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Abstract
For any synchronizing n-state deterministic automaton, Černý conjectures the existence of a
synchronizing word of length at most (n − 1)2. We prove that there exists a synchronizing word of
length at most 2n2 − 7n + 7 for every synchronizing n-state deterministic automaton that satisfies
the following two properties: 1. The image of the action of each letter contains at least n − 1 states;
2. The actions of bijective letters generate a transitive permutation group on the state set.
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1 Introduction

1.1 Synchronizing automata and Černý Conjecture
Let Q be a set. Denote the set of all mappings from Q to itself by T(Q). For the purposes of
this article, an automaton A is a triple (Q, Σ, δ) where Q and Σ are two finite sets, δ is a
mapping from Σ to T(Q). The elements of Q are called states of A; the elements of Σ are
called letters of A; and δ is called the transition function of A. For a mapping f : X → Y

and x ∈ X, we denote the value of f at x by x.f or f(x). When the transition function
δ is clear from the context, to simplify notations, q.(δ(a)) will be shortened to q.a where
q ∈ Q and a ∈ Σ. For subsets P ⊆ Q and A ⊆ Σ, write P.A, or P.a if A = {a}, for the set
{p.a : p ∈ P, a ∈ A}.

Let X be a set. Finite sequences over X (including the empty sequence denoted by ϵ)
are called words. For each nonnegative integer i, write Xi (X≤i, respectively) for the set of
words of length i (at most i, respectively). Denote the set of all words over X by X∗.

The transition function δ extends to the mapping of the set of finite words Σ∗ on T(Q)
(still denoted by δ) via the recursion: q.ϵ = q and q.(wa) = (q.w).a for every w ∈ Σ∗, a ∈ Σ
and q ∈ Q.

Let A = (Q, Σ, δ) be an automaton. A word w ∈ Σ∗ is a reset word if |Q.w| = 1. An
automaton that admits a reset word is called a synchronizing automaton. The minimum
length of reset words for A is called the reset threshold of A, denoted rt(A). For example,
Figure 1 shows a synchronizing automaton C4 with the state set {1, 2, 3, 4} and two letters a

and b and transition function δ such that

δ(i, a) = i.a =
{

1 if i = 4,
i otherwise;

and δ(i, b) = i.b =
{

1 if i = 4,
i + 1 otherwise,

for i ∈ {1, 2, 3, 4}. The shortest reset word of C4 is ab3ab3a and rt(C4) = 9.
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Figure 1 The automaton C4.

The following conjecture is the most famous conjecture of synchronizing automata.

▶ Conjecture 1 (Černý-Starke). Let A be an n-state synchronizing automaton. Then rt(A) ≤
(n − 1)2.

This conjecture is usually called Černý Conjecture [6], although it was first published in 1966
by Starke [21]. Regarding the history of Conjecture 1, we recommend [27, Section 3.1].

Černý [5] showed that there exists an n-state automaton with the reset threshold equal
to (n − 1)2 for every n. That means the upper bound in Conjecture 1 is optimal.

For a long time, the best upper bound of reset thresholds was n3−n
6 , obtained by Pin

and Frankl [9, 14]. In 2018, Szykuła [24] improved the Pin-Frankl bound. Based on
Szykuła’s method, Shitov [20] made a further improvement and obtained the new upper
bound cn3 + o(n3), where the coefficient c is close to 0.1654.

Although Černý Conjecture is widely open in general, it has been shown to be true in
many special classes e.g. [7, 11, 25, 26]. For a summary of the state-of-the art around the
Černý Conjecture, we recommend the two surveys [12, 27].

1.2 Automata containing transitive groups and our contribution
Let A = (Q, Σ, δ) be an automaton. The defect of a word w ∈ Σ∗ is the integer |Q| − |Q.w|.
For a non-negative integer i, write Σi for the set of letters of defect i.

Let A ⊆ Σ0. Observe that δ induces a homomorphism from the free monoid A∗ to the
symmetric group Sym(Q). We say that A contains the permutation group δ(A∗) with the
generating set δ(A). A subgroup G of Sym(Q) is transitive if q.G = {q.g : g ∈ G} = Q

for each q ∈ Q. We use ST to denote the family of synchronizing automata that contain
a transitive permutation group on its state set. Note that the automaton C4 displayed in
Figure 1 belongs ST.

In this article, we focus on automata in ST. Many subfamilies of ST have been studied
in detail [1, 16, 17, 18, 19, 15, 22]. We introduce two important results that are strongly
relevant to this article.

For any A ⊆ Σ0, the minimum integer d such that δ(Ad) = δ(A∗) is denoted by dA(A).
Observe that dA(A) is the diameter of the Cayley digraph of the group δ(A∗) with the
generating set δ(A). As an example, a Cayley graph of the symmetric group Sym({1, 2, 3})
is depicted in Figure 2.

The following theorem is essentially contained in the results of Rystsov [16].

