
Matchings in Low-Arboricity Graphs in the
Dynamic Graph Stream Model
Christian Konrad #

University of Bristol, UK

Andrew McGregor #

University of Massachusetts Amherst, MA, USA

Rik Sengupta #

IBM Research, Cambridge, MA, USA
University of Massachusetts Amherst, MA, USA

Cuong Than #

University of Massachusetts Amherst, MA, USA

Abstract
We consider the problem of estimating the size of a maximum matching in low-arboricity graphs in
the dynamic graph stream model. In this setting, an algorithm with limited memory makes multiple
passes over a stream of edge insertions and deletions, resulting in a low-arboricity graph. Let n be
the number of vertices of the input graph, and α be its arboricity. We give the following results.

1. As our main result, we give a three-pass streaming algorithm that produces an (α + 2)(1 + ϵ)-
approximation and uses space O(ϵ−2 · α2 · n1/2 · log n). This result should be contrasted with
the Ω(α−5/2 · n1/2) space lower bound established by [Assadi et al., SODA’17] for one-pass
algorithms, showing that, for graphs of constant arboricity, the one-pass space lower bound can
be achieved in three passes (up to poly-logarithmic factors). Furthermore, we obtain a two-pass
algorithm that uses space O(ϵ−2 · α2 · n3/5 · log n).

2. We also give a (1 + ϵ)-approximation multi-pass algorithm, where the space used is parameterized
by an upper bound on the size of a largest matching. For example, using O(log log n) passes, the
space required is O(ϵ−1 · α2 · k · log n), where k denotes an upper bound on the size of a largest
matching.

Finally, we define a notion of arboricity in the context of matrices. This is a natural measure of
the sparsity of a matrix that is more nuanced than simply bounding the total number of nonzero
entries, but less restrictive than bounding the number of nonzero entries in each row and column.
For such matrices, we exploit our results on estimating matching size to present upper bounds for
the problem of rank estimation in the dynamic data stream model.

2012 ACM Subject Classification Theory of computation → Sketching and sampling

Keywords and phrases Data Streams, Graph Matching, Graph Arboricity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.29

Funding Christian Konrad: Supported by EPSRC New Investigator Award EP/V010611/1.
Andrew McGregor : Funded in part by NSF Award CCF 1934846.
Rik Sengupta: Funded in part by NSF Award CCF 1934846.
Cuong Than: Funded by NSF CAREER Award CCF 2237288, NSF Award CCF 2121952, and a
Google Research Scholar Award.

Acknowledgements We wish to thank Cameron Musco, Hung Le, Rajarshi Bhattacharjee, and David
Woodruff for a lot of preliminary discussions about this work.

© Christian Konrad, Andrew McGregor, Rik Sengupta, and Cuong Than;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 29; pp. 29:1–29:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christian.konrad@bristol.ac.uk
https://orcid.org/0000-0003-1802-4011
mailto:amcgrego@umass.edu
https://orcid.org/0000-0002-2124-160X
mailto:rsengupta@cs.umass.edu
https://orcid.org/0000-0002-9238-5408
mailto:cthan@cs.umass.edu
https://orcid.org/0000-0001-7350-331X
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model

1 Introduction

Streaming algorithms for graph problems have been studied for more than 25 years [25]. In
this setting, an algorithm performs one or more passes over the input graph and produces a
solution using as little space as possible.

Much of the development of the literature on graph streams has been driven by the
study of the Maximum Matching problem (see, e.g., [2–6,10–12,17–19,22–24,28–34,36,41]
for a non-comprehensive list of recent and early works). This problem was first addressed
by Feigenbaum et al. [21], and a large number of algorithms and impossibility results
that cover various aspects of the problem are known today, such as one-pass/multi-pass
algorithms, adversarial/random order streams, insertion-only/insertion-deletion streams, and
dense/sparse input graphs.

In this paper, we consider the size estimating variant of the problem, which we denote
by Matching Size Estimation (MSE). This is in contrast to the much better understood
objective of outputting the actual edges of a large matching. We address MSE in dynamic
or insertion-deletion streams, i.e., streams consisting of a sequence of edge insertions and
deletions. Our focus lies on sparse graphs as parameterized by the arboricity of the input
graph. The arboricity of a graph is the smallest1 integer α such that the edges of the graph
can be partitioned into α forests. Nash-Williams [39] showed that an equivalent definition
of the arboricity is α = maxS⊆V |e(S)|/(|S| − 1) where e(S) is the number of edges in the
induced subgraph G[S].

Chitnis et al. [14] were the first to study MSE in graphs of bounded arboricity in the
dynamic graph stream setting. They showed that there is a one-pass Õ(α · n4/5)-space
algorithm2 with approximation factor O(α). Cormode et al. [15] subsequently gave an
Õ(α2)-approximation algorithm using space Õ(α10/3 · n2/3), albeit under the restriction that
the length of the input stream is O(α · n). On the lower bound side, Assadi et al. [7] showed
that computing an α-approximation in a single pass requires space Ω(n1/2 · α−5/2). The
problem is thus wide open, even in the one-pass setting, and even for constant-arboricity
graphs.

1.1 Our Results
In this paper, we give the first multi-pass algorithms for MSE in the dynamic graph stream
setting, for graphs of arboricity α. We assume throughout that n, m, and α are known
in advance. All our algorithms succeed with high probability, i.e., they output the correct
matching size with probability 1− 1/poly(n). We observe at this juncture that none of our
algorithms require the assumption that the input stream length is bounded. We reiterate
that the one-pass algorithm by Cormode et al. [15], which uses space O(α10/3 ·n2/3), requires
this assumption.

Our main result is a three-pass O(α)-approximation algorithm that uses roughly
√

n

space3.

▶ Theorem 1. There exists a three-pass algorithm using O(ϵ−2 · α2 · n1/2 · log3 n) space that
returns an (α + 2)(1 + ϵ)-approximation for MSE with high probability.

1 We shall abuse terminology slightly and say the arboricity of a graph G is α as long as the smallest
integer is at most α.

2 We write Õ(.) to mean O(.) with poly-log dependencies on n suppressed.
3 Henceforth, we say specify the space use of the algorithms in terms of the number of words of memory

where a word may store O(log n) bits.

