terrains via
local search. Journal of Computational Geometry, 5(1):168–178, 2014. doi:10.20382/JOCG.
V5I1A9.

25 Nabil H Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete & Computational Geometry, 44(4):883–895, 2010. doi:10.1007/S00454-010-9285-9.

26 Melih Onus and Andréa W Richa. Minimum maximum-degree publish–subscribe overlay
network design. IEEE/ACM Transactions on Networking, 19(5):1331–1343, 2011. doi:
10.1109/TNET.2011.2144999.

27 Rajiv Raman and Saurabh Ray. Constructing planar support for non-piercing regions. Discrete
& Computational Geometry, 64(3):1098–1122, 2020. doi:10.1007/S00454-020-00216-W.

28 Rajiv Raman and Saurabh Ray. On the geometric set multicover problem. Discret. Comput.
Geom., 68(2):566–591, 2022. doi:10.1007/s00454-022-00402-y.

29 Rajiv Raman and Karamjeet Singh. On hypergraph supports, 2024. arXiv:2303.16515.
30 AA Voloshina and VZ Feinberg. Planarity of hypergraphs. In Doklady Akademii Nauk Belarusi,

volume 28, pages 309–311. Akademii Nauk Belarusi F Scorina Pr 66, room 403, Minsk, Byelarus
220072, 1984.

31 TRS Walsh. Hypermaps versus bipartite maps. Journal of Combinatorial Theory, Series B,
18(2):155–163, 1975.

32 Alexander Aleksandrovich Zykov. Hypergraphs. Russian Mathematical Surveys, 29(6):89,
1974.

https://doi.org/10.1016/0166-218X(86)90010-7
https://doi.org/10.1007/BF01096768
https://doi.org/10.1137/0401042
https://doi.org/10.1016/J.DAM.2022.05.022
https://doi.org/10.1016/J.TCS.2011.12.033
https://doi.org/10.1016/J.TCS.2011.12.033
https://doi.org/10.1016/J.COMGEO.2017.06.006
https://doi.org/10.1016/J.COMGEO.2017.06.006
https://doi.org/10.1002/JGT.3190110306
https://doi.org/10.1007/S10107-003-0410-X
https://doi.org/10.20382/JOCG.V5I1A9
https://doi.org/10.20382/JOCG.V5I1A9
https://doi.org/10.1007/S00454-010-9285-9
https://doi.org/10.1109/TNET.2011.2144999
https://doi.org/10.1109/TNET.2011.2144999
https://doi.org/10.1007/S00454-020-00216-W
https://doi.org/10.1007/s00454-022-00402-y
https://arxiv.org/abs/2303.16515

A Dichotomy Theorem for Linear Time
Homomorphism Orbit Counting in Bounded
Degeneracy Graphs
Daniel Paul-Pena #

University of California, Santa Cruz, CA, USA

C. Seshadhri #

University of California, Santa Cruz, CA, USA

Abstract
Counting the number of homomorphisms of a pattern graph H in a large input graph G is a
fundamental problem in computer science. In many applications in databases, bioinformatics, and
network science, we need more than just the total count. We wish to compute, for each vertex
v of G, the number of H-homomorphisms that v participates in. This problem is referred to as
homomorphism orbit counting, as it relates to the orbits of vertices of H under its automorphisms.

Given the need for fast algorithms for this problem, we study when near-linear time algorithms
are possible. A natural restriction is to assume that the input graph G has bounded degeneracy, a
commonly observed property in modern massive networks. Can we characterize the patterns H for
which homomorphism orbit counting can be done in near-linear time?

We discover a dichotomy theorem that resolves this problem. For pattern H, let ℓ be the length
of the longest induced path between any two vertices of the same orbit (under the automorphisms
of H). If ℓ ≤ 5, then H-homomorphism orbit counting can be done in near-linear time for bounded
degeneracy graphs. If ℓ > 5, then (assuming fine-grained complexity conjectures) there is no
near-linear time algorithm for this problem. We build on existing work on dichotomy theorems
for counting the total H-homomorphism count. Surprisingly, there exist (and we characterize)
patterns H for which the total homomorphism count can be computed in near-linear time, but the
corresponding orbit counting problem cannot be done in near-linear time.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Graph algorithms analysis

Keywords and phrases Homomorphism counting, Bounded degeneracy graphs, Fine-grained com-
plexity, Orbit counting, Subgraph counting

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.54

Related Version Full Version: https://arxiv.org/abs/2211.08605

Funding Both authors are supported by NSF CCF-1740850, CCF-1839317, CCF-2402572, and
DMS-2023495.

1 Introduction

Analyzing the occurrences of a small pattern graph H in a large input graph G is a central
problem in computer science. The theoretical study has led to a rich and immensely deep
theory [39, 20, 30, 24, 40, 2, 23, 45, 51, 17, 16]. The applications of graph pattern counts
occur across numerous scientific areas, including logic, biology, statistical physics, database
theory, social sciences, machine learning, and network science [34, 19, 22, 18, 27, 13, 29, 42,
59, 45, 25, 44]. (Refer to the tutorial [53] for more details on applications.)

A common formalism used for graph pattern counting is homomorphism counting. The
pattern graph is denoted H = (V (H), E(H)) and is assumed to have constant size. The
input graph is denoted G = (V (G), E(G)). Both graphs are simple and do not contain

© Daniel Paul-Pena and C. Seshadhri;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 54; pp. 54:1–54:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dpaulpen@ucsc.edu
https://orcid.org/0009-0008-1073-6173
mailto:sesh@ucsc.edu
https://orcid.org/0000-0003-2163-3555
https://doi.org/10.4230/LIPIcs.ISAAC.2024.54
https://arxiv.org/abs/2211.08605
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

self-loops. An H-homomorphism is a map f : V (H) → V (G) that preserves edges. Formally,
∀(u, v) ∈ E(H), (f(u), f(v)) ∈ E(G). Let HomH(G) denote the number of distinct H-
homomorphisms in G.

Given the importance of graph homomorphism counts, the study of efficient algorithms
for this problem is a subfield in itself [35, 3, 18, 27, 26, 24, 13, 23, 14, 51]. The simplest
version of this problem is when H is a triangle, itself a problem that attracts much attention.
Let n = |V (G)| and k = |V (H)|. Computing HomH(G) is #W [1]-hard when parameterized
by k (even when H is a k-clique), so we do not expect no(k) algorithms for general H [24].
Much of the algorithmic study of homomorphism counting is in understanding conditions on
H and G when the trivial nk running time bound can be beaten.

Our work is inspired by the challenges of modern applications of homomorphism counting,
especially in network science. Typically, n is extremely large, and only near-linear time
(n · poly(log n)) algorithms are feasible. Inspired by a long history and recent theory on this
topic, we focus on bounded degeneracy input graphs (we say bounded degeneracy graphs to
refer to graphs belonging to classes of graphs with bounded degeneracy). This includes all
non-trivial minor-closed graph families, such as planar graphs, bounded genus graphs, and
bounded tree-width graphs. Many practical algorithms for large-scale graph pattern counting
use algorithms for bounded degeneracy graphs [2, 38, 45, 43, 37, 44]. Real-world graphs
typically have a small degeneracy, comparable to their average degree ([32, 37, 55, 5, 9], also
Table 2 in [5]).

Secondly, many modern applications for homomorphism counting require more fine-
grained statistics than just the global count HomH(G). The aim is to find, for every vertex
v of G, the number of homomorphisms that v participates in. Seminal work in network
analysis for bioinformatics plots the distributions of these per-vertex counts to compare
graphs [36, 46]. Orbit counts can be used to generate features for vertices, sometimes called
the graphlet kernel [54]. In the past few years, there have been many applications of these
per-vertex counts [10, 59, 52, 57, 4, 58, 50, 60, 61].

Algorithms for this problem require considering the “roles” that v could play in a
homomorphism. For example, in a 7-path (a path of length 6) there are 4 different roles: a
vertex v could be in the middle, could be at the end, or at two other positions. These roles
are colored in Fig. 1. The roles are called orbits (defined in the Section 3), and the problem
of H-homomorphism orbit counting is as follows: for every orbit ψ in H and every vertex v
in G, output the number of homomorphisms of H where v participates in the orbit ψ. This
is the main question addressed by our work:

What are the pattern graphs H for which the H-homomorphism orbit counting problem is
computable in near-linear time (when G has bounded degeneracy)?

Recent work of Bressan followed by Bera-Pashanasangi-Seshadhri introduced the question
of homomorphism counting for bounded degeneracy graphs, from a fine-grained complexity
perspective [14, 8]. A dichotomy theorem for near-linear time counting of HomH(G) was
provided in subsequent work [6]. Assuming fine-grained complexity conjectures, HomH(G)
can be computed in near-linear time iff the longest induced cycle of H has length at most 5.
It is natural to ask whether these results extend to orbit counting.

1.1 Main Result
We begin with some preliminaries. The input graph G = (V (G), E(G)) has n vertices and
m edges. A central notion in our work is that of graph degeneracy, also called the coloring
number.

D. Paul-Pena and C. Seshadhri 54:3

Figure 1 Examples of orbits and LIPCO values. Vertices in the same orbit have the same color.
The top graph is the 7-path (a path of length 6). There is an induced path of length 6 between
the red vertices, hence the LIPCO of this graph is 6. Theorem 5 implies that we can not compute
OrbitHom in near-linear time.
The bottom graph adds a triangle at the end, breaking the symmetry, and the only vertices in the
same orbit in that graph are the red ones. The LIPCO in this graph is now less than 6 so we can
compute OrbitHom in near-linear time.

▶ Definition 1. A graph G is κ-degenerate if the minimum degree in every subgraph of G is
at most κ.

The degeneracy of G is the minimum value of κ such that G is κ-degenerate.

A family of graphs has bounded degeneracy if the degeneracy is constant with respect
to the graph size. Bounded degeneracy graph classes are extremely rich. For example, all
non-trivial minor-closed families have bounded degeneracy. This includes bounded treewidth
graphs. Preferential attachment graphs also have bounded degeneracy; real-world graphs
have a small value of degeneracy (often in the 10s) with respect to their size (often in the
hundreds of millions) [5].

We assume the pattern graph H = (V (H), E(H)) to have a constant number of vertices.
(So we suppress any dependencies on purely the size of H.) Consider the group of auto-
morphisms of H. The vertices of H can be partitioned into orbits, which consist of vertices
that can be mapped to each other by some automorphism (defined formally in Definition 6).
For example, in Fig. 1, the 7-path has four different orbits, where each orbit has the same
color. The 7-path with a hanging triangle (in Fig. 1) has more orbits, since the pattern is no
longer symmetric with respect to the “center” of the 7-path and hence the opposite “ends”
of the 7-path cannot be mapped by a non-trivial automorphism.

The set of orbits of the pattern H is denoted Ψ(H). Let Φ(H,G) be the set of homo-
morphisms from H to G (HomH(G) = |Φ(H,G)|). We now define our main problem.

▶ Definition 2. Homomorphism Orbit Counts: For each orbit ψ ∈ Ψ(H) and vertex v ∈ V (G),
define OrbitHomH,ψ(v) to be the number of H-homomorphisms mapping a vertex of ψ to v.
Formally, OrbitHomH,ψ(v) = |{ϕ ∈ Φ(H,G) : ∃h ∈ ψ, ϕ(h) = v}|.

The problem of H-homomorphism orbit counting is to output the values OrbitHomH,ψ(v)
for all v ∈ V (G), ψ ∈ Ψ(H). (Abusing notation, OrbitHomH(G) refers to the list/vector of
all of these values.)

Note that for a given H, the size of the output is n|Ψ(H)| (recall n = |V (G)|). For
example, when H is the 7-path, we will get 4n counts, for each vertex and each of the four
orbits.

Our main result is a dichotomy theorem that precisely characterizes patterns H for which
OrbitHomH(G) can be computed in near-linear time. We introduce a key definition.

ISAAC 2024

54:4 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

▶ Definition 3. For a pattern H, the Longest Induced Path Connecting Orbits of H, denoted
LIPCO(H) is defined as follows. It is the length of the longest induced simple path, measured
in edges, between any two vertices h, h′ in H (where h may be equal to h′, forming a cycle)
in the same orbit.

Again refer to Fig. 1. The 7-path has a LIPCO of six, since the ends are in the same
orbit. On the other hand, the second pattern (7-path with a triangle) has a LIPCO of 3 due
to the triangle.

The Triangle Detection Conjecture was introduced by Abboud and Williams on the
complexity of determining whether a graph has a triangle [1]. It is believed that this problem
cannot be solved in near-linear time, and indeed, may even require Ω(m4/3) time. We use
this conjecture for the lower bound of our main theorem.

▶ Conjecture 4 (Triangle Detection Conjecture [1]). There exists a constant γ > 0 such that
in the word RAM model of O(log n) bits, any algorithm to detect whether an input graph on
m edges has a triangle requires Ω(m1+γ) time in expectation.

Our main theorem proves that the LIPCO determines the dichotomy. Note that because
G is a bounded degeneracy graph we have m = O(n), we will be expressing the bounds in
terms of m.

▶ Theorem 5 (Main Theorem). Let G be a graph with n vertices, m edges, and bounded
degeneracy. Let γ > 0 denote the constant from the Triangle Detection Conjecture (Conjec-
ture 4).

If LIPCO(H) ≤ 5: there exists a deterministic algorithm that computes OrbitHomH(G)
in time O(m log n).1
If LIPCO(H) > 5: assume the Triangle Detection Conjecture. There is no algorithm
with (expected) running time O(m1+γ) that computes OrbitHomH(G).

Orbit Counting vs Total Homomorphism Counting
In the following discussion, we use “linear” to actually mean near-linear, we assume that the
Triangle Detection Conjecture is true, and we assume that G has bounded degeneracy.

One of the most intriguing aspects of the dichotomy of Theorem 5 is that it differs
from the condition for getting the total homomorphism count. As mentioned earlier, the
inspiration for Theorem 5 is the analogous result for determining HomH(G). There is a
near-linear time algorithm iff the length of the longest induced cycle (LICL) of H is at most
five. Since the definition of LIPCO considers induced cycles (induced path between a vertex
to itself), if LIPCO(H) ≤ 5, then LICL(H) ≤ 5. This implies, not surprisingly, that the
total homomorphism counting problem is easier than the orbit counting problem.

But there exist patterns H for which the orbit counting problem is provably harder than
total homomorphism counting, a simple example is the 7-path (path with 7 vertices). There
is a simple linear time dynamic program for counting the homomorphism of paths. But the
endpoints are in same orbit, so the LIPCO is six, and Theorem 5 proves the non-existence of
linear time algorithms for orbit counting. On the other hand, the LIPCO of the 6-path is
five, so orbit counting can be done in linear time.

Consider the pattern at the bottom of Fig. 1. The LICL is three, so the total homomorph-
ism count can be determined in linear time. Because the ends of the underlying 7-path lie in
different orbits, the LIPCO is also three (by the triangle). Theorem 5 provides a linear time
algorithm for orbit counting.

1 The exact dependency on the degeneracy κ of the input graph G is O
(
κ|H|−1

)
.

D. Paul-Pena and C. Seshadhri 54:5

1.2 Main Ideas
The starting point for homomorphism counting on bounded degeneracy graphs is the seminal
work of Chiba-Nishizeki on using acyclic graph orientations [20]. It is known that, in linear
time, the edges of a bounded degeneracy graph can be acyclically oriented while keeping the
outdegree bounded [41]. For clique counting, we can now use a brute force algorithm in all
out neighborhoods, and get a linear time algorithm. Over the past decade, various researchers
observed that this technique can generalize to certain other pattern graphs [21, 45, 43, 44].
Given a pattern H, one can add the homomorphism counts of all acyclic orientations of H
for an acyclic orientation of G. In certain circumstances, each acyclic orientation can be
efficiently counted by a carefully tailored dynamic program that breaks the oriented H into
subgraphs spanned by rooted, directed trees.

Bressan gave a unified treatment of this approach through the notion of DAG-tree
decompositions. [14] These decompositions give a systematic way of breaking up an oriented
pattern into smaller pieces, such that homomorphism counts can be computed by a dynamic
program. Bera et al. showed that if the LICL of H is at most 5, then the DAG-treewidth of
H is at most one [8, 6]. This immediately implies Bressan’s algorithm runs in linear time.

Our result on orbit counting digs deeper into the mechanics of Bressan’s algorithm. To
run in linear time, Bressan’s algorithm requires “compressed” data structures that store
information about homomorphism counts. For example, the DAG-tree decomposition based
algorithm can count 4-cycles in linear time for bounded degeneracy graphs (this was known
from Chiba-Nishizeki as well [20]). But there could exist quadratically many 4-cycles in such
a graph. Consider two vertices connected by Θ(n) disjoint paths of length 2; each pair of
paths yields a distinct 4-cycle. Any linear time algorithm for 4-cycle counting has to carefully
index directed paths and combine these counts, without actually touching every 4-cycle.

By carefully looking at Bressan’s algorithm, we discover that “local” per-vertex information
about H-homomorphisms can be computed. Using the DAG-tree decomposition, one can
combine these counts into a quantity that looks like orbit counts. Unfortunately, we cannot
get exact orbit counts, but rather a weighted sum of homomorphisms.

To extract exact orbit counts, we dig deeper into the relationship between orbit counts
and per-vertex homomorphism counts. This requires looking into the behavior of independent
sets in the orbits of H. We then design an inclusion-exclusion formula that “inverts” the
per-vertex homomorpishm counts into orbit counts. The formula requires orbit counts for
other patterns H ′ that are constructed by merging independent sets in the same orbit of H.

Based on previous results, we can prove that if the LICL of all these H ′ patterns is at
most 5, then OrbitHomH(G) can be computed in (near)linear time. This LICL condition
over all H ′ is equivalent to the LIPCO of H being at most 5. Achieving the upper bound of
Theorem 5.

The above seemingly ad hoc algorithm optimally characterizes when orbit counting is linear
time computable. To prove the matching lower bound, we use tools from the breakthrough
work of Curticapean-Dell-Marx [23]. They prove that the complexity of counting linear
combinations of homomorphism counts is determined by the hardest individual count (up to
polynomial factors). Gishboliner-Levanzov-Shapira give a version of this tool for proving
linear time hardness [31]. Consider a pattern H with LIPCO at least six. We can construct
a pattern H ′ with LICL at least six by merging vertices of an orbit in H. We use the tools
above to construct a constant number of linear sized graphs G1, G2, . . . , Gk such that a linear
combination of H-orbit counts on these graphs yields the total H ′-homomorphism count on
G. The latter problem is hard by existing bounds, and hence the hardness bounds translate
to H-orbit homomorphism counting.

ISAAC 2024

54:6 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

2 Related Work

Homomorphism and subgraph counting on graphs is an immense topic with an extensive
literature in theory and practice. For a detailed discussion of practical applications, we refer
the reader to a tutorial [53].

Homomorphism counting is intimately connected with the treewidth of the pattern H . The
notion of tree decomposition and treewidth were introduced in a seminal work by Robertson
and Seymour [47, 48, 49]; although it has been discovered before under different names [11, 33].
A classic result of Dalmau and Jonsson [24] proved that HomH(G) is polynomial time solvable
if and only if H has bounded treewidth, otherwise it is #W [1]-complete. Díaz et al [26]
gave an algorithm for homomorphism counting with runtime O(2knt(H)+1) where t(H) is
the treewidth of the pattern graph H and k the number of vertices of H.

To improve on these bounds, recent work has focused on restrictions on the input G [51]. A
natural restriction is bounded degeneracy, which is a nuanced measure of sparsity introduced
by early work of Szekeres-Wilf [56]. Many algorithmic results exploit low degeneracy for
faster subgraph counting problems [20, 28, 2, 38, 45, 43, 37, 44].

Pioneering work of Bressan introduced the concept of DAG-treewidth for faster al-
gorithms for homomorphism counting in bounded degeneracy graphs [14]. Bressan gave an
algorithm for counting HomH(G) running in time essentially mτ(H), where τ denotes the
DAG-treewidth. The result also proves that (assuming ETH) there is no algorithm running
in time mo(τ(H)/ log τ(H)).

Bera-Pashanasangi-Seshadhri build on Bressan’s methods to discover a dichotomy theorem
for linear time homomorphism counting in bounded degeneracy graphs [7, 8]. Gishboliner,
Levanzov, and Shapira independently proved the same characterization using slightly different
methods [31, 6].

We give a short discussion of the Triangle Detection Conjecture. Itai and Rodeh [35] gave
the first non-trivial algorithm for the triangle detection and finding problem with O(m3/2)
runtime. The current best known algorithm runs in time O(min{nω,m2ω/(ω+1)}) [3], where
ω is the matrix multiplication exponent. Even for ω = 2, the bound is m4/3 and widely
believed to be a lower bound. Many classic graph problems have fine-grained complexity
hardness based on Triangle Detection Conjecture [1].

Homomorphism or subgraph orbit counts have found significant use in network analysis and
machine learning. Przulj introduced the use of graphlet (or orbit count) degree distributions
in bioinformatics [46]. The graphlet kernel of Shervashidze-Vishwanathan-Petri-Mehlhorn-
Borgwardt uses vertex orbits counts to get embeddings of vertices in a network [54]. Four
vertex subgraph and large cycle and clique orbit counts have been used for discovering special
kinds of vertices and edges [59, 50, 60, 61]. Orbits counts have been used to design faster
algorithms for finding dense subgraphs in practice [10, 52, 57, 4, 58].

3 Preliminaries

We use G to denote the input graph and H to denote the pattern graph, both
G = (V (G), E(G)) and H = (V (H), E(H)) are simple, undirected and connected graphs.
We denote |V (G)| and |E(G)| by n and m respectively and |V (H)| by k.

A pattern graph H is divided into orbits, we use the definition from Bondy and Murty
(Chapter 1, Section 2 [12]):

▶ Definition 6. Fix a graph H = (V (H), E(H)). An automorphism is a bijection σ : V (H) →
V (H) such that (u, v) ∈ E(H) iff (σ(u), σ(v)) ∈ E(H). The group of automorphisms of H is
denoted Aut(H).

D. Paul-Pena and C. Seshadhri 54:7

Define an equivalence relation on V (H) as follows. We say that u ∼ v (u, v ∈ V (H)) iff
there exists an automorphism that maps u to v. The equivalence classes of the relation are
called orbits.

We refer to the set of orbits in H as Ψ(H) and to individual orbits in Ψ(H) as ψ. Note
that every vertex h ∈ V (H) belongs to exactly one orbit. We can represent an orbit by a
canonical (say lexicographically least) vertex in the orbit. Somewhat abusing notation, we
can think of the set of orbits as a subset of vertices of H , where each vertex plays a “distinct
role” in H. Fig. 1 has examples of different graphs with their separate orbits.

We now define homomorphisms.

▶ Definition 7. An H-homomorphism from H to G is a mapping ϕ : V (H) → V (G) such
that for all (u, v) ∈ E(H), (ϕ(u), ϕ(v)) ∈ E(G). We refer to the set of homomorphisms from
H to G as Φ(H,G).

We now define a series of counts.

HomH(G): This is the count of H-homomorphisms in G. So HomH(G) = |Φ(H,G)|.
OrbitHomH,ψ(v): For a vertex v ∈ V (G), OrbitHomH,ψ(v) is the number of
H-homomorphisms that map any vertex in the orbit ψ to v. Formally, OrbitHomH,ψ(v) =
|{ϕ ∈ Φ(H,G) : ∃u ∈ ψ, ϕ(u) = v}|.
OrbitHomH,ψ(G),OrbitHomH(G): We use OrbitHomH,ψ(G) to denote the list/vector
of counts {OrbitHomH,ψ(v)} over all v ∈ V (G). Similarly, OrbitHomH(G) denotes the
sequence of lists of counts OrbitHomH,ψ(G) over all orbits ψ.

Our aim is to compute OrbitHomH(G), which are a set of homomorphism counts. We
use existing algorithmic machinery to compute homomorphism counts per vertex of H, so
part of our analysis will consist of figuring out how to go between these counts. As we will
see, this is where the LIPCO parameter makes an appearance.

Acyclic orientations. These are a key algorithmic tool in efficient algorithms for bounded
degeneracy graphs. An acyclic orientation of an undirected graph G is a digraph obtained by
directing the edges of G such that the digraph is a DAG. We will encapsulate the application
of the degeneracy in the following lemma, which holds from a classic result of Matula and
Beck [41].

▶ Lemma 8. Suppose G has degeneracy κ. Then, in O(m+ n) time, one can compute an
acyclic orientation G→ of G with the following property. The maximum outdegree of G→ is
precisely κ. (G→ is also called a degeneracy orientation.)

The set of all acyclic orientations of H is denoted Σ(H). Our algorithm will enumerate
over all such orientations.

Note that all definitions of homomorphisms carry over to DAGs.

3.1 DAG-tree decompositions
A central part of our result is applying intermediate lemmas from an important algorithm
of Bressan for homomorphism counting [14]. This subsection gives a technical overview of
Bressan’s techique of DAG-tree decompositions and related lemmas. Our aim is to state the
key lemmas from previous work that can be used as a blackbox.

ISAAC 2024

54:8 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

The setting is as follows. We have an acyclic orientation G→ and a DAG pattern P

(think of P as a member of Σ(H); P is an acyclic orientation of H). Bressan’s algorithm
gives a dynamic programming approach to counting Φ(P,G→).

We introduce some notation. We use the standard notion of reachability in digraphs:
vertex v is reachable from u if there is a directed path from u to v.

S: The set of sources in the DAG P .
ReachP (s): For source s ∈ S, ReachP (s) is the set of vertices in P reachable from s.
ReachP (B): Let B ⊆ S. ReachP (B) =

⋃
s∈B ReachP (s).

P [B]: This is the subgraph of P induced by ReachP (B).

▶ Definition 9 (DAG-tree decomposition [14]). Let P be a DAG with source vertices S. A
DAG-tree decomposition of P is a tree T = (B, E) with the following three properties:
1. Each node B ∈ B (referred to as a “bag” of sources) is a subset of the source vertices S:

B ⊆ S.
2. The union of the nodes in T is the entire set S:

⋃
B∈B B = S.

3. For all B,B1, B2 ∈ B, if B lies on the unique path between the nodes B1 and B2 in T ,
then Reach(B1) ∩Reach(B2) ⊆ Reach(B).

▶ Definition 10. Let P be a DAG. For any DAG-tree decomposition T to P , the DAG-
treewidth τ(T) is defined as maxB∈B |B|. The DAG-treewidth of P , denoted τ(P), is the
minimum value of τ(T) over all DAG-tree decompositions T of P .

Two important lemmas. We state two critical results from previous work. Both of these
are highly non-trivial and technical to prove. We will use them in a black-box manner. The
first lemma, by Bera-Pashanasangi-Seshadhri, connects the Largest Induced Cycle Length
(LICL) to DAG-treewidth [8].

▶ Lemma 11 (Theorem 4.1 in [8]). For a simple graph H: LICL(H) ≤ 5 iff ∀P ∈
Σ(H), τ(P) = 1.

The second lemma is an intermediate property of Bressan’s subgraph counting al-
gorithm [15]. We begin by defining homomorphism extensions. Think of some directed
pattern P that we are trying to count. Fix a (rooted) DAG-tree decomposition T . Let P ′ be a
subgraph of P , P ′′ be a subgraph of P ′. A P ′-homomorphism ϕ′ extends a P ′′-homomorphism
ϕ′′ if ∀v ∈ V (P ′′), ϕ′(v) = ϕ′′(v). Basically, ϕ′ agrees with ϕ′′ wherever the latter is defined.

ext(P ′, G;ϕ): Let ϕ be a homomorphism from a subgraph of P ′ to G. Then ext(P ′, G;ϕ)
is the number of P ′-homomorphisms extending ϕ.
P [down(B)]: Let B be a node in the DAG-tree decomposition T of P . The set down(B)
is the union of bags that are descendants of B in T . Furthermore P [down(B)] is the
pattern induced by Reach(down(B)).

A technical lemma in Bressan’s result shows that extension counts can be obtained
efficiently. We will refer to the procedure in this lemma as “Bressan’s algorithm”.

▶ Lemma 12 (Lemma 5 in [15]). Let G→ be a digraph with outdegree at most d and P be a
DAG with k vertices. Let T = (B, E) be a DAG-tree decomposition for P , and B any element
of B. There is a procedure, that in time O(|B|poly(k)dk−τ(T)nτ(T) log n), returns a dictionary
storing the following values: for every ϕ : P [B] → G→, it has ext(P [down(B)], G;ϕ).

D. Paul-Pena and C. Seshadhri 54:9

Let us explain this lemma in words. For any bag B, which is a set of sources in P , consider
P [B], which is the subgraph induced by ReachP (B). For every P [B]-homomorphism ϕ, we
wish to count the number of extensions to P [down(B)] (the subgraph induced by vertices of
P reachable by any source in any descendant bag of B).

4 Obtaining Vertex-Centric Counts

We define vertex-centric homomorphism counts, which allows us to ignore orbits and sym-
metries in H. Quite simply, for vertices h ∈ V (H) and v ∈ V (G), we count the number of
homomorphisms from H to G that map h to v.
▶ Definition 13. Vertex-centric Counts: For each vertex h ∈ V (H) and vertex v ∈ V (G),
let VertexHomH,h(v) be the number of H-homomorphisms that map h to v.

Let VertexHomH(G) denote the list of VertexHomH,h(v) over all h ∈ V (H) and v ∈ V (G).
We can show that the vertex-centric counts can be obtained in near-linear time when

LICL(H) ≤ 5:
▶ Theorem 14. There is an algorithm that takes as input a bounded degeneracy graph G and
a pattern H with LICL(H) ≤ 5, and has the following properties. It outputs VertexHomH(G)
and runs in O(n log n) time.

Before proving this theorem we need to introduce two more lemmas. First, we invoke the
following lemma from [15]:
▶ Lemma 15 (Lemma 4 in [15]). Given any B ⊆ S, the set of homomorphisms Φ(P [b], G→)
has size O(dk−|B|n|B|) and can be enumerated in time O(k2dk−|B|n|B|).

Second, we show how to use the output of Bressan’s algorithm to obtain the Vertex-centric
counts:
▶ Lemma 16. Let P be a directed pattern on k vertices, T = (B, E) be a DAG-tree decompos-
ition of P with τ(P) = 1 (All nodes/bags in T are singletons), and G→ be a directed graph
with n vertices and max degree d. Let b be the root of T and h be any vertex in P [b]. We can
compute VertexHomP,h(v) in time O(poly(k)dk−1n log n).
Proof. The algorithm of Lemma 12 will return a data structure/dictionary that gives the
following values. For each ϕ : P [b] → G→, it provides ext(P [down(b)], G;ϕ). Note that b is
the root of T . By the properties of a DAG-tree decomposition, down(b) contains all vertices
of P and P [down(b)] = P . Hence, the dictionary gives the values ext(P,G→;ϕ), that is, the
number of homomorphisms ϕ′ : P → G→ that extend ϕ.

Let h be a vertex in P [b]. We can partition the set of homomorphisms from
P [b] to G→, Φ(P [b], G→), into sets Φb,h,v defined as follows. For each v ∈ V (G),
Φb,h,v := {ϕ ∈ Φ(P [b], G→) : ϕ(h) = v}.

By Lemma 15 we can list all the homomorphisms Φ(P [b], G→) in O(k2dk−1n) time, by
the same lemma we know that Φ(P [b], G→) will have size at most O(dk−1n), hence we can
iterate over the list of homomorphisms and check the value of ϕ(h). We can then express
VertexHomP (G→) as follows:

VertexHomP,h(v) = |{ϕ′ ∈ Φ(P,G→) : ϕ′(h) = v}|

=
∑

ϕ∈Φ(P [b],G→):ϕ(h)=v

ext(P,G→;ϕ)

=
∑

ϕ∈Φb,h,v :ϕ(h)=v

ext(P,G→;ϕ)

ISAAC 2024

54:10 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

We can compute all of these values by enumerating all the elements in ϕ ∈ Φb,h,v (over
all v), and making a dictionary access to get ext(P,G→;ϕ). The total running time is
O(k2dk−1n log n), where log n is extra overhead of accessing the dictionary.

By Lemma 12, the dictionary construction takes O(|B|poly(k) dk−τ(T)nτ(T) log n) time.
Since τ(T) = 1 and |B| = O(k), we can express the total complexity as O(poly(k)dk−1n log n).

◀

We can now complete the proof of Theorem 14:

Proof of Theorem 14. The first step of our algorithm is to construct the degeneracy orient-
ation G→ of G. By Lemma 8, it can be computed in O(m+ n) time. Since G has bounded
degeneracy, G→ has bounded outdegree. When orienting G as G→, each homomorphism
from H to G becomes a homomorphism of exactly one of the directed patterns P ∈ Σ(H)
to G→. We can hence compute VertexHomH(G) as the sum of VertexHomP (G→) for every
acyclic orientation of H. This is given by the following equation:

VertexHomH(G) =
∑

P∈Σ(H)

VertexHomP (G→) (1)

Because LICL(H) ≤ 5, Lemma 11 implies that for all P ∈ Σ(H), τ(H) = 1. There exists
a DAG-tree decomposition T = (B, E) of P with τ(T) = 1. We use the output of Bressan’s
algorithm to obtain the Vertex-centric counts.

The DAG-tree decomposition T can be arbitrarily rooted at any node b. Moreover, for
each h ∈ V (P), there must exist some source b such that h ∈ P [b] (meaning, h is reachable
from b). So, by rooting T at all possible nodes (singleton bags), we can ensure that h is in
P [b]. We can apply Lemma 16 to get all counts VertexHomP,h(v).

We complete the proof by bounding the running time and asserting correctness.
From Lemma 8, we can compute G→ in O(m + n). Since G has bounded degeneracy,

m = O(n) and the outdegree d is bounded. The number of acyclic orientations of H, |Σ(H)|
is bounded by O(k!). In each iteration, by Lemma 16, we will take O(poly(k)dk−1n log n).
For constant k and constant d, the running time is O(n log n).

Now we prove the correctness of the algorithm. Consider each P ∈ Σ(H). Let T = (B, E)
be the DAG-tree decomposition of P . For each b ∈ B, we compute VertexHomP,h(G→) for
all the vertices in h ∈ P [b]. By looping over each singleton bag b, we update counts for
all vertices in P . Hence, we are computing VertexHomP (G→). Finally, we sum over all
P ∈ Σ(H), which by Equation 1, gives us VertexHomH(G). ◀

5 From Vertex-Centric to Orbit Counts

We now show how to go from vertex-centric to orbit counts, using inclusion-exclusion. Much
of our insights are given by the following definitions.

▶ Definition 17. IS(ψ): Given a pattern graph H, for every orbit ψ ∈ Ψ(H) we define
IS(ψ) as the collection of all non empty subsets S ⊆ ψ, such that S forms an independent
set (i.e. there is no edge in E(H) connecting any two vertices in S).

Formally, IS(ψ) = {S ⊆ ψ, S ̸= ∅ : ∀ h, h′ ∈ S, (h, h′) /∈ E(H)}.

▶ Definition 18. HS: For each set S ∈ IS(ψ) we define HS as the graph resulting from
merging all the vertices in S into a single new vertex hS, removing any duplicate edge.

We state two more tools in our analysis. The first lemma relates the counts obtained in
the previous section (VertexHomHS

(G)) to the desired output (OrbitHomH(G)).

D. Paul-Pena and C. Seshadhri 54:11

▶ Lemma 19 (Inclusion-exclusion formula).

OrbitHomH,ψ(v) =
∑

S∈IS(ψ)

(−1)|S|+1VertexHomHS ,hS
(v)

In order to prove this lemma, we need to define the Signature of a homomorphisms. Let
ϕ be a homomorphism from H to G, we define Sig(ϕ, ψ, v) to be the subset of vertices from
the orbit ψ that are mapped to v in ϕ. Formally Sig(ϕ, ψ, h) = {h ∈ ψ : ϕ(h) = v}.

We prove a series of claims regarding the signature.

▷ Claim 20. The Signature of ϕ from ψ to v, Sig(ϕ, ψ, v), must form an independent set of
vertices in V (H), that is, there are no edges in E(H) connecting two vertices in Sig(ϕ, ψ, v).

Proof. We prove by contradiction. Assume that S = Sig(ϕ, ψ, v) is not an Independent Set
of vertices of V (H), that means that we have a pair of vertices h, h′ ∈ S such that there is an
edge connecting them. But from the definition of signature we have that ϕ(h) = ϕ(h′) = v,
however this is not a valid homomorphism from H to G as it is not preserving the (h, h′)
edge. ◁

The next claim allows us to relate the Signature with the Homomorphism Orbit Counts.

▷ Claim 21.

OrbitHomH,ψ(v) =
∑

S∈IS(ψ)

|{ϕ ∈ Φ(H,G) : S = Sig(ϕ, ψ, v)}|

Proof. From the definition of Homomorphism Orbit Counts we have that OrbitHomH,ψ(v) =
|{ϕ ∈ Φ(H,G) : ∃h ∈ ψ, ϕ(h) = v}|. Hence, suffices to show that |{ϕ ∈ Φ(H,G) : ∃h ∈
ψ, ϕ(h) = v}| =

∑
S∈IS(ψ) |{ϕ ∈ Φ(H,G) : S = Sig(ϕ, ψ, v)}|.

Let ϕ ∈ Φ(H,G) be a homomorphism from H to G such that ∃h ∈ ψ, ϕ(h) = v. Let
S = Sig(ϕ, ψ, v), we know that S ̸= ∅ as h is mapped to v and from Claim 20 we know that
it forms an independent set on the vertices of H. Hence S ∈ IS(ψ).

To prove the other direction of the equality, suffices to note that if a homomorphism ϕ

contributes to the right side of the equation, then its signature S belongs to IS(ψ), hence
there is at least one vertex h ∈ V (H) that is mapped to v, and thus ϕ contributes to the left
side of the equation. ◁

Now, we will relate the Signature with the Vertex-centric Counts:

▷ Claim 22. For each orbit ψ in H and each vertex v in V (G) we have that ∀ S ∈ IS(ψ):

|ϕ ∈ Φ(H,G) : ∀h ∈ S, ϕ(h) = v| =
∑
S′⊇S

S′∈IS(ψ)

|ϕ : Sig(ϕ, ψ, v) = S′|

Proof. If ϕ is mapping all the vertices in S to v, then the Signature of ϕ from ψ to v must be
a superset of S, Sig(ϕ, ψ, v) ⊇ S. Hence summing over such sets will reach the equality. Note
that we can add the restriction of S′ belonging to IS(ψ) as it is implied from Claim 20. ◁

Let Φ′ = Φ(HS , G) be the set of homomorphism from HS to G. When S forms an
independent set there is an equivalence between the homomorphisms in Φ′ that map hS to v
and the set of homomorphisms in Φ(H,G) that map all the vertices of S to v. In fact we
can prove the following claim:

ISAAC 2024

54:12 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

▷ Claim 23. If S is not empty and form an independent set:

|ϕ ∈ Φ(H,G) : ∀ h ∈ S ϕ(h) = v| = VertexHomHS ,hS
(v)

Proof. From the definition of Vertex-centric Counts we have that VertexHomHS ,hS
(v) =

|ϕ′ ∈ Φ(HS , G) : ϕ(hS) = v|. Hence it suffices to show that:

|ϕ ∈ Φ(H,G) : ∀h ∈ S ϕ(h) = v| = |ϕ′ ∈ Φ(HS , G) : ϕ(hS) = v|

We do so by proving that there is a bijection between both sets, that is, a one to
one correspondence between them. Let ΦS = {ϕ′ ∈ Φ(HS , G) : ϕ(hS) = v} and
Φ′
S = {ϕ ∈ Φ(H,G) : ∀h ∈ S, ϕ(h) = v}. We show an invertible function f : ΦS → Φ′

S :
Given a homomorphism ϕ ∈ ΦS we obtain ϕ′ = f(ϕ) ∈ Φ′

S by setting ϕ′(h) = ϕ(h) ∀ h ∈
H \ S and ϕ′(hS) = v. This is a valid homomorphism as we are mapping all the vertices
in HS to G and we are preserving the edges.
Given a homomorphism ϕ′ ∈ Φ′

S we obtain ϕ = f ′(ϕ′) ∈ ΦS by setting ϕ(h) = ϕ′(h) ∀ h ∈
H \ S and ϕ(h) = v ∀ h ∈ S. Again this is a valid homomorphism as we are mapping all
the vertices in H to G and we are still preserving the edges.

Additionally, we have that for all ϕ ∈ ΦS , ϕ = f ′(f(ϕ)), which completes the proof. ◁

We will show one last claim that will be important when deriving the inclusion-exclusion
formula:

▷ Claim 24. Given a graph H, for every orbit ψ ∈ Ψ(H), any subset S′ ∈ IS(ψ) satisfies:∑
S⊆S′

S ̸=∅

(−1)|S|+1 = 1

Proof.

∑
S⊆S′

S ̸=∅

(−1)|S|+1 =
|S′|∑
i=1

(
|S′|
i

)
(−1)i+1

=
|S′|∑
i=1

((
|S′| − 1
i− 1

)
+

(
|S′| − 1

i

))
(−1)i+1 =

(
|S′ − 1|

0

)
(−1)2 = 1 ◁

We now have all the tools required to prove Lemma 19:

Proof of Lemma 19.∑
S∈IS(ψ)

(−1)|S|+1VertexHomHS ,hS
(v)

=
∑

S∈IS(ψ)

(−1)|S|+1|ϕ ∈ Φ(H,G) : ∀ h ∈ S ϕ(u) = v| (Claim 23)

=
∑

S∈IS(ψ)

(−1)|S|+1
∑
S′⊇S

S′∈IS(ψ)

|ϕ : Sig(ϕ, ψ, v) = S′| (Claim 22)

=
∑

S∈IS(ψ)

∑
S′⊇S

S′∈IS(ψ)

(−1)|S|+1|ϕ : Sig(ϕ, ψ, v) = S′| (Factor in)

D. Paul-Pena and C. Seshadhri 54:13

=
∑

S′∈IS(ψ)

∑
S⊆S′

S ̸=∅

(−1)|S|+1|ϕ : Sig(ϕ, ψ, v) = S′| (Reorder)

=
∑

S′∈IS(ψ)

|ϕ : Sig(ϕ, ψ, v) = S′|
∑
S⊆S′

S ̸=∅

(−1)|S|+1 (Factor out)

=
∑

S′∈IS(ψ)

|ϕ : Sig(ϕ, ψ, v) = S′| (Claim 24)

= OrbitHomH,ψ(v) (Claim 21) ◀

The next lemma relates the Longest Induced Path Connecting Orbits (LIPCO) defined
in Definition 3 with the LICL of all the graphs HS , for all S ∈ IS(ψ) and all orbits ψ of H .

▶ Lemma 25. For every graph H, LIPCO(H) ≤ 5 iff ∀ψ ∈ Ψ(H), ∀S ∈ IS(ψ),
LICL(HS) ≤ 5.

Proof. First, we show that if LIPCO(H) > 5 then ∃ψ ∈ Ψ(H), ∃S ∈ IS(ψ), LICL(HS) > 5.
Consider the longest induced path in H with endpoints in the same orbit ψ ∈ Ψ(H), let h, h′

be the two endpoints of the path. We have two cases:
h = h′: In this case the induced path is actually just an induced cycle of length 6 or more
in H including the vertex h. For any ψ and for any S ⊆ ψ with |S| = 1 we have that
HS = H, and hence LICL(HS) > 5.
h ̸= h′: In the other case we have that h, h′ are distinct vertices. Consider the set
S = {h, h′}, we have that S ∈ IS(ψ) as both h, h′ ∈ ψ and there is no edge connecting
them (otherwise we would have a longer induced cycle). We form HS by combining h
and h′ into a single vertex, the induced path that we had in H becomes then an induced
cycle of length at least 6, which implies LICL(HS) > 5.

Now, we prove that if ∃ψ ∈ Ψ(H), ∃S ∈ IS(ψ), LICL(HS) > 5 then LIPCO(H) > 5.
Let S be the set such that LICL(HS) > 5. Again, we have two cases:

|S| = 1: We have that HS = H and hence LICL(H) > 5, any vertex in that induced
cycle induces a path of the same length with such vertex in both ends, which implies
LIPCO(H) > 5.
|S| > 1: Let hS be the vertex in HS obtained by merging the vertices of S in H . Consider
the longest induced cycle in HS , if that cycle does not contain hS then that same cycle
exists in H and LICL(H) > 5, which implies LIPCO(H) > 5. Otherwise, we can
obtain H by splitting hS back into separate vertices, there will be two distinct vertices
h, h′ ∈ S that are in the two ends of an induced path of the same length in H, thus
LIPCO(H) > 5. ◀

6 Wrapping it up

In this section we complete the proof of the main theorem for the upper bound. We also
give Algorithm 1, which summarizes the entire process.

▶ Theorem 26. There is an algorithm that, given a bounded degeneracy graph G and pattern
H with LIPCO(H) ≤ 5, computes OrbitHomH(G) in time O(n log n).

Proof. Because we have that LIPCO(H) ≤ 5, using Lemma 25 we get that ∀ψ ∈ Ψ(H), ∀S ∈
IS(ψ), LICL(HS) ≤ 5. This means, using Theorem 14, that ∀ψ ∈ Ψ(H), ∀S ∈ IS(ψ) we
can compute VertexHomHS

(G) in time f(k)O(n log n).

ISAAC 2024

54:14 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

Using Lemma 19 we can compute OrbitHomH(G) from the individual counts of
VertexHomHS

(G) (as shown in Algorithm 1), we have at most 2k sets S, hence the total
time complexity necessary to compute OrbitHomH(G) is O(n log n). ◀

Algorithm 1 Homomorphism Orbit Counts OrbitHomH(G).

1: for each ψ ∈ Ψ(H) do
2: for S ∈ IS(ψ) do
3: Compute VertexHomHS ,hS

(G)
4: end for
5: OrbitHomH,ψ(G) =

∑
S∈IS(ψ)(−1)|S|+1VertexHomHS ,hS

(v)
6: end for
7: Return OrbitHomH(G)

7 Lower Bound for computing Homomorphism Orbit Counts

In this section we prove the lower bound of Theorem 5. It will be given by the following
theorem:

▶ Theorem 27. Let H be a pattern graph on k vertices with LIPCO(H) > 5. Assuming
the Triangle Detection Conjecture, there exists an absolute constant γ > 0 such that for any
function f : N × N → N, there is no (expected) f(κ, k)O(m1+γ) algorithm for the OrbitHom
problem, where m and κ are the number of edges and the degeneracy of the input graph,
respectively.

To prove this Theorem we will show how to express the Homomorphism Orbit Counts for
some orbit ψ as a linear combination of Homomorphism counts of non-isomorphic graphs HS

for all S in IS(ψ). Because LIPCO(H) > 5 we will have that the LICL of at least one of
these graphs is also greater than 5. We will then show that the hardness of computing Orbit
counts in the original graph is the same than the hardness of computing the Homomorphisms
counts. Finally we use a previous hardness result from [8] to complete the proof.

First, we introduce the following definition:

▶ Definition 28. Given a pattern graph H and an input graph G, for the orbit ψ of H,
we define Agg(H,G,ψ) as the sum over every vertex v ∈ V (G) of homomorphisms that are
mapping some vertex in ψ to v, that is:

Agg(H,G,ψ) =
∑

v∈V (G)

OrbitHomH,ψ(v)

Note that if we can compute OrbitHomH,ψ(v) for every vertex v in G then we can also
compute Agg(H,G,ψ) in additional linear time. Now, we state the following lemma:

▶ Lemma 29. For every pattern graph H and every orbit ψ ∈ Ψ(H), there is some number
l = l(H) such that the following holds. For every graph G there are some graphs G1, ..., Gl,
computable in time O(|V (G)| + |E(G)|), such that |V (Gi)| = O(|V |) and |E(Gi)| = O(|E|)
for all i = 1, ..., l, and such that knowing Agg(H,G1, ψ), ..., Agg(H,Gl, ψ) allows one to
compute HomHS

(G) for all S ∈ IS(ψ), in time O(1). Furthermore, if G is O(1)-degenerate,
then so are G1, ..., Gl.

D. Paul-Pena and C. Seshadhri 54:15

First, we can relate the Homomorphism Vertex Counts of a vertex h ∈ V (H) to Homo-
morphism Counts from H to G, as given in the following claim:

▷ Claim 30. For all h ∈ V (H):∑
v∈V (G)

VertexHomH,h(v) = HomH(G)

Proof.∑
v∈V (G)

VertexHomH,h(v)

=
∑

v∈V (G)

|{ϕ ∈ Φ(H,G) : ϕ(h) = v}| (Def. of VertexHom)

= |{ϕ ∈ Φ(H,G) : ϕ(h) ∈ V (G)}| (Sum over whole set)
= |Φ(H,G)| (∀ϕ : ϕ(u) ∈ V (G))
= HomH(G) (Def. of Hom) ◁

We now state the following Lemma from [6]:

▶ Lemma 31 (Lemma 4.2 from [6]). Let H1, ...,Hl be pairwise non-isomorphic graphs and
let c1, ..., cl be non-zero constants. For every graph G there are graphs G1, ..., Gl, computable
in time O(|V (G)| + |E(G)|), such that |V (Gi)| = O(|V (G)|) and |E(Gi)| = O(|E(G)|) for
every i = 1, ..., l, and such that knowing bj := c1 · HomH1(Gj) + ...+ cl · HomHl

(Gj) for every
j = 1, ..., l allows one to compute HomH1(G), ...,HomHl

(G) in time O(1). Furthermore, if G
is O(1)-degenerate, then so are G1, ..., Gl.

We will apply the previous lemma in a similar way as it is used the proof of Lemma 4.1
in [6].

Proof of Lemma 29. Let H1, ...,Hl be an enumeration of all the graphs HS for all S ∈
IS(ψ), up to isomorphism. This means that H1, ...,Hl are pairwise non-isomorphic and
{H1, ...,Hl} = {HS : S ∈ IS(ψ)}.

Let f(i) = (−1)|S|+1|{S ∈ IS(ψ) : HS is isomorphic to Hi}| be the number of sets
S ∈ IS(ψ) such that HS is isomorphic to Hi, with the sign being (−1)|S|+1. Note that
all such sets have equal |S| and that the value of f(i) is always non-zero. We will use hi
to denote the vertex of Hi that correspond to the vertices hS of the graphs HS that are
isomorphic to Hi. We can express Agg(H,G,ψ) as follows:.

Agg(H,G,ψ) =
∑

v∈V (G)

OrbitHomH,ψ(v) (Def. 28)

=
∑

v∈V (G)

∑
S∈IS(ψ)

(−1)|S|+1VertexHomHS ,hS
(v) (Lemma 19)

=
∑

v∈V (G)

l∑
i=1

f(i)VertexHomHi,hi(v) (Def. of f(i))

=
l∑
i=1

f(i)
∑

v∈V (G)

VertexHomHi,hi
(v) (Reorder)

=
l∑
i=1

f(i)HomHi
(G) (Claim 30)

Hence, we have that Agg(H,G,ψ) is a linear combination of homomorphism counts of
H1, ...,Hl. We can then use Lemma 31 to complete the proof. ◀

ISAAC 2024

54:16 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

Before we prove Theorem 27, we need to state the following theorem from [8], which gives
a hardness result on Homomorphism Counting:

▶ Theorem 32 (Theorem 5.1 from [8]). Let H be a pattern graph on k vertices with LICL ≥ 6.
Assuming the Triangle Detection Conjecture, there exists an absolute constant γ such that
for any function f : N × N → N, there is no (expected) f(κ, k)O(m1+γ) algorithm for the
HomH problem, where m and κ are the number of edges and the degeneracy of the input
graph, respectively.

We now have all the tools required to proof Theorem 27:

Proof of Theorem 27. We prove by contradiction. Given a graph G and a pattern H with
LIPCO(H) > 5, suppose there exists an algorithm that allows us to compute OrbitHomH(G)
in time f(κ, k)O(m), by Lemma 29 we have the existence of some graphs G1, ..., Gl. We can
compute OrbitHomH(Gi) for all of these graphs in time f(κ, k)O(m) and then aggregate the
results into Agg(H,Gi, ψ) for all Gi and all ψ ∈ Ψ(H). Using Lemma 29, that implies that
we can compute HomHS

(G) for all S ∈ IS(ψ) for all ψ ∈ Ψ(H) in time f(κ, k)O(m).
However, if LIPCO(H) > 5 then, by Lemma 25, we have that there exists a S ⊆ ψ for

some ψ ∈ Ψ(H) such that LICL(HS) > 5. From Theorem 32 we know that in that case
there is no algorithm that computes HomHS

(G) in time f(κ, k)O(m1+γ) for some constant
γ > 0. This is a contradiction, and hence no algorithm can compute OrbitHomH(G) in
f(κ, k)O(m) time. ◀

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In Proc. 55th Annual IEEE Symposium on Foundations of
Computer Science, 2014. doi:10.1109/FOCS.2014.53.

2 Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Duffield. Efficient graphlet
counting for large networks. In Proceedings, SIAM International Conference on Data Mining
(ICDM), 2015. doi:10.1109/ICDM.2015.141.

3 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997. doi:10.1007/BF02523189.

4 A. Benson, D. F. Gleich, and J. Leskovec. Higher-order organization of complex networks.
Science, 353(6295):163–166, 2016. doi:10.1126/science.aad9029.

5 Suman K Bera, Amit Chakrabarti, and Prantar Ghosh. Graph coloring via degeneracy in
streaming and other space-conscious models. In International Colloquium on Automata,
Languages and Programming, 2020. doi:10.4230/LIPIcs.ICALP.2020.11.

