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Abstract
We study the isomorphism problem of graphs that are defined in terms of groups, namely power
graphs, directed power graphs, and enhanced power graphs. We design polynomial-time algorithms
for the isomorphism problems for the power graphs, the directed power graphs and the enhanced
power graphs arising from finite nilpotent groups. In contrast, no polynomial-time algorithm is
known for the group isomorphism problem, even for nilpotent groups of class 2.

Our algorithms do not require the underlying groups of the input graphs to be given. A crucial
step in our algorithms is to reconstruct the directed power graph from the given power graph or
the enhanced power graph. The problem of efficiently computing the directed power graph from a
power graph or an enhanced power graph is due to Cameron [IJGT’22]. Bubboloni and Pinzauti
[Arxiv’22] gave a polynomial-time algorithm to reconstruct the directed power graph from a power
graph. We give an efficient algorithm to compute the directed power graph from an enhanced power
graph. The tools and techniques that we design are general enough to give a different algorithm to
compute the directed power graph from a power graph as well.
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1 Introduction

Given two graphs as input, the graph isomorphism problem (GI) is to check if the graphs are
isomorphic. Despite extensive research, the complexity status of GI is still open. The graph
isomorphism problem is in NP but is very unlikely to be NP-hard as it is also in coAM [6].

Efficient algorithms for the graph isomorphism problem are known for several restricted
graph classes, for example, graphs with bounded genus [28, 16], graphs with bounded
degree [26], graphs with bounded eigenvalue multiplicity [3], graphs with bounded tree-
width [5], graphs with bounded rank-width [20, 17].

Group-theoretic tools have played an important role in the design of efficient algorithms
for the GI. Some of the early works on GI using the structure of groups non-trivially
include the isomorphism algorithm for bounded degree graphs by Luks [26], and the graph
canonization framework developed by Babai and Luks [4]. Babai developed sophisticated
new techniques to give a quasipolynomial time isomorphism algorithm [2]. Currently, it is
the best known isomorphism algorithm for general graphs. Group-theoretic machinery has
been used to design faster isomorphism algorithms for bounded degree graphs by Grohe,
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20:2 The Isomorphism Problem of Power Graphs and a Question of Cameron

Neuen and Schweitzer [18]; for graphs with bounded tree-width by Grohe, Neuen, Schweitzer,
Wiebking [19] and Wiebking [36]; for bounded rank-width graphs by Grohe and Schweitzer [20]
and graphs excluding small topological subgraphs [32].

In this paper, we study the isomorphism problem of graphs defined on finite groups. More
precisely, we study the class of power graphs, directed power graphs, and enhanced power
graphs. For two elements x and y in a finite group G, we say that y is a power of x if y = xi

for some integer i. For a group G, the vertex set of the power graph Pow(G) of G consists of
elements of G. Two vertices x and y are adjacent in Pow(G) if x is a power of y or y is a
power of x. We refer to G as the underlying group of Pow(G). The definition of directed
power graphs and enhanced power graphs can be found in Section 2.

Kelarev and Quinn defined the concept of directed power graphs of semigroups [24]. Power
graphs were defined by Chakrabarty et al. [11] again for semigroups. Cameron in [9] discusses
several graph classes defined in terms of groups and surveys many interesting results on these
graphs. Kumar et al. [25] gave a survey on the power graphs of finite groups. Questions
related to isomorphism of graphs defined on groups have also been studied [34, 13, 30, 14].

Our motivation for studying the isomorphism of graphs defined in terms of groups is to
explore if the group structure can be exploited to give efficient algorithms for the isomorphism
problems of these graphs. There are two versions of the isomorphism problem for each class
of graphs defined on groups. Let us consider the case for the class of power graphs. In the
first version of the problem, two groups G1 and G2 are given by their Cayley tables, and
the task is to check if Pow(G1) is isomorphic to Pow(G2). In the second version, two power
graphs Γ1 and Γ2 are given and we need to check if Γ1 is isomorphic to Γ2. Note that in the
second version, the underlying groups are not given as input.

In the first version of the problem, it is tempting to use the isomorphism of the underlying
groups in the hope that it might yield an easier 1 quasipolynomial time algorithm because,
unlike graphs, the quasipolynomial time algorithm for groups attributed to Tarjan by
Miller [29] is technically and conceptually much easier. However, we note that it is not
enough to check the isomorphism of the underlying groups, as two nonisomorphic groups can
have isomorphic power graphs2.

The second version looks more challenging since we do not have the underlying groups. As
one of our main results, we show that the isomorphism problem of power graphs of nilpotent
groups can be tested in polynomial-time even in the second version of the isomorphism
problem (Section 6). Thus, we do not need the underlying groups to be given. In contrast,
the group isomorphism problem for nilpotent groups, even for class 2, is still unresolved and
is considered to be a bottleneck for the group isomorphism problem [15].

Our algorithm for solving the isomorphism problem of power graphs works by first
computing the directed power graphs of the input power graphs. Next, we use the algorithm
for the isomorphism problem of directed power graphs for nilpotent groups that we design in
Section 6.

The question of efficiently computing the directed power graph from the power graph
(or the enhanced power graph) was asked by Cameron [9]: “Question 2: Is there a simple
algorithm for constructing the directed power graph or the enhanced power graph from
the power graph, or the directed power graph from the enhanced power graph?” Recently,

1 compared to Babai’s quasipolynomial time isomorphism algorithm.
2 To see this, we can take the elementary abelian group of order 27 and the non-abelian group of order 27

with exponent 3 ([10]). In general, consider the power graphs of two nonisomorphic groups of order pi

for any i ≥ 2 and exponent p for some prime p. One can check that the power graphs are isomorphic
while the groups are not.
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Bubboloni and Pinzauti [7] gave a polynomial-time algorithm to reconstruct the directed
power graph from the power graph. We give a different solution to the problem of efficiently
computing the directed power graph from the power graph. Moreover, we also design an
efficient algorithm to compute the directed power graph from the enhanced power graph.
This fully resolves Cameron’s question.

Cameron [8], and Zahirović et al. [37] proved that for two finite groups, the power graphs
are isomorphic if and only if the directed power graphs of the groups are isomorphic if and
only if the enhanced power graphs of the groups are isomorphic. The algorithms to solve
Cameron’s question provide a complete algorithmic proof of this result.

This paper makes contributions in three algebraic and combinatorial techniques, which
form the foundation of our algorithms. Firstly, we introduce a simple yet effective concept
of a certain type of generating sets of a group which we call covering cycle generating sets
(CCG-sets). In essence, these are defined in terms of the set of maximal cyclic subgroups
(Section 3). Secondly, we present a set of results concerning the structure of closed-twins
within specific subgraphs of power graphs. While Cameron previously explored the structure
of closed-twins in a power graph [8], we extend this investigation to focus on the subgraph
induced by the closed neighbourhood of a vertex (Section 4). These structures form the
basis of our algorithm to determine whether a vertex in a power graph can be part of a
CCG-set. Lastly, we introduce a series of reduction rules that facilitate the simplification of
the structure of a directed power graph while preserving its isomorphism-invariant properties
(Section 6).

Related work on Cameron’s question. The algorithm to reconstruct the directed power
graph from a power graph by Bubboloni and Pinzauti works by first considering the notion of
plain and compound closed-twin classes in a power graph3. The other notion is that of critical
closed-twin classes. Depending on whether a closed-twin class is critical or non-critical they
design efficient tests to determine if the class is plain or compound. Once this is done, they
put directions to the edges of the power graph to reconstruct the directed power graph. The
details can be found in [7]. In contrast, our algorithm identifies a CCG-set in the power
graph by using the properties and algorithms associated with the graph reductions that we
give in this paper.

2 Preliminaries

For a simple graph X, the vertex set of X is denoted by V (X), and the edge set of X is
denoted by E(X). For basic definitions and notations from graph theory, an interested reader
can refer to any standard textbook (for example, [35]). A subgraph of X is a graph Y , where
V (Y ) ⊆ V (X) and E(Y ) ⊆ E(X). The subgraph with the vertex set S ⊆ V (X), and all
such edges in E(X) whose both endpoints are in S, is called the induced subgraph of X on S,
and it is denoted by X[S].

The set of vertices adjacent to a vertex u in an undirected graph X is called the open
neighborhood of u in X and is denoted by NX(u). The cardinality of NX(u) is called the
degree of u in X, denoted by degX(u). The closed neighborhood of a vertex u in X is denoted
by NX [u] and defined by NX [u] = NX(u) ∪ {u}. Two vertices in X are called closed-twins4

in X if their closed neighborhoods in X are the same.

3 These notions are similar to the closed-twin classes that Cameron calls type (a) and type (b) (Proposi-
tion 5, [8]).

4 In the previous related literature, both the terms ‘false twins’ and ‘closed twins’ are used. However, in
this paper, we follow the terminology used by Cameron and other authors in their works on graphs
defined on groups.
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For a directed graph X (with no multiple edges), the out-neighborhood of a vertex u in X

is the set {v ∈ V (X) : (u, v) ∈ E(X)} and out-degree of u in X, denoted by out-degX(u),
is the size of the out-neighborhood of u in X. Similarly, the in-neighborhood of a vertex u in
X is the set {v ∈ V (X) : (v, u) ∈ E(X)} and in-degree of u in X, denoted by in-degX(u),
is the size of the in-neighborhood of u in X.5 Two vertices in a directed graph X are called
the closed-twins in X if their closed-out-neighborhoods in X are the same and also the
closed-in-neighborhoods in X are the same. An edge of the form (u, u) in a directed graph is
called a self-loop.

