
A Myhill-Nerode Style Characterization for Timed
Automata with Integer Resets
Kyveli Doveri #

University of Warsaw, Poland

Pierre Ganty #

IMDEA Software Institute, Pozuelo de Alarcón, Madrid, Spain

B. Srivathsan #

Chennai Mathematical Institute, India
CNRS IRL 2000, ReLaX, Chennai, India

Abstract
The well-known Nerode equivalence for finite words plays a fundamental role in our understanding of
the class of regular languages. The equivalence leads to the Myhill-Nerode theorem and a canonical
automaton, which in turn, is the basis of several automata learning algorithms. A Nerode-like
equivalence has been studied for various classes of timed languages.

In this work, we focus on timed automata with integer resets. This class is known to have good
automata-theoretic properties and is also useful for practical modeling. Our main contribution is a
Nerode-style equivalence for this class that depends on a constant K. We show that the equivalence
leads to a Myhill-Nerode theorem and a canonical one-clock integer-reset timed automaton with
maximum constant K. Based on the canonical form, we develop an Angluin-style active learning
algorithm whose query complexity is polynomial in the size of the canonical form.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Timed languages, Timed automata, Canonical representation, Myhill-Nerode
equivalence, Integer reset

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.21

Related Version Full Version: https://arxiv.org/abs/2410.02464 [9]

Funding Kyveli Doveri: Supported by the ERC grant INFSYS, agreement no. 950398. Results
partly obtained when previously affiliated with the IMDEA Software Institute.
Pierre Ganty: This publication is part of the grant PID2022-138072OB-I00, funded by
MCIN/AEI/10.13039/501100011033/FEDER, UE.

1 Introduction

A cornerstone in our understanding of regular languages is the Myhill-Nerode theorem. This
theorem characterizes regular languages in terms of the Nerode equivalence ∼L: for a word
w we write w−1L = {z | wz ∈ L} for the residual language of w w.r.t. L; and for two words
u, v we say u ∼L v if u−1L = v−1L.

▶ Theorem 1.1 (Myhill-Nerode theorem). Let L be a language of finite words.
L is regular iff the Nerode equivalence has a finite index.
The Nerode equivalence is coarser than any other monotonic L-preserving equivalence.

An equivalence is said to be monotonic if u ≈ v implies ua ≈ va for all letters a and
is L-preserving if each equivalence class is either contained in L or disjoint from L. 1 An
equivalence over words being monotonic makes it possible to construct an automaton with

1 The exact term would be “right monotonic” because it only considers concatenation to the right of the
word. Throughout the paper we simply write monotonic to keep it short but we mean right monotonic.

© Kyveli Doveri, Pierre Ganty, and B. Srivathsan;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 21; pp. 21:1–21:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:k.doveri@mimuw.edu.pl
https://orcid.org/0000-0001-9403-2860
mailto:pierre.ganty@imdea.org
https://orcid.org/0000-0002-3625-6003
mailto:sri@cmi.ac.in
https://orcid.org/0000-0003-2666-0691
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.21
https://arxiv.org/abs/2410.02464
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

qI q

a, x = 1, 1
a, x < 1, 1 a, x = 1, 1

Figure 1 Automaton accepting L = {(t1 · a) . . . (tn · a) | t1 + · · · + tn = 1} with alphabet Σ = {a}.

states being the equivalence classes. The Nerode equivalence being the coarsest makes the
associated automaton the minimal (and a canonical) deterministic automaton for the regular
language. Our goal in this work is to obtain a similar characterization for certain subclasses
of timed languages.

Timed languages and timed automata were introduced by Alur and Dill [1] as a model
for systems with real-time constraints between actions. Ever since its inception, the model
has been extensively studied for its theoretical aspects and practical applications. In this
setting, words are decorated with a delay between consecutive letters. A timed word is a
finite sequence (t1 · a1)(t2 · a2) · · · (tn · an) where each ti ∈ R≥0 and each ai is a letter taken
from a finite set Σ called an alphabet. A timed word associates a time delay between letters:
a1 was seen after a delay of t1 from the start, the next letter a2 appears t2 time units after
a1, and so on. Naturally, a timed language is a set of timed words. A timed automaton
is an automaton model that recognizes timed languages. Figures 1 and 2 present some
examples (formal definitions appear later). In essence, a timed automaton makes use of
clocks to constrain time between the occurrence of transitions. In Figure 1, the variable x

denotes a clock. The transition labels are given by triples comprising a letter (e.g. a), a clock
constraint (e.g. x = 1), and a multiplicative factor (0 or 1) for the clock update. Intuitively,
the semantics of the transition from qI to q is as follows: the automaton reads the letter a

when the value of the clock held in x is exactly 1 and updates the clock value to 1 × x. If
the third element of the transition label is 0, then the transition updates the value of x to
0 × x = 0. We refer to the second element of the transition label as the transition guard
and the third element as the reset. It is worth mentioning that the transition guards feature
constants given by integer values, meaning that a guard like x = 0.33 is not allowed. Next,
we argue how challenging it is to define a Nerode-style equivalence for timed languages.

Challenge 1. The Nerode equivalence lifted as it is has infinitely many classes. For example,
the timed automaton of Figure 1 accepts a timed word (t1 ·a) . . . (tn ·a) as long as t1+· · ·+tn =
1. The timed language L of that automaton has infinitely many quotients. Indeed let
0 < t1 < 1, we have that (t1 · a)−1L = {(t2 · a) . . . (tn · a) | t2 + · · · + tn = 1 − t1}. Observe
that different values for t1 yield different quotients, hence L has uncountably many quotients.

Challenge 2. Two words with the same residual languages may never go to the same control
state in any timed automaton. Figure 2 gives an example of a timed language that exhibits
this challenge. Consider the words u = (0.5 · a) and v = (1.5 · a). The residual of both these
words is the singleton language {(0.5 · b)}. Suppose both u and v go to the same control
state q in the timed automaton. After reading u (resp. v), clocks which are possibly reset
will be 0, whereas the others will be 0.5 (resp. 1.5). Suppose v is accepted via a transition
sequence qI −→ q −→ qF . Since guards contain only integer constants, the guard on q −→ qF

should necessarily be of the form x = 2 for some clock x which reaches q with value 1.5. The
same transition can then be taken from u to give u(2 · b) or u(1.5 · b) depending on the value
of x after reading u. A contradiction. This example shows there is no hope to identify states
of a timed automaton through quotients of a Nerode-type equivalence. The equivalence that
we are aiming for needs to be stronger, and further divide words based on some past history.

K. Doveri, P. Ganty, and B. Srivathsan 21:3

q0

q1

q2

q3
a, 0 < x < 1, 1

a, 1 < x < 2, 1

b, x = 1, 0

b, x = 2, 0

Figure 2 Automaton accepting L2 = {(t1 · a)(t2 · b) | either 0 < t1 < 1 and t1 + t2 = 1, or 1 <

t1 < 2 and t1 + t2 = 2} with alphabet Σ = {a, b}.

Challenge 3. The Nerode-style equivalence should be amenable to a timed automaton con-
struction. In the case of untimed word languages, monotonicity of the Nerode equivalence
immediately led to an automaton construction. We need to find the right notion of monoton-
icity for the class of automata that we want to build from the equivalence.

A machine independent characterization for deterministic timed languages has been
studied by Bojańczyk and Lasota [6]. They circumvented the above challenges by considering
a new automaton model timed register automata that generalizes timed automata. This
automaton model makes use of registers to store useful information, for instance for the
language in Figure 2, a register stores the value 0.5 after reading (0.5 · a) and (1.5 · a).
This feature helps in resolving Challenge 2. For the question of finiteness mentioned in
Challenge 1, timed register automata are further viewed as a restriction of a more general
model of automata that uses the abstract concept of Frankel-Mostowski sets in its definition.
Finiteness is relaxed to a notion of orbit-finiteness.

The work of An et al. [3] takes another approach to these challenges by considering a
subclass of timed languages which are called real-time languages. These are languages that
can be recognized using timed automata with a single clock that is reset in every transition.
Therefore, after reading a letter, the value of the clock is always 0. This helps in solving the
challenges, resulting in a canonical form for real-time languages.