6 Suman K. Bera, Lior Gishboliner, Yevgeny Levanzov, C. Seshadhri, and Asaf Shapira. Counting
subgraphs in degenerate graphs. Journal of the ACM (JACM), 69(3), 2022. doi:10.1145/
3520240.

7 Suman K Bera, Noujan Pashanasangi, and C Seshadhri. Linear time subgraph counting,
graph degeneracy, and the chasm at size six. In Proc. 11th Conference on Innovations in
Theoretical Computer Science. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ITCS.2020.38.

8 Suman K. Bera, Noujan Pashanasangi, and C. Seshadhri. Near-linear time homomorphism
counting in bounded degeneracy graphs: The barrier of long induced cycles. In Proceedings of
the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2315–2332,
2021. doi:10.1137/1.9781611976465.138.

9 Suman K Bera and C Seshadhri. How the degeneracy helps for triangle counting in graph
streams. In Principles of Database Systems, pages 457–467, 2020. doi:10.1145/3375395.
3387665.

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/ICDM.2015.141
https://doi.org/10.1007/BF02523189
https://doi.org/10.1126/science.aad9029
https://doi.org/10.4230/LIPIcs.ICALP.2020.11
https://doi.org/10.1145/3520240
https://doi.org/10.1145/3520240
https://doi.org/10.4230/LIPIcs.ITCS.2020.38
https://doi.org/10.1137/1.9781611976465.138
https://doi.org/10.1145/3375395.3387665
https://doi.org/10.1145/3375395.3387665

D. Paul-Pena and C. Seshadhri 54:17

10 Jonathan W. Berry, Bruce Hendrickson, Randall A. LaViolette, and Cynthia A. Phillips.
Tolerating the community detection resolution limit with edge weighting. Phys. Rev. E,
83:056119, 2011. doi:10.1103/PhysRevE.83.056119.

11 Umberto Bertele and Francesco Brioschi. On non-serial dynamic programming. J. Comb.
Theory, Ser. A, 14(2):137–148, 1973. doi:10.1016/0097-3165(73)90016-2.

12 J.A. Bondy and U.S.R Murty. Graph Theory, volume 244. Springer, 2008. doi:10.1007/
978-1-84628-970-5.

13 Christian Borgs, Jennifer Chayes, László Lovász, Vera T. Sós, and Katalin Vesztergombi.
Counting graph homomorphisms. In Topics in discrete mathematics, pages 315–371. Springer,
2006. doi:10.1007/3-540-33700-8_18.

14 Marco Bressan. Faster subgraph counting in sparse graphs. In 14th International Symposium
on Parameterized and Exact Computation (IPEC 2019). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.IPEC.2019.6.

15 Marco Bressan. Faster algorithms for counting subgraphs in sparse graphs. Algorithmica,
83:2578–2605, 2021. doi:10.1007/s00453-021-00811-0.

16 Marco Bressan, Leslie Ann Goldberg, Kitty Meeks, and Marc Roth. Counting subgraphs in
somewhere dense graphs. In 14th Innovations in Theoretical Computer Science Conference
(ITCS 2023), pages 27:1–27:14, 2023. doi:10.4230/LIPIcs.ITCS.2023.27.

17 Marco Bressan and Marc Roth. Exact and approximate pattern counting in degenerate
graphs: New algorithms, hardness results, and complexity dichotomies. In 2021 IEEE
62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 276–285, 2022.
doi:10.1109/FOCS52979.2021.00036.

18 Graham R Brightwell and Peter Winkler. Graph homomorphisms and phase transitions.
Journal of combinatorial theory, series B, 77(2):221–262, 1999. doi:10.1006/jctb.1999.1899.

19 Ashok K Chandra and Philip M Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Proc. 9th Annual ACM Symposium on the Theory of Computing,
pages 77–90, 1977. doi:10.1145/800105.803397.

20 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM
Journal on Computing (SICOMP), 14(1):210–223, 1985. doi:10.1137/0214017.

21 Jonathan Cohen. Graph twiddling in a mapreduce world. Computing in Science & Engineering,
11(4):29, 2009. doi:10.1109/MCSE.2009.120.

22 J. Coleman. Social capital in the creation of human capital. American Journal of Sociology,
94:S95–S120, 1988. doi:10.1086/228943.

23 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pages 210–223, 2017. doi:10.1145/3055399.3055502.

24 Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from the
other side. Theoretical Computer Science, 329(1-3):315–323, 2004. doi:10.1016/j.tcs.2004.
08.008.

25 Holger Dell, Marc Roth, and Philip Wellnitz. Counting answers to existential questions.
In Proc. 46th International Colloquium on Automata, Languages and Programming. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.113.

26 Josep Díaz, Maria Serna, and Dimitrios M Thilikos. Counting h-colorings of partial k-trees.
Theoretical Computer Science, 281(1-2):291–309, 2002. doi:10.1016/S0304-3975(02)00017-8.

27 Martin Dyer and Catherine Greenhill. The complexity of counting graph homomorphisms.
Random Structures & Algorithms, 17(3-4):260–289, 2000. doi:10.1002/1098-2418(200010/
12)17:3/4\%3C260::AID-RSA5\%3E3.0.CO;2-W.

28 David Eppstein. Arboricity and bipartite subgraph listing algorithms. Information processing
letters, 51(4):207–211, 1994. doi:10.1016/0020-0190(94)90121-X.

29 G. Fagiolo. Clustering in complex directed networks. Phys. Rev. E, 2007. doi:10.1103/
PhysRevE.76.026107.

ISAAC 2024

https://doi.org/10.1103/PhysRevE.83.056119
https://doi.org/10.1016/0097-3165(73)90016-2
https://doi.org/10.1007/978-1-84628-970-5
https://doi.org/10.1007/978-1-84628-970-5
https://doi.org/10.1007/3-540-33700-8_18
https://doi.org/10.4230/LIPIcs.IPEC.2019.6
https://doi.org/10.1007/s00453-021-00811-0
https://doi.org/10.4230/LIPIcs.ITCS.2023.27
https://doi.org/10.1109/FOCS52979.2021.00036
https://doi.org/10.1006/jctb.1999.1899
https://doi.org/10.1145/800105.803397
https://doi.org/10.1137/0214017
https://doi.org/10.1109/MCSE.2009.120
https://doi.org/10.1086/228943
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.4230/LIPIcs.ICALP.2019.113
https://doi.org/10.1016/S0304-3975(02)00017-8
https://doi.org/10.1002/1098-2418(200010/12)17:3/4%3C260::AID-RSA5%3E3.0.CO;2-W
https://doi.org/10.1002/1098-2418(200010/12)17:3/4%3C260::AID-RSA5%3E3.0.CO;2-W
https://doi.org/10.1016/0020-0190(94)90121-X
https://doi.org/10.1103/PhysRevE.76.026107
https://doi.org/10.1103/PhysRevE.76.026107

54:18 Homomorphism Orbit Counting in Bounded Degeneracy Graphs

30 Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM
Journal on Computing (SICOMP), 33(4):892–922, 2004. doi:10.1137/S0097539703427203.

31 Lior Gishboliner, Yevgeny Levanzov, and Asaf Shapira. Counting subgraphs in degenerate
graphs, 2020. arXiv:2010.05998, doi:10.48550/arXiv.2010.05998.

32 Gaurav Goel and Jens Gustedt. Bounded arboricity to determine the local structure of sparse
graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science, pages
159–167. Springer, 2006. doi:10.1007/11917496_15.

33 Rudolf Halin. S-functions for graphs. Journal of geometry, 8(1-2):171–186, 1976. doi:
10.1007/BF01917434.

34 P. Holland and S. Leinhardt. A method for detecting structure in sociometric data. American
Journal of Sociology, 76:492–513, 1970. doi:10.1016/B978-0-12-442450-0.50028-6.

35 Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM Journal on
Computing, 7(4):413–423, 1978. doi:10.1137/0207033.

36 Shalev Itzkovitz, Reuven Levitt, Nadav Kashtan, Ron Milo, Michael Itzkovitz, and Uri Alon.
Coarse-graining and self-dissimilarity of complex networks. Phys. Rev. E, 71(016127), January
2005. doi:10.1103/PhysRevE.71.016127.

37 Shweta Jain and C Seshadhri. A fast and provable method for estimating clique counts using
Turán’s theorem. In Proceedings, International World Wide Web Conference (WWW), pages
441–449, 2017. doi:10.1145/3038912.3052636.

38 Madhav Jha, C Seshadhri, and Ali Pinar. Path sampling: A fast and provable method for
estimating 4-vertex subgraph counts. In Proc. 24th Proceedings, International World Wide
Web Conference (WWW), pages 495–505. International World Wide Web Conferences Steering
Committee, 2015. doi:10.1145/2736277.2741101.

39 László Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum
Hungarica, 18(3-4):321–328, 1967. doi:10.1007/BF02280291.

40 László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc.,
2012. URL: http://www.ams.org/bookstore-getitem/item=COLL-60.

41 David W Matula and Leland L Beck. Smallest-last ordering and clustering and graph coloring
algorithms. Journal of the ACM (JACM), 30(3):417–427, 1983. doi:10.1145/2402.322385.

42 Derek O’Callaghan, Martin Harrigan, Joe Carthy, and Pádraig Cunningham. Identifying
discriminating network motifs in youtube spam, 2012. arXiv:1202.5216, doi:10.48550/
arXiv.1202.5216.

43 Mark Ortmann and Ulrik Brandes. Efficient orbit-aware triad and quad census in directed and
undirected graphs. Applied network science, 2(1), 2017. doi:10.1007/s41109-017-0027-2.

44 Noujan Pashanasangi and C Seshadhri. Efficiently counting vertex orbits of all 5-vertex
subgraphs, by evoke. In Proc. 13th International Conference on Web Search and Data Mining
(WSDM), pages 447–455, 2020. doi:10.1145/3336191.3371773.

45 Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. Escape: Efficiently counting all 5-vertex
subgraphs. In Proceedings, International World Wide Web Conference (WWW), pages 1431–
1440, 2017. doi:10.1145/3038912.3052597.

46 Natasa Przulj. Biological network comparison using graphlet degree distribution. Bioinform-
atics, 23(2):177–183, 2007. doi:10.1093/bioinformatics/btl301.

47 Neil Robertson and Paul D. Seymour. Graph minors. i. excluding a forest. Journal of
Combinatorial Theory, Series B, 35(1):39–61, 1983. doi:10.1016/0095-8956(83)90079-5.

48 Neil Robertson and Paul D. Seymour. Graph minors. iii. planar tree-width. Journal of
Combinatorial Theory, Series B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

49 Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width.
Journal of algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

50 Rahmtin Rotabi, Krishna Kamath, Jon M. Kleinberg, and Aneesh Sharma. Detecting strong
ties using network motifs. In Proceedings, International World Wide Web Conference (WWW),
2017. doi:10.1145/3041021.3055139.

https://doi.org/10.1137/S0097539703427203
https://arxiv.org/abs/2010.05998
https://doi.org/10.48550/arXiv.2010.05998
https://doi.org/10.1007/11917496_15
https://doi.org/10.1007/BF01917434
https://doi.org/10.1007/BF01917434
https://doi.org/10.1016/B978-0-12-442450-0.50028-6
https://doi.org/10.1137/0207033
https://doi.org/10.1103/PhysRevE.71.016127
https://doi.org/10.1145/3038912.3052636
https://doi.org/10.1145/2736277.2741101
https://doi.org/10.1007/BF02280291
http://www.ams.org/bookstore-getitem/item=COLL-60
https://doi.org/10.1145/2402.322385
https://arxiv.org/abs/1202.5216
https://doi.org/10.48550/arXiv.1202.5216
https://doi.org/10.48550/arXiv.1202.5216
https://doi.org/10.1007/s41109-017-0027-2
https://doi.org/10.1145/3336191.3371773
https://doi.org/10.1145/3038912.3052597
https://doi.org/10.1093/bioinformatics/btl301
https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1145/3041021.3055139

D. Paul-Pena and C. Seshadhri 54:19

51 Marc Roth and Philip Wellnitz. Counting and finding homomorphisms is universal for
parameterized complexity theory. In Proc. 31st Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2161–2180, 2020. doi:10.1137/1.9781611975994.133.

52 Ahmet Erdem Sariyuce, C. Seshadhri, Ali Pinar, and Umit V. Catalyurek. Finding the
hierarchy of dense subgraphs using nucleus decompositions. In Proceedings, International
World Wide Web Conference (WWW), pages 927–937, 2015. doi:10.1145/2736277.2741640.

53 C. Seshadhri and Srikanta Tirthapura. Scalable subgraph counting: The methods behind the
madness: WWW 2019 tutorial. In Proceedings, International World Wide Web Conference
(WWW), 2019. doi:10.1145/3308560.3320092.

54 Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten M.
Borgwardt. Efficient graphlet kernels for large graph comparison. In AISTATS, pages 488–495,
2009. URL: http://proceedings.mlr.press/v5/shervashidze09a.html.

55 K. Shin, T. Eliassi-Rad, and C. Faloutsos. Patterns and anomalies in k-cores of real-world
graphs with applications. Knowledge and Information Systems, 54(3):677–710, 2018. doi:
10.1007/s10115-017-1077-6.

56 George Szekeres and Herbert S Wilf. An inequality for the chromatic number of a graph.
Journal of Combinatorial Theory, 4(1):1–3, 1968. doi:10.1016/S0021-9800(68)80081-X.

57 Charalampos E. Tsourakakis. The k-clique densest subgraph problem. In Proceedings,
International World Wide Web Conference (WWW), pages 1122–1132, 2015. doi:10.1145/
2736277.2741098.

58 Charalampos E. Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. Scalable motif-
aware graph clustering. In Proceedings, International World Wide Web Conference (WWW),
pages 1451–1460, 2017. doi:10.1145/3038912.3052653.

59 Johan Ugander, Lars Backstrom, and Jon M. Kleinberg. Subgraph frequencies: mapping the
empirical and extremal geography of large graph collections. In Proceedings, International
World Wide Web Conference (WWW), pages 1307–1318, 2013. doi:10.1145/2488388.2488502.

60 Hao Yin, Austin R. Benson, and Jure Leskovec. Higher-order clustering in networks. Phys.
Rev. E, 97:052306, 2018. doi:10.1103/PhysRevE.97.052306.

61 Hao Yin, Austin R. Benson, and Jure Leskovec. The local closure coefficient: A new perspective
on network clustering. In ACM International Conference on Web Search and Data Mining
(WSDM), pages 303–311, 2019. doi:10.1145/3289600.3290991.

ISAAC 2024

https://doi.org/10.1137/1.9781611975994.133
https://doi.org/10.1145/2736277.2741640
https://doi.org/10.1145/3308560.3320092
http://proceedings.mlr.press/v5/shervashidze09a.html
https://doi.org/10.1007/s10115-017-1077-6
https://doi.org/10.1007/s10115-017-1077-6
https://doi.org/10.1016/S0021-9800(68)80081-X
https://doi.org/10.1145/2736277.2741098
https://doi.org/10.1145/2736277.2741098
https://doi.org/10.1145/3038912.3052653
https://doi.org/10.1145/2488388.2488502
https://doi.org/10.1103/PhysRevE.97.052306
https://doi.org/10.1145/3289600.3290991

Optimal Offline ORAM with Perfect Security via
Simple Oblivious Priority Queues
Thore Thießen #

University of Münster, Germany

Jan Vahrenhold #

University of Münster, Germany

Abstract
Oblivious RAM (ORAM) is a well-researched primitive to hide the memory access pattern of a
RAM computation; it has a variety of applications in trusted computing, outsourced storage, and
multiparty computation. In this paper, we study the so-called offline ORAM in which the sequence of
memory access locations to be hidden is known in advance. Apart from their theoretical significance,
offline ORAMs can be used to construct efficient oblivious algorithms.

We obtain the first optimal offline ORAM with perfect security from oblivious priority queues
via time-forward processing. For this, we present a simple construction of an oblivious priority queue
with perfect security. Our construction achieves an asymptotically optimal (amortized) runtime of
Θ(log N) per operation for a capacity of N elements and is of independent interest.

Building on our construction, we additionally present efficient external-memory instantiations of
our oblivious, perfectly-secure construction: For the cache-aware setting, we match the optimal I/O
complexity of Θ(1

B
log N

M
) per operation (amortized), and for the cache-oblivious setting we achieve

a near-optimal I/O complexity of O(1
B

log N
M

log logM N) per operation (amortized).

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Cryptographic protocols

Keywords and phrases offline ORAM, oblivious priority queue, perfect security, external memory
algorithm, cache-oblivious algorithm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.55

Related Version Full Version: https://arxiv.org/abs/2409.12021 [31]

Acknowledgements We thank all anonymous reviewers for their constructive comments that helped
to improve the presentation.

1 Introduction

Introduced by Goldreich and Ostrovsky [16], oblivious RAM (ORAM) conceals the memory
access pattern of any RAM computation. This prevents the leakage of confidential information
when some adversary can observe the pattern of memory accesses. We consider oblivious
RAM in the offline setting: This allows an additional pre-processing step on the access
pattern while still requiring that the access pattern is hidden from the adversary.

Offline ORAMs can be used to construct efficient oblivious algorithms in situations where
at least part of the memory access sequence is either known or can be inferred in advance. As
a motivating example, consider the classical Gale–Shapley algorithm for the stable matching
problem [15, 27]: In each round of the algorithm, up to n parties make a proposal according
to their individual preferences. The preferences must be hidden to maintain obliviousness,
and thus the memory access pattern may not depend on them. While it seems that the
standard algorithm makes online choices, in fact the preferences and the current matching
are known before each round, so the proposals can be determined in advance and an offline
ORAM can be used to hide the access pattern in each round.

© Thore Thießen and Jan Vahrenhold;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 55; pp. 55:1–55:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:t.thiessen@uni-muenster.de
https://orcid.org/0009-0002-9902-3853
mailto:jan.vahrenhold@uni-muenster.de
https://orcid.org/0000-0001-8708-4814
https://doi.org/10.4230/LIPIcs.ISAAC.2024.55
https://arxiv.org/abs/2409.12021
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 Optimal Offline ORAM with Perfect Security via Simple Oblivious Priority Queues

Many of the previous works on offline (and online) ORAMs focus on statistical and
computational security: While optimal offline ORAMs are known for computational and
statistical security [4, 29], the same is not true for perfect security. We close this gap and
obtain the first (asymptotically) optimal offline ORAM with perfect security. We derive our
construction from an oblivious priority queue.

For this, we discuss and analyze a construction of an oblivious priority queue simple
enough to be considered part of folklore. In fact, both the construction and its analysis can
be used in an undergraduate data structures course as an example of how to construct an
efficient oblivious data structure from simple building blocks. Our construction reduces the
problem to oblivious partitioning where an optimal oblivious algorithm [4] is known.

1.1 Oblivious Data Structures
Conceptually, (offline) ORAM and oblivious priority queues are oblivious data structures.
Oblivious data structures provide efficient means to query and modify data while not leaking
information, e. g., distribution of the data or the operations performed, via the memory
access pattern. There are three main applications:
Outsourced Storage. When storing data externally, oblivious data structures can be used

in conjunction with encryption. Encryption alone protects the confidentiality of the data
at rest, but performing operations may still leak information about queries or the data
itself via the access pattern [20].

Trusted Computing. When computing in trusted execution environments, oblivious data
structures safeguard against many memory-related side channel attacks [28].

(Secure) Multiparty Computation. In this setting, actors want to (jointly) compute a func-
tion without revealing their respective inputs to each other. Here, oblivious data structures
have been used to allow for data structure operations with sublinear runtime [32, 23].

1.1.1 Security Definition
In line with standard assumptions for oblivious algorithms [16], we assume the w-bit word
RAM model of computation. Let the random variable AddrOp(x) with

AddrOp(x) ∈ ({0, . . . , 2w − 1} × {Read, Write})∗ (1)

denote the sequence of memory probes for Op(x), i. e., the sequence of memory access
locations and memory operations performed by operation Op for input x. Access to a
constant number of registers (private memory) is excluded from the probe sequence.

For perfect oblivious security, we require that all data structure operation sequences of
length n produce the same memory access pattern:

▶ Definition 1 (Obliviousness with Perfect Security). We say that an (online) data structure
DN with capacity1 N and operations Op1, . . . , Opm is oblivious with perfect security iff, for
every two sequences of n operations

X = ⟨Opi1(x1), . . . , Opin(xn)⟩ and Y = ⟨Opj1(y1), . . . , Opjn(yn)⟩

with valid inputs xk, yk, the memory probe sequences are identically distributed, i. e.,

⟨AddrOpi1 (x1), . . . , AddrOpin (xn)⟩ ≡ ⟨AddrOpj1 (y1), . . . , AddrOpjn (yn)⟩ .

1 To hide the type of operation performed, in particular for intermixed Insert and Delete sequences, it
is assumed that the data structure has a fixed capacity N determined a priori. This assumption does
not limit any of our analyses, as the capacity can be adjusted using standard (doubling) techniques
with (amortized) constant asymptotic overhead per operation.

T. Thießen and J. Vahrenhold 55:3

Table 1 Oblivious priority queues supporting Insert, Min, and DeleteMin. Deletions are noted
as supported if an operation Delete, ModifyPriority, or DecreasePriority is available.

security runtime priv. memory deletion

perfectp O(log2 N)a O(1) no [32]
statistical O(log2 N) O(ω(1) · log N) no [33]
statistical O(log2 N) O(ω(1) · log N) yesr [23, Path ORAM variant]

perfect O(log2 N)a O(1) no [26]
statistical O(log N)a O(ω(1) · log N) yes [22]
statistical O(ω(1) · log N) O(1) yesr [29, Circuit variant]

perfect O(log2 N)a O(1) yesr [19]

perfect O(log N)a O(1) no new
p reveals the operation a amortized runtime complexity r requires an additional reference

The requirement of identical distribution in the above definition can be relaxed to
strictly weaker definitions of security by either allowing a negligible statistical distance of the
probe sequences (statistical security) or allowing a negligible distinguishing probability by a
polynomial-time adversary (computational security); see Asharov et al. [4] for more details.

Definition 1 immediately implies that the memory probe sequence is independent of
the operation arguments – and, by extension, the data structure contents – as well as the
operations performed (operation-hiding security). As a technical remark, we note that for
perfectly-secure data structure operations with determined outputs, the joint distributions of
output and memory probe sequence are also identically distributed. This implies that data
structures satisfying Definition 1 are universally composable [4].

1.1.2 Offline ORAM

The (online) ORAM is essentially an oblivious array data structure [24]. By using an ORAM
as the main memory, any RAM program can generically be transformed into an oblivious
program at the cost of an overhead per memory access.

The offline ORAM we are considering here, however, is given the sequence I of access
locations in advance. While this allows pre-computations on I, the probe sequence must still
hide the operations and indices in I. In anticipation of the offline ORAM construction in
Section 3, we take a similar approach as Mitchell and Zimmerman [26] and define an offline
ORAM as an online oblivious data structure with additional information:

▶ Definition 2 (Offline ORAM). An offline ORAM is an oblivious data structure DN that
maintains an array of length N under an annotated online sequence of read and write
operations:
Read(i, τ) Return the value stored at index i in the array.
Write(i, v′, τ) Store the value v′ in the array at index i.
The annotation τ indicates the time-stamp of the next operation accessing index i.

Note that this definition implies that DN can also be used in an online manner if the
time-stamps τ of the next operation accessing the index i are known. When discussing the
offline ORAM construction in Section 3, we show how to use sorting and linear scans to
compute the annotations τ from the sequence I of access locations given in advance.

ISAAC 2024

55:4 Optimal Offline ORAM with Perfect Security via Simple Oblivious Priority Queues

Table 2 Best known overhead bounds for online and offline ORAMs with N memory cells, a
constant number of private memory cells, and standard parameters [24].

perfect security statistical security comput. security

online Ω(log N) [24] Ω(log N) [24] Ω(log N) [24]
O(log3 N/ log log N) [11] O(log2 N) [10] O(log N)p [5]

offline
Ω(log N)i [16] Ω(log N)i [16, 8] Ω(1) trivial [8]

O(log2 N)a e. g., via [26] O(ω(1) · log N) [29] O(log N)p [5]
O(log N)a new

p assuming a pseudo-random function family i assuming indivisibility [8] a amortized

1.2 Previous Work
Oblivious Priority Queues. Because of their many algorithmic applications, oblivious
priority queues have been considered in a number of previous works. We provide an overview
of previous oblivious priority queue constructions in Table 1.

Jacob et al. [21] show that a runtime of Ω(log N) per operation is necessary for oblivious
priority queues. Their lower bound holds even when allowing a constant failure probability
and relaxing the obliviousness to statistical or computational security.

The first oblivious priority queue construction due to Toft [32] is perfectly-secure and has
an amortized runtime of O(log2 N), but reveals the operation performed and lacks operations
to delete or modify arbitrary elements. Subsequent perfectly-secure constructions [26, 19]
offer operation-hiding security or support additional operations, but do not improve the
suboptimal O(log2 N) runtime. A different line of work considers oblivious priority queues
with statistical security. Jafargholi et al. [22] and, subsequently, Shi [29] both present
constructions with an optimal Θ(log N) runtime. All statistically secure priority queue
constructions [33, 23, 22, 29] are randomized; many [33, 23, 29] also rely on tree-based
ORAMs (e. g., Path ORAM [30] or Circuit ORAM [10]) in a non–black-box manner.

Offline ORAMs. Though much of the research focuses on online ORAMs, offline ORAMs
have been explicitly considered in some previous works [26, 8, 22, 29]. We provide an overview
of the best known upper and lower bounds for both online and offline ORAM constructions
with perfect, statistical, or computational security in Table 2.

Goldreich and Ostrovsky [16] prove a lower bound on the overhead of Ω(log N) for (online)
ORAMs with perfect security (assuming indivisibility). This bound also applies to offline
ORAMs and constructions with statistical security [8].

There is a generic way to construct offline ORAMs from oblivious priority queues (see
Section 3). Via their priority queue construction, Shi [29] obtains an optimal offline ORAM
with statistical security for a private memory of constant size. For computational security,
the state-of-the-art online ORAM construction [5] is simultaneously the best known offline
construction (asymptotically). While the upper bounds for statistical and computational
security match the (conjectured) Ω(log N) lower bound, prior to our work there remained a
gap for perfect security.2

2 Boyle and Naor [8] show how to construct an offline ORAM with overhead O(log N): In addition to the
access locations, their construction must be given the operands of the write operations in advance, i. e.,
the sequence of values to be written. It thus does not fit our more restrictive Definition 2.

T. Thießen and J. Vahrenhold 55:5

D0

U0

level 0
D1

U1

level 1
D2

U2

level 2
D3

U3

level 3
· · ·

· · ·

Figure 1 Structure of the oblivious priority queue: Each level i ∈ {0, . . . , ℓ − 1} consists of a
down-buffer Di and an up-buffer Ui half the size of Di.

1.3 Contributions
Our work provides several contributions to a better understanding of the upper bounds of
perfectly-secure oblivious data structures:

As a main contribution, we present and analyze an oblivious priority queue construction
with perfect security. This construction is conceptually simple and achieves the optimal
Θ(log N) runtime per operation amortized.
In particular, our construction improves over the previous statistically-secure construc-
tions [22, 29] in that we eliminate the failure probability (perfect security with perfect
correctness) and achieve a strictly-logarithmic runtime for O(1) private memory cells.3
The priority queue implies an optimal Θ(log N)-overhead offline ORAM with perfect
security, closing the gap to statistical and computational security in the offline setting.
We show that these bounds hold even for a large number n of operations, i. e., n = Nω(1).
We also provide improved external-memory oblivious priority queues: Compared to the
I/O-optimal state-of-the-art [22], our cache-aware construction achieves perfect security
and only requires a private memory of constant size.
In the cache-oblivious setting, our construction achieves near-optimal I/O-complexity for
perfect security and a private memory of constant size. We are not aware of any previous
oblivious priority queues in the cache-oblivious setting.

2 Oblivious Priority Queue from Oblivious Partitioning

An oblivious priority queue data structure maintains up to N elements and must support at
least three non-trivial operations prescribed by the abstract data type PriorityQueue:
Insert(k, p). Insert the element ⟨k, p⟩ with priority p.
Min(). Return the element ⟨k, pmin⟩ with the minimal priority pmin.
DeleteMin(). Remove the element ⟨k, pmin⟩ with minimal priority pmin.
We assume that both the key k and the priority p fit in a constant number of memory cells
and that the relative order of two priorities p, p′ can be determined obliviously in constant
time; larger elements introduce an overhead factor in the runtime. To keep the exposition
simple, we assume distinct priorities. This assumption can be removed easily, see Section 2.2.

Figure 1 shows the structure of our solution: In a standard data structure layout, it has
ℓ ∈ Θ(log N) levels of geometrically increasing size. Each level i consists of a down-buffer Di

and an up-buffer Ui, both of size Θ(2i). Insert inserts into the up-buffer U0 and DeleteMin
removes from the down-buffer D0. Each level i is rebuilt after 2i operations, moving elements
up through the up-buffers and back down through the down-buffers. The main idea guiding
the rebuilding is to ensure that all levels j < i can support the next operations until level i

is rebuilt; we later formalize this as an invariant for the priority queue (see Lemma 4).

3 For a private memory of constant size, the construction of Shi [29] requires an additional ω(1)-factor in
runtime to achieve a negligible failure probability.

ISAAC 2024

55:6 Optimal Offline ORAM with Perfect Security via Simple Oblivious Priority Queues

Oblivious Building Blocks. For our construction, we need an algorithm to obliviously
permute a given array A of n elements such that the k smallest elements are swapped to the
front, followed by the remaining n− k elements. We refer to this problem as k-selection.

To obtain an efficient algorithm for k-selection, we use an oblivious modification of the
classical (RAM) linear-time selection algorithm [7] as sketched by Lin et al. [25, full version,
Appendix E.2]. This reduces k-selection to the partitioning problem (also called 1-bit sorting).
The oblivious k-selection deviates from the classical algorithm in two respects [25]:

First, it is necessary to ensure that the partitioning step is oblivious. For this, instead of
the algorithms proposed by Lin et al., we use the optimal oblivious partitioning algorithm
of Asharov et al. [4, Theorem 5.1].4 This allows us to obtain a linear-time algorithm for
k-selection.
Second, the relative position of the median of medians among the elements cannot be
revealed as this would leak information about the input. To address this, Lin et al. propose
over-approximating the number of elements and always recursing with approximately 7n

10
elements.

▶ Corollary 3 (Oblivious k-Selection via [25, 4]). There is a deterministic, perfectly-secure
oblivious algorithm for the k-selection problem with runtime O(n) for n elements.

We describe the algorithm in detail and prove its correctness in the full version [31].

Comparison with Jafargholi et al. [22]. Conceptually, our construction is similar to that
of Jafargholi et al. [22]: In both constructions, the priority queue consists of levels of
geometrically increasing size with lower-priority elements moving towards the smaller levels.
Structuring the construction so that larger levels are rebuilt less frequently is a standard
data structure technique to amortize the cost of rebuilding.

The main difference lies in the rebuilding itself: In the construction of Jafargholi et al.,
level i is split into 2i nodes; overall, the levels form a binary tree. The elements are then
assigned to paths in the tree based on their key [22]. While this allows deleting elements by
their key efficiently, this inherently introduces the probability of “overloading” certain nodes,
reducing the construction to statistical security (with a negligible failure probability).

We instead use k-selection for rebuilding; this allows us to maintain both perfect cor-
rectness and security. Unfortunately, this comes at the cost of a more expensive Delete
operation: Since we maintain no order on the keys within each level, it is not possible to
efficiently delete arbitrary elements by their key. We note that deleting arbitrary elements is
not required for our offline ORAM construction.

2.1 Details of the Construction
The priority queue consists of ℓ := ⌈log2 N⌉ levels, each with a down-buffer Di of 2max{1,i}

elements and an up-buffer Ui of 2max{0,i−1} = |Di|
2 elements. An element is a pair ⟨k, p⟩ of

key k and priority p; each buffer is padded with dummy elements to hide the number of
“real” elements. Initially, all elements in the priority queue are dummy elements. We refer to
a buffer containing only dummy elements as empty.

The elements are distributed over the levels via a rebuilding procedure: Level i is rebuilt
after exactly 2i operations. Let ∆i be the remaining number of operations until level i is
rebuilt (with ∆i = 2i initially). After each operation, all counters ∆i are decremented by

4 Note that Asharov et al. refer to the partitioning problem as compaction. We use the term partitioning
to stress that all elements of the input are preserved which is necessary for our definition of k-selection.

T. Thießen and J. Vahrenhold 55:7

D0

U0

D1

U1

< · · ·

· · ·

< Dm

Um

< Dm+1

Um+1

· · ·

· · ·

elements with ranks 0 . . . 2m+1 − 1

rem. elements

Figure 2 Distribution of the elements when rebuilding level m: The up to 2m+1 smallest elements
in the levels 0, . . . , m are distributed over the down-buffers of the first m levels. The up to 2m

remaining elements are inserted into the (empty) up-buffer Um+1 of level m + 1.

one and all levels i with ∆i = 0 are rebuilt with Rebuild(m) for m := max{i < ℓ |∆i = 0};
note that ∆i = 0 if and only if i ≤ m. The counter ∆i of each rebuilt level i ≤ m is reset to
2i, so ∆i > 0 for every level i after each operation.

We will show the correctness of the construction with three invariants (a)–(c):

▶ Lemma 4 (Invariants). Before each operation of the priority queue, the following holds:
(a) The priority queue contains the correct elements, i. e., E =

⋃
i<ℓ(Ui∪Di) where E denotes

the elements that should be contained in the priority queue (with standard semantics).
(b) The up-buffer U0 is empty, i. e., contains exactly one dummy element.
(c) For all elements e := ⟨k, p⟩ ∈ Di ∪ Ui with i ≥ 1, it holds that ∆i ≤ rank(e) where

rank(⟨ · , p⟩) := |{⟨ · , p′⟩ ∈ E | p′ < p}| is the (unique) rank of p in the priority queue.

The most important invariant (c) guarantees that each level i ≥ 1 is rebuilt before any
of its elements are required for Min/DeleteMin in D0. In turn, this implies that the ∆i

smallest elements potentially required before rebuilding level i are stored in the buffers on
levels 0, . . . , i− 1. Formally, this follows since ∆j ≤ ∆i for all j < i.

For simplicity of exposition, we ignore the details of the rebuilding step for the time being
and discuss how the three priority queue operations can be implemented while maintaining
the invariants (a) and (c) of Lemma 4:
Insert(k, p). The dummy in U0 is replaced with the new element ⟨k, p⟩. After the operation,

the priority queue contains the elements E ′ = E ∪ {⟨k, p⟩} =
⋃

i<ℓ(Ui ∪Di). Inserting a
new element does not decrease the rank of any element while all counters ∆i decrease;
this implies that invariant (c) is maintained.

Min(). The minimal element emin with rank(emin) = 0 must be contained in level 0 since
∆i > 0 for all i > 0 before each operation. Since U0 is empty, emin is one of the two
elements in D0. After the operation, the elements E ′ = E =

⋃
i<ℓ(Ui ∪Di) remain the

same. Invariant (c) is maintained since the ranks of all elements e ∈ E remain unchanged.
DeleteMin(). For this operation, we replace the minimal element emin ∈ D0 with a

dummy element. After the operation, the priority queue contains the elements E ′ =
E \{emin} =

⋃
i<ℓ(Ui∪Di). Removing the minimum reduces the rank of all other elements

by one, but invariant (c) is maintained since all counters ∆i also decrease.

For the operation-hiding security, we access memory locations for all three operations but
only perform updates for the intended operation. For example, DeleteMin will access both
U0 and D0, but only actually overwrite the minimal element in D0 with a dummy element.
We provide pseudocode for the operations in the full version [31].

We now turn to describing Rebuild(m) (Algorithm 1). As shown in Figure 2, this
procedure processes all elements in the levels 0, . . . , m: The non-dummy elements are
distributed into D0, . . . , Dm, Um+1 and the up-buffers U0, . . . , Um are emptied, i. e., filled

ISAAC 2024

55:8 Optimal Offline ORAM with Perfect Security via Simple Oblivious Priority Queues

Algorithm 1 Rebuild the levels 0, . . . , m in the oblivious priority queue. Let A ∥ B denote the
concatenation of two buffers A and B; A0...i denotes the concatenation A0 ∥ · · · ∥ Ai.

1: procedure Rebuild(m)
2: KSelect(2m+1, D0...m ∥ U0...m) ▷ move 2m+1 smallest elements to D0...m

3: if m is not the last level then
4: Um+1 ← U0...m ▷ copy the elements in U0...m to Um+1
5: U0...m ← ⟨⊥, . . . ,⊥⟩ ▷ overwrite U0...m with dummy elements
6: for i← m− 1, . . . , 0 do
7: KSelect(2i+1, D0...i+1) ▷ move 2i+1 smallest elements to D0...i

8: for i← 0, . . . , m do
9: ∆i ← 2i ▷ reset counters

with dummy elements. The down-buffers D0, . . . , Dm collectively contain up to 2m+1 non-
dummy elements. Additionally, the up-buffers U0, . . . , Um collectively contain up to 2m

non-dummy elements. All these elements are distributed over the buffers D0, . . . , Dm and
Um+1 such that

D0 contains the two smallest elements (with ranks 0 and 1),
the other Di (for i ≤ m) each contain the elements with ranks 2i, . . . , 2i+1 − 1,5 and
Um+1 contains all remaining elements.

For this, we order the elements by their priority p; dummy elements have no priority and are
ordered after non-dummy elements.

We can now prove that the overall construction is correct by showing that Rebuild(m)
with m := max{i < ℓ |∆i = 0} maintains the invariants (a)–(c):

Proof of Lemma 4. All invariants trivially hold for the empty priority queue. As described
above, the operations Insert, Min, and DeleteMin maintain invariants (a) and (c). After
each operation, all counters ∆i are decremented and the levels i with ∆i = 0 are rebuilt. We
now show that all invariants hold after rebuilding.

Invariants (a) and (b): E =
⋃

i<ℓ(Ui ∪ Di) and U0 is empty. We first show that prior
to Rebuild(m) in each operation where m is not the last level, the up-buffer Um+1 is empty.
This can be seen by considering the two possible cases:

If no more than 2m operation have been performed overall, the level m + 1 has never
been accessed. In this case Um+1 is empty since it was empty initially.
Otherwise, if more than 2m operations have been performed, the up-buffer Um+1 was
emptied 2m operations before by Rebuild(m′) for some m′ > m (and not accessed since).

This means that by copying the elements in U0...m into Um+1 (Line 4), only dummy elements
are being overwritten and invariant (a) is maintained.

In case m is the last level (m = ℓ− 1), after Line 2 the up-buffers U0, . . . , Um are empty
iff there no more than 2m+1 = 2ℓ ≥ N elements in the data structure. This is guaranteed by
the capacity bound N . Thus, the up-buffer U0 is empty after each operation.

5 Even if there are more than 2m+1 elements in the priority queue overall, the buffer Dm may still end
up (partially) empty after rebuilding. This is no threat to the correctness, since invariant (c) guarantees
that level m + 1 will be rebuilt before requiring the elements with ranks ≥ 2m.

T. Thießen and J. Vahrenhold 55:9

Invariant (c): ∆i ≤ rank(e) for all e ∈ Ui ∪ Di with i ≥ 1. Next, we show that
rebuilding maintains the rank invariant for all redistributed elements. Using k-selections to
redistribute the elements makes sure that a buffer in level i receives non-dummy elements
only if all D0, . . . , Di−1 have been filled to capacity. Consider any level i ≥ 1: If an element
e := ⟨k, p⟩ is redistributed into level i, exactly 2i =

∑
j<i|Dj | elements ⟨ · , p′⟩ with p′ < p

must have been redistributed into lower levels, so 2i ≤ rank(e). Thus, for all non-dummy
elements e inserted into a level i ≥ 1, it holds that ∆i ≤ 2i ≤ rank(e). For elements that
remain in a level i > m, invariant (c) is trivially maintained. ◀

With this, we obtain our perfectly-secure priority queue construction:

▶ Theorem 5 (Optimal Oblivious Priority Queue). There is a deterministic, perfectly-secure
oblivious priority queue with capacity N that supports each operation in amortized O(log N)
time and uses O(N) space.

Proof. Apart from the rebuilding, the runtime for Insert, Min, and DeleteMin is constant.
The amortized runtime per operation for Rebuild is bounded by

ℓ−1∑
m=0

TKSelect(2m+1 + 2m) +
∑m−1

i=0 TKSelect(2i+2) + c · 2m

2m

≤
ℓ−1∑
m=0

O(2m)
2m

∈ O(ℓ) = O(log N) .

The space bound follows immediately since all algorithmic building blocks have a linear
runtime and the combined size of all up- and down-buffers is linear in N .

By using the deterministic, perfectly-secure algorithm for k-selection (Corollary 3), the
obliviousness follows since the access pattern for each operation is a deterministic function of
the capacity N and the number of operations performed so far. ◀

Due to the lower bound for oblivious priority queues [21], this runtime is optimal. If the
type of operation does not need to be hidden, Min can be performed in constant time since
rebuilding is only required for correctness when adding or removing an element. By applying
Rebuild(ℓ− 1) directly, the priority queue can be initialized from up to N elements in O(N)
time.

2.2 Non-Distinct Priorities
For non-distinct priorities, we want to ensure that ties are broken such that the order of
insertion is preserved, i. e., that elements inserted earlier are extracted first. For this, we
augment each element with the time-stamp t of the Insert operation and order the elements
lexicographically by priority and time-stamp. This only increases the size of each element by
a constant number of memory cells and thus does not affect the runtime complexity.

It remains to bound the size of the time-stamp for a super-polynomial number of
operations:6 Here we note that when rebuilding the last level (Rebuild(ℓ − 1)), we can
additionally sort all elements by time-stamp and compress the time-stamps to the range
{0, . . . , N−1} (preserving their order). We then assign time-stamps starting with t = N until

6 Shi [29, Section III.E] also address this issue, but for our amortized construction we can use a simpler
approach based on oblivious sorting.

ISAAC 2024

55:10 Optimal Offline ORAM with Perfect Security via Simple Oblivious Priority Queues

Algorithm 2 Algorithm to perform an operation Op ∈ {Read, Write} in the offline ORAM at
the access location i; v′ is the value to be written (v′ = ⊥ for Op = Read). The time-stamp t is
incremented after each access (with t = 1 initially).

1: procedure Access(Op, i, v′)
2: ⟨v, tnext⟩ ← Q.Min()
3: Q.DeleteMin() iff tnext = t; perform a dummy operation iff tnext ̸= t

4: v ←

v iff Op = Read ∧ tnext = t,
vdefault iff Op = Read ∧ tnext ̸= t,
v′ iff Op = Write

5: Q.Insert(v, T [t− 1]); t← t + 1 ▷ T [t− 1] = τt

6: return v

the last level is rebuilt again. This ensures that 2N is an upper bound for the time-stamps,
so O(log N) bits suffice for each time-stamp. With an (optimal) oblivious O(n log n)-time
sorting algorithm [2], the additional amortized runtime for sorting is bounded by

1
2ℓ−1 · TSort(N) ∈ Θ(log N) (2)

and does not affect the overall runtime complexity.

3 Offline ORAM from Oblivious Priority Queues

As mentioned in the introduction, an offline ORAM is an oblivious array data structure given
the sequence I = ⟨i1, . . . , in⟩ of access locations in advance. While an offline ORAM may
pre-process I to perform the operations more efficiently afterward, the data structure must
still adhere to Definition 1, i. e., the memory probes must be independent of the values in I.

An offline ORAM can be constructed from any oblivious priority queue using a technique
similar to time-forward processing [12]. We describe our construction for N memory cells
below: In Section 3.1 we show how to realize Read(it) and Write(it, v′

t); there we assume
that the time τt at which the index it is accessed next is known. In Section 3.2 we then show
how to pre-process I to derive these values τt.

Jafargholi et al. [22] describe an alternative offline ORAM construction. We simplify the
construction by decoupling the information τt from the values written to the offline ORAM.

3.1 Online Phase: Processing the Operations
For the offline ORAM with N cells, initialize a priority queue Q with capacity N ; the
annotations T = ⟨τ1, . . . , τn⟩ as well as the current time t are stored alongside the priority
queue. The procedure for processing the t-th operation Read(it) or Write(it, v′

t) is shown
in Algorithm 2. Some fixed value vdefault is used as the initial value of all ORAM cells.

It is easy to verify that the resulting construction is correct given T and oblivious given
a perfectly-secure priority queue Q. For the array access T [t− 1] in Line 5, note that t is the
number of the current operation, so the access can be performed “in the clear” without a
linear scan; this simplifies the construction w. r. t. Jafargholi et al. [22].

3.2 Offline Phase: Pre-Processing
To obtain the annotations T = ⟨τ1, . . . , τn⟩ we now describe how to pre-process the sequence
I = ⟨i1, . . . , in⟩ ∈ {0, . . . , N − 1}n of memory access locations.

T. Thießen and J. Vahrenhold 55:11

· · · · · · · · · · · ·⟨i1, 1⟩ ⟨iN , N⟩ ⟨i2N , 2N⟩ ⟨in, n⟩I =
block 1 block 2 block m := ⌈ n

N ⌉

⟨0, n + 1⟩
⟨1, n + 1⟩
⟨2, n + 1⟩

...

τm(0)
τm(1)
τm(2)

...

⟨0, τ3(1)⟩
⟨1, τ3(2)⟩
⟨2, τ3(2)⟩

...

· · ·

τ2(0)
τ2(1)
τ2(2)

...

⟨0, τ2(1)⟩
⟨1, τ2(2)⟩
⟨2, τ2(2)⟩

...

A :

processing in reverse

Figure 3 Pre-processing the sequence of memory access locations I when n is super-polynomial
in N . In this figure, ⟨i, t⟩ denotes a tuple of index i and time-stamp t while τj(i) denotes the
time-stamp at which the index i is accessed next in block j.

The basic pre-processing proceeds as follows:
1. Annotate each index it with the time-stamp t.
2. Obliviously sort the indices I lexicographically by it and t.
3. Scan over indices in reverse, keeping track of the index i and the time-stamp t, and

annotate each index it with the time-stamp τt it is accessed next (or some value larger
than n if there is no next access).

4. Obliviously sort the indices I by t and discard everything but the annotations τ .
This can be done in amortized O(log n) time per index with an O(n log n)-time oblivious
sorting algorithm [2] and results in the annotations T = ⟨τ1, . . . , τn⟩.

However, when the number of operations n is super-polynomial in the capacity N , i. e.,
when n ∈ ω(N c) for all constants c, the time per index exceeds the optimal runtime of
O(log N). In this case, the pre-processing needs to be performed more carefully as shown
in Figure 3 to maintain the amortized runtime of O(log N): We divide the sequence I into
blocks of size N . Additionally, we maintain an auxiliary block A with – for each index
i ∈ {1, . . . , N} – the time-stamp τ at which index i is accessed next. Initially (for the last
block), we initialize the time-stamp τ for each index i to some value greater than n.

The time-stamps τt are then determined block by block, from the last to the first. When
processing each block, we update the time-stamps τ in A for the block processed next. For
this, we can process the O(N) elements of each block (and A) as described above.

Since we process O(N) elements for each of the O(⌈ n
N ⌉) blocks by sorting and scanning,

the pre-processing has a runtime of O(n log N) overall. This maintains the desired runtime
of O(log N) per operation amortized.

With our priority queue construction from Section 2, we obtain the following:

▶ Theorem 6 (Optimal Offline ORAM). There is a deterministic, perfectly-secure offline
ORAM with capacity N that has amortized O(log N) overhead and uses O(N + n) space.

Note that in contrast to the optimal statistically-secure constructions [22, 29], our offline
ORAM maintains security and correctness for operation sequences of arbitrary length, e. g.,
when n is super-polynomial in N .

4 External-Memory Oblivious Priority Queue

In many applications of oblivious algorithms and data structures, e. g., for outsourced
storage and for trusted computing in the presence of cache hierarchies, access to the main
memory incurs high latencies. In these applications, the complexity of an algorithm is more

ISAAC 2024

55:12 Optimal Offline ORAM with Perfect Security via Simple Oblivious Priority Queues

Table 3 Best known I/O upper bounds for obliviously partitioning n elements.

cache-aware cache-agnostic

statistical security O(
⌈

n
B

⌉
)t, w [17] O(

⌈
n
B

⌉
)t, w [25]

perfect security O(
⌈

n
B

⌉
logM n) [25] O(

⌈
n
B

⌉
logM n) [25]

O(
⌈

n
B

⌉
) new, via [4] O(

⌈
n
B

⌉
log logM n)t new, via [4]

t assuming a tall cache (M ≥ B1+ε) w assuming a wide cache-line (B ≥ logε n)

appropriately captured by the number of cache misses. This motivates the study of oblivious
algorithms in the external-memory [1] and cache-oblivious [14] models; in this section we
refer to these as cache-aware and cache-agnostic algorithms.

In this section, we instantiate I/O-efficient variants of our priority queue construction
with perfect security and a private memory of constant size. For this, we sketch how to
obtain I/O-efficient partitioning algorithms with perfect security in Section 4.1. We then
analyze the I/O-efficiency of our priority queue construction in Section 4.2.

External-Memory Oblivious Algorithms. In cache-aware and cache-agnostic models, the
CPU operates on the data stored in an internal memory (cache) of M memory words. Blocks
(cache-lines) of B memory words can be transferred between the internal and a large external
memory (I/O operations). The number of these I/O operations, depending on the problem
size n as well as M and B, is the primary performance metric for external algorithms [1].

Cache-aware algorithms depend on the parameters M and B and explicitly issue the I/O
operations. In contrast, cache-agnostic algorithms are unaware of the parameters M and B;
here the internal memory is managed “automatically” through a replacement policy [14]. We
assume an optimal replacement policy and a tall cache, i. e., M ≥ B1+ε for a constant ε > 0;
both are standard assumptions [14, 9].

For oblivious external-memory algorithms, we apply the Definition 1 to cache-aware
and cache-agnostic algorithms. In both cases we assume that the internal memory is
conceptually distinct from the constant-size private memory. That is, we guarantee that
memory words both in the internal memory and within a block are accessed in an oblivious
manner (strong obliviousness [9]). For this reason, our security definition remains unchanged.
Note that this implies that the block access pattern is also oblivious, i. e., independent of the
operations/inputs as in Definition 1.

Previous Work. While there is a line of research explicitly considering cache-aware [17, 18]
and cache-agnostic [9, 25] oblivious algorithms, most works on oblivious algorithms consider
internal algorithms with runtime and bandwidth overhead as performance metrics. To the
best of our knowledge, cache-agnostic oblivious priority queues have not been explicitly
considered in the literature. Implicitly, I/O-efficiency is sometimes [21, 22] treated through
parameters: An oblivious algorithm with (B · w)-width memory words and M · w bits of
private memory can equivalently be stated as an oblivious external-memory algorithm with
M words of internal memory and blocks of size B. We note that this re-parameterization
does not allow distinguishing internal and private memory and that the resulting algorithms
are inherently cache-aware.

T. Thießen and J. Vahrenhold 55:13

Algorithm 3 Cache-aware oblivious partitioning algorithm. For simplicity, we assume m ≥ 2.

1: procedure CacheAwarePartitionP (A)
2: conceptually partition A into m := ⌈ |A|

B ⌉ blocks Gi of B consecutive elements each
(where the last block may have fewer elements)

3: for i← 0, . . . , m− 1 do PartitionP (Gi)
4: for i← 1, . . . , m− 2 do PurifyHalfP (Gi−1, Gi) ▷ consolidate the blocks
5: PartitionP ′ : X 7→ P (X[0])(⟨G0, . . . , Gm−3⟩) ▷ apply Partition to the blocks
6: Reverse(Gm−1); PartBitonicP (Gm−2 ∥Gm−1)
7: Reverse(Gm−2 ∥Gm−1); PartBitonicP (G0 ∥ · · · ∥Gm−1)

This equivalence allows us to restate upper and lower bounds in terms of external-memory
algorithms: Jacob et al. [21] show that Ω(1

B log N
M) I/O operations amortized are necessary

for a cache-aware oblivious priority queue; this also applies to cache-agnostic oblivious priority
queues.7 This bound is matched by Jafargholi et al. [22], but the construction is cache-aware,
requires Ω(log N) words of private memory, and is randomized with statistical security.

The optimal internal partitioning algorithm [4] has – due to the use of expander graphs
– an oblivious, but highly irregular access pattern and is thus not I/O-efficient. There are
external oblivious partitioning algorithms [17, 25], but they are either only statistically secure
or inefficient. We provide an overview of existing partitioning algorithms in Table 3.

4.1 External-Memory Oblivious Partitioning

For I/O-efficient instantiations of our priority queue, we need I/O-efficient partitioning
algorithms. For this reason, we show how to construct an optimal cache-aware and a near-
optimal cache-agnostic oblivious partitioning algorithm, respectively, with perfect security.
Remember that for partitioning with a predicate P , we need to permute the elements such
that all elements x with P (x) = 0 precede those with P (x) = 1.

We mainly rely on the optimal (internal) oblivious partitioning algorithm [4, Theorem 5.1]
(Partition) and standard external-memory techniques. We also use oblivious building
blocks from the previous work by Lin et al. [25, full version, Appendix C.1.2]:
PurifyHalfP (A, B). This procedure is given two partitioned blocks A and B with
|A| = |B| and permutes the elements such that A is pure, i. e., either only consists of
elements x with P (x) = 0 or only consists of elements with P (x) = 1, and B is again
partitioned.

