
Unifying Asynchronous Logics for Hyperproperties
Alberto Bombardelli #

Fondazione Bruno Kessler, Trento, Italy

Laura Bozzelli
University of Napoli “Federico II”, Italy

César Sánchez #

IMDEA Software Institute, Madrid, Spain

Stefano Tonetta #

Fondazione Bruno Kessler, Trento, Italy

Abstract
We introduce and investigate a powerful hyper logical framework in the linear-time setting that we call
generalized HyperLTL with stuttering and contexts (GHyperLTLS+C for short). GHyperLTLS+C unifies
the asynchronous extensions of HyperLTL called HyperLTLS and HyperLTLC, and the well-known
extension KLTL of LTL with knowledge modalities under both the synchronous and asynchronous
perfect recall semantics. As a main contribution, we identify a meaningful fragment of GHyperLTLS+C,
that we call simple GHyperLTLS+C, with a decidable model-checking problem, which is more expressive
than HyperLTL and known fragments of asynchronous extensions of HyperLTL with a decidable
model-checking problem. Simple GHyperLTLS+C subsumes KLTL under the synchronous semantics
and the one-agent fragment of KLTL under the asynchronous semantics and to the best of our
knowledge, it represents the unique hyper logic with a decidable model-checking problem which can
express powerful non-regular trace properties when interpreted on singleton sets of traces. We justify
the relevance of simple GHyperLTLS+C by showing that it can express diagnosability properties,
interesting classes of information-flow security policies, both in the synchronous and asynchronous
settings, and bounded termination (more in general, global promptness in the style of Prompt LTL).

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Asynchronous hyperproperties, Temporal logics for hyperproperties, Express-
iveness, Decidability, Model checking

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.14

Related Version Full Version: https://arxiv.org/abs/2404.16778 [4]

Funding César Sánchez: funded in part by PRODIGY Project (TED2021-132464B-I00) – funded
by MCIN/AEI/10.13039/501100011033/ and the European Union NextGenerationEU/PRTR – by
DECO Project (PID2022-138072OB-I00) – funded by MCIN/AEI/10.13039/501100011033 and by
the ESF+ – and by a research grant from Nomadic Labs and the Tezos Foundation.

1 Introduction

Temporal logics [27] play a fundamental role in the formal verification of the dynamic
behaviour of complex reactive systems. Classic regular temporal logics such as LTL, CTL,
and CTL∗ [29, 13] are suited for the specification of trace properties which describe the
ordering of events along individual execution traces of a system. In the last 15 years, a novel
specification paradigm has been introduced that generalizes traditional regular trace properties
by properties of sets of traces, the so called hyperproperties [10]. Hyperproperties relate
distinct traces and are useful to formalize a wide range of properties of prime interest which go,
in general, beyond regular properties and cannot be expressed in standard regular temporal
logics. A relevant example concerns information-flow security policies like noninterference [18,
28] and observational determinism [36] which compare observations made by an external

© Alberto Bombardelli, Laura Bozzelli, César Sánchez, and Stefano Tonetta;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abombardelli@fbk.eu
https://orcid.org/0000-0003-3385-3205
https://orcid.org/0000-0003-0963-8169
mailto:cesar.sanchez@imdea.org
https://orcid.org/0000-0003-3927-4773
mailto:tonettas@fbk.eu
https://orcid.org/0000-0001-9091-7899
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.14
https://arxiv.org/abs/2404.16778
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Unifying Asynchronous Logics for Hyperproperties

low-security agent along traces resulting from different values of not directly observable
inputs. Other examples include bounded termination of programs, diagnosability of critical
systems (which amounts to checking whether the available sensor information is sufficient to
infer the presence of faults on the hidden behaviour of the system) [31, 5, 3], and epistemic
properties describing the knowledge of agents in distributed systems [23, 33, 22].

In the context of model checking of finite-state reactive systems, many temporal logics
for hyperproperties have been proposed [12, 9, 6, 30, 15, 11, 20] for which model checking is
decidable, including HyperLTL [9], HyperCTL∗ [9], HyperQPTL [30, 11], and HyperPDL−∆ [20]
which extend LTL, CTL∗, QPTL [32], and PDL [17], respectively, by explicit first-order
quantification over traces and trace variables to refer to multiple traces at the same time.
The semantics of all these logics is synchronous: the temporal modalities are evaluated by
a lockstepwise traversal of all the traces assigned to the quantified trace variables. Other
approaches for the formalization of synchronous hyper logics are either based on hyper variants
of monadic second-order logic over traces or trees [11], or the adoption of a team semantics
for standard temporal logics, in particular, LTL [24, 26, 35]. For the first approach in the
linear-time setting, we recall the logic S1S[E] [11] (and its first-order fragment FO[<,E] [16])
which syntactically extends monadic second-order logic of one successor S1S with the equal-
level predicate E, which relates the same time point on different traces. More recently, an
extension of HyperLTL with second-order quantification over traces has been introduced [2]
which allows to express common knowledge in multi-agent distributed systems. Like S1S[E],
model checking of this extension of HyperLTL is highly undecidable [2].

Hyper logics supporting asynchronous features have been introduced recently [21, 1, 7].
These logics allow to relate traces at distinct time points which can be arbitrarily far
from each other. Asynchronicity is ubiquitous in many real-world systems, for example, in
multithreaded environments in which threads are not scheduled lockstepwise, and traces
associated with distinct threads progress with different speed. Asynchronous hyperproperties
are also useful in information-flow security and diagnosability settings where an observer
cannot distinguish consecutive time points along an execution having the same observations.
This requires to match asynchronously sequences of observations along distinct execution
traces. The first systematic study of asynchronous hyperproperties was done by Gutsfeld
et al. [21], who introduced the temporal fixpoint calculus Hµ and its automata-theoretic
counterpart for expressing such properties in the linear-time setting.

More recently, three temporal logics [1, 7] which syntactically extend HyperLTL have
been introduced for expressing asynchronous hyperproperties: Asynchronous HyperLTL
(A-HyperLTL) [1] and Stuttering HyperLTL (HyperLTLS) [7], both useful for asynchronous
security analysis, and Context HyperLTL (HyperLTLC) [7], useful for expressing hyper-bounded-
time response requirements. The logic A-HyperLTL, which is expressively incomparable
with both HyperLTL and HyperLTLS [8], models asynchronicity by means of an additional
quantification layer over the so called trajectories which control the relative speed at which
traces progress by choosing at each instant which traces move and which traces stutter. On
the other hand, the logic HyperLTLS exploits relativized versions of the temporal modalities
with respect to finite sets Γ of LTL formulas: these modalities are evaluated by a lockstepwise
traversal of the sub-traces of the given traces which are obtained by removing “redundant”
positions with respect to the pointwise evaluation of the LTL formulas in Γ. Finally, the
logic HyperLTLC is more expressive than HyperLTL and is not expressively subsumed by
either A-HyperLTL or HyperLTLS [8]. HyperLTLC extends HyperLTL by unary modalities ⟨C⟩
parameterized by a non-empty subset C of trace variables – called the context – which restrict
the evaluation of the temporal modalities to the traces associated with the variables in C.

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:3

Note that the temporal modalities in HyperLTLC are evaluated by a lockstepwise traversal of
the traces assigned to the variables in the current context, and unlike HyperLTL, the current
time points of these traces from which the evaluation starts are in general different. It is
known that these three syntactical extensions of HyperLTL are less expressive than Hµ [8]
and like Hµ, model checking the respective quantifier alternation-free fragments are already
undecidable [1, 7]. The works [1, 7] identify practical fragments of the logics A-HyperLTL
and HyperLTLS with a decidable model checking problem. In particular, we recall the so
called simple fragment of HyperLTLS [7], which is more expressive than HyperLTL [8] and can
specify interesting security policies in both the asynchronous and synchronous settings.

Formalization of asynchronous hyperproperties in the team semantics setting following an
approach similar to the trajectory construct of A-HyperLTL has been investigated in [19]. It
is worth noting that unlike other hyper logics (including logics with team semantics) which
only capture regular trace properties when interpreted on singleton sets of traces, the logics
HyperLTLC, A-HyperLTL, and Hµ can express non-regular trace properties [8].

Our contribution. Specifications in HyperLTL and in the known asynchronous extensions
of HyperLTL, whose most expressive representative is Hµ [21], consist of a prefix of trace
quantifiers followed by a quantifier-free formula which expresses temporal requirements on
a fixed number of traces. Thus, these hyper logics lack mechanisms to relate directly an
unbounded number of traces, which are required for example to express bounded termination
or diagnosability properties [31, 5, 3]. This ability is partially supported by temporal logics
with team semantics [24, 26, 35] and extensions of temporal logics with the knowledge mod-
alities of epistemic logic [14], which relate computations whose histories are observationally
equivalent for a given agent. In this paper, we introduce and investigate a hyper logical
framework in the linear-time setting which unifies two known asynchronous extensions of
HyperLTL and the well-known extension KLTL [23] of LTL with knowledge modalities under
both the synchronous and asynchronous perfect recall semantics (where an agent remembers
the whole sequence of its observations). The novel logic, that we call generalized HyperLTL
with stuttering and contexts (GHyperLTLS+C for short), merges HyperLTLS and HyperLTLC
and adds two new natural modeling facilities: past temporal modalities for asynchronous
hyperproperties and general trace quantification where trace quantifiers can occur in the
scope of temporal modalities. Past temporal modalities used in combination with context
modalities provide a powerful mechanism to compare histories of computations at distinct
time points. Moreover, unrestricted trace quantification allows to relate an unbounded
number of traces.

