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Abstract
In this paper we present a new proof system framework CLIP (Circuit Linear Induction Proposition)
for propositional model counting (#SAT). A CLIP proof firstly involves a Boolean circuit, calculating
the cumulative function (or running count) of models counted up to a point, and secondly a
propositional proof arguing for the correctness of the circuit.

This concept is remarkably simple and CLIP is modular so it allows us to use existing checking
formats from propositional logic, especially strong proof systems. CLIP has polynomial-size proofs
for XOR-pairs which are known to require exponential-size proofs in MICE [16]. The existence
of a strong proof system that can tackle these hard problems was posed as an open problem in
Beyersdorff et al. [3]. In addition, CLIP systems can p-simulate all other existing #SAT proofs
systems (KCPS(#SAT) [8], CPOG [4], MICE). Furthermore, CLIP has a theoretical advantage over the
other #SAT proof systems in the sense that CLIP only has lower bounds from its propositional proof
system or if P#P is not contained in P/poly, which is a major open problem in circuit complexity.

CLIP uses unrestricted circuits in its proof as compared to restricted structures used by the
existing #SAT proof systems. In this way, CLIP avoids hardness or limitations due to circuit
restrictions.
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1 Introduction

Given a propositional formula, the problem of finding its total number of satisfying assign-
ments (models) is known as the propositional model counting problem #SAT [24]. The
problem is known to be #P-complete and is considered one of the hardest problem in the field
of computational complexity. In fact, it is known that with a single call to a #SAT-oracle, any
problem from polynomial hierarchy can be solved in polynomial time (Toda’s Theorem [27]).

Over the last few years, some important proof systems have been developed for #SAT.
The knowledge compilation based proof system (KCPS(#SAT)) [8] is the first non-trivial proof
system designed for #SAT. A KCPS(#SAT) proof for a CNF represents the proposition as a
decision-DNNF (Decomposable Negation Normal Form), with some additional annotations
for checking. A decision-DNNF allows for model counting to be easily extracted. However,
limitations and lower bounds for KCPS(#SAT) have already been established [2, 8].
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The second proof system designed for #SAT is MICE (Model-counting Induction by Claim
Extension) [16]. Unlike KCPS(#SAT), it is a line based proof system which computes the
model count in a step-by-step fashion using some simple inference rules. Several lower bounds
for MICE have been established in the literature [2, 3]. For example, XOR-PAIRS [3], are
shown to be hard for the MICE proof system. Recently, an important proof system CPOG [4]
was introduced for #SAT. Similar to KCPS(#SAT), CPOG is also based on knowledge
compilation. A CPOG proof for a CNF formula ϕ consists of a Partitioned-Operation Graph
(POG) G along with a Resolution proof of the fact that G ≡ ϕ.

The relationship between these three proof systems are now well known. It has been shown
in [2], that CPOG is exponentially stronger than KCPS(#SAT) and MICE. On the other hand,
KCPS(#SAT) and MICE are incomparable [2, Figure 1]. This means that KCPS(#SAT) and
MICE have unconditional lower bounds. For CPOG a lower bound is currently unknown, but
its proof complexity is necessarily tied to the limitations of POGs.

In this paper, we introduce a new #SAT proof format CLIP (Circuit Linear Induction
Proposition) (Definition 5). A CLIP based proof for a CNF formula ϕ consists of a Boolean
circuit calculating the running count of models up to an assignment treated in some fixed
lexicographical order. We denote this Boolean circuit as a cumulator (Definition 3). In
addition to the cumulator, the CLIP proof also contains a certificate proving the correctness of
the cumulator. The CLIP format is similar to CPOG in the sense that instead of a POG, CLIP
has a cumulator. Since POG uses restricted versions of AND and OR gates, as compared
to cumulators, we believe that CLIP format is much stronger than CPOG. In this direction,
we show that CLIP can p-simulate CPOG (Theorem 30). In fact, we show that CLIP has
lower bounds only if some major open problems of proof complexity or circuit complexity
are solved (Theorem 7).

In MICE and KCPS(#SAT), proofs can grow exponentially because of unsatisfiable for-
mulas that have lower bounds in Resolution. In this direction, for any unsatisfiable formula
which is hard in Resolution, it is unclear how large the CPOG proofs will be. However,
for unsatisfiable formulas in CLIP, proofs are no bigger than their shortest DRAT proofs
(Proposition 35). In addition, we also show that XOR-PAIRS which are known to be hard
for existing proof systems are easy for the CLIP format (Theorem 34). We sum up our
contributions in the Figure 1. We explain the same in detail in the following subsection.

MICE KCPS(#SAT)

CPOG

CLIP+eFrege ≡
CLIP+DRAT

Known L.B.

L.B. ≡ Major open problems

p-simulates
strictly stronger
incomparable

Figure 1 Hierarchy of #SAT proof systems. New results are shown in bold.
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Our Contributions

1. Introducing a new proof system framework for #SAT (CLIP): We present a
proof system where proofs are pairs containing a circuit and a propositional proof. The
circuit is a multi-output Boolean circuit we call the cumulator which takes a complete
assignment α and returns the number (in binary) of models of a propositional formula up
to α in some fixed lexicographical ordering of assignments. In addition, CLIP proofs also
contain a certificate showing the correctness of the cumulator. The certificate here is a
propositional proof. This is possible because we can construct a tautology that covers
every inductive step for any two consecutive complete assignments. The CLIP format
allows us to use any known propositional proof system P for proving the correctness of the
cumulator. In this paper we focus on CLIP+ Extended Frege (CLIP+eFrege). We show
that CLIP+eFrege is a powerful proof system in the sense that it has a lower bound only
if a super-polynomial lower bound for eFrege is found or it is proven that P#P ⊈ P/poly
(Theorem 7). Hence proving lower bounds in CLIP+eFrege will lead to solving major
open problems in the fields of proof complexity or circuit complexity. Another way to say
this is that CLIP is the first #SAT proof system which is conditionally optimal. Note
that such systems already exist in the propositional and QBF worlds, i.e. IPS (Ideal
Proof System) [18] and eFrege +∀red [1] system respectively.

2. A CLIP+eFrege simulation technique for all existing #SAT proof systems: The
CLIP+eFrege simulation technique consists of three parts. The first part consists of
extracting a cumulator from any #SAT proof system which is closed under restrictions.
The second part establishes that if a #SAT proof system admits easy eFrege proofs of
the “properties of restriction” (Definition 15) then it can be p-simulated by CLIP+eFrege.
The final part proves that the CPOG system admits all the required properties and hence
can be p-simulated by CLIP+eFrege. Let us briefly explain each of them separately.
a. Cumulator extraction (Section 4.1). We show that from any #SAT proof system

which is closed under restrictions (Definition 1), there is a simple technique to efficiently
extract a cumulator from its proofs. For this, we carefully use the concept of Fenwick
trees [15, 26] to introduce and compute the Fenwick assignments (Definition 11). In-
formally, the Fenwick assignments are a small set of partial assignments that collectively
covers all assignments up to a given complete assignment (Definition 9).

b. Extended Frege (eFrege) certification of the cumulator (Section 4.2). Informally,
the properties of restriction imply that after restricting a proof with a complete
assignment α, the model count will be “one” or “Zero” depending on whether α satisfies
the formula or not. Whereas, in the case of restricting a proof with a partial assignment
α undefined on some variable x, the model count returned should be the sum of model
counts returned when restricting seperately with α0 and α1, where αb = α ∪ {x = b}.
These two are the only properties we need to know which when globally combined
tell us that the model count under the restriction of a partial assignment is correct.
If a #SAT proof system admits easy eFrege proofs for these properties of restriction
(Definition 15), we show that it can be p-simulated by CLIP+eFrege (Theorem 19).

c. CLIP+eFrege p-simulates CPOG (Section 5). Using the structure of the POG to form
an inductive proof. We explicitly show that the CPOG proof system admits easy eFrege
proofs of the properties of restriction (Lemma 29). Thereby, proving that CLIP+eFrege
p-simulates CPOG (Theorem 30), which in-turn p-simulates KCPS(#SAT) and MICE [2].
This shows that CLIP+eFrege p-simulates all existing #SAT proof systems.

FSTTCS 2024
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3. Upperbounds in CLIP for some hard formulas of existing #SAT systems:
a. XOR-PAIRS. Since the CLIP framework uses unrestricted Boolean circuits in its proof

as compared to other existing #SAT proof systems, CLIP is capable of handling
formulas that are hard for other systems. We show this for the family XOR-PAIRS,
which are known to be hard for MICE [3], and give an easy proof for the same in the
CLIP+eFrege proof system (Theorem 34). For the short proof, we first carefully define
a short cumulator for the XOR-PAIRS. Then, using a constant case analysis we certify
the correctness of the cumulator in eFrege.

b. Unsatisfiable formulas. We show that any unsatisfiable formula which has an
easy eFrege proof, also has an easy CLIP+eFrege proof (Proposition 35). It is already
known that for unsatisfiable formulas, MICE and KCPS(#SAT) are p-equivalent to
Resolution and regular-Resolution respectively [2, Proposition 5.1, 5.3]. As a result, all
unsatisfiable formulas, which are hard for Resolution and easy for eFrege are all hard
for MICE and KCPS(#SAT) but easy for CLIP+eFrege. We list three such important
counting based unsatisfiable formulas. Namely, the pigeonhole principle (PHP), the
clique-coloring principle [22, Definition 7.1] and the Random Parity principle, which
are known to be hard for Resolution [19, 22, 9] but are easy for eFrege [13, 6, 7, 10].

