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Abstract
Several measures exist for string similarity, including notable ones like the edit distance and the
indel distance. The former measures the count of insertions, deletions, and substitutions required to
transform one string into another, while the latter specifically quantifies the number of insertions
and deletions. Many algorithmic solutions explicitly address one of these measures, and frequently
techniques applicable to one can also be adapted to work with the other. In this paper, we
investigate whether there exists a standardized approach for applying results from one setting to
another. Specifically, we demonstrate the capability to reduce questions regarding string similarity
over arbitrary alphabets to equivalent questions over a binary alphabet. Furthermore, we illustrate
how to transform questions concerning indel distance into equivalent questions based on edit distance.
This complements an earlier result of Tiskin (2007) which addresses the inverse direction.
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1 Introduction

String-related metrics, such as edit distance, longest common subsequence distance, are
pivotal in numerous applications that deal with text or sequence data. Edit distance metric,
also referred to as Levenshtein distance [18], quantifies the minimum number of single-
character edits (insertions, deletions, or substitutions) necessary to convert one string into
another. This metric finds extensive application in spell checking and correction systems,
DNA sequence alignment and bioinformatics for comparing genetic sequences, as well as
in natural language processing tasks such as machine translation and text summarization,
among other fields. The longest common subsequence metric, also known as Indel or LCS
distance, evaluates the disparity between two strings by determining the minimum number
of single-character edits while forbidding substitutions. This metric has diverse applications,
including text comparison and plagiarism detection, DNA and protein sequence analysis for
recognizing shared regions or motifs, music analysis to uncover similarities between musical
sequences, and document clustering and classification based on content similarity.
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11:2 Many Flavors of Edit Distance

From a computational complexity perspective computing distances under the Edit or Indel
metric typically takes quadratic time complexity, as initially demonstrated by Wagner [23].
Subsequent research has marginally improved this complexity by reducing logarithmic factors,
as evidenced by Masek and Paterson [19] and Grabowski [15]. Additionally, Backurs and
Indyk [5] demonstrated that a truly sub-quadratic algorithm O(n2−δ) for some δ > 0 would
lead to a 2(1−γ)n-time algorithm for CNF-satisfiability, contradicting the Strong Exponential
Time Hypothesis. Similarly, Abboud et al. [1] established a similar result for computing the
Indel metric between string pairs. Notably, obtaining an efficient isometric embedding for
the edit metric into the Indel metric would effortlessly yield the latter result.

Extensive research has been conducted on approximating edit distance, with studies dating
back to the work of Landau et al. [17, 6, 8, 4, 7, 9, 11, 14, 16, 10], ultimately culminating in
the breakthrough result of Andoni and Nosatzki [3], which offers a (large) constant factor
approximation in nearly linear time. However, approximating the Indel distance has not
received similar attention, and although one expects the same techniques should provide
similar results for Indel distance, one would need to check all the details of the construction
to verify the exact properties of such a result. This exhibits a general pattern where results
for one of the measures can often be adapted for the other but there is no simple tool that
would guarantee such an automatic transformation.

Similar pattern emerges when dealing with the string measures over different size alphabets.
For example, the hardness result elucidated by Backurs and Indyk [5] is constrained to some
“large” constant-size alphabets. Subsequent research has revealed that the computational
task of computing edit distance is also hard for binary alphabets using an ad hoc approach.
Once more, the possibility of achieving an efficient isometric embedding between strings
residing in large alphabets and those in smaller ones could potentially resolve these questions
automatically. Another scenario where the alphabet size becomes relevant is in the simple
linear-time approximation algorithm for the length of the LCS. The naive algorithm provides
a |Σ|-approximation, where Σ represents the alphabet to which the strings reside. Therefore,
if one can embed strings from a large alphabet into those from a smaller alphabet while
approximately preserving distances, it may lead to an improvement in the approximation
factor. Given the current circumstances, we pose the following questions, which we then
delve into extensively:

▶ Question 1. Does an isometric embedding exist between the edit metric and the Indel
metric? Can it be computed efficiently?

▶ Question 2. Does an isometric embedding exist between edit metric on arbitrary alphabets
and the edit distance on binary alphabets? Can it be computed efficiently?

1.1 Our Contribution
This paper introduces multiple mappings that establish connections between various string
metrics. Specifically, we transform points residing within a designated input metric space
(M, d) into points within an output metric space (M ′, d′), ensuring that the distance between
any pair of points in M under d, is (approximately) preserved on the output pairs under d′.
In this paper, we introduce a relaxation of the concept of isometric embedding, permitting
scaling factors, as outlined below.

We say an embedding E : M → M ′ is scaled isometric if there exists a function
f : N→ N that maps distances from the original space to the embedded one, such that for
every pair of points x, y ∈M we have: d′(E(x), E(y)) = f(d(x, y)). This implies that such an
embedding can be utilized to reduce the computation of distances in the original metric M to
computing distances under M ′, provided that f is invertible and computationally tractable.
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A special case of scaling involves preserving the normalized distances. That is, for any
metric on a string space, it is intuitive to define the normalized distance between a pair of
strings of a specified length, as their distance divided by the maximum distance of pairs of
that same length. Subsequently, for an embedding E : M →M ′ that preserves lengths (i.e.,
the length of the output string is a function of the input string), we further assert that it is
normalized scaled isometric if, for every pair from M , the normalized distance of the
embedded strings preserves the normalized distance of the original ones.

