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Abstract
In this work, we study the parallel complexity of the geometric minimum-weight bipartite perfect
matching (GWBPM) problem in R2. Here our graph is the complete bipartite graph G on two sets of
points A and B in R2 (|A| = |B| = n) and the weight of each edge (a, b) ∈ A × B is the ℓp distance
(for some integer p ≥ 2) between the corresponding points, i.e., ||a − b||p. The objective is to find
a minimum weight perfect matching of A ∪ B. In their seminal work, Mulmuley, Vazirani, and
Vazirani (STOC 1987) showed that the weighted perfect matching problem on general bipartite
graphs is in RNC. Almost three decades later, Fenner, Gurjar, and Thierauf (STOC 2016) showed
that the problem is in Quasi-NC. Both of these results work only when the weights are of O(log n)
bits. It is a long-standing open question to show the problem to be in NC.

First, we show that in a geometric bipartite graph under the ℓp metric for any p ≥ 2, unless we
take Ω(n) bits of approximation for weights, we cannot distinguish the minimum-weight perfect
matching from other perfect matchings. This means that we cannot hope for an MVV-like NC/RNC
algorithm for solving GWBPM exactly (even when vertex coordinates are small integers).

Next, we give an NC algorithm (assuming vertex coordinates are small integers) that solves
GWBPM up to 1/poly(n) additive error, under the lp metric for any p ≥ 2.
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1 Introduction

The perfect matching problem is one of the well-studied problems in Complexity theory,
especially, in the context of derandomization and parallelization. Given a graph G = (V, E),
the problem asks, whether the graph contains a matching that matches every vertex of G.
Due to Edmonds [12], the problem is known to be solvable in polynomial time. However,
the parallel complexity of the problem has not been completely resolved till today. In 1979,
Lovász [19] showed that perfect matching can be solved by efficient randomized parallel
algorithms, i.e., the problem is in RNC. Hence, the main question, with respect to its parallel
complexity, is whether this randomness is necessary, i.e., whether the problem is in NC1.

1 The class NC represents the problems that have efficient parallel algorithms, i.e., they have uniform
circuits of polynomial size and polylog depth
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12:2 Parallel Complexity of Geometric Bipartite Matching

The search version of the problem asks to explicitly construct a perfect matching in a
graph if one exists. Note that in the parallel setting, there is no obvious reduction from search
to decision. This version is also known to be in RNC [18, 21]. The Mulmuley-Vazirani-Vazirani
(MVV) algorithm [21], in fact, also works for the weighted version of the problem, where
there is a polynomially bounded weight assignment given on the edges of the graph.

The MVV algorithm [21] introduced the celebrated Isolation lemma. A weight assignment
is called isolating for a graph G, if the minimum weight perfect matching in G is unique
if one exists. Mulmuley, Vazirani, and Vazirani [21] showed that given an isolating weight
assignment with polynomially bounded integer weights for a graph G, a perfect matching
in G can be constructed in NC. The only place where they use randomization is to get an
isolating weight assignment. Their Isolation lemma states that a random weight assignment
is isolating!

Derandomizing the Isolation lemma means to construct such a weight assignment determ-
inistically in NC. A line of work derandomized the Isolation Lemma for special families of
graphs, e.g., planar bipartite graphs [11, 27], strongly chordal graphs [10], graphs with a small
number of perfect matchings [16]. In 2016, Fenner, Gurjar, and Thierauf [14] showed that the
bipartite perfect matching problem is in quasi-NC, by an almost complete derandomization of
the Isolation Lemma. Later, Svensson and Tarnawski [26] showed that the problem in general
graphs is also in Quasi-NC. Subsequently, Anari and Vazirani [5] gave an NC algorithm for
finding a perfect matching in general planar graphs. All of these algorithms work for the
weighted version (poly-bounded) of the problem as well.

What remains a challenging open question is to find an NC algorithm for any versions
(decision/search/weighted) of the perfect matching problem, even for bipartite graphs.
Inspired by the positive results on planar bipartite graphs, we investigate the weighted
version of the perfect matching problem in the geometric setting (2 dimensional).

Geometric Bipartite Matching

Let A and B be two point sets in R2 of size n each. Consider the complete bipartite graph
G(A, B, E) with the following cost function on the edges: for any edge e = (a, b), define
C(e) = ||a − b||p, where || · ||p denotes the ℓp norm for some integer p ≥ 2. In other words, we
consider the ℓp distance between the endpoints as the cost of an edge. The cost of a perfect
matching M is the sum of its edge costs C(M) = Σe∈M C(e). The Geometric Minimum-Weight
Bipartite Perfect Matching (GWBPM) problem is to find Mopt = argmin|M |=n C(M), that is,
the optimal perfect matching with respect to function C. GWBPM is a fundamental problem
in Computational Geometry and has been studied extensively over the years. See Section 1.2
for an overview of the results. In this work, we focus on the parallel complexity of the
GWBPM problem, and ask the following question –

▶ Question 1. Is GWBPM in NC?