2 Preliminaries

For a Boolean variable x, its literals can be x or ¬x. We use the notation ℓ = ¬x when ℓ = x

and ℓ = x when ℓ = ¬x. A clause C is a disjunction of literals and a conjunctive normal
form (CNF) formula ϕ is a conjunction of clauses. We denote the empty clause by ⊥. vars(ϕ)
is the set of all variables in formula ϕ.

2.1 Assignments
A partial assignment is a partial mapping from a set of propositional variables X to {0, 1},
when the mapping is defined everywhere we say the assignment is complete. ⟨X⟩ is the
set of all complete assignments. Consider a totally ordered set of variables X. An initial
assignment α is a partial assignment to X such that there are no pairs x, y ∈ X where x < y

and x is undefined in α and y is defined. vars(α) are the variables for which α is defined and
|α| represents |vars(α)|. A partial assignment α can be extended to a total assignment by
appending 0/1 assignment to the variables X \ vars(α). Two partial assignments α, β are
called non-overlapping, if there does not exist any total assignment γ which can be obtained
by extending both α and β.

For a CNF ϕ, ϕ|α (similarly C|α) denotes the restricted formula (or clause) resulting from
replacing all occurrences of vars(α) in ϕ (or C) with assignments from α. For a propositional
formula F we define the indicator function 1F , this acts on the free variables of F . 1F is
equal to an assignment that corresponds to 0 when F is false and 1 when F is true.

When variables are ordered as X =< xn−1, . . . x0 >, complete assignments can be seen
as binary numbers i.e. {x2 = 1, x1 = 0, x0 = 1} represents 5.

Let num map assignments to integers using the standard binary encoding (num(α) =∑i<n
i=0 1α(xi) · 2i), and num−1 be its inverse. We also encapsulate arithmetic statements with

|| · || to indicate that we revert this into a proposition. Later we will drop this notation when
obvious. We denote [J ] to denote numbers {1,2, . . . , J−1, J} and [J1, J2] to denote numbers
{J1, J1 + 1, . . . , J2 − 1, J2}. We distinguish numerals 0 and 1 from Boolean constants 0 and
1 through the use of boldface.
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Given a formula ϕ over a set of variables X, a model is an complete assignment to X that
satisfies ϕ. The set of models of ϕ isM(ϕ). We denote the total number of models of a CNF
ϕ as #models(ϕ) = |M(ϕ)|. #SAT is the computational problem of calculating #models(ϕ)
from a CNF ϕ. The class of languages decidable in polynomial time with an oracle to #SAT
are denoted by P#P .

2.2 Circuits
A Boolean circuit σ on variables X is a directed acyclic graph, in which the input nodes (with
in-degree 0) are Boolean variables ∈ X and other nodes are the basic Boolean operations:
∨ (OR), ∧ (AND) and ¬ (NOT) and have in-degree at most 2. Every Boolean circuit σ
evaluates a Boolean function whose output is that of the node with out-degree 0 in σ. P/poly
is the class of Boolean functions computed by polynomial-sized circuit families.

We refer to a multi-circuit when we have multiple nodes with out-degree 0. This is
simultaneously many overlapping circuits. Multi-circuits take inputs and outputs of Boolean
vectors of fixed length. We denote the Boolean XOR gate with ⊕ in the paper. Likewise
we use ↔ (or =, or ≡) for bi-equivalence and A |= B to mean that models of A are also
models of B. A CNF ϕ can trivially be represented as a Boolean circuit σ as follows: for
every C ∈ ϕ, σ has |vars(C)| number of OR-gates. Then, σ has m− 1 AND-gates where m
is the number of clauses ∈ ϕ.

2.3 Proof Systems
A proof system [12] is a polynomial-time function that maps proofs to theorems, where the
set of theorems is some fixed language L. A proof system is sound if its image is contained
in L and complete if L is contained in its image. A proof system takes in strings as its
inputs. Let π be such a proof we denote its size, i.e. the string length by |π|. Given two
proof systems f and g for the same language L. We that the f p-simulates g, when there is a
polynomial time function r that maps g-proofs to f -proofs such that g(π1) = f(r(π1)). f and
g are said to be p-equivalent if they both p-simulate each other,f and g are incomaparable if
neither of them p-simulates the other. We say that f is exponentially stronger than g, if f
p-simulates g but g does not p-simulate f .

Conventionally we may take L to be the set of propositional tautologies (as in Section 2.3.1).
For propositional model counting, we take L as the set of all pairs (ϕ,#models(ϕ)), where ϕ
is any propositional formula. We refer to a #SAT proof of (ϕ,#models(ϕ)) as a proof of ϕ.

▶ Definition 1 (Closure under restrictions [23]). A proof system P is closed under restrictions
if for every P -proof π of a CNF formula ϕ and any partial assignment α to vars(ϕ), there
exists a P -proof π′ of ϕ|α such that |π′| ≤ p(|π|) for some polynomial p. In addition, there
exists a polynomial time procedure (w.r.t. |π|) to extract π′ from π.

A similar definition called “closure under conditioning” exists in the knowledge-compilation
domain [14, Definition 3]. Precisely, a knowledge representation structure S (like DNNF,
POG, etc) is closed under conditioning if from an S structure T and an assignment α to
vars(T ), another S structure T ′ can be computed just by replacing all occurrences of free
variables by α wherever defined. Additionally T ′ should be equivalent to T ∧ α.

2.3.1 Propositional Proof Systems
Resolution [25] is arguably the most studied propositional proof system. It has the rule
(C∨x) (D∨x)

(C∪D) where C,D are clauses and x is a variable. Resolution refutation ρ of CNF ϕ is
a derivation of ⊥ using the above rule. Resolution is known to be closed under restrictions.

FSTTCS 2024
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Frege systems [17] are important propositional proof systems. They consist of a sound
and complete set of axioms and rules where any variable can be substituted by any formula.
All Frege systems are p-equivalent [12]. Figure 2 gives one example of a Frege system.

1 x1 → (x2 → x1) ((x1 → 0)→ 0)→ x1

(x1 → (x2 → x3))→ ((x1 → x2)→ (x1 → x3))
x1 x1 → x2

x2

Figure 2 A Frege system for connectives →, 0, 1.

Extended Frege (eFrege) [12] allows the introduction of new variables as well as all
Frege rules. Simultaneously we can imagine it as a Frege system where lines are circuits
instead of formulas, or as Substitution Frege, where derived tautologies can be generalised.
eFrege is also p-equivalent to DRAT (Deletion Resolution Asymmetric Tautology) [21], a
practical proof-format widely used in certifying SAT solvers. In Figure 3 we show that eFrege
sits at the top of the simulation hierarchy of propositional proof systems. In fact eFrege can
simulate any proof system as long as there is a short proof of the reflection principle of said
proof system [20].

Res

Frege

eFregeDRAT

CPPCR

PC

Truth Table

Figure 3 The p-simulation hierarchy of propositional proof systems [12].

When showing that eFrege has short proofs for complicated tautologies, it does not help
us to be committed to one strictly defined proof system. Instead, we can use the fact that it
can simulate many different proof systems such as Resolution, Cutting planes, Polynomial
calculus and Truth Tables. Any tautology that has a short proof in any weaker system will
also have a short proof in eFrege.

3 Circuit Linear Induction Proposition (CLIP) Proof Framework

In this section, we define a propositional model counting proof framework (CLIP+P) for any
propositional proof system P. Given a CNF ϕ over n variables, a CLIP+P proof consists
of a Boolean circuit ξ (denoted as a cumulator) which outputs the total number of models
of ϕ from complete assignment 0 to a given complete assignment num(α) (denoted as
Cmodels(ϕ, α), Definition 2). Clearly, when num(α) = 2n − 1, Cmodels(ϕ, α) = #models(ϕ). In
addition, the CLIP+P-proof also requires a P-proof of a statement which carefully encodes
the correctness of cumulator ξ using the induction-principle (see Definition 5). We need the
following definitions.
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▶ Definition 2 (Cmodels(ϕ, α)). Let ϕ be an CNF formula, fix an order among vars(ϕ). For
any complete assignment α to vars(ϕ), the cumulative number of models of CNF ϕ w.r.t. α
(denoted by Cmodels(ϕ, α)) is the number of models of ϕ between assignment 0 to assignment
num(α). In other words Cmodels(ϕ, α) := Σnum(β)≤num(α)1ϕ(β), where 1ϕ(β) is the indicator
function for when β is a model of ϕ.