In any graph X, the closed-twin-class of a vertex u in X is the set of all closed-twins of
u in X. In this paper, if the underlying graphs are colored, then by isomorphism we mean
color preserving isomorphism only.

A graph is called prime with respect to strong product if it cannot be represented as a
strong product of two non-trivial graphs.

▶ Definition 1. Two graphs X and Y are called isomorphic if and only if there exists a
bijection f from V (X) to V (Y ) such that {u, v} ∈ E(X) if and only if {f(u), f(v)} ∈ E(Y ).
Moreover, if X and Y are vertex-colored, then an isomorphism f is called a color preserving
isomorphism if for all u ∈ V (X), the color of u and the color of f(u) are the same.

▶ Definition 2 (see for example [22]). Let X and Y be two directed graphs. The strong
product (X ⊠ Y ) of X and Y is the graph with the vertex set V (X)× V (Y ), where there is
an edge from (u, u′) to a distinct vertex (v, v′) in X ⊠ Y if and only if one of the following
holds: (i) u = v and there is an edge from u′ to v′ in Y . (ii) u′ = v′ and there is an edge
from u is to v in X. (iii) There is an edge from u to v in X and an edge from u′ to v′ in Y .

▶ Definition 3 (see e.g., [23]). Vertex identification of a pair of vertices v1 and v2 of a graph
is the operation that produces a graph in which the two vertices v1 and v2 are replaced with
a new vertex v such that v is adjacent to the union of the vertices to which v1 and v2 were
originally adjacent. In vertex identification, it doesn’t matter whether v1 and v2 are connected
by an edge or not.

All the groups considered in this paper are finite. The basic definitions and properties
from group theory can be found in any standard book (see, for example, [33]). A subset H

of a group G is called a subgroup of G if H forms a group under the binary operation of G;
it is denoted by H ≤ G. The number of elements in G is called the order of the group and it
is denoted by |G|. The order of an element g in G, denoted by o(g), is the smallest positive
integer m such that gm = e, where e is the identity element. The set {g, g2, g3, . . . , gm−1, e}
is the set of all group elements that are generated by g, where m = o(g). Moreover, this set
forms a subgroup of G and is called the cyclic subgroup generated by g and denoted by ⟨g⟩.
The number of generators of a cyclic subgroup ⟨g⟩ is ϕ(o(g)), where ϕ is the Euler’s totient
function. A group G is called cyclic if G = ⟨g⟩, for some g ∈ G. In a finite cyclic group
G, for any factor m of |G|, G has a unique subgroup of order m (known as the converse of
Langrance’s theorem).

A group G is called a p-group if the order of each element is some power of p, where p

is a prime. For a prime p, if pm is the highest power of p such that pm divides |G|, then a
subgroup H ≤ G with the property |H| = pm is called a Sylow p-subgroup of G. The direct
product of two groups G and H, denoted by G×H, is the group with elements (g, h) where

5 When the graph is clear from the context, we drop the suffixes.
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g ∈ G and h ∈ H. The group operation of G×H is given by (g1, h1)(g2, h2) = (g1g2, h1h2),
where the co-ordinate wise operations are the group operations of G and H respectively. A
finite group is called a nilpotent group if it is a direct product of its Sylow p-subgroups.

We now give the definitions of graphs defined on groups that we discuss in this paper
(see [9]).

▶ Definition 4. The directed power graph of a group G (DPow(G)), is a directed graph
with vertex set G, and edge set E = {(x, y) : y = xm for some integer m }. The power graph
of a group G, denoted by Pow(G), is the undirected version DPow(G).

If (x, y) is an edge in DPow(G), then o(y) divides o(x) whereas if {x, y} is an edge in Pow(G),
then o(x)|o(y) or o(y)|o(x). Let DPow denote the set {DPow(G) : G is a finite group }.
Let Pow denote the set {Pow(G) : G is a finite group }.

▶ Definition 5. The enhanced power graph of a group G, denoted EPow(G), is an undirected
graph with vertex set G, in which two vertices x and y are adjacent if and only if they are in
a common cyclic subgroup of G, i.e., there exists z in G such that x, y ∈ ⟨z⟩.

Let EPow denote the set {EPow(G) : G is a finite group }.

3 Cyclic cover of a group and organization of the paper

In this section, we introduce the notion of minimal cyclic cover and covering cycle generating
set. We start with the following definitions.

▶ Definition 6. We say that a proper cyclic subgroup C of G is a maximal cyclic subgroup
if for all cyclic subgroups C ′, C ≤ C ′ implies C = C ′ or C ′ = G.

▶ Definition 7. Let G be a finite group. Let {C1, . . . , Cm} be a set of the cyclic subgroups
of G. We say that {C1, . . . , Cm} is a minimal cyclic cover (MCC) if G = ∪m

i=1Ci and
∪i ̸=jCi ̸= G for all j = 1, . . . , m.

It is not hard to see from the following lemma that the set of all maximal cyclic subgroups
forms the minimum cyclic cover of a non-cyclic group.

▶ Lemma 8. For a cyclic group G the only MCC is {G}. For non-cyclic groups the set of
all maximal cyclic subgroups forms the unique minimal cyclic cover.

▶ Definition 9. Let {C1, . . . , Cm} be the minimum cyclic cover (MCC) of G. Each Ci is
called a covering cycle. For a cyclic group C, let gen(C) be the set of generators of C.
An element in ∪m

i=1gen(Ci) is called a covering cycle generator or CC-generator. We call
a set {g1, g2, . . . , gm} a covering cycle generating set (CCG-set) if {⟨g1⟩, ⟨g2⟩, . . . , ⟨gm⟩} =
{C1, C2, . . . , Cm}.

The above definition includes the case when m = 1, i.e., G is cyclic.

Organization of the paper. With the notion of CCG-set defined above, we are now ready
to describe the organization of the paper. For the sake of clarity we give the organization in
a somewhat nonlinear manner.

How to identify a CCG-set in a power graph or in an enhanced power graph when the
underlying group is not given? We design algorithms in Section 5 to solve this problem.
These are iterative algorithms that take one of the potential vertices and decide if that vertex
can be safely marked as a member of the CCG-set.

FSTTCS 2024



20:6 The Isomorphism Problem of Power Graphs and a Question of Cameron

The correctness of the algorithm, in the case of power graphs, crucially depends on
the structure of closed-twins in the subgraph induced by the closed neighbourhood of the
potential vertex that the algorithm examines in each iterative step. In Section 4, we derive a
collection of results that characterizes these structures.

In Section 6, we define a set of reduction rules that simplifies the structure of the directed
power graph of a group G while retaining all its isomorphism-invariant properties. There are
four reductions, Reduction 1, 2, 3, and 4, and they are applied one after the other in that
order. The graph obtained after i-th reduction is denoted by Ri(G). We also show that these
reductions can be efficiently reversed. At the end of Section 6 we design an isomorphism
algorithm for the directed power graphs of nilpotent groups using the structure of R3.

In Section 7, we show how to obtain the reduced graph R4 from an input power graph
(or an enhanced power) graph given along with a CCG-set.

Combining the above, we have an efficient way of going from a power graph (or an
enhanced power graph) to R4 to R3 to the directed power graph. This answers Cameron’s
question positively.

The isomorphism of the power graphs (or the enhanced power graphs) of nilpotent groups
can be done as follows: compute the directed power graphs from the input graphs and apply
the algorithm developed in Section 6.

4 Structure of closed-twins in a power graph

The structure of closed-twins in a power graph has been studied by Cameron [8], and by
Bubboloni and Pinzauti [7]. In this section, we explore the structures of closed-twins in
the subgraph of a power graph induced by the closed neighborhood of a vertex. We show
in Section 5.1 that these structures can be used to find a CCG-set of a group from the
corresponding power graph, even when the group is not given.

First, we note an easy fact about the closed-twins in any graph.

▶ Lemma 10. Let X be a graph and let v ∈ V (X). Suppose x and y are closed-twins in X.
If x ∈ N [v], then y ∈ N [v] and x and y are closed-twins in X[N [v]].

In a group G, an element x ∈ G and any generator of ⟨x⟩ are closed-twins in Γ = Pow(G).
Therefore, by Lemma 10, we have the following corollary.

▶ Corollary 11. Let v ∈ V (Γ). If x ∈ N [v], then all the generators of ⟨x⟩ are in N [v].
Moreover, they are closed-twins in Γv, where Γv = Γ[N [v]].

Now consider a vertex v ∈ V (Γ), where Γ ∈ Pow and the subgraph Γv = Γ[N [v]] induced
on the closed neighborhood of v. For any vertex x in Γv, o(x)|o(v) or o(v)|o(x). We partition
V (Γv) according to the order of the vertices in the following way:

Uv = {x ∈ V (Γv) : o(x) > o(v)}, Ev = {x ∈ V (Γv) : o(x) = o(v)},
Lv = {x ∈ V (Γv) : o(x) < o(v)}

For a vertex x ∈ Uv, we have o(v)|o(x) and for a vertex x ∈ Lv, we have o(x)|o(v).

▶ Definition 12. For a prime p, an element x in a group is called a p-power element if
o(x) = pi for some i ≥ 0, x is a nontrivial p-power element if i > 0.

