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Abstract
We study two-player zero-sum concurrent stochastic games with finite state and action space played
for an infinite number of steps. In every step, the two players simultaneously and independently
choose an action. Given the current state and the chosen actions, the next state is obtained
according to a stochastic transition function. An objective is a measurable function on plays (or
infinite trajectories) of the game, and the value for an objective is the maximal expectation that the
player can guarantee against the adversarial player. We consider: (a) stateful-discounted objectives,
which are similar to the classic discounted-sum objectives, but states are associated with different
discount factors rather than a single discount factor; and (b) parity objectives, which are a canonical
representation for ω-regular objectives. For stateful-discounted objectives, given an ordering of the
discount factors, the limit value is the limit of the value of the stateful-discounted objectives, as the
discount factors approach zero according to the given order.

The computational problem we consider is the approximation of the value within an arbitrary
additive error. The above problem is known to be in EXPSPACE for the limit value of stateful-
discounted objectives and in PSPACE for parity objectives. The best-known algorithms for both
the above problems are at least exponential time, with an exponential dependence on the number
of states and actions. Our main results for the value approximation problem for the limit value
of stateful-discounted objectives and parity objectives are as follows: (a) we establish TFNP[NP]
complexity; and (b) we present algorithms that improve the dependency on the number of actions
in the exponent from linear to logarithmic. In particular, if the number of states is constant, our
algorithms run in polynomial time.
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1 Introduction

In this work, we present improved complexity results and algorithms for the value approx-
imation of concurrent stochastic games with two classic objectives. Below we present the
model of concurrent stochastic games, the relevant objectives, the computational problems,
previous results, and finally our contributions.
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5:2 Concurrent Stochastic Games with Stateful-Discounted and Parity Objectives

Concurrent stochastic games. Concurrent stochastic games are two-player zero-sum games
played on finite-state graphs for an infinite number of steps. These games were introduced
in the seminal work of Shapley [26] and are a fundamental model in game theory. In each
step, both players simultaneously and independently of the other player choose an action.
Given the current state and the chosen actions, the next state is obtained according to a
stochastic transition function. An infinite number of such steps results in a play which is
an infinite sequence of states and actions. Concurrent stochastic games have been widely
studied in the literature from the mathematical perspective [26, 15, 16, 24], and from the
algorithmic and computational complexity perspective, including: complexity for reachability
objectives [9, 14, 17, 22], algorithms for limit-average objectives [21, 25], complexity for
qualitative solutions for omega-regular objectives [8], complexity for quantitative solutions
for omega-regular objectives [6, 13], and in the context of temporal logic [1]. In particular, in
the analysis of reactive systems, concurrent games provide the appropriate model for reactive
systems with components that interact synchronously [1, 11, 12]. Hence, concurrent parity
games are relevant for the verification of synchronous reactive systems.

Objectives. An objective is a measurable function that assigns to every play a real-valued
reward. The classic discounted-sum objective is as follows: every transition is assigned a
reward and the objective assigns to a play the discounted-sum of the rewards. While the
classic objective has a single discount factor, the stateful-discounted objective has multiple
discount factors. In the stateful-discounted objective, each state is associated with a discount
factor, and, in the objective, the discount at a step depends on the current state. We also
consider the boolean parity objectives, which are a canonical form to express all ω-regular
objectives [27], which provide a robust specification for all properties that arise in verification.
For example, all LTL formulas can be converted to deterministic parity automata. In parity
objectives, every state is associated with an integer priority, and a play is winning for (or
satisfies) the objective if the minimum priority visited infinitely often is even.

Strategies and values. Strategies are recipes that define the choice of actions of the players.
They are functions that, given a game history, return a distribution over actions. Given a
concurrent stochastic game and an objective, the value of Player 1 at a state is the maximal
expectation that the player can guarantee for the objective against all strategies of Player 2.
For stateful-discounted objectives, given an ordering of the discount factors, the limit value
at a state is the limit of the value function for the discounted objective as the discount factors
approach zero in the given order.

Computational problems. Given a concurrent stochastic game, the main computational
problems are: (a) the value-decision problem, given a state and a threshold α, asks whether
the value at the state is at least α; and (b) the value-approximation problem, given a state
and an error ε > 0, asks to compute an approximation of the value for the state within an
additive error of ε. We consider the above problems for the limit value of stateful-discounted
objectives and the value for parity objectives.

Motivation. The motivation to study the limit of the stateful-discounted objective is
as follows. First, this limit generalizes the classic limit-average objectives. Second, it
characterizes the value for the parity objectives in concurrent stochastic games [18, 10], where
the order of limit corresponds to the order of importance of priorities in parity objectives.
Third, the limit value has been shown to correspond to the value for other objectives such
as priority mean-payoff for various subclasses of concurrent stochastic games [19]. The
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motivation to study the value-approximation problem as opposed to the value-decision is that
for concurrent games, even for special classes of objectives such as reachability and safety,
values can be irrational, and the decision problem related to exact value is SQRT-SUM
hard [14] as explained below. Hence, approximation of values is a natural problem to study
from an algorithmic and computational complexity perspective.

