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Abstract
Parametric timed automata (PTAs) extend the concept of timed automata, by allowing timing delays
not only specified by concrete values but also by parameters, allowing the analysis of systems with
uncertainty regarding timing behaviors. The full execution-time opacity is defined as the problem in
which an attacker must never be able to deduce whether some private location was visited, by only
observing the execution time. The problem of full ET-opacity emptiness (i.e., the emptiness over the
parameter valuations for which full execution-time opacity is satisfied) is known to be undecidable
for general PTAs. We therefore focus here on one-clock PTAs with integer-valued parameters over
dense time. We show that the full ET-opacity emptiness is undecidable for a sufficiently large
number of parameters, but is decidable for a single parameter, and exact synthesis can be effectively
achieved. Our proofs rely on a novel construction as well as on variants of Presburger arithmetics.
We finally prove an additional decidability result on an existential variant of execution-time opacity.
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1 Introduction

As surveyed in [13], for some systems, private information may be deduced simply by
observation of public information. For example, it may be possible to infer the content of
some memory space from the access times of a cryptographic module.

The notion of opacity [28, 15] concerns information leaks from a system to an attacker;
that is, it expresses the power of the attacker to deduce some secret information based on
some publicly observable behaviors. If an attacker observing a subset of the actions cannot
deduce whether a given sequence of actions has been performed, then the system is opaque.
Time particularly influences the deductive capabilities of the attacker. It has been shown
in [19] that it is possible for models that are opaque when timing constraints are omitted, to
be non-opaque when those constraints are added to the models.

For this reason, the notion is extended to timed opacity in [17], where the attacker can
also observe time. The input model is timed automata (TAs) [1], a formalism extending
finite-state automata with real-time variables called clocks. It is proved in [17] that this
version of timed opacity is undecidable for TAs.
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3:2 Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

In [9], a less powerful version of opacity is proposed, where the attacker has access
only to the system execution time and aims at deducing whether a private location was
visited during the system execution. This version of timed opacity is called execution-time
opacity (ET-opacity). Two main problems are considered in [9]: 1) the existence of at least
one execution time for which the system is ET-opaque (∃-ET-opacity), and 2) whether all
execution times are such that the system is ET-opaque (called full ET-opacity). These two
notions of opacity are proved to be decidable for TAs [7]. In the same works, the authors
then extend ET-opacity to parametric timed automata (PTAs) [2]. PTAs are an extension
of TAs where timed constraints can be expressed with timing parameters instead of integer
constants, allowing to model uncertainty or lack of knowledge. The two problems come with
two flavors: 1) emptiness problems: whether the set of parameter valuations guaranteeing a
given version of opacity (∃-ET-opacity or full ET-opacity) is empty or not, and 2) synthesis
problems: synthesize all parameter valuations for which a given version of opacity holds.
Both emptiness problems ∃OE (∃-ET-opacity emptiness) and FOE (full-ET-opacity emptiness)
have been shown to be undecidable for PTAs, while decidable subclasses are exhibited [9, 7].
A semi-algorithm (i.e., that may not terminate, but is correct if it does) is provided to solve
∃-ET-opacity synthesis (hereafter ∃OS) in [9].

1.1 Contributions
We address here full-ET-opacity emptiness (FOE) and synthesis (FOS), and ∃-ET-opacity
emptiness (∃OE) and synthesis (∃OS), for PTAs with integer-valued parameters over dense
time with the following main theoretical contributions:
1. We prove that FOE is undecidable (Corollary 27) for PTAs with a single clock and a

sufficiently large number of parameters.
2. We prove in contrast that FOE is decidable (Corollary 28) for PTAs with a single clock

and a single parameter.
3. We prove that ∃OE is decidable (Theorem 29) for PTAs with a single clock and arbitrarily

many parameters. We also exhibit a better complexity for a single parameter over discrete
time (Theorem 31).

We focus on one-clock PTAs, as virtually all problems are undecidable for 3 clocks [5],
and the 2-clock case is an extremely difficult problem, already for reachability [21]. Our
contributions are summarized in Table 1. In order to prove these results, we improve on
the semi-algorithm from [9] for ∃OS and provide one for FOS. These solutions are based
on the novel notion of parametric execution times (PET). The PET of a PTA is the total
elapsed time and associated parameter valuations on all paths between two given locations.
We provide a semi-algorithm for the computation of PET, that builds upon reachability
synthesis (i.e., the synthesis of parameter valuations for which a set of locations are reachable)
for which a semi-algorithm already exists [24]. We then show how to resolve ∃OS and FOS
problems by performing set operations on PET of two complementary subsets of the PTA
where we respectively consider only private paths and only non-private paths.

We then solve the full ET-opacity emptiness (FOE) problem for PTAs with 1 clock and
1 parameter, by rewriting the problems in a parametric variant of Presburger arithmetic.
This is done by 1) providing a sound and complete method for encoding infinite PET for
PTAs with 1 clock and arbitrarily many parameters over dense time; and 2) translating
them into parametric semi-linear sets, a formalism defined and studied in [27]. With these
ingredients, we notably prove that: 1) FOE is undecidable in general for PTAs with 1 clock
and sufficiently many parameters. This is done by reducing a known undecidable problem of
parametric Presburger arithmetic (whose undecidability comes from Hilbert’s 10th problem)
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to the FOE problem in this context. 2) ∃OE is decidable for PTAs with 1 clock and arbitrarily
many parameters. This is done by reducing ∃OE to the existential fragment of Presburger
arithmetic with divisibility, known to be decidable.

1.2 Related works
The undecidability of timed opacity proved in [17] leaves hope for decidability only by
modifying the problem (as in [9, 7]), or by restraining the model. In [31, 32], (initial state)
opacity is shown to be decidable on a restricted subclass of TAs called real-time automata [18].
In [3], a notion of timed bounded opacity, where the secret has an expiration date, and over
a time-bounded framework, is proved decidable. Opacity over subclasses of TAs (such as
one-clock or one-actions TAs) is considered in [6, 4] and over discrete time in [25].

In [9], ∃-ET-opacity synthesis (∃OS) is solved using a semi-algorithm. The method is
based on a self-composition of the PTA with m parameters and n clocks, where the resulting
model consists of m+1 parameters and 2n+1 clocks. The method terminates if the symbolic
state space of this self-composition is finite. Our work proposes in contrast an approach
based on set operations on parametric execution times (PET) of both complementary subsets
of the PTA where we respectively consider only private paths and only non-private paths.
Those submodels are each composed of m + 1 parameters and n + 1 clocks. Our new method
terminates if the symbolic state spaces of both submodels are finite. Another improvement
is that the method described here also supports full timed opacity synthesis (FOS).

The reachability emptiness problem (i.e., the emptiness over the valuations set for which
a given target location is reachable) is known to be undecidable in general since [2]. The
rare decidable settings require a look at the number of parametric clocks (i.e., compared at
least once in a guard or invariant to a parameter), non-parametric clocks and parameters;
throughout this paper, we denote these 3 numbers using a triple (pc, npc, p). Reachability
emptiness is decidable for (1, ∗, ∗)-PTAs (“∗” denotes “arbitrarily many” for decidable cases,
and “sufficiently many” for undecidable cases) over discrete time [2] or dense time with integer-
valued parameters [12], for (1, 0, ∗)-PTAs over dense time over rational-valued parameters [10],
and for (2, ∗, 1)-PTAs over discrete time [16, 21]; and it is undecidable for (3, ∗, 1)-PTAs over
discrete or dense time [12], and for (1, 3, 1)-PTAs over dense time only for rational-valued
parameters [29]. See [5] for a complete survey as of 2019.

Section 2 recalls the necessary preliminaries. Section 3 introduces one of our main
technical proof ingredients, i.e., the definition of PET, and PET-based semi-algorithms for
∃OS and FOS. Section 4 considers the FOE problem over (1, 0, ∗)-PTAs (undecidable) and
(1, 0, 1)-PTAs (decidable). Section 5 proves decidability of ∃OE for (1, 0, ∗)-PTAs. We also
give a better complexity for (1, 0, 1)-PTAs over discrete time. Section 6 concludes.

2 Preliminaries

We let T be the domain of the time, which will be either non-negative reals R≥0 (continuous-
time semantics) or naturals N (discrete-time semantics). Unless otherwise specified, we
assume T = R≥0.

Clocks are real-valued variables that all evolve over time at the same rate. We assume a
set X = {x1 , . . . , xH} of clocks. A clock valuation is a function µ : X→ T. We write 0⃗ for the
clock valuation assigning 0 to all clocks. Given a constant γ ∈ T, µ + γ denotes the valuation
s.t. (µ + γ)(x) = µ(x) + γ, for all x ∈ X. Given R ⊆ X, we define the reset of a valuation µ,
denoted by [µ]R, as follows: [µ]R(x) = 0 if x ∈ R, and [µ]R(x) = µ(x) otherwise.