▶ Lemma 13. Suppose v ∈ V (Γ) is not a p-power element for any prime p and x ∈ Uv is a
closed-twin of v in Γv. Then, degΓ(x) > degΓ(v).
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Proof. In this case, there exists prime q and positive integer s such that qs|o(x) but qs ∤ o(v).
Then, x has a neighbor z = x

o(x)
qs of order qs (by the converse of Lagrange’s theorem in finite

cyclic groups). Note that z is not a neighbor of v as o(z) ∤ o(v) and also o(v) ∤ o(z). The
latter is true as o(v) is divisible by at least two distinct primes. ◀

The proofs of the next lemma is in Section A.1.

▶ Lemma 14. Let v ∈ V (Γ) be a CC-generator such that o(v) is not a prime power. Let
u ∈ V (Γv). If u = e or u is a generator of ⟨v⟩, then the closed-twins of u in Γv are exactly
the generators of ⟨v⟩ and e; otherwise, the closed-twins of u in Γv are exactly the generators
of ⟨u⟩.

▶ Remark 15. If a|b, a ̸= b, then (1) ϕ(a)|ϕ(b), (2) ϕ(a) ≤ ϕ(b) and the equality holds only
when b = 2a where a is an odd number.

If v ∈ V (Γ) is a CC-generator, it is easy to see that o(v) = deg(v) + 1 = |Γv|. Let o(v) be
not a prime power. Then, using Lemma 14, the set of dominating vertices in Γv is the set of
generators of ⟨v⟩ and identity. Thus, the size of the closed-twin-class of v in Γv is ϕ(o(v)) + 1,
i.e., ϕ(|Γv|) + 1. Also, for all divisors, 1 < k < o(v), of o(v), there exists a closed-twin-class
of size ϕ(o(k)) in Γv. The proof of the following corollary can be found in the full version of
the paper [12].

▶ Corollary 16. Let v ∈ V (Γ) be a CC-generator and o(v) be not a prime power. Then the
following holds: (1) The size of the closed-twin-class of v in Γv, i.e., the set of dominating
vertices in Γv, is ϕ(o(v)) + 1. (2) For each divisor k of o(v), 1 < k < o(v), there is a
closed-twin-class of size ϕ(k) in Γv. Moreover, ϕ(k) divides ϕ(o(v)). (3) There are at most
two closed-twin-classes of size greater or equal to ϕ(o(v)).

The following theorem is a well-known result [11].

▶ Theorem 17 ([11]). Let G be a finite group. Then, Γ = Pow(G) is complete if and only if
G is cyclic of prime power order.

From the above theorem, the following corollary is immediate.

▶ Corollary 18. Let v ∈ V (Γ) be a p-power element for some prime p. Then, Γ[Ev ∪ Lv] is
a complete graph. Moreover, the elements of Ev ∪ Lv are closed-twins of v in Γv.

▶ Lemma 19. Let v ∈ V (Γ) be a nontrivial p-power element and not a CC-generator.
Suppose for all u ∈ Uv such that u is a closed-twin of v in Γv, degΓ(u) is at most degΓ(v).
Let y be a closed-twin of v in Γv with maximum order and S denote the set {x ∈ V (Γv) :
o(y)|o(x) and o(x) ̸= o(y)}. Then, (1) The closed-twins of v are exactly the elements in ⟨y⟩.
(2) V (Γv) = ⟨y⟩ ⊔ S, where ⊔ denotes the disjoint union.

(3) Moreover, if o(y) = pj where j ≥ 2, then p divides |V (Γv)|.

Proof. Suppose o(v) = pi. From Corollary 18, we know that the elements in Ev and Lv are
closed-twins of v. Observe that these elements have order pr for some r ≤ i. Next, we show
that all closed-twins of v in Uv have orders of the form pl for some l > i. Suppose not, then
let u be a closed-twin of v in Uv. As u ∈ Uv, pi divides o(u). Then o(u) = k · pi, where k > 1
and gcd(k, p) = 1. Since u is a closed-twin of v, |Γv| − 1 = degΓv

(u) = degΓv
(v) = degΓ(v).

Now, ⟨u⟩ has an element of order k and this element cannot be a neighbor of v. So,
degΓ(u) > degΓv (u) = degΓ(v). Therefore, degΓ(u) > degΓ(v). This is a contradiction.
Hence, o(u) = pl, for some l > i.

FSTTCS 2024
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Given that y is the closed-twin of v in Γv with maximum order, say pj . Suppose z ∈ ⟨y⟩.
If y ∈ Ev ∪ Lv, then clearly ⟨y⟩ = ⟨v⟩ (because y cannot be in Lv). If y ∈ Uv, then noting
that degΓ(y) ≤ degΓ(v) and y is a closed-twin of v in Γv, we can say that z is in Γv. In
both the cases ⟨y⟩ ⊆ V (Γv). We show that every vertex w ∈ V (Γv) is adjacent to z. Since
w ∈ V (Γv) and y is a closed-twin of v, there is an edge between w and y. So, o(y)|o(w) or
o(w)|o(y). In the first case, z ∈ ⟨y⟩ ⊆ ⟨w⟩. On the other hand, if o(w)|o(y), then w ∈ ⟨y⟩. So
either z ∈ ⟨w⟩ or w ∈ ⟨z⟩ as ⟨y⟩ is a cyclic group of prime power order. In any case, {w, z}
is an edge. So, any element z in ⟨y⟩ is a closed-twin of v.

Let z be a closed-twin of v. If z ∈ ⟨v⟩ then z ∈ ⟨y⟩. On the other hand, if z /∈ ⟨v⟩, then
z ∈ Uv. Therefore, o(z) is a power of p. As y is a closed-twin of v, there is an edge between
y and z. Therefore, z ∈ ⟨y⟩ or y ∈ ⟨z⟩. If y ∈ ⟨z⟩, we must have ⟨y⟩ = ⟨z⟩ as o(z) ≤ o(y)
(as both are p-power order closed-twins of v and y is with maximum order). This forces
⟨z⟩ = ⟨y⟩. Thus, z ∈ ⟨y⟩ in both cases. This completes the proof of part (1).

Now, we prove part (2). Let x ∈ V (Γv) \ ⟨y⟩. In this case, x /∈ Ev ∪ Lv by Corollary 18.
Since y is a closed-twin of v, {x, y} is an edge. Therefore, x ∈ ⟨y⟩ or y ∈ ⟨x⟩. However, by
assumption, x /∈ ⟨y⟩. So, y ∈ ⟨x⟩. Therefore, o(y)|o(x). So, o(x) = pj · k for some k > 1.

Therefore, V (Γv) = ⟨y⟩ ⊔ {x ∈ V (Γv) : pj |o(x) and o(x) ̸= pj}, i.e., V (Γv) = ⟨y⟩ ⊔ S.
To prove part (3), we define an equivalence relation ≡ on S as follows: x1 ≡ x2, if and only

if ⟨x1⟩ = ⟨x2⟩. Note that if x ∈ S, then generators of ⟨x⟩ are in S by Corollary 11. Therefore,
the equivalence class of any vertex x ∈ S is of size ϕ(o(x)). Recall that, o(x) = o(y) ·k = pj ·k.
Now, as pj ≥ p2, so p divides ϕ(o(x)). Therefore, p divides |V (Γv)|, as claimed. ◀

5 Finding a CCG-set of a group from its power graph and enhanced
power graph

For a directed power graph, even if the underlying group is not given, the set of vertices
corresponding to a CCG-set {g1, . . . , gm} of the underlying group G can be readily found
in the graph. The scenario changes when the input graph is a power graph or an enhanced
power graph and the underlying group is not given as input. Then, it is not possible to
recognise these vertices exactly in the input graph as we can not distinguish two closed-twins
gi and g′

i in Pow(G) (or EPow(G)). For example, if we take Zpm for some prime p and
integer m, then Pow(Zpm) is a clique (Theorem 17). If the vertices of Pow(Zpm) are named
arbitrarily, then it is not possible to distinguish a generator of Zpm from any other vertex.
Fortunately, the fact that the underlying group is Zpm can be concluded just from the graph
by Theorem 17.

Therefore, we aim to do the following: Given a power graph (or an enhanced power
graph) Γ, mark a set {g1, g2, . . . , gm} of vertices such that (1) each gi is a CC-generator or gi

is a closed-twin of a CC-generator g′
i in the graph Γ, and (2) {h1, h2, . . . , hm} is a CCG-set

where hi = gi, if gi is a CC-generator; otherwise, hi = g′
i.

5.1 Finding a CCG-set of a group from its power graph
The next theorem states that given a power graph Γ as input, we can essentially compute a
CCG-set corresponding to Γ, even if the underlying group is not given.

▶ Theorem 20. There is a polynomial-time algorithm that, on input a power graph Γ ∈ Pow,
outputs a set {g1, g2, . . . , gm} where gi is a CC-generator or gi is a closed-twin of a CC-
generator g′

i in the graph Γ such that {h1, h2, . . . , hm} is a CCG-set where hi = gi, if gi is a
CC-generator, otherwise, hi = g′

i.
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Hence, without loss of generality, we call the set {g1, g2, . . . , gm} as CCG-set and gi’s
as CC-generators. Before we give the proof of the above theorem, we need the following
definition that is required in the algorithm.

