
The Parallel Dynamic Complexity of the Abelian
Cayley Group Membership Problem
V. Arvind # Ñ

The Institute of Mathematical Sciences (HBNI), Chennai, India
Chennai Mathematical Institue, India

Samir Datta # Ñ

Chennai Mathematical Institute and UMI ReLaX, India

Asif Khan #

Chennai Mathematical Institute, India

Shivdutt Sharma #

Indian Institute of Information Technology, Una, India

Yadu Vasudev #

Indian Institute of Technology Madras, Chennai, India

Shankar Ram Vasudevan #

Chennai Mathematical Institute, India

Abstract
Let G be a finite group given as input by its multiplication table. For a subset S ⊆ G and an
element g ∈ G the Cayley Group Membership Problem (CGM) is to check if g belongs to the subgroup
generated by S. While this problem is easily seen to be in polynomial time, pinpointing its parallel
complexity has been of research interest over the years. Barrington et al [6] have shown that for
abelian groups the CGM problem can be solved in O(log log |G|) parallel time. In this paper we
further explore the parallel complexity of the abelian CGM problem, with focus on the dynamic
setting: the generating set S changes with insertions and deletions and the goal is to maintain a
data structure that supports efficient membership queries to the subgroup ⟨S⟩. Though the static
version of the CGM problem can be easily reduced to digraph reachability, the reduction does not
carry over to the dynamic setting. We obtain the following results:
1. First, we consider the more general problem of Monoid Membership, where G is a monoid input

by its multiplication table. When G is a commutative monoid we show there is a deterministic
dynamic AC0 algorithm1 for membership testing that supports O(1) insertions and deletions in
each step.

2. Building on the previous result we show that there is a dynamic randomized AC0 algorithm for
abelian CGM that supports polylog(|G|) insertions/deletions to S in each step.

3. If the number of insertions/deletions is at most O(log n/ log log n) then we obtain a deterministic
dynamic AC0 algorithm for abelian CGM.

4. Applying these algorithms we obtain analogous results for the dynamic abelian Group Isomorph-
ism.

We can also handle sub-linearly many changes to the multiplication table for G, utilizing the hamming
distance between multiplication tables of any two distinct groups.

2012 ACM Subject Classification Theory of computation → Parallel algorithms

Keywords and phrases Dynamic Complexity, Group Theory, Cayley Group Membership, Abelian
Group Isomorphism

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.4

Related Version Full Version: https://arxiv.org/abs/2308.10073

Funding Samir Datta: Partially supported by a grant from Infosys foundation.
Asif Khan: Partially supported by a grant from Infosys foundation.

1 Equivalently, a constant time parallel algorithm using polynomially many processors.

© V. Arvind, Samir Datta, Asif Khan, Shivdutt Sharma, Yadu Vasudev, and Shankar Ram Vasudevan;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 4; pp. 4:1–4:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arvind@imsc.res.in
http://www.imsc.res.in/~arvind
https://orcid.org/0000-0002-1988-7866
mailto:sdatta@cmi.ac.in
http://www.cmi.ac.in/~sdatta
https://orcid.org/0000-0003-2196-2308
mailto:asifkhan@cmi.ac.in
https://orcid.org/0009-0001-5950-8891
mailto:shiv@iiitu.ac.in
https://orcid.org/0000-0001-5113-7953
mailto:yadu@cse.iitm.ac.in
https://orcid.org/0000-0001-7918-7194
mailto:shankarram@cmi.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.4
https://arxiv.org/abs/2308.10073
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Dynamic Complexity of Abelian CGM

1 Introduction

The main algorithmic problem of interest in this paper, is the Cayley Group Membership
Problem (CGM): Given as input a finite group G by its multiplication table (also known as
its Cayley table), a subset S ⊆ G and an element g ∈ G, test if g ∈ ⟨S⟩, where ⟨S⟩ is the
subgroup of G generated by the elements in S.

The CGM problem was brought into focus by the work of Barrington et al [6] which raises
intriguing questions about its parallel complexity.

Background. Membership testing in finite groups is well-studied [28]. Its computational
complexity significantly depends on how G is given as input and on its elements’ representation.
For example, if the elements of G are represented as permutations on [n] = {1, 2, . . . , n}, then
G is a subgroup of Sn, the group of all permutations on [n]. A natural compact description
of G as input is by a generating set, as every finite group G has a generating set of size at
most log |G|. In this form, membership testing in permutation groups has been studied since
the 1970’s, pioneered by the work of Sims [29, 28]. There are efficient polynomial (in n) time
algorithms for the problem as well as parallel algorithms for it. The problem is in NC: it
can be be solved in polylog(n) time with polynomially many processors [4]. On the other
hand, G = ⟨a⟩ could be a cyclic subgroup, generated by a, of F∗

p, the multiplicative group
of the finite field Fp, where the prime p is given in binary. Testing if b ∈ ⟨a⟩, for b ∈ F∗

p is
considered computationally hard. The search version of solving for x such that ax = b is the
discrete log problem, widely believed intractable for random primes p.

Cayley Table Representation. The Cayley table representation of G, in contrast, makes the
CGM problem algorithmically easy: we can define a graph X = (V, E) with V = G as vertex
set and (x, y) ∈ E if xs = y or ys = x for a generator s ∈ S. Then, g is in the subgroup
generated by S if and only if the vertex g is reachable from the identity element of G. Indeed,
this is an instance of undirected graph reachability which has a polynomial time and even a
deterministic logspace algorithm due to Reingold [27]. That is, CGM is in the complexity
class L (which is contained in P). Since it is in L, it is also in the circuit complexity class
AC(log n) = AC1, which means it has log-depth polynomial-size circuits of unbounded fanin.
Equivalently, this means CGM has a logarithmic time CRCW PRAM algorithm (we will
define the relevant parallel complexity classes in Section 2). Henceforth, we will assume the
groups to be given by their multiplication table. In this setting, linear time algorithm for
abelian CGM is also known[22].

Parallel Complexity of CGM and Group Isomorphism. Chattopadhyay, Torán and Wag-
ner [7] have shown that the Group Isomorphism problem of checking if two groups G1 and G2
given as input by their multiplication tables are isomorphic can be solved by quasipolynomial
size constant-depth circuits. While the question whether or not Group Isomorphism is in P is
open and is intensely studied in recent times [30, 15, 14], the above parallel complexity upper
bound implies that even Parity is not reducible to Group Isomorphism! Similarly, Fleischer
has observed, based on [7] that the CGM problem can also be solved by quasipolynomial size
constant depth circuits. Since there is no hardness result for CGM, pinpointing its parallel
complexity is an interesting question.

As already mentioned, Barrington et al [6] have made nice progress showing that CGM for
abelian groups is in AC(log log n). Indeed, since the resulting circuits are dlogtime uniform,
the upper bound is FOLL (which means first-order definable with log log n quantifier depth,

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:3

where n is the size of the group). Further, they also show that CGM for nilpotent groups is in
the class AC((log log n)2) and CGM for solvable groups of class d are in AC(d log log n). The
interesting questions in the static setting is to improve these upper bounds and/or extend
these results to other classes of groups.

In this paper we study the dynamic parallel complexity of CGM for abelian groups. Before
we describe our results, we give some background.

Dynamic complexity. Dynamic algorithms, broadly, deals with the design of efficient
algorithms for problems when the input is modified with small changes. The aim is to solve
the problem, for the modified input, significantly more efficiently than running the best
known “static” algorithm from scratch. The measure of efficiency is crucial here and defines
the model of computation. Dynamic algorithms is a burgeoning field of research (see e.g. [17]
and [21, 11, 25]) with many applications that require handling large inputs subject to small
changes over time.

From a parallel complexity perspective, we have the framework of Patnaik and Immer-
man [26] that is rooted in descriptive complexity [20]. Closely related is the work of Dong, Su,
and Topor [12]. Here the ideal solution is to obtain a dynamic algorithm for the considered
problem that runs in constant parallel time. Theoretically, constant parallel time is O(1)
time on a CRCW PRAM model (denoted by CRCW(1), where the CRCW model is the most
liberal as it allows for concurrent reads and writes). It is well-known that this coincides with
the complexity class AC0 (the class of problems solvable by constant-depth boolean circuits).
From a descriptive complexity perspective, when the circuits are dlogtime uniform (more
details in Section 2) this corresponds to FO, the class of problems expressible in first-order
logic. The dynamic complexity class DynFO [26] is the class of problems for which there
exist FO update formula that have access to constantly many auxiliary relations, such that
after small changes to the problem input, the formula correctly computes the output of the
problem as well as updates to the auxiliary relations. These different ways of describing
O(1) parallel time are essentially equivalent: because FO and uniform AC0 are equivalent [5].
There is renewed interest in this model of computation since a long-standing open problem,
whether directed graph reachability is in DynFO, under single edge changes [26], was resolved
in the affirmative [8].

In the present paper, it is more convenient to describe our results, which are essentially
algorithmic and do not have a logical flavour, in terms of the parallel class CRCW(1) (or
equivalently circuit class AC0).

The results of this paper. In this paper, we obtain results on the dynamic parallel
complexity of abelian CGM and abelian Group Isomorphism. Our motivation is to see if we
can exploit the underlying group structure to give a dynamic CRCW(1) algorithm for the
CGM membership queries while the generating set S is dynamically changing with insertions
and deletions. We are able to obtain for the abelian group case the following results.

First, we consider the more general problem of Monoid Membership, where G is a monoid
input by its multiplication table. When G is a commutative monoid we give a deterministic
dynamic CRCW(1) algorithm for membership testing that supports O(1) insertions and
deletions in each step. The algorithm requires a one-time SAC1 preprocessing step. The
main idea is to maintain the monoid M in a tree-like data structure. The cyclic monoids
are at the leaves of the tree and each internal node has the submonoid of M generated by
set of all its descendant leaves. Furthermore, each internal node will also hold submonoids
corresponding to deletions of its descendant nodes.