▶ Theorem 2 (Rystsov). Let A = (Q, Σ, δ) ∈ ST be an n-state automaton. Then rt(A) ≤
1 + (n − 2)(n − 1 + dA(A)), where A ⊆ Σ0 such that δ(A∗) is transitive.

Araújo, Cameron and Steinberg [1, Theorem 9.2], using representation theory over the field
of rationals Q, have improved Rystsov’s bound as displayed in Theorem 3. It is worth
mentioning that a similar result can be also found in [22, Theorem 3.4].
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Figure 2 The Cayley digraph of Sym({1, 2, 3}) with the generating set {a, b}, where a = (123)
and b = (12). Its vertex set is Sym({1, 2, 3}). For any two vertices x, y and a generator g ∈ {a, b},
there exists an arc with label g from x to y if xg = y.

▶ Theorem 3 (Araújo-Cameron-Steinberg). Let A = (Q, Σ, δ) ∈ ST be an n-state automaton.
Then rt(A) ≤ 1 + (n − 2)(n − m + dA(A)), where A ⊆ Σ0 such that δ(A∗) is transitive and
m is the maximum dimension of an irreducible Q(δ(A∗))-module of QQ

In the case that dA(A) is small (a linear function of n), Theorems 2 and 3 bound rt(A) from
above by a quadratic function of n, or even verify Černý Conjecture [16, 1, 22]. However,
generally, dA(A) is not a linear function of n: in the case that A = {(12), (12, . . . , n)}, we
have dA(A) ≈ 3

4 n2 (asymptotically) [28].
In this article, we obtain Theorem 13 which improves Theorem 2 in a different way. As

an application of Theorem 13, we obtain the following result.

▶ Theorem 4. Let A ∈ ST be an n-state automaton. If Σ = Σ0∪Σ1, then rt(A) ≤ 2n2−7n+7.

1.3 Approach and layout
To prove Theorems 4 and 13, we use the so-called extension method which is based on
Proposition 5. The proof of Proposition 5 can be found in many papers (e.g. [27, Section 3.4]).

Let A = (Q, Σ, δ) is an automaton. For a subset S ⊆ Q and a word w ∈ Σ∗, write
S.w−1 for the set {q ∈ Q : q.w ∈ S}, that is, the set of states from which upon reading
w, the automaton reaches a state in S. A subset S ⊆ Q is extended by a word w ∈ Σ∗ if
|S.w−1| > |S|. A subset S ⊆ Q is called m-extensible, if S is extended by a word of length at
most m.

▶ Proposition 5. Let A = (Q, Σ, δ) be a synchronizing automaton. If every nonempty proper
subset S of Q is m-extensible, then rt(A) ≤ 1 + (n − 2)m.

The remaining of this article will proceed as follows. In Section 2, combining the extension
method and a dimensional argument for a linear structure, we establish a upper bound for
the reset thresholds of automata in ST, see Theorem 13. In Section 3, using some graph
theoretical techniques, we present a proof of Theorem 4. Using these graph theoretical
techniques, we can slightly improve some known results about reset thresholds. At the end,
we summarize our results in Section 4.

2 Linear structure

In this section, we will encode some information of an n-state synchronizing automaton into
some objects in Qn. Using the linear structure of Qn, we will obtain a upper bound for its
reset threshold.

FSTTCS 2024



34:4 Reset Thresholds of ST-Automata

Let A = (Q, Σ, δ) be an n-state automaton. We always assume that Q = {1, . . . , n}. Fix
a subset A of Σ0 and denote δ(A∗) by G.

Firstly, let us recall some concepts in linear space. Let X ⊆ Qn. The linear subspace
spanned by X, denoted by span(X), is defined as

span(X) :=
{∑

x∈X

cxx : cx ∈ Q

}
.

The cone generated by X, denoted cone(X), is the set

cone(X) :=
{∑

x∈X

cxx : cx ∈ Q≥0

}

where Q≥0 is the set of non-negative rationals. Write ⟨·, ·⟩ for the standard inner product of
Qn, that is the map such that ⟨x, y⟩ =

∑n
i=1 x(i)y(i) for every x, y ∈ Qn. The polar cone of

X, denoted X◦, is the set

X◦ := {y ∈ Qn : ⟨x, y⟩ ≤ 0, ∀x ∈ X}.

If X is a linear subspace of Qn, the orthogonal complement of X, denoted X⊥, is defined as

X⊥ = {y : ⟨x, y⟩ = 0, ∀x ∈ X}.

It clearly holds X◦ = X⊥ in the case that X is a linear subspace.
Next we will encode some information of an n-state synchronizing automaton into some

objects in Qn. For a subset S ⊆ Q, define 1S to be the (1 × n)-vector over Q such that its
i-th coordinate is

1S(i) =
{

1 if i ∈ S,
0 otherwise.

