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Abstract
The focus of this paper is to increase our understanding of the Longest Processing Time First (LPT)
heuristic. LPT is a classical heuristic for the fundamental problem of uniform machine scheduling.
For different machine speeds, LPT was first considered by Gonzalez et al. (SIAM J. Comput.
6(1):155–166, 1977). Since then, extensive work has been done to improve the approximation factor
of the LPT heuristic. However, all known implementations of the LPT heuristic take O(mn) time,
where m is the number of machines and n is the number of jobs. In this work, we come up with the first
near-linear time implementation for LPT. Specifically, the running time is O((n+m)(log2 m+log n)).
Somewhat surprisingly, the result is obtained by mapping the problem to dynamic maintenance of
lower envelope of lines, which has been well studied in the computational geometry community.

Our second contribution is to analyze the performance of LPT for the Drones Warehouse Problem
(DWP), which is a natural generalization of the uniform machine scheduling problem motivated by
drone-based parcel delivery from a warehouse. In this problem, a warehouse has multiple drones
and wants to deliver parcels to several customers. Each drone picks a parcel from the warehouse,
delivers it, and returns to the warehouse (where it can also get charged). The speeds and battery
lives of the drones could be different, and due to the limited battery life, each drone has a bounded
range in which it can deliver parcels. The goal is to assign parcels to the drones so that the time
taken to deliver all the parcels is minimized. We prove that the natural approach of solving this
problem via the LPT heuristic has an approximation factor of ϕ, where ϕ ≈ 1.62 is the golden ratio.
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1 LPT heuristic for uniform scheduling

Uniform machine scheduling with the minimum makespan objective is a fundamental problem.
In this problem, we are given a set of n jobs (not necessarily of the same size) and a set of
m machines (not necessarily of the same speeds). The goal is to schedule the n jobs on m
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machines so that the time required to execute the schedule (makespan) is minimised. This
is an NP-hard problem even for two machines [13] of the same speed, but polynomial time
approximation schemes (PTASs) are known [20, 21].

A commonly studied heuristic for this problem is the Longest Processing Time First
(LPT) heuristic. In the LPT heuristic, each job is assigned one by one, in non-increasing
order of size, so that every job is assigned to a machine where it will be completed earliest
(with ties being broken arbitrarily). Note that a machine might already have some jobs
assigned to it and the execution of the current job happens only after finishing the already
assigned jobs.

More intricate algorithms were designed in the literature to get a good approximation
factor for uniform scheduling. For example, Horowitz and Sahni gave an exact dynamic
programming algorithm which runs in exponential time [22]. When there are only two
machines, they could build upon this algorithm to obtain a Polynomial-time approximation
scheme (PTAS). Later, Hochbaum and Shmoys gave a PTAS when all the machines had
identical speeds [20]. This was later extended to obtain a PTAS for the uniform scheduling
problem (USP) [21].

However, the LPT algorithm remains popular in practice due to its simplicity and
scalability (compared to the PTAS-type results which are relatively complicated and have
expensive running time). As a result, there has been a long line of research on improving the
approximation ratio of the LPT algorithm for USP. In two independent works, the ratio of
the LPT algorithm was improved by Dobson [10] to 19

12 and by Friesen [12] to 5
3 . Kovacs [28]

further improved the approximation factor of the LPT algorithm to 1.58 and proved that
the LPT algorithm cannot give an approximation factor better than 1.54.

2 First result: A near-linear time implementation of LPT

In spite of all the focus in the literature on adapting LPT to various settings of machine
scheduling and analyzing its approximation factor, to the best of our knowledge, there has
been no work on fast implementation of LPT. The known implementation of the LPT heuristic
takes O(mn) time (via the naive approach). In this work, we give the first near-linear time
implementation of the LPT heuristic.

▶ Theorem 1. There is an O((n + m)(log2 m + log n)) time implementation of the LPT
heuristic.

For a set of given lines in 2- D, the lower envelope is the point-wise minimum of the lines
(a more formal definition will follow later). In the dynamic maintenance of the lower envelope
problem, in each step, a new line is added (or removed), as shown in Figure 2, and one has
to maintain the lower envelope with a small update time. This has been well-studied in the
computational geometry community. We establish a connection from LPT to the dynamic
maintenance of the lower envelope of lines to prove Theorem 1 in Section 5.