As a main contribution, we identify a meaningful fragment of GHyperLTLS+C with a
decidable model-checking problem, that we call simple GHyperLTLS+C. This fragment is
obtained from GHyperLTLS+C by carefully imposing restrictions on the use of the stuttering
and context modalities. Simple GHyperLTLS+C allows quantification over arbitrary pointed
traces (i.e., traces plus time points) in the style of FO[<,E] [16], it is more expressive than the
simple fragment of HyperLTLS [7], and it is expressively incomparable with full HyperLTLS
and S1S[E]. Moreover, this fragment subsumes both KLTL under the synchronous semantics
and the one-agent fragment of KLTL under the asynchronous semantics. In fact, simple
GHyperLTLS+C can be seen as a very large fragment of GHyperLTLS+C with a decidable
model checking problem which (1) strictly subsumes HyperLTL and the simple fragment of
HyperLTLS, (2) is closed under Boolean connectives, and (3) allows an unrestricted nesting
of temporal modalities. We justify the relevance of simple GHyperLTLS+C by showing that it
can express diagnosability properties, interesting classes of information-flow security policies,

FSTTCS 2024

14:4 Unifying Asynchronous Logics for Hyperproperties

both in the synchronous and asynchronous settings, and bounded termination (more in
general, global promptness in the style of Prompt LTL [25]). To the best of our knowledge,
simple GHyperLTLS+C represents the unique hyper logic with a decidable model-checking
problem which can express powerful non-regular trace properties when interpreted over
singleton sets of traces.

2 Background

We denote by N the set of natural numbers. Given i, j ∈ N, we write [i, j] for the set of
natural numbers h such that i ≤ h ≤ j, we use [i, j) for the set [i, j] \ {j}, we use (i, j] for the
set [i, j] \ {i}, and [i,∞) for the set of natural numbers h such that h ≥ i. Given a word w

over some alphabet Σ, |w| is the length of w (|w| = ∞ if w is infinite). For each 0 ≤ i < |w|,
w(i) is the (i + 1)th symbol of w, wi is the suffix of w from position i, that is, the word
w(i)w(i+ 1) . . ., and w[0, i] is the prefix of w that ends at position i.

We fix a finite set AP of atomic propositions. A trace is an infinite word over 2AP, while
a finite trace is a nonempty finite word over 2AP. A pointed trace is a pair (σ, i) consisting of
a trace σ and a position (timestamp) i ∈ N along σ.

Kripke structures. We define the dynamic behaviour of reactive systems by Kripke structures
K = ⟨S, S0, E, Lab⟩ over a finite set AP of atomic propositions, where S is a set of states,
S0 ⊆ S is the set of initial states, E ⊆ S × S is a transition relation which is total in the
first argument (i.e., for each s ∈ S there is s′ ∈ S with (s, s′) ∈ E), and Lab : S → 2AP is
a labeling map assigning to each state s the set of propositions holding at s. The Kripke
structure K is finite if S is finite. A path π of K is an infinite word π = s0, s1, . . . over S
such that s0 ∈ S0 and for all i ≥ 0, (si, si+1) ∈ E. The path π = s0, s1, . . . induces the trace
Lab(s0)Lab(s1) A trace of K is a trace induced by some path of K. We denote by L(K)
the set of traces of K. A finite path of K is a non-empty infix of some path of K. We also
consider fair finite Kripke structures (K, F), that is, finite Kripke structures K equipped with
a subset F of K-states. A path π of K is F -fair if π visits infinitely many times some state
in F . We denote by L(K, F) the set of traces of K associated with the F -fair paths of K.

Standard LTL with past (PLTL for short) [29]. Formulas ψ of PLTL over the given finite
set AP of atomic propositions are defined by the following grammar:

ψ ::= ⊤ | p | ¬ψ | ψ ∨ ψ | Xψ | Yψ | ψ U ψ | ψ S ψ

where p ∈ AP, X and U are the next and until temporal modalities respectively, and Y
(previous or yesterday) and S (since) are their past counterparts. LTL is the fragment of
PLTL that does not contain the past temporal modalities Y and S. We also use the following
abbreviations: Fψ := ⊤ U ψ (eventually), Oψ := ⊤ S ψ (past eventually or once), and their
duals Gψ := ¬ F ¬ψ (always) and Hψ := ¬ O ¬ψ (past always or historically).

The semantics of PLTL is defined over pointed traces (σ, i). The satisfaction relation
(σ, i) |= ψ, that defines whether formula ψ holds at position i along σ, is inductively defined
as follows (we omit the semantics for the Boolean connectives which is standard):

(σ, i) |= p ⇔ p ∈ σ(i)
(σ, i) |= Xψ ⇔ (σ, i+ 1) |= ψ

(σ, i) |= Yψ ⇔ i > 0 and (σ, i− 1) |= ψ

(σ, i) |= ψ1 U ψ2 ⇔ for some j ≥ i : (σ, j) |= ψ2 and (σ, k) |= ψ1 for all i ≤ k < j

(σ, i) |= ψ1 S ψ2 ⇔ for some j ≤ i : (σ, j) |= ψ2 and (σ, k) |= ψ1 for all j < k ≤ i

A trace σ is a model of ψ, written σ |= ψ, whenever (σ, 0) |= ψ.

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:5

The logic HyperLTL [9]. The syntax of HyperLTL formulas φ over the given finite set AP
of atomic propositions and a finite set VAR of trace variables is as follows:

φ := ∃x. φ | ∀x. φ | ψ ψ := ⊤ | p[x] | ¬ψ | ψ ∨ ψ | Xψ | ψ U ψ

where p ∈ AP, x ∈ VAR, and ∃x and ∀x are the hyper existential and universal trace
quantifiers for variable x, respectively, which allow relating different traces of the given set
of traces. Note that a HyperLTL formula consists of a prefix of traces quantifiers followed
by a quantifier-free formula, where the latter corresponds to an LTL formula whose atomic
propositions p are replaced with x-relativized versions p[x]. Intuitively, p[x] asserts that
p holds at the pointed trace assigned to variable x. A sentence is a formula where each
relativized proposition p[x] occurs in the scope of trace quantifier ∃x or ∀x.

In order to define the semantics of HyperLTL, we need additional definitions. The successor
succ(σ, i) of a pointed trace (σ, i) is the pointed trace (σ, i+ 1), which captures the standard
local successor of a position along a trace.

Given a set of traces L, a (pointed) trace assignment over L is a partial mapping
Π : VAR → L × N assigning to each trace variable x – where Π is defined – a pointed
trace (σ, i) such that σ ∈ L. We use Dom(Π) to refer to the trace variables for which
Π is defined. The successor succ(Π) of Π is the trace assignment over L having domain
Dom(Π) such that succ(Π)(x) = succ(Π(x)) for each x ∈ Dom(Π). For each i ≥ 0, we use
succi for the function obtained by i applications of the function succ: succ0(Π) := Π and
succi+1(Π) := succ(succi(Π)).

Given x ∈ VAR and a pointed trace (σ, i) with σ ∈ L, we denote by Π[x 7→ (σ, i)] the
trace assignment that is identical to Π besides for x, which is mapped to (σ, i).

Given a formula φ, a set of traces L, and a trace assignment Π over L such that Dom(Π)
contains all the trace variables occurring free in φ, the satisfaction relation Π |=L φ is
inductively defined as follows (we again omit the semantics of the Boolean connectives):

Π |=L p[x] ⇔ Π(x) = (σ, i) and p ∈ σ(i)
Π |=L ∃x. φ ⇔ for some σ ∈ L, Π[x 7→ (σ, 0)] |=L φ
Π |=L ∀x. φ ⇔ for all σ ∈ L, Π[x 7→ (σ, 0)] |=L φ
Π |=L Xψ ⇔ succ(Π) |= ψ

Π |=L ψ1 U ψ2 ⇔ for some i ≥ 0 : succi(Π) |=L ψ2 and succj(Π) |=L ψ1 for all 0 ≤ j < i

Note that trace quantification ranges over initial pointed traces (σ, 0) over L (the timestamp
is 0). As an example, the sentence ∀x1.∀x2.

∧
p∈AP G(p[x1] ↔ p[x2]) captures the sets of

traces which are singletons.
For a sentence φ and a set of traces L, L is a model of φ, written L |= φ, if Π∅ |=L φ

where Π∅ is the trace assignment with empty domain.

