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Abstract
Suppose we have a two-party communication protocol for f which allows the parties to make queries
to an oracle computing g; for example, they may query an Equality oracle. To translate this
protocol into a randomized protocol, we must replace the oracle with a randomized subroutine for
solving g. If q queries are made, the standard technique requires that we boost the error of each
subroutine down to O(1/q), leading to communication complexity which grows as q log q. For which
oracles g can this naïve boosting technique be improved?

We focus on the oracles which can be computed by constant-cost randomized protocols, and show
that the naïve boosting strategy can be improved for the Equality oracle but not the 1-Hamming
Distance oracle. Two surprising consequences are (1) a new example of a problem where the cost
of computing k independent copies grows superlinear in k, drastically simplifying the only previous
example due to Blais & Brody (CCC 2019); and (2) a new proof that Equality is not complete
for the class of constant-cost randomized communication (Harms, Wild, & Zamaraev, STOC 2022;
Hambardzumyan, Hatami, & Hatami, Israel Journal of Mathematics 2022).
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1 Introduction

We typically require that randomized algorithms succeed with probability 2/3, since the
probability can be boosted to any 1− δ by taking a majority vote of O(log(1/δ)) repetitions.
If many randomized subroutines are used within an algorithm, the probability of error may
accumulate, and one may apply standard boosting to each subroutine to bring the error
probability down to an acceptable level. We wish to understand when this is necessary, in
the setting of communication complexity.

Suppose two parties, Alice and Bob, wish to compute a function f(x, y) on their respective
inputs x and y, using as little communication as possible, and they have access to a shared
(i.e. public) source of randomness. A convenient way to design a randomized communication
protocol to compute f(x, y) is to design a deterministic protocol, but assume that Alice
and Bob have access to an oracle (in other words, a subroutine) which computes a certain
problem g that itself has an efficient randomized protocol.

▶ Example 1. The Equality problem is the textbook example of a problem with an efficient
randomized protocol [19, 23]: Given inputs a, b ∈ [N ], two parties can decide (with success
probability 3/4) whether a = b, using only 2 bits of (public) randomized communication,
regardless of the domain size N . So, to design a randomized protocol for solving another
problem f(x, y), we may assume that the two parties have access to an Equality oracle.
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25:2 Better Boosting of Communication Oracles, or Not

For example, suppose Alice and Bob have vertices x and y in a shared tree T , and wish to
decide whether x and y are adjacent in T . If p(x) denotes the parent of x in T , then Alice
and Bob can decide adjacency using two Equality queries: “x = p(y)?” and “y = p(x)?”

▶ Example 2. The 1-Hamming Distance communication problem is denoted HD1 and
defined as HDn

1 (x, y) = 1 if x, y ∈ {0, 1}n differ on exactly 1 bit, and 0 otherwise. It has a
constant-cost randomized protocol, but unlike adjacency in trees, this protocol cannot be
expressed as a deterministic protocol using the Equality oracle [12, 13].

Using oracles makes the protocol simpler, and also makes it clearer how and why random-
ness is used in the protocol, which provides more insight into randomized communication (see
e.g. [5, 12, 13, 8] for recent work using oracles to understand randomized communication).
But when we replace the oracle for g with a randomized protocol for g, we must compensate
for the probability that the randomized protocol produces an incorrect answer. Write Dg(f)
for the optimal cost of a deterministic communication protocol for f using an oracle for g

(where the players pay cost 1 to query the oracle). Write Rδ(f) for the optimal cost of a
randomized protocol for f with error δ. Then the inequality

∀f , Rδ(f) = O

(
Dg(f) · R1/4(g) · log

(
Dg(f)

δ

))
(1)

follows from standard boosting: if there are q = Dg(f) queries made by the protocol in the
worst case, then we obtain a randomized protocol by simulating each of the q queries to
g using a protocol for g with error ≈ δ/q, sending Rδ/q(g) = O(R1/4(g) · log(q/δ)) bits of
communication for each query. But is it possible to improve on this naïve bound? The main
question of this paper is:

▶ Question 3. For which oracle functions g can Equation (1) be improved?

We focus on the oracles g which have constant-cost randomized communication proto-
cols, like Equality. Randomized communication is quite poorly understood, with many
fundamental questions remaining open even when restricted to the surprisingly rich class of
constant-cost problems. Many recent works have focused on understanding these extreme
examples of efficient randomized computation; see [12, 13, 11, 6, 16, 14, 8] and the survey [15].
And indeed some of these works [12, 15] use Equation (1) specifically for the Equality
oracle. So this is a good place to begin studying Question 3. Our main result is:

▶ Theorem 4 (Informal; see Theorems 11 and 14). Equation (1) can be improved for the
Equality oracle, but it is (nearly) tight for the 1-Hamming Distance oracle.

