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Abstract
Presburger arithmetic, or linear integer arithmetic (LIA), is a logic that allows one to express linear
constraints on integers: equalities, inequalities, and divisibility by nonzero n ∈ Z. More formally, it
is the first-order theory of integers with addition and ordering. This paper offers a short introduction:
what can be expressed in this logical theory, decision problems, and automated reasoning methods.

We begin with an elementary introduction, explaining the language of linear arithmetic constraints
by examples. We adopt a theoretical perspective, focusing on the decision problem: determining
the truth value of a logical sentence. The following three views on Presburger arithmetic give us
three effective methods for decision procedures: a view from geometry (using semi-linear sets), from
automata theory (using finite automata and recognizable sets), and from symbolic computation
(using quantifier elimination).

The decision problem for existential formulas of Presburger arithmetic is essentially the feasibility
problem of integer linear programming. By a fundamental result due to Borosh and Treybig
[Proc. Am. Math. Soc. 55(2), 1976] and Papadimitriou [J. ACM 28(4), 1981], it belongs to the
complexity class NP. Echoing the three views discussed above, we sketch three proofs of this result
and discuss how these ideas have been used and developed in the recent research literature.

This is a companion paper for a conference talk focused on the three views on Presburger
arithmetic and their applications. The reader will require background knowledge at the level of
undergraduate computer science curricula. The discussion of complexity aspects is more advanced.
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1 What is linear integer arithmetic?

Linear integer arithmetic, also known as Presburger arithmetic, combines linear Diophantine
equations with logic (Boolean connectives and quantifiers). Intuitively, a logic is a language in
which we can express things that are true or false. In the language of Presburger arithmetic
we can:

talk about integers (referred to as variables x, y, . . . ),
assert linear inequalities involving these integers,
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1:2 An Introduction to the Theory of Linear Integer Arithmetic

Figure 1 Black dots show integer points (assignments to x, y) that make the formulas in Eqs. (1)
and (2) true. These assignments form sets T (left) and U (right), respectively. On the left, the set of
solutions in R2 to the system of 3 inequalities in Eq. (1) is the intersection of 3 half-planes, shown
in grey.

form Boolean combinations (logical AND, OR, NOT, denoted by ∧, ∨, ¬, respectively)
of these assertions, and
quantify over (all) integers, using “for all” (∀) and “there exists” (∃).

We develop the intuition first, deferring rigorous definitions to Section 2.
A formula in linear integer arithmetic is a syntactic object. A formula expresses (defines)

a set of points with integer coordinates, that is, a subset of Zd for some d. For example, the
formula

(x ⩽ 3y) ∧ (2y ⩽ x) ∧ (y ⩽ 2) (1)

defines the set T = {(0, 0), (2, 1), (3, 1), (4, 2), (5, 2), (6, 2)} of integer points in a triangle.
Indeed, {(x, y) ∈ Z2 : (x ⩽ 3y) ∧ (2y ⩽ x) ∧ (y ⩽ 2)} = T , see Fig. 1 (left). Informally,
the formula talks about x and y, and thus defines a set in 2D. A set may be equivalently
expressed by more than one logical formula. For example, the two formulas

(x < 0) ∨ (y < 0) and ¬((x ⩾ 0) ∧ (y ⩾ 0)) (2)

define the same set, call it U , depicted in Fig. 1 (right).
Let us consider some formulas with quantifiers. As an elementary example, the formula

∀x [(∃y (x = 2y)) ∨ (∃z (x = 2z + 1))] (3)

can be interpreted as saying that every integer is either even or odd (possibly both). Notice
that we could equivalently write ∀x [(∃y (x = 2y)) ∨ (∃y (x = 2y + 1))], because the choice
of name (y or z) for the auxiliary variable does not change the meaning of the formula, as
long as there is no “name clash”: usage of a name that is already in use at this point in the
formula.

Formally, variables that a formula φ “talks about” are called free variables of φ. For
example, the formula

E(x) : ∃y (x = 2y) (4)

talks about a single variable, x, and asserts that x is even. Note that we denoted this
formula E(x). More generally, we write, for instance, φ(x, y, z) implying that φ has no free
variables except x, y, and z. It is not implied that x, y, and z are mentioned by φ: some
or even all of them may not appear in it. In the formula from Eq. (3), all variables are
“quantified away”, that is, these formulas have no free variables. Each of these formulas
evaluates to just true or false. Formulas without free variables are called sentences.
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▶ Example 1. Fix two integers a, b > 0. Consider the sentence

Ca,b : ∀s ∃x1 ∃x2 s = ax1 − bx2.

We will see in Section 3 that Ca,b is true if and only if a and b are coprime. Intuitively, Ca,b is
implied by, and in fact equivalent to, a similar formula ∀s1 ∀s2 ∃x1 ∃x2 s2 − s1 = ax1 − bx2.
Rearranging the terms, we can rewrite the equation as s1 +ax1 = s2 + bx2. So the formula in
fact asserts that the two arithmetic progressions s1, s1 +a, s1 +2a, . . . and s2, s2 +b, s2 +2b, . . .
always have a number appearing in both, no matter how the initial terms s1 and s2 are
chosen. ⌟

▶ Remark. In Example 1, a and b are fixed parameters. If they were, in fact, variables, then
the given formula would not be a sentence and would talk about a and b. Denote it C(a, b).
Assuming a, b > 0, the formula C(a, b) would still assert that a and b are co-prime, but would
no longer be a formula of linear integer arithmetic, because of the multiplication of two
variables a and x1. Logicians would say that C(a, b) is a formula in the language of rings.

All variables are always quantified over the same set, namely Z. That is, the syntax of
Presburger arithmetic disallows formulas such as ∀x ∈ S φ(x). Can we still express such an
assertion in our logic? Assuming that the set S itself can be defined in Presburger arithmetic,
namely as S = {a ∈ Z : ψ(a) is true} for some formula ψ with one free variable, we can write
∀x (¬ψ(x) ∨ φ(x)) or, equivalently, ∀x (ψ(x) → φ(x)), where → denotes logical implication.
Presburger arithmetic can quantify over individual numbers (first-order quantification), but
not over sets, relations, etc.

Some assertions cannot be written as a finite Boolean combination of linear inequalities
without the help of quantifiers. An example is the formula E(x) from Eq. (4). It is thus often
convenient to extend the syntax of the logic by assertions such as “x is even”, “x− 3y + 5 is
divisible by 7”, etc. We can write them as divisibility constraints k | . . . , reading “k divides
. . . ”, where k is a fixed nonzero integer (that is, k cannot be a variable or an expression
involving variables). Yet another alternative syntax is congruences t1 ≡ t2 (mod k), with
t1, t2 linear functions. Such constraints, also known as modulo constraints, can be used
alongside linear inequalities as basic building blocks of linear integer arithmetic.

▶ Example 2. By the Chinese remainder theorem, formula

(x ≡ 2 (mod 3)) ∧ (x ≡ 1 (mod 5)) ∧ (x ≡ 3 (mod 7)) ∧ (x ⩾ 0)

defines the set of natural numbers congruent to 101 modulo 105 = 3 · 5 · 7. An equivalent
formula avoids modulo constraints at the cost of extra quantified variables: ∃u∃v ∃w (x−2 =
3u) ∧ (x− 1 = 5v) ∧ (x− 3 = 7w) ∧ (x ⩾ 0). ⌟

Linear integer arithmetic, and logical theories of arithmetic more generally (not necessarily
linear), provide a common framework for expressing problems from various domains: for
example, many classical combinatorial optimisation problems can be encoded directly.

▶ Example 3. The subset sum problem asks, given natural numbers a1, . . . , an, whether
there exists a subset that sums up to a given target, t:

∃x1 . . . ∃xn

k∧
i=1

[(xi = 0) ∨ (xi = 1)] ∧
n∑

i=1
aixi = t.

Notice that, since all quantification is over integers, the subformula in square brackets can
be rewritten as [(0 ⩽ xi) ∧ (xi ⩽ 1)], making the entire sentence an existentially quantified
conjunction of equalities and inequalities. In terms of computational complexity, the subset
sum problem is NP-complete [136, Section 7.5]. ⌟

FSTTCS 2024



1:4 An Introduction to the Theory of Linear Integer Arithmetic

▶ Example 4. The Frobenius coin problem asks for the largest whole amount that cannot
be formed using coins with denominations a1, . . . , an, all in unbounded supply [144, 5]. If
the greatest common divisor of a1, . . . , an is 1, then such a number exists and is referred
to as the Frobenius number of a1, . . . , an, denoted F (a1, . . . , an). For every x ∈ Z, we have
F (a1, . . . , an) ⩽ x if and only if the following formula of Presburger arithmetic is true:

Φ(x) : ∀y ∃x1 . . . ∃xn

[
(y ⩽ x) ∨

(
k∧

i=1
(xi ⩾ 0) ∧

(
n∑

i=1
aixi = y

))]
.

Thus, F (a1, . . . , an) is the number that satisfies (makes true) the formula Φ(x) ∧ ¬Φ(x− 1)
or, equivalently, the formula

Φ(x) ∧ ∀z1 . . . ∀zn

[
k∨

i=1
(zi < 0) ∨

(
n∑

i=1
aizi < x

)
∨

(
n∑

i=1
aizi > x

)]
.

Deciding whether F (a1, . . . , an) ⩽ t is NP-hard [4] and belongs to the complexity class
coNPNP = Π2P (see, e.g., the definition of the polynomial(-time) hierarchy [136, Section 10.3]).

⌟

Decision problems and decision procedures
Is it possible to determine the truth value of a given sentence of Presburger arithmetic? This
problem is traditionally referred to as the decision problem:

Input: Sentence φ.
Output: Is φ true or false?

There exists an algorithm (a decision procedure) that solves the decision problem for Pres-
burger arithmetic; see Section 3. Thus, one says that (the theory of) Presburger arithmetic
is decidable. This statement requires proof, because quantifiers in φ range over an infinite
set, Z.

The existence of algorithms that solve the decision problem for this and for other logics
enables the field of automated reasoning: we can outsource to a computer the determination of
whether a formal mathematical statement (even if expressed in a relatively simple language) is
true or false! At the same time, sentences of Presburger arithmetic are not deep mathematical
truths: this logic is rather restrictive. Extending the syntax by allowing not just linear
but arbitrary polynomial constraints makes the problem undecidable. (This follows from
Gödel’s incompleteness theorems and Tarski’s undefinability theorem. The argument is shown
in, e.g., [23, Chapter 17] and [135, Chapter 10].) In fact, even for Presburger arithmetic
the worst-case computational complexity of the problem is high, meaning that big input
sentences φ may require prohibitively large computation time. Still, Presburger arithmetic
offers a useful language for expressing assertions that arise in applications and can be checked
in an automated fashion, striking a balance between expressiveness and decidability.

Nowadays powerful software tools are available that implement decision procedures for
many logical theories (involving arithmetic or not). A big class of such tools is satisfiability
modulo theories (SMT) solvers, developed since the early 2000s (see, e.g., [2, 12, 11]). SMT
solvers build on the earlier boom of Boolean satisfiability (SAT) solvers, adding to SAT more
powerful logics; hence the “modulo [logical] theories” in the name.

The present paper adopts a theoretical perspective, focusing on the pure decision problem
as defined above. In practice, the success of software tools depends on many other features
taking theoretical ideas further (see, e.g., [26, Chapter 1]). For example, solvers can be asked
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to produce explanations: proofs that a given sentence is true or false. Also key is incremental
solving: when a new constraint is appended to an input sentence, the solver can benefit
from information gained in its previous run, instead of restarting from scratch. SMT solvers
implement not only algorithms (in the strict sense of the word) for decision problems but also
heuristic approaches (for decidable as well as undecidable theories). This way the tools can
successfully handle formulas coming from applications with thousands of variables, avoiding
the worst-case computational complexity or even undecidability.

