
Two Views on Unification: Terms as Strategies
Furio Honsell #

Department of Mathematics, Computer Science and Physics, University of Udine, Italy

Marina Lenisa #

Department of Mathematics, Computer Science and Physics, University of Udine, Italy

Ivan Scagnetto #

Department of Mathematics, Computer Science and Physics, University of Udine, Italy

Abstract
In [19], the authors have shown that linear application in Geometry of Interaction (GoI) models of
λ-calculus amounts to resolution between principal types of linear λ-terms. This analogy also works
in the reverse direction. Indeed, an alternative definition of unification between algebraic terms can
be given by viewing the terms to be unified as strategies, i.e. sets of pairs of occurrences of the same
variable, and verifying the termination of the GoI interaction obtained by playing the two strategies.
In this paper we prove that such a criterion of unification is equivalent to the standard one. It can
be viewed as a local, bottom-up, definition of unification. Dually, it can be understood as the GoI
interpretation of unification.
The proof requires generalizing earlier work to arbitrary algebraic constructors and allowing for
multiple occurrences of the same variable in terms. In particular, we show that two terms σ and
τ unify if and only if R(σ) ⊆̂ R(τ) ;̂ (R(σ) ;̂ R(τ))∗ and R(τ) ⊆̂ R(σ) ;̂ (R(τ) ;̂ R(σ))∗, where R(σ)
denotes the set of pairs of paths leading to the same variable in the term σ, ⊆̂ denotes “inclusion up
to substitution” and ;̂ denotes “composition up to substitution”.

2012 ACM Subject Classification Theory of computation → Program semantics; Theory of compu-
tation → Linear logic

Keywords and phrases unification, geometry of interaction, games

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.26

Funding Work supported by project PNRR SERICS PE00000014 M4C2I1.3 – SECCO – “SecCo-OC
– Secure Containers Open Call” – CUP D33C22001300002, and by project PNRR SERICS M4C2I1.3
– COVERT OpenCall In searCh Of eVidence of stEalth cybeR Threats – CUP G23C24000790006.

Acknowledgements The authors express their gratitude to the referees for their useful comments.

1 Introduction

Geometry of Interaction (GoI) is a general programme originated by J.-Y. Girard in the
late 80’s, which aims at giving language-independent mathematical models of algorithms.
An extraordinary amount of results by dozens of logicians and computer scientists has been
triggered by Girard’s seminal papers [13, 14, 15] on the GoI-dynamics of cut-elimination in
Linear Logic. Among these arose Game Semantics, as initiated by Abramsky and Hyland,
which led to far reaching connections through notions such as traced monoidal categories.
Inspired by [2, 3] and in particular by [1], in [19] the authors gave a simple explanation
of GoI-linear application in GoI linear models of λ-calculus in terms of unification, more
specifically resolution, between principal types of linear λ-terms (see also [10, 9, 18, 11, 17]).
The notion of GoI-application was hitherto justified in terms of more complex mathematical
notions, such as proof nets, C∗-algebras, and categorical trace operators.

In this paper we show that the correspondence between GoI linear application and
unification is intrisic. Indeed, we introduce an alternative criterion for unification between
algebraic terms, by viewing the terms to be unified as strategies, i.e. sets of pairs of occurrences

© Furio Honsell, Marina Lenisa, and Ivan Scagnetto;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:furio.honsell@gmail.com
mailto:marina.lenisa@uniud.it
https://orcid.org/0000-0003-0497-0429
mailto:ivan.scagnetto@uniud.it
https://orcid.org/0000-0003-3206-2719
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Two Views on Unification: Terms as Strategies

of the same variable, taken as moves, and checking at the termination of the GoI interaction
between the two strategies. We prove that such a criterion of unification is equivalent to the
standard one. It can be viewed as a local, bottom-up definition of unification w.r.t. the more
top-down approach used in ordinary unification algorithms. But more importantly, this can
be viewed, dually, as a step in Girard’s GoI programme, namely as the GoI-interpretation of
the unification algorithm.

The proof requires generalizing earlier work to arbitrary algebraic constructors and
allowing for multiple occurrences of the same variable. In particular, we show that two terms
σ and τ unify if and only if

R(σ) ⊆̂ R(τ) ;̂ (R(σ) ;̂ R(τ))∗ and R(τ) ⊆̂ R(σ) ;̂ (R(τ) ;̂ R(σ))∗

where R(σ) denotes the set of pairs of paths leading to the same variable, i.e. occurrences of
the same variable, in the term σ, ⊆̂ denotes “inclusion up to substitution”, and ;̂ denotes
“composition up to substitution”.

Since we view terms as strategies, in the form of irreflexive binary relations on variable
occurrences, it is easier for expository purposes to discuss first the case of terms with no
constants and no hapax variables, i.e. variables which occur only once. Moreover, since
variables merely play the role of placeholders within a term, it is easier to discuss first the case
where the terms to be unified do not share variables. Later we remove all these restrictions,
by showing that the case of general terms can be reduced to the initial restricted one.

Summing up, unification can be carried out either in a traditional top down fashion,
taking the view of terms, as in e.g. [20], or bottom up taking the view of variable occurrences.
We will call the former simply unification, while we will call the latter GoI-unification.

Related work. The use of unification and resolution to build or explain GoI models has
a long history. J.-Y. Girard, in [14], first pointed out the close connection between GoI
and resolution. A number of authors pursued this investigation, e.g. [8], and most notably
M.Bagnol in his thesis [7], and subsequent papers on the more recent line of investigation
of “Transcendental syntax”, which has been introduced by Girard (see [16]) and further
investigated in B.Eng’s thesis [12]. While in these works unification and resolution are used
to build GoI models, in the present paper the point of view is different. Namely, here the
goal is to do the converse, i.e. to provide a new perspective on unification through a GoI-like
mechanism.

Finally, we mention the line of research in Geometry of Interaction which has been
probably the most active and fruitful in the last one or two decades, i.e. that of GoI based
abstract machines (see e.g. [4, 6, 5]), which have been studied in particular in connection to
time and space efficiency of the computational model of λ-calculus.

Summary. The paper is organized as follows. In Section 2 we introduce preliminary
definitions. In Section 3 we discuss standard unification. In Section 4 we give the main
definition of when two terms GoI-unify, and state the main results for terms with no constants
and no hapax variables, and under the assumption that the terms to unify do not share
variables. In Section 5 we give examples. In Section 6 we outline the proofs of the main
results. In Section 7 we discuss the extension of GoI-unification to general terms. Final
remarks and possible directions for future work appear in Section 8.

