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—— Abstract

The problem PosSLP is the problem of determining whether a given straight-line program (SLP)
computes a positive integer. PosSLP was introduced by Allender et al. to study the complexity
of numerical analysis (Allender et al., 2009). PosSLP can also be reformulated as the problem of
deciding whether the integer computed by a given SLP can be expressed as the sum of squares of
four integers, based on the well-known result by Lagrange in 1770, which demonstrated that every
natural number can be represented as the sum of four non-negative integer squares.

In this paper, we explore several natural extensions of this problem by investigating whether the
positive integer computed by a given SLP can be written as the sum of squares of two or three integers.
We delve into the complexity of these variations and demonstrate relations between the complexity
of the original PosSLP problem and the complexity of these related problems. Additionally, we
introduce a new intriguing problem called Div2SLP and illustrate how Div2SLP is connected to
DegSLP and the problem of whether an SLP computes an integer expressible as the sum of three
squares.

By comprehending the connections between these problems, our results offer a deeper under-
standing of decision problems associated with SLPs and open avenues for further exciting research.
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1 Introduction

1.1 Straight Line Programs and PosSLP

The problem PosSLP was introduced in [1] to study the complexity of numerical analysis
and relate the computations over the reals (in the so-called Blum-Shub-Smale model, see [5])
to classical computational complexity. PosSLP asks whether a given integer is positive or
not. The problem may seem trivial at first glance but becomes highly non-trivial when the
given integer is not explicitly provided but rather represented by an implicit expression which
computes it. One way to model the implicit computations of integers and polynomials is
through arithmetic circuits and straight line programs (SLPs).
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An arithmetic circuit takes the form of a directed acyclic graph where input nodes are
designated with constants 0, 1, or variables x1,x2,...,z,,. Internal nodes are labeled with
mathematical operations such as addition (+), subtraction (—), multiplication (x), or division
(+). Such arithmetic circuits are said to be constant-free. In the algebraic complexity theory
literature, usually, one studies arithmetic circuits where constants are arbitrary scalars from
the underlying field. But in this paper, we are only concerned with arithmetic circuits that
are constant-free.

On the other hand, a straight-line program is a series of instructions corresponding to a
sequential evaluation of an arithmetic circuit. If this program does not contain any division
operations, it is called “division-free”. Unless explicitly specified otherwise, we will exclusively
consider division-free straight-line programs. Consequently, straight-line programs can be
viewed as a compact representation of polynomials or integers. In many instances, we will
be concerned with division-free straight-line programs that do not incorporate variables,
representing an integer. Arithmetic circuits and SLPs are used interchangeably in this paper.
Now we define the central object of study in this paper.

» Problem 1.1 (PosSLP). Given a straight-line program representing N € Z, decide whether
N > 0.

An SLP P computing an integer is a sequence (bg,b1,ba, ..., by,) of integers such that by = 1
and b; = b; o; by, for all ¢ > 0, where j,k < i and o; € {+,—, x}. Given such an SLP
P, PosSLP is the problem of determining the sign of the integer computed by P, i.e., the
sign of b,,. Note that we cannot simply compute b,, from a description of P because the
absolute value of b, can be as large as 22" . Therefore computing b,, exactly might require
exponential time. Hence this brute-force approach of determining the sign of b,, is too
computationally inefficient. [1] also show some evidence that PosSLP might be a hard
problem computationally. They achieve this by proving that PosSLP is polynomial-time
Turing equivalent to the Boolean component of problems that are solvable in polynomial
time in the Blum-Shub-Smale (BSS) model, as well as to the general problem of numerical
computation. We briefly survey this relevance of PosSLP to emphasize its importance in
numerical analysis. For a more detailed discussion, the interested reader is referred to [1,
Section 1].

The Blum-Shub-Smale (BSS) computational model deals with computations using real
numbers. It is a well-explored area where complexity theory and numerical analysis meet. For
a detailed understanding, see [5]. Here we only describe the constant-free BSS model. BSS
machines handle inputs from R® := UenRF, allowing polynomial-time computations over
R to solve “decision problems” L C R*. The set of problems solvable by polynomial-time
BSS machines is denoted by P%, see e.g., [8]. To relate the complexity class P to classical
complexity classes, one considers the boolean part of P§, defined as: BP(PY) := {LN{0,1}> |
L € P%}. To highlight the importance of PosSLP as a bridge between the BSS model and
Turing machine model, [1] proved the following Theorem 1.2.

» Theorem 1.2 (Proposition 1.1 in [1]). We have PFosSLF = BP(PY).

Another motivation for the complexity of PosSLP comes from its connection to the task
of numerical computation. Here we recall this connection from [1]. [1] defined the following
problem to formalize the task of numerical computation:

» Problem 1.3 (Generic Task of Numerical Computation (GTNC) [1]). Given a straight-line
program P with n variables, and given inputs ay, as, ..., ay for P (as floating-point numbers)
and an integer k in unary, compute a floating-point approximation of P(ay,as,...,a,) with
k significant bits.
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The following result was also demonstrated in [1].

» Theorem 1.4 (Proposition 1.2 in [1]). GTNC is polynomial-time Turing equivalent to
PosSLP.

1.2 How Hard is PosSLP?

GTNC can be viewed as the task that formalizes what is computationally efficient when we
are allowed to compute with arbitrary precision arithmetic. Conversely, the BSS model can
be viewed as formalizing computational efficiency, where we have infinite precision arithmetic
at no cost. Theorem 1.2 and Theorem 1.4 show that both these models are equivalent
to PosSLP under polynomial-time Turing reductions. One can also view these results as
an indication that PosSLP is computationally intractable. Despite this, no unconditional
non-trivial hardness results for PosSLP beyond P-hardness (which holds due to a reduction

from EquSLP) are known. Still, a lot of important computational problems reduce to PosSLP.