▶ Definition 3 (Cumulator). A cumulator for a CNF ϕ over n variables is a Boolean multi-
circuit ξ(α) which takes as input a complete assignment α to vars(ϕ) (as n binary bits) and
calculates the cumulative number of models of ϕ, i.e. Cmodels(ϕ, α) outputted as n+ 1 binary
bits. As a result, when α is the last assignment (i.e. num(α) = 2n − 1), ξ(α) outputs the
total number of models of ϕ, we denote this as the final output of ξ.

A trivial cumulator for ϕ would be to keep a counter and given any α, input every
assignment from 0 to num(α) into the trivial Boolean circuit representing ϕ. If an assignment
is a model then increment the counter. This will take O(2|vars(ϕ)|) computations in the case
of α being the last assignment.
Consider a CNF ϕ and let k be its number of models. Given a cumulator ξ(α) for ϕ, the
correctness of the cumulator can be encoded inductively as follows:

For the base case when num(α) = 0, we need to verify that the following is satisfied:
(ϕ(α) ∧ ||ξ(α) = 1||) ∨ (ϕ(α) ∧ ||ξ(α) = 0||). This covers the case that if the first
assignment is a model for ϕ then the cumulator should return 1, else a 0.

For the inductive step when num(α) = num(β) + 1, the following should be satisfied
(ϕ(α) ∧ ||ξ(α) = ξ(β) + 1||) ∨ (ϕ(α) ∧ ||ξ(α) = ξ(β)||). This covers the case that if the
next assignment α after β is a model of ϕ, then the cumulator should increment its output
by 1. Otherwise, the cumulator should output the same number under both assignments.

For the final case when num(α) = 2|vars(ϕ)| − 1, it should be true that ξ(x) = k. This
covers the case that the cumulator computes the correct total number of models of ϕ.

It is clear to see that if all of the above cases are true, the cumulator ξ is proven to be a
correct cumulator of ϕ. From the above discussion, one can encode the correctness of ξ as
the following statement (|| · || encloses the arithmetic comparisons needed):
||num(α) = 0|| →

(
(ϕ(α) ∧ ||ξ(α) = 1||) ∨ (¬ϕ(α) ∧ ||ξ(α) = 0||)

)
∧||num(α) = num(β) + 1|| →

(
(ϕ(α) ∧ ||ξ(α) = ξ(β) + 1||) ∨ (¬ϕ(α) ∧ ||ξ(α) = ξ(β)||)

)
∧||num(α) = 2|vars(ϕ)| − 1|| → ||ξ(x) = k||.

To convert this into a purely propositional statement, we need Boolean circuits to
implement the arithmetic conditions ||x = y|| and ||x = y + 1|| for any integers x, y. We
define polynomial sized Boolean circuits for the same as E(x, y) and T (x, y) respectively in
Definition 4 below.

▶ Definition 4. Let Z be a set of variables of size n, and let γ and δ be assignments to Z.
For pairs of individual variables a, b, use a = b to denote (¬a ∨ b) ∧ (a ∨ ¬b). We can encode
polynomial size propositional circuits:

E(γ, δ), that denotes num(γ) = num(δ): E0(γ, δ) := (γ0 ↔ δ0). For 1 ≤ i < n,
Ei(γ, δ) := (γi ↔ δi) ∧ Ei−1(γ, δ). E(γ, δ) := En−1(γ, δ).
T (γ, δ), that denotes num(γ) = num(δ) + 1 using an intermediate definition S that will
denote the successor function. For 0 ≤ i < n and accepting the empty conjunction as
true, S(δ)i := ¬(δi ↔

∧j<i
j≥0 δj). T (γ, δ) := E(γ, S(δ)) ∧

∨i<n
i≥0 δi.

▶ Definition 5 (CLIP+P). For every propositional proof system P, the CLIP+P system for
#SAT is a cumulator ξ for a CNF ϕ along with its correctness presented as a valid P-proof
of the following linear induction proposition statement lip(ξ).

FSTTCS 2024
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Let A and B be two disjoint copies of the variables in ϕ. The following is a tautology in
the variables of A ∪B:

lip(ξ) :=

E
(
A,num−1(0)

)
→

((
ϕ(A)→ E

(
ξ(A),num−1(0)

))
∧

(
ϕ(A)→ T (ξ(A),num−1(0))

))
∧

T (B,A)→
((

ϕ(B)→ E
(
ξ(B), ξ(A)

))
∧

(
ϕ(B)→ T

(
ξ(B), ξ(A)

)))
∧

E
(
A,num−1(2|vars(ϕ)| − 1)

)
→ E

(
ξ(A),num−1(k)

)
.

The existence of a valid P-proof of lip(ξ), ensures that ξ is correct and the final output
k of ξ is the correct number of models of ϕ. Note that in a technical sense the proof of
inductive step (i.e. line 2 in lip(ξ)) is sufficient to verify the cumulator ξ, as the base and
final case can be managed in the checker.

▶ Theorem 6. If P is a propositional proof system then CLIP+P is a propositional model
counting proof system.

Proof. CLIP+P is sound and complete for #SAT as a trivial cumulator always exists for any
ϕ and the propositional proof system P is sound and complete. Note that for a refutational
proof system P ′, CLIP+P ′ can include the correctness of ξ by including a P ′-refutation
of lip(ξ) from the above definition. For polynomial time checkability, we perform three
steps: a) Verify that ξ is indeed a circuit. b) Using ξ, generate lip(ξ) once again, to make
sure it matches (where P does not accept circuits a canonical translation, i.e. a Tseitin
transformation is needed). c) Verifying the P proof. ◀

▶ Theorem 7. CLIP+eFrege has a super-polynomial lower bound only if eFrege has a super-
polynomial lower bound or P#P ⊈ P/poly.

Proof. Suppose there is a family (ϕn)n≥0 of propositional formulas that are a super-
polynomial lower bound to CLIP+eFrege. Let fn,i be the ith bit of the cumulative function
for ϕn. (fn,i)0≤i≤|vars(ϕn)|

n≥0 is a P#P family. Finding the value of the cumulator at assignment
α can be found by adding a constraint to ϕ that the only acceptable models are less than or
equal to α and querying for the number of models.

Now suppose P#P ⊂ P/poly, then there are polynomial size circuits for each fn,i and thus
a polynomial size cumulator ξn for each ϕn. For each n, lip(ξn) is also polynomial size in ϕn.
Thus the family (lip(ξn))n≥0 is super-polynomial lower bound for eFrege. ◀

4 CLIP+eFrege simulates existing #SAT proof systems

In this section, we give an important CLIP+eFrege p-simulation technique for any #SAT proof
systems which are closed under restrictions and have short eFrege proofs of the properties
of restriction (Definition 15). To be precise, we show that CLIP+eFrege can p-simulate any
model counting proof system P which obey the following conditions:

I. The polynomial-time ability to extract circuits θ from a P-proof π of CNF ϕ over n
variables (xn−1 . . . x0) that calculate closure under restrictions for any given (partial)
assignment α. That is, θ : α→ #SAT(ϕ|α) (Definition 8).

II. P has short eFrege proofs for properties of restriction (Definition 15) that confirm the
correctness of closure under restrictions in P.

Let us formally define the circuit θ used in above conditions.



S. Chede, L. Chew, and A. Shukla 18:9

▶ Definition 8. Let ϕ be a CNF on n variables and α be a (partial) assignment of length
n − i. We define θi(α) to be a Boolean circuit that returns #models(ϕ|α). Also, θi

j(α) is a
circuit that returns the jth bit of θi(α).

In the upcoming subsections, we give the complete simulation technique. Recall that
CLIP+eFrege proof consists of a cumulator ξ and a eFrege-proof of validity of the propositional
“lip” statement which encodes the correctness of ξ. Using the condition-I above, in Section 4.1
we derive the cumulator ξ for ϕ (Part 1 of our simulation technique). In Section 4.2, we use
the condition-II to derive the eFrege-proof of lip(ξ) (Part 2 of our simulation technique).

4.1 Simulation Technique (Part 1) : Cumulator Extraction
In this section, we give a general framework of extracting efficiently a cumulator from
the proofs of existing propositional model counting proof systems. We need the following
definition.

▶ Definition 9 (Disjoint binary partial assignment cover (Cov(J1,J2))). Let J1, J2 be integers
representing some complete assignments to variables X :=< xn−1, ..., x0 > in this order. The
cover Cov(J1,J2) is a set of partial assignments to X which are non-overlapping and together
cover the entire assignment space between J1 and J2 inclusive of both.

For instance, let X := {x3, x2, x1, x0}, J1 := 5 and J2 := 15. One possible
Cov(J1,J2):=

{
{x3 = 1}, {x3 = 0, x2 = 1, x1 = 1}, {x3 = 0, x2 = 1, x1 = 0, x0 = 1}

}
.

Observe that the first partial assignment (i.e. {x3 = 1}) is covering all assignments from
[8 ,15 ]. Similarly the second and third partial assignments are covering the assignments
[6 ,7 ] and 5 respectively. Another possible Cov(J1,J2):=

{
{x2 = 1, x0 = 1}, {x3 = 1, x2 =

0}, {x3 = 1, x2 = 1, x0 = 0}, {x3 = 0, x2 = 1, x1 = 1, x0 = 0}
}

which cover assignments
{5 ,7 ,13 ,15}, {8 ,9 ,10 ,11}, {12 ,14} and {6} respectively.