Utilizing normalized scaled isometric embedding can facilitate the computational process
of approximating distances in the original metric M to compute approximate distances
under M ′, even if the normalized distances are not perfectly preserved by the embedding but
distorted by a (multiplicative) factor of c. In such a case, any c′ approximation algorithm for
the metric M ′ could thus be transformed into a c · c′ approximation algorithm for M .

1.1.1 Our Results
In the sequel, we utilize the notation ∆indel to represent the Indel distance between a pair
of strings, ∆edit to denote their edit distance. Additionally, we use ∆̃indel and ∆̃edit to
represent the normalized Indel distance between a pair of strings (for precise definitions, refer
to Section 2).

Alphabet Reduction – Succinct Embedding. Our first result pertains to alphabet reduction
achieving normalized scaled isometric embedding. In this context, as elaborated in Section 3,
any embedding contracts the normalized distances of some of the pairs. Consequently, we
shift our focus to approximate normalized scaled isometric embedding, where we permit
slight distortions in the normalized distances. Our main result is outlined below:

▶ Theorem 3 (Alphabet Reduction - Succinct Embedding). Let Γ be a finite alphabet, and let
0 < ε < 1/4. There exists an alphabet Σ, where |Σ| = O( 1

ε2 ) and there exists E : Γ∗ → Σ∗

satisfying:

∀X, Y ∈ Γ∗ : ∆̃indel(E(X), E(Y )) ∈
[
(1− ε)∆̃indel(X, Y ), ∆̃indel(X, Y )

]
.

Moreover, for every X ∈ Γn we have: |E(X)| = O(n log(|Γ|)).

Observe that embedded string length is optimal up to logarithmic factors. The size of
the alphabet Σ must exceed 1/ε, as otherwise, by a claim proved later, there will be a pair
of strings whose distance will be contracted by at least

(
1− 1

|Σ|

)
-factor.

As a result, we find that when focusing on ∆indel approximation, we can, without loss of
generality, limit our scope to a constant alphabet size without significantly impacting the
quality of the approximation. This is captured in the following corollary which we provide
without a proof.

▶ Corollary 4. Let Γ be a finite alphabet, and let 0 < ε < 1/4. Suppose that there exists an
algorithm ALG that provides a c-factor approximation for the ∆indel metric for any pairs of
strings in Σ of total length N , where Σ = O(1/ε2), running in time t(N).

Then there exists an algorithm ALG′ that, given any pair of string in Γ of total length n,
provides a c + ε-approximation for their ∆indel distance in time t(n log|Γ|).

The proof strategy of Theorem 3 is as follows: Initially, we construct an error-correcting
code within the smaller alphabet Σ, where |Σ| = O(1/ε2). This code ensures that every
distinct pair of codewords shares only a small portion of LCS, indicating a significant ∆indel
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11:4 Many Flavors of Edit Distance

between them. The code comprises |Γ| words, with its dimension being logarithmic in the
size of Γ. We interpret this code as a mapping from characters within Γ to short strings
in Σ. The existence of such a code can be demonstrated using the probabilistic method.
The construction is almost tight in terms of the smaller alphabet size: it is not hard to
show that for any code C ⊆ Σk, if |C| > |Σ|, then there exist c ̸= c′ ∈ C, satisfying:
∆indel(c, c′) < (1− 1

|Σ| )2k.

Employing the code construction, we embed input strings in a straightforward and
natural manner: Consider a string residing in Γ∗, then each of its characters is sequentially
encoded using the code. This encoding ensures that identical characters are mapped to
the same codeword, while the code’s distance guarantees that distinct characters may have
only a few shared matches, akin to the global nature of ∆indel alignments. If there were
no matches between distinct characters’ encodings, any alignment for the embedded strings
could be converted into an alignment between the input strings without any distortion in the
normalized costs. However, these few matches between non-matching codewords introduce a
slight distortion and complicate the proof.

Alphabet Reduction – Binary Alphabets. Our previous method relied on a local approach,
wherein the characters of the string from the large alphabet were encoded sequentially
and independently. It appears that such a local strategy may not result in a normalized
scaled isometric embedding into a small, particularly binary alphabet. As codes in such
alphabets have a relative distance of at most 1/2, and this distance affects the distortion of the
normalized distances. Therefore, achieving alphabet reduction into binary alphabets requires
a scaling that is not normalized, as well as a more global approach that does not encode the
characters sequentially and independently. However, there’s a caveat: the encoding still needs
to be performed independently on each string rather than on a pair of strings. Specifically,
if we take a particular string X its encoding will remain the same regardless of the second
string Y . This aspect forms the focal point of our forthcoming result.

For clarity, we present our results for the ∆indel metric, with a similar approach applicable
to the ∆edit metric. Our main result states that one can embed ∆indel over any alphabet
Σ into binary alphabet. We employ asymmetric embedding and prove that the distances
are preserved up to some scaling function. The dimension of the embedded strings is quasi-
polynomial, making this result more of a proof of concept at the moment. Nonetheless, we
find it conceptually intriguing and pose the question of decreasing the target dimension as
an open question. Our main result is as follows:

▶ Theorem 5 (Informal statement of Theorem 16). For any alphabet Σ and for every n ∈ N
there exist functions G, H : Σn → {0, 1}N , f : [n]→ [N ] where N = nO(log n) such that for
any X, Y ∈ Σn,

∆indel(G(X), H(Y )) = f(∆indel(X, Y )).

