
44th IARCS Annual Conference
on Foundations of Software
Technology and Theoretical
Computer Science

FSTTCS 2024, December 16–18, 2024, Gandhinagar, Gujarat,
India

Edited by

Siddharth Barman
Sławomir Lasota

LIPIcs – Vo l . 323 – FSTTCS 2024 www.dagstuh l .de/ l ip i c s

Editors

Siddharth Barman
Indian Institute of Science, Bangalore, India
barman@iisc.ac.in

Sławomir Lasota
University of Warsaw, Poland
s.lasota@uw.edu.pl

ACM Classification 2012
Theory of computation; Computing methodologies; Software and its engineering

ISBN 978-3-95977-355-3

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-355-3.

Publication date
December, 2024

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2024.0

ISBN 978-3-95977-355-3 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0001-9276-2181
mailto:barman@iisc.ac.in
https://orcid.org/0000-0001-8674-4470
mailto:s.lasota@uw.edu.pl
https://www.dagstuhl.de/dagpub/978-3-95977-355-3
https://www.dagstuhl.de/dagpub/978-3-95977-355-3
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.0
https://www.dagstuhl.de/dagpub/978-3-95977-355-3
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université Paris Cité, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

FSTTCS 2024

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Siddharth Barman and Sławomir Lasota . 0:ix

Programme Committee
. 0:xi

List of External Reviewers
. 0:xiii

List of Authors
. 0:xv

Invited Papers

An Introduction to the Theory of Linear Integer Arithmetic
Dmitry Chistikov . 1:1–1:36

Advances in Algorithmic Meta Theorems
Sebastian Siebertz and Alexandre Vigny . 2:1–2:29

Regular Papers

Execution-Time Opacity Problems in One-Clock Parametric Timed Automata
Étienne André, Johan Arcile, and Engel Lefaucheux . 3:1–3:22

The Parallel Dynamic Complexity of the Abelian Cayley Group Membership
Problem

V. Arvind, Samir Datta, Asif Khan, Shivdutt Sharma, Yadu Vasudev, and
Shankar Ram Vasudevan . 4:1–4:23

Concurrent Stochastic Games with Stateful-Discounted and Parity Objectives:
Complexity and Algorithms

Ali Asadi, Krishnendu Chatterjee, Raimundo Saona, and Jakub Svoboda 5:1–5:17

A Decomposition Approach to the Weighted k-Server Problem
Nikhil Ayyadevara, Ashish Chiplunkar, and Amatya Sharma . 6:1–6:17

Minimum Consistent Subset in Trees and Interval Graphs
Aritra Banik, Sayani Das, Anil Maheshwari, Bubai Manna, Subhas C. Nandy,
Krishna Priya K. M., Bodhayan Roy, Sasanka Roy, and Abhishek Sahu 7:1–7:15

Beyond Decisiveness of Infinite Markov Chains
Benoît Barbot, Patricia Bouyer, and Serge Haddad . 8:1–8:22

Plan Logic
Dylan Bellier, Massimo Benerecetti, Fabio Mogavero, and Sophie Pinchinat 9:1–9:18

Explicit Commutative ROABPs from Partial Derivatives
Vishwas Bhargava and Anamay Tengse . 10:1–10:15

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2024).
Editors: Siddharth Barman and Sławomir Lasota

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Many Flavors of Edit Distance
Sudatta Bhattacharya, Sanjana Dey, Elazar Goldenberg, and Michal Koucký 11:1–11:16

Parallel Complexity of Geometric Bipartite Matching
Sujoy Bhore, Sarfaraz Equbal, and Rohit Gurjar . 12:1–12:15

PosSLP and Sum of Squares
Markus Bläser, Julian Dörfler, and Gorav Jindal . 13:1–13:18

Unifying Asynchronous Logics for Hyperproperties
Alberto Bombardelli, Laura Bozzelli, César Sánchez, and Stefano Tonetta 14:1–14:18

Promptness and Fairness in Muller LTL Formulas
Damien Busatto-Gaston, Youssouf Oualhadj, Léo Tible, and Daniele Varacca 15:1–15:22

Learning Partitions Using Rank Queries
Deeparnab Chakrabarty and Hang Liao . 16:1–16:14

Two Results on LPT: A Near-Linear Time Algorithm and Parcel Delivery Using
Drones

L. Sunil Chandran, Rishikesh Gajjala, Shravan Mehra, and Saladi Rahul 17:1–17:15

Circuits, Proofs and Propositional Model Counting
Sravanthi Chede, Leroy Chew, and Anil Shukla . 18:1–18:23

Quantum Sabotage Complexity
Arjan Cornelissen, Nikhil S. Mande, and Subhasree Patro . 19:1–19:20

The Isomorphism Problem of Power Graphs and a Question of Cameron
Bireswar Das, Jinia Ghosh, and Anant Kumar . 20:1–20:23

A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets
Kyveli Doveri, Pierre Ganty, and B. Srivathsan . 21:1–21:18

Counterfactual Explanations for MITL Violations
Bernd Finkbeiner, Felix Jahn, and Julian Siber . 22:1–22:25

Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies
Karthik Gajulapalli, Zeyong Li, and Ilya Volkovich . 23:1–23:19

When Far Is Better: The Chamberlin-Courant Approach to Obnoxious
Committee Selection

Sushmita Gupta, Tanmay Inamdar, Pallavi Jain, Daniel Lokshtanov,
Fahad Panolan, and Saket Saurabh . 24:1–24:21

Better Boosting of Communication Oracles, or Not
Nathaniel Harms and Artur Riazanov . 25:1–25:14

Two Views on Unification: Terms as Strategies
Furio Honsell, Marina Lenisa, and Ivan Scagnetto . 26:1–26:15

On Approximation Schemes for Stabbing Rectilinear Polygons
Arindam Khan, Aditya Subramanian, Tobias Widmann, and Andreas Wiese 27:1–27:18

Maximizing Phylogenetic Diversity Under Ecological Constraints:
A Parameterized Complexity Study

Christian Komusiewicz and Jannik Schestag . 28:1–28:18

Contents 0:vii

Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model
Christian Konrad, Andrew McGregor, Rik Sengupta, and Cuong Than 29:1–29:15

Improved Linearly Ordered Colorings of Hypergraphs via SDP Rounding
Anand Louis, Alantha Newman, and Arka Ray . 30:1–30:19

Parameterized Algorithms and Hardness for the Maximum Edge q-Coloring
Problem

Rogers Mathew, Fahad Panolan, and Seshikanth . 31:1–31:12

Additive Word Complexity and Walnut
Pierre Popoli, Jeffrey Shallit, and Manon Stipulanti . 32:1–32:18

Pseudo-Deterministic Construction of Irreducible Polynomials over Finite Fields
Shanthanu S. Rai . 33:1–33:12

A Quadratic Upper Bound on the Reset Thresholds of Synchronizing Automata
Containing a Transitive Permutation Group

Yinfeng Zhu . 34:1–34:14

FSTTCS 2024

Preface

This volume contains the proceedings of the 44th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2024). The conference
was held as an in-person event during the period December 16–18, 2024, on the campus of
IIT Gandhinagar in Gujarat, India.

The conference has two tracks: Track A focusing on algorithms, complexity and related
issues, and Track B focusing on logic, automata and other formal method aspects of computer
science. Each track had its own Program Committee (PC) and chair (Siddharth Barman for
Track A and Sławomir Lasota for Track B). This volume constitutes the joint proceedings of
the two tracks, published in the LIPIcs series under a Creative Common license, with free
online access for all.

The conference comprises of 6 invited talks, 21 contributed talks in Track A, and 11
contributed talks in Track B. This volume contains all the contributed papers from the two
tracks, and two articles accompanying two of the invited talks. We thank all the authors
who submitted their papers to FSTTCS 2024. We are especially grateful to the PC members
for their tireless work, and all the external reviewers for their expert opinion in the form of
timely reviews.

We thank all the invited speakers for accepting our invitation: Pankaj K. Agarwal (Duke
University), Suguman Bansal (Georgia Institute of Technology), Ioannis Caragiannis (Aarhus
University), Dmitry Chistikov (University of Warwick), Uriel Feige (Weizmann Institute),
Sebastian Siebertz (Universität Bremen).

The main conference was co-located with four workshops: Milestones and Motifs in the
Theory of Proofs, Algebraic Computation, and Lower Bounds (organised by S. Akshay, Olaf
Beyersdorff, Nutan Limaye, and Prajakta Nimbhorkar), Research Highlights in Programming
Languages (organised by Madhukar Kumar, Divyesh Unadkat, and Abhisekh Sankaran),
Automata and Games for Synthesis (organised by Sougata Bose and K.S. Thejaswini), and
Workshop on Algorithmic Mechanism Design (organised by Umang Bhaskar and Meghana
Nasre).

We are indebted to the organizing committee for making all the necessary arrangements
for the conference: the chair Neeldhara Misra (IIT Gandhinagar), Abhishek Bichhawat (IIT
Gandhinagar), Bireswar Das (IIT Gandhinagar), Anirban Dasgupta (IIT Gandhinagar),
Manoj Gupta (IIT Gandhinagar), Balagopal Komarath (IIT Gandhinagar), and Manisha
Padala (IIT Gandhinagar); and to past organizers for knowledge transfer.

We thank S.P. Suresh (CMI, Chennai) for maintaining the conference web page. We are
grateful to the friendly staff at Dagstuhl LIPICs for helping us put together the proceedings,
in particular to Michael Didas and Michael Wagner. Finally, we thank the members of
the Steering Committee, especially Amit Kumar, and the PC Chairs from FSTTCS 2023
(Patricia Bouyer and Srikanth Srinivasan), for providing pertinent information and valuable
advice about various aspects of the conference.

Siddharth Barman and Sławomir Lasota
October 2024

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2024).
Editors: Siddharth Barman and Sławomir Lasota

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Programme Committee

Track A

Aritra Banik (National Institute of Science Education and Research)
Siddharth Barman (Indian Institute of Science) – Track A Chair
Umang Bhaskar (Tata Institute of Fundamental Research)
Diptarka Chakraborty (National University of Singapore)
Debarati Das (Pennsylvania State University)
Klim Efremenko (Ben-Gurion University)
Sushmita Gupta (The Institute of Mathematical Sciences)
Rohit Gurjar (Indian Institute of Technology Bombay)
Arindam Khan (Indian Institute of Science)
Neeldhara Misra (Indian Institute of Technology, Gandhinagar)
Rajat Mittal (Indian Institute of Technology, Kanpur)
Kamesh Munagala (Duke University)
Prajakta Nimbhorkar (Chennai Mathematical Institute)
Manisha Padala (Indian Institute of Technology, Gandhinagar)
Jaikumar Radhakrishnan (Tata Institute of Fundamental Research)
Nidhi Rathi (Max Planck Institute for Informatics, University of Saarland)
Ramprasad Saptharishi (Tata Institute of Fundamental Research)
Sahil Singla (Georgia Tech)
Makrand Sinha (University of Illinois Urbana-Champaign)
Seeun William Umboh (The University of Melbourne)
Santhoshini Velusamy (Toyota Technological Institute at Chicago)
Michał Włodarczyk (University of Warsaw)
Meirav Zehavi (Ben-Gurion University)

Track B

Parosh Aziz Abdulla (Uppsala University)
C. Aiswarya (Chennai Mathematical Institute)
S. Akshay (Indian Institute of Technology Bombay)
Christel Baier (Technical University Dresden)
Laure Daviaud (University of East Anglia)
Sibylle Fröschle (Technical University Hamburg)
Blaise Genest (CNRS)
Stefan Haar (INRIA, France)
Christoph Haase (University of Oxford)
Petr Jančar (Palacky University, Olomouc)
Ismaël Jecker (University of Franche-Comté)
Edon Kelmendi (Queen Mary University of London)
Sławomir Lasota (University of Warsaw) – Track B Chair
Ranko Lazic (University of Warwick)
Christof Löding (RWTH Aachen)
Meena Mahajan (The Institute of Mathematical Sciences)
Jean-Francois Raskin (Université Libre de Bruxelles)
Nathalie Sznajder (Sorbonne University)

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2024).
Editors: Siddharth Barman and Sławomir Lasota

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of External Reviewers

Sheikh Shakil Akhtar
Tatsuya Akutsu
Yan Hong Yao Alvin
Ashwani Anand
Nikhil Balaji
Sayan Bandyapadhyay
Ioana Bercea
C. S. Bhargav
Vishwas Bhargava
Sujoy Bhore
Václav Blažej
Sougata Bose
Joshua Brody
Márcia Cappelle
Philip Cervenjak
Harish Chandramouleeswaran
Abhranil Chatterjee
Prerona Chatterjee
Juhi Chaudhary
Vera Chekan
Lijie Chen
Yu Chen
Andrew Childs
Yogesh Dahiya
Bireswar Das
Quentin Deschamps
Palash Dey
Sanjana Dey
Shyam Dhamapurkar
Prateek Dwivedi
Henning Fernau
Johannes K. Fichte
Simon Forest
Hadar Frenkel
Arnab Ganguly
Mohit Garg
Pratik Ghosal
Prantar Ghosh
Sumanta Ghosh
Christian Glasser
Mayank Goswami
R. Govind
Tomer Grossman
Nikhil Gupta
Waldo Gálvez

Léo Henry
Chien-Chung Huang
Tanmay Inamdar
Dmitry Itsykson
Pallavi Jain
Rahul Jain
Shweta Jain
Satyabrata Jana
Stacey Jeffery
Agastya Vibhuti Jha
John Kallaugher
Lawqueen Kanesh
Debajyoti Kar
Jun Kawahara
Chandrima Kayal
Dominik Kempa
Sudeshna Kolay
Annamaria Kovacs
László Kozma
Vaibhav Krishan
Pooja Kulkarni
Rucha Kulkarni
Gunjan Kumar
Rajendra Kumar
Srijita Kundu
Abhiruk Lahiri
Michael Levet
Ramanujan M. Sridharan
Gopinath Mishra
Parth Mittal
Sounak Modak
Anish Mukherjee
Saraswati Nanoti
Daniel Neuen
Jakob Nogler
Manaswi Paraashar
Pan Peng
Geevarghese Philip
Milind Prabhu
Aditya Prakash
Yuanyuan Qi
Tim Quatmann
C. Ramya
Arka Ray
Aravind Reddy

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2024).
Editors: Siddharth Barman and Sławomir Lasota

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv External Reviewers

Alexis Reynouard
Neha Rino
Mohammad Roghani
Bodhayan Roy
Aravinda Kanchana Ruwanpathirana
Abhishek Sahu
Mohammad Saneian
Arnaud Sangnier
Mathieu Sassolas
Srinivasa Rao Satti
Saket Saurabh
Aleksy Schubert
Sayantan Sen
Olivier Serre
Aditi Sethia
Roohani Sharma
Suhail Sherif
Mihaela Sighireanu
Sandeep Silwal
Kirill Simonov
Benjamin Smith
Joachim Spoerhase
Léo Stefanesco
Rafał Stefański
Madhu Sudan
S. P. Suresh
Prafullkumar Tale
Anamay Tengse
Raghunath Tewari
Neekon Vafa
Rohit Vaish
Leo van Iersel
Erik Jan van Leeuwen
Pierre Vandenhove
Nithin Varma
Manolis Vasilakis
Patrick Wienhöft
Jie Xue
Chuanqi Zhang

List of Authors

Étienne André (3)
Université Sorbonne Paris Nord, LIPN, CNRS
UMR 7030, F-93430 Villetaneuse, France;
Institut Universitaire de France (IUF), Paris,
France

Johan Arcile (3)
IBISC, Univ Evry, Université Paris-Saclay,
91025 Evry, France

V. Arvind (4)
The Institute of Mathematical Sciences (HBNI),
Chennai, India;
Chennai Mathematical Institue, India

Ali Asadi (5)
Institute of Science and Technology Austria
(ISTA), Klosterneuburg, Austria

Nikhil Ayyadevara (6)
University of Michigan, Ann Arbor, MI, USA

Aritra Banik (7)
National Institute of Science, Education and
Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, India

Benoît Barbot (8)
Univ Paris Est Creteil, LACL, F-94010 Creteil,
France

Dylan Bellier (9)
Univ Rennes, IRISA, CNRS, France

Massimo Benerecetti (9)
Università degli Studi di Napoli Federico II,
Italy

Vishwas Bhargava (10)
Department of Computing and Mathematical
Sciences, Caltech, Pasadena, CA, USA

Sudatta Bhattacharya (11)
Charles University, Prague, Czech Republic

Sujoy Bhore (12)
Department of Computer Science & Engineering,
Indian Institute of Technology Bombay, India

Markus Bläser (13)
Saarland University, Saarland Informatics
Campus, Saarbrücken, Germany

Alberto Bombardelli (14)
Fondazione Bruno Kessler, Trento, Italy

Patricia Bouyer (8)
Université Paris-Saclay, CNRS, ENS
Paris-Saclay, Laboratoire Méthodes Formelles,
91190 Gif-sur-Yvette, France

Laura Bozzelli (14)
University of Napoli “Federico II”, Italy

Damien Busatto-Gaston (15)
Univ Paris Est Creteil, LACL, F-94010 Creteil,
France

Deeparnab Chakrabarty (16)
Dartmouth College, Hanover, NH, USA

L. Sunil Chandran (17)
Indian Institute of Science, Bengaluru, India

Krishnendu Chatterjee (5)
Institute of Science and Technology Austria
(ISTA), Klosterneuburg, Austria

Sravanthi Chede (18)
Indian Institute of Technology Ropar, Rupnagar,
India

Leroy Chew (18)
TU Wien, Austria

Ashish Chiplunkar (6)
Indian Institute of Technology, New Delhi, India

Dmitry Chistikov (1)
Centre for Discrete Mathematics and its
Applications (DIMAP) &, Department of
Computer Science, University of Warwick, UK

Arjan Cornelissen (19)
Simons Institute for the Theory of Computing,
University of California, Berkeley, CA, USA;
IRIF – CNRS, Paris, France

Bireswar Das (20)
Indian Institute of Technology Gandhinagar,
India

Sayani Das (7)
Theoretical Computer Science, The Institute of
Mathematical Sciences, Chennai, India

Samir Datta (4)
Chennai Mathematical Institute and UMI
ReLaX, India

Sanjana Dey (11)
National University of Singapore, Singapore

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2024).
Editors: Siddharth Barman and Sławomir Lasota

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8473-9555
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.3
https://orcid.org/0000-0001-9979-3829
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.3
https://orcid.org/0000-0002-1988-7866
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.4
https://orcid.org/0009-0005-2839-953X
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.5
https://orcid.org/0009-0001-9093-3677
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.6
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.7
https://orcid.org/0000-0003-2417-3064
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.8
https://orcid.org/0000-0003-4763-5655
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.9
https://orcid.org/0000-0003-4664-6061
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.9
https://orcid.org/0009-0005-7869-377X
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.10
https://orcid.org/0000-0002-6576-5931
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.11
https://orcid.org/0000-0003-0104-1659
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.12
https://orcid.org/0000-0002-1750-9036
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.13
https://orcid.org/0000-0003-3385-3205
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.14
https://orcid.org/0000-0002-2823-0911
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.8
https://orcid.org/0000-0003-0963-8169
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.14
https://orcid.org/0000-0002-7266-0927
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.15
https://orcid.org/0000-0001-7596-6035
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.16
https://orcid.org/0000-0001-5451-6975
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.17
https://orcid.org/0000-0002-4561-241X
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.5
https://orcid.org/0000-0001-7170-6156
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.18
https://orcid.org/0000-0003-0226-2832
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.18
https://orcid.org/0000-0002-6661-8124
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.6
https://orcid.org/0000-0001-9055-918X
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.1
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.19
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.20
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.7
https://orcid.org/0000-0003-2196-2308
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.4
https://orcid.org/0000-0001-5429-3150
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.11
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi Authors

Kyveli Doveri (21)
University of Warsaw, Poland

Julian Dörfler (13)
Saarland University, Saarland Informatics
Campus, Saarbrücken, Germany

Sarfaraz Equbal (12)
Department of Computer Science & Engineering,
Indian Institute of Technology Bombay, India

Bernd Finkbeiner (22)
CISPA Helmholtz Center for Information
Security, Saarbrücken, Germany

Rishikesh Gajjala (17)
Indian Institute of Science, Bengaluru, India

Karthik Gajulapalli (23)
Georgetown University, Washington, DC, USA

Pierre Ganty (21)
IMDEA Software Institute, Pozuelo de Alarcón,
Madrid, Spain

Jinia Ghosh (20)
Indian Institute of Technology Gandhinagar,
India

Elazar Goldenberg (11)
The Academic College of Tel-Aviv-Yaffo, Israel

Sushmita Gupta (24)
The Institute of Mathematical Sciences, HBNI,
Chennai, India

Rohit Gurjar (12)
Department of Computer Science & Engineering,
Indian Institute of Technology Bombay, India

Serge Haddad (8)
Université Paris-Saclay, CNRS, ENS
Paris-Saclay, Laboratoire Méthodes Formelles,
91190 Gif-sur-Yvette, France

Nathaniel Harms (25)
EPFL, Lausanne, Switzerland

Furio Honsell (26)
Department of Mathematics, Computer Science
and Physics, University of Udine, Italy

Tanmay Inamdar (24)
Indian Institute of Technology Jodhpur,
Jodhpur, India

Felix Jahn (22)
Saarland University, Saarland Informatics
Campus, Saarbrücken, Germany

Pallavi Jain (24)
Indian Institute of Technology Jodhpur,
Jodhpur, India

Gorav Jindal (13)
Max Planck Institute for Software Systems,
Saarland Informatics Campus, Saarbrücken,
Germany

Arindam Khan (27)
Indian Institute of Science, Bengaluru, India

Asif Khan (4)
Chennai Mathematical Institute, India

Christian Komusiewicz (28)
Institute of Computer Science, Friedrich Schiller
University Jena, Germany

Christian Konrad (29)
University of Bristol, UK

Michal Koucký (11)
Charles University, Prague, Czech Republic

Anant Kumar (20)
Indian Institute of Technology Gandhinagar,
India

Engel Lefaucheux (3)
Université de Lorraine, CNRS, Inria, LORIA,
F-54000 Nancy, France

Marina Lenisa (26)
Department of Mathematics, Computer Science
and Physics, University of Udine, Italy

Zeyong Li (23)
National University of Singapore, Singapore

Hang Liao (16)
Dartmouth College, Hanover, NH, USA

Daniel Lokshtanov (24)
University of California Santa Barbara, CA,
USA

Anand Louis (30)
Indian Institute of Science, Bengaluru, India

Anil Maheshwari (7)
School of Computer Science, Carleton University,
Ottawa, Canada

Nikhil S. Mande (19)
University of Liverpool, UK

Bubai Manna (7)
Department of Mathematics, Indian Institute of
Technology Kharagpur, India

https://orcid.org/0000-0001-9403-2860
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.21
https://orcid.org/0000-0002-0943-8282
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.13
https://orcid.org/0009-0008-5549-8367
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.12
https://orcid.org/0000-0002-4280-8441
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.22
https://orcid.org/0000-0002-8726-3465
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.17
https://orcid.org/0009-0000-1029-1882
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.23
https://orcid.org/0000-0002-3625-6003
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.21
https://orcid.org/0009-0005-8227-5124
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.20
https://orcid.org/0000-0001-7993-3580
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.11
https://orcid.org/0000-0003-1255-8266
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.24
https://orcid.org/0000-0002-8623-0872
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.12
https://orcid.org/0000-0002-1759-1201
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.8
https://orcid.org/0000-0003-0259-9355
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.25
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.26
https://orcid.org/0000-0002-0184-5932
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.24
https://orcid.org/0000-0003-4851-3385
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.22
https://orcid.org/0000-0001-8900-9797
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.24
https://orcid.org/0000-0002-9749-5032
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.13
https://orcid.org/0000-0001-7505-1687
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.27
https://orcid.org/0009-0001-5950-8891
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.4
https://orcid.org/0000-0003-0829-7032
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.28
https://orcid.org/0000-0003-1802-4011
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.29
https://orcid.org/0000-0003-0808-2269
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.11
https://orcid.org/0009-0002-8659-3101
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.20
https://orcid.org/0000-0003-0875-300X
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.3
https://orcid.org/0000-0003-0497-0429
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.26
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.23
https://orcid.org/0009-0005-6643-1991
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.16
https://orcid.org/0000-0002-3166-9212
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.24
https://orcid.org/0000-0002-4727-9219
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.30
https://orcid.org/0000-0002-1274-4598
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.7
https://orcid.org/0000-0002-9520-7340
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.19
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.7

Authors 0:xvii

Rogers Mathew (31)
Department of Computer Science and
Engineering, IIT Hyderabad, India

Andrew McGregor (29)
University of Massachusetts Amherst, MA, USA

Shravan Mehra (17)
Indian Institute of Science, Bengaluru, India;
University of Birmingham, UK

Fabio Mogavero (9)
Università degli Studi di Napoli Federico II,
Italy

Subhas C. Nandy (7)
Advanced Computing and Microelectronics Unit,
Indian Statistical Institute, Kolkata, India

Alantha Newman (30)
Université Grenoble Alpes, France

Youssouf Oualhadj (15)
Univ Paris Est Creteil, LACL, F-94010 Creteil,
France; CNRS, ReLaX, IRL 2000, Siruseri, India

Fahad Panolan (24, 31)
School of Computer Science,
University of Leeds, UK

Subhasree Patro (19)
Technische Universiteit Eindhoven, The
Netherlands; Centrum Wiskunde en Informatica
(QuSoft), Amsterdam, The Netherlands

Sophie Pinchinat (9)
Univ Rennes, IRISA, CNRS, France

Pierre Popoli (32)
Department of Mathematics,
University of Liège, Belgium

Krishna Priya K. M. (7)
National Institute of Science, Education and
Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, India

Saladi Rahul (17)
Indian Institute of Science, Bengaluru, India

Shanthanu S. Rai (33)
Tata Institute of Fundamental Research,
Mumbai, India

Arka Ray (30)
Indian Institute of Science, Bengaluru, India

Artur Riazanov (25)
EPFL, Lausanne, Switzerland

Bodhayan Roy (7)
Department of Mathematics, Indian Institute of
Technology Kharagpur, India

Sasanka Roy (7)
Advanced Computing and Microelectronics Unit,
Indian Statistical Institute, Kolkata, India

Abhishek Sahu (7)
National Institute of Science, Education and
Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, India

Raimundo Saona (5)
Institute of Science and Technology Austria
(ISTA), Klosterneuburg, Austria

Saket Saurabh (24)
The Institute of Mathematical Sciences, HBNI,
Chennai, India;
University of Bergen, Norway

Ivan Scagnetto (26)
Department of Mathematics, Computer Science
and Physics, University of Udine, Italy

Jannik Schestag (28)
Institute of Computer Science, Friedrich Schiller
University Jena, Germany

Rik Sengupta (29)
IBM Research, Cambridge, MA, USA;
University of Massachusetts Amherst, MA, USA

Seshikanth (31)
Department of Computer Science and
Engineering, IIT Hyderabad, India

Jeffrey Shallit (32)
School of Computer Science,
University of Waterloo, Canada

Amatya Sharma (6)
University of Michigan, Ann Arbor, MI, USA

Shivdutt Sharma (4)
Indian Institute of Information Technology,
Una, India

Anil Shukla (18)
Indian Institute of Technology Ropar,
Rupnagar, India

Julian Siber (22)
CISPA Helmholtz Center for Information
Security, Saarbrücken, Germany

Sebastian Siebertz (2)
University of Bremen, Germany

FSTTCS 2024

https://orcid.org/0000-0003-4536-1136
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.31
https://orcid.org/0000-0002-2124-160X
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.29
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.17
https://orcid.org/0000-0002-5140-5783
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.9
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.7
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.30
https://orcid.org/0000-0003-0200-4032
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.15
https://orcid.org/0000-0001-6213-8687
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.24
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.31
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.19
https://orcid.org/0000-0002-0901-8480
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.9
https://orcid.org/0000-0002-4243-9180
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.32
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.7
https://orcid.org/0000-0001-5984-0934
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.17
https://orcid.org/0009-0003-1103-5719
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.33
https://orcid.org/0000-0002-2428-6504
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.30
https://orcid.org/0000-0001-7892-1502
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.25
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.7
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.7
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.7
https://orcid.org/0000-0001-5103-038X
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.5
https://orcid.org/0000-0001-7847-6402
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.24
https://orcid.org/0000-0003-3206-2719
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.26
https://orcid.org/0000-0001-7767-2970
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.28
https://orcid.org/0000-0002-9238-5408
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.29
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.31
https://orcid.org/0000-0003-1197-3820
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.32
https://orcid.org/0000-0003-1392-7174
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.6
https://orcid.org/0000-0001-5113-7953
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.4
https://orcid.org/0009-0009-9051-4374
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.18
https://orcid.org/0000-0003-0842-0029
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.22
https://orcid.org/0000-0002-6347-1198
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.2

0:xviii Authors

B. Srivathsan (21)
Chennai Mathematical Institute, India;
CNRS IRL 2000, ReLaX, Chennai, India

Manon Stipulanti (32)
Department of Mathematics,
University of Liège, Belgium

Aditya Subramanian (27)
Indian Institute of Science, Bengaluru, India

Jakub Svoboda (5)
Institute of Science and Technology Austria
(ISTA), Klosterneuburg, Austria

César Sánchez (14)
IMDEA Software Institute, Madrid, Spain

Anamay Tengse (10)
School of Computer Sciences, NISER,
Bhubaneswar, India

Cuong Than (29)
University of Massachusetts Amherst, MA, USA

Léo Tible (15)
Univ Paris Est Creteil, LACL, F-94010 Creteil,
France

Stefano Tonetta (14)
Fondazione Bruno Kessler, Trento, Italy

Daniele Varacca (15)
Univ Paris Est Creteil, LACL, F-94010 Creteil,
France

Yadu Vasudev (4)
Indian Institute of Technology Madras,
Chennai, India

Shankar Ram Vasudevan (4)
Chennai Mathematical Institute, India

Alexandre Vigny (2)
University Clermont Auvergne, France

Ilya Volkovich (23)
Boston College, MA, USA

Tobias Widmann (27)
Technical University of Munich, Germany

Andreas Wiese (27)
Technical University of Munich, Germany

Yinfeng Zhu (34)
Institute of Natural Sciences and Mathematics,
Ural Federal University, Ekaterinburg, Russia

https://orcid.org/0000-0003-2666-0691
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.21
https://orcid.org/0000-0002-2805-2465
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.32
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.27
https://orcid.org/0000-0002-1419-3267
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.5
https://orcid.org/0000-0003-3927-4773
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.14
https://orcid.org/0000-0002-7305-8110
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.10
https://orcid.org/0000-0001-7350-331X
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.29
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.15
https://orcid.org/0000-0001-9091-7899
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.14
https://orcid.org/0009-0007-6500-2153
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.15
https://orcid.org/0000-0001-7918-7194
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.4
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.4
https://orcid.org/0000-0002-4298-8876
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.2
https://orcid.org/0000-0002-7616-0751
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.23
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.27
https://orcid.org/0000-0003-3705-016X
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.27
https://orcid.org/0000-0003-1724-5250
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.34

An Introduction to the Theory of Linear Integer
Arithmetic
Dmitry Chistikov #

Centre for Discrete Mathematics and its Applications (DIMAP) &
Department of Computer Science, University of Warwick, UK

Abstract
Presburger arithmetic, or linear integer arithmetic (LIA), is a logic that allows one to express linear
constraints on integers: equalities, inequalities, and divisibility by nonzero n ∈ Z. More formally, it
is the first-order theory of integers with addition and ordering. This paper offers a short introduction:
what can be expressed in this logical theory, decision problems, and automated reasoning methods.

We begin with an elementary introduction, explaining the language of linear arithmetic constraints
by examples. We adopt a theoretical perspective, focusing on the decision problem: determining
the truth value of a logical sentence. The following three views on Presburger arithmetic give us
three effective methods for decision procedures: a view from geometry (using semi-linear sets), from
automata theory (using finite automata and recognizable sets), and from symbolic computation
(using quantifier elimination).

The decision problem for existential formulas of Presburger arithmetic is essentially the feasibility
problem of integer linear programming. By a fundamental result due to Borosh and Treybig
[Proc. Am. Math. Soc. 55(2), 1976] and Papadimitriou [J. ACM 28(4), 1981], it belongs to the
complexity class NP. Echoing the three views discussed above, we sketch three proofs of this result
and discuss how these ideas have been used and developed in the recent research literature.

This is a companion paper for a conference talk focused on the three views on Presburger
arithmetic and their applications. The reader will require background knowledge at the level of
undergraduate computer science curricula. The discussion of complexity aspects is more advanced.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Theory of
computation → Logic

Keywords and phrases Logical theories of arithmetic, decision procedures

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.1

Category Invited Paper

Funding Supported in part by the Engineering and Physical Sciences Research Council
[EP/X03027X/1].

Acknowledgements I would like to thank Christoph Haase for introducing me to arithmetic theories
and all my co-authors for sharing inspiration, ideas, and kindness. I am also grateful to Ranko Lazić
and Shrisha Rao for useful discussions of the Steinitz lemma and its applications. Last but not least,
I would like to thank everyone who gave feedback on early drafts of this paper.

1 What is linear integer arithmetic?

Linear integer arithmetic, also known as Presburger arithmetic, combines linear Diophantine
equations with logic (Boolean connectives and quantifiers). Intuitively, a logic is a language in
which we can express things that are true or false. In the language of Presburger arithmetic
we can:

talk about integers (referred to as variables x, y, . . .),
assert linear inequalities involving these integers,

© Dmitry Chistikov;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 1; pp. 1:1–1:36

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d.chistikov@warwick.ac.uk
https://orcid.org/0000-0001-9055-918X
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 An Introduction to the Theory of Linear Integer Arithmetic

Figure 1 Black dots show integer points (assignments to x, y) that make the formulas in Eqs. (1)
and (2) true. These assignments form sets T (left) and U (right), respectively. On the left, the set of
solutions in R2 to the system of 3 inequalities in Eq. (1) is the intersection of 3 half-planes, shown
in grey.

form Boolean combinations (logical AND, OR, NOT, denoted by ∧, ∨, ¬, respectively)
of these assertions, and
quantify over (all) integers, using “for all” (∀) and “there exists” (∃).

We develop the intuition first, deferring rigorous definitions to Section 2.
A formula in linear integer arithmetic is a syntactic object. A formula expresses (defines)

a set of points with integer coordinates, that is, a subset of Zd for some d. For example, the
formula

(x ⩽ 3y) ∧ (2y ⩽ x) ∧ (y ⩽ 2) (1)

defines the set T = {(0, 0), (2, 1), (3, 1), (4, 2), (5, 2), (6, 2)} of integer points in a triangle.
Indeed, {(x, y) ∈ Z2 : (x ⩽ 3y) ∧ (2y ⩽ x) ∧ (y ⩽ 2)} = T , see Fig. 1 (left). Informally,
the formula talks about x and y, and thus defines a set in 2D. A set may be equivalently
expressed by more than one logical formula. For example, the two formulas

(x < 0) ∨ (y < 0) and ¬((x ⩾ 0) ∧ (y ⩾ 0)) (2)

define the same set, call it U , depicted in Fig. 1 (right).
Let us consider some formulas with quantifiers. As an elementary example, the formula

∀x [(∃y (x = 2y)) ∨ (∃z (x = 2z + 1))] (3)

can be interpreted as saying that every integer is either even or odd (possibly both). Notice
that we could equivalently write ∀x [(∃y (x = 2y)) ∨ (∃y (x = 2y + 1))], because the choice
of name (y or z) for the auxiliary variable does not change the meaning of the formula, as
long as there is no “name clash”: usage of a name that is already in use at this point in the
formula.

Formally, variables that a formula φ “talks about” are called free variables of φ. For
example, the formula

E(x) : ∃y (x = 2y) (4)

talks about a single variable, x, and asserts that x is even. Note that we denoted this
formula E(x). More generally, we write, for instance, φ(x, y, z) implying that φ has no free
variables except x, y, and z. It is not implied that x, y, and z are mentioned by φ: some
or even all of them may not appear in it. In the formula from Eq. (3), all variables are
“quantified away”, that is, these formulas have no free variables. Each of these formulas
evaluates to just true or false. Formulas without free variables are called sentences.

D. Chistikov 1:3

▶ Example 1. Fix two integers a, b > 0. Consider the sentence

Ca,b : ∀s ∃x1 ∃x2 s = ax1 − bx2.

We will see in Section 3 that Ca,b is true if and only if a and b are coprime. Intuitively, Ca,b is
implied by, and in fact equivalent to, a similar formula ∀s1 ∀s2 ∃x1 ∃x2 s2 − s1 = ax1 − bx2.
Rearranging the terms, we can rewrite the equation as s1 +ax1 = s2 + bx2. So the formula in
fact asserts that the two arithmetic progressions s1, s1 +a, s1 +2a, . . . and s2, s2 +b, s2 +2b, . . .
always have a number appearing in both, no matter how the initial terms s1 and s2 are
chosen. ⌟

▶ Remark. In Example 1, a and b are fixed parameters. If they were, in fact, variables, then
the given formula would not be a sentence and would talk about a and b. Denote it C(a, b).
Assuming a, b > 0, the formula C(a, b) would still assert that a and b are co-prime, but would
no longer be a formula of linear integer arithmetic, because of the multiplication of two
variables a and x1. Logicians would say that C(a, b) is a formula in the language of rings.

All variables are always quantified over the same set, namely Z. That is, the syntax of
Presburger arithmetic disallows formulas such as ∀x ∈ S φ(x). Can we still express such an
assertion in our logic? Assuming that the set S itself can be defined in Presburger arithmetic,
namely as S = {a ∈ Z : ψ(a) is true} for some formula ψ with one free variable, we can write
∀x (¬ψ(x) ∨ φ(x)) or, equivalently, ∀x (ψ(x) → φ(x)), where → denotes logical implication.
Presburger arithmetic can quantify over individual numbers (first-order quantification), but
not over sets, relations, etc.

Some assertions cannot be written as a finite Boolean combination of linear inequalities
without the help of quantifiers. An example is the formula E(x) from Eq. (4). It is thus often
convenient to extend the syntax of the logic by assertions such as “x is even”, “x− 3y + 5 is
divisible by 7”, etc. We can write them as divisibility constraints k | . . . , reading “k divides
. . . ”, where k is a fixed nonzero integer (that is, k cannot be a variable or an expression
involving variables). Yet another alternative syntax is congruences t1 ≡ t2 (mod k), with
t1, t2 linear functions. Such constraints, also known as modulo constraints, can be used
alongside linear inequalities as basic building blocks of linear integer arithmetic.

▶ Example 2. By the Chinese remainder theorem, formula

(x ≡ 2 (mod 3)) ∧ (x ≡ 1 (mod 5)) ∧ (x ≡ 3 (mod 7)) ∧ (x ⩾ 0)

defines the set of natural numbers congruent to 101 modulo 105 = 3 · 5 · 7. An equivalent
formula avoids modulo constraints at the cost of extra quantified variables: ∃u ∃v ∃w (x−2 =
3u) ∧ (x− 1 = 5v) ∧ (x− 3 = 7w) ∧ (x ⩾ 0). ⌟

Linear integer arithmetic, and logical theories of arithmetic more generally (not necessarily
linear), provide a common framework for expressing problems from various domains: for
example, many classical combinatorial optimisation problems can be encoded directly.

▶ Example 3. The subset sum problem asks, given natural numbers a1, . . . , an, whether
there exists a subset that sums up to a given target, t:

∃x1 . . . ∃xn

k∧
i=1

[(xi = 0) ∨ (xi = 1)] ∧
n∑

i=1
aixi = t.

Notice that, since all quantification is over integers, the subformula in square brackets can
be rewritten as [(0 ⩽ xi) ∧ (xi ⩽ 1)], making the entire sentence an existentially quantified
conjunction of equalities and inequalities. In terms of computational complexity, the subset
sum problem is NP-complete [136, Section 7.5]. ⌟

FSTTCS 2024

1:4 An Introduction to the Theory of Linear Integer Arithmetic

▶ Example 4. The Frobenius coin problem asks for the largest whole amount that cannot
be formed using coins with denominations a1, . . . , an, all in unbounded supply [144, 5]. If
the greatest common divisor of a1, . . . , an is 1, then such a number exists and is referred
to as the Frobenius number of a1, . . . , an, denoted F (a1, . . . , an). For every x ∈ Z, we have
F (a1, . . . , an) ⩽ x if and only if the following formula of Presburger arithmetic is true:

Φ(x) : ∀y ∃x1 . . . ∃xn

[
(y ⩽ x) ∨

(
k∧

i=1
(xi ⩾ 0) ∧

(
n∑

i=1
aixi = y

))]
.

Thus, F (a1, . . . , an) is the number that satisfies (makes true) the formula Φ(x) ∧ ¬Φ(x− 1)
or, equivalently, the formula

Φ(x) ∧ ∀z1 . . . ∀zn

[
k∨

i=1
(zi < 0) ∨

(
n∑

i=1
aizi < x

)
∨

(
n∑

i=1
aizi > x

)]
.

Deciding whether F (a1, . . . , an) ⩽ t is NP-hard [4] and belongs to the complexity class
coNPNP = Π2P (see, e.g., the definition of the polynomial(-time) hierarchy [136, Section 10.3]).

⌟

Decision problems and decision procedures
Is it possible to determine the truth value of a given sentence of Presburger arithmetic? This
problem is traditionally referred to as the decision problem:

Input: Sentence φ.
Output: Is φ true or false?

There exists an algorithm (a decision procedure) that solves the decision problem for Pres-
burger arithmetic; see Section 3. Thus, one says that (the theory of) Presburger arithmetic
is decidable. This statement requires proof, because quantifiers in φ range over an infinite
set, Z.

The existence of algorithms that solve the decision problem for this and for other logics
enables the field of automated reasoning: we can outsource to a computer the determination of
whether a formal mathematical statement (even if expressed in a relatively simple language) is
true or false! At the same time, sentences of Presburger arithmetic are not deep mathematical
truths: this logic is rather restrictive. Extending the syntax by allowing not just linear
but arbitrary polynomial constraints makes the problem undecidable. (This follows from
Gödel’s incompleteness theorems and Tarski’s undefinability theorem. The argument is shown
in, e.g., [23, Chapter 17] and [135, Chapter 10].) In fact, even for Presburger arithmetic
the worst-case computational complexity of the problem is high, meaning that big input
sentences φ may require prohibitively large computation time. Still, Presburger arithmetic
offers a useful language for expressing assertions that arise in applications and can be checked
in an automated fashion, striking a balance between expressiveness and decidability.

Nowadays powerful software tools are available that implement decision procedures for
many logical theories (involving arithmetic or not). A big class of such tools is satisfiability
modulo theories (SMT) solvers, developed since the early 2000s (see, e.g., [2, 12, 11]). SMT
solvers build on the earlier boom of Boolean satisfiability (SAT) solvers, adding to SAT more
powerful logics; hence the “modulo [logical] theories” in the name.

The present paper adopts a theoretical perspective, focusing on the pure decision problem
as defined above. In practice, the success of software tools depends on many other features
taking theoretical ideas further (see, e.g., [26, Chapter 1]). For example, solvers can be asked

D. Chistikov 1:5

to produce explanations: proofs that a given sentence is true or false. Also key is incremental
solving: when a new constraint is appended to an input sentence, the solver can benefit
from information gained in its previous run, instead of restarting from scratch. SMT solvers
implement not only algorithms (in the strict sense of the word) for decision problems but also
heuristic approaches (for decidable as well as undecidable theories). This way the tools can
successfully handle formulas coming from applications with thousands of variables, avoiding
the worst-case computational complexity or even undecidability.