For any q ∈ Q, to simplify notation, we write 1q for 1{q}. Let w be an arbitrary word in Σ∗.
Define [w] to be the (n × n)-matrix over Q such that 1q[w] = 1q.w−1 for all q ∈ Q. It is clear
that 1S [w] = 1S.w−1 for all S ⊆ Q. Define kw for the (1 × n)-vector over Q such that its i-th
coordinate is

kw(i) = |i.w−1| − 1.

For every g ∈ G, set kg to be kw and [g] to be [w], where w ∈ Σ∗ is an arbitrary word such
that δ(w) = g.

▶ Example 6. Consider the automata C4 (see Figure 1) and the words a, b and ab. One can
calculate that

1.a−1 = {1, 4}, 2.a−1 = {2}, 3.a−1 = {3}, 4.a−1 = ∅;
1.b−1 = {4}, 2.b−1 = {1}, 3.b−1 = {2}, 4.b−1 = {1};
1.ab−1 = ∅, 2.ab−1 = {1, 4}, 3.ab−1 = {2}, 4.ab−1 = {3}.

And then ka = (1, 0, 0, −1), kb = (0, 0, 0, 0), and kab = (−1, 1, 0, 0).

A sequence (Xi)i≥0 is called eventually constant if there exists an integer j ≥ 0 such that
for all k > j, Xk = Xj . For an eventually constant sequence X = (Xi)i≥0, the minimum
integer j such that for all k > j, Xk = Xj is called transient length of X , denoted by len(X )
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and we denote the limit of the sequence X by lim X which clearly equals Xlen(X ). In the
following, we will define some eventually constant sequences which play a crucial role in our
proof.

Define T (A, A) = (Ti)i≥0 and K(A, A) = (Ki)i≥0, to be the two sequences such that

Ti :=
{

kw : w ∈ (Σ \ Σ0)A≤i
}

and Ki := cone(Ti),

for every i ≥ 0. To simplify notations, without ambiguity, we write T and K for T (A, A)
and K(A, A), respectively.

Since ⟨A⟩ is a finite group, both T and K are eventually constant. Denote lim T and
lim K by T∞ and K∞, respectively. Observe that K∞ = cone(T∞) and then

len(T ) ≥ len(K). (1)

We begin with some elementary results. According to the definition, it clearly holds that

|S.w−1| − |S| = ⟨1S , kw⟩ (2)

for every S ⊆ Q and w ∈ Σ∗. As a consequence, we have the following lemma.

▶ Lemma 7. Let S ⊆ Q.
1. The subset S is extended by w if and only if ⟨1S , kw⟩ > 0.
2. If 1S ∈ (K∞)◦ then |S.a−1| = |S| for all a ∈ Σ.
3. For every vector x ∈ K∞,

∑n
i=1 x(i) = ⟨1Q, x⟩ = 0.

We say that A is strongly connected if for every two states p and q, there exists a word
w ∈ Σ∗ such that p.w = q.

▶ Lemma 8. Assume that A = (Q, Σ, δ) is synchronizing and strongly connected. Let S be
a nonempty proper subset of Q. If 1S ∈ (K∞)◦, then there exists a word w ∈ Σ∗ such that
1S.w−1 /∈ K◦.

Proof. Since A is synchronizing and strongly connected, there exists a word

u = u1u2 · · · ut ∈ Σ∗

such that S.u−1 = Q. Since |S| < |Q|, by Lemma 7 Item 2, there exists an integer t′ < t

such that 1S.v−1 /∈ (K∞)◦, where v = u1u2 · · · ut′ . ◀

Due to Lemma 8, we can define ℓ(S) to be the length of a shortest word w such that
1S.w−1 /∈ (K∞)◦ for every nonempty proper subset S ⊊ Q.

▶ Proposition 9. Assume that A is synchronizing and strongly connected. Let S be a
nonempty proper subset of Q. Then S is (len(K) + ℓ(S) + 1)-extensible.

Proof. Let k = len(K) and ℓ = ℓ(S). By Lemma 8, there exists an ℓ-length word w =
(w1, . . . , wℓ) ∈ Σ∗ such that 1S .w−1 /∈ (K∞)◦. Since

S.(w2, . . . , wℓ)−1 ∈ (K∞)◦,

by Lemma 7 Item 2, |S.w−1| = |S|.
Let P = S.w−1. Since 1P /∈ (K∞)◦, there exists a vector x ∈ K∞ such that ⟨x, 1P ⟩ > 0.