Our initial consideration revolves around the fact that deciding whether ∆indel(X, Y ) ≤ k

for two strings X, Y ∈ Σn and a threshold parameter k, can be accomplished by a Turing
machine utilizing log(n)-space. This capability can then be translated into a SAT formula of
log2(n)-depth.

The foundation of our construction converts this formula into a pair of binary strings
X ′, Y ′ of quasi-polynomial length, where X ′ (respectively, Y ′) depends solely on X (Y )
and the Indel distance between X ′, Y ′ is contingent on the distance between X, Y . This is
achieved by recursively transforming the formula into such a pair of strings gate by gate.
Two essential components, referred to as AND- and OR-gadgets, implement this process.



S. Bhattacharya, S. Dey, E. Goldenberg, and M. Koucký 11:5

The input for the AND-gadget consists of two pairs of strings (X0, Y0), (X1, Y1), which
can be thought of as outputs from previous levels. Here the Xi’s only depend on X and the
Yi’s only depend on Y . Moreover, we are guaranteed that ∆indel(Xi, Yi) can only take two
values {F, T}, where F < T . The goal is to concatenate the Xi into a single string X and the
Yi’s into a different string Y such that: ∆indel(X, Y ) can also take value in {F ′, T ′}, where
F ′ < T ′ and: ∆indel(X, Y ) = T ′ if and only if ∆indel(X0, Y0) = T ∧ ∆indel(X1, Y1) = T .
Similarly for the OR-gadget. Our construction of the LCS instance from the Formula
Evaluation is similar to that of Abboud and Bringmann [2] which considers reduction of the
Formula Satisfiability to LCS. The purpose of our reduction is different, though.

Scaled Isometric Embedding of Indel into Edit Metrics. While our previous results aimed
on reducing the alphabet size while keeping the underlying metric (either ∆indel or ∆edit),
this section focuses on converting one metric into another. Tiskin [21] in section 6.1 proposed
a straightforward embedding from the ∆edit metric to the ∆indel metric. This inspired our
exploration into embedding in the reverse direction i.e. from the ∆indel metric to the ∆edit

metric. Our primary contribution in this realm is a scaled isometric embedding from the
∆indel metric to ∆edit, as outlined below.

▶ Theorem 6 (Indel Into Edit Metrics Embedding - Approximate embedding). For any alphabet
Σ, n ∈ N and ε ∈ (0, 1], there exist mappings E : Σn → Σn and E′ : Σn → (Σ∪{$})N , where
N = Θ(n/ε), such that for any X, Y ∈ Σn, we have

∆edit(E(X), E′(Y )) = N − n + k, where k ∈
[

∆indel(X, Y )
2 , (1 + ε)∆indel(X, Y )

2

)
.

Observe that while plugging ε ≤ 1
n we obtain a scaled isometry at the expense of a

quadratic increase in the length of the second string. Conversely, for constant values of ε, N

scales as O(n) albeit with the trade-off of only approximately preserving distances within a
constant factor. For intermediate values of ε, we can compromise between the accuracy and
the stretch length.

Let us revisit Tiskin’s (section 6.1 of [21]) construction of the reverse embedding, namely,
from ∆edit into ∆indel. The embedding proceeds as follows: a special character $ is appended
after every symbol of each string. It is easy to check that for each pair of strings, the ∆indel

between the embedded pair of strings equals twice the ∆edit between the original pair. In
our construction, one string remains unaltered, while for the second string, we append after
every symbol a block of length n consisting of the special character.

The core of the proof demonstrates the conversion of any ∆indel-alignment for the input
strings into an ∆edit-alignment for the embedded strings, preserving the distances up to a
scaling factor. This process involves replacing any deletions originally performed on the first
string by substituting the characters with the special inserted character. Deletions made on
the second string remain unaffected.

1.2 Related Work
The problem of embedding edit distance into other distance measures, such as Hamming
distance, ℓ1, etc., has attracted significant attention in the literature. Let us briefly survey
some of these approaches.

Chakraborty et al. [12] introduced a randomized embedding scheme from the edit distance
to the Hamming distance. This embedding transforms strings from a given alphabet into
strings that are three times longer. For each pair of strings embedded using the same random
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11:6 Many Flavors of Edit Distance

sequence, with high probability the edit distance between the embedded strings is at most
quadratic in the Hamming distance of the original strings. Batu et al. [8] introduced a
dimensionality reduction technique: Given a parameter r > 1, they reduce the dimension by
a factor of r at the expense of distorting the distances by the same factor. They employed
the locally consistent parsing technique for their embedding. Ostrovsky and Rabani [20]
presented a polynomial time embedding from edit distance to ℓ1 distance with a distortion of
O(2
√

log n log log n). They proposed a randomized embedding where the length of the output
strings is quadratic in the input strings, and the distances are preserved, with high probability,
up to the distortion factor.