2 Syntax and semantics (formal definitions)

We give formal definitions of syntax and semantics of linear integer arithmetic. A description
of the syntax of a logic specifies which syntactic expressions are admissible (“belong” to the
logic), and the semantics prescribes their meaning. The goal here is not to re-define or revise
fundamental mathematical notions, but rather to determine unambiguously:
(syntax) what kind of formulas a decision procedure must be able to handle (as its input);
(semantics) what the correct output (truth value) for each possible input formula is.

Let V be the set (alphabet) of variables that a formula may use. A small example might
have V = {x, y}, but in general V may well be infinite.

Syntax. We first define terms. Intuitively, a term in our logic is an expression that can
evaluate (under an assignment of values to variables) to an integer. Formally, a term is a
formal expression of the form a0 + a1x1 + . . .+ anxn, where a0, . . . , an ∈ Z, x1, . . . , xn ∈ V ,
and n ⩾ 0.

We now define formulas of the logic. Formulas, like terms, are syntactic objects. Unlike
terms, the intuition is that a formula should evaluate (again under an assignment of values
to variables) to true or false. The definition is in two “stages”.

An atomic formula, or an atom, is either a comparison of the form t1 < t2, t1 ⩽ t2, or
t1 = t2, where t1 and t2 are terms, or a congruence constraint of the form t1 ≡ t2 (mod m),
where t1 and t2 are terms and m ∈ Z \ {0}.
▶ Remark. Although this definition excludes comparisons of the form t1 > t2 and t1 ⩾ t2, we
can always rewrite such comparisons backwards: t2 < t1 and t2 ⩽ t1, respectively. Therefore,
we can regard symbols > and ⩾ as “syntactic sugar”. Similarly, a divisibility constraint of
the form k | t, where k ∈ Z \ {0} and t is a term, can be rewritten as t ≡ 0 (mod k).

The main definition is inductive. A formula is:
either an atomic formula,
or an expression of the form φ ∧ ψ, φ ∨ ψ, or ¬φ, where φ and ψ are formulas,
or an expression of the form ∃x φ or ∀x φ, where φ is a formula.

Only expressions of the above three kinds are considered formulas. We use brackets to
disambiguate the composition of formulas from its sub-formulas. The reader can verify that
all formulas from Section 1 are indeed formulas according to this definition.

Note that the third case does not restrict φ, and in particular we do not specify whether
or not the variable x bound by the quantifier even appears in φ.
▶ Remark. A reader unfamiliar with mathematical logic may find it convenient to assume
no variable reuse. That is, whenever a formula Φ contains a subformula ∃x φ or ∀x φ, we
can assume that all occurrences of x in Φ are within subformulas of such two forms, and
moreover these subformulas cannot contain one another. This convention forbids, e.g., nested
quantifiers that bind the same variable.

FSTTCS 2024

1:6 An Introduction to the Theory of Linear Integer Arithmetic

Semantics. We now show how to “assign meaning” to formulas, which have been defined
above as purely syntactic objects.

An assignment is a map from V, our alphabet of variables, to Z. Let ν : V → Z be an
assignment and take some integer a ∈ Z and variable x ∈ V. By ν[a/x] we denote another
assignment, ν′, that agrees with ν on all variables from V except x and sets ν(x) to a:

ν′(u) =
{
ν(u) if u ∈ V \ {x},
a if u is x.

For example, if V = {x, y} and ν(x) = ν(y) = 6, then for ν′ = ν[3/y] we have ν′(x) = 6 and
ν′(y) = 3.

If t is a term and ν an assignment, then by ν(t) we denote the value of t under ν. Formally,
if t is a0+a1x1+. . .+anxn where x1, . . . , xn ∈ V , then ν(t) = a0+a1ν(x1)+. . .+anν(xn). Note
that ν(t) is a (specific) integer. In the example from the previous paragraph, ν(x−3y+5) = −7
and ν[3/y](x− 3y + 5) = 2.

We are now ready to assign truth values to formulas, given an assignment. This definition
is also inductive, following the inductive definition of a formula. Let ν be an assignment. For
every formula we determine whether it holds under ν (also: φ is true on ν; ν satisfies φ):

Take an atomic formula t1 < t2, t1 ⩽ t2, t1 = t2, or t1 ≡ t2 (mod m), where t1 and t2 are
terms and m ∈ Z \ {0}. Then t1 < t2 holds under ν if and only if ν(t1) < ν(t2). Here
ν(t1) < ν(t2) is just a comparison between two specific numbers from Z. The definition
for the cases of t1 ⩽ t2 and t1 = t2 is analogous. For the case of t1 ≡ t2 (mod m), the
condition is that ν(t1) − ν(t2) is a multiple of m.
A formula φ ∧ ψ holds under ν if both φ and ψ hold under ν. For φ ∨ ψ, the condition is
that at least one of φ and ψ holds. For ¬φ, the condition is that φ does not hold.
A formula ∃x φ holds under ν if for some a ∈ Z the formula φ is true under the
assignment ν[a/x]. A formula ∀x φ holds under ν if for every a ∈ Z the formula φ is true
under the assignment ν[a/x].

This definition may appear tautological (and even unnecessary), but it ensures that the
meaning of formulas is determined unambiguously.
▶ Remark. In logic, the standard notation for “φ holds under ν” would be “(Z,+,⩽), ν |= φ”,
as the satisfaction relation is really a ternary relation. Here (Z,+,⩽) is the structure that
we have fixed throughout: Z is the domain of discourse (universe), +: Z × Z → Z is binary
addition on Z, and ⩽ is the standard “less than or equal to” relation (predicate) on Z.
Intuitively, a structure “realises” the syntax of a logic, giving a “valuation” for each symbol.

An occurrence of a variable x ∈ V in a formula Φ is free if it lies outside all subformulas
∃x φ and ∀x φ, and bound otherwise. Now, x ∈ V is a free variable of Φ if it has a free
occurrence, and a bound variable otherwise. A bound variable might have no occurrences
whatsoever. Sentences are exactly formulas with no free variables.

▶ Proposition 5. The truth value of a sentence does not depend on the choice of assignment.

Proof idea. Reduce to the following special case. Let x be a bound variable of Φ and assume
ν2 = ν1[a/x] for some a ∈ Z. Then Φ holds under ν1 if and only if it holds under ν2. (In
fact, Φ may be assumed to be an arbitrary formula, not necessarily a sentence.) ◀

▶ Remark. In logic, the theory of a structure is the set of all sentences true in this structure.
Presburger arithmetic is, formally, the (first-order) theory of the structure (Z,+,⩽). Consider
the sentence Φ: ∀x ∃y (x = 2y), which is false. According to this definition, Φ is therefore
not a sentence of Presburger arithmetic. It is, however, a sentence (written) in the syntax of
Presburger arithmetic.

D. Chistikov 1:7

In the present paper, whenever we refer to sentences of Presburger arithmetic (linear
integer arithmetic), as well as of other logics, the meaning is purely syntactic. We will not
use the concept of theory as such, but we have decided to mention the distinction so that
the reader does not get confused when consulting literature.

Taking a formula φ(x1, . . . , xn), that is, one where all free variables are among x1, . . . , xn,
it is occasionally convenient to write φ(a1, . . . , an) for the truth value of φ on any assignment ν
such that ν(xi) = ai for all i. For a sentence φ, it should be clear from the context whether,
when writing φ, we are referring to the syntactic object or to its truth value.

The set {a ∈ Zn : φ(a) is true} is the set defined by formula φ; sets for which a suitable
formula exists are definable sets. Here and elsewhere, we use boldface letters to denote
elements of Zn. We do this for tuples of variables too, writing x = (x1, . . . , xn). Two formulas
φ(x) and ψ(x) are equivalent if they define the same set; we write φ(x) ⇐⇒ ψ(x).

3 Three views on linear integer arithmetic

Sets S ⊆ Zd definable in linear integer arithmetic (also: Presburger-definable sets) can also
be represented with the help of geometry, or with the help of strings. The following three
representations are available.
Semi-linear sets. A set can be specified by referring to its geometric features. In an analogy,

a triangle in R2 can be specified by referring to its vertices. In the case of linear integer
arithmetic, we also need to describe periodic patterns to specify a set.

Finite automata. To represent a subset of natural numbers, we can use a finite automaton
over {0, 1} that recognises (accepts) the set of binary expansions of these numbers. This
idea extends to negative integers, as well as to tuples of integers.

Logical formulas. To represent a set, we can use a formula that is true exactly for the
elements of the set. We already saw this representation in Section 1, following the syntax
given in Section 2.

Thus, Presburger-definable sets can be viewed in three different ways: from the perspective
of geometry, automata theory, and symbolic computation, respectively. Each of the three
representations can be employed to solve the decision problem for Presburger arithmetic.
The three resulting methods, generalised appropriately, can also be used for other logics.

In this section, we describe these three views on linear integer arithmetic in more detail.
Actual algorithms are not given in this short introduction, only the ideas behind them.

3.1 A view from geometry: semi-linear sets
Semi-linear sets are a generalisation to Zd of ultimately periodic sets of natural numbers.
Let S ⊆ N.1 The set S is called:

periodic if there is p > 0 such that, for all x ∈ N, we have x ∈ S if and only if x+ p ∈ S;
ultimately periodic if there are N and p > 0 such that, for all x ⩾ N , we have x ∈ S if
and only if x+ p ∈ S.

We call the numbers p and N the period and the offset, respectively. A multiple of a period
is also a period, and any number exceeding an offset is also an offset.

▶ Example 6. In Fig. 2, the top set is periodic with period 3, and the other two sets are not
periodic. The top two sets are ultimately periodic, also with period 3. ⌟

1 Whether 0 ∈ N or not is a matter of convention. In logic, it is more common to include zero in the set
of natural numbers. We follow this convention.

FSTTCS 2024

1:8 An Introduction to the Theory of Linear Integer Arithmetic

(x ≡ 0 (mod 3)) ∨ (x ≡ 2 (mod 3))
(x ≡ 0 (mod 3)) ∨ (x ≡ 2 (mod 3)) ∨ (x = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
x is a power of 2

Figure 2 Three sets of natural numbers as sets of points on the number line with coordinate
x ∈ N. Black and white dots show numbers included in and excluded from the set, respectively. The
top two sets are definable in linear integer arithmetic and the bottom set is not.

For the following Proposition, our definition of an arithmetic progression is a set

{a, a+m, a+ 2m, . . .} = {x ∈ Z : ∃t ∈ Z (x = a+ tm) ∧ (t ⩾ 0)}, a,m ∈ N. (5)

A special case is a singleton, if m = 0. From Eq. (5), or by the formula (x ≡ a (mod m))∧(x ⩾
a), every arithmetic progression is definable in linear integer arithmetic.

▶ Proposition 7. A set S ⊆ N is ultimately periodic if and only if it is a union of finitely
many arithmetic progressions.

Ultimately periodic sets are closed under the following operations: complement (because
p and N stay unchanged); intersection (the least common multiple of the two periods is a
new period, and the maximum of the two offsets is a new offset); and union (e.g., by De
Morgan’s law).

There is more than one way to generalise ultimately periodic sets to higher dimensions.
For example, should the two sets shown in Fig. 1 be considered ultimately periodic or not?
For us, the most useful analogue will be the following definition due to Parikh [114], which is
probably the most inclusive.

We first define an analogue of arithmetic progressions. A set S ⊆ Zd is called linear if
there is b ∈ Zd and a finite set P = {p1, . . . ,pk} ⊆ Zd such that

S = L(b, P) def=
{

b +
k∑

i=1
λipi : λ1, . . . , λk ∈ N

}
. (6)

The term “linear” is traditional; the integer programming community uses the term “integer
cone” (if b is 0 def= (0, . . . , 0)) instead (see, e.g., [48, 80]). Notice that k may be different
from d. If P = ∅, then L(b, P) = {b}.

A set is semi-linear if it is a union of finitely many linear sets. Points b are referred
to as base points, offsets, or constants. Vectors p ∈ P are period vectors, or periods. Base
points and periods can be collectively referred to as generators, and the representation
S =

⋃
i∈I L(bi, Pi) as generator representation of S. Generator representation is not unique,

unless S is finite.

▶ Example 8. Linear set L(0, {p1,p2}) with p1 = (2, 1) and p2 = (1, 2) is shown in
Fig. 3 (left). Both sets in Fig. 1 are semi-linear. Indeed, T =

⋃
t∈T L({t},∅) and U =

L({−e1}, {−e1, e2,−e2}) ∪ L({−e2}, {−e2, e1,−e1}), where e1 = (1, 0) and e2 = (0, 1). ⌟

The following theorem shows that nice closure properties of ultimately periodic sets in N
extend to semi-linear sets in Zd. As it turns out, in dimension 1, ultimately periodic sets are
exactly subsets of N definable in linear integer arithmetic. In higher dimension, definable
sets are exactly semi-linear sets.

D. Chistikov 1:9

p2

p1

y = 2x

x = 2y

Figure 3 Five sets forming a partition of N2, for Example 11. Left: linear set L(0, {p1, p2}) with
p1 = (2, 1) and p2 = (1, 2). Middle: linear sets V1 (in diamond shape) and V2 (in square shape).
Period vectors not shown are unit vectors e1 and e2, respectively. Right: linear sets W1 (in empty
blue circles) and W2 (in empty green squares), which are shifts of L(0, {p1, p2}) by (1, 1) and (2, 2),
respectively.

▶ Theorem 9 (Ginsburg and Spanier [57, 58]). For a set S ⊆ Zd, the following are equivalent:
(a) S =

⋃
i∈I L(bi, Pi) for some finite set I, offsets bi ∈ Zd and finite sets of periods Pi ⊆ Zd;

(b) S = { (a1, . . . , ad) ∈ Zd : φ(a1, . . . , ad) is true } for some formula φ of linear integer
arithmetic.

Moreover, this equivalence is effective: there exist algorithms for conversion between the
generator representation in (a) and the formula in (b).

Proof idea.

(a) ⇒ (b). For given b and P = {p1, . . . ,pk}, the condition x ∈ L(b, P) can be expressed
using a formula with k existentially quantified variables for λ1, . . . , λk in Eq. (6). The
quantifier-free part of the formula is a conjunction of d equalities, one per coordinate, and
d inequalities λi ⩾ 0. A union of |I| sets corresponds to a disjunction of k formulas.

(b) ⇒ (a). The proof is by induction on the structure of the formula φ, following the
definition of the syntax from Section 2.

For an atomic formula (inequality, equality, or congruence) we construct the generator
representation directly. (It suffices to prove this for a non-strict inequality, because other
atoms can be avoided. Indeed: t1 < t2 if and only if ¬(t1 ⩾ t2); t1 = t2 if and only if
(t1 ⩽ t2) ∧ (t2 ⩽ t1); and t1 ≡ t2 (mod m) if and only if ∃x (t1 − t2 = mx).)
For formulas of the form φ ∧ ψ, φ ∨ ψ, or ¬φ, we prove the closure of the family of
semi-linear sets under Boolean operations.
For an existential quantifier, let y = (y1, . . . , yd) be the vector of free variables. Observe
that the set {b ∈ Zd : formula ∃x φ(x,y) holds on b} can be obtained from the set
{(a, b) ∈ Z × Zd : formula φ(x,y) holds on (a, b)} by orthogonal projection: namely by
removing the x-component (coordinate) from each element. In the generator representa-
tion, we simply cross out this component in all generators. Universal quantifiers can be
handled by observing that a formula ∀x φ is equivalent to ¬∃x ¬φ.

In truth, this plan requires a tweak: we need to handle systems of inequalities as a primitive.
(We sketch the construction in Section 5.1.) This is because proofs of the closure of semi-linear
sets under intersection use semi-linearity of sets of solutions to such systems. ◀

The algorithm (b) ⇒ (a) of Theorem 9, run on sentences, is a decision procedure for
linear integer arithmetic.

FSTTCS 2024

1:10 An Introduction to the Theory of Linear Integer Arithmetic

▶ Example 10. Let us follow the sketch above for the co-primality formula Ca,b from
Example 1, Section 1. To make the argument concrete, fix a = 4 and b = 6.

The first step is to find a generator representation of the set of solutions in x1, x2, s to s =
4x1 − 6x2. A suitable one is L(0, {−v1,v1,−v2,v2}) with v1 = (1, 0, 4) and v2 = (0, 1,−6),
where the coordinates are written in the order x1, x2, s. Indeed, it is clear that all vectors of
this linear set are solutions; conversely, for a solution (x1, x2, s) we have x1 · v1 + x2 · v2 =
(x1, x2, 4x1 − 6x2) = (x1, x2, s), and thus (x1, x2, s) ∈ L(0, {−v1,v1,−v2,v2}).

In the second step, we handle the existential quantifiers that bind x1 and x2. We cross out
the corresponding coordinates, which leads to the set S1

def= L(0, {−4, 4,−6, 6}) = {4z1 + 6z2 :
z1, z2 ∈ Z}. To handle the universal quantifier, we rely on the “equivalence” ∀ = ¬∃¬: indeed,
the formula C4,6 is true if and only if the set Z \ S1 is empty. To complement S1, observe
that S1 ∩ N is periodic with period 4 as well as with period 6. It is therefore periodic with
period gcd(4, 6) = 2. The same is true for S1 ∩ {−n : n ∈ N}. Since 0 ∈ S1 and ±1 ̸∈ S1, we
have S1 = L(0, {−2, 2}) and Z \ S1 = L(1, {−2, 2}) ̸= ∅. Thus, C4,6 is false. ⌟

The construction of a semi-linear set for an inequality a0 + a1x1 + . . .+ adxd ⩽ 0, where
all ai ∈ Z, generalises what we saw for equality s = 4x1 − 6x2 in Example 10.

The following example illustrates the complementation of a semi-linear set.

▶ Example 11. Consider L(0, {p1,p2}) with p1 = (2, 1) and p2 = (1, 2), in Fig. 3. Its
complement can be decomposed as Z2 \ L(0, {p1,p2}) = U ∪ V1 ∪ V2 ∪W1 ∪W2, where:

U = {(x, y) ∈ Z2 : (x < 0) ∨ (y < 0)} (Example 8),
V1 = {(x, y) ∈ Z2 : (y ⩾ 0) ∧ (2y < x)} = L(e1, {e1,p1}),
V2 = {(x, y) ∈ Z2 : (x ⩾ 0) ∧ (2x < y)} = L(e2, {e2,p2}),
W1 = L((1, 1), {p1,p2}), and W2 = L((2, 2), {p1,p2}).

Set U is shown in Fig. 1 (right), and sets V1, V2, W1, W2 in Fig. 3. ⌟

Let us introduce the Minkowski sum notation for sets: A+B
def= {a+ b : a ∈ A, b ∈ B}.

We write a+B instead of {a} +B. In Example 11, sets Wi = (i, i) + L(0, P) for i ∈ {1, 2}
are shifts of the set L(0, P), where P = {p1,p2}. Moreover, these three sets form a partition
of the set of integer points in the sector {(x, y) ∈ R2 : (x ⩽ 2y) ∧ (y ⩽ 2x)}; see Fig. 3 (right).
The sector itself is definable in linear real arithmetic. We see on this example a useful rule
of thumb: reasoning about integer points combines reasoning about linear real arithmetic
(intuitively: geometric constraints in Rd) and reasoning about integer lattices (intuitively:
divisibility properties, or periodic patterns; see, e.g., [101, Section 2.2]).

Further reading. Over the years, multiple algorithms have appeared for operations on
semi-linear sets. Early papers [57, 58] and a monograph [56, Chapter 5] paved the way and
are still helpful for developing intuition. Huynh’s paper [78] is geometric and optimises the
size of description. More recent constructions [33, 35] optimise and analyse the dependence
of the size on multiple parameters; these papers provide further references.

If the dimension d is fixed, the decision problem for existential Presburger arithmetic
(where all quantifiers are ∃ and appear at the beginning of the formula) can be solved
in polynomial time [128]. In fact, all satisfying assignments (if finitely many) can be
efficiently enumerated if the formula, moreover, contains no occurrences of ∨ and ¬ and no
congruence constraints. These are consequences of fundamental results of Lenstra [95] and
Barvinok [14, 13]; see also, e.g., monographs [108, 39]. Nguyen and Pak [106] look at not

D. Chistikov 1:11

x : + 54 321
y : 98 765
z : 153 086

0 1

[
3
7
0

]

[
0
0
1

]

[
1
5
6

]
,

[
2
6
8

] [
4
8
3

]
,

[
5
9
5

]

[
0
0
0

]

Figure 4 Left: long addition base 10. Right: finite automaton that checks x + y = z, reading
triplets of digits right to left. Only transitions traversed on the example on the left, as well as the
transition for the triplet of leading zeros, are shown.

necessarily orthogonal projections of semi-linear sets (cf. proof idea for Theorem 9) and find
a way to compute generating functions for these projections, à la Barvinok. In a certain
technical sense, the idea extends to formulas with quantifiers in which d bounds the total
number of variables (quantified or not).

In recent years, extensions of semi-linear sets with applications to verification of Petri
nets have been considered in the literature [97, 63].

3.2 A view from automata theory: k-automatic sets

For simplicity, throughout this section arithmetic is over N instead of Z. Representation
of sets of numbers using finite automata is a far-reaching development of the following
observation. Consider natural numbers divisible by 3. It is well-known that these are
precisely the numbers whose sum of decimal digits is divisible by 3. A finite automaton
can read the decimal expansion of n ∈ N digit by digit (the input alphabet is {0, 1, . . . , 9}),
maintaining the remainder modulo 3 of all digits read so far. Then 3 | n if and only if the
final remainder is 0. In fact, there is nothing special about 3: to capture divisibility by,
say, 28, the automaton maintains the remainder modulo 28 of the number read so far.

To move from properties of individual numbers to properties of pairs and triplets of
numbers, etc., we use automata over larger input alphabets.

▶ Example 12. We describe an automaton that checks addition x+ y = z for x, y, z ∈ N.
The idea is to mimic the elementary method of long addition (Fig. 4, left). The automaton
will read triplets of decimal digits one at a time, so the input alphabet is {0, 1, . . . , 9}3, with
1000 letters. Intuitively, we could say the input tape has three tracks, one for each of x, y,
and z. Numbers can be padded with leading zeros (on the left), so that all tracks have the
same length. A deterministic finite automaton (DFA) can read the tape from right to left,
keeping the carry in its control state; see Fig. 4, right. The state with carry 0 is accepting.

Our automata will usually be incomplete: for example, there are no transitions on input
letter (0, 0, 5) ∈ {0, 1, . . . , 9}3, no matter the current carry. To make the DFA complete, we
can send all such transitions to a rejecting sink state. ⌟

Let us move from base 10 to base 2. Perhaps counter-intuitively, it will be more convenient
for us to use automata that read input from left to right instead, i.e., most significant bit
first. (In Example 12, we simply reverse all transitions in the automaton.)

FSTTCS 2024

1:12 An Introduction to the Theory of Linear Integer Arithmetic

For d ⩾ 1, a set S ⊆ Nd is 2-automatic (or: 2-recognizable) if there is a deterministic
finite automaton (DFA) that accepts the language

{(w1, . . . , wd) ∈
(
{0, 1}d

)∗ : for some (n1, . . . , nd) ∈ S, each wi is a binary expansion of ni}. (7)

Notice that each n ∈ N has infinitely many binary expansions: e.g., 110, 0110, 00110, etc.
for 6 ∈ N. Replacing the base 2 with a larger integer k ⩾ 3, one gets k-automatic sets.

The definition refers to DFA, but any equivalent formalism for regular languages would
do just as well, e.g., nondeterministic finite automata (NFA) or regular expressions.

Automata that represent finite sets (as in Fig. 1, left) are not unlike binary decision
diagrams (BDDs), but can accept strings of varying length.

▶ Theorem 13 (Büchi–Bruyère [30, 29], corollary).
1. Every set S ⊆ Nd definable in linear integer arithmetic is 2-automatic. The containment

is effective: there is an algorithm that, given a formula φ defining S, constructs an
automaton accepting the language from Eq. (7).

2. There exists a 2-automatic set S ⊆ N that is not definable in linear integer arithmetic.

Proof idea. The first part is proved by induction on the structure of the formula. We follow
the definition of the syntax from Section 2:

We need to find an automaton (DFA) for every set defined by an atomic formula (inequality,
equality, or congruence). As in the proof of Theorem 9, we can focus on inequalities
with no loss of generality. In fact, we reduce the reasoning to the simplest possible case:
equalities of the form x+ y = z and 2x = z. For inequalities, introduce slack variables:
for instance, assuming that all variables range over N,

y ⩽ 2 ⇐⇒ ∃y′ (y + y′ = 2).

Equalities are further rewritten. For example:

s+ 2u = 3v ⇐⇒ ∃y1 ∃y2 ∃y3 (s+ y1 = y3) ∧ (y1 = 2u) ∧ (y2 = 2v) ∧ (y3 = v+ y2).

We can now use Example 12 with two amendments: input is in base 2 instead of base 10,
with most significant bit read first (instead of last).
Sets defined by formulas of the form φ∧ψ, φ∨ψ, or ¬φ are 2-automatic by the inductive
hypothesis and by the (effective) closure of the family of regular languages under Boolean
operations.
For the complementation to work correctly, it is important that leading zeros not affect
acceptance by the given automaton. Otherwise if, say, for d = 1 the string 110 is accepted
but 0110 is not, then the correspondence between sets of numbers and languages breaks:
the complement of the language will still contain a binary expansion of 6.
We describe the idea how an existential quantifier can be handled. (For universal
quantifiers, observe that ∀x φ is equivalent to ¬∃x ¬φ.) Let y = (y1, . . . , yd) be the vector
of free variables. Intuitively, if binary expansions of {(a, b) ∈ N × Nd : formula φ(x,y)
holds on (a, b)} can be recognised by a DFA over the alphabet {0, 1}d+1, then removing
the x-track from all letters leads to the set {b ∈ Nd : formula ∃x φ(x,y) holds on b}.
We need to be careful, however: in some accepted strings the erased track may be strictly
longer than all other tracks; that is, a has more binary digits than each component of b.
(In the formula ∃z (x+ y = z), this happens for the variable z: see Fig. 4 (left).) Thus,
after removing x-components from all letters on the transitions of the original DFA, we
make a state q accepting if and only if that DFA had an accepting run from q on which
all letters have 0 on the d “surviving” tracks.

D. Chistikov 1:13

For the second part of the theorem, observe that the set P2 = {n ∈ N : n = 2k for some k ∈ N}
is 2-automatic: binary expansions of powers of 2 are exactly strings matched by regular
expression 0∗10∗. Since P2 is not ultimately periodic, it is not definable in linear integer
arithmetic (see Section 3.1). ◀

The first part of Theorem 13, applied to sentences, gives a decision procedure for
Presburger arithmetic.

The sketch above offers relatively little intuition as to how automata for various arithmetic
constraints really work. In the following example, we show an alternative, direct construction.

▶ Example 14. Consider the co-primality formula Ca,b from Example 1 (Section 1). Fix
a = 3 and b = 2. Unlike in Section 1, we let all variables range over N not Z.

For uniformity of notation, let us rename s to x0. Take the atomic formula x0 = 3x1 −2x2.
The idea is similar to the divisibility examples at the beginning of this section. As an
automaton reads triplets of bits left to right, it keeps in memory the current error (rather
than remainder modulo 3 or 28): the integer e = x0 − 3x1 + 2x2. (For the moment, we can
think of an infinite-state automaton, to be made finite-state shortly.) If e = 0, the current
state is accepting. Initially e = 0, because our equation x0 = 3x1 − 2x2 is homogeneous.
How does this error change over time?

Suppose the next bit triplet is (α0, α1, α2) ∈ {0, 1}3. If x0, x1, x2 are the binary numbers
read so far, then after reading the new bits these numbers become

x′
0 = 2x0 + α0, x′

1 = 2x1 + α1, x′
2 = 2x2 + α2.

Thus, the new error is

e′ = x′
0 − 3x′

1 + 2x′
2 = 2(x0 − 3x1 + 2x2) + (α0 − 3α1 + 2α2) = 2e+ (α0 − 3α1 + 2α2).

Denote u def= α0 − 3α1 + 2α2 and observe that u ∈ [−3, 3]. Thus, if |e| ⩾ 3, then |e′| ⩾ 3
as well and so state 0 is no longer reachable. Thus, just five states for e ∈ {−2,−1, 0, 1, 2}
suffice, and all other values can be glued into a rejecting sink.

The automaton for the quantifier-free formula x0 = 3x1 − 2x2 has a lot of transitions.
The table in Fig. 5 (left) shows the update u for each (α0, α1, α2) ∈ {0, 1}3. Observe that
the destination of transitions depends only on u and not on α0, α1, α2. In principle, each bit
triplet can be read from each control state, but if the new error e′ = 2e+ u is outside [−2, 2],
then the transition goes into the rejecting sink. Based on this automaton (which we do not
depict), we construct an automaton (NFA) for the formula φ(x0) : ∃x1 ∃x2 (x0 = 3x1 − 2x2):
for each transition, the label (α0, α1, α2) is replaced by just α0; see Fig. 5 (right).

We omit the acceptance analysis. It turns out that all states except −2 are accepting,
and the language recognised by the NFA is {0, 1}∗. Thus, formula C3,2 from Example 1 is
true even if all variables are interpreted over N. ⌟

Further reading. In connection with the second part of Theorem 13, it is meaningful to
ask whether a given set S ⊆ Nd represented by an automaton is definable in Presburger
arithmetic. As it turns out, this definability can be determined in polynomial [96] and,
in dimension d = 1, even almost linear time [100, 21]. The first of these algorithms was
implemented in TaPAS [98], a software framework for the theory of mixed real-integer linear
arithmetic [143, 19]. Paper [96] also contains a collection of references for contemporaneous
software for linear integer arithmetic. In a different direction, sets represented by automata
can be characterised by another logic, so-called Büchi arithmetic (see, e.g., [29, 18]).

FSTTCS 2024

1:14 An Introduction to the Theory of Linear Integer Arithmetic

α0 α1 α2 u

0 0 0 0
0 0 1 2
0 1 0 −3
0 1 1 −1
1 0 0 1
1 0 1 3
1 1 0 −2
1 1 1 0

0−1 1 2−2

0 1 0, 1 0 1

1

0, 1

0

0

0

0, 1

1

1

1 0
1

0

Figure 5 Left: aggregate effect u for each bit triplet. Right: nondeterministic finite automaton
for the formula φ(x0) : ∃x1 ∃x2 (x0 = 3x1 − 2x2), with variables interpreted over N.

Let us mention a tool MONA [76, 86], which implements an automata-based decision
procedure for a more powerful logic: the weak monadic second-order logic with one successor
(WS1S). Informally speaking, this logic can “encode” Presburger arithmetic.

A more detailed exploration of the subject of this section (and, more generally, the
view of automata as data structures) can be found in Esparza and Blondin’s textbook [50,
Chapter 9]. Another source is a survey by Boigelot and Wolper [22]. Survey [29] reviews
Büchi’s idea (including a bugfix) and subsequent developments up to the 1990s. Several
chapters in the book [117] discuss topics such as interface of automata theory with number
theory (see also Rigo’s earlier survey [125]); automatic sequences; and automatic structures.
The latter are structures (in logic) in which, informally speaking, relations can be represented
by automata (generalising Example 12); see, e.g., Grädel’s tutorial [60]. A recent monograph
by Shallit [134] explores the use of logic to study automatic sequences (a closely related
concept), with applications in combinatorics on words. For a further sample of cutting-edge
developments, the reader is referred to papers [66, 139, 70, 43].

3.3 A view from symbolic computation: quantifier elimination
In symbolic computation, we rewrite a given formula iteratively, using a set of predefined
rules. The resulting formulas get progressively simpler structurally, usually at the cost of
increase in size. Often the objective is to remove quantifiers, so the approach is known as
quantifier elimination. We first give an example outside Presburger arithmetic.

▶ Example 15. Given p, q ∈ R, a quadratic equation x2 +px+q = 0 has a real solution if and
only if its discriminant is nonnegative: p2 − 4q ⩾ 0. Thus, the formulas ∃x [x2 + px+ q = 0]
and p2 − 4q ⩾ 0 (of a suitable logic over R) are equivalent, that is, we have eliminated the
quantifier ∃x. (Both formulas have free variables p and q.) ⌟

Importantly, we would like the resulting formula to stay within the syntax of the same
logic that we start from. For Presburger arithmetic, this is possible. (As we saw in Section 1
on the example of formula E(x) : ∃y (x = 2y), congruence constraints cannot be dispensed
with.) Geometrically, we saw in Section 3.1 that elimination of an existential quantifier
corresponds to orthogonal projection. This is very easy to handle for semi-linear sets in
generator representation; for logical formulas, a little more work is required.

A formula is quantifier-free if symbols ∃ and ∀ do not occur in it.

▶ Theorem 16 (Presburger [121]). There exists an algorithm that, given a quantifier-free
formula φ, outputs a quantifier-free formula φ′ equivalent to ∃x φ.

D. Chistikov 1:15

Theorem 16 gives a decision procedure for linear integer arithmetic, in fact historically
the first one. English translation of and commentary on Presburger’s 1929 paper are
available [137, 122].

Instead of giving the proof in full generality, we will consider several examples. We
roughly follow an algorithm given by Cooper [37], later reproduced (under the heading “The
present algorithm”) in Cooper [38].

▶ Example 17. Consider the formula ∃x [(x ⩽ 3y) ∧ (2y ⩽ x) ∧ (y ⩽ 2)], which defines the
projection of the set T from Fig. 1 (page 2) on the y axis. Only the first two inequalities in
the formula mention x. Putting them into a chained inequality 2y ⩽ x ⩽ 3y, we see that
a suitable value for x exists (in Z) if and only if 2y ⩽ 3y, that is, y ⩾ 0. Thus, the entire
formula is equivalent to (y ⩾ 0) ∧ (y ⩽ 2). This is exactly the projection {0, 1, 2} of the set T
on the y axis. ⌟

If the formula has several inequalities bounding x from below (say, s1 ⩽ x, . . . , sk ⩽ x,
where s1, . . . , sk are some terms not involving x) and several inequalities bounding it from
above (say, x ⩽ t1, . . . , x ⩽ tm, with t1, . . . , tm not involving x), then a suitable value for x
exists (in Z) if and only if si ⩽ tj for all pairs i, j. In words, the greatest lower bound does
not exceed the least upper bound.

▶ Example 18. Now consider the formula ∃y [(x ⩽ 3y) ∧ (2y ⩽ x) ∧ (y ⩽ 2)], which defines
the projection of the same set T from Fig. 1 (page 2) on the x axis. To use the same principle
as in Example 17, we multiply both sides of each inequality by a positive integer so as to
make all the coefficients at y identical. In this case, they will be 6 = lcm(3, 2, 1). For all
x, y ∈ Z, we have x ⩽ 3y if and only if 2x ⩽ 6y; the other two inequalities are handled
similarly. We obtain one lower bound and two upper bounds on 6y; thus, the formula is true
if and only if 2x ⩽ 6y ⩽ min{3x, 12}, or equivalently (2x ⩽ 6y ⩽ 3x) ∧ (2x ⩽ 6y ⩽ 12).

It is, however, not true that a suitable integer value for y exists if and only if 2x ⩽
min{3x, 12}. Indeed, x = 1 gives a counterexample. Rather, such a value exists if and only
if there is an integer divisible by 6 between 2x and min{3x, 12}. To express this statement
without existential quantification (“there is an integer”), we consider several cases depending
on the remainder of 2x modulo 6. For example, if 2x has remainder 2 modulo 6, then instead
of inequality 2x ⩽ min{3x, 12} the condition to use is 2x+ 4 ⩽ min{3x, 12}, “rounding up”
the lower bound to a multiple of 6. (This is because y = 2x+ 4 is always a suitable choice
of y if 2x+ 4 ⩽ min{3x, 12} and 2x+ 4 ≡ 0 (mod 6).) The formula is thus equivalent to

5∨
r=0

[(2x+ r ≡ 0 (mod 6)) ∧ (2x+ r ⩽ min{3x, 12})]

or, slightly less succinctly,
5∨

r=0
[(2x+ r ≡ 0 (mod 6)) ∧ (2x+ r ⩽ 3x) ∧ (2x+ r ⩽ 12)] .

This eliminates the existential quantifier. Observing that only even r are possible and
collecting like terms, we can simplify the result further into

[(x ≡ 0 (mod 3)) ∧ (0 ⩽ x) ∧ (2x ⩽ 12)] ∨
[(x+ 1 ≡ 0 (mod 3)) ∧ (2 ⩽ x) ∧ (2x ⩽ 10)] ∨
[(x+ 2 ≡ 0 (mod 3)) ∧ (4 ⩽ x) ∧ (2x ⩽ 8)].

In the three cases, we get x ∈ {0, 3, 6}, x ∈ {2, 5}, and x ∈ {4}, so the formula defines the
set Z ∩ [0, 6] \ {1}. This is the projection of the set T in Fig. 1 (left) on the x axis. ⌟

FSTTCS 2024

1:16 An Introduction to the Theory of Linear Integer Arithmetic

In Example 18, it is clear that the “hole” x = 1 in the projection of T arises because of
divisibility constraints, which are necessary because we are eliminating an integer variable. In
comparison, for the theory of linear real arithmetic, the conjunction max si ⩽ min tj already
does the job. In fact, over R this method shows that the orthogonal projection of a convex
polyhedron (that is, of the set of real solutions to a system of linear inequalities) is also a
convex polyhedron. The method is known as the Fourier–Motzkin quantifier elimination for
linear real arithmetic (see, e.g., [112, Chapter 1] and [92, Chapter 1]), a useful instrument
not only in the development of theory but also in modern practical tools [105].

As in Section 3.1, we see that reasoning about integers requires a combination of an
argument for reals and an approach for handling divisibility constraints.

Proof idea for Theorem 16. Using De Morgan’s laws and equivalences such as

¬(t1 ⩽ t2) ⇐⇒ (t2 < t1), (t1 < t2) ⇐⇒ (t1 + 1 ⩽ t2),

¬(t1 ≡ t2 (mod m)) ⇐⇒
m−1∨
r=1

(t1 + r ≡ t2 (mod m)),

bring the given formula φ to disjunctive normal form (DNF), or rather (more precisely) an
OR of ANDs of non-strict linear inequalities and congruence constraints (no negations). As
[∃x (A ∨B)] ⇐⇒ (∃x A) ∨ (∃x B), the problem reduces to handling one such AND. For this
special case, the idea is shown in Examples 17 and 18, and here is a more structured sketch:
1. Multiply both sides of each constraint so that all the coefficients at x become identical,

say to m ∈ Z. (A natural choice for m is the least common multiple of all coefficients
at x.)

2. Replace all occurrences of mx by x′, where x′ is a new (fresh) variable. Conjoin (AND)
the congruence x′ ≡ 0 (mod m) to the formula. We are now handling ∃x′ instead of ∃x.
(In Example 18, the auxiliary variable would be y′ standing for 6y.)

3. The formula is now an AND of constraints not involving x′, several lower bounds on x′,
several upper bounds on x′, and several congruence constraints on x′. We split into cases
(OR) according to which of the lower bounds s1, . . . , sk is the greatest and according to
the remainder (of this greatest lower bound) with respect to the least common multiple
of moduli in congruence constraints. Within each case, x′ can be eliminated. ◀

▶ Remark 19. A different take on quantifier elimination for Presburger arithmetic follows
Cooper’s algorithm (“the new algorithm”) in [38], not requiring conversion to DNF. After all
coefficients at variable x are made identical, the inequalities involving x split the set Z into a
finite number of intervals. A suitable value for x exists if and only if one of these intervals
contains an integer that satisfies (or perhaps fails) a certain subset of the inequalities and
has some divisibility properties (as prescribed by the Boolean structure of the formula).

Suppose the least common multiple of all divisors in the divisibility constraints is M > 0.
(M = 1 if there are no such constraints.) Let [α, β] be one of the intervals, where α and β

are terms in which x does not appear. Then a suitable value for x (importantly, one with
the right divisibility properties) exists in [α, β] if and only if one of α, α+ 1, . . . , α+ (M − 1)
is suitable and does not exceed β; this is because shifting x by M leaves the truth value of
all divisibility constraints unchanged. The case α = −∞ is similar and simpler. ⌟

▶ Observation 20. Let a formula φ′ be output by Cooper’s quantifier elimination procedure
on input φ, which has eliminated variable x. Constraints of φ′ arise from equating pairs of
expressions for (or rather bounds on) x. If φ contains inequalities s ⩽ ax and bx ⩽ t, where
a, b > 0, then their conjunction entails bs ⩽ at, or equivalently at − bs ⩾ 0. A rescaling

D. Chistikov 1:17

by nonzero λ ∈ Q may be necessary if lcm(a, b) ̸= ab, or if other coefficients are taken
into account when computing the least common multiple. If, as in Example 18, divisibility
constraints come into the picture, then a constant α ∈ Z may be added or subtracted.

In fact, all inequalities in φ′ can be shown to arise this way. Suppose that an atomic
formula τ ⩽ 0 mentions two or more variables and appears in φ′. Then there are numbers
λ ∈ Q, α ∈ Z such that τ is λ · (a1τ2 − a2τ1) + α for some terms a1x + τ1 and a2x + τ2
which appear in the original formula φ. (For brevity, we do not make precise the notion of
appearance of a term in a formula.)

Further reading. Cooper’s paper [38] is a lucid introduction to quantifier elimination, and
his decision procedures have been analysed in more detail and extended (see, e.g., Oppen [111]
as well as Section 4.1 of the present paper). A formalisation in Isabelle/HOL is available [109].

The “big” disjunctions in the formulas resulting from quantifier elimination in Example 18
can instead be replaced by a bounded version of the existential quantifier (∃r ∈ [0, 5]).
Such quantifiers are not part of the syntax (Section 2) but can be added. This leads to
so-called uniform (generalisation of) Presburger arithmetic and the idea of weak quantifier
elimination [142], developed further [90] and implemented in Redlog. Redlog [42] is part of
the general-purpose computer algebra system REDUCE and offers quantifier elimination
methods for multiple arithmetic theories, Presburger arithmetic being one of them.

Chapter 4 of Kreisel and Krivine’s book [88] introduces quantifier elimination for several
arithmetic theories, such as Presburger arithmetic (although this name is not mentioned).
The reader should beware that this book uses symbols

∧
and

∨
in place of now ubiquitous ∀

and ∃. Unlike our presentation, the book also discusses not only model-theoretic aspects
of quantifier elimination but also proof-theoretic aspects (which axioms can justify the
equivalence of formulas).

Multiple further versions and extensions of quantifier elimination, for a variety of logical
theories, have been proposed in the literature and implemented in software. Most famously,
Tarski’s quantifier elimination procedure for the first-order theory of R with addition,
multiplication, and ordering led in the 1970s to Collins’s cylindrical algebraic decomposition,
a fundamental concept in computer algebra. In the first-order theory of the reals, atomic
formulas are inequalities between multivariate polynomials; see, e.g., [44] and [103, Section 5].

Many extensions of Presburger arithmetic are known to have quantifier elimination (see,
e.g., [132, 99, 133, 130]). For Presburger arithmetic itself, Weispfenning [141] analyses the
size of formulas output by (his) quantifier elimination procedure. Bounds that he obtains
in terms of the number of quantifier blocks (alternation) and the number of variables in
each block are a versatile instrument for other problems. An early implementation of such a
procedure is the Omega test [123]. In the SMT solver cvc5, quantifier elimination for linear
arithmetic uses so-called counterexample-guided instantiation [124, 9].

4 Alternation of quantifiers and computational complexity

The three views shown in Section 3 give rise to three (kinds of) decision procedures for
Presburger arithmetic. In the current section, we look further into the computational
complexity aspects.

