
Oblivious Complexity Classes Revisited: Lower
Bounds and Hierarchies
Karthik Gajulapalli #Ñ

Georgetown University, Washington, DC, USA

Zeyong Li # Ñ

National University of Singapore, Singapore

Ilya Volkovich # Ñ

Boston College, MA, USA

Abstract
In this work we study oblivious complexity classes. These classes capture the power of interactive
proofs where the prover(s) are only given the input size rather than the actual input. In particular,
we study the connections between the symmetric polynomial time – S2P and its oblivious counterpart
– O2P. Among our results:

For each k ∈ N, we construct an explicit language Lk ∈ O2P that cannot be computed by circuits
of size nk.
We prove a hierarchy theorem for O2TIME. In particular, for any time constructible function
t : N → N and any ε > 0 we show that: O2TIME[t(n)] ⊊ O2TIME[t(n)1+ε].
We prove new structural results connecting O2P and S2P.
We make partial progress towards the resolution of an open question posed by Goldreich and
Meir (TOCT 2015) that relates the complexity of NP to its oblivious counterpart - ONP.
We identify a natural class of problems in O2P from computational Ramsey theory, that are not
expected to be in P or even BPP.

To the best of our knowledge, these results constitute the first explicit fixed-polynomial lower
bound and hierarchy theorem for O2P. The smallest uniform complexity class for which such lower
bounds were previously known was S2P due to Cai (JCSS 2007). In addition, this is the first uniform
hierarchy theorem for a semantic class. All previous results required some non-uniformity. In order
to obtain some of the results in the paper, we introduce the notion of uniformly-sparse extensions
which could be of independent interest.

Our techniques build upon the de-randomization framework of the powerful Range Avoidance
problem that has yielded many new interesting explicit circuit lower bounds.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Problems, reductions and completeness; Theory of computation → Circuit complexity;
Theory of computation → Interactive proof systems; Theory of computation → Pseudorandomness
and derandomization

Keywords and phrases fixed circuit lower bounds, semantic time hierarchy, oblivious complexity,
range avoidance

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.23

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/049/

Acknowledgements The authors would like to thank Alexander Golovnev, William Gasarch and
Edward Hirsch for many helpful discussions and feedback on an earlier draft of this manuscript. The
authors would also like to thank the anonymous referees for useful comments.

© Karthik Gajulapalli, Zeyong Li, and Ilya Volkovich;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kg816@georgetown.edu
https://kgajulapalli.org
https://orcid.org/0009-0000-1029-1882
mailto:li.zeyong@u.nus.edu
https://sites.google.com/view/zeyong
mailto:ilya.volkovich@bc.edu
https://sites.google.com/site/ilyavv/
https://orcid.org/0000-0002-7616-0751
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.23
https://eccc.weizmann.ac.il/report/2024/049/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

1 Introduction

Proving circuit lower bounds has been one of the holy grails of theory of computation
with strong connections to many fundamental questions in complexity theory. For instance,
proving that there exists a function in E1 that requires exponential-size circuits would entail
a strong derandomization: BPP = P and MA = NP [46, 32]. And yet, while by counting
arguments (i.e. [52]) the vast majority of Boolean functions/languages do require exponential-
size circuits, the best “explicit” lower bounds are still linear! (in fact the best known lower
bound for any language in ENP is just linear [39]). Indeed, although it is widely believed that
NP requires super-polynomial-size circuits (i.e. NP ̸⊆ P/poly) establishing the statement
even for NEXP (i.e. NEXP ̸⊆ P/poly), the exponential version of NP, has remained elusive for
many years. The best known explicit lower bound is due to a seminal work of Williams [54],
where it was shown that NEXP requires super-polynomial-size circuits in a “very” restricted
model (NEXP ̸⊆ ACC0).

In the high-end regime, Kannan [33] has shown that the exponential hierarchy requires
exponential-size circuits, via diagonalization2. More precisely, it was shown that the class
Σ3E ∩ Π3E contains a language that cannot be computed by a circuit family of size 2n/n.
This result was later improved to ∆3E = EΣ2P by Miltersen, Vinodchandran and Watanabe
[45]. Moreover, it was shown that ∆3E actually requires circuits of “maximum possible” size.
Subsequently, the status of the problem remained stagnant for more than two decades until
very recently, Chen, Hirahara and Ren [13] and a follow-up work by Li [41] improved the
result to S2E 3. In particular, this result was obtained via solving the Range Avoidance
(Avoid) problem with “single-valued, symmetric polynomial-time” algorithm. Indeed, the
focus of our work is on “oblivious” symmetric polynomial time and related complexity classes.

1.1 Background

1.1.1 Symmetric Time

Symmetric polynomial time, denoted by S2P, was introduced independently by Canetti [9], and
Russell and Sundaram [49]. Intuitively speaking, this class captures the interaction between
an efficient (polynomial-time) verifier V and two all-powerful provers: the “YES”-prover Y

and the “NO”-prover Z, exhibiting the following behaviour:
If x is a yes-instance, then the “YES”-prover Y can send an irrefutable proof/certificate
y to V that will make V accept, regardless of the communication from Z.
Likewise, if x is a no-instance, then the “NO”-prover can send an irrefutable proof/certi-
ficate proof z to V that will make V reject, regardless of the communication from Y .

We stress that in both cases the irrefutable certificates can depend on x itself. One can also
define S2E - the exponential version of S2P, by allowing the verifier to run in linear-exponential
time. For a formal definition see Definition 8. A seminal result of [7] provides the best known
upper bound S2P ⊆ ZPPNP. At the same time, S2P appears to be a very powerful class as it
contains MA and ∆2P = PNP.

1 Deterministic time 2O(n).
2 In fact, this argument could be viewed as solving an instance of the Range Avoidance problem. See

below.
3 Symmetric exponential time. Indeed, S2E ⊆ Σ2E ∩ Π2E ⊆ ∆3E. For a formal definition see Definition 8.

K. Gajulapalli, Z. Li, and I. Volkovich 23:3

1.1.2 Oblivious Complexity Classes
The study of oblivious complexity classes was initiated in [10] and has subsequently received
more attention [2, 22, 11, 27]. Roughly speaking, let Λ be a complexity class such that in
addition to the input x, the machines M(x, w) of Λ also take a witness w (and possibly other
inputs). Examples of such classes include: NP, MA, S2P, etc. The corresponding oblivious
version of Λ is obtained by stipulating that the for every n ∈ N there exists a “common”
witness wn for all the “respective” inputs of length n. For instance, a language L belongs
to ONP – the oblivious version of NP, if there exists a polynomial-time machine M(x, w)
such that:
1. ∀n ∈ N there exists wn such that ∀x ∈ {0, 1}n : x ∈ L =⇒ M(x, wn) = 1.
2. x ̸∈ L =⇒ ∀w : M(x, w) = 0.

Thus, in a similar manner, one can define the class O2P – the oblivious version of S2P,
that is referred to as “oblivious symmetric polynomial time” in the literature. O2P has the
additional requirement that for every n ∈ N there exist an irrefutable yes-certificate y∗ and
an irrefutable no-certificate z∗ for all the yes-instances and the no-instances of length n,
respectively. For a formal definition, see Definition 10.

It is immediate from the definitions that ONP ⊆ NP, O2P ⊆ S2P and ONP ⊆ O2P. On the
other hand, by hard-coding the witnesses/certificates we get that RP ⊆ ONP ⊆ O2P ⊆ P/poly.

In addition, it was also observed in [10] that O2P is self-low. That is O2PO2P = O2P. While
the oblivious classes seem to be more restricted than their non-oblivious counterparts, proving
any non-trivial upper bounds could still be challenging. In terms of lower bounds, the best
known containment of a non-oblivious class is BPP ⊆ O2P 4. For more details and discussion
see [10, 27]. Nonetheless, to the best of our knowledge, no “natural” problem for O2P (or
even ONP), known to lie outside of BPP, has been identified in the literature.