FSTTCS 2024
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Figure 1 A PTA example and its transformed versions. The yellow dotted location is urgent.

A (timing) parameter is an unknown integer-valued constant of a model. We assume a
set P = {p1, . . . , pM} of parameters. A parameter valuation v is a function v : P→ N.

We assume ▷◁ ∈ {<,≤, =,≥, >}. A clock guard C is a conjunction of inequalities over
X ∪ P of the form x ▷◁

∑
1≤i≤M αipi + γ, with x ∈ X, pi ∈ P, and αi, γ ∈ Z. Given C, we

write µ |= v(C) if the expression obtained by replacing each x with µ(x) and each p with v(p)
in C evaluates to true.

2.1 Parametric timed automata
Parametric timed automata (PTAs) extend TAs with parameters within guards and invariants
in place of integer constants [2]. We also add to the standard definition of PTAs a special
private location, which will be used to define our subsequent opacity concepts.

▶ Definition 1 (PTA [2]). A parametric timed automaton (PTA) [2] A is a tuple
A = (Σ, L, ℓ0, ℓpriv, ℓf ,X,P, I, E), where: 1) Σ is a finite set of actions; 2) L is a finite
set of locations; 3) ℓ0 ∈ L is the initial location; 4) ℓpriv ∈ L is a special private location;
5) ℓf ∈ L is the final location; 6) X is a finite set of clocks; 7) P is a finite set of parameters;
8) I is the invariant, assigning to every ℓ ∈ L a clock guard I(ℓ) (called invariant); 9) E is a
finite set of edges e = (ℓ, g, a, R, ℓ′) where ℓ, ℓ′ ∈ L are the source and target locations, a ∈ Σ,
R ⊆ X is a set of clocks to be reset, and g is a clock guard.

Given a parameter valuation v, we denote by v(A) the non-parametric structure where
all occurrences of a parameter pi have been replaced by v(pi).

▶ Definition 2 (Reset-free PTA). A reset-free PTA A = (Σ, L, ℓ0, ℓpriv, ℓf ,X,P, I, E) is a
PTA where ∀ (ℓ, g, a, R, ℓ′) ∈ E, R = ∅.

▶ Example 3. Consider the PTA A in Figure 1a. It has three locations, one clock and
two parameters (actions are omitted). “x ≤ p2” is the invariant of ℓpriv, and the transition
from ℓ0 to ℓpriv has guard “x ≥ p1”. In this example, x is never reset, and therefore A
happens to be reset-free.

▶ Definition 4 (Semantics of a timed automaton (TA) [1]). Given a PTA A =
(Σ, L, ℓ0, ℓpriv, ℓf ,X,P, I, E) and a parameter valuation v, the semantics of the TA v(A)
is given by the timed transition system (TTS) [22] Tv(A) = (S, s0, Σ ∪ R≥0,→), with
1. S = {(ℓ, µ) ∈ L× RH

≥0 | µ |= v(I(ℓ))}, s0 = (ℓ0, 0⃗),
2. → consists of the discrete and (continuous) delay transition relations:
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a. discrete transitions: (ℓ, µ) e7→ (ℓ′, µ′), if (ℓ, µ), (ℓ′, µ′) ∈ S, and there exists e =
(ℓ, g, a, R, ℓ′) ∈ E, such that µ′ = [µ]R, and µ |= v(g).

b. delay transitions: (ℓ, µ) γ7→ (ℓ, µ + γ), with γ ∈ R≥0, if ∀γ′ ∈ [0, γ], (ℓ, µ + γ′) ∈ S.

Moreover we write (ℓ, µ) (γ,e)−→ (ℓ′, µ′) for a combination of a delay and discrete transition
if ∃µ′′ : (ℓ, µ) γ7→ (ℓ, µ′′) e7→ (ℓ′, µ′).

Given a TA v(A) with concrete semantics (S, s0, Σ ∪ R≥0,→), we refer to the states
of S as the concrete states of v(A). A run of v(A) is an alternating sequence of concrete
states of v(A) and pairs of edges and delays starting from the initial state s0 of the form
(ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · with i = 0, 1, . . . , ei ∈ E, di ∈ R≥0 and (ℓi, µi)

(di,ei)−→ (ℓi+1, µi+1).
Given a state s = (ℓ, µ), we say that s is reachable in v(A) if s appears in a run of v(A).

By extension, we say that ℓ is reachable in v(A); and by extension again, given a set Ltarget
of locations, we say that Ltarget is reachable in v(A) if there exists ℓ ∈ Ltarget such that ℓ is
reachable in v(A).

Given a finite run ρ : (ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · , (di−1, ei−1), (ℓn, µn), the duration of ρ

is dur(ρ) =
∑

0≤i≤n−1 di. We also say that ℓn is reachable in time dur(ρ).
Let us now recall the symbolic semantics of PTAs (see e.g., [23]). We first define operations

on constraints. A linear term over X ∪ P is of the form
∑

1≤i≤H αixi +
∑

1≤j≤M βjpj + γ,
with xi ∈ X, pj ∈ P, and αi, βj , γ ∈ Z. A constraint C (i.e., a convex polyhedron) over
X ∪ P is a conjunction of inequalities of the form lt ▷◁ 0, where lt is a linear term. Given
a parameter valuation v, v(C) denotes the constraint over X obtained by replacing each
parameter p in C with v(p). Likewise, given a clock valuation µ, µ(v(C)) denotes the
expression obtained by replacing each clock x in v(C) with µ(x). We write µ |= v(C)
whenever µ(v(C)) evaluates to true. We say that v satisfies C, denoted by v |= C, if
the set of clock valuations satisfying v(C) is nonempty. We say that C is satisfiable if
∃µ, v s.t. µ |= v(C). We define the time elapsing of C, denoted by C↗, as the constraint
over X and P obtained from C by delaying all clocks by an arbitrary amount of time. That
is, µ′ |= v(C↗) if ∃µ : X → R≥0,∃γ ∈ R≥0 s.t. µ |= v(C) ∧ µ′ = µ + γ. Given R ⊆ X, we
define the reset of C, denoted by [C]R, as the constraint obtained from C by resetting the
clocks in R to 0, and keeping the other clocks unchanged. That is,

µ′ |= v([C]R) if ∃µ : X→ R≥0 s.t. µ |= v(C) ∧ ∀x ∈ X
{

µ′(x) = 0 if x ∈ R

µ′(x) = µ(x) otherwise.

We denote by C↓P the projection of C onto P, i.e., obtained by eliminating the variables not
in P (e.g., using Fourier-Motzkin [30]).

▶ Definition 5 (Symbolic state). A symbolic state is a pair (ℓ, C) where ℓ ∈ L is a location,
and C its associated parametric zone.

▶ Definition 6 (Symbolic semantics). Given a PTA A = (Σ, L, ℓ0, ℓpriv, ℓf ,X,P, I, E), the
symbolic semantics of A is the labeled transition system called parametric zone graph
PZG(A) = (E, S, s0,⇒), with

S = {(ℓ, C) | C ⊆ I(ℓ)}, s0 =
(
ℓ0, (

∧
1≤i≤H xi = 0)↗ ∧ I(ℓ0)

)
, and(

(ℓ, C), e, (ℓ′, C′)
)
∈ ⇒ if e = (ℓ, g, a, R, ℓ′) ∈ E and

C′ =
(
[(C ∧ g)]R ∧ I(ℓ′)

)↗ ∧ I(ℓ′) with C′ satisfiable.

That is, in the parametric zone graph, nodes are symbolic states, and arcs are labeled by
edges of the original PTA.

FSTTCS 2024



3:6 Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

2.2 Reachability synthesis
We use reachability synthesis to solve the problems defined in Section 2.3. This procedure,
called EFsynth, takes as input a PTA A and a set of target locations Ltarget , and attempts to
synthesize all parameter valuations v for which Ltarget is reachable in v(A). EFsynth(A, Ltarget)
was formalized in e.g., [24] and is a procedure that may not terminate, but that computes an
exact result (sound and complete) if it terminates.

2.3 Execution-time opacity problems
We recall here the notion of execution-time opacity [9, 7]. This form of opacity is such that
the observation is limited to the time to reach a given location. This section recalls relevant
definitions from [9, 7].

Given a TA v(A) and a run ρ, we say that ℓpriv is visited on the way to ℓf in ρ if ρ is of
the form (ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · , (ℓm, µm), (dm, em), · · · (ℓn, µn)
for some m, n ∈ N such that ℓm = ℓpriv, ℓn = ℓf and ∀0 ≤ i ≤ n − 1, ℓi ≠ ℓf . We denote
by Visitpriv(v(A)) the set of those runs, and refer to them as private runs. We denote by
DVisitpriv(v(A)) the set of all the durations of these runs.

