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Abstract
A natural variant of the classical online k-server problem is the weighted k-server problem, where
the cost of moving a server is its weight times the distance through which it moves. Despite its
apparent simplicity, the weighted k-server problem is extremely poorly understood. Specifically,
even on uniform metric spaces, finding the optimum competitive ratio of randomized algorithms
remains an open problem – the best upper bound known is 22k+O(1)

due to a deterministic algorithm
(Bansal et al., 2018), and the best lower bound known is Ω(2k) (Ayyadevara and Chiplunkar, 2021).

With the aim of closing this exponential gap between the upper and lower bounds, we propose
a decomposition approach for designing a randomized algorithm for weighted k-server on uniform
metrics. Our first contribution includes two relaxed versions of the problem and a technique to
obtain an algorithm for weighted k-server from algorithms for the two relaxed versions. Specifically,
we prove that if there exists an α1-competitive algorithm for one version (which we call Weighted
k-Server – Service Pattern Construction) and there exists an α2-competitive algorithm for the other
version (which we call Weighted k-server – Revealed Service Pattern), then there exists an (α1α2)-
competitive algorithm for weighted k-server on uniform metric spaces. Our second contribution is a
2O(k2)-competitive randomized algorithm for Weighted k-server – Revealed Service Pattern. As a
consequence, the task of designing a 2poly(k)-competitive randomized algorithm for weighted k-server
on uniform metrics reduces to designing a 2poly(k)-competitive randomized algorithm for Weighted
k-Server – Service Pattern Construction. Finally, we also prove that the Ω(2k) lower bound for
weighted k-server, in fact, holds for Weighted k-server – Revealed Service Pattern.
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1 Introduction

The k-server problem proposed by Manasse et al. [12] is a fundamental problem in online
computation, and it has been actively studied for over three decades. In this problem, we are
given a metric space M and k identical servers s1, . . . , sk located at points of M . In every
round, a point of M is requested, and an online algorithm serves the request by moving (at
least) one server to the requested point. The objective is to minimize the total distance
traversed by all k servers.

Like several other online problems, the performance of algorithms for the k-server problem
is measured using the framework of competitive analysis introduced by Sleator and Tarjan [15].
An online algorithm for a minimization problem is said to be α-competitive if, on every
input, the ratio of the algorithm’s (expected) cost to the cost of the optimal solution is
at most α, possibly modulo an additive constant independent of the online input. In the
deterministic setup, Manasse et al. [12] showed that no k-server algorithm can be better than
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6:2 A Decomposition Approach to the Weighted k-Server Problem

k-competitive on any metric space with more than k points. In their breakthrough result,
Koutsoupias and Papadimitriou [11] gave the best known deterministic algorithm that is
(2k− 1)-competitive on every metric space, famously known as the Work Function Algorithm
(WFA). In the setup of randomized algorithms, it is conjectured that the competitive ratio
of k-server is O(poly(log k)), and this remains unsolved. Very recently, refuting the so-called
randomized k-server conjecture, Bubeck, Coester, and Rabani [6] exhibited a family of metric
spaces on which the randomized competitive ratio of the k-server problem is Ω(log2 k).

The k-server problem is a generalization of the online paging problem. The paging
problem concerns maintaining in a “fast” memory a subset of k pages out of the n pages
in a “slow” memory. In each round, one of n (≫ k) pages is requested, and it must replace
some page in the fast memory, unless it is already in the fast memory. The objective is
to minimize the number of page replacements. The paging problem is exactly the k-server
under the uniform metric on the set of pages. The paging problem has been well studied,
and several deterministic algorithms like Least Recently Used (LRU), First In First Out
(FIFO), etc. are known to be k-competitive [15]. The randomized algorithm by Achlioptas et
al. [1] is known to be H(k)-competitive, matching the lower bound by Fiat et al. [8]. Here
H(k) = 1 + 1/2 + · · ·+ 1/k = Θ(log k).

1.1 Weighted k-server
The weighted k-server problem, first defined by Newberg [13], is a natural generalization
of the k-server problem. In the weighted k-server problem, the servers are distinguishable:
the i’th server has weight wi, where w1 ≤ · · · ≤ wk. The cost incurred in moving a server
is its weight times the distance it travels. The objective is to minimize the total weighted
distance moved by all k servers. It is easy to see that an α-competitive algorithm for the
(unweighted) k-server problem has a competitive ratio of at most α · wk/w1 for the weighted
k-server problem. However, this bound can be arbitrarily bad as wk/w1 is unbounded. So,
the challenge is to establish weight-independent bounds on the competitive ratio of the
weighted k-server problem. Surprisingly, this simple introduction of weights makes this
problem incredibly difficult, and a weight-independent upper bound on the competitive ratio
for an arbitrary metric is only known for the case when k ≤ 2 [14].

Owing to its difficulty on general metric spaces, it is natural to completely understand the
weighted k-server problem on the simplest class of metric spaces, the uniform metric spaces
first. Uniform metric spaces are the ones in which every pair of points is separated by a unit
distance. The objective of this problem translates to minimizing the weighted sum of the
number of movements of each server, and thus, this problem is equivalent to paging with the
cost of a page replacement dependent on the cache slot it is stored in1. In their seminal work,
Fiat and Ricklin [9] gave a deterministic algorithm for the weighted k-server problem on
uniform metrics with a competitive ratio doubly exponential in k, which was later improved
by Bansal et al. [4] to 22k+2 . This doubly exponential behavior of the competitive ratio was
proven tight by Bansal et al. [3] when they showed that the deterministic competitive ratio
is no less than 22k−4 .

In the randomized setup, the only known algorithm which uses randomization in a non-
trivial manner is the memoryless algorithm of Chiplunkar and Vishwanathan [7], which has a
competitive ratio of 1.62k . Chiplunkar and Vishwanathan also showed that this ratio is tight

1 Note that this problem is different from weighted paging [16], where the weights are on the pages (points
in the metric space) instead on the cache slots (servers). In fact, weighted paging is equivalent to
unweighted k-server on star metrics.
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for the class of randomized memoryless algorithms. Recently, Ayyadevara and Chiplunkar [2]
showed that no randomized algorithm (memoryless or otherwise) can achieve a competitive
ratio better than Ω(2k). Closing the exponential gap between the 1.62k upper bound and
the Ω(2k) lower bound on the randomized competitive ratio is still an open problem.

Very recently, Gupta et al. [10] studied the weighted k-server problem in the offline
and resource augmentation settings, showing the first hardness of approximation result for
polynomial-time algorithms.

1.2 Our Contributions
Throughout this paper, we focus on the weighted k-server problem on uniform metrics,
and we avoid mentioning the metric space henceforward. Considering the fact that the
competitive ratio of a server problem is typically exponentially better in the randomized
setting than the deterministic setting, it is reasonable to conjecture that there exists a
randomized 2poly(k)-competitive randomized algorithm for weighted k-server. In this paper,
we propose a way of designing such an algorithm using our key idea of decomposing the
weighted k-server problem into the following two relaxed versions.