1.1.3 Sparsity
A language L is sparse, if for every input length n ∈ N the number of yes-instances of size
n is at most poly(n). We will denote the class of all sparse languages by SPARSE. Sparse
languages have seen many applications in complexity theory. Perhaps, the most fundamental
one is known as “Mahaney’s theorem” [43] that implies that a sparse language cannot be
NP-hard, unless P = NP. In [22] and [27], sparse languages were also studied in the context of
oblivious complexly classes. In particular, they observed that NP ∩ SPARSE ⊆ ONP. That is,
every sparse NP language is also in ONP. The same argument also implies that NE = ONE,
that is, equality between the exponential versions of NP and ONP, respectively. Given the
former claim we observe that the Grid Coloring problem, defined in [3], constitutes a natural
ONP (and hence O2P) problem. For a formal statement, see Observation 6.

Subsequently, Goldreich and Meir [27] posed an open question whether a similar relation
holds true for coNP and coONP. That is, whether every sparse coNP language is also in
coONP5. Motivated by this question, we observe that essentially the same issues arise when
one attempts to show that every sparse S2P language is also in O2P. While we do not
accomplish this task, we make a partial progress by introducing uniformly-sparse extensions.
The intuition behind this definition is to have a uniform “cover” of the segments of the
yes-instances for all input lengths. For a formal definition see Definition 25. This is our main

4 One way to see this is by observing that BPP ⊆ RPONP and then using the self-lowness of O2P.
5 The original (equivalent) formulation of the question in [27] was w.r.t NP and co-sparse languages.

FSTTCS 2024

23:4 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

conceptual contribution. As a corollary, we obtain that S2E = O2E. Although this might not
be a new result, to the best of our knowledge, this result has not appeared in the literature
previously.

1.1.4 Range Avoidance
The study of the Range Avoidance problem (Avoid) was initiated in [35]. The problem itself
takes an input-expanding Boolean Circuit C : {0, 1}n → {0, 1}n+1 as input and asks to find
an element y, outside the range of C. Since its introduction, there has been a steady line of
exciting work studying the complexity and applications of Avoid [37, 28, 48, 15, 24, 31, 17,
13, 41, 16, 38].

Informally, Avoid algorithmically captures the probabilistic method where the existence of
an object with some property follows from a union bound. In particular, Korten [37] showed
that solving Avoid (deterministically) would result in finding optimal explicit constructions
of many important combinatorial objects, including but not limited to Ramsey graphs [47],
rigid matrices [28, 24], pseudorandom generators [14], two-source extractors [12, 40], linear
codes [28], strings with maximum time-bounded Kolmogorov complexity (Kpoly-random
strings) [48] and truth tables of high circuit complexity [37].

The connection between Avoid and hard truth table makes it relevant to the study of
circuit lower bounds. It has been observed and pointed out in many prior works (see, e.g. [13])
that proving explicit circuit lower bounds is effectively finding single-valued6 constructions
of hard truth tables. Indeed, this is the framework adopted for proving circuit lower bounds
in [15, 13, 41]: Designing a single-valued algorithm for solving Avoid.

1.1.5 Time Hierarchy Theorem
Time Hierarchy theorems are among the most fundamental results in computational com-
plexity theory, which (loosely speaking) assert that computation with more time is strictly
more powerful. Time hierarchy theorems are known for deterministic computation (DTIME)
[29, 30] and non-deterministic computation (NTIME) [18, 51, 55] which are syntactic classes.
The situation for semantic classes such as BPTIME is much more elusive as it is unclear
how to enumerate and simulate all BPTIME machines while ensuring that the simulating
machine itself remains a proper BPTIME machine. In fact, even verifying that a machine is
a BPTIME machine is itself an undecidable problem. For BPTIME, a time hierarchy theorem
is only known for its promise version, or when given one bit of advice [5, 20, 21]. This was
further generalized in [44], where they show most semantic classes (e.g. MA, S2TIME) admit
a time hierarchy theorem with one bit of advice.

Along a different line of research, it was shown in [42, 19] that coming up with a pseudo-
deterministic algorithm (single-valued randomized algorithms) for estimating the acceptance
probability of a circuit would imply a uniform hierarchy theorem for BPTIME.

1.2 Previous Results
A parallel line of work focused on the “low-end” regime by proving the so-called “fixed-
polynomial” circuit lower bounds. That is, the goal is to show that for every k ∈ N there
is a language Lk (that may depend on k) which cannot be computed by circuits of size

6 Roughly speaking, a single-valued algorithm on successful executions should output a fixed (canonical)
solution given the same input.

K. Gajulapalli, Z. Li, and I. Volkovich 23:5

nk. The first result in this sequel – fixed-polynomial lower bounds for the polynomial
hierarchy, was obtained by Kannan [33] via diagonalization. In particular, it was shown
that for every k ∈ N there exists a language Lk ∈ Σ4P that cannot be computed by circuits
of size nk. This result was then improved to Σ2P. The key idea behind this and, in fact,
the vast majority of subsequent improvements is a “win-win” argument that relies on the
Karp-Lipton collapse theorem [34]: if NP has polynomial-size circuits (i.e NP ⊆ P/poly) then
the (whole) polynomial hierarchy collapses to Σ2P. More specifically, the argument proceeds
by a two-pronged approach:

Suppose NP ̸⊆ P/poly. Then the claim follows as NP ⊆ Σ2P.
On the other hand, suppose NP ⊆ P/poly. Then by Karp-Lipton: Σ4P = Σ2P and in
particular for all k ∈ N : Lk ∈ Σ2P.

Indeed, by deepening the collapse, the result was further improved to ZPPNP [36, 6], PprMA [11]
and S2P [7]. By using different versions of the Karp-Lipton theorem, the result has also been
extended to PP [53, 1] and MA/1 [50].

Yet, despite the success of the “win-win” argument, the obtained lower bounds are often
non-explicit due to the non-constructiveness nature of the argument. Different results [8, 50]
were required to exhibit explicit “hard” languages in Σ2P, PP and MA/1. Nonetheless, the
last word about S2P is yet to be said. For instance, we know that there is a language in S2P
that requires circuits of size, say, n2 from such arguments. However, prior to the results of
[13, 41], one could not prove any super-linear lower bound for any particular language in
S2P. Another limitation of the “win-win” argument stems from the fact that it only applies
to complexity classes which (provably) contain NP. In particular, in [10] it was actually
shown that if NP ⊆ P/poly then the polynomial hierarchy collapses all the way to O2P!
Unfortunately, this result does not immediately imply fixed-polynomial lower bounds for
O2P7 as it is unknown and, in fact, unlikely that O2P contains NP. Furthermore, such a
containment will be “self-defeating”. Recall that O2P ⊆ P/poly. Hence, if NP ⊆ O2P then
NP ⊆ P/poly which in and of itself already implies the collapse of the whole polynomial
hierarchy!

Finally, it is important to mention a result of [22] that for any k ∈ N, NP has circuits of
size nk iff ONP/1 does. In that sense ONP already nearly captures the hardness of showing
fixed-polynomial lower bounds for NP.

1.3 Our Results

In our first result we extend the lower bounds for S2P and S2E, to their weaker oblivious
counterparts O2P and O2E, respectively. This result follows the recent line of research
that obtains circuit lower bounds by means of deterministically solving (i.e. derandomizing)
instances of the Range Avoidance problem [15, 13, 41].

▶ Theorem 1. For all k ∈ N, O2P ̸⊆ SIZE[nk]. Moreover, for each k there exists an explicit
language Lk ∈ O2P such that Lk ̸∈ SIZE[nk].

In fact we prove a stronger parameterized version of this statement (see Theorem 29,
Corollary 36, and Corollary 30). We now highlight three main reasons why such a result is
fascinating:

7 Indeed, the authors in [10] could only obtain fixed-polynomial lower bounds for NPO2P which was later
subsumed by the results of [50].

FSTTCS 2024

23:6 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

1. Our lower bound does not follow the framework of “win-win” style Karp-Lipton collapses.
As was mentioned above, since already O2P ⊆ P/poly the pre-requisite for proving the
bound via the “win-win” argument will be self-defeating.