We briefly survey some of these problems now. By the n-bit binary representation of an
integer N with the condition |N| < 2™, we mean a binary string with a length of n 4+ 1. This
string consists of a sign bit followed by n bits encoding the absolute value of N, with leading
zeros added if necessary. A very important problem in complexity theory is the EquSLP
problem defined as:

» Problem 1.5 (EquSLP, [1]). Given a straight-line program representing an integer N,
decide whether N = 0.

EquSLP is also known to be equivalent to arithmetic circuit identity testing (ACIT) or
polynomial identity testing [1]. It is easy to see that EquSLP reduces to PosSLP: N € Z
is zero if and only if 1 — N? > 0. Recently, a conditional hardness result was proved for
PosSLP in [9], formalized below.

» Theorem 1.6 (Theorem 1.2 in [9]). If a constructive variant of the radical conjecture of [13]
s true and PosSLP € BPP then NP C BPP.

As for upper bounds on PosSLP, PosSLP was shown to be in the counting hierarchy CH
in [1]. This is still the best-known upper bound on the complexity of PosSLP. Another
important problem is the sum of square roots, defined as follows:

» Problem 1.7 (Sum of Square Roots (SoSRoot)). Given a list (a1,az,...,a,) of positive
integers and a list (01,0, ...,0,) € {£1}" of signs, decide if > ., 0;\/a; is positive.

SoSRoot is well-known and has applications in computational geometry, as well as in several
other fields. The Euclidean traveling salesman problem, whose inclusion in NP is not known,
is easily seen to be in NP relative to SoSRoot. SoSRoot is conjectured to be in P in [24] but
this is far from clear. Still, one can show that SoSRoot reduces to PosSLP [31, 1]. There
are several other problems related to straight line program which are intimately related to
PosSLP. For instance, the following problems were also introduced in [1]. These problems
will be useful in our discussion later.

» Problem 1.8 (BitSLP). Given a straight-line program representing N, and given n,i € N
in binary, decide whether the it" bit of the n-bit binary representation of N is 1.

It was also shown in [1] that PosSLP reduces to BitSLP. Although we do not know any
unconditional hardness results for PosSLP, BitSLP was shown to be #P-hard in [1]. Another
important problem related to PosSLP is the following DegSLP problem, which was shown to
be reducible to PosSLP in [1].

13:3
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» Problem 1.9 (DegSLP). Given a straight-line program representing a polynomial f € Z|x]
and a natural number d in binary, decide whether deg(f) < d.

The problem DegSLP was posed in [1] for multivariate polynomials, here we have considered
its univariate version. But these are seen to be equivalent under polynomial time many-one
reductions [1, Proof of Proposition 2.3], we recall this reduction in Section C. We also recall
the following new problem from [12] related to straight line programs, which is important to
results in this paper.

» Problem 1.10 (OrdSLP). Given a straight-line program representing a polynomial f € Z|x]
and a natural number € in binary, decide whether ord (f) > £. Here, the order of f, denoted
as ord (f), is defined to be the largest k such that z* | f.

1.3 Our Results

Lagrange proved in 1770 that every natural number can be represented as a sum of four
non-negative integer squares [27, Theorem 6.26]. Therefore PosSLP can be reformulated as:
Given a straight-line program representing N € Z, decide if there exist a,b, ¢,d € N (not all
zero) such that N = a? + b? + ¢® + d?. In light of this rephrasing of PosSLP, we study the
various sum of squares variants of PosSLP in Section 2 and Section 3. To formally state our
results, we define these problems now. For convenience, we say that n € N is 3SoS if it can
be expressed as the sum of three squares (of integers). We study the following problem.

» Problem 1.11 (3SoSSLP). Given a straight-line program representing N € Z, decide
whether N is a 350S.

One might expect that 3SoSSLP is easier than PosSLP, but we show that PosSLP reduces to
3SoSSLP under polynomial-time Turing reductions. More precisely, we prove the following
Theorem 1.12 in Section 2.

» Theorem 1.12. PosSLP € P3S0SSLP,

Similarly, we say that n € N is 2S0S if it can be expressed as the sum of two squares (of
integers). We also study the following problem.

» Problem 1.13 (2S0SSLP). Given a straight-line program representing N € Z, decide
whether N is a 250S.

These problems 3SoSSLP and 2SoSSLP can also be seen as special cases of the renowned
Waring problem. The Waring problem has an intriguing history in number theory. It asks
whether for each k € N there exists a positive integer g(k) such that any natural number
can be written as the sum of at most g(k) many k" powers of natural numbers. Lagrange’s
four-square theorem can be seen as the equality g(2) = 4. Later, Hilbert settled the Waring
problem for integers by proving that g(k) is finite for every k [16]. Therefore, problems
250SSLP and 3SoSSLP can be seen as computational variants of the Waring problem. These
computational variants of the Waring problems are extensively studied in computer algebra
and algebraic complexity theory, and Shitov actually proved that computing the Waring rank
of multivariate polynomials is IR-hard [30]. For 2S0SSLP, we prove the following conditional
hardness result in Section 3.

» Theorem 1.14. If the generalized Cramér conjecture A (Conjecture 3.3) is true, then
PosSLP € Np25oSSLP,
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We also study whether 3SoSSLP can be reduced to PosSLP. Unfortunately, we cannot
show this reduction unconditionally. Hence we study and rely on the following problem
Div2SLP, which might be of independent interest. One can view Div2SLP as the variant of
OrdSLP for numbers in binary.

