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Abstract
In the NP-hard Optimizing Phylogenetic Diversity with Dependencies (PDD) problem,
the input consists of a phylogenetic tree T over a set of taxa X, a food-web that describes the
prey-predator relationships in X, and integers k and D. The task is to find a set S of k species that
is viable in the food-web such that the subtree of T obtained by retaining only the vertices of S has
total edge weight at least D. Herein, viable means that for every predator taxon of S, the set S

contains at least one prey taxon.
We provide the first systematic analysis of PDD and its special case with star trees, s-PDD,

from a parameterized complexity perspective. For solution-size related parameters, we show that
PDD is fixed-parameter tractable (FPT) with respect to D and with respect to k plus the height
of the phylogenetic tree. Moreover, we consider structural parameterizations of the food-web. For
example, we show an FPT-algorithm for the parameter that measures the vertex deletion distance to
graphs where every connected component is a complete graph. Finally, we show that s-PDD admits
an FPT-algorithm for the treewidth of the food-web. This disproves, unless P = NP, a conjecture of
Faller et al. [Annals of Combinatorics, 2011] who conjectured that s-PDD is NP-hard even when
the food-web is a tree.
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1 Introduction

Human activity has greatly accelerated the rate at which biological species go extinct.
The conservation of biological diversity is thus one of mankind’s most urgent tasks. The
inherently limited amount of resources that one may devote to this task, however, necessitates
decisions on which conservation strategies to pursue. To support such decisions, one needs
to incorporate quantitative information on the possible impact and the success likelihood
of conservation strategies. In this context, one task is to compute an optimal conservation
strategy in light of this information.

To find a conservation strategy with the best positive impact, one would ideally aim to
maximize the functional diversity of the surviving taxa (species). However, measuring this
diversity is hard or impossible in many scenarios [18]. As a result, maximizing phylogenetic
diversity has become the standard, albeit imperfect, surrogate for maximizing functional
diversity [11, 13, 18]. Informally, phylogenetic diversity measures the evolutionary distance
of a set of taxa. In its most simple form, this measurement is based on an edge-weighted
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28:2 Parameterized Complexity of PD with Ecological Constraints

phylogenetic tree T of the whole set of taxa X, and the phylogenetic diversity of a subset
of taxa S is the sum of the weights of the edges of the subtree of T obtained by retaining
only the taxa of S. Assuming equal protection costs for all taxa, the task is to find
a set S of at most k taxa that achieves maximal phylogenetic diversity. This problem,
called Maximize Phylogenetic Diversity [9], can be solved very efficiently by a greedy
algorithm [9, 19, 23, 27].

Computing an optimal conservation strategy becomes much more difficult, however, when
the success likelihood of a strategy is included in the model. One way to achieve this is to
add concrete survival probabilities for protected taxa, leading in its most general form to
the NP-hard Generalized Noah’s Ark Problem [12, 16]. This problem formulation,
however, still has a central drawback: It ignores that the survival of some taxa may also
depend on the survival of other taxa. This aspect was first considered by Moulton et al. [21]
in the Optimizing PD with Dependencies (PDD) problem. Here, the input additionally
contains a directed acyclic graph F with vertex set X where an arc uv is present if the
existence of taxa u provides all the necessary foundations for the existence of taxon v. In
other words, F models ecological dependencies between taxa. Now, a taxon v may survive
only if (i) it does not depend on other taxa at all, that is, it has no incoming arcs, or
(ii) at least one taxon u survives such that F contains the arc uv. The most-wide spread
interpretation of such ecological dependency networks are food-webs where the arc uv means
that taxon v feeds on taxon u.1 A subset of taxa X where every vertex fulfills (i) or (ii) is
called viable. The task in PDD is to select a viable set of k taxa that achieves a maximal
phylogenetic diversity. In this work, we study PDD from an algorithmic point of view.

Moulton et al. [21] showed that PDD can be solved by the greedy algorithm if the
objective of maximizing phylogenetic diversity agrees with the viability constraint in a precise
technical sense. Later, PDD was conjectured to be NP-hard [26]. This conjecture was
confirmed by Faller et al. [10], who showed that PDD is NP-hard even if the food-web F is
a tree. Further, Faller et al. [10] considered s-PDD, the special case where the phylogenetic
tree is restricted to be a star, and showed that s-PDD is NP-hard even for food-webs which
have a bipartite graph as underlying graph. Polynomial-time algorithms were provided for
very restricted special cases, for example for PDD when the food-web is a directed tree [10].
Finally, for food-webs with constant depth, PDD was shown to admit a constant-factor
approximation algorithm [8].

Our Contribution. As PDD is NP-hard even on very restricted instances [10], we turn to
parameterized complexity in order to overcome this intractability. In particular, we aim to
identify problem-specific parameters κ such that PDD can be solved in f(κ) · |I|O(1) time
(these are called FPT-algorithms) or to show that such algorithms are unlikely, by showing
W[1]-hardness for the parameter κ. Here, we consider the most natural parameters related
to the solution, such as the solution size k and the threshold of diversity D, and parameters
that describe the structure of the input food-web F . We formally consider the decision
problem, where we ask for the existence of a viable solution with diversity at least D, but
our algorithms actually solve the optimization problem as well.

Our most important results are the following; Table 1 gives an overview. In Theorem 3.4,
we prove that PDD is FPT when parameterized with the solution size k plus the height of
the phylogenetic tree T . This also implies that PDD is FPT with respect to D, the diversity
threshold. We also consider the dual parameter D, that is, the amount of diversity that is
lost from T and show that PDD is W[1]-hard with respect to D.

1 We remark that previous works [21, 10] consider a reversed interpretation of the arcs. We define the
order such that a source of the network also corresponds to a source of the ecosystem.
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Table 1 Parameterized complexity results for PDD and s-PDD. Here, D.t. τ stands for Distance
to τ – the number of vertices that need to be removed to obtain a graph from graph class τ .

Parameter s-PDD PDD
Budget k FPT Thm. 3.2 XP (FPT is open) Obs. 3.1
Diversity D FPT Thm. 4.1 FPT Thm. 4.1
Species-loss k W[1]-hard, XP Prop. 4.2, Obs. 3.1 W[1]-hard, XP Prop. 4.2, Obs. 3.1
Diversity-loss D W[1]-hard, XP Prop. 4.2, Obs. 3.1 W[1]-hard, XP Prop. 4.2, Obs. 3.1
D.t. Cluster FPT Thm. 5.1 NP-h for 0 Thm. 5.3
D.t. Co-Cluster FPT Thm. 5.5 FPT Thm. 5.5
Treewidth twF FPT Thm. 5.6 NP-h for twF = 1 [10]

We then consider the structure of the food-web. In particular, we consider the special
case that each connected component of the food-web F is a complete digraph. As we will
show, this case is structurally equivalent to the case that each connected component of F is
a star with one source vertex. Thus, this case describes a particularly simple dependency
structure, where taxa are either completely independent or have a common source. We
show that PDD is NP-hard in this special case while s-PDD has an FPT-algorithm when
parameterized by the vertex deletion distance to this special case. Our results thus yield
structured classes of food-webs where the complexity of s-PDD and PDD strongly differ.
Finally, we show that s-PDD is FPT with respect to the treewidth of the food-web and
therefore can be solved in polynomial time if the food-web is a tree (Theorem 5.6). Our
result disproves a conjecture of Faller et al. [10, Conjecture 4.2] that s-PDD is NP-hard even
when the food-web is a tree (unless P = NP). Again, this result shows that s-PDD can be
substantially easier than PDD on some structured classes of food-webs.

Structure of the Paper. In Section 2, we formally define Optimizing PD with Depen-
dencies, give an overview of previous results and our contribution, and prove some simple
initial results. In Section 3, we study s-PDD and PDD with respect to k, the solution size.
In Section 4, we show that PDD is FPT with respect to the desired diversity but W[1]-hard
for the acceptable loss of diversity. In Section 5, we consider parameterization by structural
parameters of the food-web. Finally, in Section 6, we discuss future research ideas. The
proofs of theorems, lemmas, and observations marked with (⋆) are deferred to a full version
of this work.