Conversely, we say that ℓpriv is avoided on the way to ℓf in ρ if ρ is of the form
(ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · , (ℓn, µn)
with ℓn = ℓf and ∀0 ≤ i < n, ℓi /∈ {ℓpriv, ℓf}. We denote the set of those runs
by Visitpriv(v(A)), referring to them as public runs, and by DVisitpriv(v(A)) the set of
all the durations of these public runs. Therefore, DVisitpriv(v(A)) (resp. DVisitpriv(v(A)))
is the set of all the durations of the runs for which ℓpriv is visited (resp. avoided) on the way
to ℓf . These concepts can be seen as the set of execution times from the initial location ℓ0 to
the final location ℓf while visiting (resp. not visiting) a private location ℓpriv. Observe that,
from the definition of the duration of a run, this “execution time” does not include the time
spent in ℓf .

We now recall formally the concept of “execution-time opacity (ET-opacity) for a set of
durations (or execution times) D”: a system is ET-opaque for execution times D whenever,
for any duration in D, it is not possible to deduce whether the system visited ℓpriv or not.

▶ Definition 7 (Execution-time opacity (ET-opacity) for D). Given a TA v(A) and a set of
execution times D, we say that v(A) is execution-time opaque (ET-opaque) for execution
times D if D ⊆ (DVisitpriv(v(A)) ∩DVisitpriv(v(A))).

In the following, we will be interested in the existence of such an execution time. We say
that a TA is ∃-ET-opaque if it is ET-opaque for a non-empty set of execution times.

▶ Definition 8 (∃-ET-opacity). A TA v(A) is ∃-ET-opaque if (DVisitpriv(v(A)) ∩
DVisitpriv(v(A))) ̸= ∅.

In addition, a system is fully ET-opaque if, for any possible measured execution time, an
attacker is not able to deduce whether ℓpriv was visited or not.

▶ Definition 9 (full ET-opacity). A TA v(A) is fully ET-opaque if DVisitpriv(v(A)) =
DVisitpriv(v(A)).

▶ Example 10. Consider again the PTA A in Figure 1a. Let v s.t. v(p1) = 1 and v(p2) = 4.
Then v(A) is ∃-ET-opaque since there is at least one execution time for which v(A) is
ET-opaque. Here, v(A) is ET-opaque for execution times [1, 3]. However, v(A) is not fully
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ET-opaque since there is at least one execution time for which v(A) is not ET-opaque. Here,
v(A) is not ET-opaque for execution times [0, 1) (which can only occur on a public run) and
for execution times (3, 4] (which can only occur on a private run).

Let us consider the following decision problems:

∃-ET-opacity p emptiness problem (∃OE):
Input: A PTA A
Problem: Decide the emptiness of the set of valuations v s.t. v(A) is ∃-ET-opaque.

Full ET-opacity p emptiness problem (FOE):
Input: A PTA A
Problem: Decide the emptiness of the set of valuations v s.t. v(A) is fully ET-opaque.

The synthesis counterpart allows for a higher-level problem aiming at synthesizing (ideally
the entire set of) parameter valuations v for which v(A) is ∃-ET-opaque or fully ET-opaque.

∃-ET-opacity p synthesis problem (∃OS):
Input: A PTA A
Problem: Synthesize the set of all valuations v s.t. v(A) is ∃-ET-opaque.

Full ET-opacity p synthesis problem (FOS):
Input: A PTA A
Problem: Synthesize the set of all valuations v s.t. v(A) is fully ET-opaque.

3 A parametric execution times-based semi-algorithm for ∃OS and FOS

One of our main results is the proof that both ∃OS and FOS can be deduced from set
operations on two sets representing respectively all the durations and parameter valuations
of the runs for which ℓpriv is reached (resp. avoided) on the way to ℓf . Those sets can be seen
as a parametrized version of DVisitpriv(v(A)) and DVisitpriv(v(A)). In order to compute
such sets, we propose here the novel notion of parametric execution times. (Note that our
partial solution for PET construction and semi-algorithms for ∃OS and FOS work perfectly
for rational-valued parameters too, and that they are not restricted to 1-clock PTAs.)

3.1 Parametric execution times
The parametric execution times (PET) are the parameter valuations and execution times of
the runs to ℓf .

▶ Definition 11. Given a PTA A with final location ℓf , the parametric execution
times of A are defined as PET(A) = {(v, d) | ∃ρ in v(A) such that d = dur(ρ) ∧
ρ is of the form (ℓ0, µ0), (d0, e0), · · · , (ℓn, µn) for some n ∈ N such that ℓn = ℓf and
∀0 ≤ i ≤ n− 1, ℓi ̸= ℓf}.

By definition, we only consider paths up to the point where ℓf is reached, meaning that
execution times do not include the time elapsed in ℓf , and that runs that reach ℓf more than
once are only considered up to their first visit of ℓf .

▶ Example 12. Consider again the PTA A in Figure 1a. Then PET(A) is (d ≤ 3 ∧ p1 ≥
0 ∧ p2 ≥ 0) ∨ (0 ≤ p1 ≤ 3 ∧ p1 ≤ d ≤ p2).

FSTTCS 2024



3:8 Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

Partial solution
Synthesizing parametric execution times is in fact equivalent to a reachability synthesis where
the PTA is enriched (in particular by adding a clock measuring the total execution time).

▶ Proposition 13. Let A be a PTA, and ℓf the final location of A.
Let A′ be a copy of A s.t.:

a clock xabs is added and initialized at 0 (it does not occur in any guard or reset);
a parameter d is added;
ℓf is made urgent (i.e., time is not allowed to pass in ℓf), all outgoing edges from ℓf are
pruned and a guard xabs = d is added to all incoming edges to ℓf .

Then, PET (A) = EFsynth(A′, {ℓf}).

Proof. By having ℓf being urgent and removing its outgoing edges, we ensure that the runs
that reach ℓf in A′ are all of the form (ℓ0, µ0), (d0, e0), · · · , (ℓn, µn) for some n ∈ N such that
ℓn = ℓ′ and ∀0 ≤ i ≤ n− 1, ℓi ̸= ℓ′. By having a clock xabs that is never reset and ℓf being
urgent, we ensure that for any run ρ that reaches ℓf in A′, the value of xabs in the final state
if equals to dur(ρ). By having a guard xabs = d on all incoming edges to ℓf , we ensure that
d = dur(ρ) on any run ρ that reaches ℓf .

Therefore, EFsynth(A′, {ℓf}) contains all parameter valuations of the runs to ℓf in A that
stop once ℓf is reached, along with the duration of those runs contained in d. ◀

▶ Example 14. Consider again the PTA A in Figure 1a. Then A′ is given in Figure 1b.

As per Lemma 33 in Section A, there exist semi-algorithms for reachability synthesis,
and hence for the PET synthesis problem – although they do not guarantee termination.

3.2 ∃OS and FOS problems
Now, we detail how the PET can be used to compute the solution to both ∃OS and FOS. To
do so, we will go through a (larger) intermediate problem: the synthesis of both parameter
valuations v and execution times for which v(A) is ET-opaque.
∃-ET-opacity p-d synthesis problem (d-∃OS):
Input: A PTA A
Problem: Synthesize the set of parameter valuations v and execution times d s.t. v(A)
is ∃-ET-opaque and v(A) is ET-opaque for execution time d.

Full ET-opacity p-d synthesis problem (d-FOS):
Input: A PTA A
Problem: Synthesize the set of parameter valuations v and execution times d s.t. v(A)
is fully ET-opaque and d is the set of durations of all runs in v(A).

First, given a PTA A and two locations ℓf and ℓpriv of A, let us formally define both sets
representing respectively all the durations and parameter valuations of the runs for which
ℓpriv is reached (resp. avoided) on the way to ℓf .

Let Aℓpriv
ℓf

be a copy of A s.t.: 1) a Boolean variable1 b is added and initialized to False, 2)
b is set to True on all incoming edges to ℓpriv, 3) a guard b = True is added to all incoming
edges to ℓf . The PTA Aℓpriv

ℓf
contains all runs of A for which ℓpriv is reached on the way to ℓf ,

and PET (Aℓpriv
ℓf

) contains the durations and parameter valuations of those runs.

1 Which is a convenient syntactic sugar for doubling the number of locations.
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Let A¬ℓpriv
ℓf

be a copy of A s.t. all incoming and outgoing edges to and from ℓpriv are
pruned. The PTA A¬ℓpriv

ℓf
contains all runs of A for which ℓpriv is avoided on the way to ℓf ,

and PET (A¬ℓpriv
ℓf

) contains the durations and parameter valuations of those runs.