» Problem 1.15 (Div2SLP). Given a straight-line program representing N € Z, and a
natural number ¢ in binary, decide if 2° divides |N| , i.e., the £ least significant bits of | N|
are zero.

We show that if we are allowed oracle access to both PosSLP and Div2SLP oracles then
3SoSSLP can be decided in polynomial time, formalized below in Theorem 1.16. A proof
can be found in Section 2.

» Theorem 1.16. 3S0SSLP ¢ p{Div2SLP,PosSLP}

We also study how Div2SLP is related to other problems related to straight line programs.
To this end, we prove the following Theorem 1.17 in Section 2.

» Theorem 1.17. OrdSLP =p DegSLP <p Div2SLP.

As for the hardness results for 3SoSSLP and 2SoSSLP, we also show that similar to
PosSLP, EquSLP reduces to both 3SoSSLP and 2SoSSLP. Analogous to integers, we also
study the complexity of deciding the positivity of univariate polynomials computed by a
given SLP. In this context, we study the following problem.

» Problem 1.18 (PosPolySLP). Given a straight-line program representing a univariate
polynomial f € Z[x], decide if [ is positive, i.e., f(x) >0 for all z € R.

We prove that in contrast to PosSLP, hardness of PosPolySLP can be proved uncondi-
tionally, formalized below in Theorem 1.19.

» Theorem 1.19. PosPolySLP is coNP-hard under polynomial-time many-one reductions.

In contrast to numbers, every positive polynomial can be written as the sum of two
squares (but only over the reals, see Section 4 for a detailed discussion). So PosPolySLP is
equivalent to the question whether f is the sum of two squares. To conclude, we motivate
and study the following problem (see Section 4 for more details).

» Problem 1.20 (SqPolySLP). Given a straight-line program representing a univariate
polynomial f € Z[z], decide if Ig € Z[z] such that f = g>.

We show in Section 4 that SqPolySLP is in coRP.
2 SLPs as Sums of Three Squares
This section is concerned with studying the complexity of 3SoSSLP and related problems.

2.1 Lower Bound for 3SoSSLP

In this section, we prove Theorem 1.12. We use the following characterization of integers
which can be expressed as the sum of three squares.

» Theorem 2.1 ([23, 15, 3, 25]). An integer n is 3S0S if and only if it is not of the form
4%(8k + 7), with a,k € N.

FSTTCS 2024
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Theorem 2.1 informally implies that 3SoS integers are “dense” in N and hence occur
very frequently. A useful application of this intuitive high density of 3SoS integers is
demonstrated below in Lemma 2.2. More formally, Landau showed that the asymptotic
density of 3SoS integers in N is 5/6 [21]. To reduce PosSLP to 3SoSSLP, we shift the given
integer (represented by a given SLP) by a positive number to convert into 3S0S. To this end
we prove the following Lemma 2.2.

» Lemma 2.2. For every n € N, at least one element in the set {n,n + 2} is 3S0S.

Proof. If n is 3SoS then we are done. Suppose n is not 3SoS, by using Theorem 2.1 we know
that n = 4%(8k + 7) for some a,k € N. If a = 0 then n = 8k + 7 and hence n +2 = 8k + 9 is
clearly not of the form 4°(8c+ 7) for any b,c € N. If a > 0 then n + 2 = 4%(8k + 7) + 2 is not
divisible by 4. Hence for n + 2 of the form 4°(8c+ 7), we have to have 4%(8k+7) +2 = 8c+1T7.
This is clearly impossible because the LHS is even whereas RHS is odd. |

» Lemma 2.3. If M € Z, then TM* not a 3S0S.

Proof. Suppose M = 4%(4b+c) where a is the largest power of 4 dividing M, ¢ = 24 (mod 4)

1a

and b = | 2+ |. We prove the claim by analyzing the following cases.

If ¢ =0 then M = 4%b for some a,b € N and 4 does not divide b. Note that here a > 0,
otherwise ¢ cannot be zero by its definition. Therefore 7TM* = 4% . 7b*. Now we can
apply this Lemma recursively on b (which is smaller than M) to infer that 7b* is of the
form 4%(83 + 7) for some «, 3 € N. Hence 7M* is also of this form and thus not a 3S0S
by using Theorem 2.1.

If ¢ =1 then TM* = 4% .7.(256b* +256b> + 96b% + 16b+ 1) = 4%(83+7) for some «, 3 € N,
hence 7M* is not a 3S0S by using Theorem 2.1.

If ¢ = 2 then TM* = 41972 7. (16b* + 320> + 24b? + 8b+ 1) = 4%(83 +7) for some «, 3 € N,
hence 7M* is not a 3S0S by using Theorem 2.1.

If ¢ = 3 then 7TM* = 4% . 7. (256b* + 7680 4 964b% + 12496b + 81) = 4%(88 4 7) for some
a, B € N, hence 7M* is not a 3S0S by using Theorem 2.1. <

Lemma 2.3 implies the following EquSLP hardness of 3SoSSLP.
» Lemma 2.4. EquSLP <p 3SoSSLP.

Proof. Given a straight-line program representing an integer IV, we want to decide whether
N = 0. Suppose M = N2. We have M > 0 and M = 0 iff N = 0. By using Lemma 2.3, we
know that 7M* is a 3S0S iff M = 0. <

» Remark 2.5. Lemma 2.4 illustrates that 3SoSSLP is at least as hard as EquSLP under
deterministic polynomial time Turing reductions. This may not appear as a very strong
result, since EquSLP can be decided in randomized polynomial time anyway. However,
unconditionally, even PosSLP is known to be only EquSLP-hard. Moreover, we rely on
Lemma 2.4 in the proof of Theorem 1.12 below.

