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Abstract
Classical work on metric space based committee selection problem interprets distance as “near
is better”. In this work, motivated by real-life situations, we interpret distance as “far is better”.
Formally stated, we initiate the study of “obnoxious” committee scoring rules when the voters’
preferences are expressed via a metric space. To accomplish this, we propose a model where large
distances imply high satisfaction (in contrast to the classical setting where shorter distances imply
high satisfaction) and study the egalitarian avatar of the well-known Chamberlin-Courant voting
rule and some of its generalizations. For a given integer value λ between 1 and k, the committee size,
a voter derives satisfaction from only the λth favorite committee member; the goal is to maximize
the satisfaction of the least satisfied voter. For the special case of λ = 1, this yields the egalitarian
Chamberlin-Courant rule. In this paper, we consider general metric space and the special case of a
d-dimensional Euclidean space.

We show that when λ is 1 and k, the problem is polynomial-time solvable in R2 and general
metric space, respectively. However, for λ = k − 1, it is NP-hard even in R2. Thus, we have
“double-dichotomy” in R2 with respect to the value of λ, where the extreme cases are solvable in
polynomial time but an intermediate case is NP-hard. Furthermore, this phenomenon appears to be
“tight” for R2 because the problem is NP-hard for general metric space, even for λ = 1. Consequently,
we are motivated to explore the problem in the realm of (parameterized) approximation algorithms
and obtain positive results. Interestingly, we note that this generalization of Chamberlin-Courant
rules encodes practical constraints that are relevant to solutions for certain facility locations.
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24:2 The Chamberlin-Courant Approach to Obnoxious Committee Selection
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1 Introduction

Initiated in the 18th century, the multiwinner election problem, also known as the committee
selection problem, has been central to social choice theory for over a century [16, 68, 53]
and in the last decade and a half it has been among the most well-studied problems in
computational social choice [3, 29, 9, 8]. In this problem, given a set of candidates C, a profile
P of voters’ preferences, and an integer k; the goal is to find a k-sized subset of candidates
(called a committee) using a multiwinner voting rule. The committee selection problem has
many applications beyond parliamentary elections, such as selecting movies to be shown on
a plane, making various business decisions, choosing PC members for a conference, choosing
locations for fire stations in a city, and so on. For more details on the committee selection
problem, we refer the reader to [29, 46].

The Chamberlin-Courant (CC) committee is a central solution concept in the world
of committee selection. Named after Chamberlin and Courant [16], it is derived from a
multiwinner voting rule where the voter’s preference for a given k-sized committee is evaluated
by adding the preference of each voter for its representative, the most preferred candidate in
the committee.The CC committee is one with the highest value. There has been a significant
amount of work in computational social choice centered around this concept and has to
date engendered several CC-type rules that can be viewed as a generalization of the above.
Specifically, ordered weighted average(OWA) operator-based rules such as the median scoring
rule, defined formally later in [62, 4] can be seen as a direct generalization of CC. Moreover,
there are other notions of generalization based on the preference aggregation principle: the
original CC rule is utilitarian, that is, it takes the summation of each voter’s preference value
toward its representative, [62, 10, 37]. The egalitarian variant studied by Aziz et al. [4]
and Gupta et al. [37] is one where only the least satisfied voter’s preference value towards
its representative is taken. Clearly, there could be many other variants where some other
aggregation principle is considered. We refer to all these variants collectively as the CC-type
rules and the egalitarian variants as the egalitarian CC-type rules. The egalitarian rules, also
known as Rawlsian rules, are based on the highly influential Rawls’s theory of “justice as
fairness” [58, 59] that favors equality in some sense by maximising the minimum satisfaction.
Egalitarian rules are very well-studied in voting theory [44, 4, 37, 24, 66].

In this paper, we consider the situation where the voters’ preferences are expressed via
a metric space, a natural setting in the facility location problem. Facility location can
be viewed as an application of the committee selection (also known multi-winner voting)
problem [17] and spatial voting [48]. Furthermore, we consider egalitarian scoring rules,
which aim to maximize the “satisfaction” of the least satisfied voter. Moreover, Gupta et
al. [37] study a wide range of egalitarian rules, called the egalitarian median rule, which is
a generalization of the egalitarian CC rule and is defined as follows: for a voter v and a
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committee S, let posS
v (called a position vector) be the vector of positions of candidates in S

in the ranking of v in increasing order. For example, for the voter v : a ≻ b ≻ d ≻ c and set
S = {c, d}, the vector posS

v = [3, 4]. In the egalitarian median rule, given a value 1 ≤ λ ≤ k,
the satisfaction of a voter v for a committee S is given by m − posS

v [λ], where m is the total
number of candidates and posS

v [λ] is the position value of the λth candidate in S according
to v’s preference list. Note that when λ = 1, we get the egalitarian CC scoring rule. Gupta
et al. [37] proved that the egalitarian median rule is NP-hard for every λ < k.

In contrast to the aforementioned intractibility results for egalitarian CC-type rules,
Betzler et al.[7] show that for λ = 1, the egalitarian median rule is polynomial-time solvable
for 1-dimensional Euclidean preferences because such preferences are single-peaked. This
motivates us to study egalitarian CC-type rules in the metric space setting that goes beyond
dimension 1.

Preferences via a metric space. For a given metric space, preferences are encoded in the
following manner: each candidate and each voter is represented by a point in the metric
space. In earlier works, distance is viewed as being inversely proportional to preference, that
is, a voter is said to have a higher preference for candidates who are closer to her than those
that are farther in the metric space, [65, 13, 41, 34, 29, 64, 20]. In this paper, we consider the
opposite scenario where distance is directly proportional to preference, that is, a candidate
who is farther away is more preferred than the one who is closer. Inspired by obnoxious
facility location [47, 67, 21], we call our problem obnoxious committee selection. Before we
delve into the formal definition of our problem, we discuss the use of metric space to encode
preference in earlier works.

The facility location problem is actually equivalent to the committee selection problem,
where we assume that the closer facility is more preferred. The well-known k-center
problem (also known as the Minimax Facility Location problem in metric space) is
equivalent to the egalitarian CC committee selection problem when the voters’ preferences
are encoded in a metric space, where higher preference is given to the candidate that
is closer. For some applications, it is natural to demand more than one facility in the
vicinity, e.g., convenience stores, pharmacies, healthcare facilities, playgrounds, etc. This
is known as the fault tolerant k-center problem and is captured by egalitarian median
rules in a metric space [19]. Facility location is among the most widely studied topics in
algorithms, and we point the reader to some recent surveys [1, 22, 35] on the topic and
to [17] for a survey on facility location in mechanism design.
In the spatial theory of voting, voters and candidates are embedded in the d-dimensional
Euclidean space, and each voter ranks the candidates according to their distance from
them [38, 48].