FSTTCS 2024

4:4 Dynamic Complexity of Abelian CGM

We can use this tree-like data structure more powerfully in the case of abelian groups
to obtain a randomized dynamic CRCW(1) algorithm for abelian CGM that supports
polylog(|G|) insertions/deletions to S in each step. The algorithm needs a one-time
CRCW(log n) (O(log n) time algorithm with polynomially many parallel processors)
preprocessing step. The main fact that we exploit here is that adding polylog(n) many
unary numbers can be done in CRCW(1). Thus, from an abelian subgroup H given by
polylog(n) many generators we can randomly sample from H and hence list out all of H

with high probability in CRCW(1).
If the number of insertions/deletions is at most O(log n/ log log n) then we obtain a
deterministic dynamic CRCW(1) algorithm for abelian CGM which needs a one-time
CRCW(log n) preprocessing step. Here our techniques are linear algebra based: we need
to consider some miniature linear algebra problems where the number of variables is
O(log n) and we adapt existing linear algebraic techniques to solve this.
We obtain analogous results for the dynamic abelian Group Isomorphism. We also
consider sublinearly many modifications to the Cayley table as well in all the cases.

The techniques used. The main dynamic complexity technique used is the idea of mud-
dling [9]. Imagine that for a dynamic problem we have an CRCW(1) algorithm A that after
each small changes answers queries and updates the auxiliary data structures in O(1) time.
And it uses a AC1 preprocessing step at the beginning to setup the auxiliary data structures.
However with successive updates, the auxiliary data structures gradually deteriorate, to the
point that after log n change steps the algorithm can no longer answer the queries and the
auxiliary data structures are rendered ineffective. The muddling technique implies that such
a problem is in fact in dynamic CRCW(1), meaning that there exists an CRCW(1) algorithm
that answers the queries after each small change, and updates the auxiliary data structures,
and does so for arbitrarily long sequence of changes. This broad technique is applied in this
paper to the problems considered and we will have occasion to see the muddling technique in
detail.

In addition, we crucially use the structure of finite abelian groups, and some tree-like
data structures. We are also able to use reductions of the CGM problem to some linear
algebra problems, such that in the dynamic setting we can utilize efficient matrix inverse
and determinant updates under small rank changes to the matrices.

Organization. In Section 2 we give some basic definitions and notation, and some background
about the dynamic parallel complexity model. In Section 3 we explain the dynamic CRCW(1)
algorithm for commutative monoid membership under single insertions/deletions to the
generating set. Sections 4 and 5 contain, respectively, the randomized and deterministic
dynamic CRCW(1) algorithms for abelian CGM. In Section 6 we apply the CGM results to
obtain dynamic CRCW(1) algorithms for Abelian Group Isomorphism. Finally, in Section 7
we discuss dealing with small changes to the group multiplication table itself. In the interest
of space, proofs are pushed to the Appendix. Lemma statements in the main are hyperlinked
to their proofs in the Appendix.

2 Preliminaries

Group Theory. A monoid (M, ·) is a set M equipped with a binary operation ·, that is
associative and has an identity element. (N, ·) is called a submonoid of (M, ·) if N ⊆ M

containing the identity element and is closed under the binary operation ·. A monoid whose

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:5

binary operation is commutative is called a commutative monoid. A monoid is called a group
if all its elements have inverses, i.e., for each monoid element there exists another element
such that their product gives the identity. A commutative group is called an Abelian Group.

Complexity Classes. We will mainly consider parallel complexity classes defined by boolean
circuits. Let AC(t(n)) denote the class of decision problems that have polynomial-size circuits
of depth t(n) for inputs of size n, where the AND and OR gates of the circuit are allowed
to be unbounded fanin. This circuit model is essentially equivalent to t(n) parallel time
on a CRCW PRAM model (with polynomially many processors, denoted by CRCW(t(n))),
where CRCW allows for concurrent reads and writes to a memory location. More details
of these connections can be found in [20]. In particular, AC(1) is usually denoted AC0 and
AC1 denotes AC(log n). The class AC(log log n) is of interest in this paper due to the result
of Barrington et al [6] showing that abelian CGM is in uniform AC(log log n). This class is
also denoted FOLL in [6] (for first-order formulas with log log n depth quantifiers for size n

inputs). We use both notations interchangeably. If we restrict the circuits to be monotone
(negation allowed at the input gates) and fanin of AND gates to be constant in the above
circuit families, then the corresponding complexity classes are denoted by SAC(t(n)). For
example, SAC0 and SAC1 circuit families are same as AC0 and AC1 respectively, except that
the AND gates can have only a constant size fanin and the negations are allowed only at the
input gates [31].

An AC((t(n)) algorithm will actually be given by a family of circuits {Cn}n>0, where
Cn solves the problem for inputs of length n, has depth t(n), and size bounded by some
polynomial nc for a constant c > 0. We need a uniformity condition that tells us how efficiently
we can construct the circuits Cn. A stringent condition is the so-called dlogtime uniformity:
Each gate in the circuit Cn can be described using O(log n) bits and the uniformity condition
requires that the gate connections can be checked in deterministic time linear in O(log n) by
a random access machine [5]. The class dlogtime uniform AC0 coincides with FO, where the
structures on which the formulas are evaluated are equipped with some suitable predicates [5].

The parallel dynamic algorithms in this paper are describable by circuits that are dlogtime
uniform.

The parallel dynamic complexity model. We briefly explain the parallel dynamic complexity
model. The underlying model for describing the algorithms can seen as a CRCW PRAM.
That means the algorithm can use polynomially many parallel processors accessing a shared
memory that allows concurrent reads and concurrent writes with well defined notion of which
write succeeds. We can also give a circuit complexity description for the model.
1. For each problem there is a well-defined notion of small changes to the input.
2. In the CRCW PRAM setting, the algorithm uses nc processors for length n inputs for

some constant c > 0 that depends on the problem.
3. At each time instant the algorithm receives as input i(n) small changes to the problem

input. With respect to the problem input at time instant t, the algorithm is required to
output the answer in constant time. I.e., within time instant t + O(1).

4. In the boolean circuit setting, for inputs of length n the model can be seen as a layered
boolean circuit that is of width nc for length n inputs, where the layers denote the time
instants. At each layer it receives as input the i(n) changes. For the input at layer t it
needs to output the answer before layer t + O(1).

FSTTCS 2024

4:6 Dynamic Complexity of Abelian CGM

5. We use DynAC0 to broadly denote the class of problems that have dynamic algorithms
that take O(1) time with polynomially many processors2. We explicitly state the number
of small changes to the input that can be handled at each time step. We also refer to
such dynamic algorithms as DynAC0 algorithms, or equivalently as dynamic CRCW(1)
algorithms.

Depending on the problem at hand, the dynamic algorithm usually works by creating a
suitable data structure from the given input which it updates with the small changes to the
input.

3 A Dynamic CGM Algorithm for Commutative Monoids

In this section, we consider the more general problem of Cayley Monoid Membership for
commutative monoids: Given a commutative monoid M by its multiplication table, a subset
S ⊆ M , and an element m ∈ M , check if m is in the submonoid ⟨S⟩ generated by S. By
abuse of notation, we term this the CGM problem for commutative monoids.

We present a tree-based data structure to maintain the generating set S, using which we
obtain a DynAC0 algorithm that supports a single insertion/deletion to/from the subset S at
each step. We will use this data structure with suitable modifications in Section 4.

The CGM problem for monoids. It is known that CGM for monoids is reducible to directed
graph reachability. To see this just construct the Cayley digraph Cay(M, S) of the monoid
M corresponding to generating set S. The graph has vertex set M and for every m ∈M and
every m′ ∈ S, the directed edge (m, m ·m′) is in the edge set. Clearly, an element t ∈ M

is in the submonoid ⟨S⟩ iff there is a directed path from the monoid identity e to t in this
digraph. Hence Cayley Membership for monoids is in NL. We note here that, though we
know dynamic reachability to be in DynAC0 under constantly many changes, this reduction
of the monoid membership problem to reachability doesn’t directly give a DynAC0 bound
for the monoid membership problem. This is because, even after the insertion/deletion of a
single element to/from S, the graph Cay(M, S) changes drastically, i.e., O(n) many edges
are affected. We only know how to handle polylog(n) many changes in DynAC0 even for the
undirected reachability problem.

So, we will use the weaker upper bound of SAC1 for the CGM problem for commutative
monoids. This upper bound actually gives a tree-like data structure, using which we obtain
the DynAC0 algorithm for the problem that supports single insertions/deletions to S.

As M is commutative, any element of the submonoid ⟨S⟩ is expressible as a product of
powers of elements in S:

∏
s∈S ses , where 0 ⩽ es ⩽ n and n = |M |.

We claim that the entire submonoid ⟨S⟩ can be listed as the output of an SAC1 circuit.
The circuit takes S as input, as a n-bit binary number with ith bit indicating whether the
element mi ∈M is in S, and outputs an n-bit binary number whose ith bit is 1 iff mi ∈M

is in the submonoid ⟨S⟩.
Let S1, S2 ⊆M such that the monoid identity 1 is in both S1 and S2. Their product is

defined as S1 · S2 = {a · b | a ∈ S1, b ∈ S2}.

▶ Proposition 1. Given as input the subsets S1 and S2 of a monoid M their product S1 · S2
can be computed in SAC0.

2 This coincides with DynFO [26] when the dlogtime uniformity conditions are met.

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:7

For each a ∈ S let Pa = {ai : 1 ⩽ i ⩽ n}. Notice that Pa can be computed directly from
the multiplication table for M in L which is contained in SAC1.

The tree-like data structure for S. We create a balanced binary tree T with leaves labelled
by the distinct elements a ∈ S. Let the root of T be ρ. To the leaf labelled a, we associate
the submonoid Pa. With each internal node τ , we associate a commutative submonoid Mτ

of M , inductively defined as the product Mτ = Mµ ·Mν , where µ and ν are its two children.
Since |M | = n, the tree T has depth bounded by log n. By Proposition 1 the tree T can be
created by an SAC1 circuit. Moreover, for each internal node of T , the following is immediate.