Let us now outline the general extraction technique.

Cumulator Extraction Technique. Let P ∈ {MICE,KCPS(#SAT),CPOG} be a proposi-
tional model counting proof system. Consider a CNF ϕ over n variables and its P-proof π.
In order to efficiently extract a correct cumulator ξ for ϕ, we follow the following steps:
1. Show that P is closed under restrictions (see Definition 1). That is, show that P obeys

condition-I from above.
2. For any complete assignment J to vars(ϕ), find the set of non-overlapping partial as-

signments (to vars(ϕ)) which cover the entire assignment space from assignment-0 up to
assignment-J (i.e Cov(0,J) see Definition 9).
Using Fenwick’s idea [15, 26], it is easy to compute Cov(0,J) for any complete assignment
J (Lemma 10). Moreover, |Cov(0,J)|≤ n.

3. For each partial assignment α ∈ Cov(0,J), restrict π with α and consider the P-proof π′ of
CNF ϕ|α. Observe that π′ and θi(α) agree on the value of #SAT (ϕ|α) where i = n− |α|.
Since P is closed under restrictions, this step takes O(|π|) time for every α.

4. Finally add the number of models returned by all the π′ proofs obtained in the above
step. (This step will need a full-adder circuit as integers are represented as (n+ 1)-bit
numbers).

This process will return ξ(J) which computes Cmodels(ϕ, J) and takes O(n.|π|) time.
We prove Step-1 of our simulation technique individually for existing proof system CPOG

in Section 5 (Lemma 23). For Step-2, consider the following lemma.
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▶ Lemma 10. Given an input size n, and binary integer 0 ≤ J < 2n. There is a polynomial
time algorithm in n that returns a disjoint binary partial assignment cover for [0 , J ] (Cov(0,J))
with at most n many partial assignments.

We have proved Lemma 10 by using a deterministic Fenwick-based algorithm in Appendix A.
Note that extracting the cumulator is not enough for the full CLIP simulation, because

CLIP proofs also consist of the validity proof of the lip statement. However, with an access
to an NP-oracle, the validity of the lip statement can be obtained in one step due to the
correctness of our simulation technique. We call such a system as CLIPNP . Thus the efficient
cumulator extraction shows that CLIPNP p-simulates any #SAT system which is closed
under restrictions. Observe that CLIPNP is a proof system only if P = NP.

In the upcoming sections, we give full CLIP framework simulations of all the existing
#SAT proof systems using the powerful eFrege system for validating the lip statement.

Recall that for the cumulator extraction, we used the concepts of Fenwick assignments.
In upcoming proofs, we also need some additional results on Fenwick assignments. We finish
this subsection with these results before proceeding to the part 2 of our simulation technique.

4.1.1 Formalising Fenwick Assignments
In Lemma 10, we show how to compute the partial assignment cover of a given complete
assignment α with |Cov(0,α)| ≤ |α|. In this section, we formalise it as a Boolean circuit
(Definition 11) which outputs a partial assignment cover for any given complete assignment
α. We call the output Cov(0,J) of the Boolean circuit as Fenwick assignments. We further
show that eFrege can handle a few essential properties of Fenwick assignments. We use these
in the next section for part-2 of the simulation technique.

▶ Definition 11 (Fenwick Assignments). Let α be a complete assignment to n variables with
ordering < xn−1 . . . x0 >. For every i, 0 ≤ i ≤ n, we define an existence function ei(α) and
the set of initial assignment bits fi,j for 0 ≤ i ≤ j < n as follows:

ei(α) =


1 α(xi) ∧

∨k<i
k≥0 α(xk) and 0 < i < n

1 α(xi) ∧
∧k<i

k≥0 α(xk) and 0 ≤ i < n

1
∧k<n

k≥0 α(xk) and i = n

0 otherwise

fi,j(α) =
{

1 α(xj) and j > i

0 otherwise

We denote for 0 ≤ i < n, fi(α) = {fi,j |i ≤ j < n} as the ith partial assignment for α
(note that fn is the empty assignment and needs no variables to be defined). For a complete
assignment α, Fenwick assignments are {fi(α)|ei(α) = 1, 0 ≤ i ≤ n}. Here, ei(α) can be
seen as a single-bit value that indicates if there is an initial assignment defined on n − i
variables in the Fenwick assignments of α. Similarly, fi,j(α) is the value of xj in the ith
partial assignment corresponding to ei(α) in Fenwick assignments of α.

Below we give an example of how we represent Fenwick assignments as in Definition 11.

▶ Example 12. Let n = 4 and J = 12. Let the variables be lexicographical ordered as
< x3, . . . , x0 >. The corresponding Cov(0,12) is the following set of partial assignments:{
{x3 = 1, x2 = 1, x1 = 0, x0 = 0}, {x3 = 1, x2 = 0}, {x3 = 0}

}
.

The Fenwick circuits have the following values: e0(12) = 1, e1(12) = 0, e2(12) =
1, e3(12) = 1, e4(12) = 0. This indicates that there are 3 partial Fenwick assignments in
Cov(0,12) ending at x0, x2 and x3 respectively. The exact assignments are computed as
follows:
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f0,3(12) = 1, f0,2(12) = 1, f0,1(12) = 0, f0,0(12) = 0 → {x3 = 1, x2 = 1, x1 = 0, x0 = 0}
f2,3(12) = 1, f2,2(12) = 0 → {x3 = 1, x2 = 0}
f3,3(12) = 0 → {x3 = 0}

We will be able to prove few properties of how Fenwick assignments change as num(α)
increases slowly (see Appendix B). Step 3,4 of our simulation technique require restricting the
θ circuit with all the Fenwick assignments of some complete assignment α and adding them
up to get ξ(α). Using the formal definition of the Fenwick assignments from Definition 11,
we have the following.

▶ Definition 13. For a complete assignment α on n variables, we define the vector of Boolean
variables ξ(α) as the following sum:

(en(α) ∧ θn(fn(α))) + (en−1(α) ∧ θn−1(fn−1(α))) + · · ·+ (e0(α) ∧ θ0(f0(α)))

This circuit ξ is the required cumulator.

4.2 Simulation Technique (Part 2): eFrege certification of the cumulator
Recall that, for a full CLIP+eFrege simulation, the proof system must have short eFrege
proofs of the properties of restriction, i.e. condition-II from Section 4. Let us formally
define the properties of restriction in Definition 15 which are based on the following simple
observations of partial assignments.

▶ Observation 14. Let ϕ be a CNF on variables < xn−1 . . . x0 > (used in that lexicographic
ordering in CLIP). Let α be a partial assignment defined on xn−1 . . . xi, undefined on
xi−1 . . . x0. Given a {0, 1}-value b, let αb := α ∪ {xi−1 = b}. Then, #models(ϕ|α) =
#models(ϕ|α0) + #models(ϕ|α1). If α is a complete assignment, #models(ϕ|α) = 1ϕ(α).

▶ Definition 15 (Properties of Restriction). Let S be a propositional model counting proof
system and ϕ be a CNF on n variables (< xn−1 . . . x0 >). Suppose ϕ has an S-proof π with
θ being the associated circuit for restriction. We consider the following properties for all
assignments α over xn−1 . . . x0.
1. If α is a complete assignment: θ0(α) = 1ϕ(α).
2. If α is a partial assignment defined on xn−1 . . . xi : θi(α) = θi−1(α0) + θi−1(α1)

▶ Observation 16. Any propositional model counting proof system P which is closed under
restrictions, satisfies the properties of restriction mentioned in Definition 15.

Next we prove that short eFrege proofs of the properties of restriction can be used to give
short eFrege-proofs of the lip statement from Definition 5.

▶ Lemma 17. Suppose P is a propositional model counting proof system which is closed under
restrictions. Let ϕ be a CNF and ξ be a cumulator obtained by using Fenwick assignments
on the P-proof of ϕ. If P has polynomial-sized eFrege proofs of the properties of restriction,
then it has short eFrege proof of lip(ξ).

Before presenting the detailed proof of Lemma 17, we briefly give the proof idea of it.
For a CNF ϕ and any two consecutive assignments β2 = β1 + 1, we need to show that
ξ(β2) = ξ(β1) + 1ϕ(β2). We show this in the following two cases: β2 being odd or even. In
the case of β1=odd and β2=even, we use the property of Fenwick assignments (Lemma 37,
see Appendix B) that the Fenwick assignments of β2 are the Fenwick assignment of β1 and
β2. This directly implies ξ(β2) = ξ(β1) + 1ϕ(β2).
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In the case of β1 is even and β2 is odd, we also relate the Fenwick assignments of the two
total assignments. We use the property of Fenwick assignments (Lemma 38, see Appendix B)
that the Fenwick assignment of β2 is some common set of assignments β∗ and a single
partial assignment γ, γ is the common prefix of β1 and β2. We then show that using
Observation 16 a linear number of times, we can prove that θ(γ) decomposes so that it
implies that ξ(β2) = ξ(β1) + 1ϕ(β2).

