
Learning Partitions Using Rank Queries
Deeparnab Chakrabarty # Ñ

Dartmouth College, Hanover, NH, USA

Hang Liao #Ñ

Dartmouth College, Hanover, NH, USA

Abstract
We consider the problem of learning an unknown partition of an n element universe using rank
queries. Such queries take as input a subset of the universe and return the number of parts of
the partition it intersects. We give a simple O(n)-query, efficient, deterministic algorithm for this
problem. We also generalize to give an O(n + k log r)-rank query algorithm for a general partition
matroid where k is the number of parts and r is the rank of the matroid.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Query Complexity, Hypergraph Learning, Matroids

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.16

Related Version Extended Version: https://arxiv.org/abs/2409.13092

Funding Deeparnab Chakrabarty: Supported by NSF grants 2041920 and 2402571.
Hang Liao: Supported by NSF grant 2041920.

1 Introduction

Let V be a universe of n elements and suppose there is an unknown partition P = (P1, . . . , Pk)
that we want to learn. We have an oracle called rank that takes as input any subset
S ⊆ V and returns the number of different parts this subset intersects. More precisely
rank(S) :=

∑k
i=1 min(|S ∩ Pi|, 1). How many queries suffice to learn P?

This natural question is a special case of the problem of learning hypergraphs under
the additive query model initially studied by [28]. In this problem, we have an unknown
hypergraph on a vertex set V , and an additive query add(T) on a subset T ⊆ V returns
the number of hyperedges completely contained in T . Our unknown partition P is a special
hypergraph whose k hyperedges are disjoint (that is, it is a hypermatching); and for any
subset S we observe that rank(S) is precisely k − add(V \ S). And so, the problem we
study can be rephrased as in how few additive queries can a hypermatching be learnt.
Although hypermatchings may feel too specialized, the now mature literature on graph
learning (cf. [22, 17, 15, 16, 23]) began with understanding the case of graph matchings
(cf. [28, 4, 3]).

The problem we study is also a special case of a matroid learning problem with access to
rank oracle queries. Matroids are set systems, whose elements are called independent sets,
that are defined using certain axioms and these are fundamental objects in combinatorial
optimization. It is well known that a partition P induces the following simple partition
matroid: a subset I ⊆ V is independent if |I ∩ Pi| ≤ 1 for all i. The rank of a matroid is the
cardinality of the largest independent set of the matroid, and more generally, the rank of
subset S is the cardinality of the largest independent set that is a subset of S. A moment’s
notice shows that for the simple partition matroid this is precisely rank(S) which explains
the name we give to our oracle. So, our problem we study asks: in how few rank queries can
a simple partition matroid be learnt?

© Deeparnab Chakrabarty and Hang Liao;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 16; pp. 16:1–16:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:deeparnab@dartmouth.edu
https://www.cs.dartmouth.edu/~deepc/
https://orcid.org/0000-0001-7596-6035
mailto:hang.liao.gr@dartmouth.edu
https://hangliao.github.io/
https://orcid.org/0009-0005-6643-1991
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.16
https://arxiv.org/abs/2409.13092
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Learning Partitions Using Rank Queries

It is rather straightforward1 to learn the partition using O(n log k) queries as follows.
First, one learns a representative from each part with n-queries; given a set of already learned
representatives R, a vertex v is in a new unrepresented part if and only if rank(R∪v) > rank(R).
After learning the k representatives, we can learn every other vertex’s part by performing a
binary search style algorithm. Can one do better? It is instructive to note that the algorithm
sketched above does not really utilize the full power of the query model we have. In particular,
it would have sufficed if the query took a subset S and said YES if every element in S

was in a different part, or NO otherwise. Using the matroid language, an independence
oracle suffices which only states if a set S is independent or not. Now, an independence
oracle answer gives at most 1 bit of information; on the other hand, there are roughly kn

different partitions possible with ≤ k parts. Therefore, via an information theoretic argument
Ω(n log k) independence queries are necessary to learn the partition. In contrast, the rank
oracle gives the number of different parts hit by a subset; this is an integer in {0, 1, . . . , k}
and the information theoretic argument only proves an Ω(n) lower bound on the number of
queries. This naturally leads to the question: can an O(n)-query algorithm exist? The main
result of this paper is a simple affirmative answer to this question.

▶ Theorem 1. There is a deterministic, constructive algorithm that solves unknown partition
learning problem using O(n) rank queries.

▶ Remark. We have not optimized the constant in front of n. We think it can be made less
than 10 but don’t believe can be made less than 4 using our methods. The best lower bound
one can prove using the above information theory argument is n. Figuring out the precise
coefficient is left as an open question.

We also consider the generalization of learning a general partition matroid using rank
queries. In this case, along with the unknown partition P , we have unknown positive integers
r1, . . . , rk associated with each part, where 1 ≤ ri < |Pi|. A subset I is independent in this
matroid if |I ∩ Pi| ≤ ri, for all 1 ≤ i ≤ k. When all ri = 1, we have the simple partition
matroid. The rank query corresponds to rank(S) :=

∑k
i=1 min(|S ∩ Pi|, ri). In how few rank

queries can we learn a general partition matroid?
As in the simple partition matroid case, one can get an O(n log k)-query algorithm using

just an independent set oracle via a more delicate2 binary-search-style algorithm. Can we
obtain O(n) query algorithm with rank queries? We believe the answer should be yes and
take the following first step.

▶ Theorem 2. There is a deterministic, constructive algorithm that learns a general partition
matroid using O(n + k log r) rank queries where r := rank(V) =

∑
i ri.

▶ Remark. When the number of parts k ≤ n/ log n, we thus get an O(n)-rank query algorithm.
However, when k = Ω(n) we don’t do any better than just with independence queries.