In the last few years, a fair amount of research centered on the theme of voting, committee
selection, especially the CC rule, in metric spaces has appeared in theory and economics
and computation venues [64, 55, 18, 71, 38, 54, 51, 2]. Motivated by the applications stated
above, we consider the general metric spaces as well as the Euclidean space for our study.
Next, we discuss our motivation for studying obnoxious committee selection before presenting
the formal definition.

Why Obnoxious Committee? The committee selection problem has been studied for the
metric space in literature [27, 34, 43, 63, 64]. All these papers use the “closer is better”
perspective and thus candidates that are closer are preferred over those that are farther.
Motivated by real-life scenarios where every kind of facility is not desirable in the vicinity
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24:4 The Chamberlin-Courant Approach to Obnoxious Committee Selection

such as is the case with factories, garbage dumps and so on, we want to study a problem
which allows us to restrict the number of facilities in the vicinity. This is particularly relevant
for facilities that bring some utility but too many lead to loss in value or even to negative
utility. In order to design an appropriate solution concept for scenarios such as these we
associate higher preference to facilities (i.e candidates) that are far and set the value of λ

in a situation-specific way. For example, consider a situation where a local government is
searching locations to build k factories, with the constraint that each of the k factories is
located far from every neighborhood. This can be modeled by our problem by setting each
of the neighborhoods as voters, each potential factory location as a candidate, and λ = k.
Moreover, for facilities such as garbage recycling, we can set λ = k − O(1) so that all but
few facilities are located far from any neighborhood. Since the value of λ can depend on k

(which is part of the input), we take λ to be part of the input. Overall, we observe that as far
as satisfaction is concerned, different facilities bring different levels of satisfaction depending
on how many of them are in the vicinity. Consequently, it is desirable to have a model which
is robust enough to capture this nuance. This translates to λ being user defined, and is thus
specified as part of the input to the problem.

Formal definition. We introduce some notation before giving a formal definition of the
problem studied in this paper. For a given metric space M = (X, d), a point x ∈ X, a
subset S ⊆ X, and λ ∈ [k], we define dλ(x, S) to be the distance of x to the λth farthest
point in S. To define this notion formally, we may sort the distances of a point x to each
s ∈ S in non-increasing order (breaking ties arbitrarily, if needed), and let these distances be
d(x, s1) ≥ d(x, s2) ≥ . . . ≥ d(x, sk). Then, sλ ∈ S is said to be the λth farthest point from x

in S, and dλ(x, S) = d(x, sλ). Note that d1(x, S) is the distance of x from a farthest point in
S. For a point p ∈ X and a non-negative real r, B(p, r) := {q ∈ X : d(p, q) ≤ r} denotes the
ball of radius r centered at p.

Obnoxious Egalitarian Median Committee Selection
(Obnox-Egal-Median-CS, in short)
Input: A metric space M consisting of a set of voters, V , a set of candidates, C; positive
integers k and λ ∈ [k]; and a positive real t.
Question: Does there exist a subset S ⊆ C such that |S| = k and for each v ∈ V ,
dλ(v, S) ≥ t?

When λ = 1, we give the problem a special name, Obnoxious-Egal-CC, due to its
similarity with the egalitarian CC rule. Note that the egalitarian (resp. utilitarian) CC rule
itself is the special case of the egalitarian (resp. utilitarian) median rule when λ = 1.

Our Contributions. In the following, we discuss the highlights of our work in this paper
and the underlying ideas used to obtain the result.

We begin with studying Obnoxious-Egal-CC, that is, Obnox-Egal-Median-CS with
λ = 1, and show that it is polynomial-time solvable when voters and candidates are
embedded in R2 with Euclidean distances, Theorem 1. To design this algorithm, we first
observe that the above setting can be equivalently reformulated as the following geometric
problem. Given V , and a set of equal-sized disks D, find a k-size subset D′ ⊆ D such
that no point of V belongs to the common intersection region of D′. Following that we
use geometric properties of equal-sized disks to design an algorithm that uses dynamic
programming to inductively build such a region. This algorithmic result contrasts with
the intractability of the non-obnoxious version (the k-Center problem) which is known
to be NP-hard in R2.
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In Theorem 7, we consider Obnoxious-Egal-CC in general metric spaces. We show
that it is NP-hard, and in fact, the optimization variant is also W[2]-hard to approximate
beyond a factor of 1/3, parameterized by k, the committee size. Informally speaking,
this implies that no algorithm with running time f(k)nO(1) is likely to exist, assuming
widely believed complexity-theoretic assumptions. For more background on parameterized
complexity, the reader may refer to the full version [36], or more generally, a textbook on
the topic [23].
Notwithstanding these negative results, we show that Obnoxious-Egal-CC admits
a factor 1/4 approximation algorithm that runs in polynomial time, Theorem 9. In
this algorithm, we first compute a “t/2-net” S ⊆ C, i.e., S satisfies the following two
properties: (1) d(c, c′) > t/2 for any distinct c, c′ ∈ S, and (2) for any c ̸∈ S, there exists
some c′ ∈ M such that d(c, c′) ≤ t/2. Now, consider a point p ∈ V and a c∗ ∈ C, such
that d(p, c∗) ≥ t. Then, by using the two properties of S, we argue that there exists a
point in c′ ∈ S that is “near” c, and hence, “far from” p. More specifically, we can show
that d(p, c′) ≥ t/4, leading to a 1/4-approximate solution.
Our work on Obnox-Egal-Median-CS for λ > 1 reveals that for λ = k, the problem
can be solved in polynomial time due to the fact that every committee member needs
to be at least t distance away from every voter. So, if possible, we can choose any k

candidates that are t-distance away from every voter; otherwise, a solution does not exist.
The algorithm is same as the one in Proposition 3 in [4], but here we can have ties. We
show that for λ = k − 1, Obnox-Egal-Median-CS is NP-hard (Theorem 11) even when
the voters and candidates are points in R2. Furthermore, we show that the intractability
results we have for Obnoxious-Egal-CC in Theorem 7 carry forward to λ > 1, as shown
in Theorem 13.
For an arbitrary value of λ in Rd space, we exhibit a fixed-parameter tractable approx-
imation scheme, that is, an algorithm that returns a solution of size k, in time FPT in
(ϵ, λ, d), such that for every point v ∈ V there are at least λ points in the solution that
are at distance at least (1− ϵ)t from v, Theorem 22. Note that λ ≤ k, thus, this algorithm
is also FPT in (ϵ, k, d). To obtain this result, we first observe that it is possible to further
refine the idea of t/2-net, and define a set of “representatives”, if the points belong to
a Euclidean space. In this setting, for any 0 < ϵ < 1, we can compute a candidate set
R of representatives, such that for every relevant c ∈ C, there exists a c′ ∈ R such that
d(c, c′) ≥ ϵ/2. Moreover, R is bounded by a function of λ, d, and ϵ. Thus, we can find an
(1 − ϵ)-approximation by enumerating all size-k subsets of R.

