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Abstract
We present a polynomial-time pseudo-deterministic algorithm for constructing irreducible polynomial
of degree d over finite field Fq. A pseudo-deterministic algorithm is allowed to use randomness, but
with high probability it must output a canonical irreducible polynomial. Our construction runs in
time Õ(d4 log4 q).

Our construction extends Shoup’s deterministic algorithm (FOCS 1988) for the same problem,
which runs in time Õ(d4p

1
2 log4 q) (where p is the characteristic of the field Fq). Shoup had shown a

reduction from constructing irreducible polynomials to factoring polynomials over finite fields. We
show that by using a fast randomized factoring algorithm, the above reduction yields an efficient
pseudo-deterministic algorithm for constructing irreducible polynomials over finite fields.
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1 Introduction

A polynomial f(X) over a finite field Fq (q is a prime power) is said to be irreducible if
it doesn’t factor as f(X) = g(X)h(X) for some non-trivial polynomials g(X) and h(X).
Irreducible polynomials over finite fields are algebraic analogues of primes numbers over
integers. It is natural to ask if one can construct an irreducible polynomial of degree d over
Fq efficiently. Constructing these irreducible polynomials are important since they yield
explicit construction of finite fields of non-prime order. Working over such non-prime finite
fields is crucial in coding theory, cryptography, pseudo-randomness and derandomization.
Any algorithm that constructs irreducible polynomials of degree d over Fq would output
d log q bits, so we expect an efficient algorithm for constructing irreducible polynomials would
run in time poly(d, log q).

About 1
d fraction of polynomials of degree d are irreducible over Fq [9, Ex. 3.26 and

3.27]. This gives a simple “trial and error” randomized algorithm for constructing irreducible
polynomials, namely, pick a random degree d polynomial and check if it is irreducible. We
can use Rabin’s algorithm [10] for checking if a polynomial is irreducible, which can be
implemented in Õ(d log2 q) [7, Section 8.2]1. In order to improve the probability of finding

1 Õ notation omits log factors in d and log q.
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an irreducible polynomial to 1
2 , we sample about d polynomials of degree d and check if any

one of them is irreducible. Thus, the “trial and error” algorithm runs in time Õ(d2 log2 q).
Couveignes and Lercier [5] give an alternative randomized algorithm that runs in time
Õ(d log5 q), which is optimal in the exponent of d. Their algorithm constructs irreducible
polynomials by using isogenies between elliptic curves.

Motivated by this, it is natural to ask if there is also an efficient deterministic algorithm
for constructing irreducible polynomials. In the 80s, some progress was made towards
this problem. Adleman and Lenstra [1] gave an efficient deterministic algorithm for this
problem conditional on the generalized Riemann hypotheses. They also gave an unconditional
deterministic algorithm which outputs an irreducible polynomial of degree approximately d.
Shoup [12] gives a deterministic algorithm of constructing degree d irreducible polynomial
which runs in time Õ(d4p

1
2 log4 q) (where p is the characteristic of Fq). So, Shoup’s algorithm

is efficient for fields of small characteristic (p << d). But when p is large (say super
exponential in d), the algorithm does not run in polynomial time due to the p

1
2 factor in

the run time. Since then, there hasn’t been much progress towards this problem and in
particular, the problem of efficient and unconditional deterministic construction of irreducible
polynomials over Fq remains open! In fact, the special case of efficient and unconditional
deterministic construction of quadratic non-residues in Fp is also open.

One can ask similar questions in the integer world, namely, “How to efficiently construct
n-bit prime numbers?”. By the Prime Number Theorem, there are about 1

n n-bit prime
numbers (note the similarity between density of primes and density of irreducible polynomials
over Fq). Again this gives a simple randomized algorithm of just sampling a random n-bit
number and checking if it’s prime using AKS primality test [2]. But here too, there is no
known efficient deterministic algorithm for constructing n-bit prime numbers [13].

Due to the difficulty in finding deterministic algorithms for these problems, we ask a
slightly weaker but related question. Are there efficient pseudo-deterministic algorithms for
these problems?

▶ Definition 1.1. A pseudo-deterministic algorithm is a randomized algorithm which for a
given input, generates a canonical output with probability at least 1

2 .