Perspective

Our motivation to look at the problem arose from trying to understand the connectivity
question in hypergraphs using CUT queries. Although, as mentioned earlier, graph learning
under query models has been extensively studied, over the last few years, multiple works
such as [36, 27, 29, 8, 6, 20, 30] have focused on trying to understand if fewer queries can

1 Something that can be given in an undergraduate algorithms course when teaching binary search.
2 Maybe a challenging exercise in the aforementioned algorithms course; see Section 3 for this algorithm.

D. Chakrabarty and H. Liao 16:3

lead to understanding properties of graphs. Of particular interest is understanding the
connectivity/finding spanning forest of a graph using CUT queries. A CUT query takes a
subset of vertices as input and returns the number/weight of the cut edges crossing the
subset. While graph learning can take Θ̃(m) cut queries, a spanning forest of an undirected
graph, unweighted or weighted, can be constructed3 in O(n) queries (see [6, 30]). Can such
results be generalized4 to hypergraphs? To us, the easiest case of a hypergraph was the
hypermatching whose only spanning forest is the hypergraph itself. It is not too hard to see
that CUT queries and rank queries are intimately related. Formally, after n cut queries, any
rank query can be simulated with 2 cut queries. The interesting open question is: can the
connectivity question of an arbitrary hypergraph be solved in O(n) queries?

The other related problem is matroid intersection. Given rank/independence oracle to
two matroids over the same universe, the matroid intersection problem asks to find the largest
common independent set. It is a classic result in combinatorial optimization due to [26]
that this can be solved in polynomially many independence oracle queries. The current
state-of-the-art is that Õ(n1.5)-rank queries suffice (see [19]) and Õ(n7/4)-independence oracle
queries suffice (see [10]). On the other hand, no super-linear lower bounds are known for
rank-queries, and only recently, [11] proved an Ω(n log n)-lower bound for independence
queries. The big open question is: can matroid intersection be solved in O(n) rank-queries,
or can a ω(n)-lower bound be proved?

As noted earlier, if we wish to obtain an o(n log k)-query algorithm, we must exploit
the fact that rank-queries output “more” than the independence oracle queries. Our second
motivation in writing this paper is to showcase how the techniques that arise from coin
weighing problems a la [18, 31] exploit this “more”. In the basic coin-weighing problem,
one is asked to recover an unknown Boolean vector x with the ability to query any subset
S and obtain

∑
i∈S xi (a sum-query). The aforementioned papers showed how to do this

making roughly 2n/ log2 n sum-queries. [13] generalized this to learn a Boolean vector with
at most d ones in roughly 2d log2 n

log2 d queries. In a different application, [28] showed how to use
the coin-weighing result to learn a hidden perfect matching in a bipartite graph using 2n

CUT queries. These form the backbone of our algorithms. Having said that, there are some
big differences between sum-queries and rank-queries since the latter is not “linear” and
this underlies the difficulties we’ve faced in generalizing Theorem 2 to obtain a O(n)-query
algorithm to the general partition matroid case.

1.1 Related works
There is a vast literature on combinatorial search [1, 25], and we restrict ourselves to
the works that are related the most. As mentioned above, our problem can be thought
of as learning a hypermatching using additive/cut queries. (Hyper)-graph reconstruction
questions have been widely studied in the last two decades. A significant body of work has
been dedicated to reconstructing graphs using queries, as evidenced by the works of (cf.
[28, 4, 3, 35, 23, 34, 15, 17, 22]). These efforts encompass various types of graphs, including
unweighted graphs, graphs with positive weights, and graphs with non-zero edge weights, using
CUT queries. This has culminated in a result of [22] gives an polynomial time, randomized
O(m log n

log m)-query algorithm for learning graphs on n nodes and m edges with non-zero edge
weights, and this query complexity is information theoretic optimal. Concurrently, there has

3 using a randomized Las Vegas algorithm which makes O(n) queries in expectation
4 At first glance even a polynomial query algorithm may not be clear; a little thought can lead to an

O(n log n) query algorithm.

FSTTCS 2024

16:4 Learning Partitions Using Rank Queries

been ongoing research on recovering specific structures within graphs without necessarily
reconstructing the entire graph, such as figuring its connectivity (see [28, 20, 30]). [5] started
the research on learning a hypergraph using edge-detecting queries, that is, whether the
input set contains a hyperedge or not; they described algorithms for r-uniform hypergraphs
(every hyperedge has exactly r vertices) but the dependence on r was exponential. [14]
considered the additive model where one gets the number of edge (this was mentioned in
the Introduction above) and proved existence of algorithms to learn rank d hypergraphs
(every hyperedge has at most d vertices) for constant d using Od(m log(nd/m)/ log m)-queries;
the dependence on d is exponential. [9] considered high-rank but low-degree hypergraphs,
including hypermatchings. The focus was on edge-detecting queries (indicator whether
additive query is zero or non-zero), and they gave O(npolylogn)-query algorithms which
were also “low depth”, that is, with few rounds of adaptivity.

Our problem is also related to the problem of recovering a clustering with active queries
(see [7, 33, 37, 2, 21, 12, 32]). The setting is the same: there is a universe of n points which
we assume is clustered into k unknown parts. The query model, however, is often quite
different and much more restrictive usually constraining queries to asking whether a pair
or a constant number of elements are in the same cluster/part or not. Such a study was
initiated in the works of [24, 7, 33] which prove an Ω(nk) lower bound, and then provide
better upper bounds with extra assumptions. The above-cited works continue on this line.

