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Abstract
In the Minimum Consistent Subset (MCS) problem, we are presented with a connected simple
undirected graph G, consisting of a vertex set V (G) of size n and an edge set E(G). Each vertex in
V (G) is assigned a color from the set {1, 2, . . . , c}. The objective is to determine a subset V ′ ⊆ V (G)
with minimum possible cardinality, such that for every vertex v ∈ V (G), at least one of its nearest
neighbors in V ′ (measured in terms of the hop distance) shares the same color as v. The decision
problem, indicating whether there exists a subset V ′ of cardinality at most l for some positive integer
l, is known to be NP-complete even for planar graphs.

In this paper, we establish that the MCS problem is NP-complete on trees. We also provide
a fixed-parameter tractable (FPT) algorithm for MCS on trees parameterized by the number of
colors (c) running in O(26cn6) time, significantly improving the currently best-known algorithm
whose running time is O(24cn2c+3). In an effort to comprehensively understand the computational
complexity of the MCS problem across different graph classes, we extend our investigation to interval
graphs. We show that it remains NP-complete for interval graphs, thus enriching graph classes where
MCS remains intractable.
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7:2 Minimum Consistent Subset in Trees and Interval Graphs

1 Introduction

For many supervised learning algorithms, the input comprises a colored training dataset T

in a metric space (X , d) where each element t ∈ T is assigned a color C(t) from the set of
colors [c]. The objective is to preprocess T in a manner that enables rapid assignment of
color to any uncolored element in X , satisfying specific optimality criteria. One commonly
used optimality criterion is the nearest neighbor rule, where each uncolored element x is
assigned a color based on the colors of its k nearest neighbors in the training dataset T

(where k is a fixed integer). The efficiency of such an algorithm relies on the size of the
training dataset. Therefore, it is crucial to reduce the size of the training set while preserving
distance information. This concept was formalized by Hart [11] in 1968 as the minimum
consistent subset (MCS) problem. In this problem, given a colored training dataset T , the
objective is to find a subset S ⊆ T of minimum cardinality such that for every point t ∈ T ,
the color of t is the same as the color of one of its nearest neighbors in S. Since its inception,
the MCS problem has found numerous applications, as can be judged by over 2800 citations
to [11] in Google Scholar.

The MCS problem for points in ℜ2 under the Euclidean norm is shown to be NP-complete
if at least three colors color the input points. Furthermore, it remains NP-complete even for
two colors [15, 12]. Recently, it has been shown that the MCS problem is W[1]-hard when
parameterized by the output size [5]. For some algorithmic results on the MCS problem in
ℜ2, see [3, 15].

In this paper, we explore the minimum consistent subset problem when (X , d) is a graph
metric. Without loss of generality, we will use [n] to denote the set of integers {1, . . . , n}.
For any graph G, we denote the set of vertices of G by V (G) and the set of edges by E(G).
Consider any graph G and an arbitrary vertex coloring function C : V (G) → [c]. For a subset
of vertices U , let C(U) represent the set of colors of the vertices in U , formally denoted
as C(U) = {C(u) : u ∈ U}. For any two vertices u, v ∈ V (G), the shortest path distance
between u and v in G is denoted by d(u, v). For a vertex v ∈ V (G) and any subset of
vertices U ⊆ V (G), let d(v, U) = minu∈U d(v, u). The nearest neighbors of v in the set U

are denoted as NN(v, U), formally defined as NN(v, U) = {u ∈ U : d(v, u) = d(v, U)}. A
subset of vertices S ⊆ V (G), is called a consistent subset for (G, C) if for every v ∈ V (G),
C(v) ∈ C(NN(v, S)). The consistent subset problem on graphs is defined as follows:

Consistent Subset Problem on Graphs(CSPG)

Input: A graph G, a coloring function C : V (G) → [c], and an integer ℓ.
Question: Does there exist a consistent subset of size ≤ ℓ for (G, C)?

A consistent subset of minimum size is called a minimum consistent subset (MCS).
Banerjee et al. [2] proved that the CSPG is W[2]-hard [6] when parameterized by the size of
the minimum consistent set, even when limited to two colors, thus refuting the possibility of
an FPT algorithm parameterized by (c + ℓ) under standard complexity-theoretic assumptions
for general graphs. This naturally raises the question of determining the simplest graph
classes where the problem remains computationally intractable. Dey et al. [8] presented
a polynomial-time algorithm for CSPG on simple graph classes such as paths, spiders,
combs, and caterpillars. The CSPG has gained significant research attention in recent years
when the underlying graph is a tree. Dey et al. [7] presented a polynomial-time algorithm
for bi-colored trees, and Arimura et al. [1] presented an XP algorithm parameterized by
the number of colors c, with a running time of O(24cn2c+3). Very recently, the paper [4]
demonstrated a polynomial time algorithm for the minimum consistent spanning subset (a
variant of MCS) in trees.
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New Results. The most intriguing question yet to be answered is whether CSPG remains
NP-hard for trees [1, 7]. In this paper, we decisively answer this question in the affirmative.
This is particularly noteworthy given the scarcity of naturally occurring problems known to
be NP-hard on trees. Our contribution includes a reduction from the MAX-2SAT problem,
detailed in Section 3. Next, we show that CSPG is fixed-parameter tractable (FPT) for trees
on n vertices, significantly improving the results presented in Arimura et al. [1]. Our intricate
dynamic programming algorithm runs in O(26cn6) time, whereas [1] requires O(24cn2c+3)
time; see Section 4.

Moreover, in Section 5, we show that CSPG on interval graphs is NP-hard. While interval
graphs are unrelated to trees, our hardness result for interval graphs raises new questions
about the fixed-parameter tractability of CSPG on this distinct graph class.