C. Konrad, A. McGregor, R. Sengupta, and C. Than 29:3

This result should be contrasted with the “
√

n-barrier” result established by Assadi et
al. [7], who showed that one-pass α-approximation algorithms for MSE in dynamic graph
streams on graphs of arboricity α require space Ω(

√
n/α2.5). While our algorithm uses

three passes, and, consequently, the lower bound from [7] does not apply in this setting, we
nevertheless show that the

√
n-barrier can be achieved at the expense of just two additional

passes. Interestingly, we note that no multi-pass O(α)-approximation dynamic streaming
algorithms are known for MSE that break the

√
n-barrier, even if significantly more passes

are allowed.
Next, we also give a new two-pass algorithm that requires less space than the best one-pass

algorithms known (e.g., [15]).

▶ Theorem 2. There exists a two-pass algorithm using O(ϵ−2 · α2 · n3/5 · log3 n) space that
returns an (α + 2)(1 + ϵ)-approximation for MSE with high probability.

We also show a (1+ϵ)-approximation multi-pass algorithm, in the case when the maximum
matching size is bounded by a given parameter k.

▶ Theorem 3. If the maximum matching size is upper bounded by k, there exists a O(ϵ−1 ·
α2 · n1/(2p−1) · k1−1/(2p−1) · log n) space, p-pass dynamic graph streaming algorithm that
returns a (1 + ϵ)-approximation for MSE with high probability. In particular, there exists a
O(log log n)-pass algorithm that uses space O(ϵ−1 · α2 · k · log n).

This result is similar in spirit to a result by Chitnis et al. [14], who showed that, in general
graphs, a matching of size k (if there is one) can be computed in the one-pass dynamic setting
using space Õ(k2); this result can also be obtained from the algorithm given by Assadi et
al. [8]. Phrased differently, given an upper bound k on the size of a largest matching, we can
compute one using space Õ(k2).

Lastly, as a more conceptual contribution, we introduce the notion of low-arboricity
matrices. We say that a matrix A has arboricity α if every t× t submatrix of A has at most
α · t nonzero entries. This generalizes many natural subclasses of sparse matrices (including
the adjacency matrices of low-arboricity graphs). We show that, given such a matrix A, we
can associate a bipartite graph GA of arboricity at most α with A, such that the rank of A

is within an α-factor of µ(GA), where µ(GA) denotes the size of a largest matching in GA.
Hence, using any β-approximation algorithm for estimating the size of a maximum matching
in graphs of arboricity α (where β might depend on α), we obtain an (α · β)-approximation
to its rank. In particular, our two-pass and three-pass O(α)-approximation algorithms
immediately yield O(α2)-approximation algorithms for rank approximation in matrices of
arboricity α.

1.2 Our Techniques
We will first discuss the ideas behind our (1 + ϵ)-approximation algorithm and our two-pass
algorithm. Our three-pass algorithm, which constitutes our main result, combines ideas from
these two algorithms.

(1+ϵ)-approximation Algorithm. Our (1+ϵ)-approximation algorithm works by iteratively
identifying all “high” degree vertices with Count-Sketch. In the ith pass (for i ≤ p− 1) we
identify a set of vertices Vi in the induced subgraph G[V −V1− . . .−Vi−1] using estimates of
their degrees. Removing the high-degree vertices discovered in previous passes and exploiting
properties of the degree sequence of low-arboricity graphs enable us to get increasingly
accurate estimates of the degrees in the remaining graph. In the final pass, we collect

FSTTCS 2024

29:4 Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model

all edges in G[V − V1 − . . . − Vp−1], along with a few edges incident to every vertex in
V1 ∪ . . . ∪ Vp−1. We are then able to argue that, by carefully setting the parameters of the
algorithm and appealing to a sparsification result by Solomon [40], this approach can be
used to obtain a (1 + ϵ)-approximation. The space used by the algorithm (in terms of the
number of edges) decreases at a rate which is doubly-exponential in p. This space/passes
trade-off is somewhat unusual (but not unprecedented, e.g., [1, 9]); it is more typical in the
data streams literature to see a singly-exponential or even just a polynomial trade-off.

2-pass Algorithm. Our 2-pass algorithm uses a result about the fractional matching due to
McGregor and Vorotnikova [37]. They showed that it is possible to set a weight for each edge
that just depends on the degrees of the endpoints of the edge, such that the total weight of
all edges yields an (α + 2)-approximation to the size of the maximum matching. This yields
a simple 2-pass algorithm: we sample edges uniformly (first pass), compute their weights
(second pass), and return an estimator based on these weights. This approach works well
when the matching is large. By combining this approach with ideas from the previous result,
we get our final algorithm, which uses small space regardless of the size of the matching.

3-pass Algorithm. Our 3-pass algorithm combines ideas from the other two algorithms. In
the first pass, we identify all vertices with degree roughly

√
n or higher. Let EH be the edges

that share an endpoint with these vertices, and let EL be the remaining edges. The approach
is to sparsify EH to produce E′

H in such a way that µ(E′
H ∪ EL) ≥ µ(EH ∪EL)(1− ϵ). We

then use uniform sampling to construct a multiset E′
L of edges, and use this, along with the

weights of these edges, to estimate µ(E′
H ∪ EL) via the fractional matching approach.

1.3 Further Related Work: Matching Size Estimation in Graph Streams

Esfandiari et al. [20] were the first to consider the MSE problem in low-arboricity graphs
in the streaming model. They focused on the insertion-only setting, where edges can only
be inserted but not deleted, and gave a one-pass O(α)-approximation algorithm that uses
Õ(α ·n2/3) space. This result was significantly improved by Cormode et al. [15], who gave an
algorithm with the same approximation guarantee, that uses only O(α · log2 n) space. This
was further improved, in terms of both the approximation factor and space, by McGregor
and Vorotnikova [38].

At the heart of many of the algorithms for approximating the matching size in low-
arboricity graphs lie structural lemmas that relate the maximum matching size to a function
of the degree sequence of the graph in question. McGregor and Vorotnikova [37] gave such a
characterization which gave rise to improved approximation guarantees over those established
by Esfandiari et al. See also [26] for a different structural result. In particular, they obtained
a (5 + ϵ)-approximation for planar graphs, improving over a (24 + ϵ)-approximation guarantee
established in [20].

Assadi et al. [7] gave various upper and lower bounds for approximating the matching
size in general graphs. They showed that there is a one-pass Õ(n2/α4)-space algorithm
that approximates the size of a matching within a factor of α in the dynamic graph stream
setting. They also gave a lower bound, showing that space n2−O(ϵ) is needed to obtain a
(1 + ϵ)-approximation factor.