F. Honsell, M. Lenisa, and I. Scagnetto 26:3

2 Preliminaries

Throughout the paper we assume the following definitions.

▶ Definition 1 (Terms and Variable Occurrences).
(i) Terms TΣ are given by a signature Σ =

⋃n
i=0 Σi, where n > 0, and Σi are sets of

i-ary constructors f j
i , for j = 1, . . . , |Σi|. Terms are trees whose leaves are variables

α, β, . . . ∈ TVar, and nodes are operations in Σ, i.e.

(TΣ ∋) σ, τ ::= α | β | . . . | f j
i (σ1, . . . , σi).

(ii) Let T −
Σ be the subset of terms in TΣ with no 0-ary constructors and no hapax variables,

i.e. variables which occur only once.
(iii) Occurrences of variables in terms, or occurrence terms, are given by the following

grammar:

(OΣ ∋) u[α] ::= α | (f j
i , k)u[α] for k ≤ i,

where
α denotes the occurrence of the variable α in the term α,
if u[α] denotes an occurrence of α in σ, then (f j

i , k)u[α] denotes the corresponding
occurrence of α in f j

i (σ1, . . . , σk−1︸ ︷︷ ︸
k−1

, σ, σk+1, . . . , σi︸ ︷︷ ︸
i−k

).

(iv) The (possibly empty) path of an occurrence u[α] is u.
(v) Let R(OΣ) denote the set of binary relations on OΣ containing only pairs of the shape

⟨u[α], v[α]⟩, for α ∈ TVar, and u, v occurrence paths.
(vi) Given a relation R, we denote by R+ the maximal irreflexive subrelation included in

the symmetric and transitive closure of R .

▶ Notation 2.
Syntactical identity of terms is denoted by ≡.
We consider terms up to injective renaming of variables and denote term equality by =.

▶ Example 3. Let f1
1 and f1

2 be a unary and a binary constructor, respectively, and
let σ = f1

2 (α, f1
1 (α)). Then σ has two occurrences of the variable α, i.e. (f1

2 , 1) α and
(f1

2 , 2)(f1
1 , 1) α, with corresponding paths u = (f1

2 , 1) and v = (f1
2 , 2)(f1

1 , 1). ⌟

Terms give rise to non-deterministic strategies for a game where moves are variable
occurrences, in the following sense:

▶ Definition 4 (From Terms to Strategies).
(i) A term τ gives rise to a set of variable occurrences (moves):

O(τ) = {u[α] | u[α] is an occurrence of α in τ}.

(ii) A term τ gives rise to a symmetric and transitive irreflexive relation on OΣ (strategy):

R(τ) = {⟨u[α], v[α]⟩ | u[α], v[α] are different occurrences of α in τ}.

(iii) Two different variable occurrences u[α], v[β] are compatible if u = w(f j
i , k)u′ and

v = w(f j
i , h)v′, for some paths w, u′, v′, and indexes i, j, k ̸= h.

▶ Example 5. Let f1
1 and f1

2 be a unary and a binary constructor, respectively. Then
the variable occurrences (f1

2 , 1)(f1
2 , 1)(f1

1 , 1) α and (f1
2 , 1)(f1

2 , 2) β are compatible, while the
occurrences (f1

2 , 1)(f1
2 , 1)(f1

1 , 1) α and (f1
2 , 1)(f1

2 , 1) β are not. ⌟

FSTTCS 2024

26:4 Two Views on Unification: Terms as Strategies

For a given term τ , it is immediate that all variable occurrences in O(τ) are pairwise
compatible. Vice versa, the compatibility condition permits us to build a term from a set of
pairwise compatible variable occurrences, by tagging some nodes of the term tree with fresh
variables, if needed.

▶ Proposition 6.
(i) Given a set S of pairwise compatible variable occurrences, we can build the tree of a

term, by tagging possible missing leaves with fresh variables in Z = {ζ1, . . . , ζi, . . .}, i.e.

TZ (S) =


ζ if S = ∅, ζ ∈ Z fresh
α if S = {α}
fj

i
(TZ ({u[α] | (fj

i
, 1)u[α] ∈ S}), . . . , TZ ({u[α] | (fj

i
, i)u[α] ∈ S})) if ∀v[α] ∈ S ∃k, v′s.t.

v = (fj
i

, k)v′

(ii) Let σ be a term with no 0-ary constructors. Then we have TZ(O(σ)) = σ.

Proof. By induction on the structure of terms. The compatibility condition ensures that at
any step all occurrence paths start with the same constructor f j

i . ◀

Notice that, in Proposition 6(ii) above we consider terms without constants. In principle,
one could extend this result to the whole set of terms, by suitably generalizing Definition 4
and introducing a notion of constant occurrence. However, we prefer to follow a different
approach, which allows for a simpler theory: we first introduce and study the notion of
GoI-unification for terms without constants, and then, in Section 7, we show how the general
case can be dealt with via a simple encoding into the restricted case.

3 The Top-down Perspective on Unification

First we fix notations for standard notions.

▶ Definition 7 (Terms Unifiers). Let σ and τ be terms.
(i) A substitution is a function U : TΣ → TΣ defined inductively on the structure of terms

from a variable substitution UVar : TV ar → TΣ, i.e.
U(α) = UVar(α)
U(f j

i (σ1, . . . , σi)) = f j
i (U(σ1), . . . , U(σi)).

(ii) A unifier for σ and τ is a substitution U which differs from the identity on a finite
number of variables and such that U(σ) = U(τ). We call domain of U , dom(U), the
finite set of variables on which U is not the identity.

(iii) Given two substitutions, U and V , the composition U ; V is defined as usual, i.e. U ; V =
V ◦ U .

(iv) Given two substitutions, U and V , we define U ≤ V if there exists a substitution U ′

such that U ; U ′ = V , i.e. U is more general than V .
(v) Given terms σ, τ , a most general unifier (m.g.u.) of σ, τ is a unifier U of σ and τ such

that, for any unifier U of σ and τ , U ≤ U .

We introduce now a unification algorithm à la Martelli Montanari, [20], which unifies
simultaneously sets of pairs of terms.