This has some unexpected consequences, described below, and also answers Question 3
for all known constant-cost problems.

Every known constant-cost problem g satisfies either DEq(g) = O(1) or Dg(HD1) = O(1)
([7] gives a survey of all known problems). Therefore we answer Question 3 for all known
constant-cost oracles. Towards an answer for all constant-cost oracles, we show that the
technique which allows us to improve Equation (1) works only for the Equality oracle
(Proposition 21).

Our main proof also has two other surprising consequences:
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Direct sums. Direct sum questions ask how the complexity of computing k copies of a
problem grows with k (see e.g. [9, 18, 1, 3]). Recently, [3] answered a long-standing question
of [9] by providing the first example of a problem where the communication complexity
of computing k independent copies grows superlinearly with k. Their example is specially
designed to exhibit this behaviour and goes through the query-to-communication lifting
technique. In our investigation of Question 3, we show that computing k independent copies
of the drastically simpler, constant-cost 1-Hamming Distance problem requires Ω

(
k log k

log log k

)
bits of communication (Theorem 14). As a corollary, we also show a similar direct sum
theorem for randomized parity decision trees (Corollary 15).

Oracle separations. In an effort to better understand the power of randomness in commu-
nication, recent works have studied the relative power of different oracles. [5] show that the
Equality oracle is not powerful enough to simulate the standard communication complexity
class BPP (i.e. N ×N communication matrices with cost poly log log N), i.e. Equality is
not complete for BPP. [12, 13] showed that Equality is also not complete for the class BPP0

of constant-cost communication problems, because 1-Hamming Distance does not reduce
to it; and [8] show that there is no complete problem for BPP0. There are many lower-bound
techniques for communication complexity, but not many lower bounds for communication
with oracles. Our investigation of Question 3 gives an unexpected new proof of the separation
between the Equality and 1-Hamming Distance oracles; our proof is “algorithmic” , and
arguably simpler than the Ramsey-theoretic proof of [13] or the Fourier-analytic proof of [12].

Further Motivation, Discussion & Open Problems
Let’s say a constant-cost oracle function g has better boosting if

∀f : Rδ(f) = O(Dg(f) + log(1/δ)) .

We showed that among the currently-known constant-cost oracle functions g, better boosting
is possible if and only if DEq(g) = O(1), and we observed that among all constant-cost
oracles, only the Equality oracle satisfies the properties used to prove Theorem 11. So,
permit us the following conjecture:

▶ Conjecture 5. An oracle function g ∈ BPP0 has better boosting if and only if DEq(g) =
O(1).

To disprove this conjecture, we need a new example of a constant-cost (total) commu-
nication problem that is not somehow a generalization of 1-Hamming Distance. Such an
example would be very interesting, so in that regard we hope the conjecture is false.

One more motivation of the current study is to find an approach towards a question
of [14] about the intersection between communication complexity classes UPP0∩BPP0, where
UPP0 denotes the class of problems with bounded sign-rank, or equivalently, constant-cost
unbounded-error randomized protocols [22]. Writing EQ0 for the class of problems g where
DEq(g) = O(1), [14] asks:

▶ Question 6 ([14]). Is UPP0 ∩ BPP0 = EQ0?

This question seems challenging; as noted in [14], a positive answer would imply other
conjectures about UPP0 ∩ BPP0, notably the conjecture of [16] that 1-Hamming Distance
does not belong to UPP0, which would be the first example of a problem in BPP0 \ UPP0.

FSTTCS 2024



25:4 Better Boosting of Communication Oracles, or Not

[16] showed that all known lower-bound techniques against UPP0 fail to prove this. But a
positive answer to Question 6 implies that all oracles in UPP0 ∩ BPP0 have better boosting,
so a weaker question is:

▶ Question 7. Do all oracles in UPP0 ∩ BPP0 have better boosting?

Because of Theorem 4, this weaker question would also suffice to prove that 1-Hamming
Distance does not belong to UPP0. It is not clear to us whether Question 7 is easier to
answer than Question 6. If the answer to Question 7 is negative (i.e. there is an oracle in
UPP0 ∩ BPP0 which does not have better boosting), then either Conjecture 5 or Question 6
is false.