2 O(n) Query Deterministic Algorithm

Throughout the rest of the paper, unless otherwise mentioned all logarithm base is 2. We
begin with an overview of the algorithm. We maintain a collection J of disjoint independent
sets; recall that a subset is independent if it contains at most one element from each part.
Initially, J is the collection of n independent sets each of which is a single element. Let
J denote the union of all these independent sets, and so, initially J = V . The algorithm
will modify this collection J in iterations, removing some elements from J while doing so.
Anytime such an element e is removed, we maintain a map rep(e) to an element in the
current J with the property that e and rep(e) are in the same partition in P. We will call
two elements in the same parts “friends”, and so, rep(e) is e’s friend.

The key routine in the algorithm is a merge operation over independent sets. Given
two independent sets I1, I2, define the set of common nodes com(I1, I2) := {v1 ∈ I1 : ∃v2 ∈
I2, Pi, {v1, v2} ⊆ Pi} to be the subset of nodes in I1 which have a friend in I2. Note that
this friend needs to be unique since I2 is independent. The Merge operation takes two
independent sets I1 and I2 and then (a) finds the set com(I1, I2), (b) for each e ∈ com(I1, I2),
finds its unique neighbor rep(e) ∈ com(I2, I1), and (c) returns com(I1, I2), com(I2, I1), and
I3 := I1 + I2 − com(I1, I2). See Figure 1 for an illustration.

Given the Merge routine, the algorithm is very simple: while there exists two independent
sets I1 and I2 of comparable size (within factor 2), merge them and replace I1 and I2 with
I3 returned by the merge. This may remove some elements from J , and in particular this is
com(I1, I2), but all these elements will have rep(e) pointing to their friends who are still in J .
When the algorithm can’t do this anymore, there must be at most ℓ = ⌈log k⌉ independent
sets remaining in J . These can be sequentially merged in any order to get one single
independent set J , indeed a basis, in J . To find the partition, consider the directed graph on
V where we add the edge (e, rep(e)) for all e ∈ V \ J ; note this forms a collection of directed
in-trees rooted at vertices in J , and the connected components are precisely the parts that

D. Chakrabarty and H. Liao 16:5

Figure 1 After we merge I1, I2 on the left, we get I3 and a mapping from com(I1, I2) to com(I2, I1).

we desire. In what follows we show how to implement Merge using existing results from
coin-weighing and graph reconstruction, and then argue why the total number of rank queries
made by our algorithm is O(n).

2.1 Definitions
We review or introduce several definitions for completeness.

▶ Definition 3 (add query). An add query on an unweighted graph G = (V, E): given S ⊆ V ,
obtain |{e ∈ E : e ∈ S × S}|.

▶ Definition 4 (sum query). A sum query on a boolean vector x ∈ {0, 1}N : given S ⊆ [N],
obtain

∑
i∈S xi.

▶ Definition 5 (com of two sets). Given two independent sets I1, I2. The set of common
nodes com(I1, I2) := {v1 ∈ I1 : ∃v2 ∈ I2, Pi, {v1, v2} ⊆ Pi} is the subset of nodes in I1 which
have a friend in I2.

▶ Definition 6 (rep(e) of a node). We maintain a map rep with the property that a node e

and rep(e) (representative of e) are in the same partition in P. rep keeps track of the learned
partition by mapping the learned node to its friend who is still in J .

2.2 Merging Independent Sets
We begin by introducing some vector/graph reconstruction algorithms from the literature.

▶ Lemma 7 ([13]). Let x ∈ {0, 1}N be an unknown Boolean vector with sum-query access. If
x has d ones, then there is a polynomial time, adaptive, deterministic algorithm to reconstruct
x which makes O(d log(N/d)/ log d) sum queries.

▶ Lemma 8 (Paraphrasing Theorem 4 & Section 4.3 [28]). A bipartite graph G = (V, W, E)
with |V | = |W | = m where E forms a perfect matching can be learnt in O(m) add queries.

Now we are ready to describe Merge whose properties are encapsulated in the following
lemma.

▶ Lemma 9. Let I1, I2 be two independent sets and let k1 = |I1| and k2 = |I2|. Suppose d =
|com(I1, I2)| = |com(I2, I1)|. The procedure Merge is an adaptive deterministic polynomial
time algorithm which returns I3 = I1 + I2 − com(I1, I2) and rep(e) ∈ com(I2, I1) for all
e ∈ com(I1, I2). The procedure makes O(d log(max(k1,k2)/d)

log d) rank queries.

FSTTCS 2024

16:6 Learning Partitions Using Rank Queries

Proof. Given I1 and I2, define the Boolean vector x := x(I1,I2) ∈ {0, 1}k1 where xe = 1 if and
only if e ∈ com(I1, I2). We note that a sum query can be simulated on x using a single rank
query. This is due to the observation that for all S ⊆ I1,

∑
e∈S xe = |S|+ |I2| − rank(S ∪ I2).

This is because the RHS precisely counts the number of parts of S that are already present in
I2, or com(I1, I2)∩S. Therefore, we can apply Lemma 7 to learn com(I1, I2) in O(d log(k1/d)

log d)
many rank queries. Similarly, we can get com(I2, I1) in O(d log(k2/d)

log d) queries. Note that
the above doesn’t give us the friends for e ∈ com(I1, I2) in com(I2, I1). This pairing can be
found as follows. For simplicity, let’s use X := com(I1, I2) and Y := com(I2, I1). Consider
the bipartite graph G = (X, Y, E) where e ∈ X has an edge to f ∈ Y if and only if f is e’s
friend. So, G is a perfect matching whose edges are yet unknown. We can now use Lemma 8
to find them. To see why this can be done, note that we can simulate the add query because
for any S ⊆ X ∪ Y , simply because add(S) = |S| − rank(S) This is because any edge (e, f)
with both endpoints in S are precisely the pairs which are counted once in rank(S) but twice
in |S|. Thus, finding this matching takes O(d) rank queries. ◀