▶ Example 15. Consider again the PTA A in Figure 1a. Then Aℓpriv
ℓf

is given in Figure 1c,
and A¬ℓpriv

ℓf
is given in Figure 1d.

▶ Proposition 16. Given a PTA A, we have: d-∃OS(A) = PET (Aℓpriv
ℓf

) ∩ PET (A¬ℓpriv
ℓf

).

Proof. By definition, d-∃OS(A) is the synthesis of parameter valuations v and execution
times Dv such that v(A) is opaque w.r.t. ℓpriv on the way to ℓf for these execution times Dv.
This means that d-∃OS(A) contains exactly all parameter valuations and execution times for
which there exist both at least one run in Aℓpriv

ℓf
and at least one run in A¬ℓpriv

ℓf
. Since PET

are the synthesis of the parameter valuations and execution times up to the final location,
d-∃OS(A) is equivalent to the intersection of the PET (Aℓpriv

ℓf
) and PET (A¬ℓpriv

ℓf
). ◀

▶ Example 17. Consider again the PTA A in Figure 1a. Then PET(Aℓpriv
ℓf

) is p1 ≤ d ≤
p2 ∧ 0 ≤ p1 ≤ 3. Moreover, PET (A¬ℓpriv

ℓf
) is 0 ≤ d ≤ 3∧ p1 ≥ 0∧ p2 ≥ 0. Hence, d-∃OS(A) is

0 ≤ p1 ≤ d ≤ p2 ∧ d ≤ 3.

In order to compute d-FOS(A), we need to remove from d-∃OS(A) all parameter val-
uations v s.t. there is at least one run to ℓf in v(A) whose duration is not in the set of
execution times for which v(A) is ET-opaque. Parameter valuations and durations of such
runs are included in PET (A) \ d-∃OS(A), which is also the difference between PET (Aℓpriv

ℓf
)

and PET (A¬ℓpriv
ℓf

). We note that difference as

Diff (A) =
(
PET (Aℓpriv

ℓf
) ∪ PET (A¬ℓpriv

ℓf
)
)
\

(
PET (Aℓpriv

ℓf
) ∩ PET (A¬ℓpriv

ℓf
)
)

Diff (A) is made of a union of convex polyhedra C over P (i.e., the parameters of A) and d,
which is the duration of runs. The parameter values in those polyhedra are the ones we do
not want to see in d-FOS(A). Our solution thus consists in removing from d-∃OS(A) the
values of P in Diff (A).

▶ Proposition 18. Given a PTA A with parameter set P: d-FOS(A) = d-∃OS(A)\Diff (A)↓P.

Proof. See Section B.1. ◀

▶ Example 19. Consider again the PTA A in Figure 1a. We have Diff (A) is (0 ≤ p1 ≤
3 < d ≤ p2) ∨ (0 ≤ d ≤ 3 ∧ d < p1 ∧ p2 ≥ 0) ∨ (0 ≤ p2 < d ≤ 3 ∧ p1 ≥ 0). Then Diff (A)↓P
is (0 ≤ p1 ≤ 3 < p2) ∨ (0 < p1 ∧ p2 ≥ 0) ∨ (0 ≤ p2 < 3 ∧ p1 ≥ 0). Hence, d-FOS(A) is
p1 = 0 ≤ d ≤ p2 = 3.

Finally, obtaining ∃OS(A) and FOS(A) is trivial since, by definition, ∃OS(A) =
(d-∃OS(A))↓P and FOS(A) = (d-FOS(A))↓P.

▶ Example 20. Consider again the PTA A in Figure 1a. Then ∃OS(A) is 0 ≤ p1 ≤ p2∧p1 ≤ 3.
And FOS(A) is p1 = 0 ∧ p2 = 3.
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On correctness and termination
We described here a method for computing ∃OS(A) and FOS(A) for a PTA, that produces an
exact (sound and complete) result if it terminates. It relies on the PET of two subsets of the
PTA, the computation of which requires enrichment with one clock and one parameter. If they
can be computed, those PET take the form of a finite union of convex polyhedra, on which are
then applied the union, intersection, difference and projection set operations – that are known
to be decidable in this context. Thus the actual termination of the whole semi-algorithm
relies on the reachability synthesis of two (n + 1, 0, m + 1)-PTAs. Reachability synthesis is
known to be effectively computable for (1, 0, m)-PTAs [10], and cannot be achieved for PTAs
with 3 parametric clocks or more due to the undecidability of the reachability emptiness
problem [2]. For the semi-algorithm we proposed here for ∃OS and FOS problems, we therefore
do not have any guarantees of termination, even with only one parametric clock (due to the
additional clock xabs), although this might change depending on future results regarding the
decidability of reachability synthesis for PTAs with 2 parametric clocks (a first decidability
result for the emptiness only was proved for (2, ∗, 1)-PTAs over discrete time [21]).

4 Decidability and undecidability of FOE for 1-clock-PTAs

In this section, we:
1. propose a method to compute potentially infinite PET on (1, 0, ∗)-PTAs, i.e., PTAs with

1 parametric clock and arbitrarily many parameters (Section 4.1);
2. prove decidability of the FOE problem for (1, 0, 1)-PTAs, by rewriting infinite PET in a

variant of Presburger arithmetic (Section 4.2);
3. prove undecidability of the FOE problem for (1, 0, ∗)-PTAs (Section 4.2).

4.1 Encoding infinite PET for (1, 0, ∗)-PTAs
Given a PTA A with exactly 1 clock, the goal of the method described here is to guarantee
termination of the computation of PET (A) with an exact result. If the partial solution given
in Section 3.1 is applied, it amounts to a reachability synthesis on a PTA with 2 clocks,
without guarantee of termination. The gist of this method is a form of divide and conquer,
where we solve sub-problems, specifically reachability synthesis on sub-parts of A without
adding an additional clock. The first step consists of building some reset-free PTAs, each
representing a meaningful subset of the paths joining two given locations in A. PET (A) is
then obtained by combining the results of reachability synthesis performed on those reset-free
PTAs. The result is encoded in a (finite) regular expression that represents an infinite union
of convex polyhedra. Note that this method works perfectly for rational-valued parameters.

4.1.1 Defining the set of reset-free PTAs
Each of the PTAs we build describes parts of the behavior between two locations. More
precisely, they represent all the possible paths such that clock resets may occur only on the
last transition of the path. We first define the set of locations that we may need based on
whether they are initial, final, or reached by a transition associated to a reset.

▶ Definition 21 (Final-reset paths FrP(A, ℓf)). Let A be a 1-clock PTA, ℓ0 its initial location
and ℓf a location of A. We define as FrP(A, ℓf) the set of pairs of locations s.t. ∀(ℓi, ℓj) ∈
FrP(A, ℓf)

ℓi = ℓ0, or ℓi ̸= ℓf and there is a clock reset on an incoming edge to ℓi,
ℓj = ℓf , or there is a clock reset on an incoming edge to ℓj.
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For each pair of states (ℓi, ℓj) as defined above, we build a reset-free PTA. If the target
state ℓj is not final (which is a special case), the reset-free PTA models every path going
from ℓi to ℓj and that ends with a reset on its last step. In particular, this ensures that ℓj is
reached with clock valuation 0.

▶ Definition 22 (Reset-free PTA A(ℓi, ℓj)). Let A be a 1-clock PTA, x its unique clock, and
ℓi, ℓj two locations in A. We define as A(ℓi, ℓj) the reset-free PTA obtained from a copy
of A by:
1. creating a duplicate ℓ′

j of ℓj;
2. for all incoming edges (ℓ, g, a, R, ℓj) where R = ∅, removing (ℓ, g, a, R, ℓj) and adding an

incoming edge (ℓ, g, a, R, ℓ′
j);

3. if ℓj ̸= ℓf , then for all outgoing edges (ℓj , g, a, R, ℓ), removing (ℓj , g, a, R, ℓ) and adding
an outgoing edge (ℓ′

j , g, a, R, ℓ),
else, making ℓ′

j urgent and adding an edge (ℓ′
j , True, ϵ, ∅, ℓj);

4. removing any upper bound invariant on ℓj and making it urgent;
5. if ℓi ̸= ℓj, setting ℓi as the initial location,

else, setting ℓ′
j as the initial location;

6. removing any clock reset on incoming edges to ℓj and pruning all other edges featuring a
clock reset, and all outgoing edges from ℓf ;

7. adding a parameter d, and a guard x = d to all incoming edges to ℓj;

We will show next how the reachability synthesis of those reset-free PTAs corresponds to
fragments of the runs that are considered in PET (A). For simplification, given A a 1-clock
PTA, and ℓi, ℓj two locations of A, we now note Zℓi,ℓj

= EFsynth(A(ℓi, ℓj), {ℓj}).