C. Konrad, A. McGregor, R. Sengupta, and C. Than 29:5

1.4 Outline
In Section 2, we present known results, including a result due to McGregor and Vorot-
nikova [37] that links the matching size in low-arboricity graphs to the degree sequence of
the graph, as well as a matching-size preserving sparsification result by Solomon [40]. We
will need both of these in this paper. Subsequently, in Section 3, we give all our algorithmic
results. In Section 4, we introduce the notion of low-arboricity matrices and show how
their ranks can be approximated using algorithms for approximating the matching size in
low-arboricity graphs. Finally, we conclude in Section 5 with some open problems.

2 Preliminaries

Notation and Definitions. Given a graph G = (V, E), for each vertex u ∈ V , we denote by
deg(u) the degree of u. The size of the maximum matching of G is denoted by µ(G). We
also use µ(E′) to denote the maximum matching among any set E′ of edges. Throughout
this paper, we let n and m denote the sizes of the sets V and E respectively, and α denote
the arboricity of G. It is well-known that m ≤ α · n.

Algorithmic Primitives. We will use the following results throughout the remaining sections,
to simplify our proofs.

▶ Theorem 4 (Algorithmic Primitives [13, 16, 27]). There exist single-pass dynamic graph
stream algorithms for:
1. Uniformly sampling edges: The algorithm uses O(log2 n) space. This is a special case of

ℓ0-sampling [27].
2. Estimating degrees: We can compute estimates d̃eg such that with probability at least

1− 1/n:
a. For all u ∈ V : deg(u) ≤ d̃eg(u) ≤ deg(u) + ∥dw-tail∥1/w

b. For all u ∈ V : |d̃eg(u)− deg(u)| ≤ ∥dw-tail∥2/
√

w

where dw-tail is the vector of degrees with the largest w entries replaced by 0. The first
guarantee is achieved by CountMin sketch [16] and the second by CountSketch [13]. Both
algorithms use O(w log n) space.

Structural Results. We will make repeated use of the following structural results for low-
arboricity graphs. The first theorem effectively shows that there is a fractional matching
where (a) the weight of each edge is just a function of the degrees of the endpoints of that
edge, and (b) the total weight of the fractional matching is still a good approximation to the
maximum-cardinality matching.

▶ Theorem 5 (McGregor and Vorotnikova [37]). Given a graph G = (V, E) with arboricity at
least α, let:

w(G) =
∑

(u,v)∈E

wu,v, where wu,v = min
(

1
deg(u) ,

1
deg(v) ,

1
α + 1

)
.

Then, we have:

µ(G) ≤ (α + 1)w(G) ≤ µ(G) · γ, where γ =

α + 2 if α is odd
(α+3)(α+1)

α+2 if α is even
α + 1 if G is bipartite.

FSTTCS 2024

29:6 Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model

Algorithm 1 A p-pass algorithm for approximating matching size.

1. G1 ← G and s = m1/(2p−1) · (2k)1−1/(2p−1), where k is an upper bound on µ(G).
2. For i = 1 to p− 1:

a. Pass i: Use CountSketch to compute an estimate d̃eg(u) of the degree of each vertex u ∈ Gi.
Let Vi = {u ∈ Gi : d̃eg(u) ≥ 0.75 · τi+1}, where τ2 =

√
m/s and for i ≥ 2, we have

τi+1 = m1/2i

· (2k/s)1−1/2i−1
. Also let:

Gi+1 := G[V − V1 − V2 − . . .− Vi]

3. Pass p: Store all edges in Gp, and call this set EL. For each u ∈ V1 ∪ . . . ∪ Vp−1, store Θ(α/ϵ)
incident edges to u. Call these edges E′

H .
4. Output: µ(EL ∩ E′

H).

Note that, in all cases, γ ≤ α + 2. Furthermore, if h is the number of vertices of degree at
least α + 2, and s is the number of edges whose endpoints have degree strictly less than α + 2,
then µ(G) ≤ h + s ≤ (α + 2) · µ(G).

The next theorem demonstrates that, in a low-arboricity graph, it is possible to remove
most of the edges incident to high degree vertices without significantly reducing the size of
the maximum-cardinality matching.

▶ Theorem 6 (Solomon [40]). Fix a graph G with arboricity α, and a positive number ϵ > 0.
For each vertex u ∈ V (G), mark Θ(α/ϵ) arbitrary edges incident to u. Let G′ be the graph
containing edges marked by both ends. Then, µ(G′) ≤ µ(G) ≤ (1 + ϵ) · µ(G′).

3 Graph Results

3.1 (1 + ϵ)-Approximation
Consider Algorithm 1. The main idea behind the algorithm is to exploit the fact that, if G

has low arboricity and µ(G) is “small”, then G has only a “small” number of “high”-degree
vertices. If we can remove the high-degree vertices, then the remaining graph has significantly
fewer edges, by the following lemma.

▶ Lemma 7. Any graph G with maximum degree ∆ has at most (2∆− 1) · µ(G) < 2∆ · µ(G)
edges.

Proof. This follows because the endpoints of a maximal matching is a vertex cover. ◀

If we can decrease the total number of edges, we can estimate the degrees in the remaining
graph with greater accuracy. The next lemma quantifies this, where the proof exploits
properties of the degree sequence for low-arboricity graphs. Repeating this process for p− 1
passes allows us to iteratively “peel off” high-degree vertices, until we are left with a graph
that is sufficiently sparse such that it can be stored explicitly.

▶ Lemma 8. Let s ≥ (α + 2) · µ(G). Using O(α · s · log n) space in the dynamic graph
streaming model, given a graph with m edges, with high probability we can identify a subset
of vertices that includes all vertices of degree ≥

√
m/s, and no vertex of degree < 0.5

√
m/s.

C. Konrad, A. McGregor, R. Sengupta, and C. Than 29:7

Proof. We use CountSketch to find all vertices of degree more than
√

m/s. Let d1 ≥ d2 ≥
d3 ≥ . . . ≥ dn be the degree sequence of G. Observe that since s ≥ (α + 2) ·µ(G), Theorem 5
implies s is greater than the total number of vertices with degree at least α + 2. Thus, all
degrees di with i > s are at most α + 1.