Proof. Line-1 of the lip statement assumes the assignment α = 0. From a simple computation,
only e0(0) = 1 with the corresponding f0(0) = 0. From Definition 13, ξ(0) = θ0(0). From
the properties of restriction θ0(0) = 1ϕ(0).

Line-3 of the lip statement assumes the assignment α = 2n − 1. Similarly, we can compute
that only en(2n − 1) = 1 and fn(2n − 1) = ∅. Then ξ(2n − 1) = θn(∅). θn contains no
restriction, so it is the intended answer for the entire model count.
The main part of CLIP is the inductive step for assignments β2 = β1 + 1.

For an even β2, We can use the cases for short proofs in Lemma 38 (see Appendix B).
We can argue that ei(β1) ↔ ei(β2) and ei(β1) → (fi,j(β1) ↔ fi,j(β2)) for i > 0. That
is, all Fenwick assignments for β1 and β2 are the same except the one corresponding
to e0(β2). Additionally that f0(β2) = β2. Along with associativity, this easily leads to
ξ(β2) = ξ(β1) + 1ϕ(β2) in eFrege.

For an odd β2, we can use the short proofs from Lemma 38 of the various cases (Ap-
pendix B). We take the maximum p : 0 ≤ p ≤ n such that

∧j≥0
j<p β

2
j . We can derive

(case-3a,3b) ej(β1) ↔ ej(β2) and fj,k(β1) ↔ fj,k(β2) for j > p. At j = p, we have that
(case-2a,2b) fp(β2) = the common prefix of β1 and β2 up to p (say γ). For j < p, we derive
(case-1b) that γ is the prefix of all these Fenwick assignments. Further we show (case-1c,1d)
that these assignments extend γ by p − j − 1 number of 1s and end with a 0. That is,
{fj(β1)}p>j≥0 = γ0, γ10, γ110, . . . , β

1. Using the split property of restrictions for i times, we
have θ(γ) =

∑j≥0
j≤p(ej(β1) ∧ θj(fj(β1))) + θ0(β2). Adding fj,k(β1) ↔ fj,k(β2) for j > p to

the above gives us ξ(β2) = ξ(β1) + 1ϕ(β2). ◀

Next, we give a supplementary example of Lemma 17.

▶ Example 18. Let a CNF ϕ be defined on n = 5 variables and β1, β2 be 10010, 10011
(i.e 18, 19) respectively. Let the variables be lexicographical ordered as < x4 . . . x0 >.
The corresponding Cov(0,18) and Cov(0,19) are:

{
{x4 = 1, x3 = 0, x2 = 0, x1 = 1, x0 =

0}, {x4 = 1, x3 = 0, x2 = 0, x1 = 0}, {x4 = 0}
}

and
{
{x4 = 1, x3 = 0, x2 = 0}, {x4 = 0}

}
respectively.

The first zero of β2 occurs for the second digit therefore we take p = 2. For j > p,
clearly e4(β1) = e4(β2) and f4(β1) = f4(β2). There is one partial assignment that is in
β2 but not in β1, it is f2(β2) (i.e {x4 = 1, x3 = 0, x2 = 0}). This is also the common
prefix γ of both β1 and β2. Using the split property on γ twice, we have the following:
θ2(γ) = θ1(γ0) + θ1(γ1) = θ1(γ0) + θ0(γ10) + θ0(γ11). Adding f4(β1) = f4(β2) to this implies
that ξ(19) = ξ(18) + 1ϕ(19).

For a model counting proof system P and a CNF ϕ with it’s P-proof π, we have a
cumulator ξ from part 1 of our simulation technique. In Lemma 17, we also have an eFrege
proof of lip(ξ). Therefore, we have the following.

▶ Theorem 19. CLIP+eFrege p-simulates any model counting proof system which is closed
under restrictions and has short eFrege proofs of the properties of restriction.
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In conclusion, for any propositional model counting proof system P , part 2 of our simulation
technique consists of the following step:
5. Show that P has short eFrege-proofs of the two properties of restriction (Definition 15).

That is, show that P obeys condition-II from above.

5 CLIP framework simulation of CPOG

In this section, we apply our simulation technique to the CPOG (Certified Partitioned-
Operation Graphs) [4] proof system. That is, we show that CPOG is closed under restrictions
(Lemma 23) and admits easy eFrege proofs of the properties of restriction (Lemma 29). For
a CNF formula ϕ, CPOG is a propositional weighted-model counting proof system which
consists of a POG structure G (Definition 20) along with Resolution proofs of ϕ↔ G. It is
well known that model counting is easy for POG [4, p. 16]. However, given a POG G and a
CNF ϕ, verifying that G ≡ ϕ is hard. In this paper, we only study CPOG for the unweighted
(standard) model counting. The missing proofs of this section are included in Appendix C.

The proofs in this section need to prove basic properties of arithmetic in short eFrege
proofs which are considered to be academic folklore.

We first define the POG structure (Definition 20) and the CPOG proof system (Defini-
tion 22) which is based on POG from [4]. For an example of POG see [5].

▶ Definition 20 (POG [4]). A Partitioned-Operation Graph (POG) (say G) is a directed
acyclic graph defined on n variables (say X). Each node v in a POG has an associated
dependency set D(v) ⊆ X and a set of models M(v), consisting of all complete assignments
that satisfy the formula represented by the POG rooted at v. The leaf nodes (with outdegree
= 0) can be of the following:

Boolean constants 0 or 1. Here, D(1) = D(0) = 0, M(0) = ∅ and M(0) = ⟨X⟩.
Literal l for some variable x such that vars(l) = x ∈ X. Here, D(l) = x, M(l) = {α ∈
⟨X⟩ | α(x) ≡ l}.

The rest of the nodes (internal nodes) can be of the following:
Decomposable AND-gate (∧p) 1 with outgoing edges to v1, . . . , vk for k > 1. Here,
D(∧p) =

⋃
1≤i≤k D(vi) and M(∧p) =

⋂
1≤i≤kM(vi). This node needs to follow the

decomposable property namely, D(vi) ∩ D(vj) = ∅ for every i, j ∈ [k] and i ̸= j.
Deterministic OR-gate (∨p) with outgoing edges to v1, v2. Here, D(∨p) = D(v1) ∪ D(v2)
and M(∨p) = M(v1) ∪M(v2). This node needs to follow the deterministic property
namely, M(v1) ∩M(v2) = ∅.

The edges of G have an optional polarity to indicate if they need to be negated (polarity
= 1) or not (polarity = 0). Here, D(¬v) = D(v) and M(¬v) = ⟨X⟩ −M(v). Every POG
has a designated root node r with indegree = 0 and models of the POG would be M(r).

The weighted model counting can be seen as a ring-evaluation problem for a commutative
ring over rational numbers ∈ [0,1]. The ring evaluation problem takes a weight function
w(x) ∈ [0,1] for all variables x ∈ X and computes the following:

R(v, w) = Σα∈M(v) Πl∈α w(l) (1)

where w(x) = 1− w(x). For standard unweighted model-counting (i.e |M(v)|), one can fix
w(x) = 1

2 for all x ∈ X and |M(v)| = 2|X| · R(v, w). The following properties of the ring
evaluation function are well known.

1 For simplicity, we use the same notations from [4]. Here, p stands for partitioned-operation formulas.
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▶ Proposition 21 ([4]). Ring evaluations for operations ¬, ∧p and ∨p satisfies the following for
any weight function w: (i) R(¬v, w) = 1−R(v, w), (ii) R(

∧p
1≤i≤k vi, w) =

∏
1≤i≤k R(vi, w),

(iii) R(v1 ∨p v2, w) = R(v1, w) +R(v2, w).

For a CNF ϕ, a CPOG proof π consists of a POG G such that G ≡ ϕ. However, to make
the proof easily verifiable, π explicitly has the proof that G is a POG and is equivalent to ϕ.
We present the precise definition from [2] below.

▶ Definition 22 (CPOG [2, 4]). A CPOG proof π of ϕ is the tuple (E(G), δ, ρ, ψ), where
G is a POG such that G ≡ ϕ and E(G) is a clausal encoding of the POG G by defining
an extension variable for every internal node of G.
δ is the determinism proof for OR-gates which contains a Resolution proof of E(G) ∧
(v1) ∧ (v2) for every ∨p-gate v with outgoing edges to v1, v2.
ρ is the forward implication proof (i.e. ϕ |= G) consisting of a Resolution proof of
E(G) ∧ ϕ ∧ (r).
ψ is the reverse implication proof (i.e. G |= ϕ) consisting of a Resolution proof of
E(G) ∧ (r) ∧ C for every clause C ∈ ϕ.

Observe that extension variables used in CPOG are restrictive as compared to those in eFrege.

▶ Lemma 23. CPOG is closed under restrictions.

This proof is fairly simple and we include it in Appendix C. This completes Step 1 of our
simulation technique for CPOG. Thus we have the following:

▶ Corollary 24. There is a polynomial time method of extracting a cumulator circuit from a
CPOG proof.