If we analyse the decision procedures sketched above directly, we get overly pessimistic
estimates of the running time and memory requirements. These estimates can be improved
substantially (Section 4.1). Nevertheless, the decision problem turns out inherently hard.
Clever formulas in linear integer arithmetic can express rather intricate sets, and it is possible
to prove worst-case lower bounds on the complexity of the problem itself (Section 4.2).

FSTTCS 2024

1:18 An Introduction to the Theory of Linear Integer Arithmetic

Table 1 Effect of logical connectives and quantifiers on the size of representation (informally).
For all three views, ∀ can be replaced by ¬∃¬.

View Geometry Automata theory Symbolic computation
(quantifier elimination)

Representation Semi-linear sets Automata Logical formulas
¬ expensive NFA ⇝ DFA CNF ⇝ DNF∗

∨ trivial trivial trivial
∧ OK easy easy∗

∃ trivial easy expensive
∗ For some but not all quantifier elimination procedures. Trivial for other procedures.

As we will see, the high computational complexity is in some sense linked with the
alternation of quantifiers of type ∃ and ∀ in the logical formulas. The present section focuses
on formulas with alternation, and Section 5 on formulas without it.

4.1 Handling quantifiers in decision procedures
As seen from Table 1, in each of the three views on Presburger arithmetic some of the logical
connectives and quantifiers may require a big increase in the size required to represent the
object – a semi-linear set, an automaton, or a logical formula. In slightly more detail:
For semi-linear sets, complementation is the most difficult operation. Intersection requires

work but the increase in size is smaller in comparison. (In dimension 1, the new period
can be chosen as the least common multiple of old periods; in higher dimension a suitable
generalisation is required.)

For automata, the existential quantifier requires an update to the set of accepting states
(which is easy) and, most importantly, makes the automaton nondeterministic (NFA
not DFA). Complementation of the NFA is then expensive, e.g., requiring the subset
construction.

For logical formulas, some quantifier elimination algorithms require conversion to DNF.
For them, negation is difficult (conversion from CNF to DNF) and conjunction requires
the application of the distributive law. Other algorithms can handle arbitrary Boolean
structure. In either case, the existential quantifier presents the main challenge.

In summary, for each method some operation requires an exponential growth in size, also
referred to as an exponential blow-up, in the worst case.

If n is the size of the input sentence, then stacking n exponentials leads to a worst-case

upper bound on the running time of decision procedures that has the form 2. . . 2
, where the

height of the tower grows as n. Differences between functions such as 2n, 2cn, 2n2 , etc.,
can be ignored for the purpose of this crude estimate. For all three views, a sequence of
n alternating quantifiers ∃x1 ∀x2 ∃x3 . . . presents a challenge.

Importantly, better decision procedures (and sometimes better analyses) are available.

A function f : N → N is called elementary if f(n) ⩽ 2. . . 2n

, where the tower has some fixed
height k ∈ N. A yes–no problem belongs to the complexity class ELEMENTARY if it has
an algorithm with elementary running time. For example, all problems in complexity classes
P, NP, PSPACE, EXP, 2-EXP, etc., also belong to this huge class. According to English
Wikipedia, “The name was coined by László Kalmár, in the context of recursive functions
and undecidability; most problems in it are far from elementary.” For computationally hard
problems in logic, achieving polynomial running time or even polynomial space (memory

D. Chistikov 1:19

usage) is often not possible, and the dichotomy between elementary and non-elementary
bounds can indicate problems for which practical implementations can hope to handle some
medium-size inputs in reasonable time.

▶ Theorem 21 (Oppen [111]). There is an algorithm that solves the decision problem for
Presburger arithmetic in triply exponential time.

As we discuss below, in fact all three approaches (based on semi-linear sets, on automata,
and on the elimination of quantifiers) provide elementary decision procedures.

Proof idea. Cooper’s quantifier elimination algorithm [38] sketched in Section 3.3 can be
shown to require at most 222pn

basic computational steps on sentences of size n, where p > 0
is some universal constant. To improve upon the crude non-elementary upper bound, we
need to measure the complexity of formulas using several parameters, rather than just one
(size of the formula). The dependence of these parameters on one another may still seem
to lead to a tower of exponentials, but the idea is to find a parameter that enjoys a tighter
(elementary) estimate. We can think of it as a controlling parameter, because the other
parameters can then be bounded once we know this key one is under control.

Our controlling parameter will be the number of distinct coefficients of variables in the
formula. For a formula φ, let us denote this quantity by z(φ). We only sketch the core of the
argument, leaving many details to the reader. Consider the elimination of a single existential
quantifier. Let φ be a formula given to Cooper’s algorithm, and let φ′ be the output formula
equivalent to ∃x φ. Let us review Observation 20 from Section 3.3. Each inequality in φ′

arises from two inequalities of φ by cross-multiplication. Given terms ax + by + t′ and
cx+ dy + t′′ that appear in inequalities of φ, the result is

(ad− bc) y + (at′′ − ct′) ∼ 0, (8)

where ∼ is one of the signs ⩽, ⩾; possibly rescaled by some nonzero λ ∈ Q and with an
additive shift α ∈ Z. We ignore the scaling factor λ ∈ Q in this proof. So, for a variable y,
every coefficient at y in the new formula φ′ is a combination of at most 4 coefficients in φ,
two of them at y and two at the variable x that is being eliminated. Thus, z(φ′) ⩽ z(φ)4.

Now denote by φk the formula obtained from φ after eliminating k quantifiers; φ0 = φ.
In the worst case, z(φk) grows with k as follows:

z(φ) = z ⇝ z4 ⇝ z42
⇝ z43

⇝ . . . ⇝ z4k

.

Formally, one can prove by induction an upper bound z(φk) ⩽ Mk
def= z(φ)4k . Since k is

bounded from above by the size of the input formula φ, the number of distinct coefficients
throughout the entire procedure is at most doubly exponential in the size of φ. With
this elementary bound in hand, we can bound other parameters, such as the magnitude of
coefficients, of moduli in congruence constraints, of constant terms, etc. For instance, the
number of linear terms of the form a1x1 + . . . + amxm which may arise in the formula is
bounded by (Mk)m, where the number of variables, m, is again at most the size of φ. This
is also an elementary bound. (We note that the total number of inequalities might be much
higher than the number of linear terms, because of additive constants.) Bounds can then be
combined into an elementary bound on the size of formulas. ◀

There are a number of factors that we have glossed over. For example, in the sketch
above we have considered two constraints in isolation, whereas the least common multiple of
all coefficients at x may be much bigger than just ac. However, the principle remains sound.

FSTTCS 2024

1:20 An Introduction to the Theory of Linear Integer Arithmetic

Starting with Oppen’s theorem, elementary decision procedures have been given for all
three views on linear integer arithmetic. Oppen’s result was extended to automata [85, 45, 46]
and recently to semi-linear sets [35]. Weispfenning’s quantifier elimination procedure [141]
also runs in triply exponential time, as best procedures for all three views do.

We briefly comment on the geometric view. It is convenient to extend the L(b, P) notation
(Eq. (6) in Section 3.1) to L(B,P) def=

⋃
b∈B L(b, P). Sets of this form have been studied by

Ginsburg and Spanier [57, 56], and we refer to them as hybrid linear sets. As we will see in
Section 5.1, these are sets of integer solutions to systems of linear inequalities. Semi-linear
sets are exactly unions

S =
⋃
i∈I

L(Bi, Pi), |I|, |Bi|, |Pi| < ∞. (9)

As it turns out, in generator representation the cardinality |I| can be chosen as the controlling
parameter for elementary bounds. By a discrete version of Carathéodory’s theorem (see,
e.g., [48] and [33, Proposition 5]), the reasoning can be reduced to the case where each set Pi

contains linearly independent vectors only. The reader may now see the link with the number
of linear terms in the logical formulas during quantifier elimination. A useful ingredient in
the constructions is the observation, for every fixed d ⩾ 1, that n hyperplanes in Rd split it
into at most O(nd) regions [101, Chapter 6].

4.2 Using quantifiers to write succinct formulas
We typically use arbitrary integers in Presburger formulas. One can ask if the succinctness
of the logic changes if only small integers (say, between −2 and 2) are allowed. The answer
to this question is negative: for instance, the formula y = 2n · x is equivalent to

∃y0 ∃y1 . . . ∃yn (y0 = x) ∧ (y1 = 2y0) ∧ (y2 = 2y1) ∧ . . . ∧ (yn = 2yn−1) ∧ (y = yn).

Thus, numbers up to 2poly(n) can be expressed by formulas of size poly(n) with coefficients
from [−2, 2]. Can we express even larger numbers using small formulas?

▶ Example 22 (Fischer and Rabin [53]). There is a sequence of formulas Fn(x, y) of size O(n)
such that Fn(x, y) holds if and only if x = 22n · y. According to Fischer and Rabin [53],
“[this] device is a special case of a more general theorem due to M. Fischer and A. Meyer. It
was rediscovered independently by several people including V. Strassen.”

We can take F0(x, y) : x = 2y, since 2 = 220 . The sequence is then constructed
inductively. The idea is to have Fn+1(x, y) equivalent to ∃zn [Fn(x, zn) ∧ Fn(zn, y)]. This
direct definition, however, would unravel into a very big formula, of size O(2n) for index n.
Instead, the following construction has only one instance of Fn and thus unravels into a
formula of size O(n):

Fn+1(x, y) : ∃zn ∀un ∀vn

[((
(un = x) ∧ (vn = zn)

)
∨
(
(un = zn) ∧ (vn = y)

))
→ Fn(un, vn)

]
.

The bit size of the formula is actually O(n log n), with the log n factor due to the need to
refer to at least n distinct variables. Interestingly, Fn works just as well over R. ⌟

Combining Example 22 with the Chinese remainder theorem (generalising Example 2),
Fischer and Rabin also give a sequence of formulas that define triply exponential rather than
doubly exponential numbers; see Kozen’s textbook [87, Lecture 24] for details.

Formulas from Example 22 and more sophisticated ones are then used to “define” and
manipulate long bit strings. This led Fischer and Rabin [53] to lower bounds on the
computational complexity of the decision problem for linear integer (as well as real) arithmetic.

D. Chistikov 1:21

▶ Theorem 23 (Fischer and Rabin [53]). The decision problem for Presburger arithmetic
requires at least doubly exponential time in the worst case, even for nondeterministic al-
gorithms.

For linear real arithmetic, the lower bound is a single exponential. A precise characterisa-
tion of the computational complexity of the problem was subsequently given by Berman [17]:
the decision problem for Presburger arithmetic is complete for STA(∗, 22O(n)

, n). The ac-
ronym STA stands for “space, time, alternation”; this class corresponds to Turing machines
that run in time 22cn for some c > 0 on inputs of length n, using up to n− 1 alternations
between nondeterministic and universal modes (with n = 0 corresponding to deterministic
algorithms). Kozen [87, Lectures 23–24] offers a modern exposition of results of this kind.

Theorem 23 and Berman’s strengthening of it suggest that triply exponential algorithms
(Section 4.1) are optimal in the worst case: known simulation results of 2-NEXP and
STA(∗, 22O(n)

, n) machines by deterministic algorithms run in triply exponential time.
In logical formulas arising from applications, alternation depth is often low, i.e., formulas

may have the form Φ(u) : ∀x1∃x2 . . .Qxk φ(x1, . . . ,xk,u) with small k. We can think of
k as being fixed. Here φ is quantifier-free, Q is either ∃ or ∀ depending on the parity of k,
and all variables in each block xi are bound by the same kind of quantifier (existential or
universal). As an example, ∀∗∃∗ formulas have alternation depth k = 2. Naturally, sentences
may also start with the existential block.

▶ Example 24 (Grädel [59], see also Haase [64]). There exists a constant c > 0, a sequence
of integers (rn)n⩾1, and a sequence of ∀∃∗-formulas Gn(z) of size O(n) such that (i) Gn(z)
holds if and only if rn divides z and (ii) rn ⩾ 22cn for all n.

The construction consists of three steps. In the first step, we construct a sequence of
formulas Mn(x, y, z) for bounded multiplication: under the assumption 0 ⩽ x < 2n, the
formula Mn(x, y, z) will be true if and only if x · y = z. For other values of x, the truth value
of Mn is unconstrained. Here is the formula:

Mn(x, y, z) : ∃x1 . . . ∃xn ∃z1 . . . ∃zn

(x = x1 · 2n−1 + x2 · 2n−2 + . . .+ xn) ∧
n∧

i=1
[(0 ⩽ xi) ∧ (xi ⩽ 1)] ∧

(z = z1 · 2n−1 + z2 · 2n−2 + . . .+ zn) ∧
n∧

i=1

[(
(xi = 0) → (zi = 0)

)
∧(

(xi = 1) → (zi = y)
)]
.

This is an existential formula of size O(n).
The second step constructs the formula Dn(x, z) : ∃y Mn(x, y, z). Under the assumption

0 ⩽ x < 2n, this formula asserts that z is a multiple of x. In the third step we arrive at
Gn(z) : ∀x [((0 < x) ∧ (x < 2n)) → Dn(x, z))]. Now rn = lcm(1, 2, . . . , 2n − 1). ⌟

Example 24 leads to Grädel’s lower bound in the following theorem:

▶ Theorem 25 (Grädel [59] and Haase [64]). The decision problem for ∀∗∃∗-Presburger
arithmetic is complete for coNEXP.

Class coNEXP contains complements of problems that can be decided in nondeterministic
time O(2nc), for some c > 0. The upper bound is due to Haase, who also proved that, for
each k ⩾ 2, the fragment of Presburger arithmetic with alternation depth k is complete for
the (k − 1)st level of the so-called weak EXP hierarchy [64].

FSTTCS 2024

1:22 An Introduction to the Theory of Linear Integer Arithmetic

More recently, Nguyen and Pak have studied the computational complexity of fur-
ther restricted fragments. By encoding problems related to continued fractions, they
were able to show, for instance, that the decision problem for sentences of the form
∃z ∀y1 ∀y2 ∃x1∃x2 : φ(x1, x2, y1, y2, z) is NP-hard even for φ with 10 inequalities [107]. In
this problem, the sentence is fixed entirely except for the numbers in atomic formulas.

5 Three views on integer programming

The feasibility problem of integer (linear) programming is the following problem:

Input: A system A · x ⩽ c of m linear inequalities in n variables, where A ∈ Zm×n

and c ∈ Zm.
Output: Does the system have a solution in Zn?

Here the relation ⩽ between vectors is component-wise: for a = (a1, . . . , am) and b =
(b1, . . . , bm) we write a ⩽ b if and only if ai ⩽ bi for each i between 1 and m.

In the present paper, “integer programming” will refer to this problem (that is, we will
not consider optimisation versions thereof). It is a special case of the decision problem for
Presburger arithmetic, and even for existential Presburger arithmetic, where all quantifiers
are existential and appear at the beginning of the formula.

▶ Theorem 26 (Borosh and Treybig [24] and Papadimitriou [113]). Integer programming is
NP-complete.

▶ Corollary 27 (see, e.g., [111]). Existential Presburger arithmetic is NP-complete.

In these statements, we omit the words “the decision problem for”. NP-hardness of both
problems is easy to justify, by an encoding of the subset sum problem (Example 3, conjunctive
formula) or Boolean satisfiability (SAT). We now derive Corollary 27 from Theorem 26.

Proof of Corollary 27. Given a sentence in Presburger arithmetic, where all quantifiers are
existential and appear at the beginning of the formula, we eliminate all negations (except on
congruence constraints) using De Morgan’s laws and the equivalence (t1 < t2) ⇐⇒ (t1 + 1 ⩽
t2). We can similarly eliminate all atomic formulas except inequalities and the remaining
negated congruences. The quantifier-free part of the formula is now a monotone Boolean
combination of atoms of two types: non-strict linear inequalities and negated congruences.
Such a sentence is true if and only if there exists a subset of these atoms and, for each
negated congruence ¬(t1 ≡ t2 (mod m)), a remainder r ∈ {1, . . . ,m− 1} such that:
(1) if all the atoms in the subset are true, then the formula is true;
(2) if each negated congruence in the subset is replaced by the equality t1+r = t2+mw, where

w is a fresh variable, and then by two inequalities t1 + r ⩽ t2 +mw and t1 + r ⩾ t2 +mw,
then the resulting system of inequalities is a positive instance of the integer programming
problem.

The first condition is checked directly, and the second is an NP condition by Theorem 26. ◀

Thus, existential Presburger arithmetic is very close to integer programming. Membership
of integer programming in NP is not obvious. It is indeed the case that a guessed solution
can be verified quickly; but a separate argument is required to show that, whenever some
solution exists, a small solution exists too, where “small” means “of polynomial bit size
relative to the bit size of the system”.

D. Chistikov 1:23

At first sight, appeal to the three views on Presburger arithmetic does not seem to resolve
the problem: the size of representation in the decision procedures might well increase to
doubly exponential. Nevertheless, all three views can actually be used to prove the NP upper
bound of Theorem 26. This is the subject of three subsections below.

For several perspectives on integer programming, one can recommend books [81, 129, 145].

5.1 A view from geometry: discrete convex polyhedra
In this section we take the geometric view, following the ideas of von zur Gathen and
Sieveking [55]. The resulting proof of Theorem 26 makes use of the principle we have already
seen: first consider constraints over R (or Q) instead of Z.

We recall basic definitions from polyhedral geometry and convex analysis. For an
introduction, the reader is referred to Lauritzen’s undergraduate textbook [92] or lecture
notes [91], and to Paffenholz’s lecture notes [112]. More advanced material can be found in
De Loera, Hemmecke, and Köppe [39], Rockafellar [127], and Schrijver [129].

A linear combination λ1v1 + . . .+ λnvn of v1, . . . , vn ∈ Rn is called:
conic (or: positive) if all λi ⩾ 0,
affine if λ1 + . . .+ λn = 1, and
convex if it is conic and affine.

Given a set S ⊆ Rd, the set of all its conic (affine, convex) combinations is the cone generated
by S, the affine hull and the convex hull of S, denoted coneS, aff S, and convS, respectively.
We will use the Minkowski sum and product notation: A+B = {a+ b : a ∈ A, b ∈ B} and
A ·B = {a · b : a ∈ A, b ∈ B}.

The following famous theorem gives two equivalent characterisations of convex polyhedra:

▶ Theorem 28 (Minkowski–Weyl, 1896, 1935). For P ⊆ Rd, the following are equivalent:
(H) P = {x : A · x ⩽ c} for some matrix A and vector c;
(V) P = convF + coneG for some finite sets F and G.

In words of Rockafellar [127, Section 19]: “This classical result is an outstanding example
of a fact which is completely obvious to geometric intuition, but which wields important
algebraic content and is not trivial to prove.” The (V) ⇒ (H) direction can in fact be obtained
by a direct application of Fourier–Motzkin quantifier elimination (Section 3.3) over R.

Representations (H) and (V) are referred to as H-representation and V-representation
of P . In the former, P is the intersection of a finite collection of half-spaces. In the latter,
elements of F can be thought of as vertices and elements of G as directions in which P “is
infinite” (directions of recession).

The size of each representation is the number of bits required to write it (that is, A, c or
F,G) down. Let us assume henceforth that we deal with rational numbers only. An effective
version of the Minkowski–Weyl theorem over Q states that the two representations can be
translated from one to another; see, e.g., [129, Chapter 10] and [112, Chapter 5]:

▶ Lemma 29. In Theorem 28:
1. A and c can be made rational if and only if F and G can be made rational.
2. Let P be nonempty and suppose either representation is given, of bit size s. Then the

other can be computed, with the bit size of each number at most poly(s).

We do not give a proof of Lemma 29. One of the possible paths is through the theory of
structure of convex polyhedra: intuitively, in Rd each vertex (element of F) is determined as
the intersection of d hyperplanes (facets), and each “infinite direction” (element of G) by the
intersection of d− 1 hyperplanes. By Cramer’s rule from linear algebra, solutions to systems

FSTTCS 2024

1:24 An Introduction to the Theory of Linear Integer Arithmetic

of linear equations are formed by ratios of appropriately formed determinants. This yields a
polynomial bound on the bit size of numbers. However, in degenerate situations (e.g., linear
dependencies or underdetermined systems) some more work is needed.

In both translations (H) ⇒ (V) and (V) ⇒ (H), the total blow-up in size can be
exponential while the size of individual numbers stays polynomial. An example is the “box”
[0, 1]d = {(x1, . . . , xd) ∈ Rd : 0 ⩽ xi ⩽ 1 for all i}, a convex polyhedron which has a short
H-representation but 2d vertices. A realisation of the translations is the double description
method [92, Chapter 5], see also [112, Chapters 2–5] and [54, Chapter 5].

Let us move from Q to Z. Recall the definition of hybrid linear sets L(B,P) from the
end of Section 4.1.

▶ Theorem 30 (von zur Gathen and Sieveking [55]). For S ⊆ Zd, the following are equivalent:
(a) S is a projection of {x ∈ Zk : A · x ⩽ c} for some A ∈ Zm×k, c ∈ Zm, and k ⩾ d;
(b) S = L(C,Q) for some finite sets C ⊆ Zd and Q ⊆ Zd.
Moreover, suppose P ̸= ∅ and either representation is given of bit size s. Then the other can
be computed, with the bit size of each number at most poly(s).

The projection in Theorem 30 is orthogonal to the principal axes: some k− d coordinates
are simply crossed out. This theorem entails the NP upper bound of Theorem 26. It
highlights and uses the idea that hybrid linear sets are a discrete analog of convex polyhedra.
Indeed, the set{∑

λibi +
∑

µjpj :
∑

λi = 1, λi ⩾ 0, µj ⩾ 0
}

(10)

is the convex polyhedron convB + coneP if λi, µj ∈ R; and the hybrid linear set L(B,P) if
λi, µj ∈ Z.

Proof of Theorem 30. Direction (b) to (a) is straightforward. Auxiliary variables λi and
µj in Eq. (10) correspond to coordinates that are crossed out (projected away).

For (a) to (b), we apply Lemma 29. Taking an arbitrary x ∈ Zk from the set {x : A · x ⩽
c} = convF + coneG, we can write it, for some λi, µj ⩾ 0 such that

∑
λi = 1, as

x =
∑

λif i +
∑

µjgj =
(∑

λif i +
∑

(µj − ⌊µj⌋)gj

)
+
∑

⌊µj⌋ gj ,

where ⌊a⌋ stands for the greatest integer not exceeding a ∈ R, and f i, gj are elements of F
and G, respectively. Note that we can assume with no loss of generality that all vectors in G

belong to Zk: indeed, they must be in Qk by Lemma 29, and therefore each of them can be
multiplied by the least common multiple of the denominators of its components. This shows
that each vector ⌊µj⌋gj is also in Zk. But then, since x ∈ Zk, the difference of these two
vectors (which is the vector in the big round brackets) is also integral. Therefore, x belongs
to L(C ′, Q′), where Q′ is the rescaled version of G and C ′ is the set of integer points in the
Minkowski sum convF +

∑
[0, 1) · {gj}. Since F and G are finite sets, this sum is bounded

and so C ′ is also finite. Finally, sets C and Q are obtained from C ′ and Q′, respectively, by
crossing out some of the components. We leave the verification of the “moreover” part of the
statement to the reader. ◀

▶ Example 31. Consider the triangle example from Eq. (1), page 2, with formula
φ(x, y) : (x ⩽ 3y) ∧ (2y ⩽ x) ∧ (y ⩽ 2). All vertices of the triangle are actually integer points,
see Fig. 1 (left). Consider, however, the modified formula φ(x, y) ∧ (x ⩾ 1). The origin (0, 0)
is no longer a feasible point, and in fact the set of rational solutions is conv(u′,u′′,v,w),
where v = (4, 2) and w = (6, 2) are unchanged and u′ = (1, 1/3) and u′′ = (1, 1/2). The

D. Chistikov 1:25

two new vertices are not integer points, and it is not difficult to imagine all of the “corners”
of our polytope (polygon in this example) to be cut off. Feasibility of the integer program
would thus hinge on combining a rational point from the convex hull,

∑
λif i in the proof of

Theorem 30, with a rational point from the cone,
∑

(µj − ⌊µj⌋)gj . ⌟

We now give an example showing that the number of generators of the hybrid linear set
L(C,Q) in Theorem 30 may be big, namely comparable to the magnitude of integers in the
system A · x ⩽ c.

▶ Example 32. Consider the set S = {(x, y, z) ∈ Z3 : (x+y−50z = 0)∧(x ⩾ 0)∧(y ⩾ 0)}. We
have S = L(0, {v0,v1, . . . , v50}), where vi = (i, 50−i, 1). This blow-up in size is unavoidable:
if S =

⋃
i∈I L(bi, Pi), then |I| + |

⋃
i∈I Pi| ⩾ 52. Indeed, notice that

⋃
i∈I Pi ⊆ S ⊆ N3. The

first containment holds because S is defined by a conjunction of homogeneous constraints.
Thus, vm ̸∈ L(0,

⋃
i∈I Pi \ {vm}) for all m. So, whenever vm ∈ L(bi, Pi), we have either

vm = bi, or vm ∈ Pi and bi = 0. This proves the inequality stated above.
In the absence of inequalities x ⩾ 0 and y ⩾ 0, we would instead have S′ = {(x, y, z) ∈

Z3 : x + y − 50z} = L(0, {±u,±v}), where u = (50, 0, 1) and v = (−1, 1, 0). Intuitively,
in the definition of the set S the two inequalities prevent the vectors ±v from becoming
periods. More generally, a nonempty set C ⊆ Zd defined by a system (conjunction) of linear
equations with integer coefficients is a coset of a finitely generated lattice (an analog of an
affine subspace, but over Z not R). The number of generators of the lattice is d− r, where r
is the rank of the system, which means that C can be written as a linear set with one base
vector and 2(d− r) periods. ⌟

The set P of periods of a linear set L(0, P) is also known as the Hilbert basis. If the
positive cone of the set is pointed, then there is a unique Hilbert basis of minimal size [39,
Corollary 2.6.4]. Software tools and libraries that can compute Hilbert bases are available,
e.g., Normaliz [28, 27] and polymake [7].

Ideas presented in this section tend to be very useful, and so is Theorem 30. Another
presentation is [39, Section 2.6]. Some recent extensions and applications can be found
in [94, 34, 40, 36]. Further development of ideas presented in this section have recently led
to a new quantifier elimination procedure for Presburger arithmetic [68].

5.2 A view from automata theory: pumping lemma
In Section 3.2 we have described and used representation of integers base k ⩾ 2, for so-called
k-automatic sets. The author is not aware of an argument proving the NP upper bound
of Theorem 26 using such representations. Indeed, extension of this NP upper bound to
existential Büchi arithmetic [62, 66] rather required building upon Theorem 26 (or, more
precisely, Theorem 30). We present a slightly different approach instead, which can also be
interpreted as automata-theoretic, but in the unary representation (base 1). That is, 4 ∈ N
is represented as 1 + 1 + 1 + 1 in this numeration system.

It is a well-known fact that the integer programming problem can equivalently be
formulated as follows:

Input: A system A · x = b of linear equations, with A an integer matrix and b an
integer vector.

Output: Does the system have a solution over N?

As a reminder, we use N = {0, 1, . . .} in this paper. Our goal is to bound the norm of smallest
solutions from above: this is easy if all entries of A have the same sign, but not necessarily
obvious in general.

FSTTCS 2024

1:26 An Introduction to the Theory of Linear Integer Arithmetic

For v = (v1, . . . , vd) ∈ Rd, denote by ∥v∥ its Euclidean length. In fact, any norm would
work just as well.

The following classical theorem is sometimes known as the Steinitz lemma.

▶ Theorem 33 (Steinitz lemma). Let d ⩾ 1 and let v1, . . . , vn be a sequence of vectors from
Rd. Assume ∥vi∥ ⩽ 1 for all i. If

∑n
i=1 vi = 0, then by reordering the vectors we can obtain

another sequence u1, . . . ,un such that ∥
∑k

i=1 ui∥ ⩽ d for all k = 0, . . . , n.

It is not immediately clear why this is true. Think of each vi as a vector of travel
(movement), and of a sequence of vectors as a travel itinerary. If we start from the origin 0,
then following the entire sequence takes us back to the origin. Reordering the vectors will
not change this, but can we reorder so that we never go far from 0 on the way?

It is rather remarkable that the distance can be kept small, at most d, no matter how big
or small n is. Matoušek’s wonderful book on applications of linear algebra in combinatorics,
geometry, and computer science presents a short proof [102, Miniature 20]. The upper bound
of d is due to Grinberg and Sevastyanov [61].

Let us apply the Steinitz lemma to integer programming, following Eisenbrand and
Weismantel [49]. For simplicity, consider a homogeneous equation A · x = 0 first. To show
an upper bound on the norm of smallest nonzero solutions over N, take some solution
x = (p1, . . . , ps), where s is the number of variables in the system and all pi ∈ N. Let
n = p1 + . . .+ ps and let v1, . . . , vn be the sequence of columns of A with the ith column
taken pi times. (This is the “unary” representation of solution (p1, . . . , ps).) As we know
that A · (p1, . . . , ps) = 0, we can apply the Steinitz lemma to scaled vectors pi/maxi ∥pi∥.
In the reordered sequence u1, . . . ,un (without scaling: each ui is some vj), all partial sums∑k

i=1 ui do not deviate much from 0; here k = 0, . . . , n. Instead of ⩽ d in Theorem 33, we
get ⩽ H def= d · maxi ∥pi∥ instead.

The remaining part of the argument is simple. Recall that all ui are integer vectors, and
there are not too many integer points in Rm with norm at most H ; let us say at most Nm(H)
such points. (Here m is the number of equations in the system.)

If n > Nm(H), then some point apart from 0 is visited twice (or 0 is visited three times
or more). Hence a part of the sequence u1, . . . ,un can be removed without affecting the
total sum. In other words, the solution x was not minimal to start with.
Otherwise n ⩽ Nm(H), and this is already an upper bound on the norm of solution.

We omit the calculations (see, e.g., [49]), but the bounds are sufficient for the NP upper
bound of Theorem 26. It remains to remark that nonzero b in A · x = b can be incorporated
in the argument too, for example by putting −b into the sequence.

The argument in the bullet list is reminiscent of the pumping lemma in automata theory:
in a finite-state automaton, every sufficiently long accepting run must repeat a state and can
therefore be shortened.

For further reading and applications, we refer to [8, 110].

5.3 A view from symbolic computation: Gaussian elimination
In 2024, two new approaches to quantifier elimination for existential Presburger arithmetic
were proposed. Each can be thought of as a nondeterministic polynomial-time rewriting
procedure for existential formulas. Run deterministically, the procedures output quantifier-
free formulas of exponential size; polynomial-size formulas can instead be produced in
an appropriately extended syntax. One of the procedures, by Chistikov, Mansutti, and
Starchak [36], is based on Gaussian elimination and the other, by Haase, Krishna, Madnani,
Mishra, and Zetzsche [68], on geometry of convex polyhedra. We outline key ideas behind
the former, focusing on integer programming (conjunctive formulas).

D. Chistikov 1:27

Fraction-free Gaussian elimination. The approach develops a remark by Weispfenning [142,
Corollary 4.3]. The basis of the algorithm is Gaussian elimination, a standard method for
solving systems of linear equations. It is well known that, over rational numbers (Q), it can
be performed in polynomial time. An elegant argument showing that each number appearing
in the computation is a ratio of two minors (sub-determinants) of the original matrix is given
in Schrijver’s book [129, Section 3.3]. Thus, the bit size of numbers stays bounded by a
polynomial in the bit size of the input.

We need instead a version of Gaussian elimination for integers (Z). The simplest division-
free algorithm works as follows: given equations ax+ by + . . . = 0 and cx+ dy + . . . = 0, to
eliminate x we “cross-multiply” them by c and a, respectively, and then subtract one from
the other (cf. Observation 20). The result is

(ad− bc) y + . . . = 0. (11)

The bit size of coefficients may double, and repeated cross-multiplication is known to lead
(in the worst case) to numbers of doubly exponential magnitude, i.e., of exponential bit size.

As it turns out, there exists a method avoiding this blow-up, which appears in the works
of Edmonds [47] and Bareiss [10] and was apparently known as early as 1888 to Clasen [6].
The following question is instructive. The coefficient at y in Eq. (11) is a 2 × 2 determinant.
Gaussian elimination can be seen as computing many such 2 × 2 determinants, inductively.
How does the determinant of a big (say n× n) square matrix, which can be computed using
Gaussian elimination, arise in this process?

The answer appears in a beautiful paper by Dodgson [41]. Let A = (aij) be a 3 × 3
matrix. Let us apply the first two steps of Gaussian elimination: after the first step, the
coefficient matrix becomes

a11 a12 a13
0 a11a22 − a12a21 a11a23 − a13a21
0 a11a32 − a12a31 a11a33 − a13a31

 =

a11 a12 a13

0
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣
0

∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣

and then, after the second elimination step, the entry in position (3, 3) becomes∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣
∣∣∣∣∣∣∣∣∣ .

By (a special case of) an identity due to Sylvester and Jacobi–Desnanot (see, e.g., [10, 41, 82]),
this coefficient is actually equal to the product a11 · detA. So, when division-free Gaussian
elimination is run on a bigger matrix, after two initial steps all coefficients in row 3 and
below become divisible by a11, as long as all original entries of A are integers. We can divide
by a11, and carry on, performing similar divisions after each step. The result is a fraction-free
Gaussian elimination [47, 10].

Handling inequalities with slack variables and nondeterminism. A second ingredient is
required to handle inequalities. We turn each of them into an equality, introducing slack
variables as, e.g., in our proof sketch for Theorem 13. In the run of Gaussian elimination, each
iteration takes an equality from the system and eliminates one actual (non-slack) variable.

FSTTCS 2024

1:28 An Introduction to the Theory of Linear Integer Arithmetic

If this equality contains a slack variable not handled so far, a small value for this slack
variable is guessed. The fact that small values (i.e., of polynomial bit size) suffice requires a
proof. These guessed values have the same nature as remainders r in Example 18, or shifts
+0, . . . ,+(M − 1) in Remark 19.

For further details, we refer the reader to the paper [36]. The algorithm can be extended to
arbitrary existential Presburger formulas, in which case (i) the shifts assume both positive and
negative values, and (ii) the equation to pick at each iteration is guessed nondeterministically.
Unlike [68], the paper [36] does not explicitly describe the formula produced by elimination
process but shows how to integrate the algorithm into an NP decision procedure for an
extension of existential Presburger arithmetic with nonlinear constraints of the forms y = 2x

and z = (x mod 2y). (This extension was previously shown decidable by automata-theoretic
methods [43].) Paper [68] draws a multitude of other consequences from efficient quantifier
elimination.

6 Further directions

There are several sources to help new people enter this field. Bradley and Manna’s text-
book [25] offers a detailed introduction to computational logic, including logical theories of
arithmetic, and applications in program verification. Kroening and Strichman’s textbook [89]
focuses on decision procedures and includes a chapter on quantifier-free linear real and integer
arithmetic and another on handling quantified formulas. Kirby’s recent textbook on model
theory [84] targets an audience of undergraduate and Master’s students, assuming little in
the way of background knowledge beyond the basics of abstract algebra.

Haase’s survey [65] provides a variety of references on Presburger arithmetic. An earlier
survey by Bès [18] gives an overview of definability and decidability questions for arithmetic
theories more broadly. Michaux and Villemaire’s survey of open questions [104], with a
focus on Presburger and Büchi arithmetic (see Section 3.2), instigated several subsequent
developments. For arithmetic theories that include both addition and multiplication, beyond
the literature mentioned at the end of Section 3.3 we refer the reader to Poonen’s lecture
notes on Hilbert’s 10th problem over rings [120] and a recent article by Pasten [115]. An
early reference on the computational complexity of logical theories is Ferrante and Rackoff’s
monograph [52].

We already highlighted (in Section 1) several sources on satisfiability modulo theories
(SMT) solving. Among further such sources focusing on logical theories of arithmetic are an
overview [3] and an evolving electronic book on SAT and SMT [147] containing many worked
examples and aimed at programmers. A new self-contained overview of the arithmetic engine
of Z3 (a successful SMT solver and theorem prover) has recently appeared [20].

Applications in verification. An early application of Presburger arithmetic appeared in the
work of Parikh [114] and Ginsburg and Spanier [57, 58]. Parikh considered the commutative
image, nowadays also known as Parikh image, of formal languages. For example, the
commutative image of a word w ∈ {a, b}∗ is a 2-dimensional vector ψ(w) = (m,n) such that
the letters a and b occur in w exactly m and n times, respectively: ψ(abbab) = (2, 3). The
commutative image of a language L ⊆ {a, b}∗ is ψ(L) = {ψ(w) : w ∈ L}. Parikh’s theorem
shows that the commutative image of every context-free language forms a semi-linear set,
and in fact for every semi-linear set S there exists a regular language with commutative
image S. Ginsburg and Spanier later proved that semi-linear sets are exactly sets definable
in Presburger arithmetic [58]; see Section 3.1.

D. Chistikov 1:29

Intuitively, context-free languages can be used to model procedure calls and recursion in
software. More generally, linear arithmetic constraints can capture periodic and ultimately
periodic behaviours. A well-known result constructs a polynomial-size existential Presburger
formula for the Parikh image of a context-free language, see [131, 140] and [75]. This has
further applications and extensions [67, 51, 74, 79, 72]. Thanks to the closure properties
of semi-linear sets, in the algorithmic foundations of verification “expressible in Presburger
arithmetic” often means tractable: complicated behaviours of systems can be approximated
and analysed with the help of this logic (see, e.g., [1, 73, 16]).

Extensions and other arithmetic theories. Ongoing research on arithmetic theories extends
decidability to more expressive theories and characterises the complexity of decidable ones.

Some extensions of Presburger arithmetic do not, in fact, change the family of definable
sets, but increase the succinctness of the logic. For Presburger arithmetic with counting
quantifiers [130, 71] and with the star operator [118, 69], complexity questions are open.

As already mentioned, adding arbitrary polynomial constraints to Presburger arithmetic
makes the theory undecidable. There is, however, a multitude of decidable theories. Such
is the extension of linear integer arithmetic with exponentiation base 2 [133, 32, 119], see
also [146, 15, 36]. Effectively, this means a new type of constraints is allowed, namely those
of the form y = 2x, where x, y are variables. The choice of integer base k ⩾ 2 is immaterial
but needs to remain the same throughout the formula.

Alternatively, the logic can permit, in addition to linear integer constraints, assertions
of the form “x is a Fibonacci number” as basic building blocks. Such building blocks are
referred to as predicates. Many other sparse predicates can be added instead of the Fibonacci
one, whilst keeping the resulting theory decidable [132, 99]. For the predicate “x is a power
of 2”, an algorithm with elementary running time has been found [15]. On the theme of
adding several “powers” predicates simultaneously, recent references are [77] and [83].

Recall that linear integer arithmetic includes predicates for divisibility by fixed integers.
Adding the full divisibility predicate “x divides y” (where x and y are variables) renders the
theory undecidable [126, 18], whilst keeping decidable its existential fragment (sentences with
existential quantifiers only, all of which must appear at the beginning of the formula without
negations in between). Whether the decision problem for this fragment belongs to NP is an
open question; see, e.g., [94, 138, 116, 40]. In comparison, if instead of divisibility (x | y) we
add multiplication (x · y = z), then even the existential fragment becomes undecidable, by a
celebrated result due to Davis, Putnam, Robinson, and Matiyasevich (negative resolution of
Hilbert’s 10th problem); see, e.g., [120].

Famous open problems in number theory can be expressed using sentences in linear
integer arithmetic extended with a predicate P (x) asserting that x is prime. Indeed, the twin
prime conjecture is expressed with the sentence ∀x ∃y [(y ⩾ x) ∧ P (y) ∧ P (y + 2)], and the
Goldbach conjecture with the sentence ∀x ∃y [(x ⩽ 2) ∨ (P (y) ∧ P (x− y))]. It remains open
whether Presburger arithmetic with the primes predicate (P) is decidable; see, e.g., [31, 93].

References

1 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Roland Meyer, and Mehdi Seyed Salehi. What’s
decidable about availability languages? In FSTTCS, pages 192–205, 2015. doi:10.4230/
LIPICS.FSTTCS.2015.192.

2 Erika Ábrahám, József Kovács, and Anne Remke. SMT: something you must try. In iFM,
pages 3–18, 2023. doi:10.1007/978-3-031-47705-8_1.

FSTTCS 2024

https://doi.org/10.4230/LIPICS.FSTTCS.2015.192
https://doi.org/10.4230/LIPICS.FSTTCS.2015.192
https://doi.org/10.1007/978-3-031-47705-8_1

1:30 An Introduction to the Theory of Linear Integer Arithmetic

3 Erika Ábrahám and Gereon Kremer. SMT solving for arithmetic theories: Theory and tool
support. In SYNASC, pages 1–8, 2017. doi:10.1109/SYNASC.2017.00009.

4 Jorge L. Ramírez Alfonsín. Complexity of the Frobenius problem. Combinatorica, 16(1):143–
147, 1996. doi:10.1007/BF01300131.

5 Jorge L. Ramírez Alfonsín. The Diophantine Frobenius problem. Oxford Lecture Series in
Mathematics and Its Applications. Oxford University Press, 2006. doi:10.1093/acprof:
oso/9780198568209.001.0001.

6 Steven C. Althoen and Renate McLaughlin. Gauss-Jordan reduction: A brief history. Am.
Math. Mon., 94(2):130–142, 1987.

7 Benjamin Assarf, Ewgenij Gawrilow, Katrin Herr, Michael Joswig, Benjamin Lorenz, Andreas
Paffenholz, and Thomas Rehn. Computing convex hulls and counting integer points with
polymake. Math. Program. Comput., 9(1):1–38, 2017. doi:10.1007/S12532-016-0104-Z.

8 Imre Bárány. On the power of linear dependencies. In Building Bridges: Between Mathematics
and Computer Science, volume 19 of Bolyai Society Mathematical Studies, pages 31–45.
Springer, 2008. doi:10.1007/978-3-540-85221-6_1.

9 Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai
Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex
Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar.
cvc5: A versatile and industrial-strength SMT solver. In TACAS, pages 415–442, 2022.
doi:10.1007/978-3-030-99524-9_24.

10 Erwin H. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian elimination.
Math. Comput., 22:565–578, 1968. doi:10.1090/S0025-5718-1968-0226829-0.

11 Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability
modulo theories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability — Second Edition, volume 336 of Frontiers in Artificial Intelligence
and Applications, pages 1267–1329. IOS Press, 2021. doi:10.3233/FAIA201017.

12 Clark W. Barrett, Cesare Tinelli, Haniel Barbosa, Aina Niemetz, Mathias Preiner, Andrew
Reynolds, and Yoni Zohar. Satisfiability modulo theories: A beginner’s tutorial. In FM, pages
571–596, 2024. doi:10.1007/978-3-031-71177-0_31.

13 Alexander Barvinok. Integer points in polyhedra. EMS Press, 2008. doi:10.4171/052.
14 Alexander I. Barvinok. A polynomial time algorithm for counting integral points in polyhedra

when the dimension is fixed. Math. Oper. Res., 19(4):769–779, 1994. doi:10.1287/MOOR.19.
4.769.

15 Michael Benedikt, Dmitry Chistikov, and Alessio Mansutti. The complexity of Presburger
arithmetic with power or powers. In ICALP, pages 112:1–112:18, 2023. doi:10.4230/LIPICS.
ICALP.2023.112.

16 Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche. Ramsey quantifiers
in linear arithmetics. Proc. ACM Program. Lang., 8(POPL):1–32, 2024. doi:10.1145/3632843.