▶ Definition 21. Let d be a positive integer. Let Γ ∈ Pow and v be a vertex in Γ. Let
T1, . . . , Tr be the partition of V (Γv) into closed-twin classes of Γv. Similarly, let S1, . . . , Sr′

be the closed-twin classes of Pow(Zd). We say that Γv closed-twin-partition-wise matches
with Pow(Zd) if (1) the closed-twin class containing the dominating vertices6 of both the
graphs have the same size, and (2) r = r′ and there is some permutation π ∈ Sym(r) such
that |Ti| = |Sπ(i)|.

If v is a CC-generator and o(v) = d is not a prime power then, Γv twin-partition-wise-
matches with Pow(Zd), by Corollary 16.

It is not hard to see that testing if Γv closed-twin-partition-wise matches with Pow(Zd)
can be done in polynomial-time. Also, when d is not prime power, the size of the closed-twin
class containing v has size ϕ(d)+1.

Proof of Theorem 20. The process of finding a CCG-set of the underlying group of a given
power graph is described in Algorithm 1.

Algorithm 1 Algorithm to mark a CCG-set in a finite power graph.

Input: Γ ∈ Pow

First, isolate the case when the power graph Γ is a complete graph using Theorem 17.
Then, return a singleton set, consisting of any vertex, as the CCG-set.
If Γ is not a clique, then mark any of the Dominating vertices as the identity. Next, all
vertices except the identity are stored in a list L in decreasing order of their degrees.
During the algorithm, we use the labels: U (undecided), CC (a CC-generator) and NC
(not a CC-generator). To start with, mark all the vertices U in the list. Note that identity
is not marked with any label.
The algorithm marks the vertices further in phases. In each phase, pick the first U marked
vertex, say v, in the list L and do the following: Let a = deg(v) + 1
[Rule 1a] If a is a prime power and Γv = Γ[N [v]] is complete, then mark v as CC and
mark all its neighbors NC.
[Rule 1b] Else if a is a prime power and Γv is not complete, then mark v as NC.
[Rule 2a] Else if a is not a prime power and if v has a closed-twin w in Γv such that w

has been marked NC, then mark v as NC.
[Rule 2b] Else (i.e., a is not a prime power and v does not have a NC marked closed-twin
in Γv)

If Γv closed-twin-partition-wise matches with Pow(Zd), where d = deg(v) + 1
Mark v as CC and all its neighbors NC.

Else
Mark v as NC.

Return the set of vertices marked CC.

A vertex picked at any phase is either marked CC or NC, thereby reducing the number
of vertices marked U. Therefore, Algorithm 1 terminates in O(n) phases.

6 Dominating vertex in a graph is a vertex that is adjacent to all other vertices in the graph.
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We prove the correctness of the algorithm by induction on the number of phases. In each
phase, a set of vertices is relabeled using one of the 4 rules. We prove that this labelling is
correct. In phase i, we assume that up to phase (i− 1), all the labellings were done correctly.
In base case, this means that all the vertices are still labelled U.
If Rule 1a is applied: If v is not a CC-generator, then v is contained in at least one covering

cycle. If v is contained in two covering cycles, say ⟨g1⟩ and ⟨g2⟩, then Γv is not complete, as
the CC-generators g1 and g2 are not adjacent. Now consider the case when v is contained
in exactly one covering cycle ⟨x⟩. Then NΓv

(v) ⊆ NΓv
(x). So, if degΓ(x) > degΓ(v), then

x or one of its closed-twins has already been marked as CC in some previous phase, and
then v would have been marked as NC. Now if degΓ(x) = degΓ(v), then v and x are
closed-twins and thus v is also a CC-generator. This is a contradiction.

If Rule 1b is applied: If v is a CC-generator, then Γv is a complete graph. Thus, this step
works correctly.

If Rule 2a is applied: If v is a CC-generator, then by Lemma 14 its closed-twins in Γv are
exactly e (identity) and generators of ⟨v⟩. So, if any of the closed-twins is marked NC, it
must have been because some other closed-twin is already marked CC in some previous
phase t ≤ i− 1 of the algorithm. In phase t, the algorithm would have also marked v as
NC.

If Rule 2b is applied: If v is a CC-generator, then Γv closed-twin-partition-wise matches
with Pow(Zd). Now if none of v’s closed-twins in Γv are already marked CC, then v can
be marked CC.

On the other hand, suppose that v is not a CC-generator. We first consider the case
when v is contained in only one covering cycle, say generated by x. The proof of the next
claim is in Section A.1.

▷ Claim 22. degΓ(x) > degΓ(v).

By the above claim, the algorithm considers x and other generators of ⟨x⟩ before v. Then,
by the induction hypothesis, one of these generators would be marked CC, and v would not
be labelled U.

Now we consider the case when v is contained in at least two covering cycles, say ⟨g1⟩ and
⟨g2⟩. We prove that if v is not a CC-generator, then Γv cannot closed-twin-partition-wise
match with Pow(Zd). This case is divided into two subcases.

In the 1st subcase, we assume that o(v) is not a prime power. Now we count the
closed-twins of v in Γv present in each of the sets Uv, Ev and Lv.

If x ∈ Uv is a closed-twin of v in Γv, then by Lemma 13, degΓ(x) > degΓ(v). So, the
algorithm must have considered x before v. At that phase, the algorithm either marked x as
NC or CC. If x was marked as NC, v would not satisfy the condition of Rule 2b (i.e., no
closed-twin of v in Γv is marked NC). Moreover, if x was marked CC, the algorithm would
have marked v as NC. So, v has no closed-twin in Uv.

The number of closed-twins of v in Γv which are present in Ev is ϕ(o(v)). By noting that
Γv[Ev ⊔ Lv] = Pow(⟨v⟩) and using Lemma 14 on Pow(⟨v⟩), we see that the only closed-twin
of v in Lv is the identity. Therefore, the total number of closed-twins of v in Γv is ϕ(o(v)) + 1.

Now CC-generators g1 and g2 have distinct 7 closed-twin-classes of size at least ϕ(o(g1))
and ϕ(o(g2)). But, ϕ(o(gi)) ≥ ϕ(o(v)) for i = 1, 2 by Remark 15. This is a contradiction
since Pow(Zd) can have at most two closed-twin-classes of size greater than or equal to
ϕ(o(v)), by (3) of Corollary 16.

7 g1 and g2 are not adjacent.
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In the 2nd subcase, we assume that o(v) is a prime power, say o(v) = pi for some prime p

and some integer i > 0. Consider y and S as in Lemma 19. Note that degΓ(y) ≤ degΓ(v).
Since otherwise, the algorithm would have marked y as NC or CC. In both cases, the
algorithm would not satisfy the conditions of Rule 2b.
Subsubcase 1: o(y) = pj, j ≥ 2. In this case, by (3) of Lemma 19, p divides |V (Γv)|.

Therefore, Γv must have a closed-twin-class of size p− 1 for it to closed-twin-partition-
wise match with Pow(Zd) (because of (2) of Corollary 16). By (1) of Lemma 19, if
x ∈ ⟨y⟩, then the number of closed-twins of x in Γv is |⟨y⟩| = pj > p− 1. Also, if x ∈ S,
then number of closed-twins of x in Γv ≥ ϕ(o(x)) ≥ ϕ(o(y)) ≥ ϕ(p2) > p− 1. Therefore,
there is no closed-twin-class of size p− 1.

Subsubcase 2: o(y) = p. Recall that ⟨g1⟩ and ⟨g2⟩ are covering cycles containing v. Since
y and v are closed-twins in Γv, we can see that y ∈ ⟨g1⟩ ∩ ⟨g2⟩. Now by (1) of Lemma 19,
the size of the closed-twin-class of v is p. Since o(y)

∣∣o(g1) and o(y)
∣∣o(g2), the size of

the closed-twin-class of both g1 and g2 is at least p − 1. This is not possible by (3) of
Corollary 16. ◀

5.2 Finding a CCG-set of a group from its enhanced power graph

▶ Lemma 23. If v is a CC-generator of a group G, then NEP ow(G)[v] ⊆ NEP ow(G)[u] for
all u ∈ ⟨v⟩.

Algorithm 2 performs the task of finding a CCG-set. The next theorem ensures the
correctness of the algorithm.

▶ Theorem 24. Algorithm 2 on input an enhanced power graph8 Γ ∈ EPow outputs a set
{g1, g2, . . . , gm} where gi is a CC-generator or gi is a closed-twin of a CC-generator g′

i in
the graph Γ such that {h1, h2, . . . , hm} is a CCG-set where hi = gi if gi is a CC-generator,
otherwise, hi = g′

i.

As before, we call the set {g1, g2, . . . , gm} as CCG-set and gi’s as CC-generators.

Proof. The proof of correctness of Algorithm 2 is by induction on the number of iterations.
In any iteration, the first unmarked vertex is marked as CC and its neighbors in the graph
are marked as NC. Our goal is to prove that this marking process is correct.

For the base case, x = v1. By Lemma 23, v1 is either a CC-generator or v1 ∈ ⟨g1⟩, where
g1 is a CC-generator and v1 is a closed-twin of g1 in Γ. Since N [v1] corresponds to ⟨g1⟩ by
Lemma 23, we can safely mark the vertices adjacent to v1 as NC.