Previous results. For a single discount factor, the limit value corresponds to the value of
the well-studied mean-payoff or long-run average objectives [24], and, for parity objectives,
the computational problems admit a linear reduction to the limit value of stateful-discounted
objectives [18, 10]. The value-decision problem for concurrent stochastic games is SQRT-SUM
hard [14]: this result holds for reachability objectives, and hence also for parity objectives
and the limit value for even a single discount factor. The SQRT-SUM problem is a classic
problem in computational geometry, and whether SQRT-SUM belongs to NP has been a
long-standing open problem. The complexity upper bounds for the value-approximation
problem of concurrent stochastic games are as follows: (a) EXPSPACE for the limit value
of stateful-discounted objectives; and (b) PSPACE for parity objectives [5, 6]. The above
result for the limit value follows from a reduction to the theory of reals, where the number
of discount factors corresponds to the number of quantifier alternation. For the special
class of reachability objectives, the complexity upper bound of TFNP[NP] for the value-
approximation problem has been established in [17], where TFNP[NP] is the total functional
form of the second level of the polynomial hierarchy. The result of [17] has been recently
extended to limit-average objectives (which correspond to the limit-value of single discount
factor) [4]. To the best of our knowledge, the above complexity upper bounds are the
best bounds for limit value of general stateful-discounted objectives and parity objectives.
The best-known algorithms for the value-approximation problem are as follows: (a) double
exponential time for the limit value of stateful-discounted objectives; (b) exponential time
for parity objectives, where the exponent is a product that depends at least linearly on
the number of states and actions [6, 5] (see Section 3 for further details). While iterative
approaches are desirable, they neither exist for parity objectives nor guarantee efficiency even
in special cases. For example, for reachability and safety objectives, iterative approaches
like value-iteration or strategy-iteration have a double-exponential lower bound [20]; and,
for parity objectives, iterative approaches like strategy iteration are not known as strategies
require infinite-memory [8].

Our contributions. In this work, our main contributions are as follows: (a) we establish
TFNP[NP] upper bounds for the value-approximation problem for concurrent stochastic
games, both for the limit value of stateful-discounted and parity objectives; and (b) we
present algorithms which are exponential time and improve the dependency on the number
of actions in the exponent from linear to logarithmic. In particular, if the number of states
is constant, our algorithms run in polynomial time. The comparison of previous results and
our results is summarized in Tables 1 and 2.

Technical contributions. We first present a bound on the roots of multi-variate polynomials
with integer coefficients (Section 4.2). Given the bounds on roots of polynomials, we establish
new characterizations for the limit and stateful-discounted values (Section 4.3 and Section 4.4),
which lead to an approximation of the limit value by the stateful-discounted value when
the discount factors are double-exponentially small (Section 4.5). Given this connection,
we establish the improved complexities and algorithms for the value-approximation for the
limit value of stateful-discounted objectives and parity objectives in Section 5 and Section 6.
Proofs omitted due to space restrictions are provided in the Full version.
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5:4 Concurrent Stochastic Games with Stateful-Discounted and Parity Objectives

Table 1 Complexity upper bounds of the value-approximation in concurrent stochastic games for
the limit value of stateful-discounted objectives and parity objectives.

Complexity
Previous Ours

Limit EXPSPACE
(Theory of reals) TFNP[NP]

Parity PSPACE (Theorem 5-Item 1, Theorem 6-Item 1)
[6, 5]

Table 2 Algorithmic upper bounds of the value-approximation in concurrent stochastic games
for the limit value of stateful-discounted objectives and parity objectives, where n is the number of
states, m is the number of actions, d is the number of discount factors/parity index, B is the bit-size
of numbers in the input, ε is the additive error, and exp is the exponential function.

Algorithms
Previous Ours

Limit exp
(
O(2dm2n + log(1/ε) + log(B))

)
exp

(
O

(
nd log(m) + log(B)

+ log(log(1/ε))

))
(Theorem 5-Item 2,
Theorem 6-Item 2)

(Theory of reals)

Parity
exp

(
O

(
mn + d log(n) + log(B)

+ log(log(1/ε))

))
[6, 5]

2 Preliminaries

We present standard definitions related to concurrent stochastic games.

Basic Notations. Given a finite set X , a probability distribution over X is a function
µ : X → [0, 1] such that

∑
x∈X µ(x) = 1. The set of all probability distributions over X is

denoted by ∆(X ). For µ ∈ ∆(X ), the support of µ is defined as supp(µ) := {x | µ(x) > 0}.
For a positive integer k, the set of positive integers smaller than or equal to k is defined as
[k] := {1, . . . , k}. Given a real x, we denote 2x by exp(x).

Concurrent stochastic games. A concurrent stochastic game (CSG) is a two-player finite
game G = (S,A,B, δ) consisting of

the set of states S, of size n;
the sets of actions for each player A and B, with at most m actions; and
the stochastic transition function δ : S ×A× B → ∆(S).

Steps. Given an initial state s ∈ S, the game proceeds as follows. In each step, both players
choose an action simultaneously, a ∈ A and b ∈ B. Based on both actions (a, b) and current
state s, the next state is drawn according to the probability distribution δ(s, a, b).

Histories and plays. At step k of CSGs, each player possesses information in the form of
the finite sequence of the states visited and the actions chosen by both players. A k-history
ω(k) = ⟨s0, a0, b0, s1, a1, b1, . . . , sk⟩ is a finite sequence of states and actions such that, for
all steps 0 ≤ t < k, we have st+1 ∈ supp(δ(st, at, bt)). The set of all k-histories is denoted
by Ω(k). Similarly, a play ω = ⟨s0, a0, b0, s1, a1, b1, . . .⟩ is an infinite sequence of states and
actions such that, for all steps t ≥ 0, we have st+1 ∈ supp(δ(st, at, bt)). The set of all plays
is denoted by Ω. For any state s, the set of all plays starting at s, i.e., ω = ⟨s0, a0, b0, . . .⟩
where s0 = s, is denoted by Ωs.
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Objectives. An objective is a measurable function that assigns a real number to all plays.
Player 1 aims to maximize the expectation of the objective, while Player 2 minimizes it.