▶ Definition 8 (Martelli-Montanari’s Algorithm). Let E be a set of pairs of the form ⟨σ, τ⟩, for
σ, τ ∈ TΣ. The unification algorithm is defined by the following rules for deriving judgements
of the form U(E):

F. Honsell, M. Lenisa, and I. Scagnetto 26:5

(i) U({⟨f j
i (σ1, . . . , σi), f j

i (τ1, . . . , τi)⟩} ∪ E) → U({⟨σ1, τ1⟩, . . . , ⟨σi, τi⟩} ∪ E)
(ii) U({⟨α, α⟩} ∪ E) → U(E)
(iii) U({⟨f j

i (σ1, . . . , σi), α⟩} ∪ E) → U({⟨α, f j
i (σ1, . . . , σi)} ∪ E)

(iv) U({⟨α, σ⟩} ∪ E) → U({⟨α, σ⟩} ∪ E[σ/α]), if α ̸∈σ ∧ α∈V ar(E)
(v) U({⟨α, σ⟩} ∪ E) → fail, if α ∈ σ ∧ α ̸= σ

(vi) U({⟨f j
i (σ1, . . . , σi), f l

k(τ1, . . . , τk)⟩} ∪ E → fail, if i ̸= k or j ̸= l

The algorithm in Definition 8 is non-deterministic. Moreover, notice that rule (iii) is not
symmetric and that rule (iv) produces a set of pairs of terms to be unified, where there is
only one occurrence of the variable α left.

In particular, termination of the algorithm is guaranteed by the fact that, by applying
any of the rules, the complexity of the set of pairs E decreases, according to the following
measure:

▶ Definition 9. Let E be a set of pairs of the form ⟨σ, τ⟩. We define a complexity measure
of E by m(E) = (mt, mv), where

mt is the sum of the complexities of terms in the lefthand parts of the pairs,
mv is the number of variables appearing in E, except variables α’s for which there is only
one pair ⟨α, σ⟩ such that α /∈ σ and α /∈ E \ {⟨α, σ⟩} .

Then, the following lemma is straightforward.

▶ Lemma 10. Given terms σ, τ ∈ TΣ, Martelli-Montanari’s Algorithm terminates either
with failure or with a set of pairs yielding a substitution.

The following proposition is well-known.

▶ Proposition 11 (Most General Unifier). Let σ, τ ∈ TΣ. The terms σ and τ unify if and
only if Martelli-Montanari’s algorithm on {⟨σ, τ⟩} terminates with a substitution E. Then
{α 7→ ρα | ⟨α, ρα⟩ ∈ E} is a m.g.u. of σ and τ , which is unique up to appropriate injective
renaming of variables.

4 GoI-unification: the Bottom-up Perspective of Paths

In this section we provide a GoI account of unification. Namely, as done in [19], we utilize
the machinery underlying process interaction in game semantics to explain the dynamics of
unification. In this perspective, terms are viewed as non-deterministic strategies over the
language of moves consisting of variable occurrences (see Definition 4). The proofs of the
results in this section appear in Section 6. More specifically, we provide a GoI account of
unification for a restricted class of terms, i.e. terms with no constants and no hapax variables.
Moreover, we assume that the two terms to unify do not share variables. In Section 7 all
these restrictions are removed, namely we show that the general case can be always reduced
to the special case discussed in the previous sections.

Now we need to introduce the notions of occ-substitution and occ-unifier:

▶ Definition 12 (Occ-unifier).
(i) An occ-substitution is a function M : OΣ → OΣ defined inductively on the structure of

variable occurrences, starting from a substitution for variables MVar : TVar → OΣ, i.e.
M(α) = MVar(α)
M((f j

i , k)u[α]) = (f j
i , k)M(u[α]).

FSTTCS 2024

26:6 Two Views on Unification: Terms as Strategies

(ii) An occ-unifier of variable occurrences u[α], v[β] is an occ-substitution M such that
M(u[α]) = M(v[β]).

Notice that occ-unifiers are actually matchings, namely two variable occurrences u[α], v[β]
unify if and only if u is a prefix of v or v is a prefix of u:

▶ Lemma 13. Let u[α], v[β] ∈ OΣ. The following are equivalent:
(i) there exists an occ-unifier of u[α] and v[β];
(ii) there exists an occurrence path w such that u = vw or v = uw.

The following definition introduces a special operation on relations on variable occurrences,
which will be used in the definition of GoI-unification, i.e. the operation of composition up to
occ-substitution, together with the notion of inclusion up to substitution:

▶ Definition 14. Let R, R′, R′′ ∈ R(OΣ) be binary relations on variable occurrences.
(i) We define R(σ) ;̂ R(τ) as composition up to occ-substitution, namely

⟨u′′[γ], v′′[γ]⟩ ∈ R(σ) ;̂ R(τ) if and only if

∃ ⟨u[α], v[α]⟩ ∈ R(σ), ⟨u′[β], v′[β]⟩ ∈ R(τ) and
∃M occ-unifier of v[α], u′[β] s.t. (M(u′′[γ]) = M(u[α]) ∧ M(v′′[γ]) = M(v′[β])) .

(ii) We define the predicate inclusion up to substitution, R ⊆̂ R′, which holds if and only if
for each ⟨u[α], v[α]⟩ ∈ R there exists a pair ⟨u′[β], v′[β]⟩ ∈ R′ and an occ-substitution
M such that M(u[α]) = M(u′[β]) ∧ M(v[α]) = M(v′[β]).

One can easily check (by case analysis on the occ-substitutions) that Definition 14(i)
above determines an associative operation on R(OΣ):

▶ Lemma 15. Composition up to occ-substitution of relations is an associative operation
over R(OΣ).

The following is the crucial definition of the paper:

▶ Definition 16 (GoI-unification). Let σ, τ ∈ T −
Σ be such that V ar(σ) ∩ V ar(τ) = ∅. Then σ

and τ GoI-unify, i.e. UGoI(σ, τ), if and only if

R(σ) ⊆̂ R(τ) ;̂ (R(σ) ;̂ R(τ))∗ and R(τ) ⊆̂ R(σ) ;̂ (R(τ) ;̂ R(σ))∗ ,

where, for a relation R, R∗ denotes the relation IdOΣ ∪
⋃

n≥1 Rn, where IdOΣ denotes the
identity relation on OΣ and Rn the n-ary composition up to substitution of R.
The “flow of control” in checking the two predicates is outlined in the following diagrams

in // •
R(τ)

((•
R(σ)
hh // out in // •

R(σ)
((•

R(τ)
hh // out

Notice the similarity of the above definition with Girard’s Execution Formula, and hence
the connection with game semantics.

The following is the main result of the paper, whose proof will be given in Section 6:

▶ Theorem 17 (Equivalence). Let σ, τ ∈ T −
Σ be such that V ar(σ) ∩ V ar(τ) = ∅. Then σ

and τ unify if and only if they GoI-unify.

F. Honsell, M. Lenisa, and I. Scagnetto 26:7

τ : u1[α]
,,
u′

1[α]

��

. . . un+1[αn+1]
..
u′

n+1[αn+1]

��
σ : u[α]

OO

u2[α2] 22 . . . 22 u′
n[αn]

OO

v[α]

Figure 1 GoI-execution sequence.