Similar questions about probability boosting were studied recently for query complexity
in [2] who focused on the properties of the outer function f of which allow for better boosting
to compute f ◦ g⊗k , whereas one may think of our oracles as the inner functions. We
may rephrase Theorem 11 as a “composition theorem” which says that for any function
f : {0, 1}k → {0, 1}, the composed function f ◦ (Eq)⊗k which applies f to the result of k

instances of Equality has communication cost

Rδ(f ◦ (Eq)⊗k) = O(DT(f) + log(1/δ)) (2)

where DT(f) is the decision-tree depth of f . We prefer the statement in Theorem 11 because
it more clearly differentiates between the protocol and the problem. To see what we mean,
consider taking f to be the And function; the immediate consequence of Equation (2) is
that R1/4(And ◦ (Eq)⊗k) = O(k), whereas the immediate consequence of Theorem 11 is that
R1/4(And ◦ (Eq)⊗k) = O(1) because this function can be computed using 1 Equality query.
To get the same result from Equation (2) one must rewrite the problem And ◦ (Eq)⊗k as a
different decision tree over different inputs.

2 Definitions: Communication Problems and Oracles

We will use some non-standard definitions that are more natural for constant-cost problems.
These definitions come from e.g. [5, 13, 12, 14, 8].

It is convenient to define a communication problem as a set P of Boolean matrices,
closed under row and column permutations. The more standard definition has one fixed
function f : {0, 1}n × {0, 1}n → {0, 1} for each input size n, with communication matrix
Mf ∈ {0, 1}2n×2n , whereas we will think of a communication problem P as possibly containing
many different communication matrices M ∈ {0, 1}N×N on each domain size N . (In the
adjacency-in-trees problem, Example 1, there are many different trees on N vertices, which
define many different communication matrices.)

For a fixed matrix M ∈ {0, 1}N×N and parameter δ < 1/2, we write Rδ(M) for the
two-way, public-coin randomized communication complexity of M . For a communication
problem P, we write Rδ(P) as the function

N 7→ max
{

Rδ(M) : M ∈ P, M ∈ {0, 1}N×N
}

.

Then the class BPP0 is the collection of communication problems P which satisfy R1/4(P) =
O(1).

To define communication with oracles, we require the notion of a query set:

▶ Definition 8 (Query Set). A query set Q is a set of matrices closed under (1) taking
submatrices; (2) permuting rows and columns; and (3) copying rows and columns. For any
set of matrices M, we write QS(M) for the closure of M under these operations.
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Observe that if R1/4(P) = O(1) then R1/4(QS(P)) = O(1), since constant-cost protocols
are preserved by row and column copying as well as taking submatrices.

▶ Definition 9 (Communication with oracles). Let P be any communication problem, i.e.
set of Boolean matrices. For any N × N matrix M with values in a set Λ, write DP(M)
for the minimum cost of a two-way deterministic protocol computing M as follows. The
protocol is a binary tree T where each leaf node v is assigned a value ℓ(v) ∈ Λ, and each
inner node v is assigned a query matrix Q ∈ {0, 1}N×N where Q ∈ QS(P). On any pair of
inputs (i, j) ∈ [N ]× [N ], the protocol proceeds as follows: the current pointer c is initiated as
the root of T , and at every step, if Qc(i, j) = 1 then the pointer c moves to its left child, and
otherwise if Qc(i, j) = 0 then the pointer c moves to the right. Once the pointer c reaches
a leaf, the output of the protocol is the value ℓ(c) assigned to the leaf c. It is required that
ℓ(c) = M(i, j). The cost of the protocol is the depth of T .

This definition differs from the standard definition of oracle communication because we
do not restrict the input size of the oracle. Specifically, each oracle query is represented
by an N × N matrix Q ∈ QS(P), obtained by taking a submatrix of an arbitrarily large
instance of P ∈ P and then copying rows and columns. This is the natural definition because
this preserves constant-cost randomized protocols, whereas preserving non-constant cost
functions usually requires restricting the size of the instance P ∈ P.

▶ Remark 10. For constant-cost communication problems, i.e. problems P ∈ BPP0, we will
simply identify the problem P with its query set QS(P) since this does not change the
communication complexity of P. For example, DEq(·) is DQ(·) where Q is taken to be the
closure QS({IN,N}) of the identity matrices.

3 Better Boosting of Equality Protocols

We prove the first part of Theorem 4, that Equation (1) can be improved for the Equality
oracle. This theorem will also be applied in the later sections of the paper.

The proof uses the “noisy-search-tree” argument of [10]. This is a well-known idea that
was previously applied in [21] to get an upper bound on the communication complexity of
Greater-Than; see also the textbook exercise in [23]. We only require the observation
that the argument works for arbitrary Equality queries, not just the binary search queries
used in those papers. Also, we did not find any complete exposition of the proof of the
Greater-Than upper-bound: the application of [10] in [21] is black-box and informal, and
the models of computation in these two works do not match up, which causes some very
minor gaps in the proof1, so we make an effort to give a complete exposition here.