Gat and Goldwasser [6] first introduced the notion of pseudo-deterministic algorithm (they
had called it Bellagio algorithm). Pseudo-deterministic algorithm can be viewed as a middle
ground between a randomized and a deterministic algorithm. From an outsider’s perspective,
a pseudo-deterministic algorithm seems like a deterministic algorithm in the sense that with
high probability it outputs the same output for a given input. The breakthrough result of
Chen et al. [4] gave a polynomial-time pseudo-deterministic algorithm for constructing n-bit
prime numbers in the infinitely often regime.

▶ Theorem 1.2. There is a randomized polynomial-time algorithm B such that, for infinitely
many values of n, B(1n) outputs a canonical n-bit prime pn with high probability.

In particular, their algorithm doesn’t give valid outputs for all values of the input n.
Surprisingly, their algorithm is based on complexity theoretic ideas, and not number theoretic
ideas. In fact, they show a more general result that if a set of strings Q are “dense” and
it is “easy” to check if a string x is in Q, then there is an efficient pseudo-deterministic
algorithm for generating elements of Q of a particular length in the infinitely often regime.
Both prime numbers and irreducible polynomials over Fq satisfy this property. Thus, this
gives an efficient pseudo-deterministic algorithm for constructing irreducible polynomials
over Fq in the infinitely often regime.
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But not only does this algorithm not work for all d, there are no good density bounds for
the fraction of d where the algorithm gives valid output. So it is natural to ask if we can
extend this result to all values of degree d over all finite fields Fq. In this paper, we present
a more direct pseudo-deterministic algorithm for constructing irreducible polynomials over
Fq (for all degrees d) which crucially relies on the structure of irreducible polynomials. Our
result extends Shoup’s [12] deterministic algorithm for constructing irreducible polynomials.
Shoup reduces the problem of constructing irreducible polynomials to factoring polynomials
over Fq. We observe that by making use of the fast randomized factoring algorithm, and the
“canonization” process described by Gat and Goldwasser [6] for computing q-th residues over
Fp, the above reduction yields an efficient pseudo-deterministic algorithm for constructing
irreducible polynomials over Fq.

▶ Theorem 1.3. There is a pseudo-deterministic algorithm for constructing an irreducible
polynomial of degree d over Fq (q is prime power) in expected time Õ(d4 log4 q).

2 Overview

As mentioned earlier, Shoup’s deterministic algorithm [12] is efficient for fields of small
characteristic. We extend Shoup’s algorithm and make it efficient over all fields, but at the
cost of making the algorithm pseudo-deterministic. In order to see the main ideas involved,
let’s consider a toy problem of constructing irreducible polynomial of degree 2 over Fp (p is
prime). Suppose we could get our hands on some quadratic non residue α, then X2−α would
be irreducible. There are p−1

2 quadratic non residues in Fp, so if we randomly pick an α ∈ Fp

and output X2 − α, it would be irreducible with about 1
2 probability. But this approach

wouldn’t be pseudo-deterministic, since in each run we will very likely choose different α.
In order to obtain a canonical quadratic non residue α, we first set α = −1 and repeatedly

perform α ←
√

α (choosing the smallest square root) until α is a quadratic non residue.
Here, β is a square root of α if β2 = α (mod p). For computing the square root, we can use
Cantor-Zassenhaus randomized factoring algorithm [3]. In Example 2.1, we illustrate the
above strategy over a specific finite field. Algorithm 1 implements this strategy.

▶ Example 2.1. Let’s try to pseudo-deterministically construct a quadratic non-residue in
F73. We first set α = −1. Square roots of −1 (mod 73) are 27 and 46. The square roots are
computed using Cantor-Zassenhaus randomized factoring algorithm [3].

We choose the smallest square root 27 and set α = 27. Square roots of 27 (mod 73) are
10 and 63. We choose the smallest square root 10 and set α = 10. Since 10 is a quadratic
non-residue, we output 10 (we use Euler’s criterion2 to check if 10 is a quadratic non-residue).

Algorithm 1 Pseudo-deterministically constructing irreducible polynomial of degree 2 over Fp.