Optimization problems in computational geometry are usually studied in real arithmetic
computational model, where comparing two distances or sums of distances is assumed to
be a unit cost operation. However, in the bit complexity model, it is not clear if distances,
which can be irrational numbers (under ℓp metric for p ≥ 2), can be efficiently added or
compared. In fact, the problem of comparing two sums of square roots (or other pth roots)
is not known to be in P (see, for example, [22, 1]). See [13] for some recent progress on the
sum of square roots problem.
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Our path towards showing an NC algorithm for GWBPM naturally goes via the MVV
algorithm. Recall that the MVV algorithm works only when the given weights/costs are
polynomially bounded integers, because in intermediate steps, it needs to put weights in the
exponent. Hence, inevitably we need to consider the bit complexity of the weights. Note that
there are other parallel algorithms for the weighted perfect matching problem (e.g., [15]),
but there too it is important that the weights are polynomially bounded integers.

It is not clear if the GWBPM problem (for p ≥ 2) is in P (or even in NP) in the bit-
complexity model. To the best of our knowledge, the existing algorithms for GWBPM require
comparisons between two sums of pth roots. For p ≥ 2, this naturally leads us to consider
an approximate version of the problem. Let us define the δ-GWBPM problem, which asks
for a perfect matching whose weight is at most δ more than the minimum-weight perfect
matching. We aim to get an NC algorithm for the problem whenever 1/δ is poly(n).

1.1 Our Contribution
In this work, we study the parallel complexity of δ-GWBPM problem. First, it is natural
to ask whether solving δ-GWBPM for some δ = 1/ poly(n) will already solve the GWBPM
problem. In other words, by considering only O(log n) bit approximations of ℓp distances,
can we hope to find the geometric minimum weight perfect matching? Our first result
rules out this possibility. We show that for GWBPM (under ℓp metric for any p ≥ 2), a
super-linear number of bit approximations is required to distinguish the minimum-weight
perfect matching from others.

▶ Theorem 1.1. There is a set of 2n points in the O(n7) × O(n7) integer grid such that in
the corresponding complete bipartite graph, the difference between the weights of the minimum
weight perfect matching and another perfect matching is at most 1/(n − 1)! (under any ℓp

metric with p ≥ 2).

This theorem is proved in Section 2. The first part of the proof goes via a known counting
technique [8], where we construct a geometric bipartite graph and argue that there must be
two perfect matchings whose weights are distinct but very close. In the second part of the
proof, we construct another geometric bipartite graph based on these two matchings, where
one of the two is the minimum weight perfect matching.

Next, we come to our positive result. We affirmatively answer Question 1, by showing
that the geometric minimum weight perfect matching problem that allows up to 1

poly(n) error,
is in NC.

▶ Theorem 1.2. The δ-GWBPM under ℓp metric (p ≥ 2) is in NC, assuming the points are
on a polynomially bounded integer grid, where δ is 1/ poly(n).

This theorem is proved in Section 3. The main idea is to reduce the problem to bipartite
planar matching and then use known techniques for the planar case [27].

1.2 Related Work
The classical Hopcroft-Karp algorithm computes a maximum-cardinality matching in a
bipartite graph with n vertices and m edges in O(m

√
n) time [17]. After almost three

decades, Madry [20] improved the running time to O(m10/7 polylog n) time, which was
further improved to O(m + n3/2 polylog n) by Brand et al. [29]. The Hungarian algorithm

FSTTCS 2024



12:4 Parallel Complexity of Geometric Bipartite Matching

computes the minimum-weight maximum cardinality matching in O(mn + n2 log n) time [23].
In some recent breakthrough results [28, 9], they have shown that maximum-cardinality
matching in bipartite graphs can be solved in near-linear time.

For two sets of points A and B in R2, the best known algorithm for computing GWBPM
runs in O(n2 polylog n) time [3, 4]. Moreover, if points have integer coordinates bounded
by ∆, the running time can be improved to O(n3/2 polylog n log ∆) [24]. If coordinates of
input points have real values, it is not known whether a subquadratic algorithm exists.
However, for the non-bipartite case, Varadarajan [30] presented an O(n3/2 polylog n)-time
algorithm under any ℓp-norm. For bipartite matching, a large body of literature focused on
obtaining approximate matching for points in Rd. Varadarajan and Agarwal [31] presented
an O(n3/2ε−d logd n)-time ε-approximation algorithm for geometric matching in Rd. Later,
Agarwal and Raghavendra [25] improved the running time. Recently, Agarwal et al. [2]
presented a deterministic algorithm with running time n · (ε−1 log n)O(d) time, and computes
a perfect matching whose cost is within a (1 + ε) factor of the optimal matching under any
ℓp-norm.