2 Preliminaries

2.1 Definitions

For a positive integer a, by [a] we denote the set {1, 2, . . . , a}, and by [a]0 the set {0} ∪ [a].
We generalize functions f : A → B, where B is a family of sets, to handle subsets A′ ⊆ A of
the domain by defining f(A′) :=

⋃
a∈A′ f(a).

For any graph G, we write V (G) and E(G), respectively, to denote the set of vertices
and edges of G. We write {u, v} for an undirected edge between u and v. For a directed
edge from u to v, we write uv or (u, v) to increase readability. For a vertex set V ′ ⊆ V (G),
we let G[V ′] := (V ′, {e ∈ E(G) | both endpoints of e are in V ′}) denote the subgraph of G

induced by V ′. Moreover, with G − V ′ := G[V \ V ′] we denote the graph obtained from G

by removing V ′ and its incident edges.

FSTTCS 2024
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Phylogenetic Trees and Phylogenetic Diversity. A tree T = (V, E) is a directed graph
in which the root is the only vertex with an in-degree of zero, each other vertex has an
in-degree of one. The root is denoted with ρ. The leaves of a tree are the vertices which
have an out-degree of zero. We refer to the non-leaf vertices of a tree as internal vertices. A
tree is a star if the root is the only internal vertex and all other vertices are leaves. For a
given set X, a phylogenetic X-tree T = (V, E, ω) is a tree T = (V, E) with an edge-weight
function ω : E → N>0 and a bijective labeling of the leaves with elements from X where all
non-leaves in T have out-degree at least two. We write maxω to denote the biggest edge
weight in T . The set X is a set of taxa (species). Because of the bijective labeling, we
interchangeably use the words taxon and leaf. In biological applications, the set X is a set
of taxa, the internal vertices of T correspond to biological ancestors of these taxa and ω(e)
describes the phylogenetic distance between the endpoints of e, as these endpoints correspond
to distinct (possibly extinct) taxa, we may assume this distance is greater than zero.

For a directed edge uv ∈ E, we say u is the parent of v and v is a child of u. If there is a
directed path from u to v in T (including when u = v), we say that u is an ancestor of v

and v is a descendant of u. The sets of ancestors and descendants of v are denoted by anc(v)
and desc(v), respectively. The set of descendants of v which are in X are offspring off(v) of
a vertex v. For an edge e = uv ∈ E, we denote off(e) = off(v).

For a tree T = (V, E) and a vertex set V ′ ⊆ V , the spanning tree of V ′ is denoted
by T ⟨V ′⟩. The subtree of T rooted at v is T ⟨{v} ∪ off(v)⟩ and denoted by Tv, for some
vertex v ∈ V . Given a set of taxa A ⊆ X, let ET (A) denote the set of edges e ∈ E with
off(e) ∩ A ̸= ∅. The phylogenetic diversity PDT (A) of A is defined by

PDT (A) :=
∑

e∈ET (A)

ω(e). (1)

In other words, the phylogenetic diversity PDT (A) of a set A of taxa is the sum of the
weights of edges which have offspring in A.

Food-Webs. For a set of taxa X, a food-web F = (X, E) on X is a directed acyclic graph.
If xy is an edge of E then x is prey of y and y is a predator of x. The set of prey and
predators of x is denoted with N<(x) and N>(x), respectively. A taxon x with an empty set
of prey is a source and sources(F) denotes the set of sources in the food-web F . For a taxon
x ∈ X we define X≤x to be the set of taxa X which can reach x in F . Analogously, X≥x is
the set of taxa which x can reach in F .

For a given food-web F and a set Z ⊆ X of taxa, a set of taxa A ⊆ Z is Z-viable
if sources(F [A]) ⊆ sources(F [Z]). A set of taxa A ⊆ X is viable if A is X-viable. In other
words, a set A ⊆ Z is Z-viable or viable if each source in F [A] is also a source in F [Z] or
in F , respectively.

Problem Definitions and Parameterizations. Our main problem is defined as follows.

Optimizing PD with Dependencies (PDD)
Input: A phylogenetic X-tree T , a food-web F on X, and integers k and D.
Question: Is there a viable set S ⊆ X such that |S| ≤ k and PDT (S) ≥ D?

Additionally in Optimizing PD in Vertex-Weighted Food-Webs (s-PDD) we
consider the special case of PDD in which the phylogenetic X-tree T is a star. Throughout
the paper, we adopt the convention that n is the number of taxa |X| and we let m denote
the number of edges in the food-web |E(F)|. Observe that T has O(n) edges.
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For an instance I = (T , F , k, D) of PDD, we define D := PDT (X)−D =
∑

e∈E ω(e)−D.
Informally, D is the acceptable loss of diversity: If we save a set of taxa A ⊆ X with
PDT (A) ≥ D, then the total amount of diversity we lose from T is at most D. Similarly, we
define k := |X|−k. That is, k is the minimum number of species that need to become extinct.

Parameterized Complexity. Throughout this paper, we consider a number of parameteriza-
tions of PDD and s-PDD. For a detailed introduction to parameterized complexity refer to
the standard monographs [5, 7]; we only give a brief overview here.

A parameterization of a problem Π associates with each input instance I of Π the value of
a specific parameter κ. A parameterized problem Π is fixed-parameter tractable (FPT) with
respect to some parameter κ if there exists an algorithm solving every instance (I, κ) of Π in
time f(κ) · |I|O(1). A parameterized problem Π is slice-wise polynomial (XP) with respect to
some parameter κ if there exists an algorithm solving every instance (I, κ) of Π in time |I|f(κ).
Here, in both cases, f is some computable function only depending on κ. Parameterized
problems that are W[1]-hard are believed not to be FPT. We use the O∗-notation which
omits factors polynomial in the input size.

Color Coding. For an in-depth treatment of color coding, we refer the reader to [5, Chapter 5]
and [1]. Here, we give some definitions which we use throughout the paper.

For integers n and k, an (n, k)-perfect hash family H is a family of functions f : [n] → [k]
such that for every subset Z of [n] of size k, some f ∈ H exists which is injective when restricted
to Z. For any integers n, k ≥ 1 an (n, k)-perfect hash family which contains ekkO(log k) · log n

functions can be constructed in time ekkO(log k) · n log n [22, 5].

2.2 Preliminary Observations
We start with some observations and reduction rules which we use throughout the paper.

▶ Observation 2.1. Let F be a food-web. A set A ⊆ X is viable if and only if there are
edges EA ⊆ E(F) such that every connected component in the graph (A, EA) is a tree with
root in sources(F).

Proof. If A is viable, then sources(F [A]) is a subset of sources(F). It follows that for each
taxon x ∈ A, either x is a source in F or A contains a prey y of x. Conversely, if such a
graph (A, EA) exists then explicitly the sources of F [A] are a subset of sources(F). ◀

▶ Observation 2.2. Let I = (T , F , k, D) be a yes-instance of PDD. Then k > |X| or a
viable set S ⊆ X with PDT (S) ≥ D exists which has size exactly k.

Proof. Let S be a solution for I. If S has a size of k, nothing remains to be shown.
Otherwise, observe that S ∪ {x} is viable and PDT (S ∪ {x}) ≥ PDT (S) for each taxon x ∈
(N>(S) ∪ sources(F)) \ S. Because (N>(S) ∪ sources(F)) \ S is non-empty unless S = X,
we conclude that S ∪ {x} is a solution and iteratively, there is a solution of size k. ◀

▶ Observation 2.3. Let I = (T , F , k, D) be an instance of PDD. In O(|I|2) time one
can compute an equivalent instance I ′ := (T ′, F ′, k′, D′) of PDD with only one source
in F ′, k′ := k + 1 and D′ ∈ O(D).