PartBitonicP (A). This procedure is given a bitonically partitioned [25] array A, i. e., an
array where all elements x with P (x) = 1 or all elements with P (x) = 0 are consecutive,
and partitions A.

Both building blocks are deterministic with perfect security, cache-agnostic, and have a linear
runtime of O(⌈ n

B ⌉) [25].
Our cache-aware partitioning algorithm is shown in Algorithm 3. The idea is to split A

into blocks of size B, partition each block, and then apply the internal partitioning algorithm
to the blocks.

7 In contrast, Θ(1
B log M

B

N
B) I/O operations amortized are sufficient for non-oblivious priority queues [3].

Here, the base of the logarithm is not constant but depends on the parameters M , B.

ISAAC 2024

55:14 Optimal Offline ORAM with Perfect Security via Simple Oblivious Priority Queues

Algorithm 4 Cache-agnostic oblivious partitioning algorithm for M ≥ B1+ε. We assume m ≥ 2.

1: procedure CacheAgnosticPartitionP (A)
2: if n ≤ 4 then
3: compact A via oblivious sorting
4: else
5: conceptually partition A into m := ⌈ |A|

k ⌉ groups Gi of k := ⌈ 1+ε
√
|A|⌉ consecutive

elements (where the last group may have fewer elements)
6: for i← 0, . . . , m− 1 do CacheAgnosticPartitionP (Gi)
7: for i← 1, . . . , m− 2 do PurifyHalfP (Gi−1, Gi) ▷ consolidate the groups
8: PartitionP ′ : X 7→ P (X[0])(⟨G0, . . . , Gm−3⟩) ▷ apply Partition to the groups
9: Reverse(Gm−1); PartBitonicP (Gm−2 ∥Gm−1)

10: Reverse(Gm−2 ∥Gm−1); PartBitonicP (G0 ∥ · · · ∥Gm−1)

▶ Corollary 7 (Optimal Cache-Aware Oblivious Partitioning via [4, 25]). There is a cache-aware,
deterministic, perfectly-secure oblivious partitioning algorithm that requires O(⌈ n

B ⌉) I/O
operations for n elements.

Proof. For the correctness, note that after Line 4 all blocks except Gm−2 and Gm−1 are
pure. By applying the internal partitioning algorithm to the blocks in Line 5, all 0-blocks are
swapped to the front. The partitioning is completed by first merging the partitions Gm−2
and Gm−1 in Line 6 and then merging both with the rest of the blocks in A.

The partitioning of each individual block is performed in internal memory and thus
requires O(⌈ n

B ⌉) I/O operations overall. The consolidation and merging of the partitions
can also be performed with O(⌈ n

B ⌉) I/O operations [25]. For the partitioning in Line 5,
the I/O-efficiency follows from the construction of the internal partitioning algorithm [4,
Theorem 5.1]: The algorithm operates in a “balls-in-bins”-manner, i. e., the elements are
treated as indivisible. The algorithm performs a linear number of operations on ⌊ n

B ⌋ elements,
where each element has size O(B). This leads to an I/O complexity of O(⌈ n

B ⌉) overall.
The obliviousness follows since the access pattern for each operation is a deterministic

function of the input size n := |A|. ◀

For the cache-agnostic partitioning algorithm, the elements can be processed similarly.
Here the parameter B is unknown, so the idea is to recursively divide into smaller groups
until a group has size ≤ B. The resulting algorithm is shown in Algorithm 4.

▶ Corollary 8 (Cache-Agnostic Oblivious Partitioning via [4, 25]). Assuming a tall cache of
size M ≥ B1+ε for a constant ε > 0, there is a cache-agnostic, deterministic, perfectly-
secure oblivious partitioning algorithm that requires O(

⌈
n
B

⌉
log logM n) I/O operations for n

elements.

Proof. The correctness of the base case is obvious. For the recursive case, the algorithm
proceeds as the cache-aware Algorithm 3 above, so the correctness can be seen as in
Corollary 7.

For the I/O complexity of Line 8, we distinguish two cases:
k ≤ B. In this case B ≥ k ≥ 1+ε

√
n, so n ≤ B1+ε ≤M with the tall cache assumption. This

means that the problem instance fits in the internal memory, and the step thus has an
I/O complexity of O(

⌈
n
B

⌉
).

k > B. Here we can rely on the same insight as for the cache-aware partitioning, i. e., that
the internal algorithm performs O(n

k) operations on elements of size k ≥ B. This leads
to an I/O complexity of O(n

k ·
⌈

k
B

⌉
) = O(n

B).

T. Thießen and J. Vahrenhold 55:15

The other steps have an I/O complexity of O(
⌈

n
B

⌉
) as in the cache-aware algorithm.

On depth i of the recursion tree, the instance size is

ni := (1+ε)i√
n so that on depth i ≥ log1+ε

log n

log M
∈ Θ(log logM n)

the instances fit in the internal memory and no further I/O operations are required for the
recursion. This leads to an I/O complexity of O(

⌈
n
B

⌉
log logM n) overall.

As in Corollary 7, the obliviousness follows since the access pattern for each operation is
a deterministic function of the input size n := |A|. ◀

4.2 Analysis of the External-Memory Oblivious Priority Queue
As for the internal algorithm introduced in Section 2, we can obtain efficient external
oblivious algorithms for k-selection via partitioning [25, full version, Appendix E.2]. We thus
obtain cache-aware and cache-agnostic algorithms for k-selection with the same asymptotic
complexities as the partitioning algorithms described above.

With these external algorithms, we can analyze the construction described in Section 2
in the cache-aware and cache-agnostic settings:

▶ Theorem 9 (External-Memory Oblivious Priority Queues). There are deterministic, perfectly-
secure oblivious priority queues with capacity N that support each operation with I/O com-
plexity O(1

B log N
M) amortized (cache-aware) or O(1

B log N
M log logM N) amortized (cache-

agnostic), respectively.

Proof. We prove the theorem via a slightly more general statement: Assuming the existence
of a deterministic, perfectly-secure k-selection algorithm with I/O complexity OKSelect(n) ∈
Ω(n

B), there is a deterministic, perfectly-secure priority queue with capacity N that supports
each operation with I/O complexity O(OKSelect(3N)

N log N
M) amortized.

Since the external k-selection algorithms are functionally equivalent to the internal
algorithm and oblivious, the correctness and obliviousness follows from Theorem 5. For the
I/O complexity, note that the first j := log2 M −O(1) levels of the priority queue fit into
the M cells of the internal memory. The operations Insert, Min, and DeleteMin only
operate on D0 and U0, so they do not require additional I/O operations.

It remains to analyze the I/O complexity of rebuilding the data structure. For this, we
only need to consider rebuilding the levels m ≥ j since rebuilding levels m < j only operates
on the internal memory. When rebuilding a level m ≥ j, the levels i < j can be stored to and
afterward retrieved from the external memory with O(M

B) I/O operations. Assuming optimal
page replacement, the amortized number of I/O operations for rebuilding is bounded by

ℓ−1∑
m=j

OKSelect(2m+1 + 2m) +
∑m−1

i=0 OKSelect(2i+2) + c · 2m

B

2m
+O

(
M

B · 2j

)
︸ ︷︷ ︸

levels < j

≤
ℓ−1∑
m=j

O(OKSelect(3 · 2m))
2m

+O
(

1
B

)
∈ O

(
(ℓ− j) · OKSelect(3N)

N

)

= O
(

OKSelect(3N)
N

log N

M

)
.

With the cache-aware k-selection via Corollary 7 and the cache-agnostic k-selection via
Corollary 8, we obtain the claimed I/O complexities. ◀

ISAAC 2024

55:16 Optimal Offline ORAM with Perfect Security via Simple Oblivious Priority Queues

With this, we obtain an optimal cache-aware oblivious priority queue and a near-optimal
cache-agnostic oblivious priority queue, both deterministic and with perfect security. Using a
cache-agnostic, perfectly-secure oblivious sorting algorithm with (expected) I/O complexity
O(n

B log M
B

n
B) [9]8, we can apply the same construction as in Section 3 to obtain external

offline ORAMs with the same (expected) I/O complexities as in Theorem 9. We exploit that
the construction is a combination of sorting, linear scans, and time-forward processing.

5 Conclusion and Future Work

In this paper, we show how to construct an oblivious priority queue with perfect security
and (amortized) logarithmic runtime. While the construction is simple, it improves the
state-of-the-art for perfectly-secure priority queues, achieving the optimal runtime. The
construction immediately implies an optimal offline ORAM with perfect security. We
extend our construction to the external-memory model, obtaining optimal cache-aware and
near-optimal cache-agnostic I/O complexities.

Future Work. The optimal perfectly-secure partitioning algorithm [4] has enormous constant
runtime factors (in the order of≫ 2111 [13]) due to the reliance on bipartite expander graphs.9
Nevertheless, our construction can also be implemented efficiently in practice – albeit at the
cost of an O(log N)-factor in runtime – by relying on merging [6] (instead of k-selection via
linear-time partitioning). We leave comparing such a practical variant to previous protocols
as a future work.

On the theoretical side, a main open problem is to obtain a perfectly-secure oblivious
priority queue supporting deletions (of arbitrary elements) in optimal O(log N) time. An
additional open problem is the de-amortization of the runtime complexity. Considering
external oblivious algorithms, an open problem is to close the gap on cache-oblivious
partitioning, i. e., remove the remaining O(log logM n) factor in I/O complexity for perfectly-
secure algorithms. We consider all of these interesting problems for future works.

References
1 Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, 1988. doi:10.1145/48529.48535.
2 Miklós Ajtai, Jánoss Komlós, and Endre Szemerédi. An O(n log n) sorting network. In David S.

Johnson, Ronald Fagin, Michael L. Fredman, David Harel, Richard M. Karp, Nancy A. Lynch,
Christos H. Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo, and Joel I. Seiferas, editors,
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pages 1–9.
ACM, 1983. doi:10.1145/800061.808726.

3 Lars Arge, Michael A. Bender, Erik D. Demaine, Bryan Holland-Minkley, and J. Ian Munro.
Cache-oblivious priority queue and graph algorithm applications. In John H. Reif, editor,
Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, pages
268–276. ACM, 2002. doi:10.1145/509907.509950.

4 Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and Elaine
Shi. OptORAMa: Optimal oblivious RAM. Journal of the ACM, 70(1):4:1–4:70, 2022.
doi:10.1145/3566049.

8 Chan et al. [9] only describe a statistically-secure sorting algorithm that works by randomly permuting
and then sorting the elements. Since the failure can only occur when permuting, can be detected, and
leaks nothing about the input, we can repeat the permuting step until it succeeds [11, Section 3.2.2].
This leads to a perfectly-secure sorting algorithm with the same complexity in expectation.

9 The algorithm of Dittmer and Ostrovsky [13] has lower constant runtime factors, but is randomized and
only achieves statistical security due to a (negligible) failure probability.

https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/800061.808726
https://doi.org/10.1145/509907.509950
https://doi.org/10.1145/3566049

T. Thießen and J. Vahrenhold 55:17

5 Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, and Elaine Shi. Oblivious RAM with
worst-case logarithmic overhead. Journal of Cryptology, 36(2):7, 2023. doi:10.1007/
s00145-023-09447-5.

6 Kenneth E. Batcher. Sorting networks and their applications. In Proceedings of the April 30–
May 2, 1968, Spring Joint Computer Conference, volume 32 of AFIPS Conference Proceedings,
pages 307–314. ACM, 1968. doi:10.1145/1468075.1468121.

7 Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre
Tarjan. Time bounds for selection. Journal of Computer and System Sciences, 7(4):448–461,
1973. doi:10.1016/S0022-0000(73)80033-9.

8 Elette Boyle and Moni Naor. Is there an oblivious RAM lower bound? In Madhu Sudan,
editor, Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science, pages 357–368. ACM, 2016. doi:10.1145/2840728.2840761.

9 T.-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Cache-oblivious and data-
oblivious sorting and applications. In Artur Czumaj, editor, Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2201–2220. SIAM, 2018.
doi:10.1137/1.9781611975031.143.

10 T.-H. Hubert Chan and Elaine Shi. Circuit OPRAM: Unifying statistically and computa-
tionally secure ORAMs and OPRAMs. In Yael Kalai and Leonid Reyzin, editors, Theory of
Cryptography, volume 10678 of Lecture Notes in Computer Science, pages 72–107. Springer,
2017. doi:10.1007/978-3-319-70503-3_3.

11 T.-H. Hubert Chan, Elaine Shi, Wei-Kai Lin, and Kartik Nayak. Perfectly oblivious (parallel)
RAM revisited, and improved constructions. In Stefano Tessaro, editor, 2nd Conference on
Information-Theoretic Cryptography (ITC 2021), volume 199 of LIPIcs, pages 8:1–8:23. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ITC.2021.8.

12 Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Darren Erik
Vengroff, and Jeffrey Scott Vitter. External-memory graph algorithms. In Kenneth L. Clarkson,
editor, Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
139–149. SIAM, 1995. URL: http://dl.acm.org/citation.cfm?id=313651.313681.

13 Samuel Dittmer and Rafail Ostrovsky. Oblivious tight compaction in O(n) time with smaller
constant. In Clemente Galdi and Vladimir Kolesnikov, editors, Security and Cryptography for
Networks, volume 12238 of Lecture Notes in Computer Science, pages 253–274. Springer, 2020.
doi:10.1007/978-3-030-57990-6_13.

14 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In 40th Annual Symposium on Foundations of Computer Science, pages
285–297. IEEE, 1999. doi:10.1109/SFFCS.1999.814600.

15 D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15, 1962. doi:10.1080/00029890.1962.11989827.

16 Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs.
Journal of the ACM, 43(3):431–473, 1996. doi:10.1145/233551.233553.

17 Michael T. Goodrich. Data-oblivious external-memory algorithms for the compaction, selection,
and sorting of outsourced data. In Rajmohan Rajaraman and Friedhelm Meyer auf der Heide,
editors, Proceedings of the Twenty-Third Annual ACM Symposium on Parallelism in Algorithms
and Architectures, pages 379–388. ACM, 2011. doi:10.1145/1989493.1989555.

18 Michael T. Goodrich and Joseph A. Simons. Data-oblivious graph algorithms in outsourced
external memory. In Zhao Zhang, Lidong Wu, Wen Xu, and Ding-Zhu Du, editors, Combi-
natorial Optimization and Applications, volume 8881 of Lecture Notes in Computer Science,
pages 241–257. Springer, 2014. doi:10.1007/978-3-319-12691-3_19.

19 Atsunori Ichikawa and Wakaha Ogata. Perfectly secure oblivious priority queue. IE-
ICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,
E106.A(3):272–280, 2023. doi:10.1587/transfun.2022CIP0019.

ISAAC 2024

https://doi.org/10.1007/s00145-023-09447-5
https://doi.org/10.1007/s00145-023-09447-5
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1145/2840728.2840761
https://doi.org/10.1137/1.9781611975031.143
https://doi.org/10.1007/978-3-319-70503-3_3
https://doi.org/10.4230/LIPIcs.ITC.2021.8
http://dl.acm.org/citation.cfm?id=313651.313681
https://doi.org/10.1007/978-3-030-57990-6_13
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1080/00029890.1962.11989827
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/1989493.1989555
https://doi.org/10.1007/978-3-319-12691-3_19
https://doi.org/10.1587/transfun.2022CIP0019

55:18 Optimal Offline ORAM with Perfect Security via Simple Oblivious Priority Queues

20 Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern dis-
closure on searchable encryption: Ramification, attack and mitigation. In 19th Annual
Network and Distributed System Security Symposium. The Internet Society, 2012. URL:
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-
encryption-ramification-attack-and-mitigation.

21 Riko Jacob, Kasper Green Larsen, and Jesper Buus Nielsen. Lower bounds for oblivious
data structures. In Timothy M. Chan, editor, Proceedings of the 2019 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2439–2447. SIAM, 2019. doi:10.1137/1.
9781611975482.149.

22 Zahra Jafargholi, Kasper Green Larsen, and Mark Simkin. Optimal oblivious priority queues.
In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2366–2383. SIAM, 2021. doi:10.1137/1.9781611976465.141.

23 Marcel Keller and Peter Scholl. Efficient, oblivious data structures for MPC. In Palash
Sarkar and Tetsu Iwata, editors, Advances in Cryptology — ASIACRYPT 2014, volume
8874 of Lecture Notes in Computer Science, pages 506–525. Springer, 2014. doi:10.1007/
978-3-662-45608-8_27.

24 Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious RAM lower bound!
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology — CRYPTO
2018, volume 10992 of Lecture Notes in Computer Science, pages 523–542. Springer, 2018.
doi:10.1007/978-3-319-96881-0_18.

25 Wei-Kai Lin, Elaine Shi, and Tiancheng Xie. Can we overcome the n log n barrier for
oblivious sorting? In Timothy M. Chan, editor, Proceedings of the 2019 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 2419–2438. SIAM, 2019. doi:
10.1137/1.9781611975482.148.

26 John C. Mitchell and Joe Zimmerman. Data-oblivious data structures. In Ernst W. Mayr and
Natacha Portier, editors, 31st International Symposium on Theoretical Aspects of Computer
Science (STACS 2014), volume 25 of LIPIcs, pages 554–565. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2014. doi:10.4230/LIPIcs.STACS.2014.554.

27 Arup Mondal, Priyam Panda, Shivam Agarwal, Abdelrahaman Aly, and Debayan Gupta. Fast
and secure oblivious stable matching over arithmetic circuits. Cryptology ePrint Archive,
Paper 2023/1789, 2023. URL: https://eprint.iacr.org/2023/1789.

28 Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: The case
of AES. In David Pointcheval, editor, Topics in Cryptology — CT-RSA 2006, volume 3860 of
Lecture Notes in Computer Science, pages 1–20. Springer, 2006. doi:10.1007/11605805_1.

29 Elaine Shi. Path oblivious heap: Optimal and practical oblivious priority queue. In 2020
IEEE Symposium on Security and Privacy (SP), pages 842–858. IEEE, 2020. doi:10.1109/
SP40000.2020.00037.

30 Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao
Yu, and Srinivas Devadas. Path ORAM: An extremely simple oblivious RAM protocol. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security, pages 299–310. ACM, 2013.
doi:10.1145/2508859.2516660.

31 Thore Thießen and Jan Vahrenhold. Optimal offline ORAM with perfect security via simple
oblivious priority queues, 2024. doi:10.48550/arXiv.2409.12021.

32 Tomas Toft. Secure datastructures based on multiparty computation. Cryptology ePrint
Archive, Paper 2011/081, 2011. URL: https://eprint.iacr.org/2011/081.

33 Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi, Emil Stefanov,
and Yan Huang. Oblivious data structures. In Gail-Joon Ahn, Moti Yung, and Ninghui Li,
editors, Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pages 215–226. ACM, 2014. doi:10.1145/2660267.2660314.

https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://doi.org/10.1137/1.9781611975482.149
https://doi.org/10.1137/1.9781611975482.149
https://doi.org/10.1137/1.9781611976465.141
https://doi.org/10.1007/978-3-662-45608-8_27
https://doi.org/10.1007/978-3-662-45608-8_27
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1137/1.9781611975482.148
https://doi.org/10.1137/1.9781611975482.148
https://doi.org/10.4230/LIPIcs.STACS.2014.554
https://eprint.iacr.org/2023/1789
https://doi.org/10.1007/11605805_1
https://doi.org/10.1109/SP40000.2020.00037
https://doi.org/10.1109/SP40000.2020.00037
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.48550/arXiv.2409.12021
https://eprint.iacr.org/2011/081
https://doi.org/10.1145/2660267.2660314

Data Structures for Approximate Fréchet Distance
for Realistic Curves
Ivor van der Hoog #

DTU Compute, Technical University of Denmark, Lyngby, Denmark

Eva Rotenberg #

DTU Compute, Technical University of Denmark, Lyngby, Denmark

Sampson Wong #

Department of Computer Science, University of Copenhagen, Denmark

Abstract
The Fréchet distance is a popular distance measure between curves P and Q. Conditional lower
bounds prohibit (1 + ε)-approximate Fréchet distance computations in strongly subquadratic time,
even when preprocessing P using any polynomial amount of time and space. As a consequence, the
Fréchet distance has been studied under realistic input assumptions, for example, assuming both
curves are c-packed.

In this paper, we study c-packed curves in Euclidean space Rd and in general geodesic metrics
X . In Rd, we provide a nearly-linear time static algorithm for computing the (1 + ε)-approximate
continuous Fréchet distance between c-packed curves. Our algorithm has a linear dependence on the
dimension d, as opposed to previous algorithms which have an exponential dependence on d.

In general geodesic metric spaces X , little was previously known. We provide the first data
structure, and thereby the first algorithm, under this model. Given a c-packed input curve P with n

vertices, we preprocess it in O(n log n) time, so that given a query containing a constant ε and a
curve Q with m vertices, we can return a (1 + ε)-approximation of the discrete Fréchet distance
between P and Q in time polylogarithmic in n and linear in m, 1/ε, and the realism parameter c.

Finally, we show several extensions to our data structure; to support dynamic extend/truncate
updates on P , to answer map matching queries, and to answer Hausdorff distance queries.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Computational geometry

Keywords and phrases Fréchet distance, data structures, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.56

Related Version Full Version: https://arxiv.org/abs/2407.05114 [44]

Funding Ivor van der Hoog: Supported by Independent Research Fund Denmark grant 2020-2023
(9131-00044B) “Dynamic Network Analysis”.
Eva Rotenberg: Partially supported by Independent Research Fund Denmark grant 2020-2023 (9131-
00044B) “Dynamic Network Analysis” and the Carlsberg Young Researcher Fellowship CF21-0302
“Graph Algorithms with Geometric Applications”.

1 Introduction

The Fréchet distance is a popular metric for measuring the similarity between (polygonal)
curves P and Q. We assume that P has n vertices and Q has m vertices and that they reside
in some geodesic metric space X . The Fréchet distance is often intuitively defined through
the following metaphor: suppose that we have two curves that are traversed by a person and
their dog. Consider the length of their connecting leash, measured over the metric X . What
is the minimum length of the connecting leash over all possible traversals by the person
and the dog? The Fréchet distance has many applications; in particular in the analysis and

© Ivor van der Hoog, Eva Rotenberg, and Sampson Wong;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 56; pp. 56:1–56:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:idjva@dtu.dk
https://orcid.org/0009-0006-2624-0231
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
mailto:sampson.wong123@gmail.com
https://orcid.org/0000-0003-3803-3804
https://doi.org/10.4230/LIPIcs.ISAAC.2024.56
https://arxiv.org/abs/2407.05114
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Data Structures for Approximate Fréchet Distance for Realistic Curves

visualization of movement data [11, 14, 35, 47]. It is a versatile measure that can be used for
a variety of objects, such as handwriting [41], coastlines [37], outlines of shapes in geographic
information systems [20], trajectories of moving objects, such as vehicles, animals or sports
players [40, 42, 7, 14], air traffic [6] and protein structures [34].

Alt and Godau [2] compute the continuous Fréchet distance in R2 under the L2 metric in
O(mn log(n + m)) time. This was later improved by Buchin et al. [12] to O(nm(log log nm)2)
time. Eiter and Manila [26] showed how to compute the discrete Fréchet distance in R2 in
O(nm) time, which was later improved by Agarwal et al. [1] to O(nm(log log nm)/ log nm)
time. Typically, the quadratic O(nm) running time is considered costly. Bringmann [8]
showed that, conditioned on the Strong Exponential Time Hypothesis (SETH), one cannot
compute a (1 + ε)-approximation of the continuous Fréchet distance between curves in R2

under the L1, L2 or L∞ metric faster than Ω((nm)1−δ) time for any δ > 0. This lower
bound was extended by Buchin, Ophelders and Speckmann [13] to intersecting curves in R1.
Driemel, van der Hoog and Rotenberg [25] extended the lower bound to paths P and Q in a
weighted planar graph under the shortest path metric.

Well-behaved curves. Previous works have circumvented lower bounds by assuming that
both curves come from a well-behaved class. A curve P in a geodesic metric space X is any
sequence of points where consecutive points are connected by their shortest path in X . For a
ball B in X , let P ∩B denote all (maximal) segments of P contained in B. A curve P is:

κ-straight (by Alt, Knauer and Wenk [3]) if for every i, j the length of the subcurve
from pi to pj is ℓ(P [i, j]) ≤ κ · d(pi, pj),
c-packed (by Driemel, Har-Peled and Wenk [22]) if for every ball B in the geodesic
metric space X with radius r: the length ℓ(P ∩B) ≤ c · r.
ϕ-low-dense (by van der Stappen [45]; see also [20, 22, 39]) if for every ball B in X with
radius r, there exist at most ϕ edges of length r intersecting B.
backbone (by Aronov et al. [5]) if consecutive vertices have distance between c1 and c2
for some constants c1, c2, and if non-consecutive vertices have distance at least 1.

Any c-straight curve is also O(c)-packed. Parametrized by ε, ϕ ∈ O(1), c and κ = O(c),
Driemel, Har-Peled and Wenk [22] compute a (1+ε)-approximation of the continuous Fréchet
distance between a pair of realistic curves in Rd under the L1, L2, L∞ metric for constant d in
O(c(n+m)

ε +c(n+m) log n) time. Their result for c-packed and c-straight curves was improved
by Bringmann and Künnemann [10] to O(c(n+m)√

ε
log ε−1 +c(n+m) log n), which matches the

conditional lower bound for c-packed curves. In particular, Bringmann [8] showed that under
SETH, for dimension d ≥ 5, there is no O((c(n + m)/

√
ε)1−δ) time algorithm for computing

the Fréchet distance between c-packed curves for any δ > 0. Realistic input assumptions
have been applied to other geometric problems, e.g. for robotic navigation in ϕ-low-dense
environments [45], and map matching of ϕ-low-dense graphs [16] or c-packed graphs [30].

Deciding versus computing. We make a distinction between two problem variants: the
decision variant, the optimisation variant. For the decision variant, we are given a value ρ and
two curves P and Q and we ask whether the Fréchet distance DF (P, Q) ≤ ρ. This variant
often solved through navigating an n by m “free space diagram”. In the optimization variant,
the goal is to output the Fréchet distance DF (P, Q). To convert any decision algorithm into
a optimization algorithm, two techniques are commonly used. The first is binary search over
what we will call TADD(P, Q):

I. van der Hoog, E. Rotenberg, and S. Wong 56:3

▶ Definition 1. Given two sets of points P , Q in a geodesic metric space X , we define a
Two-Approximate Distance Decomposition of P denoted by TADD(P, Q) as a set of reals
TP Q where for every pair (pi, qj) ∈ P ×Q there exist a, b ∈ TP Q with a ≤ d(pi, qj) ≤ b ≤ 2a.

Essentially a TADD is a two-approximation of the set of all pairwise distances in P ×Q

and it can be used to determine, approximately, the (Fréchet) distance values for when the
simplification of the input curve changes, or when the reachability of the free space matrix
changes. It is known how to compute a TADD from a Well-Separated Pair Decomposition
(WSPD) in time linear in the size of the WSPD [22, Lemma 3.8]. A downside of this
approach [22] is that, it is only known how to compute a WSPD for doubling metrics [48].
Moreover, for non-constant (doubling) dimensions d, computing the WSPD (and therefore
the TADD) takes O(2dn + dn log n) time [33, 48], which dominates the running time.

The second technique, deployed when for example TADDs cannot be computed, is
parametric search [38]. For decision variants that have a sublinear running or query time of
T , the running time of parametric search is commonly O(T 2) [46, 31].

Data structures for Fréchet distance. An interesting question is whether we can store P in
a data structure, for efficient (approximate) Fréchet distance queries for any query Q. This
topic received considerable attention throughout the years [24, 31, 27, 19, 21, 15, 30]. A related
field is nearest neighbor data structures under the Fréchet distance metric [9, 23, 18, 4, 28].
Recently, Gudmundsson, Seybold and Wong [30] answer this question negatively for arbitrary
curves in R2: showing that even with polynomial preprocessing space and time, we cannot
preprocess a curve P to decide the continuous Fréchet distance between P and a query curve
Q in Ω((nm)1−δ) time for any δ > 0. Surprisingly, even in very restricted settings data
structure results are difficult to obtain. De Berg et al. [19] present an O(n2) size data structure
that restricts the orientation of the query segment to be horizontal. Queries are supported
in O(log2 n) time, and even subcurve queries are allowed (in that case, using O(n2 log2 n)
space). At ESA 2022, Buchin et al. [15] improve these result to using only O(n log2 n) space,
where queries take O(log n) time. For arbitrary query segments, they present an O(n4+δ)
size data structure that supports (subcurve) queries to arbitrary segments in O(log4 n) time.
Gudmundsson et al. [31] extend de Berg et al.’s [19] data structure to handle subcurve
queries, and to handle queries where the horizontal query segment is translated in order
to minimize its Fréchet distance. Driemel and Har-Peled [21] create a data structure to
store any curve in Rd for constant d. They preprocess P in O(n log3 n) time and O(n log n)
space. For any query (Q, ε, i, j) they can create a (3 + ε)-approximation of DF(P [i, j], Q) in
O(m2 log n log(m log n)) time.

We state existing data structures for the discrete Fréchet distance. Driemel, Psarros and
Schmidt [24] fix ε and an upper bound M beforehand where for all queries Q, they demand
that |Q| ≤ M . They store any curve P in Rd for constant d using O((M log 1

ε)M) space
and preprocessing, to answer (1 + ε)-approximate Fréchet distance queries in O(m2 + log 1

ε)
time. Filtser [29] gives the corresponding data structure for the discrete Fréchet distance.
At SODA 2022, Filtser and Filtser [27] study the same setting: storing P in O(

(1
ε

)dM log 1
ε)

space, to answer (1 + ε)-approximate Fréchet distance queries in Õ(m · d) time.

Contributions. We provide four contributions.

(1) A 1-TADD technique. A crucial step in computing the Fréchet distance is to turn a
decision algorithm into an optimization algorithm. TADD(P, Q) is commonly used when
approximating the Fréchet distance. Our 1-TADD technique shows a new argument where
we map P and Q to curves in Λ ⊂ R1 and compute only TADD(Λ, Λ) in O(n log n) time.

ISAAC 2024

56:4 Data Structures for Approximate Fréchet Distance for Realistic Curves

Table 1 Our results for computing a (1 + ε)-approximation of the Fréchet distance between P

and Q. All settings assume that P is a realistic curve, except for [27] who assume an upper bound on
|Q|. Tε denotes the query time of a (1 + ε)-approximate oracle. The tilde hides lower order factors
in terms of n, m and ε. Under the continuous Fréchet distance, we require that Q is also realistic.

Domain
Previous result Our result

Preprocess Query time Ref. Preprocess Query time Ref.

Rd

Lp metric static Õ(2dn + d c(n+m)√
ε

+d2 · c(n + m))
[10] static Õ(d c(n+m)

ε
) Thm. 2

Discrete Fréchet distance only:

Rd

|Q| ≤ M
Õ((1

ε
)dM) Õ(md) [27] O(n log n) Õ(d cm

ε
log n) Cor. 7

Planar G = (V, E) static Õ(|V |1+o(1) + c(n+m)
ε

) [25] Õ(|V |1+o(1)) Õ(cm
ε

log n) Cor. 7

Graph G = (V, E) static Õ(|V |1+o(1) + |E| log |E|
+ c(n+m)

ε
)

[25] Õ(|V |1+o(1)) Õ(cm
ε

log n) Cor. 7

Simple Polygon P static O(nm log(n + m)) [2] Õ(|P | + n) Õ(cm
ε

log |P |) Cor. 7

Any geodesic X
with (1 + ε)-oracle static O(Tε · nm log n) [26] O(n log n) Õ(Tε

cm
ε

log n) Thm. 5

Map Matching
G = (V, E) Õ(c2ε−4n2) O(m log m·

(log4 n + c4ε−8 log2 n)) [30] Õ(c2ε−4n2) O(m(log n + log ε−1)·
(log2 n + c2ε−4 log n)) [44]

In Euclidean Rd this allows us to approximate the discrete and continuous Fréchet
distances in time that is linear in d, whereas previous approaches required an exponential
dependence on d. In general geodesic metric spaces X , our 1-TADD technique allows us to
approximate the discrete Fréchet distance when TADD(P, Q) cannot be efficiently computed.

(2) Allowing approximate oracles under the discrete Fréchet distance. Many ambient
spaces (e.g., Euclidean spaces under floating point arithmetic, and X as a weighted graph
under the shortest path metric.) do not allow for efficient exact distance computations. Thus,
we revisit and simplify the argument by Driemel, Har-Peled and Wenk [22]. We assume
access to a (1 + α)-approximate distance oracle with Tα query time. We generalize the
previous argument to approximate the discrete Fréchet distance between two curves in any
geodesic metric space with approximate distance oracles. For contributions (1) and (2), we
do not require the curves P and Q to be c-packed.

(3) A data structure under the discrete Fréchet distance. Under the discrete Fréchet
distance, we show how to store a c-packed or c-straight curve P with n vertices in any
geodesic ambient space X . Our solution uses O(n) space and O(n log n) preprocessing time.
For any query curve Q, any 0 < ε < 1, and any subcurve P ∗ of P , we can compute a (1 + ε)-
approximation the discrete Fréchet distance DF(P ∗, Q) using O(c·m

ε log n(T +log c·m
ε +log n))

time. Here, T is the time required to perform a distance query in the ambient space (e.g.,
O(log n) for geodesic distances in a polygon). All times are deterministic and worst-case.
This is the Fréchet distance first data structure for realistic curves that avoids spending query
time linear in n. Our solution improves various recent results [10, 25, 27, 30] (see Table 1).

I. van der Hoog, E. Rotenberg, and S. Wong 56:5

(4) Extensions. In the full version of this paper [44], we provide several extensions to
our results. We modify our data structure to support updates that truncate the curve P ,
or extend P , we apply our algorithmic skeleton to map matching queries, and we study
Hausdorff distance queries.

2 Preliminaries

Let X denote some geodesic metric space (e.g., X is some weighted graph). For any a, b ∈ X
we denote by d(a, b) their distance in X . A curve P in X is any ordered sequence of points
in X , where consecutive points are connected by their shortest path in X . We refer to such
points as vertices. For any curve P with n vertices, for any integers i, j ∈ [n] with i < j we
denote by P [i, j] the subcurve from pi to pj . We denote by |P [i, j]| = (j − i + 1) the size of
the subcurve and by ℓ(P [i, j]) :=

∑j−1
k=i d(pk, pk+1) its length. We receive as preprocessing

input a curve P where for each pair (pi, pi+1) we are given d(pi, pi+1).

Distance and distance oracles. Throughout this paper, we assume that for any α > 0 we
have access to some (1 + α)-approximate distance oracle. This is a data structure Dα

X that
for any two a, b ∈ X can report a value d◦(a, b) ∈ [(1− α)d(a, b), (1 + α)d(a, b)] in O(Tα)
time. To distinguish between inaccuracy as a result of our algorithm and as a result of our
oracle, we refer to d◦(a, b) as the perceived value (as opposed to an approximate value).

Discrete Fréchet distance. Given two curves P and Q in X , we denote by [n]×[m] the n by
m integer lattice. We say that an ordered sequence F of points in [n]× [m] is a discrete walk if
for every consecutive pair (i, j), (k, l) ∈ F , we have k ∈ {i−1, i, i + 1} and l ∈ {j−1, j, j + 1}.
It is furthermore xy-monotone when we restrict to k ∈ {i, i + 1} and l ∈ {j, j + 1}. Let F

be a discrete walk from (1, 1) to (n, m). The cost of F is the maximum over (i, j) ∈ F of
d(pi, qj). The discrete Fréchet distance is the minimum over all xy-monotone walks F from
(1, 1) to (n, m) of its associated cost: DF(P, Q) := minF cost(F) = minF max(i,j)∈F d(pi, qj).
In this paper we, given a (1 + α)-approximate distance oracle, define the perceived discrete
Fréchet distance as DF

◦, obtained by replacing in the above definition d(pi, qj) by d◦(pi, qj).

Free space matrix (FSM). The FSM for a fixed ρ∗ ≥ 0 is a |P | × |Q|, (0, 1)-matrix where
the cell (i, j) is zero if and only if the distance between the i’th point in P and the j’th point
in Q is at most ρ∗. Per definition, DF(P, Q) ≤ ρ∗ if and only if there exists an xy-monotone
discrete walk F from (1, 1) to (n, m) where for all (i, j) ∈ F : the cell (i, j) is zero.

Continuous Fréchet distance and Free Space Diagram (FSD). We define the continuous
Fréchet distance in a geodesic metric space. Given a curve P , we consider P as a continuous
function mapping at time t ∈ [0, 1] to a point P (t) in X . The continuous Fréchet distance
is DF (P, Q) := infα,β maxt∈[0,1] d(P (α(t)), Q(β(t)), where α, β : [0, 1] → [0, 1] are non-
decreasing surjections. For a fixed ρ∗, we can define the Free Space Diagram of (P, Q, ρ∗)
to be a [0, 1]× [0, 1], (0,1)-matrix where the point (t, t′) is zero if and only if the distance
between P (t) and Q(t′) is at most ρ∗. The diagram consists of nm cells corresponding to all
pairs of edges of P and Q. A cell is reachable if there exists an xy-monotone curve from (0, 0)
to a point in the cell where all points (t, t′) on the curve are zero. The continuous Fréchet
distance is at most ρ∗ if and only if there exists an xy-monotone curve from (0, 0) to (1, 1)
where all points (t, t′) on the curve are zero.

ISAAC 2024

56:6 Data Structures for Approximate Fréchet Distance for Realistic Curves

Defining discrete queries. Our data structure input is a curve P = (p1, p2, . . . , pn). The
number of vertices m of Q is part of the query input and may vary. Let DF(P, Q) denote
the discrete Fréchet distance between P and Q. We distinguish between four types of
(approximate) queries. The input pararmeters are given at query time:

A-decision(Q, ε, ρ): for ρ ≥ 0 and 0 < ε < 1 outputs a Boolean concluding either
DF(P, Q) > ρ, or DF(P, Q) ≤ (1 + ε)ρ (these two options are not mutually exclusive).
A-value(Q, ε): for 0 < ε < 1 outputs a value in [(1− ε)DF(P, Q), (1 + ε)DF(P, Q)].
Subcurve-decision(Q, ε, ρ, i, j): for ρ ≥ 0 and 0 < ε < 1 outputs a Boolean concluding
either DF(P [i, j], Q) > ρ, or DF(P [i, j], Q) ≤ (1 + ε)ρ.
Subcurve-value(Q, ε, i, j): for 0 < ε < 1 outputs a value in
[(1− ε)DF(P [i, j], Q), (1 + ε)DF(P [i, j], Q)].

We want a solution that is efficient in time and space, where time and space is measured in
units of ε, n, m, ρ and the distance oracle query time Tα.

Previous works: µ-simplifications. Driemel, Har-Peled and Wenk [22] , for a parameter
µ ∈ R, construct a curve P µ as follows. Start with the initial vertex p1, and set this as
the current vertex pi. Next, scan the polygonal curve to find the first vertex pj such that
d(pi, pj) > µ. Add pj to P µ, and set pj as the current vertex. Continue this process until
we reach the end of the curve. Finally, add the last vertex pn to P µ. Driemel, Har-Peled
and Wenk [22] observe any µ-simplified curve P µ can be computed in linear time and
DF (P µ, P) ≤ µ. This leads to the following approximate decision algorithm:
1. Given P, ε, Q and ρ, construct P

ερ
4 and Q

ερ
4 in O(n + m) time.

2. Denote by X the reachable cells in the FSD of (P
ερ
4 , Q

ερ
4 , ρ∗ = (1 + ε/2)ρ).

3. Iterating over X, doing O(|X|) distance computations, test if DF (P
ερ
4 , Q

ερ
4) ≤ ρ∗.

They prove that: if yes then DF (P, Q) ≤ (1 + ε)ρ. If no then DF (P, Q) > ρ.
If P and Q are c-packed, they upper bound |X| by O(c(n+m)

ε).
This scheme is broadly applicable to various domains, see [25, 17]. In this paper, we apply
this technique to answer value queries at the cost of a factor O(log n + log ε−1). Under the
discrete Fréchet distance, we extend the analysis to work with approximate distance oracles.
Finally, we show a data structure to execute step 3 in time independent of |P | = n. We also
show that under the discrete Fréchet distance, it suffices to assume that only P is c-packed.

2.1 Results
(1) A 1-TADD technique for the Fréchet distance. For any µ > 0, we denote by P µ

and Qµ their µ-simplified curves according to our new definition of µ-simplification. We
show in Section 4 that our new definition allows us to efficiently transform existing decision
algorithms into approximation algorithms in Rd [22]. We assume access to exact O(d)-time
distance oracle in Rd and prove:

▶ Theorem 2. We can preprocess a pair of c-packed curves (P, Q) in Rd under any Lp metric
with |P | = n ≥ |Q| = m in O(n log n) time s.t.: given any ε and an exact distance oracle, we
can compute a (1 + ε)-approximation of DF (P, Q) in O(d c(n+m)

ε · (log n + log ε−1)) time.

(2) Allowing approximate oracles under the discrete Fréchet distance. In Section 5,
we show that (for computing the discrete Fréchet distance) it suffices to have access to a
(1 + α)-approximate distance oracle. This will enable us to approximate DF(P, Q) in ambient
spaces such as planar graphs and simple polygons. Formally, we show:

I. van der Hoog, E. Rotenberg, and S. Wong 56:7

▶ Lemma 3. For any ρ > 0 and 0 < ε < 1, choose ρ∗ = (1 + 1
2 ε)ρ and µ ≤ 1

6 ερ. Let X be
any geodesic metric space and Dε/6

X be a (1 + 1
6 ε)-approximate distance oracle. For any curve

P = (p1, . . . , pn) in X and any curve Q = (q1, . . . , qm) in X :
If for the discrete Fréchet distance, DF

◦(P µ, Q) ≤ ρ∗ then DF(P, Q) ≤ (1 + ε)ρ.
If for the discrete Fréchet distance, DF

◦(P µ, Q) > ρ∗ then DF(P, Q) > ρ.

We note that for ambient spaces such as planar graphs and simple polygons, there is no clear
way to define a continuous µ-simplification (or even continuous Fréchet distance).

(3) An efficient data structure under the discrete Fréchet distance. Finally, in Section 6,
we study computing the discrete Fréchet distance in a data structure setting. We show that
under the discrete Fréchet distance, it suffices to assume that only P is c-packed or c-straight.
Moreover, we can store P in a data structure such that we can answer approximate Fréchet
value queries DF(P, Q) in time linear in m and polylogarithmic in n:

▶ Theorem 4. Let X be any geodesic space and Dα
X be a (1 + α)-approximate distance oracle

with O(Tα) query time. Let P = (p1, . . . , pn) be any c-packed curve in X . We can store P

using O(n) space and preprocessing, such that for any curve Q = (q1, . . . , qm) in X and any
ρ > 0 and 0 < ε < 1, we can answer A-decision(Q, ε, ρ) for the discrete Fréchet distance in:

O
(c ·m

ε
·
(
Tε/6 + log n

))
time.

We may apply the proof of Theorem 2 to Theorem 4 to answer A-value(Q, ε) in any
geodesic metric space by increasing the running time by a factor O(log n + log ε−1). However,
under the discrete Fréchet distance we can be more efficient:

▶ Theorem 5. Let X be a geodesic metric space and Dα
X be a (1 + α)-approximate distance

with O(Tα) query time. Let P = (p1, . . . , pn) be any c-packed curve in X . We can store P

using O(n) space and O(n log n) preprocessing time, such that for any curve Q = (q1, . . . , qm)
in X and any 0 < ε < 1, we can answer A-Value(Q, ε) for the discrete Fréchet distance in:

O
(c ·m

ε
· log n ·

(
Tε/6 + log c ·m

ε
+ log n

))
time.

The advantage of our result is that it applies to a variety of metric spaces X , while also
improving upon previous static algorithms in those spaces. Here, static refers to solutions
that do not require preprocessing or building a data structure. For a complete overview of
the improvements we make to the state-of-the-art, we refer to Table 1.

Our result does not rely upon complicated techniques such parametric search [31, 30],
higher-dimensional envelopes [15], or advanced path-simplification structures [21, 24, 27].
Our techniques are not only generally applicable, but also appear implementable (e.g., the
authors of [15] mention that their result is un-implementable).

2.2 Corollaries
Theorems 4+5 are the first data structures for computing the Fréchet distance between
c-packed curves. Our construction has two novelties: first, we consider c-packed curves in
any metric space X , and only require access to perceived distances (distance oracles that
can report a (1 + α)-approximation in O(Tα) time). Second, we propose a new 1-TADD
technique that can be used to compute the discrete Fréchet distance independently of the
geodesic ambient space X . These two novelties imply improvements to previous results, even
static results for computing the Fréchet distance:

ISAAC 2024

56:8 Data Structures for Approximate Fréchet Distance for Realistic Curves

Applying perceived distances. Our analysis allows us to answer the decision variant for
the discrete Fréchet distance for any geodesic metric space for which there exist efficient
(1 + α)-approximate distance oracles (See Oracles 12). Combining Theorem 4 with Oracles 12
we obtain:

▶ Corollary 6. Let P be a c-packed curve in a metric space X .
For X = Rd under L1, L2, L∞ metric in the real-RAM model, we can store P using O(n)
space and preprocessing, to answer A-decision(Q, ε, ρ) in O

(
cm
ε · (d + log n)

)
time.

Improving the static O(d· cn√
ε
+d·cn log n) algorithm by Bringmann and Künnemann [10,

IJCGA’17]: making it faster when n > m and making it a data structure.
For X = Rd under L2 in word-RAM, we can store P using O(n) space and O(n log n)
preprocessing, to answer A-decision(Q, ε, ρ) in O

(
cm
ε ·

(
d log ε−1 + log n

))
worst case

time.Improving the static expected O(d2 · cn√
ε

+ d2 · cn log n) algorithm by Bringmann and
Künnemann [10, IJCGA’17]: saving a factor d and obtaining deterministic guarantees.

For X an N -vertex planar graph under the shortest path metric, we can store P using
O(N1+o(1)) space and preprocessing, to answer A-decision(Q, ε, ρ) in O

(
cm
ε · log2+o(1) N

)
time.

Generalizing the static O
(

N1+o(1) + c·m
ε log2+o(1) N

)
algorithm by Driemel, van der

Hoog and Rotenberg [25, SoCG’22] to a data structure.
For X an N -vertex graph under the shortest path metric, we can fix ε and
store P using O(N

ε log N) space and preprocessing, to answer A-decision(Q, ε, ρ) in
O

(
cm
ε · (ε

−1 + log n)
)

time.
Generalizing the static O

(
N1+o(1) + c·m

ε log2+o(1) N
)

algorithm by Driemel, van der
Hoog and Rotenberg [25, SoCG’22] to a data structure.

Applying the 1-TADD. We can transform the decision variant of the Fréchet distance to
the optimization variant, by using only a well-separated pair decomposition of P (mapped to
R1) with itself. This allows us to answer the optimization variant for the discrete Fréchet
distance without an exponential dependence on the dimension (speeding up even static
algorithms). In full generality, combining Theorem 4 with Oracles 12 implies:

▶ Corollary 7. Let P be a c-packed curve in a metric space X .
For X = Rd in the real-RAM model, we can store P using O(n) space and O(n log n)
preprocessing, to answer A-value(Q, ε) in O

(
cm
ε log n(d + log c·m

ε + log n
)

time.
Improving the static O(2dn + d · cn√

ε
+ d2 · cn log n) algorithm by Bringmann and

Künnemann [10, IJCGA’17]: removing the exponential dependency on the dimension.
Improving the dynamic O(

(
O(1

ε)
)dm log 1

ε) space solution with Õ(m · d) query time
by Filtser and Filtser [27, SODA’21]: allowing Q to have arbitrary length, and using
linear as opposed to exponential space and preprocessing time. This applies only when
P is c-packed.

For X = Rd under the L2 metric in word-RAM, we can store P using O(n) space and
O(n log n) preprocessing, to answer A-value(Q, ε) in O

(
cm
ε log n(d log n + log c·m

ε

)
time.Improving upon the static expected O(2dn+d2· cn√

ε
+d3·cn log n) algorithm by Bringmann

and Künnemann [10, IJCGA’17]: saving a factor d2d with deterministic guarantees.
For X an N -vertex planar graph under the SP metric, we can store P using O(N1+o(1))
space and preprocessing, to answer A-value(Q, ε) in O

(
c·m

ε log n · (log2+o(1) N + log c·m
ε)

)
time.

Improving the static O
(

N1+o(1) + |E| log |E|+ c·m
ε log2+o(1) N log |E|

)
algorithm by

Driemel, van der Hoog and Rotenberg [25, SoCG’22]: making it a data structure.

I. van der Hoog, E. Rotenberg, and S. Wong 56:9

For X an N -vertex graph under the SP metric, we can fix ε and store P using O(N
ε log N)

space and preprocessing, to answer A-value(Q, ε) in O
(

cm
ε · log n · (ε−1 + log c·m

ε + log n)
)

time.
Same improvement as above, except that this result is not adaptive to ε.

For X an N -vertex simple polygon under geodesics, we can store P us-
ing O(N log N + n) space and preprocessing, to answer A-value(Q, ε) in
O

(
cm
ε · log n · (log N + log c·m

ε + log n)
)

time.
No realism-parameter algorithm was known in this setting, because no TADD can be
computed in this setting.

We briefly note that all our results are also immediately applicable to subcurve queries:

▶ Corollary 8. All results obtained in Section 6 can answer the subcurve variants of the
A-decision and A-value queries for any i, j ∈ [n] at no additional cost.

3 Simplification and a data structure

To facilitate computations in arbitrary geodesic metric spaces, we modify the definition
of µ-simplifications. Our modified definition has the same theoretical guarantees as the
previous definition, but works in arbitrary metrics. Formally, we say that henceforth the
µ-simplification is a curve obtained by starting with p1, and recursively adding the first pj

such that the length of the subtrajectory ℓ(P [i, j]) > µ, where pi is the last vertex added to
the simplified curve. This way, our µ-simplifications (and their computation) are independent
of the ambient space and only depend on the edge lengths.
We construct a data structure such that for any value µ, we can efficiently obtain P µ:

▶ Definition 9. For any curve P in X with n vertices, for each 1 < i ≤ n we create a
half-open interval (ℓ(P [1, i − 1]), ℓ(P [1, i])] in R1. This results in an ordered set of O(n)
disjoint intervals on which we build a balanced binary tree in O(n) time.

Our new definition and data structure allow us to obtain P µ at query time:

▶ Lemma 10. Let P = (p1, . . . , pn) be a curve in X stored in the data structure of Definition 9.
For any value µ ≥ 0, any pair (i, j) with i < j, and any integer N we can report the first N

vertices of the discrete µ-simplification P [i, j]µ in O(N log n) time.

Proof. The first vertex of P [i, j]µ is pi. We inductively add subsequent vertices. Suppose that
we just added px to our output. We choose the value a = ℓ(P [1, x]) + µ. We binary search in
O(log n) time for the point py where the interval (ℓ(P [1, y − 1]), ℓ(P [1, y])] contains a. Per
definition: the length ℓ(P [x, y]) ≥ µ. Moreover, for all z ∈ (x, y) the length ℓ(P [x, z]) < µ.
Thus, py is the successor of px and we recurse if necessary. ◀

4 The 1-TADD technique

Let P and Q be curves in Rd under the Euclidean metric. In [22], they show an algorithm
that (given the µ-simplified curves P µ and Qµ for µ = ερ/4) they can decide whether
DF (P, Q) > ρ or DF (P, Q) ≤ (1 + ε)ρ in O(d c(n+m)

ε) time. They then compute a (1 + ε)-
approximation of DF (P, Q) through a binary search over TADD(P , Q). This approach
scales poorly with the dimension d because computing TADD(P , Q) has an exponential
dependency on d. We alleviate this through our 1-TADD definiton:

ISAAC 2024

56:10 Data Structures for Approximate Fréchet Distance for Realistic Curves

▶ Definition 11. Given P , map each vertex pi to λi = ℓ(P [1, i]). Denote by Λ = {λi}n
i=1.

We define 1-TADD(P) as TADD(Λ, Λ).

Our 1-TADD can be computed in O(n log n) time using O(n) space [22].

▶ Theorem 2. We can preprocess a pair of c-packed curves (P, Q) in Rd under any Lp metric
with |P | = n ≥ |Q| = m in O(n log n) time s.t.: given any ε and an exact distance oracle, we
can compute a (1 + ε)-approximation of DF (P, Q) in O(d c(n+m)

ε · (log n + log ε−1)) time.

Proof. With slight abuse of notation, we say that A(P, Q, ε, ρ) is an algorithm that takes as
input P ερ/4 and Qερ/4 and outputs either DF (P, Q) > ρ or DF (P, Q) ≤ (1 + ε)ρ. We briefly
note given our new definition of µ-simplification, [22] present an A(P, Q, ε, ρ) algorithm with
a runtime of O(d c(n+m)

ε) under any Lp metric (as Lemma 4.4 in [22] immediately works for
our simplification definition). We use A(P, Q, ε, ρ) to approximate DF (P, Q).

We preprocess P and Q by computing TP = 1-TADD(P) and TQ = 1-TADD(Q). We
denote by I the set of intervals obtained by taking for each a ∈ TP ∪ TQ the interval
[4ε−1a, 8ε−1a] (we add the interval [0, 0] to I). Given A(P, Q, ε, ρ) that runs in O(d c(n+m)

ε)
time, we do binary search over I. Specifically, we iteratively select an interval [a, b] ∈ I and
run A(P, Q, ε, ρ) for ρ equal to either endpoint.