» Theorem 1.12. PosSLP € P3SoSSLP,

Proof of Theorem 1.12. Given a straight-line program representing an integer IV, we want
to decide whether N > 0. Using an EquSLP oracle, we first check if N € {0,—1,—2}. By
using Lemma 2.4, these oracle calls to EquSLP can also be simulated by oracle calls to
the 3SoSSLP oracle. Hence this task belongs to P35°SSLP If N € {0, —1, -2}, then clearly
N > 0 is false, and we answer “No”. Otherwise we check if IV is a 3SoS, if it is then clearly
N > 0 and we answer “Yes”. If it is not a 3SoS then we check if N + 2 is a 3SoS. If N + 2
is a 3SoS then clearly N > 0 because N ¢ {0,—1,—2}. If N 4 2 is not a 3S0S, then by
Lemma 2.2 we can conclude that N < —2 and hence we answer “No”. <
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2.2 Upper Bound for 3SoSSLP

Now we prove the upper bound for 3SoSSLP, claimed in Theorem 1.16.
» Theorem 1.16. 3SoSSLP e p{Piv2SLP,PosSLP}

Proof of Theorem 1.16. Given an N € Z represented by a given SLP, we want to decide if
N is a 3S0S. By using the PosSLP oracle, we first check if N > 0. If N < 0 then we answer
“No”. By invoking the PosSLP oracle again on 1 — N2, we can determine whether N = 0, in
which case we answer “Yes”. Hence we can now assume that N > 0. By using Theorem 2.1,
it is easy to see that N is not a 3SoS iff the binary representation Bin (N) of N looks like
below:

N is not a 3S0S <= Bin (N) = S1110" where ¢ is even and S € {0, 1}*.

By using the Div2SLP oracle, we compute the number of trailing zeroes (call it again t) in
the binary representation of N. This can be achieved by doing a binary search and repeatedly
using the Div2SLP oracle. If ¢ is not even, then N is a 3SoS. Next we construct an SLP
which computes 2¢, i.e., the number 10? in the binary representation. Such an SLP can be
constructed in time poly(log?) and is of size O(log?t). This can be seen by looking at the
binary representation of ¢t and then using repeated squaring. We have:

Bin (N +2') = 5'0'""® <= Bin (N) = S1110" for some S, 5" € {0,1}*.

Hence N is not a 3S0S iff N + 2% has t + 3 trailing zeroes, which again can be decided using
the Div2SLP oracle. |

2.3 Complexity of Div2SLP

In this section, we show a DegSLP lower bound for Div2SLP. To this end, we first prove the
following equivalence of DegSLP and OrdSLP.

» Lemma 2.6. Given a straight-line program P of length s computing a polynomial f € Zlx],
we can compute in poly(s) time:

1. A number m € N such that deg(f) < m < 2°.

2. A straight line program Q of length O(s) such that @ computes the polynomial ™ f (%)

Proof. We generate the desired straight line program @ in an inductive manner. Namely,
if a gate g in P computes a polynomial R, then the corresponding gate in () computes a
number my > deg(Ry) (the gate itself does not compute a number, to be precise, but our
reduction algorithm does) and the polynomial z™s R, (1) € Z[z]. It is clear how to do it for
leaf nodes. Suppose g = g1 + g2 is a + gate in P. So we have already computed integers
mg,, Mg, and polynomials z™o Ry, (L) 2™ Ry, (1). We consider my := mg, + mg,. We
then have:

1 1 1
‘ngRg (x) = pMa2 pMa1 Rg1 (aj> 4 M1 M2 Rg2 <x) .

We also construct a straight-line program of length O(s) that simultaneously computes ™"
for all gates h in P. With this, we can compute ™9 R, (%) using 3 additional gates. This
implies the straight-line program for @) can be implemented using only O(s) gates. Similarly,
for a x gate g = g1 X g, we can simply use 2™ R, (1) = amatme Ry (1) Ry, (1) with

mg = Mg, + my,. By induction, it is also clear that at the top gate g, we have my, < 2°.

13:7
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It remains to describe a straight-line program of length O(s) which computes ™" for all
gates h in P. Consider the straight-line program P’ obtained from P by changing every
addition gate into a multiplication gate. If ¢’ is a gate in P’ corresponding to the gate g in
P, then one can show via induction that Ry (x) = 2™s. This gives the desired straight-line
program. <

» Lemma 2.7. DegSLP <p OrdSLP.

Proof. Suppose we are given a straight line program P of length s computing a polynomial
f € Z[z]. By using Lemma 2.6, we compute:
1. A number m € N such that deg(f) < m < 2°.

2. A straight line program @ of length O(s) such that @ computes the polynomial z™ f (1) €
Z[z].
Now it is clear that:

deg(f) < d +=> ord (xmf (i)) > (m - d).

Hence the claim follows. <

The proof of the following Lemma 2.8 is almost the same to that of Lemma 2.7, hence we
omit it.

» Lemma 2.8. OrdSLP <p DegSLP.

» Theorem 2.9. OrdSLP =p DegSLP.

Proof. Follows immediately from Lemma 2.7 and Lemma 2.8. <
» Theorem 2.10. OrdSLP =p DegSLP <p Div2SLP.

Proof. We only need to show that OrdSLP <p Div2SLP. Suppose we are given a straight
line program P of length s computing a polynomial f € Z[z] and ¢ € N in binary, we want
to decide if ord (f) > £. We know that || f||oo< 22, where || f||oo is the maximum absolute
value of coefficients of f(x). We now construct an SLP which computes f(B) where B is a
suitably chosen large integer, which we will specify in a moment. If ord (f) > ¢ then clearly
B* divides f(B). Now consider the case when ord (f) = m < £ . So we have f = 2™(fy +xg)
for some fo € Z, g € Z[x] and m < £. Here fy # 0. In this case we have:

f(B) = B"(fo + Bg(B)).