2 Lower Bound

In this section, we want to show that for a geometric bipartite graph with n + n vertices, we
need at least Ω(n log n) bits of precision to distinguish the minimum weight perfect matching
from others (under ℓp metric for any integer p ≥ 2). We will show this by constructing a
bipartite set of 2n points in the integer grid of size O(n7) × O(n7) such that the difference
between the weights of the minimum weight perfect matching and the one with the next
higher weight will be 1/(n − 1)!. Towards this, the first step is to construct a geometric
graph where there are two perfect matchings whose weights differ by at most 1/(n − 1)!
(Claim 2.2). Here we use an argument based on the pigeonhole principle. A similar argument
was used to show such a bound on the difference of two sums of square roots [8].

In the above construction, it is not necessary that one of the two perfect matchings is
of minimum weight. In the second step, we show that the above geometric graph can be
modified to construct another one where the same two perfect matchings appear, but now
one of them is of minimum weight (Claim 2.4).

▶ Construction 1. Consider the left hand side vertices u0, u1, . . . , un−1 at points

{(0, 0), (0, 1), (0, 2), . . . , (0, n − 1)}.

Similarly, consider the right hand side vertices v0, v1, . . . , vn−1 at points

{(q, n), (q, 2n), (q, 3n), . . . , (q, n2)},

where q = n6.

▷ Claim 2.1. The geometric bipartite graph in Construction 1 has all its perfect matchings
with distinct weights (under ℓp metric for any integer p > 1).

Proof. Recall that edge weights are pth roots of integers. We will argue that the edge weights
are linearly independent over rationals, which immediately implies that any two different
subsets of edges cannot have equal weights. It is known that to show linear independence of
a set of pth roots of integers, it suffices to show that they are pairwise linearly independent
(see, for example, [7]). So, now we just argue that the edge weights are pairwise linearly
independent.
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First we observe that none of the edge weights is an integer. This is because from our
construction, we have n6 < p

√
n6p + 1 < w(e) ≤ p

√
n6p + n2p < n6 + 1.

For the sake of contradiction, suppose we have two edges e and e′, whose weights are
linearly dependent. Then we have aw(e) = bw(e′) for some integers a and b. From here
we get that w(e)pw(e′)p = (a/b)pw(e)2p. That is, the product w(e)pw(e′)p is pth power of
a rational number. Since it is an integer, it must be pth power of an integer. From our
construction, for any edge e, we have q < w(e) ≤ p

√
qp + n2p. Moreover, note that only one

of the edges e or e′ can match the upper bound. Hence,

(q2)p < w(e)pw(e′)p < (qp + n2p)2. (1)

Now, we consider two cases p ≥ 3 and p = 2.

Case I (p ≥ 3). As w(e)pw(e′)p is pth power of an integer, from Equation (1) we have

(q2 + 1)p ≤ w(e)pw(e′)p < (qp + n2p)2.

Comparing the first and the last terms, we get

pq2p−2 +
(

p

2

)
q2p−4 + · · · + 1 < 2qpn2p + n4p.

Putting q = n6, we see that the above inequality is false. Hence, we get a contradiction.

Case II (p = 2). From Equation 1, we have

q4 < w(e)2w(e′)2 < (q2 + n4)2.

Since w(e)2w(e′)2 is square of an integer, we can write w(e)pw(e′)p = (q2 + α)p for some
integer 0 < α < n4.

For any edge e, let us denote by ∆e, the difference in the y coordinates of the two
endpoints of the edge. Then, the weight of an edge e can be written as w(e) =

√
q2 + ∆2

e.
Now, we have

w(e)2w(e′)2 = (q2 + ∆2
e)(q2 + ∆2

e′) = (q2 + α)2.

Equivalently,

q2(∆2
e + ∆2

e′) + ∆2
e∆2

e′ = 2q2α + α2.

Observe that ∆2
e∆2

e′ ≤ n8 < q2 (from construction) and also α2 < n8 < q2. Hence, we
conclude from above that

∆2
e + ∆2

e′ = 2α and ∆2
e∆2

e′ = α2.

This implies that ∆e = ∆e′ .
Now, we will argue that for any two distinct edges, we have ∆e ̸= ∆e′ , which will give

us a contradiction. Indeed for the edge (ui, vj), we have ∆e = jn − i, which comes from a
unique choice of 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n. ◁

▷ Claim 2.2. In the geometric bipartite graph from Construction 1, there are two perfect
matchings whose weights are different and differ by at most 1/(n − 1)!.