1.3 Future Directions

Introducing a Robust Concept of Approximation: Transitioning from Approximating
∆edit into Approximating ∆indel. Recall that one of the reasons we aimed to isometrically
embed the ∆indel metric into the ∆edit metric stemmed from the abundance of approximation
results for ∆edit that might not easily extend to the ∆indel metric. A natural approach,
based on our embedding result, is to approximate the ∆indel distance between X, Y by
approximating the ∆edit between the embedded strings. However, this is not an immediate
consequence due to the substantial disparity in length between the embedded strings and
the notion of approximation in this case, as detailed next:

Recall that in Theorem 6 the scaling mechanism is not normalized, i.e, the embedding
function did not preserve normalized distances, but instead:

∆edit(E1(X), E3(Y )) = N − n + k, where k ∈
[

∆indel(X, Y )
2 , . . . , (1 + ε)∆indel(X, Y )

2

]
where N, n are the length of the embedded strings, and N = Θ( n

ε ). Observe that the ∆edit

between the embedded strings lies in the range of [N − n, N ].
Considering the substantial difference in length between the embedded strings, an al-

gorithm that consistently outputs the value N − n, regardless of the embedded strings,
already yields a 1 + O(ε)-approximation for the distance between the embedded strings.
Certainly, such an outcome provides no information about the ∆indel of the original strings.
Therefore, we introduce a more robust notion of approximation that generally addresses the
discrepancy in string lengths:

▶ Definition 7 (A Robust Notion of Approximation). Let c > 1, let Σ be a finite set, and
let X, Y ∈ Σ∗. Define |X| = N, |Y | = n, and assume N ≥ n. Define kX,Y such that:
∆edit(X, Y ) = N − n + kX,Y .

An algorithm is considered to provide a robust c-approximation for ∆edit if for all pairs
X, Y it outputs k′ such that: k′ ∈ [kX,Y , ckX,Y ].

We assert that for any value of ε, any algorithm ALG that provides a robust c-
approximation for ∆edit yields an algorithm ALG′ that provides (1 + ε)c-approximation for
∆indel. Moreover, if the running time ALG on input strings of lengths N, n is t(N, n), then
the running time of ALG′ is t

(
n
ε , n

)
. The construction of ALG′ is straightforward: on input

strings X, Y we first apply the embedding, then apply ALG on the resulting strings and
finally output: 2k′.

We leave the quest of discovering a robust approximation algorithm for ∆edit as an open
question, which falls outside the scope of this paper.
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1.4 Organization Of The Paper

We structure the paper as follows. In Section 3 we prove our main result, namely Theorem 3,
discussing normalized scaled isometric embedding between large and small alphabets. In
Section 4 we establish Theorem 5 focusing on alphabet reduction with binary alphabets. We
also demonstrate the existence of an indel to edit scaled isometric embedding, as stated in
Theorem 6 the proof of which is in the full version of the paper.

2 Preliminaries and Notations

In this section we introduce the notations that is used throughout the rest of the paper. For
any string X = x1x2 . . . xn and integers i, j, X[i] 1 denotes xi, X[i, j] represents substring
X ′ = xi . . . xj of X, and X[i, j) = X[i, j − 1]. “·”-operator denotes concatenation, e.g X · Y
is the concatenation of two strings X and Y . Λ denotes the empty string.

Edit Distance with Substitutions (∆edit). For strings X, Y ∈ Σ∗, ∆edit(X, Y ) is defined
as the minimal number of edit operations required to transform X into Y . The set of edit
operations includes character insertion, deletion, and substitutions.

Indel Distance (∆indel). For strings X, Y ∈ Σ∗, ∆indel(X, Y ) is defined as the LCS
(Longest Common Subsequence) metric between X and Y . It counts the minimal number of
edit operations needed to convert the strings, where substitutions are excluded.

Normalized Distance. To assess the distance between each pair of strings in a standardized
manner, it is advantageous to express it as a normalized value within the range [0, 1]. To
achieve this, we introduce the following definition:

∆̃edit(X, Y ) = ∆edit(X, Y )
max(|X|, |Y |) , ∆̃indel(X, Y ) = ∆indel(X, Y )

|X|+ |Y |

A string X ′ is considered a subsequence of another string X if ∆indel(X, X ′) = |X|−|X ′|.
X ′ is considered a substring of X if X ′ is a contiguous subsequence of X.

Alignment. For an alphabet Σ and any two strings X, Y ∈ Σ∗ , an ∆edit alignment of
X and Y is a a sequence of edit operations (insertions, deletions, and substitutions) that
transform the string X into Y . The cost of the alignment is determined by the number of
edit operations. An alignment is optimal if it achieves the lowest possible cost. Observe
that for each character of X that wasn’t deleted or substituted, can be matched with a
unique character from Y . The collection of matched characters is referred to as the matching
characters of the alignment.

Similarly we define an ∆indel alignment of X and Y as a sequence of edit operations,
with the exception that substitutions are not permitted. The cost, optimality, and matching
characters of an alignment are defined analogously. See Figure 1 for an example.

1 We use xi or Xi or X[i] to denote the ith character of the string X interchangeably.
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(a) (b)

G R A P E

A P P L E

I N T E N T I O N

E X E C U T I O N

X

Y

X

Y

Figure 1 Example for (a) ∆indel alignment and (b) ∆edit alignment (the matched characters are
highlighted in blue, the deleted characters in red and the substituted characters in orange).

3 Alphabet Reduction

Within this section, we tackle the task of embedding strings from a sizable alphabet into a
smaller one while preserving the global nature of the original metric space. Our main result
demonstrates that it’s possible to embed strings from any large alphabet Γ into strings of
a smaller alphabet Σ, where the length of the strings remains approximately unchanged,
and the normalized distances are distorted by at most a factor of (1 + ε). The size of the
alphabet Σ increases quadratically with 1/ε. To provide clarity, we present our results for
the ∆indel metric; a similar approach can be applied to the ∆edit metric. This section is
structured as follows: In subsection 3.1 we outline our findings regarding normalized scaled
alphabet reductions, covering both lower and upper bounds. Section 3.2 discusses our upper
bounds, while Section 3.3 addresses lower bounds.