The following lemma is very useful in verifying the criterion of Definition 16. It essentially
amounts to spelling out that definition, once we observe that the order in which occ-
unifications are performed in a composition chain is irrelevant. This in turn follows from
Lemma 15.

▶ Lemma 18. Let σ, τ ∈ T −
Σ be such that V ar(σ) ∩ V ar(τ) = ∅. Then σ and τ GoI-unify

(UGoI(σ, τ)) if and only if, for any ⟨u[α], v[α]⟩ ∈ R(σ),
(i) there exist a sequence of odd length ≥ 1 ⟨u1[α1], u′

1[α1]⟩, . . . , ⟨un+1[αn+1], u′
n+1[αn+1]⟩,

n ≥ 0, and
(ii) occ-substitutions M1, . . . , Mn, M⟨u[α],v[α]⟩ such that

⟨ui[αi], u′
i[αi]⟩ ∈ R(τ), for i odd;

⟨ui[αi], u′
i[αi]⟩ ∈ R(σ), for i even;

for all 1 ≤ i ≤ n, (M1; . . . ; Mi)(u′
i[αi]) = Mi(ui+1[αi+1]);

M⟨u[α],v[α]⟩(u[α]) = (M1; . . . ; Mn)(u1[α1]);
M⟨u[α],v[α]⟩(v[α]) = Mn(u′

n+1[αn+1]).
And vice versa, for any ⟨u[α], v[α]⟩ ∈ R(τ) there exists a sequence of pairs of variable
occurrences and occ-substitutions satisfying the properties above.
We call GoI-execution sequence the above sequence of pairs of variable occurrences together
with the corresponding occ-substitutions.

The GoI-execution sequence mimicking the pair ⟨u[α], v[α]⟩ ∈ R(σ) can be visualized
with a diagram as in Figure 1, where vertical arrows denote occ-unifications (which are left
implicit), while horizontal ones connect pairs in R(σ) or in R(τ).

The result in Theorem 17 is far from straightforward, since the two perspectives on
unification, namely the one implemented in the algorithm U , introduced in Definition 8, and
the one given by the flow of control in dealing with pairs in R(σ) and R(τ) in Definition 16
are conceptually different.

In Section 8, we shall briefly outline how term unifiers can be derived from GoI-execution
sequences, thereby suggesting the analogue of Proposition 11.

5 GoI-unification at Work

In this section we illustrate positive examples and failures of the unification criterion given
by Definition 16. But before doing this we need to introduce some notations.

▶ Notation 19. To ease intuition, when dealing with a single binary constructor f1
2 , terms

will be called linear types, moreover we shall use the infix operator ⊸ for f1
2 , and we shall

denote the paths (f1
2 , 1) and (f1

2 , 2) simply by l and r, respectively.

▶ Example 20. Consider the two linear types σ ≡ α ⊸ α and τ ≡ (β ⊸ β) ⊸ (β ⊸ β).
These two terms clearly unify by taking the variable substitution {α 7→ β ⊸ β}. We have
R(σ) = {⟨lα, rα⟩}+ and R(τ) = {⟨llβ, lrβ⟩, ⟨rlβ, rrβ⟩ ⟨lrβ, rlβ⟩}+. For each of the four
pairs we provide appropriate GoI-execution sequences, where the occ-substitutions have been
fully applied:

FSTTCS 2024

26:8 Two Views on Unification: Terms as Strategies

σ : lα

��

rα lα
**
rα

��

rα
**
lα

��
τ : llβ 44 rlβ

OO

llβ

OO

rlβ 33 rrβ

OO

lrβ

Figure 2 Example 20.

(i) ⟨lα, rα⟩ ⇝ llβ
τ⇔ rlβ

(ii) ⟨llβ, lrβ⟩ ⇝ llβ
σ⇔ rlβ

τ⇔ rrβ
σ⇔ lrβ

(iii) ⟨rlβ, rrβ⟩ ⇝ rlβ
σ⇔ llβ

τ⇔ lrβ
σ⇔ rrβ

(iv) ⟨lrβ, rlβ⟩ ⇝ lrβ
σ⇔ rrβ

τ⇔ llβ
σ⇔ rlβ

We compute explicitly all the substitutions M’s arising according Lemma 18 in the
case (ii), i.e. for the pair ⟨llβ, lrβ⟩. The sequence of pairs of variable occurrences are
⟨lα, rα⟩, ⟨rlβ, llβ⟩, ⟨lα, rα⟩. The substitutions are:

M1 : α 7→ rβ, which is used to match rα in the second component of the first pair and
rlβ in the first component of the second pair;
M2 : α 7→ lβ, which matches the second component of the second pair (after the
substitution with M1), and the first component of the third pair;
finally we have M⟨llβ,lrβ⟩ = I d.

In Figure 2, the left-hand diagram represents the GoI sequence for the pair ⟨lα, rα⟩, while
the right-hand diagram represents the GoI sequence for the pair ⟨llβ, lrβ⟩. In the diagrams
of Figure 2, vertical arrows denote occ-unifications (which are left implicit), while horizontal
ones connect pairs in R(σ) or in R(τ). In the present cases, the GoI-execution sequences
can be directly read in the bottom lines of the two diagrams. ⌟

▶ Example 21. Consider the terms σ ≡ f(α, α, α) and τ ≡ f(β, g(γ, γ), β),
where f is a ternary constructor and g is binary. We have that
R(σ) = {⟨(f, 1)α, (f, 2)α⟩, ⟨(f, 1)α, (f, 3)α⟩, ⟨(f, 2)α, (f, 3)α⟩}+, while R(τ) =
{⟨(f, 1)β, (f, 3)β⟩, ⟨(f, 2)(g, 1)γ, (f, 2)(g, 2)γ⟩}+. These two terms clearly unify by
taking the variable substitution {α 7→ g(γ, γ), β 7→ g(γ, γ)}. We provide appropriate
GoI-execution sequences for some of the pairs in the R()’s, the other pairs are dealt with
symmetrically:
⟨(f, 1)α, (f, 3)α⟩ ⇝ (f, 1)β τ⇔ (f, 3)β ⟨(f, 1)β, (f, 3)β⟩ ⇝ (f, 1)α σ⇔ (f, 3)α