Hence, the ℓ2
2 of the tail t = (ds+1, ds+2, . . . , dn) is at most ∥t∥∞ · ∥t∥1 ≤ m(α +1). Using

CountSketch with space O(α · s · log n), we can compute the degree of each vertex with
additive error:

ℓ2((ds+1, ds+2, . . . , dn))√
α · s

= O
(√

m/s
)

.

With the proper choice of the suppressed constant, we obtain an additive error of 0.25
√

m/s.
For each vertex u, let d̃eg(u) be the degree of u estimated by CountSketch. Let V ′ =
{u : d̃eg(u) ≥ 0.75

√
m/s}. For any u ∈ V ′, we have deg(u) ≥ 0.75

√
m/s− 0.25

√
m/s =

0.5
√

m/s. Furthermore, for every vertex u such that deg(u) ≥
√

m/s, we have d̃eg(u) ≥√
m/s− 0.25

√
m/s = 0.75

√
m/s, implying that u ∈ V ′. ◀

This leads to the following theorem.

▶ Theorem 3. If the maximum matching size is upper bounded by k, there exists a O(ϵ−1 ·
α2 · n1/(2p−1) · k1−1/(2p−1) · log n) space, p-pass dynamic graph streaming algorithm that
returns a (1 + ϵ)-approximation for MSE with high probability. In particular, there exists a
O(log log n)-pass algorithm that uses space O(ϵ−1 · α2 · k · log n).

Proof. Consider the multi-pass algorithm where in pass i, we find a subset Vi of vertices
in Gi = G[V − V1 − V2 − . . . − Vi−1] that includes all vertices of degree at least ∆i+1 =√

mi/s, where mi is the number of edges in Gi (see Algorithm 1). By Lemma 7, we have
mi ≤ 2∆i · µ(Gi) ≤ 2∆i · k, since the maximum degree of Gi is less than ∆i. Hence:

∆i+1 =
√

mi/s ≤ ∆1/2
i (2k/s)1/2

≤ ∆1/4
i−1(2k/s)1/2+1/4

≤ . . .

≤ ∆1/2i−1

2 (2k/s)1−1/2i−1

≤ m1/2i

(2k)1−1/2i−1
/s1−1/2i

,

since ∆2 ≤
√

m/s. In particular, if s = m1/(2p−1)(2k)1−1/(2p−1), then ∆p ≤ s/(2k).
Hence, Gp has at most 2(s/(2k)) ·k = s edges, which can be stored in memory. We collect

O(α/ϵ) edges incident to all vertices in V1 ∪ . . . ∪ Vp−1, and all edges between the remaining
vertices. Let GS be the new graph. The total number of edges in GS is at most the number
of edges in Gp, plus (α/ϵ) ·

∑p−1
i=1 |Vi|, which is at most α(α + 2) ·µ(G)/ϵ, since by Theorem 5,

the total number of vertices with degree higher than α + 2 is at most (α + 2) · µ(G).
We then have that µ(GS) ≤ µ(G) ≤ (1 + ϵ) ·µ(GS). It follows from Theorem 6 that GS is

a supergraph of some graph G′ satisfying µ(G′) ≥ µ(G)/(1 + ϵ). Thus, µ(GS) ≥ µ(G)/(1 + ϵ).
On the other hand, since GS is a subgraph of G, we obtain µ(GS) ≤ µ(G), as desired. ◀

3.2 O(α)-Approximation, Two Passes, and Õ(m3/5) Space
Consider Algorithm 2. The analysis to establish the following theorem is a relatively
straightforward application of the Chernoff bound.

FSTTCS 2024

29:8 Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model

Algorithm 2 A 2-pass algorithm for approximating matching size.

1. First Pass: Sample t := 3mϵ−2(α+1) log(2n)/k edges with replacement. Let E′ be the (multi-)set
of edges sampled.

2. Second Pass: For each (u, v) ∈ E′, compute wu,v = min
(

1
deg(u) , 1

deg(v) , 1
α+1

)
.

3. Output: W = (m/t) ·X, where X =
∑

e∈E′ we.

▶ Theorem 9. If µ(G) ≥ k, there exists a O(ϵ−2 · α ·mk−1 · log3 n) space, 2-pass dynamic
graph streaming algorithm that returns a (α+2)(1+ ϵ)-approximation of µ(G) with probability
at least 1− 1/n.

Proof. Note that E[X] = t · w(G)/m. Since each edge sampled is drawn independently and
each 0 ≤ wu,v ≤ 1, we can apply the Chernoff bound to conclude:

Pr [|W − w(G)| ≥ ϵ · w(G)] = Pr
[∣∣∣∣X − w(G) · t

m

∣∣∣∣ ≥ ϵ · w(G) · t
m

]
≤ 2 · exp

(
−ϵ2 · w(G) · t

3m

)
.

Theorem 5 implies w(G) ≥ k/(α + 1). Hence, setting t = 3mϵ−2(α + 1) · log(2n)/k ensures
Pr[|W − w(G)| ≥ ϵ · w(G)] ≤ 1/n. The result follows from Theorem 5. The space bound
follows from the space complexity of edge sampling (Theorem 4). ◀

We can then combine the approach above with the result in Theorem 3 to yield a two-pass
algorithm whose space complexity does not depend on upper or lower bounds on µ(G).
Specifically:
1. We run the algorithm in Theorem 3 with p = 2 passes, and k = m2/5, ϵ = 1. This uses

O(α2 · n3/5 · log n) space and returns a 2-approximation if µ(G) ≤ m2/5.
2. In parallel, we run Algorithm 2 with t = 12mϵ−2(α + 1) log(2n)/m2/5. This uses

O(ϵ−2 · α ·m3/5 · log3 n) space and returns an (α + 2)(1 + ϵ)-approximation if w(G) ≥
m2/5/(α + 1) · 1/4.

3. To determine whether to output the result from the first algorithm or the second algorithm,
we consider the variable X =

∑
e∈E′ we defined in Algorithm 2. Note E[X] = w(G) · t/m

and by an application of Chernoff bounds, if w(G) ≥ m2/5/(α + 1), then we have:

Pr[X ≤ θ] ≤ exp(−m2/5/(α+1)·t/m·(1/3)) ≤ 1/n , where θ = m2/5/(α+1)·(1/2)·t/m

whereas if w(G) ≤ m2/5/(α + 1) · (1/4), then we have:

Pr[X ≥ θ] ≤ exp(−m2/5/(α + 1) · t/m · (1/12)) ≤ 1/n .