3.1 Normalized Scaled Isometric Embedding – Our Finding
An embedding E is said to preserve lengths, if there exists: ℓ : N → N such that: ∀X ∈
Γn : |E(X)| = ℓ(n). It is non-shrinking if ℓ(n) ≥ n. It is natural to focus on non-shrinking
embeddings otherwise if the embedding maps from a large alphabet to smaller one some
distinct strings will get mapped to the same string.

The following claim shows that any length-preserving embedding, mapping strings from
large alphabet into strings of smaller one, necessarily contracts the normalized distances
between certain pairs of strings. The proof of the claim is deferred to Section 3.3.

▷ Claim 8. Let Γ, Σ be finite alphabets, such that: |Γ| > |Σ|, and let E : Γ∗ → Σ∗, which is
a length-preserving embedding, then for any n ∈ N we have:

∃X, Y ∈ Γn : ∆̃indel(E(X), E(Y )) < ∆̃indel(X, Y ).

Therefore, we redirect our attention to approximate embedding, where we allow for a
slight distortion in distances. Our main result is as follows:

▶ Theorem 3 (Alphabet Reduction - Succinct Embedding). Let Γ be a finite alphabet, and let
0 < ε < 1/4. There exists an alphabet Σ, where |Σ| = O( 1

ε2 ) and there exists E : Γ∗ → Σ∗

satisfying:

∀X, Y ∈ Γ∗ : ∆̃indel(E(X), E(Y )) ∈
[
(1− ε)∆̃indel(X, Y ), ∆̃indel(X, Y )

]
.

Moreover, for every X ∈ Γn we have: |E(X)| = O(n log(|Γ|)).

Note that the distortion is “one-sided” in the sense that the normalized distances of the
embedded strings cannot surpass the normalized distance of the original strings. However,
for the lower bound, a (1− ε)-factor may be incurred. Furthermore, we demonstrate that for
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any embedding, the normalized distances cannot be uniformly scaled by a fixed factor. In
particular, we demonstrate that there exist pairs of strings whose normalized distances are
reduced, while for other pairs, their normalized distances converge to each other arbitrarily
closely. This, in turn, illustrates that we cannot deduce the value of ∆̃indel(X, Y ) directly
from the value of ∆̃indel(E(X), E(Y )) by a simple scaling.

▷ Claim 9. Let Γ, Σ be finite alphabets, such that: |Γ| > |Σ|, and let E : Γ∗ → Σ∗, which is
a length-preserving non-shrinking embedding. We have:
1. For any n ∈ N, there exist X, Y ∈ Γn such that

∆̃indel(E(X), E(Y )) ≤ (1− 1
|Σ| )∆̃indel(X, Y ).

2. For any sequence Z1, Z2, . . . where |Zn| = n,

lim
n→∞

∆̃indel(E(Zn), E(Λ))− ∆̃indel(Zn, Λ) = 0, where Λ denotes the empty string.

3.2 Upper Bounds
The crux of Theorem 3 lies in the existence of an error correcting code with respect to the
∆indel metric, even when the alphabet size is small. More specifically, given a proximity
parameter ε > 0, and |Γ|, we pick a set C of strings residing in Σk of cardinality |Γ|, with
large pairwise distance. The construction of C follows a greedy approach reminiscent of
the Gilbert-Varshamov bound [13, 22]. Properties of the code are summarized in the next
statement.

▶ Lemma 10. For any ε < 1/2, let Σ be a finite alphabet satisfying |Σ| > 32/ε2. For every
n ∈ N, there exists k ∈ N with k = O(log n) for which the following conditions are satisfied:
1. There exists a code Cn,ε ⊆ Σk with |Cn,ε| = n.
2. ∀c ̸= c′ ∈ Cn,ε : ∆indel(c, c′) ≥ (2− ε)k.

The proof of Lemma 10 is given in the full version of the paper.
Endowed with the existence of such an error correcting code we assign a distinct codeword

to each of the characters in the larger alphabet Γ. The embedding procedure is as follows:
Given a string X ∈ Γn, we embed it into a string in (Σk)n, where the encoding of X is
formed by concatenating the codewords assigned to each of its characters. The presentation
of the embedding, along with its proof of correctness, is provided in Section 3.2.1.

3.2.1 The Embedding
Let Γ be an alphabet, and let ε be a proximity parameter, and let C := C|Γ|,ε be the code
whose existence is guaranteed by Lemma 10. We interpret the code C as a function mapping
characters from Γ into (short) strings in Σk. The embedding proceeds as follows: each string
in Γ∗ is encoded sequentially character by character, where the encoding of each character is
performed using the code C. Our main technical lemma is as follows:

▶ Lemma 11. For any finite alphabet Γ and ε > 0, consider the encoding C|Γ|,ε : Γ→ Σk

as implied by Lemma 10. For any string X ∈ Γ∗ define: E(X) = C(X1) . . . C(Xn) (where
n = |X|).