Since K∞ = cone(Tk), there exists a vector y ∈ Tk such that ⟨y, 1P ⟩ > 0. By the definition
of Tk, we can find a word u ∈ (Σ \ Σ0)A≤k such that y = ku. By Lemma 7 Item 1,
|P.u−1| > |P | = |S|. Hence, uw extends S and then S is (k + ℓ + 1)-extensible. ◀

FSTTCS 2024



34:6 Reset Thresholds of ST-Automata

If len(K) and ℓ(S) can be bounded by a linear function of n, using Proposition 5, one
can bound rt(A) by a quadratic function of n. In general, it is hard to estimate len(K) and
ℓ(S) of an automaton. However, in the next section, we will establish some linear bounds for
len(K) with the assumption A ∈ ST and Σ = Σ0 ∪ Σ1. And, in the rest of this section, we
will establish the following linear bound for ℓ(S) in the case that K∞ is a linear subspace
of Qn.

▶ Proposition 10. Assume that A is synchronizing and strongly connected. If K∞ is a linear
subspace of Qn, then ℓ(S) ≤ n − 1 − dim(K∞) for every nonempty proper subset S ⊊ Q.

Before proving Proposition 10, we show that “G is transitive” implies “K∞ is a linear
subspace of Qn”.

▶ Lemma 11. If G is transitive, then K∞ is the linear subspace spanned by T∞.

Proof. It is sufficient to prove −x ∈ K∞ = cone(T∞) for each x ∈ T∞. Take an arbitrary
x ∈ T∞ and let

y :=
∑
g∈G

x[g].

It is clear that y ∈ K∞. Let i and j be two arbitrary integers in {1, . . . , n}. Since G is
transitive, there exists h ∈ G such that i.h = j. Note that y[h](i) = y(j) and

y[h] =
∑
g∈G

x[g][h] =
∑
g∈G

x[g] = y.

Then y(i) = y(j). By the arbitrariness of i and j, it holds that y = c 1Q for some c ∈ Q.
Since y ∈ K∞, by Lemma 7 Item 3, we have

∑n
i=1 y(i) = 0. This implies c = 0 and then

−x =
∑

g∈G\{id}

x[g],

where id is the identity map in Sym(Q). Since x[g] ∈ T∞ for all g ∈ G, we obtain that
−x ∈ K∞ as wanted. ◀

Now, we go back to prove Proposition 10. The following dimension argument plays a
crucial role in our proof.

▶ Lemma 12. Let L be a subspace of Qn and a non-zero vector x ∈ L. If there exists a
word w ∈ Σ∗ such that x[w] /∈ L then there exists a word w′ ∈ Σ∗ such that x[w′] /∈ L and
|w′| ≤ dim(L).

Proof. For every nonnegative integer i, define Li := span(xv : v ∈ Σ≤i). Observe that there
exists a unique integer j such that

L0 ⊊ L1 ⊊ · · · ⊊ Lj = Lj+1 = · · ·

Let t be the minimum integer such that Lt ⊈ L. Observing that t ≤ j, we have

t = dim(L0) + t − 1 ≤ dim(Lt−1) ≤ dim(L).

Then there exists a word w′ of length ≤ dim(L) such that x[w′] /∈ L. ◀
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Proof of Proposition 10. Since K∞ is a linear subspace of Qn, it holds that (K∞)◦ = (K∞)⊥

is also a linear subspace of Qn. Observe that 1Q ∈ (K∞)◦. Then we can decompose (K∞)◦

as (K∞)◦ = V0 ⊕ V1, where

V0 = {x ∈ (K∞)◦ : ⟨1Q, kw⟩ = 0} and V1 = span(1Q).

For every subset R ⊆ Q, define pR := 1R − |R|
n 1Q. For each R ⊆ Q, observe that 1R ∈ (K∞)◦

if and only if pR ∈ V0.
Let S be a nonempty proper subset of Q such that 1S ∈ (K∞)◦. Since A is synchronizing

and strongly connected, let w′ be a reset word such that Q.w′ ⊆ S. Then

pS [w′] = 1S [w′] − |S|
n

1Q[w′] =
(

1 − |S|
n

)
1Q /∈ V0.

Let w = va be a shortest word such that pS [w] /∈ V0. Lemma 12 provides that the length of
w is at most dim(V0) = n − 1 − dim(K∞).

We will complete the proof by showing 1S.w−1 /∈ (K∞)◦. Note that pS [v] = 1S.v−1 − |S|
n 1Q.

Since pS [v], 1Q ∈ (K∞)◦, we have 1S.v−1 ∈ (K∞)◦. By Lemma 7 Item 2, |S| = |S.v−1| =
|S.w−1|. Hence,

pS.w−1 = 1S.w−1 −|S.w−1|
n

1Q = 1S.w−1 −|S|
n

1Q = pS [w] /∈ V0

which is equivalent to 1S.w−1 /∈ (K∞)◦. ◀

Combining Propositions 5, 9, and 10 and Lemma 11, we establish the following bound.

▶ Theorem 13. Let A = (Q, Σ, δ) ∈ ST be an n-state automaton. Then rt(A) ≤ 1 + (n −
2)(n − dim(K∞) + len(K(A, A))), where A ⊆ Σ0 such that δ(A∗) is transitive.