Note that for each ρ, we may use Lemma 10 to obtain both the ερ/4-simplifications of P

and Q in O((n + m) log(n + m)) time – which are required as input for A(P, Q, ε, ρ). We
need to do this procedure at most O(log n) times before we reach one of two cases:

Case 1: There exists [a, b] ∈ I, such that DF (P, Q) > a and DF (P, Q) < (1 + ε)b. We
note that by definition of I, the values a and b differ by a factor 2. Thus, we may
discretize the interval [a, b] into O(ε−1) points that are each at most ε·a

2 apart (note that
we implicitly discretize this interval, as an explicit discretization takes ε−1 time). By
performing binary search over this discretized set, we report a (1 + ε)-approximation of
DF (P, Q) by using A(P, Q, ε, ρ) at most O(log ε−1) times.
Case 2: There exists no [x, y] ∈ I such that DF (P, Q) > x and DF (P, Q) < (1 + ε)y.

Denote by [amax, bmax] the right-most interval in I. Consider the special case where
DF (P, Q) > bmax. Since bmax ≥ ℓ(P), ℓ(Q) it follows that all ρ > bmax, P µ and Qµ

for µ = ερ/4 are an edge. Computing DF (P µ, Qµ) can therefore be done in O(d) time
which gives a (1 + ε)-approximation of DF (P, Q).

If the special case does not apply then there exist two intervals [a, b], [e, f] ∈ I such that
DF (P, Q) > b and DF (P, Q) ≤ (1 + ε)e, such that there exists no interval [x, y] ∈ I that
intersects [b, e]. We claim that all ρ1, ρ2 ∈ [b, e]: P ερ1/4 = P ερ2/4 and Qερ1/4 = Qερ2/4.

Indeed, suppose for the sake of contradiction that P ερ1/4 ̸= P ερ2/4. Let ρ1 < ρ2 and
choose without loss of generality the smallest ρ2 for which this is the case. Then there
must exist a pair pi, pj ∈ P where ℓ(P [i, j]) = ερ2/4. However, the distance ℓ(P [i, j])
is the distance between λi and λj in the curve Λ and so there exist a′, b′ ∈ TP with
a′ ≤ ℓ(P [i, j]) ≤ b′ ≤ 2a′. It follows that ρ2 = 4ε−1ℓ(P [i, j]) lies in an interval in I

which is a contradiction with the assumption that ρ1, ρ2 ∈ [b, e].
We choose ρ = e. Denote by X the set of reachable cells the Free Space Diagram of
(P ερ/4, Qερ/4, ρ∗). The set X contains O(c(n+m)

ε) cells [22, Lemma 4.4]. It follows that
there are O(c(n+m)

ε) values ρ′ for which the reachability of X changes. We compute and
sort these to get a sorted set R.
Suppose for some ρ′ ∈ [b, ρ] that DF (P ,Q) ≤ ρ′. Denote by F an xy-monotone path in
the Free Space Diagram of (P ερ′/4, Qερ′/4, ρ′) = (P ερ/4, Qερ/4, ρ′). Per definition, F lies
within X. Thus, we may binary search over the set R∩ [b, ρ] (applying the ε-approximate
decider at every step) to compute a (1 + ε)-approximation of DF (P, Q). ◀

I. van der Hoog, E. Rotenberg, and S. Wong 56:11

5 Approximate distance oracles under the discrete Fréchet distance

We want to approximate DF(P, Q) for curves P and Q that live in any geodesic ambient space
X . In most ambient spaces we do not have access to efficient exact distance oracles. In many
ambient spaces however, it is possible to compute for any α > 0 some (1 + α)-approximate
distance oracle. This is a data structure Dα

X that for any two a, b ∈ X can report a value
d◦(a, b) ∈ [(1− α)d(a, b), (1 + α)d(a, b)] in O(Tα) time. To distinguish between inaccuracy
as a result of our algorithm and as a result of our oracle, we refer to d◦(a, b) as the perceived
value (as opposed to an approximate value).

▶ Oracles 12. We present some examples of approximate distance oracles:
For X ⊆ Rd under the L1, L2, L∞ metric in real-RAM we can compute the exact d(a, b)
in O(d) time. Thus, for any α, we have an oracle Dα

X with Tα = O(d) query time.
For X ⊆ Rd under the L2 metric executed in word-RAM, we can compute d(a, b) in O(d2)
expected time. Thus, we have an oracle Dα

X with O(d2) expected query time.
For any X ⊆ Rd under the L2 metric in word-RAM, we can (1 + α)-approximate the
distance between two points in Tα = O(d log α−1) worst case time using Taylor expansions.
For X a planar weighted graph, Long and Pettie [36] store X with N vertices using
O

(
N1+o(1)) space, to answer exact distance queries in O

(
(log(N))2+o(1)) time.

For X as an arbitrary weighted graph, Thorup [43] compute a (1+α)-approximate distance
oracle in O(N/α log N) time and space, and with a query-time of O(1/α).
For X a simple N -vertex polygon, Guibas and Hershberger [32] store X in O(N log N)
time in linear space, and answer exact geodesic distance queries in O((log N) time.

We prove that we may approximately decide the Fréchet distance between P and Q using a
(1 + α)-approximate distance oracle (for the discrete Fréchet distance).

▶ Lemma 3. For any ρ > 0 and 0 < ε < 1, choose ρ∗ = (1 + 1
2 ε)ρ and µ ≤ 1

6 ερ. Let X be
any geodesic metric space and Dε/6

X be a (1 + 1
6 ε)-approximate distance oracle. For any curve

P = (p1, . . . , pn) in X and any curve Q = (q1, . . . , qm) in X :
If for the discrete Fréchet distance, DF

◦(P µ, Q) ≤ ρ∗ then DF(P, Q) ≤ (1 + ε)ρ.
If for the discrete Fréchet distance, DF

◦(P µ, Q) > ρ∗ then DF(P, Q) > ρ.

Proof. Per definition of Dε/6
X : ∀(p, q) ∈ P ×Q, d◦(p, q) ∈ [(1− 1

6 ε)d(p, q), (1 + 1
6 ε)d(p, q)].

It follows from 0 < ε < 1 that:

∀(p, q) ∈ P ×Q : d(p, q) ≤
(

1 + 1.1
6 ε

)
d◦(p, q) ∧ d◦(p, q) ≤

(
1 + 1

6ε

)
d(p, q).

Suppose that DF
◦(P µ, Q) ≤ ρ∗. There exists a (monotone) discrete walk F through

P µ ×Q such that for each (i, j) ∈ F : d◦(P µ[i], qj) ≤ ρ∗ = (1 + 1
2 ε)ρ. It follows that:

d(P µ[i], qj) ≤
(

1 + 1.1
6 ε

)
d◦(P µ[i], qj) ≤

(
1 + 1.1

6 ε

) (
1 + 1

2ε

)
ρ ≤

(
1 + 5

6ε

)
ρ.

We will prove that this implies DF(P, Q) ≤ (1 + ε)ρ. We use F to construct a discrete
walk F ′ through P ×Q. For each consecutive pair (a, b), (c, d) ∈ F note that since F is a
discrete walk, P µ[a] and P µ[c] are either the same vertex or incident vertices on P µ. Denote
by Pac the vertices of P in between P µ[a] and P µ[c]. It follows that:

∀p′ ∈ Pac : d(p′, qb) ≤ d (P µ[a], qb) + µ ≤ (1 + 5
6ε)ρ + 1

6ερ = (1 + ε)ρ.

Now consider the following sequence of pairs of points:

ISAAC 2024

56:12 Data Structures for Approximate Fréchet Distance for Realistic Curves

Lac = (P µ[a], qb)∪{(p′, qb) | p′ ∈ Pac}∪ (P µ[c], qd). We add the lattice points correspond-
ing to Lac to F ′. It follows that we create a discrete walk F ′ in the lattice |P | × |Q| where
for each (i, j) ∈ F ′: d(pi, qj) ≤ (1 + ε)ρ. Thus, DF(P, Q) ≤ (1 + ε)ρ.

Suppose otherwise that DF(P, Q) ≤ ρ. We will prove that DF
◦(P µ, Q) ≤ ρ∗. Indeed,

consider a discrete walk F ′ in the lattice |P | × |Q| where for each (i, j) ∈ F ′: d(pi, qj) ≤ ρ.
We construct a discrete walk F in |P µ| × |Q|. Consider each (i, j) ∈ F ′, If pi = P µ[a]
for some integer a, we add (a, j) to F . Otherwise, denote by P µ[a] the last vertex on
P µ that precedes pi: we add (a, j) to F . Note that per definition of µ-simplification,
d(P µ[a], qj) ≤ d(pi, qj) + µ ≤ (1 + 1

6 ε)ρ. It follows from the definition of our approximate
distance oracle that d◦(P µ[a], qj) ≤ (1 + 1

6 ε)(1 + 1
6 ε)ρ < (1 + 1

2 ε)ρ = ρ∗. Thus, we may
conclude that DF

◦(P µ, Q) ≤ ρ∗. ◀

6 Approximate Discrete Fréchet distance

We denote by Dα
X a (1 + α)-approximate distance oracle over the geodesic metric space X .

Our input is some curve P = (p1, . . . , pn) in X which is c-packed in X . We preprocess P to:
answer A-decision(Q, ε, ρ) for any curve Q = (q1, . . . , qm), ρ > 0 and 0 < ε < 1,
answer A-value(Q, ε) for any curve Q = (q1, . . . , qm) and 0 < ε < 1.

We obtain this result in four steps. In Section 5, we showed that we can answer A-
decision(Q, ε, ρ) through comparing if the perceived Fréchet distance DF

◦(P µ, Q) ≤ ρ∗ for
conveniently chosen µ and ρ∗. In Section 6.1 we define what we call the perceived free-space
matrix. This is a (0, 1)-matrix MA×Q

ρ∗ for any two curves A and Q and any ρ∗ > 0. We show
that if A is the µ-simplified curve P µ for some convenient µ, then the number of zeroes in
MP µ×Q

ρ∗ is bounded.
In Section 6.2, we show a data structure that stores P to answer A-decision(Q, ε, ρ). We

show how to cleverly navigate MP µ×Q
ρ∗ for conveniently chosen µ and ρ∗. The key insight in

this new technique, is that we may steadily increase ρ∗ whilst navigating the matrix. Finally,
we extend this solution to answer A-value(Q, ε).

6.1 Perceived free space matrix and free space complexity
We define the perceived free space matrix to help answer A-decision queries. Given two
curves (A, Q) and some ρ, we construct an |A| × |Q| matrix which we call the perceived free
space matrix MA×Q

ρ . The i’th column corresponds to the i’th element A[i] in A. We assign
to each matrix cell MP ×Q

ρ [i, j] the integer 0 if d◦(A[i], qj) ≤ ρ and integer 1 otherwise.

▶ Observation 13. For all ρ∗ ≥ 0, and curves A and Q, the perceived discrete Fréchet distance
DF

◦(A, Q) between A and Q is at most ρ∗ if and only if there exists an (xy-monotone) discrete
walk F from (1, 1) to (|A|, |Q|) where ∀(i, j) ∈ F , MA×Q

ρ∗ [i, j] = 0.

Computing DF
◦(P µ, Q). Previous results upper bound, for any choice of ρ, the number

of zeroes in the FSM between P ερ and Qερ. We instead consider the perceived FSM, and
introduce a new parameter k ≥ 1 to enable approximate distance oracles. For any value ρ

and some simplification value µ ≥ ερ
k , we upper bound the number of zeroes in the perceived

FSM MP µ×Q
ρ∗ for the conveniently chosen ρ∗ = (1 + ε

2)ρ:

▶ Lemma 14. Let P = (p1, . . . , pn) be a c-packed discrete curve in X . For any ρ > 0 and
0 < ε < 1, denote ρ∗ = (1 + ε

2)ρ. For any k ≥ 1, denote by P µ its µ-simplified curve for
µ ≥ ερ

k . For any curve Q = (q1, . . . , qm) ⊂ X the matrix MP µ×Q
ρ∗ contains at most 8 · c·k

ε

zeroes per row.

I. van der Hoog, E. Rotenberg, and S. Wong 56:13

(a) (b)

q1

q3

q2

p1

0

p5 p6 . . . p27 pnPµ ::

0

1 1

10 0 0

00

0 1 1

1

1

1

00

|B1| = (1 + α)ρ∗ (c)

Figure 1 (a) For some value of µ, the µ-simplified curve is (p1, p5, p6, . . . , p27, pn). We show the
matrix MP µ×Q

ρ∗ . (b) For the point q3, we claim that there are more than Z = 8 ck
ε

zeroes in its
corresponding row. Thus, the ball B1 with radius (1 + α)ρ∗ contains more than Z points. (c) For
each of these points, there is a unique segment along P contained in the ball B2.

Proof. The proof is by contradiction. Suppose that the j’th row of MP µ×Q
ρ∗ contains strictly

more than 8 · c·k
ε zeroes. Let P0 ⊂ P µ be the vertices corresponding to these zeroes. Consider

the ball B1 centered at qj with radius |B1| = (1 + α)ρ∗ and the ball B2 with radius 2|B1|
(Figure 1). Each pi ∈ P0 must be contained in B1 and thus d(pi, qj) ≤ (1 + α)ρ∗. For each
pi ∈ P0 denote by Si the contiguous sequence of vertices of P µ starting at pi of length µ.
Observe that since ε < 1: Si ⊂ B2. Per definition of simplification, each Si are non-coinciding
subcurves. This lower bounds ℓ(P ∩B2):

ℓ(P ∩B2) ≥
∑

p∈P0

ℓ(Si) =
∑

p∈P0

µ > 2(1 + α)(1 + ε

2) · c · k
ε
· µ ≥ 2(1 + α) · c · ρ∗ ≥ c · |B2|,

where 2(1 + α)(1 + ε
2) · c·k

ε < 8 · c·k
ε (since α < 1 and ε < 1) – contradicting c-packedness. ◀

6.2 A data structure for answering A-decision(Q, ε, ρ)
We showed in Sections 5 and 6.1 that for any c-packed curve P , ρ > 0 and 0 < ε < 1 we
can choose suitable values ερ

k ≤ µ ≤ ερ
6 to upper bound the number of zeroes in MP µ×Q

ρ∗ .
Moreover, for ρ∗ = (1 + 1

ε)ρ we know that comparing DF
◦(P µ, Q) ≤ ρ∗ implies an answer to

A-decision(Q, ε, ρ).
We now define a data structure, so that for any µ and any (i, j) we can report the

µ-simplification of P [i, j] in O(|P [i, j]|) time. We use this to answer the decision variant.

▶ Theorem 4. Let X be any geodesic space and Dα
X be a (1 + α)-approximate distance oracle

with O(Tα) query time. Let P = (p1, . . . , pn) be any c-packed curve in X . We can store P

using O(n) space and preprocessing, such that for any curve Q = (q1, . . . , qm) in X and any
ρ > 0 and 0 < ε < 1, we can answer A-decision(Q, ε, ρ) for the discrete Fréchet distance in:

O
(c ·m

ε
·
(
Tε/6 + log n

))
time.

Proof. We store P in the data structure of Definition 9 using O(n) space and preprocessing
time. Given a query A-decision(Q, ε, ρ) we choose α = 1

6 ε, ρ∗ = (1 + 1
2 ε) and µ = ερ

6 . We
test if DF

◦(P µ, Q) ≤ ρ∗. By Lemma 3, if DF
◦(P µ, Q) ≤ ρ∗ then DF(P, Q) ≤ (1 + ε)ρ and

otherwise DF(P, Q) > ρ. We consider the matrix MP µ×Q
ρ∗ .

By Observation 13, DF
◦(P µ, Q) ≤ ρ∗ if and only if there exists a discrete walk F from

(1, 1) to (|P µ|, |Q|) where for each (i, j) ∈ F : MP µ×Q
ρ∗ [i, j] = 0. We will traverse this matrix

in a depth-first manner as follows: starting from the cell (1, 1), we test if MP µ×Q
ρ∗ [1, 1] = 0.

If so, we push (1, 1) onto a stack. Each time we pop a tuple (i, j) from the stack, we inspect
their O(1) neighbors {(i + 1, j), (i, j + 1), (i + 1, j + 1)}. If MP µ×Q

ρ∗ [i′, j′] = 0, we push (i′, j′)

ISAAC 2024

56:14 Data Structures for Approximate Fréchet Distance for Realistic Curves

onto our stack. It takes O(log n) time to obtain the i + 1’th vertex of P µ, and O(Tε/6) to
determine the value of e.g., MP µ×Q

ρ∗ [i + 1, j]. Thus each time we pop the stack, we spend
O((Tε/6) + log n) time.

By Lemma 14 (noting ε < 1 and setting k = 6), we push at most O(cm
ε) tuples

onto our stack. Therefore, we spend O(cm
ε (Tε/6 + log n)) total time. By Observation 13,

DF
◦(P µ, Q) ≤ ρ∗ if and only if we push (|P µ|, |Q|) onto our stack. We test this in O(1)

additional time per operation. Thus, the theorem follows. ◀

6.3 A data structure for answering A-value(Q, ε)
Finally, we show how to answer the A-value(Q, ε, ρ) query. At this point, we could immediately
apply Theorem 2 to answer A-value(Q, ε) at the cost of a factor O(log n + log ε−1). However,
for the discrete Fréchet distance we show that the factor O(log ε−1) can be avoided. To this
end, we leverage the variable k ≥ 1 introduced in the definition of µ ≥ ερ

k :

▶ Theorem 5. Let X be a geodesic metric space and Dα
X be a (1 + α)-approximate distance

with O(Tα) query time. Let P = (p1, . . . , pn) be any c-packed curve in X . We can store P

using O(n) space and O(n log n) preprocessing time, such that for any curve Q = (q1, . . . , qm)
in X and any 0 < ε < 1, we can answer A-Value(Q, ε) for the discrete Fréchet distance in:

O
(c ·m

ε
· log n ·

(
Tε/6 + log c ·m

ε
+ log n

))
time.

Proof. We preprocess P using Lemma 10 in O(n) space and time. We store P in the data
structure of Definition 11. This way, we obtain T = TADD(Λ, Λ) where Λ is the curve P

mapped to R1. We denote for all s ∈ T by Is = [cs, 2 · cs] the corresponding interval and
obtain a sorted set of intervals I = {Is}.

Given a query (Q, ε), we set α← ε/6 and obtain Dα
X . We (implicitly) rescale each interval

Ii ∈ I by a factor 6
ε , creating for Is the interval Iε

s = [6·cs

ε , 12·cs

ε]. This creates a sorted set
Iε of pairwise disjoint intervals. Intuitively, these are the intervals over R1 where for ρ ∈ Iε

s ,
the µ-simplification P µ for µ = ερ

6 may change.
We binary search over Iε. For each boundary point λ of an interval Iε

s we query
A-decision(Q, ε, λ): discarding half of the remaining intervals in Iε. It follows that in
O(c·m

ε · log n · (Tε/6 + log n)) time, we obtain one of two things:
a) an interval Iε

s where ∃ρ∗ ∈ Iε
s that is a (1 + ε)-approximation of DF(P, Q), or

b) a maximal interval I∗ disjoint of the intervals in Iε where ∃ρ∗ ∈ I∗ that is a (1 + ε)-
approximation of DF(P, Q).

Denote by λ the left boundary of Iε
s or I∗: it lower bounds DF(P, Q). Note that if I∗ precedes

all of Iε, λ = 0. We now compute a (1 + ε)-approximation of DF(P, Q) as follows:

FindApproximation(λ).
1. Compute C = d◦(p1,q1)

(1+ 1
2 ε) .

2. Initialize ρ∗ ← (1 + 1
2 ε) ·max{C, λ} and set a constant µ← ε

6 · λ.
3. Push the lattice point (1, 1) onto a stack.
4. Whilst the stack is not empty do:

Pop a point (i, j) and consider the O(1) neighbors (pa, qb) of (pi, qj) in MP µ×Q
ρ∗ :

If d◦(pa, qb) ≤ ρ∗, push (a, b) onto the stack.
Else, store d◦(pa, qb) in a min-heap.

If we push (pn, qm) onto the stack do:
Output ν = ρ∗

(1+ 1
2 ε) .

5. If the stack is empty, we extract the minimal d◦(pa, pb) from the min-heap.
Update ρ∗ ← (1 + 1

2 ε) · d◦(pa, qb), push (a, b) onto the stack and go to line 4.

I. van der Hoog, E. Rotenberg, and S. Wong 56:15

Correctness. Suppose that our algorithm pushes (pn, qm) onto the stack and let at this
time of the algorithm, ρ∗ = (1 + 1

2 ε)ν. Per definition of the algorithm, ν ≥ λ is the minimal
value for which the matrix MP µ×Q

ρ∗ contains a walk F from (1, 1) to (n, m) where for each
(i, j) ∈ F : MP µ×Q

ρ∗ [i, j] = 0. Indeed, each time we increment ρ∗ by the minimal value
required to extend any walk in MP µ×Q

ρ∗ . Moreover, we fixed µ← ε
6 λ and thus µ ≤ ε

6 ν. Thus
we may apply Lemma 3 to defer that ν is the minimal value for which DF(P, Q) ≤ (1 + ε)ν.

Running time. We established that the binary search over Iε took O(c·m
ε ·log n·(Tε/6+log n))

time. We upper bound the running time of our final routine. For each pair (pi, qj) that we
push onto the stack we spend at most O(Tε/6 + log c·m

ε + log n) time as we:
Obtain the O(1) neighbors of (pi, qj) through our data structure in O(log n) time,
Perform O(1) distance oracle queries in O(Tε/6) time, and
Possibly insert O(1) neighbors into a min-heap. The min-heap has size at most K: the
number of elements we push onto the stack. Thus, this takes O(log K) insertion time.

What remains is to upper bound the number of items we push onto the stack. Note that we
only push an element onto the stack, if for the current value ρ∗ the matrix MP µ×Q

ρ∗ contains
a zero in the corresponding cell. We now refer to our earlier case distinction.

Case (a): Since ε < 1 we know that ρ∗ ∈ [λ, 4 · λ]. We set µ = ε
6 λ. So µ ≥ 1

k ερ∗ for
k = 24. Thus, we may immediately apply Lemma 14 to conclude that we push at most
O(c·m

ε) elements onto the stack.
Case (b): Denote by γ = ε

6 ν. Per definition of our re-scaled intervals, the open interval
(µ, γ) does not intersect with any interval in the non-scaled set I. It follows that P µ = P γ

and that for two consecutive vertices pi, pl ∈ P µ: ℓ(P [i, l]) > γ. From here, we essentially
redo Lemma 14 for this highly specialized setting. The proof is by contradiction, where
we assume that for ρ∗ = (1 + ε

2)ν there are more than 8 · 6 · c
ε zeroes in the j’th row of

MP µ×Q
ρ∗ . Denote by P0 ⊂ P µ the vertices corresponding to these zeroes. We construct a ball

B1 centered at qj with radius 2ρ∗ and a ball B2 with radius 2|B1|. We construct a subcurve
Si of P starting at pi ∈ P0 of length γ. The critical observation is, that our above analysis
implies that all the subcurves Si do not coincide (since each of them start with a vertex in
P µ). Since ε < 1, each segment Si is contained in B2. However, this implies that B2 is not
c-packed since: ℓ(P ∩ B2) ≥

∑
i ℓ(Si) =

∑
i γ > 8 · 6 c

ε γ ≥ 4 · c · ρ∗ ≥ 2 · c · |B2|. Thus, we
always push at most O(c·m

ε) elements onto our stack and this implies our running time. ◀

References
1 Pankaj K Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the

discrete fréchet distance in subquadratic time. SIAM Journal on Computing, 43(2):429–449,
2014. doi:10.1137/130920526.

2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(01n02):75–91,
1995. doi:10.1142/S0218195995000064.

3 Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for planar
curves. Algorithmica, 38(1):45–58, 2004. doi:10.1007/S00453-003-1042-5.

4 Boris Aronov, Omrit Filtser, Michael Horton, Matthew J. Katz, and Khadijeh Sheikhan.
Efficient nearest-neighbor query and clustering of planar curves. In Zachary Friggstad, Jörg-
Rüdiger Sack, and Mohammad R Salavatipour, editors, Algorithms and Data Structures, pages
28–42, Cham, 2019. Springer International Publishing. doi:10.1007/978-3-030-24766-9_3.

5 Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola Wenk. Fréchet
distance for curves, revisited. In Yossi Azar and Thomas Erlebach, editors, Algorithms -
ESA 2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006,
Proceedings, volume 4168 of Lecture Notes in Computer Science, pages 52–63. Springer, 2006.
doi:10.1007/11841036_8.

ISAAC 2024

https://doi.org/10.1137/130920526
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1007/S00453-003-1042-5
https://doi.org/10.1007/978-3-030-24766-9_3
https://doi.org/10.1007/11841036_8

56:16 Data Structures for Approximate Fréchet Distance for Realistic Curves

6 Alessandro Bombelli, Lluis Soler, Eric Trumbauer, and Kenneth D Mease. Strategic air traffic
planning with Fréchet distance aggregation and rerouting. Journal of Guidance, Control, and
Dynamics, 40(5):1117–1129, 2017.

7 Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching
vehicle tracking data. In Proceedings of the 31st international conference on Very large data
bases, pages 853–864, 2005. URL: http://www.vldb.org/archives/website/2005/program/
paper/fri/p853-brakatsoulas.pdf.

8 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly sub-
quadratic algorithms unless SETH fails. In 2014 IEEE 55th Annual Symposium on Foundations
of Computer Science, pages 661–670. IEEE, 2014. doi:10.1109/FOCS.2014.76.

9 Karl Bringmann, Anne Driemel, André Nusser, and Ioannis Psarros. Tight bounds for
approximate near neighbor searching for time series under the fréchet distance. In Joseph (Seffi)
Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022,
pages 517–550. SIAM, 2022. doi:10.1137/1.9781611977073.25.

10 Karl Bringmann and Marvin Künnemann. Improved approximation for Fréchet distance on
c-packed curves matching conditional lower bounds. International Journal of Computational
Geometry & Applications, 27(01n02):85–119, 2017. doi:10.1142/S0218195917600056.

11 Kevin Buchin, Maike Buchin, David Duran, Brittany Terese Fasy, Roel Jacobs, Vera Sacristan,
Rodrigo I Silveira, Frank Staals, and Carola Wenk. Clustering trajectories for map construction.
In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 1–10, 2017. doi:10.1145/3139958.3139964.

12 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four Soviets walk
the dog: Improved bounds for computing the Fréchet distance. Discrete & Computational
Geometry, 58(1):180–216, 2017. doi:10.1007/S00454-017-9878-7.

13 Kevin Buchin, Tim Ophelders, and Bettina Speckmann. Seth says: Weak Fréchet distance
is faster, but only if it is continuous and in one dimension. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2887–2901. SIAM, 2019. doi:
10.1137/1.9781611975482.179.

14 Maike Buchin, Bernhard Kilgus, and Andrea Kölzsch. Group diagrams for representing
trajectories. International Journal of Geographical Information Science, 34(12):2401–2433,
2020. doi:10.1080/13658816.2019.1684498.

15 Maike Buchin, Ivor van der Hoog, Tim Ophelders, Lena Schlipf, Rodrigo I Silveira, and Frank
Staals. Efficient Fréchet distance queries for segments. European Symposium on Algorithms,
2022.

16 Daniel Chen, Anne Driemel, Leonidas J. Guibas, Andy Nguyen, and Carola Wenk. Approximate
map matching with respect to the fréchet distance. In Matthias Müller-Hannemann and
Renato Fonseca F. Werneck, editors, Proceedings of the Thirteenth Workshop on Algorithm
Engineering and Experiments, ALENEX 2011, Holiday Inn San Francisco Golden Gateway,
San Francisco, California, USA, January 22, 2011, pages 75–83. SIAM, 2011. doi:10.1137/
1.9781611972917.8.

17 Jacobus Conradi, Anne Driemel, and Benedikt Kolbe. Revisiting the fr\’echet distance between
piecewise smooth curves. arXiv preprint arXiv:2401.03339, 2024. doi:10.48550/arXiv.2401.
03339.

18 Mark De Berg, Atlas F Cook IV, and Joachim Gudmundsson. Fast Fréchet queries. Computa-
tional Geometry, 46(6):747–755, 2013. doi:10.1016/J.COMGEO.2012.11.006.

19 Mark de Berg, Ali D Mehrabi, and Tim Ophelders. Data structures for Fréchet queries in
trajectory data. In 29th Canadian Conference on Computational Geometry (CCCG’17), pages
214–219, 2017.

20 Thomas Devogele. A new merging process for data integration based on the discrete Fréchet
distance. In Advances in spatial data handling, pages 167–181. Springer, 2002.

http://www.vldb.org/archives/website/2005/program/paper/fri/p853-brakatsoulas.pdf
http://www.vldb.org/archives/website/2005/program/paper/fri/p853-brakatsoulas.pdf
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1137/1.9781611977073.25
https://doi.org/10.1142/S0218195917600056
https://doi.org/10.1145/3139958.3139964
https://doi.org/10.1007/S00454-017-9878-7
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1080/13658816.2019.1684498
https://doi.org/10.1137/1.9781611972917.8
https://doi.org/10.1137/1.9781611972917.8
https://doi.org/10.48550/arXiv.2401.03339
https://doi.org/10.48550/arXiv.2401.03339
https://doi.org/10.1016/J.COMGEO.2012.11.006

I. van der Hoog, E. Rotenberg, and S. Wong 56:17

21 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: computing the Fréchet distance with
shortcuts. SIAM Journal on Computing, 42(5):1830–1866, 2013. doi:10.1137/120865112.

22 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance
for realistic curves in near linear time. Discret. Comput. Geom., 48(1):94–127, 2012. doi:
10.1007/s00454-012-9402-z.

23 Anne Driemel and Ioannis Psarros. (2 + ϵ)-ANN for time series under the Fréchet distance.
Workshop on Algorithms and Data structures (WADS), 2021.

24 Anne Driemel, Ioannis Psarros, and Melanie Schmidt. Sublinear data structures for short
Fréchet queries. CoRR, abs/1907.04420, 2019. arXiv:1907.04420.

25 Anne Driemel, Ivor van der Hoog, and Eva Rotenberg. On the discrete Fréchet distance
in a graph. In International Symposium on Computational Geometry (SoCG 2022). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

26 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical Report
CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.

27 Arnold Filtser and Omrit Filtser. Static and streaming data structures for fréchet distance
queries. In Dániel Marx, editor, Symposium on Discrete Algorithms (SODA) 2021, pages
1150–1170. SIAM, 2021. doi:10.1137/1.9781611976465.71.

28 Arnold Filtser, Omrit Filtser, and Matthew J. Katz. Approximate nearest neighbor for
curves – simple, efficient, and deterministic. In 47th International Colloquium on Automata,
Languages, and Programming (ICALP 2020), volume 168 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 48:1–48:19, 2020. doi:10.4230/LIPIcs.ICALP.2020.48.

29 Omrit Filtser. Universal approximate simplification under the discrete fréchet distance. Inf.
Process. Lett., 132:22–27, 2018. doi:10.1016/j.ipl.2017.10.002.

30 Joachim Gudmundsson, Martin P. Seybold, and Sampson Wong. Map matching queries on
realistic input graphs under the fréchet distance. Symposium on Discrete Algorithms (SODA),
2023.

31 Joachim Gudmundsson, André van Renssen, Zeinab Saeidi, and Sampson Wong. Fréchet
distance queries in trajectory data. In The Third Iranian Conference on Computational
Geometry (ICCG 2020), pages 29–32, 2020.

32 Leonidas J Guibas and John Hershberger. Optimal shortest path queries in a simple polygon.
In Symposium on Computational geometry (SoCG), 1987.

33 Sariel Har-Peled. Geometric approximation algorithms, volume 173 of Mathematical Surveys
and Monographs. American Mathematical Soc., 2011.

34 Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure–structure alignment with discrete
Fréchet distance. Journal of bioinformatics and computational biology, 6(01):51–64, 2008.
doi:10.1142/S0219720008003278.

35 Maximilian Konzack, Thomas McKetterick, Tim Ophelders, Maike Buchin, Luca Giuggioli,
Jed Long, Trisalyn Nelson, Michel A Westenberg, and Kevin Buchin. Visual analytics of delays
and interaction in movement data. International Journal of Geographical Information Science,
31(2):320–345, 2017. doi:10.1080/13658816.2016.1199806.

36 Yaowei Long and Seth Pettie. Planar distance oracles with better time-space tradeoffs. In
Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2517–2537. SIAM, 2021.
doi:10.1137/1.9781611976465.149.

37 Ariane Mascret, Thomas Devogele, Iwan Le Berre, and Alain Hénaff. Coastline matching
process based on the discrete Fréchet distance. In Progress in Spatial Data Handling, pages
383–400. Springer, 2006.

38 Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
J. ACM, 30(4):852–865, 1983. doi:10.1145/2157.322410.

39 Otfried Schwarzkopf and Jules Vleugels. Range searching in low-density environments. Inf.
Process. Lett., 60(3):121–127, 1996. doi:10.1016/S0020-0190(96)00154-8.

ISAAC 2024

https://doi.org/10.1137/120865112
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1007/s00454-012-9402-z
https://arxiv.org/abs/1907.04420
https://doi.org/10.1137/1.9781611976465.71
https://doi.org/10.4230/LIPIcs.ICALP.2020.48
https://doi.org/10.1016/j.ipl.2017.10.002
https://doi.org/10.1142/S0219720008003278
https://doi.org/10.1080/13658816.2016.1199806
https://doi.org/10.1137/1.9781611976465.149
https://doi.org/10.1145/2157.322410
https://doi.org/10.1016/S0020-0190(96)00154-8

56:18 Data Structures for Approximate Fréchet Distance for Realistic Curves

40 Roniel S. De Sousa, Azzedine Boukerche, and Antonio A. F. Loureiro. Vehicle trajectory
similarity: Models, methods, and applications. ACM Comput. Surv., 53(5), September 2020.
doi:10.1145/3406096.

41 E Sriraghavendra, K Karthik, and Chiranjib Bhattacharyya. Fréchet distance based approach
for searching online handwritten documents. In Ninth International Conference on Document
Analysis and Recognition (ICDAR 2007), volume 1, pages 461–465. IEEE, 2007. doi:10.1109/
ICDAR.2007.4378752.

42 Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. A survey of trajectory
distance measures and performance evaluation. The VLDB Journal, 29(1):3–32, 2020. doi:
10.1007/S00778-019-00574-9.

43 Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs.
Journal of the ACM (JACM), 51(6):993–1024, 2004. doi:10.1145/1039488.1039493.

44 Ivor van der Hoog, Eva Rotenberg, and Sampson Wong. Data structures for approximate
discrete Fréchet distance. CoRR, abs/2212.07124, 2022. doi:10.48550/arXiv.2212.07124.

45 A. Frank van der Stappen. Motion planning amidst fat obstacles. University Utrecht, 1994.
46 Rene Van Oostrum and Remco Veltkamp. Parametric search made practical. In Symposium

on Computational Geometry (C), pages 1–9, 2002.
47 Dong Xie, Feifei Li, and Jeff M Phillips. Distributed trajectory similarity search. Proceedings

of the VLDB Endowment, 10(11):1478–1489, 2017. doi:10.14778/3137628.3137655.
48 Daming Xu. Well-separated pair decompositions for doubling metric spaces. PhD thesis,

Carleton University, 2005.

https://doi.org/10.1145/3406096
https://doi.org/10.1109/ICDAR.2007.4378752
https://doi.org/10.1109/ICDAR.2007.4378752
https://doi.org/10.1007/S00778-019-00574-9
https://doi.org/10.1007/S00778-019-00574-9
https://doi.org/10.1145/1039488.1039493
https://doi.org/10.48550/arXiv.2212.07124
https://doi.org/10.14778/3137628.3137655

Constant Approximating Disjoint Paths on Acyclic
Digraphs Is W[1]-Hard
Michał Włodarczyk #

University of Warsaw, Poland

Abstract
In the Disjoint Paths problem, one is given a graph with a set of k vertex pairs (si, ti) and
the task is to connect each si to ti with a path, so that the k paths are pairwise disjoint. In the
optimization variant, Max Disjoint Paths, the goal is to maximize the number of vertex pairs to
be connected. We study this problem on acyclic directed graphs, where Disjoint Paths is known
to be W[1]-hard when parameterized by k. We show that in this setting Max Disjoint Paths
is W[1]-hard to c-approximate for any constant c. To the best of our knowledge, this is the first
non-trivial result regarding the parameterized approximation for Max Disjoint Paths with respect
to the natural parameter k. Our proof is based on an elementary self-reduction that is guided by
a certain combinatorial object constructed by the probabilistic method.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases fixed-parameter tractability, hardness of approximation, disjoint paths

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.57

Funding Michał Włodarczyk: Supported by Polish National Science Centre SONATA-19 grant
number 2023/51/D/ST6/00155.

1 Introduction

The Disjoint Paths problem has attracted a lot of attention both from the perspective of
graph theory and applications [23, 46, 50, 52]. Both decision variants, where one requires
the paths to be either vertex-disjoint or edge-disjoint, are known to be NP-hard already on
very simple graph classes [27, 37, 44, 45]. This has motivated the study of Disjoint Paths
through the lens of parameterized complexity. Here, the aim is to develop algorithms with a
running time of the form f(k) · nO(1), where f is some computable function of a parameter k

and n is the input size. A problem admitting such an algorithm is called fixed-parameter
tractable (FPT). In our setting, k is the number of vertex pairs to be connected. On undirected
graphs, both variants of Disjoint Paths have been classified as FPT thanks to the famous
Graph Minors project by Robertson and Seymour [49] (see [32, 36] for later improvements).
This was followed by a line of research devoted to designing faster FPT algorithms on planar
graphs [1, 13, 41, 48, 54].

On directed graphs, there is a simple polynomial transformation between the vertex-
disjoint and the edge-disjoint variants, so these two problems turn out equivalent. Here, the
problem becomes significantly harder: It is already NP-hard for k = 2 [22]. The situation is
slightly better for acyclic digraphs (DAGs) where Disjoint Paths can be solved in time
nO(k) [22] but it is W[1]-hard [51] (cf. [2]) hence unlikely to be FPT. In addition, no no(k)-time
algorithm exists under the assumption of the Exponential Time Hypothesis (ETH) [12]. Very
recently, it has been announced that Disjoint Paths is FPT on Eulerian digraphs [5]. It
is also noteworthy that the vertex-disjoint and edge-disjoint variants are not equivalent on
planar digraphs as the aforementioned reduction does not preserve planarity. Indeed, here
the vertex-disjoint version is FPT [17] whereas the edge-disjoint version is W[1]-hard [12].

In the optimization variant, called Max Disjoint Paths, we want to maximize the
number of terminals pairs connected by disjoint paths. The approximation status of this
problem has been studied on various graph classes [8, 10, 15, 14, 20, 34, 35]. On acyclic

© Michał Włodarczyk;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 57; pp. 57:1–57:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michal.wloda@gmail.com
https://orcid.org/0000-0003-0968-8414
https://doi.org/10.4230/LIPIcs.ISAAC.2024.57
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Constant Approximating Disjoint Paths on Acyclic Digraphs Is W[1]-Hard

digraphs the best approximation factor is O(
√

n) [9] and this cannot be improved unless
P=NP [7]. A different relaxation is to allow the algorithm to output a solution in which every
vertex appears in at most c paths (or to conclude that there is no vertex-disjoint solution).
Kawarabayashi, Kobayashi, and Kreutze [31] used the directed half-integral grid theorem to
design a polynomial-time algorithm for directed Disjoint Paths with congestion c = 4 for
every k. In other words, such a relaxed problem belongs to the class XP. Subsequently, the
congestion factor has been improved to c = 3 [33] and c = 2 [24].

Hardness of FPT approximation. For problems that are hard from the perspective of both
approximation and FPT algorithms, it is natural to exploit the combined power of both
paradigms and consider FPT approximation algorithms. Some prominent examples are an
FPT approximation scheme for k-Cut [43] and an FPT 2-approximation for Directed Odd
Cycle Transversal [42] parameterized by the solution size k. However, several important
problems proved to be resistant to FPT approximation as well. The first hardness results in
this paradigm have been obtained under a relatively strong hypothesis, called Gap-ETH [6].
Subsequently, an O(1)-approximation for k-Clique was shown to be W[1]-hard [39] and
later the hardness bar was raised to ko(1) [29]. In turn, k-Dominating Set is W[1]-hard to
f(k)-approximate for any function f [30] and W[2]-hard to O(1)-approximate [40]. More
results are discussed in the survey [21].

Proving approximation hardness under Gap-ETH is easier compared to the
assumption FPT ̸=W[1] because Gap-ETH already assumes hardness of a problem
with a gap. Indeed, relying just on FPT ̸=W[1] requires the reduction to perform some kind
of gap amplification, alike in the PCP theorem [19]. Very recently, the so-called Parameterized
Inapproximability Hypothesis (PIH) has been proven to follow from ETH [25]. This means
that ETH implies FPT approximation hardness of Max 2-CSP parameterized by the number
of variables within some constant approximation factor c > 1, which has been previously
used as a starting point for parameterized reductions [4, 26, 42, 47]. It remains open whether
PIH can be derived from the weaker assumption FPT ̸=W[1].

Lampis and Vasilakis [38] showed that undirected Max Vertex-Disjoint Paths admits
an FPT approximation scheme when parameterized by treedepth but, assuming PIH, this
is not possible under parameterization by pathwdith. See [11, 20] for more results on
approximation for Max Disjoint Paths under structural parameterizations. Bentert,
Fomin, and Golovach [3] considered the Max Vertex-Disjoint Shortest Paths problem
where we additionaly require each path in a solution to be a shortest path between its
endpoints. They ruled out FPT(k) approximation with factor ko(1) for this problem assuming
FPT ̸=W[1] and with factor o(k) assuming Gap-ETH.

Our contribution. We extend the result by Slivkins [51] by showing that Max Disjoint
Paths on acyclic digraphs does not admit an FPT algorithm that is a q-approximation,
for any constant q. We formulate our hardness result as W[1]-hardness of the task of
distinguishing between instances that are fully solvable from those in which less than a
1
q -fraction of the requests can be served at once. Since a q-approximation algorithm could be
used to tell these two scenarios apart, the following result implies hardness of approximation.
We refer to a pair (si, ti) as a request that should be served by a path connecting si to ti.

▶ Theorem 1. Let q ∈ N be a constant. It is W[1]-hard to distinguish whether for a given
instance of k-Dag Disjoint Paths:
1. all the requests can be served simultaneously, or
2. no set of k/q requests can be served simultaneously.

M. Włodarczyk 57:3

Our proof is elementary and does not rely on coding theory or communication complexity
as some previous W[1]-hardness of approximation proofs [30, 39]. Instead, we give a gap-
amplifying self-reduction that is guided by a certain combinatorial object constructed via
the probabilistic method.

Techniques. A similar parameterized gap amplification technique has been previously
applied to the k-Steiner Orientation problem: given a graph G with both directed and
undirected edges, together with a set of vertex pairs (s1, t1), . . . , (sk, tk), we want to orient all
the undirected edges in G to maximize the number of pairs (si, ti) for which ti is reachable
from si. The problem is W[1]-hard and the gap amplification technique can be used to
establish W[1]-hardness of constant approximation [53]. The idea is to create multiple copies
of the original instance and connect them sequentially into many layers, in such a way that the
fraction of satisfiable requests decreases as the number of layers grows. What distinguishes
k-Steiner Orientation from our setting though is that therein we do not require the
(si, ti)-paths to be disjoint. So it is allowed to make multiple copies of each request (si, ti)
and connect the ti-vertices to the si-vertices in the next layer in one-to-many fashion. Such
a construction obviously cannot work for Dag Disjoint Paths. Instead, will we construct
a combinatorial object yielding a scheme of connections between the copies of the original
instance, with just one-to-one relation between the terminals from the consecutive layers.

Imagine a following construction: given an instance I of k-Dag Disjoint Paths we
create 2k copies of I: I1

1 , . . . , I1
k and I2

1 , . . . , I2
k . Next, for each i ∈ [k] we choose some

permutation πi : [k] → [k] and for each j ∈ [k] we connect the sink tj in I1
i to the source si in

I2
πi(j). See Figure 1 on page 6. Then for each (i, j) ∈ [k]2 we request a path from the source

sj in I1
i to the sink ti in I2

πi(j). Observe that if I is a yes-instance then we can still serve all
the requests in the new instance. However, when I is a no-instance, then there is a
family F of 2k many k-tuples from [k]2 so that each tuple represents k requests
that cannot be served simultaneously. Each tuple corresponds to some k requests that
have to be routed through a single copy of I, which is impossible when I is a no-instance.

We can now iterate this argument. In the next step we repeat this construction k times
(but possibly with different permutations), place such k instances next to each other, and
create the third layer comprising now k2 copies of I. Then for each i ∈ [k] we need a
permutation πi : [k2] → [k2] describing the connections between the sinks from the second
layer to the sources from the third layer. Again, if I is a no-instance, we obtain a family F
of 3k2 many k-tuples from [k]3 corresponding to subsets of requests that cannot be served
simultaneously. We want to show that after d = f(k) many iterations no subset A of 50%
requests can be served. In other words, the family F should always contain a tuple contained
in A, certifying that A is not realizable. This will give a reduction from the exact version of
Dag Disjoint Paths to a version of Dag Disjoint Paths with gap 1

2 . The crux of the
proof is to find a collection of permutations that will guarantee the desired property of F .

It is convenient to think about this construction as a game in which the first player
chooses the permutations governing the connections between the layers (thus creating an
instance of Dag Disjoint Paths) and the second player picks a subset A of 50% requests.
The first player wins whenever the family F of forbidden k-tuples includes a tuple contained
in A. We need to show that the first player has a single winning strategy against every
possible strategy of the second player. We will prove that a good strategy for the first
player is to choose every permutation independently and uniformly at random. In fact, for a
sufficiently large d and any fixed strategy A of the second player, the probability that A wins
against a randomized strategy is smaller than 2−kd . Since the number of possible strategies

ISAAC 2024

57:4 Constant Approximating Disjoint Paths on Acyclic Digraphs Is W[1]-Hard

for the second player is at most 2kd (because there are kd requests), the union bound
implies that the first player has a positive probability of choosing a strategy that
guarantees a victory against every strategy of the second player. This translates to
the existence of a family of permutations for which the gap amplification works.

2 Preliminaries

We follow the convention [n] = {1, 2, . . . , n} and use the standard graph theoretic terminology
from Diestel’s book [18]. We begin by formalizing the problem.

Max Disjoint Paths Parameter: k
Input: A digraph D, a set T of k pairs (si, ti) ∈ V (D)2.
Task: Find a largest collection P of vertex-disjoint paths so that each path P ∈ P is an
(si, ti)-path for some (si, ti) ∈ T .

We refer to the pairs from T as requests. A solution P is said to serve request (si, ti) if it
contains an (si, ti)-path. The condition of vertex-disjointedness implies that each request
can be served by at most one path in P . A yes-instance is an instance admitting a solution
serving all the k-requests. Otherwise we deal with a no-instance. (Max) Dag Disjoint
Paths is a variant of (Max) Disjoint Paths where the input digraph is assumed to be
acyclic.

Notation for trees. For a rooted tree T and v ∈ V (T) we denote by Children(v) the set of
direct descendants of v. A vertex v in a rooted tree is a leaf if Children(v) = ∅. We refer to
the set of leaves of T as L(T). The depth of a vertex v ∈ V (T) is defined as its distance from
the root, measured by the number of edges. In particular, the depth of the root equals 0.
The set of vertices of depth i in T is called the i-th layer of T .

For v ∈ V (T) we write T v to denote the subtree of T rooted at v. We can additionally
specify an integer ℓ ≥ 1 and write T v,ℓ for the tree comprising the first ℓ layers of T v. In
particular, the tree T v,1 contains only the vertex v.

For k, d ∈ N we denote by Tk,d the full k-ary rooted tree of depth d. We have |L(Tk,d)| = kd.
A subset A ⊆ L(Tk,d) is called a q-subset for q ∈ N if |A| ≥ |L(Tk,d)| / q.

Fixed parameter tractability. We provide only the necessary definitions here; more informa-
tion can be found in the book [16]. A parameterized problem can be formalized as a subset of
Σ∗ × N. We say that a problem is fixed parameter tractable (FPT) if it admits an algorithm
solving an instance (I, k) in running time f(k) · |I|O(1), where f is some computable function.

To argue that a parameterized problem is unlikely to be FPT, we employ FPT-reductions
that run in time f(k) · |I|O(1) and transform an instance (I, k) into an equivalent one (I ′, k′)
where k′ = g(k). A canonical parameterized problem that is believed to lie outside the class
FPT is k-Clique. The problems that are FPT-reducible to k-Clique form the class W[1].

Negative association. We introduce the following concept necessary for our probabilistic
argument. There are several definitions capturing negative dependence between random
variables; intuitively it means that when one variable takes a high value then a second one is
more likely to take a low value. Negative association formalizes this idea in a strong sense.

M. Włodarczyk 57:5

▶ Definition 2. A collection of random variables X1, X2, . . . , Xn ∈ R is said to be negatively
associated if for every pair of disjoint subsets A1, A2 ⊆ [n] and every pair of increasing
functions f1 : R|A1| → R, f2 : R|A2| → R it holds that

E [f1(Xi | i ∈ A1) · f2(Xi | i ∈ A2)] ≤ E [f1(Xi | i ∈ A1)] · E [f2(Xi | i ∈ A2)] .

We make note of several important properties of negative association.

▶ Lemma 3 ([28, Prop. 3, 6, 7]). Consider a collection of random variables X1, X2, . . . , Xn ∈
R that is negatively associated. Then the following properties hold.
1. For every family of disjoint subsets A1, . . . , Ak ⊆ [n] and increasing functions f1, . . . , fk,

fi : R|Ai| → R, the collection of random variables

f1(Xi | i ∈ A1), f2(Xi | i ∈ A2), . . . , fk(Xi | i ∈ Ak)

is negatively associated.
2. If random variables Y1, . . . , Yn are negatively associated and independent from X1, . . . , Xn

then the collection X1, . . . , Xn, Y1, . . . , Yn is negatively associated.
3. For every sequence (x1, x2, . . . , xn) of real numbers we have

P [Xi ≤ xi | i ∈ [n]] ≤
n∏

i=1
P [Xi ≤ xi] .

▶ Lemma 4. Let n, k ∈ N. For i ∈ [k] let X i = (Xi
1, . . . , Xi

n) be a sequence of real random
variables that are negatively associated. Suppose that X 1, . . . , X k are independent from each
other. Then the random variables (

∑k
i=1 Xi

1, . . . ,
∑k

i=1 Xi
n) are negatively associated.

Proof. By Lemma 3(2) we know that the union X 1 ∪ · · · ∪ X k forms a collection of nk

random variables that are negatively associated. We divide it into n disjoint subsets of
the form ({X1

j , . . . , Xk
j })n

j=1 and apply Lemma 3(1) for the increasing function f : Rk → R,
f(x1, . . . , xk) =

∑k
i=1 xi. ◀

Negative association occurs naturally in situations like random sampling without replace-
ment. A scenario important for us is when an ordered sequence of numbers is being randomly
permuted. Intuitively, observing a high value at some index removes this value from the pool
and decreases the chances of seeing high values at the remaining indices.

▶ Theorem 5 ([28, Thm. 2.11]). Consider a sequence (x1, x2, . . . , xn) of real numbers. Let
Π: [n] → [n] be a random variable representing a permutation of the set [n] chosen uniformly
at random. For i ∈ [n] we define a random variable Xi = xΠ−1(i). Then the random variables
X1, X2, . . . , Xn are negatively associated.

3 The reduction

Our main objects of interest are collections of functions associated with the nodes of the full
k-ary rooted tree. Such a function for a node v gives an ordering of leaves in the subtree of v.

▶ Definition 6. A scheme for Tk,d is a collection of functions, one for each node in Tk,d,
such that the function fv associated with v ∈ V (Tk,d) is a bijection from L(T v

k,d) to [|L(T v
k,d)|].

Let Schemes(k, d) denote the family of all schemes for Tk,d.

ISAAC 2024

57:6 Constant Approximating Disjoint Paths on Acyclic Digraphs Is W[1]-Hard

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

A B C D E F G H I

J K L M N O P Q R

J K L N O M P R Q M Q L N O J P R K P K L N M O J R Q
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

A C B B A C C A B E F D D E F E F D H G I H G I G H I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 1 An illustration for Definition 7 with k = d = 3. The boxes represent copies of an
instance I with |T | = 3, the large instance is J3,3(I, β) for the scheme β listed at the bottom, and
the dashed rectangle surrounds the instance J3 = J3,2(I, β3) where β3 is a truncation of β to the
right subtree of T3,3. The hollow disks represent the sinks and sources on the large instance. All the
arcs are oriented upwards. The leaves of T3,3 are numbered as 1, 2, . . . , 27. For the sake of legibility,
most of the arcs in the last layer are omitted and the copies of the original instance within layers
2, 3 are marked with letters. The letters are also used in the representation of the scheme β which
contains 9 bijections between sets of size 3 and 3 bijections between sets of size 9 (and one bijection
for size 27, which is immaterial here). The blue lines exemplify vertex pairs which belong to the
request set of the large instance; the sources (in the layer 1) indexed by 6, 10, 23 are mapped to the
sinks in the copy M (in the layer 3). If a subset Γ ⊆ [27] includes 6, 10, 23 then it has a collision
with respect to the scheme β. If we work with a no-instance then such a subset Γ of requests cannot
be served as this would require routing three of them through the copy M .