Parity objective. Given a priority function p : S → {0, . . . , d} with d as its index, the
parity objective is an indicator of the even parity condition on minimal priority visited
infinitely often in plays. More formally, we define Parityp : Ω→ {0, 1} as

Parityp(ω) :=
{

1 min{p(s) | ∀i ≥ 0 ∃j ≥ i sj = s} is even
0 otherwise

Stateful-discounted objective. Consider d discount factors λ1, · · · , λd ∈ (0, 1]. Given an
assignment function χ : S → [d], we define the discount function Λ: S → {λ1, · · · , λd}
as Λ(s) := λχ(s) for all states s ∈ S. Given a reward function r : S × A × B → [0, 1]
that assigns a reward value r(s, a, b) for all (s, a, b), the stateful-discounted objective
DiscΛ : Ω→ [0, 1] is defined as, for all ω = ⟨s0, a0, b0, · · · ⟩,

DiscΛ(ω) :=
∑
i≥0

r(si, ai, bi)Λ(si)
∏
j<i

1− Λ(sj)

 .

Strategies. A strategy is a function that assigns a probability distribution over actions to
every finite history and is denoted by σ :

⋃
k Ω(k) → ∆(A) for Player 1 (resp. τ :

⋃
k Ω(k) →

∆(B) for Player 2). Given strategies σ and τ , the game proceeds as follows. At step k, the
current history is some ω(k) ∈ Ω(k). Player 1 (resp. Player 2) chooses an action according to
the distribution σ

(
ω(k)) (resp. τ

(
ω(k))). The set of all strategies for Player 1 and Player 2

is denoted by Σ and Γ respectively. A stationary strategy depends on the past observations
only through the current state. A stationary strategy for Player 1 (resp. Player 2) is denoted
by σ : S → ∆(A) (resp. τ : S → ∆(B)). The set of all stationary strategies for Player 1
and Player 2 is denoted by ΣS and ΓS respectively. A pure stationary strategy σ : S → A
(resp. τ : S → B) for Player 1 (resp. Player 2) is a stationary strategy that maps to Dirac
distributions only. The set of all pure stationary strategies for Player 1 and Player 2 is
denoted by ΣP S and ΓP S respectively.

Probability space. An initial state s and a pair of strategies (σ, τ) induce a unique probability
over Ωs, endowed with the sigma-algebra generated by the cylinders corresponding to finite
histories. We denote by Pσ,τ

s and Eσ,τ
s the probability and the expectation respectively.

We state the determinacy for CSGs with stateful-discounted and parity objectives.

▶ Theorem 1 (Parity determinacy [23]). For all CSGs, states s, and priority functions p,

sup
σ∈Σ

inf
τ∈Γ

Eσ,τ
s [Parityp] = inf

τ∈Γ
sup
σ∈Σ

Eσ,τ
s [Parityp] .

▶ Theorem 2 (Stateful-discounted determinacy [26]). For all CSGs, states s, reward functions,
and discount functions Λ, we have

sup
σ∈ΣS

inf
τ∈ΓS

Eσ,τ
s [DiscΛ] = inf

τ∈ΓS
sup

σ∈ΣS

Eσ,τ
s [DiscΛ] .

Values. The above determinacy results imply that switching the quantification order of
strategies do not make a difference and leads to the unique notion of value. The stateful-
discounted value for a state s is defined as valΛ(s) := supσ∈ΣS infτ∈ΓS Eσ,τ

s [DiscΛ]. We define
the parity value valp(s) for a state s analogously. The limit value for a state s is defined as
valχ(s) := limλ1→0+ · · · limλd→0+ valΛ(s).

FSTTCS 2024



5:6 Concurrent Stochastic Games with Stateful-Discounted and Parity Objectives

ε-optimal strategies. Given ε ≥ 0, a strategy σ for Player 1 is ε-optimal for the stateful-
discounted objective if, for all states s ∈ S, we have infτ∈ΓS Eσ,τ

s [DiscΛ] ≥ valΛ(s)− ε. We
say the strategy is optimal if ε = 0. The notion of ε-optimal strategies for Player 2 is defined
analogously. Similarly, we define ε-optimal strategies for the parity objectives.

Approximate value problems. We consider two value problems stated as follows.

LimitValue. Consider a CSG G, a state s, a reward function r, an assignment
function χ : S → [d], and an additive error ε. The transition function δ and the reward
function r are represented by rational numbers using at most B bits. Compute an
approximation v of the limit value at state s such that |v − valχ(s)| ≤ ε.

ParityValue. Consider a CSG G, a state s, a priority function p with index d, and
an additive error ε. The transition function δ is represented by rational numbers
using at most B bits. Compute an approximation v of the parity value at state s such
that |v − valp(s)| ≤ ε.

3 Overview of Results

We first discuss the previous results in the literature, and then, we show our contributions.

Previous results. We discuss the previous works on computing the approximation of limit
and parity values in CSGs. A natural approach for these computational problems is via the
theory of reals. We first recall the main computational result of the theory of reals, which is
a specialization of [3, Theorem 1].

▶ Theorem 3 ([3, Theorem 1]). Consider ℓ variables x1, · · · , xℓ and the set of polynomials P =
{P1, · · · , Pk}, where, for all i ∈ [k], we have Pi is a polynomial in x1, · · · , xℓ of degree at most
D with integer coefficients of bit-size at most B. Let X1, · · · , Xd be a partition of x1, · · · , xℓ

into d subsets such that Xi has size ℓi. Let Φ = (QdXd) · · · (Q1X1) ϕ(P1, · · · , Pk) be a
sentence with d alternating quantifiers Qi ∈ {∃,∀} such that Qi+1 ̸= Qi, and ϕ(P1, · · · , Pk)
is a quantifier-free formula with atomic formulas of the form Pi ▷◁ 0 where ▷◁∈ {<, >, =}.
Then, there exists an algorithm to decide the truth of Φ in time

k
∏

i
O(ℓi+1) ·D

∏
i

O(ℓi) · O(len(ϕ)B2) ,

where len(ϕ) is the length of the quantifier-free formula ϕ.