Informal protocol sketch. The idea of the protocol is that an Equality-oracle protocol is
a binary tree T , where each node is a query to the oracle. On any given input, there is one
“correct” path through T . The randomized protocol keeps track of a current node c in the
tree T . In each round, the node c either moves down to one of its children, or, if it detects
that a mistake has been made in an earlier round, it moves back up the tree. There are two
main ideas:

1 The gap is that the outputs of the Equality subroutine are not independent random variables. As far as
we can tell, this very minor issue persists in the textbook exercise in [23] devoted to the Greater-Than
problem.

FSTTCS 2024



25:6 Better Boosting of Communication Oracles, or Not

1. At every node c, the protocol can “double-check” the answers in all ancestor nodes with
only O(1) communication overhead, which implicitly reduces the error of all previous
queries. This uses a special property of the Equality oracle, that a conjunction of
equalities (a1 = b1) ∧ (a2 = b2) ∧ · · · ∧ (at = bt) is equivalent to a single equality
(a1, a2, . . . , at) = (b1, b2, . . . , bt). We can use this property to check if the current node c

is on the “correct” path. (This simple observation is our contribution to this argument.)
2. The random walk of the node c through the tree is likely to stay close to the “correct”

path; this is essentially the argument of [10].

▶ Theorem 11. For any M ∈ ΛN×N with values in an arbitrary set Λ,

Rδ(M) = O

(
DEq(M) + log 1

δ

)
.

Proof. Let T be the tree of depth d = DEq(M) as in Definition 9. For a node v in T let
av, bv : [N ] → N be the functions defining the oracle query at the node v with Qv(i, j) =
Eq(av(i), bv(j)). Let R := 4 ·max{d, C log(1/δ)} where C is a sufficiently large constant,
and construct a tree T ′ by replacing each leaf node v of T with another tree Lv of depth
C log(1/δ) (where C is a sufficiently large constant), with each node v′ of Lv being a copy of
the parent node of v in T (i.e. the functions av′ , bv′ : [N ]→ N are identical to those of the
parent of v). We then simulate the protocol defined by T using Algorithm 1.

Algorithm 1 Noisy-Tree Protocol.
Input: Row i, column j of communication matrix M .

1: Initialize pointer c← root(T ′).
2: for r ∈ [R] do
3: Let P = (p1, p2, . . . , pk) be the path in T ′ from root(T ′) to c.
4: Let (q1, q2, . . . , qt) be the subsequence of P where the protocol has taken the left

branch.
▷ (i.e. the nodes where the protocol previously detected “equality”.)

5: Use the Equality protocol with error probability 1/4 to check

(aq1(i), aq2(i), . . . , aqt
(i)) = (bq1(j), bq2(j), . . . , bqt

(j))?

▷ Re-check all previous “equality” answers simultaneously.
6: if inequality is detected on the sequence q1, . . . , qt then

▷ A mistake was detected in an earlier round; go back up.
7: Update c to be the parent of c in T ′.
8: else

▷ Check the current node and continue.
9: Use the Equality protocol with error probability 1/4 to check ac(i) = bc(j)?

10: if Equality is detected then move c to its left child, otherwise move c to its right
child.

11: if c belongs to a subtree Lv (replacing leaf v of T ) then
12: return ℓ(v). Otherwise return 0.

Since Algorithm 1 performs R rounds using in each round at most 2 instances of the
randomized Equality protocol with error 1/4, the total amount of communication is at
most O(R) = O(max{d, log(1/δ)}) as desired. Let us now verify correctness.
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d

C log(1/δ)

=

̸=

̸=

=

≠=

=

=

Lv

v

Figure 1 The picture represents the runtime of Algorithm 1. The thick green path is P ′
i,j for

some i and j. The walk corresponding to the runtime of Algorithm 1 is represented with thin arrows:
green arrows represent good rounds, solid red arrows represent bad rounds where protocol makes a
mistake, and dashed red arrows represent bad rounds where protocol backtracks.

For any inputs i, j there is a unique root-to-leaf path Pi,j taken in T ending at some leaf
v, and a corresponding unique path P ′

i,j in T ′ which terminates at the subtree Lv. For any
execution of Algorithm 1, we say a round r is “good” if the pointer c starts the round on
a vertex in P ′

i,j ∪ Lv and also ends the round on a vertex in P ′
i,j ∪ Lv. We say round r is

“bad” otherwise. Write g for the number of good rounds and b for the number of bad rounds,
which are random variables satisfying R = b + g.

▷ Claim 12. If g > d then the protocol produces a correct output.