⟨(f, 1)α, (f, 2)α⟩ ⇝ (f, 1)(g, 1)γ τ⇔ (f, 3)(g, 1)γ σ⇔ (f, 2)(g, 1)γ τ⇔ (f, 2)(g, 2)γ σ⇔
(f, 1)(g, 2)γ τ⇔ (f, 3)(g, 2)γ σ⇔ (f, 2)(g, 2)γ τ⇔ (f, 2)(g, 1)γ

⟨(f, 2)(g, 1)γ, (f, 2)(g, 2)γ⟩ ⇝ (f, 2)(g, 1)γ σ⇔ (f, 3)(g, 1)γ τ⇔ (f, 1)(g, 1)γ σ⇔ (f, 2)(g, 1)γ τ⇔
(f, 2)(g, 2)γ σ⇔ (f, 3)(g, 2)γ τ⇔ (f, 1)(g, 2)γ σ⇔ (f, 2)(g, 2)γ. ⌟

▶ Example 22. Consider the two linear types σ ≡ α ⊸ α and τ ≡ γ ⊸ ((β ⊸ β) ⊸
γ). Apparently the two terms do not unify. We have R(σ) = {⟨lα, rα⟩}+ and R(τ) =
{⟨lγ, rrrγ⟩, ⟨rllβ, rlrβ⟩}+. In order to achieve an instance of the pair ⟨rllβ, rlrβ⟩ from a
GoI-execution sequence both the first and last term must start with an r and be the first
and second component respectively of pairs in R(σ). We show that there cannot be any
GoI-sequence where both the first and the last terms start with an r. We proceed by
contradiction. Assume that such a sequence exists and consider the shortest one. The other
components of such pairs must then be occurrence terms starting with an l. These in turn
unify with occurrence terms coming from pairs in R(τ), so their other component must
start with an r. Hence the GoI-execution sequence we started from was not the shortest.
Contradiction. ⌟

F. Honsell, M. Lenisa, and I. Scagnetto 26:9

▶ Example 23. Consider the two linear types σ ≡ (α ⊸ α) → α and τ ≡ (α ⊸ α)⊸ α,
where we two binary constructors⊸ and → appear, and whose occurrence components are de-
noted respectively by l, r and L, R. We have that R(σ) = {⟨Llα, Lrα⟩, ⟨Llα, Rα⟩, ⟨lrα, rα⟩}+

while R(τ) = {⟨llα, rlα⟩, ⟨llα, rα⟩, ⟨lrα, rα⟩}+. One can readily check that no GoI execution
sequence can simulate ⟨Llα, Lrα⟩. ⌟

6 Proof of the Main Theorem

For simplicity we shall sketch the proof only for a single binary constructor (_ → _), which
we write in infix form. We need some new notation and a number of invariance lemmata,
whose proofs are essentially straightforward from the definitions.

▶ Notation 24. Let σ be a term where all the variables occur exactly twice. When we
want to highlight one or more pairs of occurrences of some of the variables, we write
σ[(αi, αi)] or σ[(α1, α1), . . . , (αn, αn)]. Moreover we write σ[(τ1, ρ1)] when we denote the
term obtained from σ by replacing the first occurrence of the variable α, which should be
clear form the context, in σ with τ1 and the second occurrence of α in σ with ρ1, and we
write σ[(τ1, ρ1), . . . (τn, ρn))] to denote the term obtained from σ by substituting the variables
α1, . . . , αn. Notice that some pairs in (τ1, ρ1), . . . (τn, ρn) could be equal.

▶ Lemma 25. Let σ, τ be terms which do not share variables, and let α be a fresh variable.
Then

UGoI(σ, τ) ⇐⇒ UGoI(σ → τ, α → α) .

The Lemma above holds trivially, if σ and τ do not share variables. Otherwise, the
righthand side can be taken as the definition of UGoI(σ, τ) when the two terms share variables
(see Section 7.2 below).

▶ Lemma 26. Let σ be a term where all variables occur exactly twice, and let
σ[(τ1, ρ1), . . . , (τn, ρn)] be such that Var(σ[(τ1, ρ1), . . . , (τn, ρn)]) ∩ Var(σ) = ∅. If τi ≡
τi1 → τi2 and ρi ≡ ρi1 → ρi2, for some i ∈ {1, . . . , n}, then

UGoI(σ[(τ1, ρ1), . . . , (τi, ρi), . . . , (τn, ρn)], σ)
⇔ UGoI(σ′[(τ1, ρ1), . . . , (τi1, ρi1), (τi2, ρi2), . . . , (τn, ρn)], σ′)

where σ′[(αi1, αi1), (αi2, αi2)] ≡ σ[(αi1 → αi2, αi1 → αi2)], for αi1, αi2 fresh variables.

Notice that the application of Lemma 26 only modifies the second term of the pair, i.e.
σ, but in a way to preserve the property that its variables occur exactly twice. The proof
is again straightforward, since execution sequences on the left hand side are immediately
reflected on the right hand side, and vice versa.

▶ Example 27. Let σ ≡ α → α, τ ≡ δ → (β → β) → δ, and ρ ≡ γ → γ → γ, where →
associates to the right, as usual. Then σ[(τ, ρ)] ≡ (δ → (β → β) → δ) → (γ → γ → γ). We
have:

τ ≡ τ1 → τ2, where τ1 ≡ δ and τ2 ≡ (β → β) → δ ,

ρ ≡ ρ1 → ρ2, where ρ1 ≡ γ and ρ2 ≡ (γ → γ) .

FSTTCS 2024

26:10 Two Views on Unification: Terms as Strategies

Applying Lemma 26, we get

UGoI(σ[(τ, ρ)], σ) ⇐⇒ UGoI(σ′[(τ1, ρ1), (τ2, ρ2)], σ′) ,

where σ′ ≡ (α1 → α2) → (α1 → α2).
Now both τ2 and ρ2 are arrow types, and so we can apply Lemma 26 again, getting:

UGoI(σ′[(τ1, ρ1), (τ2, ρ2)], σ′) ⇐⇒ UGoI(σ′′[(τ1, ρ1), (τ21, ρ21), (τ22, ρ22)], σ′′) ,

where
σ′′ ≡ (α1 → (α21 → α22)) → (α1 → (α21 → α22))
τ21 ≡ β → β and ρ21 ≡ γ

τ22 ≡ δ and ρ22 ≡ γ .
Notice that the pairs (τ1, ρ1) and (τ22, ρ22) coincide.
At this point Lemma 26 is not applicable anymore. ⌟

▶ Lemma 28. Let σ be a term where all variables occur exactly twice, and let
σ[(τ1, ρ1), . . . , (ξ, ρi), . . . ,

(τn, ρn)] be such that ξ is a variable, and Var(σ[(τ1, ρ1), . . . , (ξ, ρi), . . . , (τn, ρn)])∩Var(σ) = ∅.
Then,

if ξ ∈ V ar(ρi) and ξ ̸≡ ρi, then σ[(τ1, ρ1), . . . , (ξ, ρi), . . . , (τn, ρn)] and σ are not GoI-
unifiable;
if ξ ̸∈ V ar(ρi),

UGoI(σ[(τ1, ρ1), . . . , (ξ, ρi), . . . , (τn, ρn)], σ) ⇐⇒
UGoI(σ[(τ1, ρ1), . . . , (ξ, ρi), . . . , (τn, ρn)][ρi/ξi], σ) .