If B is chosen large enough then B does not divide fy + Bg(B) and hence B’ does not divide
f(B). It can be verified that choosing B = 22" suffices for this argument. It is also not hard
to see that a SLP for f(B) can be constructed in polynomial time. Hence we conclude:

ord (f) > € < 2% divides f(22"").
This completes the reduction. |
» Problem 2.11. What is the exact complexity of Div2SLP ¢

Now we show that Div2SLP is in CH, this claim follows by employing ideas from [1].

» Lemma 2.12. Div2SLP s in CH.
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Proof. Given a straight-line program representing NV € Z, and a natural number ¢ in binary,
we want to decide if 2¢ divides |N|, 4.e., if the ¢ least significant bits of | N| are zero. We show
that this can be done in coNPE*SP  The condition 2¢ { |N| is equivalent to the statement that
at least one bit in £ least significant bits of | N| is one. Hence there is a witness of this statement,
i.e., the index i < £ such that i*® bit of || is one. By using the BitSLP oracle, we can verify
the existence of such a witness in polynomial time. Therefore Div2SLP € coNPE*SEF | By
using [1, Theorem 4.1], we get that Div2SLP € coNP“H C CH. <

In Section B, we provide a more general proof showing that “SLP versions” of problems
in dlogtime uniform TCy are in CH, although it is not required for the main results.

3 SLPs as Sum of Two and Fewer Squares

This section is primarily concerned with studying the complexity of 250SSLP. To this end, we
first recall the following renowned Theorem 3.1 which characterizes when a natural number
is a sum of two squares.

» Theorem 3.1 ([11, Section 18]). An integer n > 1 is not 2S0S if and only if the prime-power
decomposition of n contains a prime of the form 4k + 3 with an odd power.

When the input integer n is given explicitly as a bit string, Theorem 3.1 illustrates that
a factorization oracle suffices to determine whether n is a 2S0S. In fact, we are not aware
of any algorithm that bypasses the need for factorization. For x € Z,, let B(x) denote
the number of 2S0S integers in [z]. Landau’s Theorem [22] gives the following asymptotic
formula for B(z).

» Theorem 3.2 ([22]). B(z) = K—7=+0 (ﬁ) as © — oo, where K is the Landau-

Ramanujan constant with K =~ 0.764.

Ideally, we want to use the above Theorem 3.2 on the density of 2S0S to show that PosSLP

reduces to 2S0SSLP, as we did for 3SoSSLP. There are two issues with this approach:

1. The density of 2S0S integers is not as high as 3SoS integers, hence to find the next 250S
integer after a given N € N might require a larger shift (as compared to the shift of
2 for 3S0S). This issue is overcome below by using NP oracle reductions instead of P
reductions.

2. A more serious issue is that Theorem 3.2 says something about the density of 2S0S
integers only asymptotically, as  — oco. But this idea of finding the next 2SoS integer

after a given integer only works if this density bound is true for all intervals of naturals.

This issue is side stepped by relying on the Conjecture 3.3 below.
Let ¢ and r be positive integers such that 1 < r < ¢ and ged(g,r) = 1. We use Gy ,(z)
to denote the maximum gap between primes in the arithmetic progression {gn +r | n €
N,gn +r < z}. We use ¢(n) to denote the Euler’s totient function, i.e., the number of
positive m < n with ged(m,n) = 1.

» Conjecture 3.3 (Generalized Cramér conjecture A, [20]). For any q¢ > r > 1 with ged(q,r) =
1, we have

Gqr(p) = O(p(q) log? p).
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3.1 Lower Bounds for 2SoSSLP
» Lemma 3.4. EquSLP <p 2S50SSLP.

Proof. Given a straight-line program representing an integer IV, we want to decide whether
N = 0. Suppose M = N2. Wehave M > 0and M = 0iff N = 0. If M # 0 then by
employing Theorem 3.1, 3M? cannot be a 250S. Hence 3M? is a 2S0S iff M = 0. <

» Lemma 3.5 (Zweiter Teil in [7]). For x > 7, there exists at least one prime number in the
interval (z,2x] that belongs to the arithmetic progression 4n + 1.

» Theorem 1.14. If the generalized Cramér conjecture A (Conjecture 3.3) is true, then
PosSLP € Np?5°SSLP,

Proof of Theorem 1.14. Given a straight-line program (SLP) of size s representing an
integer N, we aim to decide whether N > 0.

To proceed, choose M := 235, Our first step is to compute N mod 7', where T := 2M + 1.
Specifically, we compute an integer K such that K € [-M, M] and K = N mod T.

This computation can be done in poly(s)-time by simulating the SLP that computes N,
modulo T'. If |[N| < M, then we know that N = K. Using the EquSLP oracle (which can
be simulated by the 250SSLP oracle via Lemma 3.4), we check whether N = K holds. If
N = K, we can immediately determine the sign of N. Otherwise, our assumption |N| < M
is false, meaning we can conclude that |[N| > M.

Now, suppose p > |N| is the smallest prime of the form 4k + 1. By Lemma 3.5, we know
that p < 2|N| for |[N| > 7. Moreover, by using Conjecture 3.3 with ¢ = 4,7 = 1, we obtain
p < |N| 4+ O(p(4)log® p) < |N| + clog? |N| for some absolute constant ¢. For sufficiently
large |N|, this implies p < |N|+log® |N| < |N|+23*. Consequently, p— |N| < M. Since p is
a prime of the form 4k + 1, we know, by Theorem 3.1, that p is a sum of two squares (2S0S).