In phase i, we assume that up to iteration (i−1), all the markings were done correctly. Let
us pick the first unmarked vertex, say x, in A. It is easy to see that x does not belong to any
covering cycle marked till the (i− 1)th iteration, i.e., x does not belong to the neighborhood
of any CC marked vertex till the (i− 1)th iteration. So, again using the same argument given
in the base case, it can be seen that the markings done in the ith iteration are correct. ◀

8 Recall that the underlying group is not given.

FSTTCS 2024



20:12 The Isomorphism Problem of Power Graphs and a Question of Cameron

Algorithm 2 Algorithm to mark a CCG-set of G in a finite enhanced power graph.

Input: Γ ∈ EPow

1. Sort the vertices of Γ by their degree in increasing order. Let the sorted array be
A = {v1, v2, . . . , vm}.

2. Pick the first unmarked element x of A and mark it CC.
Mark all the elements of N [x] as NC.

3. Pick the next unmarked element in A and repeat Step 2 till all elements of A are marked.

6 Isomorphism of directed power graphs

The isomorphism problems of power graphs, directed power graphs, and enhanced power
graphs are equivalent (see [9, 8, 37]). Thus, an algorithm for the isomorphism problem of
directed power graphs automatically gives an isomorphism algorithm for power graphs (or
enhanced power graphs), provided we can obtain the directed power graph from the power
graph (respectively, the enhanced power graph). This is done in Section 7. In the currect
section, we focus on the isomorphism problem of directed power graphs. In the last part of
this section, we discuss a necessary result that is used in Section 7 for obtaining the directed
power graph of an input power graph (or an enhanced power graph).

We perform several reductions on a directed power graph that are isomorphism invariant.
The out-degree of a vertex in DPow(G) is the order of the element in the group G, i.e., for a
vertex u, out-deg(u) = o(u). Therefore we can color the vertices by their out-degrees. We
call the colored graph CDPow(G). We emphasise that here the colors are numbers, and
hence we can perform arithmetic operations on these colors and use the natural ordering of
integers inherited by these colors. We recall that by isomorphism we mean color preserving
isomorphism when the graphs are colored.

Two vertices u and v are closed-twins in CDPow(G) (in DPow(G) also) if and only if
⟨u⟩ = ⟨v⟩ in G, i.e., u and v are two generators of the same cyclic subgroup in G. There
are ϕ(o(u)) generators of ⟨u⟩ in G. So, for each vertex u ∈ CDPow(G), there are exactly
ϕ(col(u)) closed-twins in CDPow(G). By the converse of Lagrange’s theorem, in each cyclic
subgroup of order n, for each divisor k of n, there are exactly ϕ(k) generators. So, for each k

in the color set of CDPow(G), there are ϕ(k) closed-twins in the graph. Observe that u and
v are closed-twins in CDPow(G), if and only if (u, v) ∈ E(CDPow(G)) and col(u) = col(v).

Reduction rule 1: Closed-twin Reduction. If there are two closed-twins u and v in
CDPow(G), then do a vertex identification of u and v and color the identified vertex with
col(u) = col(v). Let R1(G) denote the reduced graph after applying Reduction rule 1 to
CDPow(G).

From the discussion above, the next lemma follows easily.

▶ Lemma 25. CDPow(G) ∼= CDPow(H) if and only if R1(G) ∼= R1(H).

▶ Remark 26. It is easy to see that we can get back an isomorphic copy of CDPow(G) from
R1(G), by adding ϕ(col(u)) closed-twins at each vertex u in R1(G).

Since each vertex has a self-loop, for the purpose of isomorphism we can delete these
self-loops. One can check that R1(G) is a transitively closed directed graph.
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Reduction rule 2: Edge-deletion. Let us consider R1(G). Do the following steps: (1)
Delete all self-loops. (2) For all a, b, c, if (a, b) and (b, c) are edges, then mark (a, c) as a
transitive edge. Then, delete all edges that are marked as transitive edges. Let R2(G) denote
the resulting graph. Since R1(G) is the reflexive and transitive closure of R2(G), we have
the following lemma:

▶ Lemma 27. R1(G) ∼= R1(H) if and only if R2(G) ∼= R2(H).

Due to space constraints we omit the proof of the following lemma (see the full version
for a proof [12]).

▶ Lemma 28. The reduced graph R2(G) satisfies the following properties: (1) Vertices
with in-degree zero in R2(G) form a CCG-set of G, (2) If (u, v) is an edge in R2(G), then
col(u) > col(v) and col(u) = col(v) · p for some prime p, (3) R2(G) is a directed acyclic
graph.

Note that using (1) of Lemma 28, we can easily find a set of vertices, say {g1, g2, . . . , gm},
that form a covering cycle generating set (CCG-set) of G.

Reduction rule 3: Removing the direction. Remove the direction of the edges in R2(G) to
obtain an undirected colored graph R3(G).

Note that the CCG-set of G can still be identified easily in R3(G): A vertex g is a
CC-generator if and only if all its neighbours have smaller orders (or colors).

The following result is an easy consequence of (2) of Lemma 28.

▶ Lemma 29. R2(G) ∼= R2(H) if and only if R3(G) ∼= R3(H).

▶ Definition 30. A path u1u2 . . . ul in R3(G) is said to be a descendant path if col(ui) >

col(ui+1). The vertices in the graph reachable from u using descendant path are called
descendant reachable vertices from u. We denote the set of descendant reachable vertices
from u in R3(G) by Des(u).

Observe that Des(u) in R3(G) is same as the closed out-neighborhood of u in R1(G). The
colors of the vertices of Des(u) in R3(G) form the set of all divisors of col(u). Also, no two
vertices of Des(u) in R3 have the same color.

▶ Theorem 31. If G is a finite p-group, then R3(G) is a colored tree.

Proof. Let |G| = pα. Any edge in R3(G) is of the form {u, v} where by using (2) of
Lemma 28 we can assume without loss of generality that col(u) = pt and col(v) = pt−1,

for some t ∈ {1, 2, . . . , α}. Suppose the graph contains a cycle u0u1u2 . . . unu0. By (2)
of Lemma 28, we can assume without loss of generality that the colors of the vertices
form the following sequence: ptpt−1pt−2 . . . pt−(i−1)pt−ipt−(i−1) . . . pt−1pt for some i. Now,
u1, un ∈ Des(u0) such that col(u1) = col(un) = pt−1. This is a contradiction since no two
vertices of Des(u) for any vertex u have the same color. Hence, our assumption is wrong
and R3(G) has no cycle. ◀

Since the isomorphism of trees can be tested in linear time (see, for example, [1]), the
isomorphism of the directed power graphs of p-groups can also be tested in polynomial-time.9
Now we extend our algorithm to check the isomorphism of directed power graphs of finite
nilpotent groups. For that, we use the following two results.

9 It can actually be done in linear time.
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▶ Lemma 32 ([31]). Let G1 and G2 be two finite groups such that |G1| and |G2| are co-prime
to each other. Then, DPow(G1 × G2) = DPow(G1) ⊠ DPow(G2), where ⊠ denotes the
strong product of two graphs.

▶ Lemma 33 ([27]). There exists a unique prime factor decomposition of a simple connected 10

directed graph with respect to strong product and the uniqueness is up to isomorphism and
ordering of the factors.

It is easy to verify that the next lemma follows from the above two lemmas. However, we
can prove Lemma 34 without using Lemma 33 and the proof is given in Section A.1.

▶ Lemma 34. Let G = G1 × · · · × Gk and H = H1 × · · · × Hk where |Gi| = |Hi| for all
1 ≤ i ≤ k. Suppose gcd(|Gi|, |Gj |) = gcd(|Hi|, |Hj |) = 1, for all 1 ≤ i < j ≤ k. Then,
DPow(G) ∼= DPow(H) if and only if DPow(Gi) ∼= DPow(Hi), for all 1 ≤ i ≤ k.

We are now ready to present one of the main results of the paper. Namely, we show
that the isomorphism of the directed power graphs of nilpotent groups can be tested in
polynomial-time. Let DPownil = {DPow(G) : G is a finite nilpotent group}.

Theorem 31 and Lemma 34 suggest that obtaining the directed power graphs corresponding
to the factor groups might be useful. One approach would be to decompose an input directed
power graph into prime factors with respect to strong product in polynomial-time using
the algorithm by Hellmuth et al. [21]. Note that, in a general setting, the prime graphs in
the strong product decomposition may not correspond to the directed power graphs of the
direct factors of the underlying group. We are also not sure if the Sylow-p subgroups of a
nilpotent group generate prime graphs. If not, then just applying the algorithm of Hellmuth
et al. is not enough and we need to regroup the prime factors properly to apply Theorem 31.
Fortunately, all these complications can be easily avoided as shown in the next theorem.

▶ Theorem 35. There is an efficient polynomial-time algorithm that on inputs Γ1, Γ2 ∈
DPownil checks if Γ1 and Γ2 are isomorphic.

Proof. We know that a finite nilpotent group is the direct product of its Sylow subgroups.
Since the orders of the Sylow subgroups are coprime with each other, by Lemma 34, Γ1
and Γ2 are isomorphic if and only if for each prime p dividing |V (Γ1)| (which is same as
the order of the underlying group), the directed power graphs of the Sylow p-subgroups of
the underlying groups of Γ1 and Γ2 are isomorphic. Therefore, if we can find the directed
power graphs of the Sylow subgroups associated with each prime divisor, we can test the
isomorphism of Γ1 and Γ2.