Consider returning the result from the first algorithm if X < θ, and the result from
the second algorithm otherwise. If w(G) ≤ m2/5/(α + 1) · 1/4 then (a) with probability
1− 1/n we return the output of the first algorithm, and (b) µ(G) ≤ m2/5 by appealing
to Theorem 5. Hence, we achieve a 2-approximation with high probability. If w(G) ≥
m2/5/(α + 1), then with probability 1− 1/n we return the output of the second algorithm
and hence we achieve a (α + 2)(1 + ϵ)-approximation. If (1/4) ·m2/5/(α + 1) < w(G) <

m2/5/(α+1), then the approximation factor from either algorithm is at most (α+2)(1+ϵ).

▶ Theorem 2. There exists a two-pass algorithm using O(ϵ−2 · α2 · n3/5 · log3 n) space that
returns an (α + 2)(1 + ϵ)-approximation for MSE with high probability.

C. Konrad, A. McGregor, R. Sengupta, and C. Than 29:9

Algorithm 3 A 3-pass algorithm for approximating matching size.

1. First Pass: Use CountMin Sketch with O(α · n1/2 · log n) space to find approximations of all
degrees, such that with high probability, for all u ∈ V :

deg(u) ≤ d̃eg(u) ≤ deg(u) +
√

n/2 .

Let H = {v : d̃eg(u) ≥
√

n}, and note that H contains all vertices with degree at least
√

n and
no vertices with degree strictly less than

√
n/2. Let EH be the set of edges incident to a vertex

in H.
2. Second Pass: Let GL = (V \H, EL) be the graph formed by removing all vertices in H.

Compute mL, the number of edges in GL.
Sample t = 3ϵ−2 · n1/2 · ln(2n) edges E′

L from GL with replacement via ℓ0-sampling. Note
that E′

L could be a multiset.
For each v ∈ H, pick O(α/ϵ) incident edges. Let E′

H be the chosen edges.
3. Third Pass: For each edge (u, v) ∈ E′

L ∪ E′
H , compute

w′
u,v = min(1/ deg′(u), 1/ deg′(v), 1/(α + 1)) ,

where deg′(u) is the number of incident edges in E′
H ∪ EL

4. Output: w1 + w2 where w1 =
∑

e∈E′
H

w′
e and w2 = mL

t

∑
e∈E′

L
w′

e.

3.3 O(α)-Approximation, Three Passes, and Õ(m1/2) Space
Consider Algorithm 3. The analysis proceeds as follows. After the first pass, we have
partitioned the vertices into H and V \H, such that all vertices in H have degree at least√

n/2, and all vertices in V \ H have degree at most
√

n. We will argue via Theorem 6
that maintaining a few edges incident to each vertex in H (these edges are called E′

H in the
algorithm) decreases the size of the maximum matching by at most a factor of (1− ϵ). We
then approximate the matching in the resulting graph via fractional matchings. Let A be
the weight of the fractional matching on edges incident to H, and B be the weight of the
other edges. We can compute A exactly (this will be returned as w1), and we can estimate
B by sampling edges that are not incident to vertices in H. The next lemma shows that
our estimate for B is sufficiently accurate. The proof exploits that the weights of the edges
contributing to B are all at least 1/

√
n.

▶ Lemma 10. Pr[|w2 −B| ≥ ϵB] ≤ 1/n, where B =
∑

e∈EL
w′

e.

Proof. Let ∆L be the maximum degree of a vertex in V \H. The definition of H ensures
that ∆L <

√
n. The weight of each edge in EL is between 1/∆L and 1, and the average is

B/mL. Let X be the sum of w′
e for each e ∈ E′

L. Hence:

E[X] = tB/mL ≥ t/∆L .

By an application of the Chernoff bound, we have:

Pr[|X − E[X]| ≥ ϵ · E[X]] ≤ 2 · exp
(
−ϵ2 · E[X]

3

)
≤ 2 · exp

(
−ϵ2 · t

3∆L

)
.

Hence, setting t = 3ϵ−2 · n1/2 · ln(2n) makes the failure probability 1/n. ◀

▶ Theorem 1. There exists a three-pass algorithm using O(ϵ−2 · α2 · n1/2 · log3 n) space that
returns an (α + 2)(1 + ϵ)-approximation for MSE with high probability.

FSTTCS 2024

29:10 Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model

Proof. By Theorem 6, we have µ(E)/(1 + ϵ) ≤ µ(E′
H ∪ EL) ≤ µ(E). Hence, by Theorem 5:

µ(E)/(1 + ϵ) ≤ (α + 1) · w′(E′
H ∪ EL) ≤ (α + 2) · µ(E) .

Note that w′(E′
H ∪ E′

L) = w1 + w2, and w(E′
H ∪ EL) = w1 + B. But, by Lemma 10, with

probability at least 1− 1/n, we have (1− ϵ) ·B ≤ w2 ≤ (1 + ϵ) ·B. Therefore:

µ(E) · 1− ϵ

1 + ϵ
≤ w1 + w2 ≤ (α + 2) · (1 + ϵ) · µ(E) .

Reparameterizing ϵ ← ϵ/4 gives the claimed result. The space used by the algorithm is
O(|H| · α/ϵ + α · n1/2 log n + t log2 n). Note that |H| ≤ 2m/

√
n, and so the space is as

claimed. ◀

4 Estimating Rank of Sparse Matrices

In this section, we consider the problem of estimating the rank of a matrix. It is well-known
(e.g., see [35]) that the rank of the Tutte matrix4 of a graph G = (V, E) is exactly 2 · µ(G).
It is therefore natural to look for other connections between rank and matching size.

Given an arbitrary matrix A, we next define a bipartite graph GA that captures the
structure of the nonzero entries of A.

▶ Definition 11. Given an arbitrary n1×n2 matrix A define a bipartite graph GA = (L, R, E)
where L = [n1], R = [n2] and (i, j) ∈ E if A[i, j] ̸= 0. Note that a matching in GA corresponds
to a set of nonzero entries in M such that no two of these entries fall in the same column or
row of A.

Unfortunately it is too much to hope that rank(A) and µ(GA) are always closely related.
To see this, suppose that A is an n× n matrix of all 1s. Then, rank(A) = 1, but µ(GA) = n.
However, we show a significantly closer relationship for a certain family of sparse matrices
which, by analogy to graph terminology, we call α-arboricity matrices.

▶ Definition 12. A matrix is said to have arboricity α if every t× t submatrix has at most
α · t nonzero entries.