2 Syntax and semantics (formal definitions)

We give formal definitions of syntax and semantics of linear integer arithmetic. A description
of the syntax of a logic specifies which syntactic expressions are admissible (“belong” to the
logic), and the semantics prescribes their meaning. The goal here is not to re-define or revise
fundamental mathematical notions, but rather to determine unambiguously:
(syntax) what kind of formulas a decision procedure must be able to handle (as its input);
(semantics) what the correct output (truth value) for each possible input formula is.

Let V be the set (alphabet) of variables that a formula may use. A small example might
have V = {x, y}, but in general V may well be infinite.

Syntax. We first define terms. Intuitively, a term in our logic is an expression that can
evaluate (under an assignment of values to variables) to an integer. Formally, a term is a
formal expression of the form a0 + a1x1 + . . .+ anxn, where a0, . . . , an ∈ Z, x1, . . . , xn ∈ V,
and n ⩾ 0.

We now define formulas of the logic. Formulas, like terms, are syntactic objects. Unlike
terms, the intuition is that a formula should evaluate (again under an assignment of values
to variables) to true or false. The definition is in two “stages”.

An atomic formula, or an atom, is either a comparison of the form t1 < t2, t1 ⩽ t2, or
t1 = t2, where t1 and t2 are terms, or a congruence constraint of the form t1 ≡ t2 (mod m),
where t1 and t2 are terms and m ∈ Z \ {0}.
▶ Remark. Although this definition excludes comparisons of the form t1 > t2 and t1 ⩾ t2, we
can always rewrite such comparisons backwards: t2 < t1 and t2 ⩽ t1, respectively. Therefore,
we can regard symbols > and ⩾ as “syntactic sugar”. Similarly, a divisibility constraint of
the form k | t, where k ∈ Z \ {0} and t is a term, can be rewritten as t ≡ 0 (mod k).

The main definition is inductive. A formula is:
either an atomic formula,
or an expression of the form φ ∧ ψ, φ ∨ ψ, or ¬φ, where φ and ψ are formulas,
or an expression of the form ∃x φ or ∀x φ, where φ is a formula.

Only expressions of the above three kinds are considered formulas. We use brackets to
disambiguate the composition of formulas from its sub-formulas. The reader can verify that
all formulas from Section 1 are indeed formulas according to this definition.

Note that the third case does not restrict φ, and in particular we do not specify whether
or not the variable x bound by the quantifier even appears in φ.
▶ Remark. A reader unfamiliar with mathematical logic may find it convenient to assume
no variable reuse. That is, whenever a formula Φ contains a subformula ∃x φ or ∀x φ, we
can assume that all occurrences of x in Φ are within subformulas of such two forms, and
moreover these subformulas cannot contain one another. This convention forbids, e.g., nested
quantifiers that bind the same variable.

FSTTCS 2024



1:6 An Introduction to the Theory of Linear Integer Arithmetic

Semantics. We now show how to “assign meaning” to formulas, which have been defined
above as purely syntactic objects.

An assignment is a map from V, our alphabet of variables, to Z. Let ν : V → Z be an
assignment and take some integer a ∈ Z and variable x ∈ V. By ν[a/x] we denote another
assignment, ν′, that agrees with ν on all variables from V except x and sets ν(x) to a:

ν′(u) =
{
ν(u) if u ∈ V \ {x},
a if u is x.

For example, if V = {x, y} and ν(x) = ν(y) = 6, then for ν′ = ν[3/y] we have ν′(x) = 6 and
ν′(y) = 3.

If t is a term and ν an assignment, then by ν(t) we denote the value of t under ν. Formally,
if t is a0+a1x1+. . .+anxn where x1, . . . , xn ∈ V , then ν(t) = a0+a1ν(x1)+. . .+anν(xn). Note
that ν(t) is a (specific) integer. In the example from the previous paragraph, ν(x−3y+5) = −7
and ν[3/y](x− 3y + 5) = 2.

We are now ready to assign truth values to formulas, given an assignment. This definition
is also inductive, following the inductive definition of a formula. Let ν be an assignment. For
every formula we determine whether it holds under ν (also: φ is true on ν; ν satisfies φ):

Take an atomic formula t1 < t2, t1 ⩽ t2, t1 = t2, or t1 ≡ t2 (mod m), where t1 and t2 are
terms and m ∈ Z \ {0}. Then t1 < t2 holds under ν if and only if ν(t1) < ν(t2). Here
ν(t1) < ν(t2) is just a comparison between two specific numbers from Z. The definition
for the cases of t1 ⩽ t2 and t1 = t2 is analogous. For the case of t1 ≡ t2 (mod m), the
condition is that ν(t1) − ν(t2) is a multiple of m.
A formula φ ∧ ψ holds under ν if both φ and ψ hold under ν. For φ ∨ ψ, the condition is
that at least one of φ and ψ holds. For ¬φ, the condition is that φ does not hold.
A formula ∃x φ holds under ν if for some a ∈ Z the formula φ is true under the
assignment ν[a/x]. A formula ∀x φ holds under ν if for every a ∈ Z the formula φ is true
under the assignment ν[a/x].

This definition may appear tautological (and even unnecessary), but it ensures that the
meaning of formulas is determined unambiguously.
▶ Remark. In logic, the standard notation for “φ holds under ν” would be “(Z,+,⩽), ν |= φ”,
as the satisfaction relation is really a ternary relation. Here (Z,+,⩽) is the structure that
we have fixed throughout: Z is the domain of discourse (universe), +: Z × Z → Z is binary
addition on Z, and ⩽ is the standard “less than or equal to” relation (predicate) on Z.
Intuitively, a structure “realises” the syntax of a logic, giving a “valuation” for each symbol.

An occurrence of a variable x ∈ V in a formula Φ is free if it lies outside all subformulas
∃x φ and ∀x φ, and bound otherwise. Now, x ∈ V is a free variable of Φ if it has a free
occurrence, and a bound variable otherwise. A bound variable might have no occurrences
whatsoever. Sentences are exactly formulas with no free variables.

▶ Proposition 5. The truth value of a sentence does not depend on the choice of assignment.

Proof idea. Reduce to the following special case. Let x be a bound variable of Φ and assume
ν2 = ν1[a/x] for some a ∈ Z. Then Φ holds under ν1 if and only if it holds under ν2. (In
fact, Φ may be assumed to be an arbitrary formula, not necessarily a sentence.) ◀

▶ Remark. In logic, the theory of a structure is the set of all sentences true in this structure.
Presburger arithmetic is, formally, the (first-order) theory of the structure (Z,+,⩽). Consider
the sentence Φ: ∀x∃y (x = 2y), which is false. According to this definition, Φ is therefore
not a sentence of Presburger arithmetic. It is, however, a sentence (written) in the syntax of
Presburger arithmetic.
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In the present paper, whenever we refer to sentences of Presburger arithmetic (linear
integer arithmetic), as well as of other logics, the meaning is purely syntactic. We will not
use the concept of theory as such, but we have decided to mention the distinction so that
the reader does not get confused when consulting literature.

Taking a formula φ(x1, . . . , xn), that is, one where all free variables are among x1, . . . , xn,
it is occasionally convenient to write φ(a1, . . . , an) for the truth value of φ on any assignment ν
such that ν(xi) = ai for all i. For a sentence φ, it should be clear from the context whether,
when writing φ, we are referring to the syntactic object or to its truth value.

The set {a ∈ Zn : φ(a) is true} is the set defined by formula φ; sets for which a suitable
formula exists are definable sets. Here and elsewhere, we use boldface letters to denote
elements of Zn. We do this for tuples of variables too, writing x = (x1, . . . , xn). Two formulas
φ(x) and ψ(x) are equivalent if they define the same set; we write φ(x) ⇐⇒ ψ(x).

3 Three views on linear integer arithmetic

Sets S ⊆ Zd definable in linear integer arithmetic (also: Presburger-definable sets) can also
be represented with the help of geometry, or with the help of strings. The following three
representations are available.
Semi-linear sets. A set can be specified by referring to its geometric features. In an analogy,

a triangle in R2 can be specified by referring to its vertices. In the case of linear integer
arithmetic, we also need to describe periodic patterns to specify a set.

Finite automata. To represent a subset of natural numbers, we can use a finite automaton
over {0, 1} that recognises (accepts) the set of binary expansions of these numbers. This
idea extends to negative integers, as well as to tuples of integers.

Logical formulas. To represent a set, we can use a formula that is true exactly for the
elements of the set. We already saw this representation in Section 1, following the syntax
given in Section 2.

Thus, Presburger-definable sets can be viewed in three different ways: from the perspective
of geometry, automata theory, and symbolic computation, respectively. Each of the three
representations can be employed to solve the decision problem for Presburger arithmetic.
The three resulting methods, generalised appropriately, can also be used for other logics.

In this section, we describe these three views on linear integer arithmetic in more detail.
Actual algorithms are not given in this short introduction, only the ideas behind them.

3.1 A view from geometry: semi-linear sets
Semi-linear sets are a generalisation to Zd of ultimately periodic sets of natural numbers.
Let S ⊆ N.1 The set S is called:

periodic if there is p > 0 such that, for all x ∈ N, we have x ∈ S if and only if x+ p ∈ S;
ultimately periodic if there are N and p > 0 such that, for all x ⩾ N , we have x ∈ S if
and only if x+ p ∈ S.

We call the numbers p and N the period and the offset, respectively. A multiple of a period
is also a period, and any number exceeding an offset is also an offset.

▶ Example 6. In Fig. 2, the top set is periodic with period 3, and the other two sets are not
periodic. The top two sets are ultimately periodic, also with period 3. ⌟

1 Whether 0 ∈ N or not is a matter of convention. In logic, it is more common to include zero in the set
of natural numbers. We follow this convention.

FSTTCS 2024



1:8 An Introduction to the Theory of Linear Integer Arithmetic

(x ≡ 0 (mod 3)) ∨ (x ≡ 2 (mod 3))
(x ≡ 0 (mod 3)) ∨ (x ≡ 2 (mod 3)) ∨ (x = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
x is a power of 2

Figure 2 Three sets of natural numbers as sets of points on the number line with coordinate
x ∈ N. Black and white dots show numbers included in and excluded from the set, respectively. The
top two sets are definable in linear integer arithmetic and the bottom set is not.

For the following Proposition, our definition of an arithmetic progression is a set

{a, a+m, a+ 2m, . . .} = {x ∈ Z : ∃t ∈ Z (x = a+ tm) ∧ (t ⩾ 0)}, a,m ∈ N. (5)

A special case is a singleton, if m = 0. From Eq. (5), or by the formula (x ≡ a (mod m))∧(x ⩾
a), every arithmetic progression is definable in linear integer arithmetic.

▶ Proposition 7. A set S ⊆ N is ultimately periodic if and only if it is a union of finitely
many arithmetic progressions.

Ultimately periodic sets are closed under the following operations: complement (because
p and N stay unchanged); intersection (the least common multiple of the two periods is a
new period, and the maximum of the two offsets is a new offset); and union (e.g., by De
Morgan’s law).

There is more than one way to generalise ultimately periodic sets to higher dimensions.
For example, should the two sets shown in Fig. 1 be considered ultimately periodic or not?
For us, the most useful analogue will be the following definition due to Parikh [114], which is
probably the most inclusive.

We first define an analogue of arithmetic progressions. A set S ⊆ Zd is called linear if
there is b ∈ Zd and a finite set P = {p1, . . . ,pk} ⊆ Zd such that

S = L(b, P ) def=
{

b +
k∑

i=1
λipi : λ1, . . . , λk ∈ N

}
. (6)

The term “linear” is traditional; the integer programming community uses the term “integer
cone” (if b is 0 def= (0, . . . , 0)) instead (see, e.g., [48, 80]). Notice that k may be different
from d. If P = ∅, then L(b, P ) = {b}.

A set is semi-linear if it is a union of finitely many linear sets. Points b are referred
to as base points, offsets, or constants. Vectors p ∈ P are period vectors, or periods. Base
points and periods can be collectively referred to as generators, and the representation
S =

⋃
i∈I L(bi, Pi) as generator representation of S. Generator representation is not unique,

unless S is finite.