17 Leonard Berman. The complexity of logical theories. Theor. Comput. Sci., 11:71–77, 1980.
doi:10.1016/0304-3975(80)90037-7.

18 Alexis Bès. A survey of arithmetical definability. A tribute to Maurice Boffa. B. Belg. Math.
Soc.-Sim., suppl.:1–54, 2001. URL: http://lacl.u-pec.fr/bes/publi/survey.pdf.

19 Alexis Bès and Christian Choffrut. Theories of real addition with and without a predicate for
integers. Log. Methods Comput. Sci., 17(2), 2021. doi:10.23638/LMCS-17(2:18)2021.

20 Nikolaj S. Bjørner and Lev Nachmanson. Arithmetic solving in Z3. In CAV, part I, pages
26–41, 2024. doi:10.1007/978-3-031-65627-9_2.

21 Bernard Boigelot, Isabelle Mainz, Victor Marsault, and Michel Rigo. An efficient algorithm to
decide periodicity of b-recognisable sets using MSDF convention. In ICALP, pages 118:1–118:14,
2017. doi:10.4230/LIPICS.ICALP.2017.118.

22 Bernard Boigelot and Pierre Wolper. Representing arithmetic constraints with finite automata:
An overview. In ICLP, LNCS, pages 1–19, 2002. doi:10.1007/3-540-45619-8_1.

https://doi.org/10.1109/SYNASC.2017.00009
https://doi.org/10.1007/BF01300131
https://doi.org/10.1093/acprof:oso/9780198568209.001.0001
https://doi.org/10.1093/acprof:oso/9780198568209.001.0001
https://doi.org/10.1007/S12532-016-0104-Z
https://doi.org/10.1007/978-3-540-85221-6_1
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1090/S0025-5718-1968-0226829-0
https://doi.org/10.3233/FAIA201017
https://doi.org/10.1007/978-3-031-71177-0_31
https://doi.org/10.4171/052
https://doi.org/10.1287/MOOR.19.4.769
https://doi.org/10.1287/MOOR.19.4.769
https://doi.org/10.4230/LIPICS.ICALP.2023.112
https://doi.org/10.4230/LIPICS.ICALP.2023.112
https://doi.org/10.1145/3632843
https://doi.org/10.1016/0304-3975(80)90037-7
http://lacl.u-pec.fr/bes/publi/survey.pdf
https://doi.org/10.23638/LMCS-17(2:18)2021
https://doi.org/10.1007/978-3-031-65627-9_2
https://doi.org/10.4230/LIPICS.ICALP.2017.118
https://doi.org/10.1007/3-540-45619-8_1

D. Chistikov 1:31

23 George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and Logic. Cambridge
University Press, 5th edition, 2007. doi:10.1017/CBO9780511804076.

24 Itshak Borosh and Leon Bruce Treybig. Bounds on positive integral solutions of lin-
ear Diophantine equations. Proc. Am. Math. Soc., 55(2):299–304, 1976. doi:10.1090/
S0002-9939-1976-0396605-3.

25 Aaron R. Bradley and Zohar Manna. The calculus of computation: Decision procedures with
applications to verification. Springer, 2007. doi:10.1007/978-3-540-74113-8.

26 Martin Bromberger. Decision Procedures for Linear Arithmetic. PhD thesis, Saarland
University, Saarbrücken, Germany, 2019. URL: https://tel.archives-ouvertes.fr/
tel-02427371.

27 Winfried Bruns, Bogdan Ichim, and Christof Söger. The power of pyramid decomposition in
Normaliz. J. Symb. Comput., 74:513–536, 2016. doi:10.1016/J.JSC.2015.09.003.

28 Winfried Bruns, Bogdan Ichim, Christof Söger, and Ulrich von der Ohe. Normaliz. Algorithms
for rational cones and affine monoids. URL: https://www.normaliz.uni-osnabrueck.de/.

29 Véronique Bruyère, Georges Hansel, Christian Michaux, and Roger Villemaire. Logic and
p-recognizable sets of integers. B. Belg. Math. Soc.-Sim., 1(2):191–238, 1994. doi:10.36045/
bbms/1103408547.

30 J. Richard Büchi. Weak second-order arithmetic and finite automata. Math. Log. Q., 6(1–
6):66–92, 1960. doi:10.1002/malq.19600060105.

31 Patrick Cegielski, Denis Richard, and Maxim Vsemirnov. On the additive theory of prime
numbers II. In CSIT 2005 (Computer Science and Information Technologies, September 19–23,
2005, Yerevan, Armenia), pages 39–47, 2005. doi:10.48550/arXiv.math/0609554.

32 Gregory Cherlin and Françoise Point. On extensions of Presburger arithmetic. In 4th Easter
Conference on Model Theory, volume 86 of Humboldt-Univ. Berlin Seminarberichte, pages
17–34, 1986. URL: https://webusers.imj-prg.fr/~francoise.point/papiers/cherlin_
point86.pdf.

33 Dmitry Chistikov and Christoph Haase. The taming of the semi-linear set. In ICALP, pages
128:1–128:13, 2016. doi:10.4230/LIPICS.ICALP.2016.128.

34 Dmitry Chistikov and Christoph Haase. On the complexity of quantified integer programming.
In ICALP, pages 94:1–94:13, 2017. doi:10.4230/LIPICS.ICALP.2017.94.

35 Dmitry Chistikov, Christoph Haase, and Alessio Mansutti. Geometric decision procedures
and the VC dimension of linear arithmetic theories. In LICS, pages 59:1–59:13, 2022. doi:
10.1145/3531130.3533372.

36 Dmitry Chistikov, Alessio Mansutti, and Mikhail R. Starchak. Integer linear-exponential
programming in NP by quantifier elimination. In ICALP, pages 132:1–132:20, 2024. doi:
10.4230/LIPICS.ICALP.2024.132.

37 David C. Cooper. Programs for mechanical program verification. In Machine Intelligence,
volume 6, pages 43–59. Edinburgh University Press, 1971.

38 David C. Cooper. Theorem proving in arithmetic without multiplication. In Machine
Intelligence, volume 7, pages 91–99. Edinburgh University Press, 1972.

39 Jesús A. De Loera, Raymond Hemmecke, and Matthias Köppe. Algebraic and geometric ideas
in the theory of discrete optimization, volume MO14 of MOS-SIAM Series on Optimization.
SIAM and MOS, 2013. doi:10.1137/1.9781611972443.

40 Rémy Défossez, Christoph Haase, Alessio Mansutti, and Guillermo A. Pérez. Integer program-
ming with GCD constraints. In SODA, pages 3605–3658, 2024. doi:10.1137/1.9781611977912.
128.

41 Charles L. Dodgson. Condensation of determinants, being a new and brief method for
computing their arithmetical values. Proc. R. Soc. Lond., 15:150–155, 1867. doi:10.1098/
rspl.1866.0037.

42 Andreas Dolzmann and Thomas Sturm. REDLOG: computer algebra meets computer logic.
SIGSAM Bull., 31(2):2–9, 1997. doi:10.1145/261320.261324.

FSTTCS 2024

https://doi.org/10.1017/CBO9780511804076
https://doi.org/10.1090/S0002-9939-1976-0396605-3
https://doi.org/10.1090/S0002-9939-1976-0396605-3
https://doi.org/10.1007/978-3-540-74113-8
https://tel.archives-ouvertes.fr/tel-02427371
https://tel.archives-ouvertes.fr/tel-02427371
https://doi.org/10.1016/J.JSC.2015.09.003
https://www.normaliz.uni-osnabrueck.de/
https://doi.org/10.36045/bbms/1103408547
https://doi.org/10.36045/bbms/1103408547
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.48550/arXiv.math/0609554
https://webusers.imj-prg.fr/~francoise.point/papiers/cherlin_point86.pdf
https://webusers.imj-prg.fr/~francoise.point/papiers/cherlin_point86.pdf
https://doi.org/10.4230/LIPICS.ICALP.2016.128
https://doi.org/10.4230/LIPICS.ICALP.2017.94
https://doi.org/10.1145/3531130.3533372
https://doi.org/10.1145/3531130.3533372
https://doi.org/10.4230/LIPICS.ICALP.2024.132
https://doi.org/10.4230/LIPICS.ICALP.2024.132
https://doi.org/10.1137/1.9781611972443
https://doi.org/10.1137/1.9781611977912.128
https://doi.org/10.1137/1.9781611977912.128
https://doi.org/10.1098/rspl.1866.0037
https://doi.org/10.1098/rspl.1866.0037
https://doi.org/10.1145/261320.261324

1:32 An Introduction to the Theory of Linear Integer Arithmetic

43 Andrei Draghici, Christoph Haase, and Florin Manea. Semënov arithmetic, affine VASS, and
string constraints. In STACS, pages 29:1–29:19, 2024. doi:10.4230/LIPICS.STACS.2024.29.

44 Lou van den Dries. Alfred Tarski’s elimination theory for real closed fields. J. Symb. Log.,
53(1):7–19, 1988. doi:10.1017/S0022481200028899.

45 Antoine Durand-Gasselin and Peter Habermehl. On the use of non-deterministic automata for
Presburger arithmetic. In CONCUR, pages 373–387, 2010. doi:10.1007/978-3-642-15375-4_
26.

46 Antoine Durand-Gasselin and Peter Habermehl. Ehrenfeucht-Fraïssé goes elementarily
automatic for structures of bounded degree. In STACS, pages 242–253, 2012. doi:
10.4230/LIPIcs.STACS.2012.242.

47 Jack Edmonds. Systems of distinct representatives and linear algebra. J. Res. NBS-B. Math.
Sci., 71B(4):241–245, 1967. doi:10.6028/jres.071B.033.

48 Friedrich Eisenbrand and Gennady Shmonin. Carathéodory bounds for integer cones. Oper.
Res. Lett., 34(5):564–568, 2006. doi:10.1016/J.ORL.2005.09.008.

49 Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for
integer programming using the Steinitz lemma. ACM Trans. Algorithms, 16(1):5:1–5:14, 2020.
doi:10.1145/3340322.

50 Javier Esparza and Michael Blondin. Automata theory: An algorithmic approach. MIT Press,
2023.

51 Javier Esparza and Pierre Ganty. Complexity of pattern-based verification for multithreaded
programs. In POPL, pages 499–510, 2011. doi:10.1145/1926385.1926443.

52 Jeanne Ferrante and Charles W. Rackoff. The computational complexity of logical theories,
volume 718 of Lecture Notes in Mathematics. Springer, 1979. doi:10.1007/BFb0062837.

53 Michael J. Fischer and Michael O. Rabin. Super-exponential complexity of Presburger
arithmetic. In Complexity of Computation, volume 7 of SIAM-AMS Proceedings, pages 27–41.
AMS, 1974.

54 Jean Gallier and Jocelyn Quaintance. Aspects of convex geometry: Polyhedra, linear
programming, shellings, Voronoi diagrams, Delaunay triangulations, 2022. URL: https:
//www.cis.upenn.edu/~jean/gbooks/convexpoly.html.

55 Joachim von zur Gathen and Malte Sieveking. A bound on solutions of linear integer
equalities and inequalities. Proc. Am. Math. Soc., 72(1):155–158, 1978. doi:10.1090/
S0002-9939-1978-0500555-0.

56 Seymour Ginsburg. The mathematical theory of context-free languages. McGraw-Hill, 1966.
57 Seymour Ginsburg and Edwin H. Spanier. Bounded ALGOL-like languages. Trans. Am. Math.

Soc., 113(2):333–368, 1964. doi:10.1090/S0002-9947-1964-0181500-1.
58 Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas, and languages.

Pacific Journal of Mathematics, 16(2):285–296, 1966. doi:10.2140/pjm.1966.16.285.
59 Erich Grädel. Dominoes and the complexity of subclasses of logical theories. Ann. Pure Appl.

Log., 43(1):1–30, 1989. doi:10.1016/0168-0072(89)90023-7.
60 Erich Grädel. Automatic structures: Twenty years later. In LICS, pages 21–34, 2020.

doi:10.1145/3373718.3394734.
61 Victor S. Grinberg and Sergey V. Sevast’yanov. Value of the Steinitz constant. Funct. Anal.

Appl., 14(2):125–126, 1980. doi:10.1007/BF01086559.
62 Florent Guépin, Christoph Haase, and James Worrell. On the existential theories of Büchi

arithmetic and linear p-adic fields. In LICS, 2019. doi:10.1109/LICS.2019.8785681.
63 Roland Guttenberg, Mikhail A. Raskin, and Javier Esparza. Geometry of reachability sets of

vector addition systems. In CONCUR, pages 6:1–6:16, 2023. doi:10.4230/LIPICS.CONCUR.
2023.6.

64 Christoph Haase. Subclasses of Presburger arithmetic and the weak EXP hierarchy. In
CSL-LICS, pages 47:1–47:10, 2014. doi:10.1145/2603088.2603092.

https://doi.org/10.4230/LIPICS.STACS.2024.29
https://doi.org/10.1017/S0022481200028899
https://doi.org/10.1007/978-3-642-15375-4_26
https://doi.org/10.1007/978-3-642-15375-4_26
https://doi.org/10.4230/LIPIcs.STACS.2012.242
https://doi.org/10.4230/LIPIcs.STACS.2012.242
https://doi.org/10.6028/jres.071B.033
https://doi.org/10.1016/J.ORL.2005.09.008
https://doi.org/10.1145/3340322
https://doi.org/10.1145/1926385.1926443
https://doi.org/10.1007/BFb0062837
https://www.cis.upenn.edu/~jean/gbooks/convexpoly.html
https://www.cis.upenn.edu/~jean/gbooks/convexpoly.html
https://doi.org/10.1090/S0002-9939-1978-0500555-0
https://doi.org/10.1090/S0002-9939-1978-0500555-0
https://doi.org/10.1090/S0002-9947-1964-0181500-1
https://doi.org/10.2140/pjm.1966.16.285
https://doi.org/10.1016/0168-0072(89)90023-7
https://doi.org/10.1145/3373718.3394734
https://doi.org/10.1007/BF01086559
https://doi.org/10.1109/LICS.2019.8785681
https://doi.org/10.4230/LIPICS.CONCUR.2023.6
https://doi.org/10.4230/LIPICS.CONCUR.2023.6
https://doi.org/10.1145/2603088.2603092

D. Chistikov 1:33

65 Christoph Haase. A survival guide to Presburger arithmetic. ACM SIGLOG News, 5(3):67–
82, 2018. URL: https://www.cs.ox.ac.uk/people/christoph.haase/home/publication/
haa-18/haa-18.pdf, doi:10.1145/3242953.3242964.

66 Christoph Haase. Approaching arithmetic theories with finite-state automata. In LATA, pages
33–43, 2020. doi:10.1007/978-3-030-40608-0_3.

67 Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reachability in
succinct and parametric one-counter automata. In CONCUR, pages 369–383, 2009. doi:
10.1007/978-3-642-04081-8_25.

68 Christoph Haase, Shankara Narayanan Krishna, Khushraj Madnani, Om Swostik Mishra, and
Georg Zetzsche. An efficient quantifier elimination procedure for Presburger arithmetic. In
ICALP, pages 142:1–142:17, 2024. doi:10.4230/LIPICS.ICALP.2024.142.

69 Christoph Haase and Georg Zetzsche. Presburger arithmetic with stars, rational subsets of
graph groups, and nested zero tests. In LICS, 2019. doi:10.1109/LICS.2019.8785850.

70 Peter Habermehl, Vojtech Havlena, Michal Hecko, Lukás Holík, and Ondrej Lengál. Algebraic
reasoning meets automata in solving linear integer arithmetic. In CAV, part I, pages 42–67,
2024. doi:10.1007/978-3-031-65627-9_3.

71 Peter Habermehl and Dietrich Kuske. On Presburger arithmetic extended with non-unary
counting quantifiers. Log. Methods Comput. Sci., 19(3), 2023. doi:10.46298/LMCS-19(3:
4)2023.

72 Matthew Hague, Artur Jez, and Anthony W. Lin. Parikh’s theorem made symbolic. Proc.
ACM Program. Lang., 8(POPL):1945–1977, 2024. doi:10.1145/3632907.

73 Matthew Hague, Anthony W. Lin, Philipp Rümmer, and Zhilin Wu. Monadic decomposition in
integer linear arithmetic. In IJCAR, pages 122–140, 2020. doi:10.1007/978-3-030-51074-9_
8.

74 Matthew Hague and Anthony Widjaja Lin. Model checking recursive programs with numeric
data types. In CAV, pages 743–759, 2011. doi:10.1007/978-3-642-22110-1_60.

75 Matthew Hague and Anthony Widjaja Lin. Synchronisation- and reversal-bounded analysis of
multithreaded programs with counters. In CAV, pages 260–276, 2012. Full version: https:
//anthonywlin.github.io/papers/cav12-long.pdf. doi:10.1007/978-3-642-31424-7_22.

76 Jesper G. Henriksen, Jakob L. Jensen, Michael E. Jørgensen, Nils Klarlund, Robert Paige,
Theis Rauhe, and Anders Sandholm. Mona: Monadic second-order logic in practice. In
TACAS, pages 89–110, 1995. doi:10.1007/3-540-60630-0_5.

77 Philipp Hieronymi and Christian Schulz. A strong version of Cobham’s theorem. In STOC,
pages 1172–1179, 2022. doi:10.1145/3519935.3519958.

78 Thiet-Dung Huynh. The complexity of semilinear sets. Elektron. Inf.verarb. Kybern., 18(6):291–
338, 1982.

79 Petr Janku and Lenka Turonová. Solving string constraints with approximate Parikh image. In
EUROCAST (I), volume 12013, pages 491–498, 2019. doi:10.1007/978-3-030-45093-9_59.

80 Klaus Jansen and Kim-Manuel Klein. About the structure of the integer cone and its application
to bin packing. Math. Oper. Res., 45(4):1498–1511, 2020. doi:10.1287/MOOR.2019.1040.

81 Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R.
Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey. 50 years of
integer programming 1958–2008: From the early years to the state-of-the-art. Springer, 2009.
doi:10.1007/978-3-540-68279-0.

82 Anna Karapiperi, Michela Redivo-Zaglia, and Maria Rosaria Russo. Generalizations of
Sylvester’s determinantal identity, 2015. arXiv:1503.00519.

83 Toghrul Karimov, Florian Luca, Joris Nieuwveld, Joël Ouaknine, and James Worrell. On
the decidability of Presburger arithmetic expanded with powers. In SODA, 2025. To appear.
arXiv:2407.05191.

84 Jonathan Kirby. An invitation to model theory. Cambridge University Press, 2019. doi:
10.1017/9781316683002.

FSTTCS 2024

https://www.cs.ox.ac.uk/people/christoph.haase/home/publication/haa-18/haa-18.pdf
https://www.cs.ox.ac.uk/people/christoph.haase/home/publication/haa-18/haa-18.pdf
https://doi.org/10.1145/3242953.3242964
https://doi.org/10.1007/978-3-030-40608-0_3
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.4230/LIPICS.ICALP.2024.142
https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1007/978-3-031-65627-9_3
https://doi.org/10.46298/LMCS-19(3:4)2023
https://doi.org/10.46298/LMCS-19(3:4)2023
https://doi.org/10.1145/3632907
https://doi.org/10.1007/978-3-030-51074-9_8
https://doi.org/10.1007/978-3-030-51074-9_8
https://doi.org/10.1007/978-3-642-22110-1_60
https://anthonywlin.github.io/papers/cav12-long.pdf
https://anthonywlin.github.io/papers/cav12-long.pdf
https://doi.org/10.1007/978-3-642-31424-7_22
https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1145/3519935.3519958
https://doi.org/10.1007/978-3-030-45093-9_59
https://doi.org/10.1287/MOOR.2019.1040
https://doi.org/10.1007/978-3-540-68279-0
https://arxiv.org/abs/1503.00519
https://arxiv.org/abs/2407.05191
https://doi.org/10.1017/9781316683002
https://doi.org/10.1017/9781316683002

1:34 An Introduction to the Theory of Linear Integer Arithmetic

85 Felix Klaedtke. Bounds on the automata size for Presburger arithmetic. ACM Trans. Comput.
Log., 9(2):11:1–11:34, 2008. doi:10.1145/1342991.1342995.

86 Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual. BRICS, Department
of Computer Science, University of Aarhus, January 2001. Notes Series NS-01-1. URL:
http://www.brics.dk/mona/.

87 Dexter Kozen. Theory of computation. Texts in Computer Science. Springer, 2006. doi:
10.1007/1-84628-477-5.

88 Georg Kreisel and Jean-Louis Krivine. Elements of mathematical logic (model theory). North
Holland, 1967.

89 Daniel Kroening and Ofer Strichman. Decision procedures: An algorithmic point of view.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2nd edition, 2016.
doi:10.1007/978-3-662-50497-0.

90 Aless Lasaruk and Thomas Sturm. Weak integer quantifier elimination beyond the linear case.
In CASC, pages 275–294, 2007. doi:10.1007/978-3-540-75187-8_22.

91 Niels Lauritzen. Lectures on convex sets, 2009. URL: https://users.fmf.uni-lj.si/lavric/
lauritzen.pdf.

92 Niels Lauritzen. Undergraduate convexity: From Fourier and Motzkin to Kuhn and Tucker.
World Scientific, 2013. doi:10.1142/8527.

93 Thierry Lavendhomme and Arnaud Maes. Note on the undecidability of ⟨ω; +, Pm,r⟩. In
Definability in Arithmetics and Computability, volume 11 of Cahiers du Centre de logique, pages
61–68. Academia-Bruylant, 2000. URL: http://www.cahiersdelogique.be/cahier11angl.
html.

94 Antonia Lechner, Joël Ouaknine, and James Worrell. On the complexity of linear arithmetic
with divisibility. In LICS, pages 667–676, 2015. doi:10.1109/LICS.2015.67.

95 Hendrik W. Lenstra, Jr. Integer programming with a fixed number of variables. Math. Oper.
Res., 8(4):538–548, 1983. doi:10.1287/MOOR.8.4.538.

96 Jérôme Leroux. A polynomial time Presburger criterion and synthesis for number decision
diagrams. In LICS, pages 147–156, 2005. doi:10.1109/LICS.2005.2.

97 Jérôme Leroux. Vector addition system reachability problem: a short self-contained proof. In
POPL, pages 307–316, 2011. doi:10.1145/1926385.1926421.

98 Jérôme Leroux and Gérald Point. TaPAS: The Talence Presburger arithmetic suite. In TACAS,
pages 182–185, 2009. doi:10.1007/978-3-642-00768-2_18.

99 Arnaud Maes. Revisiting Semenov’s results about decidability of extensions of Presburger
arithmetic. In Definability in Arithmetics and Computability, volume 11 of Cahiers du Centre
de logique, pages 11–59. Academia-Bruylant, 2000. URL: http://www.cahiersdelogique.be/
cahier11angl.html.

100 Victor Marsault and Jacques Sakarovitch. Ultimate periodicity of b-recognisable sets: A
quasilinear procedure. In DLT, pages 362–373, 2013. doi:10.1007/978-3-642-38771-5_32.

101 Jiří Matoušek. Lectures on discrete geometry. Graduate Texts in Mathematics. Springer, 2002.
doi:10.1007/978-1-4613-0039-7.

102 Jiří Matoušek. Thirty-three miniatures: Mathematical and algorithmic applications of linear
algebra, volume 53 of Student Mathematical Library. AMS, 2010. doi:10.1090/stml/053.

103 Jirí Matoušek. Intersection graphs of segments and ∃R, 2014. arXiv:1406.2636.
104 Christian Michaux and Roger Villemaire. Open questions around Büchi and Presburger

arithmetics. In Logic: from Foundations to Applications: European logic colloquium, pages
353–384. Oxford University Press, 1996. doi:10.1093/oso/9780198538622.003.0015.

105 Jasper Nalbach, Valentin Promies, Erika Ábrahám, and Paul Kobialka. FMplex: A novel
method for solving linear real arithmetic problems. In GandALF, pages 16–32, 2023. doi:
10.4204/EPTCS.390.2.

106 Danny Nguyen and Igor Pak. Enumerating projections of integer points in unbounded
polyhedra. SIAM J. Discret. Math., 32(2):986–1002, 2018. doi:10.1137/17M1118907.

https://doi.org/10.1145/1342991.1342995
http://www.brics.dk/mona/
https://doi.org/10.1007/1-84628-477-5
https://doi.org/10.1007/1-84628-477-5
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-540-75187-8_22
https://users.fmf.uni-lj.si/lavric/lauritzen.pdf
https://users.fmf.uni-lj.si/lavric/lauritzen.pdf
https://doi.org/10.1142/8527
http://www.cahiersdelogique.be/cahier11angl.html
http://www.cahiersdelogique.be/cahier11angl.html
https://doi.org/10.1109/LICS.2015.67
https://doi.org/10.1287/MOOR.8.4.538
https://doi.org/10.1109/LICS.2005.2
https://doi.org/10.1145/1926385.1926421
https://doi.org/10.1007/978-3-642-00768-2_18
http://www.cahiersdelogique.be/cahier11angl.html
http://www.cahiersdelogique.be/cahier11angl.html
https://doi.org/10.1007/978-3-642-38771-5_32
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1090/stml/053
https://arxiv.org/abs/1406.2636
https://doi.org/10.1093/oso/9780198538622.003.0015
https://doi.org/10.4204/EPTCS.390.2
https://doi.org/10.4204/EPTCS.390.2
https://doi.org/10.1137/17M1118907

D. Chistikov 1:35

107 Danny Nguyen and Igor Pak. Short Presburger arithmetic is hard. SIAM J. Comput.,
51(2):1–31, 2022. doi:10.1137/17M1151146.

108 Phong Q. Nguyen and Brigitte Vallée, editors. The LLL algorithm: Survey and applications.
Information Security and Cryptography. Springer, 2010. doi:10.1007/978-3-642-02295-1.

109 Tobias Nipkow. Linear quantifier elimination. J. Autom. Reason., 45(2):189–212, 2010.
doi:10.1007/S10817-010-9183-0.

110 Timm Oertel, Joseph Paat, and Robert Weismantel. A colorful Steinitz lemma with application
to block-structured integer programs. Math. Program., 204(1):677–702, 2024. doi:10.1007/
S10107-023-01971-3.

111 Derek C. Oppen. A 222pn

upper bound on the complexity of Presburger arithmetic. J. Comput.
Syst. Sci., 16(3):323–332, 1978. doi:10.1016/0022-0000(78)90021-1.

112 Andreas Paffenholz. Polyhedral geometry and linear optimization (summer semester 2010),
2013. URL: http://www.mathematik.tu-darmstadt.de/~paffenholz/data/preprints/
geometry_of_optimization.pdf.

113 Christos H. Papadimitriou. On the complexity of integer programming. J. ACM, 28(4):765–768,
1981. doi:10.1145/322276.322287.

114 Rohit Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966. doi:10.1145/321356.
321364.

115 Hector Pasten. Definability and arithmetic. Notices of the AMS, 70(9):1385–1393, 2023.
doi:10.1090/noti2777.

116 Guillermo A. Pérez and Ritam Raha. Revisiting parameter synthesis for one-counter automata.
In CSL, pages 33:1–33:18, 2022. doi:10.4230/LIPICS.CSL.2022.33.

117 Jean-Éric Pin, editor. Handbook of automata theory. Volume II. Automata in mathematics
and selected applications. EMS Press, 2021. doi:10.4171/AUTOMATA-2.

118 Ruzica Piskac and Viktor Kuncak. Linear arithmetic with stars. In CAV, pages 268–280, 2008.
doi:10.1007/978-3-540-70545-1_25.

119 Françoise Point. On the expansion (N; +, 2x) of Presburger arithmetic, 2007. Preprint. URL:
https://webusers.imj-prg.fr/~francoise.point/papiers/Pres.pdf.

120 Bjorn Poonen. Hilbert’s Tenth Problem over rings of number-theoretic interest. Notes
from the lectures at the Arizona Winter School “Logic and Number Theory”, 2003. URL:
http://math.mit.edu/~poonen/papers/aws2003.pdf.

121 Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du
I Congrès des Mathématiciens des Pays Slaves, Varsovie, 1929, pages 92–101. Skład Główny,
1930.

122 Mojżesz Presburger and Dale Jabcquette. On the completeness of a certain system of
arithmetic of whole numbers in which addition occurs as the only operation. History and
Philosophy of Logic, 12(2):225–233, 1991. Translation of ref. [121] and commentary. doi:
10.1080/014453409108837187.

123 William W. Pugh. A practical algorithm for exact array dependence analysis. Commun. ACM,
35(8):102–114, 1992. doi:10.1145/135226.135233.

124 Andrew Reynolds, Tim King, and Viktor Kuncak. Solving quantified linear arithmetic
by counterexample-guided instantiation. Formal Methods Syst. Des., 51(3):500–532, 2017.
doi:10.1007/S10703-017-0290-Y.

125 Michel Rigo. Numeration systems: A link between number theory and formal language theory.
In DLT, pages 33–53, 2010. doi:10.1007/978-3-642-14455-4_6.

126 Julia Robinson. Definability and decision problems in arithmetic. J. Symb. Log., 14(2):98–114,
1949. doi:10.2307/2266510.

127 R. Tyrrell Rockafellar. Convex analysis. Princeton University Press, 1970. doi:10.1515/
9781400873173.

128 Bruno Scarpellini. Complexity of subcases of Presburger arithmetic. Trans. Am. Math. Soc.,
284(1):203–218, 1984. doi:10.1090/S0002-9947-1984-0742421-9.

FSTTCS 2024

https://doi.org/10.1137/17M1151146
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/S10817-010-9183-0
https://doi.org/10.1007/S10107-023-01971-3
https://doi.org/10.1007/S10107-023-01971-3
https://doi.org/10.1016/0022-0000(78)90021-1
http://www.mathematik.tu-darmstadt.de/~paffenholz/data/preprints/geometry_of_optimization.pdf
http://www.mathematik.tu-darmstadt.de/~paffenholz/data/preprints/geometry_of_optimization.pdf
https://doi.org/10.1145/322276.322287
https://doi.org/10.1145/321356.321364
https://doi.org/10.1145/321356.321364
https://doi.org/10.1090/noti2777
https://doi.org/10.4230/LIPICS.CSL.2022.33
https://doi.org/10.4171/AUTOMATA-2
https://doi.org/10.1007/978-3-540-70545-1_25
https://webusers.imj-prg.fr/~francoise.point/papiers/Pres.pdf
http://math.mit.edu/~poonen/papers/aws2003.pdf
https://doi.org/10.1080/014453409108837187
https://doi.org/10.1080/014453409108837187
https://doi.org/10.1145/135226.135233
https://doi.org/10.1007/S10703-017-0290-Y
https://doi.org/10.1007/978-3-642-14455-4_6
https://doi.org/10.2307/2266510
https://doi.org/10.1515/9781400873173
https://doi.org/10.1515/9781400873173
https://doi.org/10.1090/S0002-9947-1984-0742421-9

1:36 An Introduction to the Theory of Linear Integer Arithmetic

129 Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience series in
discrete mathematics and optimization. Wiley, 1999.

130 Nicole Schweikardt. Arithmetic, first-order logic, and counting quantifiers. ACM Trans.
Comput. Log., 6(3):634–671, 2005. doi:10.1145/1071596.1071602.

131 Helmut Seidl, Thomas Schwentick, Anca Muscholl, and Peter Habermehl. Counting in trees
for free. In ICALP, pages 1136–1149, 2004. doi:10.1007/978-3-540-27836-8_94.

132 Aleksei L. Semenov. On certain extensions of the arithmetic of addition of natural numbers.
Math. USSR Izv., 15(2):401–418, 1980. doi:10.1070/IM1980v015n02ABEH001252.

133 Aleksei L. Semenov. Logical theories of one-place functions on the set of natural numbers.
Math. USSR Izv., 22(3):587–618, 1984. doi:10.1070/IM1984v022n03ABEH001456.

134 Jeffrey Shallit. The logical approach to automatic sequences: Exploring combinatorics on words
with Walnut, volume 482 of London Mathematical Society Lecture Note Series. Cambridge
University Press, 2022. doi:10.1017/9781108775267.

135 Alexander Shen and Nikolay K. Vereshchagin. Computable functions, volume 19 of Student
Mathematical Library. AMS, 2003. doi:10.1090/stml/019.

136 Michael Sipser. Introduction to the theory of computation. Cengage Learning, 2013. 3rd ed.
137 Ryan Stansifer. Presburger’s article on integer arithmetic: Remarks and translation. Technical

Report TR 84-639, Department of Computer Science, Cornell University, Ithaca, New York,
September 1984. URL: https://hdl.handle.net/1813/6478.

138 Mikhail R. Starchak. Positive existential definability with unit, addition and coprimeness. In
ISSAC, pages 353–360, 2021. doi:10.1145/3452143.3465515.

139 Mikhail R. Starchak. On the existential arithmetics with addition and bitwise minimum. In
FoSSaCS, pages 176–195, 2023. doi:10.1007/978-3-031-30829-1_9.

140 Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. On the complexity of equational
Horn clauses. In CADE, pages 337–352, 2005. doi:10.1007/11532231_25.

141 Volker Weispfenning. The complexity of almost linear diophantine problems. J. Symb. Comput.,
10(5):395–404, 1990. doi:10.1016/S0747-7171(08)80051-X.

142 Volker Weispfenning. Complexity and uniformity of elimination in Presburger arithmetic. In
ISSAC, pages 48–53, 1997. doi:10.1145/258726.258746.

143 Volker Weispfenning. Mixed real-integer linear quantifier elimination. In ISSAC, pages 129–136,
1999. doi:10.1145/309831.309888.

144 Herbert S. Wilf. A circle-of-lights algorithm for the “money-changing problem”. Am. Math.
Mon., 85(7):562–565, 1978. doi:10.2307/2320864.

145 H. Paul Williams. Logic and integer programming, volume 130 of International Series in Oper-
ations Research & Management Science. Springer, 2009. doi:10.1007/978-0-387-92280-5.

146 Hao Wu, Yu-Fang Chen, Zhilin Wu, Bican Xia, and Naijun Zhan. A decision procedure for
string constraints with string/integer conversion and flat regular constraints. Acta Inform.,
61(1):23–52, 2024. doi:10.1007/S00236-023-00446-4.

147 Dennis Yurichev. SAT/SMT by example. Version of May 12, 2024. URL: https://smt.st/.

https://doi.org/10.1145/1071596.1071602
https://doi.org/10.1007/978-3-540-27836-8_94
https://doi.org/10.1070/IM1980v015n02ABEH001252
https://doi.org/10.1070/IM1984v022n03ABEH001456
https://doi.org/10.1017/9781108775267
https://doi.org/10.1090/stml/019
https://hdl.handle.net/1813/6478
https://doi.org/10.1145/3452143.3465515
https://doi.org/10.1007/978-3-031-30829-1_9
https://doi.org/10.1007/11532231_25
https://doi.org/10.1016/S0747-7171(08)80051-X
https://doi.org/10.1145/258726.258746
https://doi.org/10.1145/309831.309888
https://doi.org/10.2307/2320864
https://doi.org/10.1007/978-0-387-92280-5
https://doi.org/10.1007/S00236-023-00446-4
https://smt.st/

Advances in Algorithmic Meta Theorems
Sebastian Siebertz #

University of Bremen, Germany

Alexandre Vigny #

University Clermont Auvergne, France

Abstract
Tractability results for the model checking problem of logics yield powerful algorithmic meta theorems
of the form:

Every computational problem expressible in a logic L can be solved efficiently on every class C

of structures satisfying certain conditions.

The most prominent logics studied in the field are (counting) monadic second-order logic (C)MSO
and first-order logic FO and its extensions. The complexity of CMSO model checking in general
and of FO model checking on monotone graph classes is very well understood. In recent years there
has been a rapid and exciting development of new algorithmic meta theorems. On the one hand
there has been major progress for FO model checking on hereditary graph classes. This progress was
driven by the development of a combinatorial structure theory for the logically defined monadically
stable and monadically dependent graph classes, as well as by the advent of the new width measure
twinwidth. On the other hand new algorithmic meta theorems for new logics with expressive power
between FO and CMSO offer a new unifying view on methods like the irrelevant vertex technique
and recursive understanding. In this paper we overview the recent advances in algorithmic meta
theorems and provide rough sketches for the methods to prove them.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Mathematics of
computing → Graph theory

Keywords and phrases Algorithmic meta theorems, monadic second-order logic, first-order logic,
disjoint paths logic, algorithmic graph structure theory

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.2

Category Invited Paper

1 Logics Expressing Computational Problems – Descriptive Complexity

1.1 Logics to Express Computational Problems
Logic provides a universal and machine independent language to formally define computational
problems. For example, the k-Colorability problem for any fixed k can be expressed by
the following sentence of monadic second-order logic MSO:

φk := ∃M1 . . . ∃Mk

(
∀x

∨
1≤i≤k

Mi(x) ∧
∧

1≤i≤k

∀x∀y(E(x, y) → ¬(Mi(x) ∧Mi(y)))
)
.

In this sentence, we existentially quantify k sets of vertices M1, . . . ,Mk representing the k
colors. We then state that every element is contained in (at least) one of the Mi, that is, is
assigned at least one color. Finally we verify that no two adjacent vertices are assigned the
same color. We write A |= φ if a structure A satisfies a sentence φ, in other words, if the
structure is a model of φ. In this case, for a graph G, we have G |= φk if and only if G is
k-colorable. The algorithmic problem of testing whether a given structure is a model of a
given sentence of a logic L is called the model checking problem for L.

© Sebastian Siebertz and Alexandre Vigny;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 2; pp. 2:1–2:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:siebertz@uni-bremen.de
https://orcid.org/0000-0002-6347-1198
mailto:alexandre.vigny@uca.fr
https://orcid.org/0000-0002-4298-8876
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Advances in Algorithmic Meta Theorems

Second-order logic SO can quantify over relations of arbitrary arity as well as over elements
of a structure and is closed under the Boolean connectives ∧,∨,¬. Monadic second-order
logic MSO is the fragment of SO that allows quantification only over unary relations, also
called monadic predicates, and ∃SO is the existential fragment of SO.

Logic can express many problems, and in fact, by Fagin’s celebrated theorem [49, 50],
every NP-property can be expressed by an ∃SO sentence. Furthermore, model checking for
every fixed ∃SO sentence is in NP. Whenever a logic L satisfies these two conditions for a
complexity class K: for every K-property there is an L sentence defining it, and the model
checking problem for every fixed sentence of L is in K, we say that L captures K. Hence,
Fagin’s Theorem states that ∃SO captures NP. This result was extended by Stockmeyer [114]
who observed that full second-order logic captures the polynomial hierarchy. In the area of
descriptive complexity theory many other logics capturing complexity classes were studied,
for example, transitive closure logic captures NLogSpace on ordered structures [79] and least
fixed-point logic LFP captures PTime on ordered structures [78, 120]. Hence, the question
whether P ̸= NP becomes equivalent to the purely logical question, independent of machine
models, whether on ordered structures every ∃SO formula is equivalent to an LFP formula.
One of the main open questions in this area is whether there exists a logic L capturing PTime
also on unordered structures [15, 76]. We refer to the the textbook of Immerman [80] for
more background.

1.2 Data and Combined Complexity

Note that in the capturing results above we consider the data complexity of the model
checking problem, that is, the complexity for testing the truth of a fixed formula on a given
input structure. In the following we will be interested in the combined complexity, where
both the structure and the formula are part of the input. Model checking a second-order
formula φ quantifying over x d-ary relations and y elements on an structure of size n ≥ 2
can be done in space O(x · nd + y · log n) ⊆ O(|φ| · n|φ|), and hence in time 2O(|φ|·n|φ|), by
a straight-forward algorithm that recursively iterates over all possible instantiations of the
quantified relations and elements. Already the combined complexity of ∃SO is complete
for NExpTime. For MSO space O(x · n+ y · log n) ⊆ O(|φ| · n), and hence time 2O(|φ|·n) is
sufficient. The combined complexity of MSO model checking is PSPACE-complete [115]. We
refer to the textbooks [68, 89] for more background.

1.3 The Complexity and Shortcomings of First-Order Logic

First-order logic FO uses only quantification over element variables. It is much weaker than
the above second-order logics but still can express many interesting properties, such as the
existence of an independent set of a fixed size k, dominating set of fixed size k, and many
more. The complexity of FO model checking is highly relevant as FO forms the logical core
of the database query language SQL [19], and query evaluation, enumeration and counting
are among the most important problems for databases. The existential conjunctive fragment
of FO corresponds to conjunctive queries in database theory. The data complexity of FO is
in AC0 [3] (a circuit complexity class representing constant parallel time), while the combined
complexity is PSPACE-complete even on structures with only two elements [115, 120]. The
combined complxity of conjunctive queries (existential conjunctive FO) is NP-complete on
structures with at least two elemements [16]. A first-order formula with y quantifiers on a

S. Siebertz and A. Vigny 2:3

structure with n elements can be evaluated in space O(y · log n) ⊆ O(|φ| · log n), and hence
in time nO(|φ|). Assuming the exponential time hypothesis ETH, this running time cannot
be improved to no(|φ|) [17].

First-order logic has two main shortcomings. First, it cannot express general cardinality
properties (except fixed hard-coded properties up to a fixed threshold, and this shortcoming
is also shared by MSO). This has led to the extension by counting and arithmetic, which
are particularly relevant for the database community, see e.g. [4, 48, 74, 80, 87, 88, 110, 118]
and the references therein. Second, FO can express only local problems. For example, FO
cannot even express the algorithmically extremely simple problem of whether a graph is
connected. This shortcoming has classically been addressed by adding transitive-closure or
fixed-point operators, leading e.g. to the transitive closure logic FO+TC (which captures
NLogSpace on ordered structures [79]), and fixed-point logics (which capture PTime on
ordered structures [78, 120]).

2 A Fine-Grained View on the Model Checking Problem –
Parameterized Complexity

2.1 Parameterized Complexity and the A- and W-Hierarchy

The distinction between combined complexity and data complexity of the model checking
problems gives already some insights on the role of the formula and the structure in the
complexity of the problem. An even finer analysis can be given when studying the parame-
terized complexity of the problem. Parameterized complexity theory provides a multi-variate
approach that takes into account additional parameters, besides the input size, that allow
for a fine-grained analysis of the complexity of problems [27, 34, 35, 53]. A problem is called
fixed-parameter tractable with respect to a parameter k if it can be solved in time f(k) ·nO(1),
where f is a computable function and n is the input size.

One natural parameter to be considered for the model checking problem is the size of
the input formula φ. However, with respect to this parameter already query evaluation
for conjunctive queries in W[1]-hard and the counting problem is #W[1]-hard already for
acyclic conjunctive queries [5]. The W-hierarchy is a hierarchy of parameterized complexity
classes FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ AW[⋆], which is conjectured to be strict, and establishing
hardness for one of the levels of the hierarchy is widely accepted as a proof for fixed-
parameter intractability [33]. There is a second prominent hierarchy, the A-hierarchy [52],
FPT ⊆ A[1] ⊆ A[2] ⊆ . . . ⊆ AW[⋆]. This hierarchy is also conjectured to be strict, and we
have W[1] = A[1] and W[i] ⊆ A[i] for all i ≥ 2.