3 Unifying Framework for Asynchronous Extensions of HyperLTL

In this section, we introduce a novel logical framework for specifying both asynchronous and
synchronous linear-time hyperproperties which unifies two known more expressive extensions
of HyperLTL [9], namely Stuttering HyperLTL (HyperLTLS for short) [7] and Context HyperLTL
(HyperLTLC for short) [7]. The proposed hyper logic, that we call generalized HyperLTL with
stuttering and contexts (GHyperLTLS+C for short), merges HyperLTLS and HyperLTLC and
adds two new features: past temporal modalities for asynchronous/synchronous hyperprop-
erties and general trace quantification where trace quantifiers can occur in the scope of
temporal modalities. Since model checking of the logics HyperLTLS and HyperLTLC is already

FSTTCS 2024

14:6 Unifying Asynchronous Logics for Hyperproperties

undecidable [7], we also consider a meaningful fragment of GHyperLTLS+C which is strictly
more expressive than the known simple fragment of HyperLTLS [7]. Our fragment is able to
express relevant classes of hyperproperties and, as we show in Section 4, its model checking
problem is decidable.

3.1 PLTL-Relativized Stuttering and Context Modalities
Classically, a trace is stutter-free if there are no consecutive positions having the same
propositional valuation unless the valuation is repeated ad-infinitum. We can associate
to each trace a unique stutter-free trace by removing “redundant” positions. The logic
HyperLTLS [7] generalizes these notions with respect to the pointwise evaluation of a finite
set of LTL formulas. Here, we consider LTL with past (PLTL).

▶ Definition 3.1 (PLTL stutter factorization [7]). Let Γ be a finite set of PLTL formulas and
σ a trace. The Γ-stutter factorization of σ is the unique increasing sequence of positions
{ik}k∈[0,m∞] for some m∞ ∈ N ∪ {∞} such that the following holds for all j < m∞:

i0 = 0 and ij < ij+1;
for each θ ∈ Γ, the truth value of θ along the segment [ij , ij+1) does not change, that
is, for all h, k ∈ [ij , ij+1), (σ, h) |= θ iff (σ, k) |= θ, and the same holds for the infinite
segment [m∞,∞] in case m∞ ̸= ∞;
the truth value of some formula in Γ changes along adjacent segments, that is, for some
θ ∈ Γ (depending on j), (σ, ij) |= θ iff (σ, ij+1) ̸|= θ.

Thus, the Γ-stutter factorization {ik}k∈[0,m∞] of σ partitions the trace in adjacent non-
empty segments such that the valuation of formulas in Γ does not change within a segment,
and changes in moving from a segment to the adjacent ones. This factorization induces in
a natural way a trace obtained by selecting the first positions of the finite segments and
all the positions of the unique tail infinite segment, if any. These positions form an infinite
increasing sequence {ℓk}k∈N called (Γ, ω)-stutter factorization of σ, where:

ℓ0, ℓ1, . . . :=
{
i0, i1, . . . if m∞ = ∞
i0, i1, . . . , im∞ , im∞ + 1, . . . otherwise

The Γ-stutter trace stfrΓ(σ) of σ (see [7]) is defined as follows: stfrΓ(σ) := σ(ℓ0)σ(ℓ1)
Note that for Γ = ∅, stfrΓ(σ) = σ. A trace σ is Γ-stutter free if it coincides with its Γ-stutter
trace, i.e. stfrΓ(σ) = σ.

As an example, assume that AP = {p, q, r} and let Γ = {pU q}. Given h, k ≥ 1, let σh,k

be the trace σh,k = phqkrω. These traces have the same Γ-stutter trace given by prω.
The semantics of the Γ-relativized temporal modalities in HyperLTLS is based on the

notion of Γ-successor succΓ(σ, i) of a pointed trace (σ, i) [7]: succΓ(σ, i) is the pointed trace
(σ, ℓ) where ℓ is the smallest position ℓj in the (Γ, ω)-stutter factorization {ℓk}k∈N of σ which
is greater than i. Note that for Γ = ∅, succ∅(σ, i) = succ(σ, i) = (σ, i+1). Hence, ∅-relativized
temporal modalities in HyperLTLS correspond to the temporal modalities of HyperLTL.

In this paper we extend HyperLTLS with past temporal modalities, so that we introduce
the past counterpart of the successor function. The Γ-predecessor predΓ(σ, i) of a pointed
trace (σ, i) is undefined if i = 0 (written predΓ(σ, i) = und); otherwise, predΓ(σ, i) is the
pointed trace (σ, ℓ) where ℓ is the greatest position ℓj in the (Γ, ω)-stutter factorization
{ℓk}k∈N of σ which is smaller than i (since ℓ0 = 0 such an ℓj exists). Note that for Γ = ∅,
pred∅(σ, i) captures the standard local predecessor of a position along a trace.

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:7

Successors and predecessors of trace assignments. We now define a generalization of
the successor succ(Π) of a trace assignment Π in HyperLTL. This generalization is based
on the notion of Γ-successor succΓ(σ, i) of a pointed trace (σ, i) and also takes into account
the context modalities ⟨C⟩ of HyperLTLC [7], where a context C is a non-empty subset of
VAR. Intuitively, modality ⟨C⟩ allows reasoning over a subset of the traces assigned to the
variables in the formula, by restricting the temporal progress to those traces.

Formally, let Π be a trace assignment over some set of traces L, Γ be a finite set of PLTL
formulas, and C be a context. The (Γ, C)-successor of Π, denoted by succ(Γ,C)(Π), is the
trace assignment over L having domain Dom(Π), and defined as follows for each x ∈ Dom(Π):

succ(Γ,C)(Π)(x) :=
{

succΓ(Π(x)) if x ∈ C

Π(x) otherwise

Note that succ(∅,VAR)(Π) = succ(Π). Moreover, we define the (Γ, C)-predecessor pred(Γ,C)(Π)
of Π as follows: pred(Γ,C)(Π) is undefined, written pred(Γ,C)(Π) = und, if there is x ∈ Dom(Π)
such that predΓ(Π(x)) = und. Otherwise, pred(Γ,C)(Π) is the trace assignment over L having
domain Dom(Π), and defined as follows for each x ∈ Dom(Π):

pred(Γ,C)(Π)(x) :=
{

predΓ(Π(x)) if x ∈ C

Π(x) otherwise

Finally, for each i ≥ 0, we define the ith application succi
(Γ,C) of succ(Γ,C) and the ith

application pred i
(Γ,C) of pred(Γ,C) as follows, where pred(Γ,C)(und) := und:

succ0
(Γ,C)(Π) := Π and succi+1

(Γ,C)(Π) := succ(Γ,C)(succi
(Γ,C)(Π)).

pred 0
(Γ,C)(Π) := Π and pred i+1

(Γ,C)(Π) := pred(Γ,C)(pred i
(Γ,C)(Π)).

3.2 Generalized HyperLTL with Stuttering and Contexts
We introduce now the novel logic GHyperLTLS+C. GHyperLTLS+C formulas φ over AP and a
finite set VAR of trace variables are defined by the following syntax:

φ := ⊤ | p[x] | ¬φ | φ ∨ φ | ∃x. φ | ⟨C⟩φ | XΓφ | YΓφ | φUΓ φ | φ SΓ φ

where p ∈ AP, x ∈ VAR, ⟨C⟩ is the context modality with ∅ ≠ C ⊆ VAR, Γ is a finite set
of PLTL formulas, and XΓ, YΓ, UΓ and SΓ are the stutter-relativized versions of the PLTL
temporal modalities. Intuitively, the context modality ⟨C⟩ restricts the evaluation of the
temporal modalities to the traces associated with the variables in C, while the temporal
modalities XΓ, YΓ, UΓ and SΓ are evaluated by a lockstepwise traversal of the Γ-stutter
traces associated to the traces assigned to the variables in the current context C. Note that
the hyper universal quantifier ∀x can be introduced as an abbreviation: ∀x. φ ≡ ¬∃x.¬φ.
For a variable x, we write ⟨x⟩ instead of ⟨{x}⟩. Moreover, we write X, Y, U and S instead
of X∅, Y∅, U∅ and S∅, respectively. Furthermore, for a PLTL formula ψ and a variable x,
ψ[x] is the formula obtained from ψ by replacing each proposition p with its x-version p[x].
A sentence is a formula where each relativized proposition p[x] occurs in the scope of trace
quantifier ∃x or ∀x, and each temporal modality occurs in the scope of a trace quantifier.