We will now formalize the idea of connecting multiple copies of an instance. On an
intuitive level, we construct a d-layered instance by taking k many (d − 1)-layered instances
and adding a new layer comprising kd−1 copies of the original instance I. Then we map the
sinks in the layer (d − 1) to the sources in the layer d according to k bijections read from a
scheme. These mappings govern how we place the arcs towards the layer d and which vertex
pairs form the new request set. We need a scheme β ∈ Schemes(k, d) to arrange all the arcs
between the layers.

In order to simplify the notation we introduce the following convention. Suppose that an
instance J is being build with multiple disjoint copies of an instance I = (D, k, T), referred
to as I1, I2, Then we refer to the copy of the vertex si ∈ V (D) (resp. ti) in Ij as Ij [si]
(resp. Ij [ti]).

▶ Definition 7. Given an instance I = (D, k, T) of Dag Disjoint Paths and a scheme
β = (fv)v∈V (Tk,d) ∈ Schemes(k, d) we construct an instance Jk,d(I, β) = (D′, kd, T ′) of Dag
Disjoint Paths. The elements of T ′ will be indexed by the leaves of Tk,d as (sv, tv)v∈L(Tk,d)
while the elements of T (in the instance I) are indexed by 1, . . . , k as (si, ti)i∈[k].

If d = 1, we simply set Jk,1(I, β) = I, ignoring β. We index T by L(Tk,1) in an arbitrary
order.

Consider d > 1. Let r be the root of Tk,d with Children(r) = {u1, . . . , uk}. For i ∈ [k]
let βi be the truncation of β to the nodes in the subtree T ui

k,d and Ji = (Di, kd−1, Ti) be the
instance Jk,d−1(I, βi). We take a disjoint union of J1, . . . , Jk and kd−1 copies of I referred
to as I1, I2, . . . (see Figure 1). These kd−1 copies of I form layer d.

M. Włodarczyk 57:7

Recall that for i ∈ [k] the bijection fui maps L(T ui

k,d) to [kd−1]. For each i ∈ [k] and
v ∈ L(T ui

k,d) we insert an arc from Ji[tv] to Ifui
(v)[si]. Then we add the pair (Ji[sv], Ifui

(v)[ti])
to T ′. This pair is assigned index ι(v) in T ′ where ι is the natural embedding L(T ui

k,d) →
L(Tk,d).

Note that whenever D is acyclic then D′ is acyclic as well so the procedure indeed outputs
an instance of Dag Disjoint Paths. It is also clear that when I admits a solution serving
all the k requests, it can be used to serve all the requests in Jk,d(I, β).

▶ Observation 8. Let k, d ∈ N and β ∈ Schemes(k, d). If I = (D, k, T) is a yes-instance of
Dag Disjoint Paths then Jk,d(I, β) is a yes-instance as well.

The case when I is a no-instance requires a more careful analysis. We introduce the
notion of a collision that certifies that some subset of requests cannot be served.

▶ Definition 9. Let k, d ∈ N, A ⊆ L(Tk,d), and β = (fv)v∈V (Tk,d) ∈ Schemes(k, d). We say
that u ∈ V (Tk,d) forms a collision with respect to (A, β) if A contains elements a1, . . . , ak

such that:
1. for each i ∈ [k] the node ai is a descendant of ui ∈ Children(u) where u1, . . . , uk are

distinct,
2. fu1(a1) = fu2(a2) = · · · = fuk

(ak).

▶ Lemma 10. Let k, d ∈ N, A ⊆ L(Tk,d), and β = (fv)v∈V (Tk,d) ∈ Schemes(k, d). Suppose
that there exists a collision with respect to (A, β). Let I = (D, k, T) be a no-instance of
Dag Disjoint Paths. Then no solution to the instance (D′, kd, T ′) = Jk,d(I, β) can
simultaneously serve all the requests {(sv, tv)v∈A}.

Proof. We will prove the lemma by induction on d. In the case d = 1 we have Jk,1(I, β) = I

and the only possibility of a collision is when A = L(Tk,1) so {(sv, tv)v∈A} is the set of all
the requests. By definition, we cannot serve all the requests in a no-instance. Let us assume
d > 1 from now on.

First suppose that the collision occurs at the root r ∈ V (Tk,d). Let Children(r) =
{u1, . . . , uk}. Then there exists A′ = {a1, . . . , ak} ⊆ A such that ai is a descendant of ui and
fu1(a1) = fu2(a2) = · · · = fuk

(ak). We refer to this common value as x = fui
(ai). We will

also utilize the notation from Definition 7.
Observe that in order to serve the request (sai

, tai
) in D′ the path Pi starting at sai

=
Ji[sai] must traverse the arc from Ji[tai] to Ix[si] as every other arc leaving Di leads to some
Iy with y ̸= x having no connection to tai

= Ix[ti]. Furthermore, the path Pi must contain a
subpath connecting Ix[si] to Ix[ti] in Ix. Since the same argument applies to every i ∈ [k],
we would have to serve all the k requests in Ix. But this is impossible because Ix is a copy
of I which is a no-instance.

Now suppose that the collision does not occur at the root. Then it must occur in the
subtree T ui

k,d for some i ∈ [k]. For every v ∈ A being a descendant of ui, any path Pv serving
the request (sv, tv) in D′ must contain a subpath P ′

v in Di from Ji[sv] to Ji[tv] as again it
must leave Di through the vertex Ji[tv]. By the inductive assumption, we know that we
cannot simultaneously serve all the requests (sv, tv)v∈A∩L(T

ui
k,d

) in the smaller instance Ji.
The lemma follows. ◀

We can now state our main technical theorem. Recall that a subset A ⊆ L(Tk,d) is called
a q-subset if |A| ≥ |L(Tk,d)|/q = kd/q.

▶ Theorem 11. Let k, d, q ∈ N satisfy d ≥ k · (4q)4k log k. Then there exists β ∈ Schemes(k, d)
such that for every q-subset A ⊆ L(Tk,d) there is a collision with respect to (A, β).

ISAAC 2024

57:8 Constant Approximating Disjoint Paths on Acyclic Digraphs Is W[1]-Hard

The proof is postponed to Section 4 which abstracts from the Disjoint Paths problem
and focuses on random permutations. With Theorem 11 at hand, the proof of the main
result is easy.

▶ Theorem 1. Let q ∈ N be a constant. It is W[1]-hard to distinguish whether for a given
instance of k-Dag Disjoint Paths:
1. all the requests can be served simultaneously, or
2. no set of k/q requests can be served simultaneously.

Proof. We are going to give an FPT-reduction from the exact variant of k-Dag Disjoint
Paths, which is W[1]-hard [51], to the variant with a sufficiently large gap. To this end,
we present an algorithm that, given an instance I = (D, k, T), runs in time f(k, q) · |I| and
outputs an instance J = (D′, k′, T ′) such that:
1. k′ depends only on k and q,
2. if I is a yes-instance then J is a yes-instance, and
3. if I is a no-instance then no solution to J can simultaneously serve at least k′/q requests.
Obviously, being able to separate these two cases for J (all requests vs. at most 1

q -fraction of
requests) is sufficient to determine whether I is a yes-instance.

We set d = k · (4q)4k log(k) accordingly to Theorem 11. It guarantees that there exists a
scheme β ∈ Schemes(k, d) such that for every q-subset A ⊆ L(Tk,d) there is a collision with
respect to (A, β). Observe that such a scheme can be computed in time f(k, q) because d is
a function of (k, q) and the size of the family Schemes(k, d) is a function of (k, d). The same
holds for the number of all q-subsets A ⊆ L(Tk,d). Therefore, we can simply iterate over all
β ∈ Schemes(k, d) and check for each q-subset A whether there is a collision or not.

The instance J is defined as Jk,d(I, β). A direct implementation of Definition 7 takes time
f(k, d) · |I|. Observation 8 says that if I is a yes-instance, then J is as well, whereas Lemma 10
ensures that if I is a no-instance, then for each set of k′/q requests (corresponding to some
q-subset A ⊆ L(Tk,d) which must have a collision with β) no solution can simultaneously
serve all of them. This concludes the correctness proof of the reduction. ◀

We remark that Theorem 1 works in a more general setting, where q is not necessarily a
constant, but a function of k. This enables us to rule out not only an O(1)-approximation
in FPT time, but also an α(k)-approximation for some slowly growing function α(k) → ∞.
However, the value of the parameter k′ becomes kd for d = Ω(qk log k) so q ends up very
small compared to the new parameter k′. This is only sufficient to rule out approximation
factors of the form α(k) = (log k)o(1). A detailed analysis of how to adjust such parameters
is performed in [53].

4 Constructing the scheme

This section is devoted to the proof of Theorem 11. Before delving into the rigorous analysis,
we sketch the main ideas behind the proof.

Outline. We use the probabilistic method to prove the existence of a scheme having a
collision with every q-subset of leaves in Tk,d. We will show that for a sufficiently large d

choosing each bijection at random yields a very high probability of a collision with any fixed
q-subset. Specifically, the probability that a collision does not occur should be less than 2−kd .
Since the number of all q-subsets of a kd-size set is bounded by 2kd , the union bound will
imply that the probability that a collision does not occur for at least one q-subset is strictly
less than one, implying the existence of the desired scheme.

M. Włodarczyk 57:9

Let us fix a q-subset A ⊆ L(Tk,d). Suppose there is a vertex u ∈ V (Tk,d) such that
for every child y of u the fraction of leaves in T y

k,d belonging to A is at least 1/q. Let ℓ

denote [|L(T y
k,d)|]. For each such child we choose a random bijection from L(T y

k,d) to [ℓ]. The
probability that each of these k bijections maps an element of A to a fixed index x ∈ [ℓ] is
at least q−k. Such events are not independent for distinct x but we will see that they are
negatively associated, which still allows us to upper bound the probability of no such event
happening by (1 − q−k)ℓ (see Lemma 12).

How to identify such a vertex u? First, it is sufficient for us to relax the bound 1/q

assumed above to 1/(4q). Observe that for each layer in Tk,d there must be many vertices
v satisfying |A ∩ L(T v

k,d)| ≥ 1
2q |L(T v

k,d)|. Suppose that v does not meet our criterion: this
means that it has a child v′ with less than 1/(4q)-fraction of the A-leaves in its subtree.
But then the average fraction of the A-leaves among the remaining children is higher than
the fraction for v. Consequently, we can choose a child of v with a higher fraction and
repeat this argument inductively. We show that after O(k log(q)) many steps this process
must terminate so we are guaranteed to find a vertex for which every child has at least a
1/(4q)-fraction of the A-leaves. This is proven in Lemma 13.

Finally, to obtain a large probability of a collision we must show that there many such
vertices u with a large sum of their subtrees’ sizes. This will allows us to multiply the
aforementioned bounds of the form (1 − q−k)ℓ with a large sum of the exponents ℓ. By
applying the argument above to a single layer in Tk,d we can find such a collection with the
sum of their subtrees’ sizes being kd divided by some function of k and q. But we can also
apply it to multiple layers as long as they are sufficiently far from each other (so that the
vertices found by the inductive procedure are all distinct). Therefore, it suffices to take d

large enough so that the number of available layers surpasses the factors in the denominator,
which depend only on k and q. This is analyzed in Lemma 15.

We begin with a probabilistic lemma stating that randomly permuting k large subsets of
a common universe yields a large chance of creating a non-empty intersection of these sets.

▶ Lemma 12. Let k, z, ℓ ∈ N and X1, . . . , Xk be subsets of [ℓ] of size at least ℓ/z each. Next,
let Π1, . . . , Πk : [ℓ] → [ℓ] be independent random variables with a uniform distribution on the
family of all permutations over the set [ℓ]. Then

P [Π1(X1) ∩ Π2(X2) ∩ · · · ∩ Πk(Xk) = ∅] ≤ exp(−ℓ/zk).

Proof. For i ∈ [k] and j ∈ [ℓ] let Y i
j = 1 if j ∈ Πi(Xi) and Y i

j = 0 otherwise. By Theorem 5
the variables (Y i

1 , . . . , Y i
ℓ) have negative association for each i ∈ [k]. Note that EY i

j ≥ 1/z.
Next, let Zj =

∑k
i=1 Y i

j for j ∈ [ℓ]. Lemma 4 ensures that the variables Z1, . . . , Zℓ also
enjoy negative association. Condition Π1(X1) ∩ Π2(X2) ∩ · · · ∩ Πk(Xk) = ∅ is equivalent to
max(Zj)ℓ

j=1 ≤ k − 1. We have

P [Zj ≤ k − 1] = 1 − P [Zj = k] = 1 −
k∏

i=1

P [j ∈ Πi(Xi)] ≤ 1 − 1/zk.

P
[
max(Zj)ℓ

j=1 ≤ k − 1
]

≤
ℓ∏

j=1

P [Zj ≤ k − 1] ≤ (1 − 1/zk)ℓ = (1 − 1/zk)zk·(ℓ/zk) ≤ exp(−ℓ/zk).

In the first inequality we used Lemma 3(3). The last one holds because (1 − 1
m)m < 1

e for all
m ≥ 2. ◀

ISAAC 2024

57:10 Constant Approximating Disjoint Paths on Acyclic Digraphs Is W[1]-Hard

Notation. We introduce some additional notation to work with the tree Tk,d. For a vertex
v ∈ V (Tk,d) let Leaves(v) denote the size of the set L(T v

k,d). Note that Leaves(v) = kd−h

where h is the depth of v. Next, for a set A ⊆ L(Tk,d), we will write FracA(v) = |A ∩
L(T v

k,d)| / Leaves(v). When A is clear from the context, we will omit the subscript.

▶ Lemma 13. Let k, d, q, τ ∈ N satisfy k, q ≥ 2 and d ≥ τ ≥ 2k · log(q). Next, let v ∈ V (Tk,d)
be of depth at most d − τ and A ⊆ L(Tk,d) satisfy FracA(v) ≥ 1

q . Then there exists a vertex
u ∈ V (T v,τ

k,d) such that for each y ∈ Children(u) it holds that FracA(y) ≥ 1
2q .

Proof. Suppose the claim does not hold. We will show that under this assumption for each
i ∈ [τ] there exists vi ∈ V (T v,i

k,d) with Frac(vi) ≥ 1
q · (1 + 1

2k−2)i−1. Then by substituting
i = τ > (2k − 2) · log(q) and estimating (1 + 1

m)m > 2 (for all m ≥ 2) we will arrive at a
contradiction:

Frac(vτ) ≥ 1
q

·
(

1 + 1
2k − 2

)(2k−2)·log(q)
>

1
q

· 2log(q) ≥ 1.

We now construct the promised sequence (vi) inductively. For i = 1 we set v1 = v

which obviously belongs to T v,1
k,d and satisfies Frac(v) ≥ 1

q . To identify vi+1 we consider
Children(vi) = u1, u2, . . . , uk. We have Frac(vi) = 1

k ·
∑k

j=1 Frac(uj). We define vi+1 as the
child of vi that maximizes the value of Frac (see Figure 2). By the assumption, one of the
children satisfies Frac(uj) < 1

2q . Then Frac(vi+1) is lower bounded by the average value of

Frac among the remaining k − 1 children, which is at least 1
k−1

(
Frac(vi) · k − 1

2q

)
. We have

Frac(vi) ≥ Frac(v1) ≥ 1
q so

(
Frac(vi) · k − 1

2q

)
≥

(
Frac(vi) · k − Frac(vi)

2

)
. We check that

vi+1 meets the specification:

Frac(vi+1) ≥ Frac(vi)
k − 1 ·

(
k − 1

2

)
= Frac(vi) ·

(
1 + 1

2k − 2

)
≥ 1

q
·
(

1 + 1
2k − 2

)i

In the last inequality we have plugged in the inductive assumption. The lemma follows. ◀

To apply Lemma 13 we need to identify many vertices satisfying FracA(v) ≥ 1
2q . To this

end, we will utilize the following simple fact.

▶ Lemma 14. Let a1, a2, . . . , aℓ ∈ [0, 1] be a sequence with mean at least x for some x ∈ [0, 1].
Then at least xℓ

2 elements in the sequence are lower bounded by x
2 .

Proof. Suppose that |{ai ≥ x
2 | i ∈ [ℓ]}| < xℓ

2 . This leads to a contradiction:

ℓ∑
i=1

ai < 1 · xℓ

2 + x

2 · ℓ = xℓ. ◀

We will use the lemmas above for a fixed layer in the tree Tk,d to identify multiple vertices
v meeting the requirements of Lemma 13. For each such v we can find a close descendant
u of v for which we are likely to observe a collision. The value ℓ in Lemma 12, governing
the probability of a collision, corresponds to the number of leaves in the subtree of u, i.e.,
Leaves(u). Since this value appears in the exponent of the formula, we need a collection of
such vertices u in which the total sum of Leaves(u) is large.

▶ Lemma 15. Let k, d, q ∈ N satisfy k, q ≥ 2, d ≥ 4kq. If A ⊆ L(Tk,d) is a q-subset then
there exists a set F ⊆ V (Tk,d) with the following properties.
1. For each v ∈ F and u ∈ Children(v) it holds that FracA(u) ≥ 1

4q .
2. The sum

∑
v∈F Leaves(v) equals at least d · kd · (4q)−3k log(k).

M. Włodarczyk 57:11

F0

Fτ

F1

F2

F3

Fτ+1

Fτ+2

Fτ+3

Figure 2 An illustration for Lemma 15. We consider layers F0, Fτ , F2τ , . . . The vertices from
F +

0 and F +
τ are marked by black disks and their subtrees F v,τ

k,d are depicted as gray triangles. For
each vertex v ∈ F + we apply Lemma 13 to identify a vertex γ(v) ∈ F : the red square inside the
corresponding triangle. The root also illustrates the argument from Lemma 13. We start with
a vertex v satisfying Frac(v) ≥ 1

2q
and while one of its children v′ has Frac(v′) < 1

4q
we can find

another child v′′ of v with Frac(v′′) > Frac(v). This process terminates within τ steps.

Proof. Let Fi ⊆ V (Tk,d) be i-th layer of Tk,d, i.e., the set of vertices of depth i; we have
|Fi| = ki and Leaves(v) = kd−i for each v ∈ Fi. Since their subtrees are disjoint, we can see
that

∑
v∈Fi

|A ∩ L(T v
k,d)| = |A|. Therefore

∑
v∈Fi

Frac(v)/|Fi| ≥ 1
q . By Lemma 14 at least

1
2q fraction of the vertices in Fi must satisfy Frac(v) ≥ 1

2q . Let us denote this subset as F +
i .

Let τ = ⌈2k · log(2q)⌉ and M = ⌊d/τ⌋. We define F + = F +
0 ∪ F +

τ ∪ F +
2τ ∪ · · · ∪ F +

(M−1)τ .
Observe that for each pair u, v ∈ F + the trees T u,τ

k,d , T v,τ
k,d are disjoint. We apply Lemma 13

with q′ = 2q to each v ∈ F + to obtain a vertex γ(v) ∈ V (T v,τ
k,d) satisfying condition (1). The

disjointedness of these subtrees ensures that the vertices γ(v)v∈F + are distinct. We define
F = {γ(v) | v ∈ F +}.

Now we take care of condition (2). Let us fix j ∈ [0, M − 1]. Since γ(v) ∈ V (T v,τ
k,d) for v

with the depth jτ , we infer that the depth of γ(v) is at most (j + 1)τ − 1 so |Leaves(γ(v))| ≥
kd+1−(j+1)τ . We have established already that |F +

jτ | ≥ |Fjτ |
2q = kjτ

2q . The assumption d ≥ 4kq

implies d ≥ τ so we can simplify M = ⌊d/τ⌋ ≥ d/(2τ). We estimate the sum within each
layer F +

jτ and then multiply it by M .

∑
v∈F +

jτ

Leaves(γ(v)) ≥ kjτ

2q
· kd+1−(j+1)τ = kd+1−τ

2q

∑
v∈F

Leaves(v) =
M−1∑
j=0

∑
v∈F +

jτ

Leaves(γ(v)) ≥ d · kd+1−τ

2τ · 2q

To get rid of the ceiling, we estimate τ ≤ 2k · log(4q). Then kτ ≤ k2k log(4q) = (4q)2k log(k).
We also use a trivial bound τ ≤ 4kq. We can summarize the analysis by∑

v∈F

Leaves(v) ≥ d · kd+1−τ

2τ · 2q
= d · kd+1

kτ · 4qτ
≥ d · kd+1

(4q)2k log(k) · 16kq2 ≥ d · kd

(4q)3k log(k) ◀

Now we combine the gathered ingredients to show that a random scheme yields a high
probability of a collision with any fixed q-subset. At this point we also adjust d to be larger
then the factors depending on k and q.

ISAAC 2024

57:12 Constant Approximating Disjoint Paths on Acyclic Digraphs Is W[1]-Hard

▶ Lemma 16. Let k, d, q ∈ N satisfy d ≥ k · (4q)4k log k. Consider some q-subset A ⊆ L(Tk,d).
Suppose that we choose the scheme β = (fv)v∈V (Tk,d) ∈ Schemes(k, d) by picking each bijection
fv : L(T v

k,d) → [|L(T v
k,d)|] uniformly and independently at random. Then the probability that

(A, β) has no collision is at most exp(−kd).

Proof. We apply Lemma 15 and use the obtained set F ⊆ V (Tk,d) to analyze the probability
of getting a collision. Consider u ∈ F with Children(u) = {u1, . . . , uk} and let Cu denote the
event that (A, β) has a collision at u. For each i ∈ [k] we have Leaves(ui) = Leaves(u)/k and
we know from Lemma 15(1) that FracA(ui) ≥ 1/(4q). For each i ∈ [k] a random bijection
fui is chosen between L(T ui

k,d) and [Leaves(ui)]. This can be interpreted as first picking an
arbitrary bijection to [Leaves(ui)] and then combining it with a random permutation over
[Leaves(ui)]. We apply Lemma 12 with z = 4q to infer that the probability of getting no
collision at u is upper bounded by

P [¬Cu] ≤ exp
(

−Leaves(ui)
zk

)
= exp

(
−Leaves(u)

k · (4q)k

)
.

Since the sets (Children(u))u∈F are pairwise disjoint, the corresponding events Cu are in-
dependent. We can thus upper bound the probability of getting no collision at all by the
product

∏
u∈F P [¬Cu]. Next, by Lemma 15(2) and the assumption on d we know that∑

u∈F

Leaves(u) ≥ d · kd · (4q)−3k log k ≥ kd+1 · (4q)k.

We combine this with the previous formula to obtain

P

[
¬

⋃
u∈F

Cu

]
= P

[⋂
u∈F

¬Cu

]
=

∏
u∈F

P [¬Cu] ≤ exp
(−

∑
u∈F Leaves(u)
k · (4q)k

)
≤ exp(−kd).◀

We are ready to prove Theorem 11 (restated below) and thus finish the proof of the
reduction.

▶ Theorem 11. Let k, d, q ∈ N satisfy d ≥ k · (4q)4k log k. Then there exists β ∈ Schemes(k, d)
such that for every q-subset A ⊆ L(Tk,d) there is a collision with respect to (A, β).

Proof. We choose the scheme β by picking each bijection uniformly and independently at
random. For a fixed q-subset A let CA denote the event that (A, β) witnesses a collision. In
these terms, Lemma 16 says that P [¬CA] ≤ exp(−kd). Let A be the family of all q-subsets
A ⊆ L(Tk,d); we have |A| ≤ 2kd . By the union bound, the probability that there exists a
q-subset with no collision with β is

P

[⋃
A∈A

¬CA

]
≤

∑
A∈A

P [¬CA] ≤ 2kd

· (1/e)kd

< 1.

Consequently, there is a positive probability of choosing a scheme β having a collision with
every q-subset. In particular, this means that such a scheme exists. ◀

5 Conclusion

We have shown that no FPT algorithm can achieve an O(1)-approximation for Max Disjoint
Paths on acyclic digraphs. However, our reduction blows up the parameter significantly so
it does not preserve a running time of the form f(k)no(k). It is known that such a running
time is unlikely for the exact variant of the problem [12]. This leads to a question whether
Max Dag Disjoint Paths admits an O(1)-approximation that is faster than nO(k).

M. Włodarczyk 57:13

Our proof yields an alternative technique for gap amplification in a parameterized re-
duction based on the probabilistic method (extending the restricted version appearing
in [53]), compared to reductions relying on coding theory [39, 25] or communication complex-
ity [30]. Can this approach come in useful for proving that Parameterized Inapproximability
Hypothesis (PIH) follows from FPT ̸=W[1]?

References
1 Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket Saurabh,

and Dimitrios M. Thilikos. Irrelevant vertices for the planar disjoint paths problem. J. Comb.
Theory, Ser. B, 122:815–843, 2017. doi:10.1016/j.jctb.2016.10.001.

2 Saeed Akhoondian Amiri, Stephan Kreutzer, Dániel Marx, and Roman Rabinovich. Routing
with Congestion in Acyclic Digraphs. In Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier,
editors, 41st International Symposium on Mathematical Foundations of Computer Science
(MFCS 2016), volume 58 of Leibniz International Proceedings in Informatics (LIPIcs), pages
7:1–7:11, Dagstuhl, Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.MFCS.2016.7.

3 Matthias Bentert, Fedor V. Fomin, and Petr A. Golovach. Tight approximation and ker-
nelization bounds for vertex-disjoint shortest paths. arXiv, abs/2402.15348, 2024. doi:
10.48550/arXiv.2402.15348.

4 Arnab Bhattacharyya, Édouard Bonnet, László Egri, Suprovat Ghoshal, Bingkai Lin, Pasin
Manurangsi, and Dániel Marx. Parameterized intractability of even set and shortest vector
problem. Journal of the ACM (JACM), 68(3):1–40, 2021. doi:10.1145/3444942.

5 Dario Giuliano Cavallaro, Ken-ichi Kawarabayashi, and Stephan Kreutzer. Edge-disjoint paths
in eulerian digraphs. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors, Proceedings
of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC,
Canada, June 24-28, 2024, pages 704–715. ACM, 2024. doi:10.1145/3618260.3649758.

6 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From Gap-Exponential Time Hypothesis to fixed
parameter tractable inapproximability: Clique, dominating set, and more. SIAM J. Comput.,
49(4):772–810, 2020. doi:10.1137/18M1166869.

7 Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai. Pre-reduction graph
products: Hardnesses of properly learning DFAs and approximating EDP on dags. In 2014
IEEE 55th Annual Symposium on Foundations of Computer Science, pages 444–453. IEEE,
2014. doi:10.1109/FOCS.2014.54.

8 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Edge-disjoint paths in planar
graphs. In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 71–80.
IEEE, 2004. doi:10.1109/FOCS.2004.27.

9 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. An O(
√

n) approximation and
integrality gap for disjoint paths and unsplittable flow. Theory of computing, 2(1):137–146,
2006. doi:10.4086/TOC.2006.V002A007.

10 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Edge-disjoint paths in planar
graphs with constant congestion. SIAM J. Comput., 39(1):281–301, 2009. doi:10.1137/
060674442.

11 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. A note on multiflows and
treewidth. Algorithmica, 54(3):400–412, 2009. doi:10.1007/S00453-007-9129-Z.

12 Rajesh Chitnis. A tight lower bound for edge-disjoint paths on planar dags. SIAM Journal on
Discrete Mathematics, 37(2):556–572, 2023. doi:10.1137/21M1395089.

13 Kyungjin Cho, Eunjin Oh, and Seunghyeok Oh. Parameterized algorithm for the disjoint
path problem on planar graphs: Exponential in k2 and linear in n. In Nikhil Bansal and
Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 3734–3758. SIAM, 2023.
doi:10.1137/1.9781611977554.CH144.

ISAAC 2024

https://doi.org/10.1016/j.jctb.2016.10.001
https://doi.org/10.4230/LIPIcs.MFCS.2016.7
https://doi.org/10.48550/arXiv.2402.15348
https://doi.org/10.48550/arXiv.2402.15348
https://doi.org/10.1145/3444942
https://doi.org/10.1145/3618260.3649758
https://doi.org/10.1137/18M1166869
https://doi.org/10.1109/FOCS.2014.54
https://doi.org/10.1109/FOCS.2004.27
https://doi.org/10.4086/TOC.2006.V002A007
https://doi.org/10.1137/060674442
https://doi.org/10.1137/060674442
https://doi.org/10.1007/S00453-007-9129-Z
https://doi.org/10.1137/21M1395089
https://doi.org/10.1137/1.9781611977554.CH144

57:14 Constant Approximating Disjoint Paths on Acyclic Digraphs Is W[1]-Hard

14 Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. New hardness results for routing on
disjoint paths. SIAM J. Comput., 51(2):17–189, 2022. doi:10.1137/17M1146580.

15 Julia Chuzhoy, David HK Kim, and Shi Li. Improved approximation for node-disjoint paths
in planar graphs. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pages 556–569, 2016. doi:10.1145/2897518.2897538.

16 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

17 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. The planar directed
k-vertex-disjoint paths problem is fixed-parameter tractable. In 54th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA,
pages 197–206, 2013. doi:10.1109/FOCS.2013.29.

18 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

19 Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. doi:10.1145/
1236457.1236459.

20 Alina Ene, Matthias Mnich, Marcin Pilipczuk, and Andrej Risteski. On routing disjoint
paths in bounded treewidth graphs. In Rasmus Pagh, editor, 15th Scandinavian Symposium
and Workshops on Algorithm Theory, SWAT 2016, June 22-24, 2016, Reykjavik, Iceland,
volume 53 of LIPIcs, pages 15:1–15:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPICS.SWAT.2016.15.

21 Andreas Emil Feldmann, Karthik C S, Euiwoong Lee, and Pasin Manurangsi. A survey on
approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146,
2020. doi:10.3390/A13060146.

22 Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph homeomorphism
problem. Theor. Comput. Sci., 10:111–121, 1980. doi:10.1016/0304-3975(80)90009-2.

23 András Frank. Packing paths, cuts, and circuits - a survey. Paths, Flows and VLSI-Layout,
49:100, 1990.

24 Archontia C. Giannopoulou, Ken-ichi Kawarabayashi, Stephan Kreutzer, and O-joung Kwon.
Directed tangle tree-decompositions and applications. In Joseph (Seffi) Naor and Niv Buch-
binder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA
2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 377–405. SIAM,
2022. doi:10.1137/1.9781611977073.19.

25 Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu. Parameterized
inapproximability hypothesis under exponential time hypothesis. In Bojan Mohar, Igor Shinkar,
and Ryan O’Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory
of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 24–35. ACM,
2024. doi:10.1145/3618260.3649771.

26 Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep. Baby PIH: Parameterized Inapprox-
imability of Min CSP. In Rahul Santhanam, editor, 39th Computational Complexity Conference
(CCC 2024), volume 300 of Leibniz International Proceedings in Informatics (LIPIcs), pages
27:1–27:17, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.CCC.2024.27.

27 Pinar Heggernes, Pim van’t Hof, Erik Jan van Leeuwen, and Reza Saei. Finding disjoint
paths in split graphs. Theory of Computing Systems, 57:140–159, 2015. doi:10.1007/
S00224-014-9580-6.

28 Kumar Joag-Dev and Frank Proschan. Negative association of random variables with applica-
tions. The Annals of Statistics, pages 286–295, 1983.

29 Karthik C. S. and Subhash Khot. Almost polynomial factor inapproximability for parameterized
k-Clique. In Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022,
July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 6:1–6:21. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.CCC.2022.6.

https://doi.org/10.1137/17M1146580
https://doi.org/10.1145/2897518.2897538
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/FOCS.2013.29
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.4230/LIPICS.SWAT.2016.15
https://doi.org/10.3390/A13060146
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1137/1.9781611977073.19
https://doi.org/10.1145/3618260.3649771
https://doi.org/10.4230/LIPIcs.CCC.2024.27
https://doi.org/10.1007/S00224-014-9580-6
https://doi.org/10.1007/S00224-014-9580-6
https://doi.org/10.4230/LIPICS.CCC.2022.6

M. Włodarczyk 57:15

30 Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized complexity
of approximating dominating set. J. ACM, 66(5):33:1–33:38, 2019. doi:10.1145/3325116.

31 Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Stephan Kreutzer. An excluded half-integral
grid theorem for digraphs and the directed disjoint paths problem. In Proceedings of the
Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, pages 70–78, New
York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2591796.2591876.

32 Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. The disjoint paths problem
in quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012. doi:
10.1016/J.JCTB.2011.07.004.

33 Ken-ichi Kawarabayashi and Stephan Kreutzer. The directed grid theorem. In Proceedings
of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’15, pages
655–664, New York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/
2746539.2746586.

34 Jon M. Kleinberg and Éva Tardos. Approximations for the disjoint paths problem in high-
diameter planar networks. J. Comput. Syst. Sci., 57(1):61–73, 1998. doi:10.1006/JCSS.1998.
1579.

35 Stavros G Kolliopoulos and Clifford Stein. Approximating disjoint-path problems using
packing integer programs. Mathematical Programming, 99(1):63–87, 2004. doi:10.1007/
S10107-002-0370-6.

36 Tuukka Korhonen, Michał Pilipczuk, and Giannos Stamoulis. Minor containment and disjoint
paths in almost-linear time. arXiv, abs/2404.03958, 2024 (to appear at FOCS 2024). doi:
10.48550/arXiv.2404.03958.

37 Mark R. Kramer and Jan van Leeuwen. The complexity of wire-routing and finding minimum
area layouts for arbitrary VLSI circuits. Advances in Computing Research, 2:129–146, 1984.

38 Michael Lampis and Manolis Vasilakis. Parameterized maximum node-disjoint paths. arXiv,
abs/2404.14849, 2024. doi:10.48550/arXiv.2404.14849.

39 Bingkai Lin. Constant approximating k-Clique is W[1]-hard. In Samir Khuller and Vir-
ginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1749–1756. ACM, 2021.
doi:10.1145/3406325.3451016.

40 Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. Constant approximating parameter-
ized k-SetCover is W[2]-hard. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings
of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy,
January 22-25, 2023, pages 3305–3316. SIAM, 2023. doi:10.1137/1.9781611977554.CH126.

41 Daniel Lokshtanov, Pranabendu Misra, Michał Pilipczuk, Saket Saurabh, and Meirav Zehavi.
An exponential time parameterized algorithm for planar disjoint paths. In Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages
1307–1316, New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/
3357713.3384250.

42 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized
complexity and approximability of directed odd cycle transversal. In Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 2181–2200, 2020. doi:10.1137/1.9781611975994.134.

43 Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. A parameterized approx-
imation scheme for min k-Cut. In Sandy Irani, editor, 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 798–809. IEEE, 2020. doi:10.1109/FOCS46700.2020.00079.

44 James F Lynch. The equivalence of theorem proving and the interconnection problem. ACM
SIGDA Newsletter, 5(3):31–36, 1975.

45 Sridhar Natarajan and Alan P Sprague. Disjoint paths in circular arc graphs. Nordic Journal
of Computing, 3(3):256–270, 1996.

ISAAC 2024

https://doi.org/10.1145/3325116
https://doi.org/10.1145/2591796.2591876
https://doi.org/10.1016/J.JCTB.2011.07.004
https://doi.org/10.1016/J.JCTB.2011.07.004
https://doi.org/10.1145/2746539.2746586
https://doi.org/10.1145/2746539.2746586
https://doi.org/10.1006/JCSS.1998.1579
https://doi.org/10.1006/JCSS.1998.1579
https://doi.org/10.1007/S10107-002-0370-6
https://doi.org/10.1007/S10107-002-0370-6
https://doi.org/10.48550/arXiv.2404.03958
https://doi.org/10.48550/arXiv.2404.03958
https://doi.org/10.48550/arXiv.2404.14849
https://doi.org/10.1145/3406325.3451016
https://doi.org/10.1137/1.9781611977554.CH126
https://doi.org/10.1145/3357713.3384250
https://doi.org/10.1145/3357713.3384250
https://doi.org/10.1137/1.9781611975994.134
https://doi.org/10.1109/FOCS46700.2020.00079

57:16 Constant Approximating Disjoint Paths on Acyclic Digraphs Is W[1]-Hard

46 Richard G. Ogier, Vladislav Rutenburg, and Nachum Shacham. Distributed algorithms for
computing shortest pairs of disjoint paths. IEEE Trans. Inf. Theory, 39(2):443–455, 1993.
doi:10.1109/18.212275.

47 Naoto Ohsaka. On the parameterized intractability of determinant maximization. Algorithmica,
pages 1–33, 2024. doi:10.1007/S00453-023-01205-0.

48 Bruce Reed. Rooted routing in the plane. Discrete Applied Mathematics, 57(2-3):213–227,
1995. doi:10.1016/0166-218X(94)00104-L.

49 Neil Robertson and Paul D Seymour. Graph minors. XIII. The disjoint paths problem. Journal
of combinatorial theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

50 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer,
2003.

51 Aleksandrs Slivkins. Parameterized tractability of edge-disjoint paths on directed acyclic
graphs. SIAM J. Discret. Math., 24(1):146–157, 2010. doi:10.1137/070697781.

52 Anand Srinivas and Eytan H. Modiano. Finding minimum energy disjoint paths in wireless
ad-hoc networks. Wirel. Networks, 11(4):401–417, 2005. doi:10.1007/S11276-005-1765-0.

53 Michał Włodarczyk. Parameterized inapproximability for steiner orientation by gap ampli-
fication. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saar-
brücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 104:1–104:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.ICALP.2020.104.

54 Michał Włodarczyk and Meirav Zehavi. Planar disjoint paths, treewidth, and kernels. In 64th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA,
USA, November 6-9, 2023, pages 649–662. IEEE, 2023. doi:10.1109/FOCS57990.2023.00044.

https://doi.org/10.1109/18.212275
https://doi.org/10.1007/S00453-023-01205-0
https://doi.org/10.1016/0166-218X(94)00104-L
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1137/070697781
https://doi.org/10.1007/S11276-005-1765-0
https://doi.org/10.4230/LIPICS.ICALP.2020.104
https://doi.org/10.1109/FOCS57990.2023.00044

Does Subset Sum Admit Short Proofs?
Michał Włodarczyk #

University of Warsaw, Poland

Abstract
We investigate the question whether Subset Sum can be solved by a polynomial-time algorithm
with access to a certificate of length poly(k) where k is the maximal number of bits in an input
number. In other words, can it be solved using only few nondeterministic bits?

This question has motivated us to initiate a systematic study of certification complexity of
parameterized problems. Apart from Subset Sum, we examine problems related to integer linear
programming, scheduling, and group theory. We reveal an equivalence class of problems sharing
the same hardness with respect to having a polynomial certificate. These include Subset Sum and
Boolean Linear Programming parameterized by the number of constraints. Secondly, we present
new techniques for establishing lower bounds in this regime. In particular, we show that Subset
Sum in permutation groups is at least as hard for nondeterministic computation as 3Coloring in
bounded-pathwidth graphs.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases subset sum, nondeterminism, fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.58

Related Version Full Version: https://arxiv.org/abs/2409.03526 [92]

Funding Michał Włodarczyk: Supported by Polish National Science Centre SONATA-19 grant
number 2023/51/D/ST6/00155.

1 Introduction

Nondeterminism constitutes a powerful lens for studying complexity theory. The most
prominent instantiation of this concept is the class NP capturing all problems with solutions
checkable in polynomial time. Another well-known example is the class NL of problems
that can be solved nondeterministically in logarithmic space [7]. But the usefulness of
nondeterminism is not limited to merely filtering candidates for deterministic classes. A ques-
tion studied in proof complexity theory is how much nondeterminism is needed to solve
certain problems or, equivalently, how long proofs have to be to prove certain theorems [27].
Depending on the considered logic, these theorems may correspond to instances of problems
complete for NP [65], coNP [28], or W[SAT] [31]. The central goal of proof complexity is
to establish lower bounds for increasingly powerful proof systems in the hope of building
up techniques to prove, e.g., NP ̸= coNP. What is more, there are connections between
nondeterministic running time lower bounds and fine-grained complexity [25]. In the context
of online algorithms, nondeterminism is used to measure how much knowledge of future
requests is needed to achieve a certain performance level [14, 18, 35].

Bounded nondeterminism plays an important role in organizing parameterized complexity
theory. The first class studied in this context was W[P] comprising parameterized problems
solvable in FPT time, i.e., f(k) · poly(n), when given access to f(k) · log(n) nondeterministic
bits [29]. In the last decade, classes defined by nondeterministic computation in limited space
have attracted significant attention [5, 43, 81] with a recent burst of activity around the class
XNLP [15, 16, 17] of problems solvable in nondeterministic time f(k) · poly(n) and space
f(k)·log(n). While the study of W[P] and XNLP concerns problems considered very hard from
the perspective of FPT algorithms, a question that has eluded a systematic examination so far

© Michał Włodarczyk;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 58; pp. 58:1–58:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michal.wloda@gmail.com
https://orcid.org/0000-0003-0968-8414
https://doi.org/10.4230/LIPIcs.ISAAC.2024.58
https://arxiv.org/abs/2409.03526
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 Does Subset Sum Admit Short Proofs?

is how much nondeterminism is necessary to solve FPT problems in polynomial
time. A related question has been asked about the amount of nondeterminism needed to
solve d-CNF-SAT in sub-exponential time [32].

To concretize our question, we say that a parameterized problem P admits a polynomial
certificate if an instance (I, k) can be solved in polynomial time when given access to poly(k)
nondeterministic bits1. For example, every problem in NP admits a polynomial certificate
under parameterization by the input length. This definition captures, e.g., FPT problems
solvable via branching as a certificate can provide a roadmap for the correct branching
choices. Furthermore, every parameterized problem that is in NP and admits a polynomial
kernelization has a polynomial certificate given by the NP certificate for the compressed
instance. The containment in NP plays a subtle role here: Wahlström [90] noted that
a polynomial compression for the K-Cycle problem is likely to require a target language
from outside NP exactly because K-Cycle does not seem to admit a polynomial certificate.

In this article we aim to organize the folklore knowledge about polynomial certification
into a systematic study, provide new connections, techniques, and motivations, and lay the
foundations for a hardness framework.

When is certification easy or hard? The existence of a certificate of size p(k) = poly(k)
entails an FPT algorithm with running time 2p(k)poly(n), by enumerating all possible
certificates. We should thus restrict ourselves only to problems solvable within such running
time. On the other hand, when such an algorithm is available then one can solve the problem
in polynomial time whenever p(k) ≤ log n. Therefore, it suffices to handle the instances with
log n < p(k). Consequently, for such problems it is equivalent to ask for a certificate of size
poly(k + log n) as this can be bounded polynomially in k via the mentioned trade-off (see
Lemma 11). This observation yields polynomial certificates for problems parameterized by
the solution size, such as Multicut [74] or Planarization [56], which do not fall into the
previously discussed categories.

What are the problems solvable in time 2kO(1)
nO(1) yet unlikely to admit a polynomial

certificate? The Bandwidth problem has been conjectured not be belong to W[P] because
one can merge multiple instances into one, without increasing the parameter, in such a way
that the large instance is solvable if and only if all the smaller ones are. It is conceivable
that a certificate for the large instance should require at least one bit for each of the smaller
instances, hence it cannot be short [45]. The same argument applies to every parameterized
problem that admits an AND-composition, a construction employed to rule out polynomial
kernelization [33, 47], which effectively encodes a conjunction of multiple 3SAT instances as
a single instance of the problem. Such problems include those parameterized by graph width
measures like treewidth or pathwidth, and it is hard to imagine polynomial certificates for
them. However, kernelization hardness can be also established using an OR-composition,
which does not stand at odds with polynomial certification.

The close connection between AND-composition and polynomial certificates has been
observed by Drucker, Nederlof, and Santhanam [39] who focused on parameterized search
problems solvable by One-sided Probabilistic Polynomial (OPP) algorithms (cf. [80]). They
asked which problems admit an OPP algorithm that finds a solution with probability 2−poly(k).

1 It is more accurate to say that a “certificate” refers to a particular instance while a problem can admit a
“certification”. We have decided however to choose a shorter and more established term. We also speak
of “certificates” instead of “witnesses” because “witness” sometimes refers to a concrete representation
of a solution for problems in NP, see e.g., [39].

M. Włodarczyk 58:3

This may seem much more powerful than using poly(k) nondeterministic bits but the success
probability can be replaced by Ω(1) when given a single access to an oracle solving k-variable
Circuit-SAT [39, Lemma 3.5]. A former result of Drucker [37] implies that an OPP algorithm
with success probability 2−poly(k) (also called a polynomial Levin witness compression) for
a search problem admitting a so-called constructive AND-composition would imply NP ⊆
coNP/poly [39, Theorem 3.2].

Constructive vs. non-constructive proofs. The restriction to search problems is crucial in
the work [39] because the aforementioned hardness result does not apply to algorithms that
may recognize yes-instances without constructing a solution explicitly but by proving its
existence in a non-constructive fashion. As noted by Drucker [38, §1.3], his negative results
do not allow to rule out this kind of algorithms.

In general, search problems may be significantly harder than their decision counterparts.
For example, there are classes of search problems for which the solution is always guaranteed
to exist (e.g., by the pigeonhole principle, in the case of class PPP [1]) but the existence of
a polynomial algorithm computing some solution is considered unlikely. For a less obvious
example, consider finding a non-trivial divisor of a given integer n. A polynomial (in log n)
algorithm finding a solution could be used to construct the factorization of n, resolving a
major open problem. But the existence of a solution is equivalent to n being composite and
this can be verified in polynomial time by the AKS primality test [4].

As yet another example, consider the problem of finding a knotless embedding of a
graph, i.e., an embedding in R3 in which every cycle forms a trivial knot in a topological
sense. The class G of graphs admitting such an embedding is closed under taking minors so
Robertson and Seymour’s Theorem ensures that G is characterized by a finite set of forbidden
minors [85], leading to a polynomial algorithm for recognizing graphs from G. Observe that
excluding all the forbidden minors yields a non-constructive proof that a knotless embedding
exists. On the other hand, the existence of a polynomial algorithm constructing such an
embedding remains open [71].

To address this discrepancy, we propose the following conjecture which asserts that not
only finding assignments to many instances of 3SAT requires many bits of advice but even
certifying that such assignments exist should require many bits of advice. We define the
parameterized problem AND-3SAT[k] where an instance consists of a sequence of n many
3SAT formulas on k variables each, and an instance belongs to the language if all these
formulas are satisfiable. We treat k as a parameter.

▶ Conjecture 1. AND-3SAT[k] does not admit a polynomial certificate unless NP ⊆
coNP/poly.

Observe that AND-3SAT[k] is solvable in time 2k · poly(k) · n, so the questions whether
it admits a certificate of size poly(k), poly(k) · log n, or poly(k + log n) are equivalent. We
formulate Conjecture 1 as a conditional statement because we believe that its proof in the
current form is within the reach of the existing techniques employed in communication
complexity and kernelization lower bounds [33, 80]. Then the known examples of AND-
composition could be interpreted as reductions from AND-3SAT[k] that justify non-existence
of polynomial certificates.

1.1 The problems under consideration
Our focus: Subset Sum. In Subset Sum we are given a sequence of n integers (also called
items), a target integer t (all numbers encoded in binary), and we ask whether there is a
subsequence summing up to t. This is a fundamental NP-hard problem that can be solved

ISAAC 2024

58:4 Does Subset Sum Admit Short Proofs?

in pseudo-polynomial time O(tn) by the classic algorithm by Bellman from the 50s [11]. In
2017 the running time has been improved to Õ(t + n) by Bringmann [19]. Subset Sum
reveals miscellaneous facets in complexity theory: it has been studied from the perspective
of exponential algorithms [77, 78], logarithmic space [59, 61], approximation [21, 26, 63, 76],
kernelization [36, 52, 57], fine-grained complexity [3, 22, 83, 82], cryptographic systems [55],
and average-case analysis [75]. Our motivating goal is the following question.

▶ Question 2. Does Subset Sum admit a polynomial certificate for parameter k = log t?

From this point of view, the pseudo-polynomial time O(tn) can be interpreted as FPT
running time O(2kn). It is also known that a kernelization of size poly(k) is unlikely [36].
Observe that we cannot hope for a certificate of size o(log t) because the algorithm enu-
merating all possible certificates would solve Subset Sum in time 2o(log t)nO(1) = to(1)nO(1)

contradicting the known lower bound based on the Exponential Time Hypothesis (ETH) [3].
The parameterization by the number of relevant bits exhibits a behavior different from

those mentioned so far, that is, width parameters and solution size, making it an uncharted
territory for nondeterministic algorithms. The study of Subset Sum[log t] was suggested by
Drucker et al. [39] in the context of polynomial witness compression. These two directions
are closely related yet ultimately incomparable: the requirement to return a solution makes
the task more challenging but the probabilistic guarantee is less restrictive than constructing
a certificate. However, establishing hardness in both paradigms boils down to finding a
reduction of a certain kind from AND-3SAT[k].

The density of a Subset Sum instance is defined as n / log(t) in the cryptographic
context [8, 54, 69]. As it is straightforward to construct a certificate of size n, we are mostly
interested in instances of high density, which also appear hard for exponential algorithms [8].
On the other hand, instances that are very dense enjoy a special structure that can be
leveraged algorithmically [22, 49]. The instances that seem the hardest in our regime are
those in which n is slightly superpolynomial in log t. Apart from the obvious motivation
to better understand the structure of Subset Sum, we believe that the existence of short
certificates for dense instances could be valuable for cryptography.

There are several other studied variants of the problem. In Unbounded Subset Sum
the input is specified in the same way but one is allowed to use each number repeatedly.
Interestingly, this modification enables us to certify a solution with O(log2 t) bits (see the full
version). Another variant is to replace the addition with some group operation. In Group-G
Subset Sum we are given a sequence of n elements from G and we ask whether one can
pick a subsequence whose group product equals the target element t ∈ G. Note that we
do not allow to change the order of elements when computing the product what makes a
difference for non-commutative groups. This setting has been mostly studied for G being the
cyclic group Zq [9, 10, 24, 66, 84]. To capture the hardness of an instance, we choose the
parameter to be log |G| (or equivalent). In particular, we will see that Group-Zq Subset
Sum[log q] is equivalent in our regime to Subset Sum[log t]. We will also provide examples
of groups for which certification is either easy or conditionally hard.

Integer Linear Programming. We shall consider systems of equations in the form {Ax = b |
x ∈ {0, 1}n} where A ∈ Zm×n, b ∈ Zm, with the parameter being the number of constraints
m. This is a special case of Integer Linear Programming (ILP) over boolean domain,
known in the literature as pseudo-boolean optimization. This case has been recognized as
particularly interesting by the community working on practical ILP solvers because pseudo-
boolean optimization can be treated with SAT solvers [6, 23, 40, 60, 89]. It is also applicable

M. Włodarczyk 58:5

in the fields of approximation algorithms [91] and election systems [72]. Eisenbrand and
Weismantel [42] found an elegant application of Steinitz Lemma to this problem and gave an
FPT algorithm with running time (||A||∞ + m)O(m2) · n (cf. [58]).

For simplicity we will consider variants with bounded ||A||∞. In the 0-1 ILP problem we
restrict ourselves to matrices A ∈ {−1, 0, 1}m×n and in Monotone 0-1 ILP we consider
A ∈ {0, 1}m×n. A potential way to construct a short certificate would be to tighten the
proximity bounds from [42] for such matrices: find an extremal solution x∗ to the linear
relaxation {Ax = b | x ∈ [0, 1]n} and hope that some integral solution z lies nearby, i.e.,
||z −x∗||1 ≤ poly(m). This however would require tightening the bounds on the vector norms
in the Graver basis of the matrix A. Unfortunately, there are known lower bounds making
this approach hopeless [12, 13, 67].

It may be tempting to seek the source of hardness in the large values in the target vector b.
We will see however that the problem is no easier when we assume b = 0 and look for any
non-zero solution. We refer to such problem as 0-Sum 0-1 ILP.

A special case of Monotone 0-1 ILP is given by a matrix A ∈ {0, 1}m×n with n =
(

m
d

)
columns corresponding to all size-d subsets of {1, . . . , m}. Then Ax = b has a boolean solution
if and only if b forms a degree sequence of some d-hypergraph, i.e., it is d-hypergraphic. There
is a classic criterion by Erdős for a sequence to be graphic [44] (i.e., 2-hypergraphic) but
already for d = 3 deciding if b is d-hypergraphic becomes NP-hard [34]. It is straightforward
to certify a solution with md bits, what places the problem in NP for each fixed d, but it is
open whether it is in NP when d is a part of the input (note that the matrix A is implicit
so the input size is O(md log m)). This basically boils down to the same dilemma: can we
certify the existence of a boolean ILP solution x without listing x in its entirety?

There is yet another motivation to study the certification complexity of 0-1 ILP. If this
problem admits a certificate of size poly(m) then any other problem that can be modeled by
0-1 ILP with few constraints must admit a short certificate as well. This may help classifying
problems into these that can be solved efficiently with ILP solvers and those that cannot.

Other problems parameterized by the number of relevant bits. A classic generalization
of Subset Sum is the Knapsack problem where each item is described by a size pi and
a weight wi; here we ask for a subset of items of total weight at least w but total size
not exceeding t. Following Drucker et al. [39] we parameterize it by the number of bits
necessary to store items’ sizes and weights, i.e., log(t+w). The need to process weights makes
Knapsack harder than Subset Sum from the perspective of fine-grained complexity [30]
but they are essentially equivalent on the ground of exponential algorithms [77]. We will see
that they are equivalent in our regime as well.

We will also consider the following scheduling problem which is in turn a generalization
of Knapsack. In Scheduling Weighted Tardy Jobs we are given a set of n jobs, where
each job j ∈ [n] has a processing time pj ∈ N, a weight wj ∈ N, and a due date dj ∈ N.
We schedule the jobs on a single machine and we want to minimize the total weight of
jobs completed after their due dates (those jobs are called tardy). Equivalently, we try to
maximize the total weight of jobs completed in time.