Our work. As we have seen, to get a characterization which also lends to an automaton
construction, either the automaton model has been modified or the characterization is applied
to a class of languages where the role of the clock is restricted to consecutive letters. Our goal
is to continue working with the same model as timed automata and apply a characterization
to a different subclass.

In this work, we look at languages recognized by timed automata with integer resets
(IRTA). These are automata where clock resets are restricted to transitions that contain a
guard of the form x = c for some clock x and some integer c [17]. The class of languages
recognized by IRTA is incomparable with real-time languages. Moreover, it is known that
IRTA can be reduced to 1-clock-deterministic IRTA [15], or 1-IRDTA for short. The proof of
this result effectively computes, given an IRTA, a timed language equivalent 1-IRDTA. Here
is our main result which gives a Myhill-Nerode style characterization for IRTA languages.

▶ Theorem 1.2. Let L be a timed language.
L is accepted by a timed automaton with integer resets iff there exists a constant K such
that ≈L,K is K-monotonic and has a finite index.
The ≈L,K equivalence is coarser than any K-monotonic L-preserving equivalence.

Intuitively, one should think of K as the largest integer that needs to appear in the guards
of an accepting automaton. The goal of the paper is to identify the notion of K-monotonicity
and the equivalence ≈L,K that exhibit the above theorem. The characterization also leads
to a canonical form for IRTA. In practice, the integer reset assumption allows for modeling
multiple situations [17].

FSTTCS 2024

21:4 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

To the best of our knowledge, there is no learning algorithm that can compute an IRTA
for systems that are known to satisfy the integer reset assumption. We fill this gap and show
how Angluin’s style learning [4] can be adapted to learn 1-IRDTA.

Related work. Getting a canonical form for timed languages has been studied in several
works: [6] and [14] focus on a machine independent characterization for deterministic timed
languages, whereas the works [10, 3, 21] extend the study of the canonical forms to an
active learning algorithm. Languages accepted by event-recording automata are a class of
languages where the value of the clocks is determined by the input word. This helps in
coming up with a canonical form [10]. In [21], the author presents a Myhill-Nerode style
characterization for deterministic timed languages by making use symbolic words rather
than timed words directly. The author shows that the equivalence has a finite index iff the
language is recognizable (under the notion of recognizability using right-morphisms proposed
by Maler and Pnueli [14]). Further, Maler and Pnueli have given an algorithm to convert
recognizable timed languages to deterministic timed automata, which resets a fresh clock in
every transition and makes use of clock-copy updates x := y in the transitions. It is known
that automata with such updates can be translated to classical timed automata [16, 7].

Learning timed automata is a topic of active research. The foundations of timed automata
learning were laid in the pioneering work of Grinchtein et al. [10] by providing a canonical
form for event-recording automata (ERAs). These are automata having a clock for each letter
in the alphabet, and a clock xa records the time since the last occurrence of a. The canonical
form essentially considers a separate state for each region. Since there are as many clocks
as the number of letters, there are at least |Σ|! number of regions. This makes the learning
algorithm prohibitively expensive to implement. In contrast, as we will see, we are able to
convert IRTAs into a subclass of single-clock IRTAs. If K is the maximum constant, there
are only 2K + 2 many regions. Later works on learning ERAs have considered identifying
other forms of automata that merge the states of the canonical form [12, 11, 13]. Other
models for learning timed systems consider one-clock timed automata [22, 2] and Mealy
machines with timers [8, 19]. Approaches other than active learning for timed automata
include passive learning of discrete timed automata [20] and learning timed automata using
genetic programming [18].

We have considered a subclass of deterministic timed languages. Therefore, our class
does fall under the purview of the [21, 14] work – however, the fundamental difference is
that we continue to work with timed words and not symbolic timed words. This gives an
alternate perspective and a direct and simpler 1-clock IRTA construction. The simplicity
and directness also apply when it comes to learning 1-clock IRTA.

Outline of the paper. In Section 3, we define the class of one-clock languages with integer
resets, and their acceptors thereof: the 1-clock Timed Automata (or 1-TA) with clock
constraints given by region equivalence classes and transitions that always reset on integer
clock values. Section 4 puts forward a notion of K-monotonicity and characterizates K-
monotonic equivalences as a certain type of integer reset automata. Subsequently, Section 5
presents the Nerode-style equivalence, the Myhill-Nerode theorem and some examples applying
the theorem. Finally, in Section 6, we give an algorithm to compute and learn the canonical
form.

K. Doveri, P. Ganty, and B. Srivathsan 21:5

2 Background

Words and languages. An alphabet is a finite set of letters which we typically denote by
Σ. An untimed word is a finite sequence a1 · · · an of letters ai ∈ Σ. We denote by Σ∗ the
set of untimed words over Σ. An untimed language is a subset of Σ∗. A timestamp is a
finite sequence of non-negative real numbers. We denote the latter set by R≥0 and the
set of all timestamps by T. A timed word is a finite sequence (t1 · a1) · · · (tn · an) where
a1 · · · an ∈ Σ∗ and t1 · · · tn ∈ T. We denote the set of timed words by TΣ∗. Given a timed
word u = (t1 ·a1) . . . (tn ·an) ∈ TΣ∗ we denote by σ(u) the sum t1 + · · ·+ tn of its timestamps.
A timed language is a set of timed words. As usual, we denote the empty (un)timed word
by ϵ. The residual language of an (un)timed language L with regard to a (un)timed word
u is defined as u−1L = {w | uw ∈ L}. Therefore it is easy to see that ϵ−1L = L for every
(un)timed language L.

Timed automata [1] are recognizers of timed languages. Since we focus on subclasses
of timed automata with a single clock, we do not present the definition of general timed
automata. Instead, we give a modified presentation of one-clock timed automata that will be
convenient for our work.

One-clock timed automata. A One-clock Timed Automaton (1-TA) over Σ is a tuple
A = (Q, qI , T, F) where Q is a finite set of states, qI ∈ Q is the initial state, F ⊆ Q is the
set of final states and T ⊆ Q × Q × Σ × Φ × {0, 1} is a finite set of transitions where Φ is the
set of clock constraints given by

ϕ ::= x < m | m < x | x = m | ϕ ∧ ϕ , where m ∈ N.

For a clock constraint ϕ, we write JϕK for the set of non-negative real values for x that
satisfies the constraint. Notice that we have disallowed guards of the form x ≤ m which
appear in standard timed automata literature, since its effect can be captured using two
transitions, one with x = m and another with x < m. A transition is a tuple (q, q′, a, ϕ, r)
where ϕ is a clock constraint called the guard of the transition and r ∈ {0, 1} denotes whether
the single clock x is reset in the transition.

We say that a 1-TA with transitions T is deterministic whenever for every pair θ =
(q, q′, a, ϕ, r) and θ1 = (q1, q′

1, a1, ϕ1, r1) of transitions in T such that θ ̸= θ1 we have that
either q ̸= q1, a ̸= a1 or JϕK ∩ Jϕ1K = ∅.

A run of A on a timed word (t1 · a1) . . . (tk · ak) ∈ TΣ∗ is a finite sequence

e = (q0, ν0) t1,θ1−−−→ (q1, ν1) t2,θ2−−−→ · · · tk,θk−−−→ (qk, νk) ,

where {q0, . . . , qk} ⊆ Q, {ν0, . . . , νk} ⊆ R≥0 and for each i ∈ {1, . . . , k} the following
hold: θi ∈ T and θi is of the form (qi−1, qi, ai, ϕi, ri), νi−1 + ti ∈ JϕiK, and νi = ri(νi−1 + ti).
Therefore if ri = 0, we have νi = 0 and if ri = 1 we have νi = νi−1+ti. A pair (q, ν) ∈ Q×R≥0
like the ones occurring in the run e is called a configuration of A and the configuration (qI , 0)
is called initial. The run e is deemed accepting if qk ∈ F .

For w ∈ TΣ∗ we write (q, ν)⇝w (q′, ν′) if there is a run of A on w from (q, ν) to (q′, ν′).
Observe that if A is deterministic then for every timed word w there is at most one run on
w starting from the initial configuration. We say that A is complete if every word admits a
run. In the rest, we will always assume, without loss of generality, that our timed automata
are complete. Finally, given a configuration (q, x) define L(q, x) = {w ∈ TΣ∗ | (q, x) ⇝w

(p, ν), p ∈ F, ν ∈ R≥0}, hence define L(A) as L(qI , 0).