Related works. Much of the research on multiwinner voting is concentrated on the compu-
tational complexity of computing winners under various rules, because for many applications
it is crucial to be able to efficiently compute exact winners. As might be expected, com-
puting winners under some committee scoring rules can be done in polynomial time (e.g.,
k-Borda [29]), while for many of the others the decision problem is NP-hard.

Effort towards applying the framework of parameterized complexity to these problems
has primarily focused on parameters such as the committee size k and the number of voters,
n. Indeed, this line of research has proven to be rather successful (see, e.g., [11, 10, 28,
31, 30, 4, 7, 6, 32, 70, 72, 49, 5, 52, 37, 69]). The problem has also been studied through
the perspectives of approximation algorithms [55, 12] and parameterized approximation
algorithms [60, 61, 10].

It is worth noting the similarities between our model and that of the fault tolerant versions
of clustering problems, such as k-Center or k-Median [45, 39, 14], also [15]. In the latter
setting, the clustering objective incorporates the distance of a point to its λth closest chosen
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24:6 The Chamberlin-Courant Approach to Obnoxious Committee Selection

center. Here, λ ≥ 1 is typically assumed to be a small constant. Thus, even if λ − 1 centers
chosen in the solution undergo failure, and if they all happen to be nearby a certain point p,
we still have some (upper) bound on the distance of p to its now-closest center. Note that
this motivation of fault tolerance translates naturally into our setting, where we want some
(lower) bound on the distance of a voter to its λth farthest candidate, which may be useful of
the λ − 1 farthest candidates are unable to perform their duties.

Preliminaries. In the optimization variant of Obnox-Egal-Median-CS, the input consists
of (M , V , C, k, λ) as defined above, and the goal is to find the largest t∗ for which the
resulting instance is a yes-instance of Obnox-Egal-Median-CS, and we call such a t∗ the
optimal value of the instance. We say that an algorithm has an approximation guarantee of
α ≤ 1, if for any input (M , V , C, k, λ), the algorithm finds a subset S ⊆ C of size k such that
for each v ∈ V , dλ(v, S) ≥ α · t∗.

For more details on parameterized complexity, we refer the reader to the textbooks [23,
33, 25, 56].

2 Obnoxious Egalitarian Chamberlin-Courant (CC)

We begin our study with Obnoxious-Egal-CC. Recall that Obnox-Egal-Median-CS
with λ = 1 is Obnoxious-Egal-CC. We begin with the Euclidean space, followed by the
general metric space.

2.1 Polynomial Time algorithm in R2

In this section, we design a polynomial time algorithm when the voters and candidates are
embedded in R2. In particular, we prove the following result.

▶ Theorem 1. There exists a polynomial-time algorithm to solve an instance of Obnoxious-
Egal-CC when V ∪ C ⊂ R2, and the distances are given by Euclidean distances.

Overview. Before delving into a formal description of the polynomial-time algorithm, we
start with a high-level overview of the result. For simplicity of the exposition, we assume
that t = 1 (this can be easily achieved by scaling R2, and thus all points in the input, by a
factor of t). For each c ∈ C, let D(c) denote a unit disk (i.e., an open disk of diameter 1)
with c as its center. In the new formulation, we want to find a subset S ⊆ C of size k, such
that for each v ∈ V , the solution S contains at least one candidate c, such that v is outside
D(c) (which is equivalent to saying that the euclidean distance between v and c is larger
than 1, which was exactly the original goal). This is an equivalent reformulation with a more
geometric flavor, thus enabling us to use techniques from computational geometry.

First, we perform some basic preprocessing steps, that will be help us in the main
algorithm. First, if there is a disk D(c) that does not contain a voter, then any set containing
c is a solution. Similarly, if we have two disjoint unit disks D(c) and D(c′) centered at
distinct c, c′ ∈ C, then any superset of {c, c′} of size k is a valid solution, which can be
found and returned easily. We check this condition for all subsets of size 2. In the final
step of preprocessing, we iterate over all subsets of candidates of size 3, and check whether
the common intersection of the corresponding three disks is empty – if we find such a set,
then it is easy to see that any of its k-sized superset forms a solution. Now, assuming
that the preprocessing step does not already give the solution, we know that each subset
of unit disks of size at most 3 have a common intersection. By a classical result in discrete
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geometry called Helly’s theorem [50], this also implies that each non-empty subset must
have a common intersection. Our goal is to find a smallest such subset S, for which, the
common intersection region is devoid of all voters v ∈ V . We design a dynamic programming
algorithm to find such a subset. Note that each subset is in one-to-one correspondence with
a convex region defining the boundary of the common intersection, and the boundary of
the common intersection consists of portions of boundaries of the corresponding unit disks
(also known as “arcs”). The dynamic programming algorithm considers partial solutions
defined by a consecutive sequence of arcs that can be attached end-to-end, while at the same
time, ensuring that the common intersection does not contain any voter v ∈ V . When we
are trying to add another arc to the boundary, we have to make sure that (i) one of the
endpoints of the arc is the same as one of the endpoints of the last arc defining the partial
boundary, and (ii) the new area added to the “partial common intersection” does not contain
a voter. We need to introduce several defintions and handle several special cases in order to
formally prove the correctness of this strategy, which we do next.

Formal description. We work with the rescaled and reformulated version of the problem,
as described above. Further, we assume, by infinitesimally perturbing the points if required
(see, e.g., [26]), that the points C ∪ V satisfy the following general position assumption: no
three unit disks centered at distinct candidates intersect at a common point. Note that this
assumption is only required in order to simplify the algorithmic description.

For each candidate c ∈ C, let D(c) denote the unit disk (i.e., an open disk of radius 1)
with c as center. In the following, we will often omit the qualifier unit, since all disks are
assumed to be open unit disks unless explicitly mentioned otherwise. Note that our original
problem is equivalent to determining whether there exists a subset S ⊆ C of size k such
that for every v ∈ V , there exists a candidate c ∈ S such that v ̸∈ D(c). Equivalently,
we want to find a set S ⊆ C such that

(⋂
c∈S D(c)

)
∩ V = ∅. For a subset S′ ⊆ C, we

let I(S′) :=
⋂

c∈S′ D(c), and let D(S′) = {D(c) : c ∈ S′}. We design a polynomial-time
algorithm to find a smallest-sized subset S′ ⊆ C such that I(S′) ∩ V = ∅. For any two points
x, y ∈ R2, let xy be the straight-line segment joining x and y.