2 Notation and Preliminary Results

Notations. For any graph G and any vertex v ∈ V (G), let N(v) = {u : u ∈ V (G), (u, v) ∈
E(G)} denotes the set of neighbours of v and N [v] = {v} ∪ N(v). We denote the distance
between two subgraphs G1 and G2 in G by d(G1, G2) = min{d(v1, v2) : v1 ∈ V (G1), v2 ∈
V (G2)}. For any subset of vertices U ⊆ V (G) in a graph G, G[U ] denotes the subgraph of
G induced on U . Most of the symbols and notations of graph theory used are standard and
taken from [9].

As an elementary result, we prove that MCS is log-APX-hard [14]. We reduce the
dominating set problem to the consistent subset problem (CSPG). In the dominating set
problem given a graph G and an integer k the objective is to find out whether there exists a
subset U ⊆ V (G) of size k such that for any vertex v ∈ V (G), N [v] ∩ U ̸= ∅. It is known that
the set cover problem is log-APX-hard, or in other words, it is NP-hard to approximate the
set cover problem within a c · log n factor [13]. As there exists an L-reduction from set cover
to dominating set problem, the dominating set problem is known to be log-APX-hard. Let
(G, k) be any arbitrary instance of the dominating set problem with a graph G and an integer
k. We construct an instance (H, C, k + 1) of CSPG as follows. V (H) = V (G) ∪ {x} and
E(H) = E(G) ∪ {(x, v) : v ∈ V (G)}. For all v ∈ V (G), we set C(v) = 1, and set C(x) = 2.
For the sake of completeness, we state the following lemma.

▶ Lemma 1. There exists a dominating set for G of size at most k if and only if there is a
consistent subset of size at most k + 1 for the graph H.

Proof. Let D be a dominating set of size k for the graph G. We claim that D′ = {x} ∪ D

is a consistent subset of H. If not, then there is a vertex vi ∈ V (H) \ D′ such that
d(vi, D) > d(vi, x) = 1. This contradicts the assumption that D is a dominating set for G

and the claim holds.
On the other hand, suppose D′ is a consistent subset of size k + 1 in the graph H.

Observe that x ∈ D′ as x is the only vertex with color 2. We claim that D = D′ \ {x} is
a dominating set of G. If not, then there is a vertex v ∈ V (G)\D such that N(v) ∩ D = ∅.
Thus d(v, D′) > 1 but d(v, x) = 1 and C(v) ̸= C(x). This contradicts the assumption that C

is a consistent subset and hence the claim holds. ◀

From Lemma 1, we have the following theorem.

▶ Theorem 2. There exists a constant c > 0 such that it is NP-hard to approximate the
Minimum Consistent Set problem within a factor of c · log n.

FSTTCS 2024



7:4 Minimum Consistent Subset in Trees and Interval Graphs

3 NP-hardness of MCS for Trees

In this section, we prove that CSPG is NP-hard even when the input graph is a tree. We
present a reduction from MAX-2SAT problem to CSPG. Let θ be a given MAX-2SAT
formula with n variables {x1, . . . , xn} and m clauses {c1, . . . , cm}, n, m ≥ 50. We construct
an instance (Tθ, Cθ) of the MCS problem from θ as follows.

Interval Graph Construction.

Construction of (Tθ, Cθ).
The constructed tree Tθ is composed of variable gadgets, clause gadgets, and central
vertex gadgets.
Variable Gadget.
A variable gadget Xi for the variable xi ∈ θ has two components where each component
has a literal path and M pairs of stabilizer vertices, as described below (see Figure 1),
where M is very large (we will define the exact value of M later).
Literal paths: The two literal paths of the variable gadget Xi are P ℓ

i = ⟨x1
i , x2

i , x3
i , x4

i ⟩
and P

ℓ

i = ⟨x1
i , x2

i , x3
i , x4

i ⟩, each consisting of four vertices; these are referred to as
positive literal path, and negative literal path respectively. Here, by a path of k (> 2)
vertices, we mean a connected graph with k − 2 nodes having degree 2 and the
remaining two nodes having degree 1. All the vertices on the path P ℓ

i are of color cℓ
i

and all the vertices on the path P
ℓ

i are of color cℓ
i .

Stabilizer vertices: M pairs of vertices {s1
i , s1

i }, . . . , {sM
i , sM

i }, where the color of
each pair of vertices {sj

i , sj
i } is cs(i, j). We denote the set of vertices Si = {s1

i , . . . , sM
i }

as positive stabilizer vertices and the set of vertices Si = {s1
i , . . . , sM

i } as negative
stabilizer vertices. Each vertex in Si is connected to x1

i and each vertex in Si is
connected to x1

i .
The intuition behind this set of stabilizer vertices is that by setting a large value of
M we ensure that either {s1

i , . . . , sM
i } or {s1

i , . . . , sM
i } is present in any “small” sized

solution.
Clause Gadget.
For each clause ci = (yi ∨ zi), where yi and zi are two (positive/negative) literals,
we define the clause gadget Ci as follows. It consists of three paths, namely left
occurrence path P Y

i = ⟨y1
i , · · · y7

i ⟩, right occurrence path P Z
i = ⟨z1

i , · · · z7
i ⟩, and clause

path P W
i = ⟨w1

i , · · · w7
i ⟩ (see Figure 1). All the vertices in P Y

i (resp. P Z
i ) have the

same color as that of the corresponding literal path in their respective variable gadgets,
i.e. for any literal, say yi in Ci, if yi = xi (resp. xi) then we set the color of the
vertices of P Y

i as cx
i (resp. cx

i ). The color of the vertices on the path P Z
i is set in the

same manner. We color the vertices in P W
i by cw

i , which is different from that of the
vertices in P Y

i and P Z
i . We create the clause gadget Ci by connecting y1

i with w2
i and

z1
i with w6

i by an edge (see Figure 1).
Central Vertex Gadget.
We also have a central path P v = ⟨v1, v2, v3⟩. The color of all the vertices in P v is the
same, say cv, which is different from the color of all other vertices in the construction.
For each variable gadget Xi, x1

i and x1
i are connected with the vertex v1 (see Figure 1).