2. Our proof is constructive and for every k ∈ N we define an explicit language Lk ∈ O2P
for which Lk ̸⊆ SIZE[nk].

3. O2P becomes the smallest uniform complexity class known for which fixed-polynomial
lower bounds are known. Moreover, after more than 15 years, this class coincides again
with the deepest known collapse result of the Karp-Lipton Theorem8.

Our second result gives a hierarchy theorem for O2TIME.

▶ Theorem 2. For any time constructible function t : N → N such that t(n) ≥ n and any
ε > 0 it holds that: O2TIME[t(n)] ⊊ O2TIME[t(n)1+ε].

We remark, that to the best of our knowledge, this is the first known hierarchy theorem
for a uniform semantic class (that contains BPTIME). At the same time, we observe that the
proof of the non-deterministic time hierarchy theorem (NTIME) (see e.g. [55]) actually extends
to the oblivious non-deterministic time (ONTIME) since the hard language constructed in
their proof is unary and hence is contained in ONTIME. On the other hand, that same
language also diagonalizes against all NTIME machines which is a superset of all ONTIME
machines.

In our time hierarchy theorem for O2TIME, which goes through a reduction to Avoid,
one can view Avoid as a tool for diagonalization against all circuits of fixed size, which in
turn contains all O2TIME machines with bounded time complexity. This (together with the
time hierarchy theorem for ONTIME) might suggest an approach for proving time hierarchy
theorem for semantic classes in general: diagonalize against a syntactic class that encompasses
the semantic class in consideration.

Finally, we introduce the notion of uniformly-sparse extensions (for a formal definition,
see Definition 25) to get structural complexity results relating O2TIME and S2TIME. This
relation provides an alternate method of proving Theorem 1.

▶ Theorem 3. Let L ∈ S2P. If L has a uniformly-sparse extension then L ∈ O2P.

While not much was known between the classes O2TIME and S2TIME, except that
O2TIME ⊆ S2TIME, we show new connections between the two classes. In fact, we prove
a stronger parameterized version of Theorem 3 that yields as a corollary a proof of the
equivalence S2E = O2E (see Corollary 37). Going back to the original motivation, by repeating
the same argument, we make a partial progress towards the resolution of the open question
posed by Goldreich and Meir in [27]. See Lemma 35 for more details.

▶ Theorem 4. Let L ∈ coNP. If L has a uniformly-sparse extension then L ∈ coONP.

Finally, we observe that computational Ramsey theory provides some very natural
problems in ONP (and hence O2P). As an example, we re-introduce the grid coloring problem
below. While Claim 2.5 in [27] suggests a generic way to generate problems via padding
arguments9, these problems are, however, not very intuitive.

8 Indeed, in the universe of [7] and [10] prior to our work, the smallest class has been S2P, while the
deepest known collapse was to O2P.

9 The approach is to pick a language L in S2E that is (conjectured) not in BPE. Then the padded version
of L will be in O2P \ BPP.

K. Gajulapalli, Z. Li, and I. Volkovich 23:7

▶ Definition 5 (Grid Coloring [3]).
GC = {(1n01m01c) | the n × m grid can be c-colored and not have any monochromatic squares.}

Note that Grid Coloring is an example of one of such problems that are in NP∩SPARSE ⊆
ONP, and hence unlikely to be in BPP. Other problems that come from computational
Ramsey theory like the Gallai-Witt theorem, and the Van der Waerden’s theorem have a
very similar flavor.

▶ Observation 6. GC ∈ ONP ⊆ O2P.

Below we make a few remarks. For a further discussion see [25].
GC ∈ NP since the coloring itself is a witness.
GC is not known to be in P or even BPP.
GC ∈ SPARSE. In fact, GC has a uniformly-sparse extension.
Therefore, by the results of [22, 27], GC ∈ ONP.
On the other hand, by Mahaney’s theorem GC is unlikely to be NP-complete.

1.4 Proof Overview
Our work builds on the recent line of work on Range Avoidance. [37] provides a reduction of
generating hard truth tables from Avoid, and [13, 41] give a single-valued S2P time algorithm
for Avoid.

Avoid Framework for Circuit Lower bounds

Let TTn,s : {0, 1}s log s → {0, 1}2n be the truth table generator circuit (see Definition 19), i.e.
TTn,s take as input an encoding of a n-input s-size circuit and outputs the truth table of the
circuit. By construction, TTn,s maps all circuits of size s (encoded using s log s bits) to their
corresponding truth tables. Then, Avoid(TTn,s) will output a truth-table not in the range of
TTn,s and hence not decided by any s-sized circuit (a circuit lower bound!!). For correctness
we only need to ensure that s log s < 2n, so the TTn,s is input-expanding, and hence a valid
instance of Avoid.

While the above construction gives us a way of getting explicit exponential lower bounds
against even SIZE[2n/n], the input to Avoid is also exponential in input length n. As a result,
the lower bounds we get are for the exponential class S2E and not S2P. Note that one can
scale down this lower bound in a black-box manner to get fixed-polynomial lower bounds for
S2P, but will lose explicitness in the process.

To fix this we modify the above reduction to take as input the prefix truth table generator
circuit, PTTn,s : {0, 1}s log s → {0, 1}s log s+1, where instead of evaluating the input circuit on
the whole truth table, PTTn,s evaluates on the lexicographically first (s log s + 1) inputs (see
Definition 20). Let fn,s = Avoid(PTTn,s), and define the truth table of the hard language to
be L := fn,s||02n−s log s−1. By construction, L cannot be decided by any n-input s-size circuit.
Moreover, when s is polynomial, the size of PTTn,s is also polynomial10 (Lemma 21). Hence
the single-valued11 algorithm computing fn,s is in S2P and the explicit fixed-polynomial
bounds follow.

10 In literature the complexity of computing PTTn,s (Circuit-Eval) is often left as poly, however for our
application of getting explicit lower bounds it is crucial to get its fine-grained complexity (see Lemma 16
and Lemma 21).

11 For the language to be well defined it is essential for the output of our algorithm to be single-valued.

FSTTCS 2024

23:8 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

To see that the language L ∈ O2P, observe that the S2P time algorithm is oblivious to x,
since for any x of length n, fn,s is the same. One important observation here is that, for the
purpose of obtaining circuit lower bound, it suffices to solve Range Avoidance on one specific
family of circuits (the truth table generating circuit that maps another circuit to its truth
table). Hence, while it is unclear whether Range Avoidance can be solved in FO2P, we could
still obtain circuit lower bound for O2P.

Hierarchy Theorems for O2TIME

To get a hierarchy theorem for O2TIME, we first get an upper bound on O2TIME computation
via a standard Cook-Levin argument that converts the O2TIME verifier into a circuit (SAT-
formula) for which we can hard code the “YES” and “NO” irrefutable certificates at every
input length (Lemma 31). A lower bound follows via the Avoid framework discussed above
(Theorem 29). We can now lift the hierarchy theorem on circuit size (Theorem 14) to get a
hierarchy on O2TIME (see Theorem 32).

Sparsity and Lower Bounds

We begin by introducing the notion of uniformly-sparse extensions. Roughly speaking a
sparse language L has a uniformly-sparse extension if there is a language L′ ∈ P, such that
L ⊆ L′ and L′ is also sparse (for formal definitions see Section 2.4).

We show that if a language L ∈ S2P has a uniformly-sparse extension, then L ∈ O2P. Let
L′ be the uniformly-sparse extension of a language L ∈ S2P and let X = {x ∈ L′}. Since
L′ ∈ P, we first apply the polynomial time algorithm for L′ which let us filter out most
inputs, i.e. x /∈ L′, and hence x /∈ L. We are now left with deciding membership in L over
the set X, where |X| ≤ poly.

Let V ∗ be the polynomial time S2-verifier for L, then for every x ∈ X there exists either
an irrefutable YES certificate (yx) s.t. V ∗(x, yx, ·) = 1, or an irrefutable NO certificate (zx)
s.t. V ∗(x, ·, zx) = 0. Let Y be the set of all such yx’s and Z be the set of all such zx’s. Now
for any x ∈ X, it suffices to find the correct yx from Y (or zx from Z) and apply V ∗(x, yx, zx)
to decide x.