To establish that PosSLP € NstOSSLP, we must provide a witness for the positivity of
N, which can be verified in polynomial time using the 250SSLP oracle. The desired witness
is S :=p— |N| < M, which has a binary description of size at most O(s). We then use the
2S0SSLP oracle to check whether NV 4+ S is a sum of two squares.

If N > 0, such a witness exists. On the other hand, if N < 0, we know that N < —M,
which implies that N + S < 0, and thus N + S cannot be a sum of two squares. Therefore if
Conjecture 3.3 holds, we conclude that PosSLP € Np2SoSSLP. <

Similarly to 2SoSSLP and 3SoSSLP, one can also study the complexity of the following
problem SquSLP.

» Problem 3.6 (SquSLP, Problem 7 in [17]). Given a straight-line program representing
N € Z, decide whether N = a? for some a € 7Z.

SquSLP was shown to be decidable in randomized polynomial time in [17, Sec 4.2],
assuming GRH. The complexity of 2S0SSLP remains an intriguing open problem. If 2SoSSLP
were to be in P then this would disprove Conjecture 3.3 or prove that PosSLP € NP, neither
of which is currently known.

4 Polynomials as Sum of Squares

4.1 Positivity of Polynomials

Analogous to PosSLP, we also study the positivity problem for polynomials represented by
straight line programs. In particular, we study the following problem, called PosPolySLP.
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» Problem 4.1 (PosPolySLP). Given a straight-line program representing a univariate
polynomial f € Z[x], decide if f is positive, i.e., f(x) >0 for all x € R.

It is known that every positive univariate polynomial f can be written as sum of two
squares. The formal statement (Lemma A.1) and its folklore proof can be found in the
appendix.

Now we look at the rational variant of the Lemma A.1. Suppose f € Z[z] C Q[z] is
a positive polynomial. We know that it can be written as a sum of squares of two real
polynomials. Can it also be written as sum of squares of rational polynomials? In this
direction, Landau proved that each positive polynomial in Q[z] can be expressed as a sum
of at most eight polynomial squares in Q[z] [14]. Pourchet improved this result and proved
that only five or fewer squares are needed [33].

We now show that PosPolySLP is coNP-hard, this result follows from an application
of results proved in [28]. Suppose W is a 3-SAT formula on n literals x1,xa, ..., x, with
W =Ci ANCyA---NCy, here C} is a clause composed of 3 literals. We choose any n distinct
odd primes p; < p2 < --- < pp. So x; is associated with the prime p;. Thereafter, we define
M :=T],;¢(, pi- The following Theorem 4.2 was proved in [28].

» Theorem 4.2 ([28]). One can construct a SLP C of size poly(pn,£) which computes a
polynomial Pry (W) of the form:

Py(W) =Y (Fu(Ci))?
i€[{]
such that Pyy(W) has a real root iff W is satisfiable. Here, Far(C;) is a univariate polynomial
that depends on C; (see [28] for more details).

» Theorem 4.3 (Theorem 1.2 in [4]). Let f € Z[x] be a univariate polynomial of degree d
taking only positive values on the interval [0,1]. Let T be an upper bound on the bit size of
the coefficients of f. Let m denote the minimum of f over [0,1]. Then

3d/2
> 2(2d—1)7’(d+ 1)2d—1/2'

m

The theorem above proves the lower bound for the interval [0, 1]. Next, we extend it to
the whole real line.

» Lemma 4.4. Let f € Z[x] be a positive univariate polynomial of degree d. Let T be an
upper bound on the bit size of the coefficients of f. Let m denote the minimum of f over R.
If m # 0 then

3d/2
> 2@2d=1)7(q 4 1)2d-1/2°

m

Proof. We assume m # 0. Consider the reverse polynomial fie, := z%f (%) It is clear that
frev 1s positive on [0,00). Moreover, fiv has degree d and 7 is an upper bound on the bit
size of its coefficients. By employing Theorem 4.3 on f,qy, we infer that

3d/2
iy Fre(0) > ST g e

Theorem 4.3 implies that:

3d/2
agég] fla)> 2(2d—1)7(( 4 1)2d-1/2"
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Now consider a A € [0, 1], we have:

1 Jrev(A 31/2
f (/\) = Arg ) > frev()\) > 2(2d*1)‘r(d+1)2d71/2' (2)

By combining Equation (1) and Equation (2), we obtain that:

3d/2
aerﬂ)l,rolo)f(a) > 2(2d—1)7(q 4 1)2d-1/2"

By repeating the above argument on f(—zx) instead of f(z), we obtain:

3d/2
= ae(rilégoo) fla) > 2(2d71)r(d + 1)2d71/2'

<

» Theorem 1.19. PosPolySLP is coNP-hard under polynomial-time many-one reductions.

Proof of Theorem 1.19. Suppose W is 3-SAT formula on n literals x1,xo,...,x, with
W =Cy ANCy A---NCy, here C; is a clause composed of 3 literals. By using Theorem 4.2,
we can construct a SLP of size poly(p,, ) which computes a polynomial P(W) € Z[x] such
that P(W) has a real root iff W is satisfiable. (Recall that p; < --- < p, was a sequence of
odd primes.) Since P(W) is a sum of squares, P(W) is positive. Suppose m is the minimum
value of P(W) over R. We know that m > 0.

By the prime number theorem, we can assume p, = O(nlogn). Moreover, it is easy to
see that £ < 8n3. Hence the constructed SLP is of size s = poly(n). Suppose 7 is an upper
bound on the bit size of the coefficients of P(W). It is easy to see that deg(P(W)) < 2° and
7 < 2% If W is not satisfiable then we know that m # 0 and therefore Lemma 4.4 implies
that

log(m) > 25" 1log3 — (257! — 1)2° — (251 — 1/2) log(2° + 1) > 2252,

Hence

1

22s+2

Suppose B = 2 . Then B - P(W) — 1 is positive iff m > 0. Hence we have:

B - P(W) —1 is positive iff W is unsatisfiable.