3 Second result: LPT for the drones warehouse problem (DWP)

Our second contribution is to analyze the performance of LPT for the Drones warehouse
problem (DWP) (formally defined in Section 3.1) which is a natural generalization of the
uniform scheduling problem to drone-based parcel delivery from a warehouse.

Vehicle routing [14, 47] is a classical problem in which parcel deliveries are done by a single
truck or a collection of trucks. Researchers have explored variations with different vehicle
velocities [15] or scenarios where each parcel can only be delivered by a specific subset of
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vehicles [49]. With the advent of drones, a generalization of the vehicle routing problem has
been studied in the literature in which a truck is carrying drones along with it. The drones
pick up parcels from the truck, deliver the package and return to the truck (the truck might
have now moved to a different location). This problem is more challenging than the traditional
vehicle routing problem [8]. Several MIP (mixed integer programming) formulations and
heuristics have been used to solve this problem [38, 2]. Theoretical guarantees have also been
proved for this problem by Carlsson and Song using geometric methods [8].

The transition towards using only drones like in DWP (instead of trucks with drones) is
evident in the gradual shift within the research community, as it is a more sustainable option
for the future. Extensive efforts have been dedicated to developing algorithms for scheduling
drones under various constraints [44]. Some MIP formulations were studied to minimize
various objectives like the number of drones [18, 24] and bio-inspired algorithms were used to
manage large fleets of drones [40]. As drones have a limited battery life, considerations for
fuel stations were explored in [25]. Further, the drones might not all have the same features
like speed and battery life and this was taken into account in [46]. For a comprehensive
review of research in several related problems involving only drones, the reader can refer to
the survey presented in [41]. There has also been a lot of work by the multi-agent community
for scheduling [26], pathfinding [9, 19] and coordinating drones [39, 36, 6, 48].

In this paper, we consider the problem where a warehouse wants to use drones to deliver
a large number of parcels to customers around it. Due to limited battery life, each drone has
a restricted range around the warehouse in which it can deliver parcels. Also, depending on
the manufacturer, the speed of each drone can vary. We will now formally define the DWP
problem, state the result obtained by applying the LPT heuristic for DWP and provide a
high-level overview of the analysis. We also provide a detailed literature review on the use of
LPT for several other machine scheduling problems and connect it to our result on DWP in
Section 4.

3.1 The drones warehouse problem (DWP)
For the sake of better readability, we deviate from the notation used in scheduling literature.
The warehouse has a set of m drones D = {D1, D2 · · ·Dm} and a set of n parcels P =
{P1, P2 · · ·Pn}. The parcels in set P need to be delivered by drones in set D. Each drone
can pick up one parcel at a time from the warehouse, deliver it and return to the warehouse.
For all 1 ≤ j ≤ n, let the distance at which parcel Pj needs to be delivered be ℓj/2. So each
drone must travel a distance of ℓj in total to deliver the parcel Pj and come back to the
warehouse.

Additionally, the drones have a limited battery life which can be different for each drone.
Let di be the distance which drone Di can travel, for all 1 ≤ i ≤ m. Therefore, for a parcel
Pj to be delivered by a drone Di, it must be the case that ℓj ≤ di. The speed at which the
drone Di travels is vi, for all 1 ≤ i ≤ m. After each delivery, the drone recharges its battery
in the warehouse, and for the sake of simplicity we assume the time taken to recharge is
negligible. Our goal is to assign each parcel to a drone such that the time taken to execute
the schedule is minimised.

More precisely, we define a valid schedule f : D → 2P (power set of P) such that the
following properties hold

Each parcel is assigned to exactly one drone, i.e., f(Di) ∩ f(Dj) = ∅ for all i ̸= j and⋃
D∈D f(D) = P.

Each drone must be able to deliver the parcel assigned to it, i.e., ℓi ≤ dj for all j ∈ [m]
and i : Pi ∈ f(Dj).