In Lemma 35 we prove a more efficient parameterized version of this argument. In addition,
we are able to apply this in the exponential regime to show the equivalence O2E = S2E (see
Corollary 37).

2 Preliminaries

Let L ⊆ {0, 1}∗ be a language. For n ≥ 1 we define the n-th slice of L, L|n := L ∩ {0, 1}n

as all the strings in L of length n. The characteristic string of L|n, denoted by XL|n
, is the

binary string of length 2n which represents the truth table defined by L|n.

2.1 Complexity Classes
We assume familiarity with complexity theory and notion of non-uniform circuit families (see
for e.g. [4, 26]).

▶ Definition 7 (Deterministic Time). Let t : N → N. We say that a language L ∈ TIME[t(n)],
if there exists a deterministic time multi-tape Turing machine that decides L, in at most
O(t(n)) steps.

K. Gajulapalli, Z. Li, and I. Volkovich 23:9

▶ Definition 8 (Symmetric Time). Let t : N → N. We say that a language L ∈ S2TIME[t(n)],
if there exists a O(t(n))-time predicate P (x, y, z) that takes x ∈ {0, 1}n and y, z ∈ {0, 1}t(n)

as input, satisfying that:
1. If x ∈ L , then there exists a y such that for all z, P (x, y, z) = 1.
2. If x /∈ L, then there exists a z such that for all y, P (x, y, z) = 0.
Moreover, we say L ∈ S2P, if L ∈ S2TIME[p(n)] for some polynomial p(n), and L ∈ S2E, if
L ∈ S2TIME[t(n)] for t(n) ≤ 2O(n).

▶ Definition 9 (Single-valued FS2P algorithm). A single-valued FS2P algorithm A is specified
by a polynomial ℓ(·) together with a polynomial-time algorithm VA(x, π1, π2). On an input
x ∈ {0, 1}∗, we say that A outputs yx ∈ {0, 1}∗, if the following hold:
1. There exists a π1 ∈ {0, 1}ℓ(|x|) such that for every π2 ∈ {0, 1}ℓ(|x|), VA(x, π1, π2) outputs

yx.
2. For every π1 ∈ {0, 1}ℓ(|x|) there exists a π2 ∈ {0, 1}ℓ(|x|), such that VA(x, π1, π2) outputs

either yx or ⊥.
And we say that A solves a search problem Π if on any input x it outputs a string yx

and yx ∈ Πx, where a search problem Π maps every input x ∈ {0, 1}∗ into a solution set
Πx ⊆ {0, 1}∗.

We now formally define O2TIME - the oblivious version of the class S2TIME. The key
difference is that unlike S2TIME, where each irrefutable yes/no certificate can depend on
the input x itself, in O2TIME the yes/no certificates can only depend on |x|, the length of
x. In other words, for every input length n, there exist a common YES-certificate y∗ and a
common NO-certificate z∗ for checking membership of x ∈ L|n.

▶ Definition 10 (Oblivious Symmetric Time). Let t : N → N. We say that a language
L ∈ O2TIME[t(n)], if there exists a O(t(n))-time predicate P (x, y, z) such that for every
n ∈ N there exist y∗ and z∗ of length O(t(n)) satisfying the following for every input
x ∈ {0, 1}n :
1. If x ∈ L, then for all z, P (x, y∗, z) = 1.

2. If x /∈ L, then for all y, P (x, y, z∗) = 0.
Moreover, we say L ∈ O2P, if L ∈ O2TIME[p(n)] for some polynomial p(n), and L ∈ O2E, if
L ∈ O2TIME[t(n)] for t(n) ≤ 2O(n).

2.2 Nonuniformity

We recall certain circuit properties:

▶ Definition 11. A boolean circuit C with n inputs and size s, is a Directed Acyclic Graph
(DAG) with (s + n) nodes. There are n source nodes corresponding to the inputs labelled
1, . . . , n and one sink node labelled (n + s) corresponding to the output. Each node, labelled
(n + i), for 1 ≤ i ≤ s has an in-degree of 2 and corresponds to a gate computing a binary
operation over its two incoming edges.

▶ Definition 12. Let s : N → N. We say that a language L ∈ SIZE[s(n)] if L can be computed
by circuit families of size O(s(n)) for all sufficiently large input size n.

▶ Definition 13. Let s : N → N. We say that a language L ∈ i.o.-SIZE[s(n)] if L can be
computed by circuit families of size O(s(n)) for infinitely many input size n.

FSTTCS 2024

23:10 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

By definition, we have SIZE[s(n)] ⊆ i.o.-SIZE[s(n)]. Hence, circuit lower bounds against
i.o.-SIZE[s(n)] are stronger and sometimes denoted as almost-everywhere circuit lower bound
in the literature.

We now state the hierarchy theorem for circuit size. The standard proof of this result is
existential and goes through a counting argument (see e.g. [4]). However, we comment that
using the framework of Avoid, we can now actually get a constructive size hierarchy theorem,
albeit with worse parameters.

▶ Theorem 14 (Circuit Size Hierarchy Theorem[4]). For all functions s : N → N with
n ≤ s(n) < o(2n/n):

SIZE[s(n)] ⊊ SIZE[10s(n)] .

For our applications, it will be essential to have a tight encoding scheme for circuits.
In fact, we will also need the fine-grained complexity of the Turing machine computing
Circuit-Eval (i.e. given as input a description of a circuit C and a point x, computes C(x)).

▶ Lemma 15. For n, s ∈ N, and s ≥ n ≥ 12 , any n-input, s-size circuit C, there exists an
encoding scheme En,s which encodes C using 5s log s bits.

Proof. Let C be an n-input, s-size circuit, we now define En,s. Each gate label from
1, . . . , n + s can be encoded using log(n + s) bits. First encode the n inputs using n log(n + s)
bits. Next fix a topological ordering of the remaining gates. For each gate we can encode
its two inputs (two previous gates) with 2 log(n + s) bits and the binary operation which
requires 4 bits (since there 16 possible binary operations). So the length of our encoding is
n log(n + s) + s(2 log(n + s) + 4) ≤ 3s log(2s) + 4s ≤ 5s log s for all n ≥ 12. ◀

▶ Lemma 16. For n, s ∈ N, and s ≥ n, let En,s be an encoding of an n-input, s-size
circuit C using Lemma 15. Then there exists a multi-tape Turing machine M such that
M(En,s, x) = C(x) and it runs in O(s2 log s) time.

Proof. We utilize one tape (memory tape) to store all the intermediate values computed at
each gate gi using n + s cells, and a second tape (evaluation tape) using 6 cells to compute
the value at each gi. We process each gate sequentially as it appears in the encoding scheme,
and let gil

and gir be the two gates feeding into gi. Since Lemma 15 encodes the gates in
a topological order, we can assume that when computing gi, both gil

and gir
have already

been computed. First copy the value of input bits of x onto the memory tape, and move
the head of the input tape to the right by n log(n + s) steps in O(s log s) time. Now to
compute a gate gi we write the values of gil

and gir along with the binary operation onto
the evaluation tape. We can compute any binary operation with just constant overhead
and write its value onto the ith cell of the memory tape. To output the evaluation of the
circuit we output the value on the (n + s)th cell of the memory tape. The cost of evaluating
each gate is dominated by the 2 read and 1 write operations on the memory tape that take
O(s) time. Since the size of the input upper bounds the number of gates we have that the
simulation takes O(s|En,s|) = O(s2 log s) time. ◀

Finally, we recall the famous Cook-Levin theorem that lets us convert a machine M ∈
TIME[t(n)] into a circuit C ∈ SIZE[t(n) log t(n)].

▶ Theorem 17 (Cook-Levin Theorem [4]). Let t : N → N be a time constructible function.
Then any multi-tape Turing machine running in TIME[t(n)] time can be simulated by a
circuit-family of SIZE[t(n) log t(n)].

K. Gajulapalli, Z. Li, and I. Volkovich 23:11

2.3 Range Avoidance
▶ Definition 18. The Range Avoidance (Avoid) problem is defined as follows: given as input
the description of a Boolean circuit C : {0, 1}n → {0, 1}m, for m > n, find a y ∈ {0, 1}m

such that ∀x ∈ {0, 1}n : C(x) ̸= y.