4.1.2 Reconstruction of PET from the reachability synthesis of the
reset-free PTAs

Given A a 1-clock PTA, and ℓf a location of A, for all (ℓi, ℓj) ∈ FrP(A, ℓf) we may compute
the parametric zone Zℓi,ℓj with guarantee of termination, since the reachability synthesis is
decidable on 1-clock PTAs. Those parametric zones may be used to build the (potentially
infinite) PET of A. To do so, we first define a (non-parametric, untimed) finite automaton
where the states are the locations of A, and the arc between the states ℓi and ℓj is labeled
by Zℓi,ℓj

. We refer to this automaton as the automaton of the zones of A.

▶ Definition 23 (Automaton of the zones). Let A be a 1-clock PTA, ℓ0 its initial location
and ℓf a location of A. We define as Â the finite automaton such that:

The states of Â are exactly the locations of A;
ℓ0 is initial and ℓf is final;
∀(ℓi, ℓj) ∈ FrP(A, ℓf), there is a transition from ℓi to ℓj labeled by Zℓi,ℓj

.

We claim that the language L̂ of Â is a representation of the times (along with parameter
constraints) to go from ℓ0 to ℓf in A. As Â is a finite automaton, L̂ can be represented as a
regular expression with three operators: the concatenation (.), the alteration (+), and the
Kleene star (∗). PET (A) can thus be expressed by redefining those operators with operations
on the parametric zones that label edges of L̂.

Any parametric zone Za,b labeling an edge of Â is of the form
⋃

i Ci with 1 ≤ i ≤ n

and Ci a convex polyhedra. As per Definition 6, Ci is a conjunction of inequalities, each of
the form αd +

∑
1≤i≤M βipi + γ ▷◁ 0, with pi ∈ P, and α, βi, γ ∈ Z. Note that x has been

replaced by execution times d, as per Definition 11. In the following, we denote by Cd
i all
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3:12 Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

inequalities such that α ̸= 0 (i.e., inequalities over d and possibly some parameters in P),
and by CP

i all inequalities such that α = 0 (i.e., inequalities strictly over P). This means
that Ci = Cd

i ∧CP
i . For simplification of what follows, we write inequalities in Cd

i as d ▷◁ c

where c =
∑

1≤i≤M
βipi+γ

−α .
Given Za,b =

⋃
i Ci and Zc,d =

⋃
j Cj , we define the operators .̄, ∗̄ and +̄ .

Operator .̄ is the addition of the time durations and intersection of parameter constraints
between two parametric zones. Formally, Za,b .̄ Zc,d =

⋃
i∗j Cd

i,j ∩CP
i,j such that CP

i,j =
CP

i ∧CP
j , and for all d ▷◁ ci ∈ Cd

i and d ▷◁′ cj ∈ Cd
j , if ▷◁, ▷◁′ ∈ {<,≤, =} or ▷◁, ▷◁′ ∈ {>,≥, =},

then d ▷◁′′ ci + cj ∈ Cd
i,j with ▷◁′′ being in the same direction as ▷◁ and ▷◁′ and is

a strict inequality if either ▷◁ or ▷◁′ is a strict inequality;
an equality if both ▷◁ and ▷◁′ are equalities;
a non-strict inequality otherwise.

Operator ∗̄ is the recursive application of .̄ on a parametric zone. Formally, Za,b
∗̄ =⋃

K∈N {d = 0}(̄.Za,b)K where (̄.Za,b) is repeated K times, with K being any value in N. Note
that {d = 0} corresponds to the case where the loop is never taken, and that it is neutral for
the .̄ operator: {d = 0}̄.Za,b = Za,b. Also note that, in practice, a = b whenever we use this
operator.

Operator +̄ is the union of two parametric zones. Formally, Za,b+̄Zc,d = Za,b ∪ Zc,d.
Note that the result of any of those operations is a union of convex polyhedra of the form⋃

i Ci, meaning that these operators can be nested. Also, this union is infinite whenever
operator ∗̄ is present.

▶ Proposition 24. Let A be a 1-clock PTA and ℓf a location of A. Let L̂ be the language
of the automaton of the zones Â, and e a regular expression describing L̂. Let ē be the
expression obtained by replacing the ., + and ∗ operators in e respectively by .̄, +̄ and ∗̄. We
have ē = PET (A).

Proof. See Section B.4. ◀

4.1.3 Summary and illustration of the encoding
Given a PTA A with exactly 1 clock, and given a location ℓf of A, we compute with an exact
result an encoding of PET (A), through the following steps:
1. compute FrP(A, ℓf), the pairs of locations (ℓi, ℓj) such that on some run from initial

location to ℓf there might exists a sub-path from ℓi to ℓj , such that the clock is reset
when entering both locations, but never in between;

2. for each of those pairs, compute the reset-free PTA A(ℓi, ℓj), for which reachability
synthesis, noted Zℓi,ℓj

corresponds to the aforementioned sub-paths;
3. generate the automaton of the zones Â, on which each pair of locations (ℓi, ℓj) is connected

by a transition labeled with Zℓi,ℓj ;
4. compute a regular expression for Â, which we proved to be equivalent to PET (A). Note

that computing a regular expression from a finite automaton is decidable and there exists
numerous efficient methods for this [20].

Before discussing how this regular expression can be used to answer the Full ET-opacity
p emptiness problem, let us illustrate how it is obtained on a simple example. Figure 2a
depicts a 1-clock PTA A with a clock x and two parameters p and q. We are interested
in solving PET(A) where we assume here that ℓf is ℓ1. Applying the semi-algorithm from
Section 3.1, suppose the addition of a clock xabs and parameter d to the PTA, followed by
the computation of the reachability synthesis to ℓ1. In this case, the algorithm does not
terminate though, and as shown in Figure 2b.
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ℓ0 ℓ1

x ≤ p

x = p

x← 0

x ≥ q

(a) 1-clock PTA A.

(ℓ0, 0 ≤ x ≤ p ∧ xabs = x ∧ d ≥ 0)

(ℓ1, q ≤ x ≤ p ∧ xabs = d = x)

(ℓ0, 0 ≤ x ≤ p ∧ xabs = x + p ∧ d ≥ 0)

(ℓ1, q ≤ x ≤ p ∧ xabs = d = x + p)

(ℓ0, 0 ≤ x ≤ p ∧ xabs = x + i× p ∧ d ≥ 0)

(ℓ1, q ≤ x ≤ p ∧ xabs = d = x + i× p)

(b) Symbolic (infinite) state space when computing PET in a
naive way.

Figure 2 A 1-clock PTA and the PET problem.

ℓ′
0 ℓ1

ℓ0

x ≤ p

x ≥ q

x = p

x = d

(a) A(ℓ0, ℓ0).

ℓ0 ℓ′
1

ℓ1

x ≤ p

x ≥ q

x = d

(b) A(ℓ0, ℓ1).

ℓ0 ℓ1

Zℓ0,ℓ0

Zℓ0,ℓ1

(c) Automaton of the zones Â.

Figure 3 Reset-free automata of A (from Figure 2a) and automaton of the zones Â.

Following the steps of our method, we have FrP(A, ℓ1) = {(ℓ0, ℓ0), (ℓ0, ℓ1)}. Figures 3a
and 3b depict the corresponding reset-free automata while Figure 3c gives the automaton of
the zones. Urgent locations are colored in yellow.

Reachability synthesis of the reset-free automata gives Zℓ0,ℓ0 = {d = p} and Zℓ0,ℓ1 =
{q ≤ d ≤ p}. As per Proposition 24, the expression ē (obtained by replacing operators in
the regular expression of the language of Â) is equivalent to PET(A) (again taking ℓ1 as
final location). That expression can be easily obtained (for example with a state elimination
method) and gives ē = (Zℓ0,ℓ0)∗̄ .̄ Zℓ0,ℓ1 . We may then develop operations on ē and obtain
the following infinite disjunction of parametric zones.