Proof of claim. Observe that, if c ∈ P ′
i,j at the start of round r, then the counter cannot

move back up, because the Equality protocol has one-sided error and will correctly report
that the concatenated strings are equal with probability 1. So the protocol must have
terminated with the counter c at a descendent of the gth node of P ′

i,j . Since g > d, the
protocol terminated with c in the subtree of T ′ that replaced the final node v of Pi,j , meaning
that it will output the correct value. ◁

We say that the protocol makes a mistake in round r if the randomized Equality
protocol erroneously outputs “equal” in Line 5 when (aq1(i), . . . , aqt(i)) ̸= (bq1(j), . . . , bqt(j)),
or if these tuples are truly equal but the protocol erroneously reports “equal” in Line 9 when
ac(i) ̸= bc(j). Define the random variable mr := 1 if the protocol makes a mistake in round
r and 0 otherwise, and define m =

∑R
r=1 mr for the total number of rounds where the

protocol makes a mistake.

▷ Claim 13. b ≤ 2m.

Proof of claim. Consider any bad round r. Either the counter c moves up or down the tree.
If the counter c moves up to its parent c′, then we charge the bad round to the most recent
round r′ < r where the counter started at c′ and observe that the protocol must have made
a mistake at round r′. Otherwise, if the counter c moves down the tree, we charge the bad
round to r itself and observe that the protocol makes a mistake in round r. Then we see

FSTTCS 2024



25:8 Better Boosting of Communication Oracles, or Not

that each round where a mistake is made is charged for at most 2 bad rounds (one for itself,
if the counter moves down; and one for the earliest round where the counter returns to its
current position). ◁

If the protocol outputs the incorrect value then we must have g = R−b ≤ d and therefore
R − d ≤ b ≤ 2m, so m ≥ R−d

2 . It remains to bound the number of mistakes m; we write
m =

∑R
r=1 mr where mr indicates whether the protocol makes a mistake in round r.

In any round r, conditional an all previous rounds, the probability that the protocol
makes a mistake is at most 1/4: either there is an ancestor node in P where a mistake was
made in an earlier round, in which case a mistake is made in round r only if it makes an error
in Line 5; or the path P is entirely correct and the protocol makes a mistake only if there is
an error in Line 9. So P [mr = 1 | m1, . . . , mr−1] ≤ 1/4 for every r and µ := E [m] ≤ R/4.
Using known concentration bounds (e.g. Theorem 3.1 of [17]), for any 1

4 ≤ γ ≤ 1 we have
P [m ≥ γR] ≤ e−R·D(γ∥δ); in particular, since R = 4 ·max{d, C log(1/δ)}, we have R−d

2 ≥ 3R
8 ,

so for constant κ := D
( 3

8∥
1
4
)

> 0,

P
[
m ≥ R− d

2

]
≤ P

[
m ≥ 3

8 ·R
]
≤ e−R·κ ≤ e−4C log(1/δ)·κ ≤ δ ,

when we choose C to be a sufficiently large constant. ◀

4 No Better Boosting for Hamming Distance, and Consequences

We now complete the proof of Theorem 4 by showing that Equation (1) is nearly tight for
the 1-Hamming Distance oracle. We prove this with a direct-sum result, showing that
computing k independent copies of 1-Hamming Distance cannot be computed without the
log k-factor loss from boosting. Let us define the direct sum problems.

For any function f : X × Y → Z and any k ∈ N, we define function f⊗k as the function
which computes k copies of f , i.e. f⊗k : Xk ×Y k → Zk where on inputs x ∈ Xk and y ∈ Y k,

f⊗k(x, y) = (f(x1, y1), f(x2, y2), . . . , f(xk, yk)) .

It is easy to see that DHD1((HDn
1 )⊗k) = k for n > 1 since we can compute each copy of HDn

1
with one query. In this section we prove:

▶ Theorem 14. For all n ≥ 4k2, R1/4((HDn
1 )⊗k) = Ω(k log k/ log log k). Consequently, there

exist matrices M such that

R1/4(M) = Ω
(

DHD1(M) · log DHD1(M)
log log DHD1(M)

)
.

Our proof has two further consequences. The first is about randomized parity decision
trees (see e.g. [4] for definitions and background on parity decision trees): it is not hard
to see that the randomized parity decision tree complexity of the 1-Hamming Weight
function HWn

1 : {0, 1}n → {0, 1} defined by HWn
1 (x) = 1 iff |x| = 1 is RPDT(HWn

1 ) =
O(1). Since HDn

1 (x, y) = HWn
1 (x ⊕ y) and one can simulate each parity query with two

bits of communication, we get R1/4((HDn
1 )⊗k) = O(RPDT1/4((HWn

1 )⊗k)). Together these
statements imply:

▶ Corollary 15. For n ≥ 4k2, RPDT((HWn
1 )⊗k) = Ω(k log k/ log log k).