Now we are ready to prove that CPOG admits easy eFrege proofs for the properties of
restriction. Recall, the weight function w is defined for all the variables (X) of POG G as 1

2 .
In this case, the value of R(r, w) = 2|X| · |M(r)|. For an assignment α, conditioning the POG
with α (Lemma 23) will give G′ and the following will hold R(r′, w) = 2|X−|α|| · |M(r)|α|.

Instead of changing the POG structure, we change the weight function as defined below
to obtain the same model count as above i.e. R(r, wα) = 2|X−|α|| · |M(r)|α|.

▶ Definition 25. Given a CNF ϕ and an initial assignment α defined on xn−1 . . . xi and
undefined on xi−1 . . . x0, we define the weight wα which weighs variables according to the
following

wα(xj) =


1 j ≥ i & α(xj) = 1,
0 j ≥ i & α(xj) = 0,
1
2 j < i.

Next, in Lemma 26, 27, 28, we prove some properties of R(v, wα) for every node v of the
POG recursively. We use the general properties of the ring function from Proposition 21
in these proofs. Informally, in Lemma 26, we show that if α was undefined on x and x is
not in the dependency set of v (i.e. x /∈ D(v)), the value of R does not change when weight
function is changed to wα0 or wα1 where αb = α ∪ {x = b}. In Lemma 27, we show that if x
is in D(v), the values of R hold a weaker relation of R(v, wα) = 1

2 (R(v, wα0) +R(v, wα1)).
We consider complete assignments α in Lemma 28 and prove that the function R(v, wα)
returns 1 if α is a satisfying assignment of the POG rooted at v and 0 otherwise. We use
these Lemmas to prove that CPOG has easy eFrege proofs of the properties of restriction in
Lemma 29. The detailed proofs of these lemmas are pushed to Appendix C.
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▶ Lemma 26. Let α be an initial partial assignment defined up to xi where i > 0. We can
prove in the structure of the POG that R(v, wα) = R(v, wα0) = R(v, wα1) when xi−1 is not
in the dependency set of v. This proof can be formalised in a short eFrege proof.

▶ Lemma 27. Let α be an initial partial assignment defined up to xi where i > 0. We can
prove in the structure of the POG that R(v, wα) = 1

2 · (R(v, wα0) +R(v, wα1)). Furthermore
we can formalise this in short eFrege proofs.

▶ Lemma 28. For complete assignment α, we can prove using eFrege in the structure of the
POG that R(v, wα) = 1v(α).

▶ Lemma 29. CPOG has short eFrege proofs of θ(α) = 1ϕ(α), when α is a complete
assignment, and θ(α) = θ(α0) + θ(α1), when α is strictly initial and partial.

Proof. We define θi(α) = 2i ·R(r, wα). Using Lemma 27 we can show for the root node r
that R(r, wα) = 1

2 · (R(r, wα0) +R(r, wα1)) when α is initial and strictly partial. This proves
the second property of restriction.

Using Lemma 28 we can show that R(r, α) = 1r(α) when α is complete. Hence θ0(α) =
1r(α). Here for the first property of restriction, we still need to prove that 1r(α) = 1ϕ(α).
For this, we use the Resolution proofs for r ↔ ϕ in the CPOG proof. Since eFrege p-simulates
Resolution, these are easily converted to show 1r(α) = 1ϕ(α). ◀

This proves Step 5 of our simulation technique for CPOG. Therefore from our simulation
technique part 1 and 2, we have the following.

▶ Theorem 30. CLIP+DRAT p-simulates CPOG.

In [2], the authors prove that CPOG is strictly stronger than the other existing proof
systems (i.e. MICE, KCPS(#SAT)). Therefore we have the following.

▶ Corollary 31. CLIP+DRAT p-simulates MICE and KCPS(#SAT).

6 Exponential Improvement on Existing #SAT proof systems

In this section, we give easy CLIP+eFrege proofs for hard formulas of existing proof systems.
Below, we give easy proofs of XOR-PAIRS in CLIP+eFrege system (Theorem 34). These
formulas were previously proven to be hard for MICE [3, Theorem 23]. Later in Corollary 36,
we give easy CLIP+eFrege proofs of some unsatisfiable formulas which are hard in MICE and
KCPS(#SAT).

▶ Definition 32 (XOR-PAIRS [3]). Let X = {x1, . . . xn} and Z = {z1,1, z1,2 . . . , zn,n−1, zn,n}.
C1

ij = (xi ∨ xj ∨ z̄ij), C2
ij = (x̄i ∨ xj ∨ zij), C3

ij = (xi ∨ x̄j ∨ zij), C4
ij = (x̄i ∨ x̄j ∨ z̄ij)

ϕ(X,Z) contains C1
ij , C

2
ij , C

3
ij , C

4
ij for i, j ∈ [n].

The models of XOR-PAIRS are the assignments where zi,j = (xi ⊕ xj) for all i, j ∈ [n].
Hence, #models(XOR-PAIRS) = 2n. The family XOR-PAIRS is hard for proof systems MICE [3,
Theorem 23]. We will show in Theorem 34 that these formulas are easy in CLIP+eFrege.

▶ Definition 33. Fix an input length n, and let γ and δ be vectors of n variables. For pairs
of individual variables a, b, use a = b to denote (¬a∨ b)∧ (¬b∨a). We can encode polynomial
size propositional circuits: L(γ, δ), that denotes num(γ) < num(δ).

▶ Theorem 34. CLIP+eFrege has short proofs of XOR-PAIRS
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Proof. First we fix that all Z-bits are less significant than all X-bits, otherwise the cumulative
function is affected by the variable ordering. We begin by arguing that the cumulative function
for XOR-PAIRS is easy to compute. This comes from the fact the truth function itself behaves
in a way that makes it amenable to counting, it only ever increases by one, once for each
complete assignment to X. There is a function p : 2X → 2Z that maps the binary assignment
α on X to the unique assignment in Z such that ϕ(α, p(α)) for every α. We can construct
a multi-output circuit P (a sequence of circuits Pi,j for i, j ∈ {|X|}) for p, easily through
O(Z) many gates: Pi,j(X) = (xi ∨ xj) ∧ (xi ∨ xj).

We then express the cumulative function in a cumulator circuit that we will use for CLIP.

ξ(α, β) =
{
α β < P (α)
α+ 1 β ≥ P (α)

Note that since ξ(α, β) outputs in binary we can actually express each digit as a Boolean
circuit.

Now we have to argue why the remaining propositional proof is easy for eFrege. This is
basically a number of tautological implications we have to show individually. The idea is to
break each implication into a number of cases. Case analysis is typically easy for eFrege as it
is just resolving with a disjunction of possibilities.

Base case. If AX = 0, P (AX) always evaluates to 0. If AZ is also 0, ϕ(AX , AZ) evaluates
to true, while L(AZ , P (AX)) evaluates to false (because of strictness). This makes ξ(α, β)
evaluate to the integer 1 (in other words ξ(α, β)i = 1 if and only if i = n). Each of these
evaluations are shown in eFrege through the extension clauses. These will satisfy the two
disjunctions that use the base case.

Inductive Step. Here we firstly argue that ϕ(BX , BZ)↔ E(BZ , P (BX)) has a short eFrege
proof. We show that for each pair i, j the four clauses are implied by (xi∨xj)∧(xi∨xj)↔ zi,j .
And then we show the four clauses show the truth table for(xi ∨ xj) ∧ (xi ∨ xj)↔ zi,j . The
proof size is linear. If BX = AX and BZ = AZ + 1, we make 3 cases.
1. Let BZ = P (BX), we can get a short eFrege proof of ¬L(BZ , P (BX)) and L(AZ , P (AX)),

and thus a proof of T (ξ(BX , BZ), BX) and E(ξ(AX , AZ), AX). We use BX = AX to
show T (ξ(BX , BZ), ξ(AX , AZ)). ϕ(BX , BZ)↔ E(BZ , P (BX)) is a proven tautology.

2. Let BZ < P (BX), we get a short eFrege proof that L(AZ , P (AX)) is true, and
thus a proof that E(ξ(BX , BZ), BX) and E(ξ(AX , AZ), AX). We use BX = AX

to show E(ξ(BX , BZ), ξ(AX , AZ)). ϕ(BX , BZ) falls into provable contradiction with
L(BZ , P (BX)) by showing a bit must be different.

3. Let BZ > P (BX), we can get a short eFrege proof of ¬L(BZ , P (BX)) and ¬L(AZ , P (AX)),
and thus that T (ξ(BX , BZ) = BX + 1) and T (ξ(AX , AZ) = AX + 1). We use BX = AX

to show E(ξ(BX , BZ), ξ(AX , AZ)). ϕ(BX , BZ) contradicts L(P (BX), BZ).

Now consider ||BX = AX + 1||, ||BZ = 0|| and ||AZ = 2|Z| − 1||. Part of the trichotomy
is impossible. We can prove L(P (BX), BZ) fails when ||BZ = 0||. For the remaining cases
we firstly prove that ¬||2|Z|− 1 < P (AX)|| which is proven from the fact that one digit must
be 0 to be less than. Therefore ξ(AX , AZ) = AX + 1 in both cases.
1. Let BZ = P (BX) then we can get a short eFrege proof that L(BZ , P (BX)) is false and

so ξ(BX , BZ) = BX + 1 = AX + 1 + 1 = ξ(AX , AZ) + 1. We can find an equality proof
here. ϕ(BX , BZ)↔ E(BZ , P (BX)) is a tautology.
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2. Let L(BZ , P (BX)) be true so ξ(BX , BZ) = BX = AX + 1 = ξ(AX , AZ). ϕ(BX , BZ) falls
into provable contradiction with L(BZ , P (BX)).