▶ Example 8. Linear set L(0, {p1,p2}) with p1 = (2, 1) and p2 = (1, 2) is shown in
Fig. 3 (left). Both sets in Fig. 1 are semi-linear. Indeed, T =

⋃
t∈T L({t},∅) and U =

L({−e1}, {−e1, e2,−e2}) ∪ L({−e2}, {−e2, e1,−e1}), where e1 = (1, 0) and e2 = (0, 1). ⌟

The following theorem shows that nice closure properties of ultimately periodic sets in N
extend to semi-linear sets in Zd. As it turns out, in dimension 1, ultimately periodic sets are
exactly subsets of N definable in linear integer arithmetic. In higher dimension, definable
sets are exactly semi-linear sets.
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p2

p1

y = 2x

x = 2y

Figure 3 Five sets forming a partition of N2, for Example 11. Left: linear set L(0, {p1, p2}) with
p1 = (2, 1) and p2 = (1, 2). Middle: linear sets V1 (in diamond shape) and V2 (in square shape).
Period vectors not shown are unit vectors e1 and e2, respectively. Right: linear sets W1 (in empty
blue circles) and W2 (in empty green squares), which are shifts of L(0, {p1, p2}) by (1, 1) and (2, 2),
respectively.

▶ Theorem 9 (Ginsburg and Spanier [57, 58]). For a set S ⊆ Zd, the following are equivalent:
(a) S =

⋃
i∈I L(bi, Pi) for some finite set I, offsets bi ∈ Zd and finite sets of periods Pi ⊆ Zd;

(b) S = { (a1, . . . , ad) ∈ Zd : φ(a1, . . . , ad) is true } for some formula φ of linear integer
arithmetic.

Moreover, this equivalence is effective: there exist algorithms for conversion between the
generator representation in (a) and the formula in (b).

Proof idea.

(a) ⇒ (b). For given b and P = {p1, . . . ,pk}, the condition x ∈ L(b, P ) can be expressed
using a formula with k existentially quantified variables for λ1, . . . , λk in Eq. (6). The
quantifier-free part of the formula is a conjunction of d equalities, one per coordinate, and
d inequalities λi ⩾ 0. A union of |I| sets corresponds to a disjunction of k formulas.

(b) ⇒ (a). The proof is by induction on the structure of the formula φ, following the
definition of the syntax from Section 2.

For an atomic formula (inequality, equality, or congruence) we construct the generator
representation directly. (It suffices to prove this for a non-strict inequality, because other
atoms can be avoided. Indeed: t1 < t2 if and only if ¬(t1 ⩾ t2); t1 = t2 if and only if
(t1 ⩽ t2) ∧ (t2 ⩽ t1); and t1 ≡ t2 (mod m) if and only if ∃x (t1 − t2 = mx).)
For formulas of the form φ ∧ ψ, φ ∨ ψ, or ¬φ, we prove the closure of the family of
semi-linear sets under Boolean operations.
For an existential quantifier, let y = (y1, . . . , yd) be the vector of free variables. Observe
that the set {b ∈ Zd : formula ∃x φ(x,y) holds on b} can be obtained from the set
{(a, b) ∈ Z × Zd : formula φ(x,y) holds on (a, b)} by orthogonal projection: namely by
removing the x-component (coordinate) from each element. In the generator representa-
tion, we simply cross out this component in all generators. Universal quantifiers can be
handled by observing that a formula ∀x φ is equivalent to ¬∃x ¬φ.

In truth, this plan requires a tweak: we need to handle systems of inequalities as a primitive.
(We sketch the construction in Section 5.1.) This is because proofs of the closure of semi-linear
sets under intersection use semi-linearity of sets of solutions to such systems. ◀

The algorithm (b) ⇒ (a) of Theorem 9, run on sentences, is a decision procedure for
linear integer arithmetic.
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▶ Example 10. Let us follow the sketch above for the co-primality formula Ca,b from
Example 1, Section 1. To make the argument concrete, fix a = 4 and b = 6.

The first step is to find a generator representation of the set of solutions in x1, x2, s to s =
4x1 − 6x2. A suitable one is L(0, {−v1,v1,−v2,v2}) with v1 = (1, 0, 4) and v2 = (0, 1,−6),
where the coordinates are written in the order x1, x2, s. Indeed, it is clear that all vectors of
this linear set are solutions; conversely, for a solution (x1, x2, s) we have x1 · v1 + x2 · v2 =
(x1, x2, 4x1 − 6x2) = (x1, x2, s), and thus (x1, x2, s) ∈ L(0, {−v1,v1,−v2,v2}).

In the second step, we handle the existential quantifiers that bind x1 and x2. We cross out
the corresponding coordinates, which leads to the set S1

def= L(0, {−4, 4,−6, 6}) = {4z1 + 6z2 :
z1, z2 ∈ Z}. To handle the universal quantifier, we rely on the “equivalence” ∀ = ¬∃¬: indeed,
the formula C4,6 is true if and only if the set Z \ S1 is empty. To complement S1, observe
that S1 ∩ N is periodic with period 4 as well as with period 6. It is therefore periodic with
period gcd(4, 6) = 2. The same is true for S1 ∩ {−n : n ∈ N}. Since 0 ∈ S1 and ±1 ̸∈ S1, we
have S1 = L(0, {−2, 2}) and Z \ S1 = L(1, {−2, 2}) ̸= ∅. Thus, C4,6 is false. ⌟

The construction of a semi-linear set for an inequality a0 + a1x1 + . . .+ adxd ⩽ 0, where
all ai ∈ Z, generalises what we saw for equality s = 4x1 − 6x2 in Example 10.

The following example illustrates the complementation of a semi-linear set.

▶ Example 11. Consider L(0, {p1,p2}) with p1 = (2, 1) and p2 = (1, 2), in Fig. 3. Its
complement can be decomposed as Z2 \ L(0, {p1,p2}) = U ∪ V1 ∪ V2 ∪W1 ∪W2, where:

U = {(x, y) ∈ Z2 : (x < 0) ∨ (y < 0)} (Example 8),
V1 = {(x, y) ∈ Z2 : (y ⩾ 0) ∧ (2y < x)} = L(e1, {e1,p1}),
V2 = {(x, y) ∈ Z2 : (x ⩾ 0) ∧ (2x < y)} = L(e2, {e2,p2}),
W1 = L((1, 1), {p1,p2}), and W2 = L((2, 2), {p1,p2}).

Set U is shown in Fig. 1 (right), and sets V1, V2, W1, W2 in Fig. 3. ⌟

Let us introduce the Minkowski sum notation for sets: A+B
def= {a+ b : a ∈ A, b ∈ B}.

We write a+B instead of {a} +B. In Example 11, sets Wi = (i, i) + L(0, P ) for i ∈ {1, 2}
are shifts of the set L(0, P ), where P = {p1,p2}. Moreover, these three sets form a partition
of the set of integer points in the sector {(x, y) ∈ R2 : (x ⩽ 2y) ∧ (y ⩽ 2x)}; see Fig. 3 (right).
The sector itself is definable in linear real arithmetic. We see on this example a useful rule
of thumb: reasoning about integer points combines reasoning about linear real arithmetic
(intuitively: geometric constraints in Rd) and reasoning about integer lattices (intuitively:
divisibility properties, or periodic patterns; see, e.g., [101, Section 2.2]).

Further reading. Over the years, multiple algorithms have appeared for operations on
semi-linear sets. Early papers [57, 58] and a monograph [56, Chapter 5] paved the way and
are still helpful for developing intuition. Huynh’s paper [78] is geometric and optimises the
size of description. More recent constructions [33, 35] optimise and analyse the dependence
of the size on multiple parameters; these papers provide further references.

If the dimension d is fixed, the decision problem for existential Presburger arithmetic
(where all quantifiers are ∃ and appear at the beginning of the formula) can be solved
in polynomial time [128]. In fact, all satisfying assignments (if finitely many) can be
efficiently enumerated if the formula, moreover, contains no occurrences of ∨ and ¬ and no
congruence constraints. These are consequences of fundamental results of Lenstra [95] and
Barvinok [14, 13]; see also, e.g., monographs [108, 39]. Nguyen and Pak [106] look at not
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Figure 4 Left: long addition base 10. Right: finite automaton that checks x + y = z, reading
triplets of digits right to left. Only transitions traversed on the example on the left, as well as the
transition for the triplet of leading zeros, are shown.

necessarily orthogonal projections of semi-linear sets (cf. proof idea for Theorem 9) and find
a way to compute generating functions for these projections, à la Barvinok. In a certain
technical sense, the idea extends to formulas with quantifiers in which d bounds the total
number of variables (quantified or not).

In recent years, extensions of semi-linear sets with applications to verification of Petri
nets have been considered in the literature [97, 63].

3.2 A view from automata theory: k-automatic sets

For simplicity, throughout this section arithmetic is over N instead of Z. Representation
of sets of numbers using finite automata is a far-reaching development of the following
observation. Consider natural numbers divisible by 3. It is well-known that these are
precisely the numbers whose sum of decimal digits is divisible by 3. A finite automaton
can read the decimal expansion of n ∈ N digit by digit (the input alphabet is {0, 1, . . . , 9}),
maintaining the remainder modulo 3 of all digits read so far. Then 3 | n if and only if the
final remainder is 0. In fact, there is nothing special about 3: to capture divisibility by,
say, 28, the automaton maintains the remainder modulo 28 of the number read so far.

To move from properties of individual numbers to properties of pairs and triplets of
numbers, etc., we use automata over larger input alphabets.

▶ Example 12. We describe an automaton that checks addition x+ y = z for x, y, z ∈ N.
The idea is to mimic the elementary method of long addition (Fig. 4, left). The automaton
will read triplets of decimal digits one at a time, so the input alphabet is {0, 1, . . . , 9}3, with
1000 letters. Intuitively, we could say the input tape has three tracks, one for each of x, y,
and z. Numbers can be padded with leading zeros (on the left), so that all tracks have the
same length. A deterministic finite automaton (DFA) can read the tape from right to left,
keeping the carry in its control state; see Fig. 4, right. The state with carry 0 is accepting.

Our automata will usually be incomplete: for example, there are no transitions on input
letter (0, 0, 5) ∈ {0, 1, . . . , 9}3, no matter the current carry. To make the DFA complete, we
can send all such transitions to a rejecting sink state. ⌟

Let us move from base 10 to base 2. Perhaps counter-intuitively, it will be more convenient
for us to use automata that read input from left to right instead, i.e., most significant bit
first. (In Example 12, we simply reverse all transitions in the automaton.)
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For d ⩾ 1, a set S ⊆ Nd is 2-automatic (or: 2-recognizable) if there is a deterministic
finite automaton (DFA) that accepts the language

{(w1, . . . , wd) ∈
(
{0, 1}d

)∗ : for some (n1, . . . , nd) ∈ S, each wi is a binary expansion of ni}. (7)

Notice that each n ∈ N has infinitely many binary expansions: e.g., 110, 0110, 00110, etc.
for 6 ∈ N. Replacing the base 2 with a larger integer k ⩾ 3, one gets k-automatic sets.

The definition refers to DFA, but any equivalent formalism for regular languages would
do just as well, e.g., nondeterministic finite automata (NFA) or regular expressions.

Automata that represent finite sets (as in Fig. 1, left) are not unlike binary decision
diagrams (BDDs), but can accept strings of varying length.

▶ Theorem 13 (Büchi–Bruyère [30, 29], corollary).
1. Every set S ⊆ Nd definable in linear integer arithmetic is 2-automatic. The containment

is effective: there is an algorithm that, given a formula φ defining S, constructs an
automaton accepting the language from Eq. (7).