FSTTCS 2024

21:6 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

Equivalence relation. A relation ∼ ⊆ S × S on a set S is an equivalence if it is reflexive (i.e.
x ∼ x), transitive (i.e. x ∼ y ∧ y ∼ z =⇒ x ∼ z) and symmetric (i.e. x ∼ y =⇒ y ∼ x).
The equivalence class of s ∈ S w.r.t. ∼ is the subset [s]∼ = {s′ ∈ S | s ∼ s′}. A
representative of the class [s]∼ is any element s′ ∈ [s]∼. Given a subset D of S we define
[D]∼ = {[d]∼ | d ∈ D}. We say that ∼ has finite index when [S]∼ is a finite set. An
important notion in the analysis of timed automata is the region equivalence which we recall
next for one-clock timed automata.

Region equivalence. Given a constant K ∈ N define the equivalence ≡K ⊆ R≥0 × R≥0 by

x ≡K y ⇐⇒
(
⌊x⌋ = ⌊y⌋ ∧ ({x} = 0 ⇔ {y} = 0)

)
∨ (x > K ∧ y > K) ,

where given x ∈ R≥0 we denote by ⌊x⌋ its integral part and by {x} its fractional part.

3 Languages with Integer Resets

We are interested in timed languages recognized by IRTAs. It is known that IRTAs can
be converted to 1-clock deterministic IRTAs [15]. The key idea is that in any reachable
valuation of an IRTA, all clocks have the same fractional value. Therefore, the integral values
of all clocks can be encoded inside the control state, and the fractional values can be read
from a single clock. In the sequel, we simply define IRTAs with a single clock, due to the
equi-expressivity.

We define the class of one-clock integer-reset timed automata (1-IRTA) where transitions
reset the clock provided its value is an integer. Formally, we say that a 1-TA A = (Q, qI , T, F)
is a 1-IRTA when for every resetting transition (q, q′, a, ϕ, 0) ∈ T the clock constraint ϕ is of
the form x = m, or, equivalently, JϕK ∈ N. A deterministic 1-IRTA is called a 1-IRDTA.

▶ Example 3.1. The one-clock timed automata in Figures 1, 2 and 3 are all 1-IRTAs.

The definition of a run of a 1-IRTA on a timed word simply follows that of 1-TA. However,
for 1-IRTA, we can identify positions in input timed words where resets can potentially
happen. The next definition makes this idea precise.

▶ Definition 3.2. Given d = t1 · · · tn ∈ T and a K ∈ N, we define the longest sequence of
indices sd = {0 = i0 < i1 < · · · < ip ≤ n} such that for every j ∈ {0, . . . , p − 1} the value∑i(j+1)

i=(ij)+1 ti is an integer between 0 and K. We refer to the set of positions of the sequence
sd as the integral positions of d. Note that sd is never empty since it always contains 0.
Next, define

cK(d) =
n∑

i=(ip)+1

ti .

The definitions of integral positions and the function cK apply equally to timed words by
taking the timestamp of the timed word.

Notice that the sequence sd depends on the constant K (we do not explicitly add K to the
notation for simplicity, as in our later usage, K will be clear from the context). Note also
that when ip = n then cK(d) = 0, otherwise cK(d) can be any real value except an integer
value between 0 and K, i.e. cK(d) ∈ R≥0 \ {0, . . . , K}.

K. Doveri, P. Ganty, and B. Srivathsan 21:7

a, x = 0, 0 a, 0 < x < 1, 1

a, x = 1, 0

a, 1 < x, 1
a, 0 < x < 1, 1

a, x = 1, 0

a, 1 < x, 1

a, 1 < x, 1

Figure 3 A strict 1-IRTA with alphabet Σ = {a} accepting M = {u ∈ TΣ∗ | c1(u) = 0}.

▶ Example 3.3. For K = 1 and u = (0.2 · a)(0.8 · a)(0.2 · a) we have su = {0 < 2} and
c1(u) = 0.2. For K = 1 and u′ = (1.2 · a)(0.8 · a)(0.2 · a) we have su′ = {0} and c1(u′) = 2.2.
For K = 2, we have su′ = {0 < 2} and c2(u′) = 0.2.

Consider a run of a 1-IRTA on a word u = (t1 · a1) · · · (tn · an) ∈ TΣ∗ and factor it according
to su = {0 = i0 < i1 < · · · < ip ≤ n}:

(qi0 , νi0)
t(i0)+1,θ(i0)+1···ti1 ,θi1−−−−−−−−−−−−−−−→ (qi1 , νi1)

t(i1)+1,θ(i1)+1···ti2 ,θi2−−−−−−−−−−−−−−−→ (qi2νi2) −→ · · ·

−→ (qip
, νip

)
t(ip)+1,θ(ip)+1···tn,θn

−−−−−−−−−−−−−−→ (qn, νn)

At each position ij with j ∈ {0, . . . , p}, νij ∈ N and, moreover, νij = 0 when rij = 0.
In Definition 3.2 we identified the integral positions at which a 1-IRTA could potentially

reset the clock. In the following, we recall a subclass of 1-IRTAs called strict 1-IRTAs [5]
where every transition with an equality guard ϕ (ϕ is of the form x = m or, equivalently,
JϕK ∈ N) must reset the clock. This feature, along with a special requirement on guards
forces a reset on every position given by su for a word u.

Strict 1-IRTA
A 1-IRTA is said to be strict if there exists K ∈ N such that for each of its transitions
(q, q′, a, ϕ, r) the following holds:
1. the clock constraint of the guard ϕ is either x = m, m < x ∧ x < m + 1, or K < x,
2. the clock constraint of the guard ϕ is an equality iff r = 0.

▶ Example 3.4. The 1-IRTA in Figures 2 and 3 are strict 1-IRTAs whereas the one in Figure 1
is not strict since the transition qI

a,x=1,1−−−−−→ q does not reset the clock. To make it strict
while accepting the same language, we replace the transitions of guard x = 1 by resetting
transitions of guard x = 0 and, split the transition qI

a,x<1,1−−−−−→ qI into qI
a,0<x<1,1−−−−−−−→ qI and

qI
a,x=0,0−−−−−→ qI .

A run of a strict 1-IRTA on a word u can be factored similarly as explained for a general
1-IRTA, however now, every rij will be a reset transition: notice that we require each
transition to be guarded using constraints of a special form, either x = m or m < x < m + 1
or K < x; therefore, the transition reading (ti1 , ai1) will necessarily have an equality guard
x = m forcing a reset, similarly at i2 and so on. Therefore, the sequence su identifies the
exact reset points in the word, no matter which strict 1-IRTA reads it. The quantity cK(u)
gives the value of the clock on reading u by any strict 1-IRTA. This input-determinism is
a fundamental property of strict 1-IRTAs that helps in the Myhill-Nerode characterization
that we present in the later sections.

FSTTCS 2024

21:8 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

The question now is how expressive are strict 1-IRTAs. As shown by the proposition
below, every language definable by a 1-IRTA is also definable by a strict 1-IRTA. Therefore,
we could simply consider strict 1-IRTAs instead of 1-IRTAs. Even though a proof of this
equi-expressivity theorem is known [5] we provide one in the full version [9].

▶ Proposition 3.5 (see also Theorem 1 [5]). A language accepted by a (deterministic) 1-IRTA
is also accepted by a (deterministic) strict 1-IRTA with no greater constant in guards.

4 From Equivalences to Automata and Back

We start the study of equivalences for languages accepted by integer reset automata. Pro-
position 3.5 says that every IRTA language can be recognized by a strict 1-IRDTAs. There
are two advantages of strict 1-IRDTAs: there is a single clock; and the value of the clock on
reading the word is simply determined by the word and not by the automaton that is reading
it. This motivates us to restrict our attention to equivalences that make use of the quantity
cK(u), and from which one can construct a strict 1-IRDTA with states as the equivalence
classes. In order to be able to do so, we need a good notion of monotonicity (Challenge 3 of
the Introduction).