▶ Remark 14. Note that dim(K∞) ≥ 1 and dA(A) ≥ len(K(A, A)).
1. Theorem 13 improves Theorem 2.
2. One of Theorem 3 and Theorem 13 cannot deduce the other one. If we only want to

establish a quadratic upper bound for reset thresholds of a special class of automata, it is
easier to establish a linear upper bound for len(K(A, A)) than for dA(A). In this sense,
Theorem 13 may have more advantages.

3 Rystsov digraphs

This section is divided into two parts:
In Section 3.1, we establish some results for digraphs.
In Section 3.2, we derive some directed graphs from automata. Using the results in
Section 3.1 and Theorem 13, we prove Theorem 4.

3.1 Digraphs
Firstly, we recall some notations of digraphs. A digraph Γ = (V, E) is an ordered pair of sets
such that E ⊆ V × V . The set V is called the vertex set of Γ and the E is called the arc
set of Γ. We assume that the digraphs in this section are loop-free, that is, (v, v) is not an
arc for every vertex v. Let u and v be two vertices of Γ. A sequence of vertices (v1, . . . , vt)
is called a path from u to v if v1 = u, vt = v and (vi, vi+1) ∈ E for every 1 ≤ i ≤ t − 1.
We say that u and v are connected if there exists a sequence of vertices (v1, . . . , vt) such

FSTTCS 2024



34:8 Reset Thresholds of ST-Automata

that v1 = u, vt = v and either (vi, vi+1) ∈ E or (vi+1, vi) ∈ E for every 1 ≤ i ≤ t − 1. The
strong connectivity of Γ, denoted sc(Γ), is the equivalence relation such that (u, v) ∈ sc(Γ) if
and only if there exist a path from u to v and a path from v to u. The weak connectivity
of Γ, denoted wc(Γ), is the equivalence relation such that (u, v) ∈ wc(Γ) if and only if u, v

are connected. A strongly connected component C of Γ is called a sink component of Γ if
there is no arc (u, v) ∈ E such that u ∈ C and v /∈ C; is called a source component of Γ if
there is no arc (u, v) ∈ E such that u /∈ C and v ∈ C. A strongly connected component is
non-sink (non-source, resp.) if it is not a sink (source, resp.) component of Γ. Write SCC(Γ)
(WCC(Γ), SinkC(Γ), resp.) for the set of strongly connected components (weakly connected
components, sink components, resp.) of Γ. Equivalence classes of sc(Γ) (wc(Γ) resp.,) are
called a strongly connected components (weakly connected components resp.,) of Γ.

Let V = {1, . . . , n} and A ⊆ Sym(V ). We will say that the sequence Γ0, Γ1, . . . is an
A-growth of Γ0 if

Γ0 = (V, E0) is a digraph with vertex set V ;
for every positive integer i, Γi = (V, Ei) is the digraph such that Ei = {(p.w, q.w) :
(p, q) ∈ E0, w ∈ A≤i}.

This concept, also called Rystsov Digraphs, was firstly used in [17], and appears widely in
the research of synchronizing automata [3, 4, 10, 17, 19].

In the rest of Section 3.1, we set Γ0, Γ1, . . . is an A-growth of Γ0. Write G = ⟨A⟩. Since
G is finite, the sequence Γ0, Γ1, . . . is eventually constant. Denote lim(Γ0, Γ1, . . .) by Γ∞.

▶ Lemma 15. If G is transitive, wc(Γ∞) = sc(Γ∞).

Proof. For any element g ∈ G and two vertices u, v ∈ V , observe that (u.g, v.g) is an arc of
Γ∞ if and only if (u, v) is an arc of Γ∞. And then every element of G is a graph automorphism
of Γ∞.

For any vertex v ∈ V , let R(v) be the subset of vertices such that u ∈ R(v) if and only if
there exists a path from v to u.

Let (u, v) be an arc of Γ∞. It is clear that R(v) ⊆ R(u). Since G is transitive, we can
pick g ∈ G such that u.g = v. Since g is a graph automorphism, it induces a bijection from
R(u) to R(v). Then R(u) = R(v). Hence, if two vertices x and y belong to the same weakly
connected component of Γ∞, it holds R(x) = R(y). This completes the proof. ◀

For all (p, q) ∈ V × V , the incidence vector of (p, q) is the vector 1p − 1q, denoted χ(p,q).
For a digraph Γ = (V, E), write L(Γ) for the subspace span(χe : e ∈ E) of Qn. The following
result is well-known in algebraic graph theory (see [2, Chapter 4]).

▶ Lemma 16. Assume that W1, . . . , Wd are all weakly connected components of a digraph
Γ = (V, E). Then the subspace (L(Γ))⊥ is the d-dimensional subspace span(1W1 , . . . , 1Wd

).

▶ Lemma 17. Let d = | SCC(Γ∞)|. If the arc set of Γ0 is nonempty and G is transitive,
then wc(Γn−d−1) = wc(Γ∞) = sc(Γ∞).