Weighted k-Server – Service Pattern Construction (WkS-SPC)

The input is the same as the weighted k-server. The difference is that, in response to each
request, the algorithm must only commit to the movement of some subset of servers, without
specifying where those servers move to. However, it is required that there exists some solution
to the given instance that agrees with the algorithm’s server movements. Note that the
algorithm could potentially benefit from not being lazy, that is, by moving more than one
server at the same time. The (expected) cost of the algorithm is, as defined earlier, the
weighted sum of the number of movements of each server (recall that we are working on a
uniform metric space so the distance between every pair of points is one unit). An algorithm
is said to be α-competitive if the (expected) cost of its solution is at most α times the
optimum cost.

Weighted k-Server – Revealed Service Pattern (WkS-RSP)

In this version, the adversary, in addition to giving requests, is obliged to help the algorithm
by providing additional information as follows. The adversary must serve each request
and reveal to the algorithm the subset of servers it moved. Note that the adversary does
not reveal the destination to which it moved its servers – revealing destinations makes the
problem trivial because the algorithm can simply copy the adversary’s movements. Given a
request and the additional information about the adversary’s server movements, the algorithm
is required to move its own servers to cover the request. In an ideal scenario where the
adversary serves the requests optimally, we require the algorithm to produce a solution
whose cost competes with the cost of the optimal solution. However, consider a malicious
adversary which, in an attempt to be as unhelpful to the algorithm as possible, produces a
far-from-optimum solution and shares its information with the algorithm. In this case, we
do not require that the algorithm competes with the optimum solution – such an algorithm
would already solve the weighted k-server problem without the adversary’s help. Instead,
we require the algorithm to compete with the adversary’s revealed solution. Formally, an
algorithm is said to be α-competitive if the (expected) cost of its output is at most α times
the cost of the adversary’s (possibly sub-optimal) solution.

FSTTCS 2024
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Obviously, an algorithm for the weighted k-server problem gives an algorithm for each of
the above problems. Interestingly, we prove that the converse is also true. Formally,

▶ Theorem 1 (Composition Theorem). If there exists an α1-competitive algorithm for WkS-
SPC and there exists an α2-competitive algorithm for WkS-RSP, then there is an (α1α2)-
competitive algorithm for the weighted k-server on uniform metrics.

We prove this theorem in Section 3. As a consequence of this theorem, it is enough to
design 2poly(k)-competitive algorithms for WkS-SPC and WkS-RSP to close the exponential
gap between the upper and lower bounds on the randomized competitive ratio of weighted
k-server. We already present such an algorithm for WkS-RSP in Section 4. We prove,

▶ Theorem 2. There is a randomized algorithm for WkS-RSP with a competitive ratio of
2O(k2).

This reduces the task of designing a 2poly(k)-competitive algorithm for weighted k-server
to designing such an algorithm for WkS-SPC, a potentially easier problem.

Can we improve the 2O(k2) upper bound for WkS-RSP to, for example, poly(k)? We
answer this question in the negative. We show that, in fact, the lower bound construction by
Ayyadevara and Chiplunkar [2] for weighted k-server applies to WkS-RSP too2, giving the
following result.

▶ Theorem 3. The randomized competitive ratio of WkS-RSP is Ω(2k).

The proof of this result is deferred to Section A.

2 Preliminaries

In this section we define the problems WkS-SPC and WkS-RSP formally, but before that,
we restate the definitions of some terms introduced by Bansal et al. [3] which will be needed
in our problem definitions.

2.1 Service Patterns, Feasible Labelings, Extensions

Throughout this paper, we assume without loss of generality that all the servers of the
algorithm and the adversary move in response to the first request. Given a solution to an
instance of the weighted k-server problem with T requests, focus on the movements of the ℓ’th
server for an arbitrary ℓ. The time instants at which these movements take place partition
the interval [1, T + 1) into left-closed-right-open intervals so that the server stays put at
some point during each of these intervals. Thus, ignoring the locations of the servers and
focusing only on the time instants at which each server moves, we get a tuple of k partitions
of [1, T + 1), also known as a service pattern. Formally,

▶ Definition 4 (Service Pattern and Levels [3]). A k-tuple I = (I1, . . . , Ik) is called a service
pattern over an interval [tbegin, tend) if each Iℓ is a partition of [tbegin, tend) comprising of
left-closed-right-open intervals with integer boundaries. We call Iℓ the ℓ’th level of I.

2 The construction by Bansal et al. [3] applies too, and for the same reason, implying a doubly exponential
lower bound on the deterministic competitive ratio of WkS-RSP.
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Observe that the cost of a solution is completely determined by its service pattern
I = (I1, . . . , Ik): the cost equals the sum over ℓ ∈ {1, . . . , k} of the number of intervals in
Iℓ times the weight of the ℓ’th server.

In order to completely specify a solution, in addition to a service pattern I = (I1, . . . , Ik),
we need to specify for each ℓ and each interval I ∈ Iℓ the location of the ℓ’th server during
the time interval I. We refer to this assignment as a labeling of the service pattern. Moreover,
to serve the t’th request σt, we need at least one server to occupy σt at time t, that is, we
need that there exists a level of I in which the (unique) interval containing t is labeled σt.
Such a labeling is called a feasible labeling. Formally,

▶ Definition 5 (Labeling and Feasibility [3]). A labeling of a service pattern I = (I1, . . . , Ik)
is a function from the multi-set I1 ⊎ · · · ⊎ Ik to the set U of points in the metric space. We
say that a labeling γ of I is feasible with respect to a request sequence ρ = (σ1, . . . , σT ), if
for each time t, there exists an interval I ∈ I1 ⊎ · · · ⊎ Ik containing t such that γ(I) = σt.
We say that a service pattern I is feasible with respect to ρ if there exists a feasible labeling
of I with respect to ρ.

Recall that in the definition of the weighted k-server problem in Section 1, we assumed
that the servers are numbered in a non-decreasing order of their weights. Consider the more
interesting case where the weights increase at least geometrically. If we enforce that every
time a server moves, all servers lighter than it move too, we lose at most a constant factor in
the competitive ratio. The advantage of this enforcement is that we have a more structured
class of service patterns, called hierarchical service patterns.

▶ Definition 6 (Hierarchical Service Pattern [3]). A service pattern I = (I1, . . . , Ik) is
hierarchical if for every ℓ ∈ {1, . . . , k − 1}, the partition Iℓ refines the partition Iℓ+1.

Clearly, any service pattern can be made hierarchical in an online manner with at most a
k factor loss in the cost. Since we aim to obtain 2poly(k)-competitive algorithms, the k factor
loss is affordable, and therefore, we only consider hierarchical service patterns throughout
this paper. Henceforth, by service pattern we actually mean a hierarchical service pattern.