▶ Proposition 2. For each node τ of the tree T the subset Mτ associated with τ is the
commutative submonoid generated by the subset Lτ = {a ∈ S | a such that τ has the leaf
labelled a as descendant}. I.e., Mτ = ⟨Lτ ⟩.

It is clear that the subset associated with root ρ of the tree T , is actually ⟨S⟩. Thus, we
have:

▶ Lemma 3. The CGM problem for commutative monoids is in SAC1.

The Dynamic Setting. We will modify the above construction to obtain a dynamic data
structure. First we expand the tree T , by including leaves for every element of M . For each
element a ∈M , we pre-compute its power set Pa as already defined. However, we will make
Pa to be the submonoid associated with the leaf labelled a, Ma = Pa, precisely if a ∈ S, and
otherwise we associate the identity element 1, i.e., Ma = {1}.

We will need to dynamically maintain the following data at each node of the expanded
tree. Only the data associated with the tree nodes change with the changing generating set
S, while the tree structure itself remains unchanged.
1. For each node ν of the tree we have the submonoid Mν generated by the subsets associated

with the leaves below node ν in the tree.
2. Additionally, at each node ν we will maintain the submonoid Mν:µ for each descendant µ

of ν in the tree, where Mν:µ denotes the submonoid generated by the subsets associated
with all leaves that are descendants of ν but are not descendants of µ. Equivalently, it
is as if the submonoid associated with node µ is reset to {1} and then the rest of the
submonoid Mν is computed.

Essentially, as in Propositions 1 and 2, given a subset S we can construct the tree data
structure along with the data at each node as described above.

▶ Proposition 4. Given as input a subset S ⊆M for a commutative monoid M (given by its
multiplication table), we can construct the tree data structure T along with the data at each
node as described above in SAC1. Furthermore, given a membership query m ∈M , testing if
m is in the current submonoid ⟨S⟩ can be done in AC0.

Handling single insertions and deletions. Next we show that the above data structure
supports single insertions and deletions to S at each time step. The updates to the data
structure can be carried out in AC0 as described below.

First we consider deletions. Suppose a ∈ S is deleted. Then we need to update for each
tree node ν, the submonoid Mν associated with it and the submonoids Mν:µ for each of
its descendant µ. Clearly, Mν remains unchanged if a is not a descendant of ν. Similarly,
Mν:µ also remains unchanged if a is a descendant of µ. In general, the required updates

FSTTCS 2024

4:8 Dynamic Complexity of Abelian CGM

are explicated by the Algorithm 1 (which contains the description of both delete and insert
updates colour coded as red and blue respectively). Similarly, in the case of insertion of an
element a ∈M to S, we need to update the submonoids associated with the tree nodes.

Algorithm 1 Delete(a). Insert(a).

1 Ma ← {1} Ma ← Pa

2 for ν ∈ V (T) such that a ∈ descendants(ν) do in parallel
3 Mν ←Mν:a Mν ←Mν · Pa

4 for µ, ν ∈ V (T) such that µ and a are descendants of ν do in parallel
5 µ′ ← LCA(µ, a)
6 if µ′ ̸= µ then
7 Let µ1, µ2 be the children of µ′ such that a and µ are descendants of µ1 and

µ2 respectively
8 Mν:µ ← (Mν:µ′) · (Mµ1:a) · (Mµ2:µ) Mν:µ ← (Mν:µ′) · (Mµ1 · Pa) · (Mµ2:µ)

As each node in the tree can be processed in parallel and each requires just a product of
a constant number of pre-computed submonoids (lines 3 and 8), we have the following

▶ Proposition 5. The above deletion and insertion operations can be carried out in AC0.

The correctness of the update procedures in Algorithm 1 follows by induction on the validity
of the tree data structure. The inductive hypothesis being that the data structure contains
valid information about the various submonoids at the time step just before the insert/delete
updates. To summarize the above results, we have the main theorem of this section.

▶ Theorem 6. Let M be a commutative monoid given by its multiplication table and S ⊆M

generate a submonoid ⟨S⟩ of M . Then there is a deterministic DynAC0 algorithm that answers
membership queries m ∈ ⟨S⟩ given m ∈M and supports single insertions and deletions to
the generating set S at each time step, which requires a one-time SAC1 preprocessing step for
initialization of auxiliary data structures.

4 The Dynamic CGM Problem for Abelian Groups

Let G be an n-element abelian group given as input by its multiplication table. Let S be a
subset of G. We want to maintain a structure that supports efficient membership testing
in the subgroup H = ⟨S⟩ generated by S. That means efficiently supporting the following
operations.

1. Given a query element g ∈ G test if g ∈ H = ⟨S⟩ and, if so, express g as a product of the
generators in S.

2. The dynamic version of the problem requires that we efficiently support insertions/dele-
tions to set S. We have seen how to handle, even in the setting of commutative monoids,
single insertions or deletions to S at each step. More generally, we would like to handle
bulk insertions and deletions at each step.

Preprocessing for dynamic abelian CGM. We will first obtain a generating set of size at
most log n for G using which we can represent all elements of G.

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:9

An independent generating set [16, Section 3.2] for an abelian group G is a generating
set {g1, g2, . . . , gℓ} such that ge1

1 · g
e2
2 · · · g

eℓ

ℓ = 1 for 0 ⩽ ei ⩽ o(gi)− 1 if and only if ei = 0,
where o(gi) is the order of gi for each i. As a consequence of independence, every element
g ∈ G is uniquely expressible as g = ge1

1 · g
e2
2 · · · g

eℓ

ℓ for 0 ⩽ ei ⩽ o(gi)− 1. It is easy to see
that ℓ ⩽ log |G|. The next proposition easily follows from [16, Theorem 3.2.2].

▶ Proposition 7. Given as input a finite abelian group G by its multiplication table, an
independent generating set for G (of size at most log n) can be computed in AC(log n).

Thus, in a one-time preprocessing step, we can compute an independent generating set
{g1, g2, . . . , gℓ} from the multiplication table of the input group G as well as the unique
expression for each g ∈ G as g = ge1

1 · g
e2
2 · · · g

eℓ

ℓ for 0 ⩽ ei ⩽ o(gi)− 1. The two preprocessing
steps for G are summarized below.
1. For each pair (g, i), g ∈ G, 0 ⩽ i ⩽ n− 1, we compute and store the power gi in an n× n

table. This can be done in a straightforward AC(log n) computation, since the product
of two elements in the table is computable in AC0. In particular, this computation also
yields the order o(g) of each g ∈ G.

2. By Proposition 7, in AC(log n) we compute for G an independent generating set T =
{g1, g2, . . . , gt}, t ⩽ log n and also a representation for each g ∈ G as a product g =∏t

i=1 gei
i .

Additionally, we note the easy consequence of Barrington et al’s FOLL algorithm [6] for
abelian CGM.

▶ Lemma 8. Let S ⊆ G, for an abelian group G given by its multiplication table as input.
In FOLL a log |G| size subset T of S can be computed that generates the same subgroup as S.

Randomized DynAC0 Algorithm for Abelian CGM
We now present a randomized DynAC0 algorithm for maintaining the subgroup H = ⟨S⟩ of G,
given by its generating set. More precisely, the algorithm can process polylog(n) insertions
and deletions per step and answer membership queries to the group ⟨S⟩ in O(1) parallel
time3. The following is a crucial lemma that is used by the query algorithm in this section.

▶ Lemma 9. Let T ⊆ G be of size at most logc n for some constant c, where G is an
abelian group, |G| = n, given by its multiplication table with independent generating set
G = ⟨g1, g2, . . . , gℓ⟩. Then in randomized AC0 we can list out the subgroup ⟨T ⟩ generated
by T . In particular, membership testing in the subgroup generated by T can be done in
randomized AC0.

Given Lemma 9, we can focus on just maintaining a polylog(n) size generating set for the
subgroup ⟨S⟩ while it undergoes polylog(n) many insertions/deletions in a step.

Auxiliary data structure. First we will create a variant of the tree-based data structure
described in Section 3 to represent the generating set S and certain subgroups of ⟨S⟩. We
will continually update this data structure, as we process the bulk insertions and deletions
that occur at each time step.

3 Updates to the auxiliary data structures are in deterministic AC0, while queries require randomization.

FSTTCS 2024

4:10 Dynamic Complexity of Abelian CGM

1. Let S be the current generating set and 2k−1 < |S| ⩽ 2k, for positive integer k ⩽ ⌈log n⌉.
To begin with, we create an O(log n) depth full binary tree B, with 2k leaves. We
associate, for each generator x ∈ S, the cyclic subgroup ⟨x⟩ with a distinct leaf of B. The
remaining leaves are associated with the trivial subgroup {1}. As it is a full binary tree,
its nodes can be indexed by 1, 2, . . . , 2k+1− 1 with 1 as index for the root. For each i > 1,
the node indexed i has as parent the node indexed ⌊i/2⌋.

2. Let τ be an internal node of the tree B with children µ and ν. Inductively, to each
internal node τ we associate the subgroup, Hτ = Hµ ·Hν which is the product of the
subgroups Hµ and Hν that are associated with the two children. Notice that the product
Hµ ·Hν is indeed a subgroup of G as G is abelian. Letting Sτ denote the set of leaves in
S below node τ . Then, notice that Hτ = ⟨Sτ ⟩ for each node τ of the tree. The root is
labeled with H = ⟨S⟩.

3. Additionally, for each internal node τ and for each descendant µ of τ we keep the subgroup
generated by Sτ \ Sµ, which we denote by Hτ :µ. Thus, at each node τ we have the list of
subgroups Hτ :µ with generating set Sτ \ Sµ, one for each descendant µ of τ .

4. Finally, using Lemma 8 we compute, in FOLL, log n size generating sets Tτµ ⊆ Sτ \ Sµ

for each subgroup Hτ :µ at each node τ in parallel. Similarly, for subgroup Hτ associated
with each internal node τ , a log n size generating set Tτ ⊆ Sτ is computed.

5. For access to the data maintained at each node in the tree, we will have an array
of pointers indexed by 1, . . . , 2k+1 − 1. Furthermore, we will keep a boolean array
A[i, j], 1 ⩽ i, j ⩽ 2k+1 − 1 where A[i, j] = 1 if and only if i is an ancestor of j.