1: α← −1
2: while α is a quadratic residue do
3: Factorize X2 − α = (X − β1)(X − β2)
4: α← min(β1, β2)
5: end while
6: Output X2 − α

2 Euler’s criterion: For odd prime p, a is a quadratic non residue iff a(p−1)/2 = −1

FSTTCS 2024



33:4 Pseudo-Deterministic Construction of Irreducible Polynomials over Finite Fields

Suppose p − 1 = 2kl (where l is odd). Each time we take square root, the order3 of
α (mod p) doubles. Since the order of α divides

∣∣F∗
p

∣∣ = 2kl (by Lagrange’s theorem), we
can repeatedly take square roots in Algorithm 1 at most k times. Thus, Algorithm 1 will
terminate with at most log p iterations of the while loop. This algorithm is based on Gat and
Goldwasser’s algorithm [6] for computing q-th residues over Fp. The algorithm is pseudo-
deterministic since at each iteration of the while loop, we “canonize” our choice of square
root by picking the smallest one among the two choices. Note that we used Euler’s criterion
for checking if α is a quadratic residue or not in Line 2.

We can generalize the above ideas for constructing irreducible polynomials over finite
fields. Shoup [12] showed that constructing irreducible polynomials over Fp reduces to finding
q-th non residues over appropriate field extensions (q is prime). These q-th non residues can
be pseudo-deterministically constructed using similar techniques as in Algorithm 1.

The rest of the paper is organized as follows. We start with some preliminaries in
Section 3. In Section 4, we will reduce the problem of constructing irreducible polynomials
over extensions fields Fpk to constructing them over Fp. Section 5 will make use of Shoup’s
observation mentioned in previous paragraph to construct irreducible polynomials over Fp.
Finally, in Section 6 we conclude with some open problems.

3 Preliminaries

3.1 Pseudo-deterministic algorithms
We defined pseudo-deterministic algorithm to be randomized algorithm which for a given
input, generates a canonical output with probability at least 1

2 . In this paper, whenever the
pseudo-deterministic algorithm doesn’t generate a canonical output, it just fails and doesn’t
give any valid output. In such cases, we can just rerun the algorithm until we get some valid
output (which is bound to be canonical). Now the runtime of the algorithm will be random,
but the expected runtime will be (asymptotically) same as the original runtime.

For all the pseudo-deterministic algorithms in this paper, we report the expected run time
in the above sense. These algorithms always generate a canonical output, but the amount of
time they take to do so is random.

3.2 Finite Field primer
In this subsection, we go over some basic facts about finite fields that will be useful in later
sections.

3.2.1 Splitting field
A polynomial h(X) ∈ K[X] may not factorize fully into linear factors over the field K.
Suppose F is the smallest extension of K such that h(X) fully factorizes into linear factors
over F. In other words, there exists α1, α2, . . . αk ∈ F such that,

h(X) = (X − α1)(X − α2) · · · (X − αk)

Then F is the called the splitting field of h(X) over K [9, Definition 1.90]. Note that for
any other extension of K that is a proper subfield of F, h(X) will not fully factorize into
linear factors.

3 Order of α is the least integer k > 0 such that αk = 1 in Fp
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3.2.2 Structure of Finite Fields
For every prime power pn (p is prime), there exists a finite field of size pn and all finite fields
of size pn are isomorphic to each other [9, Theorem 2.5].

▶ Theorem 3.1 (Existence and Uniqueness of Finite Fields). For every prime p and every
positive integer n there exists a finite field with pn elements. Any finite field with q = pn

elements is isomorphic to the splitting field of Xq −X over Fp.

Thus, elements of Fpn are roots of Xpn−X. From this, we get the following generalization
of Fermat’s little theorem for finite fields:

▶ Theorem 3.2 (Fermat’s little theorm for finite fields). If α ∈ Fpn , then αpn = α. Conversely,
if α is in some finite field and αpn = α, then α ∈ Fpn .

The below theorem gives the necessary and sufficient condition for a finite field Fpm to
be a subfield of another finite field Fpn [9, Theorem 2.6].

▶ Theorem 3.3 (Subfield Criterion). Let Fq be a finite field with q = pn elements. Then
every subfield of Fq has order pm, where m is the positive divisor of n. Conversely, if m is
the positive divisor of n, then there is exactly one subfield of Fq with pm elements.