Algorithm 1 Merging Independent Sets.
1: procedure Merge(I1, I2):
2: ▷ Input: Two independent sets
3: ▷ Output: com(I1, I2) and rep(e) ∈ com(I2, I1) for e ∈ com(I1, I2).
4: Learn com(I1, I2) and com(I2, I1) as described above using

O(d log(max(k1, k2))/ log d) rank queries.
5: Learn rep(e) ∈ com(I2, I1) for e ∈ com(I1, I2) as described above in O(d) rank

queries.
6: I3 ← I1 ∪ I2 − com(I1, I2). ▷ Note that I3 is independent and rep(e) ∈ I3 for all

e ∈ com(I1, I2).
7: return (I3, rep)

2.3 The algorithm and analysis
We give the pseudocode of the algorithm in Algorithm 2. We now claim that the algorithm
makes O(n) queries. All the queries to rank occur in the calls to Merge in line 7 or line 14.
Let’s take care of the second ones first since it’s straightforward.

▷ Claim 10. The total number of rank queries made in Merge calls in line 14 over the
for-loop is O(n).

Proof. There are ℓ = O(log n) merges made; that is the only fact we will use. By Lemma 9,
the tth Merge would make at most O(dt log n/ log dt) many rank queries, where dt is the
size of com(It, I) at that time. All we care for is that

∑ℓ
t=1 dt ≤ n. Now we observe (an

explicit reference is Claim 3 of [20]) that if ℓ ≤ C log n, then
∑ℓ

t=1
dt

log dt
= O(n/ log n). To

see this, note that the contribution to this sum of all the dt’s which are ≤ n
C log2 n

is at
most nℓ

C log2 n
< n/ log n. All the other dt’s have log dt = Ω(log n) and so their contribution

is O(
∑

t dt/ log n) = O(n/ log n). Altogether, we see that O(
∑ℓ

t=1 dt log n/ log dt) = O(n).
◁

▷ Claim 11. The total number of rank queries made in Merge calls in line 7 over the
while-loop is O(n).

D. Chakrabarty and H. Liao 16:7

Algorithm 2 Find Partition.
1: procedure FindPartition(V, rank):
2: ▷ Input: n elements with rank query access to hidden partition P.
3: ▷ Output: the partition.
4: Create J ← {{e1}, {e2}, . . . , {en}}; J ← V

5: Create graph G = (V, F) with F ← ∅. ▷ this will be used to find the parts
6: while ∃I1, I2 ∈ J : |I1|/|I2| ∈ [1/2, 2] do:
7: (I3, rep(e))←Merge(I1, I2).
8: For all e ∈ com(I1, I2), add (e, rep(e)) to the edge-set F .
9: J ← J − {I1, I2}+ I3; J ← J \ com(I1, I2).

10: ▷ At this point there can be at most ⌈log n⌉ elements in J
11: ▷ Merge all these sets in any order to get a single set. We provide one below.
12: Let J = {I1, I2, . . . , Iℓ} with ℓ ≤ ⌈log n⌉; I ← I1; J ← J \ I1
13: for 2 ≤ t ≤ ℓ do:
14: (I3, rep(e))← Merge(It, I).
15: For all e ∈ com(It, I), add (e, rep(e)) to the edge-set F .
16: J ← J − {It, I}+ I3; I ← I3.
17: ▷ At this point J has a single independent set I. Every element in e ∈ V \ I has a

single representative rep(e). So G is a collection of directed in-trees with roots in I

18: return Connected components of G.

Proof. To argue about the Merge’s in Line 7, we need to partition these into two classes.
Note that all such merges take two independent sets I1 and I2 which are of similar size k1
and k2 respectively; without loss of generality, let k1 ≤ k2 ≤ 2k1. Let d := |com(I1, I2)|. We
call a merge thick if d ≥

√
k1 and thin otherwise. We argue about the thick and thin merges

differently.
Using Lemma 9, we see that a thick merge costs O(d log(max(k1, k2))/ log d) = O(d) rank
queries; we have used here that k2 ≤ 2k1 and d ≥

√
k1. Thus, we can charge these rank

queries to the d elements which leave J . Thus, the total number of rank queries made
across all thick merges is O(n).
To argue about thin merges, we make a further definition. Let us say that an independent
set I is in class t if |I| ∈ [2t, 2t+1), for 0 ≤ t ≤ ⌊log n⌋. Fix such a t. A thin merge (I1, I2)
is called a class t thin-merge if the smaller cardinality set is in class t. An element e ∈ V

participates in a class t thin-merge (I1, I2) if it is present in the smaller set. Observe
that for a thin class t merge, the resulting independent set I3 almost doubles in size;
in particular, |I3| = |I1| + |I2| − |com(I1, I2)| ≥ 2t+1 − 2t/2. Using this one can argue
that the same element cannot participate in more than two class t-thin merges; after
two merges the set ceases to be class t. In particular, this means the number of thin
class t merges is at most 2 · n/2t, and each such merge, by Lemma 9, can be done with
O(d log(2t+1)/ log d) many rank queries where d = |com(I1, I2)| < 2t/2. Since d/ log d

is an increasing function of d, we conclude that any class t thin-merge takes at most
O(2t/2 log(2t+1)/ log(2t/2)) = O(2t/2) many rank queries. Therefore, the total number of
rank queries made within thin merges is at most

∑log n
t=0

2n
2t ·O(2t/2) = O(n) ◀

The above two claims imply the proof of Theorem 1.