FSTTCS 2024



28:6 Parameterized Complexity of PD with Ecological Constraints

Proof. Let I = (T , F , k, D) be an instance of PDD. Add a new taxon ⋆ to F and add edges
from ⋆ to each taxon x of sources(F) to obtain F ′. To obtain T ′, add ⋆ as a child to the root
ρ of T and set ω′(ρ⋆) = D + 1 and ω′(e) = ω(e) for each e ∈ E(T ). Finally, set k′ := k + 1
and D′ := 2 · D + 1 and let I ′ = (T ′, F ′, k + 1, 2 · D + 1). All steps can be performed in
O(|I|2) time.

The equivalence of I and I ′ follows from the observation that S ⊆ X is a solution for I
if and only if S ∪ {⋆} is a solution for I ′. ◀

▶ Reduction Rule 1. Let R ⊆ X be the set of taxa which have a distance of at least k to
every source. Then, set F ′ := F − R and T ′ := T − R.
▶ Lemma 2.4. Reduction Rule 1 is correct and can be applied exhaustively in O(n + m) time.
Proof. By definition, each viable set of taxa which has a size of k is disjoint from R. Therefore,
the set R is disjoint from every solution. The set R can be found in O(n + m) time by
breadth-first search. This is also the total running time for the rule, since one application of
the rule is exhaustive. ◀

After Reduction Rule 1 has been applied exhaustively, for any taxon x ∈ X there is
a viable set Sx of size at most k with x ∈ Sx. If some edge e has weight at least D,
then for each taxon x which is an offspring of e, the set Sx is viable, has size at most k,
and PDT (Sx) ≥ PDT ({x}) ≥ D. So, Sx is a solution. This implies the correctness of the
following rule.
▶ Reduction Rule 2. Apply Reduction Rule 1 exhaustively. If maxω ≥ D return yes.
We can also remove some edges which are not important for guaranteeing viability.
▶ Reduction Rule 3. Given an instance I = (T , F , k, D) of PDD with vw ∈ E(F). If v is
not a source and uw ∈ E(F) for each u ∈ N<(v), then remove vw from E(F).
▶ Lemma 2.5. Reduction Rule 3 is correct and can be applied exhaustively in O(n3) time.
Proof. First, observe that if I ′ is a yes-instance, then so is I because every set that is
viable in I ′ is viable in I. Conversely, let I be a yes-instance of PDD with solution S. If
v ̸∈ S, then S is also a solution for instance I ′. If v ∈ S then because S is viable in F , some
vertex u of N<(v) is in S. Consequently, S is also viable in F − vw, as w still could be fed
by u (if w ∈ S).

The running time can be seen as follows. For each pair of taxa v and w, we can
check N<(v) ⊆ N<(w) in O(n) time. Consequently, an exhaustive application of Reduc-
tion Rule 3 takes O(n3) time. ◀

3 Parameterization by the Solution Size

In this section, we consider parameterization by the size of the solution k. First, we observe
that PDD is XP when parameterized by k and k. In Section 3.1 we show that s-PDD is
FPT with respect to k. We generalize this result in Section 3.2 by showing that PDD is
FPT when parameterized by k + heightT . Recall that k := n − k.
▶ Observation 3.1. PDD can be solved in O(nk+2) and O(nk+2) time.
Proof. One may use the following brute-force algorithm: Iterate over the sets S of X of size
k. Return yes if there is a viable set S with PDT (S) ≥ D. Return no if there is no such set.

The correctness of the algorithm follows from Observation 2.2. Checking whether a set S

is viable and has diversity of at least D can be done O(n2) time. The running time bound
now follows because there are

(
n
k

)
=

(
n

n−k

)
=

(
n
k

)
subsets of X of size k. ◀
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3.1 s-PDD
We show that s-PDD is FPT when parameterized by the size of the solution k.

▶ Theorem 3.2 (⋆). s-PDD can be solved in O(23.03k+o(k) · nm · log n) time.

The idea behind the algorithm is to color the taxa and require that a solution should
contain at most one taxon of each color. Formally, we consider the following auxiliary
problem. In k-colored Optimizing PD in Vertex-Weighted Food-Webs (k-c-s-
PDD), alongside the usual input (T , F , k, D) of s-PDD, we are given a coloring c : X → [k]
which assigns each taxon a color c(x) ∈ [k]. We ask whether there is a viable set S ⊆ X of
taxa such that PDT (S) ≥ D, and c(S) is colorful. A set c(S) is colorful if c is injective on S.
Observe that each colorful set S satisfies |S| ≤ k. We first show how to solve k-c-s-PDD via
dynamic programming. Then, applying the color-coding toolbox allows us to extend this
result to the uncolored version.

▶ Lemma 3.3. k-c-s-PDD can be solved in O(3k · n · m) time.

Proof.
Table definition. Let I = (T , F , k, D, c) be an instance of k-c-s-PDD and by Observa-
tion 2.3 we assume that ⋆ ∈ X is the only source in F .

Given x ∈ X, a set of colors C ⊆ [k], and a set of taxa X ′ ⊆ X, we say that a
set S ⊆ X ′ ⊆ X is (C, X ′)-feasible if (i) c(S) = C, (ii) c(S) is colorful, and (iii) S is X ′-viable.
We define a dynamic programming algorithm with tables DP and DP′. For x ∈ X, C ⊆ [k]
we want entry DP[x, C] to store the maximum PDT (S) of (C, X≥x)-feasible sets S. Recall
X≥x is the set of taxa which x can reach in F . If no (C, X≥x)-feasible set S ⊆ X ′ exists, we
want DP[x, C] to store −∞. In other words, in DP[x, C] we store the biggest phylogenetic
diversity of a set S which is X≥x-viable and c bijectively maps S to C.

For any taxon x, let y1, . . . , yq be an arbitrary but fixed order of N>(x). In the auxiliary
table DP′, we want entry DP′[x, p, C] for p ∈ [q], and C ⊆ [k] to store the maximum PDT (S)
of (C, X ′)-feasible sets S ⊆ X ′, where X ′ = {x} ∪ X≥y1 ∪ · · · ∪ X≥yp

. If no (C, X ′)-feasible
set S ⊆ X ′ exists, we want DP′[x, p, C] to store −∞.

Algorithm. As a base case for each x ∈ X and p ∈ [|N>(x)|] let DP[x, ∅] and DP[x, p, ∅]
store 0 and let DP[x, C] store −∞ if C is non-empty and c(x) ̸∈ C. For each x ∈ X

with N>(x) = ∅, we store ω(ρx) in DP[x, {c(x)}]. Recall that ρx is an edge because T is a
star.

Fix a taxon x ∈ X. For every Z ⊆ C \ {c(x)}, we set DP′[x, 1, {c(x)} ∪ Z] := DP[y1, Z].
To compute further values, once DP′[x, q, Z] for each q ∈ [p], and every Z ⊆ C is computed,
for Z ⊆ C \ {c(x)} we use the recurrence

DP′[x, p + 1, {c(x)} ∪ Z] := max
Z′⊆Z

DP′[x, p, {c(x)} ∪ Z \ Z ′] + DP[yp+1, Z ′]. (2)

Finally, we set DP[x, C] := DP′[x, q, C] for every C ⊆ [k].
We return yes if DP[⋆, C] stores at least d for some C ⊆ [k]. Otherwise, we return no.

Correctness. The base cases are correct. The tables are computed first for taxa further
away from the source and with increasing size of C. Assume that for a fixed taxon x

with predators y1, . . . , yq and a fixed p ∈ [q], the entries DP[x′, Z] and DP′[x, p′, Z] for
each x′ ∈ N>(x), for each p′ ∈ [p], and every Z ⊆ [k] store the desired value. Fix a set C ⊆ [k]
with c(x) ∈ C. We show that if DP′[x, p + 1, C] stores d then there is a (C, X ′)-feasible set

FSTTCS 2024



28:8 Parameterized Complexity of PD with Ecological Constraints

S ⊆ X ′ ∪ X≥yp+1 for X ′ := {x} ∪ X≥y1 ∪ · · · ∪ X≥yp with PDT (S) = d. Afterward, we show
that if S ⊆ X ′ ∪ X≥yp+1 with PDT (S) = d is a (C, X ′)-feasible set then DP′[x, p + 1, C]
stores at least d.