FSTTCS 2024
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ISP USP DWP USP-C UnrelSP

= 4/3
[16]

[1.54, 1.58]
[28]

[1.54, ϕ]
[This work]

≥ 2
[Folklore]

Not Applicable

⊂ ⊂ ⊂ ⊂

Figure 1 Landscape of the approximation ratio of the LPT heuristic for machine scheduling
problems and our drone warehouse problem (DWP). The relation A ⊂ B in the figure implies that A

is a special case of B. Therefore, the approximation factor increases from left to right in the figure.
The interval [a, b] means that the approximation ratio of the LPT heuristic is at least a and at most
b. As there is no total order among jobs in UnrelSP, LPT is not applicable for UnrelSP.

Our goal is to find a valid schedule such that T (f) is minimised where

T (f) = max
j∈[m]

∑
i:Pi∈f(Dj)

ℓi

vj

We assume that there is at least one drone capable of delivering all parcels. Otherwise, there
would be no valid solution (this can be checked in linear time).

3.2 Our results and techniques

We implement the LPT algorithm with additional battery life constraints to solve DWP
in near-linear time. Our key contribution is to prove that this algorithm always returns a
solution which has delivery time at most ϕ times the optimal solution, where ϕ ≈ 1.62 is the
golden ratio. We summarize our results and compare them with previous work in Figure 1
(discussed in more detail in Section 4)

▶ Theorem 2. There is a ϕ-approximation algorithm for the DWP problem where ϕ = 1+
√

5
2

is the golden ratio. The algorithm runs in O((n + m)(log2 m + log n)) time, where m and n

are the number of drones and parcels, respectively.

At a high level, our proof is inspired by the analysis of the LPT algorithm for the uniform
scheduling problem (USP) [28]. However, the constraint of battery life makes our problem
significantly more challenging. As the total distance travelled by the drones is the same
for any valid schedule, if some drone in the LPT algorithm travels more distance than its
counterpart in the optimal assignment, then some other drone in the LPT algorithm must
travel lesser distance than its counterpart in the optimal assignment as a compensation.
However, if we assume that the approximation factor is greater than ϕ, we can create instances
for which such compensation does not occur, which leads to a contradiction. The proof
requires ideas such as (a) working with a minimal instance, (b) removing the parcel which is
closest to the warehouse from the schedule, (c) classifying the parcels into three categories
based on their distance and (d) truncating the parcel distances. We give the complete proof
in Section 6.

4 Related work on machine scheduling

We will now give a detailed literature review of the use of LPT for machine scheduling and
connect our problem DWP with the other variants.
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4.1 Uniform machines scheduling problem (USP)
In the uniform machines scheduling problem, let P = {P1, P2, . . . , Pn} be a set of n jobs of
size {ℓ1, ℓ2, . . . , ℓn} respectively and D = {D1, D2, . . . , Dm} be a set of m machines of speed
{v1, v2, . . . , vm} respectively. Our goal is to schedule the n jobs to the m machines so that
the completion time of the schedule is minimised. We will now formally define the problem.

We define a schedule as a function f : D → 2P (power set of P ) where f(Di) represents
the set of all jobs assigned to machine Di. We call a schedule a valid schedule if each job is
assigned to exactly one machine, i.e., f is a valid schedule if and only if f(Di) ∩ f(Dj) = ∅
for all i ̸= j and

⋃
D∈D f(D) = P. Each schedule f has an associated completion time

T (f) = max
j∈[m]

∑
i:Pi∈f(Dj)

ℓi

vj

Our goal is to find a valid schedule f such that T (f) is minimised.

4.2 ISP ⊂ USP ⊂ DWP
The special case of USP when all the machines have equal speed is called the identical-
machines scheduling problem (ISP). Therefore, we denote ISP ⊂ USP, where the notation
A ⊂ B means that A is a special case of B (See Figure 1) and therefore, a lower bound
of A is also a lower bound for B and an upper bound of B is also an upper bound for A.
Graham [16, 17] proved that the approximation factor of the LPT algorithm is 4

3 for ISP.
For USP, after a series of works, Kovacs [28] proved that the approximation factor of the
LPT algorithm is at most 1.58 and at least 1.54. It is easy to see that USP is a special case
of DWP (USP ⊂ DWP) when all battery lives are large enough to deliver all parcels. So,
the approximation factor of LPT for DWP can not be better than 1.54. On the other hand,
due to Theorem 2, we get that the LPT heuristic is a ϕ-approximation, which is one of the
main contributions of this work.