Moreover B - P(W) — 1 has a SLP of size O(s) = poly(n) and this SLP can be constructed in
time poly(n). Since determining the unsatisfiability of W is coNP-complete, it follows that
PosPolySLP is coNP-hard. |

4.2 Checking if a Polynomial is a Square

In light of the results in [33] and Theorem 1.19, we also study the following related problem
SqPolySLP. Another motivation to study this problem also comes from the quest for
studying the complexity of factors of polynomials. In this context, one wants to prove that if
a polynomial can be computed by a small arithmetic circuit, then so can be its factors. In
this direction, Kaltofen showed that if a polynomial f = g°h can be computed an arithmetic
circuit of size s and g, h are coprime, then g can also be computed by a circuit of size
poly(e,deg(g), s) [18]. When f = g¢°, Kaltofen also showed that g can be computed by an
arithmetic circuit of size poly(deg(g), s) [18]. This question for finite fields is posed as an
open question in [19]. What if we do not want to find a small circuit for polynomial g in
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case f = ¢g° but only want to determine if f is e'® power of some polynomial. And in this
decision problem, we want to avoid the dependency on deg(g) in running time, which can be
exponential in s. We study this problem for e = 2 in SqPolySLP, but our results work for
any arbitrary constant e.

» Problem 4.5 (SqPolySLP). Given a straight-line program representing a univariate poly-
nomial f € Z[z], decide if 3g € Z[x] such that f = g*.

One can also study the complexity of determining if the given univariate polynomial can
be written as a sum of two, three or four squares, but in this section, we only focus on the
problem SqPolySLP. The following Theorem 4.6 hints to an approach that SqPolySLP can
be reduced to SquSLP.

» Theorem 4.6 (Theorem 4 in [26]). For f € Z[x], 3g € Z[x] with f = g iff Vt € Z, f(t) is
a perfect square.
We shall use an effective variant of Theorem 4.6 which follows from the following effective

variant of the Hilbert’s irreducibility theorem. For an integer polynomial f, H(f) is the
height of f, i.e., the maximum of the absolute values of the coefficients of f.

» Theorem 4.7 ([32, 10]). Suppose P(T,Y) is an irreducible polynomial in Q[T,Y]| with
degy (P) > 2 and with coefficients in Z assumed to be relatively prime. Suppose B is a
positive integer such that B > 2. We define:

m = degp(P)
n := degy (P)
H :=max(H(P),e°)
S(P,B):= {1 <t< B|P(t,Y) is reducible in Q[Y]}|

Then we have:
S(P, B) < 216535192967 16619 H) B> log® (B).

» Corollary 4.8. Suppose f(x) € Z[x] is an integer polynomial computed by a SLP of size s.
Define S(f) := ‘{1 <t < 22005 | £(t) is a square }‘ If f is not a square, then we have:

S(f) < 28005521835'

Proof. Consider the polynomial P(T,Y) := Y2 — f(T). Since f(x) is not a square, we
infer that P(T,Y) is an irreducible polynomial in Q[T,Y]. Now we employ Theorem 4.7
on P(T,Y) with B = 2295 we have m < 2°,n = 2 and H < 22", In this case, we have
S(P,B) = S(f). By using Theorem 4.7, we have:

S(f) S 216526452592219521005(2003)5 < 28003521835. <

Corollary 4.8 implies a randomized polynomial time algorithm for SqPolySLP, as demon-
strated below in Theorem 4.9.

» Theorem 4.9. SqPolySLP is in coRP.

Proof. Given an integer polynomial f(z) computed by a SLP of size s, we want to decide if
f = g? for some g € Z[z]. We sample a positive integer uniformly at random from the set
{1 <t <2290 | ¢ € N}. Using the algorithm in [17, Sec 4.2], we test if f(¢) is a square. We
output “Yes” if f(t) is a square. If f = g? for some g € Z[z], then we always output “Yes”.
Suppose f # g2 for any g € Z[z]. By using Corollary 4.8, we obtain that:
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28008521835
Pr[f(t) is a square] < —0s < 0 for s > 100.
Hence with probability at least 0.99 we sample a ¢t such that f(¢) is not a square. The
algorithm for SquSLP verifies that f(¢) is not a square with probability at least % [17, Sec 4.2].
Hence we output “No” with probability at least 0.33. This implies SqPolySLP € coRP. <«

5 Conclusion and Open Problems

We studied the connection between PosSLP and problems related to the representation of
integers as sums of squares, drawing on Lagrange’s four-square theorem from 1770. We
investigated variants of the problem, considering whether the positive integer computed
by a given SLP can be represented as the sum of squares of two or three integers. We
analyzed the complexity of these variations and established relationships between them and
the original PosSLP problem. Additionally, we introduced the Div2SLP problem, which
involves determining if a given SLP computes an integer divisible by a given power of 2.
We showed that Div2SLP is at least as hard as DegSLP. We also showed the relevance of
Div2SLP in connecting the 3SoSSLP to PosSLP. In contrast to PosSLP, we also showed that
the polynomial variant of the PosSLP problem is unconditionally coNP-hard. Overall, this
paper contributes to a deeper understanding of decision problems associated with SLPs and
provides insights into the computational complexity of problems related to the representation
of integers as sums of squares. A visual representation illustrating the problems discussed
in this paper and their interrelations is available in Figure 1. Our results open avenues for
further research in this area; in particular, we highlight the following research avenues:

1. What is the complexity of Div2SLP? We showed it is DegSLP hard. Is it NP-hard too?

How does it relate to PosSLP?