The second consequence of our proof, explained in Section 4.3, is the optimal Ω(log n)
lower bound on the number of Equality queries required to compute HDn

1 . All of these
results come from our main lemma, a randomized reduction from HDn

k to (HDn
1 )⊗O(k).
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4.1 Randomized Reduction Lemma
▶ Lemma 16. For c = 9/10, and for all k ∈ N, let R = log1/c k and δ := 1

10R . Then

R1/4(HDn
k ) = O

(
R∑

i=0
Rδ((HDn

1 )⊗(4k·ci)

)
.

Proof. Our protocol for HDn
k (x, y) is Algorithm 2. Let c = 9/10 and let C be some constant

to be determined later. For a string x ∈ {0, 1}n and a set S ⊆ [n], we will write xS ∈ {0, 1}|S|

for the substring of x on coordinates S.

Algorithm 2 Hamming Distance Reduction.
Input: x, y ∈ {0, 1}n.

1: Initialize T ← [n]; ℓ← k.

2: while ℓ > C do
3: Let S1, . . . , S4ℓ be a uniformly random partition of T .
4: Let ui = xSi

; vi = ySi
be the substrings of x, y on subsets Si for all i ∈ [4ℓ].

5: Run δ-error protocols for (HDn
1 )⊗4ℓ

(
(u1, v1), . . . , (u4ℓ, v4ℓ)

)
and

Eq⊗4ℓ
n

(
(u1, v1), . . . , (u4ℓ, v4ℓ)

)
.

▷ Assuming these subroutines are correct, we know dist(ui, vi) exactly, if dist(ui, vi) ∈
{0, 1}.

6: wi ← dist(ui, vi) if dist(ui, vi) ≤ 1 and 2 otherwise.
▷ We can safely output 0 if we see more than ℓ differences:

7: if
∑

i∈[4ℓ] wi > ℓ then return 0.
▷ In the next step, isolate the sets Si where the protocol finds exactly one difference.

8: s← |{i ∈ [4ℓ] | wi = 1}|.
▷ If dist(xT , yT ) > ℓ, we should see many sets with exactly one difference; output 1

otherwise:
9: if s < ℓ/10 then return 1.

▷ Throw out sets Si with at most one difference; update the number ℓ of remaining
differences.

10: T ←
⋃

i∈[4ℓ] : wi=2 Si.
11: ℓ← ℓ− s.
12: return HD|T |

ℓ (xT , yT ).

First, let us calculate the cost of the protocol. As guaranteed by Line 9, at each iteration
the value of ℓ is reduced to at most 9

10 ℓ = cℓ, so there are at most R = log1/c k iterations, and
in the i-th iteration (indexed from zero), ℓ ≤ kci. Hence, at each iteration, the communication
cost is at most

Rδ((HDn
1 )⊗4kci

) + Rδ((Eq)⊗4kci

) ≤ 2 · Rδ((HDn
1 )⊗4kci

) .

Since C is a constant, the cost of the final step with ℓ ≤ C is O(1).
Now let us estimate the error. Since there are at most R = log1/c k iterations and the

2 protocols in Line 5 each have error at most δ = 1/10R, the total probability of an error
occurring in Line 5 is at most 1/5. We may therefore assume from now on the perfect
correctness of the values wi.

Under this assumption, the protocol maintains the invariant that the number of bits
outside T where x, y differ is dist(x[n]\T , y[n]\T ) = k − ℓ, so it cannot output the incorrect
value in Line 7. Let us consider the probability that the protocol outputs the incorrect
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value in Line 9. This only occurs if dist(xT , yT ) > ℓ and s < ℓ/10. We need to estimate
P [|{i ∈ [4ℓ] | wi = 1}| ≥ ℓ/10]. The size of the set {i ∈ [4ℓ] | wi > 0} is the number of unique
colors we get when coloring each element i of the set ∆T := {i ∈ T : xi ̸= yi} of cardinality
|∆T | = dist(xT , yT ) uniformly with color χi ∼ [4ℓ]; call this number χ := |{χi : i ∈ ∆T }|.
We know that Line 9 does not halt, so |{i ∈ [4ℓ] | wi = 2}| < ℓ/2. Then, if χ ≥ (6/10)ℓ, it
must be that |{i ∈ [4ℓ] : wi = 1}| ≥ χ− ℓ/2 ≥ ℓ/10, so Line 9 does not halt. For simplicity,
since |∆T | ≥ ℓ, in the next expression we consider only the first ℓ elements of ∆T and identify
them with the set [ℓ]. The probability we need to estimate is

P [|{χi | i ∈ [ℓ]}| ≤ 0.6ℓ] ≤
∑

S∈( [ℓ]
0.6ℓ)

P [{χi | i ∈ [ℓ]} ⊆ {χi | i ∈ S}]

≤
(

ℓ

0.6ℓ

)
·
(

6
10 · 4

)0.4ℓ

< 2ℓ · 2log2(3/20)·0.4ℓ ≤ 2−.01ℓ.