4.3 DWP ⊂ USP-C ⊂ UnrelSP
A lot of work in the literature has been devoted to a generalization of USP, namely uniform
scheduling problems with processing constraints (USP-C) [30]. We are given a set of jobs
J = {J1, J2, . . . , Jn} and a set of machines M, where each job Jj has a set of machines
Mj ⊆ M to which they can be assigned to. Different structural restrictions of Mj lead
to different models in USP-C, like the inclusive processing set [42, 35], nested processing
set [37, 11], interval processing set [45, 23], and tree-hierarchical processing set restrictions
[34, 33]. The goal is to assign each job to a machine to minimize the completion time.

DWP is also a special case of USP-C as each parcel can only be delivered by a subset
of drones determined by its battery life. Therefore, DWP ⊂ USP-C. We emphasise that
these two classes are strictly different (and DWP is also different from all known variants of
USP-C, including nested intervals). Consider two machines and two jobs. Let the size of
J1, J2 be 10, 10 + ϵ respectively and the speeds of M1, M2 be 10, 10 + ϵ respectively for ϵ > 0.
Moreover, assume that the job J1 can only be done by M2, but J2 can be done by both M1
and M2. The LPT heuristic would take 20+ϵ

10+ϵ time, while the optimum assignment would
take only 10+ϵ

10 time. This gives us an approximation ratio of 2 as ϵ approaches zero in this
example (whether this ratio is optimal or not for the LPT heuristic on USP-C is an open
question). We also note that this is not a valid lower bound instance for DWP as any drone
which can do a job at a distance of 10 + ϵ can also do the job at a distance of 10.

FSTTCS 2024
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The unrelated Scheduling Problem (UnrelSP) is the scheduling problem in which the
time taken by machine D ∈ D to complete job P ∈ P is determined by an arbitrary function
f : D × P → R. Note that USP-C ⊂ UnrelSP and furthermore the LPT heuristic is not
applicable for UnrelSP as there is no total order among the jobs to sort. This finishes the
description of Figure 1.

4.4 Other algorithms and optimization measures

A PTAS for ISP was given by Hochbaum and Shmoys [20]. This was later extended to
obtain a PTAS for USP [21]. Due to the seminal result of Lenstra, Shmoys and Tardos [29],
there is an LP-based 2-approximation algorithm for UnrelSP. This is also the best known
approximation algorithm for USP-C. For a special case of USP-C (including DWP) with
nested intervals, there is 4/3 approximation algorithm [32]. For more results on USP-C, we
refer the reader to the latest survey [31]. We emphasise that despite knowing PTASs and
other algorithms with a better approximation ratio, the LPT heuristic remains popular in
practice due to its simplicity and scalability. This motivated researchers from the algorithms
and operations research community to extensively study it as described in Figure 1.

Instead of optimizing the time taken to complete all jobs (makespan), other objectives
like the average completion time [7], weighted-average completion time [22] and monotonicity
and truthfulness have also been studied [5, 27, 4, 3].

5 Near linear time implementation

5.1 Longest processing time first (LPT)

A classical approach for the Uniform Scheduling problem is using a greedy algorithm called
LPT scheduling which gives a 1.58-approximate solution [28]. First, we sort the jobs P
in decreasing order of their size and let P1, P2, . . . , Pn be the sorted sequence. Then we
initialise Tj , the time taken by the jth machine to be zero for all j ∈ [m]. Now we assign the
jobs sequentially from P1 to Pn. We assign job Pi to a machine Dj for which the value of
Tj + (ℓi/vj) is minimum and we update the value Tj to Tj + (ℓi/vj) for this specific j (see
Algorithm 1).

Algorithm 1 LPT algorithm in O(nm) time.