We first perform the following preprocessing steps to handle easy cases. For k = 1, we try
each c ∈ C and check whether d(v, c) ≥ 1 for all voters v ∈ V . Now suppose k ≥ 2. First, we
check whether there exists a pair of disks centered at distinct c1, c2 ∈ C such that the distance
between c1, c2 is at least 2. Then, for any voter v ∈ V , if d(v, c1) < 1, then d(v, c2) > 1 by
triangle inequality. Therefore, {c1, c2} can be augmented by adding arbitrary set of k − 2
candidates in C \ {c1, c2} to obtain a solution. Now suppose that neither of the previous two
steps succeeds. Then, we try all possible subsets S′ ⊆ C of size at most 3, and check whether
I(S′) = ∅, that is, no point in R2 belongs to I(S′) (note that this specifically implies that
I(S′) ∩ V = ∅). If we find such a set S′, then we can add an arbitrary subset of C \ S′ of size
k − |S′| to obtain a set S of size k. Thus, we can make the following assumptions, given that
the preprocessing step does not solve the problem.
1. k ≥ 4,
2. For every c, c′ ∈ C, D(c) ∩ D(c′) ̸= ∅, and the two disks intersect at two distinct points

(this is handled in the second step of preprocessing), and
3. For any subset ∅ ≠ S ⊆ C, I(S) ̸= ∅. In particular, this also holds for sets S with |S| > 3 –

otherwise by Helly’s theorem [50], there would exist a subset S′ ⊆ S of size 3 such that
I(S′) = ∅, a case handled in the preprocessing step.

Let P be a set of intersection points of the boundaries of the disks {D(c) : c ∈ C}. Note
that since the boundaries of every pair of disks intersect exactly twice (this follows from the
item (2) above), |P| = 2

(|C|
2

)
. Furthermore, for c ∈ C, let P(c) ⊂ P be the set of intersection
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24:8 The Chamberlin-Courant Approach to Obnoxious Committee Selection

points that lie on the boundary of D(c). For c ∈ C and distinct p, q ∈ P(c), we define
arc(p, q, c) as the minor arc (i.e., the portion of the boundary of D(c) that is smaller than a
semicircle) of disk D(c) with p and q as its endpoints. Note that p and q are interchangeable
in the definition, and arc(p, q, c) = arc(q, p, c). For a subset S′ ⊆ C, let A(S′) be the set of
arcs defining the boundary of the region I(S′) – note that since I(S′) ̸= ∅ for any S′ ̸= ∅,
A(S′) is well-defined and is a non-empty set of arcs. We first have the following proposition,
the proof of which follows from arguments in planar geometry.

▶ Proposition 2. Fix a set S ⊆ C with |S| ≥ 2. Furthermore, assume that S is a minimal set
with intersection equal to I(S), i.e., there is no subset S′ ⊂ S such that I(S′) = I(S). Then,
for every c ∈ S, A(S) contains exactly one arc of the form arc(p, q, c) for some p, q ∈ P(c).

Proof. First we prove that every arc in A(S) is a minor arc. Suppose for contradiction that
A(S) contains a non-minor arc A on the boundary of some D(c), c ∈ S. Consider any c′ ∈ S

with c′ ̸= c, and let S′ = {c, c′}. Note that I(S) ⊆ I(S′) as S′ ⊆ S and intersection of disk
can only decrease by adding more points to the set. Thus, A(S′) contains an arc A′ that is a
superset of A. Let p and q denote the endpoints of A′, and note that A′ is also a non-minor
arc. Note that p ∈ I(S′) = D(c)∩D(c′). Let p′ denote the point on D(c) that is diametrically
opposite to p, and since A′ is a major arc, it follows that p′ ∈ A′ ⊆ I(S′) = D(c) ∩ D(c′). To
summarize, both p and p′ belong to both D(c) and D(c′). However, since both D(c) and
D(c′) are unit disks, pp′ is a common diameter of D(c) and D(c′), which contradicts that c

and c′ are distinct.
Now we prove the second part of the claim, that is, for each c ∈ S, A(S) contains exactly

one minor arc of the form arc(·, ·, c). Suppose there exists some c such that there exist
two arcs A1 = arc(p1, q1, c) and A2 = arc(p2, q2, c) in A(S). Note that A1 and A2 must be
disjoint, otherwise we can concatenate them to obtain a single arc. Suppose, without loss
of generality, traversing clockwise along the boundary of D(c), the ordering of the points is
p1, q1, q2, p2. Let c1 ∈ S (resp. c2 ∈ S) be the candidate such that q1 (resp. q2) belongs on
the boundaries of D(c) and D(c1) (resp. D(c) and D(c2)). It is clear that c ≠ c1 and c ≠ c2.
We further claim that c1 ̸= c2 – suppose this is not the case. Then, q1 and q2 belong to the
boundaries of D(c) and D(c1). In this case, p1 (or p2) cannot belong to D(c) ∩ D(c1) ⊆ I(S),
which contradicts the assumption that p1 (or p2) lie on the boundary of I(S). Thus, we have
that c, c1, c2 are all distinct. However, again we reach a contradiction since p1 is outside
D(c) ∩ D(c2) ⊆ I(S). It follows that each arc appears at most once in A(S).

Finally, we consider the case when there is some c ∈ S such that no arc of the form
arc(·, ·, c) belongs to A(S). In this case, the region bounded by A(S), i.e., I(S), is completely
contained inside D(c). However, this implies that I(S) =I(S \{c}), which contradicts the
minimality of S. ◀

Next, we proceed towards designing our dynamic programming algorithm.

Algorithm. For any x, y, p ∈ P, c1, c ∈ C, and an integer i ≥ 2, we define a table entry
A[x, y, p, c1, c, i] that denotes whether there exists a region R(x, y, p, c1, c) ⊂ R2 with the
following properties:

R = R(x, y, p, c1, c) is a convex region bounded by a set A(R) of i − 1 circular arcs, and
straight-line segment xy, such that A(R) contains:

At most one arc of the form arc(·, ·, c′) for every c′ ∈ C.
Exactly one arc of the form arc(x, ·, c1), which is the first arc traversed along the
boundary of R in clockwise direction, starting from x. Note that c1 is the center of
this arc.
arc(y, p, c)

R ∩ V = ∅.
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q1 q2

c
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(b)

p1
p2
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c

c′
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c1

Figure 1 Illustration for the proof of Proposition 2 and the algorithm. Fig (a): intersection of
boundaries of two unit disks is defined by two minor arcs. Fig (b): Two disjoint arcs arc(p1, q1, c)
and arc(p2, q2, c) cannot appear on the boundary of a common intersection, since they correspond to
disjoint regions. Fig (c): Illustration for the dynamic program. A region formed by intersection of 5
disks is shown. arc(p, y, c) is shown in red. Blue region corresponds to the entry A[x, p, z, c1, c′, 3],
and green region corresponds to the newly added region to the blue region, corresponding to the
entry A[x, y, p, c1, c, 4].