FSTTCS 2024



12:6 Parallel Complexity of Geometric Bipartite Matching

Proof. From Claim 2.1, all n! perfect matchings have distinct weights. From the construction,
any perfect matching has its weight between n7 and n p

√
n6p + n2p ≤ n(n6 + 1). The bound

follows from the pigeonhole principle. ◁

Now, consider the two perfect matchings from Claim 2.2, say M1 and M2, whose weights
differ by at most 1/(n − 1)!. Let M1 be the one with a smaller weight. The union of two
perfect matchings M1 ∪ M2 is a set of vertex-disjoint cycles and edges. We are going to
ignore the common edges between M1 and M2. Let (e1, e2, . . . , e2ℓ) be the sequence of
edges generated from the cycles in M1 ∪ M2 as follows: arrange the cycles in an arbitrary
order. For each cycle, start from that edge in M1 which has its left endpoint with minimum
y-coordinate, and traverse along the cycle till we hit the starting vertex. Note that the
sequence (e1, e2, . . . , e2ℓ) has edges alternating from M1 and M2. The new graph will be
constructed by “unrolling” these cycles. The construction will be such that edges outside
these cycles will be long, and hence, will not be a part of any minimum weight perfect
matching. Recall that for any edge e = (ui, vj) (Construction 1), we denote by ∆e the
difference in the y-coordinates of the endpoints, i.e., jn − i.

▶ Construction 2. Consider the vertex t0 at (0, 0). Let y0 = 0. For 1 ≤ k ≤ 2ℓ, we place the
vertex tk at (kq, yk), where

yk = yk−1 + ∆ek
if k is odd

yk = yk−1 − ∆ek
if k is even

We add three more vertices: s0 at (0, −2ℓq), s1 at (ℓq, −2ℓq), and s2 at (2ℓq, −2ℓq). See
Figure 1.

0 q

e1

e3

e2

e4

0 q 2q 3q 4q

e1

e2

e3

e4

s0 s1 s2

Figure 1 The left-hand side figure shows a cycle in the union of two perfect matchings. The
right-hand side figure shows how we “unroll” this cycle.

Corresponding to perfect matchings M1 and M2, here we will have perfect matchings M ′
1

and M ′
2 as

M ′
1 = {e1, e3, . . . , e2ℓ−1, (t2ℓ, s2), (s0, s1)}

M ′
2 = {e2, e4, . . . , e2ℓ, (t0, s0), (s1, s2)}.
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The following are easy observations about Construction 2.
1. The edge lengths of e1, e2, . . . , e2ℓ are exactly the same as their lengths in Construction 1.
2. yk ≥ 0 for each 1 ≤ k ≤ 2ℓ, because for each cycle, the cycle traversal starts from the

lowest y coordinate on the left. Moreover, y2ℓ must be zero, because any cycle traversal
ends at the starting vertex.

3. Any pair of vertices are at least distance q apart.
4. w(M ′

1) = w(M1) + 3ℓq and w(M ′
2) = w(M2) + 3ℓq.

▷ Claim 2.3. The minimum weight perfect matching in Construction 2 is M ′
1, with weight

w(M1) + 3ℓq.

Proof. Recall that weight of any edge ek is at most p
√

qp + n2p = p
√

n6p + n2p < n6 +
1/(pn4p−6) < q + 1/(pn4p−6). Hence, w(M ′

1) ≤ ℓ(q + 1/(pn4p−6)) + 3ℓq = ℓ(4q + 1/(pn4p−6)).
We have already assumed that M ′

2 has weight higher than M ′
1. Now, consider any perfect

matching M other than M ′
1 and M ′

2. We will consider different cases and argue that in each
case M has a larger weight.

If M matches s1 with one of the tk vertices, the weight of that edge will be at least 2ℓq.
The vertices s0 and s2 will either match with each other or to some tk vertices. In either
case, they will contribute at least 2ℓq to the weight. The remaining vertices must have at
least ℓ − 3 edges, each with weight at least q. Hence, the total weight will be at least
5ℓq − 3q, which is larger than w(M ′

1).
Consider the case when M has (s1, s2) (the other case is similar) and s0 is matched
with one of the tk vertices, other than t0. Recall that yk ≥ 0 and s0 = (0, −2ℓq).
Then the weight of (s0, tk) (for k > 0) is at least p

√
(2ℓq)p + qp ≥ 2ℓq + 2ℓq/(4ℓ)p. The

remaining 2ℓ vertices will have ℓ matching edges, each with weight at least q. Hence, the
weight of the matching M will be at least ℓq + 2ℓq + 2ℓq/(4ℓ)p + qℓ. This is larger than
w(M ′

1) ≤ 4ℓq + ℓ/(pn4p−6) (as q = n6 and ℓ ≤ n).
Consider the case when M has (s1, s2) and (s0, t0). These two edges will add up to weight
3ℓq. Since the matching M is different from M ′

1 and M ′
2, it must match a vertex tk with

another vertex tj such that j ̸= {k − 1, k + 1}. Then |j − k| must be at least 3, because
the graph is bipartite. The edge (tk, tj) will have weight at least 3q. The other ℓ − 1
edges will have weight at least q. Hence, the total weight is at least 4ℓq + 2q, which is
again larger than w(M ′

1).
The other cases when M has (s0, s1) matched are similar to the above two cases. ◁

Now, we finally come to our main claim.