2. There exists a 2-automatic set S ⊆ N that is not definable in linear integer arithmetic.

Proof idea. The first part is proved by induction on the structure of the formula. We follow
the definition of the syntax from Section 2:

We need to find an automaton (DFA) for every set defined by an atomic formula (inequality,
equality, or congruence). As in the proof of Theorem 9, we can focus on inequalities
with no loss of generality. In fact, we reduce the reasoning to the simplest possible case:
equalities of the form x+ y = z and 2x = z. For inequalities, introduce slack variables:
for instance, assuming that all variables range over N,

y ⩽ 2 ⇐⇒ ∃y′ (y + y′ = 2).

Equalities are further rewritten. For example:

s+ 2u = 3v ⇐⇒ ∃y1 ∃y2 ∃y3 (s+ y1 = y3) ∧ (y1 = 2u) ∧ (y2 = 2v) ∧ (y3 = v+ y2).

We can now use Example 12 with two amendments: input is in base 2 instead of base 10,
with most significant bit read first (instead of last).
Sets defined by formulas of the form φ∧ψ, φ∨ψ, or ¬φ are 2-automatic by the inductive
hypothesis and by the (effective) closure of the family of regular languages under Boolean
operations.
For the complementation to work correctly, it is important that leading zeros not affect
acceptance by the given automaton. Otherwise if, say, for d = 1 the string 110 is accepted
but 0110 is not, then the correspondence between sets of numbers and languages breaks:
the complement of the language will still contain a binary expansion of 6.
We describe the idea how an existential quantifier can be handled. (For universal
quantifiers, observe that ∀x φ is equivalent to ¬∃x ¬φ.) Let y = (y1, . . . , yd) be the vector
of free variables. Intuitively, if binary expansions of {(a, b) ∈ N × Nd : formula φ(x,y)
holds on (a, b)} can be recognised by a DFA over the alphabet {0, 1}d+1, then removing
the x-track from all letters leads to the set {b ∈ Nd : formula ∃x φ(x,y) holds on b}.
We need to be careful, however: in some accepted strings the erased track may be strictly
longer than all other tracks; that is, a has more binary digits than each component of b.
(In the formula ∃z (x+ y = z), this happens for the variable z: see Fig. 4 (left).) Thus,
after removing x-components from all letters on the transitions of the original DFA, we
make a state q accepting if and only if that DFA had an accepting run from q on which
all letters have 0 on the d “surviving” tracks.
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For the second part of the theorem, observe that the set P2 = {n ∈ N : n = 2k for some k ∈ N}
is 2-automatic: binary expansions of powers of 2 are exactly strings matched by regular
expression 0∗10∗. Since P2 is not ultimately periodic, it is not definable in linear integer
arithmetic (see Section 3.1). ◀

The first part of Theorem 13, applied to sentences, gives a decision procedure for
Presburger arithmetic.

The sketch above offers relatively little intuition as to how automata for various arithmetic
constraints really work. In the following example, we show an alternative, direct construction.

▶ Example 14. Consider the co-primality formula Ca,b from Example 1 (Section 1). Fix
a = 3 and b = 2. Unlike in Section 1, we let all variables range over N not Z.

For uniformity of notation, let us rename s to x0. Take the atomic formula x0 = 3x1 −2x2.
The idea is similar to the divisibility examples at the beginning of this section. As an
automaton reads triplets of bits left to right, it keeps in memory the current error (rather
than remainder modulo 3 or 28): the integer e = x0 − 3x1 + 2x2. (For the moment, we can
think of an infinite-state automaton, to be made finite-state shortly.) If e = 0, the current
state is accepting. Initially e = 0, because our equation x0 = 3x1 − 2x2 is homogeneous.
How does this error change over time?

Suppose the next bit triplet is (α0, α1, α2) ∈ {0, 1}3. If x0, x1, x2 are the binary numbers
read so far, then after reading the new bits these numbers become

x′
0 = 2x0 + α0, x′

1 = 2x1 + α1, x′
2 = 2x2 + α2.

Thus, the new error is

e′ = x′
0 − 3x′

1 + 2x′
2 = 2(x0 − 3x1 + 2x2) + (α0 − 3α1 + 2α2) = 2e+ (α0 − 3α1 + 2α2).

Denote u def= α0 − 3α1 + 2α2 and observe that u ∈ [−3, 3]. Thus, if |e| ⩾ 3, then |e′| ⩾ 3
as well and so state 0 is no longer reachable. Thus, just five states for e ∈ {−2,−1, 0, 1, 2}
suffice, and all other values can be glued into a rejecting sink.

The automaton for the quantifier-free formula x0 = 3x1 − 2x2 has a lot of transitions.
The table in Fig. 5 (left) shows the update u for each (α0, α1, α2) ∈ {0, 1}3. Observe that
the destination of transitions depends only on u and not on α0, α1, α2. In principle, each bit
triplet can be read from each control state, but if the new error e′ = 2e+ u is outside [−2, 2],
then the transition goes into the rejecting sink. Based on this automaton (which we do not
depict), we construct an automaton (NFA) for the formula φ(x0) : ∃x1 ∃x2 (x0 = 3x1 − 2x2):
for each transition, the label (α0, α1, α2) is replaced by just α0; see Fig. 5 (right).

We omit the acceptance analysis. It turns out that all states except −2 are accepting,
and the language recognised by the NFA is {0, 1}∗. Thus, formula C3,2 from Example 1 is
true even if all variables are interpreted over N. ⌟

Further reading. In connection with the second part of Theorem 13, it is meaningful to
ask whether a given set S ⊆ Nd represented by an automaton is definable in Presburger
arithmetic. As it turns out, this definability can be determined in polynomial [96] and,
in dimension d = 1, even almost linear time [100, 21]. The first of these algorithms was
implemented in TaPAS [98], a software framework for the theory of mixed real-integer linear
arithmetic [143, 19]. Paper [96] also contains a collection of references for contemporaneous
software for linear integer arithmetic. In a different direction, sets represented by automata
can be characterised by another logic, so-called Büchi arithmetic (see, e.g., [29, 18]).
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α0 α1 α2 u

0 0 0 0
0 0 1 2
0 1 0 −3
0 1 1 −1
1 0 0 1
1 0 1 3
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1 1 1 0
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Figure 5 Left: aggregate effect u for each bit triplet. Right: nondeterministic finite automaton
for the formula φ(x0) : ∃x1 ∃x2 (x0 = 3x1 − 2x2), with variables interpreted over N.

Let us mention a tool MONA [76, 86], which implements an automata-based decision
procedure for a more powerful logic: the weak monadic second-order logic with one successor
(WS1S). Informally speaking, this logic can “encode” Presburger arithmetic.

A more detailed exploration of the subject of this section (and, more generally, the
view of automata as data structures) can be found in Esparza and Blondin’s textbook [50,
Chapter 9]. Another source is a survey by Boigelot and Wolper [22]. Survey [29] reviews
Büchi’s idea (including a bugfix) and subsequent developments up to the 1990s. Several
chapters in the book [117] discuss topics such as interface of automata theory with number
theory (see also Rigo’s earlier survey [125]); automatic sequences; and automatic structures.
The latter are structures (in logic) in which, informally speaking, relations can be represented
by automata (generalising Example 12); see, e.g., Grädel’s tutorial [60]. A recent monograph
by Shallit [134] explores the use of logic to study automatic sequences (a closely related
concept), with applications in combinatorics on words. For a further sample of cutting-edge
developments, the reader is referred to papers [66, 139, 70, 43].

3.3 A view from symbolic computation: quantifier elimination
In symbolic computation, we rewrite a given formula iteratively, using a set of predefined
rules. The resulting formulas get progressively simpler structurally, usually at the cost of
increase in size. Often the objective is to remove quantifiers, so the approach is known as
quantifier elimination. We first give an example outside Presburger arithmetic.

▶ Example 15. Given p, q ∈ R, a quadratic equation x2 +px+q = 0 has a real solution if and
only if its discriminant is nonnegative: p2 − 4q ⩾ 0. Thus, the formulas ∃x [x2 + px+ q = 0]
and p2 − 4q ⩾ 0 (of a suitable logic over R) are equivalent, that is, we have eliminated the
quantifier ∃x. (Both formulas have free variables p and q.) ⌟

Importantly, we would like the resulting formula to stay within the syntax of the same
logic that we start from. For Presburger arithmetic, this is possible. (As we saw in Section 1
on the example of formula E(x) : ∃y (x = 2y), congruence constraints cannot be dispensed
with.) Geometrically, we saw in Section 3.1 that elimination of an existential quantifier
corresponds to orthogonal projection. This is very easy to handle for semi-linear sets in
generator representation; for logical formulas, a little more work is required.

A formula is quantifier-free if symbols ∃ and ∀ do not occur in it.

▶ Theorem 16 (Presburger [121]). There exists an algorithm that, given a quantifier-free
formula φ, outputs a quantifier-free formula φ′ equivalent to ∃x φ.
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Theorem 16 gives a decision procedure for linear integer arithmetic, in fact historically
the first one. English translation of and commentary on Presburger’s 1929 paper are
available [137, 122].

Instead of giving the proof in full generality, we will consider several examples. We
roughly follow an algorithm given by Cooper [37], later reproduced (under the heading “The
present algorithm”) in Cooper [38].

▶ Example 17. Consider the formula ∃x [(x ⩽ 3y) ∧ (2y ⩽ x) ∧ (y ⩽ 2)], which defines the
projection of the set T from Fig. 1 (page 2) on the y axis. Only the first two inequalities in
the formula mention x. Putting them into a chained inequality 2y ⩽ x ⩽ 3y, we see that
a suitable value for x exists (in Z) if and only if 2y ⩽ 3y, that is, y ⩾ 0. Thus, the entire
formula is equivalent to (y ⩾ 0) ∧ (y ⩽ 2). This is exactly the projection {0, 1, 2} of the set T
on the y axis. ⌟

If the formula has several inequalities bounding x from below (say, s1 ⩽ x, . . . , sk ⩽ x,
where s1, . . . , sk are some terms not involving x) and several inequalities bounding it from
above (say, x ⩽ t1, . . . , x ⩽ tm, with t1, . . . , tm not involving x), then a suitable value for x
exists (in Z) if and only if si ⩽ tj for all pairs i, j. In words, the greatest lower bound does
not exceed the least upper bound.

▶ Example 18. Now consider the formula ∃y [(x ⩽ 3y) ∧ (2y ⩽ x) ∧ (y ⩽ 2)], which defines
the projection of the same set T from Fig. 1 (page 2) on the x axis. To use the same principle
as in Example 17, we multiply both sides of each inequality by a positive integer so as to
make all the coefficients at y identical. In this case, they will be 6 = lcm(3, 2, 1). For all
x, y ∈ Z, we have x ⩽ 3y if and only if 2x ⩽ 6y; the other two inequalities are handled
similarly. We obtain one lower bound and two upper bounds on 6y; thus, the formula is true
if and only if 2x ⩽ 6y ⩽ min{3x, 12}, or equivalently (2x ⩽ 6y ⩽ 3x) ∧ (2x ⩽ 6y ⩽ 12).

It is, however, not true that a suitable integer value for y exists if and only if 2x ⩽
min{3x, 12}. Indeed, x = 1 gives a counterexample. Rather, such a value exists if and only
if there is an integer divisible by 6 between 2x and min{3x, 12}. To express this statement
without existential quantification (“there is an integer”), we consider several cases depending
on the remainder of 2x modulo 6. For example, if 2x has remainder 2 modulo 6, then instead
of inequality 2x ⩽ min{3x, 12} the condition to use is 2x+ 4 ⩽ min{3x, 12}, “rounding up”
the lower bound to a multiple of 6. (This is because y = 2x+ 4 is always a suitable choice
of y if 2x+ 4 ⩽ min{3x, 12} and 2x+ 4 ≡ 0 (mod 6).) The formula is thus equivalent to

5∨
r=0

[(2x+ r ≡ 0 (mod 6)) ∧ (2x+ r ⩽ min{3x, 12})]

or, slightly less succinctly,
5∨

r=0
[(2x+ r ≡ 0 (mod 6)) ∧ (2x+ r ⩽ 3x) ∧ (2x+ r ⩽ 12)] .