The following lemma is immediate.

▶ Lemma 10. The tree data structure B, for the generating set S can be built in O(log n)
parallel time (i.e. in AC(log n)).

The tree data structure B useful in Section 5 as well.

Handling bulk insertions and deletions. At any point of time during the computation, the
current generating set S, is maintained as a data structure described above. Then changes
to the generating set arrive in the form of two sets I and D for insertions and deletions
respectively, such that |I|, |D| = O(logc+1 n). The actual generating set then becomes
S ∪ I \D. We will first show that a membership query occurring at this point of time can be
answered in O(1) parallel time.

▶ Lemma 11. Given the data structure for S along with the update sets of insertions I and
deletions D, each of logc+1 n size, we can test if some group element g is in the subgroup
generated by (S ∪ I) \D in AC0.

Continual rebuilding of the tree data structure B. This is the crucial part of the dynamic
algorithm4. Let’s assume that at time instant t, we have the tree data structure for the current
generating set, denoted by S(t), available (this assumption is particularly valid at the starting
time instant because of the preprocessing). At this instant, the new insertion and deletion
bulk updates, denoted by I(t) and D(t) respectively, arrive. Using Lemma 11, we can answer
membership queries about the subgroup generated by S(t+1) = (S(t) ∪ I(t)) \D(t) in O(1)

4 This continual rebuilding of data structure is a modified adaptation of the muddling technique from [9].

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:11

time. In fact, we can do this for any time instant t + i (1 ⩽ i < log n), by using Lemma 11,
keeping the generating set S to be S(t) and I and D to be the insertions and deletions
respectively accumulated so far from time instant t to t + i, since I and D are still bounded
by polylog(n) (| ∪i

j=1 I(t+j)|, | ∪i
j=1 D(t+j)| ⩽ i logc n < logc+1 n since i < log n). But, we

can’t keep doing this forever, as eventually the accumulated I and D grow beyond polylog(n).
In a sense, the tree data structure is only useful for log n rounds. To remedy this, we will
start AC1 computation for building the tree data structure for the subgroup generated by
(S(t)∪ I(t))\D(t) at the time instant t+1 using Lemma 10 and the result of this computation
will be available at time instant t + log n. After this point we can continue to use Lemma 11
for another log n rounds to answer the CGM queries. In fact, at each time instant t + i we
will have an AC1 computation thread started up for building the tree data structure for
the subgroup generated by S(t+i). At any time instant there are at most log n such thread
running and hence the number of gates in any layer remains polynomially bounded.

To summarize, we have shown the following theorem.

▶ Theorem 12. There is a randomized DynAC0 algorithm for the abelian Cayley Group
Membership problem, CGM, that requires a one-time AC1 preprocessing step, and supports
polylog(n) insertions and deletions to the generating set.

5 A Deterministic Dynamic Algorithm for Abelian CGM

We now present a deterministic DynAC0 algorithm for abelian CGM that can process bulk
insertions/deletions of size t = O(log n

log log n). The algorithm is linear algebraic. We first observe
a property of abelian groups in terms of prime factorization of their order. Let G be an
n-element abelian group given by its multiplication table. Let n = pa1

1 × pa2
2 × · · · × p

aµ
µ

be its prime factorization, where pi are distinct primes. By the structure of finite abelian
groups [16, Theorem 3.3.1] G = G1×G2×· · ·Gµ is a direct product where Gi is the pi-Sylow
subgroup of G.5

For a subset S ⊆ G consider the subgroup H = ⟨S⟩ generated by S. Let bi = n/pai
i , 1 ⩽

i ⩽ µ and Si = {xbi | x ∈ S}, 1 ⩽ i ⩽ µ. Then Hi = ⟨Si⟩ is a subgroup of Gi for each i and
H = H1 ×H2 × · · · ×Hµ.

An element g ∈ G is in the subgroup H if and only if gbi ∈ Hi for each i. As a consequence
we can reduce the dynamic abelian CGM problem to the dynamic abelian CGM problem for
abelian p-groups. We state this as a lemma.

▶ Lemma 13. Given an n-element abelian group G by its Cayley table, by a one-time
preprocessing computation in AC1 we can compute Cayley tables for each Sylow subgroup
Gi. Furthermore, all powers of elements of G can be pre-computed and stored in an array.
Hence the parallel dynamic complexity of abelian CGM maintaining S, supporting say t(n)
insertions/deletions at each step is AC0 reducible to the same problem for abelian p-groups.

Now, we can focus on the CGM problem restricted to abelian p-groups only.

Reduction to integer linear equations. Using the Proposition 7 we can pre-compute an
independent generating set {g1, g2, . . . , gℓ} for the abelian p-group G. Let |G| = n = pm

and o(gi) = pmi for each i, where m1 + m2 + · · · + mℓ = m, and ℓ ⩽ log n. We also

5 Let G be a finite group of order n = pa1
1 × pa2

2 × · · · × p
aµ
µ . Then for each i, G has at least one subgroup

of order pai

i , which is known as a pi-Sylow subgroup of G. However, if G is abelian then there is a
unique pi-Sylow subgroup of G which we can denote by Gi. In that case, G = G1 × G2 × · · · Gµ.

FSTTCS 2024

4:12 Dynamic Complexity of Abelian CGM

have m = logp n ⩽ log n. Each g ∈ G has a unique representation (pre-computed) as
g =

∏ℓ
i=1 gbi

i , 0 ⩽ bi ⩽ pmi − 1. Thus g can also be represented as an ℓ-dimensional integer
column vector b̄ = [b1b2 . . . bℓ]T .

We will dynamically maintain a logarithmically bounded subset T of the generating set S

such that T generate the same group as S, i.e., |T | = O(log n) and ⟨S⟩ = ⟨T ⟩. As explained,
we will represent elements of T by ℓ-dimensional column vectors. Thus, g ∈ ⟨T ⟩ iff the system
of integer linear equations Ax = b̄ is feasible, where the matrix A has columns corresponding
to each generator in T , and the ith row of the system of equations is computed modulo
pmi for 1 ⩽ i ⩽ ℓ. We can suitably scale each equation to get a system of integer linear
equations modulo pm. Since pm is a composite for m > 1, the usual recipe for feasibility
of linear equations based on matrix rank does not directly apply. However, we can rewrite
Ax = b̄ (mod pm) equivalently as integer linear equations

Ax + pmy = b̄ (1)

where y is a column vector of ℓ new variables. Letting [A|pmIℓ] = Ã, and z = [x|y]T we can
write this as Ãz = b̄, noting that Ã is full row rank. Thus, the CGM problem for abelian
p-groups is reduced to finding integer solution to Equation (1). To test the feasibilty of such
system of equations, we have the following lemma.

▶ Lemma 14 ([3], Theorem 3.13). For a prime p, the system Ãz = b̄ (and hence Ax =
b̄ (mod pm)) is feasible (i.e., has an integer solution) iff GCD of the ℓ× ℓ subdeterminants
of Ã and the GCD of the ℓ× ℓ subdeterminants of the augmented matrix [Ã|b̄] have the same
highest power of p dividing them both.

Since the matrix A in Equation (1) has ℓ ⩽ log n rows and t ⩽ 2 log n columns the number
of ℓ× ℓ subdeterminants is polynomially bounded. So, if we could compute the determinant
of each ℓ× ℓ submatrix in AC(log log n), we can execute the above feasibility test as well in
AC(log log n), and hence solve the CGM problem. Indeed, we have the following lemma to
compute determinant of such small matrices.

▶ Lemma 15. Let A be a square matrix of dimension polylog(n) with entries that are
polynomially bounded in n, then each bit of det(A) can be computed in AC(log log n).

We will need to dynamically maintain the determinants and inverses of all the ℓ×ℓ submatrices
of Ã = [A|pmIℓ]. The following lemma shows that, at least in the beginning, all these can be
precomputed in AC(log log n), giving way for an AC0 algorithm for CGM (part 3).

▶ Lemma 16. Let Ax = b̄ (mod pm) be a system of integer linear equations modulo pm,
where pm = n is input in unary, and A ∈ Zℓ×t and b̄ ∈ Zl, t = O(log n).
1. Let Ã = [A|pmIℓ]. We can compute the determinants of all square submatrices of Ã and

[Ã|b̄] in AC(log log n) (i.e. in log log n parallel time).
2. Furthermore, for the nonsingular submatrices we can also compute their inverses in

AC(log log n).
3. Given the above we can test the feasibility of Ax = b̄ (mod pm) and solve for x in AC0.
This preprocessing of the matrix Ã needs to be combined with a variant of the matrix inverse
lemma stated below [18] (this is a variant of the so-called Sherman-Morrison-Woodbury
formula) to dynamically compute solutions to Ãz = b̄. This formula essentially allows for a
quick updation of the data computed using Lemma 16 for A, if A is replaced with A + A′ for
a small rank matrix A′.

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:13

▶ Lemma 17 (Binomial Matrix Theorem [18]). Let M be an invertible r × r matrix over
any field (or ring). Let C, U and V be t× t, r × t and t× r matrices respectively, over the
same field/ring. The inverse of M + UCV is M−1 −M−1U(I + CV M−1U)−1CV M−1 if
M + UCV is invertible.

Similarly to update determinants quickly we will need the following.

▶ Lemma 18 (Matrix Determinant Lemma). If M is a r × r matrix over a field and U and
V are r × t and t× r matrices then det(M + UV T) = det(It + V T M−1U) det(M).

Finally, we will also require the following lemma to compute the small matrix inverses
and determinants, viz. (I + CV M−1U)−1 and det(It + V T M−1U) respectively, required
by Lemmas 17 and 18.

▶ Lemma 19 ([10], Theorem 8).
1. Let t = O(log n

log log n) and B be a t × t integer matrix with entries bounded by pm and q

be an O(log log n) bit prime number. Then both det(B)(mod q) and B−1 over Fq can be
computed in AC0.