▷ Claim 2.4. In the geometric bipartite graph from Construction 2, the difference between
the minimum weight perfect matching and the perfect matching with the next higher weight
is at most 1/(n − 1)!.

Proof. From Claim 2.3, we know that M ′
1 is the minimum weight perfect matching. We had

observed that w(M ′
1) − w(M ′

2) = w(M1) − w(M2). From Claim 2.2, this difference is at most
1/(n − 1)!. ◁

3 Geometric Bipartite Matching

In this section, we study the parallel complexity of δ-GWBPM (under ℓp metric for p ≥ 2),
and show that the problem lies in the class NC, for δ = 1/ poly(n).

First of all, we assume that no three vertex points are colinear. There is a simple fix
to break colinearity by way of small perturbations in coordinates. Specifically, for the ith
vertex at point (xi, yi), let us assign its new coordinates to be (xi + i/K, yi + i2/K), where

FSTTCS 2024



12:8 Parallel Complexity of Geometric Bipartite Matching

K is a large enough number. This specific perturbation guarantees that no three points are
colinear. To see this, consider ith, jth, and kth vertices after the perturbation. They will be
colinear if and only if the following matrix has zero determinant.

1 1 1
xi + i/K xj + j/K xk + k/K

yi + i2/K yj + j2/K yk + k2/K


Consider the coefficient of the term 1/K2 in the determinant, which is (i−j)(j −k)(k−i) ̸= 0.
Other terms in the determinant will be an integer multiple of 1/K and hence, cannot cancel
this term, when K is large enough (poly(n)). This perturbation can cause additive error in
the weights of perfect matchings, but the error will remain bounded by O(n3/K). Thus, the
minimum weight perfect matching with respect to perturbed coordinates will be an GWBPM
up to a 1/ poly(n) additive error. To make the coordinate integral, we can multiply them by
K. Now, give a brief overview of our ideas.

Our main idea is to design an isolating weight assignment for the given graph and then
use the MVV algorithm. Let G be a complete bipartite graph of two sets of points A and B

in R2. The MVV theorem asserts that if a graph has an isolating weight assignment, then
the task of finding the minimum weight perfect matching in G can be accomplished in NC.

To construct an isolating weight assignment, we adopt the weight scheme introduced by
Tewari and Vinodchandran [27], which was designed specifically for planar bipartite graphs.
However, note that our graph is a complete bipartite graph and hence, far from planar. Our
first key observation is that the union of minimum weight perfect matchings (with respect
to ℓp distances or even approximate ℓp distances) forms a planar subgraph. Then one can
hope to use the Tewari and Vinodchandran [27] weight scheme on this planar subgraph.
However, we cannot compute this planar subgraph (i.e., the union of minimum weight perfect
matchings). What proves to be useful is the fact that the Tewari-Vinodchandran weight
scheme is black-box, i.e., it does not care what the underlying planar graph is, it only
needs to know the points in the plane where vertices are situated. Finally, we combine the
approximate distance function with the Tewari-Vinodchandran weight function on a smaller
scale and apply it to the complete bipartite graph. We show that this combined weight
function is indeed isolating.

Towards showing the planarity of the union of minimum weight perfect matchings, first,
we establish the simple fact that for any convex quadrilateral, there is a significant difference
between the sum of diagonals and the sum of any opposite sides.

▶ Lemma 3.1. Consider a convex quadrilateral formed by a quadruple in an integer grid of
size N × N . The sum of lengths of its diagonals is larger than the sum of any two opposite
sides. And the gap between the two sums in ℓp metric is at least 1

4 p√2Np4−1 (p ≥ 2).

Proof. Intuitively, the sum of the diagonals will be larger than the sum of any two opposite
sides because of triangle inequality (the diagonals combined with any two opposite edges
form two triangles). The significance of this gap arises from the fact that if the points
are from a grid and are not collinear, then the angle between any side and the diagonal
cannot be arbitrarily small. Formally, let the four corners of the quadrilateral be A, B, C, D

(in cyclic order). See Figure 2. Let O be the intersection point of the diagonals AC and
BD (diagonals always intersect in a convex quadrilateral). By triangle inequality, we have
|AO| + |OB| ≥ AB and |CO| + |OD| ≥ CD. Adding the two we get,

|AC| + |BD| ≥ |AB| + |CD|.
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A

B

C

D

O

Figure 2 A convex quadrilateral with its two diagonals.