From Theorem 3.2 and Theorem 3.3, we get the following useful lemma:

▶ Lemma 3.4. Suppose α is some finite field element. Let k be the smallest integer greater
than 0 such that αpk = α. Then, Fpk is the smallest extension of Fp that contains α. In
other words, α ∈ Fpk and for all 1 ≤ k′ < k, α /∈ Fpk′ .

3.2.3 Conjugates and Minimal polynomial
Let f(X) be an irreducible polynomial of degree n over Fq (q is prime power). Then, f(X)
has some root α ∈ Fqn . Also, the elements α, αq, αq2

, . . . , αqn−1 are all distinct and are the
roots of f(X) [9, Theorem 2.14].

f(X) = (X − α)(X − αq)(X − αq2
) · · · (X − αqn−1

)

The splitting field of f(X) with respect to Fq is Fqn [9, Corollary 2.15]. The minimal
polynomial of α over Fq is f(X).

Above, the roots of f(X) are all of the form αqi . We will call such elements conjugates α

with respect to Fq:

▶ Definition 3.5. Let Fqn be an extension of Fq and let β ∈ Fqn . Then, β, βq, βq2
, . . . , βqn−1

are called the conjugates of β with respect to Fq.

In the following sections, we will be using the below lemma to show that certain polyno-
mials are irreducible.

▶ Lemma 3.6 (Minimal polynomial of β ∈ Fqn). Suppose β ∈ Fqn and conjugates of β with
respect to Fq are all distinct. Then the minimal polynomial of β over Fq has degree n and is
of the form:

g(X) = (X − β)(X − βq)(X − βq2
) · · · (X − βqn−1

)

Thus, g(X) ∈ Fq[X] is an irreducible polynomial.

FSTTCS 2024
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Proof. The minimal polynomial g(X) of β over Fq is the smallest degree polynomial in Fq[X]
such that g(β) = 0. Since, g(βqi) = g(β)qi = 0, all conjugates of β are roots of g(X). Hence,
degree of g(X) is at least n (since the conjugates are all distinct). Also since β ∈ Fqn , degree
of g(X) is at most n. Thus, the degree of g(X) is n.

Thus, g(X) = (X − β)(X − βq)(X − βq2) · · · (X − βqn−1). Since g(X) is a minimal
polynomial of β over Fq, it will be in Fq[X] and is irreducible. ◀

3.2.4 Representing finite field elements
Throughout the paper, we assume that extension fields Fpk are given to us as Fp[X]/(f(X)),
where f(X) is an irreducible polynomial of degree k over Fp (refer [8] for working with other
representations). Each element in Fp[X]/(f(X)) can be viewed as a polynomial with degree
at most k over Fp. The coefficient vectors of these polynomials are in Fk

p. This gives a
natural isomorphism Φ : Fpk → Fk

p. In Fk
p, we can order elements in lexicographic order in

the natural sense.

▶ Definition 3.7. We say that α ∈ Fpk is lexicographically smaller than β ∈ Fpk , if Φ(α) ∈ Fk
p

is lexicographically smaller than Φ(β) ∈ Fk
p.

In the above definition, we compare the coordinates of Φ(α) and Φ(β) by fixing some
ordering on elements on Fp (for e.g., we can consider the natural ordering one gets from
the additive group structure of Fp). Checking if Φ(α) is lexicographically smaller than Φ(β)
requires k comparisons, with each comparison taking O(log p) time. Thus, overall it takes
O(k log p) time to check if Φ(α) is lexicographically smaller than Φ(β).

Similarly, we can define a lexicographic ordering on polynomials over Fpk .

▶ Definition 3.8. Suppose we are given two polynomials g(X) and h(X) of degree d over Fpk .
Then we say that g(X) is lexicographically smaller than h(X) if the coefficient vector of g(X)
is lexicographically smaller than coefficient vector of h(X) (the coefficients are compared
using Φ).

Checking if g(X) is lexicographically smaller than h(X) requires d + 1 comparisons, with
each comparison taking O(k log p) time. Thus, overall it takes O(dk log p) time to check if
g(X) is lexicographically smaller than h(X).

▶ Lemma 3.9 (Picking lexicographically smallest polynomial). Suppose we are given n polyno-
mials f1(X), f2(X), . . . , fn(X) of degree d over Fpk . Then, there is an algorithm that outputs
the lexicographically smallest polynomial among them in O(ndk log p) time.