Next, consider some online algorithm for the weighted k-server problem and the solution it
outputs on some request sequence. For each t, let It denote the service pattern corresponding
to the algorithm’s solution until the t’th request. Observe that It−1 and It are closely related:
if the algorithm moves the lightest ℓ servers to serve the t’th request (possibly ℓ = 0), then
the interval [t, t + 1) gets added to the first ℓ levels of It−1, whereas in each of the remaining
levels, the last interval in the level merges with [t, t + 1). We call It the ℓ-extension of It−1.
More formally,

▶ Definition 7 (ℓ-extension). Let It−1 = (I1
t−1, . . . , Ik

t−1) be a hierarchical service pattern
over the interval [1, t), and let Li

t−1 be the last interval in Ii
t−1. For ℓ ∈ {0, . . . , k}, we define

the ℓ-extension of It−1 to be the service pattern It = (I1
t , . . . , Ik

t ) over the interval [1, t + 1)
where:
∀i ≤ ℓ, Ii

t = Ii
t−1 ∪ {[t, t + 1)}.

∀i > ℓ, Ii
t = (Ii

t−1 \ Li
t−1) ∪ {Li

t−1 ∪ [t, t + 1)}.

Observe that the ℓ-extension of a hierarchical service pattern is a hierarchical service
pattern.

FSTTCS 2024



6:6 A Decomposition Approach to the Weighted k-Server Problem

2.2 Problem Definitions
Recall that our core idea to solve weighted k-server problem is to construct an algorithm
using algorithms for its two relaxed versions. We defined them informally in Section 1. Their
formal definitions are as follows.

▶ Definition 8 (Weighted k-Server – Service Pattern Construction (WkS-SPC)). For every
online request σt ∈ U , an algorithm for WkS-SPC is required to output a service pattern It,
which is the ℓt-extension of It−1 for some ℓt ∈ {0, . . . , k}, such that It is feasible with respect
to the request sequence σ1, σ2, . . . , σt. Equivalently, the algorithm outputs ℓt for each t. An
algorithm for WkS-SPC is said to be α-competitive if the (expected) cost of the algorithm’s
service pattern is at most α times the optimal cost.

▶ Definition 9 (Weighted k-server – Revealed Service Pattern (WkS-RSP)). For every online
request σt ∈ U , the adversary reveals a service pattern It, which is the ℓt-extension of It−1 for
some ℓt ∈ {0, . . . , k}, such that It is feasible with respect to the request sequence σ1, σ2, . . . , σt.
Equivalently, the algorithm’s input is the pair (σt, ℓt). An algorithm for WkS-RSP is required
to serve the request σt, i.e., move servers to ensure that σt is covered by some server. An
algorithm for WkS-RSP is said to be β-competitive if the (expected) cost of the algorithm’s
solution is at most β times the cost of the final service pattern revealed by the adversary.

3 The Composition Theorem

In this section, we explain how we can construct a weighted k-server algorithm using
algorithms for its two relaxations – WkS-SPC and WkS-RSP3.

▶ Theorem 1 (Composition Theorem). If there exists an α1-competitive algorithm for WkS-
SPC and there exists an α2-competitive algorithm for WkS-RSP, then there is an (α1α2)-
competitive algorithm for the weighted k-server on uniform metrics.

Proof. Let A1 be an α1-competitive algorithm for WkS-SPC, and A2 be an α2-competitive
algorithm for WkS-RSP. Our algorithm A for weighted k-server internally runs the two
algorithms A1 and A2. At all times, A keeps each of its servers at the same point where the
corresponding server of A2 is located. For every input request σt, A performs the following
sequence of steps.
1. A passes σt to A1.
2. In response, A1 outputs an ℓt such that the service pattern It, which is the ℓt-extension

to It−1, is feasible for the request sequence σ1, σ2, . . . , σt.
3. A passes (σt, ℓt) to A2.
4. In response, A2 moves its servers to serve the request σt.
5. A copies the movements of A2’s servers.

To analyze the competitiveness of A, consider an arbitrary sequence ρ of requests, and
let T denote its length. Let OPT denote the cost of an optimal solution for ρ. Denote the
cost of a service pattern I by cost(I). Recall that IT is the final service pattern output by
A1. Let I ′

T denote the service pattern corresponding to A2’s output. Note that IT and I ′
T

are random variables, and since A’s output is same as A2’s output, the cost of A’s output is
cost(I ′

T ).

3 On a high level, our construction resembles the result by Ben-David et al. [5], which states that if there
is an α1-competitive randomized algorithm against online adversary and an α2-competitive algorithm
against any oblivious adversary, then there is an (α1α2) competitive randomized algorithm for any
adaptive offline adversary.
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Since the output of A1 is a sequence of extensions such that the service pattern remains
feasible with respect to the request sequence at all times, the sequence (σt, ℓt)t=1,...,T is a
valid instance of WkS-RSP (with probability one over the randomness of A1). Since A2
is α2-competitive, we have E[cost(I ′

T ) | IT = I] ≤ α2 · cost(I) for every service pattern
I feasible with respect to ρ. This implies E[cost(I ′

T )] ≤ α2 · E[cost(IT )]. Since A1 is α1-
competitive, E[cost(IT )] ≤ α1 ·OPT. Thus, E[cost(I ′

T )] ≤ α1α2 ·OPT. This implies that A
is (α1α2)-competitive. ◀

4 Competing with a Revealed Service Pattern

We organize this section as follows. In Section 4.1, we prove some structural results that
are used in the definition and analysis of our algorithm. We define our algorithm formally
in Section 4.2 and analyze its competitive ratio in Section 4.3. We use the following notation.

U denotes the set of points in a uniform metric space.
For t from 1 to T , The t’th request is σt ∈ U , and ρt = (σ1, . . . , σt) denotes the sequence
of requests received until time t.
The service pattern revealed by the adversary with the t’th request is denoted by
It = (I1

t , . . . , Ik
t ). Recall that It is the ℓt-extension of It−1. Without loss of generality,

we assume that the adversary moves all its servers with the first request, and therefore
ℓ1 = k.
Lℓ

t denotes the last interval in Iℓ
t , that is, the unique interval in Iℓ

t that covers [t, t + 1).
sℓ

t denotes the location of our algorithm’s ℓ’th server after processing the t’th request.
Since our algorithm is randomized, sℓ

t is a random variable. Note that for the t’th request
to be served, we must have σt ∈ {s1

t , . . . , sk
t } with probability one.

Consider the adversary’s service pattern It = (I1
t , . . . , Ik

t ). For an arbitrary ℓ, fix the
labels of the last intervals Lℓ+1

t , . . . , Lk
t in the top k− ℓ levels Iℓ+1

t , . . . , Ik
t of It, and consider

all feasible labelings of It with respect to ρ that agree with the fixed labels. The set of labels
that these labelings assign to the last interval Lℓ

t of Iℓ
t will be crucial for our algorithm. We

now define this set formally.