For each clause Ci, w4
i is connected with v1. The color of the vertices of P v is cv.
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x1 = false x2 = false x3 = false

(x1 ∨ x2) (x1 ∨ x3) (x2 ∨ x3)

x11

x41

x11

x41

x12

x42

x12

x42

x13

x43

x13

x43
s11

sM1

s11

sM1

s13

sM3

s13

sM3

y11
y71 z11

z71 y13
y73 z13

z73

w1
1 w7

1
w1

3 w7
3

v1
v3

w4
i w4

3

S1 S3

PW
1

PW
3

Figure 1 An example of construction of (Tθ, Cθ) where θ = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3). For
the assignment x1 = x2 = x3 = false, we have shown the corresponding CS with a red box around
the vertices. For the assignment x1 = x2 = x3 = false, (x1 ∨ x2) is not satisfied whereas the rest of
the clauses are satisfied.

Our objective is to show that there exists an MCS of size at most N(k) = n(M + 2) +
2k + 3(m − k) + 1 in the tree Tθ if at least k clauses of θ are satisfied; otherwise, the size
is strictly greater than N(k). We now prove a set of auxiliary claims about a minimum
consistent subset for (Tθ, Cθ).

▶ Lemma 3. For any consistent subset VC of size at most N(k) = n(M +2)+2k+3(m−k)+1
in the tree Tθ, the following are true.

For any variable xi, exactly one of the following is true.
Si ⊂ VC , Si ∩ VC = ∅, and x2

i , x4
i ∈ VC .

Si ⊂ VC , Si ∩ VC = ∅, and x2
i , x4

i ∈ VC

, and
v3 ∈ VC .

Lemma 3, states that by strategically choosing the vertices in a variable gadget, the
vertices of the tree corresponding to that variable gadget can be consistently covered by
choosing its only one set of stabilizer vertices.

Proof. For a variable xi, let Si∩VC ̸= ∅. Let sj
i ∈ Si∩VC . But then every vertex v ∈ Si\{sj

i }
must have a vertex within distance 2 of its own color, since dist(sj

i , v) = 2. Hence Si ⊂ VC .
One can similarly prove that Si ∩ VC ̸= ∅ =⇒ Si ⊆ VC . Also, every variable gadget contains
M uniquely colored vertices and hence has at least M vertices in VC . So, if M >> n, we
have that N(k) < (n + 1)M , and there exists no variable gadget that contains vertices from
both Si and Si. In other words exactly one of the following holds for every variable gadget
corresponding to a variable xi:

Si ⊂ VC , Si ∩ VC = ∅
Si ⊂ VC , Si ∩ VC = ∅,

FSTTCS 2024



7:6 Minimum Consistent Subset in Trees and Interval Graphs

Below, we look into one of these cases, and a similar argument may be made for the other
case as well.

Case 1: Si ⊂ VC , Si ∩ VC = ∅. Notice that there must be a vertex in the literal path
{x1

i , x2
i , x3

i , x4
i } from {x1

i , x2
i } of the variable gadget Xi since dist(Si, x1

i ) = 1 and the distance
to any other vertex of the same color (other than these two vertices) is more than 1. But
x1

i /∈ VC , as Si ∩ VC = ∅ and dist(x1
i , Si) < dist(Si, Si). Hence x2

i ∈ VC .
Similarly there must be a vertex in the literal path {x1

i , x2
i , x3

i , x4
i } of the variable gadget

Xi since dist(Si, x1
i ) = 3 and the distance to any other vertex of the same color (other

than {x2
i , x3

i , x4
i }) is more than 3. And the distance of 4 between Si and Si eliminates the

possibility of belonging any of x1
i , x2

i or x3
i belonging in VC . Thus, x4

i ∈ VC .

Case 2: Si ⊂ VC , Si ∩ VC = ∅. Case 2 may be argued in a manner similar to Case 1.
Moreover, VC must contain at least one veretx from the set {v1, v2, v3}. However, the

distance of 4 between Si and Si rules out the possibility of either v1 or v2 being in VC .
Consequently, v3 ∈ VC . ◀

To satisfy the inequality in the above lemma, we now set the value of M as n3. In the
next lemma, we present a bound on the vertices from each clause gadget that are contained
in a consistent subset of size at most N(k). For any clause Ci, denote the corresponding
clause gadget by T C

i = G[{wa
i , ya

i , za
i |1 ≤ a ≤ 7}].

▶ Lemma 4. In any consistent subset VC of the tree Tθ, for each clause Ci, 2 ≤ |V (T C
i )∩VC |.

Proof. There needs to be a vertex among the vertices {wa
i | 1 ≤ a ≤ 7} since they are

distinctly colored from all other vertices. If this vertex belongs to {wa
i | 1 ≤ a ≤ 4}, then

there must also be a vertex in {ya
i | 1 ≤ a ≤ 7} since the nearest vertex of the same color

(any ya
i ) is farther away than the vertex with the color of any wa

i . Similarly, if this vertex
belongs to {wa

i | 4 ≤ a ≤ 7}, then there must be a vertex in {za
i | 1 ≤ a ≤ 7}. Therefore,

2 ≤ |V (T C
i ) ∩ VC |. ◀

▶ Theorem 5. There exists a truth assignment of the variables in θ which satisfies at least k

clauses if and only if there exists a consistent subset of size at most N(k) for (Tθ, Cθ).