If DP′[x, p + 1, C] = d > 0 then by Recurrence (2), there is a set Z ⊆ C \ {c(x)} such that
DP′[x, p, C \Z] = dx and DP[yp+1, Z] = dy with d = dx +dy. Therefore, there is a (C \Z, X ′)-
feasible set Sx ⊆ X ′ with PDT (Sx) = dx and a (Z, X≥yp+1)-feasible set Sy ⊆ X≥yp+1

with PDT (Sy) = dy. Define S := Sx ∪ Sy and observe that PDT (S) = d. It remains to
show that S is a (C, X ′ ∪ X≥yp+1)-feasible set. First, observe that because C \ Z and Z are
disjoint, we conclude that c(S) is colorful. Then, c(S) = c(Sx)∪c(Sy) = C \Z ∪Z = C where
the first equation holds because c(S) is colorful. The taxa x and yp+1 are the only sources
in F [X≥x] and F [X≥yp+1 ], respectively. Therefore, x is in Sx and yp+1 is in Sy unless Sy is
empty. If Sy = ∅ then S = Sx and S is X ′ ∪X≥yp+1 -viable because S is X ′-viable. Otherwise,
if Sy is non-empty then because Sy is X≥yp+1-viable, we conclude sources(F [Sy]) = {yp+1}.
As x ∈ S and yp+1 ∈ N>(x) we conclude sources(F [S]) = {x} and so S is X ′ ∪X≥yp+1 -viable.
Therefore, S is a (C, X ′ ∪ X≥yp+1)-feasible set.

Conversely, let S ⊆ X ′ ∪ X≥yp+1 be a non-empty (C, X ′ ∪ X≥yp+1)-feasible set with
PDT (S) = d. Observe that X ′ and X≥yp+1 are not necessarily disjoint. We define Sy to be
the set of taxa of X≥yp+1 which are connected to yp+1 in F [X≥yp+1 ]. Further, define Z := c(Sy)
and define Sx := S \ Sy. As c(S) is colorful especially c(Sx) and c(Sy) are colorful. Thus,
Sy is a (Z, X≥yp+1)-feasible time. Further, c(Sx) = C \ c(Sy) = C \ Z. As sources(F [S]) =
sources(F [X ′ ∪ X≥yp+1 ]) = {x}, we conclude x ∈ S. Because F is a DAG, x is not in X≥yp+1

and so x is in Sx. Each vertex of S which can reach yp+1 in F [S] is in F≥yp+1 and subsequently
in Sy. Consequently, because S is X ′ ∪ X≥yp+1-viable we conclude sources(F [Sx]) = {x}.
Thus, Sx is (C\Z, X ′)-feasible. So, DP[yp+1, Z] = PDT (Sx) and DP′[x, p, C\Z] = PDT (Sy).
Hence, DP′[x, p + 1, C] stores at least PDT (S).

Running time. The base cases can be checked in O(k) time. As each c ∈ [k] in Recurrence (2)
can either be in Z ′, in {c(x)} ∪ Z \ Z ′ or in [k] \ ({c(x)} ∪ Z), all entries of the tables can be
computed in O(3k · n · m) time. ◀

We defer the details of the proof of Theorem 3.2 to the long version since this is essentially
standard application of color coding using a perfect hash family as defined in Section 2.1.

3.2 PDD on Trees with Bounded Height
Next, we generalize the result of the previous subsection and we show that PDD is FPT when
parameterized with the size of the solution k plus heightT , the height of the phylogenetic
tree. The algorithm uses color-coding, data reduction rules, and the enumeration of trees.

▶ Theorem 3.4. PDD can be solved in O∗(KK · 23.028K+o(K)) time where K := k · heightT .

To show Theorem 3.4, we use a subroutine for solving the following problem. We define
a pattern-tree TP = (VP , EP , cP ) to be a tree (VP , EP ) with a vertex-coloring cP : VP →
[k · heightT ]. Recall that T ⟨Y ⟩ is the spanning tree of the vertices in Y . In Optimizing
PD with Pattern-Dependencies (PDD-pattern), we are given alongside the usual
input (T , F , k, D) of PDD a pattern-tree TP = (VP , EP , cP ), and a vertex-coloring c :
V (T ) → [k · heightT ]. We ask whether there is a viable set S ⊆ X of taxa such that S has a
size of at most k, c(T ⟨S ∪ {ρ}⟩) is colorful, and T ⟨S ∪ {ρ}⟩ and TP are color-equal. That
is, there is an edge uv of T ⟨S ∪ {ρ}⟩ with c(u) = cu and c(v) = cv if and only if there is an
edge u′v′ of TP with c(u′) = cu and c(v′) = cv. Informally, given a pattern-tree we want that
it matches the colors of the spanning tree induced by the root and the solution.
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u′

v′

(1)
6 1 3 1 2

4 5 2 4 2 3

1 1

2 2

2

(2)
6 1 3

4 5 2

1 1

4 2 4 2 4

2

Figure 1 An example for Reduction Rule 6. (1) An instance of PDD-pattern (2) The instance
after an application of Reduction Rule 6 to the marked vertices. In both instances, the pattern-tree
is on the left and the phylogenetic tree is on the right.

Next we present reduction rules with which we can reduce the phylogenetic tree in an
instance of PDD-pattern to be a star which subsequently can be solved with Theorem 3.2.
Afterward, we show how to apply this knowledge to compute a solution for PDD.

▶ Reduction Rule 4. Let uv be an edge of T . If there is no edge u′v′ ∈ EP with cP (u′) = c(u)
and cP (v′) = c(v), then set T ′ := T − desc(v) and F ′ := F − off(v).

▶ Lemma 3.5. Reduction Rule 4 is correct and can be applied exhaustively in O(n3) time.

Proof. Assume S ⊆ X is a solution of the instance of PDD-pattern. As there is no edge
u′v′ ∈ EP with cP (u′) = c(u) and cP (v′) = c(v) we conclude that S ∩ desc(v) = ∅ and so the
reduction rule is safe.

The running time can be seen as follows. To check whether Reduction Rule 4 can be
applied, we need to iterate over both E(T ) and EP . Therefore, a single application can be
executed in O(n2) time. In each application of Reduction Rule 4 we remove at least one
vertex so that an exhaustive application can be computed in O(n3) time. ◀

▶ Reduction Rule 5. Let u′v′ be an edge of TP . For each vertex u ∈ V (T ) with c(u) = cP (u′)
such that u has no child v with c(v) = cP (v′), set T ′ := T − desc(v) and F ′ := F − off(v).

▶ Lemma 3.6. Reduction Rule 5 is correct and can be applied exhaustively in O(n3) time.

Proof. Let S be a solution for the instance of PDD-pattern. The spanning tree T ⟨S ∪{ρ}⟩
contains exactly one vertex w with color c(u). As c(w) = cP (u′) we conclude that w has a
child w′ and c(w′) = c(v′). Consequently, w ̸= u and S ∩ desc(u) = ∅.

As in Reduction Rule 4, we may apply the rule by iterating over the edges of T and TP .
Each application either removes at least one vertex or concludes that the reduction rule is
applied exhaustively. ◀

▶ Reduction Rule 6. Apply Reduction Rules 4 and 5 exhaustively. Let ρ be the root of T
and let ρP be the root of TP . Let v′ be a grand-child of ρP and let u′ be the parent of v′.
Then, do the following.
1. For each vertex u of T with c(u) = cP (u′) add edges ρv to T for every child v of u.
2. Set the weight of ρv to be ω(uv) if c(v) ̸= cP (v′) or ω(uv) + ω(ρu) if c(v) = cP (v′).
3. Add edges ρP w′ to TP for every child w′ of u′.
4. Set T ′

P := TP − u′ and T ′ := T − u.

Figure 1 depicts an application of Reduction Rule 6.