2.2 The Need for Structural Parameters

The FO model checking problem yields natural complete problems for the levels of the
hierarchy. We need a bit of notation. By Σ0 and Π0 denote the set of quantifier-free
formulas. For t ≥ 0 define Σt+1 be the set of formulas ∃x1 . . . ∃xk φ, where φ ∈ Πt, and Πt+1
the set of all formulas ∀x1 . . . ∀xk φ, where φ ∈ Σt. For t, u ≥ 1, a Σt-formula is fur-
thermore in Σt,u if all quantifier blocks after the leading existential block have length at
most u. For all t ≥ 1, model checking for Σt,1-formulas is complete for W[t]. For example,
the Σ1,1-formula ∃x1 . . . ∃xk

(∧
1≤i<j≤k(xi ̸= xj ∧ ¬E(xi, xj))

)
expresses the Independent

Set problem, the most prominent W[1]-complete problem. Similarly, the Σ2,1-formula
∃x1 . . . ∃xk∀y

(∨
1≤i≤k(y = xi) ∨

∨
1≤i≤k E(y, xi)

)
expresses the dominating set problem,

FSTTCS 2024

2:4 Advances in Algorithmic Meta Theorems

which is well-known to be W[2]-complete. For all t ≥ 1, the model checking problem for Σt

is complete for A[t]. Note that Σ1,1 = Σ1, which immediately implies W[1] = A[1]. Model
checking for full FO is complete for the class AW[⋆].

The situation for MSO is even worse. Since already 3-Colorability, which is expressed
by a fixed MSO-formula, is NP-complete, MSO model checking parameterized by formula
length is para-NP-hard.

2.3 MSO and the Parameters Treewidth and Cliquewidth
Hence, the parameter |φ| alone still does not yield the desired fine-grained theory of tractability
for the model checking problem. For a tangible theory we need to take further structural
parameters into account. This is where graph theory enters the stage, which offers a wealth of
parameters to classify the complexity of inputs. This classification can be lifted from graphs
to general structures by considering their Gaifman graphs or by considering the incidence
encoding (see Section 3.4). In a celebrated result Courcelle in 1990 established that every
MSO definable property can be tested in linear time on graphs of bounded treewidth [22].
More precisely, he established that the model checking problem for MSO is fixed-parameter
tractable with respect to the parameters formula length and treewidth, that is, solvable in
time f(|φ|, tw) · n, where tw is the treewidth of the input graph. This result extends to
counting MSO, CMSO [22], and to graphs with bounded cliquewidth [24], that is, CMSO
model checking can be solved in time f(|φ|, cw) · n, where cw is the cliquewidth of the input
graph. Furthermore, it was proved that efficient (C)MSO model checking cannot be extended
to classes of unbounded treewidth or cliquewidth, assuming further mild closure conditions
and the standard complexity theoretic assumptions [26, 63, 84, 85, 86, 93].

2.4 More Parameters for FO
In 1996 Seese [112] established that FO model checking is linear time solvable on graphs
with bounded maximum degree, that is, solvable in time f(∆, |φ|) · n, and thereby initiated
the fine-grained study of the parameterized complexity of first-order model checking with
respect to structural parameters. His result was extended to more and more general classes
of sparse graphs [52, 56, 31, 43, 83, 73]. The last result of Grohe, Kreutzer and Siebertz [73]
shows that every FO definable property of graphs is decidable in nearly linear time on every
nowhere dense class of graphs. Nowhere dense classes of graphs are very general classes
of sparse graphs [96] and turn out to be a tractability barrier for FO model checking on
monotone classes (that is, classes that are closed under taking subgraphs): if a monotone
class of graphs is not nowhere dense, then testing first-order properties for inputs from this
class is as hard as for general graphs [43, 83].

2.5 Algorithmic Meta Theorems
Note that the nature of these results is different from those in descriptive complexity theory.
They have a much more algorithmic, rather than a complexity theoretic flavor. In particular,
the development for the model checking problems parallels that of the development in
parameterized complexity, which in the early days was strongly driven by the development
of the graph minors theory of Robertson and Seymour [103] and the rise of treewidth as one
of the most important structural parameters. The model checking results not only stand
by themselves but additionally capture the essence and limits of fundamental algorithmic
techniques, such as dynamic programming and compositionality, the locality based method,

S. Siebertz and A. Vigny 2:5

game based methods. Newer results are strongly based on recursive understanding and the
irrelevant vertex technique. In their seminal surveys Martin Grohe and Stephan Kreutzer
coined the expression algorithmic meta theorems [70, 72, 83].

Every computational problem expressible in a logic L can be solved efficiently on every
class C of structures satisfying certain conditions.

Since the groundbreaking work of Courcelle [22], algorithmic meta theorems have become
an essential tool in the toolbox of parameterized complexity theory. Formalizing a problem
in a logic yields a fast and convenient, and yet formal proof for its tractability on certain
classes of structures. At this time, the main goal in the area is to find the most general
classes of structures that allow for fixed-parameter tractable FO model checking. A recent
trend is also to find new logics with expressive power between that of FO and MSO that
capture certain algorithmic techniques.

2.6 The Limits of Tractability
As already mentioned, the complexity of CMSO model checking is essentially settled. For
plain MSO the question is related to a conjecture of Seese [111], stating that if a class of
graphs has a decidable satisfiability problem for MSO, then it has bounded cliquewidth.
A stronger version conjectures (formulated in the contrapositive) that if a class C has
unbounded cliquewidth, then MSO can encode all graphs in C , which essentially yields
intractable MSO model checking on classes of unbounded cliquewidth. The weaker statement
for CMSO was proved by a connection between CMSO and vertex minors [26].

The tractability limit of FO model checking on monotone graph classes is constituted
by nowhere dense graph classes. Consequently, attention has shifted to study more general,
hereditary classes (that is, classes that are closed under taking induced subgraphs).

2.7 New Directions for FO Model Checking
Recently, there has been very exciting progress on algorithmic meta theorems, which essen-
tially goes into three directions. The first direction is inspired by the classical interpretation
method (see Section 5). Given a class C of structures that is well understood, the interpreta-
tion method sometimes allows to lift to classes that can be logically interpreted in C . The
classical proof of Courcelle’s Theorem can be seen as a prime example of the interpretation
method: classes with bounded treewidth (and with bounded cliquewidth) can be encoded
by MSO in colored trees, which are very easy to handle. When it is possible to encode a
class D in a sparse class C via an FO transduction we call D a structurally sparse class.
Note that it is still a challenge to recover a sparse preimage from a dense but structurally
sparse input graph. Results for bounded degree graphs were lifted to classes with structurally
bounded degree [57, 58], from bounded expansion classes to classes with structurally bounded
expansion [59] and from nowhere dense classes to structurally nowhere dense classes [40].

The second direction was inspired by a result of Adler and Adler [1] who observed that
nowhere dense classes are monadically dependent (NIP) and monadically stable. The notions
of dependence and stability are key notions from classical model theory [113] and are defined
by forbidden interpretable configurations. This connection to model theory brought new
notions of structural tameness and a large toolbox for infinite theories to graph theory. The
challenge to develop a combinatorial and algorithmic theory for finite graphs was quickly
accepted and led to many strong results, see e.g. [6, 13, 36, 37, 39, 38, 40, 41, 42, 59, 60, 62,
81, 92, 94, 97, 98, 99, 119].

FSTTCS 2024

2:6 Advances in Algorithmic Meta Theorems

A class is monadically dependent if in colorings of the graphs from the class one cannot
interpret all graphs; a natural candidate for the limit of tractability for FO model checking,
and soon it was conjectured that monadic dependence constitutes the tractability boundary
for FO model checking on hereditary classes [9, 40, 57, 100]. A big step towards this
conjecture was taken by Dreier et al. [37, 40] who proved that model checking is tractable on
monadically stable classes, which are important subclasses of monadically dependent classes.
Furthermore, the hardness part of the conjecture was established in [37].

Some indication for the truth of the conjecture is given by the third direction. Bonnet et
al. [12] introduced the new notion of twinwidth, which had an immense impact in structural
graph theory in the past few years. Bonnet et al. proved that FO model checking is tractable on
classes with bounded twinwidth assuming that we are given a contraction sequence, witnessing
the boundedness of twinwidth, together with the input. It turns out that a class of ordered
graphs has bounded twinwidth if and only if it is monadically dependent [9]. Furthermore, on
ordered structures bounded twinwidth contraction sequences can be efficiently computed, and
model checking on hereditary ordered classes beyond bounded twinwidth is intractable [9].
Hence, the conjecture is true on ordered graphs The main challenge in the area remains to
resolve the conjecture for general hereditary classes.

One consequence of the result on twinwidth that is seldomly mentioned is that it implies
tractability of order-invariant FO on classes of bounded twinwidth (assuming a contraction
sequence is given with the input). An order-invariant formula may use a symbol for a linear
order and must satisfy the semantic property that its truth on ordered structures must
be independent of the chose order. Note that it is undecidable to decide if a formula is
order-invariant [89], order-invariance must be guaranteed for the formulas that are input to
the model checking problem. Order-invariant MSO is more expressive than CMSO [66] but
the model checking problem is tractable on the same classes [47]. An unpublished result
of Gurevich states that the expressive power of order-invariant FO is stronger than that of
plain FO (see, e.g., Theorem 5.3 of [89] for a presentation of the result). Model checking for
the weaker successor-invariant FO is tractable on classes with bounded expansion [47], for
order-invariant FO the limit of tractability is wide open.

2.8 Why do we not study the other classical logics
The fact that first-order logic can only express local problems is classically addressed by
adding transitive-closure or fixed-point operators [45, 2, 90]. These logics however, do not have
a rich algorithmic theory: Even the model checking problem for the very restricted monadic
transitive-closure logic TC1 is AW[⋆]-hard on planar graphs of maximum degree at most 3 [70].
Model checking for full SO is intractable even on colored paths, as PSPACE-computations on
strings can be simulated.

2.9 FO plus connectivity, compound logic, and more
This has motivated recent approaches to introduce new logics whose expressive power lies
between FO and MSO, which are tailored to express algorithmic graph problems and which
are still tractable on interesting graph classes. Examples include Separator logic [5, 109],
Disjoint paths logic [109], Compound logics for modification problems [54], and CMSO/tw as
the fragment of MSO on graphs obtained by appropriately restricting set quantification [107].
These logics can express many problems that are studied in parameterized complexity, and
hence provide very useful meta theorems. Again, these logics are not only relevant for the
meta theorems they provide, but they also capture important algorithmic paradigms.

S. Siebertz and A. Vigny 2:7

2.10 Advances in Algorithmic Meta Theorems
It has been about 15 years since Grohe and Kreutzer wrote their seminal expositions on
algorithmic meta theorems [70, 72, 83]. They identified the following key methods.
1. The Automata Theoretic Method, translating CMSO formulas into automata that can be

run on trees.
2. The Reduction or Interpretation Method, allowing to translate tractability results between

classes of structures via logical interpretations.
3. The Composition Method, which allow to lift results to structures that are composed of

simpler pieces from these pieces.
4. Locality Based Methods for FO, exploiting that FO can express only local properties.
5. Coloring and Quantifier-Elimination, which allows to simplify to quantifier-free formulas

by an algorithmic enrichment of the signature.

Of course, the foundational methods have not changed. In this paper we aim to give an
overview over new techniques and the recent extensions of the well-established methods.

The automata method has been generalized from trees to trees that are additionally
augmented with graph structures [102]. This allows in many cases to directly combine the
composition method with the automata method.

The composition method has gained new momentum with the advent of the method of
recursive understanding developed in parameterized complexity [18, 82], and its conceptual
predecessor, the decomposition into unbreakable parts [28, 29]. The technique has led to
the result of Lokshtanov et al. [91], showing that the problem of deciding a CMSO property
on general graphs can be reduced to the same problem on unbreakable graphs. It is also
the basis for the model checking result for separator logic [102] and disjoint paths logic [108]
on classes with excluded topological minors, as well as for model checking of compound
logic [54] and CMSO/tw [107] on classes with excluded minors.

The locality based methods have been taken to their limits by combining locality with
recursive game based decompositions of local neighborhoods on nowhere dense classes [73]
and monadically stable classes [40, 37]. An appropriate extension to monadically dependent
classes is one of the main open problems in the area.

The advent of twinwidth has led to a completely new foundational method of dynamic
programming along contraction sequences, see e.g. [7, 8, 9, 11, 12].

2.11 Structure of this paper
We take this rapid and exciting development as a motivation to give a brief overview over
the new methods for algorithmic meta theorems. We structure the paper as follows. After
fixing our notation we first introduce the interpretation method and quantifier elimination as
special cases of parameterized reductions between model checking problems. These remaining
base cases are the extended automata based method, locality based methods, and methods
based on twinwidth.

3 Preliminaries

3.1 Structures
Let us recall some basics from model theory. We refer to the textbooks [2, 46, 77, 89] for
extensive background. A signature is a collection of relation and function symbols, each with
an associated arity. Let σ be a signature. A σ-structure A consists of a non-empty set A,

FSTTCS 2024

2:8 Advances in Algorithmic Meta Theorems

the universe of A, together with an interpretation of each k-ary relation symbol R ∈ σ as
a k-ary relation RA ⊆ Ak and an interpretation of each k-ary function symbol f ∈ σ as a
k-ary function fA : Ak → A. In this work we assume that all structures are finite (i.e. have a
finite universe and a finite signature). We write |A| for the size of the universe of A and ∥A∥
for the size of an encoding of A, e.g. in the standard incidence encoding.

In this work we mostly consider the following types of structures:

Colored graphs are σ-structures, where σ consists of a single binary relation E and unary
relations, with the property that E is symmetric and anti-reflexive.

Guided pointer structures are σ-structures, where σ consists of a single binary relation E,
unary relations, and unary functions, with the property that E is symmetric and anti-
reflexive, and that every function f ∈ σ is guided, meaning that if f(u) = v, then u = v

or uv ∈ E(G).

Ordered graphs are σ-structures, where σ consists of a two binary relations E and <, with
the property that E is symmetric and anti-reflexive, and < is a linear order.

Partial orders are σ-structures, where σ consists of binary relation ⊑ that is interpreted
as a partial order, in many cases a linear order or tree order.

3.2 First-order and monadic second-order logic

We first define first-order logic FO and monadic second-order logic MSO (over the signature σ).
The fancier logics will be defined in the sections where they are first discussed. We assume
an infinite supply Var1 of first-order variables and an infinite supply Var2 of monadic
second-order variables. Every variable is a term, and if t1, . . . , tk are terms and f ∈ σ is a
k-ary function symbol, then also f(t1, . . . , tk) is a term. FO[σ] formulas are built from the
atomic formulas t1 = t2, where t1 and t2 are terms, and R(t1, . . . , tk), where R ∈ σ is a k-ary
relation symbol and t1, . . . , tk are terms, by closing under the Boolean connectives ¬, ∧ and ∨,
and by existential and universal quantification ∃x and ∀x.

Monadic second-order formulas are defined as first-order formulas, but further allow the
use of monadic quantifiers ∃X and ∀X, and of a membership atomic formula x ∈ X, where x
is a first-order variable and X a monadic second-order variable. CMSO is the extension of
MSO with modulo counting quantifiers ∃a[b]xφ(x), expressing the existence of a modulo b
elements satisfying φ.

A variable x not in the scope of a quantifier is a free variable (we do not consider formulas
with free set second-order variables). A formula without free variables is a sentence. The
quantifier rank qr(φ) of a formula φ is the maximum nesting depth of quantifiers in φ. A
formula without quantifiers is called quantifier-free.

If A is a σ-structure with universe A, then an assignment of the variables in A is a
mapping ā : Var1 → A. We use the standard notation (A, ā) |= φ(x̄) or A |= φ(ā) to indicate
that φ is satisfied in A when the free variables x̄ of φ have been assigned by ā. We write |= φ

to express that φ is a valid sentence, that is, φ holds in every structure (of an appropriate
signature). For a formula φ(x̄) we define φ(A) := {ā ∈ A|x̄| | A |= φ(ā)}.

Two structures A and B are (L, q)-equivalent, written A ≡L
q B, if they satisfy the same

L-sentences of quantifier rank at most q. The (L, q)-type of an element a in A is the collection
of all formulas φ(x) of quantifier rank at most q such that A |= φ(a). A set of formulas is a
q-type if it is the q-type of some element in some structure.

S. Siebertz and A. Vigny 2:9

3.3 Interpretations and transductions
Let σ, τ be relational signatures. A simple L-interpretation I of σ-structures in τ -structures is
a tuple I = (ν, (ρR)R∈σ), where ν(x) and ρR(x̄) are L-formulas, where |x̄| in ρR(x̄) matches the
arity of R. For every τ -structure B, the σ-structure A = I(B) has the universe ν(B) and each
relation RA is interpreted as ρR(B). We say that ν defines the vertex set and ρR defines the
relation R of I(B). We remark that many of the presented results generalize to interpretations
in powers, however, we refrain from presenting them in this generality as interpretations in
powers do not preserve graph properties such as bounded treewidth/cliquewidth and monadic
dependence/stability.

A monadic lift of a τ -structure B is a τ+-expansion B+ of B, where τ+ is the union of τ
and a set of unary relation symbols.

An L-transduction T of σ-structures from τ -structures is a simple L-interpretation of
σ-structures in τ+-structures, where τ+ is an extension of τ by unary relation symbols as
above. We say that a σ-structure A can be T-transduced from a τ -structure B if there is a
τ+-lift B+ of B such that A = T(B). A class C of τ -structures can be T-transduced from
a class D of σ-structures if for every structure A ∈ C there exists a structure B ∈ D such
that A can be T-transduced from B. We also say that T is a transduction of C in D or
from D onto C . A class D of τ -structures can be transduced from a class C of σ-structures
if it can be T-transduced from C for some transduction T.

3.4 Gaifman graphs and incidence structures
The Gaifman graph of a σ-structure A with universe A is the graph with vertex set A,
where u and v are adjacent if they belong jointly to some relation RA for R ∈ σ, or if one is
the image of the other by some function fA for f ∈ Σ.

For a relational signature σ, the incidence graph of a σ-structure A with universe A is the
colored graph with vertices A and one vertex for each tuple v̄ appearing in a relation RA (we
take multiple copies if a tuple appears in several relations). If v̄ = (v1, . . . , vk) and v̄ ∈ RA,
then the vertex v̄ in the incidence graph is marked with a color R and connected with an edge
of color i with the vertex vi for 1 ≤ i ≤ k. Note that A is interpretable from its incidence
graph, but the converse is in general not true.

4 Reductions Between Algorithmic Meta Theorems

Recall that the model checking problem for L on a class C of structures is the problem:
given A ∈ C and φ ∈ L, decide whether A |= φ. We denote it by MC(L,C).

▶ Definition 1. A non-uniform algorithmic meta theorem is a result of the form: Let L be a
logic and C a class of structures. Then for all sentences φ ∈ L there exists an algorithm that
given A ∈ C decides whether A |= φ in time f(φ) · ∥A∥O(1) for some function f .

▶ Definition 2. An algorithmic meta theorem is a result of the form: Let L be a logic and C

be a class of structures. Then MC(L,C) is fixed-parameter tractable, that is, there is an
algorithm that on input A ∈ C and φ ∈ L decides whether A |= φ in time f(φ) · ∥A∥O(1) for
a computable function f .

We define reductions between algorithmic meta theorems simply as parameterized reduc-
tions between the corresponding model checking problems.

FSTTCS 2024

2:10 Advances in Algorithmic Meta Theorems

▶ Definition 3. Let MC(L1,C) and MC(L2,D) be model checking problems. A parameterized
reduction from MC(L1,C) to MC(L2,D) is a function R that maps instances (A, φ) of
MC(L1,C) to instances (B, ψ) of MC(L2,D) such that
1. A |= φ ⇔ B |= ψ,
2. |ψ| ≤ f(|φ|) for a computable function f , and
3. (B, ψ) can be computed in time g(|φ|) · ∥(A, φ)∥O(1) for a computable function g.

We say that MC(L1,C) reduces to MC(L2,D), and write MC(L1,C) ≤fpt MC(L2,D),
if there exists a parameterized reduction from MC(L1,C) to MC(L2,D).

We now have the standard reduction lemma.

▶ Lemma 4. Let MC(L,C) and MC(L′,C ′) be model checking problems with MC(L,C) ≤fpt

MC(L′,C ′). If MC(L′,C ′) is fixed-parameter tractable, then MC(L,C) is fixed-parameter
tractable.

4.1 Example: Reducing Separator Logic to FO with MSO Atoms on
Augmented Trees

As already discussed above, FO falls short of being able to express algorithmic problems that
involve non-local properties. For example, FO cannot express the very simple algorithmic
question whether two vertices are connected. Separator logic, denoted by FO+conn and
independently introduced in [5, 109], enriches FO with connectivity predicates that are
tailored to express algorithmic graph properties that are commonly studied in parameter-
ized algorithmics. Separator logic is obtained from FO by adding the atomic predicates
connk(x, y, z1, . . . , zk) that hold true in a graph if there exists a path between (the valuations
of) x and y after (the valuations of) z1, . . . , zk have been deleted. Separator logic can express
many interesting problems such as the Feedback Vertex Set problem and Elimination
Distance problems to first-order definable classes. It was proved in [102] that model checking
for separator logic is fixed-parameter tractable on classes excluding a topological minor, and
for subgraph-closed classes, this result cannot be extended to more general classes (assuming
a further condition on the efficiency of encoding required for the hardness reduction).

Separator logic yields a first nice example of the reduction method. First, it was observed
in [102] that separator logic on highly connected graphs can be reduced to plain FO. Let us
formalize the concept of high connectivity.

A separation in a graph G is a pair (A,B) of vertex subsets such that A ∪ B = V (G)
and there are no edges in G between A \B and B \ A. The order of the separation is the
cardinality of the separator A ∩B. A vertex subset X is (q, k)-unbreakable in a graph G if
for every separation (A,B) in G of order at most k in G, either |A ∩X| ≤ q or |B ∩X| ≤ q.
Intuitively, a separation of order k cannot break X in a balanced way: one of the sides must
contain at most q vertices of X.

Now observe that for a (q, k)-unbreakable graph G, the query connk(u, v, x1, . . . , xk) can
be expressed in plain FO. The query fails if and only if there is a set A of at most q vertices
that contains exactly one of the vertices u and v, and such that all neighbors of vertices of A
outside of A are contained in {x1, . . . , xk}. The existence of such a set of q vertices can be
expressed using q existential quantifiers followed by a universal quantifier. So every formula
that uses only connk predicates can be rewritten as a plain FO formula on (q, k)-unbreakable
graphs, as long as q is a constant. Denote by FO+connk the fragment of FO+conn that uses
only connk-predicates and denote by Bq,k the class of (q, k)-unbreakable graphs.

▶ Lemma 5. MC (FO+connk,Bq,k) ≤fpt MC (FO,Bq,k).

S. Siebertz and A. Vigny 2:11

Now, for general graphs, we reduce separator logic to FO with MSO atoms, denoted
FO(MSO(≼)), over augmented trees, using the following decomposition theorem. Let us first
define trees and tree decompositions.

A (rooted) tree is an acyclic and connected graph T with a distinguished root vertex r.
We write parent(x) for the parent of a node x of T , and children(x) is the set of children of x
in T . We define parent(r) = ⊥. A vertex x ∈ V (T) is an ancestor of a vertex y ∈ V (T),
written x ⪯T y, or simply x ⪯ y if T is clear from the context, if x lies on the unique path
between y and the root r. Note that hence every node is an ancestor of itself. For nodes
x, y ∈ V (T), we write lca(x, y) for the least common ancestor of x and y in T . Note that x
is an ancestor of y if and only if lca(x, y) = x.

A tree decomposition of a graph G is a pair T = (T, bag), where T is a rooted tree and
bag : V (T) → 2V (G) is a mapping that assigns to each node x of T a bag bag(x) ⊆ V (G),
such that

for every u ∈ V (G), the set of nodes x ∈ V (T) satisfying u ∈ bag(x) induces a connected
and nonempty subtree of T , and
for every edge uv ∈ E(G), there exists a node x ∈ V (T) such that {u, v} ⊆ bag(x).

The treewidth of a graph G is the size of a largest bag of T minus 1, where T ranges over
all tree decompositions of G.

Let T = (T, bag) be a tree decomposition and let x ∈ V (T).

The adhesion of x is

adh(x) := bag(parent(x)) ∩ bag(x).

The margin of x is

mrg(x) := bag(x) \ adh(x).

The cone at x is

cone(x) :=
⋃

y⪰T x

bag(y).

The component at x is

comp(x) := cone(x) \ adh(x) =
⋃

y⪰T x

mrg(y).

Observe that the margins {mrg(x) : x ∈ V (T)} are pairwise disjoint and cover the whole
vertex set of G. The adhesion of a tree decomposition T = (T, bag) is defined as the largest
size of an adhesion, that is, maxx∈V (T) |adh(x)|.

A tree decomposition T = (T, bag) of a graph G is strongly (q, k)-unbreakable if for every
x ∈ V (T), bag(x) is (q, k)-unbreakable in G[cone(x)].

▶ Theorem 6 ([30]). There is a function q(k) ∈ 2O(k) such that for every graph G and
number k there exists a strongly (q(k), k)-unbreakable tree decomposition of G of adhesion
at most q(k). Moreover, given G and k, such a tree decomposition can be computed in time
2O(k2) · |G|2 · ∥G∥.

The theorem opens two directions to approach the model checking problem for separator
logic. The first approach is to use compositionality (see Section 7) and do dynamic pro-
gramming over unbreakable tree decompositions. The second approach, which we follow

FSTTCS 2024

2:12 Advances in Algorithmic Meta Theorems

here, works as follows. We encode the decomposition in a colored tree with additional
edges between siblings (the children of some node) in the tree. We call such a structure an
augmented tree. We will then reduce model checking of separator logic to model checking on
a logic over augmented trees. The resulting problem can then be solved via the automata
method (see Section 8).

More generally we may want to encode general σ-structures. In this case we represent
augmented trees as relational structures equipped with the ancestor relation ⪯T of a tree T , as
well as relations R relating the children of any given node, with which the tree is augmented.
We will access the global connectivity of the tree with MSO that speaks only about ⪯, as well
as over the colors of the tree. We write MSO(⪯, A) for the set of MSO formulas over such
signatures, where A is a finite set of unary predicates. As we will translate such formulas
into tree automata, we will often call A an alphabet. We now consider FO formulas with
restricted MSO atoms. For the signature σ and the alphabet A, the logic FO(MSO(≼, A), σ)
denotes first-order logic over signature σ where one can use formulas of MSO(⪯, A) as atomic
formulas. Denote by G the class of all graphs and by TA,σ the class of (A, σ)-augmented
trees.

▶ Theorem 7 ([102]). MC (FO+conn,G) ≤fpt MC (FO(MSO(≼, A), σ),TA,σ), where A is a
finite alphabet and σ is a signature of colored graphs.

4.2 Example: Reducing CMSO/tw+dp on Classes with Excluded Minors
to CMSO on Classes with Bouunded Treewidth

One of the classic and important problems that separator logic cannot express [109] is
the Disjoint Paths problem: Given a graph G and a set {(s1, t1), . . . , (sk, tk)} of pairs
of terminals, the question is whether G contains vertex-disjoint paths joining si and ti
for 1 ≤ i ≤ k. A straight-forward approach to deal with this shortcoming is to add a
predicate expressing exactly this property. Disjoint-paths logic FO+dp is an extension of
separator logic that was introduced in [109]. It extends first-order logic (FO) with atomic
predicates DPk[(x1, y1), . . . , (xk, yk)] expressing the existence of internally vertex-disjoint
paths between xi and yi, for 1 ≤ i ≤ k. Disjoint paths logic can express many interesting
algorithmic problems, such as the disjoint paths problem, minor containment, topological
minor containment, F-topological minor deletion, and many more (see [67]). It was shown
in [67] that model checking for disjoint-paths logic is fixed-parameter tractable on classes with
excluded minors and in [108] that it is fixed-parameter tractable on classes with excluded
topological minors.

Another logic recently introduced logic by Sau, Stamoulis and Thilikos [107] is CMSO/tw,
a fragment of counting monadic second-order logic that allows only restricted quantification
of sets in CMSO formulas. Recall that CMSO with no restriction on set quantification is
intractable beyond graphs of bounded cliquewidth (under the standard complexity theoretic
assumptions and mild closure conditions). CMSO/tw very elegantly generalizes another
extension of FO that was introduced by Fomin et al. [54], the so-called compound logic, which
is tailored so as to express general families of graph modification problems. CMSO/tw is
very expressive, nevertheless, it cannot express the disjoint paths problem. Following the
approach of disjoint paths logic, we may simple add an operator to express this property to
obtain the logic CMSO/tw+dp.

Let G be a graph and X ⊆ V (G). A graph H is an X-rooted minor of G if there is
a collection B = {Bx | x ∈ V (H)} of pairwise disjoint connected subsets of V (G), each
containing at least one vertex of X, and such that, for every edge xy ∈ E(H), there are u ∈ Bx

S. Siebertz and A. Vigny 2:13

and v ∈ By with uv ∈ E(G). The set Bx is called the branch set of x in G. A graph H

is a minor of G if it is a V (G)-rooted minor of G. Given a graph G and X ⊆ V (G), the
annotated treewidth of X in G, denoted tw(G,X), is the maximum treewidth of an X-rooted
minor of G [117].

CMSO/tw is the restriction of CMSO where instead of using the quantifier ∃X (resp. ∀X)
for a set variable X, we have quantifiers ∃kX (resp. ∀kX) for some number k, where ∃kX

and ∀kX mean that the quantification is applied on vertex or edge sets X with tw(G,X) ≤ k.
For the case of quantification on an edge set X ⊆ E(G), tw(G,X) ≤ k means that the set of
the endpoints of the edges in X has annotated treewidth at most k. CMSO/tw+dp is the
extension of CMSO/tw with the disjoint paths operators.

▶ Theorem 8 ([107]). Let C be a class excluding some minor. Then there exists a class D

of structures with bounded treewidth such that MC (CMSO/tw+dp,C) ≤fpt MC (CMSO,D).

The theorem is proved using the irrelevant vertex technique, which was first introduced
in [104]. In particular, it uses the flat wall theorem, in the recent refined formulation of [106].
A similar scheme was also applied in the works [54, 55, 67]. We stress that the irrelevant
vertex technique in the proof of Theorem 8 does not simply remove vertices from the input
graph. In particular, the theorem does not yield a graph (structure) of bounded treewidth
that is logically equivalent to the input graph. This would yield a contradiction with the
undecidability of the satisfiability problem of CMSO (and FO). It is crucial that also the
input formula is rewritten, depending on the input graph.

The model checking algorithm for FO+dp on classes with excluded topological minors
combines the approaches of [102] and [107]. First, the input graph is decomposed into
unbreakable parts using Theorem 6. On each part, we distinguish two cases. When a part
excludes a minor, we can apply the result of [107] and iteratively remove irrelevant vertices
until we arrive at a graph with bounded treewidth. When a part contains large minors, we
can prove a generalization of Lemma 5 for disjoint paths logic.

▶ Lemma 9. MC (FO+dp,C) ≤fpt MC (FO,C), where C is any class of graphs that is
(q, k)-unbreakable and contains large clique-minors, where k, q and “large” depends on the
input formula.

The lemma is based on the combinatorics of a variant of the “generic folio lemma” proved
by Robertson and Seymour in [105], which was used by Grohe et al. [71] in order to show
that testing topological minor containment is fixed-parameter tractable. Model checking for
disjoint paths logic then proceeds by dynamic programming over the tree decomposition into
unbreakable parts, using to compositionality method (Section 7) to combine the solutions of
the unbreakable parts into a global solution.

5 The Interpretation Method

The interpretation method is a special case of the reduction method that is fundamental
for many model checking algorithms. It is based on encoding structures from a class C

in structures from a class D such that the structures from C can be recovered from D

by a logical interpretation. This makes the translation of the formula φ in the reduction
particularly elegant and simple. This translation is based on the following interpretation
lemma.

FSTTCS 2024

2:14 Advances in Algorithmic Meta Theorems

▶ Lemma 10. Let I be an L-interpretation of σ-structures in τ -structures. Then for every
formula φ ∈ L[σ] there exists a formula ψ ∈ L[τ] with the following property. Let A be a
σ-structure and B be a τ -structure such that A ∼= I(B). Then A |= φ ⇔ B |= ψ. Furthermore,
ψ can be efficiently computed from ψ.

In fact, it is very easy to compute the formula ψ from φ. If I = (ν, (ρR)R∈σ), we simply
have to replace all occurrences of atoms R(x̄) by their defining formulas ρR(x̄), and restrict
quantification to those elements that satisfy the formula ν.

We can now define reductions that are based on interpretations.

▶ Definition 11. A class C of σ-structures admits efficient L-encoding in a class D of
τ -structures if there exists an L-interpretation I of σ-structures in τ -structures and an
algorithm that given A ∈ C and φ ∈ L computes a structure B ∈ D with I(B) ∼= A in
timef(|φ|) · ∥A∥O(1) for some computable function f .

The next lemma is immediate by Lemma 10 and is the key to the interpretation method.

▶ Lemma 12. If a class C of σ-structures admits efficient L-encoding in a class D of
τ -structures, then MC(L,C) ≤fpt MC(L,D). Hence, if MC(L,D) is fixed-parameter
tractable, then so is MC(L,C).

The interpretation method combines well with other methods. In many cases the signature
of D is chosen such that the logic we are interested in collapses to a simpler logic, for example,
the signature may allow for quantifier elimination, such that model checking becomes trivial.
Also the single steps in the game based approaches on nowhere dense and monadically stable
classes can be seen as simplifications of the model checking problem via the interpretation
method.

5.1 Example: The CMSO-Encoding on Classes with Bounded
Cliquewidth in Colored Trees

We recall the classical reduction of CMSO on classes with bounded cliquewidth to CMSO
on colored trees. We define clique expressions with respect to more general base classes,
as the methods for FO(MSO(≼, A), σ) on augmented trees extends to these more general
graph classes. We remark however, that while cliquewidth and clique decompositions can
be efficiently computed [101], this is not clear for clique decompositions over more general
classes and we may have to require such decompositions to be given with the input.

A k-colored graph is a graph with each vertex assigned a color from [k]. On k-colored
graphs we define the following operations with respcet to a base class C .

Create a k-colored graph G from C .
For a function c : [k] → [k] recolor the vertices of the input graph according to c.
For a set S of 2-element subsets of [k], join a family of k-colored graphs by taking their
disjoint union and for each {i, j} ∈ S (possibly i = j), add an edge between every pair of
vertices that have colors i and j, respectively, and originate from different input graphs.

A width-k clique decomposition is a (rooted) tree T where the nodes are labeled by the
above operation names in an arity preserving way, that is, all constants are leaves and all
recolor operations have exactly one child. Note that the join operation is a commutative
operation, so the tree does not need to have an order on siblings. A clique decomposition
defines the k-colored graph obtained by evaluating the operations in the decomposition.

S. Siebertz and A. Vigny 2:15

The cliquewidth of a graph is the minimum number k for which there is a width-k clique
decomposition whose result is (some coloring of) the graph over C1, which contains only the
single-vertex graph.

We remark that this definition of cliquewidth is different from the original definition [25],
however, it is within factor 2 of that definition. Also note that every class of graphs with
bounded treewidth also has bounded cliquewidth.

▶ Lemma 13. Let C be a class with bounded cliquewidth. Then there exists a class T of
colored trees such that C can be MSO-encoded in T . In particular, MC(CMSO,C) ≤fpt

MC(CMSO,T).

The idea is to use the tree T from the clique decomposition as the host graph. The
vertices of G are the leaves of T . In order to decide whether two vertices u, v are connected
by an edge we have to find the color of the vertices at the least common ancestor x = lca(u, v)
and check whether vertices of these colores are connected by the join operation at x. MSO
can keep track of how colors change through the tree interpret the connections accordingly.

5.2 Example: Structurally sparse graph classes
With the good understanding of sparse graph classes it is a natural question to extend these
results to classes that interpret or transduce in sparse classes. For example, the concepts
of treedepth and treewidth as well as their dense analogs shrubdepth and cliquewidth can
be defined in terms of transductions. We write Td for the class of trees of depth at most d
and T for the class of all trees.

A class C of graphs has bounded treedepth if and only if the class of incidence graphs
of graphs from C can be FO- or MSO-transduced from Td for some d ≥ 1 (this follows
from the work of Ganian et al. [64, 65]).
A class C of graphs has bounded treewidth if and only if the class of incidence graphs of
graphs from C can be MSO-transduced from T by a classical result of Courcelle [23].
A class C of graphs has bounded treewidth if and only if the class of incidence graphs of
graphs from C can be FO-transduced from the class of all (finite) tree orders as shown
by Colcombet [20].

The dense analogs are obtained as follows.

A class C of graphs has bounded shrubdepth if and only if C can be FO- or MSO-
transduced from Td for some d ≥ 1 as shown by Ganian et al. [64, 65].
A class C of graphs has bounded cliquewidth if and only if C can be MSO-transduced
from T as proved by Courcelle [23].
A class C of graphs has bounded cliquewidth if and only if C can be FO-transduced from
the class of all (finite) tree orders as shown by Colcombet [20].

When applied to the classical notions of sparsity we obtain the following notions of
structural sparsity, see [59, 95]

A class D has structurally bounded degree if there exists a class C of bounded degree such
that D can be transduced from C [57, 58].
A class D has structurally bounded expansion if there exists a class C of bounded expansion
such that D can be transduced from C [59].
A class D is structurally nowhere dense if there exists a nowhere dense class C such
that D can be transduced from C [40, 59].

FSTTCS 2024

2:16 Advances in Algorithmic Meta Theorems

Structurally sparse classes have a rich combinatorial theory, however, the difficulty to
obtain algorithmic meta theorems for these classes lies in the problem to find the sparse
pre-images of graphs when given only the dense input graph from D . Only for classes
with structurally bounded degree we have a meta theorem whose proof is based on the
interpretation method of Lemma 12.

▶ Theorem 14 ([57]). Let D be a class with structurally bounded degree. Then there
exists a class C with bounded degree such that D can be FO-encoded in C . In particular,
MC(FO,D) ≤fpt MC(FO,C).

Even though we know how to solve the FO model checking even on monadically stable
classes [37], efficient sparsification of classes with structurally bounded expansion and
structurally nowhere dense classes (both of these are monadically stable) is still an important
open problem.

6 Quantifier elimination

Quantifier elimination is a classical technique from model theory to demonstrate the tameness
of theories. In the algorithmic context of finite structures we can first enrich the signature,
and then eliminate quantifiers, making quantifier elimination a special case of a reduction.
Model checking of quantifier-free formulas is then trivial, as we just have to check the atomic
type of an input tuple.

6.1 Example: Quantifier Elimination on Classes with Bounded Expansion
We demonstrate the principle with the by now classical example of quantifier elimination
on classes with bounded expansion. The first building block is quantifier elimination on
classes with bounded treedepth. To generalize to classes with bounded expansion we need
a slightly stronger statement than just the quantifier elimination result. Recall from the
preliminaries that a guided pointer structures is a σ-structures, where σ consists of a single
binary relation E, unary relations, and unary functions, with the property that E is symmetric
and anti-reflexive, and that every function f ∈ σ is guided, meaning that if f(u) = v, then
u = v or uv ∈ E(G).

▶ Theorem 15 ([44]). For every FO-formula φ(x̄) and every class C of colored graphs with
bounded treedepth there exists a quantifier-free formula φ̃(x̄) and a linear time computable
map Y such that, for every G ∈ C , Y (G) is a guided expansion of G such that for all tuples
of vertices v̄ we have G |= φ(v̄) ⇔ Y (G) |= φ̃(v̄).

This quantifier elimination result lifts to classes with bounded expansion by so-called low
treedepth colorings. For a positive integer p, a p-treedepth coloring of a graph G is a vertex
coloring of G such that the subgraph induced by any i ≤ p color classes has treedepth at
most i.

▶ Lemma 16 ([121]). A class C of graphs has bounded expansion if and only if for every p
there exists c(p) such that every G ∈ C admits a p-treedepth coloring with at most c(p) colors.
Furthermore, given G and p, such a coloring is efficiently computable.

Using low treedepth decompositions, one can now iteratively eliminate quantifiers in
bounded expansion classes. Note that because the computed expansions are guided by the
original graph structure, the class (of Gaifman graphs) does not loose the property of having
bounded expansion in each quantifier elimination step. This leads to the following theorem.

S. Siebertz and A. Vigny 2:17

▶ Theorem 17 ([44, 59, 72]). Let C be a class with bounded expansion. There exists a
class D of guided pointer structures such that for every G ∈ C and FO-formula φ(x̄) one can
efficiently compute a quantifier-free formula φ̃(x̄) and a guided expansion Y (G) of G such
that for all tuples of vertices v̄

G |= φ(v̄) ⇔ Y (G) |= φ̃(v̄).

Consequently, MC(FO,C) ≤fpt MC(QF,D), and in particular, as MC(QF,D) is fixed-
parameter tractable, MC(FO,C) is fixed-parameter tractable.

Nowhere dense classes can be characterized by low treedepth colorings similarly as
bounded expansion classes. A class C of graphs is nowhere dense if and only if for every p

and every ε > 0 there exists c(p, ε) such that every n-vertex graph H ⊆ G ∈ C admits a
p-treedepth coloring with at most c(p, ε) · nε colors. Note that these are too many colors
to also obtain quantifier elimination on nowhere dense classes. In fact, it was proved that
quantifier elimination as for bounded expansion classes cannot exist for nowhere dense
classes [69].

Classes with structurally bounded expansion are characterized by the existence of p-
shrubdepth colorings with c(p) colors for each fixed p [59] (here we do not require that the
shrubdepth is at most p (note that this is not even defined) but only that it is bounded
for every p). Monadically stable classes are characterized by the existence of p-shrubdepth
colorings with c(p, ε) · nε colors for each p [14].

7 The composition method

The composition method is a very classical method for FO and MSO, so we only give a very
rough sketch and refer to the literature [72, 70, 83]. The method allows to deduce the truth
of formulas in structures that are composed of simpler parts, e.g. via tree decompositions
with small adhesion. The most classical composition theorems goes back to Feferman and
Vaught [51]. This key lemma is easily proved using Ehrenfeucht-Fraïssé games (in particular
it extends to CMSO).

▶ Theorem 18 (Feferman and Vaught [51]). Let A,B be σ-structures and let c̄ be constant
symbols naming all elements of V (A) ∩ V (B). Then the q-type (for FO or MSO) of A ∪ B is
determined by the q-type of (A, c̄) and the q-type of (B, c̄).

By dynamic programming along tree decompositions one obtains for example efficient
CMSO model checking on classes with bounded treewidth, Courcelle’s famous theorem.

▶ Theorem 19 (Courcelle’s Theorem [21]). Let C be a class of bounded treewidth. Then
MC(CMSO,C) is fixed-parameter tractable.

We obtain as an immediate corollary of Theorem 8 that MC (CMSO/tw+dp,C) is fixed-
parameter tractable on classes with excluded minors.

▶ Corollary 20 ([107]). Let C be a class excluding some minor. Then MC(CMSO/tw+dp,C)
is fixed-parameter tractable.

Another recent application of the composition method is the reduction of CMSO model
checking to unbreakable graphs by the recursive understanding technique [91].

FSTTCS 2024

2:18 Advances in Algorithmic Meta Theorems

▶ Theorem 21 ([91]). Let φ be a CMSO sentence. For all k there exists q such that if there
exists an algorithm that solves the model checking problem for φ on (q, k)-unbreakable graphs
in time O(nd) for some d > 4, then there exists an algorithm that solves the model checking
problem for φ on general graphs in time O(nd).

Note that the result is for individual CMSO properties. Efficient model checking for a single
sentence φ on unbreakable graphs is a much weaker requirement than the requirement that
CMSO types (up to some quantifier rank) have to be efficiently computable on unbreakable
graphs. The theorem is proved by recursively replacing large unbreakable parts of the graph
that are glued by small separators by small parts that have the same type just with respect
to φ. This is possible for each fixed formula φ, as representatives for equivalence classes can
be hardcoded in the algorithm. As a consequence, the theorem only yields non-uniform fpt
algorithms.