Note that the class of matrices of arboricity α is much larger than the class of matrices
which have a bounded number of nonzero entries in every row and column. However, it is
more restrictive than bounding the number of nonzero elements; an n× n matrix with at
most α · n nonzero entries does not necessarily have arboricity α. For example, let A be an
n× n matrix which has all zeros, except for a

√
α · n×

√
α · n submatrix of 1s; note that A

has only α · n nonzero entries, but does not have arboricity β for any β <
√

α · n.

▷ Claim 13. If G is a graph with arboricity α, its adjacency matrix AG has arboricity at
most 2α.

Proof. Consider an arbitrary t×t submatrix A′
G of AG, consisting of t rows and t columns from

AG. Suppose the indices of the common rows and columns are I = {i1, . . . , is}. In addition,
A′

G has rows rj1 , . . . , rjs′ and columns cj′
1
, . . . , cj′

s′
from AG, such that J = {j1, . . . , js′} and

J ′ = {j′
1, . . . , j′

s′} are disjoint. Note that I, J , and J ′ correspond to disjoint subsets of

4 Recall that the Tutte matrix TG of a graph G = (V, E) is the skew-symmetric matrix where T [i, j] = 0
if (i, j) ̸∈ E; T [i, j] = xi,j if i < j and (i, j) ∈ E; and T [i, j] = −xi,j if i > j and (i, j) ∈ E.

C. Konrad, A. McGregor, R. Sengupta, and C. Than 29:11

vertices of G, and so A′
G is a submatrix of the adjacency matrix for the induced subgraph

G[I∪J ∪J ′], which has at most 2α ·(|I|+ |J |+ |J ′|) nonzero entries. Each edge between I and
J (or between I and J ′) corresponds to exactly one nonzero entry in the submatrix. None
of the edges in G[J ∪ J ′] shows up. Finally, each edge in G[I] corresponds to two nonzero
entries (corresponding to the standard adjacency submatrix of AG). Altogether, counting
the weights of each of these relevant pairwise disjoint submatrices separately, this gives us
α · (2|I|+ |J |+ |J ′|) nonzero entries in A′

G, which is at most α(|I|+ |J |+ |I|+ |J ′|) = 2α · t,
as claimed. ◁

▶ Theorem 14. For any matrix A, we have µ(GA)/α ≤ rank(A) ≤ µ(GA).

Proof. To prove µ(GA) ≥ rank(A), let T be the Tutte matrix of GA. Then, from [35], we
know that rank(T) = 2·µ(GA). Furthermore, rank(T) ≥ 2·rank(A). Hence, rank(A) ≤ µ(GA),
as claimed.

To prove µ(GA)/α ≤ rank(A), note that we may permute the rows and columns of A

such that the first µ(GA) diagonal entries of A are all nonzero. Let F be the top left k × k

submatrix where k = µ(GA). Note rank(F) ≤ rank(A). To lower bound the rank of F , first
note that the total number of non-diagonal entries that are nonzero is at most (α− 1) · k,
and so, at least one of F or F T has (α− 1) · k/2 or fewer nonzero entries below the diagonal.
Assume this is the case for F (if not, we can apply the rest of the argument to F T rather
than F). We will show that F contains a (k/α)× (k/α) principal submatrix where all the
diagonal entries are nonzero and all entries below the diagonal are nonzero.

The process for finding this submatrix is as follows. We maintain a set D ⊆ [k], where
j ∈ D means that the jth row and jth column will not be included in the submatrix. D is
initially empty. We say that the jth column and row are marked if j ∈ D. Let nzi be the
total number of nonzero entries in the ith row and column of this submatrix that are below
the diagonal and are not in marked rows/columns , i.e.:

nzi = |Si|, where Si = {j < i : A[i, j] ̸= 0, j ̸∈ D} ∪ {j > i : A[j, i] ̸= 0, j ̸∈ D} .

Note that
∑

i̸∈D nzi ≤ (α− 1) · (k − |D|), because F has arboricity α, and the sum counts
each element twice. Hence, min(nzi) ≤ (α − 1). Let i∗ = argmini:nzi>0nzi and update
D ← D ∪ Si∗ . We repeat this process until all nonzero entries under the diagonal are in
marked rows/columns. In each iteration, |D| increases by at most α − 1, but there is at
least one more value i such that nzi = 0. Hence, at the end of the algorithm, we have
k − |D| ≥ k/α. ◀

Therefore, all our matching algorithms (and all previous results on MSE) also give
algorithms for estimating the rank of low-arboricity matrices, with an additional multiplicative
factor of α. Note that for rank approximation, we assume the dynamic model where at each
time step, some entry of the matrix is set to a nonzero value (if it was currently zero) or set
to zero (if it was currently nonzero).

The following example shows that the above bound is tight up to constants. And
furthermore, any approximation via w(G) loses an O(α2) factor.

▶ Example 15. Let A and B be an n× n binary matrices, where

A[i, j] =
{

1 if i ≤ α or j ≤ α

0 otherwise
and B[i, j] =

{
1 if i ≤ α or j ≤ α or i = j

0 otherwise.

FSTTCS 2024

29:12 Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model

First, note that rank(A) = 2, rank(B) = n − α + 1, µ(GA) = 2α, and µ(GB) = n. This
establishes that the quantity rank(M)/µ(GM) can vary by an Ω(α) factor.

w(GA) = α2

n
+ 2(n− α)α

n
≈ 2α and w(GB) = α2

n
+ 2(n− α)α

n
+ (n− α)

α + 1 ≈ n

α
.

Hence, rank(M)/w(GM) can vary by an Ω(α2) factor.

We end by noting that for a matrix A, the value of µ(GA) does not depend on the the
values of the nonzero entries in A. This immediately implies the following curious corollary.

▶ Corollary 16. Changing the nonzero values in a matrix of arboricity α can change its rank
by at most a factor of α.

5 Conclusion

In this paper, we gave new multi-pass streaming algorithms for MSE in dynamic graph streams
on graphs of arboricity α. As our main result, we showed that an O(α)-approximation can
be achieved in three passes with space O(ϵ−2 · α2 · n1/2 · log n), and we also gave a two-pass
algorithm with a similar approximation guarantee that uses space O(ϵ−2 · α2 · n3/5 · log n).
Furthermore, we designed a multi-pass algorithm with approximation factor (1 + ϵ) that
operates based on an upper bound k on the maximum matching size. For example, it can give
an O(log log n)-pass algorithm that uses space O(ϵ−1 · α2 · k · log n). Lastly, we introduced
the notion of low-arboricity matrices and argued that matching algorithms for low-arboricity
graphs can be used to approximate the rank of low-arboricity matrices with an O(α) loss in
the approximation factor.