Proof. (⇒) For the forward direction, let there exist an assignment A to the variables of θ

that satisfies k clauses. Consider the following set of vertices VA. For each variable xi if xi is
true, include all the vertices of Si in VA. Also include x2

i and x4
i in VA. If xi = false then

include all the vertices of Si in VA. Also include x4
i and x2

i in VA.
For every satisfied clause Ci = (yi ∨ zi) with respect to A we include the following vertices

in VA. Without loss of generality assume that yi = true. We include w7
i and z1

i in VA. For
every unsatisfied clause Ci = (yi ∨ zi), we include w1

i , y1
i and z7

i in VA. We also include v3
in VA.

Observe that the cardinality of VA is N(k) = n(M + 2) + 2k + 3(m − k) + 1. Next, we
prove that VA is a consistent subset for Tθ. Observe that for any pair of vertices (sj

i , sj
i ),

exactly one of them is in VA. Without loss of generality assume that sj
i ∈ VA. Observe that

d(sj
i , sj

i ) = d(sj
i , VA) = 4. If xi = true then d(xj

i , x2
i ) ≤ d(xj

i , VA) and d(xj
i , x4

i ) ≤ d(xj
i , VA).

The case when xi = false is symmetric.
For any clause gadget either w1

i or w7
i is in VA. Without loss of generality assume that

w1
i ∈ VA. Observe that for every vertex wj

i , d(wj
i , w1

i ) = d(wj
i , VA). Let Ci = (yi ∨ zi) be

a satisfied clause and without loss of generality assume that yi = xj = true. Observe
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that d(y1
i , x2

j) = 6, and d(y3
i , VA) = 6, and d(ya

i , x2
j) = d(ya

i , VA). For any unsatisfied
clause Ci = (yi ∨ zi) observe that d(ya

i , x2
j) = d(ya

i , VA). Also for any vj where 1 ≤ j ≤ 3
d(vj , v3) = d(vj , VA). Therefore VA is a consistent subset for Tθ.
(⇐) In the backward direction, let there be a consistent subset VC of size at most N(k) for
(Tθ, Cθ). We know from Lemma 3 that either Si ⊂ VC or Si ⊂ VC . From Lemma 3 any such
solution has at least n(M + 2) + 1 many vertices from VC outside the clause gadgets leaving
at most 2k + 3(m − k) that may be chosen from the clause gadgets.

Each clause gadget comprises of vertices of three distinct colors: one color exclusive to
the clause itself and two colors dedicated to literals. An essential insight is that if there
are no vertices in VC of colors specific to the literals from a clause in the variable gadgets,
then such a clause gadget must contain at least three vertices from VC . This assertion is
valid because the distance between two sets of vertices of the same color (corresponding to
the same literal in two clauses) across any two clauses is at least 8, while vertices in VC of
clause-specific colors are at a distance of at most 6.

This fact, coupled with Lemma 4 implies that there are at least k clauses for whom colors
specific to at least one of their literals have the vertices in VC of the same color from the
variable gadgets. Making the same literals true and setting other variables arbitrarily gives
us an assignment that satisfies at least k clauses. ◀

4 MCS for Trees: A Parameterized Algorithm

In this section, we consider the optimization version of the MCS problem for the trees.

Minimum Consistent Subset for Trees Parameter: c

Input: A rooted tree T , whose vertices V (T ) are coloured with a set C of c colours.
Question: Find the minimum possible size of a consistent subset (MCS) for T?

We consider T as a rooted tree by taking an arbitrary vertex r as its root. We use V (T ′)
to denote the vertices of a subtree T ′ of T , and C(U) ⊆ C to denote the subset of colors
assigned to subset of vertices U ⊆ V , and C(u) to denote the color attached to the vertex
u ∈ V (T ). For any vertex v, let ηv denote the number of children of v and we denote the
children of v by v1, v2, · · · , vηv

. We denote the subtree rooted at a vertex v by T (v). For
any vertex v and any integer i < ηv, we use Ti+(v) to denote the union of subtrees rooted
at vi+1 to vηv

, and Ti(v) to denote the subtree rooted at v and containing first i many
children of v. Thus, Ti+(v) = ∪i+1≤j≤ηv T (vj), which is a forest, and Ti(v) = T (v) \ Ti+(v).
In Figure 2(a), the light yellow part is Ti(v), and the light sky-colored part is Ti+(v). We
define T out(v) = T \ T (v).

For any positive integer d and for any vertex v ∈ V (T ), a set of vertices U ⊂ V (T ) is
called d-equidistant from v if d(ui, v) = d for all ui ∈ U . Any subset of vertices U spans
a set of colors C ′ ⊆ C if C(U) = C ′. For any vertex v ∈ V (T ), we use E sib

i (v, d, C ′) (resp.
Eout

i (v, d, C ′)) to denote the set of subsets of vertices in Ti+(v) (resp. T \ T (v)), which are
d-equidistant from v and span the colors in C ′. Next, we define a (partial) consistent subset
for a subtree Ti(v).

Intuition. Our dynamic programming (DP) routine exploits the key observation that a
(partial) consistent subset (formally defined below) for a subtree T (v) can be computed
in FPT time. This computation is possible given the distance to the closest vertex in the
consistent subset that lies outside T (v) and the colors of those vertices. The entries in our

FSTTCS 2024
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v1 vi
Ti+

Ti

v

vη

(a)

v

v1 vi
Ti(v)

S in

v S sib

v

S out

v

NN(v, S in

v)
NN(v, S sib

v)

NN(v, S out

v )

(b)

Figure 2 Illustration of the bottom-up dynamic programming routine, ■ vertices denotes
consistent subset. δin

S = 1, δout
S = 2, δsib

S = 1.