Intuitively, the equivalence should satisfy two conditions whenever u is equivalent to v:
(1) when u can elapse time and satisfy a guard, v should be able to elapse some time and
satisfy the same guard, and (2) all one step extensions of u and v, say u′ = u(t · a) and
v′ = v(t′ · a) such that the clock values cK(u′) and cK(v′) satisfy the same set of guards
w.r.t constant K, should be made equivalent. Each guard in a strict 1-IRDTA represents a
K-region. All these remarks lead to the following definition of K-monotonicity.

▶ Definition 4.1 (L-preserving, K-monotonic). An equivalence ≈ ⊆ TΣ∗ × TΣ∗ is L-
preserving when u ≈ v =⇒ (u ∈ L ⇐⇒ v ∈ L). Given a constant K ∈ N, ≈ ⊆ TΣ∗ × TΣ∗

is K-monotonic when u ≈ v implies:
(a) cK(u) ≡K cK(v), and
(b) ∀a ∈ Σ, ∀t, t′ ∈ R≥0 : cK(u) + t ≡K cK(v) + t′ =⇒ u(t · a) ≈ v(t′ · a).

From a K-monotonic equivalence, we can construct a strict 1-IRDTA whose states are
the equivalence classes. Here is additional notation. For a number t ∈ R≥0, we define a clock
constraint ϕ([t]≡K) as:

ϕ([t]≡K) =

x = t if t ≤ K ∧ t ∈ N ,

⌊t⌋ < x ∧ x < ⌊t⌋ + 1 if t ≤ K ∧ t /∈ N ,

K < x if K < t .

▶ Definition 4.2 (From equivalence ≈ to strict 1-IRDTA A≈). Let L ⊆ TΣ∗, K ≥ 0, and ≈ a
K-monotonic, L-preserving equivalence with finite index. The strict 1-IRDTA A≈ has states
{[u]≈ | u ∈ TΣ∗}. The initial state is [ϵ]≈. Final states are {[u]≈ | u ∈ L}. Between two
states [u]≈ and [v]≈ there is a transition ([u]≈, [v]≈, a, g, s) if there exists t ∈ R≥0 such that:

u(t · a) ≈ v, and
g = ϕ([cK(u) + t]≡K), and
s = 0 if cK(u) + t ∈ {0, 1, . . . , K} and s = 1 otherwise.

We now explain why the above definition does not depend on the representative picked
from an equivalence class. Suppose ([u]≈, [v]≈, a, g, s) is a transition. Let t ∈ R≥0 be a value
which witnesses the transition, that is, it satisfies the conditions of the above definition.

K. Doveri, P. Ganty, and B. Srivathsan 21:9

Pick another word u′ equivalent to u, that is, u ≈ u′. By Definition 4.1 (a), we have
cK(u) ≡K cK(u′). Therefore, there exists t′ such that cK(u) + t ≡K cK(u′) + t′. Moreover
by (b), u′(t′ · a) ≈ u(t · a), and hence u′(t′ · a) ≈ v. Therefore, we observe that even if we
had chosen u′ instead of u, we get a witness t′ for the same transition ([u]≈, [v]≈, a, g, s).

▶ Lemma 4.3. Let ≈ be an L-preserving, K-monotonic equivalence with finite index. Then
L(A≈) = L.

Proof. By induction on the length of the timed words we show that for every u ∈ TΣ∗,
([ϵ]≈, 0) ⇝u ([u]≈, cK(u)). Let u(t · a) ∈ TΣ∗. Assume ([ϵ]≈, 0) ⇝u ([u]≈, cK(u)). By
definition of A≈, there is a transition ([u]≈, [u(t · a)]≈, a, g, s) such that g = ϕ([cK(u) + t]≡K)
and, s = 0 if cK(u) + t ∈ {0, 1, . . . , K} and s = 1 otherwise. Since cK(u(t · a)) = (cK(u) + t)s
we deduce that ([ϵ]≈, 0)⇝u ([u]≈, cK(u))⇝(t·a) ([u(t · a)]≈, cK(u(t · a))). Finally, since ≈ is
L-preserving, a word is in L iff A≈ accepts it. ◀

We now look at the reverse question of obtaining a monotonic equivalence from an
automaton. Given a complete strict 1-IRDTA B, we define an equivalence ≈B as u ≈B v

if B reaches the same (control) state on reading u and v from its initial configuration.
If K is the maximum constant appearing in B, it is tempting to think that ≈B is a K-
monotonic equivalence. However ≈B need not satisfy condition (a) of Definition 4.1. For
instance, consider a strict 1-IRDTA B which has two self-looping transitions in its initial state:
q

a,x=0,0−−−−−→ q and q
a,0<x<1,1−−−−−−−→ q. Observe that (0 · a) ≈B (0.5 · a), but c1((0 · a)) ̸= c1((0.5 · a)).

Therefore, the state-based equivalence ≈B needs to be further refined in order to satisfy
monotonicity. This leads us to define an equivalence ≈K

B as: u ≈K
B v if u ≈B v and

cK(u) = cK(v).

▶ Lemma 4.4. Let B be a complete strict 1-IRDTA with maximum constant K. The
equivalence ≈K

B is L(B)-preserving, K-monotonic and has finite index.

Proof. The equivalence ≈K
B is L(B)-preserving because equivalent words reach the same

state in B, thus either both are accepted or both are rejected. It has finite index because the
number of its equivalence classes is bounded by the number of states of B multiplied by the
number of K regions. Condition (a) and (b) of Def. 4.1 respectively hold by definition of
≈K

B and since B is deterministic. ◀

The goal of the section was to go from equivalences to automata and back. Lemma 4.3 talks
about equivalence-to-automata. For the automata-to-equivalence, we needed to strengthen
the state-based equivalence with the region equivalence. A close look at A≈ of Definition 4.2
reveals whenever u ≈ v, we also have cK(u) ≡K cK(v). So, in the equivalence-to-automata,
we get an automaton satisfying a stronger property. This motivates us to explicitly highlight
a class of strict 1-IRDTAs where each state can be associated with a unique region. For this
class, we will be able to go from equivalence-to-automata-and-back directly.

▶ Definition 4.5 (K-acceptor). A K-acceptor B is a complete strict 1-IRDTA with maximum
constant smaller than or equal to K such that for every u, v ∈ TΣ∗, u ≈B v implies
cK(u) ≡K cK(v). Hence every state q of B can be associated to a unique K-region, denoted,
region(q), i.e., whenever (qI , 0)⇝w (q, cK(w)) then cK(w) ∈ region(q).

Every strict 1-IRDTA B with maximum constant K can be converted into a K-acceptor by
starting with the equivalence ≈K

B and building A≈K
B

. Furthermore K-monotonic equivalences
characterize K-acceptors (Lemmas 4.3 and 4.4). Therefore, for the rest of the document, we

FSTTCS 2024

21:10 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

will restrict our focus to K-acceptors. As a next task, we look for the coarsest possible K-
monotonic equivalence for a language. This will give a minimal K-acceptor for the language,
which we deem to be the canonical integer reset timed automaton, with maximum constant
K, for the language.

5 A Nerode-style Equivalence

In the previous section, we have established generic conditions required from an equivalence
to construct a K-acceptor from it. In this section, we will present a concrete such equivalence:
given a language L definable by a 1-IRTA with a maximum constant K ∈ N we define a
syntactic equivalence ≈L,K ⊆ TΣ∗ × TΣ∗. “Syntactic” means this equivalence is independent
of a specific representation of L. We then show that ≈L,K is the coarsest L-preserving and
K-monotonic equivalence.

The idea for defining ≈L,K is to identify two words u and u′ whenever cK(u) ≡K cK(u′)
and the residuals u−1L and u′−1L coincide modulo some rescaling w.r.t. cK(u) and cK(u′).
We start with examples to give some intuition behind the rescaling function.

Examples. Consider an automaton segment q0
a,0<x<1,1−−−−−−−→ q1

b,x=1,0−−−−−→ q2
c,0<x<1,1−−−−−−−→ q3, with

q3 being an accepting state. The words u = (0.2 · a) and v = (0.6 · a) both go to state q1.
Let us assume that all other transitions go to a sink state, and also that the maximum
constant K = 1. The language L accepted is {(t1 · a)(t2 · b)(t3 · c)} where 0 < t1 < 1,
t1 + t2 = 1 and 0 < t3 < 1. Moreover, u−1L = {(0.8 · b)(t3 · c) | 0 < t3 < 1} and
v−1L = {(0.4 · b)(t3 · c) | 0 < t3 < 1}. Here we want to somehow “equate” the residual
languages u−1L and v−1L. The idea is to define a bijection between these two sets u−1L and
v−1L. In this case, the bijection maps (0.8 · b)(t3 · c) to (0.4 · b)(t3 · c) for every t3. Observe
that given u, v the bijection depends on the values cK(u) and cK(v), which in this example
are 0.2 and 0.6 respectively.