Along with the above algorithmic result, the following complexity result also follows from [3]:
if there is constant number of quantifier alternations, then complexity is PSPACE, and
in general the complexity is EXPSPACE. We now discuss the algorithms and complexity
results from the literature for the limit value of stateful discounted-sum objectives. The
basic computational approach is via the theory of reals. For a single discount factor, the
reduction to the theory of reals and dealing with its limit (which corresponds to limit-average
objectives) was presented in [7]. In the general case (d discount factors), each limit can
be considered as the quantification ∃εi′ ∀εi ≤ εi′ in the theory of reals. Thus, concurrent
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stochastic games with the limit value of stateful-discounted objectives can be reduced to the
theory of reals with quantifier alternation. This reduction gives a theory of reals sentence
with the following parameters:

ℓ = O(m2n), k = O(m2n), D = 4,
∏

i

(ℓi + 1) = O(2dm2n) ,

Applying Theorem 3 to the reduction we obtain the following result.

▶ Theorem 4 (LimitValue: Previous Result). For the LimitValue problem, the following
assertions hold.
1. The problem is in EXPSPACE; and
2. the problem can be solved in time exp

(
O

(
2dm2n + log(1/ε) + log(B)

))
.

For parity objectives, the result of [18, 10] reduces CSGs with parity objectives to CSGs
with the limit value of stateful-discounted objectives. The reduction is achieved as follows.
Consider the formula R(a0, a1, . . . , a2n−1) from [10], which is a formula with multiple discount
factors. Since for stateful-discounted objectives the mapping is contractive, the fixpoints are
unique (least and greatest fixpoints coincide). The last sentence of [10, Theorem 4] states
that the limit of R(a0, a1, . . . , a2n−1) corresponds to the value for parity objectives. The
Pre operator of the formula corresponds to the Bellman-operator for stateful-discounted
objectives, which establish the connection to stateful-discounted games. This connection is
made more explicit in the construction provided in [18, Section 2.2]. This linear reduction
and the above theorem lead to similar results for parity objectives.

Besides this reduction to the theory of reals, there are two other approaches for the
ParityValue problem. First, we can consider the nested fixpoint characterization as
provided in [13] and a reduction to the theory of reals with quantifier alternation. However,
this does not lead to a better complexity. Second, a different approach is presented in [6, 5,
Chapter 8]. This approach has the following components: (a) it enumerates over all possible
subsets of actions for every state; (b) for each of the enumeration, it requires a solution of a
qualitative value problem (or limit-sure winning) in concurrent stochastic games with parity
objectives, and the value-approximation for concurrent stochastic games with reachability
objectives. This approach gives PSPACE complexity and the algorithmic complexity is
exp (O (mn + d log(n) + log(log(1/ε)) + log(B))).

Our contributions. Our main results are the following.

▶ Theorem 5 (LimitValue: Complexity and Algorithm). For the LimitValue problem, the
following assertions hold.
1. The problem is in TFNP[NP]; and
2. the problem can be solved in time exp (O (nd log(m) + log(B) + log(log(1/ε)))).

▶ Theorem 6 (ParityValue: Complexity and Algorithm). For the ParityValue problem,
the following assertions hold.
1. The problem is in TFNP[NP]; and
2. the problem can be solved in time exp (O (nd log(m) + log(B) + log(log(1/ε)))).

4 Mathematical Properties

In this section, we present an approach of the limit value approximation via the stateful-
discounted value (Theorem 12). We follow the approach of [2] extending it step by step using
similar arguments. We use this technical result to improve complexities and algorithmic

FSTTCS 2024



5:8 Concurrent Stochastic Games with Stateful-Discounted and Parity Objectives

bounds of computing ε-approximation of the limit and parity values. This section is organized
as follows. In Section 4.1, we present some useful definitions. In Section 4.2, we present
a bound on the roots of multi-variate polynomials which is used to establish a connection
between the stateful-discounted and limit values. In Sections 4.3 and 4.4, we introduce
new characterizations of the stateful-discounted and limit values. In Section 4.5, we show
Theorem 12.

4.1 Definitions

We present some basic notations and definitions related to polynomials and matrices.

Basic notations. Given a positive integer k, we define bit(k) := ⌈log2(k +2)⌉. For a rational
k1/k2, we define bit(k1/k2) := bit(k1) + bit(k2). Given a real x, the standard sign function
is sign(x) = −1 if x < 0, 0 if x = 0, 1 if x > 0. Moreover, we use the classic arithmetic with
infinity, i.e., x +∞ =∞ and x−∞ = −∞.

Polynomials. A uni-variate polynomial P of degree D with integer coefficients of bit-size B
is defined as P (x) :=

∑D
i=0 cix

i where |ci| < 2B. A k-variate polynomial P in x1, · · · , xk of
degree D1, · · · , Dk with integer coefficients of bit-size B is defined as

P (x1, · · · , xk) :=
∑

0≤i1≤D1

· · ·
∑

0≤ik≤Dk

ci1,··· ,ik

k∏
j=1

x
ij

j ,

where |ci1,··· ,ik
| < 2B. Polynomial P is nonzero if ci1,··· ,ik

̸= 0 for some i1, · · · , ik. We say α

is a root of P if P (α) = 0. In this work, we only consider real roots.

Matrix notations. Given a square matrix M , we denote the determinant of M by det(M)
and denote the signed sum of all minors of M by S(M). Given two k × ℓ matrices M1 and
M2, we denote the Hadamard product of M1 and M2 by M1 ⊙M2. Given a positive integer
k, often implicitly clear from context, we denote by 1 (resp. 0) the k-dimensional vector
with all elements equal to 1 (resp. 0) and denote by Id the k × k identity matrix.

Matrix games. A matrix M defines a game played between two opponents, where rows
(resp. columns) correspond to possible actions for the row- (resp. column-) player, and the
entry (M)i,j is the reward the column-player pays the row-player when the pair of actions
(i, j) is chosen. The value of a matrix game, denoted val M , is the maximum amount the
row-player can guarantee, i.e., the amount they can obtain regardless of the column-player’s
strategy.