While the underlying groups are not given as input, we can still compute the directed
power graph of a Sylow p-subgroup of an input graph by finding the set Vp of all vertices
whose order in the underlying group is pi for some i ≥ 0. More precisely, the subgraph
induced by the set Vp is the directed power graph associated with the Sylow p-subgroup.
Note that the order of a vertex (which is also an element in the underlying group) is the
out-degree of the vertex in the directed power graph. ◀

We show that all the isomorphism invariant information of R3(G) is captured by a) the
CCG-set of G in R3(G) along with their colors, and b) elements corresponding to their
pairwise common neighborhood along with their colors. For this, we do a further reduction.
The results in the rest of this section are required in Section 7.

10 Here connected directed graph means that the underlying undirected graph is connected.



B. Das, J. Ghosh, and A. Kumar 20:15

We define a new simple undirected colored graph HD[n] = (V, E) for any natural number
n, where V = {d : d|n}. The name of each vertex is treated as its color, i.e., here col(v) = v.
The edge set is E = {{u, v} : v = u · p or u = v · p for some prime p}. One can see that
HD[n] is the Hasse diagram of the Poset defined over the set of all divisors of n with respect
to the divisibility relation. Moreover, HD[n] is also isomorphic to R3(Zn) (as a consequence
of (2) of Lemma 28).
▶ Remark 36. (1) It is easy to see that R3(G)[Des(gi)] is isomorphic to HD[col(gi)] for all
1 ≤ i ≤ m. We can see that the isomorphism is unique as in each of these graphs, there is
only one vertex with a particular color.
(2) Note that {y, y′} ∈ E(R3(G)) if and only if (a) y, y′ ∈ Des(gi) for some 1 ≤ i ≤ m and
(b) col(y) = p · col(y′) or col(y′) = p · col(y) for some prime p.

Let Ī(i, j) denote the vertex in R3(G) that is of maximum color among the common
descendant reachable vertices from both gi and gj . It is not hard to see that in the group
G, col(Ī(i, j)) = |⟨gi⟩ ∩ ⟨gj⟩|. Note that for two distinct pairs (i, j) and (i′, j′), Ī(i, j) and
Ī(i′, j′) can be the same vertex in R3(G). It is not hard to see the proof of the following
claim.

▷ Claim 37. In R3(G), gcd(col(Ī(i, j)), col(Ī(s, j))) divides col(Ī(i, s)).

Reduction rule 4. Consider R3(G). Recall that, in R3(G) a CCG-set {g1, g2, ..., gm} of G

can be readily found. We make a new graph R4(G) as follows:
(1) Introduce the vertices g1, g2, . . . , gm with their colors. (2) For each pair (i, j), 1 ≤ i < j ≤
m, do the following: Find the vertex Ī(i, j) that is of maximum color among the descendant
reachable vertices from both gi and gj . We add a vertex I(i, j) in R4(G) and color it with
col(Ī(i, j)). Add edges {gi, I(i, j)} and {gj , I(i, j)}.

Note that R4(G) is a bipartite graph where one part is a CCG-set and another part
contains vertices marked as I(i, j) for all (i, j). In R4(G), for distinct pairs (i, j) and (i′, j′),
I(i, j) and I(i′, j′) are distinct vertices, while in R3(G), Ī(i, j) and Ī(i′, j′) may be the same
vertex. In other words, R4(G) may have several copies of vertex Ī(i, j).

We now present an algorithm to get back an isomorphic copy of R3(G) from R4(G).

Idea of the algorithm. In R4(G), we have a set of colored CC-generators. Also, there
exist vertices I(i, j) corresponding to each pairwise intersection of maximal cyclic subgroups
⟨gi⟩ and ⟨gj⟩ in G. I(i, j) is the only common neighbor of gi and gj in R4(G). Using this
information, we construct R3(G) in an iterative manner. First, we describe a sketch of the idea
behind the process. There are m iterations in the process. In the 1st iteration, we introduce
HD[col(g1)]. One can easily verify that R3(G)[Des(g1)] is isomorphic to HD[col(g1)] (by (2)
of Remark 36). In the 2nd iteration, we introduce HD[col(g2)]. As we know the color of I(1, 2),
we have information about the set of vertices common to both HD[col(g1)] and HD[col(g2)].
Let u and v be the vertices with color col(I(1, 2)) in HD[col(g1)] and HD[col(g2)] respectively.
We identify (via vertex-identification) the vertices with the same colors in Des(u) (which
is in HD[col(g1)]) and Des(v) (which is in HD[col(g2)])11. One can see that the resulting
graph is isomorphic to the induced subgraph of R3(G) on Des(g1) ∪Des(g2). Inductively
the algorithm introduces Des(g1) ∪Des(g2) ∪ . . . ∪Des(gj−1) at the end of the (j − 1)th

iteration. In the jth iteration, we introduce HD[col(gj)]. It is easy to note that the set of

11 Since HD[col(gi)] is isomorphic to R3(G)[Des(gi)], we can use the concept of Des in the graph
HD[col(gi)] for all i.
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vertices in HD[col(gj)] that are contained in Des(gj) ∩Des(gs) for all s ≤ j − 1 has already
been introduced. So, we need to identify the vertices introduced by the algorithm earlier
with the corresponding subset of vertices in HD[col(gj)]. We get the information of such
vertices using the color of I(s, j) for s ≤ j − 1. The details and correctness of the algorithm
(Algorithm 3) are given in Section A.2.

7 Reconstruction Algorithms

Cameron asked the following question: “Question 2 [9]: Is there a simple algorithm for
constructing the directed power graph or enhanced power graph from the power graph, or the
directed power graph from the enhanced power graph?” Bubboloni and Pinzauti [7] gave an
algorithm to reconstruct the directed power graph from the power graph. In this section, we
show that with the tools we have developed, we can readily design algorithms to reconstruct
the directed power graph from both the enhanced power graph and the power graph.

Suppose we are given a power graph (or an enhanced power graph) of some finite group
G as input, i.e., Γ = Pow(G) (or, Γ = EPow(G)). However, the group G is not given.
As discussed in Section 5, we can find a CCG-set for G from the input graph. Next, we
describe how to obtain a graph isomorphic to R4(G) from the CCG-set. From the vertices
corresponding to a CCG-set of G, say {g1, g2, . . . , gm}, we get the information about their
degree in Γ and the pairwise common neighborhood of gi and gj in the respective graph.
This immediately gives us R4(G). From R4(G), we know how to get back an isomorphic copy
of DPow(G) using the results in Section 6. All the steps in the process can be performed in
polynomial-time.

For any two vertices u and v we can easily decide when to put an edge between them in
the enhanced power graph by looking into the corresponding directed power graph: there
is an edge {u, v} in the enhanced power graph, if and only if both u and v belong to the
closed-out-neighbourhood of some vertex in the directed power graph. In this way, we can
construct the enhanced power graph from an input directed power graph. Therefore, we get
a complete solution to Cameron’s question.
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A Appendix

A.1 Omitted Proofs
Proof of Lemma 14. Let o(v) = pr1

1 pr2
2 . . . prk

k , where k ≥ 2. The case when u = e or u is
a generator of ⟨v⟩ is easy as N [u] = V (Γv) for any such element. Otherwise, since v is a
CC-generator, ⟨u⟩ ⪇ ⟨v⟩. For u and z to be closed-twins, we must have u ∈ ⟨z⟩ or z ∈ ⟨u⟩.
We show that for z to be a closed-twin of u, its order must be the same as that of u. We
consider the case when z ∈ ⟨u⟩. The other case can be handled similarly. In this case, we
have o(z)|o(u).

Suppose both u and z are p-power elements for some prime p ∈ {p1, p2, . . . , pk}. Moreover,
without loss of generality, assume that o(u) = ps1

1 and o(z) = p
s′

1
1 where s1 > s′

1. Note that
r1 ≥ s1. In this case, there is an element in V (Γv) of order p

s′
1

1 p2 which is adjacent to z but
not to u. More precisely, this element is an element in ⟨v⟩ of order p

s′
1

1 p2. So, in this case, u

and z are not closed-twins in Γv.
Now suppose o(u) is not a prime power. We first take z to be non-identity. Then, let

o(u) = ps1
1 . . . psk

k , where k ≥ 2. Let o(z) = p
s′

1
1 . . . p

s′
k

k , where sj ≥ s′
j . Assume without loss

of generality that s1 > s′
1. As o(u) is not a prime power order, we can take s2 ̸= 0. Now if

s′
2 = 0, consider an element x of order p2 in Γv. Then x is a neighbor of u, but not of z. On

the other hand, if s′
2 ̸= 0, we take an element y of order ps1

1 . Again y is a neighbor of u but
not of z. So, in this case also, u and z are not closed-twins in Γv.

Now suppose o(u) is not a prime power, i.e., o(u) = ps1
1 ps2

2 . . . psk

k where k ≥ 2 and z is
the identity. We recall that since u is not a generator ⟨v⟩, there exists i such that ri > si.
We take an element x of order pri

i in Γv. One can check that x is adjacent to z but not to u.
So, here also u and z are not closed-twins in Γv.