2. Furthermore, by Chinese remaindering, det(B) and hence B−1, if it exists, can both be
computed in AC0 by applying the first part for several distinct primes qi and different
submatrices.

We will now see how to use these in the context of processing O(log n/ log log n) bulk
insertions and deletions.

Processing Bulk Insertions. Suppose T̂ is the set of insertions to S, where |T̂ | = t =
O(log n/ log log n). Thus, the system of linear equations Ax = b̄ (mod pm) is now modified
to [A|Â]x = b̄ (mod pm), where the columns of A correspond to T , the new columns Â

correspond to the insertions T̂ , and b̄ is the integer vector corresponding to a g ∈ G whose
membership we want to test in ⟨T ∪ T̂ ⟩.

We note that in the modified linear equation above, the original coefficient matrix has
been modified in at most t columns. Thus, Lemmas 17 and 18 are applicable. With these
we can update the data computed by Lemma 16 in AC0. It can be recomputed in AC0 by
Lemma 19 as at most O(log n/ log log n) columns are modified in any submatrix, thinking
of the new columns as modifications of zero columns. Furthermore the recomputations
involves computing the determinant and inverse of matrices of dimension at most t =
O(log n/ log log n), where those matrices have integer entries given as input in unary (because
each of them is at most pm in magnitude). A crucial difficulty in the application of Lemmas 17
and 18 is that a submatrix M of A, whose inverse/determinant we need to update, may itself
not be invertible. We can deal with this by maintaining the data computed by Lemma 16
for the invertible matrices ξI −M , for all submatrices M of A, where ξ is an indeterminate.
Lemma 15 and parts 1 and 2 of Lemma 16 can be applied mutatis mutandis to matrices ξI−M

(for the submatrices M of Ã). The determinant of ξI −M will be a degree r polynomial
in ξ and (ξI −M)−1 will have entries that are rational functions f(ξ)/g(ξ) where f and g

are of degree at most r, where r = O(log n). Consider Lemma 17 and Lemma 18 applied to
ξI−M instead of M . Notice that det(M +UV T) is the constant term of det(M +UV T − ξI)
which we can compute in AC0, essentially by Lemma 19. Similarly, by Lemma 19 the inverse
(M + UCV T)−1, if it exists, can be computed in AC0 from Lemma 17 applied to ξI −M .

FSTTCS 2024

4:14 Dynamic Complexity of Abelian CGM

Processing Bulk Deletions. Let T̂ be the set of elements that are deleted from S. It is clear
that modifications to the matrix A are required only if some elements from T are deleted,
i.e., T ∩ T̂ ̸= ∅. However, deletions are bit trickier than insertions to handle. This is because,
we can’t simply drop the columns from A corresponding to T̂ ∩ T after bulk deletion T̂ , as it
need not be the case that what remains in T is still a generating set for the ⟨S \ T̂ ⟩. We
might possibly need to include some elements from S \ T̂ to T \ T̂ for getting a correct small
generating set for S \ T̂ . The number of columns to be dropped from A is clearly bounded
by O(log n/ log log n). However, with respect to number of columns that are to be included
in A after the change, Lemmas 17 and 18 enable us to update the submatrices’ inverse and
determinant only if this number is bounded by O(log n/ log log n). To our relief, it is indeed
the case. We show the following about finite abelian p-groups in general. For a finite abelian
p-group G, |G| = pm, let S ⊆ G. Let T be a subset of S such that ⟨S⟩ = ⟨T ⟩. Without loss
of generality, we assume that |S| ⩾ 2. Then we have the following.

▶ Lemma 20. Let G be a finite abelian p-group, |G| = pm, and T ⊆ S ⊆ G such that
⟨T ⟩ = ⟨S⟩. Then for any g ∈ T , there is an h ∈ S \T such that, ⟨S \{g}⟩ = ⟨(T \{g})∪{h}⟩.

Proof. Let H = ⟨T ⟩ and K = ⟨T \ {g}⟩. Since the groups are abelian H = K⟨g⟩. Suppose
|H| = pm1 and |K| = pm2 . Let µ = m1 −m2. Then |H|/|K| = pµ, which is the number of
distinct cosets of K in H. Furthermore, as H/K is cyclic, generated by Kg, it follows that
Kg ∈ H/K is an element of order pµ. Hence, we have the disjoint union H = ⊔pµ−1

j=0 Kgj .

▷ Claim 21. For j ⩾ 0 and α relatively prime to p, the subgroups K⟨gpj ⟩ and K⟨gpjα⟩ are
identical.

To see this it suffices to note that for any finite cyclic group ⟨a⟩ of order d and any α relatively
prime to d, aα is also a generator of the cyclic group ⟨a⟩. Hence, the cyclic subgroups ⟨gpj ⟩
and ⟨gpjα⟩ are identical which proves the claim.

For each s ∈ S, let Kges be the coset to which it belongs. Writing es = pℓsαs for αs

relatively prime to p, the above claim implies the subgroups K⟨s⟩ and K⟨gpℓs ⟩ are identical.
That means the two subgroups ⟨T ∪ {s} \ {g}⟩ and ⟨T ∪ {gpℓs } \ {g}⟩ are identical.

Now, among elements in S \ T , let h be an element with the least ℓh. We claim that
⟨S \ {g}⟩ = ⟨T ∪ {h} \ {g}⟩.

Suppose s ∈ S \ {g} is some other element. Then ℓs ⩾ ℓh, by the choice of h. That means
K⟨gpℓs ⟩ is a subgroup of K⟨gpℓh ⟩, which implies s ∈ K⟨gpℓh ⟩ = K⟨h⟩ = ⟨(T \ {g}) ∪ {h}⟩,
completing the proof. ◀

From Lemma 20, it is clear that after deletion of T̂ , there is a O(log n/ log log n) size
set R ⊆ (S \ T̂) such that ⟨(T \ T̂) ∪ R⟩ = ⟨S \ T̂ ⟩. Hence, after the deletion of T̂ from S

if we can find such a set R, then we can update the matrix A by dropping the columns
corresponding to the elements in T̂ and including columns corresponding to R so that the
modified matrix A in Equation (1) correctly corresponds to the CGM question with respect
to the modified generating set S. For the modified matrix, we can update for each ℓ × ℓ

submatrix its inverse and determinant in AC0 using binomial matrix theorem and matrix
determinant lemma (Lemmas 17 and 18). This is because the determinants and inverses
involved in Lemmas 17 and 18 can be computed in AC0 due to Lemma 19 as their size
bounded by O(log n/ log log n).

But, we can’t afford to search for R in S \ T̂ , which is of O(n) size. However, we can
make use of the tree data structure B, of Section 4 that essentially maintains a polylog(n)
size generating set for S. That is, given B, we always have a polylog(n) size subset P of S

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:15

available, such that it generates the same group as S. We can exhaustively search for a valid
R in P , since the search space is polynomially bounded (

(polylog(n)
O(log n/ log log n)

)
= poly(n)). For

each choice of R we can use the AC0 routine for handling O(log n/ log log n) insertions to the
generating set, to find the span ⟨(T \ T̂) ∪R⟩. On top of that, we can find an R′ such that
⟨(T \ T̂) ∪R′⟩ contains all the elements that could be generated with any other choice of R.
With R′, we finally update T \ T̂ to become (T \ T̂) ∪R′ and update all the relevant matrix
inverses and determinants.

Continual rebuilding of data structure. We note that the data required by the algorithm
to answer membership queries in AC0 are:

A generating set T of size O(log n) such that ⟨T ⟩ = ⟨S⟩.
A polylog(n) size generating set P of ⟨S⟩ such that P ⊆ S.
An ℓ× |T | dimensional matrix A corresponding to the generating set. Determinant and
inverses of all non-singular ℓ× ℓ submatrices of [A|pmIℓ].

We have already seen in Section 4 that polylog(n) size generating set P can be maintained in
DynAC0 even under polylog(n) size bulk changes with help of the tree data structure, though
it requires a one time AC1 preprocessing step.

Having intialized the above auxiliary data structure, after every bulk insertion/deletion
we can update them in AC0 at least for log log n time steps. Within this time period, the
small generating set T remains logarithmically bounded, because even though after every
time step, size of T could grow by O(log n/ log log n), it can only grow by O(log n) over
log log n steps. Also, within this time period, we can check feasibility of Ax = b̄ (mod pm)
in AC0 and hence answer membership queries. We use the muddling technique to extend
this log log n window such that we can, for arbitrary long sequence change-steps, answer the
CGM queries in AC0 after each bulk insertion/deletion step.

In the beginning we have the correct small generating set T0 = T , because of initialization.
After the first change step, say i = 1, we start an AC(log log n) computation thread for
computing an at most log n size subset T1 of the modified T such that it generates the same
subgroup. The result of this thread, T1 is available after a delay of log log n time steps,
i.e., at time step i = log log n + 1. With respect to T1 and the insertion/deletions that
accumulate during the recomputation phase, we have all the updated information about the
corresponding matrix A, i.e., the determinants and inverses of all ℓ × ℓ submatrices of A.
So, when the next bulk insertion/deletion arrives, we can update the auxiliary information
again in AC0. In fact, we start an AC(log log n) recomputation thread for computing the
small generating set Ti at every time step i within the log log n time window so that we
have logarithmically bounded generating set at time step i + log log n. Still the number
of recomputation threads running at any given time step is O(log log n), thus keeping the
overall circuit size polynomially bounded.

To summarize we have shown the following theorem.

▶ Theorem 22. There is a deterministic dynamic AC0 algorithm for the abelian Cayley
Group Membership problem, CGM, that supports O(log n/ log log n) insertions and deletions
to the generating set, and requires a one-time AC1 preprocessing step.