We conclude with two open problems. First, we are particularly intrigued by whether the√
n-barrier established by Assadi et al. [7] for one-pass algorithms persists when multiple

passes over the input are allowed. For instance, is there a constant pass algorithm with
approximation factor O(α), whose space dependency on n is o(

√
n)? Second, can we tighten

the bounds in the one-pass setting?

References
1 Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.

Correlation clustering in data streams. Algorithmica, 83(7):1980–2017, 2021. doi:10.1007/
S00453-021-00816-9.

2 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with
application to the maximum matching problem. Inf. Comput., 222:59–79, 2013. doi:10.1016/
j.ic.2012.10.006.

3 Sepehr Assadi. A two-pass (conditional) lower bound for semi-streaming maximum matching.
In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 - 12, 2022, pages 708–742. SIAM, 2022. doi:10.1137/1.9781611977073.32.

4 Sepehr Assadi. A simple (1 - ϵ)-approximation semi-streaming algorithm for maximum
(weighted) matching. In Merav Parter and Seth Pettie, editors, 2024 Symposium on Simplicity
in Algorithms, SOSA 2024, Alexandria, VA, USA, January 8-10, 2024, pages 337–354. SIAM,
2024. doi:10.1137/1.9781611977936.31.

5 Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li. On regularity lemma and
barriers in streaming and dynamic matching. In Barna Saha and Rocco A. Servedio, editors,
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023,
Orlando, FL, USA, June 20-23, 2023, pages 131–144. ACM, 2023. doi:10.1145/3564246.
3585110.

https://doi.org/10.1007/S00453-021-00816-9
https://doi.org/10.1007/S00453-021-00816-9
https://doi.org/10.1016/j.ic.2012.10.006
https://doi.org/10.1016/j.ic.2012.10.006
https://doi.org/10.1137/1.9781611977073.32
https://doi.org/10.1137/1.9781611977936.31
https://doi.org/10.1145/3564246.3585110
https://doi.org/10.1145/3564246.3585110

C. Konrad, A. McGregor, R. Sengupta, and C. Than 29:13

6 Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Semi-streaming
bipartite matching in fewer passes and optimal space. In Joseph (Seffi) Naor and Niv
Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 627–669.
SIAM, 2022. doi:10.1137/1.9781611977073.29.

7 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph
streams. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 1723–1742. SIAM, 2017. doi:10.1137/1.9781611974782.113.

8 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in dy-
namic graph streams and the simultaneous communication model. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pages 1345–1364, 2016. doi:10.1137/1.9781611974331.ch93.

9 Sepehr Assadi, Christian Konrad, Kheeran K. Naidu, and Janani Sundaresan. O(log log n)
passes is optimal for semi-streaming maximal independent set. In Bojan Mohar, Igor Shinkar,
and Ryan O’Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 847–858. ACM,
2024. doi:10.1145/3618260.3649763.

10 Sepehr Assadi and Vihan Shah. An asymptotically optimal algorithm for maximum matching
in dynamic streams. In Mark Braverman, editor, 13th Innovations in Theoretical Computer
Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume
215 of LIPIcs, pages 9:1–9:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPICS.ITCS.2022.9.

11 Sepehr Assadi and Janani Sundaresan. Hidden permutations to the rescue: Multi-pass
streaming lower bounds for approximate matchings. In 64th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023,
pages 909–932. IEEE, 2023. doi:10.1109/FOCS57990.2023.00058.

12 Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in dynamic
data streams. In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece,
September 14-16, 2015, Proceedings, pages 263–274, 2015. doi:10.1007/978-3-662-48350-3_
23.

13 M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In
ICALP, pages 693–703, 2002.

14 Rajesh Hemant Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi,
Andrew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling
with applications to dynamic graph streams. CoRR, abs/1505.01731, 2015. URL: http:
//arxiv.org/abs/1505.01731, arXiv:1505.01731.

15 Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan. The
sparse awakens: Streaming algorithms for matching size estimation in sparse graphs. In Kirk
Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms, ESA
2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 29:1–29:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.ESA.2017.29.

16 Graham Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams. In
ACM Principles of Database Systems, pages 271–282, 2005. doi:10.1145/1065167.1065201.

17 Michael Crouch and Daniel S. Stubbs. Improved streaming algorithms for weighted matching,
via unweighted matching. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona,
Spain, pages 96–104, 2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.96.

18 Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-
window model. In Algorithms - ESA 2013 - 21st Annual European Symposium, Sophia
Antipolis, France, September 2-4, 2013. Proceedings, pages 337–348, 2013. doi:10.1007/
978-3-642-40450-4_29.

FSTTCS 2024

https://doi.org/10.1137/1.9781611977073.29
https://doi.org/10.1137/1.9781611974782.113
https://doi.org/10.1137/1.9781611974331.ch93
https://doi.org/10.1145/3618260.3649763
https://doi.org/10.4230/LIPICS.ITCS.2022.9
https://doi.org/10.1109/FOCS57990.2023.00058
https://doi.org/10.1007/978-3-662-48350-3_23
https://doi.org/10.1007/978-3-662-48350-3_23
http://arxiv.org/abs/1505.01731
http://arxiv.org/abs/1505.01731
https://arxiv.org/abs/1505.01731
https://doi.org/10.4230/LIPICS.ESA.2017.29
https://doi.org/10.1145/1065167.1065201
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
https://doi.org/10.1007/978-3-642-40450-4_29
https://doi.org/10.1007/978-3-642-40450-4_29

29:14 Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model

19 Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation guarantees
for weighted matching in the semi-streaming model. SIAM J. Discrete Math., 25(3):1251–1265,
2011. doi:10.1137/100801901.

20 Hossein Esfandiari, Mohammad Taghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh,
and Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs
and beyond. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1217–1233, 2015.
doi:10.1137/1.9781611973730.81.

21 J. Feigenbaum, S. Kannan, McGregor, S. Suri, and J. Zhang. On graph problems in a semi-
streaming model. Theoretical Computer Science, 348(2-3):207–216, 2005. doi:10.1016/J.TCS.
2005.09.013.