▶ Definition 10. For any t ∈ {1, . . . , T}, ℓ ∈ {1, . . . , k}, and pℓ+1, . . . , pk ∈ U , the set
Qℓ

t(pℓ+1, . . . , pk) is defined to be the set of points pℓ for which there exists a feasible labeling
γ of It with respect to ρt such that γ(Li

t) = pi for all i ∈ {ℓ, . . . , k}.

4.1 Structural Results
Bansal et al. [3] considered the following combinatorial question: given a service pattern I
and a request sequence ρ, how many labels can an interval in the k’th level of I get, over
all possible feasible labelings of I with respect to ρ? They derived the following interesting
property.

▶ Fact 11 (Dichotomy Property [3]). There exists a sequence n1, n2, . . . of integers with
nk ≤ 22k+3 log k such that the following holds: for every k, every sequence of requests ρ =
(σ1, . . . , σT ), every service pattern I = (I1, . . . , Ik) over [1, T + 1), and every I ∈ Ik, the set
Q of labels of I over all feasible labelings of I with respect to ρ is the entire U , or it has size
at most nk.

The next lemma generalizes the above result to intervals in every level.

FSTTCS 2024



6:8 A Decomposition Approach to the Weighted k-Server Problem

▶ Lemma 12 (Generalized Dichotomy Property). For every t ∈ {1, . . . , T}, ℓ ∈ {1, . . . , k},
and pℓ+1, . . . , pk ∈ U , the set Qℓ

t(pℓ+1, . . . , pk) is the entire U , or it has size at most nℓ,
where nℓ ≤ 22ℓ+3 log ℓ is the constant from Fact 11.

Proof. The lemma holds trivially when Qℓ
t(pℓ+1, . . . , pk) = ∅, so assume Qℓ

t(pℓ+1, . . . , pk) ̸= ∅.
Let ρ′ denote the request sequence during the interval Lℓ

t and J denote the restriction of
the service pattern It to the interval Lℓ

t and levels 1, . . . , ℓ. Let ρ′′ denote the subsequence
of ρ′ formed by removing all the requests to pℓ+1, . . . , pk. Let Q denote the set of labels of
the interval Lℓ

t over all the feasible labelings of the ℓ-level service pattern J with respect to
ρ′′. From Fact 11 we get that the set Q is either U or has size at most nℓ. We argue that
Qℓ

t(pℓ+1, . . . , pk) = Q, and this implies the claim. Refer to Figure 1 for a working illustration
on an instance with k = 5 and ℓ = 3.

It labelled with γ level

5

4

3

2

1

ρ′

L5
t

L4
t

L3
t

1

2

3

4 5

6 7 8 9

6 1 2 1 4 7 1 8 5 8 2 3 5 9

(a)

k = 5, ℓ = 3

J labelled with restriction of γ level

3

2

1

ρ′′

L3
t3

4 5

6 7 8 9

6 4 7 8 5 8 3 5 9

(b)

It labelled with γnew level

5

4

3

2

1

ρ′

L5
t

L4
t

L3
t

1

2

5

7 9

6 4 8 3

6 1 2 1 4 7 1 8 5 8 2 3 5 9

(c)

k = 5, ℓ = 3

J labelled with γ′ level

3

2

1

ρ′′

L3
t5

7 9

6 4 8 3

6 4 7 8 5 8 3 5 9

(d)

Figure 1 An illustration of Lemma 12 for k = 5 and ℓ = 3. (a) Depicts It with a labeling γ

(colored in red) feasible with respect to ρt such that γ(L5
t ) = 1 and γ(L4

t ) = 2. (b) Depicts the
3-level service pattern J labeled with the restriction of γ, along with ρ′′, the subsequence of ρ′

formed by removing all the requests to points 1 and 2. (d) Depicts the labeling γ′ of J feasible
with respect to ρ′′. (c) Shows the new labeling γnew constructed by overwriting γ′ onto γ for every
interval in J .

For any pℓ ∈ Qℓ
t(pℓ+1, . . . , pk), from Definition 10 we get that there exists a feasible

labeling γ of It with respect to ρt such that γ(Li
t) = pi for all i ∈ {ℓ, . . . , k}. In the labeling

γ, the servers ℓ + 1, . . . , k can only serve the requests to the points pℓ+1, . . . , pk during the
interval Lℓ

t . This implies that all the requests in ρ′′ must be served by servers 1, . . . , ℓ. Thus,
the restriction γ′ of γ to J is feasible with respect to ρ′′. But γ′(Lℓ

t) = γ(Lℓ
t) = pℓ. Therefore,

pℓ ∈ Q. Thus, Qℓ
t(pℓ+1, . . . , pk) ⊆ Q.
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Now consider any point pℓ ∈ Q, and let γ′ be a feasible labeling of J with respect
to ρ′′ such that γ′(Lℓ

t) = pℓ. Suppose γ is a feasible labeling of It with respect to ρt

such that γ(Li
t) = pi for all i ∈ {ℓ + 1, . . . , k} (such a labeling exists because we assumed

Qℓ
t(pℓ+1, . . . , pk) ̸= ∅). Overwrite the labeling γ′ onto γ to get a new labeling γnew. Formally,

γnew(I) = γ′(I) if interval I is in J , else γnew(I) = γ(I). We claim that γnew is also a feasible
labeling of It with respect to ρt. This can be argued as follows.

The labeling γnew serves all the requests in ρ′′ because it agrees with γ′ in the service
pattern J . γnew serves all the requests during the interval Lℓ

t other than those in ρ′′ because
all these requests are made at points in {pℓ+1, . . . , pk}, and γnew(Li

t) = γ(Li
t) = pi for all

i ∈ {ℓ+1, . . . , k}. Finally, γnew serves all the requests before the interval Lℓ
t because it agrees

with γ before the interval Lℓ
t.

Thus, γnew is a feasible labeling of It with respect to ρt such that γnew(Li
t) = pi for all

i ∈ {ℓ + 1, . . . , k}. From Definition 10, we get that γnew(Lℓ
t) = pℓ ∈ Qℓ

t(pℓ+1, . . . , pk). This
implies Q ⊆ Qℓ

t(pℓ+1, . . . , pk). ◀

We now state a useful consequence of the simple fact that the restriction of a solution for
the first t requests to the first t− 1 requests is a solution for the first t− 1 requests.

▶ Lemma 13. For every t ∈ {2, . . . , T}, ℓ ∈ {ℓt + 1, . . . , k}, and pℓ+1, . . . , pk ∈ U ,
Qℓ

t(pℓ+1, . . . , pk) ⊆ Qℓ
t−1(pℓ+1, . . . , pk).