Proof. We go over each polynomial fi(X) one by one, checking if fi(X) is lexicographically
smaller than the lexicographically smallest polynomial we have seen so far. Since each
comparison takes O(dk log p) time, and we do at most n comparisons, the algorithm runs in
O(ndk log p) time. ◀

3.3 Equal degree polynomial factorization
Shoup [12] reduced constructing irreducible polynomials to factoring polynomials over finite
field. It turns out that the reduction factors polynomials whose irreducible factors all have
same degree. Hence, equal degree factorization is a crucial sub-routine for constructing irre-
ducible polynomials. There are several fast randomized equal degree factorization algorithms,
and below we mention one of them:
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▶ Theorem 3.10 (Equal degree factorization). Suppose f(X) is a polynomial of degree d over
Fq (q is prime power) which factors into irreducible polynomials of equal degree. Then, the
equal degree factorization algorithm by von zur Gathen & Shoup [15] factors f(X) in expected
time Õ(d log2 q).

4 Construction of irreducible polynomials over extension fields Fpk

We first show in Algorithm 2 that constructing irreducible polynomials over extension fields
Fpk can be reduced to constructing irreducible polynomials over Fp (p is prime). Theorem 4.1
shows the correctness and running time of Algorithm 2.

Algorithm 2 Pseudo-deterministic construction of irreducible polynomials over Fpk .

Input: Degree d

Output: Irreducible polynomial of degree d over Fpk

1: Pseudo-deterministically construct irreducible polynomial f(X) over Fp of degree dk.
2: Factor f(X) =

∏k−1
i=0 fi(X) over Fpk using Theorem 3.10.

3: Output the lexicographically smallest factor fi(X).

▶ Theorem 4.1 (Correctness and Running time of Algorithm 2). Suppose there is a pseudo-
deterministic algorithm for constructing irreducible polynomials of degree l over Fp (p prime),
that runs in expected time T (l, p). Then Algorithm 2 pseudo-deterministically constructs
irreducible polynomials of degree d over extension field Fpk in expected time T (dk, p) +
Õ(dk3 log p).

Proof. Algorithm 2 first constructs an irreducible polynomial f(X) of degree dk over Fp.
Note that Fp[X]/(f(X)) is isomorphic to Fpdk . Some α ∈ Fpdk will be a root of f(X).
The conjugates of α with respect to Fp are all distinct and are the roots of f(X) (refer
Section 3.2.3):

f(X) = (X − α)(X − αp)(X − αp2
) · · · (X − αpdk−2

)(X − αpdk−1
)

Rearranging the above terms, we get:

f(X) =
[
(X − α)(X − αpk

)(X − αp2k

) · · · (X − αp(d−1)k

)
]

[
(X − αp)(X − αpk+1

)(X − αp2k+1
) · · · (X − αp(d−1)k+1

)
]

[
(X − αp2

)(X − αpk+2
)(X − αp2k+2

) · · · (X − αp(d−1)k+2
)
]

...[
(X − αp(k−1)

)(X − αpk+(k−1)
)(X − αp2k+(k−1)

) · · · (X − αp(d−1)k+(k−1)
)
]

=
k−1∏
i=0

d−1∏
j=0

(X − αpjk+i

)

:=
k−1∏
i=0

fi(X)

Let q = pk. fi(X) has degree d and its roots are conjugates of αpi ∈ Fqd with respect to
Fq (which are all distinct). Thus, from Lemma 3.6, fi(X) ∈ Fq[X] is the minimal polynomial
of αpi over Fq, and hence fi(X) is irreducible over Fq. So, we can use Theorem 3.10 to

FSTTCS 2024
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factorize f(X) over Fq, obtaining all factors fi(X) of degree d. We then use Lemma 3.9 to
output the lexicographically smallest factor among fi(X). Let the lexicographically smallest
factor be denoted by fi∗(X). Given a polynomial f(X) of degree dk, fi∗(X) is canonical.
Thus, the above construction is pseudo-deterministic.