Input: List of jobs P and machines D.
Output: Time required for LPT scheduling.
Sort P in non-increasing order of size.
Initialise Tj = 0 for all j ∈ [m]
for i in {1 . . . n} do

α = arg minj∈[m]

(
Tj + ℓi

vj

)
Tα ← Tα + ℓi

vα

end for
return max

j∈[m]
Tj

As arg minj∈[m] Tj + ℓi

vj
can be found in O(m) time, we can implement the above algorithm

to run in O(nm) time. To improve the run time of this algorithm, we implement a faster
way to find arg minj∈[m] Tj + ℓi

vj
.
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L1
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L1

L2

L3
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Figure 2 Dynamic lower envelope of lines L1 : y = −x + 4, L2 : y = x, L3 : y = 2x, L4 : y = 1.

5.2 Dynamic Lower Envelope
One can visualise the step in which arg minj∈[m] Tj + ℓi

vj
is computed in the following way:

Consider the m linear functions h1, h2, . . . , hm where hj(x) = 1
vj
· x + Tj . We need to find

the index of j ∈ [m] for which hj(x) = 1
vj
· x + Tj is minimum at x = li. This is exactly the

same as finding the line in the lower envelope for the h1, h2 · · ·hm at x = li. Our idea now
is to maintain a dynamic lower envelope data structure capable of inserting and deleting
functions. We will now describe this formally.

Let H be a set of functions where h ∈ H is of the form h : R→ R. Then the lower envelope
is the function hmin : R→ R such that hmin(x) = minh∈H h(x). We are interested in the case
when these functions correspond to straight lines, i.e., they are of the form hi(x) = mix + ci.
More particularly, we are interested in the problem of dynamically maintaining the lower
envelope problem of lines, i.e., in each step, a new line is added (or removed), as shown in
Figure 2, and one has to maintain the lower envelope with a small update time. This has
been well-studied in the computational geometry community. From [43], there is a data
structure to maintain a dynamic lower envelope of lines (further extended to dynamic lower
envelope of pseudo lines in [1]):
H.Insert(h): Adds the linear function h to set H in O(log2 |H|) time.
H.Delete(h): Removes the function h from set H in O(log2 |H|) time.
H.LowerEnvelope(x): Returns h∗ = arg minh∈H h(x) in O(log |H|) time.

Using this, we can implement the LPT algorithm in O((n+m)) log2 m) time (Algorithm 2).
We initialise the lower envelope data structure H and store lines hj(x) = 1

vj
x + 0 (initially

Tj = 0) for all j ∈ [m]. To assign parcel Pi to drone Dj , we remove the line hj(x) = 1
vj

x + Tj

from H and replace it with h′
j(x) = 1

vj
x + Tj + ℓi

vj
. To find out which drone Pi is assigned to,

we have to find arg minj∈[m] Tj + ℓi

vj
, which is the same as querying H.LowerEnvelope(ℓi).

Observe that sorting P takes O(n log n) time. We have called H.Insert(·) O(n+m) times
and H.Delete(·) O(n) times. Therefore, the runtime of the algorithm is O((n + m) log2 m +
n log n) or O((n + m)(log2 m + log n))

6 ϕ-approximation for the Drone Warehouse Problem

In this section, we will prove Theorem 2.

6.1 Algorithm
We use an algorithm similar to LPT but modify it slightly so that the battery constraints
are respected. First, we sort the parcels P in non-increasing order of their distance. Then,
we initiate Tj , the time taken by the jth drone to be zero for all j ∈ [m]. We now assign

FSTTCS 2024
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Algorithm 2 LPT algorithm in O((n + m)(log2 m + log n) time.