Proof. Recall that It = (I1
t , . . . , Ik

t ) is the ℓt-extension of It−1 = (I1
t−1, . . . , Ik

t−1), which
means Lℓ

t−1 = Lℓ
t \ [t, t + 1) ̸= ∅. By Definition 10, if some point pℓ is in Qℓ

t(pℓ+1, . . . , pk),
then there exists a feasible labeling γ of It with respect to ρt such that γ(Li

t) = pi for all
i ∈ {ℓ, . . . , t}. Restrict γ to obtain a labeling γ′ of It−1 in the obvious manner: γ′(Li

t−1) =
γ(Li

t) = pi for all i ∈ {ℓ, . . . , t} and γ′(I) = γ(I) for all other intervals I of It−1 (which are
also intervals of It). It is easy to check that γ′ is a feasible labeling of It−1 with respect to
ρt−1. Thus, from Definition 10 we get, pℓ ∈ Qℓ

t−1(pℓ+1, . . . , pk). ◀

4.2 Algorithm
Before stating our WkS-RSP algorithm formally, we give some intuitive explanation. Recall
that sℓ

t denotes the location of the algorithm’s ℓ’th server after serving the t’th request. The
critical invariant maintained by our algorithm is the following.

▶ Invariant 14. For every t and ℓ, in response to the t’th request, the algorithm keeps its
ℓ’th server at a uniformly random point in Qℓ

t(sℓ+1
t , . . . , sk

t ).

Lemma 16 states this claim formally. For now, let us just understand the scenarios in which
the algorithm needs to move the ℓ’th server at time t so that it occupies some point in
Qℓ

t(sℓ+1
t , . . . , sk

t ). These scenarios are as follows.

1. The algorithm moves the ℓ′’th server for some ℓ′ > ℓ. This means that, potentially,
sℓ′

t ̸= sℓ′

t−1, so Qℓ
t(sℓ+1

t , . . . , sk
t ) could be different from Qℓ

t−1(sℓ+1
t−1, . . . , sk

t−1).

2. ℓt ≥ ℓ. This means that Lℓ
t = [t, t + 1) is disjoint from Lℓ

t−1, and again, potentially,
Qℓ

t(sℓ+1
t , . . . , sk

t ) could be different from Qℓ
t−1(sℓ+1

t−1, . . . , sk
t−1).

3. None of the above happens, so by Lemma 13, Qℓ
t(sℓ+1

t , . . . , sk
t ) ⊆ Qℓ

t−1(sℓ+1
t−1, . . . , sk

t−1).
However, sℓ

t−1 /∈ Qℓ
t(sℓ+1

t , . . . , sk
t ) (that is, sℓ

t−1 ∈ Qℓ
t−1(sℓ+1

t−1, . . . , sk
t−1)\Qℓ

t(sℓ+1
t , . . . , sk

t )),
so the ℓ’th server can no longer remain at the same place sℓ

t−1 as before.
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We call the movement in the first two scenarios a forced movement (because the movement of
some other server forced this movement), and the movement in the third scenario an unforced
movement. If none of the above scenarios arises, then the ℓ’th server stays put. Algorithm 1
is the formal description of our algorithm for WkS-RSP.

Algorithm 1 WkS-RSP.
1: for t = 1 to T do
2: Input: request σt ∈ U , and ℓt ∈ {0, . . . , k}.
3: {Recall: It is the ℓt-extension of It−1.}
4: flag ← FALSE
5: for ℓ = k to 1 do
6: {Decide movements of servers in decreasing order of weight.}
7: {flag = TRUE indicates that an unforced movement of some server heavier than the

ℓ’th has happened.}
8: Compute Qℓ

t(sℓ+1
t , . . . , sk

t ) (by brute force).
9: if flag OR ℓ ≤ ℓt then

10: sℓ
t ← a uniformly random point in Qℓ

t(sℓ+1
t , . . . , sk

t ). {forced movement}
11: else if sℓ

t−1 /∈ Qℓ
t(sℓ+1

t , . . . , sk
t ) then

12: sℓ
t ← a uniformly random point in Qℓ

t(sℓ+1
t , . . . , sk

t ). {unforced movement}
13: flag ← TRUE.
14: else
15: sℓ

t ← sℓ
t−1. {no movement}

16: end if
17: end for
18: end for

Note that it is unclear so far why Algorithm 1 is well-defined – why the set Qℓ
t(sℓ+1

t , . . . , sk
t )

is nonempty when we attempt to send the ℓ’th server to a uniformly random point in it in
steps 10 and 12 – and why every request gets served. We provide an answer now.

▶ Lemma 15. For every t ∈ {1, . . . , T} the following statements hold with probability one.

1. For every ℓ ∈ {0, . . . , k}, there exists a feasible labeling γ of It with respect to ρt such
that γ(Li

t) = si
t for all i ∈ {ℓ + 1, . . . , k}.

2. For every ℓ ∈ {1, . . . , k}, the set Qℓ
t(sℓ+1

t , . . . , sk
t ) is non-empty.

3. Algorithm 1 serves the t’th request.

Proof. For an arbitrary t ∈ {1, . . . , T}, we prove the lemma by reverse induction on ℓ ∈
{0, . . . , k} in an interleaved manner. More precisely, as the base case, we prove the first claim
for ℓ = k. Assuming that the first claim holds for an arbitrary ℓ > 0, we prove that the
second claim holds for the same ℓ. Assuming that the second claim holds for an arbitrary
ℓ > 0, we prove that the first claim holds for ℓ− 1. Finally, assuming that the first claim
holds for ℓ = 0, we prove that the third claim holds.

As the base case, we need to prove the first claim for ℓ = k. We know that the service
pattern It that the adversary provides is feasible. This implies that there exists a feasible
labeling γ of It with respect to ρt. The condition γ(Li

t) = si
t for all i ∈ {ℓ + 1, . . . , k} is

vacuously true.
For the inductive step, assume that the first claim holds for some 0 < ℓ ≤ k. Hence,

there exists a feasible labeling γ of It such that γ(Li
t) = si

t, for all i ∈ {ℓ + 1, . . . , k}. By
Definition 10, the point γ(Lℓ

t) lies in Qℓ
t(sℓ+1

t , . . . , sk
t ). Thus, Qℓ

t(sℓ+1
t , . . . , sk

t ) ̸= ∅.
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We designed the algorithm so that sℓ
t is guaranteed to be in Qℓ

t(sℓ+1
t , . . . , sk

t ). By
Definition 10, there exists a feasible labeling γ′ of It such that γ′(Li

t) = si
t for all i ∈ {ℓ, . . . , k}.

Hence, the first claim holds for ℓ− 1 as well. This proves the first two claims.
Finally, since the first claim holds for ℓ = 0, there exists a feasible labeling γ of It with

respect to ρt such that γ(Li
t) = si

t for all i ∈ {1, . . . , k}. By definition of feasibility of a
labeling (Definition 5), γ must assign the label σt to some interval in It that contains t.
Since the only intervals in It that contains t are the Li

t’s, we must have σt = si
t for some i.