The known logics HyperLTLS, HyperLTLC, and simple HyperLTLS. A formula φ of
GHyperLTLS+C is in prenex form if it is of the form Q1x1. . . .Qnxn. ψ where ψ is quantifier-
free and Qi ∈ {∃,∀} for all i ∈ [1, n]. The logics HyperLTLS and HyperLTLC introduced in [7]

FSTTCS 2024

14:8 Unifying Asynchronous Logics for Hyperproperties

correspond to syntactical fragments of GHyperLTLS+C where the formulas are in prenex form
and past temporal modalities are not used. Moreover, in HyperLTLS, the context modalities
are not allowed, while in HyperLTLC, the subscript Γ of every temporal modality must be
the empty set. Note that in HyperLTL [9], both the context modalities and the temporal
modalities where the subscript Γ is not empty are disallowed. Finally, we recall the simple
fragment of HyperLTLS [7], which is more expressive than HyperLTL and is parameterized
by a finite set Γ of LTL formulas. The quantifier-free formulas of simple HyperLTLS for the
parameter Γ are defined as Boolean combinations of formulas of the form ψ[x], where ψ is
an LTL formula, and formulas ψΓ defined by the following grammar:

ψΓ := ⊤ | p[x] | ¬ψΓ | ψΓ ∨ ψΓ | XΓψΓ | ψΓ UΓ ψΓ

Semantics of GHyperLTLS+C. Given a formula φ, a set of traces L, a trace assignment Π
over L such that Dom(Π) contains all the trace variables occurring free in φ, and a context
C ⊆ VAR, the satisfaction relation (Π, C) |=L φ, meaning that the assignment Π over L
satisfies φ under the context C, is inductively defined as follows (we again omit the semantics
of the Boolean connectives):

(Π, C) |=L p[x] ⇔ Π(x) = (σ, i) and p ∈ σ(i)
(Π, C) |=L ∃x. φ ⇔ for some σ ∈ L, (Π[x 7→ (σ, 0)], C) |=L φ

(Π, C) |=L ⟨C′⟩φ ⇔ (Π, C′) |=L φ

(Π, C) |=L XΓφ ⇔ (succ(Γ,C)(Π), C) |= φ

(Π, C) |=L YΓφ ⇔ pred(Γ,C)(Π) ̸= und and (pred(Γ,C)(Π), C) |=L φ

(Π, C) |=L φ1 UΓ φ2 ⇔ for some i ≥ 0: (succi
(Γ,C)(Π), C) |=L φ2 and

(succj
(Γ,C)(Π), C) |=L φ1 for all 0 ≤ j < i,

(Π, C) |=L φ1 SΓ φ2 ⇔ for some i ≥ 0 such that pred i
(Γ,C)(Π) ̸= und: (pred i

(Γ,C)(Π), C) |=L φ2

and (pred j
(Γ,C)(Π), C) |=L φ1 for all 0 ≤ j < i

For a sentence φ and a set of traces L, L is a model of φ, written L |= φ, if (Π∅,VAR) |=L φ
where Π∅ is the trace assignment with empty domain.

Fair model checking and standard model checking. For a fragment F of GHyperLTLS+C,
the fair model checking problem for F consists on deciding, given a fair finite Kripke structure
(K, F) and a sentence φ of F , whether L(K, F) |= φ. The previous problem is simply called
model checking problem whenever F coincides with the set of K-states. We consider fair
model checking just for technical convenience. For the decidable fragment of GHyperLTLS+C
introduced in Section 3.3, we will obtain the same complexity bounds for both fair model
checking and standard model checking (see Section 4).

3.3 The Simple Fragment of GHyperLTLS+C

We introduce now a fragment of GHyperLTLS+C, that we call simple GHyperLTLS+C, which
syntactically subsumes the simple fragment of HyperLTLS [7].

In order to define the syntax of simple GHyperLTLS+C, we first consider some shorthands,
obtained by a restricted use of the context modalities. The pointed existential quantifier ∃Px

and the pointed universal quantifier ∀Px are defined as follows: ∃Px. φ := ∃x. ⟨x⟩ F ⟨VAR⟩φ
and ∀Px. φ ::= ¬∃Px.¬φ. Thus the pointed quantifiers quantify on arbitrary pointed traces
over the given set of traces and set the global context for the given operand. Formally,
(Π, C) |=L ∃Px. φ if for some pointed trace (σ, i) with σ ∈ L, (Π[x 7→ (σ, i)],VAR) |=L φ.
For example, the sentence ∃x1.∃Px2.

(∧
p∈AP G(p[x1] ↔ p[x2]) ∧ ⟨x2⟩Y⊤

)
asserts that there

are two traces σ1 and σ2 in the given model s.t. some proper suffix of σ2 coincides with σ1.

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:9

Simple GHyperLTLS+C is parameterized by a finite set Γ of PLTL formulas. The set of
formulas φΓ in the Γ-fragment is defined as follows:

φΓ := ⊤ | ⟨x⟩ψ[x] | ¬φΓ | φΓ ∨ φΓ | ∃Px. φΓ | XΓφΓ | YΓφΓ | φΓ UΓ φΓ | φΓ SΓ φΓ

where ψ is a PLTL formula. Note that ∃x. φ can be expressed as ∃Px. (φ ∧ ⟨x⟩¬Y⊤).
SHyperLTLΓ

S+C is the class of formulas obtained with the syntax above for a given Γ. Simple
GHyperLTLS+C is the union SHyperLTLΓ

S+C for all Γ. We say that a formula φ of simple
GHyperLTLS+C is singleton-free if for each subformula ⟨x⟩ψ[x] of φ, ψ is an atomic proposition.
Evidently, for an atomic proposition p, ⟨x⟩p[x] is equivalent to p[x].

In Section 4, we will show that (fair) model checking of simple GHyperLTLS+C is decidable.
Simple GHyperLTLS+C can be seen as a very large fragment of GHyperLTLS+C with a decidable
model checking problem which subsumes the simple fragment of HyperLTLS, is closed under
Boolean connectives, and allows an unrestricted nesting of temporal modalities. We conjecture
(without proof) that this is the largest such sub-class of GHyperLTLS+C because:
1. Model checking of HyperLTLS is already undecidable [7] for sentences whose relativized

temporal modalities exploit two distinct sets of LTL formulas and, in particular, for
two-variable quantifier alternation-free sentences of the form ∃x1.∃x2. (φ ∧ GΓψ), where
ψ is a propositional formula, Γ is a nonempty set of propositions, and φ is a quantifier-free
formula which use only the temporal modalities F∅ and G∅.

2. Model checking of HyperLTLC is undecidable [8] even for the fragment consisting of two-
variable quantifier alternation-free sentences of the form ∃x1.∃x2. ψ0 ∧ ⟨x2⟩ F ⟨{x1, x2}⟩ψ,
where ψ0 and ψ are quantifier-free HyperLTL formulas (note that ψ0 is evaluated in the
global context ⟨{x1, x2}⟩).

The second undecidability result suggests to consider the extension of simple
GHyperLTLS+C where singleton-context subformulas of the form ⟨x⟩ψ[x] are replaced with
quantifier-free GHyperLTLS+C formulas with multiple variables of the form ⟨x⟩ξ, where ξ only
uses singleton contexts ⟨y⟩ and temporal modalities with subscript ∅. However, we can show
that the resulting logic is not more expressive than simple GHyperLTLS+C: a sentence in the
considered extension can be translated into an equivalent simple GHyperLTLS+C sentence
though with a non-elementary blowup (for details, see [4]).

3.4 Examples of Specifications in Simple GHyperLTLS+C

We consider some relevant properties which can be expressed in simple GHyperLTLS+C. Simple
GHyperLTLS+C subsumes the simple fragment of HyperLTLS, and this fragment (as shown
in [7]) can express relevant information-flow security properties for asynchronous frameworks
such as distributed systems or cryptographic protocols. An example is the asynchronous
variant of the noninterference property, as defined by Goguen and Meseguer [18], which
asserts that the observations of low users (users accessing only to public information) do not
change when all inputs of high users (users accessing secret information) are removed.

Observational Determinism

An important information-flow property is observational determinism, which states that
traces which have the same initial low inputs are indistinguishable to a low user. In an
asynchronous setting, a user cannot infer that a transition occurred if consecutive observations
remain unchanged. Thus, for instance, observational determinism with equivalence of traces

FSTTCS 2024

14:10 Unifying Asynchronous Logics for Hyperproperties

up to stuttering (as formulated in [36]) can be captured by the following simple HyperLTLS
sentence (where LI is the set of propositions describing inputs of low users and LO is set of
propositions describing outputs of low users):

∀x. ∀y.
∧

p∈LI

(p[x] ↔ p[y]) → GLO

∧
p∈LO

(p[x] ↔ p[y])

After-initialization Properties

Simple GHyperLTLS+C also allows to specify complex combinations of asynchronous and
synchronous constraints. As an example, we consider the property [21] that for an HyperLTL
sentence Q1x1. . . .Qnxn. ψ(x1, . . . , xn), the quantifier-free formula ψ(x1, . . . , xn) holds along
the traces bound by variables x1, . . . , xn after an initialization phase. Note that this phase
can take a different (and unbounded) number of steps on each trace. Let in be a proposition
characterizing the initialization phase. The formula PI(x) := ⟨x⟩(¬in[x] ∧ (¬Y⊤ ∨ Yin[x]))
is a simple GHyperLTLS+C formula that asserts that for the pointed trace (σ, i) assigned to
variable x, the position i is the first position of σ following the initialization phase. In other
words, i is the first position at which ¬in[] holds. Then, the previous requirement can be
expressed in simple GHyperLTLS+C as follows:

Q1x1. . . .Qnxn.
(
PI(x1) ◦1 . . .PI(xn) ◦n ψ(x1, . . . xn)

where ◦i is ∧ if Qi = ∃ and ◦i is → if Qi = ∀.