Uniform algorithms via dynamic programming exist for many special cases, in particular
model checking for disjoint paths logic on classes with excluded topological minors is fixed-
parameter tractable and this result is proved using the composition method.

▶ Theorem 22 ([108]). Let C be a class with excluded topological minors. Then
MC(FO+dp,C) is fixed-parameter tractable.

8 The automata based method

Also the automata theoretic method is a classical method for model checking. Every CMSO
property of colored trees can be translated into an equivalent automaton, which can simply
be run on the tree to evaluate [32, 116]. As a consequence, we immediately get the following
theorem.

▶ Theorem 23 ([32, 116]). Let T be a class of colored trees. Then MC(CMSO,T) is
fixed-parameter tractable.

In order to conclude the fixed parameter tractability of model checking for separator logic
on classes with excluded topological minors via the reduction of Theorem 7, we now consider
automata for FO(MSO(≼, A), σ) that run on augmented trees. Recall that in augmented
trees we have a tree T represented by the ancestor relation ≼ and additionally labeled with
letters from an alphabet A, as well as σ-structures on the children of inner nodes of T . In the
following we will call the structure below a node x the whorl of x. The whorls are used to
represent the bags of tree decompositions, for which we want to do first-order model checking
(there is a small caveat here that we will comment on below). We define automata that read
augmented trees in the standard bottom-up fashion and whose transition function is defined
by first-order formulas. At any node x, to determine the state of the automaton at x, we
consider the graph induced on the children of x in the augmented tree, vertex-labeled by the
states already determined in the bottom-up computation. Then the state at x is determined
by evaluating a fixed collection of first-order sentences on this labeled graph. Finally, the
automaton accepts the augmented tree depending on the state at the root. As a result we
get that FO(MSO(≼, A), σ) model checking is fixed parameter tractable on trees that are
augmented with structures on which FO model checking is fixed-parameter tractable.

Formally, an automaton A on (A, σ)-augmented trees consists of:
an input alphabet A: the automaton will process augmented trees over the alphabet A,
a finite set of states Q,
a set of accepting states F ⊂ Q,

S. Siebertz and A. Vigny 2:19

for each state q ∈ Q and letter a ∈ A, a first-order sentence δq,a in the signature Σ ∪Q,
where each q ∈ Q is viewed as a unary relation symbol, such that for every fixed a ∈ A, the
sentences (δq,a)q∈Q are mutually inconsistent and their disjunction

∨
q∈Q δq,a is equivalent

to true. The sentences δq,a are called the transition sentences of A.

A run of A on an augmented tree T is a labeling ρ : V (T) → Q such that for every
node v with letter a and whorl Av, the state q = ρ(v) is the unique state such that δq,a holds
in the Q-labeled structure Av with labeling ρ restricted to Av. Formally, Av is viewed as
a structure over the signature Σ ∪Q, where a predicate q ∈ Q holds on a vertex v if and
only if ρ(v) = q. The run is accepting if it labels the root with an accepting state. The
automaton A accepts an augmented tree T if it has an accepting run on it.

▶ Theorem 24 ([102]). For every formula φ(x̄) of FO(MSO(≼, A), σ) there is an automaton A
on augmented trees that is equivalent to φ. Moreover, A is computable from φ.

We call the model checking problem for classes of structures that are additionally labeled
with unary predicates the labeled model checking problem.

▶ Lemma 25 ([102]). Let C be a class of σ-structures such that labeled model checking for
FO is fixed-parameter tractable on C . Then automata evaluation on C -augmented trees is
efficient.

As a corollary we get the following theorem.

▶ Theorem 26 ([102]). Let C be a class of σ-structures such that labeled model checking for
FO is fixed-parameter tractable on C . Then model-checking for FO(MSO(≼, A), σ) is efficient
on C -augmented trees with labels from a finite alphabet A.

As a final corollary we obtain the following theorem.

▶ Theorem 27 ([109]). Let C be a class excluded a topological minor. Then MC(FO+conn,C)
is fixed-parameter tractable.

Let us comment on why we do not obtain fixed-parameter tractability on nowhere dense
classes. The reason is that we were slightly imprecise when we stated that used the parts of
the decomposition into unbreakable parts as the whorls in the augmentations. In fact, we
need to toke the so-called bag graphs, which are obtained from the subgraphs induced by a
bag by turning all adhesions towards children into cliques. If the original graph excludes
some topological minor, then the bag graphs also exclude some (larger) topological minor,
hence, FO model checking is tractable on the bag graphs. If however, the original graph
comes from a nowhere dense class, the bag graphs are possibly no longer nowhere dense.

9 Locality and Game-based Decompositions of Local Neighborhoods

We now sketch the methods for FO model checking on nowhere dense and monadically
stable graph classes. As discussed in the introduction, monadically dependent classes are
conjectured to be the most general hereditary classes of graphs with tractable FO model
checking. Monadically stable classes are important special cases of monadically dependent
classes. On monotone classes the notions of monadic dependence, monadic stability and
nowhere denseness coincide [1] and for monotone classes nowhere denseness constitutes the
limit of tractability [73, 43, 83]. The basic method applied on nowhere dense classes could
be generalized to monadically stable classes [40, 37]. We present both results in parallel.

FSTTCS 2024

2:20 Advances in Algorithmic Meta Theorems

The key property of FO that is exploited for efficient model checking is its locality. This
is formalized for example by Gaifman’s Locality Theorem, which states that every first-order
formula φ(x̄) is equivalent to a Boolean combination of
1. local formulas ψ(r)(x̄) and
2. basic local formulas ∃x1 . . . ∃xk

(∧
i̸=j dist(xi, xj) > 2r ∧ χ(r)(xi)

)
.

Here, the notation ψ(r)(x̄) means that for every graph G and every tuple v̄ ∈ V (G)|x̄| we
have G |= ψ(r)(v̄) if and only if G[Nr(v̄)] |= ψ(r)(v̄), where G[Nr(v̄)] denotes the subgraph
of G induced by the r-neighborhood Nr(v̄) of v̄. The numbers r and k in the formulas above
depend only on the formula φ, and furthermore, the Gaifman normal form of any formula φ
is computable from φ.

This translates the model-checking problem to the following algorithmic problem. To
decide for a graph G and tuple v̄ ∈ V (G)|x̄| whether G |= φ(v̄),
1. decide whether v̄ has the local properties described by ψ(r)(x̄);
2. decide for each v ∈ V (G) whether G |= χ(r)(v);
3. solve each generalized independent set problem described by the basic local formulas

∃x1 . . . ∃xk

(∧
i̸=j dist(xi, xj) > 2r ∧ χ(r)(xi)

)
, and finally

4. evaluate the Boolean combination of these statements that is equivalent to φ.

Note that the generalized independent set problem is also a local problem by the following
argument. If a graph has many vertices satisfying χ(r) that are far away from each other, then
we can greedily pick elements for the independent set. Otherwise, all elements satisfying χ(r)

are close to one of the greedily picked vertices, so that testing if there is a different solution
becomes a local property.

Local formulas can be evaluated in bounded-radius neighborhoods of the graph, where
the radius depends only on φ. Hence, whenever the local neighborhoods in graphs from
a class C admit efficient model checking, then one immediately obtains an efficient model
checking algorithm for C . This technique was first employed in [56] and is also the basis
of the model checking algorithm on nowhere dense graph classes and monadicallly stable
classes. It immediately yields efficient model checking e.g. on planar graphs, as they have
locally bounded treewidth, or on classes with locally bounded cliquewidth.

However, on nowhere dense or monadically stable classes we cannot immediately apply
one of the above presented meta theorems. Instead, we recursively apply simplifications
based on the interpretation method in the local neighborhoods. In nowhere dense classes we
simplify by deleting a single vertex and in monadically stable classes we simplify by flipping
the edges between two sets of vertices. Obviously, the original edge set can be recovered
by an interpretation in a coloring of the graph in both cases. By an appropriately chosen
vertex deletions or flips, we have made the formula to be checked more complicated, but
the graph to be tested has become simpler. We then recurse with localizing the formulas,
considering local neighborhoods and deleting a vertex or flipping, until finally we arrive at a
single vertex graph, on which the model checking problem is trivial. The formal treatment
of the recursive simplification of the graph is captured by games, by the Splitter game on
nowhere dense classes and the Flipper game on monadically stable classes.

In the radius-r Splitter game, two players called Connector and Splitter, engage on a
graph and thereby recursively decompose local neighborhoods. Starting with the input
graph G, in each of the following rounds, Connector chooses a subgraph of the current game
graph of radius at most r and Splitter deletes a single vertex from this graph. The game
continues with the resulting graph and terminates when the single-vertex graph is reached.
A class of graphs is nowhere dense if and only if for every r there exists ℓ such that Splitter

S. Siebertz and A. Vigny 2:21

can win the radius-r Splitter game in ℓ rounds [73]. Furthermore, a strategy for splitter can
be efficiently computed. Hence, the recursive decomposition can be efficiently computed and
terminates after a bounded number of rounds.

Similarly, in the radius-r Flipper game, two players called Connector and Flipper, engage
on a graph and thereby recursively decompose local neighborhoods. Starting with the input
graph G, in each of the following rounds, Connector chooses a subgraph of the current game
graph of radius at most r and Flipper chooses two sets of vertices A and B and flips the
adjacency between the vertices of these two sets. The game continues with the resulting
graph. Flipper wins once a graph consisting of a single vertex is reached. A class of graphs
is monadically stable if and only if for every r there exists ℓ(r) such that Flipper can win
the radius-r Flipper game in ℓ(r) rounds [60]. Furthermore, a strategy for flipper can be
efficiently computed. Again, we get an efficient recursive decomposition of bounded depth.

A straight-forward implementation of this recursive algorithm however leads to a branching
degree of n and a running time of Ω(nℓ), where the depth ℓ of the recursion grows with φ.
To avoid this, [73] cluster nearby neighborhoods and handle them together in one recursive
call using so-called sparse r-neighborhood covers. An r-neighborhood cover with degree d
and radius s of a graph G is a family X of subsets of V (G), called clusters, such that the
r-neighborhood of every vertex is contained in some cluster, every cluster has radius at
most s, and every vertex appears in at most d clusters. It was shown in [73] that nowhere
dense classes admit r-neighborhood covers with radius 2r and degree O(nε) for any ε > 0.
Similarly, it was shown in [37] that monadically stable classes admit r-neighborhood covers
with radius 4r and degree O(nε) for any ε > 0. By scaling ε appropriately the recursive data
structure can be constructed in the desired fpt running time.

Some care has to be taken that the quantifier rank of the formulas does not grow when
localizing in each recursive step. This technical problem was addressed by considering a
rank-preserving normal form in [73]. This approach could be much simplified by a nice game
based argument in [40]. We obtain the following theorems.

▶ Theorem 28 ([73]). Let C be a nowhere dense class. Then MC(FO,C) is fixed-parameter
tractable.

▶ Theorem 29 ([40, 37]). Let C be a monadically stable class. Then MC(FO,C) is fixed-
parameter tractable.

As mentioned in the introduction, it is one of the main questions in the area whether these
results can be extended to monadically dependent classes. If based on the same approach
as for nowhere dense and monadically stable classes, one would have to devise a game that
not necessarily has bounded length, but that, combined with sparse neighborhood coves, if
they exist for monadically dependent classes, leads to an fpt bounded size recursive data
structure.

10 Twinwidth

Twinwidth was recently introduced by Bonnet, Kim, Thomassé and Watrigant [12] as a
generalization of an invariant for classes of permutations defined by Guillemot and Marx [75].
The definition of twinwidth is based on contraction sequences.

Let G be a graph on n vertices. A contraction sequence for G is a sequence P1, . . . ,Pn of
partitions of the vertex set of G such that:

P1 is the partition into singletons;
Pn is the partition with one part;
for each t ∈ [n], t > 1, Pt is obtained from Pt−1 by taking some two parts A,B ∈ Pt−1
and contracting them: replacing them with a single part A ∪B ∈ Pt.

FSTTCS 2024

2:22 Advances in Algorithmic Meta Theorems

A pair of disjoint vertex subsets A,B ⊂ V (G) is complete if every vertex of A is adjacent
to every vertex of B, and anti-complete if there is no edge with one endpoint in A and the
other one in B. The pair A,B is pure if it is complete or anti-complete, and impure otherwise.

A trigraph is a structure with two types of undirected edges, red and black edges. Given a
partition of P , we define the quotient trigraph G/P as the trigraph on vertex set P , where two
parts A,B ∈ P are connected by a black edge if the pair A,B is complete in G, non-adjacent
if the pair is anti-complete, and connected by a red edge if A,B is impure. For a trigraph H ,
its impurity graph is the graph on vertex set H where two vertices u, v ∈ V (H) are considered
adjacent if they are impure towards each other in H , that is, the subgraph on V (H) induced
by the red edges of H.

The width of the contraction sequence P1, . . . ,Pn is the maximum degree in the impurity
graphs of G/Pt over all times t ∈ [n]. The twin-width of G is the minimum possible width of
a contraction sequence of G.

Many well-studied classes of graphs have bounded twinwidth, e.g. planar graphs, and
more generally, any class of graphs excluding a fixed minor, cographs, and more generally,
any class of bounded clique-width, and many more. Most imporantly in our context, the
property of having bounded twinwidth is preserved unter FO-transductions, hence, classes
with bounded twinwidth are monadically dependent. In fact, a class of ordered structures
has bounded twinwidth if and only if it is monadically dependent [9]. FO model checking
is fixed-parameter tractable on every class of bounded twinwidth assuming a contraction
sequence is given together with the input [12]. On ordered structures a contraction sequence
can be computed efficiently, leading to efficient model checking on ordered classes of bounded
twinwidth. We give a brief sketch of model checking on classes with bounded twinwidth,
following the presentation of [61].

The model checking result can be presented using the notion of local types. Intuitively,
the k-local type of a part refers to all formulas (up to quantifier rank k) that the f(k)-
neighborhood of the part satisfies. Here, we consider distances in the impurity graphs.

Initially, the first partition of the sequence only contains singletons and no part is impure
with another. So the local types (for a fixed value of k) can be computed in constant time
for each part.

Then, and since the provided sequence has width at most d, the k-neighborhood of a
part only contains dk other parts. Furthermore, when two parts are merged according to the
sequence, this only impacts the k-neighborhood of a constant number of parts. These types
can be recomputed efficiently.

Finally, the local type of the last partition, which only contains one part: the entire
graph, provides the type of the graph and informs us whether the original desired property
is satisfied.

10.1 Around twinwidth

The method described above, gives rise to various questions. Are there other suitable width
parameters for the contraction sequence? Do we need the sequence to end on a single part,
or could there be other stopping points?

Some of these directions have been considered by Bonnet et al. [10]. First, by changing
the notion of width for the contraction sequence, one can capture the notions of rank width
and linear rank width by bounding the size of connected components in the impurity graph,
or the total number of impure connections.

S. Siebertz and A. Vigny 2:23

On the direction of contraction sequences that stop before the single part partition,
Bonnet et al. [10] also proved that if the connections (both pure and impure) of a partition
results in a graph of bounded degree, or a graph of bounded expansion, one could still derive
information on the type of the original graph. Proving fixed parameter tractability of FO
model checking on classes of graphs that can contract to a class with bounded degree, and
fixed parameter tractability of ∃FO model checking on classes of graphs that can contract to
a class with bounded expansion. Where ∃FO is the existential fragment of first order logic,
which prohibits the use of universal quantification, as well as negations.

References
1 Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion

of model theory. European Journal of Combinatorics, 36:322–330, 2014. doi:10.1016/J.EJC.
2013.06.048.

2 Albert Atserias. E. grädel, p. kolaitis, l. libkin, m. marx, i. spencer, m. vardi, y. venema and s.
weinstein , finite model theory and its applications, springer-verlag (2007). Comput. Sci. Rev.,
2(1):55–59, 2008. doi:10.1016/J.COSREV.2008.01.001.

3 David A Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within nc1.
Journal of Computer and System Sciences, 41(3):274–306, 1990.

4 Michael Benedikt and H Jerome Keisler. Expressive power of unary counters. Structures in
Logic and Computer Science: A Selection of Essays in Honor of A. Ehrenfeucht, pages 34–50,
2005.

5 Mikolaj Bojanczyk. Separator logic and star-free expressions for graphs. arXiv preprint, 2021.
arXiv:2107.13953.

6 Édouard Bonnet, Jan Dreier, Jakub Gajarskỳ, Stephan Kreutzer, Nikolas Mählmann, Pierre
Simon, and Szymon Toruńczyk. Model checking on interpretations of classes of bounded local
cliquewidth. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, pages 1–13, 2022.

7 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width II: small classes. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1977–1996. SIAM, 2021. doi:10.1137/1.9781611976465.118.

8 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width III: max independent set, min dominating set, and coloring. In 48th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, volume 198 of LIPIcs,
pages 35:1–35:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/
LIPICS.ICALP.2021.35.

9 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Toruńczyk. Twin-width IV: ordered graphs and matrices. Journal of the ACM,
71(3):1–45, 2024.

10 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width VI:
the lens of contraction sequences. In SODA, pages 1036–1056. SIAM, 2022. doi:10.1137/1.
9781611977073.45.

11 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant.
Twin-width and polynomial kernels. Algorithmica, 84(11):3300–3337, 2022. doi:10.1007/
S00453-022-00965-5.

12 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable fo model checking. ACM Journal of the ACM (JACM), 69(1):1–46, 2021. doi:
10.1145/3486655.

13 Samuel Braunfeld, Jaroslav Nešetřil, Patrice Ossona de Mendez, and Sebastian Siebertz.
Decomposition horizons: from graph sparsity to model-theoretic dividing lines. arXiv preprint,
2022. arXiv:2209.11229.

FSTTCS 2024

https://doi.org/10.1016/J.EJC.2013.06.048
https://doi.org/10.1016/J.EJC.2013.06.048
https://doi.org/10.1016/J.COSREV.2008.01.001
https://arxiv.org/abs/2107.13953
https://doi.org/10.1137/1.9781611976465.118
https://doi.org/10.4230/LIPICS.ICALP.2021.35
https://doi.org/10.4230/LIPICS.ICALP.2021.35
https://doi.org/10.1137/1.9781611977073.45
https://doi.org/10.1137/1.9781611977073.45
https://doi.org/10.1007/S00453-022-00965-5
https://doi.org/10.1007/S00453-022-00965-5
https://doi.org/10.1145/3486655
https://doi.org/10.1145/3486655
https://arxiv.org/abs/2209.11229

2:24 Advances in Algorithmic Meta Theorems

14 Samuel Braunfeld, Jaroslav Nešetřil, Patrice Ossona de Mendez, and Sebastian Siebertz.
Decomposition horizons and a characterization of stable hereditary classes of graphs. arXiv
preprint, 2024. arXiv:2209.11229.

15 Ashok Chandra and David Harel. Structure and complexity of relational queries. Journal of
Computer and system Sciences, 25(1):99–128, 1982. doi:10.1016/0022-0000(82)90012-5.

16 Ashok K Chandra and Philip M Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Proceedings of the ninth annual ACM symposium on Theory of
computing, pages 77–90, 1977. doi:10.1145/800105.803397.

17 Jianer Chen, Xiuzhen Huang, Iyad A Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367,
2006. doi:10.1016/J.JCSS.2006.04.007.

18 Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michał
Pilipczuk. Designing fpt algorithms for cut problems using randomized contractions. SIAM
Journal on Computing, 45(4):1171–1229, 2016. doi:10.1137/15M1032077.

19 Edgar F Codd. A relational model of data for large shared data banks. Communications of
the ACM, 13(6):377–387, 1970. doi:10.1145/362384.362685.

20 Thomas Colcombet. A combinatorial theorem for trees: applications to monadic logic and
infinite structures. In Automata, Languages and Programming: 34th International Colloquium,
ICALP 2007, Wrocław, Poland, July 9-13, 2007. Proceedings 34, pages 901–912. Springer,
2007.

21 Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Formal models and
semantics, pages 193–242. Elsevier, 1990. doi:10.1016/B978-0-444-88074-1.50010-X.

22 Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs.
Information and computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

23 Bruno Courcelle. The monadic second-order logic of graphs VII: Graphs as relational structures.
Theoretical Computer Science, 101(1):3–33, 1992. doi:10.1016/0304-3975(92)90148-9.

24 Bruno Courcelle, Johann A Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000. doi:10.1007/S002249910009.

25 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1-3):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.

26 Bruno Courcelle and Sang-il Oum. Vertex-minors, monadic second-order logic, and a conjecture
by seese. Journal of Combinatorial Theory, Series B, 97(1):91–126, 2007. doi:10.1016/J.
JCTB.2006.04.003.

27 Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5(4).
Springer, 2015. doi:10.1007/978-3-319-21275-3.

28 Marek Cygan, Paweł Komosa, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, Saket
Saurabh, and Magnus Wahlström. Randomized contractions meet lean decompositions. ACM
Transactions on Algorithms (TALG), 17(1):1–30, 2020. doi:10.1145/3426738.

29 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh.
Minimum bisection is fixed parameter tractable. In Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, pages 323–332, 2014. doi:10.1145/2591796.2591852.

30 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh.
Minimum bisection is fixed-parameter tractable. SIAM Journal on Computing, 48(2):417–450,
2019. doi:10.1137/140988553.

31 Anuj Dawar, Martin Grohe, and Stephan Kreutzer. Locally excluding a minor. In LICS 2007,
pages 270–279. IEEE, 2007. doi:10.1109/LICS.2007.31.

32 John Doner. Tree acceptors and some of their applications. Journal of Computer and System
Sciences, 4(5):406–451, 1970. doi:10.1016/S0022-0000(70)80041-1.

33 Rod G Downey and Michael R Fellows. Fixed-parameter tractability and completeness I: Basic
results. SIAM Journal on computing, 24(4):873–921, 1995. doi:10.1137/S0097539792228228.

https://arxiv.org/abs/2209.11229
https://doi.org/10.1016/0022-0000(82)90012-5
https://doi.org/10.1145/800105.803397
https://doi.org/10.1016/J.JCSS.2006.04.007
https://doi.org/10.1137/15M1032077
https://doi.org/10.1145/362384.362685
https://doi.org/10.1016/B978-0-444-88074-1.50010-X
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0304-3975(92)90148-9
https://doi.org/10.1007/S002249910009
https://doi.org/10.1016/S0166-218X(99)00184-5
https://doi.org/10.1016/J.JCTB.2006.04.003
https://doi.org/10.1016/J.JCTB.2006.04.003
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/3426738
https://doi.org/10.1145/2591796.2591852
https://doi.org/10.1137/140988553
https://doi.org/10.1109/LICS.2007.31
https://doi.org/10.1016/S0022-0000(70)80041-1
https://doi.org/10.1137/S0097539792228228

S. Siebertz and A. Vigny 2:25

34 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.

35 Rodney G Downey, Michael R Fellows, et al. Fundamentals of parameterized complexity,
volume 4. Springer, 2013.

36 Jan Dreier. Lacon-and shrub-decompositions: A new characterization of first-order transduc-
tions of bounded expansion classes. In 2021 36th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470680.

37 Jan Dreier, Ioannis Eleftheriadis, Nikolas Mählmann, Rose McCarty, Michał Pilipczuk, and
Szymon Toruńczyk. First-order model checking on monadically stable graph classes. arXiv
preprint, 2023. arXiv:2311.18740.

38 Jan Dreier, Jakub Gajarskỳ, Sandra Kiefer, Michał Pilipczuk, and Szymon Toruńczyk. Tree-
like decompositions for transductions of sparse graphs. In Proceedings of the 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 1–14, 2022.

39 Jan Dreier, Nikolas Mählmann, Amer E. Mouawad, Sebastian Siebertz, and Alexandre Vigny.
Combinatorial and algorithmic aspects of monadic stability. In 33rd International Symposium
on Algorithms and Computation, ISAAC 2022, volume 248 of LIPIcs, pages 11:1–11:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ISAAC.2022.11.

40 Jan Dreier, Nikolas Mählmann, and Sebastian Siebertz. First-order model checking on
structurally sparse graph classes. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, pages 567–580, 2023. doi:10.1145/3564246.3585186.

41 Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk. Indiscernibles and
flatness in monadically stable and monadically nip classes. In 50th International Colloquium
on Automata, Languages, and Programming (ICALP 2023). Schloss-Dagstuhl-Leibniz Zentrum
für Informatik, 2023.

42 Jan Dreier, Nikolas Mählmann, and Szymon Toruńczyk. Flip-breakability: A combinatorial
dichotomy for monadically dependent graph classes. In Proceedings of the 56th Annual ACM
Symposium on Theory of Computing, pages 1550–1560, 2024. doi:10.1145/3618260.3649739.

43 Zdeněk Dvořák, Daniel Král, and Robin Thomas. Deciding first-order properties for sparse
graphs. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages
133–142. IEEE, 2010.

44 Zdeněk Dvořák, Daniel Král, and Robin Thomas. Testing first-order properties for subclasses
of sparse graphs. Journal of the ACM (JACM), 60(5):36, 2013.

45 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives in Mathematical
Logic. Springer, 1995.

46 Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical logic (2. ed.).
Undergraduate texts in mathematics. Springer, 1994.

47 Kord Eickmeyer, Jan van den Heuvel, Ken-ichi Kawarabayashi, Stephan Kreutzer, Patrice
Ossona De Mendez, Michał Pilipczuk, Daniel A Quiroz, Roman Rabinovich, and Sebastian
Siebertz. Model-checking on ordered structures. ACM Transactions on Computational Logic
(TOCL), 21(2):1–28, 2020. doi:10.1145/3360011.

48 Kousha Etessami. Counting quantifiers, successor relations, and logarithmic space. Journal of
Computer and System Sciences, 54(3):400–411, 1997. doi:10.1006/JCSS.1997.1485.

49 Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Com-
plexity of computation, 7:43–73, 1974.

50 Ronald Fagin. Monadic generalized spectra. Math. Log. Q., 21(1):89–96, 1975. doi:10.1002/
MALQ.19750210112.

51 Solomon Feferman and Robert L Vaught. The first order properties of products of algebraic
systems. Journal of Symbolic Logic, 32(2), 1967.

52 Jörg Flum and Martin Grohe. Fixed-parameter tractability, definability, and model-checking.
SIAM Journal on Computing, 31(1):113–145, 2001. doi:10.1137/S0097539799360768.

53 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

FSTTCS 2024

https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1109/LICS52264.2021.9470680
https://arxiv.org/abs/2311.18740
https://doi.org/10.4230/LIPICS.ISAAC.2022.11
https://doi.org/10.1145/3564246.3585186
https://doi.org/10.1145/3618260.3649739
https://doi.org/10.1145/3360011
https://doi.org/10.1006/JCSS.1997.1485
https://doi.org/10.1002/MALQ.19750210112
https://doi.org/10.1002/MALQ.19750210112
https://doi.org/10.1137/S0097539799360768
https://doi.org/10.1007/3-540-29953-X

2:26 Advances in Algorithmic Meta Theorems

54 Fedor V Fomin, Petr A Golovach, Ignasi Sau, Giannos Stamoulis, and Dimitrios M Thilikos.
Compound logics for modification problems. ACM Transactions on Computational Logic,
2023.

55 Fedor V Fomin, Petr A Golovach, Giannos Stamoulis, and Dimitrios M Thilikos. An algorithmic
meta-theorem for graph modification to planarity and fol. ACM Transactions on Computation
Theory, 14(3-4):1–29, 2023. doi:10.1145/3571278.

56 Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-decomposable
structures. Journal of the ACM (JACM), 48(6):1184–1206, 2001. doi:10.1145/504794.504798.

57 Jakub Gajarskỳ, Petr Hliněnỳ, Jan Obdržálek, Daniel Lokshtanov, and M Sridharan Ramanu-
jan. A new perspective on fo model checking of dense graph classes. ACM Transactions on
Computational Logic (TOCL), 21(4):1–23, 2020. doi:10.1145/3383206.

58 Jakub Gajarsky and Daniel Král’. Recovering sparse graphs. Leibniz International Proceedings
in Informatics (LIPIcs), 117:29, 2018.

59 Jakub Gajarskỳ, Stephan Kreutzer, Jaroslav Nešetřil, Patrice Ossona De Mendez, Michał
Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. First-order interpretations of bounded
expansion classes. ACM Transactions on Computational Logic (TOCL), 21(4):1–41, 2020.
doi:10.1145/3382093.

60 Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michal Pilipczuk,
Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokolowski, and Szymon Torunczyk.
Flipper games for monadically stable graph classes. In 50th International Colloquium on
Automata, Languages, and Programming, ICALP 2023, volume 261 of LIPIcs, pages 128:1–
128:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ICALP.
2023.128.

61 Jakub Gajarský, Michal Pilipczuk, Wojciech Przybyszewski, and Szymon Torunczyk. Twin-
width and types. In 49th International Colloquium on Automata, Languages, and Programming,
ICALP 2022, volume 229 of LIPIcs, pages 123:1–123:21. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022. doi:10.4230/LIPICS.ICALP.2022.123.

62 Jakub Gajarskỳ, Michał Pilipczuk, and Szymon Toruńczyk. Stable graphs of bounded twin-
width. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, pages 1–12, 2022.

63 Robert Ganian, Petr Hliněnỳ, Alexander Langer, Jan Obdržálek, Peter Rossmanith, and
Somnath Sikdar. Lower bounds on the complexity of mso1 model-checking. Journal of
Computer and System Sciences, 80(1):180–194, 2014. doi:10.1016/J.JCSS.2013.07.005.

64 Robert Ganian, Petr Hliněnỳ, Jaroslav Nešetřil, Jan Obdržálek, and Patrice Ossona De Mendez.
Shrub-depth: Capturing height of dense graphs. Logical Methods in Computer Science, 15,
2019.

65 Robert Ganian, Petr Hliněnỳ, Jaroslav Nešetřil, Jan Obdržálek, Patrice Ossona de Mendez,
and Reshma Ramadurai. When trees grow low: Shrubs and fast mso 1. In Mathematical
Foundations of Computer Science 2012: 37th International Symposium, MFCS 2012, Bratislava,
Slovakia, August 27-31, 2012. Proceedings 37, pages 419–430. Springer, 2012. doi:10.1007/
978-3-642-32589-2_38.

66 Tobias Ganzow and Sasha Rubin. Order-invariant MSO is stronger than counting MSO in the
finite. In Susanne Albers and Pascal Weil, editors, 25th Annual Symposium on Theoretical
Aspects of Computer Science, STACS 2008, volume 1 of LIPIcs, pages 313–324. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, Germany, 2008. doi:10.4230/LIPICS.STACS.2008.1353.

67 Petr A Golovach, Giannos Stamoulis, and Dimitrios M Thilikos. Model-checking for first-order
logic with disjoint paths predicates in proper minor-closed graph classes. In Proceedings of
the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3684–3699.
SIAM, 2023. doi:10.1137/1.9781611977554.CH141.

68 Erich Grädel, Phokion G Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y
Vardi, Yde Venema, Scott Weinstein, et al. Finite Model Theory and its applications. Springer,
2007.

https://doi.org/10.1145/3571278
https://doi.org/10.1145/504794.504798
https://doi.org/10.1145/3383206
https://doi.org/10.1145/3382093
https://doi.org/10.4230/LIPICS.ICALP.2023.128
https://doi.org/10.4230/LIPICS.ICALP.2023.128
https://doi.org/10.4230/LIPICS.ICALP.2022.123
https://doi.org/10.1016/J.JCSS.2013.07.005
https://doi.org/10.1007/978-3-642-32589-2_38
https://doi.org/10.1007/978-3-642-32589-2_38
https://doi.org/10.4230/LIPICS.STACS.2008.1353
https://doi.org/10.1137/1.9781611977554.CH141

S. Siebertz and A. Vigny 2:27

69 Mario Grobler, Yiting Jiang, Patrice Ossona de Mendez, Sebastian Siebertz, and Alexandre
Vigny. Discrepancy and sparsity. J. Comb. Theory B, 169:96–133, 2024. doi:10.1016/J.JCTB.
2024.06.001.

70 Martin Grohe. Logic, graphs, and algorithms. Logic and automata, 2:357–422, 2008.
71 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topolog-

ical subgraphs is fixed-parameter tractable. In Proceedings of the forty-third annual ACM
symposium on Theory of computing, pages 479–488, 2011. doi:10.1145/1993636.1993700.

72 Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. AMS-ASL
Joint Special Session, 558:181–206, 2009.

73 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. J. ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.

74 Martin Grohe and Nicole Schweikardt. First-order query evaluation with cardinality conditions.
In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, pages 253–266, 2018. doi:10.1145/3196959.3196970.

75 Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations in linear time.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 82–101, 2014. doi:10.1137/1.
9781611973402.7.

76 Yuri Gurevich. Logic and the challenge of computer science. Technical report, University of
Michigan, 1985.

77 Wilfrid Hodges. Model theory, volume 42 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 1993.

78 Neil Immerman. Upper and lower bounds for first order expressibility. Journal of Computer
and System Sciences, 25(1):76–98, 1982. doi:10.1016/0022-0000(82)90011-3.

79 Neil Immerman. Languages that capture complexity classes. SIAM J. Comput., 16(4):760–778,
1987. doi:10.1137/0216051.

80 Neil Immerman. Descriptive complexity. Springer Science & Business Media, 1998.
81 Yiting Jiang, Jaroslav Nešetřil, Patrice Ossona de Mendez, and Sebastian Siebertz. Regular

partitions of gentle graphs. Acta Mathematica Hungarica, 161(2):719–755, 2020.
82 Ken-ichi Kawarabayashi and Mikkel Thorup. The minimum k-way cut of bounded size is

fixed-parameter tractable. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pages 160–169. IEEE, 2011. doi:10.1109/FOCS.2011.53.

83 Stephan Kreutzer. Algorithmic meta-theorems. Finite and algorithmic model theory, 379:177–
270, 2011.

84 Stephan Kreutzer. On the parameterized intractability of monadic second-order logic. Logical
Methods in Computer Science, 8, 2012. doi:10.2168/LMCS-8(1:27)2012.

85 Stephan Kreutzer and Siamak Tazari. Lower bounds for the complexity of monadic second-
order logic. In 2010 25th Annual IEEE Symposium on Logic in Computer Science, pages
189–198. IEEE, 2010. doi:10.1109/LICS.2010.39.

86 Stephan Kreutzer and Siamak Tazari. On brambles, grid-like minors, and parameterized
intractability of monadic second-order logic. In Proceedings of the twenty-first annual ACM-
SIAM symposium on Discrete Algorithms, pages 354–364. SIAM, 2010. doi:10.1137/1.
9781611973075.30.

87 Dietrich Kuske and Nicole Schweikardt. First-order logic with counting. In 2017 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12. IEEE, 2017.
doi:10.1109/LICS.2017.8005133.

88 Dietrich Kuske and Nicole Schweikardt. Gaifman normal forms for counting extensions of
first-order logic. In 45th International Colloquium on Automata, Languages, and Programming
(ICALP 2018). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

89 Leonid Libkin. Elements of finite model theory, volume 41. Springer, 2004. doi:10.1007/
978-3-662-07003-1.

FSTTCS 2024

https://doi.org/10.1016/J.JCTB.2024.06.001
https://doi.org/10.1016/J.JCTB.2024.06.001
https://doi.org/10.1145/1993636.1993700
https://doi.org/10.1145/3051095
https://doi.org/10.1145/3196959.3196970
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1016/0022-0000(82)90011-3
https://doi.org/10.1137/0216051
https://doi.org/10.1109/FOCS.2011.53
https://doi.org/10.2168/LMCS-8(1:27)2012
https://doi.org/10.1109/LICS.2010.39
https://doi.org/10.1137/1.9781611973075.30
https://doi.org/10.1137/1.9781611973075.30
https://doi.org/10.1109/LICS.2017.8005133
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1

2:28 Advances in Algorithmic Meta Theorems

90 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004. doi:10.1007/978-3-662-07003-1.

91 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Reducing CMSO
model checking to highly connected graphs. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, volume 107 of LIPIcs, pages 135:1–135:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.ICALP.2018.135.

92 Nikolas Mählmann. Monadically stable and monadically dependent graph classes: characteri-
zations and algorithmic meta-theorems. PhD thesis, Universität Bremen, 2024.

93 Johann A Makowsky and JP Marino. Tree-width and the monadic quantifier hierarchy.
Theoretical computer science, 303(1):157–170, 2003. doi:10.1016/S0304-3975(02)00449-8.

94 Maryanthe Malliaris and Saharon Shelah. Regularity lemmas for stable graphs. Transactions
of the American Mathematical Society, 366(3):1551–1585, 2014.

95 Jaroslav Nešetřil and P Ossona de Mendez. Structural sparsity. Russian Mathematical Surveys,
71(1):79, 2016.

96 Jaroslav Nešetřil and Patrice Ossona De Mendez. On nowhere dense graphs. European Journal
of Combinatorics, 32(4):600–617, 2011. doi:10.1016/J.EJC.2011.01.006.

97 Jaroslav Nešetřil, Patrice Ossona de Mendez, Michał Pilipczuk, Roman Rabinovich, and
Sebastian Siebertz. Rankwidth meets stability. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2014–2033. SIAM, 2021.

98 Jaroslav Nešetřil, Roman Rabinovich, Patrice Ossona de Mendez, and Sebastian Siebertz.
Linear rankwidth meets stability. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1180–1199. SIAM, 2020.

99 Pierre Ohlmann, Michał Pilipczul, Szymon Toruńczyk, and Wojciech Przybyszewski. Canonical
decompositions in monadically stable and bounded shrubdepth graph classes. arXiv preprint,
2023. arXiv:2303.01473.

100 Open problems from the workshop on algorithms, logic and structure, university of war-
wick, 2016. URL: https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/
alglogstr/openproblems.pdf.

101 Sang-il Oum and Paul Seymour. Approximating clique-width and branch-width. Journal of
Combinatorial Theory, Series B, 96(4):514–528, 2006. doi:10.1016/J.JCTB.2005.10.006.

102 Michal Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Torunczyk, and Alexandre
Vigny. Algorithms and data structures for first-order logic with connectivity under vertex
failures. In 49th International Colloquium on Automata, Languages, and Programming, ICALP
2022, volume 229 of LIPIcs, pages 102:1–102:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPICS.ICALP.2022.102.

103 Neil Robertson and Paul D Seymour. Graph minors I – XXIII, 1983 – 2010.
104 Neil Robertson and Paul D Seymour. Graph minors. V. excluding a planar graph. Journal of

Combinatorial Theory, Series B, 41(1):92–114, 1986. doi:10.1016/0095-8956(86)90030-4.
105 Neil Robertson and Paul D Seymour. Graph minors. XIII. the disjoint paths problem. Journal

of combinatorial theory, Series B, 63(1):65–110, 1995. doi:10.1006/JCTB.1995.1006.
106 Ignasi Sau, Giannos Stamoulis, and Dimitrios M Thilikos. A more accurate view of the flat

wall theorem. Journal of Graph Theory, 107(2):263–297, 2024.
107 Ignasi Sau, Giannos Stamoulis, and Dimitrios M Thilikos. Parameterizing the quantification of

cmso: model checking on minor-closed graph classes. arXiv preprint arXiv:2406.18465, 2024.
doi:10.48550/arXiv.2406.18465.

108 Nicole Schirrmacher, Sebastian Siebertz, Giannos Stamoulis, Dimitrios M Thilikos, and
Alexandre Vigny. Model checking disjoint-paths logic on topological-minor-free graph classes.
In Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science,
pages 1–12, 2024. doi:10.1145/3661814.3662089.

https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.4230/LIPICS.ICALP.2018.135
https://doi.org/10.1016/S0304-3975(02)00449-8
https://doi.org/10.1016/J.EJC.2011.01.006
https://arxiv.org/abs/2303.01473
https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf
https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf
https://doi.org/10.1016/J.JCTB.2005.10.006
https://doi.org/10.4230/LIPICS.ICALP.2022.102
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1006/JCTB.1995.1006
https://doi.org/10.48550/arXiv.2406.18465
https://doi.org/10.1145/3661814.3662089

S. Siebertz and A. Vigny 2:29

109 Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny. First-order logic with
connectivity operators. ACM Transactions on Computational Logic, 24(4):1–23, 2023.
doi:10.1145/3595922.

110 Nicole Schweikardt. Arithmetic, first-order logic, and counting quantifiers. ACM Transactions
on Computational Logic (TOCL), 6(3):634–671, 2005. doi:10.1145/1071596.1071602.

111 Detlef Seese. The structure of the models of decidable monadic theories of graphs. Annals of
pure and applied logic, 53(2):169–195, 1991. doi:10.1016/0168-0072(91)90054-P.

112 Detlef Seese. Linear time computable problems and first-order descriptions. Mathematical
Structures in Computer Science, 6(6):505–526, 1996. doi:10.1017/S0960129500070079.

113 Saharon Shelah. Classification theory: and the number of non-isomorphic models. Elsevier,
1990.

114 Larry J Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22,
1976. doi:10.1016/0304-3975(76)90061-X.

115 Larry Joseph Stockmeyer. The complexity of decision problems in automata theory and logic.
PhD thesis, Massachusetts Institute of Technology, 1974.

116 James W. Thatcher and Jesse B. Wright. Generalized finite automata theory with an application
to a decision problem of second-order logic. Mathematical systems theory, 2(1):57–81, 1968.
doi:10.1007/BF01691346.

117 Dimitrios M Thilikos and Sebastian Wiederrecht. Excluding surfaces as minors in graphs.
arXiv preprint, 2023. arXiv:2306.01724.

118 Szymon Toruńczyk. Aggregate queries on sparse databases. In Proceedings of the 39th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 427–443,
2020.

119 Szymon Toruńczyk. Flip-width: Cops and robber on dense graphs. In 2023 IEEE 64th Annual
Symposium on Foundations of Computer Science (FOCS), pages 663–700. IEEE, 2023.

120 Moshe Y Vardi. The complexity of relational query languages. In Proceedings of the fourteenth
annual ACM symposium on Theory of computing, pages 137–146, 1982.

121 Xuding Zhu. Colouring graphs with bounded generalized colouring number. Discrete Mathe-
matics, 309(18):5562–5568, 2009. doi:10.1016/J.DISC.2008.03.024.

FSTTCS 2024

https://doi.org/10.1145/3595922
https://doi.org/10.1145/1071596.1071602
https://doi.org/10.1016/0168-0072(91)90054-P
https://doi.org/10.1017/S0960129500070079
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1007/BF01691346
https://arxiv.org/abs/2306.01724
https://doi.org/10.1016/J.DISC.2008.03.024

Execution-Time Opacity Problems in One-Clock
Parametric Timed Automata
Étienne André Ñ

Université Sorbonne Paris Nord, LIPN, CNRS UMR 7030, F-93430 Villetaneuse, France
Institut Universitaire de France (IUF), Paris, France

Johan Arcile #

IBISC, Univ Evry, Université Paris-Saclay, 91025 Evry, France

Engel Lefaucheux Ñ

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Abstract
Parametric timed automata (PTAs) extend the concept of timed automata, by allowing timing delays
not only specified by concrete values but also by parameters, allowing the analysis of systems with
uncertainty regarding timing behaviors. The full execution-time opacity is defined as the problem in
which an attacker must never be able to deduce whether some private location was visited, by only
observing the execution time. The problem of full ET-opacity emptiness (i.e., the emptiness over the
parameter valuations for which full execution-time opacity is satisfied) is known to be undecidable
for general PTAs. We therefore focus here on one-clock PTAs with integer-valued parameters over
dense time. We show that the full ET-opacity emptiness is undecidable for a sufficiently large
number of parameters, but is decidable for a single parameter, and exact synthesis can be effectively
achieved. Our proofs rely on a novel construction as well as on variants of Presburger arithmetics.
We finally prove an additional decidability result on an existential variant of execution-time opacity.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models; Security
and privacy → Logic and verification

Keywords and phrases Timed opacity, Parametric timed automata, Presburger arithmetic

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.3

Related Version Full Version: https://arxiv.org/abs/2410.01659

Funding This work is partially supported by the ANR-NRF French-Singaporean research program
ProMiS (ANR-19-CE25-0015 / 2019 ANR NRF 0092) and by ANR BisoUS (ANR-22-CE48-0012).