Now, we lower bound the gap. To calculate the lower bound of the gap we directly use the
result of [6]. They gave an easy way to calculate the lower bound for an arithmetic expression
over operators +, −, ∗, / and p

√, with integer operands. Our aim to lower bound the gap
between, |AC| + |BD| and |AB| + |CD|. Let us find the expression for the same where A, B,
C, and D are the points on the N × N grid from R2. Let the co-ordinates of the points are
(i, j), (k, ℓ), (m, n), and (o, p) respectively. Then the expression we want to lower bound is,

E = ||AC||p + ||BD||p − ||AB||p − ||CD||p.

E = p
√

(m − i)p + (n − j)p+ p
√

(o − k)p + (p − l)p− p
√

(k − i)p + (l − j)p− p
√

(o − m)p + (p − n)p.

Our expression also uses only +, −, ∗ and p
√ operators over the integer operands, we can

use the Corollary 2 from [6]. It says that for any division-free expression E whose value ξ is
nonzero, we have

(u(E)D(E)−1)−1 ≤ |ξ| ≤ u(E).

Here u(E) represents the upper bound on the absolute value of E and D(E) represents the
product of indices of all the radicals involved in E. The detailed methodology for calculating
u(E) and D(E) can be found in [6]. The values of u(E) and D(E) for our specific case turn
out to be as follows:

u(E) = 4 p
√

2N,

D(E) = p4.

So the value of the expression E i.e ξ is bounded by,
1

4 p
√

2Np4−1
≤ |ξ| ≤ 4 p

√
2N

The statement of our Lemma 3.1 easily follows from this. ◀

3.1 Union of Near-Minimum Weight Perfect Matchings
In this subsection, we establish our main lemma that in a geometric bipartite graph G, the
union of near-minimum weight perfect matchings forms a planar subgraph of G. This allows
us to use the Tewari and Vinodchandran [27] isolating weight scheme for planar bipartite
graphs. We first define a near-minimum weight perfect matching.

▶ Definition 3.2. Let the vertices of the geometric bipartite graph lie in the N × N integer
grid. A perfect matching is said to be of near-minimum weight under the ℓp metric if its weight
is less than w∗ + 1/(8 p

√
2Np4−1), where w∗ is the minimum weight of a perfect matching.

FSTTCS 2024



12:10 Parallel Complexity of Geometric Bipartite Matching

▶ Lemma 3.3. For a geometric bipartite graph G with vertices in the N × N integer grid,
the union of near-minimum weight perfect matchings forms a planar graph (under ℓp metric
for any p ≥ 2).

Proof. Let A ∪ B be the bipartition of the vertices. We will first show that no two edges in
a near-minimum weight perfect matching M cross each other. For the sake of contradiction,
let there be two edges {a1, b1} and {a2, b2} in M that cross each other, where a1, a2 ∈ A and
b1, b2 ∈ B. Since G is a complete bipartite graph, every vertex of set A must have an edge
to every vertex of set B in G. We can construct another matching M ′ from M by replacing
the crossing edges {a1, b1} and {a2, b2} with {a1, b2} and {a2, b1}, respectively.

Note that (a1, a2, b1, b2) form a convex quadrilateral, since its diagonals a1b1 and a2b2
cross each other. From Lemma 3.1, we know that

|a1b2| + |a2b1| ≤ |a1b1| + |a2b2| − 1/(4 p
√

2Np4−1).

From here, we can conclude that w(M ′) ≤ w(M) − 1/(4 p
√

2Np4−1), where w(M ′) and
w(M) are the weights of M ′ and M , respectively. This contradicts the fact that M is a
near-minimum weight perfect matching.

Now, we will show that two edges belonging to two different near-minimum weight perfect
matchings cannot cross. Consider two such near-minimum weight perfect matchings M1 and
M2, where the edges {a1, b1} ∈ M1 and {a2, b2} ∈ M2 cross each other. Observe that the
union of these two perfect matchings forms a set of vertex-disjoint cycles and a set of disjoint
edges (which are common to both). There are two cases: (i) the edges {a1, b1} and {a2, b2}
are part of one of these cycles and (ii) they are part of two different cycles. In each of the
cases, we will create two new perfect matchings with significantly smaller weight, which will
contradict the near-minimumness of M1 and M2.