Since si
t’s are the positions of the algorithm’s servers after processing the t’th request, the

request gets served. ◀

4.3 Competitive Analysis
We begin by proving that the algorithm indeed maintains Invariant 14 after serving every
request.

▶ Lemma 16. For every t ∈ {1, . . . , T}, every ℓ ∈ {1, . . . , k}, and every pℓ+1, . . . , pk ∈ U ,
conditioned on si

t = pi for all i ∈ {ℓ + 1, . . . , k} and Qℓ
t(pℓ+1, . . . , pk) ̸= ∅, sℓ

t is a uniformly
random point in Qℓ

t(pℓ+1, . . . , pk).

Proof. We prove this lemma by induction of time t. The base case of t = 1 is true because
we are assuming ℓ1 = k, which makes the condition in step 9 of the algorithm true.

Consider the inductive case, where t > 1. Note that the algorithm executes exactly
one step out of 10, 12, and 15. Conditioned on the algorithm executing step 10 or 12, sℓ

t

is located at a uniformly random point in Qℓ
t(pℓ+1, . . . , pk) by design. On the other hand,

suppose the algorithm executes step 15, that is, the checks in steps 9 and 11 fail. Then
the fact that the check of step 9 failed implies that the algorithm did not move any server
heavier than the ℓ’th. Thus (sℓ+1

t−1, . . . , sk
t−1) = (sℓ+1

t , . . . , sk
t ) = (pℓ+1, . . . , pk). Therefore, by

induction hypothesis, sℓ
t−1 is a uniformly random point in Qℓ

t−1(pℓ+1, . . . , pk). Additionally,
conditioned on the failure of the check in step 11, sℓ

t−1 ∈ Qℓ
t(sℓ+1

t , . . . , sk
t ), so sℓ

t = sℓ
t−1

is a uniformly random point in Qℓ
t−1(pℓ+1, . . . , pk) ∩ Qℓ

t(pℓ+1, . . . , pk). But by Lemma 13,
Qℓ

t−1(pℓ+1, . . . , pk) ∩Qℓ
t(pℓ+1, . . . , pk) = Qℓ

t(pℓ+1, . . . , pk), so sℓ
t is a uniformly random point

in Qℓ
t(pℓ+1, . . . , pk). Thus, irrespective of which one of steps 10, 12, and 15 is executed, sℓ

t is
a uniformly random point in Qℓ

t(pℓ+1, . . . , pk), and this implies the claim. ◀

Having established that our algorithm is well-defined and that it indeed serves every
request, we now focus on bounding the cost of algorithm’s solution. For each ℓ ∈ {1, . . . , k},
define the random variables Xℓ and Y ℓ to be the number of forced movements and unforced
movements respectively, of the algorithm’s ℓ’th server. First, we bound Xℓ for all ℓ as follows.

▶ Lemma 17. The following inequalities hold with probability one.
1. Xℓ ≤ Xℓ+1 + Y ℓ+1 + |Iℓ

T | for all ℓ ∈ {1, . . . , k − 1}.
2. Xk ≤ |Ik

T |.

Proof. For ℓ < k, every forced movement of the ℓ’th server happens at time t only if flag is
true or ℓ ≤ ℓt. Observe that in the former case, the (ℓ + 1)’th server must have moved at
time t too, so we charge the movement of the ℓ’th server to the movement of the (ℓ + 1)’th
server, which could be either forced or unforced. In the latter case, since IT is a hierarchical
service pattern, a new interval starts at time t in the ℓ’th level Iℓ

T of IT , so we charge the
movement of the ℓ’th server to that interval. The argument for the second claim is the same
as above except that flag is never true; a forced movement of the k’th server happens at
time t only if ℓt = k. ◀
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Next, we bound Y ℓ by first bounding the number of unforced movements of the ℓ’th
server in an arbitrary interval in which no forced movement of the ℓ’th server happens.

▶ Lemma 18. For every ℓ ∈ {1, . . . , k}, every pℓ+1, . . . , pk ∈ U , and every tbegin, tend such
that 1 ≤ tbegin < tend ≤ T + 1, the following holds. Conditioned on the event that sj

t = pj for
all j ∈ {ℓ + 1, . . . , k}, and all t ∈ (tbegin, tend), the expected number of unforced movements of
the algorithm’s ℓ’th server is at most H(nℓ), where H denotes the harmonic function defined
as H(n) = 1 + 1/2 + · · ·+ 1/n.

Proof. Conditioned on the event that sj
t = pj for all j ∈ {ℓ + 1, . . . , k} and all t ∈

(tbegin, tend), we use Lemma 13 to claim that Qℓ
t−1(pℓ+1, . . . , pk) ⊇ Qℓ

t(pℓ+1, . . . , pk) for
every t ∈ (tbegin, tend). For brevity we write Qt for Qℓ

t(pℓ+1, . . . , pk). Let Zt be the indicator
random variable of the event that an unforced movement happens at time t. From the
algorithm, we know that this event happens if and only if sℓ

t−1 ∈ Qt−1 \Qt. From Lemma 16,
we know that sℓ

t−1 is a uniformly random point in Qt−1. Thus,

E[Zt] = |Qt−1| − |Qt|
|Qt−1|

≤ 1
|Qt−1|

+ 1
|Qt−1| − 1 + · · ·+ 1

|Qt|+ 1 = H(|Qt−1|)−H(|Qt|)

Let t1 denote the earliest time t for which Qt ⊊ Qt−1. Then the expected number of unforced
movements is bounded as

tend−1∑
t=t1

E[Zt] ≤ 1 +
tend−1∑
t=t1+1

H(|Qt−1|)−H(|Qt|) = 1 + H(|Qt1 |)−H(|Qtend−1|).

Since Qt1 ⊊ Qt1−1 ⊆ U , by Lemma 12, we have |Qt1 | ≤ nℓ. By the second claim of Lemma 15,
|Qtend−1| ≥ 1. Thus, the expected number of unforced movements is at most H(nℓ). ◀

▶ Lemma 19. For every ℓ ∈ {1, . . . , k}, we have E[Y ℓ] ≤ H(nℓ) · E[Xℓ].

Proof. Let us condition on the sequence of timestamps at which a forced movement of
the ℓ’th server takes place. If t1, t2 are two consecutive timestamps in this sequence, it is
easy to notice that the servers ℓ + 1, . . . , k remain at the same position throughout this
interval. Then Lemma 18 applied to the interval (t1, t2) implies that the expected number of
unforced movements of the ℓ’th server in this interval is at most H(nℓ). Summing up over
all pairs t1, t2 of consecutive timestamps, we get E[Y ℓ|Xℓ = x] ≤ H(nℓ) · x, and therefore,
E[Y ℓ] ≤ H(nℓ) · E[Xℓ]. ◀

▶ Theorem 2. There is a randomized algorithm for WkS-RSP with a competitive ratio of
2O(k2).