6 Dynamic Abelian group isomorphism

Let G1 and G2 be abelian groups, each given a multiplication table as input, say T1 and T2,
respectively. Let S1 ⊆ G1 and S2 ⊆ G2 be subsets. In the static setting, there is a simple
polynomial time algorithm for checking if ⟨S1⟩ and ⟨S2⟩ are isomorphic: it suffices to list

FSTTCS 2024

4:16 Dynamic Complexity of Abelian CGM

out the two subgroups ⟨S1⟩ and ⟨S2⟩, check they have the same order n, and check for each
factor k of n that the number of elements of order k in the two subgroups ⟨S1⟩ and ⟨S2⟩ is
the same.6

In Section D we give a DynAC0 algorithm for dynamic abelian group isomorphism that
supports insertions and deletions to both S1, S2. Thus, we have shown the following.

▶ Theorem 23. There is a randomized (respectively deterministic) DynAC0 algorithm for
abelian group isomorphism that supports polylog(n) (respectively O(log n/ log log n)) insertions
and deletions at each step to the generating sets of the two groups.

7 Making the multiplication table dynamic

We have assumed so far that the overall group G (or monoid) is unchanged and only the
generating set for the CGM problem is dynamic. Suppose now that the entries of the
multiplication table of G can be modified dynamically. When the table’s entries change, it
may no longer represent a group (or a monoid). The binary operation ∗ : G×G→ G is just
a magma, in general. However, we can show that the dynamic algorithms for abelian CGM
still hold, with the proviso that the membership query answers are correct only when the
magma is actually an abelian group.

The main property we use here is that at most one group has its multiplication table
within linear (i.e. O(n)) edit distance from the multiplication table of an n-element magma
G.7 Moreover, from the magma multiplication table we can decode this unique group in AC0.
We note that Ergün et al [13] have shown stronger results for this problem in the context
of spot checkers; they give randomized self-correction algorithms for a variety of problems.
However, for a self-contained presentation, we include a simple proof of a weaker Lemma 28
yielding:

▶ Theorem 24. There is a randomized DynAC0 algorithm that supports O(n/ log n) changes
to the multiplication table and polylog(n) insertions/deletions to the generating set, with the
proviso that when the multiplication table decodes to an abelian group the membership queries
are answered with respect to it, and when it does not decode to an abelian group then the query
answers could be incorrect. There is also a deterministic DynAC0 algorithm that supports
O(n/ log n) changes to the multiplication table and log n/ log log n insertions/deletions to the
generating set, with the same proviso as described above.

8 Conclusion and open ends

We address the dynamic complexity of CGM and isomorphism problems for finite abelian
groups input by their multiplication table under O(log n/ log log n) changes to the generating
set while also allowing sublinear changes to the table itself to be in constant parallel time with
an initial logarithmic parallel time precomputation. We can also handle polylog(n) changes
to the generating set by allowing randomness. For the more general algebraic structures,
namely commutative monoids, we gave a foundational method to handle single changes, on
which the preceding are built.

Natural open questions are to extend the results to more general groups like nilpotent
and solvable groups.

6 Two finite abelian groups are isomorphic iff for each positive integer k the number of elements of order
k in the two groups coincide [16].

7 By the edit distance between multiplication tables op1 : G × G → G and op2 : G × G → G we mean the
number of pairs (a, b) ∈ G × G such that op1(a, b) ̸= op2(a, b).

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:17

References

1 Miklós Ajtai.
∑1

1-formulae on finite structures. Ann. Pure Appl. Log., 24(1):1–48, 1983.
doi:10.1016/0168-0072(83)90038-6.

2 Miklós Ajtai. Approximate counting with uniform constant-depth circuits. In Advances In
Computational Complexity Theory, Proceedings of a DIMACS Workshop, New Jersey, USA,
December 3-7, 1990, pages 1–20, 1990. doi:10.1090/DIMACS/013/01.

3 Vikraman Arvind and T. C. Vijayaraghavan. Classifying problems on linear congruences and
abelian permutation groups using logspace counting classes. Comput. Complex., 19(1):57–98,
2010. doi:10.1007/S00037-009-0280-6.

4 László Babai, Eugene M. Luks, and Ákos Seress. Permutation groups in NC. In Alfred V.
Aho, editor, Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, New York, USA, pages 409–420. ACM, 1987. doi:10.1145/28395.28439.

5 David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within
NC1. In Proceedings: Third Annual Structure in Complexity Theory Conference, Georgetown
University, Washington, D. C., USA, June 14-17, 1988, pages 47–59, 1988.

6 David Mix Barrington, Peter Kadau, Klaus-Jörn Lange, and Pierre McKenzie. On the
complexity of some problems on groups input as multiplication tables. Journal of Computer
and System Sciences, 63(2):186–200, 2001. doi:10.1006/JCSS.2001.1764.

7 Arkadev Chattopadhyay, Jacobo Torán, and Fabian Wagner. Graph isomorphism is not
AC0-reducible to group isomorphism. ACM Trans. Comput. Theory, 5(4):13:1–13:13, 2013.
doi:10.1145/2540088.

8 Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick, and Thomas Zeume.
Reachability is in DynFO. J. ACM, 65(5):33:1–33:24, 2018. doi:10.1145/3212685.

9 Samir Datta, Anish Mukherjee, Thomas Schwentick, Nils Vortmeier, and Thomas Zeume. A
strategy for dynamic programs: Start over and muddle through. Log. Methods Comput. Sci.,
15(2), 2019. doi:10.23638/LMCS-15(2:12)2019.

10 Samir Datta, Anish Mukherjee, Nils Vortmeier, and Thomas Zeume. Reachability and distances
under multiple changes. In 45th International Colloquium on Automata, Languages, and
Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages 120:1–120:14,
2018. doi:10.4230/LIPICS.ICALP.2018.120.

11 Laxman Dhulipala, David Durfee, Janardhan Kulkarni, Richard Peng, Saurabh Sawlani, and
Xiaorui Sun. Parallel batch-dynamic graphs: Algorithms and lower bounds. In Proceedings of
the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 1300–1319, 2020. doi:10.1137/1.9781611975994.79.

12 Guozhu Dong, Jianwen Su, and Rodney W. Topor. Nonrecursive incremental evaluation of
datalog queries. Ann. Math. Artif. Intell., 14(2-4):187–223, 1995. doi:10.1007/BF01530820.

13 Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. J. Comput. Syst. Sci., 60(3):717–751, 2000. doi:10.1006/JCSS.1999.1692.

14 Joshua A. Grochow and Youming Qiao. On p-group isomorphism: Search-to-decision, counting-
to-decision, and nilpotency class reductions via tensors. In Valentine Kabanets, editor, 36th
Computational Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada
(Virtual Conference), volume 200 of LIPIcs, pages 16:1–16:38. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPICS.CCC.2021.16.

15 Joshua A. Grochow and Youming Qiao. On the complexity of isomorphism problems for
tensors, groups, and polynomials I: tensor isomorphism-completeness. In James R. Lee,
editor, 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, January
6-8, 2021, Virtual Conference, volume 185 of LIPIcs, pages 31:1–31:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ITCS.2021.31.

16 M. Hall. The Theory of Groups. AMS Chelsea Publishing Series. AMS Chelsea Pub., 1999.
17 Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Recent advances in fully dynamic

graph algorithms - A quick reference guide. ACM J. Exp. Algorithmics, 27:1.11:1–1.11:45,
2022. doi:10.1145/3555806.

FSTTCS 2024

https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1090/DIMACS/013/01
https://doi.org/10.1007/S00037-009-0280-6
https://doi.org/10.1145/28395.28439
https://doi.org/10.1006/JCSS.2001.1764
https://doi.org/10.1145/2540088
https://doi.org/10.1145/3212685
https://doi.org/10.23638/LMCS-15(2:12)2019
https://doi.org/10.4230/LIPICS.ICALP.2018.120
https://doi.org/10.1137/1.9781611975994.79
https://doi.org/10.1007/BF01530820
https://doi.org/10.1006/JCSS.1999.1692
https://doi.org/10.4230/LIPICS.CCC.2021.16
https://doi.org/10.4230/LIPICS.ITCS.2021.31
https://doi.org/10.1145/3555806

4:18 Dynamic Complexity of Abelian CGM

18 H.V. Henderson and S.R. Searle. On deriving the inverse of a sum of matrices. SIAM Review,
23(1):53–60, 1981.

19 William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-depth threshold
circuits for division and iterated multiplication. J. Comput. Syst. Sci., 65(4):695–716, 2002.
doi:10.1016/S0022-0000(02)00025-9.

20 Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.
doi:10.1007/978-1-4612-0539-5.

21 Giuseppe F. Italiano, Silvio Lattanzi, Vahab S. Mirrokni, and Nikos Parotsidis. Dynamic
algorithms for the massively parallel computation model. In The 31st ACM on Symposium
on Parallelism in Algorithms and Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-24,
2019, pages 49–58, 2019. doi:10.1145/3323165.3323202.

22 T. Kavitha. Linear time algorithms for abelian group isomorphism and related problems.
Journal of Computer and System Sciences, 73(6):986–996, 2007. doi:10.1016/J.JCSS.2007.
03.013.

23 Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complexity.
Chic. J. Theor. Comput. Sci., 1997, 1997. URL: http://cjtcs.cs.uchicago.edu/articles/
1997/5/contents.html.

24 Pierre McKenzie and Stephen A. Cook. The parallel complexity of abelian permutation group
problems. SIAM J. Comput., 16(5):880–909, 1987. doi:10.1137/0216058.

25 Krzysztof Nowicki and Krzysztof Onak. Dynamic graph algorithms with batch updates in the
massively parallel computation model. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2939–2958,
2021. doi:10.1137/1.9781611976465.175.

26 Sushant Patnaik and Neil Immerman. Dyn-fo: A parallel, dynamic complexity class. J.
Comput. Syst. Sci., 55(2):199–209, 1997. doi:10.1006/JCSS.1997.1520.

27 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, 2008.
doi:10.1145/1391289.1391291.

28 Á. Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge
University Press, 2003.

29 Charles C. Sims. Computation with permutation groups. In Stanley R. Petrick, Jean E.
Sammet, Robert G. Tobey, and Joel Moses, editors, Proceedings of the second ACM symposium
on Symbolic and algebraic manipulation, SYMSAC 1971, Los Angeles, California, USA, March
23-25, 1971, pages 23–28. ACM, 1971. doi:10.1145/800204.806264.