An important object that connects Avoid and circuit lower bound is the truth table
generator circuit.

▶ Definition 19 ([13], Section 2.3). For n, s ∈ N where n ≤ s ≤ 2n, the truth table
generator circuit TTn,s : {0, 1}Ln,s → {0, 1}2n maps a n-input size s circuit using Ln,s =
(s + 1)(7 + log(n + s)) bits of description12 into its truth table. Moreover, such circuit can be
uniformly constructed in time poly(2n).

For the purpose of obtaining fixed polynomial circuit lower bound, we generalise the
truth table generator circuit above into one that outputs the prefix of the truth table. We
also use a different encoding scheme (with constant factor loss in the parameter) for the
convenience of presentation.

▶ Definition 20. For n, s ∈ N where 12 ≤ n ≤ s ≤ 2n and |En,s| = 5s log s < 2n, the prefix
truth table generator circuit PTTn,s : {0, 1}|En,s| → {0, 1}|En,s|+1 maps a n-input circuit of
size s described with |En,s| bits into the lexicographically first |En,s| + 1 entries of its truth
table.

Since we want to prove lower bounds not just in the exponential regime, but also in the
polynomial regime for any fixed polynomial, we need a more fine-grained analysis for the
running time of uniformly generating PTTn,s

▶ Lemma 21. The prefix truth table generator circuit PTTn,s : {0, 1}|En,s| → {0, 1}|En,s|+1

has size O(|En,s|3) and can be uniformly constructed in time O(|En,s|3).

Proof. Let M be the multi-tape Turing machine from Lemma 16 that takes as input an
encoding of a circuit and a bitstring, and evaluates the circuit on that bitstring. Let C be
the circuit generated from Theorem 17 that simulates M . Then SIZE(C) = O(s2 log2 s) =
O(|En,s|2). Making |En,s|+1 copies of C for each output gate gives a circuit of size O(|En,s|3).

◀

▶ Theorem 22 ([41, 13]). There exists a single-valued FS2P algorithm for Avoid. Moreover,
on input circuit C : {0, 1}n → {0, 1}n+1, the algorithm runs in time O(n|C|)13.

▶ Theorem 23 ([41, 13]). There exists an explicit language L ∈ S2E \ i.o.-SIZE[2n/n].

Proof. For any n ∈ Z, let TTn : {0, 1}2n−1 → {0, 1}2n be the truth table generator circuit.
Let fn ∈ {0, 1}2n be the canonical solution output by the single-valued algorithm from
Theorem 22 on input TTn.

The hard language L is defined as follows: for any x ∈ {0, 1}∗, x ∈ L if and only if the
(x + 1)-th bit of f|x| = 1, treating x as an integer from 0 to 2n − 1. ◀

12 in fact, it maps a stack program of description size Ln,s and it is known that every n-input size s circuit
has an equivalent stack program of size Ln,s [23].

13 the running time was implicit in the proof of [41], but easy to verify.

FSTTCS 2024

23:12 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

2.4 Sparse Languages
We define some notions of sparsity below, we first introduce natural definitions of sparsity
and sparse extensions in the polynomial regime, and then give their generalizations in the
fine-grained setting.

▶ Definition 24. A language L ∈ SPARSE if for all n, |L ∩ {0, 1}n| ≤ poly(n). Moreover, L

is called uniformly-sparse if L ∈ P ∩ SPARSE.

It is easy to see that SPARSE ⊆ P/poly. That is, one can identify the yes-instances
efficiently, albeit in non-uniform fashion. The purpose of introducing the uniform-sparsity is
to be able to identify these inputs efficiently in a uniform fashion. Unfortunately, we cannot
expect any such language L to lie even in a modestly hard class as, by definition, L ∈ P. The
purpose of the uniformly-sparse extensions, on the other hand, is to bridge this gap. One
can observe that unlike the uniformly-sparse languages, which are contained in P, languages
with uniformly-sparse extension can even be undecidable! In particular, any unary language
has uniformly-sparse extension in form of 1∗.

▶ Definition 25. A language L has a uniformly-sparse extension, if there exists a L′ s.t. :
1. L ⊆ L′

2. L′ is uniformly-sparse

Generalizing the above definitions in the fine-grained setting, we get:

▶ Definition 26. Let t : N → N be a computable function, then a language L is t(n)-SPARSE
if for all n, |L ∩ {0, 1}n| = O(t(n)). Moreover we say that L is t(n)-uniformly-sparse if
L ∈ TIME[t(n)] ∩ t(n)-SPARSE.

▶ Definition 27. L has a t(n)-uniformly-sparse extension, if there exists a L′ s.t.:
1. L ⊆ L′

2. L′ is t(n)-uniformly-sparse.

Observe that every binary language L is 2n-SPARSE. Furthermore, every such L has a
trivial 2n-uniformly-sparse extension: {0, 1}∗.

3 Lower Bounds & Hierarchy Theorem

In this section, we first present (Theorem 28) a fine-grained, parameterised version of
Theorem 23. This allows us to use the Avoid framework and get circuit lower bounds in
S2TIME[t(n)] instead of S2E. We then observe that our S2TIME[t(n)] witness is oblivious of
the input, and hence the lower bounds we get are actually in O2TIME[t(n)] as highlighted in
Theorem 29.

In Theorem 32 we present the first time hierarchy theorem for O2P. In fact, we note to
the best of our knowledge that this is the first known time hierarchy theorem for a semantic
class.

▶ Theorem 28. For n ∈ N, let t : N → N be a time-constructible function, s.t. t(n) > n ≥ 12
then

S2TIME[t(n)] ̸⊆ i.o.-SIZE
[

t(n)1/4

log(t(n))

]
.

K. Gajulapalli, Z. Li, and I. Volkovich 23:13

Proof. We construct a language Lt ∈ S2TIME[t(n)] and Lt ̸⊆ i.o.-SIZE
[

t(n)1/4

log(t(n))

]
.

For any n ∈ N, let s = ⌊ t(n)1/4

log(t(n)) ⌋ and |En,s| = ⌈5s log s⌉. Let PTTn,s : {0, 1}|En,s| →
{0, 1}|En,s|+1 be the prefix truth table generator circuit as in Definition 20. Let fn ∈
{0, 1}|En,s|+1 be the canonical solution to Avoid(PTTn,s) as outputted by the single-valued
algorithm from Theorem 22.

The hard language Lt is defined as follows: for any n ∈ Z, the characteristic string of
Lt|n is set to be XLt|n

:= fn||02n−|En,s|−1.
By definition of PTTn,s and the fact that fn /∈ Image(PTTn,s), we have that Lt /∈

i.o.-SIZE [s]. On the other hand, the single-valued algorithm for finding fn runs in time
O(|En,s| · |PTTn,s|) = O(t(n)). Hence, Lt ∈ S2TIME[t(n)]. ◀

We make the observation that the witness in the S2TIME machine above is oblivious to
the actual input x.

▶ Theorem 29. For n ∈ N, let t : N → N be a time-constructible function, s.t. t(n) > n ≥ 12
then

O2TIME[t(n)] ̸⊆ i.o.-SIZE
[

t(n)1/4

log(t(n))

]
.

Proof. Consider the same language Lt in the proof of Theorem 28. Notice that for any input
x of the same length n, the FS2P algorithm is run on the same circuit PTTn,s and hence the
witness is the same for inputs of the same length. Thus, it follows that Lt ∈ O2TIME[t(n)]. ◀

We now get as a corollary a proof of Theorem 1.

▶ Corollary 30. For all k ∈ N, there exists an explicit language Lk ∈ O2P s.t. Lk ̸⊆ SIZE[nk].

Proof. Fix t(n) = n5k. Then there is an explicit hard language Lt as defined in the proof of
Theorem 28, such that Lt ̸⊆ SIZE[nk]. Moreover, by Theorem 29 we have that Lt ∈ O2P. ◀

Before proving our hierarchy theorem for O2TIME, we prove a simple lemma that bounds
from above the size of a circuit family computing languages in O2TIME.