This eliminates the existential quantifier. Observing that only even r are possible and
collecting like terms, we can simplify the result further into

[(x ≡ 0 (mod 3)) ∧ (0 ⩽ x) ∧ (2x ⩽ 12)] ∨
[(x+ 1 ≡ 0 (mod 3)) ∧ (2 ⩽ x) ∧ (2x ⩽ 10)] ∨
[(x+ 2 ≡ 0 (mod 3)) ∧ (4 ⩽ x) ∧ (2x ⩽ 8)].

In the three cases, we get x ∈ {0, 3, 6}, x ∈ {2, 5}, and x ∈ {4}, so the formula defines the
set Z ∩ [0, 6] \ {1}. This is the projection of the set T in Fig. 1 (left) on the x axis. ⌟
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In Example 18, it is clear that the “hole” x = 1 in the projection of T arises because of
divisibility constraints, which are necessary because we are eliminating an integer variable. In
comparison, for the theory of linear real arithmetic, the conjunction max si ⩽ min tj already
does the job. In fact, over R this method shows that the orthogonal projection of a convex
polyhedron (that is, of the set of real solutions to a system of linear inequalities) is also a
convex polyhedron. The method is known as the Fourier–Motzkin quantifier elimination for
linear real arithmetic (see, e.g., [112, Chapter 1] and [92, Chapter 1]), a useful instrument
not only in the development of theory but also in modern practical tools [105].

As in Section 3.1, we see that reasoning about integers requires a combination of an
argument for reals and an approach for handling divisibility constraints.

Proof idea for Theorem 16. Using De Morgan’s laws and equivalences such as

¬(t1 ⩽ t2) ⇐⇒ (t2 < t1), (t1 < t2) ⇐⇒ (t1 + 1 ⩽ t2),

¬(t1 ≡ t2 (mod m)) ⇐⇒
m−1∨
r=1

(t1 + r ≡ t2 (mod m)),

bring the given formula φ to disjunctive normal form (DNF), or rather (more precisely) an
OR of ANDs of non-strict linear inequalities and congruence constraints (no negations). As
[∃x (A ∨B)] ⇐⇒ (∃x A) ∨ (∃x B), the problem reduces to handling one such AND. For this
special case, the idea is shown in Examples 17 and 18, and here is a more structured sketch:
1. Multiply both sides of each constraint so that all the coefficients at x become identical,

say to m ∈ Z. (A natural choice for m is the least common multiple of all coefficients
at x.)

2. Replace all occurrences of mx by x′, where x′ is a new (fresh) variable. Conjoin (AND)
the congruence x′ ≡ 0 (mod m) to the formula. We are now handling ∃x′ instead of ∃x.
(In Example 18, the auxiliary variable would be y′ standing for 6y.)

3. The formula is now an AND of constraints not involving x′, several lower bounds on x′,
several upper bounds on x′, and several congruence constraints on x′. We split into cases
(OR) according to which of the lower bounds s1, . . . , sk is the greatest and according to
the remainder (of this greatest lower bound) with respect to the least common multiple
of moduli in congruence constraints. Within each case, x′ can be eliminated. ◀

▶ Remark 19. A different take on quantifier elimination for Presburger arithmetic follows
Cooper’s algorithm (“the new algorithm”) in [38], not requiring conversion to DNF. After all
coefficients at variable x are made identical, the inequalities involving x split the set Z into a
finite number of intervals. A suitable value for x exists if and only if one of these intervals
contains an integer that satisfies (or perhaps fails) a certain subset of the inequalities and
has some divisibility properties (as prescribed by the Boolean structure of the formula).

Suppose the least common multiple of all divisors in the divisibility constraints is M > 0.
(M = 1 if there are no such constraints.) Let [α, β] be one of the intervals, where α and β

are terms in which x does not appear. Then a suitable value for x (importantly, one with
the right divisibility properties) exists in [α, β] if and only if one of α, α+ 1, . . . , α+ (M − 1)
is suitable and does not exceed β; this is because shifting x by M leaves the truth value of
all divisibility constraints unchanged. The case α = −∞ is similar and simpler. ⌟

▶ Observation 20. Let a formula φ′ be output by Cooper’s quantifier elimination procedure
on input φ, which has eliminated variable x. Constraints of φ′ arise from equating pairs of
expressions for (or rather bounds on) x. If φ contains inequalities s ⩽ ax and bx ⩽ t, where
a, b > 0, then their conjunction entails bs ⩽ at, or equivalently at − bs ⩾ 0. A rescaling
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by nonzero λ ∈ Q may be necessary if lcm(a, b) ̸= ab, or if other coefficients are taken
into account when computing the least common multiple. If, as in Example 18, divisibility
constraints come into the picture, then a constant α ∈ Z may be added or subtracted.

In fact, all inequalities in φ′ can be shown to arise this way. Suppose that an atomic
formula τ ⩽ 0 mentions two or more variables and appears in φ′. Then there are numbers
λ ∈ Q, α ∈ Z such that τ is λ · (a1τ2 − a2τ1) + α for some terms a1x + τ1 and a2x + τ2
which appear in the original formula φ. (For brevity, we do not make precise the notion of
appearance of a term in a formula.)

Further reading. Cooper’s paper [38] is a lucid introduction to quantifier elimination, and
his decision procedures have been analysed in more detail and extended (see, e.g., Oppen [111]
as well as Section 4.1 of the present paper). A formalisation in Isabelle/HOL is available [109].

The “big” disjunctions in the formulas resulting from quantifier elimination in Example 18
can instead be replaced by a bounded version of the existential quantifier (∃r ∈ [0, 5]).
Such quantifiers are not part of the syntax (Section 2) but can be added. This leads to
so-called uniform (generalisation of) Presburger arithmetic and the idea of weak quantifier
elimination [142], developed further [90] and implemented in Redlog. Redlog [42] is part of
the general-purpose computer algebra system REDUCE and offers quantifier elimination
methods for multiple arithmetic theories, Presburger arithmetic being one of them.

Chapter 4 of Kreisel and Krivine’s book [88] introduces quantifier elimination for several
arithmetic theories, such as Presburger arithmetic (although this name is not mentioned).
The reader should beware that this book uses symbols

∧
and

∨
in place of now ubiquitous ∀

and ∃. Unlike our presentation, the book also discusses not only model-theoretic aspects
of quantifier elimination but also proof-theoretic aspects (which axioms can justify the
equivalence of formulas).

Multiple further versions and extensions of quantifier elimination, for a variety of logical
theories, have been proposed in the literature and implemented in software. Most famously,
Tarski’s quantifier elimination procedure for the first-order theory of R with addition,
multiplication, and ordering led in the 1970s to Collins’s cylindrical algebraic decomposition,
a fundamental concept in computer algebra. In the first-order theory of the reals, atomic
formulas are inequalities between multivariate polynomials; see, e.g., [44] and [103, Section 5].

Many extensions of Presburger arithmetic are known to have quantifier elimination (see,
e.g., [132, 99, 133, 130]). For Presburger arithmetic itself, Weispfenning [141] analyses the
size of formulas output by (his) quantifier elimination procedure. Bounds that he obtains
in terms of the number of quantifier blocks (alternation) and the number of variables in
each block are a versatile instrument for other problems. An early implementation of such a
procedure is the Omega test [123]. In the SMT solver cvc5, quantifier elimination for linear
arithmetic uses so-called counterexample-guided instantiation [124, 9].

4 Alternation of quantifiers and computational complexity

The three views shown in Section 3 give rise to three (kinds of) decision procedures for
Presburger arithmetic. In the current section, we look further into the computational
complexity aspects.

If we analyse the decision procedures sketched above directly, we get overly pessimistic
estimates of the running time and memory requirements. These estimates can be improved
substantially (Section 4.1). Nevertheless, the decision problem turns out inherently hard.
Clever formulas in linear integer arithmetic can express rather intricate sets, and it is possible
to prove worst-case lower bounds on the complexity of the problem itself (Section 4.2).
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Table 1 Effect of logical connectives and quantifiers on the size of representation (informally).
For all three views, ∀ can be replaced by ¬∃¬.

View Geometry Automata theory Symbolic computation
(quantifier elimination)

Representation Semi-linear sets Automata Logical formulas
¬ expensive NFA ⇝ DFA CNF ⇝ DNF∗

∨ trivial trivial trivial
∧ OK easy easy∗

∃ trivial easy expensive
∗ For some but not all quantifier elimination procedures. Trivial for other procedures.

As we will see, the high computational complexity is in some sense linked with the
alternation of quantifiers of type ∃ and ∀ in the logical formulas. The present section focuses
on formulas with alternation, and Section 5 on formulas without it.

4.1 Handling quantifiers in decision procedures
As seen from Table 1, in each of the three views on Presburger arithmetic some of the logical
connectives and quantifiers may require a big increase in the size required to represent the
object – a semi-linear set, an automaton, or a logical formula. In slightly more detail:
For semi-linear sets, complementation is the most difficult operation. Intersection requires

work but the increase in size is smaller in comparison. (In dimension 1, the new period
can be chosen as the least common multiple of old periods; in higher dimension a suitable
generalisation is required.)

For automata, the existential quantifier requires an update to the set of accepting states
(which is easy) and, most importantly, makes the automaton nondeterministic (NFA
not DFA). Complementation of the NFA is then expensive, e.g., requiring the subset
construction.

For logical formulas, some quantifier elimination algorithms require conversion to DNF.
For them, negation is difficult (conversion from CNF to DNF) and conjunction requires
the application of the distributive law. Other algorithms can handle arbitrary Boolean
structure. In either case, the existential quantifier presents the main challenge.

In summary, for each method some operation requires an exponential growth in size, also
referred to as an exponential blow-up, in the worst case.

If n is the size of the input sentence, then stacking n exponentials leads to a worst-case

upper bound on the running time of decision procedures that has the form 2. . . 2
, where the

height of the tower grows as n. Differences between functions such as 2n, 2cn, 2n2 , etc.,
can be ignored for the purpose of this crude estimate. For all three views, a sequence of
n alternating quantifiers ∃x1 ∀x2 ∃x3 . . . presents a challenge.

Importantly, better decision procedures (and sometimes better analyses) are available.

A function f : N → N is called elementary if f(n) ⩽ 2. . . 2n

, where the tower has some fixed
height k ∈ N. A yes–no problem belongs to the complexity class ELEMENTARY if it has
an algorithm with elementary running time. For example, all problems in complexity classes
P, NP, PSPACE, EXP, 2-EXP, etc., also belong to this huge class. According to English
Wikipedia, “The name was coined by László Kalmár, in the context of recursive functions
and undecidability; most problems in it are far from elementary.” For computationally hard
problems in logic, achieving polynomial running time or even polynomial space (memory
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usage) is often not possible, and the dichotomy between elementary and non-elementary
bounds can indicate problems for which practical implementations can hope to handle some
medium-size inputs in reasonable time.

▶ Theorem 21 (Oppen [111]). There is an algorithm that solves the decision problem for
Presburger arithmetic in triply exponential time.

As we discuss below, in fact all three approaches (based on semi-linear sets, on automata,
and on the elimination of quantifiers) provide elementary decision procedures.

Proof idea. Cooper’s quantifier elimination algorithm [38] sketched in Section 3.3 can be
shown to require at most 222pn

basic computational steps on sentences of size n, where p > 0
is some universal constant. To improve upon the crude non-elementary upper bound, we
need to measure the complexity of formulas using several parameters, rather than just one
(size of the formula). The dependence of these parameters on one another may still seem
to lead to a tower of exponentials, but the idea is to find a parameter that enjoys a tighter
(elementary) estimate. We can think of it as a controlling parameter, because the other
parameters can then be bounded once we know this key one is under control.