30 Xiaorui Sun. Faster isomorphism for p-groups of class 2 and exponent p. In Proceedings of
the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, pages 433–440, New
York, NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3564246.3585250.

31 H. Venkateswaran. Circuit definitions of nondeterministic complexity classes. SIAM J. Comput.,
21(4):655–670, 1992. doi:10.1137/0221040.

A Missing proofs from Section 3

▶ Proposition 2. For each node τ of the tree T the subset Mτ associated with τ is the
commutative submonoid generated by the subset Lτ = {a ∈ S | a such that τ has the leaf
labelled a as descendant}. I.e., Mτ = ⟨Lτ ⟩.

Proof. This is easily proved by induction on the tree T . The point to note is that commut-
ativity of the monoid M is crucial: if Mµ = ⟨Lµ⟩ and Mν = ⟨Lν⟩ by induction hypothesis,
then we note that Mµ ·Mν = ⟨Lµ ∪ Lν⟩ because all the elements commute with each other.
Hence Mτ = Mµ ·Mν = ⟨Lτ ⟩. ◀

▶ Lemma 3. The CGM problem for commutative monoids is in SAC1.

https://doi.org/10.1016/S0022-0000(02)00025-9
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1145/3323165.3323202
https://doi.org/10.1016/J.JCSS.2007.03.013
https://doi.org/10.1016/J.JCSS.2007.03.013
http://cjtcs.cs.uchicago.edu/articles/1997/5/contents.html
http://cjtcs.cs.uchicago.edu/articles/1997/5/contents.html
https://doi.org/10.1137/0216058
https://doi.org/10.1137/1.9781611976465.175
https://doi.org/10.1006/JCSS.1997.1520
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1145/800204.806264
https://doi.org/10.1145/3564246.3585250
https://doi.org/10.1137/0221040

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:19

Proof. Given m ∈M , to check if m ∈ ⟨S⟩ we just need to check if m is in the submonoid
Mρ associated with the root ρ of T . ◀

▶ Proposition 4. Given as input a subset S ⊆M for a commutative monoid M (given by its
multiplication table), we can construct the tree data structure T along with the data at each
node as described above in SAC1. Furthermore, given a membership query m ∈M , testing if
m is in the current submonoid ⟨S⟩ can be done in AC0.

Proof. For the tree construction, it suffices to observe that we can do the computation of
each Mν:µ in parallel in SAC1. For membership testing, if the ρ is the root of the tree then
the submonoid Mρ = ⟨S⟩ is available as a list at the node ρ. Hence membership testing is
in AC0. ◀

B Missing proofs from Section 4

▶ Lemma 8. Let S ⊆ G, for an abelian group G given by its multiplication table as input.
In FOLL a log |G| size subset T of S can be computed that generates the same subgroup as S.

Proof. Let S = {x1, x2, . . . , xs}. For each i > 1 in parallel, we can check if xi+1 is in
⟨x1, x2, . . . , xi⟩ using the FOLL algorithm of [6]. If xi+1 /∈ ⟨x1, x2, . . . , xi⟩ then we include
xi+1 into the set T . Clearly, |T | ⩽ log |G| and generates the same subgroup and S. ◀

▶ Lemma 9. Let T ⊆ G be of size at most logc n for some constant c, where G is an
abelian group, |G| = n, given by its multiplication table with independent generating set
G = ⟨g1, g2, . . . , gℓ⟩. Then in randomized AC0 we can list out the subgroup ⟨T ⟩ generated
by T . In particular, membership testing in the subgroup generated by T can be done in
randomized AC0.

Proof. Let T = {x1, x2, . . . , xr}. For each g ∈ G we have the pre-computed unique product

g =
ℓ∏

i=1
gαi

i ,

using the independent generating set {g1, g2, . . . , gℓ}. In particular, for each xj ∈ T we have

xj =
ℓ∏

i=1
g

αij

i ,

where 0 ⩽ αij ⩽ o(gi)− 1 for each i ∈ [ℓ]. As explained below, we can randomly sample from
the group generated by T by picking numbers βj ∈R [n], 1 ⩽ j ⩽ r uniformly at random and
computing the product

x =
r∏

j=1
x

βj

j .

The number of such products is nr. Furthermore, each element of the subgroup ⟨T ⟩ occurs in
this product with multiplicity exactly |{(β1, β2, . . . , βr) |

∏
j x

βj

j = 1}, as this set is the kernel
of the group homomorphism mapping (β1, β2, . . . , βr) 7→

∏r
j=1 x

βj

j . Thus, x is uniformly
distributed in ⟨T ⟩. If we draw, say n2 such samples x in parallel, the probability that all
elements of ⟨T ⟩ appear is at least 1−e−n. Finally, we analyze the complexity of computing the

product x =
∏r

j=1 x
βj

j . Notice that it amounts to computing the product
∏ℓ

i=1 g

∑r

j=1
βjαij

i .

FSTTCS 2024

4:20 Dynamic Complexity of Abelian CGM

Now, each of these ℓ exponents
∑r

j=1 βjαij is a logc n sum of unary numbers and can be
computed modulo the unary number o(gi) in AC0. The final product can be looked up in the
pre-computed table to find x. This proves that the group ⟨T ⟩ can be listed in randomized
AC0 and hence membership testing in ⟨T ⟩ is also in randomized AC0. ◀

▶ Lemma 10. The tree data structure B, for the generating set S can be built in O(log n)
parallel time (i.e. in AC(log n)).

Proof. The tree has log n levels and the straightforward computation required at each of
the (at most |S|) nodes at each level is AC0. ◀

▶ Lemma 11. Given the data structure for S along with the update sets of insertions I and
deletions D, each of logc+1 n size, we can test if some group element g is in the subgroup
generated by (S ∪ I) \D in AC0.

Proof. Let D = {xi1 , xi2 , . . . , xid
} be the deletions from S, d = logc+1 n. From the data

structure for S we can find the d subtrees rooted at nodes νi1 , νi2 , . . . , νid
where each node

νij
is the root of the maximal subtree that has exactly one deletion xij

occurring among
its leaves. This can be done in O(1) parallel time using the ancestor boolean array A[u, v].
In the data structure for S we already have a log n size generating set, say Tνij

xij
, for each

subgroup Hνij
:xij

.
Additionally, we find the maximal subtrees, rooted at nodes µℓ1 , µℓ2 , . . . , µℓs of the tree,

such that these subtrees contain no deletion xij
as descendant. To get a bound on s, note

that each such maximal subtree has as sibling a subtree that contains one or more deletions
among its leaves. The roots of all subtrees that have deletions among its leaves are just
the ancestors of the νij nodes, and hence are at most d⌈log n⌉ in number (each leaf has at
most ⌈log n⌉ ancestors). Thus, s = O(d log n) = O(logc+2 n). At each node µℓj

(j ∈ [s]) we
already have a log n size generating set, Tµℓj

for each subgroup Hµℓj
. Let T = ∪jTνij

xij
and

T̂ = ∪jTµℓj
. It follows from the above that we can compute T and T̂ in O(1) parallel time.

Putting it all together, the group generated by (S ∪ I) \ D is actually generated by
T̂ ∪ T ∪ I which is of polylog(n) size. Therefore, applying Lemma 9 we can do membership
testing in this subgroup in randomized AC0. ◀

C Missing proofs from Section 5

▶ Lemma 15. Let A be a square matrix of dimension polylog(n) with entries that are
polynomially bounded in n, then each bit of det(A) can be computed in AC(log log n).

Proof. It is well known that the determinant of a matrix of n variables can be computed by
boolean threshold circuits8 of polynomial size and logarithmic depth, i.e. it is in TC1. (Proof
sketch: the determinant of a matrix of polynomial dimension with polynomial in n bit entries
can be computed in arithmetic SAC1 [23, Table 2]. In other words, it can be computed by a
layered logarithmic depth circuit with gates from {+,−, ∗} where the ∗-gates have fan-in 2.
Now by applying [19, Corollary 6.7] each layer of this arithmetic circuit can be simulated in
TC0, i.e. constant-depth threshold circuits). Hence, replacing n with log n, it follows that the
determinant of matrices of polylog(n) dimension with polylog(n) bit entries can be computed
by a threshold circuit of depth O(log log n) and size polylog(n). Furthermore, threshold
gates of polylog n fanin can be computed by poly(n) size uniform AC0 [1, 2]. Replacing the
threshold gates by the corresponding AC0-circuit of size poly(n) completes the proof. ◀

8 Threshold circuits allow for unbounded fanin threshold gates apart from NOT, AND, and OR gates.

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:21

▶ Lemma 16. Let Ax = b̄ (mod pm) be a system of integer linear equations modulo pm,
where pm = n is input in unary, and A ∈ Zℓ×t and b̄ ∈ Zl, t = O(log n).
1. Let Ã = [A|pmIℓ]. We can compute the determinants of all square submatrices of Ã and

[Ã|b̄] in AC(log log n) (i.e. in log log n parallel time).
2. Furthermore, for the nonsingular submatrices we can also compute their inverses in

AC(log log n).
3. Given the above we can test the feasibility of Ax = b̄ (mod pm) and solve for x in AC0.

Proof. For the first part, the number of square submatrices is polynomially bounded as
Ã has dimension O(log n) × O(log n). Reducing modulo pm, the entries of the matrix are
bounded by n. Thus, by Lemma 15 it follows that the determinant as an integer can be
computed in AC(log log n). Reducing modulo pm yields the answer and we know from [19]
that the division by a unary number is possible in AC0.

For the second part, consider every nonsingular submatrix N , i.e. det N is non-zero. We
can compute the entries of N−1 by Cramer’s rule, as each cofactor of N is also a submatrix
of Ã. Since we can compute division of O(log n)-bit integers in AC0 (see [19, Theorem 5.1])
it follows that these computations can also be done in AC(log log n).

For the last part, notice that feasibility can be tested in AC0, given the data of first two
parts, by Lemma 14. From the set of all l × l non-singular submatrices of Ã, we choose N ,
that has the least power of p dividing its determinant, νp(det(N)) is the smallest.