And vice versa, i.e. the statement holds for σ[(τ1, ρ1), . . . , (τi, ξ), . . . , (τn, ρn)], where the
variable ξ appears as second element in a pair.

The only not immediate part of the proof of the above lemma concerns the case where
ξ ∈ V ar(ρi) and ξ ̸≡ ρi. For simplicity, we just consider the case where σ ≡ α → α. The
argument generalizes quite easily. If UGoI(ξ → ρi, α → α), there exists a GoI-execution
sequence which simulates the occurrence pair ⟨l[ξ], ru[ξ]⟩. But whatever substitution which
is mediated by ⟨l[α], r[α]⟩, it will always produce occ-subsitutions of the same length in both
occurrences, thereby preventing any GoI-execution sequence from reproducing the asymmetry
in the original pair through an occ-substitution.

▶ Example 29. Continuing from Example 27, we can now apply Lemma 28 above to the
last two terms σ′′[(τ1, ρ1), (τ21, ρ21), (τ22, ρ22)] and σ′′, by considering the first pair (τ1, ρ1),
and taking, e.g., ξ ≡ δ. Then we get:

UGoI(σ′′[(τ1, ρ1), (τ21, ρ21), (τ22, ρ22)], σ′′) ⇐⇒
UGoI(σ′′[(τ1, ρ1), (τ21, ρ21), (τ22, ρ22)][γ/δ], σ′′)

where the latter becomes

UGoI((γ → (β → β) → γ) → (γ → γ → γ), (α1 → (α21 → α22)) → (α1 → (α21 → α22)) .

Then, applying again Lemma 28 to the pair (τ21, ρ21), i.e. (β → β, γ), and performing the
corresponding substitution, we finally get

UGoI(((β → β) → (β → β) → (β → β)) → ((β → β) → (β → β) → (β → β)),
(α1 → (α21 → α22)) → (α1 → (α21 → α22)) .

F. Honsell, M. Lenisa, and I. Scagnetto 26:11

Notice that at this point Lemma 26 above becomes again applicable, since the above coincides
with

UGoI(σ′′[((β → β), (β → β)), ((β → β), (β → β)), ((β → β), (β → β))], σ′′) ,

where σ′′ ≡ (α1 → (α21 → α22)) → (α1 → (α21 → α22)). ⌟

Clearly the above Lemmata 25, 26, 28 hold also for U . Hence we can state:

▶ Lemma 30. Lemmata 25, 26, and 28 hold by replacing UGoI by U .

Finally, we have:

▶ Lemma 31. Let σ be a term where all its n variables occur exactly twice. Then

UGoI(σ[(β1, β1), . . . , (βn, βn)], σ) ⇐⇒ U(σ[(β1, β1), . . . , (βn, βn)], σ)

where all the βi’s are fresh, but some of them can be equal.

Now we are ready to prove the main Theorem 17. Namely, we can proceed as follows.

6.1 GoI-unification =⇒ Unification
Assume σ, τ do not share common variables and UGoI(σ, τ). Then, by Lemma 25, UGoI(σ →
τ, α → α), for α fresh variable. Now we repeatedly apply Lemmata 26 or 28 in the (⇒)-
direction, until neither is applicable anymore. This procedure is guaranteed to terminate,
because the complexity of the pair of terms to GoI-unify decreases at each step, according to
the following definition of complexity measure:

▶ Definition 32. Let σ be a term where all its n variables occur exactly twice, and let
σ[(τ1, ρ1), . . . , (τn, ρn)] be such that Var(σ[(τ1, ρ1), . . . , (τn, ρn)]) ∩ Var(σ) = ∅. We define
the complexity of the pair of terms (σ[(τ1, ρ1), . . . , (τn, ρn)], σ) as the pair (mt, mv), where

mt is the sum of the complexities of the terms τ1, . . . , τn, ρ1, . . . , ρn,
mv is the number of variables appearing in (τ1, ρ1), . . . , (τn, ρn).

Now notice that the application of Lemmata 26 and 28 in the (⇒)-direction decreases
the complexity of the pair of terms.
Hence, by repeatedly applying these lemmata, we reach a pair of the shape
(σ[(β1, β1), . . . , (βn, βn)], σ), where σ has n variables and all the βi’s are fresh (some
of them can possibly coincide). Therefore Lemma 31 applies, and we finally get
U(σ[(β1, β1), . . . , (βn, βn)], σ). At this point Lemmata 26 and 28 can be applied to U in the
reverse direction, until we reach U(σ → τ, α → α) (with α fresh), which in turn is equivalent
to U(σ, τ). This completes the proof.

6.2 Unification ⇒ GoI-unification
In order to show the converse, just observe that Lemmata 25, 26, 28 hold also for Martelli-
Montanari’s unification algorithm U , and apply the steps above, exchanging the role of UGoI

with U , starting from U(σ, τ).

7 Generalizations

Here we show how to remove all the restrictions on terms that we have considered up to now.
This is achieved by providing suitable embeddings of terms including constants or/and hapax
variables into the set of terms T −

Σ , and by showing how the case of terms with common
variables can be reduced to the case of terms which do not share variables.

FSTTCS 2024

26:12 Two Views on Unification: Terms as Strategies

7.1 Constants and Hapax Variables
Terms with constants can be easily embedded in the set of terms without constants and
hapax variables, in such a way that the unification problem does not change. Namely, for
any 0-ary constructor f i

0, we introduce a fresh binary constructor f ik
2 and a fresh variable αi,

and we substitute f i
0 by f ik

2 (αi, αi).
Once constants have been eliminated via the simple encoding above, we can address the

issue of variables which occur only once, i.e. hapax variables. In order to extend Definition 16
to include terms with hapax variables, we can simply give the following definition.

▶ Definition 33. Let σ, τ be terms, possibly including hapax variables. Then σ and τ GoI-
unify if there exists a substitution U such that U(σ) and U(τ) do not contain hapax variables
and are GoI-unifiable.