For the running time, it takes T (dk, p) time to construct f(X), and then Õ(dk3 log p)
time to factor f(X) over field Fpk (from Theorem 3.10). Finally, choosing fi∗(X) among
fi(X) can be computed in time O(dk2 log p) (from Lemma 3.9). Thus, the overall running
time of the algorithm is T (dk, p) + Õ(dk3 log p). ◀

5 Construction of irreducible polynomials over Fp

Shoup’s algorithm reduces constructing irreducible polynomials over Fp to finding q-th non
residues in splitting field of Xq−1, for all prime divisors q of d (and q ̸= p). For completeness,
we reproduce the theorem below and refer to Theorem 2.1 in [12] for it’s proof.

▶ Theorem 5.1 (Reduction to finding q-th non residues). Assume that for each prime q | d,
q ̸= p, we are given a splitting field K of Xq−1 over Fp and a q-th non residue in K. Then we
can find an irreducible polynomial over Fp of degree d deterministically with Õ(d4 log p+log2 p)
operations in Fp.

Shoup constructs the splitting field4 K of Xq − 1 over Fp and a q-th non residue in K
by reducing to deterministic polynomial factorization. Since no known efficient determin-
istic factoring algorithms are known, his algorithm is not efficient for finite fields of large
characteristic. In this section, we will find a canonical splitting field K and a canonical q-th
non residues by using a fast randomized factoring algorithm. Thus, we obtain an efficient
algorithm for constructing irreducible polynomials over Fp, but at the cost of making the
algorithm pseudo-deterministic.

For each prime q | d, q ̸= p, we will pseudo-deterministically construct a splitting field
K of Xq − 1 over Fp and find a q-th non residue in K. To this end, we first analyze the
factorization of Xq − 1 ∈ Fp[X].

▶ Lemma 5.2. Consider the polynomial Xq − 1 ∈ Fp[X] (p, q are prime numbers). Let k be
the smallest integer greater than 0 such that q | pk − 1 (in other words, k is the order of p

(mod q)). Then,
1. The splitting field of Xq − 1 over Fp is Fpk

2. Xq−1 = (X−1)g1(X)g2(X) · · · g q−1
k

(X) where gi(X) ∈ Fp[X] are irreducible polynomials
of degree k.

Proof. Let K be the splitting field of Xq − 1 over Fp. The roots of Xq − 1 in K are by
definition the q-th roots of unity. Suppose ω ∈ K is some primitive q-th root of unity. Then,
{1, ω, ω2, . . . , ωq−1} are all the q-th roots of unity, and they form a multiplicative subgroup
in K∗. In fact, since q is prime, each of {ω, ω2, . . . , ωq−1} is a primitive q-th root of unity.

Since ωq = 1, we have ωpk = ω and hence from Theorem 3.2, ω ∈ Fpk . By definition of k,
k is the smallest integer greater than 0 such that ωpk = ω. So from Lemma 3.4, Fpk is the
smallest extension of Fp that contains ω. Xq − 1 splits linearly as:

Xq − 1 = (X − 1)(X − ω)(X − ω2) · · · (X − ωq−1)

4 Shoup constructs an irreducible polynomial g(X) ∈ Fp[X] such that Fp/(g(X)) is isomorphic to splitting
field of Xq − 1 over Fp
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Fpk is the smallest extension of Fp that contains all the roots of Xq − 1. Thus, Fpk is the
splitting field of Xq − 1. We next consider the factorization pattern of Xq − 1 over Fp.

Let G be the multiplicative group of integers modulo q. Since q is prime, elements of G

are {1, 2, . . . , q − 1}. Consider the cyclic subgroup H of G generated by p. The elements
of H are {1, p, p2, . . . , pk−1}. The cosets of H partition G. Let a1H, a2H, . . . , a(q−1)/kH

be the (q − 1)/k cosets of H that partition G. Then, Xq − 1 ∈ Fp[X] can be factorized as
follows:

Xq − 1 = (X − 1)(X − ω)(X − ω2) · · · (X − ωq−1)

= (X − 1)
(q−1)/k∏

i=1

∏
j∈aiH

(X − ωj)

= (X − 1)
(q−1)/k∏

i=1
(X − ωai)(X − ωaip)(X − ωaip2

) · · · (X − ωaipk−1
)

:= (X − 1)
(q−1)/k∏

i=1
gi(X)

gi(X) has degree k and its roots are conjugates of ωai ∈ Fpk with respect to Fp (which
are all distinct). Thus, from Lemma 3.6, gi(X) ∈ Fp[X] is the minimal polynomial of ωai

over Fp, and hence is irreducible over Fp. ◀

Thus, the splitting field of Xq− 1 over Fp is Fpk . It is easy to see that Fpk contains a q-th
non residue, since the map Φ : α 7→ αq is not surjective in Fpk (since for every i, Φ(ωi) = 1,
where ω is some primitive q-th root of unity).