FSTTCS 2024

16:8 Learning Partitions Using Rank Queries

3 General Partition Matroids

We recall the problem. As before, the universe is V and there is a hidden partition P =
(P1, . . . , Pk). Furthermore, there are integers r1, . . . , rk where 0 < ri < |Pi|.5 This defines a
partition matroid where a set I is independent if and only if |I ∩ Pi| ≤ ri for 1 ≤ i ≤ k. The
rank-oracle for this matroid is the following rank(S) =

∑k
i=1 min(|S ∩ Pi|, ri).

We will prove the following theorem in this section.

▶ Theorem 2. There is a deterministic, constructive algorithm that learns a general partition
matroid using O(n + k log r) rank queries where r := rank(V) =

∑
i ri.

Our proof technique will be a reduction to the simple partition matroid setting of Section 2.
Before we get there, let’s first begin with a simple well-known observation.

▶ Lemma 12. There is an O(n) rank query algorithm that finds a basis B of a partition
matroid.

Proof. This is standard and we give it below for completeness. Note that although described
as a “for-loop”, the above algorithm can be implemented in a single round of n many rank
queries. ◀

Algorithm 3 Finding a Basis Using Rank Queries.
1: procedure FindBasis(V, rank):
2: ▷ Input: n elements in V with rank query access
3: ▷ Output: A basis of V .
4: B ← {}.
5: for v ∈ V do:
6: if rank(B + {v}) = rank(B) + 1 then:
7: B ← B + {v}.
8: return B.

To obtain our reduction, what we need apart from this basis B are two sets of representatives.
A subset T ⊆ V is a set of representative if |T ∩ Pi| = 1 for each 1 ≤ i ≤ k. The
reduction will need two representative sets: T1 ⊆ B and T2 ∩ B = ∅, and the subroutine
FindRepresentatives(B) will find this. Furthermore, it will also return a map ϕ : T1 → T2
where for each e ∈ T1, ϕ(e) belongs to the same part as e. The algorithm does so in
O(n + k log r) queries; in fact, only independence oracle queries suffice. This is slightly
non-trivial and we described this in Section 3.1. Let us now show how these representatives
imply an O(n)-query algorithm to learn the partition P and the ri’s.

▷ Claim 13. Algorithm 4 returns the correct partition P and ri’s making O(n) many rank
queries.

Proof. The main idea is that the representatives allow us to simulate a simple partition
matroid rank query on the basis and outside. More precisely, we claim that for any subset
S ⊆ B, rank1(S) =

∑k
i=1 min(|S ∩ Pi|, 1). If so, the correctness of Algorithm 4 follows

5 Suppose we allow ri ≥ |Pi|. Let M := {i|ri ≥ |Pi|}. Now rank(S) =
∑

i∈M
|S ∩ Pi| +

∑
i/∈M

min(|S ∩
Pi|, ri). This means we get no information for partitions with index in M . To see this, we pick
x1 ∈ Pi1 , x2 ∈ Pi2 with i1, i2 ∈ M and i1 ̸= i2. If we swap x1 with x2 in every set we give to the
rank-oracle, the answer it returns is the same. Thus no rank query algorithm can tell x1, x2 apart.

D. Chakrabarty and H. Liao 16:9

Algorithm 4 Using Representatives to Learn Partition.
1: procedure LearnMatroidwithReps(V, rank, B, T1, T2, ϕ : T1 → T2):
2: ▷ Input: n elements in V with rank query; basis B, set of representatives T1 ⊆ B,

T2 ∩B = ∅, ϕ(t) is a friend of t.
3: ▷ Output: the partition P.
4: For any subset S ⊆ B, define rank1(S) := rank(B − S + T2)− rank(B − S).
5: P1 ← FindPartition(B, rank1) ▷ Takes O(|B|) queries.
6: For each 1 ≤ i ≤ k, ri ← |B ∩ P

(1)
i | where P1 = (P (1)

1 , . . . , P
(1)
k).

7: For any subset S ⊆ V \B, define rank2(S) := rank(B + S − T1)− rank(B − T1).
8: P2 ← FindPartition(V \B, rank2) ▷ Takes O(|V \ B|) queries.
9: Use ϕ to merge P1 and P2 into P: for t ∈ T1, merge the part in P1 containing T1

with the part in P2 containing ϕ(t).
10: return (P, {ri}k

i=1)

from Theorem 1. Indeed, rank(B−S + T2)− rank(B−S) gives +1 for each part where B−S

loses at least one element to which the unique element of T2 contributes. Similarly, one argues
that for any S ⊆ V \B, rank2(S) =

∑k
i=1 min(|S ∩ Pi|, 1). This is also for a similar reason;

B − T1 loses exactly one element from each part and so rank(B + S − T1) − rank(B − T1)
counts the parts that S intersects at least once. See Figure 2 for an illustration. ◁

3.1 Finding Representatives via Binary Search
We now describe a procedure which takes a basis B of the partition matroid, and finds two
subsets of representatives T1 ⊆ B and T2 ∩ B = ∅. The idea behind is a delicate binary
search. Fix some e ∈ V \B and without loss of generality, say e ∈ P1. We now show how to
find one element in B ∩ P1 in O(log r) queries. The way to do it is by halving B to X1 ⊔X2
and keep the half with at least P1 element in it as “search half”. This can be checked by
seeing whether rank(X1 + {e}) = rank(X1): if so then X1 contains all element of P1 and this
is the half we stick with; otherwise X2 contains some P1 element and takes precedence. The
other half is now added to the new “test half”. We keep searching in our search set until
it has exactly 1 class P1 element left. For instance, say X2 is further divided to X21 and
X22. The next query would be to check if rank((X1 + {e}) + X21) = rank(X1 + X21). If so,
then X1 + X21 contains all class P1 elements, and so will make X21 our new “search set”;
otherwise, we continue on X22. We describe the pseudocode in detail in Algorithm 5.