2. Can we prove Theorem 1.14 without relying on Conjecture 3.37

3. One can also study the problems of deciding whether a given SLP computes an integer
univariate polynomial, which can be written as the sum of two, three, or four squares.
We studied these questions for integers in this paper. But it makes for an interesting
research to study these questions for polynomials.

4. And finally, can we prove unconditional hardness results for PosSLP?

EquSLP

PosSLP
Div2SLP UPosSLP
Div2SLP — ] /\'P, c%\
3SoSSLP 2S0SSLP

Figure 1 A visualization of the relations between the problems studied in this work. An
arrow means that there is a Turing reduction. A thicker arrow indicates a polynomial time
many-one reduction. The reduction from PosSLP to 250SSLP is nondeterministic and depends on
Conjecture 3.3.
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A  Missing Proofs

» Lemma A.1. For every positive polynomial f € R[x], there exist polynomials g, h € R[z]
such that f = g% + h2.

Proof. Let f(z) € R[z] be a polynomial such that f(z) > 0 for all € R. We aim to express
f as a sum of two squares of real polynomials.

If « € R is a real root of f, it must have even multiplicity, as f(x) is non-negative.
Specifically, if « is a root of multiplicity 2k, we can write:

(z —a)? = ((z - oz)k)2 + 02,

which is already in the form of a sum of two squares.
If f has complex-conjugate roots, say 8 = s+t and 8 = s — 1t with ¢ # 0, the quadratic
factor associated with these roots is:

(@ =Bz —PB) = (x—s)" +1%
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which is clearly a sum of two squares. Since f(x) is the product of factors corresponding to
its real roots and complex-conjugate pairs of roots, we now combine these factors by using
the following identity:

(a® +b?)(c? + d?) = (ac — bd)? + (ad + be)?.

By applying this identity iteratively to the factors of f(z), we can express f(z) as a sum of
two squares of real polynomials. <

B Alternative Proof of Lemma 2.12

We prove a general theorem on how to show that problems involving SLPs are in CH. It
is similar to the proof of [2, Lemma 5]. Let C be a Boolean circuit in TCy. C consists of
unbounded AND, unbounded OR, and unbounded majority gates (MAJ). According to [29],
when a family (C),) is in dlogtime-uniform TCp, this means that there is a deterministic
Turing machine (DTM) that decides in time O(logn) whether given (n, f, g) the gate f is
connected to the gate g and whether given (n, f,t) the gate f has type ¢. All numbers are
given in binary. For a language B C {0,1}*, let SLP(B) be the language:

SLP(B) := {P | P is an SLP computing a number N such that Bin (V) € B}
This can be viewed as the “SLP-version” of B.
» Lemma B.1. Let B be in dlogtime-uniform TCy. Then SLP(B) € CH.

Proof. The proof is by induction on the depth. We prove the more general statement: Let
M be a DTM from the definition of dlogtime and (C,,) be the sequence of circuits for B. Let
P be the given SLP encoding a number N. Given (P, g,b) we can decide in CH;. whether
the value of the gate g on input N given by P is b. t is the depth of g. If ¢ = 0, then ¢ is an
input gate. Thus this problem is BitSLP which is in CH, for some ¢. If t > 0, then we have
to decide whether the majority of the gates that are children of g are 1. This can be done
using a PP-machine with oracle to CH.4;—1. We guess a gate f and check using the DTM M
whether f is a predecessor of g. If not, we add an accepting and rejecting path. If yes, we
use the oracle to check whether f has value 1. If yes, we accept and otherwise, we reject. <

It is easy to see that checking whether the £ least significant bits of a number given in
binary are 0 can be done in dlogtime-uniform TCy. Thus Div2SLP is in CH by Lemma B.1
above.

C Reduction from multivariate DegSLP to univariate DegSLP

We use mDegSLP to denote the multivariate variant of the DegSLP problem, which we define
formally below.

» Problem C.1 (mDegSLP). Given a straight line program representing a polynomial
f € Zlx1,x2,...,2,], and given a natural number d in binary, decide whether deg(f) < d.

mDegSLP was simply called DegSLP in [1]. Now we recall the proof in [1], to show that
to study the hardness of mDegSLP, it is enough to focus on its univariate variant DegSLP.
To this end, we note the following Observation C.2.

» Observation C.2 ([1]). mDegSLP is equivalent to DegSLP under deterministic polynomial
time many-one reductions.
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Proof. We only need to show that mDegSLP reduces o DegSLP under deterministic poly-
nomial time many-one reductions, other direction is trivial. Suppose we are given an SLP

of size s which computes f € Z[z1, z2,...,z,], and we want to decide whether deg(f) < d
for a given d € N. Suppose D = deg(f). For all i € {0,1,..., D}, we use f; to denote the
homogeneous degree i part of f. Now notice that for any a = (ay,az,...,a,) € Z%, we
have:

D
f(ya) = f(yalaya27 s ,yOLn) = Zylfl(a)v
=0

where y is a fresh variable. So if e is chosen such that fp(a) is non-zero, then deg(f(ye)) =
deg(f) = D. If we choose a; = 92" then it can be seen that fp(a) is non-zero, see e.g. [1,
Proof of Proposition 2.2]. SLPs computing «; can be constructed using iterated squaring in
polynomial time. Hence we can construct an SLP for f(ya) in polynomial time. By this
argument, we know that deg(f(ya)) < d if and only if deg(f) < d . Therefore mDegSLP
reduces to DegSLP under polynomial time many-one reductions. <
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