PET (A) = (Zℓ0,ℓ0)∗̄ .̄ Zℓ0,ℓ1

= {d = p}∗̄ .̄ {q ≤ d ≤ p}
= {d = 0 ∨ d = p ∨ d = 2p ∨ . . . }.{q ≤ d ≤ p}
= {q ≤ d ≤ p ∨ q + p ≤ d ≤ 2p ∨ q + 2p ≤ d ≤ 3p ∨ . . . }

(1)

4.2 Solving the FOE problem through a translation of PET to parametric
Presburger arithmetic

Presburger arithmetic is the first order theory of the integers with addition. It is a useful
tool that can represent and manipulate sets of integers called semi-linear sets. Those sets are
particularly meaningful to study TAs, as the set of durations of runs reaching the final location
can be described by a semi-linear set [14]. Presburger arithmetic is however not expressive
enough to represent durations of runs in PTAs due to the presence of parameters. In [27], a
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parametric extension of Presburger arithmetic was considered, introducing linear parametric
semi-linear sets (LpSl sets) which are functions associating to a parameter valuation v a
(traditional) semi-linear set of the following form:

S(v) =
{

x ∈ Nm |
∨
i∈I

∃x0, . . . xni ∈ Nm,k1, . . . kni ∈ N, x =
ni∑

j=0
xj

∧bi
0(v) ≤ x0 ≤ci

0(v) ∧
ni∧

j=1
kjbi

j(v) ≤ xj ≤ kjci
j(v)

}
(2)

where I is a finite set and the bi
j and ci

j are affine functions with coefficients in N. A 1-LpSl
set is an LpSl set defined over a single parameter. Given two LpSl (resp. 1-LpSl) sets S1
and S2, the LpSl (resp. 1-LpSl) equality problem consists in deciding whether there exists a
parameter valuation v such that S1(v) = S2(v).

▶ Theorem 25 ([27]). The LpSl equality problem is undecidable.
The 1-LpSl equality problem is decidable. Moreover, the set of valuations achieving

equality can be computed.

The main goal of this subsection is to relate the expressions computed in Section 4.1 to
LpSl sets in order to tackle ET-opacity problems. Since Presburger arithmetic is a theory of
integers, we have to restrict PTAs to integer parameters; this is what prevents our results
to be extended to rational-valued parameters in a straightforward manner. Moreover, we
need to focus on time durations of runs with integer values. This second restriction however
is without loss of generality. Indeed, in [8, Theorem 5], a trick is provided (which consists
mainly in doubling every term of the system so that any run duration that used to be a
rational of the form q

2 is now an integer to ensure that if a set is non-empty, it contains an
integer. This transformation also allows one to consider only non-strict constraints, and thus
we assume every constraint is non-strict in the following.

▶ Theorem 26. The LpSl equality problem reduces to the FOE problem for (1, 0, ∗)-PTAs.
Moreover, the FOE problem for (1, 0, 1)-PTAs reduces to the 1-LpSl equality problem.

Sketch of proof. From Equation (2) one can see that an LpSl set parametrically defines
integers that are the sum of two types of elements: x0 belongs to an interval, while the xj

represent a sum of integers, each coming from the interval [bi
j ; ci

j ]. Intuitively, we separate a
run into its elementary path until the final state and its loops. We use x0 to represent the
duration of the elementary path, and the xj adds the duration of loops. Each occurrence of
the same loop within a run being independent (as they include a reset of the clock), their
durations all belong to the same interval.

Formally, given a PTAA, using Section 3.2, we build the PTAsAℓpriv
ℓf

andA¬ℓpriv
ℓf

separating
the private and public runs of A. Then with Section 4.1, we obtain expressions ēℓpriv and
ē¬ℓpriv such that (Proposition 24) ēℓpriv = PET(Aℓpriv

ℓf
) and ē¬ℓpriv = PET(A¬ℓpriv

ℓf
). We then

develop and simplify these expressions until we can build LpSl sets representing the integers
accepted by each expression. We can then show the inter-reduction as the full ET-opacity is
directly equivalent to the equality of the two sets. Note that one direction of the reduction is
stronger, allowing multiple parameters. This is due to constraints over the parameters which
may appear in our expressions, but cannot be transferred to LpSl sets. However, when there
is a single parameter, one can easily resolve these constraints beforehand. See Section B.5
for a complete proof. ◀
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Combining Theorems 25 and 26 directly gives us:

▶ Corollary 27. FOE is undecidable for (1, 0, ∗)-PTAs.

▶ Corollary 28. FOE is decidable for (1, 0, 1)-PTAs and FOS can be solved.

5 Decidability of ∃OE for (1, 0, ∗)-PTAs for integer-valued parameters

We prove here the decidability of ∃OE for (1, 0, ∗)-PTAs with integer parameters over dense
time (Section 5.1); we also prove that the same problem is in EXPSPACE for (1, ∗, 1)-PTAs
over discrete time (Section 5.2).

5.1 General case
Adding the divisibility predicate (denoted “|”) to Presburger arithmetic produces an unde-
cidable theory, whose purely existential fragment is known to be decidable [26]. The FOE
problem can be encoded in this logic, but requires a single quantifier alternation, which goes
beyond the aforementioned decidability result, leading us to rely on [27]. The ∃OE problem
however can be encoded in the purely existential fragment.

▶ Theorem 29. The ∃OE problem is decidable.

Sketch of proof. As for Theorem 26, we start by building and simplifying expressions
representing the private and public durations of the PTA. Instead of translating the expression
into LpSl set however, we now use Presburger with divisibility.

Again, a run can be decomposed in the run without loops, and its looping parts. The
duration of the former is defined directly by conjunction of inequalities, which can be
formulated in a Presburger arithmetic formula. The latter requires the divisibility operator
to represent the arbitrary number of loops. Hence, we can build a formula accepting exactly
the integers satisfying our expressions. Deciding the ∃OE problem can be achieved by testing
the existence of an integer satisfying the formulas produced from both expressions, which
can be stated in a purely existential formula. See [11] for a complete proof. ◀

▶ Remark 30 (complexity). Let us quickly discuss the complexity of this algorithm. The
expressions produced by Proposition 24 can, in the worst case, be exponential in the size
of the PTA. This formula was then simplified within the proof of Theorem 26, in part by
developing it, which could lead to an exponential blow-up. Finally, the existential fragment
of Presburger arithmetic with divisibility can be solved in NEXPTIME [26]. As a consequence,
our algorithm lies in 3NEXPTIME.

5.2 Discrete time case
There are clear ways to improve the complexity of this algorithm. In particular, we finally
prove an alternative version of Theorem 29 in a more restricted setting (T = N), but
with a significantly lower complexity upper bound and using completely different proof
ingredients [21].

▶ Theorem 31. ∃OE is decidable in EXPSPACE for (1, ∗, 1)-PTAs over discrete time.

Proof. See [11]. ◀

▶ Remark 32. The fact that we can handle arbitrarily many non-parametric clocks in
Theorem 31 does not improve Theorem 29: over discrete time, it is well-known that non-
parametric clocks can be eliminated using a technique from [2], and hence come “for free”.
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Table 1 Execution-time opacity problems for PTAs: contributions and some open cases.

Time (pc, npc, p) ∃OE emptiness ∃OE synthesis
dense (1, 0, ∗) √ Th. 29 ?
dense (1, ∗, ∗) ? ?
dense (2, 0, 1) ? ?
dense (3, 0, 1) × [9, Th.6.1] ×

discrete (1, ∗, 1) √EXPSPACE Th. 31 ?

Time (pc, npc, p) FOE emptiness FOE synthesis
dense (1, 0, 1) √ Corol. 28 √ Corol. 28
dense (1, 0, [2, M)) ? ?
dense (1, 0, M) × Corol. 27 ×
dense ([2, 3], 0, 1) ? ?
dense (4, 0, 2) × [9, Th. 7.1] ×

6 Conclusion and perspectives

In this paper, we addressed the ET-opacity for 1-clock PTAs with integer-valued parameters
over dense time. We proved that 1) FOE is undecidable for a sufficiently large number of
parameters, 2) FOE becomes decidable for a single parameter, and 3) ∃OE is decidable, in
3NEXPTIME over dense time and in EXPSPACE over discrete time. These results rely on a
novel construction of PET, for which a sound and complete computation method is provided.
In the general case, we provided semi-algorithms for the computation of PET, ∃OS and FOS.

The undecidability result reduces from a problem in parametric Presburger arithmetic,
itself reducing from Hilbert’s tenth problem. The latter is known to be undecidable for
various classes of polynomials (with degree 4 and 58 variables for instance). The number of
parameters used in the undecidability of the parametric Presburger arithmetic problem is not
direct from their proof but we can estimate that at least 200 parameters are needed. Closing
the gap through this approach would require important developments in Diophantine analysis.
The opacity problem hence remains open for many cases of low number of parameters.

Our PET constructions and all PET-related results work perfectly for rational-valued
parameters. It remains however unclear how to extend our (un)decidability results to rational-
valued parameters, as our other proof ingredients (notably using the Presburger arithmetics)
heavily rely on integer-valued parameters.

It remains also unclear whether synthesis can be achieved using techniques from [21],
explaining the “open” cell in the “discrete time” row of Table 1. Also, a number of problems
remain open in Table 1, notably the 2-clock case, already notoriously difficult for reachability
emptiness [2, 21].