The above definition, however, is highly non-effective. To achieve effectiveness we can go
in the opposite direction and embed the two terms in larger terms with no hapax variables
as follows:

▶ Definition 34 (GoI-unification with hapax variables). Let σ[α1, . . . , αn], τ [β1, . . . , βm] ∈ TΣ
be terms where α1, . . . , αn and β1, . . . , βm are the hapax variables in σ and τ respectively.
Pick a fresh 1 + 2n + 2m constructor, say fk

1+2n+2m, then σ and τ GoI-unify if the terms

fk
1+2n+2m(σ[α1, . . . , αn], α1, . . . , αn, α1, . . . , αn, β1, . . . , βm, β1, . . . , βm)

and

fk
1+2n+2m(τ [β1, . . . , βm], α1, . . . , αn, α1, . . . , αn, β1, . . . , βm, β1, . . . , βm)

GoI-unify.

The intuition behind the above definition is immediate. We have to duplicate variables in
both terms because the set of hapax variables are disjoint and possibly of different cardinality.
Of course we can give more involved definitions which reduce the number of extra occurrence
pairs to consider, but we do not pursue this issue further. Using Definition 34 we can give
the appropriate extensions of Theorem 17, and its consequences, also for terms with hapax
variables.

7.2 Unifying Terms with Common Variables
Up to here we have assumed that terms to unify do not share common variables. The reason
for this is that, given a term σ, the binary relation R(σ) does not keep track of the name of
the variable, which basically plays the role of the place holder for the tail-end of the path.
For instance, applying directly Definition 16 to R((α⊸ α)⊸ α⊸ α) and R(α⊸ α) would
yield success. But clearly the two terms (α⊸ α)⊸ α⊸ α and α⊸ α do not unify, if the
name of the variable in the two terms has to be taken seriously. Now, we show how we can
remove the assumption that the terms to unify do not share variables. We have essentially
already solved the problem in Section 6. Namely, if we want to GoI-unify σ and τ , which
have variables in common, then we can GoI-unify the new terms fk

2 (σ, τ) and fk
2 (α, α), where

α is fresh, and fk
2 is a new binary constructor. Hence we give the following definition:

▶ Definition 35. Let σ, τ ∈ TΣ, let α be a fresh variable, and let fk
2 be a new binary

constructor. Then σ and τ GoI-unify if and only if fk
2 (σ, τ) and fk

2 (α, α) GoI-unify.

F. Honsell, M. Lenisa, and I. Scagnetto 26:13

8 Conclusion and Final Remarks

In this paper we provide an alternative criterion for checking that two terms unify in
terms of Girard’s GoI. It can indeed be seen as the GoI model of unification. The new
definition amounts to carrying out successful GoI-execution sequences over the terms under
consideration. It is inspired by [19], where an explanation, in terms of resolution of principal
types, is given of the notion of linear application between purely linear λ-terms, in the line of
the game model in [1]. In a sense, this paper elaborates further on the close relation between
the two main logic-derived paradigms of computation, namely cut-elimination and resolution.

The following remarks are in order.

Recovering substitutions from occ-substitutions. Considering all possible GoI-execution
sequences, we can derive unifiers thereby providing an analogue of Proposition 11. Namely
we conjecture the following:

▶ Conjecture 36. Let σ, τ ∈ TΣ be terms, and suppose UGoI(σ, τ). Let Γ⟨u[α],v[α]⟩ denote
a successful GoI-execution sequence for a pair of variable occurrences ⟨u[α], v[α]⟩, and let
MΓ⟨u[α],v[α]⟩

⟨u[α],v[α]⟩ be the overall occ-substitution generated along Γ⟨u[α],v[α]⟩, simply denoted by
MΓ⟨u[α],v[α]⟩ in the sequel. Define the substitution

UGoI(α) =
{

T ({MΓ⟨u[α],v[α]⟩(α) | ⟨u[α], v[α]⟩ ∈ R(σ)}) if α ∈ σ

T ({MΓ⟨u[α],v[α]⟩(α) | ⟨u[α], v[α]⟩ ∈ R(τ)}) if α ∈ τ ,

then UGoI(σ) = UGoI(τ).

Moreover, we further conjecture that, if throughout the GoI-execution sequences of Lemma 18
the most general occ-substitutions are always picked, then UGoI is the m.g.u. of σ and τ .

We only provide the intuition behind the above statement. If σ and τ GoI-unify, then for
all occurrence pairs ⟨u[α], v[α]⟩ ∈ R(σ) and GoI sequences Γ⟨u[α],v[α]⟩ we have, by Lemma 18,
that there are occurrences in a substitution instance of τ which match the occurrence
MΓ⟨u[α],v[α]⟩(u[α]). For the definition in Proposition 36 to be well-defined we need to know
that the set {MΓ⟨u[α],v[α]⟩(α) | ⟨u[α], v[α]⟩ ∈ R(σ)} consists of compatible occurrences, so
that Proposition 6 can apply. This is not immediate, but is should ultimately follow from
the fact that the substitutions arise from pairs in R(τ) which in turn are compatible, using
a maximal execution path which passes through all the occurrence pairs of the variables
involved. Finally, the fact that one has chosen all possible execution sequences Γ⟨u[α],v[α]⟩ for
each occurrence pair ensures that, in applying Proposition 6, no extra new variable in Z is
necessary.

Comparison between unification and GoI-unification. GoI-unification is more a criterion
rather than an algorithm, although it permits to synthesize the unifier, when it exists, as
shown above. Usual unification requires a repeated deep substitution of terms for variables,
while GoI unification only requires pattern matching along GoI execution sequences. Moreover
not all possible GoI execution sequences need to be computed to check that unification
achieves. If we were to use Definition 16 for checking unification rather than ordinary
unification, termination would be more difficult to deal with. Termination is easily proved
for standard unification by induction on syntax, while termination of GoI-unification would
require to inspect all the possible finitely many paths along the occurrence terms, or a
maximising path which uses all possible occurrence pairs for the variables involved.

FSTTCS 2024

26:14 Two Views on Unification: Terms as Strategies

Resolution. In [18], only GoI linear application, between purely linear binary types, was
discussed in terms of resolution on terms formed using a single binary constructor, namely
⊸. Clearly the definitions in this paper can be easily extended to encompass resolution in
full generality.

Duplication. We can extend this paper by dealing also with other meta-operations on
terms besides substitution, namely replication of subterms as arise in Linear Logic. This
would amount to generalizing the language of occurrences in the line of [9, 18, 11]. Giving a
top-down account of replication is rather complex, in that a unification-duplication algorithm
needs to be defined (see [11]). On the other hand, a bottom-up approach comes naturally
following the literature on GoI, as Girard has shown, see e.g. [13, 1].