4.2 Bounds on Roots of Polynomials with Integer Coefficients

We present a bound on the roots of multi-variate polynomials P with integer coefficients
(Theorem 7). This result shows that there exists a region close to 0 within which P

does not have a root. We use this technical result to establish a connection between the
stateful-discounted value and limit value.
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▶ Lemma 7. Consider a nonzero polynomial P in x1, · · · , xℓ of degrees D1, · · · , Dℓ with
integer coefficients of bit-size B. Let D := max(D1, · · · , Dℓ) and B1 := 4ℓ bit(D) + B + 1.
Then,

∀x1 ∈ (0, exp(−B1)] ∀x2 ∈
(
0, (x1)D+1]

· · · ∀xℓ ∈
(
0, (xℓ−1)D+1]

|P (x1, · · · , xℓ)| ≥ exp(B1 − ℓ) · (xℓ)D+1 .

Proof sketch. We partition P into P (x) = P0 + P1(x1) + · · ·+ Pℓ(x1, · · · , xℓ). Consider the
smallest i where Pi ̸= 0. The proof has following key components: (a) By fixing x1, · · · , xi−1,
we obtain a uni-variate polynomial from Pi. By the fact that xi ≪ xj for all j < i, we obtain
|Pi(x1, · · · , xi)| ̸= 0. (b) Due to the constraints over the variables, xj ≪ xi for all j > i, we
have |Pj(x1, · · · , xj)| ≪ |Pi(x1, · · · , xi)|. Thus, we can ignore the effect of Pj(x1, · · · , xj) on
|P (x1, · · · , xℓ)| for all j > i. Thus, P (x1, · · · , xℓ) ≈ Pi(x1, · · · , xi) ̸= 0. ◀

4.3 Characterization of Stateful-discounted Value
We introduce a new characterization of the stateful-discounted value in CSGs (Theorems 8
and 9), which generalizes results of [2] from a single discount factor to multiple discount
factors. In particular, Theorem 9 generalizes Theorem 1 of [2].

Stateful-discounted payoff. Consider a CSG G, a state s, a reward function r, and a discount
function Λ. Given a pair of stationary strategies (σ, τ), we define the stateful-discounted payoff
as νσ,τ (s) := Eσ,τ

s [DiscΛ]. By fixing σ and τ , we obtain a transition function δσ,τ (s, s′) :=∑
a∈A

∑
b∈B σ(s)(a) · τ(s)(b) · δ(s, a, b)(s′), which is described as a matrix, i.e., δσ,τ ∈ Rn×n.

The stage reward function is defined as rσ,τ (s) :=
∑

a∈A
∑

b∈B σ(s)(a) · τ(s)(b) · r(s, a, b),
which is described as a vector, i.e., rσ,τ ∈ Rn. Therefore, the Bellman operator defined in [26]
can be written as a recursive expression:

νσ,τ = Λ⊙ rσ,τ + (1− Λ)⊙ (δσ,τ νσ,τ ) .

The matrix Id −
(

(1− Λ) 1⊤ )
⊙ δσ,τ is strictly diagonally dominant, and therefore, is

invertible. By Cramer’s rule, we have

νσ,τ (s) = ∇
s
Λ(σ, τ)
∇Λ(σ, τ) , (1)

where ∇Λ(σ, τ) := det
(
Id−

(
(1− Λ) 1⊤ )

⊙ δσ,τ
)

and ∇s
Λ(σ, τ) is the determinant of a

matrix derived by substituting the s-th column of the matrix Id−
(
(1− Λ)1⊤)

⊙ δσ,τ with
Λ⊙ rσ,τ .

Auxiliary matrix game W s
Λ(z). We define a matrix game where the actions of each player

are the pure stationary strategies in the stochastic game. The payoff of the game is obtained
by the linearization of the quotient in Eq. (1). More formally, for all parameters z ∈ R,
σ̂ ∈ ΣP S , and τ̂ ∈ ΓP S , we define the payoff of the matrix game as

W s
Λ(z)[σ̂, τ̂ ] := ∇s

Λ(σ̂, τ̂)− z · ∇Λ(σ̂, τ̂) .

The value of W s
Λ(z) is denoted by val (W s

Λ(z)).
The following results (Theorem 8 and Theorem 9) connect the stateful-discounted value

with the value of the matrix game.
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5:10 Concurrent Stochastic Games with Stateful-Discounted and Parity Objectives

▶ Lemma 8. Consider a CSG G, a state s, a reward function, and an assignment function
χ : S → [d]. Then, the following assertions hold.
1. The map (z, λ1, · · · , λd) 7→ val(W s

Λ(z)) is continuous;
2. for all discount factors λ1, · · · , λd and z1, z2 ∈ R such that z1 ≤ z2, we have that

val (W s
Λ(z1)) ≥ val (W s

Λ(z2)) + (z2 − z1) (mini λi)n, in particular, z 7→ val(W s
Λ(z)) is

strictly decreasing; and
3. for all discount factors λ1, · · · , λd, we have val (W s

Λ(valΛ(s))) = 0.

Proof sketch. We present the proof sketch for each item as follows.
1. The entries of the matrix game depend continuously on the parameters z, λ1, · · · , λd.

Thus, its value is also continuous in the parameters.
2. For all z1 < z2, we show that all of the entries of W s

Λ(z1) are strictly larger than W s
Λ(z2).

By quantifying this difference in each entry of the matrix, we obtain the desired inequality.
3. We show that there exist optimal strategies in the matrix game W s

Λ(valΛ(s)) which are
derived from optimal strategies in G. These strategies guarantee that the value of the
matrix game is 0. ◀

▶ Corollary 9. Consider a CSG G, a state s, a reward function, and a discount function Λ.
Then, valΛ(s) is the unique z∗ ∈ R such that val (W s

Λ(z∗)) = 0.