Finally, exploring weak ET-opacity [7] (which allows the attacker to deduce that the
private location was not visited) is also on our agenda.
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A Recalling the correctness of EFsynth

▶ Lemma 33 ([24]). Let A be a PTA, and let Ltarget be a subset of the locations of A.
Assume EFsynth(A, Ltarget) terminates with result K. Then v |= K iff Ltarget is reachable
in v(A).

B Proof of results

B.1 Proof of Proposition 18
▶ Proposition 18. Given a PTA A with parameter set P: d-FOS(A) = d-∃OS(A)\Diff (A)↓P.

Proof. By definition, d-FOS(A) is the synthesis of parameter valuations v (and execution
times of their runs) s.t. v(A) is fully opaque w.r.t. ℓpriv on the way to ℓf . By definition,
Diff (A)↓P is the set of parameter valuations s.t. for any valuation v ∈ Diff (A)↓P, there
is at least one run where ℓpriv is reached (resp. avoided) on the way to ℓf in v(A) whose
duration time is different from those of any run where ℓpriv is avoided (resp. reached) on
the way to ℓf in v(A). By removing this set of parameters from d-∃OS(A), we are left with
parameter valuations (and execution times of their runs) s.t. for any v, any run ρ where ℓpriv
is reached (resp. avoided) on the way to ℓf in v(A), there is a run ρ′ where ℓpriv is avoided
(resp. reached) on the way to ℓf in v(A) and dur(ρ) = dur(ρ′). This is equivalent to our
definition of full opacity. ◀
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B.2 Proposition 34
▶ Proposition 34. Let A be a 1-clock PTA, and (ℓi, ℓj) ∈ FrP(A, ℓf) such that ℓj ̸= ℓf . Then
Zℓi,ℓj

is equivalent to the synthesis of parameter valuations v and execution times Dv such
that Dv = {d | ∃ρ from (ℓi, {x = 0}) to ℓj in v(A) such that d = dur(ρ), ℓf is never reached,
and x is reset on the last edge of ρ and on this edge only }.

Proof. Let us first consider the case where ℓi ̸= ℓj . Steps 1 to 3 in Definition 22 imply that
whenever ℓj occurs either as a source or target location in an edge, it is replaced by the
duplicate locality ℓ′

j , except when ℓj is the target location and x is reset on the edge. At this
stage, for any path between ℓi and ℓj in A, where no incoming edge to ℓj featuring a clock
reset is present, there is an equivalent path in A(ℓi, ℓj) with ℓj being replaced by ℓ′

j . Step 4
implies that whenever ℓj is reached in A(ℓi, ℓj) no delay is allowed. As there are no outgoings
edges from ℓj anymore, and only incoming edges featuring a clock reset, only runs ending
with such edges are accepted by the reachability synthesis on ℓj . Since the clock value when
entering in ℓj through such an edge is always 0, removing the upper bound of the invariant
does not impact the availability of transitions. Because of our assumption that ℓi ≠ ℓj , Step
5 does not change the initial location. Step 6 ensures that, in any run from ℓi to ℓj :

no clock reset is performed before the last edge of the run;
the clock is not reset when entering ℓj , and is therefore equals to the duration of the run;
ℓf is not reached.

Step 7 ensures that d is equal to the value of the clock when entering ℓf .
Let us now consider the case where ℓi = ℓj . In this case, Step 5 changes the initial

locality to ℓ′
j . Because of Steps 1 to 3, runs from ℓ′

j to ℓj in A(ℓi, ℓj) are identical to runs
looping from ℓi to ℓi in A where x is reset on the last edge of the run and on this edge only.
Restrictions obtained by Steps 4, 6 and 7 are unchanged.

Therefore, Zℓi,ℓj
is equivalent to the synthesis of parameter valuations v and execution

times Dv such that Dv = {d | ∃ρ from (ℓi, {x = 0}) to ℓj in v(A) such that d = dur(ρ), ℓf is
never reached, and x is reset on the last edge of ρ and on this edge only. ◀

B.3 Proposition 35
▶ Proposition 35. Let A be a 1-clock PTA, and (ℓi, ℓj) ∈ FrP(A, ℓf) such that ℓj = ℓf . Then
Zℓi,ℓj

is equivalent to the synthesis of parameter valuations v and execution times Dv such
that Dv = {d | ∃ρ from (ℓi, {x = 0}) to ℓf in v(A) such that d = dur(ρ), ℓf is reached only
on the last state of ρ, and x may only be reset on the last edge of ρ }.

Proof. By Definition 21, we know that ℓi ̸= ℓf .
Steps 1 to 3 in Definition 22 imply that:
whenever ℓf is the target location of an edge, it is replaced by the duplicate locality ℓ′

j ,
except when x is reset on the edge;
once ℓ′

j is reached, no delay is allowed and the only available transition consists in reaching
ℓf through an empty action ϵ.

At this stage, the only difference between path from ℓi to ℓf in A(ℓi, ℓj) and A is that
incoming edges to ℓf where x is not reset now leads to ℓ′

j , and then to ℓf without any added
elapsed time. Step 4 implies that whenever ℓf is reached in A(ℓi, ℓj) no delay is allowed. As
ℓf is either entered by the immediate transition from ℓ′

j or feature a clock reset, removing
the upper bound of the invariant does not impact the availability of transitions. As ℓi ̸= ℓf ,
Step 5 does not change the initial location. Step 6 ensures that, in any run from ℓi to ℓj :
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no clock reset is performed before the last edge of the run (not counting the ϵ edge from
ℓ′

j to ℓf);
the clock value is not reset when entering ℓf , and is therefore equal to the duration of the
run;
no action can be taken after reaching ℓf .

Step 7 ensures that d is equal to the value of the clock when entering ℓf .
Therefore, Zℓi,ℓj

is equivalent to the synthesis of parameter valuations v and execution
times Dv such that Dv = {d | ∃ρ from (ℓi, {x = 0}) to ℓf in v(A) such that d = dur(ρ), ℓf is
reached only on the last state of ρ, and x may only be reset on the last edge of ρ. ◀

B.4 Proof of Proposition 24
▶ Proposition 24. Let A be a 1-clock PTA and ℓf a location of A. Let L̂ be the language
of the automaton of the zones Â, and e a regular expression describing L̂. Let ē be the
expression obtained by replacing the ., + and ∗ operators in e respectively by .̄, +̄ and ∗̄. We
have ē = PET (A).

Proof. Let us first show that ē contains PET (A). Let ρ be a path whose time duration and
parameter constraints are in PET (A). By definition, ρ starts at time 0 in the initial locality
and ends in ℓf , with only one occurrence of ℓf in the whole path. Let us consider that the
clock is reset n times before the last transition, then ρ can be decomposed as ρ0 . . . ρn such
that:
∀ 0 ≤ i < n, sub-path ρi starts in ℓi at time valuation 0, ends in ℓi+1, contains a single
reset positioned on the last transition (thus ending with time valuation 0) and does not
contain any occurrence of ℓf ;
sub-path ρn starts in ℓn at time valuation 0, ends in ℓf , may only contain a reset on its
last transition, and contains exactly one occurrence of ℓf .

By Definition 21, ∀ 0 ≤ i < n, (ℓi, ℓi+1) ∈ FrP(A, ℓf) and by Proposition 34, Zℓi,ℓi+1 is
the synthesis of parameter valuations and execution times of that sub-path. By Defini-
tion 21, (ℓn, ℓf) ∈ FrP(A, ℓf) and by Proposition 35, Zℓn,ℓf is the synthesis of parameter
and valuation times of that sub-path. By Definition 23, there is a sequence of transitions
Zℓ0,ℓ1 , . . . , Zℓi,ℓi+1 , . . . , Zℓn,ℓf in the automaton of the zones Â. By application of operators
+̄ and ∗̄, that sequence thus exists in ē as Zℓ0,ℓ1 .̄ . . . .̄Zℓi,ℓi+1 .̄ . . . .̄Zℓn,ℓf . By definition of
operator .̄, this expression is the intersection of all parameter constraints and the addition of
all valuation times, which is equivalent to PET (A).

Let us now show that PET(A) contains ē. By application of operators +̄ and ∗̄, any
word in ē can be expressed as a sequence of concatenation operations .̄. By Definition 23,
given a word Zℓ0,ℓ1 .̄ . . . .̄Zℓi,ℓi+1 .̄ . . . .̄Zℓn,ℓn+1 ∈ ē, we know that ℓ0 is the initial location of A,
ℓn+1 = ℓf and ∀ 0 ≤ i ≤ n, ℓi ≠ ℓf . By Proposition 34, ∀ 0 ≤ i < n, Zℓi,ℓi+1 is the synthesis
of parameter valuations and execution times of paths between ℓi and ℓi+1 in A such that ℓf
is never reached, and x is reset on the last edge of the path and on this edge only. And by
Proposition 35, Zℓn,ℓf is the synthesis of parameter valuations and execution times of paths
between ℓn and ℓf in A such that ℓf is reached only on the last state of ρ, and x may only be
reset on the last edge of ρ.