Proof. By Lemma 15, wc(Γ∞) = sc(Γ∞). It is sufficient to show wc(Γn−d−1) = wc(Γ∞).
Define L = (Li)i≥0 to be the sequence of linear spaces, where Li := L(Γi) for every

i ≥ 0. Write L∞ = lim L. By Lemma 16, dim((L∞)⊥) = d and then dim(L∞) = n − d.
For every i < len(L), since Li and Li+1 are linear subspaces with Li ⊊ Li+1, we have
dim(Li) < dim(Li+1). Due to E0 ̸= ∅, it holds that dim(L0) ≥ 1 and then Ln−d−1 = L∞. By
Lemma 16, wc(Γn−d−1) = wc(Γ∞). ◀

▶ Lemma 18. Assume that E0 ̸= ∅ and G is transitive. For every v ∈ V , there exist two
vertices p, q ∈ V such that (v, p), (q, v) ∈ En−1.
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Proof. Since E0 ̸= ∅, let x, y be two vertices such that (x, y) ∈ E0. Let v be an arbitrary
vertex in V . Since G is transitive, there exist two words w, w′ ∈ A≤n−1 such that x.w =
y.w′ = v. Then (v, y.w), (x.w′, v) ∈ En−1. ◀

▶ Lemma 19. Let i be a positive integer. If sc(Γi+1) = sc(Γi) ̸= sc(Γ∞) and G is transitive,
then there exists a non-sink strongly connected component C of Γi and a ∈ A such that C.a

is a sink component of Γi.

Proof. Since sc(Γi+1) = sc(Γi), every a ∈ A induces a permutation on SCC(Γi), denoted by
a′, such that X.a′ = X.a ∈ SCC(Γi).
Case 1: There exists a non-sink strongly connected component of Γi. Assume, for a con-

tradiction, that every non-sink strongly connected component C and a ∈ A satisfy
C.a ∈ SCC(Γi) \ SinkC(Γi). Let A′ be the set {a′ : a ∈ A}. Since G = ⟨A⟩ is trans-
itive on V , the permutation group ⟨A′⟩ is transitive on SCC(Γi). Then there exist
C ∈ SCC(Γi) \ SinkC(Γi) and a ∈ A such that C.a ∈ SinkC(Γi).

Case 2: There is no non-sink strongly connected component of Γi. In this case, we have
wc(Γi) = sc(Γi). For every a ∈ A and X ∈ SCC(Γi), since X.a ∈ SCC(Γi), there are no
arcs outside strongly connected components of Γi+1. Then wc(Γi+1) = sc(Γi+1). Using
this argument repeatedly, we have sc(Γi+1) = sc(Γi+2) = · · · = sc(Γ∞) which contradicts
with sc(Γi+1) ̸= sc(Γ∞). ◀

▶ Lemma 20. Let i be a non-negative integer such that sc(Γi) ̸= sc(Γ∞). If G is transitive,
then either

| SCC(Γi)| > | SCC(Γi+1)|

or

| SinkC(Γi)| > | SinkC(Γi+1)|.

Proof. If | SCC(Γi)| > | SCC(Γi+1)|, we are done. Otherwise, since sc(Γi) ⊆ sc(Γi+1), we
have sc(Γi) = sc(Γi+1) and

SinkC(Γi) ⊇ SinkC(Γi+1). (3)

By Lemma 19, there exist C ∈ SCC(Γi) \ SinkC(Γi) and a ∈ A such that C.a ∈ SinkC(Γi).
Since C ∈ SCC(Γi) \ SinkC(Γi), there exists an arc (p, q) ∈ Ei such that p ∈ C and q /∈ C.
Note that (p.a, q.a) ∈ Ei+1. Since p.a ∈ C.a and q.a /∈ C.a, it holds that C.a is a non-sink
component of Γi+1. By Equation (3), we have | SinkC(Γi)| > | SinkC(Γi+1)|. ◀

▶ Lemma 21. Let d = | SCC(Γ∞)|. If G is transitive and d > n
3 , then sc(Γn) = sc(Γ∞).

Proof. Since G is transitive, d divides n. Then d ∈ { n
2 , n}. Noting that, by Lemma 15, every

weakly connected component of Γ∞ is strongly connected. Since each strongly connected
component of Γ∞ has at most 2 vertices, it is clear that there exist at most n arcs in Γ∞.
Note that |Ei| < |Ei+1| for every integer i such that Γi ̸= Γ∞. Then sc(Γn) = sc(Γ∞). ◀

▶ Lemma 22. Let d = | SCC(Γ∞)|. If G is transitive and d ≤ n
3 , then sc(Γ2n−3d−1) = sc(Γ∞).