22 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2):207–216, 2005.
doi:10.1016/j.tcs.2005.09.013.

23 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, pages 468–485, 2012. URL: http://portal.acm.org/citation.cfm?id=2095157&CFID=
63838676&CFTOKEN=79617016, doi:10.1137/1.9781611973099.41.

24 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph
processing. In Proceedings of the 28th Conference on Computational Complexity, CCC 2013,
Palo Alto, California, USA, 5-7 June, 2013, pages 287–298, 2013. doi:10.1109/CCC.2013.37.

25 Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on data
streams. In James M. Abello and Jeffrey Scott Vitter, editors, External Memory Algorithms,
Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, May 20-22, 1998,
volume 50 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 107–118. DIMACS/AMS, 1998. doi:10.1090/DIMACS/050/05.

26 Hossein Jowhari. An estimator for matching size in low arboricity graphs with two applications.
J. Comb. Optim., 45(1):21, 2023. doi:10.1007/S10878-022-00929-Z.

27 Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp samplers, finding
duplicates in streams, and related problems. In Proceedings of the Thirtieth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’11, pages 49–58, New
York, NY, USA, 2011. Association for Computing Machinery. doi:10.1145/1989284.1989289.

28 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697, 2013. doi:10.1137/1.
9781611973105.121.

29 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 734–751,
2014. doi:10.1137/1.9781611973402.55.

30 Christian Konrad. Maximum matching in turnstile streams. In Algorithms - ESA 2015 -
23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages
840–852, 2015. doi:10.1007/978-3-662-48350-3_70.

31 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques - 15th International Workshop, APPROX 2012, and 16th Interna-
tional Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings,
pages 231–242, 2012. doi:10.1007/978-3-642-32512-0_20.

https://doi.org/10.1137/100801901
https://doi.org/10.1137/1.9781611973730.81
https://doi.org/10.1016/J.TCS.2005.09.013
https://doi.org/10.1016/J.TCS.2005.09.013
https://doi.org/10.1016/j.tcs.2005.09.013
http://portal.acm.org/citation.cfm?id=2095157&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095157&CFID=63838676&CFTOKEN=79617016
https://doi.org/10.1137/1.9781611973099.41
https://doi.org/10.1109/CCC.2013.37
https://doi.org/10.1090/DIMACS/050/05
https://doi.org/10.1007/S10878-022-00929-Z
https://doi.org/10.1145/1989284.1989289
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.1137/1.9781611973402.55
https://doi.org/10.1007/978-3-662-48350-3_70
https://doi.org/10.1007/978-3-642-32512-0_20

C. Konrad, A. McGregor, R. Sengupta, and C. Than 29:15

32 Christian Konrad and Kheeran K. Naidu. On two-pass streaming algorithms for maximum
bipartite matching. In Mary Wootters and Laura Sanità, editors, Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021,
August 16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference),
volume 207 of LIPIcs, pages 19:1–19:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPICS.APPROX/RANDOM.2021.19.

33 Christian Konrad and Kheeran K. Naidu. An unconditional lower bound for two-pass streaming
algorithms for maximum matching approximation. In David P. Woodruff, editor, Proceedings of
the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA,
January 7-10, 2024, pages 2881–2899. SIAM, 2024. doi:10.1137/1.9781611977912.102.

34 Christian Konrad, Kheeran K. Naidu, and Arun Steward. Maximum matching via maximal
matching queries. In Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha
Kanté, editors, 40th International Symposium on Theoretical Aspects of Computer Science,
STACS 2023, March 7-9, 2023, Hamburg, Germany, volume 254 of LIPIcs, pages 41:1–41:22.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.STACS.2023.
41.

35 László Lovász. On determinants, matchings, and random algorithms. In Lothar Budach,
editor, Fundamentals of Computation Theory, FCT 1979, Proceedings of the Conference on
Algebraic, Arthmetic, and Categorial Methods in Computation Theory, Berlin/Wendisch-Rietz,
Germany, September 17-21, 1979, pages 565–574. Akademie-Verlag, Berlin, 1979.

36 Andrew McGregor. Finding graph matchings in data streams. APPROX-RANDOM, pages
170–181, 2005. doi:10.1007/11538462_15.

37 Andrew McGregor and Sofya Vorotnikova. Planar matching in streams revisited. In Klaus
Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans, editors, Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2016, September 7-9, 2016, Paris, France, volume 60 of LIPIcs, pages 17:1–17:12. Schloss Dag-
stuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPICS.APPROX-RANDOM.2016.17.

38 Andrew McGregor and Sofya Vorotnikova. A simple, space-efficient, streaming algorithm for
matchings in low arboricity graphs. In Raimund Seidel, editor, 1st Symposium on Simplicity
in Algorithms, SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, volume 61 of
OASIcs, pages 14:1–14:4. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/OASICS.SOSA.2018.14.

39 C. St.J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of the London
Mathematical Society, s1-36(1):445–450, 1961. doi:10.1112/jlms/s1-36.1.445.

40 Shay Solomon. Local algorithms for bounded degree sparsifiers in sparse graphs. In Anna R.
Karlin, editor, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018,
January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 52:1–52:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.ITCS.2018.52.

41 Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica, 62(1-2):1–20,
2012. doi:10.1007/s00453-010-9438-5.

FSTTCS 2024

https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2021.19
https://doi.org/10.1137/1.9781611977912.102
https://doi.org/10.4230/LIPICS.STACS.2023.41
https://doi.org/10.4230/LIPICS.STACS.2023.41
https://doi.org/10.1007/11538462_15
https://doi.org/10.4230/LIPICS.APPROX-RANDOM.2016.17
https://doi.org/10.4230/OASICS.SOSA.2018.14
https://doi.org/10.4230/OASICS.SOSA.2018.14
https://doi.org/10.1112/jlms/s1-36.1.445
https://doi.org/10.4230/LIPICS.ITCS.2018.52
https://doi.org/10.1007/s00453-010-9438-5

	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Further Related Work: Matching Size Estimation in Graph Streams
	1.4 Outline

	2 Preliminaries
	3 Graph Results
	3.1 (1+epsilon)-Approximation
	3.2 O(alpha)-Approximation, Two Passes, and O~(m^{3/5}) Space
	3.3 O(alpha)-Approximation, Three Passes, and O~(m^{1/2}) Space

	4 Estimating Rank of Sparse Matrices
	5 Conclusion