W.l.o.g. N is the first l columns of Ã. Let Nz′ = b̄ be the system of equations obtained
by keeping only the first l columns of Ã and truncating z beyond the lth coordinate. The
solution to this is z′ = N−1b̄, where the right hand side is computable in AC0 given N−1.
Now we can extend this solution to a solution of Ãz = b̄ by putting zi = z′

i for each column i

in [l] and zi = 0 for other columns. It is easy to see that this must be a solution of Ãz = b̄,
as we know the latter is feasible. However, this solution may not necessarily be integer, as
we would like. But this rational solution will have the property that denominators of the
solution are relatively prime to p as we show below.

Because of Cramer’s rule, for any i ∈ [l], zi = det([Ni|b̄])/ det(N), where Ni is the matrix
obtained from N by dropping its ith column. Let s be the gcd of the determinants of all
l × l submatrices of Ã. Let t be the gcd of the determinants of all l × l submatrices of [Ã|b̄].
From the feasibility criterion of Lemma 14, we have that νp(s) = νp(t). But, from the choice
of N it is clear that, νp(s) = νp(det(N)) and hence νp(det(N)) = νp(t). In particular, this
implies that, νp([Ni|b̄]) ⩾ det(N). From this, we have that the denominator of zi is relatively
prime to p for any i ∈ [l].

Now, we can uniquely modify such a solution to be integral easily in AC0. ◀

D Missing parts from Section 6

Let G1 and G2 be abelian groups, each given a multiplication table as input, say T1 and T2,
respectively. Let S1 ⊆ G1 and S2 ⊆ G2 be subsets. In the static setting, there is a simple
polynomial time algorithm for checking if ⟨S1⟩ and ⟨S2⟩ are isomorphic: it suffices to list
out the two subgroups ⟨S1⟩ and ⟨S2⟩, check they have the same order n, and check for each
factor k of n that the number of elements of order k in the two subgroups ⟨S1⟩ and ⟨S2⟩ is
the same.9

9 Two finite abelian groups are isomorphic iff for each positive integer k the number of elements of order
k in the two groups coincide [16].

FSTTCS 2024

4:22 Dynamic Complexity of Abelian CGM

We give a DynAC0 algorithm for the dynamic version of abelian group isomorphism
that supports insertions and deletions to both S1 and S2. Let n1 =

∏
x∈S1

o(x) and
n2 =

∏
y∈S2

o(y), where the orders o(x), o(y), x ∈ S1, y ∈ S2 can be pre-computed for the
elements of the two groups G1 and G2. Let n1 =

∏r
i=1 pai

i and n2 =
∏r

i=1 pbi
i be their prime

factorizations. We can assume both n1 and n2 have the same prime factors. Otherwise, ⟨S1⟩
and ⟨S2⟩ are not isomorphic. Let n1i = n1/pai

i and n2i = n2/pbi
i and S1i = {xn1i | x ∈ S1}

and S1i = {yn1i | y ∈ S2} for 1 ⩽ i ⩽ r. Since a finite abelian group is a direct product of its
(unique) Sylow subgroups we have

▶ Proposition 25. The groups ⟨S1⟩ and ⟨S2⟩ are isomorphic iff their pi-Sylow subgroups
⟨S1i⟩ and ⟨S2i⟩ are isomorphic.

Thus, as argued in Sections 4 and 5, it suffices to solve the problem for abelian p-groups.
Henceforth, we assume both ⟨S1⟩ and ⟨S2⟩ are p-groups. The following lemma from Mckenzie
and Cook’s work [24], paraphrased in our context, is useful for our algorithm.

▶ Lemma 26 ([24], Proposition 6.4). Let ⟨S1⟩ ⩽ G1 and ⟨S2⟩ ⩽ G2 be abelian p-groups,
and k be largest positive integer such that pk ⩽ max{|G1|, |G2|}. For 1 ⩽ j ⩽ k let
S1j = {xpj | x ∈ S1} and S2j = {ypj | y ∈ S2}. Then ⟨S1⟩ and ⟨S2⟩ are isomorphic if and
only if |⟨S1j⟩| = |⟨S2j⟩| for 1 ⩽ j ⩽ k.

Effectively, the above lemma is a reduction from abelian group isomorphism to abelian
CGM. Thus, as observed in [7], in the static setting we can note that the above lemma
immediately shows that abelian group isomorphism problem we consider can be solved by
AC(log log n) circuits with majority gates. This is by applying the Barrington et al algorithm
[6] to enumerate the subgroups ⟨S1j⟩ and ⟨S2j⟩ in AC(log log n) for each 1 ⩽ j ⩽ k and then
comparing their orders (for which majority gates are required).

Our strategy for the dynamic version is also based on Lemma 26 because we can apply
the results for abelian CGM shown in Sections 4 and 5.

In the dynamic setting, where we have insertions and deletions to the generating sets
S1, S2, we will use the same data structures developed in Section 4 (for supporting polylog(n)
insertions and deletions) and Section 5 (for supporting log n/ log log n insertions and deletions)
for the abelian CGM problem but now in parallel for all the generating sets ⟨S1j⟩ and ⟨S2j⟩
for 1 ⩽ j ⩽ k.

In order to compute |⟨S1j⟩| and |⟨S2j⟩| from membership queries the following lemma,
from [24], is useful.

▶ Lemma 27 ([24], Proposition 6.6). Let H = ⟨g1, . . . , gr⟩ be a finite abelian p-group. Then,
|H| = t1t2 . . . tr where tj is the least positive integer such that g

tj

j ∈ ⟨gj+1, . . . , gr⟩ for
1 ⩽ j ⩽ r.

In the above lemma, as H is a p-group notice that each tj is a power of p. We will
be applying this lemma to groups ⟨S1j⟩ and ⟨S2j⟩. As |⟨S1j⟩| ⩽ n1 ⩽ |G1| and |⟨S2j⟩| ⩽
n2 ⩽ |G2|, and both n1 and n2 are logarithmic size in binary, for these groups H at most
logarithmically many of the integers ti are more than 1. Letting tj = prj , computing
the product

∏
j tj = p

∑
j

rj amounts to adding at most logarithmically many rj , each
logarithmically bounded. As already observed, such tiny additions can be computed in AC0.

E Missing parts from Section 7

▶ Lemma 28. Let MG denote the multiplication table of the group G. Suppose M is a
multiplication table obtained from MG by changing at most δn many entries of MG, for
δ < 1/13. Then there is an AC0 circuit that takes M as input and outputs MG.

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:23

Proof. For each xi ∈ G the row of xi in M has at most δn errors in it. Thus, the row for the
identity element, say x1 = e is uniquely determined, because x1 ∈ G is the unique element
with x1xj = xj for majority of j ∈ [n].

For each z ∈ G there is a unique inverse z−1 ∈ G and zz−1 = e = z−1z. That means in
MG there are exactly n occurrences of e in the multiplication table. Therefore, in M there
are at most (1 + δ)n occurrences of e and at least (1− δ)n occurrences of e.

Let S = {(z, w) | z, w ∈ G, z ∗ w = e}, where ∗ is the product operation in the table M .
Then

(1− δ)n ⩽ |S| ⩽ (1 + δ)n.

Thus, for at least (1− 2δ)n pairs (z, w) ∈ S we have z ∗ w = zw = e in G.
Now, in order to recover the correct value of the product xixj , we look up the products

(xi ∗ z) ∗ (w ∗ xj) in the table M . Then we have
|{z ∈ G | xi ∗ z ̸= xiz}| ⩽ δn.
|{w ∈ G | w ∗ xj ̸= wxj}| ⩽ δn.
|{(z, w) ∈ S | z ∗ w ̸= zw}| ⩽ δn.
|{(z, w) ∈ S | (xiz) ∗ (wxj) ̸= (xiz)(wxj)}| ⩽ δn.

Thus, for at least (1− 6δ)n pairs (z, w) ∈ S we have (xi ∗ z) ∗ (w ∗ xj) = (xiz)(wxj) =
xi(zw)xj = xixj .

If we choose δ < 1/13 then the number of such pairs (z, w) ∈ S is more than 7n/13. By
approximate majority which can be computed in AC0 [1, 2], we can find this correct value of
xixj . We can thus recover the entire table MG in AC0. ◀

The above lemma suggests the following simple dynamic algorithm for the abelian CGM
problem that supports polylog(n) changes to the group multiplication table, as well as bulk
insertions/deletions to the generating set (as discussed in Sections 4 and 5).
1. Let M be the current multiplication table. We apply the AC0 algorithm of Lemma 28 to

decode M . Let G be the resulting table.
2. If the decoded table does not give an abelian group, the query answers can be arbitrary

(but consistent which can be ensured by remembering the answers to queries already
made).

3. Suppose the decoded table gives an abelian group G′. If G′ ̸= G then for the next
log n steps we rebuild the static data structure for G′ in AC(log n). We can answer any
membership queries, occurring in this window of log n time steps, arbitrarily. After log n

steps we can replace G with G′ and its data structure and continue.

In summary, we have the following.

▶ Theorem 24. There is a randomized DynAC0 algorithm that supports O(n/ log n) changes
to the multiplication table and polylog(n) insertions/deletions to the generating set, with the
proviso that when the multiplication table decodes to an abelian group the membership queries
are answered with respect to it, and when it does not decode to an abelian group then the query
answers could be incorrect. There is also a deterministic DynAC0 algorithm that supports
O(n/ log n) changes to the multiplication table and log n/ log log n insertions/deletions to the
generating set, with the same proviso as described above.

FSTTCS 2024

	1 Introduction
	2 Preliminaries
	3 A Dynamic CGM Algorithm for Commutative Monoids
	4 The Dynamic CGM Problem for Abelian Groups
	5 A Deterministic Dynamic Algorithm for Abelian CGM
	6 Dynamic Abelian group isomorphism
	7 Making the multiplication table dynamic
	8 Conclusion and open ends
	A Missing proofs from Section 3
	B Missing proofs from Section 4
	C Missing proofs from Section 5
	D Missing parts from Section 6
	E Missing parts from Section 7