Then for any pair of strings X, Y ∈ Γ∗ the following inequality holds:

(1− 48ε)∆indel(X, Y ) ≤ ∆indel(E(X), E(Y )) ≤ ∆indel(X, Y )

Moreover, for every X ∈ Γn we have: |E(X)| = O(n log|Γ|).
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In the sequel, an ∆indel-alignment converting E(X) into E(Y ) is simply referred as
an alignment. In the course of the proof, we introduce the concepts of blocks and block-
structured alignments. For X ∈ Γn we define the i-th block of E(X) to be the substring of
E(X) corresponding to Xi, namely it equals C(Xi). Furthermore, given an alignment A that
transforms E(X) into E(Y ), we label it as a block-structured alignment if, for each i-th block
in E(X), the alignment either fully matches all the characters of the block to some block j

in E(Y ) or entirely deletes the i-th block. It is clear that block-structured alignments for the
embedded strings correspond one-to-one with alignments for the original strings, and their
normalized distance remains unchanged. To prove our main technical lemma we transform
any alignment converting E(X) to E(Y ) into a block-structured one without significantly
increasing its cost.

We will introduce certain notations to facilitate the presentation of the proof. For any
X ∈ Γn we employ lowercase letters such as: i, j, k etc. to represent indices of Xi. We utilize
tuples from [n]× [k] to represent indices of E(X), where the first index signifies the block
index denoted by lowercase letters, and the second one describes the index within the block
represented by a lowercase Greek letter.

The following claim, stated without a formal proof, will be useful in the subsequent proof.

▷ Claim 12. For an alignment A transforming E(X) into E(Y ), we have that the set of
matching characters has to be monotone, indicating that for (i, α) < (i′, α′) in lexicographical
order if (i, α) is matched to (j, β) and (i′, α′) to (j′, β′) by A, we must have: (j, β) < (j′, β′).

Given an alignment A, we partition E(Y ) into n segments based on its matching blocks
in E(X). Define the i-th segment as follows: if no character of the i-th block of E(X) is
matched under A, then the i-th segment is empty. Otherwise, let j denote the first block of
E(Y ) that includes a matching character for one of the characters in the i-th block. If i is
the smallest block containing a matching coordinate within j, then the i-th segment starts
at (j, 1), otherwise it starts at the first coordinate within the j-th block matching with the
i-th block.

The ending point of the segment is defined similarly: Let j′ be the initial block of E(Y )
containing a match for the (i + 1)-th block of E(X). If the i-th block does not match any
of the j′-th coordinates, then the i-th segment ends at (j − 1, k). Otherwise, it ends at the
coordinate preceding the first match of (i + 1) and j. We define the starting point of the
first non-empty segment as (1, 1) and the end point of the last non-empty segment as (n, k).
See Figure 2 for an illustration.

Additionally, we define costA(i), the cost of the i-th block, as the sum of unmatched
coordinates in E(X) within its i-th block and the unmatched coordinates in E(Y ) within its
i-th segment. For example, in the illustration provided in Figure 2, we have costA(1) = 0 + 3
since all the characters of the first block of E(X) are matched, and there are 3 unmatched
coordinates in the first segment of E(Y ). As the decomposition of E(Y ) results in disjoint
parts, the sum of the costs across the different blocks equals the cost of A, which we denote
by: cost(A).

3.2.1.1 Converting Into Block-Structured Alignments

In this section, we introduce an algorithm that takes an arbitrary alignment A transforming
E(X) into E(Y ) as input and produces an alignment A∗. The resulting alignment A∗ is
block-structured, and its cost does not substantially exceed that of A.

To design the new matching we need few definitions. We say that blocks i and j are
partially matched by an alignment A if there exists a pair (i, α) and (j, β) matched by A.
Furthermore, i and j are significantly matched by A if more than εk characters in the i-th
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E(X)

E(Y )

A

C(X1)

1 1 0

C(X2)

0 1 0

C(X3)

1 1 1

C(Y1)
0 0 1

C(Y2)
1 0 1

C(Y3)
0 0 1

C(Y4)
0 1 0

Figure 2 An illustration of the matching between the strings E(X) and E(Y ). Arrows indicate
matching coordinates, and dashed lines represent the beginning/end points of the segments. The
first segment starts at (1, 1) and ends at (2, 3), as the first matched coordinate in the second block
of E(X) is mapped to the third block, and no character from the first block of E(X) is mapped to
that block. The second segment starts at (3, 1) and ends at (4, 1) (as the first matched coordinate
in the second block of E(X) is mapped to the third block, and there exists a character from the
second block of E(X) that is mapped to that block).

block of X are matched into the j-th block; we say that i and j are perfectly matched if A
matches every character in E(X) into a character in E(Y ). The algorithm operates in two
stages. In the first stage, the algorithm iteratively takes two significantly matched blocks
that are not perfectly matched, removes all matches that the characters of the two blocks
participate in, and introduces a perfect match between the two blocks. In the second stage,
we remove all the matches from blocks that are not matched perfectly.

A key observation is that if i and j are significantly matched then we have the following
inequality: ∆indel(C(Xi), C(Yj)) < (2− ε)k. Therefore, by the distance guarantee regarding
C, we must have Xi = Yj . The algorithm is given next. For the sake of the analysis its
second stage is divided into two cases.

3.2.1.2 The Correctness of the Algorithm

We break down the proof of correctness into three claims. Claim 13 states that the output
produced by Algorithm 1 is a block-structured alignment. The subsequent two claims provide
bounds on the cost difference between the input and output alignments.

▷ Claim 13. The alignment A′ produced by Algorithm 1 from any alignment A converting
E(X) into E(Y ) is a block-structured alignment converting E(X) into E(Y ).