Note that if o(u) = o(z), then they are closed-twins in Γv. ◀

▷ Claim 22. degΓ(x) > degΓ(v).

https://doi.org/10.1145/800133.804331
https://doi.org/10.1145/800133.804331
https://doi.org/10.1137/1.9781611977073.59
https://doi.org/10.48550/arXiv.2206.01059
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Proof. As v is contained in only one covering cycle, we have NΓ(v) ⊆ NΓ(x). This implies
degΓ(x) ≥ degΓ(v). Moreover in Γv, the vertices x and v are closed-twins. If o(x) = pi,

then deg(x) + 1 = pi. The graph Γx = Γ[N [x]] is complete. So, deg(v) + 1 = pi. Therefore,
this case cannot arise. On the other hand, if o(x) is not a prime power, we can apply 12

Lemma 14 and since v ≠ e and v is not a CC-generator, we can see that v and x are not
closed-twins in Γx. Thus,degΓ(x) > degΓ(v). ◁

Proof of Lemma 34. It is enough to prove the lemma for k = 2. Let f1 : V (DPow(G1))→
V (DPow(H1)) and f2 : V (DPow(G2)) → V (DPow(H2)) be two isomorphisms from
DPow(G1) to DPow(H1) and from DPow(G2) to DPow(H2) respectively. Let us define f :
V (DPow(G))→ V (DPow(H)) as f((u1, u2)) = (f1(u1), f2(u2)). Since f1 and f2 are bijec-
tions, so is f . We show that f preserves the edge relations between DPow(G) and DPow(H).
Let us consider an edge ((u1, u2), (v1, v2)) from E(DPow(G)) = E(DPow(G1)⊠DPow(G2))
(This equality follows from Lemma 32.). Now from Definition 2 and the facts that f1 and
f2 are isomorphisms from DPow(G1) to DPow(H1) and from DPow(G2) to DPow(H2)
respectively, we have the following three scenarios:
1. u1 = v1 and (u2, v2) ∈ E(DPow(G2)). In this case, f1(u1) = f1(v1) and (f2(u2), f2(v2)) ∈

E(DPow(H2)).
2. u2 = v2 and (u1, v1) ∈ E(DPow(G1)). In this case, f2(u2) = f2(v2) and (f1(u1), f1(v1)) ∈

E(DPow(H1).
3. (u1, v1) ∈ E(DPow(G1)) and (u2, v2) ∈ E(DPow(G2)). In this case, (f1(u1), f1(v1)) ∈

E(DPow(H1)) and (f2(u2), f2(v2)) ∈ E(DPow(H2)).
In all the three scenarios, by Definition 2, we have ((f1(u1), f2(u2)), (f1(v1), f2(v2))) ∈
E(Dpow(H1) ⊠ DPow(H2)). Therefore by Lemma 32, (f((u1, u2)), f((v1, v2))) ∈
E(DPow(H)).

For the other direction, let f : V (DPow(G))→ V (DPow(H)) be an isomorphism between
DPow(G) and DPow(H). Consider the sets Ai = {(u, v) ∈ V (DPow(G)) : out-deg((u, v))
divides |Gi|} and Bi = {(u′, v′) ∈ V (DPow(H)) : out-deg((u′, v′)) divides |Hi|} for i = 1, 2.
Recall that here the out-degree of a vertex is the order of the element and o((u, v)) = o(u)·o(v).
Since |G1|×|G2| = |G| and gcd(|G1|, |G2|) = 1, it is easy to see that Ai indeed corresponds to
V (DPow(Gi)) for i = 1, 2. Also, the subgraph of DPow(G1×G2) induced by Ai corresponds
to DPow(Gi) for i = 1, 2. Similarly, we can see that Bi corresponds to V (DPow(Hi)) and
the subgraph induced by Bi corresponds to DPow(Hi) for i = 1, 2. Now the isomorphism f

preserves the out-degrees of the vertices. We denote the restriction of f on Ai by fi. Then it
is easy to see that fi is a bijection from Ai to Bi. Also, there is only one element, namely
the identity element, of out-degree 1 (self-loop) and common in both A1 and A2. Also, that
element is unique in DPow(G). One can see that fi : V (DPow(Gi))→ V (DPow(Hi)) is an
isomorphism between DPow(Gi) and DPow(Hi), for all i = 1, 2. ◀

A.2 Algorithm to construct an isomorphic copy of Reduction graph
Here, we give a detailed description of the algorithm to construct R3(G) from R4(G) discussed
in Section 6.

As indicated in the idea behind the algorithm in Section 6 and in Line 12 of Algorithm 3,
vertices in the old graph and HD[col(gj)] are identified. In Claim 40 we show that these
vertices can be identified without conflict.

12 Here x and v are to be treated as the variables v and u in Lemma 14.
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Algorithm 3 To construct an isomorphic copy of R3(G) from R4(G).

Input: R4(G)
1: X1 ← HD[col(g1)]
2: j ← 2
3: while j ≤ m do
4: Introduce Yj = HD[col(gj)]
5: s← 1
6: hj,0 ← ∅ ▷ Mapping for vertex identification
7: while s ≤ j − 1 do
8: Consider I(s, j).
9: hj,s ← hj,s−1∪

{(u, v) : col(u) = col(v) where u ∈ Des(gs) ⊆ V (Xj−1) s.t col(u)
∣∣col(I(s, j)) and

v ∈ V (Yj)}
10: s← s + 1
11: end while
12: For all (u, v) ∈ hj,j−1 vertex-identify u and v and color the new vertex with col(u).
13: Xj ← The graph obtained after the above vertex identification of Xj−1 and Yj .
14: j ← j + 1
15: end while
16: Return Xm

▶ Lemma 38. The graph Xm returned by Algorithm 3 is isomorphic to R3(G).

Proof. We show by induction on j that the constructed graph up to the jth step is isomorphic
to the subgraph of R3(G) induced on Des(g1) ∪Des(g2) ∪ . . . ∪Des(gj). This shows that
after the mth iteration, we can get an isomorphic copy of R3(G).

▷ Claim 39. Xj
∼= R3(G)[Des(g1) ∪Des(g2) ∪ · · · ∪Des(gj)], ∀1 ≤ j ≤ m .

Proof of claim. For simplicity, we denote R3(G)[Des(g1)∪Des(g2)∪ · · · ∪Des(gj)] by R3(j)
in the remaining part of the proof. With this, R3(1) denotes R3(G)[Des(g1)].

By Remark 36, X1 = HD[col(g1)] is isomorphic to R3(1) by a unique isomorphism, say
f1. If we take f0 to be the empty map, then f1 extends f0.

We prove by induction on j that Xj is isomorphic to R3(j) = R3[Des(g1) ∪Des(g2) ∪
· · · ∪Des(gj)] via a map fj that extends the isomorphism fj−1.

By induction hypothesis, let us assume that Xj−1 ∼= R3(G)[Des(g1) ∪ · · · ∪Des(gj−1)]
and fj−1 is an isomorphism between Xj−1 and R3(j − 1) derived by extending fj−2. We
show that fj is an extension of fj−1 and fj is an isomorphism between Xj and R3(j).

However, before we go into the details of the inductive case, we address the following
important issue.

In the jth iteration of the outer while loop and just after the execution of Line 4 of
Algorithm 3, the current graph is the disjoint union of Xj−1 and Yj . Now to get Xj , some
vertices of Xj−1 and Yj are vertex-identified using the tuples stored in hj,j−1 as described in
Line 12 of Algorithm 3. Observe that two vertices in Yj cannot be identified with the same
vertex in Xj−1, because in Yj = HD[col(gj)], no two vertices have the same color. However,
there is a possibility that two or more vertices of Xj−1 are assigned to be identified with
the same vertex of Yj . We show that this case does not arise. To do this, we first define the
following sets:
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Yj,1 = {v ∈ V (Yj) : col(v)
∣∣col(I(1, j))}

Yj,s = Yj,s−1 ∪ {v ∈ V (Yj) : col(v)
∣∣col(I(s, j))}, s = 2, . . . , j − 1

Xj−1,1 = {u ∈ V (Xj−1) : u ∈ Des(g1) and col(u)
∣∣col(I(1, j))}

Xj−1,s = Xj−1,s−1 ∪ {u ∈ V (Xj−1) : u ∈ Des(gs) and col(u)
∣∣col(I(s, j))}, s = 2, . . . , j − 1

Now hj,j−1 is updated from hj,0 = ∅ by the following rule: hj,s = hj,s−1∪{(u, v) | col(u) =
col(v) where u ∈ Xj−1,s and v ∈ Yj,s} (as described in Line 9 in Algorithm 3)13. Since there
is a unique vertex of any particular color in Yj , we can see hj,s as a well-defined function from
Xj−1,s to Yj,s. Now to show that hj,j−1 gives a conflict-free vertex identification process, we
show that hj,s is a bijection and an extension of hj,s−1. Since hj,s−1 ⊆ hj,s, it is enough to
prove the following claim:

▷ Claim 40. The map hj,s : Xj−1,s −→ Yj,s is a bijection, for all 1 ≤ s ≤ j − 1.

Proof of claim: First, we show that hj,s is onto for all s = 1, . . . , j− 1. For this, take a vertex
v from Yj,s. Then col(v)|col(I(i, j)) for some i ≤ s. So,14 there exists a vertex u ∈ Des(gi)
in Xj−1,s such that col(u) = col(v) and hj,s(u) = v.

Now we prove that hj,s is one-to-one using induction on s. For the base case, it is easy
to see that hj,1 : Xj−1,1 −→ Yj,1 is a bijection since Xj−1,1 and Yj,1 contains colored vertices
corresponding to each divisor of col(I(1, j)) and color of each vertex is distinct. By induction
hypothesis we assume that hj,s−1 : Xj−1,s−1 −→ Yj,s−1 is a bijection. Now for the inductive
case, we consider hj,s : Xj−1,s −→ Yj,s. We need to prove that hj,s is one-one. Suppose
that u ∈ Xj−1,s is paired with v ∈ Yj,s to be stored at hj,s in the sth iteration of the inner
while loop (Line 9 of Algorithm 3). We need to argue that the pairing does not violate the
one-to-one condition. We do this in two cases.
Case 1: The vertex v was not encountered in any of the previous iterations, i.e., v /∈ Yj,s−1.