Proof. From Lemma 15, we already know that Algorithm 1 serves every request in ρT .
Towards proving competitiveness of the algorithm, we first define the constants ck, . . . , c1
inductively as follows: ck = H(nk) + 1 and cℓ = (H(nℓ) + 1) · (cℓ+1 + 1), for every ℓ ∈
{1, . . . , k − 1}. We claim that for every ℓ ∈ {1, . . . , k}, the expected number of movements
of the algorithm’s ℓ’th server, which equals E[Xℓ] + E[Y ℓ], is at most cℓ times the number
of movements of the adversary’s ℓ’th server, which equals |Iℓ

T |. We prove this claim using
reverse induction on ℓ from k to 1.

For the base case, i.e. ℓ = k, from Lemma 19 we have that E[Y k] ≤ H(nk) · E[Xk]. From
Lemma 17, we know that E[Xk] ≤ |Ik

T |. Thus, the expected number of algorithm’s k’th
server movements is,

E[Xk] + E[Y k] ≤ (H(nk) + 1) · E[Xk] = ck · |Ik
T |.
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For the inductive case, assume that E[Xℓ+1] + E[Y ℓ+1] ≤ cℓ+1 · |Iℓ+1
T |, for an arbitrary

ℓ ∈ {1, . . . , k−1}. From Lemma 19, we have that E[Y ℓ] ≤ H(nℓ) ·E[Xℓ], and from Lemma 17,
we have that E[Xℓ] ≤ E[Xℓ+1] + E[Y ℓ+1] + |Iℓ

T |. Thus, we have,

E[Xℓ] + E[Y ℓ] ≤ (H(nℓ) + 1) · E[Xℓ] ≤ (H(nℓ) + 1) ·
(
E[Xℓ+1] + E[Y ℓ+1] + |Iℓ

T |
)

.

Recall that IT = (I1
T , . . . , Ik

T ) is a hierarchical service pattern, and therefore, |Iℓ+1
T | ≤ |Iℓ

T |.
Using this fact, the induction hypothesis, and the definition of cℓ, we get,

E[Xℓ]+E[Y ℓ] ≤ (H(nℓ)+1) ·
(
cℓ+1 · |Iℓ+1

T |+ |Iℓ
T |

)
≤ (H(nℓ)+1) ·(cℓ+1 +1) · |Iℓ

T | = cℓ · |Iℓ
T |,

as required.
As a consequence of the above inductive claim, the total cost of the algorithm is at most

max{c1, . . . , ck} = c1 times the cost of the adversary’s service pattern. Moreover, from the
recurrence relation defining ck, . . . , c1 and the upper bound on nℓ from Fact 11, it is clear
that c1 is 2O(k2). Thus, the competitive ratio of our algorithm is 2O(k2). ◀

5 Concluding Remarks and Open Problems

The main open question of finding the randomized competitive ratio of weighted k-server
on uniform metrics still remains unresolved. Our decomposition approach and the ran-
domized algorithm for WkS-RSP imply that the task of designing a 2poly(k)-competitive
randomized algorithm for weighted k-server on uniform metrics is equivalent to designing
a 2poly(k)-competitive algorithm for WkS-SPC. We do not know any non-trivial bounds on
the competitive ratio of WkS-SPC and it is not even clear whether it is easier or harder
than WkS-RSP in terms of competitiveness. While the known lower bound constructions for
weighted k-server also apply to WkS-RSP, these constructions fail to get a lower bound on
the competitive ratio of WkS-SPC. We therefore propose the open problem of finding bounds
on the competitive ratio of WkS-SPC in the deterministic as well as randomized setting.

In the deterministic setting, the competitive ratio of WkS-SPC is bounded from below by
the competitive ratio of weighted k-server divided by the competitive ratio of WkS-RSP, again
due to Theorem 1. However, for this to give a non-trivial lower bound on the competitive
ratio of WkS-SPC, we require an upper bound on the competitive ratio of WkS-RSP that is
less than the known lower bound on the competitive ratio of weighted k-server. Unfortunately,
no such upper bound is known. Thus, showing a separation between weighted k-server and
WkS-RSP is an interesting open problem.

Additionally, we also believe that closing the quadratic gap between the exponents in the
upper and lower bounds on the randomized competitive ratio of WkS-RSP is an interesting
open problem, because it will result in a better understanding of the weighted k-server
problem.

Finally, for the weighted k-server problem with k > 2, no weight-independent and metric-
independent upper bounds on the competitive ratio are known on any well-structured class of
metrics larger than the class of uniform metrics. Proving such bounds seems rather ambitious,
given our limited understanding of weighted k-server on uniform metrics.
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The weights of the servers are 1, β, . . . , βk−1 where β is a large integer. The sequence
n0, n1, . . . is defined as n0 = 1 and for ℓ > 0,

nℓ =
(⌈nℓ−1

2

⌉
+ 1

)
·
(⌊nℓ−1

2

⌋
+ 1

)
.

The adversarial strategy in [2] uses the following combinatorial result from [3].

▶ Fact 20 ([3]). Let ℓ ∈ N and let P be a set of nℓ points. There exists a set-system Qℓ ⊆ 2P

satisfying the following properties.
1. Qℓ contains ⌈nℓ−1/2⌉+ 1 sets, each of size nℓ−1.
2. For every p ∈ P , there exists a set in Qℓ not containing p.
3. For every p ∈ P , there exists a q ∈ P such that every set in Qℓ contains at least one of p

and q.

We modify the adversarial strategy from [2] for weighted k-server to get the following
strategy for WkS-RSP.

Procedure 2 adversary.

Mark all points in S;
repeat infinitely many times

Pick a point p uniformly at random from S (with replacement);
Mark p;
if All points in S are marked then

ℓext ← k;
Unmark all points q ∈ S other than p;

else
ℓext ← k − 1;

Call strategy(k − 1, S \ {p}, ℓext);

Procedure 3 strategy(ℓ, P, ℓext) (Promise: |P | = nℓ and ℓext ≥ ℓ).

if ℓ = 0 (and therefore, |P | = n0 = 1) then
Output (p, ℓext), where p is the unique point in P ;

else
Construct the set-system Qℓ ⊆ 2P using Fact 20;
repeat (β − 1) · (⌈nℓ−1/2⌉+ 1) times

Pick a set P ′ uniformly at random from Qℓ (with replacement);
Call strategy(ℓ− 1, P ′, ℓext);
ℓext ← ℓ− 1;

The following claim bounds the expected cost of an arbitrary online algorithm for every
strategy call made by adversary. Its proof is identical to the proof of Corollary 6 in [2]. It is
noteworthy that all the arguments involved in that proof go through even in the revealed
service pattern setting.