Input: List of jobs P and machines D.
Output: Time required for LPT scheduling.
Sort P in non-increasing order of size.
Initialise lower envelope data structure H
for j in {1 . . . m} do

hj(x) = 1
vj

x

H.Insert(hj)
end for
for i in {1 . . . n} do

hj = H.LowerEnvelope(ℓi)
Let hj(x) = 1

vj
x + Tj

Set h′
j(x) = 1

vj
x + Tj + ℓi

vj

H.Delete(hj)
H.Insert(h′

j)
end for
return max

j∈[m]
hj(0)

the parcels sequentially from P1 to Pn. We assign parcel Pi to a drone Dj for which ℓi ≤ dj

and the value of Tj + (ℓi/vj) is minimum. We update the value Tj to Tj + (ℓi/vj) (see
Algorithm 3). It is easy to see that the running time of the LPT algorithm is O(mn + n log n)

6.2 Implementation

Let us sort all the drones in decreasing order of their battery life. Observe that if drone Dj

is capable of delivering parcel Pi, then all drones Dj′ , j′ ≤ j are capable of delivering parcel
Pi. Therefore, we can represent all the drones capable of delivering Pi by a pointer ptr so
that all drones Dj , j ∈ {1, . . . , ptr} can deliver parcel Pi. Also, as the parcels are sorted in
decreasing order of distance, the value of ptr will only increase in each iteration (as any
drone capable of delivering Pi can also deliver Pi′ , i′ > i). We again use the lower envelope
data structure to implement LPT. (see Algorithm 3).

Observe, that sorting P and D takes O(n log n + m log m) time. We call H.Insert(·)
O(n + m) times and H.Delete(·) O(n) times. As these function calls only use O(log2 m)
time, the above algorithm runs in O((n + m)(log2 m + logn)) time.

6.3 Proof for ϕ-approximation

Simplifying steps

Assume that the parcels are sorted in decreasing order of distance, i.e., if i < j then ℓi ≥ ℓj

for all i, j ∈ [n]. Let AlgI represent the valid schedule obtained from the LPT-algorithm and
let OptI represent some fixed optimal valid schedule on instance I = {D,P}. We show that
T (AlgI )
T (OptI ) ≤ ϕ. We will start by performing some simplifying steps on I.

▶ Lemma 3. For any instance I = {D,P}, we can assume that ℓn = 1, T (OptI) = 1 and no
drone has battery life less than ℓn.
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Algorithm 3 LPT algorithm for DWP.

Input: List of drones D and parcels P.
Output: Minimum time required to deliver all parcels.
Sort P in non-increasing order of distance.
Sort D in non-increasing order of battery life
Initialise lower envelope data structure H
ptr ← 0
for i in {1 . . . n} do

while ptr < n and dptr+1 ≥ ℓi do
ptr ← ptr + 1
hptr(x) = 1

vptr
x

H.Insert(hptr)
end while
hj = H.LowerEnvelope(ℓi)
Let hj(x) = 1

vj
x + Tj

Set h′
j(x) = 1

vj
x + Tj + ℓi

vj

H.Remove(hj)
H.Insert(h′

j)
end for
return max

j∈[m]
hj(0)

Proof. Observe that scaling all values {ℓi}i∈[n], {dj}j∈[m] by some constant α scales T (AlgI)
and T (OptI) by α. Similarly, scaling all values {vj}j∈[m] by some constant β scales T (AlgI)
and T (OptI) by β−1. However, this procedure does not affect the value of the approximation
factor T (AlgI )

T (OptI ) . Therefore, we can choose values α, β such that ℓn = 1 and T (OptI) = 1
(choosing α = ℓ−1

n , β = ℓ−1
n T (OptI) gives us the desired result). Also, as Pn is the smallest

job, we can remove all drones which do not have enough battery life to deliver it as such
drones would be empty in any schedule. ◀

6.3.1 Idea-1: Working with minimal instances

Our goal is to prove that T (AlgI) ≤ ϕ for all instances I. Towards a contradiction, assume
that there exists an instance I for which T (AlgI )

T (OptI ) > ϕ. Among all such contradicting
instances, let I be a contradicting instance which has the minimum number of parcels.
We will sometimes drop the subscripts in AlgI and OptI and write them as Alg and Opt,
respectively, for simplicity.

6.3.2 Idea-2: A schedule without the last parcel

As I = {D,P} is a contradicting instance with the least number of parcels, it means that for
any other instance I ′ with fewer parcels that I is not a contradicting instance. In particular,
this is true for I ′ = {D,P \ {Pn}}. Intuitively, this implies T (AlgI′) ≤ ϕ and T (Alg) > ϕ,
and adding parcel Pn causes the increase in time. We will now prove this rigorously.