Let us assume there exists a path ρ whose time duration and parameter constraints are
in PET (A) such that ρ = ρ0 . . . ρn and:
∀ 0 ≤ i < n, sub-path ρi starts in ℓi at time valuation 0, ends in ℓi+1, contains a single
reset positioned on the last transition (thus ending with time valuation 0) and does not
contain any occurrence of ℓf ;
sub-path ρn starts in ℓn at time valuation 0, ends in ℓf , may only contain a reset on its
last transition, and contains exactly one occurrence of ℓf .
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Then Zℓ0,ℓ1 .̄ . . . .̄Zℓi,ℓi+1 .̄ . . . .̄Zℓn,ℓn+1 ∈ PET (A). On the other hand, if there does not exist
such a path, then there exist 0 ≤ i ≤ n such that Zℓi,ℓi+1 = ∅. By recursive applications of
operator .̄, the whole sequence is evaluated as ∅ and thus contained in PET (A). ◀

B.5 Proof of Theorem 26
▶ Theorem 26. The LpSl equality problem reduces to the FOE problem for (1, 0, ∗)-PTAs.

Moreover, the FOE problem for (1, 0, 1)-PTAs reduces to the 1-LpSl equality problem.

Proof. Given a PTA A, we showed in Section 3.2 how to compute two PTAs Aℓpriv
ℓf

and
A¬ℓpriv

ℓf
separating the private and public runs of A. Then in Section 4.1, we showed how

to build expressions ēℓpriv and ē¬ℓpriv such that (Proposition 24) ēℓpriv = PET(Aℓpriv
ℓf

) and
ē¬ℓpriv = PET (A¬ℓpriv

ℓf
).

Note that the operators .̄, ∗̄ and +̄ are associative and commutative; moreover, each term Z

occurring in the expressions ēℓpriv and ē¬ℓpriv is a union of constraints Z =
⋃

i′ Ci′ = +̄i′Ci′ .
As a consequence, we can thus develop the entire expression to the form

+̄i (Ci
1̄.Ci

2̄. · · · .̄Ci
ni

)̄.(Ci
ni+1)∗̄ .̄(Ci

ni+2)∗̄ .̄ · · · .̄(Ci
ni+mi

)∗̄.

where we put all +̄ outside of the expression. For example, the expression Z1̄.(Z2)∗̄ where
Z1 = C1 ∪C2 and Z2 = C3 ∪C4 is developed into C1̄.(C3)∗̄ .̄(C4)∗̄+̄C2̄.(C3)∗̄ .̄(C4)∗̄.

As C∗̄ = {d = 0}+̄C.̄C∗̄, for each Ci
ni+j we can w.l.o.g. express term i as the union of two

terms: one where (Ci
ni+j)∗̄ is removed (i.e., this loop is never taken), and one where Ci

ni+j

is concatenated to the term (i.e., the loop is taken at least once). This means that each term,
is turned into 2mi terms, where we can assume w.l.o.g. that for each j > 0, Ci

ni+j = Ci
j .

Given an expression of the above form, by definition of .̄, the product Ci
1̄.Ci

2̄. · · · .̄Ci
ni

is
also a conjunction of inequalities and thus can be expressed as Cd

i ∧CP
i where CP

i is obtained
by the constraints that do not involve d while Cd

i contains the constraints that involve d

and potentially some parameters in P. Note also that by the assumption that for each j > 0,
Ci

ni+j = Ci
j , any constraint that does not involve d can be removed from Ci

ni+j without
modifying the set. Therefore, the expression can now be rewritten as

+̄i(Cd
i ∧CP

i )̄.(Ci
1)∗̄ .̄(Ci

2)∗̄ .̄ · · · .̄(Ci
mi

)∗̄.

where every inequality in Ci
j involves d.

Assume the expressions involve a single parameter p. Let us show that the FOE problem
for PTAs over a single parameter reduces to the 1-LpSl equality problem.
Every constraint on p is of the form p ▷◁ c with c ∈ N and ▷◁ ∈ {≤,≥}. Therefore, there
exists a constant M such that for all i, either the constraint CP

i is satisfied for all p ≥M ,
or it is satisfied by none.
For any fixed valuation v, full ET-opacity of v(A) is decidable by [7]. We thus assume that
we consider only valuations of p greater than M . This can be represented by replacing
every occurrence of p in the expressions by M + p. This can be done without loss of
generality as we can independently test whether the PTA is fully ET-opaque for the
finitely many integer values of p smaller than M . When solving the FOS problem, we
thus need to include the valuations of p smaller than M that achieved equality to the
valuations provided by the reduction.
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The terms CP
i being either always or never valid, one can either remove this constraint

from the expression, or the term containing it producing an expression of the form

+̄iCi
0̄.(Ci

1)∗̄ .̄(Ci
2)∗̄ .̄ · · · .̄(Ci

mi
)∗̄.

where every constraint involves x.
Once again, assuming p is large enough, the constraint Ci

j can be assumed to be of the
form αi

jp + βi
j ≤ x ≤ γi

jp + δi
j where αi

j , βi
j , γi

j , δi
j ∈ N.

For both expressions ēℓpriv and ē¬ℓpriv , now in the simplified form described above, we
build the 1-LpSl sets Sēℓpriv

and Sē¬ℓpriv
where, taking the notations from Equation (2), I

is the set +̄ ranges over, for 0 ≤ j ≤ mi, bi
j = αi

jp + βi
j and ci

j = γi
jp + δi

j .
For a valuation v of p, we have that Sēℓpriv

(v) contains exactly the integers that satisfy
v(ēℓpriv ) (and similarly for Sē¬ℓpriv

(v) and v(ē¬ℓpriv )). Therefore, there exists a valuation
such that A if fully opaque w.r.t. ℓpriv on the way to ℓf iff there exists a parameter
valuation v such that Sēℓpriv

(v) = Sē¬ℓpriv
(v), establishing the reduction.

We now wish to show that the LpSl equality problem reduces to the FOE problem.
To do so, we fix two LpSl sets S1 and S2, then build two automata A1 and A2 such
that Si(v) contains exactly the integers that satisfy v(PET (Ai)), for all valuation v, for
i ∈ {1, 2}.
Let us focus on S1 and assume it is of the form given by Equation (2). We build A1 so
that from the initial location ℓ0 it can take multiple transitions (one for each i ∈ I), the
ith transition being allowed if the clock lies between bi

0 and ci
0, reset the clock and reach

a state ℓi. From ℓi, there are ni loops, and the jth loop can be taken if the clock lies
between bi

j and ci
j and resets the clock. Moreover, a transition can be taken from ℓi to ℓf

if x = 0.
Formally, A1 = (Σ, L, ℓ0,X,P, I, E) where Σ = {ϵ}, L = {ℓ0, ℓf} ∪ {ℓi | i ∈ I}, X = {x},
P is the set of parameters appearing in S1, I does not restrict the PTA (i.e., it associates
R≥0 to every location), and finally

E =
{

(ℓ0, (bi
0 ≤ x ≤ ci

0), ϵ, {x}, ℓi | i ∈ I
}

∪
{

(ℓi, (bi
j ≤ x ≤ ci

j), ϵ, {x}, ℓi | i ∈ I, 1 ≤ j ≤ ni

}
∪

{
(ℓi, (x = 0), ϵ, ∅, ℓf | i ∈ I

}
.

Thus, a run reaching ℓf can be decomposed into final-reset paths. In other words, there
is a run reaching ℓf with duration d iff d can be written as a sum d =

∑ni

j=0 dj where
bi

0 ≤ d0 ≤ ci
0 and for all j > 0, kjbi

j ≤ dj ≤ kjci
j where kj is the number of times the jth

loop is taken in the PTA. As a consequence, the set of durations of runs reaching ℓf is
exactly S1.
We build A2 similarly. We now build the PTA A which can either immediately (with
x = 0) go to the initial state of A1 or go immediately to a private location ℓpriv before
immediately reaching the initial state of A2. The final location of A1 and A2 are then
fused in a single location ℓf . We thus have that, the set of runs reaching ℓpriv on the way
to ℓf are exactly the ones reaching ℓf in A2 (with a prefix of duration 0). And similarly,
the set of runs avoiding ℓpriv on the way to ℓf are exactly the ones reaching ℓf in A1
(with a prefix of duration 0). Therefore, for any parameter valuation v, we have that
DVisitpriv(v(A)) = DVisitpriv(v(A)) iff S1(v) = S2(v), concluding the reduction. ◀
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