▶ Lemma 3.7. Reduction Rule 6 is correct and can be applied exhaustively in O(n3m) time.
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Proof. Assume that I is a yes-instance of PDD-pattern with solution S. Because T ⟨S ∪
{ρ}⟩ and TP are color-equal also T ′⟨S ∪ {ρ}⟩ and T ′

P are color-equal. Let u∗ and w1 be the
unique vertices in T ⟨S ∪ {ρ}⟩ with c(u∗) = cP (u′) and c(w1) = cP (v′). Let w2, . . . , wℓ be the
other children of u∗. As PDT ′(S) is the sum of the weights of the edges of T ′⟨S ∪ {ρ}⟩ we
conclude PDT ′(S) = PDT (S) − (ω(ρu∗) +

∑ℓ
i=1 ω(u∗wi)) +

∑ℓ
i=1 ω′(ρwi). Since ω′(ρw1) =

ω(ρu∗) + ω(u∗w1) and ω′(ρwi) = ω(u∗wi) for i ∈ [ℓ] \ {1}, we conclude that PDT ′(S) =
PDT (S) ≥ D. Therefore, S is a solution for I ′. The converse direction of the equivalence
can be shown analogously.

It remains to bound the running time. For a given grand-child v′ of ρP , one performs O(n)
color-checks and adds O(n) edges. As the reduction rule can be applied at most |TP | ∈
O(n) times, an exhaustive application takes O(n2) time. So, the predominant factor in the
running time is the exhaustive application of the other reduction rules. ◀

With these reduction rules, we can reduce the phylogenetic tree of a given instance of
PDD-pattern to only be a star and then solve PDD-pattern by applying Theorem 3.2.

▶ Lemma 3.8. PDD-pattern can be solved in O(3k · n · m + n3) time.

Proof. Let I = (T , F , k, D, TP = (VP , EP , cP ), c) be a given instance of PDD-pattern.
We use the following algorithm. If there is a vertex v ∈ VP and cP (v) ̸∈ c(V (T )) then return
no. If c(ρ) ̸= cP (ρP ) where ρ and ρP are the roots of T and TP respectively, return no.
Otherwise, apply Reduction Rule 6 exhaustively. Then, both TP and T are stars. Return
yes if and only if (T ′, F ′, k, D, c) is a yes-instance of k-c-s-PDD.

For the correctness, first observe that if TP contains a vertex v with cP (v) ̸∈ c(V (T )), or
if c(ρ) ̸= cP (ρP ), then I is a no-instance. For the remaining cases, the correctness follows
from Lemma 3.7 and Lemma 3.3.

The running time can be seen as follows. By Reduction Rule 6 can be applied exhaustively
in O(n2 · (n+m)) time. By Lemma 3.3, the overall running time thus is O(3k ·n ·m+n3). ◀

To prove Theorem 3.4 we reduce from PDD to PDD-pattern and apply Lemma 3.8.
For this, we use the fact that there are nn−2 labeled directed trees with n vertices [25] which
can be enumerated in O(nn−2) time [2]. To solve instance I of PDD, we will check each of
these trees as a pattern-tree for a given coloring of the phylogenetic tree. These colorings will
be defined with a perfect hash family as defined in Section 2.1. Recall that K = k · heightT .

Proof of Theorem 3.4.
Algorithm. Let I = (T , F , k, D) be an instance of PDD. Let the vertices of T
be v1, . . . , v|V (T )|. Iterate over i ∈ [min{K, |V (T )|}]. Compute a (|V (T )|, i)-perfect hash
family Hi. Compute the set Pi of labeled directed trees with i vertices.

For every TP = (VP , EP , cP ) ∈ Pi, proceed as follows. Assume that the labels of TP

are in [i]. For every f ∈ Hi, first construct the coloring cf such that cf (vj) = f(j) for
each vj ∈ V (T ). Then, solve instance ITP ,f := (T , F , k, D, TP , cf ) of PDD-pattern
using Lemma 3.8. Return yes if and only if ITP ,f is a yes-instance for some f ∈ Hi and
some TP ∈ Pi.

Correctness. Any solution of an instance ITP ,f of PDD-pattern clearly is a solution for I.
Conversely, we show that if S is a solution for I, then there are TP and f such that ITP ,f

is a yes-instance of PDD-pattern. So let S be a viable set of taxa with |S| ≤ k and
PDT (S) ≥ D. Let V ∗ ⊆ V (T ) be the set of vertices v that have offspring in S. It
follows |V ∗| ≤ heightT ·|S| ≤ K. Then, there is a hash function f ∈ HV ∗ mapping V ∗

bijectively to [|V ∗|]. Consequently, P|V ∗| contains a tree TP which is isomorphic to T [V ∗]
with labels cf . Hence, ITP ,f is a yes-instance of PDD-pattern.
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Running Time. For a fixed i ∈ [K], the set Hi contains eiiO(log i) · log n hash functions and
the set Pi contains O(ii−2) labeled trees. Both sets can be computed in O(ii−2 · n log n) time.

Each instance ITP ,f of PDD-pattern is constructed in O(n) time and can be solved
in O(3k · n3) time. Thus, the overall running time is O(K · eKKK−2+O(log K) · 3k · n3 log n),
which summarizes to O(KK · 21.443K+1.585k+o(K) · n3 log n). ◀

4 Parameterization by Desired Diversity and Accepted Diversity Loss

In this section, we first consider parameterization with the diversity threshold D. For this
parameter, we present an FPT algorithm for PDD. Afterward, we show that s-PDD is
intractable with respect to D, the acceptable loss of phylogenetic diversity. As the edge-
weights are integers, we conclude that we can return yes if k ≥ D or if the height of the
phylogenetic tree T is at least D, after Reduction Rule 1 has been applied exhaustively.
Otherwise, k + heightT ∈ O(D) and thus the FPT algorithm for k + heightT (Theorem 3.4)
directly gives an FPT algorithm for PDD in that case.

Here, we present another algorithm with a faster running time. To obtain this algorithm,
we subdivide edges of the phylogenetic tree according to their edge weights. We then use
color coding on the vertices of the subdivided tree. Let us remark that this technique is
closely related to an algorithm of Jones and Schestag [15] for another hard problem related
to diversity maximization.

▶ Theorem 4.1 (⋆). PDD can be solved in O(23.03(2D+k)+o(D) · nm + n2) time.

In some instances, the diversity threshold D may be very large. Then, however, the
acceptable loss of diversity D = PDT (X)−D could be small. Encouraged by this observation,
recently, several problems in maximizing phylogenetic diversity have been studied with respect
to the acceptable diversity loss [14, 15]. In this section, we show that, unfortunately, s-PDD
is already W [1]-hard with respect to D even if the edge weights are at most two.

To show this, we reduce from Red-Blue Non-Blocker. Here, the input is an undirected
bipartite graph G with vertex bipartition V = Vr ∪ Vb and an integer k. The question is
whether there is a set S ⊆ Vr of size at least k such that the neighborhood of Vr \ S is Vb.
Red-Blue Non-Blocker is W[1]-hard when parameterized by the solution size k [6].

▶ Proposition 4.2. s-PDD is W [1]-hard with respect to D, even if maxω = 2.

Proof.

Reduction. Let I := (G = (V = Vr ∪Vb, E), k) be an instance of Red-Blue Non-Blocker.
We construct an instance I ′ = (T , F , k′, D) of s-PDD as follows. Let T be a star with root
ρ ̸∈ V and leaves V . In T , an edge e = ρu has weight 1 if u ∈ Vr and otherwise ω(e) = 2, if
u ∈ Vb. Define a food-web F with vertices V and for each edge {u, v} ∈ E, and every tuple of
vertices u ∈ Vb, v ∈ Vr, add an edge uv to F . Finally, set k′ := |V |−k and D := 2·|Vb|+|Vr|−k,
or equivalently k = D = k.

Correctness. The reduction can be computed in polynomial time. We show that if I is a
yes-instance of Red-Blue Non-Blocker then I ′ is a yes-instance of PDD. Afterward,
we show the converse.

Assume that I is a yes-instance of Red-Blue Non-Blocker. Therefore, there is a
set S ⊆ Vr of size at least k such that NG(Vr\S) = Vb. (We assume |S| = k as NG(Vr\S) = Vb

still holds if we shrink S.) We define S′ := V \S and show that S′ is a solution for I ′. The size
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of S′ is |V \ S| = |V | − |S| = k′. Further, PDT (S) = 2 · |Vb| + |Vr \ S| = 2 · |Vb| + |Vr| − k = D.
By definition, the vertices in Vr are sources. Further, because S is a solution for I, each
vertex of Vb has a neighbor in Vr \ S. So, S′ is viable and I ′ is a yes-instance of s-PDD.