Case (i): {a1, b1} and {a2, b2} are part of one cycle C. See Figure 3. Note that the
edges of this cycle come alternatingly from M1 and M2 (shown in the figure in red and blue
colors).

a1

b1
a2

b2 a1

b1
a2

b2

C1
C2

C1
C2

Figure 3 Construction of M ′
1 and M ′

2, when the crossing edges are part of one cycle.

a1

b1a2

b2
a1

b1a2

b2C1C2 C1C2

Figure 4 Construction of M ′
1 and M ′

2, when the crossing edges are part of two different cycles.
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We construct two distinct perfect matchings, M ′
1 and M ′

2, using M1 and M2. Removing
the edges {a1, b1} and {a2, b2} from cycle C divides it into two parts. Note that both parts
must have an even number of edges since the edges are alternating between M1 and M2. It
follows that one of these parts is a path from a1 to a2, let us call it C1. And the other one is
a path from b1 to b2, let us call it C2 (as shown in Figure 3).

Let us put {a1, b2} into M ′
1 and {a2, b1} into M ′

2. For the edges in C1, we put the M1
edges into M ′

1 and the M2 edges into M ′
2. For the edges in C2 we do the opposite, put the

M1 edges into M ′
2 and the M2 edges into M ′

1. For edges outside of the cycle C, we put edges
from M1 into M ′

1 and edges from M2 into M ′
2.

Case (ii): {a1, b1} and {a2, b2} are part of two different cycles. Let C1 and C2 be the
paths obtained from removing {a1, b1} and {a2, b2} from the two cycles, respectively. See
Figure 4. Here again we construct two distinct perfect matchings, M ′

1 and M ′
2, using a

similar uncrossing of edges. Let us put both {a1, b2} and {a2, b1} into M ′
1. For the edges in

C1, we put the M1 edges into M ′
1 and the M2 edges into M ′

2. For the edges in C2 we do the
opposite, put the M1 edges into M ′

2 and the M2 edges into M ′
1. For edges outside the two

cycles, we put edges from M1 into M ′
1 and edges from M2 into M ′

2.
Note that in both Case (i) and Case (ii), the newly constructed perfect matchings M ′

1
and M ′

2 together have the same edges as M1 ∪ M2, except for {a1, b1} and {a2, b2} being
replaced with {a2, b1} and {a1, b2}.

Let w1, w2, w′
1, w′

2 be the weights of matchings M1, M2, M ′
1, M ′

2, respectively. Then,

w′
1 + w′

2 = w1 + w2 − |a1b1| − |a2b2| + |a1b2| + |a2b1|.

From Lemma 3.1, we have that

|a1b1| + |a2b2| − |a1b2| − |a2b1| ≥ 1/(4 p
√

2Np4−1).

Thus,

w′
1 + w′

2 ≤ w1 + w2 − 1/(4 p
√

2Np4−1).

Let w∗ be the weight of the minimum weight perfect matching. Since M1 and M2 are of
near-minimum weight, we have w1, w2 < w∗ + 1/(8 p

√
2Np4−1). Using this with the above

inequality, we get w′
1 + w′

2 < 2w∗. This implies that at least one of the two matchings M ′
1

and M ′
2 have weight smaller than w∗, which is a contradiction. ◀

3.2 Weight scheme
Now, we come to the design of an isolating weight assignment for the graph and the proof
of our main theorem. One of the components of our weight scheme is the isolating weight
assignment WT V constructed by Tewari and Vinodchandran [27] for planar bipartite graph.
We will use the same weight scheme, but for any graph (not necessarily planar) embedded in
the plane.

Consider a bipartite graph G = (A, B, E) (not necessarily planar) with a straight-line
embedding in R2. For any vertex u, let (xu, yu) be the associated point in R2. For an edge
e = (u, v), where u ∈ A and v ∈ B, we define the weight function WT V as follows:

WT V (e) = (yv − yu) × (xv + xu)

Then, the theorem below says that WT V is isolating for bipartite planar graphs.
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▶ Theorem 3.4 ([27]). Let G be a planar bipartite graph. Then with respect to weight
function WT V (defined using any planar embedding), the minimum weight perfect matching
in G, if one exists, is unique.

For a geometric bipartite graph, our main idea is to combine WT V with the approximate
distance function (up to a certain number of bits of precision) The purpose of combining
WT V is to break ties among minimum weight perfect matchings according to the approximate
distance function.

Let G(A, B, E) be a geometric bipartite graph on the N × N integer grid. Let d(·) be
the weight function on the edges defined using the ℓp distance and let it naturally extend to
subsets of edges. For any positive integer ℓ, let us define the approximate distance function
dℓ : E → Z as

dℓ(e) = ⌊d(e) × 2ℓ⌋.

First, let us show that the minimum weight perfect matchings with respect to approximate
distance function remains near-minimum with respect to the exact distance function.

▷ Claim 3.5. For any positive integer ℓ, let M and M∗ be minimum weight perfect matchings
with respect to functions dℓ and d, respectively. Then,

d(M) < d(M∗) + n/2ℓ.

Proof. Observe that for any edge e, 2ℓd(e) − 1 < dℓ(e) ≤ 2ℓd(e). Hence, for perfect
matching M ,

2ℓd(M) − n < dℓ(M) ≤ 2ℓd(M).