1 Introduction

As surveyed in [13], for some systems, private information may be deduced simply by
observation of public information. For example, it may be possible to infer the content of
some memory space from the access times of a cryptographic module.

The notion of opacity [28, 15] concerns information leaks from a system to an attacker;
that is, it expresses the power of the attacker to deduce some secret information based on
some publicly observable behaviors. If an attacker observing a subset of the actions cannot
deduce whether a given sequence of actions has been performed, then the system is opaque.
Time particularly influences the deductive capabilities of the attacker. It has been shown
in [19] that it is possible for models that are opaque when timing constraints are omitted, to
be non-opaque when those constraints are added to the models.

For this reason, the notion is extended to timed opacity in [17], where the attacker can
also observe time. The input model is timed automata (TAs) [1], a formalism extending
finite-state automata with real-time variables called clocks. It is proved in [17] that this
version of timed opacity is undecidable for TAs.

© Étienne André, Johan Arcile, and Engel Lefaucheux;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 3; pp. 3:1–3:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://lipn.univ-paris13.fr/~andre/
https://orcid.org/0000-0001-8473-9555
mailto:johan.arcile@univ-evry.fr
https://orcid.org/0000-0001-9979-3829
https://elefauch.github.io/
https://orcid.org/0000-0003-0875-300X
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.3
https://arxiv.org/abs/2410.01659
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

In [9], a less powerful version of opacity is proposed, where the attacker has access
only to the system execution time and aims at deducing whether a private location was
visited during the system execution. This version of timed opacity is called execution-time
opacity (ET-opacity). Two main problems are considered in [9]: 1) the existence of at least
one execution time for which the system is ET-opaque (∃-ET-opacity), and 2) whether all
execution times are such that the system is ET-opaque (called full ET-opacity). These two
notions of opacity are proved to be decidable for TAs [7]. In the same works, the authors
then extend ET-opacity to parametric timed automata (PTAs) [2]. PTAs are an extension
of TAs where timed constraints can be expressed with timing parameters instead of integer
constants, allowing to model uncertainty or lack of knowledge. The two problems come with
two flavors: 1) emptiness problems: whether the set of parameter valuations guaranteeing a
given version of opacity (∃-ET-opacity or full ET-opacity) is empty or not, and 2) synthesis
problems: synthesize all parameter valuations for which a given version of opacity holds.
Both emptiness problems ∃OE (∃-ET-opacity emptiness) and FOE (full-ET-opacity emptiness)
have been shown to be undecidable for PTAs, while decidable subclasses are exhibited [9, 7].
A semi-algorithm (i.e., that may not terminate, but is correct if it does) is provided to solve
∃-ET-opacity synthesis (hereafter ∃OS) in [9].

1.1 Contributions
We address here full-ET-opacity emptiness (FOE) and synthesis (FOS), and ∃-ET-opacity
emptiness (∃OE) and synthesis (∃OS), for PTAs with integer-valued parameters over dense
time with the following main theoretical contributions:
1. We prove that FOE is undecidable (Corollary 27) for PTAs with a single clock and a

sufficiently large number of parameters.
2. We prove in contrast that FOE is decidable (Corollary 28) for PTAs with a single clock

and a single parameter.
3. We prove that ∃OE is decidable (Theorem 29) for PTAs with a single clock and arbitrarily

many parameters. We also exhibit a better complexity for a single parameter over discrete
time (Theorem 31).

We focus on one-clock PTAs, as virtually all problems are undecidable for 3 clocks [5],
and the 2-clock case is an extremely difficult problem, already for reachability [21]. Our
contributions are summarized in Table 1. In order to prove these results, we improve on
the semi-algorithm from [9] for ∃OS and provide one for FOS. These solutions are based
on the novel notion of parametric execution times (PET). The PET of a PTA is the total
elapsed time and associated parameter valuations on all paths between two given locations.
We provide a semi-algorithm for the computation of PET, that builds upon reachability
synthesis (i.e., the synthesis of parameter valuations for which a set of locations are reachable)
for which a semi-algorithm already exists [24]. We then show how to resolve ∃OS and FOS
problems by performing set operations on PET of two complementary subsets of the PTA
where we respectively consider only private paths and only non-private paths.

We then solve the full ET-opacity emptiness (FOE) problem for PTAs with 1 clock and
1 parameter, by rewriting the problems in a parametric variant of Presburger arithmetic.
This is done by 1) providing a sound and complete method for encoding infinite PET for
PTAs with 1 clock and arbitrarily many parameters over dense time; and 2) translating
them into parametric semi-linear sets, a formalism defined and studied in [27]. With these
ingredients, we notably prove that: 1) FOE is undecidable in general for PTAs with 1 clock
and sufficiently many parameters. This is done by reducing a known undecidable problem of
parametric Presburger arithmetic (whose undecidability comes from Hilbert’s 10th problem)

É. André, J. Arcile, and E. Lefaucheux 3:3

to the FOE problem in this context. 2) ∃OE is decidable for PTAs with 1 clock and arbitrarily
many parameters. This is done by reducing ∃OE to the existential fragment of Presburger
arithmetic with divisibility, known to be decidable.

1.2 Related works
The undecidability of timed opacity proved in [17] leaves hope for decidability only by
modifying the problem (as in [9, 7]), or by restraining the model. In [31, 32], (initial state)
opacity is shown to be decidable on a restricted subclass of TAs called real-time automata [18].
In [3], a notion of timed bounded opacity, where the secret has an expiration date, and over
a time-bounded framework, is proved decidable. Opacity over subclasses of TAs (such as
one-clock or one-actions TAs) is considered in [6, 4] and over discrete time in [25].

In [9], ∃-ET-opacity synthesis (∃OS) is solved using a semi-algorithm. The method is
based on a self-composition of the PTA with m parameters and n clocks, where the resulting
model consists of m+1 parameters and 2n+1 clocks. The method terminates if the symbolic
state space of this self-composition is finite. Our work proposes in contrast an approach
based on set operations on parametric execution times (PET) of both complementary subsets
of the PTA where we respectively consider only private paths and only non-private paths.
Those submodels are each composed of m + 1 parameters and n + 1 clocks. Our new method
terminates if the symbolic state spaces of both submodels are finite. Another improvement
is that the method described here also supports full timed opacity synthesis (FOS).

The reachability emptiness problem (i.e., the emptiness over the valuations set for which
a given target location is reachable) is known to be undecidable in general since [2]. The
rare decidable settings require a look at the number of parametric clocks (i.e., compared at
least once in a guard or invariant to a parameter), non-parametric clocks and parameters;
throughout this paper, we denote these 3 numbers using a triple (pc, npc, p). Reachability
emptiness is decidable for (1, ∗, ∗)-PTAs (“∗” denotes “arbitrarily many” for decidable cases,
and “sufficiently many” for undecidable cases) over discrete time [2] or dense time with integer-
valued parameters [12], for (1, 0, ∗)-PTAs over dense time over rational-valued parameters [10],
and for (2, ∗, 1)-PTAs over discrete time [16, 21]; and it is undecidable for (3, ∗, 1)-PTAs over
discrete or dense time [12], and for (1, 3, 1)-PTAs over dense time only for rational-valued
parameters [29]. See [5] for a complete survey as of 2019.

Section 2 recalls the necessary preliminaries. Section 3 introduces one of our main
technical proof ingredients, i.e., the definition of PET, and PET-based semi-algorithms for
∃OS and FOS. Section 4 considers the FOE problem over (1, 0, ∗)-PTAs (undecidable) and
(1, 0, 1)-PTAs (decidable). Section 5 proves decidability of ∃OE for (1, 0, ∗)-PTAs. We also
give a better complexity for (1, 0, 1)-PTAs over discrete time. Section 6 concludes.

2 Preliminaries

We let T be the domain of the time, which will be either non-negative reals R≥0 (continuous-
time semantics) or naturals N (discrete-time semantics). Unless otherwise specified, we
assume T = R≥0.

Clocks are real-valued variables that all evolve over time at the same rate. We assume a
set X = {x1 , . . . , xH} of clocks. A clock valuation is a function µ : X→ T. We write 0⃗ for the
clock valuation assigning 0 to all clocks. Given a constant γ ∈ T, µ + γ denotes the valuation
s.t. (µ + γ)(x) = µ(x) + γ, for all x ∈ X. Given R ⊆ X, we define the reset of a valuation µ,
denoted by [µ]R, as follows: [µ]R(x) = 0 if x ∈ R, and [µ]R(x) = µ(x) otherwise.

FSTTCS 2024

3:4 Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2
x ≥ p1

(a) A PTA example A.

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2
x ≥ p1

xabs = d

xabs = d

(b) A′.

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ p2x ≥ p1
b← True

b = True

b = True

(c) Aℓpriv
ℓf

.

ℓ0 ℓf
x ≤ 3

(d) A¬ℓpriv
ℓf

.

Figure 1 A PTA example and its transformed versions. The yellow dotted location is urgent.

A (timing) parameter is an unknown integer-valued constant of a model. We assume a
set P = {p1, . . . , pM} of parameters. A parameter valuation v is a function v : P→ N.

We assume ▷◁ ∈ {<,≤, =,≥, >}. A clock guard C is a conjunction of inequalities over
X ∪ P of the form x ▷◁

∑
1≤i≤M αipi + γ, with x ∈ X, pi ∈ P, and αi, γ ∈ Z. Given C, we

write µ |= v(C) if the expression obtained by replacing each x with µ(x) and each p with v(p)
in C evaluates to true.

2.1 Parametric timed automata
Parametric timed automata (PTAs) extend TAs with parameters within guards and invariants
in place of integer constants [2]. We also add to the standard definition of PTAs a special
private location, which will be used to define our subsequent opacity concepts.

▶ Definition 1 (PTA [2]). A parametric timed automaton (PTA) [2] A is a tuple
A = (Σ, L, ℓ0, ℓpriv, ℓf ,X,P, I, E), where: 1) Σ is a finite set of actions; 2) L is a finite
set of locations; 3) ℓ0 ∈ L is the initial location; 4) ℓpriv ∈ L is a special private location;
5) ℓf ∈ L is the final location; 6) X is a finite set of clocks; 7) P is a finite set of parameters;
8) I is the invariant, assigning to every ℓ ∈ L a clock guard I(ℓ) (called invariant); 9) E is a
finite set of edges e = (ℓ, g, a, R, ℓ′) where ℓ, ℓ′ ∈ L are the source and target locations, a ∈ Σ,
R ⊆ X is a set of clocks to be reset, and g is a clock guard.

Given a parameter valuation v, we denote by v(A) the non-parametric structure where
all occurrences of a parameter pi have been replaced by v(pi).

▶ Definition 2 (Reset-free PTA). A reset-free PTA A = (Σ, L, ℓ0, ℓpriv, ℓf ,X,P, I, E) is a
PTA where ∀ (ℓ, g, a, R, ℓ′) ∈ E, R = ∅.

▶ Example 3. Consider the PTA A in Figure 1a. It has three locations, one clock and
two parameters (actions are omitted). “x ≤ p2” is the invariant of ℓpriv, and the transition
from ℓ0 to ℓpriv has guard “x ≥ p1”. In this example, x is never reset, and therefore A
happens to be reset-free.

▶ Definition 4 (Semantics of a timed automaton (TA) [1]). Given a PTA A =
(Σ, L, ℓ0, ℓpriv, ℓf ,X,P, I, E) and a parameter valuation v, the semantics of the TA v(A)
is given by the timed transition system (TTS) [22] Tv(A) = (S, s0, Σ ∪ R≥0,→), with
1. S = {(ℓ, µ) ∈ L× RH

≥0 | µ |= v(I(ℓ))}, s0 = (ℓ0, 0⃗),
2. → consists of the discrete and (continuous) delay transition relations:

É. André, J. Arcile, and E. Lefaucheux 3:5

a. discrete transitions: (ℓ, µ) e7→ (ℓ′, µ′), if (ℓ, µ), (ℓ′, µ′) ∈ S, and there exists e =
(ℓ, g, a, R, ℓ′) ∈ E, such that µ′ = [µ]R, and µ |= v(g).

b. delay transitions: (ℓ, µ) γ7→ (ℓ, µ + γ), with γ ∈ R≥0, if ∀γ′ ∈ [0, γ], (ℓ, µ + γ′) ∈ S.

Moreover we write (ℓ, µ) (γ,e)−→ (ℓ′, µ′) for a combination of a delay and discrete transition
if ∃µ′′ : (ℓ, µ) γ7→ (ℓ, µ′′) e7→ (ℓ′, µ′).

Given a TA v(A) with concrete semantics (S, s0, Σ ∪ R≥0,→), we refer to the states
of S as the concrete states of v(A). A run of v(A) is an alternating sequence of concrete
states of v(A) and pairs of edges and delays starting from the initial state s0 of the form
(ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · with i = 0, 1, . . . , ei ∈ E, di ∈ R≥0 and (ℓi, µi)

(di,ei)−→ (ℓi+1, µi+1).
Given a state s = (ℓ, µ), we say that s is reachable in v(A) if s appears in a run of v(A).

By extension, we say that ℓ is reachable in v(A); and by extension again, given a set Ltarget
of locations, we say that Ltarget is reachable in v(A) if there exists ℓ ∈ Ltarget such that ℓ is
reachable in v(A).

Given a finite run ρ : (ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · , (di−1, ei−1), (ℓn, µn), the duration of ρ

is dur(ρ) =
∑

0≤i≤n−1 di. We also say that ℓn is reachable in time dur(ρ).
Let us now recall the symbolic semantics of PTAs (see e.g., [23]). We first define operations

on constraints. A linear term over X ∪ P is of the form
∑

1≤i≤H αixi +
∑

1≤j≤M βjpj + γ,
with xi ∈ X, pj ∈ P, and αi, βj , γ ∈ Z. A constraint C (i.e., a convex polyhedron) over
X ∪ P is a conjunction of inequalities of the form lt ▷◁ 0, where lt is a linear term. Given
a parameter valuation v, v(C) denotes the constraint over X obtained by replacing each
parameter p in C with v(p). Likewise, given a clock valuation µ, µ(v(C)) denotes the
expression obtained by replacing each clock x in v(C) with µ(x). We write µ |= v(C)
whenever µ(v(C)) evaluates to true. We say that v satisfies C, denoted by v |= C, if
the set of clock valuations satisfying v(C) is nonempty. We say that C is satisfiable if
∃µ, v s.t. µ |= v(C). We define the time elapsing of C, denoted by C↗, as the constraint
over X and P obtained from C by delaying all clocks by an arbitrary amount of time. That
is, µ′ |= v(C↗) if ∃µ : X → R≥0, ∃γ ∈ R≥0 s.t. µ |= v(C) ∧ µ′ = µ + γ. Given R ⊆ X, we
define the reset of C, denoted by [C]R, as the constraint obtained from C by resetting the
clocks in R to 0, and keeping the other clocks unchanged. That is,

µ′ |= v([C]R) if ∃µ : X→ R≥0 s.t. µ |= v(C) ∧ ∀x ∈ X
{

µ′(x) = 0 if x ∈ R

µ′(x) = µ(x) otherwise.

We denote by C↓P the projection of C onto P, i.e., obtained by eliminating the variables not
in P (e.g., using Fourier-Motzkin [30]).

▶ Definition 5 (Symbolic state). A symbolic state is a pair (ℓ, C) where ℓ ∈ L is a location,
and C its associated parametric zone.

▶ Definition 6 (Symbolic semantics). Given a PTA A = (Σ, L, ℓ0, ℓpriv, ℓf ,X,P, I, E), the
symbolic semantics of A is the labeled transition system called parametric zone graph
PZG(A) = (E, S, s0,⇒), with

S = {(ℓ, C) | C ⊆ I(ℓ)}, s0 =
(
ℓ0, (

∧
1≤i≤H xi = 0)↗ ∧ I(ℓ0)

)
, and(

(ℓ, C), e, (ℓ′, C′)
)
∈ ⇒ if e = (ℓ, g, a, R, ℓ′) ∈ E and

C′ =
(
[(C ∧ g)]R ∧ I(ℓ′)

)↗ ∧ I(ℓ′) with C′ satisfiable.

That is, in the parametric zone graph, nodes are symbolic states, and arcs are labeled by
edges of the original PTA.

FSTTCS 2024

3:6 Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

2.2 Reachability synthesis
We use reachability synthesis to solve the problems defined in Section 2.3. This procedure,
called EFsynth, takes as input a PTA A and a set of target locations Ltarget , and attempts to
synthesize all parameter valuations v for which Ltarget is reachable in v(A). EFsynth(A, Ltarget)
was formalized in e.g., [24] and is a procedure that may not terminate, but that computes an
exact result (sound and complete) if it terminates.

2.3 Execution-time opacity problems
We recall here the notion of execution-time opacity [9, 7]. This form of opacity is such that
the observation is limited to the time to reach a given location. This section recalls relevant
definitions from [9, 7].

Given a TA v(A) and a run ρ, we say that ℓpriv is visited on the way to ℓf in ρ if ρ is of
the form (ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · , (ℓm, µm), (dm, em), · · · (ℓn, µn)
for some m, n ∈ N such that ℓm = ℓpriv, ℓn = ℓf and ∀0 ≤ i ≤ n − 1, ℓi ≠ ℓf . We denote
by Visitpriv(v(A)) the set of those runs, and refer to them as private runs. We denote by
DVisitpriv(v(A)) the set of all the durations of these runs.

Conversely, we say that ℓpriv is avoided on the way to ℓf in ρ if ρ is of the form
(ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · , (ℓn, µn)
with ℓn = ℓf and ∀0 ≤ i < n, ℓi /∈ {ℓpriv, ℓf}. We denote the set of those runs
by Visitpriv(v(A)), referring to them as public runs, and by DVisitpriv(v(A)) the set of
all the durations of these public runs. Therefore, DVisitpriv(v(A)) (resp. DVisitpriv(v(A)))
is the set of all the durations of the runs for which ℓpriv is visited (resp. avoided) on the way
to ℓf . These concepts can be seen as the set of execution times from the initial location ℓ0 to
the final location ℓf while visiting (resp. not visiting) a private location ℓpriv. Observe that,
from the definition of the duration of a run, this “execution time” does not include the time
spent in ℓf .

We now recall formally the concept of “execution-time opacity (ET-opacity) for a set of
durations (or execution times) D”: a system is ET-opaque for execution times D whenever,
for any duration in D, it is not possible to deduce whether the system visited ℓpriv or not.

▶ Definition 7 (Execution-time opacity (ET-opacity) for D). Given a TA v(A) and a set of
execution times D, we say that v(A) is execution-time opaque (ET-opaque) for execution
times D if D ⊆ (DVisitpriv(v(A)) ∩DVisitpriv(v(A))).

In the following, we will be interested in the existence of such an execution time. We say
that a TA is ∃-ET-opaque if it is ET-opaque for a non-empty set of execution times.

▶ Definition 8 (∃-ET-opacity). A TA v(A) is ∃-ET-opaque if (DVisitpriv(v(A)) ∩
DVisitpriv(v(A))) ̸= ∅.

In addition, a system is fully ET-opaque if, for any possible measured execution time, an
attacker is not able to deduce whether ℓpriv was visited or not.

▶ Definition 9 (full ET-opacity). A TA v(A) is fully ET-opaque if DVisitpriv(v(A)) =
DVisitpriv(v(A)).

▶ Example 10. Consider again the PTA A in Figure 1a. Let v s.t. v(p1) = 1 and v(p2) = 4.
Then v(A) is ∃-ET-opaque since there is at least one execution time for which v(A) is
ET-opaque. Here, v(A) is ET-opaque for execution times [1, 3]. However, v(A) is not fully

É. André, J. Arcile, and E. Lefaucheux 3:7

ET-opaque since there is at least one execution time for which v(A) is not ET-opaque. Here,
v(A) is not ET-opaque for execution times [0, 1) (which can only occur on a public run) and
for execution times (3, 4] (which can only occur on a private run).

Let us consider the following decision problems:

∃-ET-opacity p emptiness problem (∃OE):
Input: A PTA A
Problem: Decide the emptiness of the set of valuations v s.t. v(A) is ∃-ET-opaque.

Full ET-opacity p emptiness problem (FOE):
Input: A PTA A
Problem: Decide the emptiness of the set of valuations v s.t. v(A) is fully ET-opaque.

The synthesis counterpart allows for a higher-level problem aiming at synthesizing (ideally
the entire set of) parameter valuations v for which v(A) is ∃-ET-opaque or fully ET-opaque.

∃-ET-opacity p synthesis problem (∃OS):
Input: A PTA A
Problem: Synthesize the set of all valuations v s.t. v(A) is ∃-ET-opaque.

Full ET-opacity p synthesis problem (FOS):
Input: A PTA A
Problem: Synthesize the set of all valuations v s.t. v(A) is fully ET-opaque.

3 A parametric execution times-based semi-algorithm for ∃OS and FOS

One of our main results is the proof that both ∃OS and FOS can be deduced from set
operations on two sets representing respectively all the durations and parameter valuations
of the runs for which ℓpriv is reached (resp. avoided) on the way to ℓf . Those sets can be seen
as a parametrized version of DVisitpriv(v(A)) and DVisitpriv(v(A)). In order to compute
such sets, we propose here the novel notion of parametric execution times. (Note that our
partial solution for PET construction and semi-algorithms for ∃OS and FOS work perfectly
for rational-valued parameters too, and that they are not restricted to 1-clock PTAs.)

3.1 Parametric execution times
The parametric execution times (PET) are the parameter valuations and execution times of
the runs to ℓf .

▶ Definition 11. Given a PTA A with final location ℓf , the parametric execution
times of A are defined as PET (A) = {(v, d) | ∃ρ in v(A) such that d = dur(ρ) ∧
ρ is of the form (ℓ0, µ0), (d0, e0), · · · , (ℓn, µn) for some n ∈ N such that ℓn = ℓf and
∀0 ≤ i ≤ n− 1, ℓi ̸= ℓf}.

By definition, we only consider paths up to the point where ℓf is reached, meaning that
execution times do not include the time elapsed in ℓf , and that runs that reach ℓf more than
once are only considered up to their first visit of ℓf .

▶ Example 12. Consider again the PTA A in Figure 1a. Then PET (A) is (d ≤ 3 ∧ p1 ≥
0 ∧ p2 ≥ 0) ∨ (0 ≤ p1 ≤ 3 ∧ p1 ≤ d ≤ p2).

FSTTCS 2024

3:8 Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

Partial solution
Synthesizing parametric execution times is in fact equivalent to a reachability synthesis where
the PTA is enriched (in particular by adding a clock measuring the total execution time).

▶ Proposition 13. Let A be a PTA, and ℓf the final location of A.
Let A′ be a copy of A s.t.:

a clock xabs is added and initialized at 0 (it does not occur in any guard or reset);
a parameter d is added;
ℓf is made urgent (i.e., time is not allowed to pass in ℓf), all outgoing edges from ℓf are
pruned and a guard xabs = d is added to all incoming edges to ℓf .

Then, PET (A) = EFsynth(A′, {ℓf}).

Proof. By having ℓf being urgent and removing its outgoing edges, we ensure that the runs
that reach ℓf in A′ are all of the form (ℓ0, µ0), (d0, e0), · · · , (ℓn, µn) for some n ∈ N such that
ℓn = ℓ′ and ∀0 ≤ i ≤ n− 1, ℓi ̸= ℓ′. By having a clock xabs that is never reset and ℓf being
urgent, we ensure that for any run ρ that reaches ℓf in A′, the value of xabs in the final state
if equals to dur(ρ). By having a guard xabs = d on all incoming edges to ℓf , we ensure that
d = dur(ρ) on any run ρ that reaches ℓf .

Therefore, EFsynth(A′, {ℓf}) contains all parameter valuations of the runs to ℓf in A that
stop once ℓf is reached, along with the duration of those runs contained in d. ◀

▶ Example 14. Consider again the PTA A in Figure 1a. Then A′ is given in Figure 1b.

As per Lemma 33 in Section A, there exist semi-algorithms for reachability synthesis,
and hence for the PET synthesis problem – although they do not guarantee termination.

3.2 ∃OS and FOS problems
Now, we detail how the PET can be used to compute the solution to both ∃OS and FOS. To
do so, we will go through a (larger) intermediate problem: the synthesis of both parameter
valuations v and execution times for which v(A) is ET-opaque.
∃-ET-opacity p-d synthesis problem (d-∃OS):
Input: A PTA A
Problem: Synthesize the set of parameter valuations v and execution times d s.t. v(A)
is ∃-ET-opaque and v(A) is ET-opaque for execution time d.

Full ET-opacity p-d synthesis problem (d-FOS):
Input: A PTA A
Problem: Synthesize the set of parameter valuations v and execution times d s.t. v(A)
is fully ET-opaque and d is the set of durations of all runs in v(A).

First, given a PTA A and two locations ℓf and ℓpriv of A, let us formally define both sets
representing respectively all the durations and parameter valuations of the runs for which
ℓpriv is reached (resp. avoided) on the way to ℓf .

Let Aℓpriv
ℓf

be a copy of A s.t.: 1) a Boolean variable1 b is added and initialized to False, 2)
b is set to True on all incoming edges to ℓpriv, 3) a guard b = True is added to all incoming
edges to ℓf . The PTA Aℓpriv

ℓf
contains all runs of A for which ℓpriv is reached on the way to ℓf ,

and PET (Aℓpriv
ℓf

) contains the durations and parameter valuations of those runs.

1 Which is a convenient syntactic sugar for doubling the number of locations.

É. André, J. Arcile, and E. Lefaucheux 3:9

Let A¬ℓpriv
ℓf

be a copy of A s.t. all incoming and outgoing edges to and from ℓpriv are
pruned. The PTA A¬ℓpriv

ℓf
contains all runs of A for which ℓpriv is avoided on the way to ℓf ,

and PET (A¬ℓpriv
ℓf

) contains the durations and parameter valuations of those runs.

▶ Example 15. Consider again the PTA A in Figure 1a. Then Aℓpriv
ℓf

is given in Figure 1c,
and A¬ℓpriv

ℓf
is given in Figure 1d.

▶ Proposition 16. Given a PTA A, we have: d-∃OS(A) = PET (Aℓpriv
ℓf

) ∩ PET (A¬ℓpriv
ℓf

).

Proof. By definition, d-∃OS(A) is the synthesis of parameter valuations v and execution
times Dv such that v(A) is opaque w.r.t. ℓpriv on the way to ℓf for these execution times Dv.
This means that d-∃OS(A) contains exactly all parameter valuations and execution times for
which there exist both at least one run in Aℓpriv

ℓf
and at least one run in A¬ℓpriv

ℓf
. Since PET

are the synthesis of the parameter valuations and execution times up to the final location,
d-∃OS(A) is equivalent to the intersection of the PET (Aℓpriv

ℓf
) and PET (A¬ℓpriv

ℓf
). ◀

▶ Example 17. Consider again the PTA A in Figure 1a. Then PET (Aℓpriv
ℓf

) is p1 ≤ d ≤
p2 ∧ 0 ≤ p1 ≤ 3. Moreover, PET (A¬ℓpriv

ℓf
) is 0 ≤ d ≤ 3∧ p1 ≥ 0∧ p2 ≥ 0. Hence, d-∃OS(A) is

0 ≤ p1 ≤ d ≤ p2 ∧ d ≤ 3.

In order to compute d-FOS(A), we need to remove from d-∃OS(A) all parameter val-
uations v s.t. there is at least one run to ℓf in v(A) whose duration is not in the set of
execution times for which v(A) is ET-opaque. Parameter valuations and durations of such
runs are included in PET (A) \ d-∃OS(A), which is also the difference between PET (Aℓpriv

ℓf
)

and PET (A¬ℓpriv
ℓf

). We note that difference as

Diff (A) =
(
PET (Aℓpriv

ℓf
) ∪ PET (A¬ℓpriv

ℓf
)
)
\

(
PET (Aℓpriv

ℓf
) ∩ PET (A¬ℓpriv

ℓf
)
)

Diff (A) is made of a union of convex polyhedra C over P (i.e., the parameters of A) and d,
which is the duration of runs. The parameter values in those polyhedra are the ones we do
not want to see in d-FOS(A). Our solution thus consists in removing from d-∃OS(A) the
values of P in Diff (A).

▶ Proposition 18. Given a PTA A with parameter set P: d-FOS(A) = d-∃OS(A)\Diff (A)↓P.

Proof. See Section B.1. ◀

▶ Example 19. Consider again the PTA A in Figure 1a. We have Diff (A) is (0 ≤ p1 ≤
3 < d ≤ p2) ∨ (0 ≤ d ≤ 3 ∧ d < p1 ∧ p2 ≥ 0) ∨ (0 ≤ p2 < d ≤ 3 ∧ p1 ≥ 0). Then Diff (A)↓P
is (0 ≤ p1 ≤ 3 < p2) ∨ (0 < p1 ∧ p2 ≥ 0) ∨ (0 ≤ p2 < 3 ∧ p1 ≥ 0). Hence, d-FOS(A) is
p1 = 0 ≤ d ≤ p2 = 3.

Finally, obtaining ∃OS(A) and FOS(A) is trivial since, by definition, ∃OS(A) =
(d-∃OS(A))↓P and FOS(A) = (d-FOS(A))↓P.

▶ Example 20. Consider again the PTA A in Figure 1a. Then ∃OS(A) is 0 ≤ p1 ≤ p2∧p1 ≤ 3.
And FOS(A) is p1 = 0 ∧ p2 = 3.

FSTTCS 2024

3:10 Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

On correctness and termination
We described here a method for computing ∃OS(A) and FOS(A) for a PTA, that produces an
exact (sound and complete) result if it terminates. It relies on the PET of two subsets of the
PTA, the computation of which requires enrichment with one clock and one parameter. If they
can be computed, those PET take the form of a finite union of convex polyhedra, on which are
then applied the union, intersection, difference and projection set operations – that are known
to be decidable in this context. Thus the actual termination of the whole semi-algorithm
relies on the reachability synthesis of two (n + 1, 0, m + 1)-PTAs. Reachability synthesis is
known to be effectively computable for (1, 0, m)-PTAs [10], and cannot be achieved for PTAs
with 3 parametric clocks or more due to the undecidability of the reachability emptiness
problem [2]. For the semi-algorithm we proposed here for ∃OS and FOS problems, we therefore
do not have any guarantees of termination, even with only one parametric clock (due to the
additional clock xabs), although this might change depending on future results regarding the
decidability of reachability synthesis for PTAs with 2 parametric clocks (a first decidability
result for the emptiness only was proved for (2, ∗, 1)-PTAs over discrete time [21]).

4 Decidability and undecidability of FOE for 1-clock-PTAs

In this section, we:
1. propose a method to compute potentially infinite PET on (1, 0, ∗)-PTAs, i.e., PTAs with

1 parametric clock and arbitrarily many parameters (Section 4.1);
2. prove decidability of the FOE problem for (1, 0, 1)-PTAs, by rewriting infinite PET in a

variant of Presburger arithmetic (Section 4.2);
3. prove undecidability of the FOE problem for (1, 0, ∗)-PTAs (Section 4.2).

4.1 Encoding infinite PET for (1, 0, ∗)-PTAs
Given a PTA A with exactly 1 clock, the goal of the method described here is to guarantee
termination of the computation of PET (A) with an exact result. If the partial solution given
in Section 3.1 is applied, it amounts to a reachability synthesis on a PTA with 2 clocks,
without guarantee of termination. The gist of this method is a form of divide and conquer,
where we solve sub-problems, specifically reachability synthesis on sub-parts of A without
adding an additional clock. The first step consists of building some reset-free PTAs, each
representing a meaningful subset of the paths joining two given locations in A. PET (A) is
then obtained by combining the results of reachability synthesis performed on those reset-free
PTAs. The result is encoded in a (finite) regular expression that represents an infinite union
of convex polyhedra. Note that this method works perfectly for rational-valued parameters.

4.1.1 Defining the set of reset-free PTAs
Each of the PTAs we build describes parts of the behavior between two locations. More
precisely, they represent all the possible paths such that clock resets may occur only on the
last transition of the path. We first define the set of locations that we may need based on
whether they are initial, final, or reached by a transition associated to a reset.

▶ Definition 21 (Final-reset paths FrP(A, ℓf)). Let A be a 1-clock PTA, ℓ0 its initial location
and ℓf a location of A. We define as FrP(A, ℓf) the set of pairs of locations s.t. ∀(ℓi, ℓj) ∈
FrP(A, ℓf)

ℓi = ℓ0, or ℓi ̸= ℓf and there is a clock reset on an incoming edge to ℓi,
ℓj = ℓf , or there is a clock reset on an incoming edge to ℓj.

É. André, J. Arcile, and E. Lefaucheux 3:11

For each pair of states (ℓi, ℓj) as defined above, we build a reset-free PTA. If the target
state ℓj is not final (which is a special case), the reset-free PTA models every path going
from ℓi to ℓj and that ends with a reset on its last step. In particular, this ensures that ℓj is
reached with clock valuation 0.

▶ Definition 22 (Reset-free PTA A(ℓi, ℓj)). Let A be a 1-clock PTA, x its unique clock, and
ℓi, ℓj two locations in A. We define as A(ℓi, ℓj) the reset-free PTA obtained from a copy
of A by:
1. creating a duplicate ℓ′

j of ℓj;
2. for all incoming edges (ℓ, g, a, R, ℓj) where R = ∅, removing (ℓ, g, a, R, ℓj) and adding an

incoming edge (ℓ, g, a, R, ℓ′
j);

3. if ℓj ̸= ℓf , then for all outgoing edges (ℓj , g, a, R, ℓ), removing (ℓj , g, a, R, ℓ) and adding
an outgoing edge (ℓ′

j , g, a, R, ℓ),
else, making ℓ′

j urgent and adding an edge (ℓ′
j , True, ϵ, ∅, ℓj);

4. removing any upper bound invariant on ℓj and making it urgent;
5. if ℓi ̸= ℓj, setting ℓi as the initial location,

else, setting ℓ′
j as the initial location;

6. removing any clock reset on incoming edges to ℓj and pruning all other edges featuring a
clock reset, and all outgoing edges from ℓf ;

7. adding a parameter d, and a guard x = d to all incoming edges to ℓj;

We will show next how the reachability synthesis of those reset-free PTAs corresponds to
fragments of the runs that are considered in PET (A). For simplification, given A a 1-clock
PTA, and ℓi, ℓj two locations of A, we now note Zℓi,ℓj

= EFsynth(A(ℓi, ℓj), {ℓj}).

4.1.2 Reconstruction of PET from the reachability synthesis of the
reset-free PTAs

Given A a 1-clock PTA, and ℓf a location of A, for all (ℓi, ℓj) ∈ FrP(A, ℓf) we may compute
the parametric zone Zℓi,ℓj with guarantee of termination, since the reachability synthesis is
decidable on 1-clock PTAs. Those parametric zones may be used to build the (potentially
infinite) PET of A. To do so, we first define a (non-parametric, untimed) finite automaton
where the states are the locations of A, and the arc between the states ℓi and ℓj is labeled
by Zℓi,ℓj

. We refer to this automaton as the automaton of the zones of A.

▶ Definition 23 (Automaton of the zones). Let A be a 1-clock PTA, ℓ0 its initial location
and ℓf a location of A. We define as Â the finite automaton such that:

The states of Â are exactly the locations of A;
ℓ0 is initial and ℓf is final;
∀(ℓi, ℓj) ∈ FrP(A, ℓf), there is a transition from ℓi to ℓj labeled by Zℓi,ℓj

.

We claim that the language L̂ of Â is a representation of the times (along with parameter
constraints) to go from ℓ0 to ℓf in A. As Â is a finite automaton, L̂ can be represented as a
regular expression with three operators: the concatenation (.), the alteration (+), and the
Kleene star (∗). PET (A) can thus be expressed by redefining those operators with operations
on the parametric zones that label edges of L̂.

Any parametric zone Za,b labeling an edge of Â is of the form
⋃

i Ci with 1 ≤ i ≤ n

and Ci a convex polyhedra. As per Definition 6, Ci is a conjunction of inequalities, each of
the form αd +

∑
1≤i≤M βipi + γ ▷◁ 0, with pi ∈ P, and α, βi, γ ∈ Z. Note that x has been

replaced by execution times d, as per Definition 11. In the following, we denote by Cd
i all

FSTTCS 2024

3:12 Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

inequalities such that α ̸= 0 (i.e., inequalities over d and possibly some parameters in P),
and by CP

i all inequalities such that α = 0 (i.e., inequalities strictly over P). This means
that Ci = Cd

i ∧CP
i . For simplification of what follows, we write inequalities in Cd

i as d ▷◁ c

where c =
∑

1≤i≤M
βipi+γ

−α .
Given Za,b =

⋃
i Ci and Zc,d =

⋃
j Cj , we define the operators .̄, ∗̄ and +̄ .

Operator .̄ is the addition of the time durations and intersection of parameter constraints
between two parametric zones. Formally, Za,b .̄ Zc,d =

⋃
i∗j Cd

i,j ∩CP
i,j such that CP

i,j =
CP

i ∧CP
j , and for all d ▷◁ ci ∈ Cd

i and d ▷◁′ cj ∈ Cd
j , if ▷◁, ▷◁′ ∈ {<,≤, =} or ▷◁, ▷◁′ ∈ {>,≥, =},

then d ▷◁′′ ci + cj ∈ Cd
i,j with ▷◁′′ being in the same direction as ▷◁ and ▷◁′ and is

a strict inequality if either ▷◁ or ▷◁′ is a strict inequality;
an equality if both ▷◁ and ▷◁′ are equalities;
a non-strict inequality otherwise.

Operator ∗̄ is the recursive application of .̄ on a parametric zone. Formally, Za,b
∗̄ =⋃

K∈N {d = 0}(̄.Za,b)K where (̄.Za,b) is repeated K times, with K being any value in N. Note
that {d = 0} corresponds to the case where the loop is never taken, and that it is neutral for
the .̄ operator: {d = 0}̄.Za,b = Za,b. Also note that, in practice, a = b whenever we use this
operator.

Operator +̄ is the union of two parametric zones. Formally, Za,b+̄Zc,d = Za,b ∪ Zc,d.
Note that the result of any of those operations is a union of convex polyhedra of the form⋃

i Ci, meaning that these operators can be nested. Also, this union is infinite whenever
operator ∗̄ is present.

▶ Proposition 24. Let A be a 1-clock PTA and ℓf a location of A. Let L̂ be the language
of the automaton of the zones Â, and e a regular expression describing L̂. Let ē be the
expression obtained by replacing the ., + and ∗ operators in e respectively by .̄, +̄ and ∗̄. We
have ē = PET (A).

Proof. See Section B.4. ◀

4.1.3 Summary and illustration of the encoding
Given a PTA A with exactly 1 clock, and given a location ℓf of A, we compute with an exact
result an encoding of PET (A), through the following steps:
1. compute FrP(A, ℓf), the pairs of locations (ℓi, ℓj) such that on some run from initial

location to ℓf there might exists a sub-path from ℓi to ℓj , such that the clock is reset
when entering both locations, but never in between;

2. for each of those pairs, compute the reset-free PTA A(ℓi, ℓj), for which reachability
synthesis, noted Zℓi,ℓj

corresponds to the aforementioned sub-paths;
3. generate the automaton of the zones Â, on which each pair of locations (ℓi, ℓj) is connected

by a transition labeled with Zℓi,ℓj ;
4. compute a regular expression for Â, which we proved to be equivalent to PET (A). Note

that computing a regular expression from a finite automaton is decidable and there exists
numerous efficient methods for this [20].

Before discussing how this regular expression can be used to answer the Full ET-opacity
p emptiness problem, let us illustrate how it is obtained on a simple example. Figure 2a
depicts a 1-clock PTA A with a clock x and two parameters p and q. We are interested
in solving PET (A) where we assume here that ℓf is ℓ1. Applying the semi-algorithm from
Section 3.1, suppose the addition of a clock xabs and parameter d to the PTA, followed by
the computation of the reachability synthesis to ℓ1. In this case, the algorithm does not
terminate though, and as shown in Figure 2b.

É. André, J. Arcile, and E. Lefaucheux 3:13

ℓ0 ℓ1

x ≤ p

x = p

x← 0

x ≥ q

(a) 1-clock PTA A.

(ℓ0, 0 ≤ x ≤ p ∧ xabs = x ∧ d ≥ 0)

(ℓ1, q ≤ x ≤ p ∧ xabs = d = x)

(ℓ0, 0 ≤ x ≤ p ∧ xabs = x + p ∧ d ≥ 0)

(ℓ1, q ≤ x ≤ p ∧ xabs = d = x + p)

(ℓ0, 0 ≤ x ≤ p ∧ xabs = x + i× p ∧ d ≥ 0)

(ℓ1, q ≤ x ≤ p ∧ xabs = d = x + i× p)

(b) Symbolic (infinite) state space when computing PET in a
naive way.

Figure 2 A 1-clock PTA and the PET problem.

ℓ′
0 ℓ1

ℓ0

x ≤ p

x ≥ q

x = p

x = d

(a) A(ℓ0, ℓ0).

ℓ0 ℓ′
1

ℓ1

x ≤ p

x ≥ q

x = d

(b) A(ℓ0, ℓ1).

ℓ0 ℓ1

Zℓ0,ℓ0

Zℓ0,ℓ1

(c) Automaton of the zones Â.

Figure 3 Reset-free automata of A (from Figure 2a) and automaton of the zones Â.

Following the steps of our method, we have FrP(A, ℓ1) = {(ℓ0, ℓ0), (ℓ0, ℓ1)}. Figures 3a
and 3b depict the corresponding reset-free automata while Figure 3c gives the automaton of
the zones. Urgent locations are colored in yellow.

Reachability synthesis of the reset-free automata gives Zℓ0,ℓ0 = {d = p} and Zℓ0,ℓ1 =
{q ≤ d ≤ p}. As per Proposition 24, the expression ē (obtained by replacing operators in
the regular expression of the language of Â) is equivalent to PET (A) (again taking ℓ1 as
final location). That expression can be easily obtained (for example with a state elimination
method) and gives ē = (Zℓ0,ℓ0)∗̄ .̄ Zℓ0,ℓ1 . We may then develop operations on ē and obtain
the following infinite disjunction of parametric zones.

PET (A) = (Zℓ0,ℓ0)∗̄ .̄ Zℓ0,ℓ1

= {d = p}∗̄ .̄ {q ≤ d ≤ p}
= {d = 0 ∨ d = p ∨ d = 2p ∨ . . . }.{q ≤ d ≤ p}
= {q ≤ d ≤ p ∨ q + p ≤ d ≤ 2p ∨ q + 2p ≤ d ≤ 3p ∨ . . . }

(1)

4.2 Solving the FOE problem through a translation of PET to parametric
Presburger arithmetic

Presburger arithmetic is the first order theory of the integers with addition. It is a useful
tool that can represent and manipulate sets of integers called semi-linear sets. Those sets are
particularly meaningful to study TAs, as the set of durations of runs reaching the final location
can be described by a semi-linear set [14]. Presburger arithmetic is however not expressive
enough to represent durations of runs in PTAs due to the presence of parameters. In [27], a

FSTTCS 2024

3:14 Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

parametric extension of Presburger arithmetic was considered, introducing linear parametric
semi-linear sets (LpSl sets) which are functions associating to a parameter valuation v a
(traditional) semi-linear set of the following form:

S(v) =
{

x ∈ Nm |
∨
i∈I

∃x0, . . . xni ∈ Nm,k1, . . . kni ∈ N, x =
ni∑

j=0
xj

∧bi
0(v) ≤ x0 ≤ci

0(v) ∧
ni∧

j=1
kjbi

j(v) ≤ xj ≤ kjci
j(v)

}
(2)

where I is a finite set and the bi
j and ci

j are affine functions with coefficients in N. A 1-LpSl
set is an LpSl set defined over a single parameter. Given two LpSl (resp. 1-LpSl) sets S1
and S2, the LpSl (resp. 1-LpSl) equality problem consists in deciding whether there exists a
parameter valuation v such that S1(v) = S2(v).