Note that if arc(y, p, c) is not defined, or any of the other conditions do not hold, then a
region with the required properties does not exist.

First, we compute all entries A[x, y, p, c, c1, i] with i ≤ 3. Note that the number of arcs of
the form arc(·, ·, ·) is bounded by O(|P|2 · |C|) = O(|C|3), and since i ≤ 3, we can explicitly
construct all such candidate regions in polynomial time. Thus, we can correctly populate all
such table entries with true or false.

Now, we discuss how to fill a table entry A[x, y, p, c1, c, i] with i ≥ 4. We fix one such entry
and its arguments. If the region R(x, p, y, c1, c) bounded by xp, xy and arc(y, p, c) contains
a point from V , then the entry A[x, p, y, c1, c, i] is defined to be false. Note that this can
easily be checked in polynomial time. Otherwise, suppose that R(x, p, y, c1, c) ∩ V = ∅. In
this case, let T be a set of tuples of the form (x, p, z, c1, c′, i − 1), where z ∈ P, and c′ ∈ C
such that the following conditions are satisfied. (1) c′ ̸∈ {c, c1}, (2) The minor arc arc(p, z, c′)
exists, and (3) When traversing along this arc from z to p, the arc arc(p, y, c) is a “right turn”.
Formally, consider the tangents ℓc, ℓc′ to the disks D(c) and D(c′) at point p respectively. Let
Hc (resp. Hc′) be the closed halfplane defined by the line ℓc (ℓc′) that contains D(c) (D(c′)).
Then, arcs arc(p, z, c′) and arc(y, p, c) must belong to Hc ∩ Hc′ . See Figure 1(c). Then,

A[x, y, p, c1, c, i] =
∨

(x,p,z,c1,c′,i−1)∈T

A[x, p, z, c1, c′, i − 1].

Since we take an or over at most |C| × |V | many entries, each such entry can be computed in
polynomial time. Furthermore, since the number of entries is polynomial in |C| and |V |, the
entire table can be populated in polynomial time.

Now, we iterate over all entries A[x, y, p, c1, c, i] such that the following conditions hold.
A[x, y, p, c1, c, i] = true,
There exists some c′′ ∈ C \ {c, c1} such that arc(x, y, c′′) exists, and
The region bounded by arc(x, y, c′′) and segment xy does not contain any point from C.
The meaning here is that arc(x, y, c′′) is the last arc bounding the required region.
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24:10 The Chamberlin-Courant Approach to Obnoxious Committee Selection

If such an entry exists with i ≤ k − 1, then we conclude that the given instance of Obnox-
Egal-Median-CS is a yes-instance. Otherwise, it is a no-instance. Finally, using standard
backtracking strategy in dynamic programming, it actually computes a set S ⊆ C such that
I(S) ∩ V = ∅. Next, we establish the proof of correctness of this dynamic program.

A Proof of Correctness.

▶ Lemma 3 (♣).1 Consider an entry A[x, y, p, c1, c, i], corresponding to some x, y, p ∈
P, c1, c ∈ C. Then, A[x, y, p, c1, c, i] = true if and only if the corresponding region R, as in
the definition of the table entry, contains no point of V .

▶ Lemma 4. This algorithm correctly decides whether the given instance of Obnox-Egal-
Median-CS is a yes-instance.

Proof. First, it is easy to see that the preprocessing step correctly finds a minimum-size
subset of at most 3 whose intersection contains no point of V , if such a subset exists. Thus,
we now assume that the preprocessing step does not find a solution, and the algorithm
proceeds to the dynamic programming part.

Recall that due to Proposition 1, if S is a minimal subset of centers, such that I(S)∩V = ∅
(if any), then A(S) contains exactly one minor arc that is part of the circle centered at each
c ∈ S. In particular, this holds for the optimal set S∗ of centers (if any), and let i = |S∗|. Pick
an arbitrary arc in A(S∗), and let c1 be the center of this arc, and x be one of the endpoints
of this arc. By traversing the arcs in A(S∗) in clockwise manner, let the last two arcs be
arc(y, p, c), and arc(y, x, c′). Then, by Lemma 3, it follows that A[x, y, p, c1, c′, i − 1] = true,
and the region bounded by xy and arc(y, x, c′) does not contain a point from C. Thus, the
algorithm outputs the correct solution corresponding to the entry A[x, y, p, c1, c′, i − 1].

In the other direction, if the algorithm finds an entry A[x, y, p, c1, c′, i − 1] = true, such
that (1) arc(x, y, c) exists, (2) c ̸∈ {c′, c1}, and (3) the region bounded by arc(x, y, c) and xy

does not contain a point from C, then using Lemma 3, we can find a set of i disks whose
intersection does not contain a point from C. Therefore, if for all entries it holds that at least
one of the conditions does not hold, then the algorithm correctly concludes that the given
instance is a no-instance. ◀

The algorithm as it is does not work for λ > 1. We do not know whether the problem is
polynomial time solvable for λ > 1.

2.2 Hardness in Graph Metric

In this section, we show the intractability of the problem when the voters and candidates are
embedded in the graph metric space, which implies the intractability in the general metric
space. The metric space defined by the vertex set of a graph as points and distance between
two points as the shortest distance between the corresponding vertices in the graph is called
the graph metric space.

We present a reduction from the Hitting Set problem, defined below, which is known
to be NP-hard [42] and W[2]-parameterized by k [23].

1 The proofs of the statements marked with ♣ can be found in the full version [36].
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Hitting Set
Input: Set system (U , F), where U is the ground set of n elements, F is a family of
subsets of U , and a positive integer k

Question: Does there exist H ⊆ U of size k such that for any S ∈ F , H ∩ S ̸= ∅?

Reduction. Define a graph G with vertex set V ∪ C as follows. For every element e ∈ U ,
we add a candidate ce to C, and for every set S ∈ F , we add a voter vS to V . We add an
edge (ce, vS) in G if and only if e ̸∈ S. The weight of all such edges is equal to 1. Also, for
any ce, c′

e ∈ C, we add an edge of weight 2. The distance function d : (V ∪ C) → R+ is given
by the shortest path distances in G.

▶ Observation 5. For any e ∈ U , and S ∈ F , d(ce, vS) = 1 if and only if e ̸∈ S. Otherwise
d(ce, vS) = 3 if and only if e ∈ S.

▶ Lemma 6 (♣). (U , F) admits a hitting set of size k if and only if there exists a set H ⊆ C
of size k such that for any vS ∈ V , maxce∈H d(ce, vS) = 3.