Global Promptness

As another meaningful example, we consider global promptness (in the style of Prompt
LTL [25]), where one need to check that there is a uniform bound on the response time
in all the traces of the system, that is, “there is k such that for every trace, each request
q is followed by a response p within k steps”. Global promptness is expressible in simple
GHyperLTLS+C as follows:

∃Px.
(
q[x] ∧ ∀Py. (q[y] → (¬p[x] U p[y]))

)
The previous sentence asserts that there is request (x in the formula) that has the longest
response. Note that y is quantified universally (so it can be instantiated to the same trace as
x), and that the use of until in (¬p[x] U p[y]))

)
implies that the response p[y] eventually

happens. Hence, all requests, including receive a response. Now, the pointed trace (σx, i)
assigned to x is such that σx(i) is a request (q[x]) and for every pointed trace (σy, j) in the
model such that σy(j) is a request (q[y]), it holds that (i) the request σy(j) is followed by a
response σy(j + k) for some k ≥ 0, and (ii) no response occurs in σx in the interval [i, i+ k).
Therefore, the response time h for x is the smallest h such that σx(i+ h) is a response is a
global bound on the response time.

Diagnosability

We now show that simple GHyperLTLS+C is also able to express diagnosability of systems [31,
5, 3] in a general asynchronous setting. In the diagnosis process, faults of a critical system
(referred as the plant) are handled by a dedicated module (the diagnoser) which runs in
parallel with the plant. The diagnoser analyzes the observable information from the plant –
made available by predefined sensors – and triggers suitable alarms in correspondence to

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:11

(typically unobservable) conditions of interest, called faults. An alarm condition specifies the
relation (delay) between a given diagnosis condition and the raising of an alarm. A plant
P is diagnosable with respect to a given alarm condition α, if there is a diagnoser D which
satisfies α when D runs in parallel with P.

The given set of propositions AP is partitioned into a set of observable propositions Obs
and a set of unobservable propositions Int. Two finite traces σ and σ′ are observationally
equivalent iff the projections of stfrObs(σ ·Pω) and stfrObs(σ′ · (P ′)ω) over Obs coincide, where
P is the last symbol of σ and similarly P ′ is the last symbol of σ′. Given a pointed trace (σ, i),
i is an observation point of σ if either i = 0, or i > 0 and σ(i− 1) ∩ Obs ̸= σ(i) ∩ Obs. Then
a plant P can be modeled as a finite Kripke structure ⟨S, S0, E, Lab⟩, where E is partitioned
into internal transitions (s, s′) where Lab(s) ∩ Obs = Lab(s′) ∩ Obs and observable transitions
where Lab(s) ∩ Obs ̸= Lab(s′) ∩ Obs. A diagnoser D is modelled as a finite deterministic
Kripke structure over AP′ ⊇ Obs (with AP′ ∩ Int = ∅). In the behavioural composition of the
plant P with D, the diagnoser only reacts to the observable transitions of the plant, that
is, every transition of the diagnoser is associated with an observable transition of the plant.
Simple GHyperLTLS+C can express diagnosability with finite delay, bounded delay, or exact
delay as defined in [5, 3]. Here, we focus for simplicity on finite delay diagnosability. Consider
a diagnosis condition specified by a PLTL formula β. A plant P is finite delay diagnosable
with respect to β whenever for every pointed trace (σ, i) of P such that (σ, i) |= β, there
exists an observation point k ≥ i of σ such that for all pointed traces (σ′, k′) of P so that k′
is an observation point of σ′ and σ[0, k] and σ′[0, k′] are observationally equivalent, it holds
that (σ′, i′) |= β for some i′ ≤ k′. Finite delay diagnosability w.r.t. β can be expressed in
simple GHyperLTLS+C as follows:

∀Px.
(

⟨x⟩β[x] → FObs
(
ObsPt(x) ∧ ∀Py. {(ObsPt(y) ∧ θObs(x, y)) → ⟨y⟩ O β[y]}

))
where

θObs(x, y) :=
∧

p∈Obs

HObs (p[x] ↔ p[y]) ∧ OObs(⟨x⟩¬Y⊤ ∧ ⟨y⟩¬Y⊤)

ObsPt(x) := ⟨x⟩(¬Y⊤ ∧
∨

p∈Obs

(p[x] ↔ ¬Yp[x])

Essentially ObsPt(x) determines the observation points and θObs captures that both traces
have the same history of observations. The main formula establishes that if x detects a failure
β then there is future observation point in x and for all other traces that are observationally
equivalent to x have also detected β.

3.5 Expressiveness Issues
In this section, we present some results and conjectures about the expressiveness comparison
among GHyperLTLS+C (which subsumes HyperLTLS and HyperLTLC), its simple fragment and
the logic HyperLTLS. We also consider the logics for linear-time hyperproperties based on the
equal-level predicate whose most powerful representative is S1S[E]. Recall that the first-order
fragment FO[<,E] of S1S[E] is already strictly more expressive than HyperLTL [16] and, unlike
S1S[E], its model-checking problem is decidable [11]. Moreover, we show that GHyperLTLS+C
and its simple fragment represent a unifying framework in the linear-time setting for specifying
both hyperproperties and the knowledge modalities of epistemic temporal logics under both
the synchronous and asynchronous perfect recall semantics.

Our expressiveness results about linear-time hyper logics can be summarized as follows.

FSTTCS 2024

14:12 Unifying Asynchronous Logics for Hyperproperties

▶ Theorem 3.2. The following hold:
GHyperLTLS+C is more expressive than HyperLTLS, simple GHyperLTLS+C, and FO[<,E].
Simple GHyperLTLS+C is more expressive than simple HyperLTLS.
Simple GHyperLTLS+C and HyperLTLS are expressively incomparable.
Simple GHyperLTLS+C and S1S[E] are expressively incomparable.

Proof. We first show that there are hyperproperties expressible in simple GHyperLTLS+C
but not in HyperLTLS and in S1S[E]. Given a sentence φ, the trace property denoted by
φ is the set of traces σ such that the singleton set of traces {σ} satisfies φ. It is known
that HyperLTLS and S1S[E] capture only regular trace properties [8]. In contrast simple
GHyperLTLS+C can express powerful non-regular trace properties. For example, consider the
so called suffix property over AP = {p}: a trace σ satisfies the suffix property if there exists
a proper suffix σk of σ for some k > 0 such that σk = σ. This non-regular trace property
can be expressed in SHyperLTL∅S+C as follows:

∀x1.∀x2.
∧

p∈AP
G(p[x1] ↔ p[x2]) ∧ ∀x1.∃Px2.

(∧
p∈AP

G(p[x1] ↔ p[x2]) ∧ ⟨x2⟩Y⊤
)

The first conjunct asserts that each model is a singleton, and the second conjunct requires
that for the unique trace σ in a model, there is k > 0 such that σ(i) = σ(i+ k) for all i ≥ 0.

Next, we observe that FO[<,E] can be easily translated into GHyperLTLS+C, since the
pointer quantifiers of GHyperLTLS+C correspond to the quantifiers of FO[<,E]. Moreover, the
predicate x ≤ x′ of FO[<,E], expressing that for the pointed traces (σ, i) and (σ′, i′) bound to
x and x′, σ = σ′ and i ≤ i′, can be easily captured in GHyperLTLS+C. This is also the case for
the equal-level predicate E(x, x′), which can be expressed as ⟨{x, x′}⟩O (⟨x⟩¬Y⊤∧⟨x′⟩¬Y⊤).

In Section 4 we show that model checking of simple GHyperLTLS+C is decidable. Thus,
since model checking of both HyperLTLS and S1S[E] are undecidable [7, 11] and GHyperLTLS+C
subsumes HyperLTLS, by the previous argumentation, the theorem follows. ◀

It remains an open question whether FO[<,E] is subsumed by simple GHyperLTLS+C.
We conjecture that neither HyperLTLC nor the fix-point calculus Hµ [21] (which captures
both HyperLTLC and HyperLTLS [8]) subsume simple GHyperLTLS+C. The motivation for our
conjecture is that Hµ sentences consist of a prefix of quantifiers followed by a quantifier-
free formula where quantifiers range over initial pointed traces (σ, 0). Thus, unlike simple
GHyperLTLS+C, Hµ cannot express requirements which relate at some point in time an
unbounded number of traces. Diagnosability (see Subsection 3.4) falls in this class of
requirements. It is known that the following property, which can be easily expressed in
simple GHyperLTLS+C, is not definable in HyperLTL [6]: for some i > 0, every trace in the
given set of traces does not satisfy proposition p at position i. We conjecture that similarly
to HyperLTL, such a property (and diagnosability as well) cannot be expressed in Hµ.