▶ Lemma 31. O2TIME[t(n)] ⊆ SIZE[t(n) log(t(n))].

Proof. Consider any language L ∈ O2TIME[t(n)], and let V (·, ·, ·) be its t(n)-time verifier.
For any integer n ∈ N, let yn, zn ∈ {0, 1}t(n) be the irrefutable proofs for input size n. By
Theorem 17 we can convert V (·, ·, ·) into a circuit family {Cn} ⊆ SIZE[t(n) log(t(n)]. The
values yn and zn can be hard-coded into Cn, and hence this circuit will decide L on all inputs
of size n. ◀

Having both an upper bound on the size of circuits simulating an O2TIME computation,
and also a lower bound for O2TIME against circuits, we can use the circuit size hierarchy
(Theorem 14) to define a time hierarchy on O2TIME.

▶ Theorem 32. For n ∈ N, let t : N → N be a time constructible function, s.t. t(n) > n ≥ 12
then: O2TIME[t(n)] ⊊ O2TIME[t(n)4 log9(t(n))].

Proof. Combining Theorem 29, Lemma 31, and Circuit Size Hierarchy (Theorem 14) we have:

O2TIME[t(n)] ⊆ SIZE[t(n) log t(n)] ⊊ SIZE[t(n) log
5
4 t(n)] ,

and

O2TIME[t(n)4 log9(t(n))] ̸⊆ SIZE[t(n) log
5
4 t(n)] . ◀

FSTTCS 2024

23:14 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

▶ Theorem 33. For n ∈ N, let t : N → N be a time constructible function, s.t. t(n) ≥ n

then: for all ε > 0, O2TIME[t(n)] ⊊ O2TIME[t(n)1+ε].

Proof. Let us assume that O2TIME[t(n)1+ε] ⊆ O2TIME[t(n)], then by translation we have
that:

O2TIME[t(n)(1+ε)2
] ⊆ O2TIME[t(n)1+ε] ⊆ O2TIME[t(n)]

Inducting on any k > 2, we get that O2TIME[t(n)(1+ε)k] ⊆ O2TIME[t(n)]. Now setting
k = ⌈3.1/ε⌉, by Bernoulli’s inequality we have that (1 + ε)k ≥ (1 + ε)3.1/ε ≥ 4.1. Therefore,
O2TIME[t(n)4.1] ⊆ O2TIME[t(n)], which contradicts Theorem 32. ◀

▶ Remark 34. We note here that while we are able to achieve a better gap in our hierarchy
theorem in Theorem 33 over Theorem 32, there is a trade off. The hierarchy theorem defined
in Theorem 32 is explicit, that is we have an explicit language not known to be contained in
the smaller class. However, when we apply our translation argument to get better parameters
in Theorem 33 we lose this explicitness.

4 Sparsity

In this section, we use sparse extensions to get various structural complexity results. We prove
a more fine-grained statement of Theorem 3 which states that any language in S2TIME[t(n)]
with a uniformly-sparse extension is actually in O2TIME[t(n)2]. This lets us extract as a
corollary another proof of S2E = O2E. As another application of sparse extensions, we are
able to recover the fixed polynomial lowerbounds for O2P from the previous section as stated
in Theorem 1. Finally we show connections between sparse extensions and open problems
posed by [27].

▶ Lemma 35. Let L ∈ S2TIME[t(n)]. If L has a t(n)-uniformly-sparse extension then
L ∈ O2TIME[t(n)2].

Proof. For any n, let L′ be the t(n)-uniformly-sparse extension of L, and let F be the
TIME[t(n)] predicate that decides membership in L′. We will now design an O2TIME[t(n)2]
verifier V for L|n. Since both L and L′ are t(n)-SPARSE, we have that for most x ∈ {0, 1}n:
L|n(x) = L′|n(x) = 0. V will first use F to efficiently filter out most non-membership in L′|n,
and hence L|n in TIME[t(n)]. Now V only has to decide membership in L over t(n) many
inputs X = {x ∈ {0, 1}n : F(x) = 1}. We will use the fact that since L ∈ S2TIME[t(n)],
for all x ∈ X, if x ∈ L there is an irrefutable YES certificate yx and if x /∈ L there is an
irrefutable NO certificate zx and a verifier V ∗, running in TIME[t(n)] s.t.

if x ∈ L, ∃yx, ∀z s.t. V ∗(x, yx, z) = 1
if x /∈ L, ∃zx, ∀y s.t. V ∗(x, y, zx) = 0

Consider the string Y ∗ which encodes a table of YES witnesses y∗
x for every input x ∈ X.

When x ∈ L we set y∗
x = yx, and when x /∈ L we will set y∗

x = 0t(n). The size of Y ∗ is
O(t(n)2), since there are at most t(n) entries in the table each of length t(n) + n. For every
x ∈ X ∩ L, let zx be the irrefutable NO-certificate corresponding to x for V ∗. We set Z∗ to
be the concatenation of all such zx. The size of Z∗ is also at most t(n)2.

We now show that Y ∗ and Z∗ will serve as oblivious irrefutable “YES” and “NO” certific-
ates respectively for V . On input (x, Y ∗, Z∗), V first parses Y ∗ to find the corresponding y∗

x

in time TIME[t(n)2]. Then for each zi ∈ Z∗ we run V ∗(x, y∗
x, zi). If for all zi, V ∗(x, y∗

x, zi) = 1
then V outputs 1, otherwise V will output 0. Since we are making at most t(n) calls that
each cost TIME[t(n)], V runs in TIME[t(n)2].

K. Gajulapalli, Z. Li, and I. Volkovich 23:15

V (x, Y ∗, Z∗) :
(1) Set output = 1.
(2) If F(x) = 0, return 0.
(3) Parse Y ∗ to get y∗

x.
(4) For zi ∈ Z∗, do:

(a) output = output ∧ V ∗(x, y∗
x, zi).

(5) Return output.

Figure 1 O2TIME[t(n)2] Verifier for Language in S2TIME[t(n)] with t(n)-uniformly-sparse exten-
sion.

To see correctness, we first analyze the case when x ∈ L, then by construction Y ∗ includes
y∗

x = yx and V will output 1. On the other hand if x /∈ L then there is an irrefutable
no-certificate zx in Z∗ so there is no yi such that V (x, yi, zx) = 1. Hence V outputs 0. ◀

By taking t(n) to be a polynomial in Lemma 35 we directly get Corollary 36 (also
Theorem 3) relating O2P and S2P.

▶ Corollary 36. If L ∈ S2P and L has an uniformly-sparse extension, then L ∈ O2P

Similarly, one can prove Theorem 4 by showing the same consequence for coNP vs coONP,
thus making a partial progress towards the open questions posed by Goldreich and Meir
in [27]. In the exponential regime, since all languages have the trivial 2n-uniformly-sparse
extension we get the equivalence between O2E and S2E as seen in Corollary 37.

▶ Corollary 37. S2E = O2E

Proof. As noted in Section 2.4, every language is 2n-SPARSE, and has the trivial 2n-uniformly-
sparse extension: {0, 1}∗. When t(n) = 2n, by Lemma 35 we get that S2TIME[2n] ⊆
O2TIME[22n]. ◀

In particular, the following lemma shows that the hard language in S2TIME[t(n)] defined
in Theorem 28 admits a t(n)-uniformly-sparse extension, giving another proof of Corollary 30.

▶ Lemma 38. For n ∈ N, let t : N → N be a time-constructible function, s.t. t(n) > n ≥ 12
then, there is an explicit language Lt ∈ S2TIME[t(n)] s.t. Lt /∈ SIZE

[
t(n)1/4

log(t(n))

]
. Moreover, Lt

has a t(n)-uniformly-sparse extension L′
t.

Proof. Let Lt be the S2TIME[t(n)] language defined in the proof Theorem 28 with the
characteristic string XLt|n

:= fn||02n−|En,s|−1. We now define the language L′
t whose

characteristic string XL′
t|n

:= 1|En,s|+1||02n−|En,s|−1. To see that this L′
t is a t(n)-

uniformly-sparse extension of Lt, clearly Lt ⊆ L′
t. Moreover membership of x ∈ L′

t can
be decided by checking if the binary value of x is less than or equal to |En,s| + 1 which can
be done in TIME[n] ⊆ TIME[t(n)]. ◀

Equipped with this lemma we have an alternative proof of fixed polynomial lower bounds
for O2P as stated in Theorem 1.