DP table store the minimum size of partial consistent subsets for all subtrees Ti(v). These
subsets are defined based on six parameters: distance to the closest vertex from v in the
consistent subset in Ti(v), T out(v) and Ti+(v) and colors of these three set of closest vertices.

▶ Definition 6. Let din ∈ Z+
0 and dout, dsib ∈ Z+, and let three subsets of colors C in, Cout, C sib ⊆

C. A (partial) consistent subset of the subtree Ti(v) with respect to the parameters din, dout,
dsib, C in, Cout, C sib is defined as a set of vertices W ⊆ V (Ti(v)) such that for any arbitrary
subset X ∈ E sib

i (v, dsib, C sib) and Y ∈ Eout

i (v, dout, Cout) (assuming they exist), W satisfies the
following (see Figure 2(b)):

d(v, W ) = din. (i.e., the distance of v to its nearest member(s) in W is din)
C(NN(v, W )) = C in. (i.e., C in is the set of colors of the nearest members of v in the
set W )
For every vertex u ∈ Ti(v), C(u) ∈ C(NN(u, W ∪ X ∪ Y )).

Note that for some values of din, dout, dsib, C in, Cout, C sib there may not exist any (partial)
consistent subset for Ti(v); in such a case we define it is undefined. Also note that, for
some values, the (partial) consistent subset can be empty as well, such as when din = ∞ and
C(u) ∈ C(NN(u, X ∪ Y )) for every vertex u ∈ Ti(v). For ease of notation, we will denote a
(partial) consistent subset for Ti(v) as a consistent subset with respect to the parameters
din, dout, dsib, C in, Cout, C sib.

Consider an arbitrary consistent subset ST of T , an arbitrary vertex v ∈ V (T ) and
an integer i ∈ [ηv] (see Figure 2(b)). For any vertex v ∈ V (T ) and 1 ≤ i ≤ ηv, define
S in

v = ST ∩ V (Ti(v)), Ssib
v = ST ∩ V (Ti+(v)), and Sout

v = ST ∩ V (T \ T (v)). Also define
δin

S = d(v, S in
v ), C in

S = C(NN(v, S in
v )), δsib

S = d(v, Ssib
v ), C sib

S = C(NN(v, Ssib
v )), δout

S = d(v, Sout
v ),

Cout
S = C(NN(v, Sout

v )). Let W be any arbitrary (partial) consistent subset with respect to the
parameters δin

S , δout
S , δsib

S , C in
S , Cout

S , C sib
S (see Definition 6). Next, we have the following lemma.

▶ Lemma 7. SW = (ST \ S in
v ) ∪ W is a consistent subset for T .

Proof. Suppose that A = W ∪ NN(v, Ssib
v ) ∪ NN(v, Sout

v ) is the set of vertices which are
either in W or in the nearest neighbor of v outside Ti(v) in SW . We will show that for any
vertex u ∈ Ti(v), NN(u, SW ) ⊆ A and there is a vertex in NN(u, A) of the color same as
u. Similarly, let B = (SW \ W ) ∪ NN(v, W ). We show that for any vertex w outside Ti(v),
NN(w, SW ) ⊆ B and there is a vertex in NN(w, B) of the color same as w. Please note
that A and B are not necessarily disjoint.
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Consider a vertex u ∈ Ti(v) and w ∈ T \ Ti(v). Since NN(v, Ssib
v ) ∈ E sib

i (v, δsib
S , C sib

S ),
NN(v, Sout

v ) ∈ Eout

i (v, δout
S , Cout

S ), and W is a consistent subset with respect to the parame-
ters δin

S , δout
S , δsib

S , C in
S , Cout

S , C sib
S , we have C(u) ∈ C(NN(u, W ∪ NN(v, Ssib

v ) ∪ NN(v, Sout
v ))) =

C(NN(u, A)). Also, as ST is a consistent subset, we have C(w) ∈ C(NN(w, ST \ S in
v ) ∪ C in

S).
From the properties of W , we have C(NN(v, W )) = C in

S . Hence, C(w) ∈ C(NN(w, B)). Thus,
to prove the result, it is enough to show that (i) no vertex from B \ A can be the closest to
the vertex u in the set SW , and (ii) no vertex from A \ B can be the closest vertex of w in
the set SW . We prove these two claims by contradiction.

Assume that Claim (i) is false. Then, there will be a vertex x ∈ B \ A, which is closest
to u. Note that, (B \ A) ∩ ((Ti(v) ∪ NN(v, Ssib

v ) ∪ NN(v, Sout
v )) = ∅. Hence we have d(u, x) =

d(u, v) + d(v, x), d(v, x) > min(δsib
S , δout

S ). This is a contradiction as the closest vertex from v

in SW ∪ (T \ Ti(v)) (if it exists) is at distance min(δsib
S , δout

S ) = d(v, NN(v, Ssib
v ) ∪ NN(v, Sout

v )).
Hence, x cannot be the closest vertex of u in SW . Thus, Claim (i) follows.

Now, assume that Claim (ii) is false. Then there is a vertex y ∈ A\B, which is closest to w.
As w ̸∈ Ti(v) and y ∈ Ti(v), we have d(w, y) = d(w, v) + d(v, y). Since d(v, NN(v, W )) = δin

S

and w ∈ (A \ B = W \ NN(v, W )), we have d(v, y) > δin
S . This contradicts the fact that the

closest vertex from v in SW ∪ Ti(v) (if it exists) is at distance δ
in from v. Hence, Claim (ii)

is true. ◀

Motivated by Lemma 7, we design the following algorithm based on the dynamic program-
ming technique. For each choice of v ∈ V (T ), i ∈ [ηv], δin

v ∈ [n] ∪ {0, ∞}, δout
v ∈ [n] ∪ {∞},

δsib
v ∈ [n]∪{∞}, and C in

v , Cout
v , C sib

v ⊆ C, we define a subproblem which computes the cardinality
of a minimum sized (partial) consistent subset for the subtree Ti(v) with respect to the pa-
rameters ⟨δin

v , δout
v , δsib

v , C in
v , Cout

v , C sib
v ⟩, and denote its size by P (Ti(v), δin

v , δout
v , δsib

v , C in
v , Cout

v , C sib
v ).