In order to get our hands on a canonical representation of Fpk , we can factorize (Xq −
1)/(X − 1) = Xq−1 + Xq−2 + · · ·+ X + 1 over Fp and pick the lexicographically smallest
degree k irreducible factor h(X). Then, Fp[X]/h(X) is isomorphic to Fpk . Let ω be an
element in Fpk isomorphic to X ∈ Fp[X]/h(X). Next, to find a canonical q-th non residue
α ∈ Fpk , we set α = ω and repeatedly perform α ← q

√
α (choosing the lexicographically

smallest q-th root) until α is a q-th non residue. Algorithm 3 implements the above idea
and constructs an irreducible polynomial of degree d. In Line 3 and Line 8, factorization is
done using Theorem 3.10. We analyze the correctness and running time of Algorithm 3 in
Theorem 5.3.

▶ Theorem 5.3 (Correctness and Runtime of Algorithm 3). Algorithm 3 pseudo-
deterministically constructs an irreducible polynomial of degree d over Fp and runs in expected
time Õ(d4 log3 p).

Proof. We need to show that the for loop in Algorithm 3 correctly computes the splitting
field of Xq − 1 and finds a q-th non residue in the splitting field. Then, Line 13 will correctly
output an irreducible polynomial of degree d over Fp (from Theorem 5.1).

Let k be the smallest integer greater than 0 such that q | pk − 1 (k is the order of p

(mod q)). From Lemma 5.2, Xq−1 + Xq−2 + · · ·+ X + 1 factorizes as g1(X)g2(X) · · · g q−1
k

(X)
where gi(X) are degree k irreducible polynomials. Thus, by choosing the lexicographically
smallest degree k irreducible factor h(X) of Xq − 1, we ensure that the choice of h(X) is
canonical. Fpk

∼= Fp[X]/h(X) is the splitting field of Xq − 1 which contains a q-th non
residue.

Let ω ∈ Fpk be some primitive q-th root of unity. Suppose α is a q-th residue, and let
β ∈ Fpk such that α = βq (β is a q-th root of α). Then, {β, βω, βω2, . . . , βωq−1} are all q-th
roots of α. Thus, as required in Line 8, Xq − α will factorize into linear factors. By ensuring
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Algorithm 3 Pseudo-deterministic construction of irreducible polynomials over Fp.

Input: Degree d

Output: Irreducible polynomial of degree d over Fp

1: Initialize arrays H ← [ ], Λ← [ ]
2: for prime q | d, q ̸= p do
3: Factorize Xq−1 + Xq−2 + · · ·+ X + 1 = g1(X)g2(X) · · · g q−1

k
(X) over Fp

4: h(X)← lexicographically smallest degree k factor among g1(X), g2(X), . . . , g q−1
k

(X)

5: Field arithmetic over Fpk will henceforth be performed over Fp[X]/h(X).
6: α← element in Fpk isomorphic to X in Fp[X]/h(X)
7: while α is a q-th residue do
8: Factorize Xq − α = (X − β1)(X − β2) · · · (X − βq) over Fpk

9: α← lexicographically smallest element among β1, β2, . . . , βq in Fpk

10: end while
11: Append h(X) to array H and α to array Λ
12: end for
13: Using arrays H and Λ and Theorem 5.1, deterministically construct an irreducible

polynomial of degree d over Fp.

that we pick the lexicographically smallest q-th root of α, we “canonize” the computation
of q-th non residue. This “canonization” process is akin to the one Gat and Goldwasser [6,
Section 5] used to compute q-th non residue in Fp.