Conversely, let S′ ⊆ V be a solution for instance I ′ of s-PDD. Without loss of generality,
S′ contains r vertices from Vr and b vertices of Vb. Consequently, |V | − k ≥ |S′| = b + r

and 2 · |Vb| + |Vr| − k = D ≤ PDT (S′) = 2b + r. We conclude r ≤ |V | − k − b and
so 2b ≥ 2 · |Vb| + |Vr| − k − r ≥ 2 · |Vb| + |Vr| − k − (|V | − k − b) = |Vb| + b. Therefore, b = |Vb|
and Vb ⊆ S′. Further, r = |Vr| − k. We define S := Vr \ S′ and conclude |S| = |Vr| − r = k.
Because S′ is viable, each vertex in Vb has a neighbor in S′ \ Vb. Therefore, S is a solution
for the yes-instance I of Red-Blue Non-Blocker. ◀

5 Structural Parameters of the Food-Web

Next, we study how the structure of the food-web affects the complexity of s-PDD and
PDD. First, we consider parameterization with respect to the distance of the food-web to
a cluster graph, denoted cvd. We show that PDD is NP-hard even if the food-web is a
cluster graph but s-PDD is FPT when parameterized by cvd. Afterward, we show that
PDD is FPT with respect to the distance to co-cluster and s-PDD is FPT with respect to
the treewidth of the food-web, denoted by twF .

5.1 Distance to Cluster Graphs

In this subsection, we consider the special case that given an instance of PDD or s-PDD,
we need to remove few vertices from the undirected underlying graph of the food-web F to
obtain a cluster graph. Here, a graph is a cluster graph if every connected component is
a clique. We show that s-PDD is easy on graphs that are close to being a cluster graph.
More precisely, in Theorem 5.1, we show that s-PDD is FPT with respect to the distance
to cluster. Herein, for a graph G = (V, E) the distance to cluster cvd(G) is the smallest
number d such that there exists a set Y ⊆ V of size at most d such that G − Y is a cluster
graph. The FPT-algorithm shows in particular that s-PDD is tractable even on some very
dense classes of food-webs. Afterward, we show that PDD is NP-hard on cluster graphs.

The FPT-algorithm exploits the following fact: If F is acyclic and its underlying graph
is a cluster graph, then every clique in F has exactly one vertex v0 ∈ V (C) such that
v0 ∈ N<(v) for each v ∈ V (C) \ {v0}. After applying Reduction Rule 3 exhaustively to a
cluster graph, each connected component of the food-web is thus an out-star.

▶ Theorem 5.1 (⋆). s-PDD can be solved in O(6d · n2 · m · k2) time, when we are given a
set Y ⊆ X of size d such that F − Y is a cluster graph.

To prove Theorem 5.1, we first show how to solve the case where we want to save all taxa
in Y .

▶ Lemma 5.2. Given an instance I = (T , F , k, D) of s-PDD and a set Y ⊆ X of size d

such that F − Y is a cluster graph, we can compute whether there is a viable set S ∪ Y

with |S ∪ Y | ≤ k and PDT (S ∪ Y ) ≥ D in O(3d · n · k2) time.

Proof. We provide a dynamic programming algorithm. Let C1, . . . , Cc be the connected
components of F − Y and let x

(i)
1 , . . . , x

(i)
|Ci| be an order of Ci such that (x(i)

j1
, x

(i)
j2

) ∈ E(F)
for j1 < j2.
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Table definition. A set S ⊆ X \ Y of taxa is (ℓ, Z)-feasible, if |S| ≤ ℓ and S ∪ Z is viable.
The dynamic programming algorithm has tables DP and DPi for each i ∈ [c]. The entry
DP[i, ℓ, Z] for i ∈ [c], ℓ ∈ [k]0, and Z ⊆ Y stores the largest phylogenetic diversity PDT (S)
of an (ℓ, Z)-feasible set S ⊆ C1 ∪ · · · ∪ Ci and −∞ if no such set S exists.

The table entries DPi[j, b, ℓ, Z] additionally have a dimension b with b ∈ {0, 1}. For b = 0,
an entry DPi[j, b, ℓ, Z] with b ∈ {0, 1} stores the largest phylogenetic diversity PDT (S) of an
(ℓ, Z)-feasible set S ⊆ {x

(i)
1 , . . . , x

(i)
j }. For b = 1, additionally some vertex v

(i)
j′ with j′ < j

needs to be contained in S.

Algorithm. Iterate over the edges of F . For each edge uv ∈ E(F) with u, v ∈ Y , remove all
edges incoming at v, including uv, from E(F). After this removal, v is a new source.

We initialize the base cases of DPi by setting DPi[j, 0, 0, Z] := 0 for each i ∈ [c],
each j ∈ [|Ci|], and every Z ⊆ sources(F). Moreover, DPi[1, b, ℓ, Z] := ω(ρv

(i)
1 ) if ℓ ≥ 1

and Z ⊆ N>(v(i)
1 ) ∪ sources(F); and DPi[1, b, ℓ, Z] := −∞, otherwise.

To compute further values for j ∈ [|Ci| − 1], b ∈ {0, 1}, and ℓ ∈ [k] we use the recurrences

DPi[j + 1, b, ℓ, Z] = max{DPi[j, b, ℓ, Z], DPi[j, b′, ℓ − 1, Z \ N>(v(i)
j+1)] + ω(ρv

(i)
j+1)}, (3)

where b′ = 0 if there is an edge from a vertex in Y to x
(i)
j+1 and otherwise b′ = 1.

Finally, we set DP[1, ℓ, Z] := DP1[|C1|, 0, ℓ, Z] and compute further values with

DP[i + 1, ℓ, Z] = max
Z′⊆Z,ℓ′∈[ℓ]0

DP[i, ℓ′, Z ′] + DPi+1[|Ci+1|, 0, ℓ − ℓ′, Z \ Z ′]. (4)

There is a viable set S ∪ Y with |S ∪ Y | ≤ k and PDT (S ∪ Y ) ≥ D if and only
if DP[c, k − |Y |, Z] ≥ D − PDT (Y ).

Correctness. Assume that DP stores the intended values. Then, if DP[c, k − |Y |, Z] ≥
D − PDT (Y ), there is an (ℓ, Z)-feasible set S ⊆ X \ Y . First, this implies that S ∪ Y is
viable. Moreover, since S has size at most k − |Y |, we obtain |S ∪ Y | ≤ k. Finally, because T
is a star and S and Y are disjoint, PDT (S) ≥ D − PDT (Y ) implies PDT (S ∪ Y ) ≥ D. The
converse direction can be shown analogously.

It remains to show that DP and DPi store the right values. The base cases are cor-
rect. Towards the correctness of Recurrence (3), as an induction hypothesis, assume that
DPi[j, b, ℓ, Z] stores the desired value for a fixed j ∈ [|Ci| − 1], each i ∈ [c], b ∈ {0, 1},
ℓ ∈ [k]0 and every Z ⊆ Y . Let DPi[j + 1, b, ℓ, Z] store d. We show that there is
an (ℓ, Z)-feasible set S ⊆ {x

(i)
1 , . . . , x

(i)
j+1}. By Recurrence (3), DPi[j, b, ℓ, Z] stores d or

DPi[j, 1, ℓ − 1, Z \ N>(v(i)
j+1)] stores d − ω(ρv

(i)
j+1). If DPi[j, b, ℓ, Z] stores d then there is

an (ℓ, Z)-feasible set S ⊆ {x
(i)
1 , . . . , x

(i)
j } ⊆ {x

(i)
1 , . . . , x

(i)
j+1}. If DPi[j, 1, ℓ − 1, Z \ N>(v(i)

j+1)]
stores d − ω(ρv

(i)
j+1) then there is an (ℓ − 1, Z \ N>(v(i)

j+1))-feasible set S ⊆ {x
(i)
1 , . . . , x

(i)
j }

containing x
(i)
1 or x

(i)
j′ ∈ N>(Y ). Consequently, also S ∪ {x

(i)
j+1} is (ℓ, Z)-feasible.