▶ Definition 4. Let Alg0 be the schedule obtained by removing parcel Pn from the schedule
Alg, i.e., Alg0 is a schedule such that Alg0(Di) = Alg(Di) \ {Pn} for all i ∈ [m].
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▶ Definition 5. Let Lj(f) represent the total distance travelled by drone Dj in schedule f .
Then,

Lj(f) =
∑

i:Pi∈f(Dj)

ℓi.

▶ Definition 6. The completion time of a drone in schedule f is the time taken by the drone
to deliver all parcels assigned to it by the schedule f .

▶ Lemma 7. ℓn + Li(Alg0) = 1 + Li(Alg0) > ϕvi, for all i ∈ [m].

Proof. We claim that T (Alg0) ≤ ϕ. Suppose not. Then consider the instance I ′ = {D,P \
{Pn}} obtained from the minimal instance I = {D,P}. Observe that the schedule AlgI′

and schedule Alg0 are the same (as the assignment of the first n− 1 parcels is independent
of the nth parcel). Therefore, T (AlgI′) > ϕ. Also, observe that T (OptI′) ≤ T (OptI) = 1.
This implies that T (AlgI′ )

T (OptI′ ) > ϕ which contradicts the fact that I is an instance with the least
number of parcels such that T (AlgI)

T (OptI) > ϕ.
Now as T (Alg) > ϕ and T (Alg0) ≤ ϕ, this means that only the drone which delivers Pn

has completion time greater than ϕ. Also as the LPT algorithm assigns parcels to drones
which have the least completion time, this implies that assigning Pn to any drone Di in Alg0
would result in its completion time being greater than ϕ. Note that Pn can be assigned to
any drone as all drones have battery life at least ℓn (from Lemma 3).

Therefore, (Li(Alg0) + ℓn)/vi > ϕ. As ℓn = 1, it follows that Li(Alg0) + 1 > ϕvi. ◀

6.3.3 Idea-3: Classification of parcels
We classify parcels for which the drone travels a distance in the range [1, ϕ) as small jobs,
[ϕ, 2) as medium jobs and [2,∞) as large jobs. We first define a rounding function R(x) such
that

R(x) =


1 if x ∈ [1, ϕ)
1.5 if x ∈ [ϕ, 2)
⌊x⌋ if x ∈ [2,∞)

Note that R is a function such that

x ≥ R(x) ≥ x/ϕ for all x ≥ 1

Define L′
i(f) =

∑
j:Pj∈f(Di) R(ℓj). The motivation for defining R(x) is that the value

of L′
i(f) can only be integer multiples of 0.5 whereas Li(f) can take any arbitrary value

depending on the input.

6.3.4 Idea-4: Discretizing Distances
Ideally, we would like to show that each drone in Alg0 travels more distance than its
counterpart in Opt. This would show that the total distance travelled by drones in Alg0
is greater than that of drones in Opt which is a contradiction as fewer parcels have been
delivered in Alg0 than in Opt. Unfortunately, it turns out that Li(Alg0) can be lesser than
Li(Opt). Instead, we show that L′

i(Opt) ≤ L′
i(Alg0) for all i ∈ [m] and arrive at a similar

contradiction by analogous argument.

▶ Lemma 8. L′
i(Alg0) + ϕ− 1 > vi for all i ∈ [m]
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Proof. From Lemma 7, we get that

vi <
1 + Li(Alg0)

ϕ
≤ 1

ϕ
+ L′

i(Alg0) = ϕ− 1 + L′
i(Alg0)

The second inequality and the third equality follow from x/ϕ ≤ R(x) and ϕ being the golden
ratio, respectively. ◀

▶ Lemma 9. If a drone Di has a medium job assigned to it, then L′
i(Alg0) + 0.5 > vi

Proof. Let a medium-sized job of size y be assigned to drone Di. Then,

L′
i(Alg0) = R(y) +

∑
z∈Alg0(Di)\{y}

R(z)