Proof. By Theorem 8-Item 2, the mapping z 7→ val (W s
Λ(z)) is strictly decreasing. By

Theorem 8-Item 3, we know that val (W s
Λ(valΛ(s))) = 0. Hence, there exists the unique

z∗ = valΛ(s) ∈ R such that val (W s
Λ(z∗)) = 0, which yields the result. ◀

4.4 Characterization of Limit Value
We introduce a new characterization of the limit value in CSGs (Theorems 10 and 11), which
generalizes results presented in [2] from a single discount factor to multiple discount factors.
In particular, Theorem 11 generalizes Theorem 2 of [2].

Limit function. Given a CSG G, a reward function, and an assignment function χ : S → [d],
we define the limit function as

F s
χ(z) := lim

λ1→0+
· · · lim

λd→0+

val (W s
Λ(z))

(λd)n
.

The following statements (Theorem 10 and Theorem 11) connect the limit value with the
limit function.

▶ Lemma 10. Consider a CSG G, a state s, a reward function, and an assignment function
χ : S → [d]. Then, the following assertions hold.
1. For all z ∈ R, the limit F s

χ(z) exists in R ∪ {−∞, +∞}; and
2. There exists z1, z2 ∈ R such that F s

χ(z2) ≤ 0 ≤ F s
χ(z1).

Proof sketch. We present the proof sketch for each item as follows.
1. By Theorem 7, we show that given a fixed parameter z, there exist two multi-variate

polynomials P and Q in λ1, · · · , λd such that for all small enough λ1, · · · , λd, we have
val(W s

Λ(z)) = P (λ1,··· ,λd)
Q(λ1,··· ,λd) , which implies the existence of the limit.

2. We provide two numbers z1 and z2 such that sign(F s
χ(z1)) ̸= sign(F s

χ(z2)). ◀

▶ Corollary 11. Consider a CSG G, a state s, a reward function, and an assignment function
χ : S → [d]. Then, valχ(s) is the unique z∗ ∈ R such that

∀z > z∗ F s
χ(z) < 0 and ∀z < z∗ F s

χ(z) > 0 .
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Proof sketch. By Theorem 8-Item 2, F s
χ is decreasing. By Theorem 10-Item 2, there exists

a unique sign-changing point. By the definition of the limit value and F s
χ, we show that this

sign-changing point is valχ(s). ◀

4.5 Approximation of Limit Value
We introduce an approach for the approximation of the limit value via the stateful-discounted
value (Theorem 12).

▶ Theorem 12. Consider a CSG G, a state s, a reward function r, an assignment function
χ : S → [d], and an additive error ε > 0. The transition function δ and the reward function r

are represented by rational numbers of bit-size B. Fix

D := max(|ΣP S |, |ΓP S |), B1 := 11Dn(B + bit(n) + bit(D) + bit(ε)) ,

and, for all 1 ≤ i ≤ d, we set λ0
i := exp

(
−B1(nD + 1)i−1)

. Then, we have

| valΛ0(s)− valχ(s)| ≤ ε .

Proof sketch. The proof has following key components:
We show that there exists a finite set of rational functions with bounded degrees and
coefficients such that for all z, λ1, · · · , λd, the value of W s

Λ(z) corresponds to one of these
functions evaluated in z, λ1, · · · , λd.
We derive some insights on the asymptotic behavior of the sign of the map (λ1, · · · , λd) 7→
val(W s

Λ(z)) as λd, · · · , λ1 go to 0 respectively.
We establish the connection between the stateful-discounted and limit value by the
characterizations introduced in Theorem 9 and Theorem 11, and above insights. ◀

Novelty. As mentioned previously, our result is a generalization of [2]. The key non-trivial
aspect of the generalization relies on the fact that [2] considers uni-variate polynomials,
whereas our result requires analysis of multi-variate polynomials. Theorem 7 is the key
mathematical foundation, and the proofs require significant technical generalization.

5 Algorithms for LIMITVALUE and PARITYVALUE

In this section, we present algorithms for computing ε-approximation of stateful-discounted,
limit, and parity values. The section is organized as follows. In Section 5.1, we present an
algorithm for computing ε-approximate stateful-discounted value. In Section 5.2, we present
an algorithm for computing ε-approximate limit value, and as a consequence, we also obtain
an algorithm for computing ε-approximate parity value.

5.1 Algorithm for Approximate Stateful-discounted Value
In this subsection, we present an algorithm for computing ε-approximation of the stateful-
discounted value in CSGs. Given a CSG G, a reward function, and a discount function Λ,
Algorithm 1 runs a binary search over the stateful-discounted value of state s. At the
beginning, z and z are the under and over approximation of valΛ(s). In each step, the
algorithm halves the interval [z, z] by increasing z or decreasing z based on the sign of
val

(
W s

Λ

(
z+z

2

))
. After bit(ε) steps, the algorithm outputs the ε-approximate value (z +z)/2.

The correctness and the time complexity of the algorithm are shown in Theorem 13.
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5:12 Concurrent Stochastic Games with Stateful-Discounted and Parity Objectives

Algorithm 1 ApproxDiscounted.

Input: Game G, state s, reward function r, a discount function Λ, additive error ε

Output: Approximate stateful-discounted value v such that |v − valΛ(s)| ≤ ε

1: procedure ApproxDiscounted(G, s, r, Λ, ε)
2: z ← 0 and z ← 1
3: while z − z > ε do
4: z ← z+z

2
5: ν ← val(W s

Λ(z))
6: if ν ≥ 0 then z ← z

7: else z ← z

8: return z+z
2

▶ Lemma 13. Consider a CSG G, a state s, a reward function r, a discount function Λ, and
an additive error ε > 0. The transition function δ, the reward function r, and the discount
function Λ are represented by rational numbers of bit-size B. Then, Algorithm 1 computes
the ε-approximation of the stateful-discounted value of state s. Moreover, the algorithm runs
in time exp (O(n log(m) + log(B) + log(log(1/ε))).