Here is another example. Let u1, v1 be words with cK(u1) = 0.2 and cK(v1) = 0.6. Let
u−1

1 L = {(t1 · a)(t2 · b)(t3 · c)(t4 · d) | cK(u1) + t1 + t2 + t3 = 1} and v−1
1 L = {(t′

1 · a)(t′
2 · b)(t′

3 ·
c)(t′

4 · d) | cK(v1) + t′
1 + t′

2 + t′
3 = 1}. The bijection in this case is more complicated than the

previous example. The idea is to first start with cK(u1) = 0.2, cK(v1) = 0.6 and consider
a bijection f of the open unit interval (0, 1) that maps the intervals (0, 0.8] and (0.8, 1)
to (0, 0.4] and (0.4, 1) respectively. This bijection is essentially a rescaling of the intervals
(0, 1 − cK(u1)] and (1 − cK(u1), 1) into the intervals (0, 1 − cK(v1)]) and (1 − cK(v1), 1). We
now pick the first letters in the residual languages u−1

1 L and v−1L and create a mapping:
(t1 · a) 7→ (f(t1) · a). Now we consider cK(u1(t1 · a)) and cK(v1(f(t1) · a)) in the place of
cK(u1), cK(v1), and continue the mapping process one letter at a time.

Rescaling function. We will now formalize this idea. We will start with bijections of the
open unit interval.

Let λ, λ′ ∈ (0, 1) be arbitrary real values. Define a bijection fλ→λ′ : (0, 1) → (0, 1) that
scales the (0, λ] interval to (0, λ′] and the (λ, 1) interval to (λ′, 1):

fλ→λ′(t) =

(

λ′

λ

)
t for 0 < t ≤ λ

λ′ + (1 − λ′)
(1 − λ) (t − λ) for λ < t < 1

K. Doveri, P. Ganty, and B. Srivathsan 21:11

Now, consider x, x′ ∈ R≥0 such that x ≡K x′. We define a length-preserving bijection
τx→x′ : T → T inductively as follows: for the empty sequence ϵ, we define τx→x′(ϵ) = ϵ; for a
timestamp d ∈ T and a t ∈ R≥0, τx→x′(dt) = d′t′ where d′ = τx→x′(d) and t′ is obtained as
follows: let y = cK(xd) and y′ = cK(x′d′). If y, y′ ∈ N or y, y′ > K, then define t′ = t. Else,
define ⌊t′⌋ = ⌊t⌋ and {t′} = f(1−{y})→(1−{y′})({t}).

Here is an additional notation, before we describe some properties of the rescaling
function. For x1, x2, x3 ∈ R≥0 with x1 ≡K x2 ≡K x3, we denote the composed function
(τx2→x3) ◦ (τx1→x2) as τx1→x2→x3 . So, τx1→x2→x3(t) = τx2→x3(τx1→x2(t)).

▶ Lemma 5.1. The bijection τx→x′ satisfies the following properties:
1. for an arbitrary timestamp t1t2 . . . tn ∈ T, if τx→x′(t1t2 . . . tn) = t′

1t′
2 . . . t′

n then, we have
cK(x + t1 + · · · + tn−1) + tn ≡K cK(x′ + t′

1 + · · · + t′
n−1) + t′

n,
2. τ−1

x→x′ is identical to τx′→x,
3. τx1→x2→x3 is identical to τx1→x3 .

The rescaling function τx→x′ can be naturally extended to timed words: τx→x′((t1 ·a1)(t2 ·
a2) . . . (tn · an)) = (t′

1 · a1)(t′
2 · a2) . . . (t′

n · an) where t′
1t′

2 . . . t′
n = τx→x′(t1t2 . . . tn). The next

observation follows from Property 1. of Lemma 5.1.

▶ Lemma 5.2. Let B be a K-acceptor, and q a control state of B. Let x, x′ ∈ R≥0 such that
x ≡K x′. Then, for every timed word w: w ∈ L(q, x) iff τx→x′(w) ∈ L(q, x′).

Syntactic equivalence. For timed words u, v ∈ TΣ∗ such that cK(u) ≡K cK(v), we write
τu→v for the bijection τcK(u)→cK(v). We now present the main equivalence.

▶ Definition 5.3 (Equivalence ≈L,K). Let L be a timed language and K a natural number.
We say u ≈L,K v if cK(u) ≡K cK(v) and τu→v(u−1L) = v−1L.

Note that the equivalence ≈L,K is L-preserving. Assume u ≈L,K v. We have u ∈
L ⇐⇒ ϵ ∈ u−1L and ϵ ∈ u−1L ⇐⇒ ϵ ∈ v−1L since τu→v(ϵ) = ϵ by definition. Thus,
u ∈ L ⇐⇒ v ∈ L.

▶ Proposition 5.4. When L ⊆ TΣ∗ is definable by a K-acceptor, then ≈L,K has finite
index and is K-monotonic. Moreover, ≈L,K is the coarsest K-monotonic and L-preserving
equivalence.

Proof. We start by showing that ≈L,K is K-monotonic. Condition (a) of Definition 4.1
holds by definition. We move to (b). Let tu, tv ∈ R≥0 s.t. cK(u) + tu ≡K cK(v) + tv. Let:

u1 = u(tu · a) v1 = v(tv · a)
To show: τu1→v1(u−1

1 L) = v−1
1 L (1)

Let t′
v = τu→v(tu) and v2 = v(t′

v · a). We will prove 1 using these intermediate claims:

▷ Claim 5.5. τu1→v2(u−1
1 L) = v−1

2 L

▷ Claim 5.6. τv2→v1(v−1
2 L) = v−1

1 L

Hence: τu1→v2→v1(u−1
1 L) = v−1

1 L. By Lemma 5.1, we conclude τu1→v1(u−1
1 L) = v−1

1 L.

Proof of Claim 5.5. Let w ∈ TΣ∗. By definition of u1, we have:

w ∈ u−1
1 L iff (tu · a)w ∈ u−1L (2)

FSTTCS 2024

21:12 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

Since u ≈L,K v, we know that τu→v(u−1L) = v−1L. Therefore:

(tu · a)w ∈ u−1L iff τu→v((tu · a)w) ∈ v−1L (3)

By the way we have constructed the rescaling function, we have

τu→v((tu · a)w) = (t′
v · a)τu1→v2(w) (4)

Finally, by definition of v2:

(t′
v · a)τu1→v2(w) ∈ v−1L iff τu1→v2(w) ∈ v−1

2 L (5)

From (2), (3), (4) and (5), we conclude w ∈ u−1
1 L iff τu1→v2(w) ∈ v−1

1 L for an arbitrary
timed word w. This proves the claim. ◁

Proof of Claim 5.6. Let B be a K-acceptor recognizing L, and let q be the control state
reached by B on reading word v. We first claim that:

cK(v) + tv ≡K cK(v) + t′
v (6)

This is because, by Lemma 5.1, we have cK(u) + tu ≡K cK(v) + t′
v, and by assumption, we

have cK(u) + tu ≡K cK(v) + tv. Since ≡K is transitive, (6) follows.
The observation made in (6) implies on elapsing tv or t′

v from v, the same outgoing
transition is enabled, as B is deterministic. Therefore v1 = v(tv · a) and v2 = v(t′

v · a) reach
the same control state q′. Hence, (6) can be read as cK(v1) ≡K cK(v2). By Lemma 5.2, for
any timed word w, we have w ∈ v−1

2 L iff τv2→v1(w) ∈ v−1
1 L. The claim follows. ◁

We will now show that ≈L,K has finite index and is also the coarsest K-monotonic,
L-preserving equivalence. Let B be a K-acceptor for L. Recall that u ≈B v if B reaches the
same control state on reading u and v. We will show:

u ≈B v implies u ≈L,K v (7)

This will immediately prove that ≈L,K has finite index. Secondly, for any K-monotonic,
L-preserving equivalence ≈, we can build a K-acceptor A≈ (Lemma 4.3) whose equivalence
is identical to ≈. Thus, (7) also shows that ≈L,K is the coarsest such equivalence.