Our controlling parameter will be the number of distinct coefficients of variables in the
formula. For a formula φ, let us denote this quantity by z(φ). We only sketch the core of the
argument, leaving many details to the reader. Consider the elimination of a single existential
quantifier. Let φ be a formula given to Cooper’s algorithm, and let φ′ be the output formula
equivalent to ∃x φ. Let us review Observation 20 from Section 3.3. Each inequality in φ′

arises from two inequalities of φ by cross-multiplication. Given terms ax + by + t′ and
cx+ dy + t′′ that appear in inequalities of φ, the result is

(ad− bc) y + (at′′ − ct′) ∼ 0, (8)

where ∼ is one of the signs ⩽, ⩾; possibly rescaled by some nonzero λ ∈ Q and with an
additive shift α ∈ Z. We ignore the scaling factor λ ∈ Q in this proof. So, for a variable y,
every coefficient at y in the new formula φ′ is a combination of at most 4 coefficients in φ,
two of them at y and two at the variable x that is being eliminated. Thus, z(φ′) ⩽ z(φ)4.

Now denote by φk the formula obtained from φ after eliminating k quantifiers; φ0 = φ.
In the worst case, z(φk) grows with k as follows:

z(φ) = z ⇝ z4 ⇝ z42
⇝ z43

⇝ . . . ⇝ z4k

.

Formally, one can prove by induction an upper bound z(φk) ⩽ Mk
def= z(φ)4k . Since k is

bounded from above by the size of the input formula φ, the number of distinct coefficients
throughout the entire procedure is at most doubly exponential in the size of φ. With
this elementary bound in hand, we can bound other parameters, such as the magnitude of
coefficients, of moduli in congruence constraints, of constant terms, etc. For instance, the
number of linear terms of the form a1x1 + . . . + amxm which may arise in the formula is
bounded by (Mk)m, where the number of variables, m, is again at most the size of φ. This
is also an elementary bound. (We note that the total number of inequalities might be much
higher than the number of linear terms, because of additive constants.) Bounds can then be
combined into an elementary bound on the size of formulas. ◀

There are a number of factors that we have glossed over. For example, in the sketch
above we have considered two constraints in isolation, whereas the least common multiple of
all coefficients at x may be much bigger than just ac. However, the principle remains sound.
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Starting with Oppen’s theorem, elementary decision procedures have been given for all
three views on linear integer arithmetic. Oppen’s result was extended to automata [85, 45, 46]
and recently to semi-linear sets [35]. Weispfenning’s quantifier elimination procedure [141]
also runs in triply exponential time, as best procedures for all three views do.

We briefly comment on the geometric view. It is convenient to extend the L(b, P ) notation
(Eq. (6) in Section 3.1) to L(B,P ) def=

⋃
b∈B L(b, P ). Sets of this form have been studied by

Ginsburg and Spanier [57, 56], and we refer to them as hybrid linear sets. As we will see in
Section 5.1, these are sets of integer solutions to systems of linear inequalities. Semi-linear
sets are exactly unions

S =
⋃
i∈I

L(Bi, Pi), |I|, |Bi|, |Pi| < ∞. (9)

As it turns out, in generator representation the cardinality |I| can be chosen as the controlling
parameter for elementary bounds. By a discrete version of Carathéodory’s theorem (see,
e.g., [48] and [33, Proposition 5]), the reasoning can be reduced to the case where each set Pi

contains linearly independent vectors only. The reader may now see the link with the number
of linear terms in the logical formulas during quantifier elimination. A useful ingredient in
the constructions is the observation, for every fixed d ⩾ 1, that n hyperplanes in Rd split it
into at most O(nd) regions [101, Chapter 6].

4.2 Using quantifiers to write succinct formulas
We typically use arbitrary integers in Presburger formulas. One can ask if the succinctness
of the logic changes if only small integers (say, between −2 and 2) are allowed. The answer
to this question is negative: for instance, the formula y = 2n · x is equivalent to

∃y0 ∃y1 . . . ∃yn (y0 = x) ∧ (y1 = 2y0) ∧ (y2 = 2y1) ∧ . . . ∧ (yn = 2yn−1) ∧ (y = yn).

Thus, numbers up to 2poly(n) can be expressed by formulas of size poly(n) with coefficients
from [−2, 2]. Can we express even larger numbers using small formulas?

▶ Example 22 (Fischer and Rabin [53]). There is a sequence of formulas Fn(x, y) of size O(n)
such that Fn(x, y) holds if and only if x = 22n · y. According to Fischer and Rabin [53],
“[this] device is a special case of a more general theorem due to M. Fischer and A. Meyer. It
was rediscovered independently by several people including V. Strassen.”

We can take F0(x, y) : x = 2y, since 2 = 220 . The sequence is then constructed
inductively. The idea is to have Fn+1(x, y) equivalent to ∃zn [Fn(x, zn) ∧ Fn(zn, y)]. This
direct definition, however, would unravel into a very big formula, of size O(2n) for index n.
Instead, the following construction has only one instance of Fn and thus unravels into a
formula of size O(n):

Fn+1(x, y) : ∃zn ∀un ∀vn

[((
(un = x) ∧ (vn = zn)

)
∨
(
(un = zn) ∧ (vn = y)

))
→ Fn(un, vn)

]
.

The bit size of the formula is actually O(n logn), with the logn factor due to the need to
refer to at least n distinct variables. Interestingly, Fn works just as well over R. ⌟

Combining Example 22 with the Chinese remainder theorem (generalising Example 2),
Fischer and Rabin also give a sequence of formulas that define triply exponential rather than
doubly exponential numbers; see Kozen’s textbook [87, Lecture 24] for details.

Formulas from Example 22 and more sophisticated ones are then used to “define” and
manipulate long bit strings. This led Fischer and Rabin [53] to lower bounds on the
computational complexity of the decision problem for linear integer (as well as real) arithmetic.
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▶ Theorem 23 (Fischer and Rabin [53]). The decision problem for Presburger arithmetic
requires at least doubly exponential time in the worst case, even for nondeterministic al-
gorithms.

For linear real arithmetic, the lower bound is a single exponential. A precise characterisa-
tion of the computational complexity of the problem was subsequently given by Berman [17]:
the decision problem for Presburger arithmetic is complete for STA(∗, 22O(n)

, n). The ac-
ronym STA stands for “space, time, alternation”; this class corresponds to Turing machines
that run in time 22cn for some c > 0 on inputs of length n, using up to n− 1 alternations
between nondeterministic and universal modes (with n = 0 corresponding to deterministic
algorithms). Kozen [87, Lectures 23–24] offers a modern exposition of results of this kind.

Theorem 23 and Berman’s strengthening of it suggest that triply exponential algorithms
(Section 4.1) are optimal in the worst case: known simulation results of 2-NEXP and
STA(∗, 22O(n)

, n) machines by deterministic algorithms run in triply exponential time.
In logical formulas arising from applications, alternation depth is often low, i.e., formulas

may have the form Φ(u) : ∀x1∃x2 . . .Qxk φ(x1, . . . ,xk,u) with small k. We can think of
k as being fixed. Here φ is quantifier-free, Q is either ∃ or ∀ depending on the parity of k,
and all variables in each block xi are bound by the same kind of quantifier (existential or
universal). As an example, ∀∗∃∗ formulas have alternation depth k = 2. Naturally, sentences
may also start with the existential block.

▶ Example 24 (Grädel [59], see also Haase [64]). There exists a constant c > 0, a sequence
of integers (rn)n⩾1, and a sequence of ∀∃∗-formulas Gn(z) of size O(n) such that (i) Gn(z)
holds if and only if rn divides z and (ii) rn ⩾ 22cn for all n.

The construction consists of three steps. In the first step, we construct a sequence of
formulas Mn(x, y, z) for bounded multiplication: under the assumption 0 ⩽ x < 2n, the
formula Mn(x, y, z) will be true if and only if x · y = z. For other values of x, the truth value
of Mn is unconstrained. Here is the formula:

Mn(x, y, z) : ∃x1 . . . ∃xn ∃z1 . . . ∃zn

(x = x1 · 2n−1 + x2 · 2n−2 + . . .+ xn) ∧
n∧

i=1
[(0 ⩽ xi) ∧ (xi ⩽ 1)] ∧

(z = z1 · 2n−1 + z2 · 2n−2 + . . .+ zn) ∧
n∧

i=1

[(
(xi = 0) → (zi = 0)

)
∧(

(xi = 1) → (zi = y)
)]
.

This is an existential formula of size O(n).
The second step constructs the formula Dn(x, z) : ∃y Mn(x, y, z). Under the assumption

0 ⩽ x < 2n, this formula asserts that z is a multiple of x. In the third step we arrive at
Gn(z) : ∀x [((0 < x) ∧ (x < 2n)) → Dn(x, z))]. Now rn = lcm(1, 2, . . . , 2n − 1). ⌟

Example 24 leads to Grädel’s lower bound in the following theorem:

▶ Theorem 25 (Grädel [59] and Haase [64]). The decision problem for ∀∗∃∗-Presburger
arithmetic is complete for coNEXP.

Class coNEXP contains complements of problems that can be decided in nondeterministic
time O(2nc), for some c > 0. The upper bound is due to Haase, who also proved that, for
each k ⩾ 2, the fragment of Presburger arithmetic with alternation depth k is complete for
the (k − 1)st level of the so-called weak EXP hierarchy [64].
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More recently, Nguyen and Pak have studied the computational complexity of fur-
ther restricted fragments. By encoding problems related to continued fractions, they
were able to show, for instance, that the decision problem for sentences of the form
∃z ∀y1 ∀y2 ∃x1∃x2 : φ(x1, x2, y1, y2, z) is NP-hard even for φ with 10 inequalities [107]. In
this problem, the sentence is fixed entirely except for the numbers in atomic formulas.

5 Three views on integer programming

The feasibility problem of integer (linear) programming is the following problem:

Input: A system A · x ⩽ c of m linear inequalities in n variables, where A ∈ Zm×n

and c ∈ Zm.
Output: Does the system have a solution in Zn?

Here the relation ⩽ between vectors is component-wise: for a = (a1, . . . , am) and b =
(b1, . . . , bm) we write a ⩽ b if and only if ai ⩽ bi for each i between 1 and m.

In the present paper, “integer programming” will refer to this problem (that is, we will
not consider optimisation versions thereof). It is a special case of the decision problem for
Presburger arithmetic, and even for existential Presburger arithmetic, where all quantifiers
are existential and appear at the beginning of the formula.

▶ Theorem 26 (Borosh and Treybig [24] and Papadimitriou [113]). Integer programming is
NP-complete.

▶ Corollary 27 (see, e.g., [111]). Existential Presburger arithmetic is NP-complete.

In these statements, we omit the words “the decision problem for”. NP-hardness of both
problems is easy to justify, by an encoding of the subset sum problem (Example 3, conjunctive
formula) or Boolean satisfiability (SAT). We now derive Corollary 27 from Theorem 26.

Proof of Corollary 27. Given a sentence in Presburger arithmetic, where all quantifiers are
existential and appear at the beginning of the formula, we eliminate all negations (except on
congruence constraints) using De Morgan’s laws and the equivalence (t1 < t2) ⇐⇒ (t1 + 1 ⩽
t2). We can similarly eliminate all atomic formulas except inequalities and the remaining
negated congruences. The quantifier-free part of the formula is now a monotone Boolean
combination of atoms of two types: non-strict linear inequalities and negated congruences.
Such a sentence is true if and only if there exists a subset of these atoms and, for each
negated congruence ¬(t1 ≡ t2 (mod m)), a remainder r ∈ {1, . . . ,m− 1} such that:
(1) if all the atoms in the subset are true, then the formula is true;
(2) if each negated congruence in the subset is replaced by the equality t1+r = t2+mw, where

w is a fresh variable, and then by two inequalities t1 + r ⩽ t2 +mw and t1 + r ⩾ t2 +mw,
then the resulting system of inequalities is a positive instance of the integer programming
problem.