Proof sketch. The correctness of Algorithm 1 is due to the properties established in Theo-
rem 8. The time complexity of Algorithm 1 is due to the construction of the matrix game
and computing its value. ◀

5.2 Algorithms for Approximate Limit and Parity Values

In this subsection, we present an algorithm for computing ε-approximation of the limit and
parity values in CSGs. Given a CSG G, a reward function, and an assignment function χ,
Algorithm 2 outputs the ε/2-approximate of the stateful-discounted value of state s for some
Λ0 by calling ApproxDiscounted. By Theorem 12, the stateful-discounted value is an
ε/2-approximation of the limit value. Thus, the returned value of the algorithm is indeed an
ε-approximate of the limit value. The correctness and the time complexity of the algorithm
is shown in Theorem 14. Since CSGs with parity objectives have a linear-size reduction to
CSGs with the limit value of stateful-discounted objectives, as a consequence of the above
algorithm, we obtain an algorithm for parity value approximation.

Algorithm 2 ApproxLimit.

Input: Game G, state s, reward function r, assignment function χ, additive error ε

Output: Approximate limit value v such that |v − val(s)| ≤ ε

1: procedure ApproxLimit(G, s, r, χ, ε)
2: D ← mn

3: B1 ← 11Dn (B + bit(n) + bit(D) + bit(ε))
4: for i← 1 to d do
5: λ0

i ← exp
(
−B1(nD + 1)i−1)

6: v ← ApproxDiscounted(G, s, r, Λ0, ε/2)
7: return v
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▶ Lemma 14. Consider a CSG G, a state s, a reward function r, an assignment function
χ : S → [d], and an additive error ε > 0. The transition function δ and the reward
function r are represented by rational numbers of bit-size B. Then, Algorithm 2 computes
the ε-approximation of the limit value of state s. Moreover, the algorithm runs in time
exp (O(nd log(m) + log(B) + log(log(1/ε)))).

Proof sketch. The correctness of the algorithm is due to Theorem 13 and Theorem 12. The
time complexity is due to the size of the representation of Λ0 and Theorem 13. ◀

Proof of Theorem 5-Item 2. It is a direct implication of Theorem 14. ◀

▶ Corollary 15. Consider a CSG G, a priority function p, a state s, and an additive error
ε > 0. The transition function δ is represented by rational numbers of bit-size B. Then,
there exists an algorithm that computes the ε-approximation of the parity value of state s.
Moreover, the algorithm runs in time exp (O(nd log(m) + log(B) + log(log(1/ε)))).

Proof. By [18, 10], there exists a linear-size reduction from the CSGs with parity objectives
to the CSGs with the limit-value of stateful-discounted objectives. Therefore, the result
follows from Theorem 14. ◀

Proof of Theorem 6-Item 2. It is a direct implication of Theorem 15. ◀

6 Computational Complexities of LIMITVALUE and PARITYVALUE

In this section, we show that the LimitValue and ParityValue problems are in TFNP[NP].
This section is organized as follows. In Section 6.1, we present some useful definitions
related to Markov Chains (MCs) and Markov Decision Processes (MDPs), and floating-point
representation. In Section 6.2, we present the complexity results for LimitValue and
ParityValue problems.

6.1 Definitions

We present some basic notations and definitions related to Markov Chains, Markov Decision
Processes, and the classic symbolic representation for numbers and probability distributions,
called floating-point.

Markov decision processes and Markov chains. For i ∈ {1, 2}, a Player-i Markov decision
process (Player-i MDP) is a special class of CSGs where the other player has only one action
and is denoted by P = (S,A, δ : S ×A → ∆(S)). A Markov chain (MC) is a special class of
MDPs where both players have only one action and is denoted by C = (S, δ : S → ∆(S)). In
Markov chains we write δ(s, s′) to denote δ(s)(s′).

Absorbing MCs. We say an MC C is absorbing if there exists a subset of absorbing states
S0 ⊆ S such that

For all s ∈ S0, we have δ(s, s) = 1; and
For all s0 ∈ S \ S0, there exist states s1, . . . , sk such that δ(si, si+1) > 0 and sk ∈ S0.

States in S0 are called absorbing.
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MDPs and MCs given stationary strategies in CSGs. Given a stationary strategy σ for
Player 1 in a game G, by fixing the strategy σ, we obtain a Player-2 MDP Gσ = (S,B, δσ)
where the transition function δσ : S×B → ∆(S) is given by δσ(s, b)(s′) :=

∑
a∈A δ(s, a, b)(s′) ·

σ(s)(a), for all s, s′ ∈ S and b ∈ B. Analogously, we obtain Player-1 MDP Gτ by fixing a
stationary strategy τ for Player 2. Moreover, by fixing stationary strategies σ and τ for both
players, we obtain an MC Gσ,τ = (S, δσ,τ ), where the transition function δσ,τ : S → ∆(S) is
given by δσ,τ (s)(s′) =

∑
a∈A

∑
b∈B δ(s, a, b)(s′) · σ(s)(a) · τ(s)(b), for all s, s′ ∈ S.

Reachability objectives in MCs. Given an MC C and a target set T ⊆ S, the reachability
objective is the indicator function of plays eventually reaching T . More formally, for a play
ω = ⟨s0, s1, · · · ⟩, we define ReachT : Ω→ {0, 1} as

ReachT (ω) :=
{

1 ∃i ∈ N si ∈ T

0 . otherwise

We define the probability of reaching the target set T from state s as valT (s) := Es[ReachT ].