Proof of (7) is as follows. Let q be the control state reached by u and v in B, and
let x = cK(u), x′ = cK(v). Since B is a K-acceptor, we also have x ≡K x′. From
Lemma 5.2, τx→x′(L(q, x)) = L(q, x′). Hence, we deduce: τu→v(u−1L) = v−1L. This proves
u ≈L,K v. ◀

The above proposition leads to the following Myhill-Nerode style characterization for
timed languages recognized by IRTA.

▶ Theorem 5.7.
(a) L ⊆ TΣ∗ is a language definable by an IRTA if and only if there is a constant K ∈ N

such that ≈L,K is K-monotonic and has finite index.
(b) ≈L,K is coarser than any K-monotonic and L-preserving equivalence.

The conversion from a general IRTA to a strict 1-IRTA does not increase the constant.
Similarly, a strict 1-IRTA with maximum constant K can be converted to a K-acceptor.
Therefore, the overall conversion from an IRTA to an acceptor preserves the constant. From
the second part of Theorem 5.7, we deduce that for a language L that is recognized by an

K. Doveri, P. Ganty, and B. Srivathsan 21:13

IRTA with constant K, the K-acceptor A≈L,K built from the equivalence ≈L,K has the least
number of states among all K-acceptors recognizing L. It is therefore a minimal automaton
among all K-acceptors for L. We now present some examples that apply this Myhill-Nerode
characterization.

▶ Example 5.8. Consider the language L = {(x · a) | x ∈ N}. The right-and side of
Theorem 5.7 (a) does not hold. Indeed, there is no K ∈ N such that ≈L,K verifies the
K-monotonicity (b): For every K ∈ N we have cK(ϵ) + K + 1 ≡K cK(ϵ) + K + 1.1. Since
(K + 1 · a) ∈ L and (K + 1.1 · a) /∈ L, by L-preservation, (K + 1 · a) ̸≈L,K (K + 1.1 · a). By
Theorem 5.7, L is not 1-IRTA definable.

▶ Example 5.9. Consider the language L = {(x · a)(1 · b) | 0 < x < 1}. This language is
accepted by a 1-TA that reads a on a guard 0 < x < 1, resets the clock x and reads b at
x = 1. This is clearly not an IRTA. We will once again see that K-monotonicity holds for
no K. For u = (0.2 · a), cK(u) + 1 ≡K cK(u) + 1.1 holds for every constant K ∈ N. Since
u(1 · b) ∈ L and u(1.1 · b) /∈ L, we have u(1 · b) ̸≈L,K u(1.1 · b). Thus, there is no K such that
≈L,K verifies K-monotonicity (b), hence L is not 1-IRTA definable by Theorem 5.7.

▶ Example 5.10. Consider the language M = {u ∈ TΣ∗ | c1(u) = 0} with alphabet Σ = {a}
which has the following residual languages. For u ∈ TΣ∗,

u−1M = M when c1(u) = 0, u−1M = {v ∈ TΣ∗ | σ(uv) = 1} when 0 < c1(u) < 1,

u−1M = ∅ when 1 < c1(u).

The equivalence classes for ≈M,1 are the following:

[ϵ]≈M,1 = M, [(3
2 · a)]≈M,1 = {u ∈ TΣ∗ | 1 < c1(u)}, [(1

2 · a)]≈M,1 = {u ∈ TΣ∗ | 0 < c1(u) < 1}.

The acceptor A≈M,1 is depicted in Figure 3 where [ϵ]≈M,1 is the initial (and final) state,
[(3

2 · a)]≈M,1 the sink state, and [(1
2 · a)]≈M,1 the rightmost state.

▶ Example 5.11. Consider the language L = {(0·a)n(0·b)n | n ∈ N}. There is no K such that
≈L,K has finite index, although ≈L,0 is 0-monotonic: for u ≈L,0 v with 0 < c0(u) ≡0 c0(v),
no extension of u or v belongs to L and hence monotonicity (b) holds; pick u and v with
c0(u) = c0(v) = 0, and let t, t′ such that c0(u) + t ≡0 c0(v) + t′. If t = 0 then t′ = 0 and
monotonicity holds. Suppose 0 < t, t′. Then u(t · α) /∈ L and u(t′ · α) /∈ L for any letter α.
Once again, (b) holds.

We now argue the infinite index, similar to the case of untimed languages. For distinct
integers n and m we have ((0 · a)n)−1L ̸= ((0 · a)m)−1L. Since τ0→0 is the identity we have
τ0→0(((0 · a)n)−1L) ̸= ((0 · a)m)−1L. Thus, (0 · a)n ̸≈L,K (0 · a)m.

▶ Example 5.12. Consider the language L = {u ∈ TΣ∗ | t1 + · · · + tn = 1} given in Figure 1.
Given a timed word u = (t1 · a1) . . . (tn · an) ∈ TΣ∗ we denote by σ(u) the sum t1 + · · · + tn

of its timestamps. Also we have that σ(ϵ) = 0. The residual languages of L are the following.
For u ∈ TΣ∗,

u−1L = ∅ when 1 < σ(u), u−1L = {v ∈ TΣ∗ | σ(v) = 0} when σ(u) = 1,

u−1L = L when σ(u) = 0, u−1L = {v ∈ TΣ∗ | σ(u) + σ(v) = 1} when 0 < σ(u) < 1.

The equivalence classes for ≈L,1 are:

[(1 · a)]≈L,1 = L, [(1 · a)(1
2 · a)]≈L,1 = {u ∈ TΣ∗ | 0 < c1(u) < 1 ∧ 1 < σ(u)},

[ϵ]≈L,1 = {u ∈ TΣ∗ | σ(u) = 0}, [(1
2 · a)]≈L,1 = {u ∈ TΣ∗ | 0 < c1(u), σ(u) < 1},

[(2 · a)]≈L,1 = {u ∈ TΣ∗ | 1 < c1(u)}, [(1 · a)(1 · a)]≈L,1 = {u ∈ TΣ∗ | c1(u) = 0 ∧ 1 < σ(u)}.

FSTTCS 2024

21:14 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

ϵ

(1
2 · a)

(1 · a)(2 · a)

(1·a)(1
2 ·a)

(1·a)(1·a)

a, x = 0, 0

a, 0 <
x < 1, 1

a, x = 1, 0

a, 1 < x, 1

a, 0 < x < 1, 1

a, x
= 1, 0a, 1 < x, 1

a, x = 0, 0
a, 0 <

x < 1, 1

a, x
= 1, 0

a, 1 < x, 1

a, 1 < x, 1

a, x = 0, 0

a
, 0

<
x

<
1
, 1

a, x = 1, 0

a, 1 < x, 1

a, 0 < x < 1, 1

a
,x

=
1,

0

a, 1 < x, 1

Figure 4 A strict 1-IRDTA A≈L,1 accepting L = {u ∈ TΣ∗ | σ(u) = 1}.

The acceptor A≈L,1 is depicted in Figure 4 and has six states, whereas the (strict)
1-IRDTA given in Example 3.4 for L only has two.

6 The Canonical Form

Sections 4 and 5 developed the idea of a canonical K-acceptor for a language recognized by
an IRTA with constant K. In this section, we will further study this canonical form. We
present a crucial property that will help effectively compute the canonical form, and also
apply an Angluin-style L∗ algorithm.

▶ Definition 6.1 (Half-integral words). We call a timed word (t1 · a1)(t2 · a2) . . . (tn · an) to be
a half-integral if for each 1 ≤ i ≤ n, the fractional part {ti} is either 0 or 1

2 : in other words,
each delay is either an integer or a rational with fractional value 1

2 . Also, the empty word ϵ

is a half-integral word.

▶ Definition 6.2 (Small half-integral words). Let K ∈ N. A half-integral word (t1 · a1)(t2 ·
a2) . . . (tn · an) is said to be small w.r.t K if ti < K + 1 for all 1 ≤ i ≤ n.