Now, let S ⊆ {x
(i)
1 , . . . , x

(i)
j+1} be an (ℓ, Z)-feasible set. We show that DPi[j + 1, b, ℓ, Z]

stores at least PDT (S). If S ⊆ {x
(i)
1 , . . . , x

(i)
j } then we know from the induction hypothesis

that DPi[j, b, ℓ, Z] stores PDT (S) and then also DPi[j+1, b, ℓ, Z] stores PDT (S). If x
(i)
j+1 ∈ S,

then S contains x
(i)
1 or some x

(i)
j′ ∈ N>(Y ). Define S′ := S \ {x

(i)
j+1}. Then, |S′| = ℓ − 1 and

S′ ∪ (Z \ N>(x(i)
j+1)) is viable because S is (ℓ, Z)-feasible. Consequently, DPi[j, 1, ℓ − 1, Z \

N>(x(i)
j+1)] ≥ PDT (S′) = PDT (S) − ω(ρx

(i)
j+1). Therefore, DPi[j + 1, b, ℓ, Z] ≥ PDT (S).
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Now, we focus on the correctness of Recurrence (4). Let DP[i + 1, ℓ, Z] store d. We show
that there is an (ℓ, Z)-feasible set S ⊆ C1∪· · ·∪Ci+1 with PDT (S) = d. Because DP[i+1, ℓ, Z]
stores d, by Recurrence (4), there are Z ′ ⊆ Z and ℓ′ ∈ [ℓ]0 such that DP[i, ℓ′, Z ′] = d1,
DPi+1[|Ci+1|, 0, ℓ − ℓ′, Z \ Z ′] = d2 and d1 + d2 = d. By the induction hypothesis, there
is an (ℓ′, Z ′)-feasible set S1 ⊆ C1 ∪ · · · ∪ Ci and an (ℓ − ℓ′, Z \ Z ′)-feasible set S2 ⊆ Ci+1
such that PDT (S1) = d1 and PDT (S2) = d2. Then, S := S1 ∪ S2 holds |S| ≤ |S1| + |S2| ≤
ℓ′ + (ℓ − ℓ′) = ℓ. Further, because Y has no outgoing edges Z ′ ⊆ N>(S1) ∪ sources(F)
and Z \ Z ′ ⊆ N>(S2) ∪ sources(F). Therefore, Z ⊆ N>(S) ∪ sources(F) and S ∪ Z is viable.
We conclude that S is the desired set.

Let there be an (ℓ, Z)-feasible set S ⊆ C1 ∪ · · · ∪ Ci+1 with PDT (S) = d. We show that
DP[i + 1, ℓ, Z] stores at least d. Define S1 := S ∩ (C1 ∪ · · · ∪ Ci) and Z ′ := N>(S1) ∩ Z. We
conclude that S1 ∩ Z ′ is viable. Then, S1 is (ℓ′, Z ′)-feasible, where ℓ′ := |S1|. Define S2 :=
S ∩ Ci+1 = S \ S1. Because S ∪ Z is viable and Z does not have outgoing edges, we
know that Z ⊆ N>(S) ∪ sources(F). So, Z \ Z ′ ⊆ N>(S2) ∪ sources(F) and because
|S2| = |S| − |S1| = ℓ − ℓ′ we conclude that S2 is (ℓ − ℓ′, Z \ Z ′)-feasible. Consequently,
DP[i, ℓ′, Z ′] ≥ PDT (S1) and DPi+1[|Ci+1|, ℓ−ℓ′, Z\Z ′] ≥ PDT (S2). Hence, DP[i+1, ℓ, Z] ≥
PDT (S1) + PDT (S2) = PDT (S) because T is a star.

Running time. The tables DP and DPi for i ∈ [c] have O(2d ·n ·k) entries in total. Whether
one of the base cases applies can be checked in linear time. We can compute the set Z \N>(x)
for any given Z ⊆ Y and x ∈ X in O(d2) time. Therefore, the O(2d · n · k) times we need to
apply Recurrence (3) consume O(2dd2 · n · k) time in total. In Recurrence (4), each x ∈ Y

can be in Z ′, in Z \ Z ′ or in Y \ Z so that we can compute all the table entries of DP
in O(3d · n · k2) which is also the overall running time. ◀

Now Theorem 5.1 can be shown by reducing the general case to the special case of Lemma 5.2
as follows: Iterate over the O(2d) subsets of Y . For each subset Z ⊆ Y , compute whether
there is a solution S for I with S ∩ Y = Z; we defer the details of this branching to the long
version.

Next, we show that, in contrast to s-PDD, PDD is NP-hard even when the food-web
is restricted to be a cluster graph. We obtain this hardness by a reduction from Vertex
Cover on cubic graphs. Here, we are given an undirected graph G = (V, E) in which every
vertex has degree exactly three and an integer k and ask whether a set C ⊆ V of size at
most k exists such that u ∈ C or v ∈ C for each {u, v} ∈ E. The set C is called a vertex
cover. Vertex Cover remains NP-hard on cubic graphs [20].

▶ Theorem 5.3. PDD is NP-hard even if the food-web is a cluster graph.

Proof.
Reduction. Let (G, k) be an instance of Vertex Cover, where G = (V, E) is cubic. We
define an instance I = (T , F , k′, D) of PDD as follows. Let T have a root ρ. For each
vertex v ∈ V , we add a child v of ρ. For each edge e = {u, v} ∈ E, we add a child e of ρ

and two children [u, e] and [v, e] of e. Let N be a big integer. We set the weight of ρe

to N − 1 for each edge e in E. All other edges of T have a weight of 1. Additionally, for each
edge e = {u, v} ∈ E we add edges (u, [u, e]) and (v, [v, e]) to F . Finally, we set k′ := |E| + k

and D := N · |E| + k.

Correctness. The instance I of PDD is constructed in polynomial time. The sources of F
are V . Let e1, e2, and e3 be the edges incident with v ∈ V (G). Each connected component
in F contains four vertices, v, and [v, ei] for i ∈ {1, 2, 3}.
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We show that (G, k) is a yes-instance of Vertex Cover if and only if I is a yes-instance
of PDD. Let C ⊆ V be a vertex cover of G of size at most k. If necessary, add vertices to C

until |C| = k. For each edge e ∈ E, let ve be an endpoint of e that is contained in C. Note
that ve exists since C is a vertex cover. We show that S := C ∪ {[ve, e] | e ∈ E} is a solution
for I: The size of S is |C| + |E| = k + |E|. By definition, for each taxon [ve, e] we have
ve ∈ C ⊆ S, so S is viable. Further, as S contains a taxon [ve, e] for each edge e ∈ E, we
conclude that PDT (S) ≥ N · |E| + PDT (C) = N · |E| + k = D. Therefore, S is a solution.

Let S be a solution of instance I of PDD. Define C := S ∩ V (G) and define S′ := S \ C.
Because PDT (S) ≥ D, we conclude that for each e ∈ E at least one taxon [u, e] with u ∈ e

is contained in S′. Thus, |S′| ≥ |E| and |C| ≤ k. Because S is viable we conclude that u ∈ C

for each [u, e] ∈ S′. Hence, C is a vertex cover of size at most k of G. ◀

5.2 Distance to Co-cluster Graphs
In this section, we show that PDD is FPT with respect to the distance to co-cluster of the
food-web. A graph is a co-cluster graph if its complement graph is a cluster graph. Herein,
the complement graph is the graph obtained by replacing edges with non-edges and vice
versa. In other words, a graph is a co-cluster graph if its vertex set can be partitioned into
independent sets such that each pair of vertices from different independent sets is adjacent.