For the final case, we use ¬||2|Z| − 1 < P (AX)||, hence ξ(2|X| − 1,2|Z| − 1) = 2|X|. ◀

Let us briefly discuss about unsatisfiable formulas. That is, CNF formulas for which the model
counts are 0. In [2], it has been shown that for unsatisfiable formulas, KCPS(#SAT) is p-
equivalent to regular Resolution [2, Proposition 5.1] and MICE is p-equivalent to Resolution [2,
Proposition 5.3]. In this paper, we observed the following for the unsatisfiable CNF formulas:

▶ Proposition 35. For unsatisfiable formulas ϕ, if ϕ has an eFrege proof π of unsatisfiability,
then ϕ has a CLIP+eFrege proof of linear size w.r.t. |π|.

Proof. For a unsatisfiable CNF ϕ, assume that it has an easy eFrege-proof of unsatisfiability.
We can have an easy CLIP+eFrege proof of ϕ as follows: The cumulator ξ for ϕ is a
trivial circuit that only outputs “0” for any input. For any two consecutive assignments i.e
β2 = β1+1, the inductive statement of lip encodes that ξ(β2) = ξ(β1)+1ϕ(β2). Therefore, the
eFrege proof of lip statement needs only the unsatisfiability proof of ϕ (i.e. 1ϕ(β2) = 0). ◀

This gives more separation results for unsatisfiable formulas which are hard for Resolution
but easy for eFrege. That is, we have the following:

▶ Corollary 36. The unsatisfiable formulas, PHP, clique-color and Random Parity have
polynomial-size proofs [11, 6, 10] in CLIP+eFrege but require exponential-size proofs in
[19, 22, 9] MICE and KCPS(#SAT).

Note that the Clique-coloring principle [22, Definition 7.1] is well studied in proof complexity.
Informally, it encodes that if a graph G has a clique of size k, then G needs at least k colors.
PHP is the famous Pigeon hole principle which encodes that if there are n pigeons and
n− 1 holes, at least one hole has more than one pigeon in it. Random Parity formulas are
contradictions expressing both the parity and non-parity on a set of variables.

7 Conclusion

We have introduced the CLIP framework for propositional model counting. We have demon-
strated the advantages CLIP has by having an unrestricted underlying circuit format. Our
approach here has been theoretical and no version of CLIP has been implemented.

The main checking task in CLIP proofs can use existing tools in SAT such as DRAT-
trim [28]. We have given a p-simulation of all other #SAT proof systems, in theory this
can be used to extract CLIP+eFrege (or CLIP+DRAT) proofs from #SAT solvers. However
the number of arithmetic lemmas may make the complete programming of the extractor a
difficult task. It could be compensated with assistance from a certifying SAT solver.

Future work should take into account weighted and projected model counting.
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A Missing proof and algorithm from Section 4.1

▶ Lemma 10. Given an input size n, and binary integer 0 ≤ J < 2n. There is a polynomial
time algorithm in n that returns a disjoint binary partial assignment cover for [0 , J ] (Cov(0,J))
with at most n many partial assignments.

Proof. Refer to Algorithm 1 for the exact procedure. The correctness of Algorithm 1 stems
from the correctness of Fenwick trees [15] which efficiently computes the cumulative sum of
numbers stored between any two indices of the array by visiting atmost logarithmic indices
in the tree. Algorithm 1 similarly computes Cov(0,J) by finding the least number of partial
assignments to include such that they cover the entire range from [0, J ] i.e. log(2n) = n. ◀

B Missing lemmas and proofs from Section 4.1.1

▶ Lemma 37. Assume T (Y,X) (i.e. Y = X + 1) and ¬Y0 then
1. e0(Y ) ∧ ¬e0(X)
2. For i > 0, ei(X)↔ ei(Y )
3. For 0 < i ≤ j < n, ei(X)→ (fi,j(X)↔ fi,j(Y ))
4. For 0 ≤ j < n, f0,j(Y )↔ Yj

And we can prove these formally in eFrege in short proofs even in the case that Y and X are
vectors of variables (or extension variables).

Proof. Ȳ0 ∧
∧k<0

k≥0 Yk is true hence e0(Y ) can be shown via definition. Since, Y0 = X0 ⊕∧k<0
k≥0 Xk and

∧k<0
k≥0 Xk is just 1 therefore X0 is true and so e0(X) must be false and we can

show this through a short derivation.
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Algorithm 1 Fenwick tree [15] based algorithm to find Cov(0,J).

Require: J < 2n

function Fenwick-assignments(int J , int n)
int α := {}, dash:= {} /*α, dash are each a set of integers*/
int indx← J + 1 /*assignments ∈ [0, 2n − 1] but the Fenwick tree handles [1, 2n]*/
while indx > 0 do

parent = indx− (indx & − indx) /*& is the bit-wise AND operator*/
α.append(parent)
dash.append(log(indx − parent)) /*records no. of variables to forget from α*/
indx← parent

end while
return α′ = process(α, dash)
/*“process” function does the following: for i ∈ |α|, α′[i] is the partial assignment obtained
from α[i] after discarding “dash[i]” number of variables from the right end of the fixed
ordering of variables*/
end function

Take p to be the maximum such that
∧k<p

k≥0 Xi is true, we can prove such a maximum
exists by exhibiting a disjunction. Then for 0 < i < p, ei(X) = 0. Yk = 0 for k ≤ i by
definition of T and so ¬ei(Y ) by definition of ei(Y ). For i = p, Xi = 0 while

∧k<i
k≥0 Xi and

Yi = 1 while
∨k<i

k≥0 Ȳi so both ei(X) and ei(Y ) are true. fp,p(X) = fp,p(Y ) = 0 because i
is not strictly greater than itself. For j > p, we have to show that Xj and Yj are equal.
Recall that Yj = Xj ⊕

∧k<j
k≥0 Xk, but since Xp is false,

∧k<j
k≥0 Xk = 0 and so Yj = Xj . Hence

fp,j(X) = fp,j(Y ).
For i > p, if ei(X) is true then Xi ∧

∨k<i
k≥0 X̄k must be true.

∨k<i
k≥0 Ȳk must also be true

because Y0 is true. Since Xi = Yi then Yi ∧
∨k<i

k≥0 Ȳk is also true and so ei(Y ) can be proven
that way. Since Xj = Yj for j ≥ i then by definition fi,j(X) = fi,j(Y ).

By definition, for j > 0, f0,j(Y ) = Yj and f0,0(Y ) = 0 = Y0. ◀

▶ Lemma 38. Assume T (Y,X) (i.e. Y = X + 1) and Y0 then there is some maximum
p : 0 < p ≤ n such that

∧j<p
j≥0 Yj. Further the following properties are true and have short

formal eFrege proofs.
1. a. ei(X) ∧ ¬ei(Y ) for 0 ≤ i < p

b. fi,j(X)↔ Yj for 0 ≤ i < p ≤ j < n

c. fi,j(X) for 0 ≤ i < j < p ≤ n
d. ¬fi,p(X) for 0 ≤ i < p

2. a. ¬ep(X) ∧ ep(Y ) if p < n

b. fp,j(X)↔ fp,j(Y ) for p ≤ j < n.
c. ¬fp,p(X) ∧ ¬fp,p(Y ) if p < n

3. a. ei(X)↔ ei(Y ) for p < i < n

b. fi,j(X)↔ fi,j(Y ) for p < i ≤ j < n

Proof. Because Y0 = 1, then by definition of T we can prove X0 = 0, hence
∨k<i

k≥0 X̄k is
always true for i > 0. This means that through the definition of T , Yi = Xi for i > 0. This
will be important for many items when i > 0.

For i = 0 we get e0(X) and ¬e0(Y ) through definition and use of Y0 ∧ ¬X0. And for
0 < i < p, Xi = 1 and since

∨k<i
k≥0 X̄k is true ei(X) is true. However

∧j≤i
j≥0 Yj is true so ei(Y )

is false. Through Yi = Xi we also get that for 0 ≤ i < j, fi,j(X) = Xj = Yj . For j < p we
specifically get Yj = 1 and for j = p we get Yj = 0. This completes all cases from 1.
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In case 2, ep(X) is false because Xp = Yp = 0 and
∧k<p

k≥0 Xk is false. Likewise, ep(X)
is true because Yp = 0 and

∧k<p
k≥0 Yk is true. fp,p(X) = fp,p(Y ) = 0 by definition and

fp,j(X) = fp,j(Y ), for j > p because then Xj = Yj .
In case 3, again fi,j(X) = fi,j(Y ), for j ≥ i > p because Xj = Yj . We can also use

Xj = Yj to show ei(X) = ei(Y ) because
∨k<i

k≥0 X̄k and
∨k<i

k≥0 Ȳk are now both true.
All these cases can be formalised in eFrege proofs due to their simplicity for each choice

of p. One final important step is to create and prove disjunction over all possible p. ◀

C Missing proofs from Section 5

▶ Lemma 23. CPOG is closed under restrictions.