For a finite alphabet Σ and K ∈ N, let ΣK := {0, 1
2 , 1, . . . , K − 1

2 , K, K + 1
2 } × Σ. Every

small integral word is therefore in Σ∗
K . The next lemma is a generalization of the following

statement: for every timed word u, there is a small half-integral timed word w such that
every K-acceptor reaches the same state on reading both u and w.

▶ Lemma 6.3. Let u0 be a half-integral word which is small w.r.t. K. For every timed
word u, there is a half-integral word w such that u0w is small w.r.t K and every K-acceptor
reaches the same state on reading u0u or u0w.

This allows us to identify the canonical equivalence ≈L,K using small integral words.

▶ Proposition 6.4. Let B be a K-acceptor for a language L. Then, the equivalence ≈B

coincides with ≈L,K iff for all half-integral words u, v ∈ (ΣK)∗: u ≈B v iff u ≈L,K v.

We make use of Proposition 6.4 to compute the canonical form.

K. Doveri, P. Ganty, and B. Srivathsan 21:15

6.1 Computing the Canonical Form
Given a K-acceptor B, we can minimize it using an algorithm which is similar to the standard
DFA minimization which proceeds by computing a sequence of equivalence relations on the
states.

Equivalence ∼0: for a pair of states p, q of B define p ∼0 q if region(p) = region(q) and
either both are accepting states, or both are non-accepting states.
Suppose we have computed the equivalence ∼i for some i ∈ N. For a pair of states
p, q, define p ∼i+1 q if p ∼i q and for every letter (t, a) ∈ ΣK , the outgoing transitions
(p, p′, a, ϕ([t]≡K), s) and (q, q′, a, ϕ([t]≡K), s) in B satisfy p′ ∼i q′.
Stop when ∼i+1 equals ∼i.

The next lemma is a simple consequence of the definition of ∼i and by an induction on
the number of iterations i.

▶ Lemma 6.5. Let p, q be such that region(p) = region(q). Suppose p ̸∼i q. Then there
exists a word z of length at most i such that δ∗

B(p, z) is accepting whereas δ∗
B(q, z) is not.

We define the quotient of B by ∼i as the K-acceptor whose states are the equivalence
classes for ∼i. There is a transition ([q]∼i , [p]∼i , a, ϕ([t]≡K), s) if there is q′ ∈ [q]∼i and
p′ ∈ [p]∼i such that (q′, p′, a, ϕ([t]≡K , s) is a transition of B. The initial state is the class of
the initial state of B and the final states are the classes that have a non empty intersection
with the set of final states of B. For i ≥ 1 the quotient of B by ∼i is an acceptor for L(B).

Suppose we reach a fixpoint at m ∈ N. The quotient of B by ∼m gives the canonical
automaton A≈L,K . Suppose the quotient does not induce the canonical equivalence. By
Proposition 6.4 there are two words u, v ∈ (ΣK)∗ such that u and v go to a different state,
but u ≈L,K v. Consider the iteration i when the two states were made non-equivalent. There
is a small half-integral word z of length i which distinguishes u and v by Lemma 6.5 – a
contradiction to u ≈L,K v. Let us say z ∈ u−1L, since u, v are half-integral, τu→v is simply
the identity function. Since z ̸∈ v−1L, we deduce that τu→v(u−1L) ̸= v−1L, hence u ̸≈L,K v.

6.2 Learning the Canonical Form
Our learning algorithm closely follows Angluin’s L∗ approach, so we assume familiarity with
it and provide a brief example of its adaptation to the IRTA setting. Detailed definitions,
proof of correctness, and a complete example are provided in the full version [9].

We assume that the Learner is aware of the maximum constant K for the unknown
language L. The Learner’s goal is to identify the equivalence classes of ≈L,K using small
half-integral words, from Σ∗

K . Correspondingly, the rows and columns in an observation
table are words in Σ∗

K . In the L∗ algorithm, each row of the observation table corresponds
to an identified state. Two identical rows correspond to the same state. In order to make a
similar conclusion, we add a column to the observation table, that maintains cK(u) for every
string u of a row. There is one detail: once cK(u) goes beyond K, we want to store it as
a single entity ⊤. We define cK

⊤ (u) to be equal to cK(u) when this value is bellow K and
equal to ⊤ otherwise.

▶ Lemma 6.6. Let L be a timed language recognized by a K-acceptor, and let u, v ∈ (ΣK)∗.
Then u ≈L,K v iff cK

⊤ (u) = cK
⊤ (v) and for all words z ∈ (ΣK)∗, we have uz ∈ L iff vz ∈ L.

An observation table labels its rows and columns with words in (ΣK)∗. The row words
form a prefix-closed set, and the column words form a suffix-closed set, as in Angluin. Table 1
shows three observation tables. The lower part of these tables includes one-letter extensions
of the row words, and their cK

⊤ values are shown in the extra column in red.

FSTTCS 2024

21:16 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

Table 1 A run of L∗ for IRTA.

T0 ϵ c1
⊤(u)

ϵ 0 0
(0 · a) 0 0
(1

2 · a) 0 1
2

(1 · a) 1 0
(1 + 1

2 · a) 0 ⊤

T1 ϵ c1
⊤(u)

ϵ 0 0
(1

2 · a) 0 1
2

(1 · a) 1 0
(1 + 1

2 · a) 0 ⊤
(0 · a) 0 0

(1
2 · a)(0 · a) 0 1

2
(1

2 · a)(1
2 · a) 1 0

(1
2 · a)(1 · a) 0 ⊤

(1
2 · a)(1 + 1

2 · a) 0 ⊤
(1 · a)(0 · a) 1 0
(1 · a)(1

2 · a) 0 1
2

(1 · a)(1 · a) 0 0
(1 · a)(1 + 1

2 · a) 0 ⊤
(1 + 1

2 · a)(ΣK · a) 0 ⊤

T2 ϵ c1
⊤(u)

ϵ 0 0
(1

2 · a) 0 1
2

(1 · a) 1 0
(1 + 1

2 · a) 0 ⊤
(1 · a)(1 · a) 0 0

(1 · a)(1 · a)(1 · a) 0 0
(0 · a) 0 0

(1
2 · a)(0 · a) 0 1

2
(1

2 · a)(1
2 · a) 1 0

(1
2 · a)(1 · a) 0 ⊤

(1
2 · a)(1 + 1

2 · a) 0 ⊤
(1 · a)(0 · a) 1 0
(1 · a)(1

2 · a) 0 1
2

(1 · a)(1 + 1
2 · a) 0 ⊤

(1 + 1
2 · a)(ΣK · a) 0 ⊤

(1 · a)(1 · a)(0 · a) 0 0
(1 · a)(1 · a)(1

2 · a) 0 1
2

(1 · a)(1 · a)(1 + 1
2 · a) 0 ⊤

(1 · a)(1 · a)(1 · a)(ΣK · a) 0 ..

Suppose the unknown IRTA language is L = {u ∈ TΣ∗ | σ(u) = 1} for Σ = {a} with a
known constant K = 1. The learner starts with T0 containing only the ϵ row which is 0 since
ϵ /∈ L, and the ϵ column. T0 is not closed as witnessed by (1 · a), whose row is 1, while the
row of ϵ is 0. Additionally, (1

2 · a) and (1 + 1
2 · a) also witness non-closure because their cK

⊤
values are non zero. This highlights the difference from the untimed case: row words are
distinguished based on their clock values as well.

To obtain a closed table, the learner successively adds the words (1
2 · a), (1 · a), (1 + 1

2 · a),
forming T1. Every two words in T1 are distinguished either by their row or by their cK

⊤
value. Thus, T1 is consistent: if two words have identical rows and same cK

⊤ value then their
extensions also satisfy this. Since T1 is closed and consistent the learner conjectures AT1

(see [9] for details), the K-acceptor induced by T1 (formal definition in [9]). The teacher
provides a counterexample, assumed to be (1 · a)(1 · a)(1 · a), which is accepted by AT1 but
not in L. The learner processes this counterexample and computes T2, which is closed but
not consistent as shown by ϵ and (1 · a)(1 · a) and their extensions by (1 · a). Hence, the
learner adds a column for (1 · a) and computes T3. The process continues similarly. The rest
of the run is detailed in the full version [9].