Invariants. In [1] only resolutions on copy-cat strategies, i.e. partial involutions, were
considered, which in our setting amount to terms where each variable occurs exactly twice.
On the other hand, in this paper we open up the possibility of using arbitrary terms, i.e.
non-deterministic strategies. It would be worthwhile to study the λ-models which arise using
resolution on such strategies to model β-reduction or, equivalently, the invariants of λ-terms
that such strategies can express.

References
1 Samson Abramsky. A structural approach to reversible computation. Theoretical Computer

Science, 347(3):441–464, 2005. doi:10.1016/j.tcs.2005.07.002.
2 Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. Geometry of Interaction and linear

combinatory algebras. Mathematical Structures in Computer Science, 12(5):625–665, 2002.
doi:10.1017/S0960129502003730.

3 Samson Abramsky and Marina Lenisa. Linear realizability and full completeness for typed
lambda-calculi. Annals of Pure and Applied Logic, 134(2):122–168, 2005. doi:10.1016/j.
apal.2004.08.003.

4 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The Machinery of Interaction. In
Proceedings of the 22nd International Symposium on Principles and Practice of Declarative
Programming, PPDP ’20, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3414080.3414108.

5 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. Multi types and reasonable space.
Proc. ACM Program. Lang., 6(ICFP), August 2022. doi:10.1145/3547650.

6 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. Reasonable Space for the λ-
Calculus, Logarithmically. In Proceedings of the 37th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’22, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3531130.3533362.

7 Marc Bagnol. On the Resolution Semiring. Theses, Aix-Marseille Universite, December 2014.
URL: https://theses.hal.science/tel-01215334.

8 Patrick Baillot and Marco Pedicini. Elementary complexity and geometry of interaction. Fun-
damenta Informaticae, 45(1-2):1–31, 2001. URL: http://content.iospress.com/articles/
fundamenta-informaticae/fi45-1-2-02.

9 Alberto Ciaffaglione, Pietro Di Gianantonio, Furio Honsell, Marina Lenisa, Ivan Scagnetto,
et al. λ!-calculus, Intersection Types, and Involutions. In Leibniz International Proceedings in
Informatics, LIPIcs, volume 131. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl
Publishing, 2019.

10 Alberto Ciaffaglione, Furio Honsell, Marina Lenisa, Ivan Scagnetto, et al. The involutions-as-
principal types/application-as-unification analogy. EPiC Series in Computing, 57:254–270,
2018. doi:10.29007/NTWG.

https://doi.org/10.1016/j.tcs.2005.07.002
https://doi.org/10.1017/S0960129502003730
https://doi.org/10.1016/j.apal.2004.08.003
https://doi.org/10.1016/j.apal.2004.08.003
https://doi.org/10.1145/3414080.3414108
https://doi.org/10.1145/3547650
https://doi.org/10.1145/3531130.3533362
https://theses.hal.science/tel-01215334
http://content.iospress.com/articles/fundamenta-informaticae/fi45-1-2-02
http://content.iospress.com/articles/fundamenta-informaticae/fi45-1-2-02
https://doi.org/10.29007/NTWG

F. Honsell, M. Lenisa, and I. Scagnetto 26:15

11 Pietro Di Gianantonio and Marina Lenisa. Principal Types as Lambda Nets. In Henning Basold,
Jesper Cockx, and Silvia Ghilezan, editors, 27th International Conference on Types for Proofs
and Programs (TYPES 2021), volume 239 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 5:1–5:23, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.TYPES.2021.5.

12 Boris Eng. An exegesis of transcendental syntax. Theses, Université Sorbonne Paris Nord,
June 2023. URL: https://hal.science/tel-04179276.

13 Jean-Yves Girard. Geometry of Interaction 1: Interpretation of System F. In R. Ferro,
C. Bonotto, S. Valentini, and A. Zanardo, editors, Logic Colloquium ’88, volume 127 of
Studies in Logic and the Foundations of Mathematics, pages 221–260. Elsevier, 1989. doi:
10.1016/S0049-237X(08)70271-4.

14 Jean-Yves Girard. Geometry of interaction 2: Deadlock-free algorithms. In Per Martin-Löf
and Grigori Mints, editors, COLOG-88, pages 76–93, Berlin, Heidelberg, 1990. Springer Berlin
Heidelberg.

15 Jean-Yves Girard. Geometry of Interaction III: accommodating the additives. London
Mathematical Society Lecture Note Series, pages 329–389, 1995.

16 Jean-Yves Girard. Transcendental syntax I: deterministic case. Mathematical Structures in
Computer Science, 27(5):827–849, 2017. doi:10.1017/S0960129515000407.

17 Furio Honsell. Talk delivered at IFIP W.G. 2.2 Bologna Meeting, 2023.
18 Furio Honsell, Marina Lenisa, and Ivan Scagnetto. Λ-Symsym: An Interactive Tool for

Playing with Involutions and Types. In Ugo de’Liguoro, Stefano Berardi, and Thorsten
Altenkirch, editors, 26th International Conference on Types for Proofs and Programs (TYPES
2020), volume 188 of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–
7:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.TYPES.2020.7.

19 Furio Honsell, Marina Lenisa, and Ivan Scagnetto. Principal Types as Partial Involutions,
2024. doi:10.48550/arXiv.2402.07230.

20 Alberto Martelli and Ugo Montanari. An Efficient Unification Algorithm. ACM Trans.
Program. Lang. Syst., 4(2):258–282, April 1982. doi:10.1145/357162.357169.

FSTTCS 2024

https://doi.org/10.4230/LIPIcs.TYPES.2021.5
https://hal.science/tel-04179276
https://doi.org/10.1016/S0049-237X(08)70271-4
https://doi.org/10.1016/S0049-237X(08)70271-4
https://doi.org/10.1017/S0960129515000407
https://doi.org/10.4230/LIPIcs.TYPES.2020.7
https://doi.org/10.4230/LIPIcs.TYPES.2020.7
https://doi.org/10.48550/arXiv.2402.07230
https://doi.org/10.1145/357162.357169

	1 Introduction
	2 Preliminaries
	3 The Top-down Perspective on Unification
	4 GoI-unification: the Bottom-up Perspective of Paths
	5 GoI-unification at Work
	6 Proof of the Main Theorem
	6.1 GoI-unification -3mu Unification
	6.2 Unification = = > GoI-unification

	7 Generalizations
	7.1 Constants and Hapax Variables
	7.2 Unifying Terms with Common Variables

	8 Conclusion and Final Remarks