Floating-point number representation. We define the set of floating-point numbers with
precision ℓ as F(ℓ) :=

{
m · 2e | m ∈ {0, · · · , 2ℓ − 1}, e ∈ Z

}
. The floating-point representa-

tion of an element x = m ·2e ∈ F(ℓ) uses bit(m)+bit(|e|) bits. We define the relative distance
of two positive real numbers x, x̃ as rel(x, x̃) := max

{
x

x̃
, x̃

x

}
− 1. We say x is (ℓ, i)-close to x̃

if rel(x, x̃) ≤ (1− 21−ℓ)−i − 1, where ℓ is a positive integer and i is a non-negative integer.

Floating-point probability distribution representation. We denote by D(ℓ) the set of all
floating-point probability distributions with precision ℓ. A probability distribution µ ∈ ∆([t])
belongs to D(ℓ) if there exists w1, w2, · · · , wt ∈ F(ℓ) such that

For all i ∈ [t], we have µ(i) = wi∑
j∈[t]

wj
; and∑

j∈[t] wj and 1 are (ℓ, t)-close.
We define the relative distance rel for probability distributions as rel(µ, µ̃) :=
max{rel(µ(i), µ̃(i)) : i ∈ [t]}. We say µ is (ℓ, i)-close to µ̃ if rel(µ, µ̃) ≤ (1 − 21−ℓ)−i − 1,
where ℓ is a positive integer and i is a non-negative integer.

6.2 Complexity Results
We present algorithms for computing ε-approximate stateful-discounted value in MCs, MDPs,
and CSGs, which generalize the result of [4] from a single discount factor to multiple discount
factors. The algorithm for MCs (Theorem 16) is achieved by a reduction from stateful-
discounted objective to reachability objectives in MCs and using the algorithm for computing
reachability values in MCs presented in [17]. By our technical result on the limit value
approximation via the stateful-discounted value (Theorem 12), we consequently obtain a
TFNP[NP] procedure for LimitValue. Since there exists a linear-size reduction from CSGs
with parity objectives to CSGs with the limit-value of stateful-discounted objectives [18, 10],
ParityValue is also in TFNP[NP].

▶ Lemma 16. Consider an MC C, a reward function r, and a discount function Λ. For all
s ∈ S, we set

δ(s) ∈ D(ℓ), r(s) ∈ F(ℓ), Λ(s) ∈ F(ℓ) ,
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where ℓ ≥ 1000n2. Then, there exists a polynomial-time algorithm that for all states s ∈ S,
computes an approximation v for the stateful-discounted value such that |v − valΛ(s)| ≤
104n42−ℓ.

Proof sketch. We construct a new MC C̃ with a reachability objective derived from the MC
C such that the reachability value of C̃ is an approximation of the stateful-discounted value
of C. The result follows from the algorithm for computing ε-approximation of reachability
value in MCs presented in [17]. ◀

▶ Lemma 17. The problem of deciding if the stateful-discounted value for Player-1 MDPs is
below a threshold up to an additive error is in NP where the input is a Player-1 MDP P, a
reward function r, a discount function Λ, a state s, a threshold 0 ≤ α ≤ 1, an additive error
ε = 2−κ and a positive integer ℓ such that, for all s′ ∈ S and a ∈ A, we have

δ(s′, a) ∈ D(ℓ), r(s′, a) ∈ F(ℓ), Λ(s′) ∈ F(ℓ), ℓ ≥ 1000n2 + κ .

Note that, the numbers α and ε are represented in fixed-point binary and the NP procedure is
such that

If α ≤ valΛ(s)− ε, then it outputs YES; and
If α ≥ valΛ(s) + ε, then it outputs NO.

Proof sketch. The procedure guesses a pure stationary strategy σ. By fixing σ, we obtain an
MC Pσ. The algorithm verifies whether the threshold can be approximately achieved if the
player follows the strategy σ. The verification procedure is implemented by Theorem 16. ◀

Theorem 17 also holds for Player-2 MDPs by symmetric arguments. More formally, we
have the following result.

▶ Corollary 18. The problem of deciding if the stateful-discounted value for Player-2 MDPs
is above a threshold up to an additive error is in NP where the input is a Player-2 MDP P, a
reward function r, a discount function Λ, a state s, a threshold 0 ≤ α ≤ 1, an additive error
ε = 2−κ and a positive integer ℓ such that, for all s′ ∈ S and a ∈ A, we have

δ(s′, a) ∈ D(ℓ), r(s′, a) ∈ F(ℓ), Λ(s′) ∈ F(ℓ), ℓ ≥ 1000n2 + κ .

▶ Lemma 19. The problem of computing an ε-approximation of the stateful-discounted
value for CSGs is in TFNP[NP] for inputs CSGs G, reward functions, discount functions Λ,
states s, additive errors ε = 2−κ, and positive integers ℓ such that, for all states s′ ∈ S, we
have Λ(s′) ∈ F(ℓ).

Proof sketch. The procedure guesses two stationary strategies σ and τ and an approximate
value α. By fixing the strategy σ (resp. τ), we obtain a Player-1 MDP Gσ (resp. Player-2
MDP Gτ ). By the NP oracles calling the procedures defined in Theorems 17 and 18, the
algorithm verifies whether the guessed threshold can be approximately achieved by both of
the strategies. ◀

Proof of Theorem 5-Item 1. It is a direct implication of Theorem 19 and Theorem 12. ◀

Proof of Theorem 6-Item 1. By [18, 10], there exists a linear-size reduction from Parity-
Value to LimitValue. Therefore, the result follows from Theorem 5-Item 1. ◀
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Concluding remarks. In this work, we present improved complexity upper bounds and
algorithms for the value approximation problem for concurrent stochastic games with two
classic objectives. There are several interesting directions for future work. First, whether the
complexity can be further improved from TFNP[NP] to TFNP is a major open question,
even for reachability objectives. Second, whether for parity objectives, the dependency on d

can be improved from linear to logarithmic, retaining the logarithmic dependence on m, is
another interesting open question. Finally, the study of priority mean-payoff objectives for
concurrent stochastic games and their connection to stateful-discounted objectives is another
interesting direction for future work.
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