In the scheduling literature, Scheduling Weighted Tardy Jobs is referred to as
1||

∑
wjUj using Graham’s notation. The problem is solvable in pseudo-polynomial time

O(n · dmax) by the classic Lawler and Moore’s algorithm [70]. The interest in 1||
∑

wjUj

has been revived due to the recent advances in fine-grained complexity [2, 20, 46, 64]. Here,
the parameter that captures the number of relevant bits is log(dmax + wmax).

ISAAC 2024

58:6 Does Subset Sum Admit Short Proofs?

1.2 Our contribution
The standard polynomial parameter transformation (PPT) is a polynomial-time reduction
between parameterized problems that maps an instance with parameter k to one with
parameter k′ = poly(k). We introduce the notion of a nondeterministic polynomial parameter
transformation (NPPT) which extends PPT by allowing the reduction to guess poly(k)
nondeterministic bits. Such reductions preserve the existence of a polynomial certificate. We
write P ≤nppt Q (resp. P ≤ppt Q) to indicate that P admits a NPPT (resp. PPT) into Q.

We demonstrate how NPPT help us organize the theory of polynomial certification,
similarly as PPT come in useful for organizing the theory of Turing kernelization [53]. As
our first result, we present an equivalence class of problems that share the same certification-
hardness status as Subset Sum[log t]. In other words, either all of them admit a polynomial
certificate or none of them. Despite apparent similarities between these problems, some of
the reductions require a nontrivial use of nondeterminism.

▶ Theorem 3. The following parameterized problems are equivalent with respect to NPPT:
1. Subset Sum[log t]
2. Knapsack[log(t + w)], Knapsack[log(pmax + wmax)]
3. 0-1 ILP[m], Monotone 0-1 ILP[m], 0-Sum 0-1 ILP[m]
4. Group-Zq Subset Sum[log q]

Even though we are unable to resolve Question 2, we believe that revealing such an
equivalence class supports the claim that a polynomial certificate for Subset Sum[log t] is
unlikely. Otherwise, there must be some intriguing common property of all problems listed
in Theorem 3 that has eluded researchers so far despite extensive studies in various regimes.

Next, we present two negative results. They constitute a proof of concept that AND-
3SAT[k] can be used as a non-trivial source of hardness. First, we adapt a reduction from [2]
to show that scheduling with weights and due dates is hard assuming Conjecture 1.

▶ Theorem 4 (⋆). AND-3SAT[k] ≤ppt Scheduling Weighted Tardy Jobs[log(dmax +
wmax)].

It is possible to formulate this result in terms of AND-composition but we chose not to
work with this framework since it is tailored for refuting kernelization and relies on concepts
that do not fit into our regime (e.g., polynomial relation [47]).

Our second hardness result involves Group-Sk Subset Sum[k]: a variant of Subset
Sum on permutation groups. Such groups contain exponentially-large cyclic subgroups (see
Lemma 13) so this problem is at least as hard as Group-Zq Subset Sum[log q] (which is
equivalent to Subset Sum[log t]). We reduce from 3Coloring parameterized by pathwidth
which is at least as hard as AND-3SAT[k] with respect to PPT. Indeed, we can transform
each 3SAT formula in the input (each of size O(k3)) into an instance of 3Coloring via the
standard NP-hardness proof, and take the disjoint union of such instances, which implies
AND-3SAT[k] ≤ppt 3Coloring[pw]. Notably, the reduction in the other direction is
unlikely (see the full version) so 3Coloring[pw] is probably harder than AND-3SAT[k].

▶ Theorem 5. 3Coloring[pw] ≤nppt Group-Sk Subset Sum[k].

Consequently, Group-Sk Subset Sum[k] does not admit a polynomial certificate as-
suming Conjecture 1 and NP ̸⊆ coNP/poly. Unlike Theorem 4, this time establishing
hardness requires a nondeterministic reduction. An interesting feature of 3Coloring[pw]
is that it is NL-complete under logspace reductions when the pathwidth pw is restricted
to O(log n) [5, 81]. On the other hand, Subset Sum can be solved in time Õ(tn2) and

M. Włodarczyk 58:7

space polylog(tn) using algebraic techniques [59]. Therefore, obtaining a logspace PPT from
3Coloring[pw] to Subset Sum[log t] (where pw = log n implies t = 2polylog(n)) would lead
to a surprising consequence: a proof that NL ⊆ DSPACE(polylog(n)) that is significantly
different from Savitch’s Theorem (see also discussion in [81, §1] on low-space determinization).
This suggests that a hypothetical reduction to Subset Sum[log t] should either exploit the
“full power” of NPPT (so it cannot be improved to a logspace PPT) or start directly from
AND-3SAT[k].

Finally, we examine the case of the group family Zk
k on which Subset Sum is still NP-

hard (as this generalizes Subset Sum on cyclic groups) but enjoys a polynomial certificate.
Specifically, we exploit the bound on the maximal order of an element in Zk

k to prove that
there always exists a solution of bounded size.

▶ Lemma 6 (⋆). Group-Zk
k Subset Sum[k] admits a polynomial certificate.

In summary, Group-G Subset Sum appears easy for G = Zk
k (due to bounded maximal

order), hard for G = Sk (due to non-commutativity), and the case G = Z2k lies somewhere
in between. In the light of Theorem 3, tightening this gap seems a promising avenue to settle
Question 2.

Organization of the paper. We begin with the preliminaries where we formally introduce the
novel concepts, such as NPPT. We prove Theorems 3 and 5 in Sections 3 and 4, respectively.
The proofs marked with (⋆) can be found in the full version of the article [92].

2 Preliminaries

We denote the set {1, . . . , n} by [n]. For a sequence x1, x2, . . . , xn, its subsequence is any
sequence of the form xi1 , . . . , xim

for some choice of increasing indices 1 ≤ i1 < · · · < im ≤ n.
All considered logarithms are binary.

A parameterized problem P is formally defined as a subset of Σ∗ × N. For the sake of
disambiguation, whenever we refer to a parameterized problem, we denote the choice of the
parameter in the [·] bracket, e.g., 3Coloring[pw]. We call P fixed-parameter tractable (FPT)
is the containment (I, k) ∈ P can be decided in time f(k) · poly(|I|) for some computable
function f . We say that P admits a polynomial compression into a problem Q if there is
a polynomial-time algorithm that transform (I, k) into an equivalent instance of Q of size
poly(k). If Q coincides with the non-parameterized version of P then such an algorithm is
called a polynomial kernelization. A polynomial Turing kernelization for P is a polynomial-
time algorithm that determines if (I, k) ∈ P using an oracle that can answer if (I ′, k′) ∈ P

whenever |I ′| + k′ ≤ poly(k).

▶ Definition 7. Let P ⊆ Σ∗ × N be a parameterized problem. We say that P has a
polynomial certificate if there is an algorithm A that, given an instance (I, k) of P and a
string y of poly(k) bits, runs in polynomial time and accepts or rejects (I, k) with the following
guarantees.
1. If (I, k) ∈ P , then there exists y for which A accepts.
2. If (I, k) ̸∈ P , then A rejects (I, k) for every y.

▶ Lemma 8. Let P ⊆ Σ∗ ×N and Q ⊆ Σ∗. Suppose that Q ∈ NP and P admits a polynomial
compression into Q. Then P admits a polynomial certificate.

ISAAC 2024

58:8 Does Subset Sum Admit Short Proofs?

Proof. For a given instance (I, k) of P we execute the compression algorithm to obtain an
equivalent instance I ′ of Q of size poly(k). Since Q ∈ NP the instance I ′ can be solved in
polynomial-time with an access to a string y of poly(|I ′|) = poly(k) nondeterministic bits.
Then y forms a certificate for (I, k). ◀

▶ Definition 9. Let P, Q ⊆ Σ∗ × N be parameterized problems. An algorithm A is called a
polynomial parameter transformation (PPT) from P to Q if, given an instance (I, k) of P ,
runs in polynomial time, and outputs an equivalent instance (I ′, k′) of Q with k′ ≤ poly(k).

An algorithm B is called a nondeterministic polynomial parameter transformation
(NPPT) from P to Q if, given an instance (I, k) of P and a string y of poly(k) bits,
runs in polynomial time, and outputs an instance (I ′, k′) of Q with the following guarantees.
1. k′ ≤ poly(k)
2. If (I, k) ∈ P , then there exists y for which B outputs (I ′, k′) ∈ Q.
3. If (I, k) ̸∈ P , then B outputs (I ′, k′) ̸∈ Q for every y.

Clearly, PPT is a special case of NPPT. We write P ≤ppt Q (P ≤nppt Q) if there is
a (nondeterministic) PPT from P to Q. We write P ≡ppt Q (P ≡nppt Q) when we have
reductions in both directions. It is easy to see that the relation ≤nppt is transitive. Similarly
as the relation ≤ppt is monotone with respect to having a polynomial kernelization, the
relation ≤nppt is monotone with respect to having a polynomial certificate.

▶ Lemma 10. Let P, Q ∈ Σ∗ × N be parameterized problems. If P ≤nppt Q and Q admits a
polynomial certificate then P does as well.

Proof. Given an instance (I, k) of P the algorithm guesses a string y1 of length poly(k)
guiding the reduction to Q and constructs an instance (I ′, k′) with k′ = poly(k). Then it
tries to prove that (I ′, k′) ∈ Q by guessing a certificate y2 of length poly(k′) = poly(k). ◀

A different property transferred by PPT is polynomial Turing kernelization. Hermelin et
al. [53] proposed a hardness framework for this property by considering complexity classes
closed under PPT (the WK-hierarchy).

Next, we prove the equivalence mentioned in the Introduction.

▶ Lemma 11. Suppose P ⊆ Σ∗ × N admits an algorithm A deciding if (I, k) ∈ P in time
2p(k)poly(|I|) where p(·) is a polynomial function. Then P [k] ≡ppt P [k + log |I|].

Proof. The direction P [k + log |I|] ≤ppt P [k] is trivial. To give a reduction in the second
direction, we first check if p(k) ≤ log |I|. If yes, we execute A in time poly(|I|) and according
to the outcome we return a trivial yes/no-instance. Otherwise we have log |I| < p(k) so we
can output (I, k′) for the new parameter k′ = k + log |I| being polynomial in k. ◀

Pathwidth. A path decomposition of a graph G is a sequence P = (X1, X2, . . . , Xr) of bags,
where Xi ⊆ V (G), and:
1. For each v ∈ V (G) the set {i | v ∈ Xi} forms a non-empty subinterval of [r].
2. For each edge uv ∈ E(G) there is i ∈ [r] with {u, v} ⊆ Xi.

The width of a path decomposition is defined as maxr
i=1 |Xi| − 1. The pathwidth of a

graph G is the minimum width of a path decomposition of G.

▶ Lemma 12 ([29, Lemma 7.2]). If a graph G has pathwidth at most p, then it admits a nice
path decomposition P = (X1, X2, . . . , Xr) of width at most p, for which:

X1 = Xr = ∅.

M. Włodarczyk 58:9

For each i ∈ [r − 1] there is either a vertex v ̸∈ Xi for which Xi+1 = Xi ∪ {v} or a vertex
v ∈ Xi for which Xi+1 = Xi \ {v}.

Furthermore, given any path decomposition of G, we can turn it into a nice path decomposition
of no greater width, in polynomial time.

The bags of the form Xi+1 = Xi ∪ {v} are called introduce bags while the ones of the
form Xi+1 = Xi \ {v} are called forget bags.

Similarly as in the previous works [5, 16, 81] we assume that a path decomposition of
certain width is provided with the input. This is not a restrictive assumption for our model
since pathwidth can be approximated within a polynomial factor in polynomial time [50].

Group theory. The basic definitions about groups can be found in the book [86]. A homo-
morphism between groups G, H is a mapping ϕ : G → H that preserves the group operation,
i.e., ϕ(x) ◦H ϕ(y) = ϕ(x ◦G y) for all x, y ∈ G. An isomorphism is a bijective homomorphism
and an automorphism of G is an isomorphism from G to G. We denote by Aut(G) the auto-
morphism group of G with the group operation given as functional composition. A subgroup
N of G is normal if for every g ∈ G, n ∈ N we have g ◦G n ◦G g−1 ∈ N .

The symmetric group Sk comprises permutations over the set [k] with the group operation
given by composition. For a permutation π ∈ Sk we consider a directed graph over the
vertex set [k] and arcs given as {(v, π(v)) | v ∈ [k]}. The cycles of this graph are called the
cycles of π.

We denote by Zk the cyclic group with addition modulo k. We write the corresponding
group operation as ⊕k. An order of an element x ∈ G is the size of the cyclic subgroup of G

generated by x. The Landau’s function g(k) is defined as the maximum order of an element
x in Sk. It is known that g(k) equals max lcm(k1, . . . , kℓ) over all partitions k = k1 + · · · + kℓ

(these numbers correspond to the lengths of cycles in x) and that g(k) = 2Θ(
√

k log k) [79].
An element of large order can be found easily if we settle for a slightly weaker bound.

▶ Lemma 13. For each k there exists π ∈ Sk of order 2Ω(
√

k/log k) and it can be found in
time poly(k).

Proof. Consider all the primes p1, . . . , pℓ that are smaller than
√

k. By the prime number
theorem there are ℓ = Θ(

√
k/log k) such primes [51]. We have p1 + · · · + pℓ ≤

√
k ·

√
k = k so

we can find a permutation in Sk with cycles of lengths p1, . . . , pℓ (and possibly trivial cycles
of length 1). We have lcm(p1, . . . , pℓ) =

∏ℓ
i=1 pi ≥ 2ℓ = 2Ω(

√
k/log k). ◀

For two groups N, H and a homomorphism ϕ : H → Aut(N) we define the outer semidirect
product [86] N ⋊ϕ H as follows. The elements of N ⋊ϕ H are {(n, h) | n ∈ N, h ∈ H} and
the group operation ◦ is given as (n1, h1) ◦ (n2, h2) = (n1 ◦ ϕh1(n2), h1 ◦ h2). A special case
of the semidirect product occurs when we combine subgroups of a common group.

▶ Lemma 14 ([86, §4.3]). Let G be a group with a normal subgroup N and a subgroup H,
such that every element g ∈ G can be written uniquely as g = n ◦ h for n ∈ N, h ∈ H. Let
ϕ : H → Aut(N) be given as ϕh(n) = h ◦ n ◦ h−1 (this is well-defined because N is normal in
G). Then G is isomorphic to the semidirect product N ⋊ϕ H.

Group-G Subset Sum Parameter: log |G|
Input: A sequence of elements g1, g2, . . . , gn ∈ G, an element g ∈ G

Question: Is there a subsequence (i1 < i2 < · · · < ir) of [n] such that gi1 ◦gi2 ◦· · ·◦gir = g?

ISAAC 2024

58:10 Does Subset Sum Admit Short Proofs?

We assume that the encoding of the group elements as well as the group operation
◦ are implicit for a specific choice of a group family. For a group family parameterized
by k, like (Sk)∞

k=1, we treat k as the parameter. In all considered cases it holds that
k ≤ log |G| ≤ poly(k) so these two parameterizations are equivalent under PPT.

3 Equivalences

We formally introduce the variants of ILP that will be studied in this section.

0-1 ILP Parameter: m

Input: A matrix A ∈ {−1, 0, 1}m×n, a vector b ∈ Zm

Question: Is there a vector x ∈ {0, 1}n for which Ax = b?

In Monotone 0-1 ILP we restrict ourselves to matrices A ∈ {0, 1}m×n. In 0-Sum 0-1
ILP we have A ∈ {−1, 0, 1}m×n and we seek a binary vector x ̸= 0 for which Ax = 0.

We first check that all the parameterized problems considered in this section
are solvable in time 2kO(1)

nO(1). For Subset Sum[log t] we can use the classic O(tn)-time
algorithm [11] which can be easily modified to solve Group-Zq Subset Sum[log q] in time
O(qn). For Knapsack[log(pmax + wmax)] there is an O(pmax · wmax · n)-time algorithm [82]
which also works for the larger parameterization by log(t + w). Next, 0-1 ILP[m] can be
solved in time 2O(m2 log m) · n using the algorithm for general matrix A [42]. This algorithm
can be used to solve 0-sum 0-1 ILP[m] due to Observation 21. Hence by Lemma 11 we can
assume in our reductions that (log n) is bounded by a polynomial function of the parameter.

▶ Lemma 15. Knapsack[log(t + w)] ≡ppt Knapsack[log(pmax + wmax)].

Proof. We only need to show the reduction from Knapsack[log(pmax + wmax)]. When
pmax · n < t we can afford taking all the items. On the other hand, if wmax · n < w then
no solution can exist. Therefore, we can assume that log t ≤ log pmax + log n and log w ≤
log wmax + log n. By Lemma 11 we can assume log n to be polynomial in log(pmax + wmax)
so the new parameter log(t + w) is polynomial in the original one. ◀

▶ Lemma 16. Subset Sum[log t] ≡nppt Knapsack[log(t + w)].

Proof. The (≤) reduction is standard: we translate each input integer pi into an item (pi, pi)
and set w = t. Then we can pack items of total weight t into a knapsack of capacity t if and
only if the Subset Sum instance is solvable.

Now consider the (≥) reduction. Let k = log(t+w). By the discussion at the beginning of
this section we can assume that log n ≤ log(t · w) ≤ 2k. We can also assume that wmax < w

as any item with weight exceeding w and size fitting into the knapsack would form a trivial
solution. Let W = w · n + 1.

Suppose there is a set of items with total size equal t′ ≤ t and total weight equal w′ ≥ w.
Note that w′ must be less than W . We nondeterministically choose t′ and w′: this requires
guessing log t+log W ≤ 4k bits. Now we create an instance of Subset Sum by mapping each
item (pi, wi) into integer pi · W + wi and setting the target integer to t′′ = t′ · W + w′. If we
guessed (t′, w′) correctly then such an instance clearly has a solution. On the other hand, if
this instance of Subset Sum admits a solution then we have

∑
i∈I(pi · W + wi) = t′ · W + w′

for some I ⊆ [n]. Since both w′ and
∑

i∈I′ wi belong to [1, W) we must have
∑

i∈I wi = w′

and
∑

i∈I pi = t′ so the original instance of Knapsack has a solution as well. Finally, it
holds that log t′′ ≤ 5k so the parameter is being transformed linearly. ◀

M. Włodarczyk 58:11

We will need the following extension of the last argument.

▶ Lemma 17. Let W ∈ N and a1, . . . , an, b1, . . . , bn be sequences satisfying ai, bi ∈ [0, W)
for each i ∈ [n]. Suppose that S :=

∑n
i=1 aiW

i−1 =
∑n

i=1 biW
i−1. Then ai = bi for each

i ∈ [n].

Proof. Consider the remainder of S when divided by W . Since W divides all the terms in
S for i ∈ [2, n] and a1, b1 ∈ [0, W) we must have a1 = (S mod W) = b1. Next, consider
S′ = (S − a1)/W =

∑n
i=2 aiW

i−2 =
∑n

i=2 biW
i−2. Then a2 = (S′ mod W) = b2. This

argument generalizes readily to every i ∈ [n]. ◀

▶ Lemma 18. Subset Sum[log t] ≡nppt Monotone 0-1 ILP[m].

Proof. (≤): Consider an instance ({p1, . . . , pn}, t) of Subset Sum. Let k = ⌈log t⌉. We can
assume that all numbers pi belong to the interval [t]. For an integer x ∈ [t] let bin(x) ∈ {0, 1}k

denote the binary encoding of x so that x =
∑k

j=1 bin(x)j · 2j−1. Observe that the condition
x1 + · · · + xm = t can be expressed as

∑k
j=1 (

∑m
i=1 bin(xi)j) · 2j−1 = t.

We nondeterministically guess a sequence b = (b1, . . . , bk) so that bj equals
∑

i∈I bin(pi)j

where I ⊆ [n] is a solution. This sequence must satisfy maxk
j=1 bj ≤ t, and so we need k2

nondeterministic bits to guess b. We check if the sequence b satisfies
∑k

j=1 bj · 2j−1 = t; if no
then the guess was incorrect and we return a trivial no-instance. Otherwise we construct an
instance of Monotone 0-1 ILP[k] with a system Ax = b. The vector b is given as above
and its length is k. The matrix A comprises n columns where the i-th column is bin(pi). This
system has a solution x ∈ {0, 1}n if and only if there exists I ⊆ [n] so that

∑
i∈I bin(pi)j = bj

for all j ∈ [k]. This implies that
∑

i∈I pi = t. Conversely, if such a set I ⊆ [n] exists, then
there is b ∈ [t]k for which Ax = b admits a boolean solution.

(≥): Consider an instance Ax = b of Monotone 0-1 ILP[m]. As usual, we assume
log n ≤ poly(m). We can also assume that ||b||∞ ≤ n as otherwise Ax = b is clearly
infeasible. We construct an instance of Subset Sum with n items and target integer
t =

∑m
j=1 bj · (n + 1)j−1. Note that t ≤ m · ||b||∞ · (n + 1)m so log t ≤ poly(m). For i ∈ [n]

let ai ∈ {0, 1}m denote the i-th column of the matrix A. We define pi =
∑m

j=1 ai
j · (n + 1)j−1

and we claim that that instance J = ({p1, . . . , pn}, t) of Subset Sum is solavble exactly
when the system Ax = b has a boolean solution.

First, if x ∈ {0, 1}m forms a solution to Ax = b then for each j ∈ [m] we have
∑n

i=1 xia
i
j(n+

1)j−1 = bj(n + 1)j−1 and so
∑n

i=1 xipi = t. Hence the set I = {i ∈ [n] | xi = 1} encodes a
solution to J . In the other direction, suppose that there is I ⊆ [n] for which

∑
i∈I pi = t.

Then t =
∑m

j=1(
∑

i∈I ai
j) · (n + 1)j−1. Due to Lemma 17 we must have bi =

∑
i∈I ai

j for each
i ∈ [m] and there is subset of columns of A that sums up to the vector b. This concludes the
proof. ◀

For the next reduction, we will utilize the lower bound on the norm of vectors in a
so-called Graver basis of a matrix. For two vectors y, x ∈ Zn we write y ◁ x if for every
i ∈ [n] it holds that yixi ≥ 0 and |yi| ≤ |xi|. A non-zero vector x ∈ Zn belongs to the Graver
basis of A ∈ Zm×n if Ax = 0 and no other non-zero solution Ay = 0 satisfies y ◁ x. In other
words, x encodes a sequence of columns of A, some possibly repeated or negated, that sums
to 0 and none of its nontrivial subsequences sums to 0. The following lemma concerns the
existence of vectors with a large ℓ1-norm in a Graver basis of a certain matrix. We state it
in the matrix-column interpretation.

ISAAC 2024

58:12 Does Subset Sum Admit Short Proofs?

A

0

−bi

vi

m

n

k

`

Figure 1 The matrix A′ in Lemma 20.

▶ Lemma 19 ([12, Thm. 9, Cor. 5]). For every k ∈ N there is a sequence (v1, . . . , vn) of
vectors from {−1, 0, 1}k such that
1. n = Θ(2k),
2. the vectors v1, . . . , vn sum up to 0, and
3. no proper non-empty subsequence of (v1, . . . , vn) sums up to 0.

▶ Lemma 20. Monotone 0-1 ILP[m] ≤ppt 0-Sum 0-1 ILP[m].

Proof. Consider an instance Ax = b of Monotone 0-1 ILP[m] with A ∈ {0, 1}m×n. We
can assume that A contains 1 in every column as otherwise such a column can be discarded.
Let v1, . . . , vℓ ∈ {−1, 0, 1}k be the sequence of vectors from Lemma 19 with ℓ ≥ n and
k = O(log n). Next, we can assume that ||b||∞ ≤ n ≤ ℓ as otherwise there can be no
solution. We decompose b into a sum b1 + · · · + bℓ of vectors from {−1, 0, 1}m, possibly using
zero-vectors for padding. Now we construct a matrix A′ ∈ {−1, 0, 1}(m+k)×(n+ℓ). The first
n columns are given by the columns of A with 0 on the remaining k coordinates. The last
ℓ columns are of the form (−bi, vi) for i ∈ [ℓ]. See Figure 1 for an illustration. The new
parameter is m + k which is m + O(log n).

We claim that Ax = b is feasible over boolean domain if and only if A′y = 0 admits a
non-zero boolean solution y. Consider a solution x to Ax = b. We define y as x concatenated
with vector 1ℓ. In each of the first m rows we have (A′y)j = (Ax)j − bj = 0. In the remaining
k rows we have first n zero vectors followed by the sequence v1, . . . , vℓ which sums up to 0
by construction. Hence A′y = 0 while y ̸= 0.

Now consider the other direction and let y ̸= 0 be a solution to A′y = 0. Let us decompose
y as a concatenation of y1 ∈ {0, 1}n and y2 ∈ {0, 1}ℓ. First suppose that y2 = 0. Then
y1 ≠ 0 and Ay1 = 0 but this is impossible since A ∈ {0, 1}m×n and, by assumption, every
column of A contains 1. It remains to consider the case y2 ̸= 0. By inspecting the last k

rows of A′ we infer that the non-zero indices of y2 correspond to a non-empty subsequence of
v1, . . . , vℓ summing up to 0. By construction, this is not possible for any proper subsequence
of (v1, . . . , vℓ) so we must have y2 = 1ℓ. Hence 0 = A′y = A′y1 + A′y2 = A′y1 + (−b, 0) and
so Ay1 = b. This concludes the proof of the reduction. ◀

We will now reduce from 0-Sum 0-1 ILP[m] to 0-1 ILP[m]. The subtlety comes from
the fact that in the latter problem we accept the solution x = 0 while in the first we do
not. Observe that the reduction is easy when we can afford guessing a single column from a
solution. For a matrix A ∈ Zm×n and i ∈ [n] we denote by Ai ∈ Zm×1 the i-th column of A

and by A−i ∈ Zm×(n−1) the matrix obtained from A by removal of the i-th column.

M. Włodarczyk 58:13

▶ Observation 21. An instance Ax = 0 of 0-Sum 0-1 ILP[m] is solvable if and only if there
is i ∈ [n] such that the instance A−iy = −Ai of 0-1 ILP[m] is solvable.

▶ Lemma 22. 0-Sum 0-1 ILP[m] ≤nppt 0-1 ILP[m].

Proof. Observation 21 enables us to solve 0-Sum 0-1 ILP[m] in polynomial time when
log n is large compared to m, by considering all i ∈ [n] and solving the obtained 0-1 ILP[m]
instance. Hence we can again assume that log n ≤ poly(m). In this case, Observation 21 can
be interpreted as an NPPT that guesses poly(m) bits to identify the index i ∈ [n]. ◀

▶ Lemma 23. 0-1 ILP[m] ≤nppt Monotone 0-1 ILP[m].

Proof. We decompose the matrix A as A+ − A− where A+, A− have entries from {0, 1}.
Suppose that there exists a vector x satisfying Ax = b. We nondeterministically guess vectors
b+, b− that satisfy A+x = b+, A−x = b− and we check whether b+ − b− = b; if no then
the guess is rejected. This requires m log n nondeterministic bits. We create an instance of
Monotone 0-1 ILP[m] with 2m constraints given as A+y = b+, A−y = b−. If we made
a correct guess, then y = x is a solution to the system above. On the other hand, if this
system admits a solution y then Ay = A+y − A−y = b+ − b− = b so y is also a solution to
the original instance. ◀

▶ Lemma 24. Subset Sum[log t] ≡nppt Group-Zq Subset Sum[log q].

Proof. For the reduction (≤) consider q = nt and leave t intact. We can assume that each
input number belongs to [1, t) hence the sum of every subset belongs to [1, q) and so there is
no difference in performing addition in Z or Zq.

Now we handle the reduction (≥). Let S be the subset of numbers that sums up to t

modulo q. Since each item belongs to [0, q) their sum in Z is bounded by nq; let us denote
this value as t′. We nondeterministically guess t′ ∈ [0, nq] and check whether t′ = t mod m.
We consider an instance J of Subset Sum over Z with the unchanged items and the target
t′. We have log t′ ≤ log n + log q what bounds the new parameter as well as the number of
necessary nondeterministic bits. If the guess was correct then J will have a solution. Finally,
a solution to J yields a solution to the original instance because t′ = t mod q. ◀

Using the presented lemmas, any two problems listed in Theorem 3 can be reduced to
each other via NPPT.

4 Permutation Subset Sum

This section is devoted to the proof of Theorem 5. We will use an intermediate problem
involving a computational model with ℓ binary counters, being a special case of bounded
Vector Addition System with States (VASS) [68]. This can be also regarded as a counterpart
of the intermediate problem used for establishing XNLP-hardness, which concerns cellular
automata [16, 43].

For a sequence F = (f1, . . . , fn), fi ∈ {O, R} (optional/required), we say that a sub-
sequence of [n] is F-restricted if it contains all the indices i with fi = R. We say that a
sequence of vectors v1, . . . , vn ∈ {−1, 0, 1}ℓ forms a 0/1-run if v1 + · · · + vn = 0 and for each
j ∈ [n] the partial sum v1 + · · · + vj belongs to {0, 1}ℓ.

0-1 Counter Machine Parameter: ℓ

Input: Sequences V = (v1, . . . , vn), vi ∈ {−1, 0, 1}ℓ, and F = (f1, . . . , fn), fi ∈ {O, R}.
Question: Is there a subsequence (i1 < i2 < · · · < ir) of [n] that is F-restricted and
such that (vi1 , vi2 , . . . , vir) forms a 0/1-run?

ISAAC 2024

58:14 Does Subset Sum Admit Short Proofs?

Intuitively, a vector vi ∈ {−1, 0, 1}ℓ tells which of the ℓ counters should be increased or
decreased. We must “execute” all the vector vi for which fi = R plus some others so that
the value of each counter is always kept within {0, 1}.

We give a reduction from 3Coloring[pw] to 0-1 Counter Machine[ℓ].

3Coloring Parameter: pw
Input: An undirected graph G and a path decomposition of G of width at most pw
Question: Can we color V (G) with 3 colors so that the endpoints of each edge are
assigned different colors?

▶ Lemma 25 (⋆). 3Coloring[pw] ≤ppt 0-1 Counter Machine[ℓ].

In the proof, we assign each vertex a label from [pw + 1] so that the labels in each bag
are distinct. We introduce a counter for each pair (label, color) and whenever a vertex is
introduced in a bag, we make the machine increase one of the counters corresponding to its
label. For each edge uv there is a bag containing both u, v; we then insert a suitable sequence
of vectors so that running it is possible if and only if the labels of u, v have active counters in
different colors. Finally, when a vertex is forgotten we deactivate the corresponding counter.

In order to encode the operations on counters as composition of permutations, we will
employ the following algebraic construction. For q ∈ N consider an automorphism ϕ1 : Z2

q →
Z2

q given as ϕ1((x, y)) = (y, x). Clearly ϕ1 ◦ ϕ1 is identify, so there is a homomorphism
ϕ : Z2 → Aut(Z2

q) that assigns identity to 0 ∈ Z2 and ϕ1 to 1 ∈ Z2. We define the group Uq

as the outer semidirect product Z2
q ⋊ϕ Z2 (see Section 2). That is, the elements of Uq are

{((x, y), z) | x, y ∈ Zq, z ∈ Z2} and the group operation ◦ is given as

((x1, y1), z1) ◦ ((x2, y2), z2) =
{

((x1 ⊕q x2), (y1 ⊕q y2), z1 ⊕2 z2) if z1 = 0
((x1 ⊕q y2), (y1 ⊕q x2), z1 ⊕2 z2) if z1 = 1.

(1)

The z-coordinate works as addition modulo 2 whereas the element z1 governs whether we
add (x2, y2) or (y2, x2) modulo q on the (x, y)-coordinates. The neutral element is ((0, 0), 0).
Note that Uq is non-commutative.

For ((x, y), z) ∈ Uq we define its norm as x + y. Consider a mapping Γ: {−1, 0, 1} → Uq

given as Γ(−1) = ((1, 0), 1), Γ(0) = ((0, 0), 0), Γ(1) = ((0, 1), 1).

▶ Lemma 26. Let b1, . . . , bn ∈ {−1, 0, 1} and q > n. Then b1, . . . , bn forms a 0/1-run (in
dimension ℓ = 1) if and only if the group product g = Γ(b1) ◦ Γ(b2) ◦ · · · ◦ Γ(bn) in Uq is of
the form g = ((0, n′), 0) for some n′ ∈ [n].

Proof. Recall that Γ(0) is the neutral element in Uq. Moreover, removing 0 from the sequence
does not affect the property of being a 0/1-run, so we can assume that bi ∈ {−1, 1} for each
i ∈ [n]. Note that the inequality q > n is preserved by this modification. This inequality is
only needed to ensure that the addition never overflows modulo q.

Suppose now that b1, . . . , bn is a 0/1-run. Then it comprises alternating 1s and -1s:
(1, −1, 1, −1, . . . , 1, −1). Hence the product g = Γ(b1) ◦ · · · ◦ Γ(bn) equals (Γ(1) ◦ Γ(−1))n/2.
We have ((0, 1), 1) ◦ ((1, 0), 1) = ((0, 2), 0) and so g = ((0, n), 0).

Now suppose that b1, . . . , bn is not a 0/1-run. Then either
∑n

i=1 bi = 1 or
∑j

i=1 bi ̸∈ {0, 1}
for some j ∈ [n]. In the first scenario n is odd so g has 1 on the z-coordinate and so it is
not in the form of ((0, n′), 0). In the second scenario there are 3 cases: (a) b1 = −1, (b)
(bi, bi+1) = (1, 1) for some i ∈ [n − 1], or (c) (bi, bi+1) = (−1, −1) for some i ∈ [n − 1].

M. Włodarczyk 58:15

Figure 2 An illustration to Lemma 27. The three permutations are π1, π0, πz ∈ S10. The first
one acts as g on the upper set and as identity on the lower set. In the second one these roles
are swapped whereas πz acts as symmetry between the two sets. The permutations Γ̂(1), Γ̂(−1)
in Lemma 28 are obtained as π0 ◦ πz and π1 ◦ πz. Multiplying a sequence of permutations from
{Γ̂(1), Γ̂(−1)} yields a permutation acting as identity on the upper set if and only if the arguments
are alternating 1s and -1s.

Case (a): g = Γ(−1) ◦ h = ((1, 0), 1) ◦ h for some h ∈ Uq of norm ≤ n − 1. Then g cannot
have 0 at the x-coordinate because n < q and the addition does not overflow.

Case (b): Γ(1)2 = ((0, 1), 1)2 = ((0, 1) ⊕q (1, 0), 1 ⊕2 1) = ((1, 1), 0). For any h1, h2 ∈ Uq

of total norm ≤ n − 1 the product h1 ◦ ((1, 1), 0) ◦ h2 cannot have 0 at the x-coordinate.
Case (c): Analogous to (b) because again Γ(−1)2 = ((1, 0), 1)2 = ((1, 0)⊕q (0, 1), 1⊕2 1) =

((1, 1), 0). ◀

Next, we show how to embed the group Uq into a permutation group over a universe of
small size. On an intuitive level, we need to implement two features: counting modulo q on
both coordinates and a mechanism to swap the coordinates. To this end, we will partition
the universe into two sets corresponding to the two coordinates. On each of them, we will
use a permutation of order q to implement counting without interacting with the other set.
Then we will employ a permutation being a bijection between the two sets, which will work
as a switch. See Figure 2 for a visualization.

▶ Lemma 27. For every n ∈ N there exist q > n and r̂ = O(log3 n) for which there is a
homomorphism χ : Uq → Sr̂.

Proof. By Lemma 13 we can find a permutation g of order q > n in Sr for some r = O(log3 n).
The subgroup of Sr generated by g is isomorphic to Zq. We will now consider the permutation
group over the set [r] × Z2, which is isomorphic to S2r. Instead of writing χ explicitly, we
will identify a subgroup of S2r isomorphic to Uq.

Let πz be the permutation given as πz(i, j) = (i, 1 − j) for (i, j) ∈ [r] ×Z2, i.e., it switches
the second coordinate. Let π0 act as g on [r] × 0 and as identify on [r] × 1. Analogously, let
π1 act as g on [r] × 1 and as identify on [r] × 0. Let N be the subgroup of S2r generated
by π0 and π1; it is isomorphic to Z2

q and each element of N is of the form (πx
0 , πy

1) for some
x, y ∈ Zq. Next, let H be the subgroup generated by πz; it is isomorphic to Z2. Now consider
a homomorphism ϕ : H → Aut(N) given as conjugation ϕπ(g) = π ◦ g ◦ π−1. In this special
case, the semidirect product N ⋊ϕ H is isomorphic to the subgroup of S2r generated by
the elements of N and H (Lemma 14). On the other hand, ϕπz

maps (πx
0 , πy

1) ∈ N into
(πy

0 , πx
1) so this is exactly the same construction as used when defining Uq. We infer that Uq

is isomorphic to a subgroup of S2r and the corresponding homomorphism is given by the
mapping of the generators: χ((0, 1), 0) = π0, χ((1, 0), 0) = π1, χ((0, 0), 1) = πz. ◀

Armed with such a homomorphism, we translate Lemma 26 to the language of permutations.

ISAAC 2024

58:16 Does Subset Sum Admit Short Proofs?

▶ Lemma 28. For every n ∈ N there exists r = O(log3 n), a permutation π ∈ Sr of order
greater than n, and a mapping Γ̂ : {−1, 0, 1} → Sr so that the following holds. A sequence
b1, . . . , bn ∈ {−1, 0, 1} is a 0/1-run if and only if the product Γ̂(b1) ◦ Γ̂(b2) ◦ · · · ◦ Γ̂(bn) is of
the form πn′ for some n′ ∈ [n].

Proof. Let χ : Uq → Sr be the homomorphism from Lemma 27 for q > n and r = O(log3 n).
We define Γ̂ : {−1, 0, 1} → Sr as Γ̂(i) = χ(Γ(i)) using the mapping Γ from Lemma 26.
Since χ is a homomorphism, the condition Γ(b1) ◦ · · · ◦ Γ(bn) = ((0, n′), 0) is equivalent to
Γ̂(b1) ◦ · · · ◦ Γ̂(bn) = χ(((0, n′), 0)). We have g = χ(((0, n′), 0)) for some n′ ∈ [n] if and only
if g = πn′ for π = χ((0, 1), 0). The order of π is q > n, as requested. ◀

For a sequence of vectors from {0, 1}ℓ we can use a Cartesian product of ℓ permutation
groups Sr to check the property of being a 0/1-run by inspecting the product of permutations
from Sℓr. This enables us to encode the problem with binary counters as Group-Sk Subset
Sum[k]. We remark that we need nondeterminism to guess the target permutation. This
boils down to guessing the number n′ from Lemma 28 for each of ℓ coordinates.

Finally, Theorem 5 follows by combining Lemma 25 with Lemma 29.

▶ Lemma 29 (⋆). 0-1 Counter Machine[ℓ] ≤nppt Group-Sk Subset Sum[k].

5 Conclusion

We have introduced the nondeterministic polynomial parameter transformation (NPPT) and
used this concept to shed some light on the unresolved questions about short certificates for
FPT problems. We believe that our work will give an impetus for further systematic study
of certification complexity in various contexts.

The main question remains to decipher certification complexity of Subset Sum[log t].
Even though Subset Sum enjoys a seemingly simple structure, some former breakthroughs
required advanced techniques such as additive combinatorics [3, 26] or number theory [61].
Theorem 3 makes it now possible to analyze Subset Sum[log t] through the geometric lens
using concepts such as lattice cones [41] or Graver bases [12, 13, 67].

Drucker et al. [39] suggested also to study k-Disjoint Paths and K-Cycle in their
regime of polynomial witness compression. Recall that the difference between that model
and ours is that they ask for a randomized algorithm that outputs a solution. Observe that
a polynomial certificate (or witness compression) for k-Disjoint Paths would entail an
algorithm with running time 2kO(1)

nO(1) which seems currently out of reach [62]. What
about a certificate of size (k + log n)O(1)?

Interestingly, Planar k-Disjoint Paths does admit a polynomial certificate: if k2 ≤
log n one can execute the known 2O(k2)nO(1)-time algorithm [73] and otherwise one can
guess the homology class of a solution (out of nO(k) ≤ 2O(k3)) and then solve the problem in
polynomial time [87]. Another interesting question is whether k-Disjoint Paths admits
a certificate of size (k + log n)O(1) on acyclic digraphs. Note that we need to incorporate
(log n) in the certificate size because the problem is W[1]-hard when parameterized by k [88].
The problem admits an nO(k)-time algorithm based on dynamic programming [48].

For K-Cycle we cannot expect to rule out a polynomial certificate via a PPT from
AND-3SAT[k] because the problem admits a polynomial compression [90], a property
unlikely to hold for AND-3SAT[k] [47]. Is it possible to establish the certification hardness
by NPPT (which does not preserve polynomial compression) or would such a reduction also
lead to unexpected consequences?

M. Włodarczyk 58:17

A different question related to bounded nondeterminism is whether one can rule out a
logspace algorithm for directed reachability (which is NL-complete) using only polylog(n)
nondeterministic bits. Observe that relying on the analog of the assumption NP ̸⊆ coNP/poly
for NL would be pointless because NL = coNL by Immerman-Szelepcsényi Theorem. This
direction bears some resemblance to the question whether directed reachability can be solved
in polynomial time and polylogarithmic space, i.e., whether NL ⊆ SC [1].

References
1 Scott Aaronson. The complexity zoo, 2005. URL: https://cse.unl.edu/~cbourke/latex/

ComplexityZoo.pdf.
2 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. Scheduling lower bounds

via AND subset sum. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th
International Colloquium on Automata, Languages, and Programming, ICALP 2020, July
8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 4:1–4:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.ICALP.2020.
4.

3 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower
bounds for subset sum and bicriteria path. ACM Trans. Algorithms, 18(1):6:1–6:22, 2022.
doi:10.1145/3450524.

4 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of mathematics,
pages 781–793, 2004.

5 Eric Allender, Shiteng Chen, Tiancheng Lou, Periklis A. Papakonstantinou, and Bangsheng
Tang. Width-parametrized SAT: time–space tradeoffs. Theory Comput., 10:297–339, 2014.
doi:10.4086/TOC.2014.V010A012.

6 Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Generic ILP versus
specialized 0-1 ILP: an update. In Lawrence T. Pileggi and Andreas Kuehlmann, editors,
Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided Design,
ICCAD 2002, San Jose, California, USA, November 10-14, 2002, pages 450–457. ACM /
IEEE Computer Society, 2002. doi:10.1145/774572.774638.

7 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

8 Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Dense subset sum may
be the hardest. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on
Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France,
volume 47 of LIPIcs, pages 13:1–13:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPICS.STACS.2016.13.

9 Kyriakos Axiotis, Arturs Backurs, Karl Bringmann, Ce Jin, Vasileios Nakos, Christos Tzamos,
and Hongxun Wu. Fast and simple modular subset sum. In Hung Viet Le and Valerie King,
editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference, January
11-12, 2021, pages 57–67. SIAM, 2021. doi:10.1137/1.9781611976496.6.

10 Kyriakos Axiotis, Arturs Backurs, Ce Jin, Christos Tzamos, and Hongxun Wu. Fast modular
subset sum using linear sketching. In Timothy M. Chan, editor, Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019, pages 58–69. SIAM, 2019. doi:10.1137/1.9781611975482.4.

11 Richard Bellman. Dynamic programming. Princeton University Press, Princeton, NJ, USA,
1:3–25, 1958.

12 Sebastian Berndt, Matthias Mnich, and Tobias Stamm. New support size bounds and
proximity bounds for integer linear programming. In International Conference on Current
Trends in Theory and Practice of Computer Science, pages 82–95. Springer, 2024. doi:
10.1007/978-3-031-52113-3_6.

ISAAC 2024

https://cse.unl.edu/~cbourke/latex/ComplexityZoo.pdf
https://cse.unl.edu/~cbourke/latex/ComplexityZoo.pdf
https://doi.org/10.4230/LIPICS.ICALP.2020.4
https://doi.org/10.4230/LIPICS.ICALP.2020.4
https://doi.org/10.1145/3450524
https://doi.org/10.4086/TOC.2014.V010A012
https://doi.org/10.1145/774572.774638
https://doi.org/10.4230/LIPICS.STACS.2016.13
https://doi.org/10.1137/1.9781611976496.6
https://doi.org/10.1137/1.9781611975482.4
https://doi.org/10.1007/978-3-031-52113-3_6
https://doi.org/10.1007/978-3-031-52113-3_6

58:18 Does Subset Sum Admit Short Proofs?

13 Yael Berstein and Shmuel Onn. The Graver complexity of integer programming. Annals of
Combinatorics, 13:289–296, 2009.

14 Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, Richard Královič, and Tobias
Mömke. Online algorithms with advice: The tape model. Information and Computation,
254:59–83, 2017. doi:10.1016/J.IC.2017.03.001.

15 Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Lars Jaffke, and Paloma T. Lima.
XNLP-completeness for parameterized problems on graphs with a linear structure. In Holger
Dell and Jesper Nederlof, editors, 17th International Symposium on Parameterized and
Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany, volume 249 of
LIPIcs, pages 8:1–8:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPICS.IPEC.2022.8.

16 Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swennenhuis.
Parameterized problems complete for nondeterministic FPT time and logarithmic space. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7-10, 2022, pages 193–204. IEEE, 2021. doi:10.1109/FOCS52979.2021.00027.

17 Hans L. Bodlaender, Isja Mannens, Jelle J. Oostveen, Sukanya Pandey, and Erik Jan van
Leeuwen. The parameterised complexity of integer multicommodity flow. In Neeldhara
Misra and Magnus Wahlström, editors, 18th International Symposium on Parameterized and
Exact Computation, IPEC 2023, September 6-8, 2023, Amsterdam, The Netherlands, volume
285 of LIPIcs, pages 6:1–6:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.IPEC.2023.6.

18 Joan Boyar, Lene M Favrholdt, Christian Kudahl, Kim S Larsen, and Jesper W Mikkelsen.
Online algorithms with advice: A survey. ACM Computing Surveys (CSUR), 50(2):1–34, 2017.
doi:10.1145/3056461.

19 Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Philip N.
Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1073–1084.
SIAM, 2017. doi:10.1137/1.9781611974782.69.

20 Karl Bringmann, Nick Fischer, Danny Hermelin, Dvir Shabtay, and Philip Wellnitz. Faster
minimization of tardy processing time on a single machine. Algorithmica, 84(5):1341–1356,
2022. doi:10.1007/S00453-022-00928-W.

21 Karl Bringmann and Vasileios Nakos. A fine-grained perspective on approximating subset sum
and partition. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1797–1815.
SIAM, 2021. doi:10.1137/1.9781611976465.108.

22 Karl Bringmann and Philip Wellnitz. On near-linear-time algorithms for dense subset sum. In
Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1777–1796. SIAM, 2021.
doi:10.1137/1.9781611976465.107.

23 Sam Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second Edition,
volume 336 of Frontiers in Artificial Intelligence and Applications, pages 233–350. IOS Press,
2021. doi:10.3233/FAIA200990.

24 Jean Cardinal and John Iacono. Modular subset sum, dynamic strings, and zero-sum sets.
In Hung Viet Le and Valerie King, editors, 4th Symposium on Simplicity in Algorithms,
SOSA 2021, Virtual Conference, January 11-12, 2021, pages 45–56. SIAM, 2021. doi:
10.1137/1.9781611976496.5.

25 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi,
and Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis
and consequences for non-reducibility. In Madhu Sudan, editor, Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, January
14-16, 2016, pages 261–270. ACM, 2016. doi:10.1145/2840728.2840746.

https://doi.org/10.1016/J.IC.2017.03.001
https://doi.org/10.4230/LIPICS.IPEC.2022.8
https://doi.org/10.4230/LIPICS.IPEC.2022.8
https://doi.org/10.1109/FOCS52979.2021.00027
https://doi.org/10.4230/LIPICS.IPEC.2023.6
https://doi.org/10.1145/3056461
https://doi.org/10.1137/1.9781611974782.69
https://doi.org/10.1007/S00453-022-00928-W
https://doi.org/10.1137/1.9781611976465.108
https://doi.org/10.1137/1.9781611976465.107
https://doi.org/10.3233/FAIA200990
https://doi.org/10.1137/1.9781611976496.5
https://doi.org/10.1137/1.9781611976496.5
https://doi.org/10.1145/2840728.2840746

M. Włodarczyk 58:19

26 Lin Chen, Jiayi Lian, Yuchen Mao, and Guochuan Zhang. Approximating partition in near-
linear time. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors, Proceedings of the
56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada,
June 24-28, 2024, pages 307–318. ACM, 2024. doi:10.1145/3618260.3649727.

27 Stephen Cook and Phuong Nguyen. Logical foundations of proof complexity, volume 11.
Cambridge University Press Cambridge, 2010.

28 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic, 44(1):36–50, 1979. doi:10.2307/2273702.

29 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

30 Marek Cygan, Marcin Mucha, Karol Węgrzycki, and Michał Włodarczyk. On problems
equivalent to (min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, 2019. doi:
10.1145/3293465.

31 Stefan S. Dantchev, Barnaby Martin, and Stefan Szeider. Parameterized proof complexity.
Comput. Complex., 20(1):51–85, 2011. doi:10.1007/S00037-010-0001-1.

32 Evgeny Dantsin and Edward A. Hirsch. Satisfiability certificates verifiable in subexponential
time. In Karem A. Sakallah and Laurent Simon, editors, Theory and Applications of Satisfia-
bility Testing - SAT 2011, pages 19–32, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-21581-0_4.

33 Holger Dell. AND-compression of NP-complete problems: Streamlined proof and minor
observations. Algorithmica, 75(2):403–423, 2016. doi:10.1007/S00453-015-0110-Y.

34 Antoine Deza, Asaf Levin, Syed Mohammad Meesum, and Shmuel Onn. Hypergraphic degree
sequences are hard. Bull. EATCS, 127, 2019. URL: http://bulletin.eatcs.org/index.php/
beatcs/article/view/573/572.

35 Stefan Dobrev, Rastislav Královič, and Dana Pardubská. Measuring the problem-relevant
information in input. RAIRO-Theoretical Informatics and Applications, 43(3):585–613, 2009.
doi:10.1051/ITA/2009012.

36 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through
colors and IDs. ACM Trans. Algorithms, 11(2):13:1–13:20, 2014. doi:10.1145/2650261.

37 Andrew Drucker. Nondeterministic direct product reductions and the success probability
of SAT solvers. In Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science, FOCS ’13, pages 736–745, USA, 2013. IEEE Computer Society. doi:
10.1109/FOCS.2013.84.

38 Andrew Drucker. Nondeterministic direct product reductions and the success probability of
SAT solvers, 2013. URL: https://people.csail.mit.edu/andyd/success_prob_long.pdf.

39 Andrew Drucker, Jesper Nederlof, and Rahul Santhanam. Exponential Time Paradigms
Through the Polynomial Time Lens. In Piotr Sankowski and Christos Zaroliagis, editors, 24th
Annual European Symposium on Algorithms (ESA 2016), volume 57 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 36:1–36:14, Dagstuhl, Germany, 2016. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2016.36.

40 Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into SAT. Journal on
Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, 2006. doi:10.3233/SAT190014.

41 Friedrich Eisenbrand and Gennady Shmonin. Carathéodory bounds for integer cones. Oper.
Res. Lett., 34(5):564–568, 2006. doi:10.1016/J.ORL.2005.09.008.

42 Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for
integer programming using the steinitz lemma. ACM Trans. Algorithms, 16(1):5:1–5:14, 2020.
doi:10.1145/3340322.

43 Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and circuit complexity
of parameterized problems: Classes and completeness. Algorithmica, 71(3):661–701, 2015.
doi:10.1007/S00453-014-9944-Y.

44 Paul Erdős. Graphs with prescribed degree of vertices. Mat. Lapok., 11:264–274, 1960.

ISAAC 2024

https://doi.org/10.1145/3618260.3649727
https://doi.org/10.2307/2273702
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/3293465
https://doi.org/10.1145/3293465
https://doi.org/10.1007/S00037-010-0001-1
https://doi.org/10.1007/978-3-642-21581-0_4
https://doi.org/10.1007/S00453-015-0110-Y
http://bulletin.eatcs.org/index.php/beatcs/article/view/573/572
http://bulletin.eatcs.org/index.php/beatcs/article/view/573/572
https://doi.org/10.1051/ITA/2009012
https://doi.org/10.1145/2650261
https://doi.org/10.1109/FOCS.2013.84
https://doi.org/10.1109/FOCS.2013.84
https://people.csail.mit.edu/andyd/success_prob_long.pdf
https://doi.org/10.4230/LIPIcs.ESA.2016.36
https://doi.org/10.3233/SAT190014
https://doi.org/10.1016/J.ORL.2005.09.008
https://doi.org/10.1145/3340322
https://doi.org/10.1007/S00453-014-9944-Y

58:20 Does Subset Sum Admit Short Proofs?

45 Michael R. Fellows and Frances A. Rosamond. Collaborating with Hans: Some remaining
wonderments. In Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth,
Kernels, and Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion of His
60th Birthday, volume 12160 of Lecture Notes in Computer Science, pages 7–17. Springer,
2020. doi:10.1007/978-3-030-42071-0_2.

46 Nick Fischer and Leo Wennmann. Minimizing tardy processing time on a single machine
in near-linear time. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson,
editors, 51st International Colloquium on Automata, Languages, and Programming, ICALP
2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pages 64:1–64:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.ICALP.2024.64.

47 Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory of
parameterized preprocessing. Cambridge University Press, 2019. doi:10.1017/9781107415157.