Epistemic Temporal Logic KLTL and its relation with GHyperLTLS+C. The logic
KLTL [23] is a well-known extension of LTL obtained by adding the unary knowledge modalit-
ies Ka, where a ranges over a finite set Agts of agents, interpreted under the synchronous or
asynchronous (perfect recall) semantics. The semantics is given with respect to an observation
map Obs : Agts 7→ 2AP that assigns to each agent a the set of propositions which agent a
can observe. Given two finite traces σ and σ′ and a ∈ Agts, σ and σ′ are synchronously
equivalent for agent a, written σ ∼sy

a σ′, if the projections of σ and σ′ over Obs(a) coincide.
The finite traces σ and σ′ are asynchronously equivalent for agent a, written σ ∼as

a σ′, if
the projections of stfrObs(a)(σ · Pω) and stfrObs(a)(σ′ · (P ′)ω) over Obs(a) coincide, where

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:13

P is the last symbol of σ and P ′ is the last symbol of σ′. For a set of traces L and a
pointed trace (σ, i) over L, the semantics of the knowledge modalities is as follows, where
∼a is ∼sy

a under the synchronous semantics, and ∼as
a otherwise: (σ, i) |=L,Obs Ka φ ⇔

for all pointed traces (σ′, i′) on L such that σ[0, i] ∼a σ
′[0, i′], (σ′, i′) |=L,Obs φ.

We say that L satisfies φ w.r.t. the observation map Obs, written L |=Obs φ, if for all
traces σ ∈ L, (σ, 0) |=L,Obs φ. The logic KLTL can be easily embedded into GHyperLTLS+C.
In particular, the following holds (for details, see [4]).

▶ Theorem 3.3. Given an observation map Obs and a KLTL formula ψ over AP, one can
construct in linear time a SHyperLTL∅S+C sentence φ∅ and a GHyperLTLS+C sentence φ such
that φ∅ is equivalent to ψ w.r.t. Obs under the synchronous semantics and φ is equivalent
to ψ w.r.t. Obs under the asynchronous semantics. Moreover, φ is a simple GHyperLTLS+C
sentence if ψ is in the single-agent fragment of KLTL.

4 Decidability of Model Checking against Simple GHyperLTLS+C

In this section, we show that (fair) model checking against simple GHyperLTLS+C is decidable.
We first prove the result for the fragment SHyperLTL∅S+C of simple GHyperLTLS+C by a
linear-time reduction to satisfiability of full Quantified Propositional Temporal Logic (QPTL,
for short) [32], where the latter extends PLTL by quantification over propositions. Then,
we show that (fair) model checking of simple GHyperLTLS+C can be reduced in time singly
exponential in the size of the formula to fair model checking of SHyperLTL∅S+C. We also
provide optimal complexity bounds for (fair) model checking the fragment SHyperLTL∅S+C in
terms of a parameter of the given formula called strong alternation depth. For this, we first
give similar optimal complexity bounds for satisfiability of QPTL.
The syntax of QPTL formulas φ over a finite set AP of atomic propositions is as follows:

φ ::= ⊤ | p | ¬φ | φ ∨ φ | Xφ | Yφ | φU φ | φ S φ | ∃p .φ

where p ∈ AP and ∃p is the propositional existential quantifier. A QPTL formula φ is a
sentence if each proposition p occurs in the scope of a quantifier binding p and each temporal
modality occurs in the scope of a quantifier. By introducing ∧ and the operators R (release,
dual of U), P (past release, dual of S) and ∀p (propositional universal quantifier), every
QPTL formula can be converted into an equivalent formula in negation normal form, where
negation only appears in front of atomic propositions. QPTL formulas are interpreted over
pointed traces (σ, i) over AP. All QPTL temporal operators have the same semantics as in
PLTL. The semantics of propositional quantification is as follows:

(σ, i) |= ∃p.φ ⇔ there is a trace σ′ such that σ =AP\{p} σ
′ and (σ′, i) |= φ

where σ =AP\{p} σ
′ means that the projections of σ and σ′ over AP \ {p} coincide. A

formula φ is satisfiable if (σ, 0) |= φ for some trace σ. We now give a generalization of the
standard notion of alternation depth between existential and universal quantifiers which
corresponds to the one given in [30] for HyperCTL∗. Our notion takes into account also the
occurrences of temporal modalities between quantifier occurrences, but the nesting depth
of temporal modalities is not considered (intuitively, it is collapsed to one). Formally, the
strong alternation depth sad(φ) of a QPTL formula φ in negation normal form is inductively
defined as follows, where an existential formula is a formula of the form ∃p. ψ, a universal
formula is of the form ∀p. ψ, and for a formula ψ, ψ̃ denotes the negation normal form of ¬ψ:

FSTTCS 2024

14:14 Unifying Asynchronous Logics for Hyperproperties

For φ = p and φ = ¬p for a given p ∈ AP: sad(φ) := 0.
For φ = φ1 ∨ φ2 and for φ = φ1 ∧ φ2: sad(φ) := max({sad(φ1), sad(φ2)}).
For φ = ∃p. φ1: if there is no universal sub-formula ∀ψ of φ1 such that sad(∀ψ) = sad(φ1),
then sad(φ) := sad(φ1). Otherwise, sad(φ) := sad(φ1) + 1.
For φ = ∀p. φ1: sad(φ) := sad(∃p. φ̃1).
For φ = Xφ1 or φ = Yφ1: sad(φ) := sad(φ1).
For φ = φ1 Uφ2 or φ = φ1 Sφ2: let h be the maximum over the strong alternation depths
of the universal and existential sub-formulas of φ1 and φ2 (the maximum of the empty set
is 0). If the following conditions are met, then sad(φ) := h; otherwise, sad(φ) := h+ 1:

there is no existential or universal sub-formula ψ of φ1 with sad(ψ) = h;
there is no universal sub-formula ψ of φ2 with sad(ψ) = h;
no existential formula ψ with sad(ψ) = h occurs in the left operand (resp., right operand)
of a sub-formula of φ2 of the form ψ1Oψ2, where O ∈ {U,S} (resp., O ∈ {R,P}).

Finally, for φ = φ1 R φ2 or φ = φ1 P φ2: sad(φ) := sad(φ̃).

For example, sad(∃p.(pU∃q.q)) = 0 and sad(∃p.(∃p.pUq)) = 1. The strong alternation depth
of an arbitrary QPTL formula corresponds to the one of its negation normal form. The strong
alternation depth of a simple GHyperLTLS+C formula is defined similarly but we replace
quantification over propositions with quantification over trace variables. For all n, h ∈ N,
Tower(h, n) denotes a tower of exponentials of height h and argument n: Tower(0, n) = n

and Tower(h+ 1, n) = 2Tower(h,n). Essnetially, the strong alternation depth corresponds to
the (unavoidable) power set construction related to the alternation of quantifiers to solve the
model-checking problem.

The following result represents an improved version of Theorem 6 in [6] where h-
EXPSPACE is the class of languages decided by deterministic Turing machines bounded in
space by functions of n in O(Tower(h, nc)) for some constant c ≥ 1. While the lower bound
directly follows from [32], the upper bound improves the result in [6], since there, occurrences
of temporal modalities immediately preceding propositional quantification always count as
additional alternations (for details, see [4]).

▶ Theorem 4.1. For all h ≥ 0, satisfiability of QPTL sentences with strong alternation depth
at most h is h-EXPSPACE-complete.

(Fair) Model checking against SHyperLTL∅
S+C. We provide now linear-time reductions

of (fair) model checking against SHyperLTL∅S+C to (and from) satisfiability of QPTL which
preserve the strong alternation depth. We start with the reduction of (fair) model checking
SHyperLTL∅S+C to QPTL satisfiability.

▶ Theorem 4.2. Given a fair finite Kripke structure (K, F) and a SHyperLTL∅S+C sentence
φ, one can construct in linear time a QPTL sentence ψ with the same strong alternation
depth as φ such that ψ is satisfiable if and only if L(K, F) |= φ.