Then, we can write

2ℓd(M) < dℓ(M) + n ≤ dℓ(M∗) + n ≤ 2ℓd(M∗) + n.

This implies that d(M) < d(M∗) + n/2ℓ. ◁

3.2.1 Weight scheme
For any integer ℓ, now let us define the combined weight function Wℓ on the edges as follows:

Wℓ := (2nN2 + 1) × dℓ + WT V

Here, the scaling dℓ with a large number ensures that Wℓ has the same ordering of perfect
matchings as dℓ, and the WT V function plays the role of tie breaking. Our next lemma says
that when to take enough number of bits from the distance function and then combine it
with WT V as above, the resulting weight function is isolating.

▶ Lemma 3.6. For any integer ℓ ≥ (p4 − 1) log N + log n + 3 + 1/p, the minimum weight
perfect matching in G with respect to the weight function Wℓ is unique.

Proof. First, observe that for any two perfect matchings M1 and M2,

dℓ(M1) > dℓ(M2) =⇒ Wℓ(M1) > Wℓ(M2).
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This is because the maximum contribution of WT V to the weight of a matching can be at
most n × 2N2. Thus, we can write

Wℓ(M1) − Wℓ(M2) = (2nN2 + 1)(dℓ(M1) − dℓ(M2)) + WT V (M1) − WT V (M2)
≥ (2nN2 + 1) · 1 + 0 − 2nN2.

≥ 1

It follows that the set of minimum weight perfect matchings with respect to Wℓ is a
subset of that with respect to dℓ. Now, we argue that these sets form a planar subgraph.

▷ Claim 3.7. The union of minimum weight perfect matchings with respect to dℓ forms a
planar subgraph.

Proof. Let M and M∗ be the minimum weight perfect matchings with respect to functions
dℓ and d, respectively. From Claim 3.5 we have that d(M) < d(M∗) + n/2ℓ. By substituting
ℓ ≥ (p4 − 1) log N + log n + 3 + 1/p, we get that the gap is less than 1/(8 p

√
2Np4−1). Hence,

M is a near-minimum weight perfect matching with respect to the d(·). Then, the claim
follows from Lemma 3.3. ◁

To finish the proof of the lemma, let H be the subgraph formed by the union of minimum
weight perfect matchings with respect to dℓ. Clearly, dℓ gives equal weights to all the perfect
matchings in H. Thus, the function Wℓ is the same as WT V on H (up to an additive
constant). From Theorem 3.4, we know that WT V ensures a unique minimum weight perfect
matching in the planar graph H. Hence, so does Wℓ. ◀

3.2.2 Proof of the main theorem (Theorem 1.2)

Once we have shown how to construct an isolating weight assignment, we just need to use
the algorithm of Mulmuley, Vazirani and Vazirani [21] to construct the minimum weight
perfect matching.

▶ Theorem 3.8 ([21]). Given a graph G = (V, E) with an isolating weight assignment on the
edges that uses O(log n) bits, there is an NC algorithm to find the minimum-weight perfect
matching.

Now, we are ready to prove the main theorem. Suppose we are given a bipartite set of 2n

points in N × N integer grid. Recall that the weight of an edge is defined to be the Euclidean
distance between the endpoints. Our goal is to construct a perfect matching whose weight is
at most w∗ + δ, where δ is the given error parameter and w∗ is the minimum weight of a
perfect matching. If we choose ℓ ≥ log(n/δ), then from Claim 3.5, we know that a minimum
weight perfect matching with respect to function dℓ(·) will have the desired property.

We choose ℓ = max{log(n/δ), (p4 − 1) log N + log n + 4}. Then we use the weight scheme
Wℓ with the MVV algorithm (Theorem 3.8). Recall that from Lemma 3.6, we have the
isolation property required in Theorem 3.8. Finally, let us analyse the number of bits used
by weight function Wℓ. The maximum weight given to any edge by function d(·) is at most
p
√

2N and by function WT V , it is at most 2N2. Thus, the maximum weight given to any edge
by function Wℓ will be at most 2ℓ × p

√
2N × (2nN2 + 1) + 2N2. The number of bits in weight

of any edge comes out to be O(log(Nn/δ)). Hence, we have an NC algorithm, whenever N

and 1/δ are polynomial in n.
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4 Conclusion

In this work, we explored the parallel complexity of GWBPM problem. We established a
lower bound which shows that for GWBPM, a linear number of bits is required to distinguish
the minimum-weight perfect matching from others. Next, we showed that GWBPM problem
(under ℓp metric for p ≥ 2) that allows up to 1

poly(n) additive error, is in NC. The main
question that arises from our work is whether the non-bipartite version of GWBPM is also in
NC. Another possible extension is to consider the bipartite version in 3 or higher dimensions.
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