The proof of Lemma 11 is derived from the following claims, let us first state the claims.

▷ Claim 14. Let ε < 1/4 and let A be any alignment converting E(X) into E(Y ). Let AI
be the resulting alignment obtained by applying the algorithm described in stage I on A
with a proximity parameter of ε. Then,

cost(AI) ≤ (1 + 4ε)cost(A).

▷ Claim 15. Let AI be any resulting alignment obtained by applying the algorithm described
in stage I on some alignment A with a proximity parameter of ε. Let AII be the resulting
alignment obtained by applying the algorithm described in stage II on AI with a proximity
parameter of ε. Then,

cost(AII) ≤ (1 + 4ε)cost(AI).

The proofs of claims 13, 14 and 15 are given in the full version of the paper.
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Algorithm 1 Converting Into Block-Structured Alignments.

Data: An alignment A converting E(X) into E(Y )
Result: An alignment A′ that is block-structured, converting E(X) into E(Y )
A′ ← A;
; /* Stage I: */
for i = 1 · · · |X| do

if i has some significant match then
j ← smallest block in E(Y ) that significantly matches i;
Remove all matches incident with blocks i and j from A′, and add a perfect
match between the two blocks;

end
end
i← 1 ; /* Stage II: */
while i <= |X| do

if i has a partial and not perfect match then
if i is partially matched to more than a single block then

Delete from A′ all matches of characters from the i-th block of E(X);
i + +;

end
else

j ← smallest E(Y )-block that partially matches i;
i′ ← smallest E(X) that does not match with the j-th block;
Delete from A′ all matches of characters from the j-th block of E(Y );
i← i′;

end
end

end

Proof of Lemma 11 (using Claim 14 and Claim 15). Let OPT represent the normalized
cost of the optimal alignment between X and Y , and ÕPT denote the normalized cost of
the optimal alignment between E(X) and E(Y ). Notice that any alignment between X

and Y can be paired with an alignment between E(X) and E(Y ) having the same cost.
Consequently, we have: ÕPT ≤ OPT. To complete the argument, it remains to establish that:
(1− 48ε)OPT ≤ ÕPT , which can be achieved by demonstrating: OPT ≤ (1 + 24ε)ÕPT .

Consider the optimal alignment A that transforms X into Y , and let A′ be the alignment
generated by Algorithm 1 when applied to A. According to Claims 14 and 15, we obtain:

1
2|E(X)| ·cost(A′) ≤ 1

2|E(X)| ·(1+4ε)2cost(A) ≤ 1
2|E(X)| ·(1+24ε)cost(A) = (1+24ε)OPT.

We conclude the proof by noting that: ÕPT ≤ 1
2|E(X)| · cost(A′). ◀

3.3 Lower Bounds

Proof of Claim 8. For any value of n ∈ N, define An as the set of length n strings composed
of a single character from Γ. Clearly, |An| = |Γ| and moreover, for every distinct pair of
strings in An, their Indel distance is 2n.
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Now consider any embedding E : Γ∗ → Σ∗. Since |An| = |Γ| > |Σ|, by the pi-
geonhole principle there exist X ̸= Y ∈ An satisfying: E(X)1 = E(Y )1

2. Hence,
∆indel(E(X), E(Y )) < 2ℓ(n) while ∆edit(X, Y ) = 2n. ◁

Proof of Claim 9.
1. Fix n ∈ N and consider any embedding E : Γ∗ → Σ∗. For any X ∈ Γn, define

the value p(E(X)) ∈ Σ as the plurality value among {E(X)i}i∈N (ties are broken
arbitrarily). Observe that the character p(E(X)) appears at least ℓ(n)

|Σ| times in the
string E(X). Furthermore, for any X, Y ∈ Σn if: p(E(X)) = p(E(Y )), then we get:
LCS(E(X), E(Y )) ≥ ℓ(n)

|Σ| and hence: ∆indel(E(X), E(Y )) ≤
(

1− 1
|Σ|

)
2ℓ(n).

As in the proof of Claim 8, define An as the set of strings composed of a single character
from Γ. Recall that |An| = |Γ| and moreover, for every distinct pair of points in An, their
LCS distance is 2n.
Since |An| = |Γ| > |Σ|, by the pigeonhole principle there exist X ̸= Y ∈ An satis-
fying: p(E(X)) = p(E(Y )), yielding: ∆indel(E(X), E(Y )) ≤

(
1− 1

|Σ|

)
2ℓ(n), whereas

∆indel(X, Y ) = 2n, as claimed.
2. Let k = |E(Λ)|. For Z ∈ Γn, we have: ∆indel(E(Z), E(Λ)) ≥ ℓ(n) − k so

∆̃indel(E(Z), E(Λ)) ≥ 1 − k
ℓ(n) ≥ 1 − k

n . On the other hand, ∆indel(Z, Λ) = n so
∆̃indel(Z, Λ) = 1. ◁

4 Alphabet Reduction – Binary Alphabets

In this section we show a reduction of ∆edit and ∆indel over an arbitrary alphabet to the
binary alphabet. The reduction expands the strings super-polynomially, but one can think
of it as a proof of concept that more efficient reduction might exist. The main theorem of
this section is the following statement which is a formal statement of Theorem 5. For ease of
presentation it is beneficial to think about Longest Common Subsequence instead of ∆indel.
That is how we state the theorem here.