In fact, this construction shows that it is NP-hard to approximate the problem within
a factor of 1/3 + ϵ for any ϵ > 0. Indeed, suppose there existed such a β = (1/3 + ϵ)-
approximation for some ϵ > 0. Then, if (U , F) is a yes-instance of Hitting Set, then
Lemma 6 implies that OPT = 3 – here OPT denotes the largest value of t for which we have
a yes-instance for the decision version. In this case, the β-approximation returns a solution
S of size k and of cost at least β · 3 = 1 + 3ϵ > 1. This implies that for each vS ∈ V , there
exists some ce ∈ S with d(vS , ce) > 1. However, such a ce must correspond to an element
e ∈ S – otherwise d(vS , ce) = 1 by construction. Therefore, the solution S corresponds to a
hitting set of size k. Alternatively, if (U , F) is a no-instance of Hitting Set, then Lemma
6 implies that the there is no solution of size k with cost 3. Thus, a β-approximation can
be used to distinguish between yes- and no-instances of Hitting Set. Hence, we have the
following result.

▶ Theorem 7. Obnoxious-Egal-CC is NP-hard. Furthermore, for any α > 1/3,
Obnoxious-Egal-CC does not admit a polynomial time α-approximation algorithm, unless
P = NP. Furthermore, Obnoxious-Egal-CC does not admit an FPT-approximation al-
gorithm parameterized by k with an approximation guarantee of α > 1/3, unless FPT = W [2].

2.3 Approximation Algorithm in General Metric Space
In this section, we design a polynomial time 1/4-approximation algorithm when voters and
candidates are embedded in a general metric space. Since the problem is trivial for k = 1
(we can simply iterate over all solutions of size 1, i.e., all c ∈ C, and check whether it forms a
solution), we assume in the rest of the section that k > 1.

We first guess a voter p′ ∈ V and a candidate c′ ∈ C such that c′ is the farthest candidate
from p′ in an optimal solution S∗. Let t = d(p′, c′). We know that all candidates in S∗ are
within a distance t from p′, i.e., S∗ ⊆ B, where B = B(p′, t) ∩ C. Let M be a (t/2)-net of
B, i.e., M is a maximal set of candidates with the following properties: (1) d(ci, cj) > t/2
for any distinct ci, cj ∈ M , and (2) for any c ̸∈ M , there exists some c′ ∈ M such that
d(c, c′) ≤ t/2. Note that such a (t/2)-net can be found in polynomial-time using a simple
greedy algorithm.

Now there are two cases. (1) If |M | ≥ k, let M ′ be an arbitrary subset of M of size
exactly k. (2) If |M | < k, then let M ′ = M ∪ Q where Q is an arbitrary subset of candidates
from B \ M such that |M ′| = k.
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▶ Lemma 8. Fix some v ∈ V , and let c ∈ C be the farthest center from v in M ′. Then,
d(v, c) ≥ t/4.

Proof. We consider two cases based on the size of M , and the way we obtain M ′ from M .
Case 1: |M | ≥ k, and M ′ is an arbitrary subset of M . Suppose for contradiction d(v, c) <

t/4. Since c is the farthest candidate from v, the same is true for any candidate c′ ∈ M ′. Then,
d(p, c) < t/4 and d(v, c′) < t/4, which implies that d(c, c′) ≤ d(v, c)+d(v, c′) < t/4+t/4 = t/2,
which contradicts property 1 of M .
Case 2: |M | < k and M ′ is obtained by adding arbitrary candidates to M . If d(v, c) ≥
t/2 ≥ t/4, we are done. So assume that d(v, c) < t/2. Let c∗ be the farthest center from v in
an optimal solution. Then, d(v, c∗) ≥ t. Also, c∗ ̸∈ M ⊆ M ′, otherwise d(v, c) ≥ d(v, c∗) ≥ t,
since c is the farthest candidate from v. Therefore, by property 2, there exists some c′ ∈ M

such that d(c′, c∗) ≤ t/2. Again, d(v, c′) ≤ d(v, c) < t/2. Then, d(v, c∗) ≤ d(v, c′)+d(c′, c∗) <

t/2 + t/2 = t. This contradicts d(v, c∗) ≥ t. ◀

Thus, we conclude with the following theorem.

▶ Theorem 9. There is a polynomial-time 1/4-approximation algorithm for the optimization
variant of Obnoxious-Egal-CC when the voters and candidates belong to an arbitrary
metric space M .

3 OBNOXIOUS EGALITARIAN MEDIAN COMMITTEE SELECTION for λ > 1

In this section, we move our study to the case when λ > 1. We first show that λ = k − 1 is
NP-hard in R2. But the extreme cases of λ = 1 or λ = k are tractable: In fact, the λ = 1
case is polynomial-time solvable for R2 but the λ = k is polynomial-time solvable even in a
general metric space. Furthermore, we show that similar to λ = 1, the problem is hard to
approximate for any value of λ in graph metric. Finally, contrary to Theorem 13 we give an
FPT-approximation scheme for arbitrary value of λ in Rd.

3.1 Hardness
In this section, we present results pertaining to NP-hardness and approximation hardness.

NP-hardness for λ = k − 1 in R2. To exhibit this we give a reduction from the 2-
Independent Set problem in unit disk graphs (UDGs). We give a formal definition of
UDGs below, followed by the definition of the aforementioned problem.

▶ Definition 10. Given a set P = {p1, p2, . . . , pn} of points in the plane, a unit disk
graph (UDG, in short) corresponding to the set P is a graph G = (P, E) satisfying E =
{(pi, pj)|d(pi, pj) ≤ 1}, where d(pi, pj) denotes the Euclidean distance between pi and pj.

2-Independent Set In Unit Disk Graph
Input: Given a set V ⊂ R2 of n points, and a positive integer k.
Question: Let G = (V, E) be a unit disk graph defined on V . Does there exist a subset
S ⊆ V such that |S| = k, and for any distinct u, w ∈ S, dG(u, w) > 2?

This problem is shown to be NP-hard in [40].

▶ Theorem 11. Obnox-Egal-Median-CS is NP-hard when λ = k − 1, even in the special
case where V ∪ C ⊂ R2 and the distances are given by standard Euclidean distances.
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Proof. Let (V, k) be the given instance of 2-Independent Set In Unit Disk Graph,
where V ⊂ R2. We create an instance of Obnox-Egal-Median-CS as follows. For every
point p ∈ V , we add a voter and a candidate co-located at the point in R2 at the point p.
Let V and C be the resulting sets of n voters and n candidates, and the value of k remains
unchanged. Without loss of generality, we assume that k ≥ 2. We set λ = k−1. We prove the
following lemma. Note that due to the strict inequality, this does not quite fit the definition
of Obnox-Egal-Median-CS. Subsequently, we discuss how to modify the construction so
that this issue is alleviated. In the following proof, we use de(·, ·) to denote the Euclidean
distance and dG(·, ·) to denote the shortest-path distance in the unit disk graph G.