The first condition is checked directly, and the second is an NP condition by Theorem 26. ◀

Thus, existential Presburger arithmetic is very close to integer programming. Membership
of integer programming in NP is not obvious. It is indeed the case that a guessed solution
can be verified quickly; but a separate argument is required to show that, whenever some
solution exists, a small solution exists too, where “small” means “of polynomial bit size
relative to the bit size of the system”.
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At first sight, appeal to the three views on Presburger arithmetic does not seem to resolve
the problem: the size of representation in the decision procedures might well increase to
doubly exponential. Nevertheless, all three views can actually be used to prove the NP upper
bound of Theorem 26. This is the subject of three subsections below.

For several perspectives on integer programming, one can recommend books [81, 129, 145].

5.1 A view from geometry: discrete convex polyhedra
In this section we take the geometric view, following the ideas of von zur Gathen and
Sieveking [55]. The resulting proof of Theorem 26 makes use of the principle we have already
seen: first consider constraints over R (or Q) instead of Z.

We recall basic definitions from polyhedral geometry and convex analysis. For an
introduction, the reader is referred to Lauritzen’s undergraduate textbook [92] or lecture
notes [91], and to Paffenholz’s lecture notes [112]. More advanced material can be found in
De Loera, Hemmecke, and Köppe [39], Rockafellar [127], and Schrijver [129].

A linear combination λ1v1 + . . .+ λnvn of v1, . . . ,vn ∈ Rn is called:
conic (or: positive) if all λi ⩾ 0,
affine if λ1 + . . .+ λn = 1, and
convex if it is conic and affine.

Given a set S ⊆ Rd, the set of all its conic (affine, convex) combinations is the cone generated
by S, the affine hull and the convex hull of S, denoted coneS, aff S, and convS, respectively.
We will use the Minkowski sum and product notation: A+B = {a+ b : a ∈ A, b ∈ B} and
A ·B = {a · b : a ∈ A, b ∈ B}.

The following famous theorem gives two equivalent characterisations of convex polyhedra:

▶ Theorem 28 (Minkowski–Weyl, 1896, 1935). For P ⊆ Rd, the following are equivalent:
(H) P = {x : A · x ⩽ c} for some matrix A and vector c;
(V) P = convF + coneG for some finite sets F and G.

In words of Rockafellar [127, Section 19]: “This classical result is an outstanding example
of a fact which is completely obvious to geometric intuition, but which wields important
algebraic content and is not trivial to prove.” The (V) ⇒ (H) direction can in fact be obtained
by a direct application of Fourier–Motzkin quantifier elimination (Section 3.3) over R.

Representations (H) and (V) are referred to as H-representation and V-representation
of P . In the former, P is the intersection of a finite collection of half-spaces. In the latter,
elements of F can be thought of as vertices and elements of G as directions in which P “is
infinite” (directions of recession).

The size of each representation is the number of bits required to write it (that is, A, c or
F,G) down. Let us assume henceforth that we deal with rational numbers only. An effective
version of the Minkowski–Weyl theorem over Q states that the two representations can be
translated from one to another; see, e.g., [129, Chapter 10] and [112, Chapter 5]:

▶ Lemma 29. In Theorem 28:
1. A and c can be made rational if and only if F and G can be made rational.
2. Let P be nonempty and suppose either representation is given, of bit size s. Then the

other can be computed, with the bit size of each number at most poly(s).

We do not give a proof of Lemma 29. One of the possible paths is through the theory of
structure of convex polyhedra: intuitively, in Rd each vertex (element of F ) is determined as
the intersection of d hyperplanes (facets), and each “infinite direction” (element of G) by the
intersection of d− 1 hyperplanes. By Cramer’s rule from linear algebra, solutions to systems
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of linear equations are formed by ratios of appropriately formed determinants. This yields a
polynomial bound on the bit size of numbers. However, in degenerate situations (e.g., linear
dependencies or underdetermined systems) some more work is needed.

In both translations (H) ⇒ (V) and (V) ⇒ (H), the total blow-up in size can be
exponential while the size of individual numbers stays polynomial. An example is the “box”
[0, 1]d = {(x1, . . . , xd) ∈ Rd : 0 ⩽ xi ⩽ 1 for all i}, a convex polyhedron which has a short
H-representation but 2d vertices. A realisation of the translations is the double description
method [92, Chapter 5], see also [112, Chapters 2–5] and [54, Chapter 5].

Let us move from Q to Z. Recall the definition of hybrid linear sets L(B,P ) from the
end of Section 4.1.

▶ Theorem 30 (von zur Gathen and Sieveking [55]). For S ⊆ Zd, the following are equivalent:
(a) S is a projection of {x ∈ Zk : A · x ⩽ c} for some A ∈ Zm×k, c ∈ Zm, and k ⩾ d;
(b) S = L(C,Q) for some finite sets C ⊆ Zd and Q ⊆ Zd.
Moreover, suppose P ̸= ∅ and either representation is given of bit size s. Then the other can
be computed, with the bit size of each number at most poly(s).

The projection in Theorem 30 is orthogonal to the principal axes: some k− d coordinates
are simply crossed out. This theorem entails the NP upper bound of Theorem 26. It
highlights and uses the idea that hybrid linear sets are a discrete analog of convex polyhedra.
Indeed, the set{∑

λibi +
∑

µjpj :
∑

λi = 1, λi ⩾ 0, µj ⩾ 0
}

(10)

is the convex polyhedron convB + coneP if λi, µj ∈ R; and the hybrid linear set L(B,P ) if
λi, µj ∈ Z.

Proof of Theorem 30. Direction (b) to (a) is straightforward. Auxiliary variables λi and
µj in Eq. (10) correspond to coordinates that are crossed out (projected away).

For (a) to (b), we apply Lemma 29. Taking an arbitrary x ∈ Zk from the set {x : A · x ⩽
c} = convF + coneG, we can write it, for some λi, µj ⩾ 0 such that

∑
λi = 1, as

x =
∑

λif i +
∑

µjgj =
(∑

λif i +
∑

(µj − ⌊µj⌋)gj

)
+
∑

⌊µj⌋ gj ,

where ⌊a⌋ stands for the greatest integer not exceeding a ∈ R, and f i, gj are elements of F
and G, respectively. Note that we can assume with no loss of generality that all vectors in G
belong to Zk: indeed, they must be in Qk by Lemma 29, and therefore each of them can be
multiplied by the least common multiple of the denominators of its components. This shows
that each vector ⌊µj⌋gj is also in Zk. But then, since x ∈ Zk, the difference of these two
vectors (which is the vector in the big round brackets) is also integral. Therefore, x belongs
to L(C ′, Q′), where Q′ is the rescaled version of G and C ′ is the set of integer points in the
Minkowski sum convF +

∑
[0, 1) · {gj}. Since F and G are finite sets, this sum is bounded

and so C ′ is also finite. Finally, sets C and Q are obtained from C ′ and Q′, respectively, by
crossing out some of the components. We leave the verification of the “moreover” part of the
statement to the reader. ◀

▶ Example 31. Consider the triangle example from Eq. (1), page 2, with formula
φ(x, y) : (x ⩽ 3y) ∧ (2y ⩽ x) ∧ (y ⩽ 2). All vertices of the triangle are actually integer points,
see Fig. 1 (left). Consider, however, the modified formula φ(x, y) ∧ (x ⩾ 1). The origin (0, 0)
is no longer a feasible point, and in fact the set of rational solutions is conv(u′,u′′,v,w),
where v = (4, 2) and w = (6, 2) are unchanged and u′ = (1, 1/3) and u′′ = (1, 1/2). The
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two new vertices are not integer points, and it is not difficult to imagine all of the “corners”
of our polytope (polygon in this example) to be cut off. Feasibility of the integer program
would thus hinge on combining a rational point from the convex hull,

∑
λif i in the proof of

Theorem 30, with a rational point from the cone,
∑

(µj − ⌊µj⌋)gj . ⌟

We now give an example showing that the number of generators of the hybrid linear set
L(C,Q) in Theorem 30 may be big, namely comparable to the magnitude of integers in the
system A · x ⩽ c.

▶ Example 32. Consider the set S = {(x, y, z) ∈ Z3 : (x+y−50z = 0)∧(x ⩾ 0)∧(y ⩾ 0)}. We
have S = L(0, {v0,v1, . . . ,v50}), where vi = (i, 50−i, 1). This blow-up in size is unavoidable:
if S =

⋃
i∈I L(bi, Pi), then |I| + |

⋃
i∈I Pi| ⩾ 52. Indeed, notice that

⋃
i∈I Pi ⊆ S ⊆ N3. The

first containment holds because S is defined by a conjunction of homogeneous constraints.
Thus, vm ̸∈ L(0,

⋃
i∈I Pi \ {vm}) for all m. So, whenever vm ∈ L(bi, Pi), we have either

vm = bi, or vm ∈ Pi and bi = 0. This proves the inequality stated above.
In the absence of inequalities x ⩾ 0 and y ⩾ 0, we would instead have S′ = {(x, y, z) ∈

Z3 : x + y − 50z} = L(0, {±u,±v}), where u = (50, 0, 1) and v = (−1, 1, 0). Intuitively,
in the definition of the set S the two inequalities prevent the vectors ±v from becoming
periods. More generally, a nonempty set C ⊆ Zd defined by a system (conjunction) of linear
equations with integer coefficients is a coset of a finitely generated lattice (an analog of an
affine subspace, but over Z not R). The number of generators of the lattice is d− r, where r
is the rank of the system, which means that C can be written as a linear set with one base
vector and 2(d− r) periods. ⌟

The set P of periods of a linear set L(0, P ) is also known as the Hilbert basis. If the
positive cone of the set is pointed, then there is a unique Hilbert basis of minimal size [39,
Corollary 2.6.4]. Software tools and libraries that can compute Hilbert bases are available,
e.g., Normaliz [28, 27] and polymake [7].

Ideas presented in this section tend to be very useful, and so is Theorem 30. Another
presentation is [39, Section 2.6]. Some recent extensions and applications can be found
in [94, 34, 40, 36]. Further development of ideas presented in this section have recently led
to a new quantifier elimination procedure for Presburger arithmetic [68].

5.2 A view from automata theory: pumping lemma
In Section 3.2 we have described and used representation of integers base k ⩾ 2, for so-called
k-automatic sets. The author is not aware of an argument proving the NP upper bound
of Theorem 26 using such representations. Indeed, extension of this NP upper bound to
existential Büchi arithmetic [62, 66] rather required building upon Theorem 26 (or, more
precisely, Theorem 30). We present a slightly different approach instead, which can also be
interpreted as automata-theoretic, but in the unary representation (base 1). That is, 4 ∈ N
is represented as 1 + 1 + 1 + 1 in this numeration system.

It is a well-known fact that the integer programming problem can equivalently be
formulated as follows:

Input: A system A · x = b of linear equations, with A an integer matrix and b an
integer vector.

Output: Does the system have a solution over N?

As a reminder, we use N = {0, 1, . . .} in this paper. Our goal is to bound the norm of smallest
solutions from above: this is easy if all entries of A have the same sign, but not necessarily
obvious in general.
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For v = (v1, . . . , vd) ∈ Rd, denote by ∥v∥ its Euclidean length. In fact, any norm would
work just as well.

The following classical theorem is sometimes known as the Steinitz lemma.

▶ Theorem 33 (Steinitz lemma). Let d ⩾ 1 and let v1, . . . ,vn be a sequence of vectors from
Rd. Assume ∥vi∥ ⩽ 1 for all i. If

∑n
i=1 vi = 0, then by reordering the vectors we can obtain

another sequence u1, . . . ,un such that ∥
∑k

i=1 ui∥ ⩽ d for all k = 0, . . . , n.

It is not immediately clear why this is true. Think of each vi as a vector of travel
(movement), and of a sequence of vectors as a travel itinerary. If we start from the origin 0,
then following the entire sequence takes us back to the origin. Reordering the vectors will
not change this, but can we reorder so that we never go far from 0 on the way?