Let us use δmin
v = min(δin

v , δout
v , δsib

v ).

A =
{

C in
v if δin

v = δmin
v

∅ otherwise
, B =

{
C sib

v if δsib
v = δmin

v

∅ otherwise
, D =

{
Cout

v if δout
v = δmin

v

∅ otherwise

We define Cmin
v = A ∪ B ∪ D. Note that δmin

v is the distance of the closest vertex to v in
any X ∈ E sib

i (v, δsib
v , C sib

v ), any Y ∈ Eout

i (v, δout
v , Cout

v ) or the consistent subset, and that Cmin
v

denotes the colors of all such vertices.
To compute any DP entry, we take into account the following six cases. The first two

cases are for checking whether a DP entry is valid. The third case considers the scenario
in which v is part of the solution; the fourth, fifth, and sixth cases collectively consider the
scenario in which v is not in the solution.

Case 1: If C(v) /∈ Cmin
v , return undefined.

Case 2: δin
v = 0 and C in

v ̸= {C(v)}. Here, return ∞.
Case 3: δin

v = 0 and C in
v = {C(v)}. Here, return P (Ti(v), δin

v , δout
v , δsib

v , C in
v , Cout

v , C sib
v ) =

1 +
∑

1≤j≤i

{
min
δ,C′

P
(

Tηvj
(vj), δ, 1, ∞, C ′, {C(v)}, ∅

)}

Explanation. Case 1 and Case 2 are self-explanatory. Case 3 implies that the vertex v

is included in the consistent subset. Consequently, for the optimal solution, we need to
determine a consistent subset for each tree rooted at a child vj of v, independently of each
other, assuming that v is part of the consistent subset (refer to Figure 2(a)). For every child vj

of v, we iterate through all possible choices of C ′ ⊆ C and δin
vj

= δ ∈ {1, . . . , h(T (vj)} ∪ {∞}
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vjv1 vi

v

vjηvj
vj1

Ti+(v)

Figure 3 Illustration of the Case 3, where δin
v = 0.

where h(T (vj)) is the height of the tree rooted at vj , to identify the minimum consistent
subset for Tηvj

(vj). This is done with the constraints that the closest vertex in the consistent
subset inside Tηvj

(vj) is at a distance of δ and spans C ′. For any vertex in T (vj), the path of
the closest vertex of its own color outside Ti(v) has to pass through v, which is considered to
be in the consistent subset and has color C(v). Thus, δout

v = 1 is taken for the tree Tηvj
(vj).

Since we are solving for the complete tree rooted at vj with no siblings, we set the distance
to the closest sibling vertex as δsib

v = ∞ and the corresponding color set as ∅.

Notations for Subsequent Cases. In the rest of the section, we consider three more cases
where δin

v > 0, and hence δin
v , δout

v , δsib
v > 0. Intuitively, while solving the problem recursively,

we will recursively solve MCS in Ti−1(v) and Tηvi
(vi). We try all possible sets of choices

of Ca, Cb with C in
v = Ca ∪ Cb, and recursively solve for a solution assuming that the nodes

of colors in Ca are present in Ti−1(v) at a distance of δin
v (if Ca ̸= ∅ and such choices are

feasible) and nodes of colors in Cb ⊆ C in
v are present in Tηvi

(vi) at a distance of δin
v − 1 from

vi (if Cb ̸= ∅ and such choices are feasible).

v1 vi

v

Ti+(v)
vi−1v2

Ti−1(v)

Ca Cb

Figure 4 Illustration of the Case 4.

Case 4: Ca, Cb ̸= ∅. In this case, the closest vertices in the consistent subset from v in both
Ti−1(v) and Tη(vi)(vi) are located at a distance of precisely δin

v . We start by defining the
following. Let δx = min(δin

v , δsib
v ) and recall δmin

v = min(δin
v , δout

v , δsib
v ).

Observe that both Ti+(v) and Tηvi
(vi) contains siblings of Ti−1(v). Thus, in a hypothetical

consistent subset, which is compatible with the current partial consistent subset, for the
tree T , the closest vertices from v in T(i−1)+(v) are either in Ti+(v) or Tηvi

(vi). Here, δx is
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trying to capture this distance information, and C sib
i−1 represents the colors of such vertices.

Similarly, from vi in a hypothetical consistent subset CS for T , which is compatible with
the current partial consistent subset, δmin

v + 1 denotes the distance to the vertices in CS

contained in T \ T (vi). Note that these vertices can be either in T(i−1)(v) or in Ti+(v) or
in T \ T (v). Cout

i represents the colors of such vertices.

C sib
i−1 =


Cb if δin

v < δsib
v and Cb ̸= ∅

Cb ∪ C sib
v if δin

v = δsib
v

C sib
v otherwise

Also, define Cout
i = A ∪ B ∪ D, where

A =
{

Ca if δin
v = δmin

v

∅ otherwise
, B =

{
C sib

v if δsib
v = δmin

v

∅ otherwise
, D =

{
Cout

v if δout
v = δmin

v

∅ otherwise

Now we can safely assume that there is a δx-equidistant set from v contained in T(i−1)+(v)
that spans C sib

i−1.