Sketched proof. Let K = ⟨S, S0, E, Lab⟩. In the reduction of model checking (K, F) against
φ to QPTL satisfiability, we need to merge multiple traces into a unique trace where just
one position is considered at any time. An issue is that the hyper quantifiers range over
arbitrary pointed traces so that the positions of the different pointed traces in the current
trace assignment do not necessarily coincide (intuitively, the different pointed traces are
not aligned with respect to the relative current positions). However, we can solve this issue
because the offsets between the positions of the pointed traces in the current trace assignment
remain constant during the evaluation of the temporal modalities. In particular, assume that

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:15

(σ, i) is the first pointed trace selected by a hyper quantifier during the evaluation along a
path in the syntax tree of φ. We encode σ by keeping track also of the variable x to which
(σ, i) is bound and the F -fair path of K whose associated trace is σ. Let (σ′, i′) be another
pointed trace introduced by another hyper quantifier y during the evaluation of φ. If i′ < i,
we consider an encoding of σ′ which is similar to the previous encoding but we precede it
with a padding prefix of length i− i′ of the form {#−→y }i−i′ . The arrow → indicates that the
encoding is along the forward direction. Now, assume that i′ > i. In this case, the encoding
of σ′ is the merging of two encodings over disjoint sets of propositions: one along the forward
direction which encodes the suffix (σ′)i′−i and another one along the backward direction
which is of the form {#←−y } · ρ · {#←−y }ω, where ρ is a backward encoding of the reverse of
the prefix of σ′ of length i′ − i. In such a way, the encodings of the pointed traces later
introduced in the evaluation of φ are aligned with the reference pointed trace (σ, i). Since
the positions in the backward direction overlap some positions in the forward direction, in
the translation, we keep track of whether the current position refers to the forward or to the
backward direction. The details of the reduction are in [4]. ◀

By an adaptation of the known reduction of satisfiability of QPTL without past to model
checking of HyperCTL∗ [9], we obtain the following result (for details, see [4]).

▶ Theorem 4.3. Given a QPTL sentence ψ over AP, one can build in linear time a finite
Kripke structure KAP (depending only on AP) and a singleton-free SHyperLTL∅S+C sentence φ
having the same strong alternation depth as ψ such that ψ is satisfiable iff L(KAP) |= φ.

Hence, by Theorems 4.1–4.3, we obtain the following result.

▶ Corollary 4.4. For all h ≥ 0, (fair) model checking against SHyperLTL∅S+C sentences with
strong alternation depth at most h is h-EXPSPACE-complete.

Reduction to fair model checking against SHyperLTL∅
S+C. We solve the (fair) model

checking problem for simple GHyperLTLS+C by a reduction to fair model checking against
the fragment SHyperLTL∅S+C. Our reduction is exponential in the size of the given sentence
and is an adaptation of the reduction from model checking simple HyperLTLS to model
checking HyperLTL shown in [7]. As a preliminary step, we first show, by an easy adaptation
of the standard automata-theoretic approach for PLTL [34], that the problem for a simple
GHyperLTLS+C sentence φ can be reduced in exponential time to the fair model checking
problem against a singleton-free sentence in the fragment SHyperLTLΓ

S+C for some set Γ of
atomic propositions depending on φ. For details, see [4].

▶ Proposition 4.5. Given a simple GHyperLTLS+C sentence φ and a fair finite Kripke
structure (K, F) over AP, one can build in single exponential time in the size of φ, a fair finite
Kripke structure (K′, F ′) over an extension AP ′ of AP and a singleton-free SHyperLTLΓ′

S+C
sentence φ′ for some Γ′ ⊆ AP ′ such that L(K′, F ′) |= φ′ if and only if L(K, F) |= φ. Moreover,
φ′ has the same strong alternation depth as φ, |φ′| = O(|φ|), and |K′| = O(|K| ∗ 2O(|φ|)).

Let us fix a non-empty finite set Γ ⊆ AP of atomic propositions. We now show that fair
model checking of the singleton-free fragment of SHyperLTLΓ

S+C can be reduced in polynomial
time to fair model checking of SHyperLTL∅S+C. We observe that in the singleton-free fragment
of SHyperLTLΓ

S+C, when a pointed trace (σ, i) is selected by a pointed quantifier ∃Px, the
positions of σ which are visited during the evaluation of the temporal modalities are all in
the (Γ, ω)-stutter factorization of σ with the possible exception of the position i chosen by
∃Px. Thus, given a set L of traces and a special proposition # /∈ AP, we define an extension

FSTTCS 2024

14:16 Unifying Asynchronous Logics for Hyperproperties

stfr#
Γ (L) of the set stfrΓ(L) = {stfrΓ(σ) | σ ∈ L} as follows. Intuitively, we consider for each

trace σ ∈ L, its Γ-stutter trace stfrΓ(σ) and the extensions of stfrΓ(σ) which are obtained
by adding an extra position marked by proposition # (this extra position does not belong
to the (Γ, ω)-stutter factorization of σ). Formally, stfr#

Γ (L) is the smallest set containing
stfrΓ(L) and satisfying the following condition:

for each trace σ ∈ L with (Γ, ω)-stutter factorization {ℓk}k≥0 and position i ∈ (ℓk, ℓk+1)
for some k ≥ 0, the trace σ(ℓ0) . . . σ(ℓk) (σ(i) ∪ {#})σ(ℓk+1)σ(ℓk+2) . . . ∈ stfr#

Γ (L).

Given a singleton-free formula φ in SHyperLTLΓ
S+C, we denote by T#(φ) the formula in

SHyperLTL∅S+C obtained from φ by applying inductively the following transformations:
the Γ-relativized temporal modalities are replaced with their ∅-relativized counterparts;
each formula ∃Px. ϕ is replaced with ∃Px.

(
T#(ϕ)∧⟨x⟩(XG¬#[x]∧(Y⊤ → YH¬#[x]))

)
.

Intuitively, the formula T#(∃Px. ϕ) states that for the pointed trace (σ, i) selected by the
pointed quantifier, at most position i may be marked by the special proposition #. By the
semantics of the logics considered, the following holds.
▶ Remark 4.6. Given a singleton-free sentence φ of SHyperLTLΓ

S+C and a set L of traces, it
holds that L |= φ if and only if stfr#

Γ (L) |= T#(φ).
Let us fix now a fair finite Kripke structure (K, F). We first show that one can build

in polynomial time a finite Kripke structure (KΓ, FΓ) and a LTL formula θΓ such that
stfr#

Γ (L(K, F)) coincides with the traces of L(KΓ, FΓ) satisfying θΓ (details are in [4]).

▶ Proposition 4.7. Given ∅ ≠ Γ ⊆ AP and a fair finite Kripke structure (K, F) over AP, one
can construct in polynomial time a fair finite Kripke structure (KΓ, FΓ) and a LTL formula
θΓ such that stfr#

Γ (L(K, F)) is the set of traces σ ∈ L(KΓ, FΓ) so that σ |= θΓ.

Fix now a singleton-free sentence φ of SHyperLTLΓ
S+C. For the given fair finite Kripke

structure (K, F) over AP, let (KΓ, FΓ) and θΓ as in the statement of Proposition 4.7. We
consider the SHyperLTL∅S+C sentence T(φ) obtained from T#(φ) by inductively replacing
each subformula ∃Px. ϕ of T#(φ) with ∃Px. (T(ϕ) ∧ ⟨x⟩ O (¬Y⊤ ∧ θΓ[x])). In other terms,
we ensure that in T#(φ) the hyper quantification ranges over traces which satisfy the LTL
formula θΓ. By Remark 4.6 and Proposition 4.7, we obtain that L(K, F) |= φ if and only if
L(KΓ, FΓ) |= T(φ). Thus, together with Proposition 4.5, we obtain the following result.

▶ Theorem 4.8. The (fair) model checking problem against simple GHyperLTLS+C can be
reduced in singly exponential time to fair model checking against SHyperLTL∅S+C.

5 Conclusion

We have introduced a novel hyper logic GHyperLTLS+C which merges two known asynchronous
temporal logics for hyperproperties, namely stuttering HyperLTL and context HyperLTL. Even
though model checking of the resulting logic GHyperLTLS+C is undecidable, we have identified
a useful fragment, called simple GHyperLTLS+C, that has a decidable model checking, is strictly
more expressive than HyperLTL and than previously proposed fragments of asynchronous
temporal logics for hyperproperties with a decidable model checking. For the fragment
SHyperLTL∅S+C of simple GHyperLTLS+C, we have given optimal complexity bounds of (fair)
model checking in terms of the strong alternation depth of the given sentence. For arbitrary
sentences in simple GHyperLTLS+C, (fair) model checking is reduced in exponential time to
fair model checking of SHyperLTL∅S+C. It is worth noting that simple GHyperLTLS+C can
express non-regular trace properties over singleton sets of traces which are not definable
in S1S[E]. An intriguing open question is whether FO[<,E] can be embedded in simple

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:17

GHyperLTLS+C. In a companion paper, we study asynchronous properties on finite traces
by adapting simple GHyperLTLS+C in prenex form to finite traces, and introduce practical
model-checking algorithms for useful fragments of this logic.

References
1 Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner, and César Sánchez.

A Temporal Logic for Asynchronous Hyperproperties. In Proc. 33rd CAV, volume 12759 of
LNCS 12759, pages 694–717. Springer, 2021. doi:10.1007/978-3-030-81685-8_33.

2 Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. Second-Order Hyper-
properties. In Proc. 35th CAV, volume 13965 of Lecture Notes in Computer Science, pages
309–332. Springer, 2023. doi:10.1007/978-3-031-37703-7_15.