48 Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph homeomorphism
problem. Theor. Comput. Sci., 10:111–121, 1980. doi:10.1016/0304-3975(80)90009-2.

49 Zvi Galil and Oded Margalit. An almost linear-time algorithm for the dense subset-sum
problem. SIAM J. Comput., 20(6):1157–1189, 1991. doi:10.1137/0220072.

50 Carla Groenland, Gwenaël Joret, Wojciech Nadara, and Bartosz Walczak. Approximating
pathwidth for graphs of small treewidth. ACM Trans. Algorithms, 19(2):16:1–16:19, 2023.
doi:10.1145/3576044.

51 Godfrey Harold Hardy and Edward Maitland Wright. An introduction to the theory of numbers.
Oxford university press, 1979.

52 Danny Harnik and Moni Naor. On the compressibility of NP instances and cryptographic
applications. SIAM Journal on Computing, 39(5):1667–1713, 2010. doi:10.1137/060668092.

53 Danny Hermelin, Stefan Kratsch, Karolina Sołtys, Magnus Wahlström, and Xi Wu. A
completeness theory for polynomial (Turing) kernelization. Algorithmica, 71(3):702–730, 2015.
doi:10.1007/S00453-014-9910-8.

54 Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 235–256. Springer, 2010. doi:10.1007/978-3-642-13190-5_12.

55 Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as secure as
subset sum. J. Cryptol., 9(4):199–216, 1996. doi:10.1007/BF00189260.

56 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 1802–1811. SIAM, 2014. doi:10.1137/1.9781611973402.130.

57 Bart M. P. Jansen, Shivesh Kumar Roy, and Michał Włodarczyk. On the hardness of
compressing weights. In Filippo Bonchi and Simon J. Puglisi, editors, 46th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2021, August 23-27,
2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 64:1–64:21. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPICS.MFCS.2021.64.

58 Klaus Jansen and Lars Rohwedder. On integer programming and convolution. In Avrim Blum,
editor, 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January
10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 43:1–43:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.ITCS.2019.43.

59 Ce Jin, Nikhil Vyas, and Ryan Williams. Fast low-space algorithms for subset sum. In
Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1757–1776. SIAM, 2021.
doi:10.1137/1.9781611976465.106.

60 Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. Generalized totalizer encoding for
pseudo-boolean constraints. In Gilles Pesant, editor, Principles and Practice of Constraint
Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31 - September
4, 2015, Proceedings, volume 9255 of Lecture Notes in Computer Science, pages 200–209.
Springer, 2015. doi:10.1007/978-3-319-23219-5_15.

https://doi.org/10.1007/978-3-030-42071-0_2
https://doi.org/10.4230/LIPICS.ICALP.2024.64
https://doi.org/10.1017/9781107415157
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1137/0220072
https://doi.org/10.1145/3576044
https://doi.org/10.1137/060668092
https://doi.org/10.1007/S00453-014-9910-8
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/BF00189260
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.4230/LIPICS.MFCS.2021.64
https://doi.org/10.4230/LIPICS.ITCS.2019.43
https://doi.org/10.1137/1.9781611976465.106
https://doi.org/10.1007/978-3-319-23219-5_15

M. Włodarczyk 58:21

61 Daniel M. Kane. Unary subset-sum is in logspace. arXiv, abs/1012.1336, 2010. arXiv:
1012.1336.

62 Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. The disjoint paths problem
in quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012. doi:
10.1016/J.JCTB.2011.07.004.

63 Hans Kellerer, Renata Mansini, Ulrich Pferschy, and Maria Grazia Speranza. An efficient
fully polynomial approximation scheme for the subset-sum problem. J. Comput. Syst. Sci.,
66(2):349–370, 2003. doi:10.1016/S0022-0000(03)00006-0.

64 Kim-Manuel Klein, Adam Polak, and Lars Rohwedder. On minimizing tardy processing
time, max-min skewed convolution, and triangular structured ilps. In Nikhil Bansal and
Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 2947–2960. SIAM, 2023.
doi:10.1137/1.9781611977554.CH112.

65 Johannes Köbler and Jochen Messner. Is the standard proof system for SAT p-optimal? In
Sanjiv Kapoor and Sanjiva Prasad, editors, Foundations of Software Technology and Theoretical
Computer Science, 20th Conference, FSTTCS 2000 New Delhi, India, December 13-15, 2000,
Proceedings, volume 1974 of Lecture Notes in Computer Science, pages 361–372. Springer,
2000. doi:10.1007/3-540-44450-5_29.

66 Konstantinos Koiliaris and Chao Xu. Faster pseudopolynomial time algorithms for subset sum.
ACM Trans. Algorithms, 15(3):40:1–40:20, 2019. doi:10.1145/3329863.

67 Taisei Kudo and Akimichi Takemura. A lower bound for the Graver complexity of the incidence
matrix of a complete bipartite graph. Journal of Combinatorics, 3(4):695–708, 2013.

68 Marvin Künnemann, Filip Mazowiecki, Lia Schütze, Henry Sinclair-Banks, and Karol Wegrzy-
cki. Coverability in VASS Revisited: Improving Rackoff’s Bound to Obtain Conditional Opti-
mality. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Col-
loquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 131:1–131:20, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2023.131.

69 Jeffrey C Lagarias and Andrew M Odlyzko. Solving low-density subset sum problems. Journal
of the ACM (JACM), 32(1):229–246, 1985. doi:10.1145/2455.2461.

70 Eugene L Lawler and J Michael Moore. A functional equation and its application to resource
allocation and sequencing problems. Management science, 16(1):77–84, 1969.

71 Francis Lazarus and Arnaud de Mesmay. Knots and 3-dimensional computational topol-
ogy, 2017. URL: https://pagesperso.g-scop.grenoble-inp.fr/~lazarusf/Enseignement/
compuTopo6.pdf.

72 Andrew Peter Lin. Solving hard problems in election systems. Rochester Institute of Technology,
2012. URL: https://repository.rit.edu/cgi/viewcontent.cgi?article=1332&context=
theses.

73 Daniel Lokshtanov, Pranabendu Misra, Michał Pilipczuk, Saket Saurabh, and Meirav Ze-
havi. An exponential time parameterized algorithm for planar disjoint paths. In Konstantin
Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy,
editors, Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1307–1316. ACM, 2020.
doi:10.1145/3357713.3384250.

74 Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the
size of the cutset. SIAM J. Comput., 43(2):355–388, 2014. doi:10.1137/110855247.

75 Ralph Merkle and Martin Hellman. Hiding information and signatures in trapdoor knapsacks.
IEEE transactions on Information Theory, 24(5):525–530, 1978. doi:10.1109/TIT.1978.
1055927.

76 Marcin Mucha, Karol Węgrzycki, and Michał Włodarczyk. A subquadratic approximation
scheme for partition. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 70–88. SIAM, 2019. doi:10.1137/1.9781611975482.5.

ISAAC 2024

https://arxiv.org/abs/1012.1336
https://arxiv.org/abs/1012.1336
https://doi.org/10.1016/J.JCTB.2011.07.004
https://doi.org/10.1016/J.JCTB.2011.07.004
https://doi.org/10.1016/S0022-0000(03)00006-0
https://doi.org/10.1137/1.9781611977554.CH112
https://doi.org/10.1007/3-540-44450-5_29
https://doi.org/10.1145/3329863
https://doi.org/10.4230/LIPIcs.ICALP.2023.131
https://doi.org/10.1145/2455.2461
https://pagesperso.g-scop.grenoble-inp.fr/~lazarusf/Enseignement/compuTopo6.pdf
https://pagesperso.g-scop.grenoble-inp.fr/~lazarusf/Enseignement/compuTopo6.pdf
https://repository.rit.edu/cgi/viewcontent.cgi?article=1332&context=theses
https://repository.rit.edu/cgi/viewcontent.cgi?article=1332&context=theses
https://doi.org/10.1145/3357713.3384250
https://doi.org/10.1137/110855247
https://doi.org/10.1109/TIT.1978.1055927
https://doi.org/10.1109/TIT.1978.1055927
https://doi.org/10.1137/1.9781611975482.5

58:22 Does Subset Sum Admit Short Proofs?

77 Jesper Nederlof, Erik Jan van Leeuwen, and Ruben van der Zwaan. Reducing a target interval
to a few exact queries. In Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, editors,
Mathematical Foundations of Computer Science 2012 - 37th International Symposium, MFCS
2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, volume 7464 of Lecture Notes in
Computer Science, pages 718–727. Springer, 2012. doi:10.1007/978-3-642-32589-2_62.

78 Jesper Nederlof and Karol Wegrzycki. Improving Schroeppel and Shamir’s algorithm for subset
sum via orthogonal vectors. In Samir Khuller and Virginia Vassilevska Williams, editors,
STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event,
Italy, June 21-25, 2021, pages 1670–1683. ACM, 2021. doi:10.1145/3406325.3451024.

79 Jean-Louis Nicolas. On Landau’s Function g(n), pages 228–240. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1997. doi:10.1007/978-3-642-60408-9_18.

80 Ramamohan Paturi and Pavel Pudlak. On the complexity of circuit satisfiability. In Proceedings
of the Forty-Second ACM Symposium on Theory of Computing, STOC ’10, pages 241–250, New
York, NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1806689.1806724.

81 Michał Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on structural
decompositions of graphs. ACM Trans. Comput. Theory, 9(4):18:1–18:36, 2018. doi:10.1145/
3154856.

82 David Pisinger. Linear time algorithms for knapsack problems with bounded weights. Journal
of Algorithms, 33(1):1–14, 1999. doi:10.1006/JAGM.1999.1034.

83 Adam Polak, Lars Rohwedder, and Karol Wegrzycki. Knapsack and subset sum with small
items. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021,
Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 106:1–106:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ICALP.2021.106.

84 Krzysztof Potepa. Faster deterministic modular subset sum. In Petra Mutzel, Rasmus Pagh,
and Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms, ESA 2021,
September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages
76:1–76:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.
ESA.2021.76.

85 Neil Robertson and Paul D Seymour. Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/J.JCTB.2004.08.001.

86 Derek JS Robinson. An introduction to abstract algebra. Walter de Gruyter, 2003.
87 Alexander Schrijver. Finding k disjoint paths in a directed planar graph. SIAM Journal on

Computing, 23(4):780–788, 1994. doi:10.1137/S0097539792224061.
88 Aleksandrs Slivkins. Parameterized tractability of edge-disjoint paths on directed acyclic

graphs. SIAM J. Discret. Math., 24(1):146–157, 2010. doi:10.1137/070697781.
89 Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Pseudo-boolean optimization by implicit

hitting sets. In Laurent D. Michel, editor, 27th International Conference on Principles and
Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Conference),
October 25-29, 2021, volume 210 of LIPIcs, pages 51:1–51:20. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPICS.CP.2021.51.

90 Magnus Wahlström. Abusing the Tutte matrix: An algebraic instance compression for the
K-set-cycle problem. In Natacha Portier and Thomas Wilke, editors, 30th International
Symposium on Theoretical Aspects of Computer Science, STACS 2013, February 27 - March 2,
2013, Kiel, Germany, volume 20 of LIPIcs, pages 341–352. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2013. doi:10.4230/LIPICS.STACS.2013.341.

91 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011. URL: http://www.cambridge.org/de/knowledge/isbn/
item5759340/?site_locale=de_DE.

92 Michał Włodarczyk. Does subset sum admit short proofs? arXiv, abs/2409.03526, 2024.
arXiv:2409.03526.

https://doi.org/10.1007/978-3-642-32589-2_62
https://doi.org/10.1145/3406325.3451024
https://doi.org/10.1007/978-3-642-60408-9_18
https://doi.org/10.1145/1806689.1806724
https://doi.org/10.1145/3154856
https://doi.org/10.1145/3154856
https://doi.org/10.1006/JAGM.1999.1034
https://doi.org/10.4230/LIPICS.ICALP.2021.106
https://doi.org/10.4230/LIPICS.ESA.2021.76
https://doi.org/10.4230/LIPICS.ESA.2021.76
https://doi.org/10.1016/J.JCTB.2004.08.001
https://doi.org/10.1137/S0097539792224061
https://doi.org/10.1137/070697781
https://doi.org/10.4230/LIPICS.CP.2021.51
https://doi.org/10.4230/LIPICS.STACS.2013.341
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
https://arxiv.org/abs/2409.03526

Approximation Algorithms for Cumulative Vehicle
Routing with Stochastic Demands
Jingyang Zhao #

University of Electronic Science and Technology of China, Chengdu, China

Mingyu Xiao1 #

University of Electronic Science and Technology of China, Chengdu, China

Abstract
In the Cumulative Vehicle Routing Problem (Cu-VRP), we need to find a feasible itinerary for a
capacitated vehicle located at the depot to satisfy customers’ demand, as in the well-known Vehicle
Routing Problem (VRP), but the goal is to minimize the cumulative cost of the vehicle, which is
based on the vehicle’s load throughout the itinerary. If the demand of each customer is unknown
until the vehicle visits it, the problem is called Cu-VRP with Stochastic Demands (Cu-VRPSD).
In this paper, we propose a randomized 3.456-approximation algorithm for Cu-VRPSD, improving
the best-known approximation ratio of 6 (Discret. Appl. Math. 2020). Since VRP with Stochastic
Demands (VRPSD) is a special case of Cu-VRPSD, as a corollary, we also obtain a randomized
3.25-approximation algorithm for VRPSD, improving the best-known approximation ratio of 3.5
(Oper. Res. 2012). At last, we give a randomized 3.194-approximation algorithm for Cu-VRP,
improving the best-known approximation ratio of 4 (Oper. Res. Lett. 2013).

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Cumulative Vehicle Routing, Stochastic Demands, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.59

Funding The work is supported by the National Natural Science Foundation of China, under the
grants 62372095, 62172077, and 62350710215.

1 Introduction

In the well-known Vehicle Routing Problem (VRP) [7], we are given an undirected complete
graph G = (V, E) with V = {v0, v1, . . . , vn}, where v0 denotes the depot, and the other n

vertices denote n customers. Moreover, there is a weight function w on the edges representing
the length of edges, which satisfies the triangle inequality, and a demand vector d = (d1, ..., dn)
implying that each customer vi has a demand of di. The objective is to determine an itinerary
for a vehicle with a capacity of Q, starting from and ending at the depot, that fulfills every
customer’s demand while minimizing the total weight of the edges in the itinerary.

In the Cumulative Vehicle Routing Problem (Cu-VRP) [18, 19], the goal is also to find
an itinerary for the vehicle, but with the objective of minimizing the cumulative cost of the
itinerary. Here, the cumulative cost for the vehicle traveling from u to v carrying a load
of xuv ≤ Q units of goods is defined as a · w(u, v) + b · xuv · w(u, v), where a, b ∈ R≥0 are
given parameters. Cu-VRP captures the fuel consumption in transportation and logistics, as
fuel consumption depends on both the weight of the empty vehicle and the weight of the
goods being carried by the vehicle [10]. Since fuel consumption can account for as much
as 60% of a vehicle’s operational costs [23], Cu-VRP has been studied extensively through
both experimental algorithms [27, 25, 9, 13, 22] and approximation algorithms [10, 11, 12].
A recent survey of Cu-VRP can be found in [6].

1 Corresponding author

© Jingyang Zhao and Mingyu Xiao;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 59; pp. 59:1–59:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jingyangzhao1020@gmail.com
https://orcid.org/0000-0003-2322-750X
mailto:myxiao@gmail.com
https://orcid.org/0000-0002-1012-2373
https://doi.org/10.4230/LIPIcs.ISAAC.2024.59
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Approximation Algorithms for Cu-VRPSD

In VRP with Stochastic Demands (VRPSD) [2], the demand of each customer is represen-
ted by an independent random variable with a known distribution, and its value is unknown
until the vehicle visits the customer. The goal is to design a policy such that the expected
weight of the itinerary is minimized. Early surveys on this topic can be found in [14, 3].
Cu-VRP with Stochastic Demands (Cu-VRPSD) was proposed in [11], and similarly, the goal
is to design a policy such that the expected cumulative cost of the itinerary is minimized. In
VRPSD, we can fully load the vehicle before it leaves the depot. However, in Cu-VRPSD,
due to the fact that both higher and lower loads can lead to higher cumulative costs, we
need to carefully consider how the vehicle is loaded. This property makes Cu-VRPSD both
more challenging and more interesting compared to VRPSD.

In each of the above problems, the splittable (resp., unsplittable) variant requires that the
demand of each customer can be satisfied partially within the vehicle’s visits (resp., must be
satisfied entirely in one of the vehicle’s visits).

In this paper, we consider approximation algorithms for the unsplittable variants. Note
that the unsplittable variants are more difficult. For example, unsplittable VRP generalizes
the bin packing problem even on a line shape graph [26], and thus cannot be approximated
with an approximation ratio of less than 1.5 unless P=NP. For Cu-VRP, an algorithm is
called a ρ-approximation algorithm if it can output a solution with a cumulative cost of at
most ρ · OPT in polynomial time, where OPT is the cumulative cost of the optimal solution.
For Cu-VRPSD, an algorithm is called a ρ-approximation algorithm if it can employ a
policy to get a solution with an expected cumulative cost of at most ρ · OPT in polynomial
time, where OPT is the cumulative cost of the minimum expected cumulative cost solution
obtained by the optimal policy.

Let α denote the approximation ratio of the metric Traveling Salesman Problem (TSP).
It is well-known that α ≤ 1.5 [5, 24], which is slightly improved to α ≤ 1.5 − 10−36 [20, 21].
The ratio α for TSP will be frequently used in VRP related problems.

For VRP, there is an (α + 1)-approximation algorithm for the splittable case [17], and
an (α + 2)-approximation algorithm for the unsplittable case [1]. Blauth et al. [4] improved
the ratio to α + 1 − ε for the splittable case, and Friggstad et al. [8] improved the ratio to
α + 1 + ln 2 − ε′ for the unsplittable case using the LP rounding method, where ε and ε′ are
small positive constants related to α. Notably, Friggstad et al. [8] also gave a combinatorial
(α + 1.75 − ε′)-approximation algorithm for the unsplittable case. For VRPSD, there is a
randomized (α + 1 + o(1))-approximation algorithm for the splittable case, and a randomized
(α + Q)-approximation algorithm for the unsplittable case. Gupta et al. [16] improved the
ratios to α + 1 and α + 2, respectively.

For Cu-VRP, Gaur et al. [10] proposed a (1 + 4α√
4α2+24α+4−2α

)-approximation algorithm
for the splittable case, and a (1+ 4α√

4α2+24α+4−(2α+2))-approximation algorithm for the unsplit-
table case. For Cu-VRPSD, Gaur et al. [12] gave a randomized max{1+ 3

2 α, 3}-approximation
algorithm for the splittable case, and a randomized max{2 + 3

2 α, 6}-approximation algorithm
for the unsplittable case.

1.1 Our results

In this paper, we focus on the unsplittable cases of Cu-VRPSD, VRPSD, and Cu-VRP, and
design improved approximation algorithms for them.

The main idea of the most recent algorithms [16, 12] is as follows. First, we find an
α-approximate TSP tour and then the vehicle satisfies customers in the order they appear on
the TSP tour. Once the load is less than the serving customer’s demand the vehicle goes back

J. Zhao and M. Xiao 59:3

to the depot to reload. Our algorithms will also use an α-approximate TSP tour and visit
the customers in the order according to the TSP tour. However, we do not strictly satisfy
the customers in the order. To reduce the cumulative cost, our vehicle may skip customers
with large demands when visiting customers according to the TSP tour (but record their
demands) and satisfy them after completing the TSP tour.

Based on the above idea, we propose two novel algorithms for Cu-VRPSD, denoted as
ALG.1(λ, δ) and ALG.2(λ, δ).

In ALG.1(λ, δ), the vehicle will skip customers in {vi | di > λ · Q} and then satisfy each
of them by using a single tour;
In ALG.2(λ, δ), the vehicle will skip customers in {vi | di > δ · Q} and then satisfy them
either by using a single tour for each or by calling an algorithm for weighted set cover.

Furthermore, in our algorithms, we set upper and lower bounds of the load of the vehicle
when traveling along the TSP tour: the load is at least δ · Q and less than λ · Q for some
parameters δ and λ. The lower bound can be regarded as the backup goods that the vehicle
carries. The idea of carrying some backup goods was inspired by a partition algorithm for
the TSP tour used for unsplittable VRP [8]. We will show that this approach can reduce the
potential cumulative cost caused by visiting customers with demands at most δ · Q at the
expense of increasing the cumulative cost of the vehicle when traveling the TSP tour. So, we
need to balance the setting of δ, e.g., we may set δ = 0 when a/b is small.

We will prove that ALG.1(λ, δ) can be used to obtain a randomized algorithm with an
expected approximation ratio of 10/3 for a/b ≤ 0.375 and 3.456 for 0.375 < a/b ≤ 1.444, and
by using both ALG.1(λ, δ) and ALG.2(λ, δ), we can get a randomized 3.456-approximation
algorithm for a/b > 1.444. Hence, we get a randomized 3.456-approximation algorithm for
Cu-VRPSD.

Note that Cu-VRPSD reduces to VRPSD when b = 0, and this corresponds to a/b = ∞.
As a corollary, for VRPSD, we also obtain a randomized 3.25-approximation algorithm using
the randomized 3.456-approximation algorithm for Cu-VRPSD with a/b > 1.444.

For Cu-VRP, we also give two algorithms, denoted as ALG.3(λ, δ) and ALG.4(λ). Since
the demands of customers are known in advance, in ALG.3(λ, δ), we first obtain a set of
tours by applying the randomized rounding method to the LP of weighted set cover, and
then satisfy the remaining customers by calling ALG.1(λ, δ); in ALG.4(λ), we directly call
ALG.1(λ, 0). In the tours obtained by calling ALG.1(λ, δ) and ALG.1(λ, 0), the load of the
vehicle may be greater than the delivered units of goods. So, we also adapt a pre-optimization
step to ensure that the load of the vehicle equals the delivered units of goods.

We will show that ALG.3(λ, δ) can be used to obtain a randomized 3.194-approximation
algorithm with a running time of nO(1

min{a/b,1}) and thus it only works for a/b > γ0, where
γ0 > 0 is any fixed constant, and ALG.4(λ, δ) can be used to obtain a randomized 3.163-
approximation algorithm for a/b < 0.428. Hence, we get a randomized 3.194-approximation
algorithm for Cu-VRP.

A summary of our results under α = 1.5 can be found in Table 1. Although our
algorithms are simple and neat, the analysis is technically involved. Some parts also need
careful calculation. To avoid distraction from our main discussions and also due to the
limited space, the proofs of lemmas and theorems marked with “*” are omitted.

2 Notations

In Cu-VRP, we use G = (V, E) to denote the input complete graph, where V = {v0, . . . , vn}.
There is a non-negative weight function w : E → R≥0 on the edges, where w(u, v) denotes the
length of edge uv ∈ E. We assume that w is a metric, i.e., it is symmetric and satisfies the

ISAAC 2024

59:4 Approximation Algorithms for Cu-VRPSD

Table 1 A summary of the previous approximation ratios and our approximation ratios.

Previous Results Our Results
Cu-VRPSD 6 [12] 3.456

VRPSD 3.5 [16] 3.25
Cu-VRP 4 [10] 3.194

triangle inequality. Let V ′ := V \{v0}. There is also a demand vector d = (d1, ..., dn) ∈ RV ′

[0,Q],
where Q ∈ R>0 is the capacity of the vehicle, and each customer vi has a required demand
di ∈ [0, Q]. We let li := w(v0, vi) and [i] := {1, 2, ..., n}.

In Cu-VRPSD, the demand of each customer vi is represented by an independent random
variable χi ∈ [0, Q], where the distribution of χi is usually assumed to be known in advance [2].
Let χ = (χ1, ..., χn), where we assume that χi is not identically zero, as vi can be ignored in
such a case. Consequently, any feasible policy must visit every customer at least once [16].

For any random variable L, we use L ∼ U [l, r) to indicate that L is uniformly distributed
over the interval [l, r), where l < r.

A tour T = v0v1 . . . viv0 is a directed simple cycle, which always contains the depot v0.
We use E(T) to denote the set of edges on T , and V ′(T) to denote the set of customers on T .
Assume that the vehicle carries a load of xeT units of goods when traveling along e ∈ E(T).
The cumulative cost of T is

Cu(T) := a ·
∑

e∈E(T)

w(e) + b ·
∑

e∈E(T)

xeT · w(e),

where w(T) :=
∑

e∈E(T) w(e) is called the weight of T , Cu1(T) := a ·
∑

e∈E(T) w(e) is called
the vehicle cost of T , and Cu2(T) := b ·

∑
e∈E(T) xeT · w(e) is called the cargo cost of T . An

itinerary T is a set of tours. A TSP tour is an undirected cycle that includes all customers
and the depot exactly once. The weight of the minimum weight TSP tour is denoted by τ .

2.1 Problem Definitions
▶ Definition 1 (Cu-VRPSD). Given a complete graph G = (V, E), a metric weight function
w, a vehicle capacity Q ∈ R>0, a random demand variable vector χ = (χ1, ..., χn), and two
parameters a, b ∈ R≥0, we need to design a policy to find a feasible itinerary T such that

the vehicle carries at most Q units of goods on each tour T ∈ T ,
the vehicle delivers goods to customers only in V ′(T) on each tour T ∈ T ,
the sum of the delivered demand over all tours for each vi ∈ V ′ equals the demand of vi,

and E[Cu(T)] is minimized.

Note that the demand of each customer is unknown until the vehicle visits it. In Cu-VRP,
we have χ = d, where d is known in advance. We assume that the deliveries are unsplittable:
each customer may be included in multiple tours, but its demand must be satisfied entirely
within exactly one of those tours. Moreover, by scaling each customer’s demand χi to χi/Q

and adjusting the parameter b to b · Q, without loss of generality, we assume that Q = 1.

2.2 The Lower bounds
To analyze approximation algorithms, we recall the following lower bound for Cu-VRPSD.

▶ Lemma 2 ([12]). For unsplittable Cu-VRPSD, it holds that E[Cu(T ∗)] ≥ a ·
max{τ,

∑
i∈[n] 2 · E[χi] · li} + b ·

∑
i∈[n] E[χi] · li.

J. Zhao and M. Xiao 59:5

When a = 1 and b = 0, the lower bound in Lemma 2 becomes max{τ,
∑

i∈[n] 2 ·E[χi] · li},
and it was used in analyzing approximation algorithms for VRPSD in [16]. To analyze our
algorithms, we use a stronger lower bound that was implicitly used in the proof of Lemma 2.

▶ Lemma 3 ([12]). For unsplittable Cu-VRPSD with any demand realization vector d ∈ RV ′

[0,1],
it holds that E[Cu(T ∗) | χ = d] ≥ LB := a · max{τ, η} + b · 0.5 · η, where η :=

∑
i∈[n] 2 · di · li.

Lemma 3 is stronger than Lemma 2 since it holds that E[max{X, Y }] ≥ max{E[X],E[Y]}
for any random variables X and Y by the property of the maximum function.

▶ Lemma 4. An algorithm is a ρ-approximation algorithm for Cu-VRPSD if, for any possible
demand realization vector d ∈ RV ′

[0,1], the algorithm conditioned on χ = d outputs a solution
T with a cumulative cost of E[Cu(T) | χ = d] ≤ ρ · LB.

Proof. Since it holds that E[Cu(T) | χ = d] ≤ ρ ·LB ≤ ρ ·E[Cu(T ∗) | χ = d] for any possible
demand realization vector d, we can get that E[Cu(T) | χ] ≤ ρ · E[Cu(T ∗) | χ]. Therefore,
we have E[Cu(T)] = E[E[Cu(T) | χ]] ≤ ρ · E[E[Cu(T ∗) | χ]] = ρ · E[Cu(T ∗)]. ◀

Hence, we may frequently analyze our algorithms conditioned on χ = d, where d ∈ RV ′

[0,1]
is any possible demand realization. For the sake of analysis, we let γ := a/b, and σ := γ/η.
Note that b = 0 corresponds to the case where γ = ∞, which turns out to be easier, as will
be shown in Theorem 14. We also define∫ r

l

xtdF (x) :=
∑

vi∈V ′:l<di≤r 2 · dt
i · li∑

vi∈V ′ 2 · di · li
, where t ∈ {0, 1, 2}. (1)

Note that
∫ 1

0 xdF (x) = 1. Moreover, for any 0 ≤ l ≤ r, we have

l ·
∫ r

l

xt−1dF (x) <

∫ r

l

xtdF (x) ≤ r ·
∫ r

l

xt−1dF (x). (2)

3 Two Algorithms for Cu-VRPSD

3.1 The first algorithm
In this section, we will introduce our first algorithm, denoted as ALG.1(λ, δ), which can be
used to get a 10/3-approximation algorithm for Cu-VRPSD with any γ ∈ (0, 0.375] and a
3.456-approximation algorithm for Cu-VRPSD with any γ ∈ [0.375, 1.444]. Here, λ ∈ (0, 1]
and δ ∈ [0, λ/2] are parameters that will be defined later.

Firstly, ALG.1(λ, δ) computes an α-approximate TSP tour T ∗, which will be oriented in
either clockwise or counterclockwise direction. Assume that T ∗ = v0v1 . . . vnv0 by renumber-
ing the customers following the orientation. Then, the vehicle in ALG.1(λ, δ) tries to satisfy
the customers in the order of v1 . . . vn as they appear on T ∗, where the parameters λ and δ

ensures that the load of the vehicle during its travel on each edge of T ∗ is at least δ and less
than λ. Moreover, among its load, the δ units of goods are regarded as backup goods, and
the other units of goods are regarded as normal goods. Specifically, if the vehicle carries
Li−1 demand of normal goods during its travel from vi−1 to vi, we have 0 ≤ Li−1 < λ − δ for
each i ∈ [n + 1]. We say that the vehicle carries Si−1 = (Li−1, δ) units of goods to indicate
that it carries Li−1 demand of normal goods and δ demand of backup goods. We require
that 0 < λ ≤ 1 and 0 ≤ δ ≤ λ − δ, i.e., 0 ≤ δ ≤ λ/2. When serving a customer, the main
strategy is to prioritize using the normal goods first and then consider using the backup
goods if the normal goods are insufficient. Conditioned on χ = d, the details are as follows.

ISAAC 2024

59:6 Approximation Algorithms for Cu-VRPSD

Initially, we load the vehicle with S0 = (L0, δ) units of goods at the depot, where L0 ∼
U [0, λ − δ). When the vehicle is about to serve vi, we assume that it carries Si−1 = (Li−1, δ)
units of goods, where 0 ≤ Li−1 < λ − δ. Then, we have the following three cases.
Case 1: di ≤ Li−1. In this case, the vehicle directly delivers (di, 0) units of goods for

vi, and then goes to the next customer. Hence, we have Si = (Li, δ), where Li :=
Li−1 + ⌈ di−Li−1

λ−δ ⌉ · (λ − δ) − di = Li−1 − di since di ≤ Li−1 < λ − δ.
Case 2: Li−1 < di ≤ Li−1 + δ. The vehicle delivers (Li−1, di − Li−1) units of goods for

vi, goes to the depot to reload (Li−1 + ⌈ di−Li−1
λ−δ ⌉ · (λ − δ) − di, di − Li−1) units of

goods, and then goes to the next customer. Hence, we have Si = (Li, δ), where Li :=
Li−1 + ⌈ di−Li−1

λ−δ ⌉ · (λ − δ) − di = Li−1 + (λ − δ) − di since 0 < di − Li−1 ≤ δ ≤ λ − δ.
Case 3: Li−1 + δ < di ≤ 1. In this case, we must have di > δ.

Case 3.1: δ < di ≤ λ. The vehicle goes to the depot to reload (di − Li−1 − δ, 0) units of
goods, goes to satisfy vi, then goes to the depot to reload (Li−1+⌈ di−Li−1

λ−δ ⌉·(λ−δ)−di, δ)
units of goods, goes to customer vi again (for the sake of analysis), and then goes to the
next customer. Hence, we have Si = (Li, δ), where Li := Li−1 + ⌈ di−Li−1

λ−δ ⌉ · (λ− δ)−di.
Case 3.2: λ < di ≤ 1. Since Li−1 < λ − δ, we must have Li−1 + δ < di. Instead of

satisfying vi by returning to the depot to reload as in Case 3.1, the vehicle records its
demand, skips it, and goes to the next customer. Hence, we have Si = (Li, δ), where
Li := Li−1.

After trying to satisfy all customers using the above strategy, due to Case 3.2, there may
be still a set of unsatisfied customers {vi | di > λ}. Then, for each unsatisfied customer vi,
since its demand has been recorded, the vehicle will load exactly di units of goods at the
depot, go to satisfy vi, and then return to the depot.

The details of ALG.1(λ, δ) is shown in Algorithm 1.
Compared to the previous strategy in [12], there are two main differences. The first is

that we specially handle each customer vi with di > λ in Case 3.2. Note that if we satisfy vi

as the method in Case 3.1, since Li−1 + δ < λ (we will prove it in Lemma 6), the vehicle
must incur two visits to the depot, which will cost too much. The second is that we ensure
that the vehicle always carries δ demand of backup goods when traveling along the TSP
tour. The advantage is that each customer vi with di ≤ δ incurs at most one visit to the
depot while if δ = 0 every customer vi with di ≤ λ has the potential to incur two visits to
the depot. However, since δ > 0 clearly increases the cumulative cost of the vehicle when it
travels along the TSP tour, we need to carefully set the value of δ.

Although we require that λ > 0 in ALG.1(λ, δ), it can be extended to the case of λ = 0.
In this scenario, the vehicle simply travels along the TSP tour with an empty carry to record
each customer’s demand, and then satisfies each customer within a single tour, as described
in Case 3.2. Interestingly, if a = 0, this algorithm becomes an exact algorithm for unsplittable
Cu-VRPSD, as the cumulative cost is b ·

∑
i∈[n] di · li, which matches the lower bound LB in

Lemma 4. The running time can reach O(n) since all TSP tours have the same performance.
However, it may be useless for a > 0. Hence, we consider λ > 0 in the following.

▶ Lemma 5. Unsplittable Cu-VRPSD with a = 0 can be solved in O(n) time.

3.1.1 The analysis

Note that ALG.1(λ, δ) carries L0 ∼ U [0, λ − δ) demand of normal goods initially. Next, we
analyze the expected cumulative cost of T conditioned on χ = d, i.e., E[Cu(T) | χ = d].

J. Zhao and M. Xiao 59:7

Algorithm 1 An algorithm for unsplittable Cu-VRPSD (ALG.1(λ, δ)).

Input: An instance of unsplittable Cu-VRPSD, and two parameters λ ∈ (0, 1] and δ ∈ [0, λ/2].
Output: A feasible solution T to unsplittable Cu-VRPSD.
1: Obtain an α-approximate TSP tour T ∗ using an α-approximation algorithm for metric TSP,

orient T ∗ in either clockwise or counterclockwise direction, and denote T ∗ = v0v1v2 . . . vnv0 by
renumbering the customers following the direction.

2: Load the vehicle with S0 := (L0, δ) units of goods, including L0 demand of normal goods and δ

demand of backup goods, where L0 ∼ U [0, λ − δ).
3: Initialize i := 1 and V ∗ := ∅.
4: while i ≤ n do
5: Go to customer vi;
6: if di ≤ Li−1 then
7: Deliver (di, 0) units of goods to vi, and update Si := (Li, δ), where Li := Li−1 +

⌈ di−Li−1
λ−δ

⌉ · (λ − δ) − di = Li−1 − di;
8: else if Li−1 < di ≤ Li−1 + δ then
9: Deliver (Li−1, di − Li−1) units of goods to vi, goes to the depot, load the vehicle

with (Li−1 + ⌈ di−Li−1
λ−δ

⌉ · (λ − δ) − di, di − Li−1) units of goods, and update Si := (Li, δ), where
Li := Li−1 + ⌈ di−Li−1

λ−δ
⌉ · (λ − δ) − di = Li−1 + (λ − δ) − di;

10: else if Li + δ < di ≤ 1 then
11: if δ < di ≤ λ then
12: Return to the depot, load the vehicle with (di − Li−1 − δ, 0) units of goods, go to

customer vi, and deliver (di − δ, δ) units of goods to vi.
13: Return to the depot, load the vehicle with (Li−1 + ⌈ di−Li−1

λ−δ
⌉ · (λ − δ) − di, δ) units

of goods, go to customer vi, and update Si := (Li, δ), where Li := Li−1 + ⌈ di−Li−1
λ−δ

⌉ · (λ − δ) − di;
▷ The vehicle returns to vi for the sake of analysis; however, it could directly proceed to vi+1.

14: else if λ < di ≤ 1 then
15: Record vi’s demand, and update V ∗ := V ∗ ∪{vi} and Si := (Li, δ), where Li := Li−1;
16: end if
17: end if
18: i := i + 1.
19: end while
20: Go to the depot.
21: for vi ∈ V ∗ do
22: Load the vehicle with di units of goods, go to customer vi, and deliver di units of goods to

vi;
23: Go to the depot.
24: end for

In ALG.1(λ, δ), the vehicle carries Si−1 = (Li−1, δ) units of goods when traveling along
the edge vi−1vi mod (n+1) of the TSP tour T ∗. For each i ∈ [n], we let hi := 1 if di ≤ λ, and
hi := 0 otherwise. We have the following lemma.

▶ Lemma 6. For any i ∈ [n+1], it holds Li−1 = L0 +⌈
∑i−1

j=1
hj ·dj−L0

λ−δ ⌉ · (λ−δ)−
∑i−1

j=1 hj ·dj ,
and moreover, Li−1 ∼ U [0, λ − δ), conditioned on χ = d.

Proof. Since L0 ∼ U [0, λ − δ), the lemma holds for i = 1. Assume that the equality holds

for i = i′ ≥ 1, i.e., Li′−1 = L0 + ⌈
∑i′−1

j=1
hj ·dj−L0

λ−δ ⌉ · (λ − δ) −
∑i′−1

j=1 hj · dj . Note that we have
0 ≤ Li′−1 < λ − δ. Next, we consider Li′ .
Case 1: di′ ≤ λ. We have hi′ = 1. By Lines 7, 9, and 13, we have Li′ = Li′−1 +

⌈ di′ −Li′−1
λ−δ ⌉ · (λ − δ) − di′ . Hence, we have Li′ ≥ 0 and Li′ < λ − δ. Therefore, we

have L0 + ⌈
∑i′−1

j=1
hj ·dj−L0

λ−δ ⌉ · (λ − δ) −
∑i′

j=1 hj · dj + ⌈ di′ −Li′−1
λ−δ ⌉ · (λ − δ) ≥ 0 and

ISAAC 2024

59:8 Approximation Algorithms for Cu-VRPSD

L0+⌈
∑i′−1

j=1
hj ·dj−L0

λ−δ ⌉·(λ−δ)−
∑i′

j=1 hj ·dj +⌈ di′ −Li′−1
λ−δ ⌉·(λ−δ) < λ−δ. Alternatively, we

have ⌈
∑i′−1

j=1
hj ·dj−L0

λ−δ ⌉+⌈ di′ −Li′−1
λ−δ ⌉−1 <

∑i′

j=1
hj ·dj−L0

λ−δ ≤ ⌈
∑i′−1

j=1
hj ·dj−L0

λ−δ ⌉+⌈ di′ −Li′−1
λ−δ ⌉,

and hence ⌈
∑i′

j=1
hj ·dj−L0

λ−δ ⌉ = ⌈
∑i′−1

j=1
hj ·dj−L0

λ−δ ⌉ + ⌈ di′ −Li′−1
λ−δ ⌉. Therefore, we have

Li′ = Li′−1 + ⌈ di′ −Li′−1
λ−δ ⌉ · (λ − δ) − di′ = L0 + ⌈

∑i′−1
j=1

hj ·dj−L0

λ−δ ⌉ · (λ − δ) −
∑i′

j=1 hj · dj +

⌈ di′ −Li′−1
λ−δ ⌉ · (λ − δ) = L0 + ⌈

∑i′

j=1
hj ·dj−L0

λ−δ ⌉ · (λ − δ) −
∑i′

j=1 hj · dj .
Case 2: di > λ. We have hi = 0, and hence

∑i′−1
j=1 hj · dj =

∑i′

j=1 hj · dj . By Line 15, we

have Li′ = Li′−1 = L0 +⌈
∑i′−1

j=1
hj ·dj−L0

λ−δ ⌉ · (λ−δ)−
∑i′−1

j=1 hj ·dj = L0 +⌈
∑i′

j=1
hj ·dj−L0

λ−δ ⌉ ·
(λ − δ) −

∑i′

j=1 hj · dj .

In both cases, we have Li′ = L0 + ⌈
∑i′

j=1
hj ·dj−L0

λ−δ ⌉ · (λ − δ) −
∑i′

j=1 hj · dj . By induction,
the equality holds for any i ∈ [n + 1].

For any i ∈ [n + 1], we have Li−1 = L0 + ⌈
∑i−1

j=1
hj ·dj−L0

λ−δ ⌉ · (λ − δ) −
∑i−1

j=1 hj · dj . Assume
that (

∑i−1
j=1 hj · dj) mod (λ − δ) = L′, which is fixed conditioned on χ = d. We have Li−1 =

λ−δ+L0 −L′ ∈ [λ−δ−L′, λ−δ) when L0 ∈ [0, L′), and Li−1 = L0 −L′ ∈ [0, λ−δ−L′) when
L0 ∈ [L′, λ − δ). The relationship between L0 and Li−1 is bijective. Since L0 ∼ U [0, λ − δ),
we can also get Li−1 ∼ U [0, λ − δ), conditioned on χ = d. ◀

Lemma 6 also implies that 0 ≤ Li−1 < λ − δ for any i ∈ [n + 1].

▶ Lemma 7. In ALG.1(λ, δ), the expected cumulative cost conditioned on χ = d during the
vehicle’s travel from vi−1 to vi is a · w(vi−1, vi) + b · λ+δ

2 · w(vi−1, vi).

Proof. By Lemma 6, the vehicle carries (Li−1, δ) units of goods during the vehicle’s travel
from vi−1 to vi, where Li−1 ∼ U [0, λ − δ). So, E[Li−1 + δ | χ = d] =

∫ λ−δ

0
x+δ
λ−δ dx = λ+δ

2 .
Hence, the expected cumulative cost of the vehicle’s travel from vi−1 to vi conditioned on χ = d

is a ·w(vi−1, vi)+ b ·E[Li−1 + δ | χ = d] ·w(vi−1, vi) = a ·w(vi−1, vi)+ b · λ+δ
2 ·w(vi−1, vi). ◀

By Line 9 in ALG.1(λ, δ), if the vehicle visits vi carrying Si−1 = (Li−1, δ) units of goods,
where Li−1 < di ≤ Li−1 + δ, it will first satisfy vi, then proceed to the depot to reload some
units of goods, and finally return to the place of vi. We refer to this process as one additional
visit to v0.

By Lines 12 and 13 in ALG.1(λ, δ), if the vehicle visits vi with di ≤ λ carrying Si−1 =
(Li−1, δ) units of goods, where Li−1 + δ < di, it will first go to the depot to reload some
units of goods, then go to the place of vi to satisfy vi, proceed to the depot to reload some
units of goods, and finally return to the place of vi again. We refer to this process as two
additional visits to v0.

When the vehicle is about to serve vi with di ≤ λ, it may incur one additional visit or two
additional visits to v0, resulting in some cumulative cost. For each customer vi with di > λ,
By Line 22, the vehicle satisfies vi using a single tour, which will also be regarded as one
additional visit to v0 for the sake of presentation. Next, we analyze the expected cumulative
cost conditioned on χ = d due to the possible additional visit(s) for each customer vi.

▶ Lemma 8. Conditioned on χ = d, when serving each customer vi in ALG.1(λ, δ), the
expected cumulative cost of the vehicle due to the possible additional visit(s) to v0 is

a · 2di

λ−δ · li + b · (λ+δ)·di−d2
i

λ−δ · li if di ≤ δ;

J. Zhao and M. Xiao 59:9

a · 4di−2δ
λ−δ · li + b · d2

i +(λ−δ)·di

λ−δ · li if δ < di ≤ λ − δ;
a · 2di+2λ−4δ

λ−δ · li + b · 2d2
i −(λ+δ)·di+λ2−δ2

λ−δ · li if λ − δ < di ≤ λ;
a · 2 · li + b · di · li if λ < di ≤ 1.

Proof. If di > λ, By Lines 15 and 22, the vehicle incurs one additional visit to v0, where the
vehicle carries di units of goods from v0 to vi and 0 units of goods from vi to v0. So, the
expected cumulative cost is a · 2 · li + b · di · li. Next, we consider di ≤ λ.

By Lemma 6, the vehicle carries (Li−1, δ) units of goods when traveling along vi−1vi in
ALG.1(λ, δ), and it holds that Li−1 ∼ U [0, λ − δ). Hence, the vehicle incurs one additional
visits to v0 with a probability of Pr[di − δ ≤ Li−1 = x < di], and incurs two additional visits
to v0 with a probability of Pr[0 ≤ Li−1 = x < di − δ]. We consider the following three cases.
Case 1: di ≤ δ. The vehicle incurs at most one additional visit to v0. If the vehicle incurs

one additional visit to v0, By Line 9, the vehicle carries (0, δ − (di − Li−1)) units of goods
from vi to v0, and (Li−1 +⌈ di−Li−1

λ−δ ⌉·(λ−δ)−di, δ) = (Li−1 +(λ−δ)−di, δ) units of goods
from v0 to vi. So, the cumulative cost is a·2·li+b·(δ−(di−Li−1)+Li−1+(λ−δ)−di+δ)·li =
a · 2 · li + b · (2Li−1 − 2di + λ + δ) · li. Since Li−1 ∼ U [0, λ − δ) and di ≤ δ ≤ λ − δ, the
expected cumulative cost is∫ min{di,λ−δ}

0

a · 2 · li + b · (2x − 2di + λ + δ) · li
λ − δ

dx

=
∫ di

0

a · 2 · li + b · (2x − 2di + λ + δ) · li
λ − δ

dx = a · 2di

λ − δ
· li + b · (λ + δ) · di − d2

i

λ − δ
· li.

Case 2: δ < di ≤ λ − δ. The vehicle incurs at most two additional visits to v0. Similarly, if
the vehicle incurs one additional visit to v0, By Line 9, the vehicle carries (0, δ−(di−Li−1))
units of goods from vi to v0, and (Li−1 +⌈ di−Li−1

λ−δ ⌉·(λ−δ)−di, δ) = (Li−1 +(λ−δ)−di, δ)
units of goods from v0 to vi, and the cumulative cost is a · 2 · li + b · (δ − (di − Li−1) +
Li−1 + (λ − δ) − di + δ) · li = a · 2 · li + b · (2Li−1 − 2di + λ + δ) · li. If the vehicle incurs two
additional visits to v0, By Lines 12 and 13, the vehicle carries (Li−1, δ) units of goods
from vi to v0, (di − δ, δ) units of goods from v0 to vi, (0, 0) units of goods from vi to v0,
and (Li−1 + ⌈ di−Li−1

λ−δ ⌉ · (λ − δ) − di, δ) = (Li−1 + (λ − δ) − di, δ) units of goods from v0 to
vi, and the cumulative cost is a · 4 · li + b · (Li−1 + δ + di + 0 + Li−1 + (λ − δ) − di + δ) · li =
a · 4 · li + b · (2Li−1 + λ + δ) · li. Hence, the expected cumulative cost is∫ min{di,λ−δ}

di−δ

a · 2 · li + b · (2x − 2di + λ + δ) · li

λ − δ
dx +

∫ di−δ

0

a · 4 · li + b · (2x + λ + δ) · li

λ − δ
dx

=
∫ di

di−δ

a · 2 · li + b · (2x − 2di + λ + δ) · li

λ − δ
dx +

∫ di−δ

0

a · 4 · li + b · (2x + λ + δ) · li

λ − δ
dx

= a · 2 · δ · li + b · λ · δ · li

λ − δ
+ a · 4 · (di − δ) · li + b · (d2

i + (λ − δ) · di − δ · λ) · li

λ − δ

= a · 4di − 2δ

λ − δ
· li + b · d2

i + (λ − δ) · di

λ − δ
· li.

Case 3: λ − δ < di ≤ λ. The vehicle incurs at most two additional visits to v0. If the
vehicle incurs one additional visit to v0, By Line 9, the vehicle carries (0, δ − (di − Li−1))
units of goods from vi to v0, and (Li−1+⌈ di−Li−1

λ−δ ⌉·(λ−δ)−di, δ) units of goods from v0 to
vi, and the cumulative cost is a·2·li+b·(δ−(di−Li−1)+Li−1+⌈ di−Li−1

λ−δ ⌉·(λ−δ)−di+δ)·li =
a · 2 · li + b · (2Li−1 − 2di + 2δ + ⌈ di−Li−1

λ−δ ⌉ · (λ − δ)) · li. If the vehicle incurs two additional
visits to v0, By Lines 12 and 13, the vehicle carries (Li−1, δ) units of goods from vi

to v0, (di − δ, δ) units of goods from v0 to vi, (0, 0) units of goods from vi to v0, and

ISAAC 2024

59:10 Approximation Algorithms for Cu-VRPSD

(Li−1 + ⌈ di−Li−1
λ−δ ⌉ · (λ − δ) − di, δ) units of goods from v0 to vi, and the cumulative

cost is a · 4 · li + b · (Li−1 + δ + di + 0 + Li−1 + ⌈ di−Li−1
λ−δ ⌉ · (λ − δ) − di + δ) · li =

a · 4 · li + b · (2Li−1 + 2δ + ⌈ di−Li−1
λ−δ ⌉ · (λ − δ)) · li. Hence, the expected cumulative cost is∫ min{di,λ−δ}

di−δ

a · 2 · li + b · (2x − 2di + 2δ + ⌈ di−x
λ−δ ⌉ · (λ − δ)) · li

λ − δ
dx

+
∫ di−δ

0

a · 4 · li + b · (2x + 2δ + ⌈ di−x
λ−δ ⌉ · (λ − δ)) · li

λ − δ
dx

=
∫ λ−δ

di−δ

a · 2 · li + b · (2x − 2di + 2δ + 1 · (λ − δ)) · li
λ − δ

dx

+
∫ di+δ−λ

0

a · 4 · li + b · (2x + 2δ + 2 · (λ − δ)) · li
λ − δ

dx

+
∫ di−δ

di+δ−λ

a · 4 · li + b · (2x + 2δ + 1 · (λ − δ)) · li
λ − δ

dx

= a · 2 · (λ − di) · li + b · (d2
i + (δ − 3λ) · di + (2λ2 − λ · δ))
λ − δ

+ a · 4 · (di + δ − λ) · li + b · (d2
i + 2δ · di + δ2 − λ2)

λ − δ

+ a · 4 · (λ − 2δ) · li + b · ((2λ − 4δ) · di + δ · λ − 2δ2)
λ − δ

= a · 2di + 2λ − 4δ

λ − δ
· li + b · 2d2

i − (λ + δ) · di + λ2 − δ2

λ − δ
· li,

where the first equality follows from that ⌈ di−x
λ−δ ⌉ = 1 if di + δ − λ ≤ x ≤ λ − δ and

⌈ di−x
λ−δ ⌉ = 2 if 0 ≤ x < di + δ − λ since in our setting δ ≤ λ − δ and in this case

λ − δ < di ≤ λ. ◀

▶ Theorem 9 (*). For Cu-VRPSD with any λ ∈ (0, 1] and δ ∈ [0, λ/2], conditioned on χ = d,
ALG.1(λ, δ) generates a solution T with an expected cumulative cost of

A + B

γ · max {σ, 1} + 0.5 · LB,

where A := γ ·(α ·σ +
∫ δ

0
x

λ−δ dF (x)+
∫ λ−δ

δ
2x−δ
λ−δ dF (x)+

∫ λ

λ−δ
x+λ−2δ

λ−δ dF (x)+
∫ 1

λ
1dF (x)), and

B := (λ+δ
2 ·α·σ+

∫ δ

0
(λ+δ)x−x2

2(λ−δ) dF (x)+
∫ λ−δ

δ
x2+(λ−δ)x

2(λ−δ) dF (x)+
∫ λ

λ−δ
2x2−(λ+δ)·x+λ2−δ2

2(λ−δ) dF (x)+∫ 1
λ

x
2 dF (x)).

3.1.2 The application
Next, we use ALG.1(λ, δ) to deign approximation algorithms for a, b > 0, i.e., γ > 0.

When the vehicle traveling along each edge of the TSP tour in ALG.1(λ, δ), it always
carries at least δ units of goods in total, resulting in a large cumulative cost for the case
where γ is small. Hence, intuitively, if γ is small, we simply set δ = 0.

If we call ALG.1(λ, δ) with δ = 0 and λ being a unique value, in the worst case we may
have

∫ λ

0 x2dF (x) =
∫ λ

0 λ · xdF (x), i.e., almost all customers vi with li > 0 and di ≤ λ have a
demand of di = λ. Consequently, we may get

∫ θ·λ
0 xdF (x) = 0 for any fixed θ ∈ (0, 1), as

will be shown in Lemma 10, and then ALG.1(θ · λ, δ) with δ = 0 and some θ ∈ (0, 1) may
generate a better solution. This suggests the approximation algorithm for Cu-VRPSD shown
in Algorithm 2, denoted as APPROX.1(λ, θ, p).

J. Zhao and M. Xiao 59:11

Algorithm 2 An approximation algorithm for unsplittable Cu-VRPSD (AP P ROX.1(λ, θ, p)).