Return P (Ti(v), δin
v , δout

v , δsib
v , C in

v , Cout
v , Csib

v ) = min
Ca,Cb

(
P

(
Ti−1(v), δin

v , δout
v , δx, Ca, Cout

v , Csib
i−1

)
+ P

(
Tηvi

(vi), δin
v − 1, δmin

v + 1, ∞, Cb, Cout
i , ∅

))
Explanation. In this case we iterate over all possible choices of Ca and Cb, assuming
Ca, Cb ̸= ∅ and Ca ∪ Cb = C in

v . In the first part of the recursive formula, we recursively
solve the problem for the tree Ti−1(v) with the restriction that we have to include a set of
vertices of color Ca in Ti−1(v) at distance δin

v from v (see Figure 2(b)). The restriction on
Cout

v and δout
v among the vertices in T \ T (v) remains the same as that of the parent problem.

Regarding C sib
v and δsib

v , observe that vertices in T (vi) and Ti+ are part of T(i−1)+. Therefore
the parameters for the sibling depend on the value of δin

v and δsib
v , and accordingly, we have

defined C sib
i−1.

In the second part of the recursive formula, we are solving the problem recursively for
the tree Tηvi

(vi), with the restriction that, in the consistent set in the consistent set we have
to include a set of vertices from Tηvi

(vi) which are of colors Cb, and at distance δin
v − 1 from

vi. Observe that the vertices in Ti−1(v), Ti+(v) and T \ T (v) are all outside T (vi). Thus the
restriction on the distance to the vertices on the consistent subset outside T (vi) and their
colors depend on the values of δin

v , δsib
v and δout

v . Thus the distance δout
v of this subproblem is

defined as δmin
v = min(δin

v , δsib
v , δout

v ), and the set of colors Cout
i is defined accordingly. As we

are solving for the whole tree rooted at vi, there are no siblings; so δsib
v = 0 and C sib

i = ∅.

Case 5: Ca = ∅ and Cb = C in
v . Note that in this case, the closest vertices in the consistent

subset from v in Tη(vi)(vi) are located at a distance of δin
v while in Ti−1(v), they are

located at a distance of at least δ ≥ δin
v + 1

We iterate over all values δ > δin
v and all possible choices of colors to find the size of a

minimum consistent subset. We define δx and C sib
i−1 the same as in Case 4. For any values

δ > δin
v and C ⊆ [c], we define δmin

v (δ, C) = min(δ, δsib
v , δout

v ), and Cout
i (δ, C) = A ∪ B ∪ D

where

A =
{

C if δ = δmin
v

∅ otherwise
, B =

{
C sib

v if δsib
v = δmin

v

∅ otherwise
, D =

{
Cout

v if δout
v = δmin

v

∅ otherwise
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From vi in a hypothetical consistent subset CS for T , which is compatible with the
current partial consistent subset, δmin

v (δ, C) denotes the distance to the vertices in CS

contained in T \ T (vi). Note that these vertices can be either in T(i−1)(v) or in Ti+(v) or
in T \ T (v). Cout

i (δ, C) represents the colors of such vertices.

Return P (Ti(v), δin
v , δout

v , δsib
v , C in

v , Cout
v , Csib

v ) = min
δ>δin

v ,C⊆[c]

(
P

(
Ti−1(v), δ, δout

v , δx, C, Cout
v , Csib

i−1

)
+ P

(
Tηvi

(vi), δin
v − 1, δmin

v (δ, C) + 1, ∞, Cb, Cout
i (δ, C), ∅

))
Explanation. The explanation for this case is the same as Case 4 except for the fact that
we have to make sure that the closest vertex chosen in the consistent subset from Ti−1(v) is
at distance at least δin

v + 1.

Case 6: Cb = ∅ and Ca = C in
v .

Here we consider the case when Cb = ∅ and Ca = C in
v . Note that in this case, the closest

vertices in the consistent subset from v in Ti−1(v) are located at a distance of δin
v while in

Tη(vi)(vi), they are located at a distance of at least δ ≥ δin
v + 1

We define δmin
v (δ, C) = min(δin

v , δsib
v , δout

v ). We define Cout
i (δ, C) = A ∪ B ∪ D where

A =
{

Ca if δin
v = δmin

v

∅ otherwise
, B =

{
C sib

v if δsib
v = δmin

v

∅ otherwise
, D =

{
Cout

v if δout
v = δmin

v

∅ otherwise

For any values δ > δin
v and C ⊆ [c] we define δx(δ, C) = min(δsib

v , δ) We define C sib
i−1(δ, C) =

E ∪ F where

E =
{

C if δ = δx(δ, C)
∅ otherwise

, F =
{

C sib
v if δsib

v = δx(δ, C)
∅ otherwise

The meaning and the reasoning behind the defining of δmin
v (δ, C) and Cout

i (δ, C) remains the
same as in previous cases. Thus, in a hypothetical consistent subset, which is compatible
with the current partial consistent subset, for the tree T , the closest vertices from v

in T(i−1)+(v) are either in Ti+(v) or Tηvi
(vi). Here, δx(δ, C) is trying to capture this

distance information, and C sib
i−1(δ, C) represents the colors of such vertices.

In this case we return:

Return P (Ti(v), δin
v , δout

v , δsib
v , C in

v , Cout
v , C sib

v ) =
min

δ>δin
v , C⊆[c]

(
P

(
Ti−1(v), δin

v , δout
v , δx(δ, C), Ca, Cout

v , C sib
i−1(δ, C)

)
+P

(
Tηvi

(vi), δ, δmin
v + 1, ∞, Cb, C, ∅

))
Explanation. The explanation for this case is the same as the previous two cases.