▶ Theorem 16. For any integer n ≥ 1, any alphabet Σ of size at most n3, there exist integers
S, R, N where N = nO(log n) and functions G, H, G′, H ′ : Σn → {0, 1}N such that for any
X, Y ∈ Σn,

LCS(X, Y ) = LCS(G(X), H(Y ))−R

S

∆edit(X, Y ) = LCS(G′(X), H ′(Y ))−R

S
.

Hence, for any pair of strings X, Y one can recover ∆edit(X, Y ) from ∆indel(G′(X), H ′(Y ))
over a binary alphabet. Both mappings G, H and G′, H ′ can be computed efficiently in the
length of their output. Indeed, they will be defined explicitly below. We remark that the
bound n3 on the size of Σ is essentially arbitrary and could be replaced for example by a bound
2n without change in the other parameters (except for multiplicative constants). However,
the n3 bound allows for hashing any large alphabet by a random pair-wise independent hash
function to an alphabet of size n3 without affecting the distance of any given pair of strings
except with probability < 1/n.

2 E(X)i is the ith character of the string E(X).
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In order to prove the theorem we will need several auxiliary functions. We say that a
0-1 string is balanced if it contains the same number of 0’s and 1’s. We say a formula ϕ is
normalized if it consists of alternating layers of binary AND and OR and all of its literals
are at the same depth; each literal is either a constant, a variable or its negation.

We define two functions g, h : {0, 1}∗×{normalized formulas} → {0, 1}∗ and two threshold
functions f, t : {normalized formulas} → N as follows: Let us consider sets of variables
U = {u1, . . . , up} and V = {v1, . . . , vq}, and let A = {a1, . . . , ap} where ai is the assignment
to the variable ui for all 1 ≤ i ≤ p, and B = {b1, . . . , bq} where bi is the assignment to the
variable vi for all 1 ≤ i ≤ q.

Let ϕ(U, V ) be a normalized formula which is defined over two disjoint sets of variables
U = {u1, . . . , up} and V = {v1, . . . , vq}. Let A ∈ {0, 1}p, B ∈ {0, 1}q where A and B are
interpreted as assignments for U and V respectively. We define two functions g, h, such that
g gets as an input a pair (ϕ, A) and outputs a string in {0, 1}∗, similarly h takes a pair (ϕ, B)
as its input and outputs a string in {0, 1}∗. We also define threshold functions f, t which
take such a formula as input and output a natural number. The crux of the construction is
that for any assignment A for U and B for V we have that if ϕ is satisfied by the assignment
pair A, B then LCS(g(ϕ, A), h(ϕ, B)) = t(ϕ), otherwise LCS(g(ϕ, A), h(ϕ, B)) = f(ϕ)

We establish the recursive definitions of g, h, f and t based on the depth of the formula.
The base case is when ϕ is either a constant 0, 1 or single literals ui,¬ui, vj ,¬vj , where,
ui ∈ U, vj ∈ V . Here by ¬0 we understand symbol 1, and similarly by ¬1 we understand
symbol 0.

ϕ = ui ϕ = ¬ui ϕ = vj ϕ = ¬vj ϕ = 1 ϕ = 0

g(A, ϕ) ¬aiai ai¬ai 0 1 0 1 0 1 1 0

h(B, ϕ) 0 1 0 1 ¬bjbj bj¬bj 0 1 0 1

t(ϕ) 2 2 2 2 2 2

f(ϕ) 1 1 1 1 1 1

and further inductively:

ϕ = ϕ0 OR ϕ1 ϕ = ϕ0 AND ϕ1

g(A, ϕ) 1k/2 14k g(A, ϕ0) 14k 04k g(A, ϕ1) 04k 0k/2 0T +F 111k+T +F 05k g(A, ϕ0) 0k 1k 0k g(A, ϕ1) 05k

h(B, ϕ) 0k/2 04k h(B, ϕ0) 04k 14k h(B, ϕ1) 14k 1k/2 0T +F 05k h(B, ϕ0) 0k 1k 0k h(B, ϕ1) 05k 111k+T +F

t(ϕ) 9k + T 13k + 3T + F

f(ϕ) 9k + F 13k + 2T + 2F .

where k = |g(x, ϕ0)|, T = t(ϕ0), and F = f(ϕ0).

Key properties of our functions are summarized in the next lemma.

▶ Lemma 17. Let ϕ(U, V ) be a balanced formula of depth d with set of variables U =
{u1, . . . , up} and V = {v1, . . . , vq}. For every two assignments A, A′ ∈ {0, 1}p to variables
U , we have |g(A, ϕ)| = |g(A′, ϕ)|. Similarly, for every two assignments B, B′ ∈ {0, 1}q to
variables V , |h(B, ϕ)| = |h(B′, ϕ)|. Additionally, |g(A, ϕ)| = |h(B, ϕ)| ≤ 30d.

Furthermore, the following holds:
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If ϕ(A, B) is true then LCS(g(A, ϕ), h(B, ϕ)) = t(ϕ).
If ϕ(A, B) is false then LCS(g(A, ϕ), h(B, ϕ)) = f(ϕ).

Finally, f(ϕ) < t(ϕ).

In order to prove the above lemma we also need two gadgets which we call the AND-
gadget and the OR-gadget. We need the lemmas on these gadgets (statement and proofs
included in the full version of the paper) which analyze the composition of AND and OR.

The proofs of theorem 16 and lemma 17 can also be found in the full version of the paper.
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