3 Benjamin Bittner, Marco Bozzano, Alessandro Cimatti, Marco Gario, Stefano Tonetta, and
Viktoria Vozárová. Diagnosability of fair transition systems. Artif. Intell., 309:103725, 2022.
doi:10.1016/J.ARTINT.2022.103725.

4 Alberto Bombardelli, Laura Bozzelli, César Sánchez, and Stefano Tonetta. Unifying asyn-
chronous logics for hyperproperties, 2024. doi:10.48550/arXiv.2404.16778.

5 Marco Bozzano, Alessandro Cimatti, Marco Gario, and Stefano Tonetta. Formal Design of
Asynchronous Fault Detection and Identification Components using Temporal Epistemic Logic.
Log. Methods Comput. Sci., 11(4), 2015. doi:10.2168/LMCS-11(4:4)2015.

6 Laura Bozzelli, Bastien Maubert, and Spophie Pinchinat. Unifying Hyper and Epistemic
Temporal Logics. In Proc. 18th FoSSaCS, LNCS 9034, pages 167–182. Springer, 2015. doi:
10.1007/978-3-662-46678-0_11.

7 Laura Bozzelli, Adriano Peron, and César Sánchez. Asynchronous Extensions of HyperLTL.
In Proc. 36th LICS, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470583.

8 Laura Bozzelli, Adriano Peron, and César Sánchez. Expressiveness and Decidability of
Temporal Logics for Asynchronous Hyperproperties. In Proc. 33rd CONCUR, volume 243
of LIPIcs, pages 27:1–27:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPICS.CONCUR.2022.27.

9 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal Logics for Hyperproperties. In Proc. 3rd POST, LNCS
8414, pages 265–284. Springer, 2014. doi:10.1007/978-3-642-54792-8_15.

10 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010. doi:10.3233/JCS-2009-0393.

11 Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. The hierarchy of
hyperlogics. In Proc. 34th LICS, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785713.

12 Rayna Dimitrova, Bernd Finkbeiner, Máté M Kovács, Markus N. Rabe, and Helmut Seidl.
Model Checking Information Flow in Reactive Systems. In Proc. 13th VMCAI, LNCS 7148,
pages 169–185. Springer, 2012. doi:10.1007/978-3-642-27940-9_12.

13 E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “Not Never” revisited: on
branching versus linear time temporal logic. J. ACM, 33(1):151–178, 1986. doi:10.1145/
4904.4999.

14 Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about
knowledge, volume 4. MIT Press Cambridge, 1995. doi:10.7551/mitpress/5803.001.0001.

15 Bernd Finkbeiner and Christopher Hahn. Deciding Hyperproperties. In Proc. 27th CONCUR,
LIPIcs 59, pages 13:1–13:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.CONCUR.2016.13.

16 Bernd Finkbeiner and Martin Zimmermann. The first-order logic of hyperproperties. In Proc.
34th STACS, LIPIcs 66, pages 30:1–30:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.STACS.2017.30.

17 Michael J. Fischer and Richard E. Ladner. Propositional Dynamic Logic of Regular Programs.
J. Comput. Syst. Sci., 18(2):194–211, 1979. doi:10.1016/0022-0000(79)90046-1.

FSTTCS 2024

https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-031-37703-7_15
https://doi.org/10.1016/J.ARTINT.2022.103725
https://doi.org/10.48550/arXiv.2404.16778
https://doi.org/10.2168/LMCS-11(4:4)2015
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.4230/LIPICS.CONCUR.2022.27
https://doi.org/10.4230/LIPICS.CONCUR.2022.27
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1007/978-3-642-27940-9_12
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/4904.4999
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.1016/0022-0000(79)90046-1

14:18 Unifying Asynchronous Logics for Hyperproperties

18 Joseph A. Goguen and José Meseguer. Security Policies and Security Models. In IEEE
Symposium on Security and Privacy, pages 11–20. IEEE Computer Society, 1982. doi:
10.1109/SP.1982.10014.

19 Jens Oliver Gutsfeld, Arne Meier, Christoph Ohrem, and Jonni Virtema. Temporal Team
Semantics Revisited. In Proc. 37th LICS, pages 44:1–44:13. ACM, 2022. doi:10.1145/3531130.
3533360.

20 Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. Propositional dynamic logic
for hyperproperties. In Proc. 31st CONCUR, LIPIcs 171, pages 50:1–50:22. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.50.

21 Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. Automata and fixpoints for
asynchronous hyperproperties. Proc. ACM Program. Lang., 4(POPL), 2021. doi:10.1145/
3434319.

22 Joseph Y. Halpern and Kevin R. O’Neill. Secrecy in multiagent systems. ACM Trans. Inf.
Syst. Secur., 12(1), 2008. doi:10.1145/1410234.1410239.

23 Joseph Y. Halpern and Moshe Y. Vardi. The Complexity of Reasoning about Knowledge
and Time: Extended Abstract. In Proc. 18th STOC, pages 304–315. ACM, 1986. doi:
10.1145/12130.12161.

24 Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. Team Semantics for
the Specification and Verification of Hyperproperties. In Proc. 43rd MFCS, LIPIcs 117, pages
10:1–10:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.
MFCS.2018.10.

25 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness to promptness. Formal
Methods Syst. Des., 34(2):83–103, 2009. doi:10.1007/S10703-009-0067-Z.

26 Martin Lück. On the complexity of linear temporal logic with team semantics. Theor. Comput.
Sci., 837:1–25, 2020. doi:10.1016/j.tcs.2020.04.019.

27 Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems -
Specification. Springer-Verlag, 1992. doi:10.1007/978-1-4612-0931-7.

28 John D. McLean. A General Theory of Composition for a Class of "Possibilistic” Properties.
IEEE Trans. Software Eng., 22(1):53–67, 1996. doi:10.1109/32.481534.

29 Amir Pnueli. The Temporal Logic of Programs. In Proc. 18th FOCS, pages 46–57. IEEE
Computer Society, 1977. doi:10.1109/SFCS.1977.32.

30 Markus N. Rabe. A temporal logic approach to information-flow control. PhD thesis, Saarland
University, 2016. URL: http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/.

31 Meera Sampath, Raja Sengupta, Stephen Lafortune, Kazin Sinnamohideen, and Demosthenis
Teneketzis. Diagnosability of discrete-event systems. IEEE Trans. Autom. Control., 40(9):1555–
1575, 1995. doi:10.1109/9.412626.

32 A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The Complementation Problem for Büchi
Automata with Applications to Temporal Logic. Theoretical Computer Science, 49:217–237,
1987. doi:10.1016/0304-3975(87)90008-9.

33 Ron van der Meyden and Nikolay V. Shilov. Model checking knowledge and time in systems
with perfect recall (extended abstract). In Proc. 19th FSTTCS, LNCS 1738, pages 432–445.
Springer, 1999. doi:10.1007/3-540-46691-6_35.

34 Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Inf. Comput.,
115(1):1–37, 1994. doi:10.1006/inco.1994.1092.

35 Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen, and Fan Yang. Linear-Time
Temporal Logic with Team Semantics: Expressivity and Complexity. In Proc. 41st IARCS
FSTTCS, LIPIcs 213, pages 52:1–52:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.FSTTCS.2021.52.

36 Steve Zdancewic and Andrew C. Myers. Observational Determinism for Concurrent Program
Security. In Proc. 16th IEEE CSFW-16, pages 29–43. IEEE Computer Society, 2003. doi:
10.1109/CSFW.2003.1212703.

https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/3531130.3533360
https://doi.org/10.1145/3531130.3533360
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://doi.org/10.1145/3434319
https://doi.org/10.1145/3434319
https://doi.org/10.1145/1410234.1410239
https://doi.org/10.1145/12130.12161
https://doi.org/10.1145/12130.12161
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.1007/S10703-009-0067-Z
https://doi.org/10.1016/j.tcs.2020.04.019
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1109/32.481534
https://doi.org/10.1109/SFCS.1977.32
http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/
https://doi.org/10.1109/9.412626
https://doi.org/10.1016/0304-3975(87)90008-9
https://doi.org/10.1007/3-540-46691-6_35
https://doi.org/10.1006/inco.1994.1092
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.52
https://doi.org/10.1109/CSFW.2003.1212703
https://doi.org/10.1109/CSFW.2003.1212703

	1 Introduction
	2 Background
	3 Unifying Framework for Asynchronous Extensions of HyperLTL
	3.1 PLTL-Relativized Stuttering and Context Modalities
	3.2 Generalized HyperLTL with Stuttering and Contexts
	3.3 The Simple Fragment of {{GHyperLTL$_{S+C}$}}
	3.4 Examples of Specifications in Simple {{GHyperLTL$_{S+C}$}}
	3.5 Expressiveness Issues

	4 Decidability of Model Checking against Simple {{GHyperLTL$_{S+C}$}}
	5 Conclusion