▶ Lemma 21. For ℓext = k or k−1, the expected cost of the algorithm per strategy(k−1, P, ℓext)
call made by adversary is (β − 1)k−1/(nk−1 + 1).

We now show that the service pattern I = (I1, . . . , Ik) created by the procedure adversary
is feasible, that is, it can be labeled in a way that all requests get served. We start by noting
the following.
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6:16 A Decomposition Approach to the Weighted k-Server Problem

▶ Observation 22. Let (pt1 , ℓt1), . . . , (pt2 , ℓt2) be the input generated by a strategy(ℓ, P, ℓext)
call which starts at time t1 and ends at time t2. Then ℓt1 = ℓext ≥ ℓ and ℓt1+1, . . . , ℓt2 are all
less than ℓ. As a consequence, the following statements about the adversary’s service pattern
I = (I1, . . . , Ik) hold.
1. For all ℓ′ ≥ ℓ, a single interval in Iℓ′ covers the interval [t1, t2 + 1).
2. For all ℓ′ ≤ ℓ, the interval in Iℓ′ covering t1 starts at t1, and the interval in Iℓ′ covering

t2 ends at t2 + 1.
In particular, [t1, t2 + 1) is an interval in Iℓ.

▶ Lemma 23. Consider an arbitrary strategy(ℓ, P, ℓext) call which starts at time t1, ends
at time t2, and generates the input (pt1 , ℓt1), . . . , (pt2 , ℓt2). Suppose for all ℓ′ > ℓ, the single
interval in Iℓ′ covering [t1, t2+1) is labeled with some point pℓ′ , such that P∩{pℓ+1, . . . , pk} ≠
∅. Then the intervals in I1, . . . , Iℓ that intersect [t1, t2 + 1) (and therefore, are subsets of
[t1, t2 + 1)) can be labeled in such a way that for all t ∈ {t1, . . . , t2} there exists i ∈ {1, . . . , k}
such that the unique interval in Ii covering t is labeled with pt.

Proof. We prove by induction on ℓ. For ℓ = 0, the set P contains a single point, which gets
requested. Since P ∩ {p1, . . . , pk} ≠ ∅, the claim holds.

For ℓ > 0, consider a point p ∈ P ∩ {pℓ+1, . . . , pk}. From the third property in Fact 20,
there exists a point q ∈ P such that every set in the set system Qℓ contains at least one of
the points p or q. Label the interval [t1, t2 + 1) in Iℓ by such a point q. Consider an arbitrary
recursive call strategy(ℓ− 1, P ′, ℓext) which starts at time t′

1 ≥ t1 and ends at time t′
2 ≤ t2.

We have P ′ ∩ {q, pℓ+1, . . . , pk} ≠ ∅. By induction hypothesis, the intervals in I1, . . . , Iℓ−1

that intersect [t′
1, t′

2 + 1) can be labeled in such a way that for all t ∈ {t′
1, . . . , t′

2} there exists
i ∈ {1, . . . , k} such that the unique interval in Ii covering t is labeled with pt. ◀

▶ Lemma 24. The service pattern I = (I1, . . . , Ik) created by the procedure adversary is
feasible.

Proof. Every interval in Ik starts exactly when all points in S are found to be marked. For
every interval Ik in Ik do the following. Label it by the point q whose marking results in
the beginning of the next interval in Ik. In other words, q is the last point to get marked
after the unmarking step in the beginning of Ik. Thus, q is never sampled by adversary
during the interval Ik, and therefore q belongs to the set S \ {p} passed to every strategy call
made by adversary during the interval Ik. Thus, by Lemma 23 for ℓ = k − 1, the intervals
in I1, . . . , Ik−1 that are subsets of Ik can be labeled in such a way that all requests given
during the interval Ik are served. Thus, the service pattern I is feasible. ◀

Now, we bound the cost of the service pattern I = (I1, . . . , Ik) created by the procedure
adversary. We start by bounding the total cost of intervals created during a strategy(ℓ, P, ℓext)
call.

▶ Lemma 25. Define the sequence c0, c1, . . . inductively as follows: c0 = 0 and for ℓ > 0

cℓ = βℓ−1 + β · (⌈nℓ−1/2⌉+ 1) · cℓ−1

For an arbitrary ℓ ∈ {0, . . . , k − 1} and ℓext ≥ ℓ, consider a call of strategy(ℓ, P, ℓext) which
starts at time t1 and ends at time t2. The total cost of the intervals in layers I1, . . . , Iℓ that
intersect the interval [t1, t2 + 1) (equivalently, are subsets of [t1, t2 + 1), by Observation 22)
is at most cℓ.
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Proof. We prove this by induction on ℓ. The claim is trivially true for ℓ = 0. For ℓ > 0, the
strategy(ℓ, P, ℓext) makes (β − 1) · (⌈nℓ−1/2⌉+ 1) recursive calls of strategy(ℓ − 1, P ′, ℓext).
For each of these calls, the following holds by induction hypothesis. If the call starts at time
t′
1 ≥ t1 and ends at time t′

2 ≤ t2, then the total cost of intervals in layers I1, . . . , Iℓ−1 that
intersect the interval [t′

1, t′
2 + 1) is at most cℓ−1. Since there are (β − 1) · (⌈nℓ−1/2⌉ + 1)

such recursive calls the total cost of intervals in layers I1, . . . , Iℓ−1 that intersect the interval
[t1, t2 + 1) is at most (β − 1) · (⌈nℓ−1/2⌉ + 1) · cℓ−1. Adding to this the cost βℓ−1 of the
interval [t1, t2 + 1) ∈ Iℓ gives the required bound. ◀

▶ Theorem 3. The randomized competitive ratio of WkS-RSP is Ω(2k).

Proof. Consider the service pattern I = (I1, . . . , Ik) of the adversary. Every interval
in Ik starts with one marked point and ends just before all the points in the set S are
marked in the procedure adversary. Using the standard coupon collector argument, we get
that the expected number of strategy(k − 1, S \ {p}, ℓext) made during an interval in Ik is
(nk−1 +1)H(nk−1). Thus, the amortized cost of intervals in Ik per strategy(k−1, S \{p}, ℓext)
call is βk−1/((nk−1 + 1)H(nk−1)). From Lemma 25, we get that the total cost of intervals in
I1, . . . , Ik−1 per strategy(k − 1, S \ {p}, ℓext) call is at most ck−1. The cost of the revealed
service pattern per strategy(k−1, S\{p}, ℓext) call is at most βk−1/((nk−1+1)H(nk−1))+ck−1.
The rest of the proof is identical to the proof of Theorem 2 in [2]. Essentially, for a large β,
the dominant term in the adversary’s cost is βk−1/((nk−1 +1)H(nk−1)), while the algorithm’s
cost is βk−1/(nk−1 + 1) modulo a lower order term due to Lemma 21, thus implying a lower
bound of H(nk−1) = Ω(2k) on the competitive ratio. ◀
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