▶ Corollary 39 (Theorem 1). For every k ∈ N, O2P ̸⊆ SIZE[nk]. Moreover, for every k there
is an explicit language Lk in O2P s.t. Lk /∈ SIZE[nk].

FSTTCS 2024

23:16 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

Proof. Fix t(n) = n5k. Then by Lemma 38 there is an explicit language Lk such that
Lk ̸⊆ SIZE[nk], and Lk has an uniformly-sparse extension. Applying Lemma 35 we have that
Lk ∈ O2TIME[n10k] ⊆ O2P. ◀

5 Open Problems

We conclude with a few interesting open problems:
Can we show that every sparse S2P language is also in O2P?
Can we show a non-trivial upper bound for O2P, for example PNP, MA, PP? This would
imply explicit fixed-polynomial lower bounds for such classes. On the other hand, we do
note that under reasonable derandomization assumptions, O2P ⊆ S2P = PNP.
Can we arrive at something interesting about time hierarchy theorem for semantic classes
where fixed-polynomial lower bounds are known e.g. S2P, ZPPNP, assuming NP ̸⊆ P/poly?
For instance, if NP ⊆ P/poly, then it follows that S2P ⊆ P/poly. One could then invoke
the circuit size hierarchy theorem (Theorem 14) to establish a hierarchy theorem for
S2TIME, similar to how we obtain the hierarchy theorem for O2TIME.

References
1 S. Aaronson. Oracles are subtle but not malicious. In 21st Annual IEEE Conference on

Computational Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages
340–354. IEEE Computer Society, 2006. doi:10.1109/CCC.2006.32. 5

2 S. Aaronson. The learnability of quantum states. In Proceedings of the Royal Society A,
volume 463, pages 3089–3114, 2007. doi:10.1098/rspa.2007.0113. 3

3 D. Apon, W. Gasarch, and K. Lawler. The complexity of grid coloring. Theory Comput. Syst.,
67(3):521–547, 2023. doi:10.1007/S00224-022-10098-5. 3, 7

4 S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge University
Press, 2009. 8, 10

5 B. Barak. A probabilistic-time hierarchy theorem for “slightly non-uniform" algorithms. In
RANDOM, pages 194–208, 2002. 4

6 N. H. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles and queries
that are sufficient for exact learning. J. Comput. Syst. Sci., 52(3):421–433, 1996. doi:
10.1006/JCSS.1996.0032. 5

7 J.-Y. Cai. S2P ⊆ ZP P NP . Journal of Computer and System Sciences, 73(1):25–35, 2007. 2,
5, 6

8 J.-Y. Cai and O. Watanabe. On proving circuit lower bounds against the polynomial-time
hierarchy. SIAM J. Comput., 33(4):984–1009, 2004. doi:10.1137/S0097539703422716. 5

9 R. Canetti. More on BPP and the polynomial-time hierarchy. Inf. Process. Lett., 57(5):237–241,
1996. doi:10.1016/0020-0190(96)00016-6. 2

10 V. T. Chakaravarthy and S. Roy. Oblivious symmetric alternation. In STACS, pages 230–241,
2006. 3, 5, 6

11 V. T. Chakaravarthy and S. Roy. Arthur and merlin as oracles. Comput. Complex., 20(3):505–
558, 2011. doi:10.1007/S00037-011-0015-3. 3, 5

12 E. Chattopadhyay and D. Zuckerman. Explicit two-source extractors and resilient functions.
Annals of Mathematics, 189(3):653–705, 2019. doi:10.4007/annals.2019.189.3.1. 4

13 L. Chen, S. Hirahara, and H. Ren. Symmetric exponential time requires near-maximum circuit
size. In Proceedings of the 56th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2024, to appear. Association for Computing Machinery, 2024. 2, 4, 5, 7, 11

14 L. Chen and R. Tell. Hardness vs randomness, revised: Uniform, non-black-box, and instance-
wise. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 125–136, 2022. doi:10.1109/FOCS52979.2021.00021. 4

https://doi.org/10.1109/CCC.2006.32
https://doi.org/10.1098/rspa.2007.0113
https://doi.org/10.1007/S00224-022-10098-5
https://doi.org/10.1006/JCSS.1996.0032
https://doi.org/10.1006/JCSS.1996.0032
https://doi.org/10.1137/S0097539703422716
https://doi.org/10.1016/0020-0190(96)00016-6
https://doi.org/10.1007/S00037-011-0015-3
https://doi.org/10.4007/annals.2019.189.3.1
https://doi.org/10.1109/FOCS52979.2021.00021

K. Gajulapalli, Z. Li, and I. Volkovich 23:17

15 Y. Chen, Y. Huang, J. Li, and H. Ren. Range avoidance, remote point, and hard partial truth
table via satisfying-pairs algorithms. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, pages 1058–1066, New York, NY, USA, 2023. Association
for Computing Machinery. doi:10.1145/3564246.3585147. 4, 5

16 Y. Chen and J. Li. Hardness of range avoidance and remote point for restricted circuits via
cryptography. In Proceedings of the 56th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2024, to appear. Association for Computing Machinery, 2024. 4

17 E. Chung, A. Golovnev, Z. Li, M. Obremski, S. Saraogi, and N. Stephens-Davidowitz. On the
randomized complexity of range avoidance, with applications to cryptography and metacom-
plexity. ECCC preprint, 2023. https://eccc.weizmann.ac.il/report/2023/193/. 4

18 S. A. Cook. A hierarchy for nondeterministic time complexity. In Proceedings of the fourth
annual ACM symposium on Theory of computing - STOC ’72, STOC ’72. ACM Press, 1972.
doi:10.1145/800152.804913. 4

19 P. Dixon, A. Pavan, J. Vander Woude, and N. V. Vinodchandran. Pseudodeterminism:
promises and lowerbounds. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2022, pages 1552–1565, New York, NY, USA, 2022. Association
for Computing Machinery. doi:10.1145/3519935.3520043. 4

20 L. Fortnow and R. Santhanam. Hierarchy theorems for probabilistic polynomial time. In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 316–324, 2004. 4

21 L. Fortnow, R. Santhanam, and L. Trevisan. Hierarchies for semantic classes. In Proceedings
of the 37th Annual ACM SIGACT Symposium on Theory of Computing, pages 348–355. ACM,
New York, 2005. doi:10.1145/1060590.1060642. 4

22 L. Fortnow, R. Santhanam, and R. Williams. Fixed-polynomial size circuit bounds. In
Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009,
Paris, France, 15-18 July 2009, pages 19–26. IEEE Computer Society, 2009. doi:10.1109/
CCC.2009.21. 3, 5, 7

23 G. S. Frandsen and P. B. Miltersen. Reviewing bounds on the circuit size of the hardest functions.
Information processing letters, 95(2):354–357, 2005. doi:10.1016/J.IPL.2005.03.009. 11

24 K. Gajulapalli, A. Golovnev, S. Nagargoje, and S. Saraogi. Range avoidance for constant
depth circuits: Hardness and algorithms. In Nicole Megow and Adam D. Smith, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2023, September 11-13, 2023, Atlanta, Georgia, USA, volume 275 of
LIPIcs, pages 65:1–65:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.APPROX/RANDOM.2023.65. 4

25 W. Gasarch. https://blog.computationalcomplexity.org/2010/07/spares-problems-in-np-
thought-to-not-be.html, 2010. URL: https://blog.computationalcomplexity.org/2010/
07/spares-problems-in-np-thought-to-not-be.html. 7

26 O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008. 8

27 O. Goldreich and O. Meir. Input-oblivious proof systems and a uniform complexity perspective
on p/poly. ACM Transactions on Computation Theory (TOCT), 7(4):1–13, 2015. doi:
10.1145/2799645. 3, 6, 7, 14, 15