Proof. For a given CNF ϕ, a CPOG proof consists of a POG G and a Resolution proof
of ϕ ↔ G. A POG is closed under conditioning as for any partial assignment α: replace
the inputs labelled by x with α(x) for every x assigned by α and the resulting structure
is still a POG G′. This is because, constants are allowed in POG and the ∧p-nodes will
remain decomposable since we are only reducing variables. Also, the ∨p-gates will remain
deterministic because if A and B has disjoint models, so are A|α and B|α. The Resolution
proof witness is closed under restrictions. The CPOG proof of ϕ↔ G uses Resolution proofs
which are closed under restrictions, it implies ϕ|α ↔ G|α. ◀

▶ Corollary 24. There is a polynomial time method of extracting a cumulator circuit from a
CPOG proof.

Proof. With a CPOG proof, given an assignment α, in polynomial time we can calculate the
Cov(0,α) via Fenwick’s method (Lemma 10) and use closure under restrictions to find the
values for the sum. By formalising these steps into a circuit as in Definition 13 we get the
cumulator circuit. ◀

▶ Lemma 26. Let α be an initial partial assignment defined up to xi where i > 0. We can
prove in the structure of the POG that R(v, wα) = R(v, wα0) = R(v, wα1) when xi−1 is not
in the dependency set of v. This proof can be formalised in a short eFrege proof.

Proof. In all cases, except at leaves, the dependency set is the union of the dependency sets
of its children.
Boolean leaf: R(1, wα) = 1 and R(0, wα) = 0 independent of α. Therefore the Lemma

statement is easily derived in this case.
Variable leaf: Let the variable leaf be xj . R(xj , w) takes the value of w(xj). If xi−1 /∈ D(xj),

then either j ≥ i or j < i− 1. This is formalised in a tautological disjunction in eFrege.

In either case we show equality is easily derived. If j ≥ i then wα(xj) = 1 when α(j) = 1
which also extends to α0(j) = 1 and α1(j) = 1 in which case wα0(xj) = 1 and wα1(xj) = 1.
Similarly all wα(xj) = wα0(xj) = wα1(xj) = 0 when α(j) = 0. If j < i− 1 then α, α0, α1 are
all undefined on xj , so the weights are all 1

2 .

Negation: Using the induction hypothesis on the child node c, R(c, wα) = R(c, wα0) =
R(c, wα1) and so R(¬c, wα) = 1 − R(c, wα) = 1 − R(c, wα0) = 1 − R(c, wα1) therefore
R(¬c, wα) = R(¬c, wα0) = R(¬c, wα1).

FSTTCS 2024
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Partition Conjunction: Let C be the set of child nodes for ∧p. Using the induction hypothesis
R(c, wα) = R(c, wα0) = R(c, wα1) for each child c ∈ C. We get the following equality for
the products Πc∈CR(c, wα) = Πc∈CR(c, wα0) = Πc∈CR(c, wα1). Thus R(

∧p
c∈C , wα) =

R(
∧p

c∈C , wα0) = R(
∧p

c∈C , wα1).

Partition Disjunction: Let the child nodes of ∨p be c, d. Using the induction hypothesis
R(c, wα) = R(c, wα0) = R(c, wα1) and R(d,wα) = R(d,wα0) = R(d,wα1).
R(c∨p d,wα) = R(c, wα) +R(d,wα) = R(c, wα0) +R(d,wα0) = R(c∨p d,wα0). Similarly,
it can be derived that R(c ∨p d,wα) = R(c ∨p d,wα1).

Each inductive step involves a bounded application of implications using the definitions
hence we get short eFrege proofs. ◀

▶ Lemma 27. Let α be an initial partial assignment defined up to xi where i > 0. We can
prove in the structure of the POG that R(v, wα) = 1

2 · (R(v, wα0) +R(v, wα1)). Furthermore
we can formalise this in short eFrege proofs.

Proof. If xi−1 /∈ D(v), this directly holds from Lemma 26, along with arithmetic properties
i.e. a = 1

2 · (a+ a). So here we only consider the case that xi−1 ∈ D(v).
Variable leaf: Let the variable leaf be xj . xi−1 ∈ D(v) implies that j = i − 1, then

R(v, wα) = 1
2 . R(v, wα0) = 1 → R(v, wα1) = 0 and R(v, wα0) = 0 → R(v, wα1) = 1, in

both cases they sum to 1 which is the right identity when multiplied with 1
2 .

Negation: Using the induction hypothesis on the child node c, i.e. R(c, wα) = 1
2 ·(R(c, wα0)+

R(c, wα1)), it implies the following.
R(¬c, wα) = 1−R(c, wα) = 1− 1

2 · (R(c, wα0) +R(c, wα1))
= 1− 1

2 · (1−R(¬c, wα0) + 1−R(¬c, wα1))
= 1− 1

2 · (2−R(¬c, wα0)−R(¬c, wα1))
= 1

2 · (R(¬c, wα0) +R(¬c, wα1)).

Partition Conjunction: Let C be the set of child nodes for ∧p. Observe that, xi−1 ∈ D(c∗)
for exactly one child c∗. Along with multiplicative commutativity and associativity, we
know the following from Proposition 21:
R(

∧p

c∈C

c, wα) = R(c∗, wα) ·
∏

c∈{C\c∗} R(c, wα).

Using the induction hypothesis on c∗ we get
= 1

2 · (R(c∗, wα0) +R(c∗, wα1)) ·
∏

c∈{C\c∗} R(c, wα).
We can use left-distributivity to get

= 1
2 ·R(c∗, wα0) ·

∏
c∈{C\c∗} R(c, wα) + 1

2 ·R(c∗, wα1) ·
∏

c∈{C\c∗} R(c, wα).
At this point we know that xi−1 /∈ D(c ∈ {C \ c∗}), using Lemma 26 we get

= 1
2 ·R(c∗, wα0) ·

∏
c∈{C\c∗} R(c, wα0) + 1

2 ·R(c∗, wα1) ·
∏

c∈{C\c∗} R(c, wα1)
= 1

2 ·R(
∧p

c∈C

c, wα0) + 1
2 ·R(

∧p

c∈C

c, wα1) = 1
2 · (R(

∧p

c∈C

c, wα0) +R(
∧p

c∈C

c, wα1)).

Partition Disjunction: Let the child nodes of ∨p be c, d.
R(c ∨p d,wα) = R(c, wα) +R(d,wα)
Using the induction hypothesis on c, d we get

= 1
2 (R(c, wα0) +R(c, wα1)) + 1

2 (R(d,wα0) +R(d,wα1))
We can use additive commutativity and distributivity to get

= 1
2 · (R(c, wα0) +R(d,wα0) +R(c, wα1) +R(d,wα1))

= 1
2 · (R(c ∨p d,wα0) +R(c ∨p d,wα1))

Extended Frege can handle the bounded steps in each case of the inductive step. ◀
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▶ Lemma 28. For complete assignment α, we can prove using eFrege in the structure of the
POG that R(v, wα) = 1v(α).

Proof. Again we show the base and inductive cases involve polynomially many basic steps.
Variable leaf: Let the variable leaf be xi. R(xi, wα) = 1 or R(xi, wα) = 0 since |α| = |X|

and the value is determined entirely by 1xi
(α).

Negation: Suppose R(c, wα) = 1 then by the induction hypothesis α satisfies c, so α falsifies
¬c and R(¬c, wα) = 1−R(c, wα) = 0.
Similarly, it can be derived for R(c, wα) = 0 that R(¬c, wα) = 1.

Partition Conjunction: Let C be the set of child nodes for ∧p. If there is some c∗ ∈ C such
that α falsifies c∗ then by the induction hypothesis R(c∗, wα) = 0. Then we can prove∏

c∈C R(c, wα) = 0 which is the formula for R(
∧p

c∈C c, wα). Also, α must falsify
∧p

c∈C c

as it falsifies c∗.
In the other case, if no c ∈ C is falsified, α satisfies all of C (we can state and prove this
formally as a disjunction). Here, R(c, wα) = 1 for all c ∈ C and

∏
c∈C R(c, wα) = 1 .

Also, α must satisfy
∧p

c∈C c as it satisfies all c ∈ C.

Partition Disjunction: Let the child nodes of ∨p be c, d. If α falsifies both c and d then
by induction hypothesis, R(c, wα) = R(d,wα) = 0. By adding these we get 0 =
R(c, wα) +R(d,wα) = R(c ∨p d,wα). Also, α must falsify c ∨p d as it falsifies both c, d.
Suppose α satisfies c, we can prove that α falsifies d using the Resolution proof δ included
in the CPOG proof (and this is simulated by eFrege). Hence, R(c, wα) = 1, R(d,wα) = 0.
Then R(c ∨p d,wα) = 1 + 0 = 1. This can be repeated for when α satisfies d by using
left identity instead of right identity. ◀
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