Proof. Let m be the minimum integer such that sc(Γm) = sc(Γ∞). Define

f(i) = | SCC(Γi)| + | SinkC(Γi)|,

for each i ≥ 0.
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Consider Γn−1. By Lemma 17, Γn−1 has d weakly connected components and wc(Γn−1) =
sc(Γm). In the case that m ≤ n − 1, then m ≤ 2n − 3d − 1 and we are done.

Now we assume that m > n − 1. Let C be a weakly connected component of Γn−1 but
not a strongly connected component of Γn−1. Define

a := the number of source components of Γn−1 in C;
b := the number of non-source non-sink components of Γn−1 in C;
c := the number of sink components of Γn−1 in C.

Let D be either a source component or a sink component of Γn−1 in C. By Lemma 18,
there exists an arc in D and then there are at least two vertices in D. This implies

2a + b + 2c ≤ |C| = n

d
.

Since a ≥ 1, we have

(a + b + c) + c ≤ n

d
− 1. (4)

The left hand side of Equation (4) is the sum of the number of strongly connected components
and the number of sink components of Γn−1 in C. Since d ≤ n

3 , we have

f(n − 1) ≤ (n

d
− 1)x + 2(d − x) (by Equation (4))

≤ (n

d
− 1)d (by n/d − 1 ≥ 2)

= n − d,

where x = | WCC(Γn−1) \ SCC(Γn−1)|.
Since f(m) = 2d, using Lemma 20, we have

m − (n − 1) ≤ f(n − 1) − f(m) ≤ (n − d) − 2d = n − 3d.

Hence, m ≤ 2n − 3d − 1. ◀

▶ Remark 23.
1. In the case that Γ∞ is strongly connected and n ≥ 3, Lemmas 21 and 22 show that

sc(Γ2n−4) = sc(Γ∞). This slightly improves [17, Theorem 2], [10, Lemma 6] and [19,
Theorem 2]. And then one can slightly improve the bounds of reset thresholds in [17,
Theorem 3], [10, Theorem 7] and [19, Theorem 4].

2. Assume G is transitive. Lemmas 21 and 22 show that sc(ΓO(n)) = sc(Γ∞). The following
example shows that ΓO(n) = Γ∞ is not true.
A permutation group G ⊆ Sym(Q) is called 2-homogeneous if for every 2-element subsets
X, Y ⊆ Q, there exists g ∈ G such that X.g = Y . Observe that a 2-homogeneous
permutation group is transitive.
In [10, Section 3], for every odd integer n ≥ 7, Gonze, Gusev, Gerencsér, Jungers and
Volkov constructed two permutations a, b ∈ Sym(n) such that

⟨a, b⟩ is 2-homogeneous;
for any word w ∈ {a, b}∗, if {2, 4}.w = { n−1

2 , n+3
2 }, then |w| ≥ n2

4 + O(n).
Let Γ0 = (V, E) be a digraph such that V = {1, . . . , n} and E = {(2, 4)}. Let Γ0, Γ1, . . .

be the {a, b}-growth of Γ0. Since ⟨a, b⟩ is 2-homogeneous, Γ∞ is a complete digraph. By
the second property of these two permutation, if Γm = Γ∞, then m ≥ n2

4 + O(n).
Meanwhile, the above two permutations also provide a negative answer for [1, Problem
12.39].
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3.2 Automata
In this subsection, we will define a sequence of digraphs with respect to an automaton
A = (Q, Σ, δ) and A ⊆ Σ0.

For a 1-defect word w ∈ Σ∗, the excluded state of w is the state such that excl(w) /∈ Q.w,
denoted excl(w); the duplicate state is the state q such that |q.w−1| > 1, denoted dupl(w).

For i ≥ 0, define Γi := (Q, Ei) to be the digraph where

Ei :=
{

(excl(w), dupl(w)) : w ∈ Σ1A≤i
}

.

▶ Lemma 24. The sequence (Γ0, Γ1, . . .) is the δ(A)-growth of Γ0.

Proof. We need to prove Ei+1 = Ei ∪Ei.Σ0 for every i ≥ 0. Let i be an arbitrary nonnegative
integer.

Let (p, q) ∈ Ei. Take w ∈ Σ1Σ≤i
0 such that p = excl(w) and q = dupl(w). By directly

computing, we have excl(wa) = excl(w).a and dupl(wa) = dupl(w).a for all a ∈ Σ0. Then
(p.a, q.a) ∈ Ei+1 which implies Ei+1 ⊇ Ei ∪ Ei.Σ0.

Let (x, y) ∈ Ei+1. Take w′ ∈ Σ1Σ≤i+1
0 such that x = excl(w′) and y = dupl(w′). If the

length of w′ is less than i + 2, then (x, y) ∈ Ei. Otherwise, w′ = wa where w ∈ Σ1Σi
0 and

a ∈ Σ0. It is clear that (excl(w), dupl(w)) ∈ Ei and (excl(w).a, dupl(w).a) = (x, y). Then
Ei+1 ⊆ Ei ∪ Ei.Σ0. ◀

▶ Proposition 25. Assume that A = (Q, Σ, δ) ∈ ST. If K∞ is a linear subspace of Qn and
Σ = Σ0 ∪ Σ1, then

len(K) ≤

{
n if dim(K∞) = n

2 ,
3 dim(K∞) − n − 1 otherwise.