28 V. Guruswami, X. Lyu, and X. Wang. Range avoidance for low-depth circuits and connections
to pseudorandomness. In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM 2022, September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual
Conference), volume 245 of LIPIcs, pages 20:1–20:21. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.APPROX/RANDOM.2022.20. 4

29 J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms.
Transactions of the American Mathematical Society, 117(0):285–306, 1965. doi:10.1090/
s0002-9947-1965-0170805-7. 4

FSTTCS 2024

https://doi.org/10.1145/3564246.3585147
https://eccc.weizmann.ac.il/report/2023/193/
https://doi.org/10.1145/800152.804913
https://doi.org/10.1145/3519935.3520043
https://doi.org/10.1145/1060590.1060642
https://doi.org/10.1109/CCC.2009.21
https://doi.org/10.1109/CCC.2009.21
https://doi.org/10.1016/J.IPL.2005.03.009
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.65
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.65
https://blog.computationalcomplexity.org/2010/07/spares-problems-in-np-thought-to-not-be.html
https://blog.computationalcomplexity.org/2010/07/spares-problems-in-np-thought-to-not-be.html
https://doi.org/10.1145/2799645
https://doi.org/10.1145/2799645
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.20
https://doi.org/10.1090/s0002-9947-1965-0170805-7
https://doi.org/10.1090/s0002-9947-1965-0170805-7

23:18 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

30 F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape turing machines. J. ACM,
13(4):533–546, October 1966. doi:10.1145/321356.321362. 4

31 R. Ilango, J. Li, and R. Williams. Indistinguishability obfuscation, range avoidance, and
bounded arithmetic. In Proceedings of the 55th Annual ACM Symposium on Theory of Com-
puting, STOC 2023, pages 1076–1089, New York, NY, USA, 2023. Association for Computing
Machinery. doi:10.1145/3564246.3585187. 4

32 R. Impagliazzo and A. Wigderson. P=BPP unless E has subexponential circuits: derandomizing
the xor lemma. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing
(STOC), pages 220–229, 1997. 2

33 R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and
Control, 55(1-3):40–56, 1982. doi:10.1016/S0019-9958(82)90382-5. 2, 5

34 R. M. Karp and R. J. Lipton. Some connections between nonuniform and uniform complexity
classes. In Proceedings of the 12th Annual ACM Symposium on Theory of Computing, April
28-30, 1980, Los Angeles, California, USA, pages 302–309, 1980. doi:10.1145/800141.804678.
5

35 R. Kleinberg, O. Korten, D. Mitropolsky, and C. Papadimitriou. Total Functions in the
Polynomial Hierarchy. In James R. Lee, editor, 12th Innovations in Theoretical Computer Sci-
ence Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 44:1–44:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ITCS.2021.44. 4

36 J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits. SIAM J.
Comput., 28(1):311–324, 1998. doi:10.1137/S0097539795296206. 5

37 O. Korten. The hardest explicit construction. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 433–444. IEEE, 2022. 4, 7

38 O. Korten and T. Pitassi. Strong vs. weak range avoidance and the linear ordering principle.
In 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS). IEEE
Computer Society, 2024. URL: https://eccc.weizmann.ac.il/report/2024/076/. 4

39 J. Li and T. Yang. 3.1n- o (n) circuit lower bounds for explicit functions. In Proceedings of the
54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1180–1193, 2022. 2

40 X. Li. Two source extractors for asymptotically optimal entropy, and (many) more. In 2023
IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 1271–1281,
Los Alamitos, CA, USA, November 2023. IEEE Computer Society. doi:10.1109/FOCS57990.
2023.00075. 4

41 Z. Li. Symmetric exponential time requires near-maximum circuit size: Simplified, truly
uniform. In Proceedings of the 56th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2024. Association for Computing Machinery, 2024. 2, 4, 5, 7, 11

42 Z. Lu, I. C. Oliveira, and R. Santhanam. Pseudodeterministic algorithms and the structure of
probabilistic time. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2021, pages 303–316, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3406325.3451085. 4

43 S. R. Mahaney. Sparse complete sets of NP: solution of a conjecture of berman and hartmanis.
J. Comput. Syst. Sci., 25(2):130–143, 1982. doi:10.1016/0022-0000(82)90002-2. 3

44 D. van Melkebeek and K. Pervyshev. A generic time hierarchy with one bit of advice.
Computational Complexity, 16(2):139–179, 2007. doi:10.1007/S00037-007-0227-8. 4

45 P. B. Miltersen, N. V. Vinodchandran, and O. Watanabe. Super-polynomial versus half-
exponential circuit size in the exponential hierarchy. In COCOON, pages 210–220, 1999.
2

46 N. Nisan and A. Wigderson. Hardness vs. randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994. doi:10.1016/S0022-0000(05)80043-1. 2

47 S. P. Radziszowski. Small ramsey numbers. The Electronic Journal of Combinatorics [electronic
only], DS01, 2021. URL: https://www.combinatorics.org/ojs/index.php/eljc/article/
view/DS1. 4

https://doi.org/10.1145/321356.321362
https://doi.org/10.1145/3564246.3585187
https://doi.org/10.1016/S0019-9958(82)90382-5
https://doi.org/10.1145/800141.804678
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.1137/S0097539795296206
https://eccc.weizmann.ac.il/report/2024/076/
https://doi.org/10.1109/FOCS57990.2023.00075
https://doi.org/10.1109/FOCS57990.2023.00075
https://doi.org/10.1145/3406325.3451085
https://doi.org/10.1016/0022-0000(82)90002-2
https://doi.org/10.1007/S00037-007-0227-8
https://doi.org/10.1016/S0022-0000(05)80043-1
https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1
https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1

K. Gajulapalli, Z. Li, and I. Volkovich 23:19

48 H. Ren, R. Santhanam, and Z. Wang. On the range avoidance problem for circuits. In 2022
IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 640–650,
Los Alamitos, CA, USA, November 2022. IEEE Computer Society. doi:10.1109/FOCS54457.
2022.00067. 4

49 A. Russell and R. Sundaram. Symmetric alternation captures BPP. Comput. Complex.,
7(2):152–162, 1998. doi:10.1007/S000370050007. 2

50 R. Santhanam. Circuit lower bounds for merlin–arthur classes. SIAM J. Comput., 39(3):1038–
1061, 2009. doi:10.1137/070702680. 5

51 J. I. Seiferas, M. J. Fischer, and A. R. Meyer. Separating nondeterministic time complexity
classes. Journal of the ACM, 25(1):146–167, January 1978. doi:10.1145/322047.322061. 4

52 C. E. Shannon. The synthesis of two-terminal switching circuits. Bell Syst. Tech. J., 28(1):59–
98, 1949. doi:10.1002/J.1538-7305.1949.TB03624.X. 2

53 N. V. Vinodchandran. A note on the circuit complexity of PP. Theor. Comput. Sci., 347(1-
2):415–418, 2005. doi:10.1016/J.TCS.2005.07.032. 5

54 R. Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014. doi:
10.1145/2559903. 2

55 S. Žák. A turing machine time hierarchy. Theoretical Computer Science, 26(3):327–333,
October 1983. doi:10.1016/0304-3975(83)90015-4. 4, 6

FSTTCS 2024

https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1007/S000370050007
https://doi.org/10.1137/070702680
https://doi.org/10.1145/322047.322061
https://doi.org/10.1002/J.1538-7305.1949.TB03624.X
https://doi.org/10.1016/J.TCS.2005.07.032
https://doi.org/10.1145/2559903
https://doi.org/10.1145/2559903
https://doi.org/10.1016/0304-3975(83)90015-4

	1 Introduction
	1.1 Background
	1.1.1 Symmetric Time
	1.1.2 Oblivious Complexity Classes
	1.1.3 Sparsity
	1.1.4 Range Avoidance
	1.1.5 Time Hierarchy Theorem

	1.2 Previous Results
	1.3 Our Results
	1.4 Proof Overview

	2 Preliminaries
	2.1 Complexity Classes
	2.2 Nonuniformity
	2.3 Range Avoidance
	2.4 Sparse Languages

	3 Lower Bounds & Hierarchy Theorem
	4 Sparsity
	5 Open Problems