But we still need to ensure that the while loop eventually terminates. Let pk − 1 = qℓr,
where r is not divisible by q. Note that ℓ ≤ k log p. In each iteration of the while loop, the
order of α in F∗

pk increases by a factor of q. Since the order of α divides
∣∣∣F∗

pk

∣∣∣ = qℓr (by
Lagrange’s theorem), the while loop will terminate in at most ℓ steps. Thus, for each prime
q | d, q ̸= p, the for loop at Line 2 pseudo-deterministically constructs the splitting field Fpk

of Xq − 1 and a q-th non residue in Fpk .
Now we analyze the runtime. From Theorem 3.10, equal degree factorization in Line 3

takes Õ(q log2 p). From Lemma 3.9, lexicographically smallest h(X) in Line 4 can be chosen
in O(q log p). The while loop at Line 7 runs at most ℓ times. The factoring step at Line 8
takes Õ(qk2 log2 p) (using Theorem 3.10) and the lexicographically smallest q-th root can be
picked in O(qk log p) time. Thus, the while loop takes Õ(ℓqk2 log2 p). Since ℓ ≤ k log p and
k < q, the running time of the while loop can be upper bounded by Õ(q4 log3 p). Thus the
overall running time of each iteration of the for loop is Õ(q4 log3 p). So we can upper bound
the running time of the entire for loop by Õ(d4 log3 p). Since the running time of Line 13
is also upper bounded by Õ(d4 log3 p) (from Theorem 5.1), the overall running time of the
algorithm is Õ(d4 log3 p). ◀

We end this section by completing the proof of Theorem 1.3.

Proof of Theorem 1.3. Algorithm 2 pseudo-deterministically constructs irreducible polyno-
mial of degree d over Fpk . From Theorem 4.1, it takes time T (dk, p) + Õ(dk3 log p), where
T (dk, p) is time taken for the sub-routine which constructs degree dk irreducible polynomial
over Fp. We use Algorithm 3 to implement this sub-routine, which from Theorem 5.3 takes
time Õ(d4k4 log3 p). Thus, the overall running time is Õ(d4k4 log3 p). Let q = pk. Thus,
we have given a pseudo-deterministic algorithm for constructing irreducible polynomials of
degree d over Fq in expected time Õ(d4 log4 q). ◀
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6 Conclusion

We have shown an efficient pseudo-deterministic algorithm for constructing irreducible
polynomials of degree d over finite field Fq. It is natural to ask if this algorithm can be
derandomized to get a fully deterministic algorithm. Since our approach heavily relies on
fast randomized polynomial factoring algorithms, and no efficient deterministic factoring
algorithms are known, it is unclear how to derandomize it using the above approach. In fact,
we don’t even know how to deterministically construct a quadratic non residue modulo p (p
is prime).

Another interesting question is to compare the hardness of deterministically factoring
polynomials and deterministically constructing irreducible polynomials over finite fields. As
mentioned earlier, Shoup [12] had showed that constructing irreducible polynomials over
finite fields can be efficiently (and deterministically) reduced to factoring polynomials. This
suggests that factoring polynomials is as hard as constructing irreducible polynomials. But
what about the other direction? Would we be able to factor polynomials efficiently if we
could construct irreducible polynomials?

The answer is affirmative in the quadratic case. Suppose we are given a quadratic non
residue β modulo p. Then we can compute the square roots of any quadratic residue α

module Fp. In other words, given an irreducible polynomial X2− β, we can factorize X2−α.
This can be achieved using the Tonelli-Shanks [11, 14] algorithm for computing square roots
modulo p. However, this technique does not easily generalize to higher degrees d, so there
isn’t enough evidence to confirm that constructing irreducible polynomials is as hard as
factoring polynomials in general. We believe this is an interesting open question that can
shine more light on the complexity of both these problems.

Gat and Goldwasser [6] highlighted the open problem of pseudo-deterministically con-
structing n-bit prime numbers, which still remains unsolved. Chen et al. [4] solved this
problem but with the caveat that their algorithm works in the infinitely often regime. Their al-
gorithm is based on complexity theoretic ideas. In this paper, we gave a pseudo-deterministic
algorithm for constructing irreducible polynomials, which leverages the structure of irredu-
cible polynomials. Perhaps similarly one could hope to get an efficient pseudo-deterministic
algorithm for constructing primes using some number theoretic approaches.
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