We define an auxiliary problem Hitting Set with Tree-Profits in which we are given
a universe U , a family of sets W over U , a U -tree T , and integers k and D. We ask whether
there is a set S ⊆ U of size at most k such that PDT (S) ≥ D and S ∩ W ≠ ∅ for each
W ∈ W. Solutions to this problem can be found with a dynamic programming algorithm
over the tree, similar to the idea in [24]. The proof is therefore deferred to the long version.

▶ Lemma 5.4 (⋆). Hitting Set with Tree-Profits can be solved in O(3|W| · n) time.

In the following we reduce from PDD to Hitting Set with Tree-Profits. Herein,
we select a subset of the modulator Y to survive. Additionally, we select the first taxon xi

which survives in X \ Y . Because F − Y is a co-cluster graph, xi is in a specific independent
set I ⊆ X and any taxon X \ (I ∪ Y ) feed on xi. Then, by selecting taxon xj ∈ X \ (I ∪ Y ),
any other taxon in X \ Y has some prey. Subsequently, a solution is found by Lemma 5.4.

▶ Theorem 5.5. PDD can be solved in O(6d · n3) time, when we are given a set Y ⊆ X of
size d such that F − Y is a co-cluster graph.

Proof.
Algorithm. Given an instance I = (T , F , k, D) of PDD. Let x1, . . . , xn be a topological
ordering of X which is induced by F . Iterate over the subsets Z of Y . Let PZ be the sources
of F in X \Y and let QZ be N>(Z)\Y , the taxa in X \Y which are being fed by Z. Further,
define RZ := PZ ∪ QZ ⊆ X \ Y . Iterate over the vertices xi ∈ RZ . Let xi be from the
independent set I of the co-cluster graph F − Y . Iterate over the vertices xj ∈ X \ (Y ∪ I).

For each set Z, and taxa xi, xj , with Lemma 5.4 we compute the optimal solution for
the case that Z is the set of taxa of Y that survive while all taxa of Y \ Z go extinct, xi is
the first taxon in X \ Y , and xj the first taxon in X \ (Y ∪ I) to survive. (The special cases
that only taxa from I ∪ Y or only from Y survive are omitted here.)

We define an instance IZ,i,j of Hitting Set with Tree-Profits as follows. Let the
universe Ui,j be the union of {xi+1, . . . , xj−1}∩I and {xj+1, . . . , xn}\Y . For each taxon x ∈ Z

compute N<(x). If x ̸∈ sources(F) and N<(x) ∩ (Z ∪ {xi, xj}) = ∅, then add N<(x) \ Y

to the family of sets WZ,i,j . Contract edges e ∈ E(T ) with off(e) ∩ (Z ∪ {xi, xj}) ̸= ∅ to
obtain TZ,i,j . Finally, we define k′ := k − |Z| − 2 and D′ := D − PDT (Z ∪ {xi, xj}).

FSTTCS 2024
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Solve IZ,i,j . If IZ,i,j is a yes-instance then return yes. Otherwise, continue with the
iteration. If IZ,i,j is a no-instance for every Z ⊆ Y , and each i, j ∈ [n], then return no.

Correctness. We show that the algorithm returns yes if and only if I is a yes-instance.
First, assume the algorithm returns yes. Then, there is a set Z ⊆ Y , and there are

taxa xi ∈ X \ Y and xj ∈ X \ (Y ∪ V (I)) such that IZ,i,j is a yes-instance of Hitting Set
with Tree-Profits. Here, I is the independent set such that xi ∈ V (I). Consequently, there
is a set S ⊆ Ui,j of size at most k−|Z|−2 such that PDTZ,i,j

(S) ≥ D′ = D−PDT (Z∪{xi, xj})
and S ∩ W ̸= ∅ for each W ∈ WZ,i,j . We show that S∗ := S ∪ Z ∪ {xi, xj} is a solution
for instance I of PDD. Clearly, |S∗| = |S| + |Z| + 2 ≤ k and PDT (S∗) = PDTZ,i,j

(S) +
PDT (Z ∪ {xi, xj}) ≥ D as TZ,i,j is the Z ∪ {xi, xj}-contraction of T . Further, by definition
xi ∈ (sources(F) ∪ N>(Z)) \ Y . Because F − Y is a co-cluster graph and xj is not in I,
the independent set in which xi is, we conclude that xj ∈ N>(xi). As S ∩ W ̸= ∅ for each
W ∈ WZ,i,j , each taxon x ∈ Z has a prey in Z ∪ {xi, xj} or in S so that N<(x) ∩ S∗ ̸= ∅.
Therefore, S∗ is viable and indeed a solution for I.

Assume now that S is a solution for instance I of PDD. We define Z := S ∩ Y and let xi

and xj be the taxa in S\Y , respectively S\(Y ∪I), with the smallest index. As before, I is the
independent set of xi. We show that instance IZ,i,j of Hitting Set with Tree-Profits
has solution S∗ := S \ (Z ∪ {xi, xj}). Clearly, |S∗| = |S| − |Z| − 2 ≤ k′ and by the definition
of TZ,i,j we also conclude PDTZ,i,j

(S∗) ≥ D′. Let M ∈ WZ,i,j . By definition, there is a
taxon z ∈ Z with M = N<(z) \ Y , and z ̸∈ sources(F), and N<(z) ∩ (Z ∪ {xi, xj}) = ∅.
Consequently, as S is viable, there is a taxon x ∈ S ∩ N<(z) so that S ∩ M ̸= ∅. Hence, S∗ is
a solution of instance IZ,i,j of Hitting Set with Tree-Profits.

Running time. For a given Z ⊆ Y , we can compute the topological order x1, . . . , xn and the
set RY in O(n2) time. The iterations over xi and xj take O(n2) time. Observe, |WZ,i,j | ≤ |Z|.
By Lemma 5.4 checking whether IZ,i,j is a yes-instance takes O(3dn) time each. The overall
running time is O(6d · n3) time. ◀

5.3 Treewidth
Faller et al. [10] conjectured that s-PDD remains NP-hard even when the underlying graph
of the food-web is a tree. We disprove this conjecture by showing that s-PDD can be solved
in polynomial time on food-webs which are trees (assuming P ̸=NP). We even show a stronger
result: s-PDD is FPT with respect to the treewidth of the food-web.

▶ Theorem 5.6 (⋆). s-PDD can be solved in O(9twF · nk) time.

To show Theorem 5.6, we define a dynamic programming algorithm over a tree-decomposi-
tion of F . In each bag, we divide the taxa into three sets indicating that they a) are supposed
to go extinct, b) will be saved but still need prey, c) or will be saved without restrictions.
The algorithm is similar to the standard treewidth algorithm for Dominating Set [5].

6 Discussion

Several interesting questions remain open after our examination of PDD and s-PDD.
Arguably the most relevant one is whether PDD is FPT with respect to k, the size of the
solution. Also, it remains open whether PDD can be solved in polynomial time if each
connected component in the food-web contains at most two vertices.
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Clearly, further structural parameterizations can be considered. We only considered
structural parameters which consider the underlying graph. But parameters which also
consider the orientation of edges, such as the largest anti-chain, could give a better view on
the structure of the food-web than parameters which only consider the underlying graph.

Liebermann et al. [17] introduced and analyzed weighted food-webs. Such a weighted
model may provide a more realistic view of a species’ effect on and interaction with other
species [4]. Maximizing phylogenetic diversity with respect to a weighted food-web in which
one potentially needs to save several prey per predator would be an interesting generalization
for our work and has the special case in which one needs to save all prey for each predator.

Recent works consider the maximization of phylogenetic diversity in phylogenetic net-
works [29, 3, 14, 28] which may provide a more realistic evolutionary model of the considered
species. It would be interesting to study these problems also under ecological constraints.
Do the resulting problems become much harder than PDD? Finally, it has been reported
that maximizing phylogenetic diversity is only marginally better than selecting a random set
of species when it comes to maximizing the functional diversity of the surviving species [18].
The situation could be different, however, when ecological constraints are incorporated. Here,
investigating the following two questions seems fruitful: First, do randomly selected viable
species sets have a higher functional diversity than randomly selected species? Second,
do viable sets with maximal phylogenetic diversity have a higher functional diversity than
randomly selected viable sets?
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