▷ Claim 14. Algorithm 5 returns (T1, T2, ϕ) correctly and makes O(n + k log r) many rank
queries.

Proof. The proof is by induction: we claim that T1, T2 contains at most one element from
each part and the size |T1| = |T2| equals the number of parts spanned by the elements seen by
the outer for-loop. And furthermore, the ϕ-relation is correct. This is obviously true before
anything occurs, and consider the for-loop for and element e. Now suppose the if-statement
in line 6 is not true; that is, say rank(B − T1 + e) > rank(B − T1). This would mean that
e contains a friend in T1; the only way the rank could increase is if e filled the “hole” in
the part which has exactly one element missing in B − T1. We discard this e. On the other
hand if the if-statement holds, then we will discover a new part in B and thus by inductive
hypothesis, in V \B. We therefore add e to T2.

Now consider the invariant in line 10. If that indeed holds true, then when the while-loop
terminates, and it does so with |X| = 1, the single element x ∈ X must be in the same part
as e. Thus, adding x ∈ T1 and setting ϕ(x) = e is the correct thing to do. To see that the

FSTTCS 2024

16:10 Learning Partitions Using Rank Queries

Figure 2 Illustration of how we simulate a simple partition matroid rank query inside of a basis with
representatives outside. We have a basis with bis equal to 1 (purple nodes), 2 (green), 3 (blue) and 4
(black) respectively. rank(B) = 10, rank(B −S) = 5. Note |B −S +T2| = 10, yet rank(B −S +T2) = 9
because the number of green nodes is capped at 2. rank(B − S + T2) − rank(B − S) = 3 simulate a
simple partition matroid rank query for S. The circled nodes correspond to the 3 partitions included
in S.

invariant in line 10 holds, we include the invariant in line 11. This is readily checked in both
the “then” and “else” case of the forthcoming if-statement. If line 13 holds true, then akin
to the argument above, Y + X1 contains all friends of e in B. So, we focus our search on
X1 since it contains at least one friend of e because, by invariant, X contained at least one
friend of e. So setting X to X1 keeps the invariant satisfied. On the other hand, if line 13
doesn’t hold true, then X2 must contain at least one friend of e. And so setting X to X2
keeps the invariant fulfilled.
To find the number of queries is simple. First notice that only line 6 and 13 make any
queries. And even then one of them is superfluous. More precisely, since B − T1 and Y + X1
are independent sets, their rank is |B| − |T1| and |Y | + |X1| respectively. We make n − r

queries in line 13. Of these at most k many satisfy the condition. Each of them leads to a
binary-search style argument which takes at most ⌈log r⌉ many queries. ◁

▶ Remark. Note that line 6 and line 13 can be implemented using only independence oracle
queries since they are really asking, respectively, if B−T1 +e and Y +X1 +e are independent
or not; if the ranks are equal, they are not. This also implies an O(n log k) algorithm to
learn the partition matroid using only independence oracle as alluded to in the Introduction.
Let |T1| = |T2| = k. Once we have the representative sets T1 ⊆ B and T2 ∩B = ∅, for any
element e /∈ V \B, we can use a binary-search style argument on T1 to find e’s friend among
T1 in O(log k) many independence oracle queries. More precisely, we halve T1 into (X, Y)
and check if B −X + e is independent or not. If it is, then X contains e’s friend; otherwise,
Y does. Similarly, for any e ∈ B, we can find e’s friend in T2 in O(log k) many independence
oracle queries.

D. Chakrabarty and H. Liao 16:11

Algorithm 5 Finding Representatives.
1: procedure FindRepresentatives(V, rank, B):
2: ▷ Input: n elements in V with rank query; basis B

3: ▷ Output: Sets of Representatives T1 ⊆ B, T2 ∩B = ∅ and map ϕ : T1 → T2.
4: T1, T2 ← ∅.
5: for e ∈ V \B do:
6: if rank(B − T1 + {e}) = rank(B − T1) then:▷ e is an element with no friends in T1

and T2:
7: T2 ← T2 + e.
8: X ← B; Y ← ∅.
9: while |X| > 1 do:

10: ▷ Invariant: X has at least one element in same part as e

11: ▷ Invariant: X ∪ Y = B

12: (X1, X2)← arbitrary equipartition of X.
13: if rank(Y + X1 + e) = rank(Y + X1) then: ▷ X2 contains no friends of e

14: Y ← Y + X2; X ← X1.
15: else: ▷ X2 contains at least one friend of e

16: Y ← Y + X1; X ← X2.
17: ▷ X is a singleton element of B; let X = {x}
18: T1 ← T1 + x; Set ϕ(x) = e.
19: return (T1, T2, ϕ).

Algorithm 6 Learning a Partition Matroid.
1: procedure LearnPartition(V, rank):
2: ▷ Input: partition matroid on n elements in V with rank query
3: ▷ Output: the partition P and ri’s
4: Learn a basis B using FindBasis(V, rank) a la Algorithm 3.
5: (T1, T2, ϕ)← FindRepresentatives (V, B, rank) a la Algorithm 5.
6: return (P, {ri})← LearnMatroidWithReps(V, rank, B, T1, T2, ϕ) a la Al-

gorithm 4.

For completeness, we end the section by giving the pseudocode for the final algorithm
in Algorithm 6. Lemma 12 establishes that Algorithm 6 makes n rank queries, Claim 14
establishes that Algorithm 6 makes n + k log r rank (in fact independence oracle) queries,
and Claim 13 establishes that Algorithm 6 makes O(n) rank queries. This completes the
proof of Theorem 2.