▶ Lemma 12. S is a 2-independent set of size k in G if and only if for the corresponding
set S′ ⊆ C, it holds that, for every voter v ∈ V , dλ

e (v, S′) > 2.

Proof. In the forward direction, let S be a 2-independent set of size k in G, and let S′

be as defined above. Suppose for the contradiction that there exists a voter v for which
dλ

e (v, S′) ≤ 2. That is, there exists two distinct candidates c1, c2 ∈ S′ such that de(v, c1) ≤ 2,
and de(v, c2) ≤ 2. We consider two cases, depending on whether v is co-located with either
of c1 or c2, or not. Suppose v is co-located with c1 (w.l.o.g., the c2 case is symmetric). Then,
let p1 and p2 be the points in S ⊆ P corresponding to v and c2 respectively. However, since
de(p1, p2) ≤ 2, (p1, p2) is an edge in G, which contradicts the 2-independence of S. In the
second case, v is not co-located with c1 as well as c2. Even in this case, let q, p1, p2 be the
points in P corresponding to v, c1, and c2 respectively. Note that q, p1, p2 are distinct, and
p1, p2 ∈ S. However, since de(q, p1) ≤ 2, de(q, p2) ≤ 2, (q, p1) and (q, p2) are edges in G,
which again contradicts the 2-independence of S, as dG(p1, p2) = 2.

In the reverse direction, let S′ ⊆ C be a subset of candidates such that for each voter v ∈ V ,
dλ

e (v, S′) > 2. Let S ⊆ P be the corresponding points of S′, and suppose for contradiction
that S is not a 2-independent set in G, which implies that there exist two distinct p1, p2 ∈ S

such that dG(p1, p2) ≤ 2. Let c1, c2 be the candidates in S′ corresponding to p1 and p2
respectively. Again, we consider two cases. First, suppose that dG(p1, p2) = 1, i.e., (p1, p2) is
an edge in G. Then, let v1 be the voter co-located at p1. Then, for v1, de(v1, c1) = 0, and
de(v1, c2) ≤ 2, since (p1, p2) is an edge. This contradicts that dλ

e (v1, S′) > 2. In the second
case, suppose dG(p1, p2) = 2, then let q ∈ P be a common neighbor of p1 and p2 in G, and
let vq ∈ V be the voter co-located to q. Again, note that de(vq, c1) ≤ 2 and de(vq, c2) ≤ 2,
which contradicts that dλ

e (vq, S′) > 2. ◀

Let t := min
p,q∈P :de(p,q)>2

de(p, q). That is, t is the smallest Euclidean distance between

non-neighbors in G. By definition, for any p′, q′ ∈ P such that de(p′, q′) > 2, it holds that
de(p′, q′) ≥ t. Now, we observe that the proof of Lemma 12 also works after changing
the condition dλ

e (v, S′) > 2 to dλ
e (v, S′) ≥ t. Note that there exists points p, q such that

dG(p, q) > 2, and hence de(p, q) > 2, otherwise, it is a trivial no-instance of 2-Independent
Set In Unit Disk Graph. ◀

Approximation Hardness in Graph Metric. The reduction is same as in Section 2.2. Here,
instead of Hitting Set, we give a reduction from the Multi-Hitting Set problem, where
each set needs to be hit at least λ ≥ 1 times for some constant λ. It can be easily seen that
this is a generalization of Hitting Set and is also NP-complete [57] (for an easy reduction
from Hitting Set, simply add λ − 1 “effectively dummy” sets that contain all the original
elements) Thus, we have the following result.
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▶ Theorem 13. For any fixed 1 ≤ λ < k, Obnox-Egal-Median-CS is NP-hard. Further-
more, for any fixed 1 ≤ λ < k, and for any α ≥ 1/3, Obnox-Egal-Median-CS does not
admit a polynomial time α-approximation algorithm, unless P = NP. Furthermore, Obnox-
Egal-Median-CS does not admit an FPT-approximation algorithm parameterized by k with
an approximation guarantee of α ≥ 1/3, unless FPT = W [2].

3.2 FPT-AS in Euclidean and Doubling Spaces
In this section, we design an FPT approximation scheme for the inputs in Rd, parameterized
by λ, d, and ϵ. In fact, the same arguments can be extended to metric spaces of doubling
dimension d. However, we focus on Rd for the ease of exposition, and discuss the case of
doubling spaces at the end.

In the subsequent discussions, we say that S ⊆ C is a solution if it satisfies the following
two properties: (i) |S| ≥ λ, and (ii) for each v ∈ V , dλ(v, S) ≥ t. For any given instance of
Obnox-Egal-Median-CS, we state the following simple observations.

▶ Observation 14. If there exists S ⊆ C of size at least λ, such that each c ∈ S is at distance
at least t from each v ∈ V , then S is a solution.

▶ Observation 15 (♣). A subset S ⊆ C of λ + 1 points that are pairwise 2t distance away
from each other is a solution.

First, note that we can assume λ + 1 ≤ k – otherwise λ = k case can be easily solved in
polynomial-time using the argument mentioned in the preliminaries. Now, if a set S ⊆ C
with |S| ≥ λ + 1 satisfying the conditions of Observation 15 exists, then we can immediately
augment it with arbitrary k − (λ + 1) candidates from C \ S, yielding a solution of size k.
Thus, henceforth, we may assume that any subset S ⊆ C consisting of candidates that are
pairwise 2t distance away from each other, has size at most λ.

Let us fix N to be one such maximal subset – note that we can compute N in polynomial
time using a greedy algorithm. The following observation follows from the maximality of N .

▶ Observation 16. Any point p ∈ C must be in
⋃

c∈N B(c, 2t). In other words, each p ∈ C is
inside a ball of radius 2t centered at one of the points in N .

This simple observation, combined with the following covering-packing property of the
underlying Euclidean space will allow our algorithm to pick points from the vicinity of those
chosen by an optimal algorithm.

▶ Proposition 17 (♣). In Rd, for any 0 < r1 < r2, a ball of radius r2 can be covered by
αd · (r2/r1)d balls of radius r1. Here, αd is a constant that depends only on the dimension d.

Next, for each c ∈ N , we find an “ϵt/4-net” inside the ball B(c, 2t), i.e., a maximal subset
Q ⊆ B(c, 2t) ∩ C, such that (i) for any distinct c1, c2 ∈ Q, d(c1, c2) > ϵt/4, and (ii) For
each c1 ∈ C \ Q, there exists some c2 ∈ Q, such that d(c1, c2) ≤ ϵt/4. Note that Q can be
computed using a greedy algorithm. Next, we iterate over each c′ ∈ Q, and mark the λ − 1
closest unmarked candidates to c′ that are not in Q (if any). Let Rc := Q ∪ M , where M

denotes the set of marked candidates during the second phase.