7 Conclusion

We have presented a Myhill-Nerode style characterization for timed languages accepted by
timed automata with integer resets. There are three main technical ingredients: (1) the notion
of K-monotonicity (Definition 4.1) that helps characterize equivalences on timed words with
automata, that we call K-acceptors. This was possible since each word u determines the value
cK(u) of the clock on reading u, in any K-acceptor; (2) the definition of the rescaling function
(Section 5) that gives a Nerode-like equivalence, leading to a Myhill-Nerode theorem for IRTA

K. Doveri, P. Ganty, and B. Srivathsan 21:17

languages, and the canonical equivalence ≈L,K ; (3) understanding canonical equivalence
≈L,K through half-integral words (Section 6), which are, in some sense, discretized words.
This helps us to build and learn the canonical form. We believe these technical ingredients
provide insights into understanding the languages recognized by IRTA. Typically, active
learning algorithms begin by setting up a canonical form. We have laid the foundation for
IRTAs. Future work lies in adapting these foundations for better learning algorithms.

References
1 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994. doi:10.1016/0304-3975(94)90010-8.
2 Jie An, Mingshuai Chen, Bohua Zhan, Naijun Zhan, and Miaomiao Zhang. Learning one-clock

timed automata. In TACAS’20: Proc. 26th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, volume 12078 of LNCS, pages 444–462. Springer,
2020. doi:10.1007/978-3-030-45190-5_25.

3 Jie An, Bohua Zhan, Naijun Zhan, and Miaomiao Zhang. Learning Nondeterministic Real-
Time Automata. ACM Transactions on Embedded Computing Systems, 20(5s):1–26, 2021.
doi:10.1145/3477030.

4 Dana Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87–106, 1987. doi:10.1016/0890-5401(87)90052-6.

5 Devendra Bhave and Shibashis Guha. Adding Dense-Timed Stack to Integer Reset Timed
Automata. In RP’17: Proc. 11th International Conference on Reachability Problems, volume
10506 of LNCS, pages 9–25. Springer, 2017. doi:10.1007/978-3-319-67089-8_2.

6 Mikołaj Bojańczyk and Sławomir Lasota. A Machine-Independent Characterization of Timed
Languages. In ICALP’12: Proc. of the 39th Int. Colloquium of Automata, Languages and
Programming, volume 7392, pages 92–103. Springer, 2012. doi:10.1007/978-3-642-31585-5_
12.

7 Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Updatable timed
automata. Theoretical Computer Science, 321(2-3):291–345, 2004. doi:10.1016/j.tcs.2004.
04.003.

8 Véronique Bruyère, Bharat Garhewal, Guillermo A. Pérez, Gaëtan Staquet, and Frits W.
Vaandrager. Active learning of mealy machines with timers. CoRR, abs/2403.02019, 2024.
doi:10.48550/arxiv.2403.02019.

9 Kyveli Doveri, Pierre Ganty, and B. Srivathsan. A myhill-nerode style characterization for timed
automata with integer resets. CoRR, abs/2410.02464, 2024. doi:10.48550/arxiv.2410.02464.

10 Olga Grinchtein, Bengt Jonsson, and Martin Leucker. Learning of event-recording automata.
Theoretical Computer Science, 411(47):4029–4054, 2010. doi:10.1016/j.tcs.2010.07.008.

11 Olga Grinchtein, Bengt Jonsson, and Paul Pettersson. Inference of event-recording automata us-
ing timed decision trees. In CONCUR’06: Proc. 17th International Conference on Concurrency
Theory, volume 4137 of LNCS, pages 435–449. Springer, 2006. doi:10.1007/11817949_29.

12 Shang-Wei Lin, Étienne André, Jin Song Dong, Jun Sun, and Yang Liu. An efficient algorithm
for learning event-recording automata. In ATVA’11: Proc. 9th International Symposium on
Automated Technology for Verification and Analysis, volume 6996 of LNCS, pages 463–472.
Springer, 2011. doi:10.1007/978-3-642-24372-1_35.

13 Anirban Majumdar, Sayan Mukherjee, and Jean-François Raskin. Greybox learning of
languages recognizable by event-recording automata. In ATVA’24: Proc. 22nd International
Symposium on Automated Technology for Verification and Analysis, LNCS. Springer, 2024.

14 Oded Maler and Amir Pnueli. On Recognizable Timed Languages. In FoSSaCS’04: Proc. of
the Int. Conf. on Foundations of Software Science and Computation Structures, volume 2987
of LNCS, pages 348–362. Springer, 2004. doi:10.1007/978-3-540-24727-2_25.

15 Lakshmi Manasa and Krishna S. Integer Reset Timed Automata: Clock Reduction and
Determinizability. CoRR, abs/1001.1215, 2010. doi:10.48550/arxiv.1001.1215.

FSTTCS 2024

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1145/3477030
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-319-67089-8_2
https://doi.org/10.1007/978-3-642-31585-5_12
https://doi.org/10.1007/978-3-642-31585-5_12
https://doi.org/10.1016/j.tcs.2004.04.003
https://doi.org/10.1016/j.tcs.2004.04.003
https://doi.org/10.48550/arxiv.2403.02019
https://doi.org/10.48550/arxiv.2410.02464
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1007/11817949_29
https://doi.org/10.1007/978-3-642-24372-1_35
https://doi.org/10.1007/978-3-540-24727-2_25
https://doi.org/10.48550/arxiv.1001.1215

21:18 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

16 Jan Springintveld and Frits W. Vaandrager. Minimizable timed automata. In FTRTFT’96:
Proc. of 4th Int. Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems,
volume 1135 of LNCS, pages 130–147. Springer, 1996. doi:10.1007/3-540-61648-9_38.

17 P. Vijay Suman, Paritosh K. Pandya, Shankara Narayanan Krishna, and Lakshmi Man-
asa. Timed Automata with Integer Resets: Language Inclusion and Expressiveness. In
FORMATS’08: Proc. of the Int. Conf. on Formal Modeling and Analysis of Timed Systems,
volume 5215, pages 78–92. Springer, 2008. doi:10.1007/978-3-540-85778-5_7.

18 Martin Tappler, Bernhard K. Aichernig, Kim Guldstrand Larsen, and Florian Lorber. Time
to learn - learning timed automata from tests. In FORMATS’19: Proc. 17th International
Conference on Formal Modeling and Analysis of Timed Systems, volume 11750 of LNCS, pages
216–235. Springer, 2019. doi:10.1007/978-3-030-29662-9_13.

19 Frits W. Vaandrager, Masoud Ebrahimi, and Roderick Bloem. Learning mealy machines with
one timer. Inf. Comput., 295(Part B):105013, 2023. doi:10.1016/J.IC.2023.105013.

20 Sicco Verwer. Efficient Identification of Timed Automata: Theory and practice. PhD thesis,
Delft University of Technology, Netherlands, 2010. URL: http://resolver.tudelft.nl/uuid:
61d9f199-7b01-45be-a6ed-04498113a212.

21 Masaki Waga. Active Learning of Deterministic Timed Automata with Myhill-Nerode Style
Characterization. In CAV’23: Proc. of the 35th Int. Conf. on Computer Aided Verification,
volume 13964 of LNCS, pages 3–26. Springer, 2023. doi:10.1007/978-3-031-37706-8_1.

22 Runqing Xu, Jie An, and Bohua Zhan. Active learning of one-clock timed automata using
constraint solving. In ATVA’22: Proc. 20th International Symposium on Automated Technology
for Verification and Analysis, volume 13505 of LNCS, pages 249–265. Springer, 2022. doi:
10.1007/978-3-031-19992-9_16.

https://doi.org/10.1007/3-540-61648-9_38
https://doi.org/10.1007/978-3-540-85778-5_7
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1016/J.IC.2023.105013
http://resolver.tudelft.nl/uuid:61d9f199-7b01-45be-a6ed-04498113a212
http://resolver.tudelft.nl/uuid:61d9f199-7b01-45be-a6ed-04498113a212
https://doi.org/10.1007/978-3-031-37706-8_1
https://doi.org/10.1007/978-3-031-19992-9_16
https://doi.org/10.1007/978-3-031-19992-9_16

	1 Introduction
	2 Background
	3 Languages with Integer Resets
	4 From Equivalences to Automata and Back
	5 A Nerode-style Equivalence
	6 The Canonical Form
	6.1 Computing the Canonical Form
	6.2 Learning the Canonical Form

	7 Conclusion