4 Conclusion

In this paper we looked at the question of learning a hidden partition using rank queries
which given a subset tells how many different parts it hits. We gave a simple but non-
trivial, deterministic, and efficient algorithm which makes O(n)-rank queries. This is optimal
up to constant factors. The main non-triviality arises in the use of techniques devised
in coin-weighing algorithms a la [18, 31], and our work falls in a growing line of such
results [28, 23, 14, 6, 20, 30] which explores the use of these techniques to solve combinatorial
search problems.

FSTTCS 2024

16:12 Learning Partitions Using Rank Queries

The obvious question left open by our paper is whether there are O(n) algorithms to
learn general partition matroids especially when k = Θ(n). We have not been able to directly
port the coin-weighing techniques to solve this problem even in the case of ri = 2 for all
i. The main technical challenge that the rank query, ultimately, is not a linear query and
in Section 3 we could make it “behave linear” with the help of representatives. Our algorithm
to find representatives, however, didn’t utilize the “more information” given by rank-queries
over independence oracle queries. Investigating this may lead to new algorithmic primitives.
On the other hand, perhaps there is a ω(n) lower bound for this problem when k = Θ(n).

References
1 Martin Aigner. Combinatorial search. John Wiley & Sons, Inc., 1988.
2 Nir Ailon, Anup Bhattacharya, and Ragesh Jaiswal. Approximate correlation clustering using

same-cluster queries. In Proc., Latin American Theoretical Informatics Symposium, pages
14–27, 2018. doi:10.1007/978-3-319-77404-6_2.

3 Noga Alon and Vera Asodi. Learning a hidden subgraph. SIAM Journal on Discrete Mathem-
atics (SIDMA), 18(4):697–712, 2005. doi:10.1137/S0895480103431071.

4 Noga Alon, Richard Beigel, Simon Kasif, Steven Rudich, and Benny Sudakov. Learning
a hidden matching. SIAM Journal on Computing (SICOMP), 33(2):487–501, 2004. doi:
10.1137/S0097539702420139.

5 Dana Angluin and Jiang Chen. Learning a hidden hypergraph. In Proc., Conf. on Learning
Theory (COLT), pages 561–575. Springer, 2005. doi:10.1007/11503415_38.

6 Simon Apers, Yuval Efron, Pawel Gawrychowski, Troy Lee, Sagnik Mukhopadhyay, and
Danupon Nanongkai. Cut query algorithms with star contraction. Proc., IEEE Conference on
the Foundations of Computer Science (FOCS), 2022.

7 Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-cluster queries.
Adv. in Neu. Inf. Proc. Sys. (NeurIPS), 29, 2016.

8 Arinta Auza and Troy Lee. On the query complexity of connectivity with global queries. arXiv
preprint arXiv:2109.02115, 2021. arXiv:2109.02115.

9 Eric Balkanski, Oussama Hanguir, and Shatian Wang. Learning low degree hypergraphs.
In Proc., Conf. on Learning Theory (COLT), pages 419–420. PMLR, 2022. URL: https:
//proceedings.mlr.press/v178/balkanski22a.html.

10 Joakim Blikstad. Breaking O(nr) for Matroid Intersection. In Proc., International Conference
on Algorithms, Logic, and Programming (ICALP), pages 31:1–31:17, 2021. doi:10.4230/
LIPICS.ICALP.2021.31.

11 Joakim Blikstad, Sagnik Mukhopadhyay, Danupon Nanongkai, and Ta-Wei Tu. Fast algorithms
via dynamic-oracle matroids. In Proc., ACM Symposium on the Theory of Computing (STOC),
pages 1229–1242, 2023. doi:10.1145/3564246.3585219.

12 Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi, and Andrea Paudice. On margin-based
cluster recovery with oracle queries. Adv. in Neu. Inf. Proc. Sys. (NeurIPS), pages 25231–25243,
2021.

13 Nader H. Bshouty. Optimal algorithms for the coin weighing problem with a spring scale. In
Proc., Conf. on Learning Theory (COLT), 2009.

14 Nader H. Bshouty and Hanna Mazzawi. Optimal Query Complexity for Reconstructing
Hypergraphs. In Proc., Symposium on the Theoretical Aspects of Computer Science (STACS),
pages 143–154, 2010. doi:10.4230/LIPICS.STACS.2010.2496.

15 Nader H. Bshouty and Hanna Mazzawi. Algorithms for the coin weighing problems with
the presence of noise. Electron. Colloquium Comput. Complex., page 124, 2011. URL:
https://eccc.weizmann.ac.il/report/2011/124, arXiv:TR11-124.

16 Nader H. Bshouty and Hanna Mazzawi. On parity check (0, 1)-matrix over Zp. In Proc.,
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1383–1394, 2011.

https://doi.org/10.1007/978-3-319-77404-6_2
https://doi.org/10.1137/S0895480103431071
https://doi.org/10.1137/S0097539702420139
https://doi.org/10.1137/S0097539702420139
https://doi.org/10.1007/11503415_38
https://arxiv.org/abs/2109.02115
https://proceedings.mlr.press/v178/balkanski22a.html
https://proceedings.mlr.press/v178/balkanski22a.html
https://doi.org/10.4230/LIPICS.ICALP.2021.31
https://doi.org/10.4230/LIPICS.ICALP.2021.31
https://doi.org/10.1145/3564246.3585219
https://doi.org/10.4230/LIPICS.STACS.2010.2496
https://eccc.weizmann.ac.il/report/2011/124
https://arxiv.org/abs/TR11-124

D. Chakrabarty and H. Liao 16:13

17 Nader H. Bshouty and Hanna Mazzawi. Toward a deterministic polynomial time algorithm
with optimal additive query complexity. Theoretical Computer Science, 417:23–35, 2012.
doi:10.1016/J.TCS.2011.09.005.

18 David G. Cantor and W. H. Mills. Determination of a subset from certain combinatorial
properties. Canadian Journal of Mathematics, 18:42–48, 1966.