We have that the total error is bounded by
∑∞

ℓ=C 2−.01ℓ ≤ 2−.01C/(1− 2−.01) ≤ 100 · 2−.01C ,
so choosing C to be large enough we get arbitrarily small constant error. ◀

4.2 Direct Sum Theorem for 1-Hamming Distance
We require the lower bound on the communication cost of HDn

k :

▶ Theorem 17 ([24]). For all k2 ≤ δn, Rδ(HDn
k ) = Ω(k log(k/δ)).

Now we can prove Theorem 14.

Proof of Theorem 14. Assume for contradiction that R1/4((HDn
1 )⊗k) = o(k log k/ log log k),

so by standard boosting,

Rδ((HDn
1 )⊗k) = o

(
k log k

log log k
· log 1

δ

)
.

Then by Lemma 16, with c = 9/10 and R = log1/c k,

R1/4(HDn
k ) = O

(
R∑

i=0
Rδ((HDn

1 )4kci

)
)

=
R∑

i=0
o

(
kci log(kci)
log log(kci) log log k

)

=
R∑

i=0
o(cik log k) = o(k log k) ,

which contradicts Theorem 17 when n ≥ 4k2. ◀

Our Corollary 15 for randomized parity decision trees follows easily from this theorem
since a randomized parity decision tree for 1-Hamming Weight, (or k copies of it), can be
simulated by a randomized communication protocol to compute 1-Hamming Distance (or
k copies of it).

4.3 Lower Bound on Computing 1-Hamming Distance with Equality
Queries

Recently, [12, 13] showed that Equality is not complete for the class BPP0 of constant-cost
communication problems, and [8] showed that there is no complete problem for this class.
The independent and concurrent proofs of [12, 13] both showed that DEq(HDn

1 ) = ω(1).
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We showed above that functions which reduce to Equality have better boosting, while
1-Hamming Distance does not, so 1-Hamming Distance cannot reduce to Equality –
this gives a new and unexpected proof that Equality is not complete for BPP0:

▶ Corollary 18. DEq(HDn
1 ) = ω(1). Therefore, Equality is not a complete problem for

BPP0.

There is an easy upper bound of DEq(HDn
1 ) = O(log n) obtained using binary search.

With a more careful argument we can strengthen the above result and get a new proof that
this is optimal, matching the lower bound already given in [12] by Fourier analysis.

▶ Theorem 19. DEq(HDn
1 ) = Θ(log n).

Proof. Assume for the sake of contradiction that DEq(HDn
1 ) = o(log n), which immedi-

ately implies DEq((HDn
1 )⊗k) = o(k log n). By Theorem 11 we then have Rδ((HDn

1 )⊗k) ≤
o(k log n) + O(log 1/δ). Applying Lemma 16 we get, for c = 9/10 and δ = 1

10 log1/c k ,

R1/4(HDn
k ) = O

log1/c k∑
i=0

Rδ((HDn
1 )⊗4kci

)


=

log1/c k∑
i=0

(o(kci log n) + O(log log k)) = o(k log n) + O(log k log log k).

Applying this inequality with n = k4 we get R1/4(HDk4

k ) = o(k log k), which contradicts
Theorem 17. ◀

▶ Remark 20. It is interesting that the additive O(log(1/δ)) in Theorem 11 is required for this
proof. If the log(1/δ) term was multiplicative, we would get a bound of o(k log n · log log k)
in the sum, giving o(k log k log log k) when we set n = k4, which is not in contradiction with
Theorem 17. So the weaker (but still non-trivial) bound R1/4(M) = O(DEq(M)) would not
suffice, although it would still allow us to conclude DEq(HDn

1 ) = ω(1). The trivial bound of
R1/4(M) = O(DEq(M) log DEq(M)) would not allow us to prove even DEq(HDn

1 ) = ω(1).

5 Noisy-Tree Fails for Other Oracles

At this point we cannot determine whether better boosting is possible only for the constant-
cost protocols which reduce to Equality. But we can make some progress towards this
question by observing that the “noisy-tree” protocol in Theorem 11 does not work for any
other oracles in BPP0. To state this formally, we must define a reasonable generalization of
that protocol.