▶ Observation 18 (♣). For each c ∈ N , |Rc| ≤ Od(λ · (1/ϵ)d), where Od(·) hides a constant
that depends only on the dimension d.

Let S′ =
⋃

c∈N Rc. Finally, let S := N ∪ S′, and note that |S| ≤ Od(λ2 · (1/ϵ)d), where
Od(·) notation hides constants that depend only on d. Now we consider two cases.
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If |S| ≤ k, then we augment it with arbitrary k − |S| candidates from C \ S, and output
the resulting set.
If |S| > k, then try all possible k-sized subsets of S to see if it constitutes a solution. There
can be at most

(|S|
k

)
< 2|S| = 2Od(λ2(1/ϵ)d) sets to check resulting in time 2Od(λ2(1/ϵ)d) ·

(|V | + |C|)O(1).

The next lemma completes the proof. We prove it by comparing S to an optimal solution,
and show that for every point in the latter there is a point in the vicinity that is present in S.

▶ Lemma 19. If |S| > k, then there is a subset Q ⊆ S of size k that constitutes a solution.

Proof. Suppose that there is an optimal solution, denoted by O, that contains k points and
for each point v ∈ V there exist at least λ points in O (called representatives, R(v)) that are
at least t distance away from v. Let R =

⋃
v∈V R(v) denote the set of all representatives.

First, due to Observation 16, each c ∈ R is inside some B(c′, 2t) for some c′ ∈ N . Let
c̃ ∈ Q be the closest (breaking ties arbitrarily) candidate to c from Q. By construction,
d(c̃, c) ≤ tϵ/4. Let A(c̃) ⊆ R be the points for which c̃ is the closest point in Rc′ (breaking
ties arbitrarily).

Case 1: |A(c̃)| ≤ λ. In this case, we claim that for each c1 ∈ A(c̃), we have added a
unique c2 to Rc′ ⊆ S′ such that d(c1, c2) ≤ ϵt. First, if A(c̃) ⊆ Rc′ , then the claim is trivially
true (the required bijection is the identity mapping). Otherwise, there exists some c1 ∈ A(c̃)
such that c1 ̸∈ Rc. In particular, this means that c1 was not marked during the iteration of
the marking phase corresponding to c̃ ∈ Q. This means that at least λ − 1 other candidates
with distance at most ϵt/4 from c̃ were marked. For any of these marked candidates c2, it
holds that d(c1, c2) ≤ d(c1, c̃) + d(c̃, c2) ≤ ϵt/2 ≤ ϵt. Accounting for c̃, this implies that, for
each c1 ∈ A(c̃), there are at least λ ≥ |A(c̃)| distinct candidates in Rc within distance ϵt. Let
Q(c̃) ⊆ S′ denote an arbitrary such subset of size λ in this case.

Case 2: |A(c̃)| > λ. In this case, let A′(c̃) ⊂ A(c̃) be an arbitrary subset of size λ.
We claim that A′(c̃) is sufficient for any solution. In particular, consider a v ∈ V and
c ∈ A(c̃) \ A′(c̃) such that c is a representative of v. We claim that for all c′ ∈ A′(c̃),
d(c̃, c′) ≥ (1 − ϵ/2)t, which follows from d(c, c′) ≤ ϵt/2. Thus, the λ points of A′(c̃) constitute
an approximate set of representatives for v. Now, by using the argument from the previous
paragraph w.r.t. A′(c̃), we can obtain a set Q(c̃) of size λ, such that for any voter v ∈ V

such that R(v) ∩ A(c̃) ̸= ∅, every point in Q(c̃) is at distance at least (1 − ϵ)t from v.
Finally, let Q denote the union of all sets Q(c̃) defined in this manner (note that Q(c̃) is

defined only if A(c̃) ̸= ∅). First, by construction, for each v ∈ V , Q contains at least λ points
at distance at least (1 − ϵ)t. Next, Q ⊆ R′ and |Q| ≤ k since for each point in R, we add at
most one point to Q. Now, if |Q| < k, then we can simply add arbitrary k − |Q| points to
obtain the desired set. ◀

In fact, the covering-packing properties of the underlying metric space that are crucial in our
algorithm are abstracted in the following well-known notion.

▶ Definition 20 (Doubling dimension and doubling spaces). Let M = (P, d) be a metric space,
where P is a set of points and d is the distance function. We say that M has doubling
dimension δ, if for any p ∈ P , and any r ≥ 0, the ball B(p, r) := {q ∈ P : d(p, q) ≤ r} can be
covered using at most 2δ balls of radius r/2. If the doubling dimension of a metric space M

is a constant, then we say that M is a doubling space.
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Note that Euclidean space of dimension d has doubling dimension O(d). By a simple repeated
application of the above definition, we obtain the following Proposition 21 that is an analogue
of Proposition 17.

▶ Proposition 21. Let M = (P, d) be a metric space of doubling dimension δ. Then, any

ball B(p, r2) can be covered with
(

⌈ r2
r1

⌉
)δ

balls of radius r1, where 0 < r1 ≤ r2.

Our algorithm generalizes to metric spaces of doubling dimension δ in a straightforward
manner, resulting in the following theorem.

▶ Theorem 22. For any ϵ, 0 < ϵ < 1, we have an algorithm that given an instance of
Obnox-Egal-Median-CS in a metric space of doubling dimension δ, computes a solution
of size k such that for every point v ∈ V there are at least λ points in the solution that are at
distance at least (1 − ϵ)t from v in time FPT in (ϵ, λ, δ). In particular, we obtain this result
in Euclidean spaces of dimension d, in time FPT in (ϵ, λ, d).

4 Outlook

In this paper we studied a committee selection problem, where preferences of voters towards
candidates was captured via a metric space. In particular, we studied a variant where larger
distance corresponds to higher preference for a candidate in comparison to a candidate who
is nearer. We showed that our problem is NP-hard in general, and designed some polynomial
time algorithms, as well as (parameterized) approximation algorithms. We conclude with
some research directions for future study. One of our concrete open question is that Is
Obnox-Egal-Median-CS in R2 for λ > 1 polynomial-time solvable? In this paper, we
considered median scoring rules. It would be interesting to study other scoring rules as well,
when the voters and candidates are embedded in a metric space.

Moreover, we note that situations where, for each neighborhood we want exactly λ

facilities nearby, and the remaining k − λ to be far away, is not handled by this model. This
would be the “exact” variant of our problem Obnox-Egal-Median-CS and would be of
natural interest.
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