So by definition of Xj−1,s−1, there is no vertex of color col(v) in Xj−1,s−1. Since
col(u) = col(v), we have u ∈ Xj−1,s \ Xj−1,s−1. So, (u, v) is added to hj,s in the sth

iteration only, where v is in Yj,s. Therefore, Xj−1,s contains exactly one vertex of color
col(u). This implies that v cannot be paired with any vertex except u.

Case 2: The vertex v was encountered before the sth iteration, and i ≤ (s− 1) is the most
recent such iteration. This means that there exists u′ in the old graph (i.e., Xj−1,s−1)
such that hj,s−1(u′) = v. Since hj,s−1 is a bijection by induction hypothesis, u′ is the
only preimage of v under hj,s−1. We show that u = u′.
Observe that there is a vertex w ∈ Des(gs) in Xj−1 such that col(w) = col(I(s, j)). By the
algorithm, col(u)|col(I(s, j)). So, u ∈ Des(w). Similarly, there is a vertex w′ ∈ Des(gi)
in Xj−1 such that col(w′) = col(I(i, j)) and by the algorithm col(u′)|col(I(i, j)). So u′ ∈
Des(w′). Since col(u) = col(u′), col(u′)|col(I(i, j)) and col(u)|col(I(s, j)), we conclude
that col(u) divides gcd(col(I(i, j)), col(I(s, j))). So, by Claim 37, col(u)|col(I(i, s)).
Now we consider the subgraph of Xj−1 induced by Des(gi) ∩Des(gs). If x ∈ Des(gi) ∩
Des(gs) is the vertex with color col(I(i, s)), then this subgraph is formed by the descend-
ants of x. Since the descendants of x are exactly the vertices in Des(gi) and Des(gs)
with colors as factors of col(I(i, s)), both u and u′ are in Des(x). Now, Des(x) has a
unique vertex of a particular color. Therefore, as u and u′ have the same color, u = u′.

13 Note that when u ∈ Xj−1,j−1 is identified with v ∈ Yj,j−1, we color it with col(u) and for simplicity we
name the new vertex as u.

14 Since Xj−1 ∼= R3(j − 1), the concept of descendant reachability can also be defined in Xj−1. Therefore,
it makes sense to use Des(g) in Xj−1 for any vertex g.

FSTTCS 2024



20:22 The Isomorphism Problem of Power Graphs and a Question of Cameron

Hence, we have proved that hj,s is one-one in both the cases. Therefore, we can conclude
that hj,s : Xj−1,s → Yj,s is a bijection for all 1 ≤ s ≤ j − 1. ◁

From the above claim, we can conclude that in the jth iteration of the outer while loop,
the identification process done in Line 12 in Algorithm 3 via the mapping hj,j−1 is correct.
Next, we show that the graph Xj (output in Line 13), derived after the identification process
on Xj−1 and Yj , is indeed isomorphic to R3(j).

For j ≥ 2, we define fj : V (Xj) −→ V (R3(j)) in the following manner:

fj(x) =


fj−1(x) if x ∈ V (Xj−1)
y otherwise where y ∈ V (R3(j)) \ V (R3(j − 1))
and col(y) = col(x).

(1)

To show that fj is well defined, it is enough to argue that for each x ∈ V (Xj) \ V (Xj−1),
there exists a unique y ∈ V (R3(j)) \ V (R3(j − 1)) such that col(y) = col(x). Observe that
V (Xj) \ V (Xj−1) is the set of vertices of Yj = HD[col(gj)] that have not been identified in
the jth iteration. So, for any vertex x ∈ V (Xj) \ V (Xj−1), col(x) divides col(gj) but col(x)
does not divide col(I(i, j)) for any i < j. This means, for each such x, there exists y in
V (R3(j)) \ V (R3(j − 1)) with color col(x) and this y is unique since V (R3(j)) \ V (R3(j − 1))
contains the vertices of Des(gj) that are not descendant reachable from any gi where i < j.
The uniqueness of colors in Yj = HD[col(gj)] also implies that fj is a bijection.

Now to show that fj is an isomorphism between Xj and R3(j), it remains to show that
fj preserves edge relations between Xj and R3(j).

Here, we want to emphasize that it might happen that two vertices x, x′ in Xj−1 are not
adjacent to each other, but after the vertex identification process in the jth iteration, there
is an edge between x and x′ in Xj . Moreover, through the following claim, we want to show
that this incident has a correspondence in R3(j).

▷ Claim 41. Let x, x′ be two vertices in the old graph (i.e., Xj−1) that take part in the vertex
identification process in the jth iteration, i.e., x, x′ ∈ Xj−1,j−1. Then, {x, x′} /∈ E(Xj−1),
but {x, x′} ∈ E(Xj) if and only if {fj−1(x), fj−1(x′)} /∈ E(R3(j − 1)), but {fj(x), fj(x′)} ∈
E(R3(j)).

Proof of claim. As fj−1 is an isomorphism between Xj−1 and R3(j − 1), we have {x, x′} /∈
E(Xj−1) if and only if {fj(x), fj(x′)} /∈ E(R3(j − 1)).

Now, assume that {x, x′} /∈ E(Xj−1) but {x, x′} ∈ E(Xj). Since x, x′ ∈ Xj−1,j−1, the
vertices x, x′ get identified with some elements z, z′ respectively in Yj such that {z, z′} ∈ E(Yj).
Also, col(x) = col(z) = col(fj(x)) and col(x′) = col(z′) = col(fj(x′)). Since Yj = HD[col(gj)]
and {z, z′} ∈ E(Yj), by definition either col(z) = col(z′)·p or col(z′) = col(z)·p for some prime
p. Therefore, either col(fj(x)) = col(fj(x′)) ·p or col(fj(x′)) = col(fj(x)) ·p for some prime p.
Moreover, fj(x), fj(x′) ∈ Des(gj). Hence, by (2) of Remark 36, {fj(x), fj(x′)} ∈ E(R3(j)).

Conversely, assume that {fj(x), fj(x′)} ∈ E(R3(j)). Since x, x′ ∈ Xj−1,j−1, x and x′ must
have been identified with some vertices z and z′ in Yj respectively such that col(x) = col(z)
and col(x′) = col(z′). Now, because of (2) of Remark 36, {fj(x), fj(x′)} ∈ E(R3(j)) implies
either col(fj(x)) = col(fj(x′)) · p or col(fj(x′)) = col(fj(x)) · p for some prime p. Therefore,
either col(z) = col(z′) · p or col(z′) = col(z) · p. So, {z, z′} ∈ E(Yj). Hence, after the vertex
identification, {x, x′} ∈ E(X3(j)). ◁

Now to show the preservation of edge relations, we consider the following cases, not
necessarily disjoint:
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(a) Let x, x′ ∈ V (Xj−1), i.e., both the vertices are from the graph obtained in the previous
iteration of the outer while loop. Then, by definition of fj in 1, fj(x) = fj−1(x) and
fj(x′) = fj−1(x′). Since by induction hypothesis fj−1 is an isomorphism between Xj−1
and R3(j − 1), {x, x′} ∈ E(Xj−1) ⇐⇒ {fj−1(x), fj−1(x′)} ∈ E(R3(j − 1)). The
remaining case is covered by Claim 41.

(b) Let x, x′ be two vertices in Xj that appear in the “Yj-part” of Xj . More precisely, x, x′

belong to the disjoint union of V (Xj) \ V (Xj−1) ( which is the set of vertices which are
newly introduced in the jth iteration of the outer while loop but not identified in the
same ) and Xj−1,j−1 (which corresponds to the set of vertices that are the result of vertex
identification of Xj−1,j−1 and Yj,j−1 in the jth iteration). Since Yj = HD[col(gj)] ∼=
R3(G)[Des(gj)] by Remark 36, {x, x′} ∈ E(Xj) ⇐⇒ {fj(x), fj(x′)} ∈ E(R3(j)).

(c) Let x be a vertex from the old graph Xj−1 which has not been identified in the jth

iteration, i.e., x ∈ V (Xj−1) \ Xj−1,j−1. Let x′ be a newly added vertex that has not
been identified in the jth iteration, i.e., x′ ∈ V (Xj) \ V (Xj−1). It is not hard to see that
{x, x′} is not an edge of the disjoint union of Xj−1 and Yj ( before the identification
process ). Since none of x and x′ has taken part in the identification process in this
iteration, we have {x, x′} /∈ E(Xj). Now as fj is a bijection, we also have the following:
fj(x) ∈ V (R3(j − 1)) \Des(gj) and fj(x′) ∈ V (R3(j)) \ V (R3(j − 1)). Since fj(x) and
fj(x′) are not in same Des(u) for any vertex u in R3(j), {fj(x), fj(x′)} is not an edge
in R3(j). Thus, it is proved that fj is an isomorphism between Xj and R3(j). So, we
can conclude that Xm

∼= R3(m). It is easy to see that R3(m) is R3(G). This concludes
the proof of Claim 39. ◁

Hence, the algorithm is correct, and we can return an isomorphic copy of R3(G) from
R4(G). ◀
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