Input: An instance of unsplittable Cu-VRPSD, and three parameters λ ∈ (0, 1], θ ∈ (0, 1) and
p ∈ (0, 1).
Output: A feasible solution to Cu-VRPSD.
1: Call ALG.1(λ, 0) with a probability of p and call ALG.1(θ · λ, 0) with a probability of 1 − p.

Then, our goal is to find (λ, θ, p) minimizing the approximation ratio of
APPROX.1(λ, θ, p).

▶ Lemma 10. For any θ ∈ (0, 1), we have
∫ θ·λ

0 xdF (x) ≤ 1
λ−θ·λ (

∫ λ

0 λ ·xdF (x)−
∫ λ

0 x2dF (x)).

Proof. By (1) and (2), we have
∫ λ

0 x2dF (x) =
∫ θ·λ

0 x2dF (x) +
∫ λ

θ·λ x2dF (x) ≤ θ · λ ·∫ θ·λ
0 xdF (x) + λ ·

∫ λ

θ·λ xdF (x) = λ ·
∫ λ

0 xdF (x) − (λ − θ · λ) ·
∫ θ·λ

0 xdF (x). Hence, we have∫ θ·λ
0 xdF (x) ≤ 1

λ−θ·λ (
∫ λ

0 λ · xdF (x) −
∫ λ

0 x2dF (x)). ◀

▶ Theorem 11. For unsplittable Cu-VRPSD, we can find (λ, θ, p) such that the approximation
ratio of APPROX.1(λ, θ, p) is bounded by 10/3 for any γ ∈ (0, 0.375] and 3.456 for any
γ ∈ (0.375, 1.444].

Proof. If we call ALG.1(λ, δ) with δ = 0 and λ being a unique value, one may check that a
good choice for λ is min{1, 4γ/α}. For the sake of analysis, we directly set λ = min{1, 4γ/α}.

If
∫ λ

0 xdF (x) = 0, we can get
∫ λ

0 x2dF (x) ≤ λ ·
∫ λ

0 xdF (x) = 0. Hence, we define µ := 0

if
∫ λ

0 xdF (x) = 0, and µ :=
∫ λ

0
x2dF (x)∫ λ

0
xdF (x)

otherwise.

By Lemma 4 and Theorem 9, the approximation ratio of ALG.1(λ, 0) is at most

max
σ≥0

γ ·
(

α · σ +
∫ λ

0
2x
λ dF (x) +

∫ 1
λ

1dF (x)
)

+
(

λ
2 · α · σ +

∫ λ

0
x2+λ·x

2λ dF (x) +
∫ 1

λ
x
2 dF (x)

)
γ · max {σ, 1} + 0.5

= max
σ≥0

γ ·
(

α · σ + 2
λ ·
∫ λ

0 xdF (x) +
∫ 1

λ
1dF (x)

)
+
(

λ
2 · α · σ + 1+µ/λ

2 ·
∫ λ

0 xdF (x) + 1
2 ·
∫ 1

λ
xdF (x)

)
γ · max {σ, 1} + 0.5

≤ max
σ≥0

γ ·
(

α · σ + 2
λ ·
∫ λ

0 xdF (x) + 1
λ ·
∫ 1

λ
xdF (x)

)
+
(

λ
2 · α · σ + 1+µ/λ

2 ·
∫ λ

0 xdF (x) + 1
2 ·
∫ 1

λ
xdF (x)

)
γ · max {σ, 1} + 0.5

= max
σ≥0

γ ·
(

α · σ + 1
λ ·
∫ λ

0 xdF (x) + 1
λ

)
+
(

λ
2 · α · σ + µ/λ

2 ·
∫ λ

0 xdF (x) + 1
2

)
γ · max {σ, 1} + 0.5

≤ max
σ≥0

γ ·
(
α · σ + 2

λ

)
+
(

λ
2 · α · σ + µ/λ+1

2

)
γ · max {σ, 1} + 0.5 ,

where the first equality follows from the definition of µ, the second equality from
∫ 1

0 xdF (x) = 1
by (1), the first inequality from

∫ 1
λ

1dF (x) ≤ 1
λ ·
∫ 1

λ
xdF (x) by (2), and the second inequality

from
∫ λ

0 xdF (x) ≤
∫ 1

0 xdF (x) = 1.
Since

∫ λ

0 xdF (x) ≤
∫ 1

0 xdF (x) = 1, by Lemma 10, we have∫ θ·λ

0
xdF (x) ≤ 1

λ − θ · λ
·

(∫ λ

0
λ · xdF (x) −

∫ λ

0
x2dF (x)

)

= λ − µ

λ − θ · λ
·
∫ λ

0
xdF (x) ≤ λ − µ

λ − θ · λ
(3)

Similarly, the approximation ratio of ALG.1(θ · λ, 0) is at most

ISAAC 2024

59:12 Approximation Algorithms for Cu-VRPSD

max
σ≥0

γ ·
(

α · σ +
∫ θ·λ

0
2x
θ·λ dF (x) +

∫ 1
θ·λ 1dF (x)

)
+
(

θ·λ
2 · α · σ +

∫ θ·λ
0

x2+θ·λ·x
2·θ·λ dF (x) +

∫ 1
θ·λ

x
2 dF (x)

)
γ · max {σ, 1} + 0.5

≤ max
σ≥0

γ ·
(

α · σ + 2
θ·λ ·

∫ θ·λ
0 xdF (x) + 1

θ·λ ·
∫ 1

θ·λ xdF (x)
)

+
(

θ·λ
2 · α · σ +

∫ θ·λ
0 xdF (x) + 1

2 ·
∫ 1

θ·λ xdF (x)
)

γ · max {σ, 1} + 0.5

= max
σ≥0

γ ·
(

α · σ + 1
θ·λ ·

∫ θ·λ
0 xdF (x) + 1

θ·λ

)
+
(

θ·λ
2 · α · σ + 1

2 ·
∫ θ·λ

0 xdF (x) + 1
2

)
γ · max {σ, 1} + 0.5

≤ max
σ≥0

γ ·
(

α · σ + 1
θ·λ · λ−µ

λ−θ·λ + 1
θ·λ

)
+
(

θ·λ
2 · α · σ + 1

2 · λ−µ
λ−θ·λ + 1

2

)
γ · max {σ, 1} + 0.5

= max
σ≥0

γ ·
(

α · σ + 1
θ·λ · 2λ−µ−θ·λ

λ−θ·λ

)
+
(

θ·λ
2 · α · σ + 1

2 · 2λ−µ−θ·λ
λ−θ·λ

)
γ · max {σ, 1} + 0.5 ,

where the first inequality follows from (2), the second inequality from (3), and the first
equality from

∫ 1
0 xdF (x) = 1 by (1).

Recall that in APPROX.1(λ, θ, p) we call ALG.1(λ, 0) (resp., ALG.1(θ · λ, 0)) with a
probability of p (resp., 1 − p). Hence, to erase the items related to µ in the numerators of
the approximation ratios of ALG.1(λ, 0) and ALG.1(θ · λ, 0), we need to set p such that
p · 1

2 · 1
λ + (1 − p) · (γ · 1

θ·λ · −1
λ−θ·λ + 1

2 · −1
λ−θ·λ) = 0. Then, we can get p =

1
2(λ−θ·λ) + γ

θ·λ(λ−θ·λ)
1

2λ + 1
2(λ−θ·λ) + γ

θ·λ(λ−θ·λ)
.

Clearly, we have p ∈ [0, 1]. Hence, the approximation ratio is maxσ≥0 R(σ), where

R(σ) :=
γ ·
(

α · σ + p · 2
λ + (1 − p) · 1

θ·λ · 2λ−θ·λ
λ−θ·λ

)
+
(

p·λ+(1−p)·θ·λ
2 · α · σ + p · 1

2 + (1 − p) · 1
2 · 2λ−θ·λ

λ−θ·λ

)
γ · max {σ, 1} + 0.5 .

It is easy to check maxσ≥0 R(σ) = maxσ≥1 R(σ). Moreover, since the function a′x+b′

c′x+d′ with
x ≥ 1 and a′, b′, c′, d′ > 0 attains the maximum value only if x = 1 or x = ∞, we know that
the approximation ratio is bounded by max{R(1), R(∞)}. Recall that λ = min{1, 4γ/α} and
p =

1
2(λ−θ·λ) + γ

θ·λ(λ−θ·λ)
1

2λ + 1
2(λ−θ·λ) + γ

θ·λ(λ−θ·λ)
. Assume α = 1.5, and then we have α/4 = 0.375. By calculation,

we have the following results.
When γ ∈ (0, 0.375], setting θ = 0.5, we have max{R(1), R(∞)} ≡ 10/3;
When γ ∈ [0.375, 1.444], setting θ = 0.6677, we have max{R(1), R(∞)} ≤ 3.456.

The result for γ ∈ (0, 0.375] may be surprising. We give the details of its proof.

▷ Claim 12. When γ ∈ (0, 0.375], setting θ = 0.5, we have max{R(1), R(∞)} ≡ 10/3.

Proof. Note that λ = min{1, 4γ/α} = 4γ/α and α = 1.5. Setting θ = 0.5, we can get
p =

1
2(λ−θ·λ) + γ

θ·λ(λ−θ·λ)
1

2λ + 1
2(λ−θ·λ) + γ

θ·λ(λ−θ·λ)
= 5

6 . Hence, under σ ≥ 1, we have

R(σ) = 3/2 · γ · σ + 5/8 + 3/8 + 11/6 · γ · σ + 2/3
γ · σ + 0.5 = 10

3 · γ · σ + 0.5
γ · σ + 0.5 = 10

3 .

Hence, we have max{R(1), R(∞)} ≡ 10/3. ◁

This finishes the proof. ◀

We mention that the approximation ratio of APPROX.1 may achieve α + 2 = 3.5 when
γ = ∞. Hence, it can not improve the current best approximation algorithm for VRPSD [16].
Additionally, a more careful design than APPROX.1 could yield improved approximations;
however, the optimal design remains unknown.

J. Zhao and M. Xiao 59:13

3.2 The second algorithm
In this section, we will introduce our second algorithm, denoted as ALG.2(λ, δ), which can
be used to get a 3.456-approximation algorithm for Cu-VRPSD with any γ ∈ (1.444, ∞), and
an (α + 1.75 = 3.25)-approximation algorithm for VRPSD. Here, we may require λ ∈ (0, 1],
δ ∈ (0, λ/2], and 1/δ ∈ N.

ALG.2(λ, δ) is based on ALG.1(λ, δ). The vehicle will skip customers vi with di > λ

when it travels along the TSP tour in ALG.1(λ, δ), and then satisfy each of them using a
single tour at last. In ALG.2(λ, δ), the main difference is that the vehicle will skip customers
vi with di > δ, and at last use the better method from either satisfying each of them using a
single tour or solving the weighted (1 − δ)/δ-set cover problem as shown below.

Given a feasible set of unsatisfied customers S such that the total demand of all customers
in S is at most 1, we know that the number of customers |S| is at most (1 − δ)/δ since each
unsatisfied customer vi has a demand of di > δ. Then, we can optimally compute a tour
with a minimum cumulative cost Cu(S) for all customers in S in O(|S|!) time. There are at
most nO(1/δ) number of feasible sets since |S| ≤ (1 − δ)/δ. Therefore, to satisfy customers vi

with di > δ, we can get an instance of weighted (1 − δ)/δ-set cover by taking each unsatisfied
customer as an element, and each feasible set S of unsatisfied customers as a set with a
weight of Cu(S) in polynomial time. By calling a ρ-approximation algorithm for weighted
(1 − δ)/δ-set cover [15], we can get a set of tours satisfying all customers vi with di > δ.

According to the two methods, there are two set of tours T1 and T2, and their cumulative
cost can be computed in polynomial time. Hence, we route the vehicle according to the tours
in T ′, where T ′ := T1 if Cu(T1) ≤ Cu(T2) and T ′ := T2 otherwise.

The details of ALG.2(λ, δ) is shown in Algorithm 3.

▶ Theorem 13 (*). For Cu-VRPSD with any λ ∈ (0, 1], δ ∈ (0, λ/2], and 1/δ ∈ N,
conditioned on χ = d, ALG.2(λ, δ) outputs a solution T with an expected cumulative cost of

γ ·
(

α · σ +
∫ δ

0
x

λ−δ dF (x)
)

+
(

λ+δ
2 · α · σ +

∫ δ

0
(λ+δ)x−x2

2(λ−δ) dF (x)
)

γ · max {σ, 1} + 0.5 · LB + Cu(T ′),

where

Cu(T ′) ≤ min
{ ∫ 1

δ
2γ+x

2 dF (x)
γ · max {σ, 1} + 0.5 · LB, ρ · Cu(T ∗)

}
.

3.2.1 The applications
Our goal is to obtain a 3.456-approximation algorithm for Cu-VRPSD with any γ ∈ (1.444, ∞).
As a byproduct, we will also get a 3.25-approximation algorithm for VRPSD.

Since in APPROX.1(λ, θ, p) ALG.1(λ, δ) sets λ = 1 for any γ > 0.375, we also set λ = 1
in ALG.2(λ, δ) for the sake of analysis. Moreover, since weighted 2-set cover [15] can be
solved optimally in polynomial time, i.e., ρ = 1 when δ = 1/3, we set δ = 1/3 in ALG.2(λ, δ).

According to Theorems 9 and 13, we will show that ALG.2(λ, δ) can be used to make a
trade-off with ALG.1(λ, δ). We use the approximation algorithm for Cu-VRPSD shown in
Algorithm 4, denoted as APPROX.2.

▶ Theorem 14 (*). For unsplittable Cu-VRPSD, APPROX.2 is a randomized 3.456-
approximation algorithm for any γ ∈ (1.444, ∞). Moreover, for unsplittable VRPSD,
APPROX.2 is a randomized 3.25-approximation algorithm.

Combining the results in Lemma 5, Theorems 11 and 14, we get the following result.

ISAAC 2024

59:14 Approximation Algorithms for Cu-VRPSD

Algorithm 3 An algorithm for unsplittable Cu-VRPSD (ALG.2(λ, δ)).

Input: An instance of unsplittable Cu-VRPSD, and two parameters λ ∈ (0, 1], δ ∈ (0, λ/2], and
1/δ ∈ N.
Output: A feasible solution T to unsplittable Cu-VRPSD.
1: Obtain an α-approximate TSP tour T ∗ = v0v1v2 . . . vnv0, as Step 1 in ALG.1(λ, δ).
2: Load the vehicle with S0 := (L0, δ) units of goods, including L0 demand of normal goods and δ

demand of backup goods, where L0 ∼ U [0, λ − δ).
3: Initialize i := 1 and V ∗ := ∅.
4: while i ≤ n do
5: Go to customer vi;
6: if δ < di ≤ 1 then
7: Record vi’s demand, and let V ∗ := V ∗ ∪ {vi} and Si := (Li, δ), where Li := Li−1;
8: else if di ≤ Li−1 then
9: Deliver (di, 0) units of goods to vi, and update Si := (Li, δ), where Li := Li−1+⌈ di−Li−1

λ−δ
⌉·

(λ − δ) − di = Li−1 − di;
10: else ▷ Since di ≤ δ, we must have Li−1 < di ≤ Li−1 + δ

11: Deliver (Li−1, di − Li−1) units of goods to vi, goes to the depot, load the vehicle with
(Li−1 + ⌈ di−Li−1

λ−δ
⌉ · (λ − δ) − di, di − Li−1) units of goods, and update Si := (Li, δ), where

Li := Li−1 + ⌈ di−Li−1
λ−δ

⌉ · (λ − δ) − di = Li−1 + (λ − δ) − di;
12: end if
13: i := i + 1.
14: end while
15: Go to the depot.
16: Consider a set of tours T1 by obtaining a single tour as in Step 22 for each vi ∈ V ∗.
17: Consider a set of tours T2 by calling a ρ-approximation algorithm for weighted 1−δ

δ
-set cover [15],

where the instance is constructed as follows:
1. Obtain all possible feasible sets S of customers in V ∗ such that the total demand of all

customers in S is at most 1;
2. For each feasible set S, compute a tour with a minimum cumulative cost Cu(S) for all

customers in S;
3. Get an instance of weighted 1−δ

δ
-set cover by taking each customer in V ∗ as an element, and

each feasible set S as a weighted set with a weight of Cu(S).
18: Let T ′ := T1 if Cu(T1) ≤ Cu(T2) and T ′ := T2 otherwise.
19: Route the vehicle according to the tours in T ′.

Algorithm 4 An approximation algorithm for unsplittable Cu-VRPSD (AP P ROX.2).

Input: An instance of unsplittable Cu-VRPSD.
Output: A feasible solution to Cu-VRPSD.
1: Call ALG.1(1, 1/3) with a probability of 0.5 and call ALG.2(1, 1/3) with a probability of 0.5.

▶ Corollary 15. There is a randomized 3.456-approximation for unsplittable Cu-VRPSD.

▶ Remark 16. We believe that our analysis is not tight. One one hand, it would be interesting
to sharpen our analysis to get a better result; on the other hand, we may use ALG.1 and
ALG.2 to design better approximation algorithms, e.g., with a probability of pγ to run
ALG.1, and of (1 − pγ) to run ALG.2, where pγ is a function related to γ. Moreover, when
running ALG.1 or ALG.2, the parameters λ and δ may follow a distribution related to γ.

4 Two Algorithms for Cu-VRP

In this section, we give a 3.194-approximation algorithm for Cu-VRP.

J. Zhao and M. Xiao 59:15

4.1 The first algorithm
Based on the well-known randomized rounding method for weighted k-set cover, we propose
a 3.194-approximation algorithm, denoted as ALG.3(λ, δ), for Cu-VRP with any γ > γ0,
where γ0 > 0 is any fixed constant.

Recall that ALG.2(λ, δ) first satisfies customers vi with di ≤ δ by traveling along the TSP
tour and then customers vi with di > δ by possibly solving weighted 1−δ

δ -set cover. However,
it may only be used for δ = 1/3 since the best-known approximation ratio of weighted 3-set
cover is about 1.79 [15], which is already too large.

In ALG.3(λ, δ), since the demands of customers are known in advance for Cu-VRP, we
first try to satisfy customers in V ∗ := {vi ∈ V ′ | di > δ} by solving weighted 1−δ

δ -set cover
using the randomized rounding method. Due to the randomness, some customers in V ∗ may
still be unsatisfied. Then, we satisfy all remaining customers by calling ALG.1(λ, δ). This
method was used to get an (α + 1 + ln 2 + ε)-approximation algorithm with any constant
ε > 0 for unsplittable VRP [8]. The details are shown as follows.

To get an instance of weighted 1−δ
δ -set cover, we use the method in Step 17 of ALG.2(λ, δ).

Now, we have obtained a set of feasible sets S, and each S ∈ S has a weight of Cu(S). Then,
we get the linear relaxation of weighted set cover as shown in (4), and it can be solved in
nO(1/δ) since |S| = nO(1/δ). In the randomized rounding method, we select each S ∈ S with a
probability of min{ln 2 · xS , 1}. Denote the set of selected sets by S ′, which corresponds to a
set of tours T ′ satisfying a subset of customers V ∗∗ ⊆ V ∗. Note that Cu(T ′) ≤ Cu(S ′) since
we may perform shortcutting to ensure that each customer appears in only one tour and it
does not increase the cumulative cost by the triangle inequality. At last, we call ALG.1(λ, δ)
to obtain a set of tours T ′′ to satisfy the left customers in V ′ \ V ∗∗. Due to the stochastic
demands in Cu-VRPSD the load of the vehicle may be greater than the delivered units of
goods in each tour of T ′′. In Cu-VRP, we can optimize the tours in T ′′ so that the load
equals the delivered units of goods. Moreover, for each tour T = v0vi1 . . . viT

v0 ∈ T ′′, we
consider another tour with the opposite direction, i.e., v0viT

. . . vi1v0, and choose the better
one into our final solution.

minimize
∑
S∈S

Cu(S) · xS

subject to
∑

S∈S:v∈S

xS ≥ 1, ∀ v ∈ V ∗, (4)

xS ≥ 0, ∀ S ∈ S.

The details of ALG.3(λ, δ) is shown in Algorithm 5.

▶ Theorem 17 (*). For Cu-VRP with any λ ∈ (0, 1], δ ∈ (0, λ/2], and 1/δ ∈ N, ALG.3(λ, δ)
generates a solution T with an expected cumulative cost of

ln 2 · Cu(T ∗) +
γ ·
(

α · σ + 1
λ−δ

)
+ λ

2 ·
(

α · σ + 1
λ−δ

)
γ · max {σ, 1} + 0.5 · LB.

▶ Theorem 18 (*). For unsplittable Cu-VRP with any constants γ0 > 0 and ε > 0, there is
a randomized (α + 1 + ln 2 + ε < 3.194)-approximation algorithm for γ > γ0.

4.2 The second algorithm
In this section, we propose a 3.163-approximation algorithm for Cu-VRP with γ ∈ (0, 0.428],
denoted as ALG.4(λ). Combing with Lemma 5 and Theorem 18, ALG.4(λ) implies a
3.194-approximation algorithm for Cu-VRP.

ISAAC 2024

59:16 Approximation Algorithms for Cu-VRPSD

Algorithm 5 An algorithm for unsplittable Cu-VRPSD (ALG.3(λ, δ)).

Input: An instance of unsplittable Cu-VRPSD, and two parameters λ ∈ (0, 1], δ ∈ (0, λ/2], and
1/δ ∈ N.
Output: A feasible solution T to unsplittable Cu-VRPSD.
1: Get an instance (V ∗, S) of weighted 1−δ

δ
-set cover using Step 17 in ALG.2(λ, δ).

2: Solve the linear program of weighted set cover in (4).
3: Select each S ∈ S with a probability of min{ln 2 · xS , 1}. Denote the set of selected sets by S ′,

corresponding tours by T ′, and satisfied customers by V ∗∗.
4: Call ALG.1(λ, δ) to obtain a set of tours T ′′ to satisfy the customers in V ′ \ V ∗∗.
5: For each tour in T ′′, ensure the load of the vehicle is the delivered units of goods, obtain

another tour with the opposite direction, and choose the better one into T ′′′.
6: Return T ′ ∪ T ′′′.

Algorithm 6 An algorithm for unsplittable Cu-VRPSD (ALG.4(λ)).

Input: An instance of unsplittable Cu-VRPSD, and two parameters λ ∈ (0, 1], δ ∈ (0, λ/2], and
1/δ ∈ N.
Output: A feasible solution T to unsplittable Cu-VRPSD.
1: Call ALG.1(λ, 0) to obtain a set of tours T ′ to satisfy all customers.
2: For each tour in T ′, ensure the load of the vehicle is the delivered units of goods, obtain

another tour with the opposite direction, and choose the better one into T .
3: Return T .

Algorithm 7 An approximation algorithm for unsplittable Cu-VRPSD (AP P ROX.4(λ, θ, p)).

Input: An instance of unsplittable Cu-VRP, and three parameters λ ∈ (0, 1], θ ∈ (0, 1) and
p ∈ (0, 1).
Output: A feasible solution to Cu-VRPSD.
1: Call ALG.4(λ) with a probability of p and call ALG.4(θ · λ) with a probability of 1 − p.

In ALG.4(λ), we call ALG.1(λ, 0) to obtain a set of tours T ′ to satisfy all customers,
and then we optimize each tour in T ′ as Step 5 in ALG.3.

▶ Theorem 19 (*). For Cu-VRP with any λ ∈ (0, 1], ALG.4(λ) generates a solution T with
an expected cumulative cost of

γ ·
(

α · σ +
∫ λ

0
2x
λ dF (x) +

∫ 1
λ

1dF (x)
)

+
(

λ
2 · α · σ +

∫ λ

0
x2/2+λ·x

2λ dF (x) +
∫ 1

λ
x
2 dF (x)

)
γ · max {σ, 1} + 0.5 ·LB.

Similarly, we use ALG.4(λ) to design an algorithm for Cu-VRP shown in Algorithm 7.

▶ Theorem 20 (*). For unsplittable Cu-VRP, we can find (λ, θ, p) such that the approximation
ratio of APPROX.4(λ, θ, p) is bounded by 3.163 for any γ ∈ (0, 0.428].

5 Conclusion

By using the idea of skipping customers with large demands during the TSP tour and
satisfying them later, combined with careful analysis, we can improve the approximation
ratio for Cu-VRPSD, VRPSD, and Cu-VRP. Whether this idea is also useful in designing
practical algorithms for these problems is worthy of further study.

J. Zhao and M. Xiao 59:17

References
1 Kemal Altinkemer and Bezalel Gavish. Heuristics for unequal weight delivery problems with a

fixed error guarantee. Operations Research Letters, 6(4):149–158, 1987.
2 Dimitris J. Bertsimas. A vehicle routing problem with stochastic demand. Oper. Res.,

40(3):574–585, 1992. doi:10.1287/opre.40.3.574.
3 Dimitris J. Bertsimas and David Simchi-Levi. A new generation of vehicle routing research:

Robust algorithms, addressing uncertainty. Oper. Res., 44(2):286–304, 1996. doi:10.1287/
opre.44.2.286.

4 Jannis Blauth, Vera Traub, and Jens Vygen. Improving the approximation ratio for capacitated
vehicle routing. Math. Program., 197(2):451–497, 2023. doi:10.1007/s10107-022-01841-4.

5 Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report, Carnegie-Mellon University, 1976.

6 Karina Corona-Gutiérrez, Samuel Nucamendi-Guillén, and Eduardo Lalla-Ruiz. Vehicle routing
with cumulative objectives: A state of the art and analysis. Comput. Ind. Eng., 169:108054,
2022. doi:10.1016/j.cie.2022.108054.

7 George B Dantzig and John H Ramser. The truck dispatching problem. Management Science,
6(1):80–91, 1959.

8 Zachary Friggstad, Ramin Mousavi, Mirmahdi Rahgoshay, and Mohammad R. Salavatipour.
Improved approximations for capacitated vehicle routing with unsplittable client demands.
In Karen I. Aardal and Laura Sanità, editors, Integer Programming and Combinatorial
Optimization - 23rd International Conference, IPCO 2022, Eindhoven, The Netherlands, June
27-29, 2022, Proceedings, volume 13265 of Lecture Notes in Computer Science, pages 251–261.
Springer, 2022. doi:10.1007/978-3-031-06901-7_19.

9 Ricardo Fukasawa, Qie He, and Yongjia Song. A branch-cut-and-price algorithm for the energy
minimization vehicle routing problem. Transp. Sci., 50(1):23–34, 2016. doi:10.1287/trsc.
2015.0593.

10 Daya Ram Gaur, Apurva Mudgal, and Rishi Ranjan Singh. Routing vehicles to minimize fuel
consumption. Oper. Res. Lett., 41(6):576–580, 2013. doi:10.1016/j.orl.2013.07.007.

11 Daya Ram Gaur, Apurva Mudgal, and Rishi Ranjan Singh. Approximation algorithms for
cumulative VRP with stochastic demands. In Sathish Govindarajan and Anil Maheshwari,
editors, Algorithms and Discrete Applied Mathematics - Second International Conference,
CALDAM 2016, Thiruvananthapuram, India, February 18-20, 2016, Proceedings, volume
9602 of Lecture Notes in Computer Science, pages 176–189. Springer, 2016. doi:10.1007/
978-3-319-29221-2_15.

12 Daya Ram Gaur, Apurva Mudgal, and Rishi Ranjan Singh. Improved approximation algorithms
for cumulative VRP with stochastic demands. Discret. Appl. Math., 280:133–143, 2020.
doi:10.1016/j.dam.2018.01.012.

13 Daya Ram Gaur and Rishi Ranjan Singh. A heuristic for cumulative vehicle routing using
column generation. Discret. Appl. Math., 228:140–157, 2017. doi:10.1016/j.dam.2016.05.
030.

14 Michel Gendreau, Gilbert Laporte, and René Séguin. Stochastic vehicle routing. Eur. J. Oper.
Res., 88(1):3–12, 1996.

15 Anupam Gupta, Euiwoong Lee, and Jason Li. A local search-based approach for set covering. In
Telikepalli Kavitha and Kurt Mehlhorn, editors, 2023 Symposium on Simplicity in Algorithms,
SOSA 2023, Florence, Italy, January 23-25, 2023, pages 1–11. SIAM, 2023. doi:10.1137/1.
9781611977585.ch1.

16 Anupam Gupta, Viswanath Nagarajan, and R. Ravi. Technical note - approximation algorithms
for VRP with stochastic demands. Oper. Res., 60(1):123–127, 2012. doi:10.1287/opre.1110.
0967.

17 Mordecai Haimovich and Alexander H. G. Rinnooy Kan. Bounds and heuristics for capacitated
routing problems. Math. Oper. Res., 10(4):527–542, 1985. doi:10.1287/moor.10.4.527.

ISAAC 2024

https://doi.org/10.1287/opre.40.3.574
https://doi.org/10.1287/opre.44.2.286
https://doi.org/10.1287/opre.44.2.286
https://doi.org/10.1007/s10107-022-01841-4
https://doi.org/10.1016/j.cie.2022.108054
https://doi.org/10.1007/978-3-031-06901-7_19
https://doi.org/10.1287/trsc.2015.0593
https://doi.org/10.1287/trsc.2015.0593
https://doi.org/10.1016/j.orl.2013.07.007
https://doi.org/10.1007/978-3-319-29221-2_15
https://doi.org/10.1007/978-3-319-29221-2_15
https://doi.org/10.1016/j.dam.2018.01.012
https://doi.org/10.1016/j.dam.2016.05.030
https://doi.org/10.1016/j.dam.2016.05.030
https://doi.org/10.1137/1.9781611977585.ch1
https://doi.org/10.1137/1.9781611977585.ch1
https://doi.org/10.1287/opre.1110.0967
https://doi.org/10.1287/opre.1110.0967
https://doi.org/10.1287/moor.10.4.527

59:18 Approximation Algorithms for Cu-VRPSD

18 İmdat Kara, Bahar Yetiş Kara, and M Kadri Yetis. Energy minimizing vehicle routing problem.
In Combinatorial Optimization and Applications: First International Conference, COCOA
2007, pages 62–71. Springer, 2007.

19 İmdat Kara, Bahar Yetiş Kara, and M Kadri Yetis. Cumulative vehicle routing problems.
IntechOpen Rijeka, HR, 2008.

20 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation
algorithm for metric TSP. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC
’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
June 21-25, 2021, pages 32–45. ACM, 2021. doi:10.1145/3406325.3451009.

21 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A deterministic better-than-3/2
approximation algorithm for metric TSP. In Alberto Del Pia and Volker Kaibel, editors,
Integer Programming and Combinatorial Optimization - 24th International Conference, IPCO
2023, Madison, WI, USA, June 21-23, 2023, Proceedings, volume 13904 of Lecture Notes in
Computer Science, pages 261–274. Springer, 2023. doi:10.1007/978-3-031-32726-1_19.

22 Mauro Henrique Mulati, Ricardo Fukasawa, and Flávio Keidi Miyazawa. The arc-item-load and
related formulations for the cumulative vehicle routing problem. Discret. Optim., 45:100710,
2022. doi:10.1016/j.disopt.2022.100710.

23 Bahri Sahin, Huseyin Yilmaz, Yasin Ust, Ali Fuat Guneri, and Bahadir Gülsün. An approach
for analysing transportation costs and a case study. Eur. J. Oper. Res., 193(1):1–11, 2009.
doi:10.1016/j.ejor.2007.10.030.

24 Anatolii Ivanovich Serdyukov. Some extremal bypasses in graphs. Upravlyaemye Sistemy,
17:76–79, 1978.

25 Xinyu Wang, Tsan-Ming Choi, Haikuo Liu, and Xiaohang Yue. A novel hybrid ant colony
optimization algorithm for emergency transportation problems during post-disaster scenarios.
IEEE Trans. Syst. Man Cybern. Syst., 48(4):545–556, 2016.

26 Yuanxiao Wu and Xiwen Lu. Capacitated vehicle routing problem on line with unsplittable
demands. J. Comb. Optim., 44(3):1953–1963, 2022. doi:10.1007/s10878-020-00565-5.

27 Yiyong Xiao, Qiuhong Zhao, Ikou Kaku, and Yuchun Xu. Development of a fuel consumption
optimization model for the capacitated vehicle routing problem. Comput. Oper. Res., 39(7):1419–
1431, 2012. doi:10.1016/j.cor.2011.08.013.

https://doi.org/10.1145/3406325.3451009
https://doi.org/10.1007/978-3-031-32726-1_19
https://doi.org/10.1016/j.disopt.2022.100710
https://doi.org/10.1016/j.ejor.2007.10.030
https://doi.org/10.1007/s10878-020-00565-5
https://doi.org/10.1016/j.cor.2011.08.013

	p000-Frontmatter
	Preface

	p001-Kumar
	p002-Ohrimenko
	p003-Saha
	p004-A.Akitaya
	1 Introduction
	1.1 Related work
	1.2 Quasi-planarity
	1.3 Our contributions

	2 Approximation Algorithm for MinPBST
	2.1 Preliminaries for the algorithm
	2.2 The algorithm
	2.3 Weight analysis
	2.4 Derandomization
	2.5 Generalization to more colors

	3 Crossing Patterns in MinBST
	3.1 Quasi-planarity
	3.2 Maximum number of crossings

	4 Conclusions and Open Problems

	p005-Ahn
	1 Introduction
	2 Two fixed orientations
	3 One fixed orientation
	3.1 Data structures for dynamic width decision and maintenance
	3.2 Orientation-constrained width
	3.3 Decision algorithm
	3.4 Optimization algorithm

	4 Fixed angle of intersection
	4.1 Decision algorithm
	4.2 First phase of the optimization algorithm
	4.3 Second phase of the optimization algorithm

	p006-An
	1 Introduction
	2 Preliminaries
	3 Dynamic Triangle Hitting Set Problem
	4 Dynamic Feedback Vertex Set Problem
	4.1 Data Structure
	4.2 Query Algorithm
	4.3 Update Algorithm
	4.3.1 Push-Pop Step
	4.3.2 Cleaning Step

	5 Dynamic Cycle Packing Problem
	5.1 Planar Drawing of the Closure of M

	6 Conclusion

	p007-An
	1 Introduction
	2 Preliminaries
	3 Approximation Algorithm
	4 Analysis
	5 NP-hardness Results

	p008-Atalig
	1 Introduction
	2 Preliminaries
	3 Lower Bound for Deterministic Algorithms with Edge Queries
	4 Lower Bound for Deterministic Algorithms with Three Types of Queries
	5 Lower Bounds for Randomized Algorithms
	6 Final Comments and Open Problems

	p009-Bansal
	1 Introduction
	1.1 Upper Bound Results and Applications
	1.2 Lower Bound and Hardness Results
	1.3 Existing Works

	2 Preliminaries
	3 Hardness of logarithmic approximation
	4 Upper bound of lambda 2^kn Edges
	4.1 Locality Property for Flow Preservers
	4.2 Construction of an Improved FTRS
	4.3 Computing sparse (lambda,k)-FT-BFP

	5 Matching Lower Bound
	6 Applications
	6.1 Fault-tolerant All-Pairs lambda-reachability oracle
	6.2 FT-BFPs for graphs with non-unit capacities

	p010-Bhanja
	1 Introduction
	1.1 Our Results
	1.2 Related Works
	1.3 Organization of the Article

	2 Preliminaries
	3 An {O}(n^2) Space Sensitivity Oracle for Steiner Mincut
	4 A Sensitivity Oracle for Reporting Capacity of Steiner Mincut
	5 An {O}(n) Space Sensitivity Oracle for Global Mincut
	6 A Sensitivity Oracle for Steiner Mincut: Breaking Quadratic Bound
	6.1 An {O}((n-|S|)n) Space Data Structure for All Edges from Type-1
	6.2 An {O}(n) Space Data Structure for All Edges from Type-2
	6.3 An {O}((n-|S|)n) Space Data Structure for All Edges from Type-3

	7 Conclusion

	p011-Bilo
	1 Introduction
	2 Preliminaries
	3 Warm up: a data structure for temporal paths
	4 Our data structure for temporal forests
	4.1 A data structure supporting only label additions and deletions
	4.2 Supporting link and cut operations

	5 Our data structure for temporal forests with latencies

	p012-Bismuth
	1 Introduction
	2 Related Work
	3 Partition with Interval Target
	3.1 The Dec-Inter[n,v](X) problem
	3.2 Dec-Inter[n,u](X): an algorithm for n > = 3 and u > = n-2
	3.2.1 Structure of partitions with two or more almost-full bins
	3.2.2 Back to the algorithm

	3.3 Hardness for n > = 3 bins and u < n-2

	4 Partition with Split Items
	5 Partition with Splittings
	6 Conclusion and Future Directions

	p013-Blaser
	1 Introduction
	2 Preliminaries
	3 NEXP over the Reals
	4 The Relationships between the Boolean Classes and Classes over the Reals
	5 Hardness of Probabilistic Satisfiability without Conditioning
	6 Correspondence to Existential Second Order Logic and First Order Logic of Probabilistic Independence
	7 Succinct ETR of Polynomially Many Variables
	8 ETR with the Standard Summation Operator
	8.1 Machine Characterization of ∃ℝ^Σ
	8.2 Reasoning about Probabilities in Small Models

	9 Discussion

	p014-Bose
	1 Introduction
	2 Preliminaries
	3 Routing Ratio Upper Bound
	3.1 Local Routing Algorithm
	3.2 Extending Algorithm 1 to graphs where the convex hull is not present
	3.3 Extending our result to hexagons, septagons and octagons

	4 Routing Ratio Lower Bound for bigcirc_5-Delaunay graphs
	5 Spanning Ratio Lower Bound for bigcirc_5-Delaunay graphs
	6 Conclusions

	p015-Bose
	1 Background
	1.1 Yao graphs
	1.2 Local routing

	2 The greedy-sweep algorithm
	3 Analysis
	3.1 Removing the diagonal bit

	4 Spanning ratio
	4.1 Short side crossings
	4.2 Long side crossings
	4.3 Constructing a path

	5 Conclusion

	p016-Carta
	1 Introduction
	2 Getting Started
	2.1 The k-Center Completion Problem
	2.2 Guessing an Approximate Radius Profile for the Optimum Solution

	3 Algorithm for k-Min-Sum-Radii with Mergeable Constraints
	3.1 Selection of Candidate Centers and Radii
	3.2 Finding the Assignment
	3.2.1 Fairness with two Colors and Equal Proportions
	3.2.2 Uniform Lower Bounds

	p017-Chakraborty
	1 Introduction
	1.1 Previous Results
	1.2 Our Results and Main Idea

	2 Preliminaries
	3 Succinct Representation of Baxter Permutation
	4 Computing the BP sequence of Cartesian trees
	4.1 Computing inorders
	4.2 Implicitly storing BP sequences
	4.3 Converting labels and inorders
	4.4 Navigation queries on Maximum Cartesian trees

	5 Succinct Data Structure of Separable Permutation
	5.1 Succinct Representation

	6 Future Work

	p018-Chakraborty
	1 Introduction
	1.1 Our contributions

	2 Preliminaries
	2.1 Suffix arrays, suffix trees, and their compression
	2.2 Bit-vectors and rank/select dictionaries
	2.3 Generalized suffix arrays and trees
	2.4 LCP arrays
	2.5 Rank and select data structures for large alphabets
	2.6 Nearest marked ancestors
	2.7 Weighted level ancestor queries
	2.8 Tree Covering
	2.9 Document listing problems

	3 Enhancing Generalized Compressed Suffix Trees
	3.1 New predecessor data structures
	3.2 Finding Closest Colored Suffixes
	3.3 Succinct index for weighted level ancestor queries
	3.4 Document listing problem in a rooted tree

	4 Application to Suffix-prefix Matching
	4.1 Answering One-to-One and One-to-All queries
	4.2 Report and Count queries

	5 Concluding Remarks

	p019-Chakraborty
	1 Introduction
	2 Preliminaries
	3 Locating-Dominating Set Parameterized by Treewidth
	4 Locating-Dominating Set Parameterized by the Solution Size
	5 Test Cover ParameterizationParameterization by the Solution Size
	6 Conclusion

	p020-Chen
	1 Introduction
	2 Formulation
	3 Dynamic Programming Approach
	4 When T is Constant
	5 PTAS
	6 Conclusion

	p021-Cho
	1 Introduction
	2 Preliminaries
	2.1 Multiway Cuts and Essential Edges
	2.2 Restricted Hypergraphs and Subinstances

	3 Efficient Algorithm for Computing Multicut-Mimicking Networks
	3.1 Useful Terminal Partitions in Expanders
	3.2 Near-Linear Time Algorithm for General Hypergraphs

	4 Bound for Minimal Instances
	4.1 Matroids and Representative Sets
	4.2 Essential Hyperedges in Unbreakable and Dense Instances
	4.3 Non-Essential Hyperedge in a General Instance

	p022-Clark
	1 Introduction
	2 Multi-Party Asset Swaps
	3 An Atomic Protocol for Reuniclus Digraphs
	3.1 Protocol {BDP} for Bottleneck Digraphs
	3.2 Protocol {RDP} for Reuniclus Digraphs

	4 A Characterization of Digraphs that Admit HTLC-Based Protocols
	4.1 Basic Properties of HTLC-Based Protocols
	4.2 Proof of the (< = =) Implication in Theorem 1

	5 Final Comments

	p023-DaLozzo
	1 Introduction
	2 Basic Definitions and Tools
	3 NP-completeness for AT-Graphs with lcc(A) >= 6
	4 A Linear-Time Algorithm for AT-Graphs with lcc(A) <= 3
	5 Conclusions and Open Problems

	p024-DaLozzo
	1 Introduction
	2 Preliminaries
	3 Exact Algorithms for CPLS and CPLSF
	4 The Kernels
	5 NP-completeness
	6 Conclusions

	p025-DeBerg
	1 Introduction
	2 Steiner spanners for trees
	2.1 Complexity lower bounds
	2.2 A low complexity Steiner spanner

	3 Steiner spanners in simple polygons
	4 Steiner spanners in polygonal domains
	5 Future work

	p026-Depian
	1 Introduction
	2 The Constrained One-Sided Boundary Labeling Problem
	2.1 Constrained One-Sided Boundary Labeling is NP-hard
	2.2 Fixed Candidate Reference Points
	2.3 Sliding Candidate Reference Points with Uniform-Height Labels

	3 Constrained Two-Sided Boundary Labeling is NP-complete
	4 Conclusion

	p027-Dey
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Preliminaries
	3 Results: Classical NP Completeness
	4 Results: Polynomial Time Approximation Algorithms
	5 Results: Parameterized Complexity
	6 Conclusion

	p028-Fazekas
	1 Introduction
	2 Preliminaries
	3 General Results
	4 Problems 1 and 2
	5 Problems 3 and 5
	6 Problem 4
	7 What Next? Conclusions and First Steps Towards Future Work

	p029-Fekete
	1 Introduction
	1.1 Our contributions
	1.2 Related work
	1.3 Preliminaries

	2 Reconfigurability
	3 The impact of the domain on the achievable makespan
	4 Bounded makespan for narrow instances
	4.1 Bounded makespan and stretch based on scale
	4.2 Bounded makespan and stretch based on bottleneck

	5 Conclusions and future work

	p030-Firbas
	1 Introduction
	1.1 Preliminaries

	2 Properties Characterized by Small Forbidden Induced Subgraphs
	3 A General Framework to Show NP-hardness
	3.1 A Generic Reduction Technique
	3.2 Biconnected Forbidden Subgraphs and Beyond

	4 Conclusion

	p031-Frei
	1 Introduction
	2 Formal Definitions
	3 Overview of Results
	3.1 Structural Results
	3.2 Approximation Algorithms
	3.3 Inapproximability Results
	3.4 Parameterized Complexity

	p032-Garvardt
	1 Introduction
	2 Preliminaries and Basic Observations
	3 Hardness Results
	4 Split Graphs with Bounded Weights
	5 Further FPT-Algorithms
	6 Kernelization lower bounds
	7 Conclusion

	p033-Glazenburg
	1 Introduction
	2 Preliminaries
	3 Properties of an optimal separator
	4 Separation with a strip
	5 Separation with a wedge
	5.1 Wedge separation with red outliers
	5.2 Wedge separation with blue outliers
	5.3 Wedge separation with both outliers

	6 Separation with a double wedge
	7 Concluding Remarks

	p034-Glazenburg
	1 Introduction
	2 Preliminaries
	3 Dynamic linear programming with violations
	3.1 Chan's algorithm
	3.2 A semi-dynamic data structure for a fixed k

	4 Exact algorithms for k-mis MinMax
	4.1 Geometric properties
	4.2 Constructing the valid regions
	4.3 An algorithm for solving the k-mis MinMax problem

	5 An e-approximation algorithm

	p035-Gregor
	1 Introduction
	1.1 Strong Lovász conjecture
	1.2 Row operations
	1.3 Our results
	1.4 Related work

	2 Preliminaries
	3 Joining lemma for Hamilton connectivity
	4 Proof of Theorem 1
	5 Base cases for the induction
	6 Alternating path in two-edge-colored complete graph
	7 Algorithmization
	8 Open questions

	p036-Grobler
	1 Introduction
	1.1 Results Overview
	1.2 Paper Outline

	2 Preliminaries
	2.1 Graphs
	2.2 Solution Discovery
	2.3 Parameterized Complexity and Kernelization

	3 IS-D on Nowhere Dense Classes
	4 IS-D for Parameters b and Pathwidth
	4.1 The Minimum Maximum Outdegree Problem and Foundational Gadgets
	4.2 Lower Bound Proofs

	5 VCut-D for Parameter k

	p037-Gudmundsson
	1 Introduction
	1.1 Related work
	1.2 Notation

	2 Decision algorithm
	2.1 Simplification
	2.2 Fuzzy decider
	2.2.1 Constructing the vertices
	2.2.2 Constructing the edges
	2.2.3 Returning either (i) or (ii)

	2.3 Complete approximate decider

	3 Optimisation algorithm
	3.1 Approximating the optimal simplification
	3.2 Approximating the Fréchet distance

	4 Conclusion

	p038-Hanaka
	1 Introduction
	2 Preliminaries
	3 Polynomial-time algorithm
	3.1 Exchangeability graph
	3.2 Proof of

	4 Inapproximability of finding a shortest reconfiguration sequence
	4.1 Construction
	4.2 Correctness

	5 Conclusion

	p039-Hanaka
	1 Introduction
	2 Preliminaries
	3 Core Stability Verification
	3.1 Hardness Results
	3.2 Algorithms

	4 Core Stability
	4.1 Core stability on graphs of bounded vertex cover number
	4.2 Core stability parameterized by maximum degree and treewidth

	5 k-Core Stability
	6 Conclusion

	p040-Hlineny
	1 Introduction
	2 Preliminaries
	2.1 Drawings
	2.2 Tree-width and Path-width

	3 Hardness Reduction
	3.1 High-level Idea
	3.2 Auxiliary Graphs
	3.3 The Full Reduction
	3.4 Drawings Claims
	3.5 Correctness
	3.6 On Path-width of the Resulting Instance

	4 Conclusion

	p041-Jacob
	1 Introduction
	2 Preliminaries
	3 A Polynomial Kernel for Cliques and Trees
	3.1 Initial Preprocessing Rules
	3.2 Bounding the Clique Vertices in G - S
	3.3 Bounding the Tree Vertices in G - S

	4 Conclusions and Future Research

	p042-Jiang
	1 Introduction
	1.1 Our Results
	1.2 Further Related Work
	1.3 Paper Organization

	2 Preliminaries
	3 Effect of Composition on Wilber's bounds
	3.1 Subadditivity of the alternation bound
	3.1.1 Decomposing the tree
	3.1.2 Stating the classification
	3.1.3 Proving the classification
	3.1.4 Using the classification to prove Theorem 17

	4 Boosting the separation between Wilber's bounds
	4.1 What boosting can we get?

	5 Optimality of Tango Trees

	p043-Kakimura
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Reconfiguration on Factor-Critical Graphs
	3.1 Proof Overview
	3.2 Reconfiguration to a Placement Aligned with Ear Decomposition
	3.3 Reconfiguration using Ear Decomposition

	4 Reconfiguration on Locally-Connected Graphs
	5 Concluding Remarks

	p044-Kubo
	1 Introduction
	2 Notation and Basic Properties
	3 Composition of Increasing Linear Functions
	4 Composition of General Linear Functions
	5 Matrix Multiplication

	p045-Li
	1 Introduction
	2 Algorithms
	3 Conclusion

	p046-Lochet
	1 Introduction
	2 Preliminaries
	3 The steps of the kernelization algorithm
	4 The degree reduction phase
	4.1 Overview and key insights
	4.2 Proof of Lemma 2 (Irrelevant edge)
	4.2.1 Finding a large x-good sequence
	4.2.2 Finding an irrelevant edge

	5 Conclusion

	p047-Lozin
	1 Introduction
	2 Some Basic Results
	2.1 {C_{5}}-Colouring for Bounded Degree and Large Girth
	2.2 The Standard NP-hardness Reduction to Star-3-Colouring
	2.3 The Standard NP-hardness Reduction to C_5-Colouring

	3 The Four Testbed Problems Do Not Satisfy C3
	4 Bounded Treewidth Results
	5 Hamilton Cycle
	6 k-Induced Disjoint Paths
	7 C_5-Colouring
	8 Conclusions

	p048-Manthey
	1 Introduction
	2 Preliminaries and Notation
	2.1 The Class PLS
	2.2 Definitions of Local Search Problems
	2.3 Strategy

	3 Reduction to Odd Min/Max Bisection
	4 Reduction to Clustering Problems
	5 Discussion

	p049-Mari
	1 Introduction
	2 Notations and preliminaries
	3 Warm-up: single edge instances
	4 Overview
	5 Heavy instances
	6 General instances
	7 Other related works
	8 Concluding remarks

	p050-Misra
	1 Introduction
	2 Preliminaries
	3 Affine formulas
	4 2-CNF formulas
	5 Hitting formulas
	6 Concluding remarks

	p051-MITHardnessGroup
	1 Introduction
	1.1 Our Results: Generalized #SAT
	1.2 Our Results: Constraint Graph Satisfiability

	2 Preliminaries
	2.1 Generalized #SAT
	2.2 Constraint Graph Satisfiability

	3 Generalized #SAT Dichotomy
	3.1 Easy Cases
	3.2 Hardness
	3.3 Main Dichotomy Result

	4 Counting Constraint Graph Configurations (#CGS)
	4.1 Constraint Graphs with a Single Vertex Type
	4.2 Parsimonious Reduction from #1-in-3SAT to #CGS
	4.3 Constraint Graphs with Two Vertex Types
	4.3.1 Decision Easiness
	4.3.2 #CGS Hardness
	4.3.3 #CGS Easiness

	5 Conclusion and Future Work

	p052-Nakamura
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Zero-suppressed Binary Decision Diagram
	2.2 Family Algebra Operations on ZDDs

	3 Blow-Up Operations
	3.1 High-Level Idea
	3.2 Proofs with Specific Element Order
	3.2.1 Join, Disjoint Join, Joint Join, Meet, and Delta
	3.2.2 Quotient and Remainder
	3.2.3 Restrict, Permit, Nonsuperset, and Nonsubset
	3.2.4 Maximal and Minimal
	3.2.5 Minimal Hitting Set and Closure

	3.3 Consideration for Element Order
	3.4 Polynomially Bounded ZDDs
	3.5 Discussion

	4 Conclusion

	p053-Pal
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Algorithm
	4.1 Correctness
	4.2 Implementation

	p054-Paul-Pena
	1 Introduction
	1.1 Main Result
	1.2 Main Ideas

	2 Related Work
	3 Preliminaries
	3.1 DAG-tree decompositions

	4 Obtaining Vertex-Centric Counts
	5 From Vertex-Centric to Orbit Counts
	6 Wrapping it up
	7 Lower Bound for computing Homomorphism Orbit Counts

	p055-Thiessen
	1 Introduction
	1.1 Oblivious Data Structures
	1.1.1 Security Definition
	1.1.2 Offline ORAM

	1.2 Previous Work
	1.3 Contributions

	2 Oblivious Priority Queue from Oblivious Partitioning
	2.1 Details of the Construction
	2.2 Non-Distinct Priorities

	3 Offline ORAM from Oblivious Priority Queues
	3.1 Online Phase: Processing the Operations
	3.2 Offline Phase: Pre-Processing

	4 External-Memory Oblivious Priority Queue
	4.1 External-Memory Oblivious Partitioning
	4.2 Analysis of the External-Memory Oblivious Priority Queue

	5 Conclusion and Future Work

	p056-VanderHoog
	1 Introduction
	2 Preliminaries
	2.1 Results
	2.2 Corollaries

	3 Simplification and a data structure
	4 The 1-TADD technique
	5 Approximate distance oracles under the discrete Fréchet distance
	6 Approximate Discrete Fréchet distance
	6.1 Perceived free space matrix and free space complexity
	6.2 A data structure for answering A-decision(Q, e, r)
	6.3 A data structure for answering A-value(Q, e)

	p057-Wlodarczyk
	1 Introduction
	2 Preliminaries
	3 The reduction
	4 Constructing the scheme
	5 Conclusion

	p058-Wlodarczyk
	1 Introduction
	1.1 The problems under consideration
	1.2 Our contribution

	2 Preliminaries
	3 Equivalences
	4 Permutation Subset Sum
	5 Conclusion

	p059-Zhao
	1 Introduction
	1.1 Our results

	2 Notations
	2.1 Problem Definitions
	2.2 The Lower bounds

	3 Two Algorithms for Cu-VRPSD
	3.1 The first algorithm
	3.1.1 The analysis
	3.1.2 The application

	3.2 The second algorithm
	3.2.1 The applications

	4 Two Algorithms for Cu-VRP
	4.1 The first algorithm
	4.2 The second algorithm

	5 Conclusion