The noisy-tree protocol relied on two properties of the Equality oracle. The first is
that it has one-sided error (the protocol for Equality will output the correct answer with
probability 1 when the inputs are equal). The second property is what we will call the
conjunction property:

A query set Q has the conjunction property if there exists a constant c such that for all
d ∈ N and all Q1, . . . , Qd ∈ Q, DQ

(∧d
i=1 Qi

)
≤ c where

∧d
i=1 Qi denotes the problem of

computing

Q1(x1, y1) ∧Q2(x2, y2) ∧ · · · ∧Qd(xd, yd) .

on d pairs of inputs (x1, y1), . . . , (xd, yd). For example, Equality has the conjunction
property because computing

Eq(x1, y1) ∧Eq(x2, y2) ∧ · · · ∧Eq(xd, yd)
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can be done with the single query Eq (((x1, x2, . . . , xd), (y1, y2, . . . , yd)). Following the proof
of Theorem 11, we could claim the following result, which would hold even for oracles Q that
have non-constant cost (but still using arbitrary-size oracle queries2):

▶ “Theorem”. Let Q be any query set satisfying the conjunction property, and whose
elements Q ∈ Q admit one-sided error randomized communication protocols with cost
O(R(Q)). Then for any M ∈ {0, 1}N×N , Rδ(M) = O(DQ(M) · R1/4(Q) + log 1

δ ).

But it turns out that this does not really generalize Theorem 11, even if we require only
the conjunction property (i.e. ignore one-sided error):

▶ Proposition 21. If Q is a query set that satisfies the conjunction property, then it is either
a subset of the query set of Equality, or it is the set of all matrices.

To prove this, we use VC dimension. The VC dimension of a Boolean matrix M is the largest
d such that there are d columns of M , where the submatrix of M restricted to those columns
contains all 2d possible distinct rows. A family F of matrices has bounded VC dimension if
there is a constant d such that all M ∈ F have VC dimension at most d. If F is closed under
taking submatrices (and permutations), then it has bounded VC dimension if and only if it
is not the family of all matrices.

Proof of Proposition 21. If Q does not contain the matrix [ 1 1
1 0 ], then it is not hard to see

that Q is a subset of the query set of Equality. So we suppose that Q contains the matrix
[ 1 1

1 0 ] and satisfies the conjunction property. We first show:

▷ Claim 22. Every matrix M ∈ {0, 1}N×N is a submatrix of
∧N

i=1 Qi where each Qi = [ 1 1
1 0 ].

Proof of claim. Let each Qi be a copy of [ 1 1
1 0 ], so that Q =

∧N
i=1 Qi has row space [2]N

and column space [2]N . Let M ∈ {0, 1}N×N and map each row x ∈ [N ] of M to the row
v(x) ∈ [2]N of Q with

∀j ∈ [N ] : v(x)j =
{

1 if M(x, j) = 1
2 if M(x, j) = 0 ,

and map each column y ∈ [N ] of M to the column w(y) ∈ [2]N of Q with

∀j ∈ [N ] : w(y)j =
{

1 if j ̸= y

2 if j = y .

For any row x and column y of M , if M(x, y) = 1 then

Qi(v(x)j , w(y)j) =


Qi(1, 1) = 1 if M(x, j) = 1 and j ̸= y

Qi(1, 2) = 1 if M(x, j) = 1 and j = y

Qi(2, 1) = 1 if M(x, j) = 0 and j ̸= y .

This covers all the cases, since we never have M(x, j) = 0 and j = y, so Q(v(x), w(y)) = 1.
Finally, if M(x, y) = 0 then

Qi(v(x)y, w(y)y) = Qi(2, 2) = 0 ,

so Q(v(x), w(y)) = 0. Therefore M is a submatrix of Q. ◁

2 Arbitrary-size oracle queries may be sensible for non-constant cost problems that still have bounded VC
dimension, e.g. Greater-Than oracles as in [5].
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By the conjunction property, there is a constant c such that DQ(M) ≤ DQ(
∧N

i=1 Qi) ≤ c

for all M ∈ {0, 1}N×N . Therefore, there is a constant C and a function f : {0, 1}C → {0, 1}
such that all matrices M can be written as

M(x, y) := f(Q1(x, y), Q2(x, y), . . . , QC(x, y))

where each Qi ∈ Q (think of f as the function which simulates the protocol for DQ(M) using
the answers to each query Qi; see e.g. [14] for the simple proof of this fact). Let f(Q) denote
the set of all matrices which can be achieved in this way, which we have argued is the set of
all matrices. For the sake of contradiction, assume that Q is not the set of all matrices, so
that the VC dimension VC(Q) is bounded. Then standard VC dimension arguments (see e.g.
[20]) show that the VC dimension of f(Q) is at most O(VC(Q) ·C log C). Since C is constant,
the VC dimension of f(Q) is therefore also bounded, but f(Q) contains all matrices, so this
is a contradiction and Q must contain all matrices. ◀

▶ Remark 23. If one is interested only in constant-cost oracles, we may replace the conjunction
property DQ(

∧
i Qi) ≤ c with the property R1/4

(∧d
i=1 Qi

)
= O(1), but the same proof rules

out this generalization as well.
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