Since y ∈ [ϕ, 2), we get R(y) = 1.5 > y − 0.5, and hence,

L′
i(Alg0) > y − 0.5 +

∑
z∈Alg0(Di)\{y}

R(z) ≥ y − 0.5 + Li(Alg)− y

ϕ

Using Lemma 7 and y ≥ ϕ, we get

L′
i(Alg0) > y − 0.5 + ϕvi − 1− y

ϕ
= y(1− 1

ϕ
)− 0.5− 1

ϕ
+ vi

≥ ϕ− 1− 1
ϕ

+ vi − 0.5 = vi − 0.5 ◀

▶ Lemma 10. L′
i(Opt) ≤ L′

i(Alg0) for all i ∈ [m]

Proof. Towards a contradiction, let us assume that L′
j(Opt) > L′

j(Alg0) for some drone Dj .
Observe that L′

j(Opt) ≤ Lj(Opt) ≤ vj as T (Opt) = 1. Using this and Lemma 8 we get,

L′
j(Alg0) < L′

j(Opt) ≤ vj < ϕ− 1 + L′
j(Alg0)

As L′
j(Alg0) and L′

j(Opt) are both integer multiples of 0.5, the only value which satisfies the
inequality is, L′

j(Opt) = L′
j(Alg0) + 0.5. Let L′

j(Alg0) = k/2 where k is an integer.
Case 1: L′

j(Alg0) = k/2 is not an integer. This can only happen if Dj contains at least
one medium job in Alg0 (as small and large sized jobs have integral values and cannot
add to give a non-integer). But then by Lemma 9, we get L′

j(Opt) = L′
j(Alg0) + 0.5 > vj ,

which is a contradiction as L′
j(Opt) ≤ vj .

Case 2: L′
j(Alg0) = k/2 is an integer. This means that L′

j(Opt) = (k + 1)/2 is not an
integer and hence, Dj has at least one medium job assigned to it in Opt. Therefore, by
definition of the R(·) function, we get Lj(Opt) ≥ L′

j(Opt) + ϕ− 1.5 = L′
j(Alg0) + ϕ− 1.

Using Lemma 8, we get Lj(Opt) > vj , which is a contradiction as Lj(Opt) ≤ vj . ◀

Using Lemma 10, we get that
m∑

i=1
L′

i(Opt) ≤
m∑

i=1
L′

i(Alg0).

Observe that
∑m

i=1 L′
i(Opt) =

∑n
1 R(ℓi) and

∑m
i=1 L′

i(Alg0) =
∑n−1

1 R(ℓi). Substituting
this, we get

n∑
1

R(ℓi) ≤
n−1∑

1
R(ℓi),

which is a contradiction. Therefore, our initial assumption must be wrong, implying that
T (Alg) ≤ ϕ.
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6.4 How much can the above analysis of LPT be improved?
Recall that the special case of DWP when all drones have the same battery life (di = dj ≥
maxk(ℓk) for all i, j ∈ [m]) is equivalent to USP. It is known that LPT cannot give an
approximation better than 1.54 for USP [28]. Therefore, the LPT algorithm can also not
give an approximation ratio better than 1.54 for DWP.

7 Future work

A couple of immediate open problems are the following:
1. Can the implementation of the LPT heuristic be done in optimal time, i.e. O((n + m) ·

(log m + log n) time? We believe that it should be possible, since the jobs are known
upfront, i.e., it is actually an offline problem.

2. Can the approximation ratio of the LPT heuristic be improved for DWP from ϕ?
In general, delivering parcels from the warehouse using drones is a rich source of scheduling
and vehicle routing problems. We mention two general directions:
1. As a concrete setting, consider a warehouse which has a truck and a drone, both of which

operate independently. As in the paper, the goal is to assign parcels to the truck and the
drone so that time taken to deliver is minimized. The parcels will be delivered by the
drone using the same model as in this paper, whereas the truck will deliver using the
traditional technique. A generalized version of the problem would involve multiple trucks
and drones.

2. Some companies might have multiple warehouses and as such, a parcel can be delivered
by any of the warehouses. As a concrete setting, consider the generalization of the
DWP studied in this paper to the setting where there are two warehouses at different
locations. The goal is to perform a two-level partition: first partition the parcels among
the warehouses and then partition them among the drones. The goal is to deliver all the
parcels as quickly as possible.
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