It is rather remarkable that the distance can be kept small, at most d, no matter how big
or small n is. Matoušek’s wonderful book on applications of linear algebra in combinatorics,
geometry, and computer science presents a short proof [102, Miniature 20]. The upper bound
of d is due to Grinberg and Sevastyanov [61].

Let us apply the Steinitz lemma to integer programming, following Eisenbrand and
Weismantel [49]. For simplicity, consider a homogeneous equation A · x = 0 first. To show
an upper bound on the norm of smallest nonzero solutions over N, take some solution
x = (p1, . . . , ps), where s is the number of variables in the system and all pi ∈ N. Let
n = p1 + . . .+ ps and let v1, . . . ,vn be the sequence of columns of A with the ith column
taken pi times. (This is the “unary” representation of solution (p1, . . . , ps).) As we know
that A · (p1, . . . , ps) = 0, we can apply the Steinitz lemma to scaled vectors pi/maxi ∥pi∥.
In the reordered sequence u1, . . . ,un (without scaling: each ui is some vj), all partial sums∑k

i=1 ui do not deviate much from 0; here k = 0, . . . , n. Instead of ⩽ d in Theorem 33, we
get ⩽ H def= d · maxi ∥pi∥ instead.

The remaining part of the argument is simple. Recall that all ui are integer vectors, and
there are not too many integer points in Rm with norm at most H; let us say at most Nm(H)
such points. (Here m is the number of equations in the system.)

If n > Nm(H), then some point apart from 0 is visited twice (or 0 is visited three times
or more). Hence a part of the sequence u1, . . . ,un can be removed without affecting the
total sum. In other words, the solution x was not minimal to start with.
Otherwise n ⩽ Nm(H), and this is already an upper bound on the norm of solution.

We omit the calculations (see, e.g., [49]), but the bounds are sufficient for the NP upper
bound of Theorem 26. It remains to remark that nonzero b in A · x = b can be incorporated
in the argument too, for example by putting −b into the sequence.

The argument in the bullet list is reminiscent of the pumping lemma in automata theory:
in a finite-state automaton, every sufficiently long accepting run must repeat a state and can
therefore be shortened.

For further reading and applications, we refer to [8, 110].

5.3 A view from symbolic computation: Gaussian elimination
In 2024, two new approaches to quantifier elimination for existential Presburger arithmetic
were proposed. Each can be thought of as a nondeterministic polynomial-time rewriting
procedure for existential formulas. Run deterministically, the procedures output quantifier-
free formulas of exponential size; polynomial-size formulas can instead be produced in
an appropriately extended syntax. One of the procedures, by Chistikov, Mansutti, and
Starchak [36], is based on Gaussian elimination and the other, by Haase, Krishna, Madnani,
Mishra, and Zetzsche [68], on geometry of convex polyhedra. We outline key ideas behind
the former, focusing on integer programming (conjunctive formulas).
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Fraction-free Gaussian elimination. The approach develops a remark by Weispfenning [142,
Corollary 4.3]. The basis of the algorithm is Gaussian elimination, a standard method for
solving systems of linear equations. It is well known that, over rational numbers (Q), it can
be performed in polynomial time. An elegant argument showing that each number appearing
in the computation is a ratio of two minors (sub-determinants) of the original matrix is given
in Schrijver’s book [129, Section 3.3]. Thus, the bit size of numbers stays bounded by a
polynomial in the bit size of the input.

We need instead a version of Gaussian elimination for integers (Z). The simplest division-
free algorithm works as follows: given equations ax+ by + . . . = 0 and cx+ dy + . . . = 0, to
eliminate x we “cross-multiply” them by c and a, respectively, and then subtract one from
the other (cf. Observation 20). The result is

(ad− bc) y + . . . = 0. (11)

The bit size of coefficients may double, and repeated cross-multiplication is known to lead
(in the worst case) to numbers of doubly exponential magnitude, i.e., of exponential bit size.

As it turns out, there exists a method avoiding this blow-up, which appears in the works
of Edmonds [47] and Bareiss [10] and was apparently known as early as 1888 to Clasen [6].
The following question is instructive. The coefficient at y in Eq. (11) is a 2 × 2 determinant.
Gaussian elimination can be seen as computing many such 2 × 2 determinants, inductively.
How does the determinant of a big (say n× n) square matrix, which can be computed using
Gaussian elimination, arise in this process?

The answer appears in a beautiful paper by Dodgson [41]. Let A = (aij) be a 3 × 3
matrix. Let us apply the first two steps of Gaussian elimination: after the first step, the
coefficient matrix becomes

a11 a12 a13
0 a11a22 − a12a21 a11a23 − a13a21
0 a11a32 − a12a31 a11a33 − a13a31

 =


a11 a12 a13

0
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣
0

∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣


and then, after the second elimination step, the entry in position (3, 3) becomes∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣
∣∣∣∣∣∣∣∣∣ .

By (a special case of) an identity due to Sylvester and Jacobi–Desnanot (see, e.g., [10, 41, 82]),
this coefficient is actually equal to the product a11 · detA. So, when division-free Gaussian
elimination is run on a bigger matrix, after two initial steps all coefficients in row 3 and
below become divisible by a11, as long as all original entries of A are integers. We can divide
by a11, and carry on, performing similar divisions after each step. The result is a fraction-free
Gaussian elimination [47, 10].

Handling inequalities with slack variables and nondeterminism. A second ingredient is
required to handle inequalities. We turn each of them into an equality, introducing slack
variables as, e.g., in our proof sketch for Theorem 13. In the run of Gaussian elimination, each
iteration takes an equality from the system and eliminates one actual (non-slack) variable.
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If this equality contains a slack variable not handled so far, a small value for this slack
variable is guessed. The fact that small values (i.e., of polynomial bit size) suffice requires a
proof. These guessed values have the same nature as remainders r in Example 18, or shifts
+0, . . . ,+(M − 1) in Remark 19.

For further details, we refer the reader to the paper [36]. The algorithm can be extended to
arbitrary existential Presburger formulas, in which case (i) the shifts assume both positive and
negative values, and (ii) the equation to pick at each iteration is guessed nondeterministically.
Unlike [68], the paper [36] does not explicitly describe the formula produced by elimination
process but shows how to integrate the algorithm into an NP decision procedure for an
extension of existential Presburger arithmetic with nonlinear constraints of the forms y = 2x

and z = (x mod 2y). (This extension was previously shown decidable by automata-theoretic
methods [43].) Paper [68] draws a multitude of other consequences from efficient quantifier
elimination.

6 Further directions

There are several sources to help new people enter this field. Bradley and Manna’s text-
book [25] offers a detailed introduction to computational logic, including logical theories of
arithmetic, and applications in program verification. Kroening and Strichman’s textbook [89]
focuses on decision procedures and includes a chapter on quantifier-free linear real and integer
arithmetic and another on handling quantified formulas. Kirby’s recent textbook on model
theory [84] targets an audience of undergraduate and Master’s students, assuming little in
the way of background knowledge beyond the basics of abstract algebra.

Haase’s survey [65] provides a variety of references on Presburger arithmetic. An earlier
survey by Bès [18] gives an overview of definability and decidability questions for arithmetic
theories more broadly. Michaux and Villemaire’s survey of open questions [104], with a
focus on Presburger and Büchi arithmetic (see Section 3.2), instigated several subsequent
developments. For arithmetic theories that include both addition and multiplication, beyond
the literature mentioned at the end of Section 3.3 we refer the reader to Poonen’s lecture
notes on Hilbert’s 10th problem over rings [120] and a recent article by Pasten [115]. An
early reference on the computational complexity of logical theories is Ferrante and Rackoff’s
monograph [52].

We already highlighted (in Section 1) several sources on satisfiability modulo theories
(SMT) solving. Among further such sources focusing on logical theories of arithmetic are an
overview [3] and an evolving electronic book on SAT and SMT [147] containing many worked
examples and aimed at programmers. A new self-contained overview of the arithmetic engine
of Z3 (a successful SMT solver and theorem prover) has recently appeared [20].

Applications in verification. An early application of Presburger arithmetic appeared in the
work of Parikh [114] and Ginsburg and Spanier [57, 58]. Parikh considered the commutative
image, nowadays also known as Parikh image, of formal languages. For example, the
commutative image of a word w ∈ {a, b}∗ is a 2-dimensional vector ψ(w) = (m,n) such that
the letters a and b occur in w exactly m and n times, respectively: ψ(abbab) = (2, 3). The
commutative image of a language L ⊆ {a, b}∗ is ψ(L) = {ψ(w) : w ∈ L}. Parikh’s theorem
shows that the commutative image of every context-free language forms a semi-linear set,
and in fact for every semi-linear set S there exists a regular language with commutative
image S. Ginsburg and Spanier later proved that semi-linear sets are exactly sets definable
in Presburger arithmetic [58]; see Section 3.1.
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Intuitively, context-free languages can be used to model procedure calls and recursion in
software. More generally, linear arithmetic constraints can capture periodic and ultimately
periodic behaviours. A well-known result constructs a polynomial-size existential Presburger
formula for the Parikh image of a context-free language, see [131, 140] and [75]. This has
further applications and extensions [67, 51, 74, 79, 72]. Thanks to the closure properties
of semi-linear sets, in the algorithmic foundations of verification “expressible in Presburger
arithmetic” often means tractable: complicated behaviours of systems can be approximated
and analysed with the help of this logic (see, e.g., [1, 73, 16]).

Extensions and other arithmetic theories. Ongoing research on arithmetic theories extends
decidability to more expressive theories and characterises the complexity of decidable ones.

Some extensions of Presburger arithmetic do not, in fact, change the family of definable
sets, but increase the succinctness of the logic. For Presburger arithmetic with counting
quantifiers [130, 71] and with the star operator [118, 69], complexity questions are open.

As already mentioned, adding arbitrary polynomial constraints to Presburger arithmetic
makes the theory undecidable. There is, however, a multitude of decidable theories. Such
is the extension of linear integer arithmetic with exponentiation base 2 [133, 32, 119], see
also [146, 15, 36]. Effectively, this means a new type of constraints is allowed, namely those
of the form y = 2x, where x, y are variables. The choice of integer base k ⩾ 2 is immaterial
but needs to remain the same throughout the formula.

Alternatively, the logic can permit, in addition to linear integer constraints, assertions
of the form “x is a Fibonacci number” as basic building blocks. Such building blocks are
referred to as predicates. Many other sparse predicates can be added instead of the Fibonacci
one, whilst keeping the resulting theory decidable [132, 99]. For the predicate “x is a power
of 2”, an algorithm with elementary running time has been found [15]. On the theme of
adding several “powers” predicates simultaneously, recent references are [77] and [83].

Recall that linear integer arithmetic includes predicates for divisibility by fixed integers.
Adding the full divisibility predicate “x divides y” (where x and y are variables) renders the
theory undecidable [126, 18], whilst keeping decidable its existential fragment (sentences with
existential quantifiers only, all of which must appear at the beginning of the formula without
negations in between). Whether the decision problem for this fragment belongs to NP is an
open question; see, e.g., [94, 138, 116, 40]. In comparison, if instead of divisibility (x | y) we
add multiplication (x · y = z), then even the existential fragment becomes undecidable, by a
celebrated result due to Davis, Putnam, Robinson, and Matiyasevich (negative resolution of
Hilbert’s 10th problem); see, e.g., [120].

Famous open problems in number theory can be expressed using sentences in linear
integer arithmetic extended with a predicate P (x) asserting that x is prime. Indeed, the twin
prime conjecture is expressed with the sentence ∀x∃y [(y ⩾ x) ∧ P (y) ∧ P (y + 2)], and the
Goldbach conjecture with the sentence ∀x∃y [(x ⩽ 2) ∨ (P (y) ∧ P (x− y))]. It remains open
whether Presburger arithmetic with the primes predicate (P ) is decidable; see, e.g., [31, 93].
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