19 Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, Sahil Singla, and Sam Chiu-wai Wong.
Faster matroid intersection. In Proc., IEEE Conference on the Foundations of Computer
Science (FOCS), pages 1146–1168, 2019. doi:10.1109/FOCS.2019.00072.

20 Deeparnab Chakrabarty and Hang Liao. A query algorithm for learning a spanning forest in
weighted undirected graphs. In Proc., International Conference on Algorithmic Learning Theory
(ALT), pages 259–274, 2023. URL: https://proceedings.mlr.press/v201/chakrabarty23a.
html.

21 I Eli Chien, Huozhi Zhou, and Pan Li. hs2: Active learning over hypergraphs with pointwise
and pairwise queries. In Proc., International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 2466–2475, 2019. URL: http://proceedings.mlr.press/v89/chien19a.
html.

22 Sung-Soon Choi. Polynomial time optimal query algorithms for finding graphs with arbitrary
real weights. In Shai Shalev-Shwartz and Ingo Steinwart, editors, Proc., Conf. on Learning
Theory (COLT), volume 30, pages 797–818, 2013. URL: http://proceedings.mlr.press/
v30/Choi13.html.

23 Sung-Soon Choi and Jeong Han Kim. Optimal query complexity bounds for finding graphs.
Artif. Intell., 174(9-10):551–569, 2010. doi:10.1016/J.ARTINT.2010.02.003.

24 Susan Davidson, Sanjeev Khanna, Tova Milo, and Sudeepa Roy. Top-k and clustering with
noisy comparisons. ACM Transactions on Database Systems (TODS), 39(4):1–39, 2014.
doi:10.1145/2684066.

25 Dingzhu Du and Frank K Hwang. Combinatorial group testing and its applications, volume 12.
World Scientific, 2000.

26 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. Combinatorial
Structures and their Applications, 18:69–87, 1970.

27 Andrei Graur, Tristan Pollner, Vidhya Ramaswamy, and S Matthew Weinberg. New query lower
bounds for submodular function minimization. Proc., Innovations in Theoretical Computer
Science (ITCS), page 64, 2020.

28 Vladimir Grebinski and Gregory Kucherov. Optimal reconstruction of graphs under the
additive model. Algorithmica, 28(1):104–124, 2000. doi:10.1007/S004530010033.

29 Troy Lee, Miklos Santha, and Shengyu Zhang. Quantum algorithms for graph problems with
cut queries. In Proc., ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 939–958,
2021. doi:10.1137/1.9781611976465.59.

30 Hang Liao and Deeparnab Chakrabarty. Learning spanning forests optimally in weighted
undirected graphs with cut queries. In Proc., International Conference on Algorithmic Learning
Theory (ALT), 2024.

31 Bernt Lindström. On a combinatorial problem in number theory. Canadian Mathematical
Bulletin, 8(4):477–490, 1965.

32 Xizhi Liu and Sayan Mukherjee. Tight query complexity bounds for learning graph partitions.
In Proc., Conf. on Learning Theory (COLT), pages 167–181. PMLR, 2022. URL: https:
//proceedings.mlr.press/v178/liu22a.html.

33 Arya Mazumdar and Barna Saha. Query complexity of clustering with side information. Adv.
in Neu. Inf. Proc. Sys. (NeurIPS), 2017.

34 Hanna Mazzawi. Optimally reconstructing weighted graphs using queries. In Proc., ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 608–615, 2010. doi:10.1137/1.
9781611973075.51.

FSTTCS 2024

https://doi.org/10.1016/J.TCS.2011.09.005
https://doi.org/10.1109/FOCS.2019.00072
https://proceedings.mlr.press/v201/chakrabarty23a.html
https://proceedings.mlr.press/v201/chakrabarty23a.html
http://proceedings.mlr.press/v89/chien19a.html
http://proceedings.mlr.press/v89/chien19a.html
http://proceedings.mlr.press/v30/Choi13.html
http://proceedings.mlr.press/v30/Choi13.html
https://doi.org/10.1016/J.ARTINT.2010.02.003
https://doi.org/10.1145/2684066
https://doi.org/10.1007/S004530010033
https://doi.org/10.1137/1.9781611976465.59
https://proceedings.mlr.press/v178/liu22a.html
https://proceedings.mlr.press/v178/liu22a.html
https://doi.org/10.1137/1.9781611973075.51
https://doi.org/10.1137/1.9781611973075.51

16:14 Learning Partitions Using Rank Queries

35 Lev Reyzin and Nikhil Srivastava. Learning and verifying graphs using queries with a focus
on edge counting. In Proc., International Conference on Algorithmic Learning Theory (ALT),
pages 285–297. Springer, 2007. doi:10.1007/978-3-540-75225-7_24.

36 Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact minimum cuts
without knowing the graph. In Proc., Innovations in Theoretical Computer Science (ITCS),
pages 39:1–39:16, 2018. doi:10.4230/LIPICS.ITCS.2018.39.

37 Barna Saha and Sanjay Subramanian. Correlation clustering with same-cluster queries
bounded by optimal cost. In Proc., European Symposium on Algorithms, pages 81:1–81:17,
2019. doi:10.4230/LIPICS.ESA.2019.81.

https://doi.org/10.1007/978-3-540-75225-7_24
https://doi.org/10.4230/LIPICS.ITCS.2018.39
https://doi.org/10.4230/LIPICS.ESA.2019.81

	1 Introduction
	1.1 Related works

	2 O(n) Query Deterministic Algorithm
	2.1 Definitions
	2.2 Merging Independent Sets
	2.3 The algorithm and analysis

	3 General Partition Matroids
	3.1 Finding Representatives via Binary Search

	4 Conclusion