Running time of the algorithm. The total number of choices of δin
v , δout

v , δsib
v , C in

v , Cout
v and

C sib
v is bounded by n323c. For each choice Ca and Cb, the algorithm takes at-most n2c time

to go through all possible entries of δ and C (in case 5 and case 6) and there are at-most
22c choices of Ca and Cb. The recursion runs for at most n2 times. Hence, the worst-case
running time of the algorithm is O(26cn6).
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5 NP-hardness of MCS for Interval Graphs

A graph H is said to be an interval graph if there exists an interval layout of the graph H,
or in other words, for each node, vi ∈ V (H) one can assign an interval αi on the real line
such that (vi, vj) ∈ E(H) if and only if αi and αj (completely or partially) overlap in the
layout of those intervals.

We prove that the Minimum Consistent Subset problem is NP-complete even when the
input graph is an interval graph. We present a reduction from the Vertex Cover problem for
cubic graphs. It is known that Vertex Cover remains NP-complete even for cubic graphs [10].
For any set of intervals I, let G(I) be the interval graph corresponding to the set of intervals I.

Interval Graph Construction.

Interval Graph Construction.
Let G be any cubic graph, where V (G) = {v1, . . . , vn} is the set of vertices, and
E(G) = {e1, . . . , em} is the set of edges in G. We create the set of intervals IG for G

on a real line L. The set of intervals in IG is represented by intervals of three different
sizes, medium, small and large, where each medium interval is of unit length, each
small interval is of length ϵ << 1

2n3 and the length of the large interval is ℓ >> 2n.
We define IG = I1 ∪ I2 ∪ I3 ∪ I4 where I1 contains 2m medium size intervals (two
intervals for each edge) and defined as I1 = {I(ei, vj) : ei = (vj , y) ∈ E(G), y ∈ V (G)}.
We set color ci to the interval I(ei, vj). I2 contain n · n3 small intervals of color cm+1,
and I3 contain n · n4 small intervals of color cm+1. I4 contains one large interval Iℓ of
color c1.
We create the following vertex gadget Xi for each vertex vi ∈ V (G). Xi contains the
following medium size intervals {I(e, vi) : e = (vi, x) ∈ E(G)} corresponding to the
edges that are incident on vi. These intervals span the same region si of unit length on
the real line L; hence they are mutually completely overlapping. In the vertex gadget
Xi, we also include a total of n3 mutually non-overlapping small intervals in the set
I2. Span of all the small intervals in Xi is contained in the span si of the medium
sized intervals in Xi (see Figure 5).
Each vertex gadget is placed one after another (in a non-overlapping manner) along
the line L in an arbitrary order, such that a total of n4 mutually non-overlapping small
intervals can be drawn between two consecutive vertex gadgets. Thus, I3 contains n

sets of n4 non-overlapping small intervals. Finally, I4 contains a single large interval
Iℓ that contains all the intervals in I1 ∪ I2 ∪ I3. This completes the construction.

n3 small intervals
n4 small intervalsmedium intervals

G

IG

v1

v2

v3

v4

IℓX1 X2 X3 X4

Figure 5 An example reduction.

▶ Lemma 8. The graph G has a vertex cover of size at most k if and only if the corresponding
interval graph G(IG) has a consistent subset of size at most K = k(3 + n3).
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Proof. With a slight abuse of notations, we will denote the vertex in G(IG) corresponding
to an interval I ∈ IG by I. (⇒) Let A ⊆ V (G) be a vertex cover of G. Consider the set of
intervals IA =

⋃
vi∈A Xi. We prove that IA is a consistent subset of G(IG). Note that as

|Xi| = 3 + n3, |IA| = k(3 + n3).
As the vertices in A cover all the edges in G, IA must contain at least one interval of each

color {c1, · · · , cm}. As the unit intervals in Xi associated with a vertex vi ∈ A are of colors
different from the color of the small intervals in Xi, IA contains at least n3 small intervals.
Therefore IA contains at least one interval from each color in {c1, . . . cm+1}. Observe that,
(i) the interval Iℓ ∈ I4 of color c1 contains an interval of color c1 that corresponds to the
edge e1, and (ii) the distance between any two nodes corresponding to medium intervals in
two different vertex gadgets of G(IG) is 2 (via the node corresponding to the interval Iℓ in
G(IG)). Thus, IA is a consistent subset.
(⇐) Let IB ⊆ IG be any consistent subset of G(IG) of cardinality (3 + n3)k. Now, if IB

contains Iℓ then |IG| − 2 ≤ |IB | ≤ |IG| because if e1 = (vi, vj) be the edge of color c1, then
we can only do not take the medium intervals of color c1 from the vertex gadget Xi and
Xj in IB because they are covered by Iℓ, which contradicts the fact that |IB | = (3 + n3)k.
Thus, we have Iℓ /∈ IB .

By the definition, IB contains at least one color from {c1, · · · , cm, cm+1}. Also, if IB

contains one interval from the gadget Xi of any vertex vi, then it must contain all the
intervals from Xi; otherwise, it can not be a consistent subset. Thus IB is the union X
of at most k sets from {Xi : i ∈ [n]}, and it contains at least one interval from each color
{c1, · · · , cm}, and a few intervals of color cm+1. Now, consider the set VB = {vi : Xi ∈ X },
which is a vertex cover for the graph G of size at most k.

Hence, the lemma is proved. ◀

6 Conclusion

We have shown that MCS is NP-complete for trees and interval graphs, and have given
an exact algorithm parameterized w.r.t. the number of colors for trees. As a direction for
future research, possibilities of approximating MCS can be explored for interval graphs and
related graph classes like circle graphs, circular arc graphs, etc. Parameterized algorithms
may also be explored where, in addition to a parameter for the number of colours, there is
also a parameter specifying the structural properties of the input graph.
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