Proof. Recall the definition of Ti that Ti := {kw : w ∈ Σ≥1A≤i} for i ≥ 0. Since Σ =
Σ0 ∪ Σ1, we have Ti = {−χe : e ∈ Ei} for i ≥ 0. Let m be the minimal integer such that
sc(Γm) = sc(Γ∞). By Lemmas 15 and 24, sc(Γ∞) = wc(Γ∞) and sc(Γm) = wc(Γm). This
implies that span(T∞) = cone(T∞) and span(Tm) = cone(Tm). Let C1, . . . , Cd be the strongly
connected components of Γm. Since δ(Σ0) is transitive, using Lemma 16,

span(1C1 , . . . , 1Cd
) = span(Tm)⊥ = cone(Tm)⊥ = K◦

m

and

span(1C1 , . . . , 1Cd
) = span(T∞)⊥ = cone(T∞)⊥ = K◦

∞.

Then Km = K∞ and dim(K∞) = n − d. By Lemmas 21 and 22,

len(K) ≤

{
n if dim(K∞) = n

2 ,
3 dim(K∞) − n − 1 otherwise.

◀

Proof of Theorem 4. Computer experiments confirmed Černý conjecture for any synchron-
izing automata with at most 5 states (see [13, Table 2]). One can check directly that
rt(A) ≤ (n − 1)2 ≤ n2 − 7n + 7 for n ≤ 5.

Now, we assume that n ≥ 6. Using Lemmas 15 and 16, n
2 ≤ dim(K∞) ≤ n − 1. Let S be

a nonempty proper subset of Q. By Propositions 10 and 25, if dim(K∞) = n
2 then

len(K) + ℓ(S) + 1 ≤ n + (n − 1 − n

2 ) + 1

= 2n − 3 − (n

2 − 3) ≤ 2n − 3; (5)
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if dim(K∞) > n
2 ,

len(K) + ℓ(S) + 1 ≤ (3 dim(K∞) − n − 1) + (n − 1 − dim(K∞)) + 1
= 2 dim(K∞) − 1 ≤ 2(n − 1) − 1 = 2n − 3. (6)

Combining Proposition 9 and Equations (5) and (6), every nonempty proper subset of Q is
(2n − 3)-extensible. Using Proposition 5, we obtain that

rt(A) ≤ 1 + (n − 2)(2n − 3) = 2n2 − 7n + 7. ◀

4 Conclusion and discussions

We obtain an upper bound for the reset thresholds of ST-automata which improves Rystsov’s
bound. Using this upper bound, we prove that there exists a synchronizing word of length at
most 2n2 − 7n + 7 for every synchronizing n-state ST-automata whose letters of defect at
most 1.

While Theorem 4 is about a specific class of automata, the lemmas presented in Section 2
may be useful tools for the broader study of synchronizing words. We conclude the article by
discussing two classes of automata for which these tools have potential applications.

4.1 One-cluster automata

An automaton (Q, Σ, δ) is called one-cluster if it has a letter with only one simple cycle
on the set of states, more precisely, there exists a letter a ∈ Σ which acts on P as a cyclic
permutation where P = Q.a|Q|−1. Write OC for the family of one-cluster automata. It is
clear that one of OC and ST do not include the other one. Meanwhile, OC and ST have
nonempty intersection (e.g. the automaton C4, see Figure 1).

Steinberg [23] proved Černý Conjecture for one-cluster automata with prime length cycles.
Béal, Berlinkov and Perrin showed the reset threshold of n-state one-cluster automata is at
most 2n2 − 7n + 7. To establish this upper bound, Béal, Berlinkov and Perrin use a linear
algebra approach which is different from the approach in Section 2. Observing that the two
upper bounds are the same, this may not be a coincidence and it is worth unifying these
two proofs. It is also interesting to obtain a better upper bound by combining these two
approach.

4.2 Completely reachable automata

An automaton (Q, Σ, δ) is called completely reachable if for every nonempty subset P ⊆ Q,
there exists a word w ∈ Σ∗ such that P = Q.w. Ferens and Szykuła [8, Corollary 31] proved
that the reset threshold of n-state completely reachable automata is at most 2n2−n ln n−4n+2.
It is clear that every completely reachable automaton has at least one letter of defect 1,
since subsets of (n − 1) states are reachable. It is not hard to show if a completely reachable
automaton has exactly one letter of defect 1, then it contains a transitive permutation group.
Hence, the overlap of completely reachable automata and ST-automata with letters of defect
≤ 1 is quite substantial. Therefore, we believe that the tools presented in this article may
also useful for studying completely reachable automata.
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