▶ Theorem 25 ([27]). The LpSl equality problem is undecidable.
The 1-LpSl equality problem is decidable. Moreover, the set of valuations achieving

equality can be computed.

The main goal of this subsection is to relate the expressions computed in Section 4.1 to
LpSl sets in order to tackle ET-opacity problems. Since Presburger arithmetic is a theory of
integers, we have to restrict PTAs to integer parameters; this is what prevents our results
to be extended to rational-valued parameters in a straightforward manner. Moreover, we
need to focus on time durations of runs with integer values. This second restriction however
is without loss of generality. Indeed, in [8, Theorem 5], a trick is provided (which consists
mainly in doubling every term of the system so that any run duration that used to be a
rational of the form q

2 is now an integer to ensure that if a set is non-empty, it contains an
integer. This transformation also allows one to consider only non-strict constraints, and thus
we assume every constraint is non-strict in the following.

▶ Theorem 26. The LpSl equality problem reduces to the FOE problem for (1, 0, ∗)-PTAs.
Moreover, the FOE problem for (1, 0, 1)-PTAs reduces to the 1-LpSl equality problem.

Sketch of proof. From Equation (2) one can see that an LpSl set parametrically defines
integers that are the sum of two types of elements: x0 belongs to an interval, while the xj

represent a sum of integers, each coming from the interval [bi
j ; ci

j]. Intuitively, we separate a
run into its elementary path until the final state and its loops. We use x0 to represent the
duration of the elementary path, and the xj adds the duration of loops. Each occurrence of
the same loop within a run being independent (as they include a reset of the clock), their
durations all belong to the same interval.

Formally, given a PTA A, using Section 3.2, we build the PTAs Aℓpriv
ℓf

andA¬ℓpriv
ℓf

separating
the private and public runs of A. Then with Section 4.1, we obtain expressions ēℓpriv and
ē¬ℓpriv such that (Proposition 24) ēℓpriv = PET (Aℓpriv

ℓf
) and ē¬ℓpriv = PET (A¬ℓpriv

ℓf
). We then

develop and simplify these expressions until we can build LpSl sets representing the integers
accepted by each expression. We can then show the inter-reduction as the full ET-opacity is
directly equivalent to the equality of the two sets. Note that one direction of the reduction is
stronger, allowing multiple parameters. This is due to constraints over the parameters which
may appear in our expressions, but cannot be transferred to LpSl sets. However, when there
is a single parameter, one can easily resolve these constraints beforehand. See Section B.5
for a complete proof. ◀

É. André, J. Arcile, and E. Lefaucheux 3:15

Combining Theorems 25 and 26 directly gives us:

▶ Corollary 27. FOE is undecidable for (1, 0, ∗)-PTAs.

▶ Corollary 28. FOE is decidable for (1, 0, 1)-PTAs and FOS can be solved.

5 Decidability of ∃OE for (1, 0, ∗)-PTAs for integer-valued parameters

We prove here the decidability of ∃OE for (1, 0, ∗)-PTAs with integer parameters over dense
time (Section 5.1); we also prove that the same problem is in EXPSPACE for (1, ∗, 1)-PTAs
over discrete time (Section 5.2).

5.1 General case
Adding the divisibility predicate (denoted “|”) to Presburger arithmetic produces an unde-
cidable theory, whose purely existential fragment is known to be decidable [26]. The FOE
problem can be encoded in this logic, but requires a single quantifier alternation, which goes
beyond the aforementioned decidability result, leading us to rely on [27]. The ∃OE problem
however can be encoded in the purely existential fragment.

▶ Theorem 29. The ∃OE problem is decidable.

Sketch of proof. As for Theorem 26, we start by building and simplifying expressions
representing the private and public durations of the PTA. Instead of translating the expression
into LpSl set however, we now use Presburger with divisibility.

Again, a run can be decomposed in the run without loops, and its looping parts. The
duration of the former is defined directly by conjunction of inequalities, which can be
formulated in a Presburger arithmetic formula. The latter requires the divisibility operator
to represent the arbitrary number of loops. Hence, we can build a formula accepting exactly
the integers satisfying our expressions. Deciding the ∃OE problem can be achieved by testing
the existence of an integer satisfying the formulas produced from both expressions, which
can be stated in a purely existential formula. See [11] for a complete proof. ◀

▶ Remark 30 (complexity). Let us quickly discuss the complexity of this algorithm. The
expressions produced by Proposition 24 can, in the worst case, be exponential in the size
of the PTA. This formula was then simplified within the proof of Theorem 26, in part by
developing it, which could lead to an exponential blow-up. Finally, the existential fragment
of Presburger arithmetic with divisibility can be solved in NEXPTIME [26]. As a consequence,
our algorithm lies in 3NEXPTIME.

5.2 Discrete time case
There are clear ways to improve the complexity of this algorithm. In particular, we finally
prove an alternative version of Theorem 29 in a more restricted setting (T = N), but
with a significantly lower complexity upper bound and using completely different proof
ingredients [21].

▶ Theorem 31. ∃OE is decidable in EXPSPACE for (1, ∗, 1)-PTAs over discrete time.

Proof. See [11]. ◀

▶ Remark 32. The fact that we can handle arbitrarily many non-parametric clocks in
Theorem 31 does not improve Theorem 29: over discrete time, it is well-known that non-
parametric clocks can be eliminated using a technique from [2], and hence come “for free”.

FSTTCS 2024

3:16 Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

Table 1 Execution-time opacity problems for PTAs: contributions and some open cases.

Time (pc, npc, p) ∃OE emptiness ∃OE synthesis
dense (1, 0, ∗) √ Th. 29 ?
dense (1, ∗, ∗) ? ?
dense (2, 0, 1) ? ?
dense (3, 0, 1) × [9, Th.6.1] ×

discrete (1, ∗, 1) √EXPSPACE Th. 31 ?

Time (pc, npc, p) FOE emptiness FOE synthesis
dense (1, 0, 1) √ Corol. 28 √ Corol. 28
dense (1, 0, [2, M)) ? ?
dense (1, 0, M) × Corol. 27 ×
dense ([2, 3], 0, 1) ? ?
dense (4, 0, 2) × [9, Th. 7.1] ×

6 Conclusion and perspectives

In this paper, we addressed the ET-opacity for 1-clock PTAs with integer-valued parameters
over dense time. We proved that 1) FOE is undecidable for a sufficiently large number of
parameters, 2) FOE becomes decidable for a single parameter, and 3) ∃OE is decidable, in
3NEXPTIME over dense time and in EXPSPACE over discrete time. These results rely on a
novel construction of PET, for which a sound and complete computation method is provided.
In the general case, we provided semi-algorithms for the computation of PET, ∃OS and FOS.

The undecidability result reduces from a problem in parametric Presburger arithmetic,
itself reducing from Hilbert’s tenth problem. The latter is known to be undecidable for
various classes of polynomials (with degree 4 and 58 variables for instance). The number of
parameters used in the undecidability of the parametric Presburger arithmetic problem is not
direct from their proof but we can estimate that at least 200 parameters are needed. Closing
the gap through this approach would require important developments in Diophantine analysis.
The opacity problem hence remains open for many cases of low number of parameters.

Our PET constructions and all PET-related results work perfectly for rational-valued
parameters. It remains however unclear how to extend our (un)decidability results to rational-
valued parameters, as our other proof ingredients (notably using the Presburger arithmetics)
heavily rely on integer-valued parameters.

It remains also unclear whether synthesis can be achieved using techniques from [21],
explaining the “open” cell in the “discrete time” row of Table 1. Also, a number of problems
remain open in Table 1, notably the 2-clock case, already notoriously difficult for reachability
emptiness [2, 21].

Finally, exploring weak ET-opacity [7] (which allows the attacker to deduce that the
private location was not visited) is also on our agenda.

References
1 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, April 1994. doi:10.1016/0304-3975(94)90010-8.
2 Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time reasoning. In

S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, STOC, pages 592–601, New
York, NY, USA, 1993. ACM. doi:10.1145/167088.167242.

3 Ikhlass Ammar, Yamen El Touati, Moez Yeddes, and John Mullins. Bounded opacity for
timed systems. Journal of Information Security and Applications, 61:1–13, September 2021.
doi:10.1016/j.jisa.2021.102926.

4 Jie An, Qiang Gao, Lingtai Wang, Naijun Zhan, and Ichiro Hasuo. The opacity of timed
automata. In André Platzer, Kristin-Yvonne Rozier, Matteo Pradella, and Matteo Rossi,
editors, FM, volume 14933 of Lecture Notes in Computer Science, pages 620–637. Springer,
2024. doi:10.1007/978-3-031-71162-6_32.

5 Étienne André. What’s decidable about parametric timed automata? International Jour-
nal on Software Tools for Technology Transfer, 21(2):203–219, April 2019. doi:10.1007/
s10009-017-0467-0.

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/167088.167242
https://doi.org/10.1016/j.jisa.2021.102926
https://doi.org/10.1007/978-3-031-71162-6_32
https://doi.org/10.1007/s10009-017-0467-0
https://doi.org/10.1007/s10009-017-0467-0

É. André, J. Arcile, and E. Lefaucheux 3:17

6 Étienne André, Sarah Dépernet, and Engel Lefaucheux. The bright side of timed opacity. In
Kazuhiro Ogata, Meng Sun, and Dominique Méry, editors, ICFEM, 2024. To appear.

7 Étienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, and Jun Sun. Configuring
timing parameters to ensure execution-time opacity in timed automata. In Maurice H. ter
Beek and Clemens Dubslaff, editors, TiCSA, Electronic Proceedings in Theoretical Computer
Science. Springer, 2023. Invited paper.

8 Étienne André, Engel Lefaucheux, and Dylan Marinho. Expiring opacity problems in parametric
timed automata. In Yamine Ait-Ameur and Ferhat Khendek, editors, ICECCS, pages 89–98,
2023. doi:10.1109/ICECCS59891.2023.00020.

9 Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. Guaranteeing timed opacity
using parametric timed model checking. ACM Transactions on Software Engineering and
Methodology, 31(4):1–36, October 2022. doi:10.1145/3502851.

10 Étienne André, Didier Lime, and Nicolas Markey. Language preservation problems in
parametric timed automata. Logical Methods in Computer Science, 16(1), January 2020.
doi:10.23638/LMCS-16(1:5)2020.

11 Étienne André, Johan Arcile, and Engel Lefaucheux. Execution-time opacity problems in
one-clock parametric timed automata (extended version). Technical Report abs/2410.01659,
arXiv, October 2024. arXiv:2410.01659.

12 Nikola Beneš, Peter Bezděk, Kim Gulstrand Larsen, and Jiří Srba. Language emptiness of
continuous-time parametric timed automata. In Magnús M. Halldórsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann, editors, ICALP, Part II, volume 9135 of Lecture Notes in
Computer Science, pages 69–81. Springer, July 2015. doi:10.1007/978-3-662-47666-6_6.

13 Arnab Kumar Biswas, Dipak Ghosal, and Shishir Nagaraja. A survey of timing channels and
countermeasures. ACM Computing Surveys, 50(1):6:1–6:39, 2017. doi:10.1145/3023872.

14 Véronique Bruyère, Emmanuel Dall’Olio, and Jean-Francois Raskin. Durations and parametric
model-checking in timed automata. ACM Transactions on Computational Logic, 9(2):12:1–
12:23, 2008. doi:10.1145/1342991.1342996.

15 Jeremy W. Bryans, Maciej Koutny, Laurent Mazaré, and Peter Y. A. Ryan. Opacity generalised
to transition systems. International Journal of Information Security, 7(6):421–435, 2008.
doi:10.1007/s10207-008-0058-x.

16 Daniel Bundala and Joël Ouaknine. On parametric timed automata and one-counter machines.
Information and Computation, 253:272–303, 2017. doi:10.1016/j.ic.2016.07.011.

17 Franck Cassez. The dark side of timed opacity. In Jong Hyuk Park, Hsiao-Hwa Chen,
Mohammed Atiquzzaman, Changhoon Lee, Tai-Hoon Kim, and Sang-Soo Yeo, editors, ISA,
volume 5576 of Lecture Notes in Computer Science, pages 21–30. Springer, 2009. doi:
10.1007/978-3-642-02617-1_3.

18 Catalin Dima. Real-time automata. Journal of Automata, Languages and Combinatorics,
6(1):3–23, 2001. doi:10.25596/jalc-2001-003.

19 Guillaume Gardey, John Mullins, and Olivier H. Roux. Non-interference control synthesis for
security timed automata. Electronic Notes in Theoretical Computer Science, 180(1):35–53,
2007. doi:10.1016/j.entcs.2005.05.046.

20 Hermann Gruber and Markus Holzer. From finite automata to regular expressions and back -
A summary on descriptional complexity. International Journal of Foundations of Computer
Science, 26(8):1009–1040, 2015. doi:10.1142/S0129054115400110.

21 Stefan Göller and Mathieu Hilaire. Reachability in two-parametric timed automata with
one parameter is EXPSPACE-complete. In Markus Bläser and Benjamin Monmege, editors,
STACS, volume 187 of LIPIcs, pages 36:1–36:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.36.

22 Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Timed transition systems. In
J. W. de Bakker, Cornelis Huizing, Willem P. de Roever, and Grzegorz Rozenberg, editors,
REX, volume 600 of Lecture Notes in Computer Science, pages 226–251. Springer, 1992.
doi:10.1007/BFb0031995.

FSTTCS 2024

https://doi.org/10.1109/ICECCS59891.2023.00020
https://doi.org/10.1145/3502851
https://doi.org/10.23638/LMCS-16(1:5)2020
https://arxiv.org/abs/2410.01659
https://doi.org/10.1007/978-3-662-47666-6_6
https://doi.org/10.1145/3023872
https://doi.org/10.1145/1342991.1342996
https://doi.org/10.1007/s10207-008-0058-x
https://doi.org/10.1016/j.ic.2016.07.011
https://doi.org/10.1007/978-3-642-02617-1_3
https://doi.org/10.1007/978-3-642-02617-1_3
https://doi.org/10.25596/jalc-2001-003
https://doi.org/10.1016/j.entcs.2005.05.046
https://doi.org/10.1142/S0129054115400110
https://doi.org/10.4230/LIPIcs.STACS.2021.36
https://doi.org/10.1007/BFb0031995

3:18 Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

23 Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. Linear parametric
model checking of timed automata. Journal of Logic and Algebraic Programming, 52-53:183–220,
2002. doi:10.1016/S1567-8326(02)00037-1.

24 Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer parameter synthesis for
real-time systems. IEEE Transactions on Software Engineering, 41(5):445–461, 2015. doi:
10.1109/TSE.2014.2357445.

25 Julian Klein, Paul Kogel, and Sabine Glesner. Verifying opacity of discrete-timed automata.
In Nico Plat, Stefania Gnesi, Carlo A. Furia, and Antónia Lopes, editors, FormaliSE, pages
55–65. ACM, 2024. doi:10.1145/3644033.3644376.

26 Antonia Lechner, Joël Ouaknine, and James Worrell. On the complexity of linear arithmetic
with divisibility. In LICS, pages 667–676. IEEE Computer Society, 2015. doi:10.1109/LICS.
2015.67.

27 Engel Lefaucheux. When are two parametric semi-linear sets equal? Technical Report
hal-04172593, HAL, 2024. URL: https://inria.hal.science/hal-04172593.

28 Laurent Mazaré. Using unification for opacity properties. In Peter Ryan, editor, WITS, pages
165–176, April 2004.

29 Joseph S. Miller. Decidability and complexity results for timed automata and semi-linear hybrid
automata. In Nancy A. Lynch and Bruce H. Krogh, editors, HSCC, volume 1790 of Lecture
Notes in Computer Science, pages 296–309. Springer, 2000. doi:10.1007/3-540-46430-1_26.

30 Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, Inc., New
York, NY, USA, 1986.

31 Lingtai Wang and Naijun Zhan. Decidability of the initial-state opacity of real-time automata.
In Cliff B. Jones, Ji Wang, and Naijun Zhan, editors, Symposium on Real-Time and Hybrid
Systems - Essays Dedicated to Professor Chaochen Zhou on the Occasion of His 80th Birthday,
volume 11180 of Lecture Notes in Computer Science, pages 44–60. Springer, 2018. doi:
10.1007/978-3-030-01461-2_3.

32 Lingtai Wang, Naijun Zhan, and Jie An. The opacity of real-time automata. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 37(11):2845–2856, 2018. doi:
10.1109/TCAD.2018.2857363.

A Recalling the correctness of EFsynth

▶ Lemma 33 ([24]). Let A be a PTA, and let Ltarget be a subset of the locations of A.
Assume EFsynth(A, Ltarget) terminates with result K. Then v |= K iff Ltarget is reachable
in v(A).

B Proof of results

B.1 Proof of Proposition 18
▶ Proposition 18. Given a PTA A with parameter set P: d-FOS(A) = d-∃OS(A)\Diff (A)↓P.

Proof. By definition, d-FOS(A) is the synthesis of parameter valuations v (and execution
times of their runs) s.t. v(A) is fully opaque w.r.t. ℓpriv on the way to ℓf . By definition,
Diff (A)↓P is the set of parameter valuations s.t. for any valuation v ∈ Diff (A)↓P, there
is at least one run where ℓpriv is reached (resp. avoided) on the way to ℓf in v(A) whose
duration time is different from those of any run where ℓpriv is avoided (resp. reached) on
the way to ℓf in v(A). By removing this set of parameters from d-∃OS(A), we are left with
parameter valuations (and execution times of their runs) s.t. for any v, any run ρ where ℓpriv
is reached (resp. avoided) on the way to ℓf in v(A), there is a run ρ′ where ℓpriv is avoided
(resp. reached) on the way to ℓf in v(A) and dur(ρ) = dur(ρ′). This is equivalent to our
definition of full opacity. ◀

https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.1145/3644033.3644376
https://doi.org/10.1109/LICS.2015.67
https://doi.org/10.1109/LICS.2015.67
https://inria.hal.science/hal-04172593
https://doi.org/10.1007/3-540-46430-1_26
https://doi.org/10.1007/978-3-030-01461-2_3
https://doi.org/10.1007/978-3-030-01461-2_3
https://doi.org/10.1109/TCAD.2018.2857363
https://doi.org/10.1109/TCAD.2018.2857363

É. André, J. Arcile, and E. Lefaucheux 3:19

B.2 Proposition 34
▶ Proposition 34. Let A be a 1-clock PTA, and (ℓi, ℓj) ∈ FrP(A, ℓf) such that ℓj ̸= ℓf . Then
Zℓi,ℓj

is equivalent to the synthesis of parameter valuations v and execution times Dv such
that Dv = {d | ∃ρ from (ℓi, {x = 0}) to ℓj in v(A) such that d = dur(ρ), ℓf is never reached,
and x is reset on the last edge of ρ and on this edge only }.

Proof. Let us first consider the case where ℓi ̸= ℓj . Steps 1 to 3 in Definition 22 imply that
whenever ℓj occurs either as a source or target location in an edge, it is replaced by the
duplicate locality ℓ′

j , except when ℓj is the target location and x is reset on the edge. At this
stage, for any path between ℓi and ℓj in A, where no incoming edge to ℓj featuring a clock
reset is present, there is an equivalent path in A(ℓi, ℓj) with ℓj being replaced by ℓ′

j . Step 4
implies that whenever ℓj is reached in A(ℓi, ℓj) no delay is allowed. As there are no outgoings
edges from ℓj anymore, and only incoming edges featuring a clock reset, only runs ending
with such edges are accepted by the reachability synthesis on ℓj . Since the clock value when
entering in ℓj through such an edge is always 0, removing the upper bound of the invariant
does not impact the availability of transitions. Because of our assumption that ℓi ≠ ℓj , Step
5 does not change the initial location. Step 6 ensures that, in any run from ℓi to ℓj :

no clock reset is performed before the last edge of the run;
the clock is not reset when entering ℓj , and is therefore equals to the duration of the run;
ℓf is not reached.

Step 7 ensures that d is equal to the value of the clock when entering ℓf .
Let us now consider the case where ℓi = ℓj . In this case, Step 5 changes the initial

locality to ℓ′
j . Because of Steps 1 to 3, runs from ℓ′

j to ℓj in A(ℓi, ℓj) are identical to runs
looping from ℓi to ℓi in A where x is reset on the last edge of the run and on this edge only.
Restrictions obtained by Steps 4, 6 and 7 are unchanged.

Therefore, Zℓi,ℓj
is equivalent to the synthesis of parameter valuations v and execution

times Dv such that Dv = {d | ∃ρ from (ℓi, {x = 0}) to ℓj in v(A) such that d = dur(ρ), ℓf is
never reached, and x is reset on the last edge of ρ and on this edge only. ◀

B.3 Proposition 35
▶ Proposition 35. Let A be a 1-clock PTA, and (ℓi, ℓj) ∈ FrP(A, ℓf) such that ℓj = ℓf . Then
Zℓi,ℓj

is equivalent to the synthesis of parameter valuations v and execution times Dv such
that Dv = {d | ∃ρ from (ℓi, {x = 0}) to ℓf in v(A) such that d = dur(ρ), ℓf is reached only
on the last state of ρ, and x may only be reset on the last edge of ρ }.

Proof. By Definition 21, we know that ℓi ̸= ℓf .
Steps 1 to 3 in Definition 22 imply that:
whenever ℓf is the target location of an edge, it is replaced by the duplicate locality ℓ′

j ,
except when x is reset on the edge;
once ℓ′

j is reached, no delay is allowed and the only available transition consists in reaching
ℓf through an empty action ϵ.

At this stage, the only difference between path from ℓi to ℓf in A(ℓi, ℓj) and A is that
incoming edges to ℓf where x is not reset now leads to ℓ′

j , and then to ℓf without any added
elapsed time. Step 4 implies that whenever ℓf is reached in A(ℓi, ℓj) no delay is allowed. As
ℓf is either entered by the immediate transition from ℓ′

j or feature a clock reset, removing
the upper bound of the invariant does not impact the availability of transitions. As ℓi ̸= ℓf ,
Step 5 does not change the initial location. Step 6 ensures that, in any run from ℓi to ℓj :

FSTTCS 2024

3:20 Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

no clock reset is performed before the last edge of the run (not counting the ϵ edge from
ℓ′

j to ℓf);
the clock value is not reset when entering ℓf , and is therefore equal to the duration of the
run;
no action can be taken after reaching ℓf .

Step 7 ensures that d is equal to the value of the clock when entering ℓf .
Therefore, Zℓi,ℓj

is equivalent to the synthesis of parameter valuations v and execution
times Dv such that Dv = {d | ∃ρ from (ℓi, {x = 0}) to ℓf in v(A) such that d = dur(ρ), ℓf is
reached only on the last state of ρ, and x may only be reset on the last edge of ρ. ◀

B.4 Proof of Proposition 24
▶ Proposition 24. Let A be a 1-clock PTA and ℓf a location of A. Let L̂ be the language
of the automaton of the zones Â, and e a regular expression describing L̂. Let ē be the
expression obtained by replacing the ., + and ∗ operators in e respectively by .̄, +̄ and ∗̄. We
have ē = PET (A).

Proof. Let us first show that ē contains PET (A). Let ρ be a path whose time duration and
parameter constraints are in PET (A). By definition, ρ starts at time 0 in the initial locality
and ends in ℓf , with only one occurrence of ℓf in the whole path. Let us consider that the
clock is reset n times before the last transition, then ρ can be decomposed as ρ0 . . . ρn such
that:
∀ 0 ≤ i < n, sub-path ρi starts in ℓi at time valuation 0, ends in ℓi+1, contains a single
reset positioned on the last transition (thus ending with time valuation 0) and does not
contain any occurrence of ℓf ;
sub-path ρn starts in ℓn at time valuation 0, ends in ℓf , may only contain a reset on its
last transition, and contains exactly one occurrence of ℓf .

By Definition 21, ∀ 0 ≤ i < n, (ℓi, ℓi+1) ∈ FrP(A, ℓf) and by Proposition 34, Zℓi,ℓi+1 is
the synthesis of parameter valuations and execution times of that sub-path. By Defini-
tion 21, (ℓn, ℓf) ∈ FrP(A, ℓf) and by Proposition 35, Zℓn,ℓf is the synthesis of parameter
and valuation times of that sub-path. By Definition 23, there is a sequence of transitions
Zℓ0,ℓ1 , . . . , Zℓi,ℓi+1 , . . . , Zℓn,ℓf in the automaton of the zones Â. By application of operators
+̄ and ∗̄, that sequence thus exists in ē as Zℓ0,ℓ1 .̄̄Zℓi,ℓi+1 .̄̄Zℓn,ℓf . By definition of
operator .̄, this expression is the intersection of all parameter constraints and the addition of
all valuation times, which is equivalent to PET (A).

Let us now show that PET (A) contains ē. By application of operators +̄ and ∗̄, any
word in ē can be expressed as a sequence of concatenation operations .̄. By Definition 23,
given a word Zℓ0,ℓ1 .̄̄Zℓi,ℓi+1 .̄̄Zℓn,ℓn+1 ∈ ē, we know that ℓ0 is the initial location of A,
ℓn+1 = ℓf and ∀ 0 ≤ i ≤ n, ℓi ≠ ℓf . By Proposition 34, ∀ 0 ≤ i < n, Zℓi,ℓi+1 is the synthesis
of parameter valuations and execution times of paths between ℓi and ℓi+1 in A such that ℓf
is never reached, and x is reset on the last edge of the path and on this edge only. And by
Proposition 35, Zℓn,ℓf is the synthesis of parameter valuations and execution times of paths
between ℓn and ℓf in A such that ℓf is reached only on the last state of ρ, and x may only be
reset on the last edge of ρ.

Let us assume there exists a path ρ whose time duration and parameter constraints are
in PET (A) such that ρ = ρ0 . . . ρn and:
∀ 0 ≤ i < n, sub-path ρi starts in ℓi at time valuation 0, ends in ℓi+1, contains a single
reset positioned on the last transition (thus ending with time valuation 0) and does not
contain any occurrence of ℓf ;
sub-path ρn starts in ℓn at time valuation 0, ends in ℓf , may only contain a reset on its
last transition, and contains exactly one occurrence of ℓf .

É. André, J. Arcile, and E. Lefaucheux 3:21

Then Zℓ0,ℓ1 .̄̄Zℓi,ℓi+1 .̄̄Zℓn,ℓn+1 ∈ PET (A). On the other hand, if there does not exist
such a path, then there exist 0 ≤ i ≤ n such that Zℓi,ℓi+1 = ∅. By recursive applications of
operator .̄, the whole sequence is evaluated as ∅ and thus contained in PET (A). ◀

B.5 Proof of Theorem 26
▶ Theorem 26. The LpSl equality problem reduces to the FOE problem for (1, 0, ∗)-PTAs.

Moreover, the FOE problem for (1, 0, 1)-PTAs reduces to the 1-LpSl equality problem.

Proof. Given a PTA A, we showed in Section 3.2 how to compute two PTAs Aℓpriv
ℓf

and
A¬ℓpriv

ℓf
separating the private and public runs of A. Then in Section 4.1, we showed how

to build expressions ēℓpriv and ē¬ℓpriv such that (Proposition 24) ēℓpriv = PET (Aℓpriv
ℓf

) and
ē¬ℓpriv = PET (A¬ℓpriv

ℓf
).

Note that the operators .̄, ∗̄ and +̄ are associative and commutative; moreover, each term Z

occurring in the expressions ēℓpriv and ē¬ℓpriv is a union of constraints Z =
⋃

i′ Ci′ = +̄i′Ci′ .
As a consequence, we can thus develop the entire expression to the form

+̄i (Ci
1̄.Ci

2̄. · · · .̄Ci
ni

)̄.(Ci
ni+1)∗̄ .̄(Ci

ni+2)∗̄ .̄ · · · .̄(Ci
ni+mi

)∗̄.

where we put all +̄ outside of the expression. For example, the expression Z1̄.(Z2)∗̄ where
Z1 = C1 ∪C2 and Z2 = C3 ∪C4 is developed into C1̄.(C3)∗̄ .̄(C4)∗̄+̄C2̄.(C3)∗̄ .̄(C4)∗̄.

As C∗̄ = {d = 0}+̄C.̄C∗̄, for each Ci
ni+j we can w.l.o.g. express term i as the union of two

terms: one where (Ci
ni+j)∗̄ is removed (i.e., this loop is never taken), and one where Ci

ni+j

is concatenated to the term (i.e., the loop is taken at least once). This means that each term,
is turned into 2mi terms, where we can assume w.l.o.g. that for each j > 0, Ci

ni+j = Ci
j .

Given an expression of the above form, by definition of .̄, the product Ci
1̄.Ci

2̄. · · · .̄Ci
ni

is
also a conjunction of inequalities and thus can be expressed as Cd

i ∧CP
i where CP

i is obtained
by the constraints that do not involve d while Cd

i contains the constraints that involve d

and potentially some parameters in P. Note also that by the assumption that for each j > 0,
Ci

ni+j = Ci
j , any constraint that does not involve d can be removed from Ci

ni+j without
modifying the set. Therefore, the expression can now be rewritten as

+̄i(Cd
i ∧CP

i)̄.(Ci
1)∗̄ .̄(Ci

2)∗̄ .̄ · · · .̄(Ci
mi

)∗̄.

where every inequality in Ci
j involves d.

Assume the expressions involve a single parameter p. Let us show that the FOE problem
for PTAs over a single parameter reduces to the 1-LpSl equality problem.
Every constraint on p is of the form p ▷◁ c with c ∈ N and ▷◁ ∈ {≤,≥}. Therefore, there
exists a constant M such that for all i, either the constraint CP

i is satisfied for all p ≥M ,
or it is satisfied by none.
For any fixed valuation v, full ET-opacity of v(A) is decidable by [7]. We thus assume that
we consider only valuations of p greater than M . This can be represented by replacing
every occurrence of p in the expressions by M + p. This can be done without loss of
generality as we can independently test whether the PTA is fully ET-opaque for the
finitely many integer values of p smaller than M . When solving the FOS problem, we
thus need to include the valuations of p smaller than M that achieved equality to the
valuations provided by the reduction.

FSTTCS 2024

3:22 Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

The terms CP
i being either always or never valid, one can either remove this constraint

from the expression, or the term containing it producing an expression of the form

+̄iCi
0̄.(Ci

1)∗̄ .̄(Ci
2)∗̄ .̄ · · · .̄(Ci

mi
)∗̄.

where every constraint involves x .
Once again, assuming p is large enough, the constraint Ci

j can be assumed to be of the
form αi

jp + βi
j ≤ x ≤ γi

jp + δi
j where αi

j , βi
j , γi

j , δi
j ∈ N.

For both expressions ēℓpriv and ē¬ℓpriv , now in the simplified form described above, we
build the 1-LpSl sets Sēℓpriv

and Sē¬ℓpriv
where, taking the notations from Equation (2), I

is the set +̄ ranges over, for 0 ≤ j ≤ mi, bi
j = αi

jp + βi
j and ci

j = γi
jp + δi

j .
For a valuation v of p, we have that Sēℓpriv

(v) contains exactly the integers that satisfy
v(ēℓpriv) (and similarly for Sē¬ℓpriv

(v) and v(ē¬ℓpriv)). Therefore, there exists a valuation
such that A if fully opaque w.r.t. ℓpriv on the way to ℓf iff there exists a parameter
valuation v such that Sēℓpriv

(v) = Sē¬ℓpriv
(v), establishing the reduction.

We now wish to show that the LpSl equality problem reduces to the FOE problem.
To do so, we fix two LpSl sets S1 and S2, then build two automata A1 and A2 such
that Si(v) contains exactly the integers that satisfy v(PET (Ai)), for all valuation v, for
i ∈ {1, 2}.
Let us focus on S1 and assume it is of the form given by Equation (2). We build A1 so
that from the initial location ℓ0 it can take multiple transitions (one for each i ∈ I), the
ith transition being allowed if the clock lies between bi

0 and ci
0, reset the clock and reach

a state ℓi. From ℓi, there are ni loops, and the jth loop can be taken if the clock lies
between bi

j and ci
j and resets the clock. Moreover, a transition can be taken from ℓi to ℓf

if x = 0.
Formally, A1 = (Σ, L, ℓ0,X,P, I, E) where Σ = {ϵ}, L = {ℓ0, ℓf} ∪ {ℓi | i ∈ I}, X = {x},
P is the set of parameters appearing in S1, I does not restrict the PTA (i.e., it associates
R≥0 to every location), and finally

E =
{

(ℓ0, (bi
0 ≤ x ≤ ci

0), ϵ, {x}, ℓi | i ∈ I
}

∪
{

(ℓi, (bi
j ≤ x ≤ ci

j), ϵ, {x}, ℓi | i ∈ I, 1 ≤ j ≤ ni

}
∪

{
(ℓi, (x = 0), ϵ, ∅, ℓf | i ∈ I

}
.

Thus, a run reaching ℓf can be decomposed into final-reset paths. In other words, there
is a run reaching ℓf with duration d iff d can be written as a sum d =

∑ni

j=0 dj where
bi

0 ≤ d0 ≤ ci
0 and for all j > 0, kjbi

j ≤ dj ≤ kjci
j where kj is the number of times the jth

loop is taken in the PTA. As a consequence, the set of durations of runs reaching ℓf is
exactly S1.
We build A2 similarly. We now build the PTA A which can either immediately (with
x = 0) go to the initial state of A1 or go immediately to a private location ℓpriv before
immediately reaching the initial state of A2. The final location of A1 and A2 are then
fused in a single location ℓf . We thus have that, the set of runs reaching ℓpriv on the way
to ℓf are exactly the ones reaching ℓf in A2 (with a prefix of duration 0). And similarly,
the set of runs avoiding ℓpriv on the way to ℓf are exactly the ones reaching ℓf in A1
(with a prefix of duration 0). Therefore, for any parameter valuation v, we have that
DVisitpriv(v(A)) = DVisitpriv(v(A)) iff S1(v) = S2(v), concluding the reduction. ◀

The Parallel Dynamic Complexity of the Abelian
Cayley Group Membership Problem
V. Arvind # Ñ

The Institute of Mathematical Sciences (HBNI), Chennai, India
Chennai Mathematical Institue, India

Samir Datta # Ñ

Chennai Mathematical Institute and UMI ReLaX, India

Asif Khan #

Chennai Mathematical Institute, India

Shivdutt Sharma #

Indian Institute of Information Technology, Una, India

Yadu Vasudev #

Indian Institute of Technology Madras, Chennai, India

Shankar Ram Vasudevan #

Chennai Mathematical Institute, India

Abstract
Let G be a finite group given as input by its multiplication table. For a subset S ⊆ G and an
element g ∈ G the Cayley Group Membership Problem (CGM) is to check if g belongs to the subgroup
generated by S. While this problem is easily seen to be in polynomial time, pinpointing its parallel
complexity has been of research interest over the years. Barrington et al [6] have shown that for
abelian groups the CGM problem can be solved in O(log log |G|) parallel time. In this paper we
further explore the parallel complexity of the abelian CGM problem, with focus on the dynamic
setting: the generating set S changes with insertions and deletions and the goal is to maintain a
data structure that supports efficient membership queries to the subgroup ⟨S⟩. Though the static
version of the CGM problem can be easily reduced to digraph reachability, the reduction does not
carry over to the dynamic setting. We obtain the following results:
1. First, we consider the more general problem of Monoid Membership, where G is a monoid input

by its multiplication table. When G is a commutative monoid we show there is a deterministic
dynamic AC0 algorithm1 for membership testing that supports O(1) insertions and deletions in
each step.

2. Building on the previous result we show that there is a dynamic randomized AC0 algorithm for
abelian CGM that supports polylog(|G|) insertions/deletions to S in each step.

3. If the number of insertions/deletions is at most O(log n/ log log n) then we obtain a deterministic
dynamic AC0 algorithm for abelian CGM.

4. Applying these algorithms we obtain analogous results for the dynamic abelian Group Isomorph-
ism.

We can also handle sub-linearly many changes to the multiplication table for G, utilizing the hamming
distance between multiplication tables of any two distinct groups.

2012 ACM Subject Classification Theory of computation → Parallel algorithms

Keywords and phrases Dynamic Complexity, Group Theory, Cayley Group Membership, Abelian
Group Isomorphism

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.4

Related Version Full Version: https://arxiv.org/abs/2308.10073

Funding Samir Datta: Partially supported by a grant from Infosys foundation.
Asif Khan: Partially supported by a grant from Infosys foundation.

1 Equivalently, a constant time parallel algorithm using polynomially many processors.

© V. Arvind, Samir Datta, Asif Khan, Shivdutt Sharma, Yadu Vasudev, and Shankar Ram Vasudevan;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 4; pp. 4:1–4:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arvind@imsc.res.in
http://www.imsc.res.in/~arvind
https://orcid.org/0000-0002-1988-7866
mailto:sdatta@cmi.ac.in
http://www.cmi.ac.in/~sdatta
https://orcid.org/0000-0003-2196-2308
mailto:asifkhan@cmi.ac.in
https://orcid.org/0009-0001-5950-8891
mailto:shiv@iiitu.ac.in
https://orcid.org/0000-0001-5113-7953
mailto:yadu@cse.iitm.ac.in
https://orcid.org/0000-0001-7918-7194
mailto:shankarram@cmi.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.4
https://arxiv.org/abs/2308.10073
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Dynamic Complexity of Abelian CGM

1 Introduction

The main algorithmic problem of interest in this paper, is the Cayley Group Membership
Problem (CGM): Given as input a finite group G by its multiplication table (also known as
its Cayley table), a subset S ⊆ G and an element g ∈ G, test if g ∈ ⟨S⟩, where ⟨S⟩ is the
subgroup of G generated by the elements in S.

The CGM problem was brought into focus by the work of Barrington et al [6] which raises
intriguing questions about its parallel complexity.

Background. Membership testing in finite groups is well-studied [28]. Its computational
complexity significantly depends on how G is given as input and on its elements’ representation.
For example, if the elements of G are represented as permutations on [n] = {1, 2, . . . , n}, then
G is a subgroup of Sn, the group of all permutations on [n]. A natural compact description
of G as input is by a generating set, as every finite group G has a generating set of size at
most log |G|. In this form, membership testing in permutation groups has been studied since
the 1970’s, pioneered by the work of Sims [29, 28]. There are efficient polynomial (in n) time
algorithms for the problem as well as parallel algorithms for it. The problem is in NC: it
can be be solved in polylog(n) time with polynomially many processors [4]. On the other
hand, G = ⟨a⟩ could be a cyclic subgroup, generated by a, of F∗

p, the multiplicative group
of the finite field Fp, where the prime p is given in binary. Testing if b ∈ ⟨a⟩, for b ∈ F∗

p is
considered computationally hard. The search version of solving for x such that ax = b is the
discrete log problem, widely believed intractable for random primes p.

Cayley Table Representation. The Cayley table representation of G, in contrast, makes the
CGM problem algorithmically easy: we can define a graph X = (V, E) with V = G as vertex
set and (x, y) ∈ E if xs = y or ys = x for a generator s ∈ S. Then, g is in the subgroup
generated by S if and only if the vertex g is reachable from the identity element of G. Indeed,
this is an instance of undirected graph reachability which has a polynomial time and even a
deterministic logspace algorithm due to Reingold [27]. That is, CGM is in the complexity
class L (which is contained in P). Since it is in L, it is also in the circuit complexity class
AC(log n) = AC1, which means it has log-depth polynomial-size circuits of unbounded fanin.
Equivalently, this means CGM has a logarithmic time CRCW PRAM algorithm (we will
define the relevant parallel complexity classes in Section 2). Henceforth, we will assume the
groups to be given by their multiplication table. In this setting, linear time algorithm for
abelian CGM is also known[22].

Parallel Complexity of CGM and Group Isomorphism. Chattopadhyay, Torán and Wag-
ner [7] have shown that the Group Isomorphism problem of checking if two groups G1 and G2
given as input by their multiplication tables are isomorphic can be solved by quasipolynomial
size constant-depth circuits. While the question whether or not Group Isomorphism is in P is
open and is intensely studied in recent times [30, 15, 14], the above parallel complexity upper
bound implies that even Parity is not reducible to Group Isomorphism! Similarly, Fleischer
has observed, based on [7] that the CGM problem can also be solved by quasipolynomial size
constant depth circuits. Since there is no hardness result for CGM, pinpointing its parallel
complexity is an interesting question.

As already mentioned, Barrington et al [6] have made nice progress showing that CGM for
abelian groups is in AC(log log n). Indeed, since the resulting circuits are dlogtime uniform,
the upper bound is FOLL (which means first-order definable with log log n quantifier depth,

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:3

where n is the size of the group). Further, they also show that CGM for nilpotent groups is in
the class AC((log log n)2) and CGM for solvable groups of class d are in AC(d log log n). The
interesting questions in the static setting is to improve these upper bounds and/or extend
these results to other classes of groups.

In this paper we study the dynamic parallel complexity of CGM for abelian groups. Before
we describe our results, we give some background.

Dynamic complexity. Dynamic algorithms, broadly, deals with the design of efficient
algorithms for problems when the input is modified with small changes. The aim is to solve
the problem, for the modified input, significantly more efficiently than running the best
known “static” algorithm from scratch. The measure of efficiency is crucial here and defines
the model of computation. Dynamic algorithms is a burgeoning field of research (see e.g. [17]
and [21, 11, 25]) with many applications that require handling large inputs subject to small
changes over time.

From a parallel complexity perspective, we have the framework of Patnaik and Immer-
man [26] that is rooted in descriptive complexity [20]. Closely related is the work of Dong, Su,
and Topor [12]. Here the ideal solution is to obtain a dynamic algorithm for the considered
problem that runs in constant parallel time. Theoretically, constant parallel time is O(1)
time on a CRCW PRAM model (denoted by CRCW(1), where the CRCW model is the most
liberal as it allows for concurrent reads and writes). It is well-known that this coincides with
the complexity class AC0 (the class of problems solvable by constant-depth boolean circuits).
From a descriptive complexity perspective, when the circuits are dlogtime uniform (more
details in Section 2) this corresponds to FO, the class of problems expressible in first-order
logic. The dynamic complexity class DynFO [26] is the class of problems for which there
exist FO update formula that have access to constantly many auxiliary relations, such that
after small changes to the problem input, the formula correctly computes the output of the
problem as well as updates to the auxiliary relations. These different ways of describing
O(1) parallel time are essentially equivalent: because FO and uniform AC0 are equivalent [5].
There is renewed interest in this model of computation since a long-standing open problem,
whether directed graph reachability is in DynFO, under single edge changes [26], was resolved
in the affirmative [8].

In the present paper, it is more convenient to describe our results, which are essentially
algorithmic and do not have a logical flavour, in terms of the parallel class CRCW(1) (or
equivalently circuit class AC0).

The results of this paper. In this paper, we obtain results on the dynamic parallel
complexity of abelian CGM and abelian Group Isomorphism. Our motivation is to see if we
can exploit the underlying group structure to give a dynamic CRCW(1) algorithm for the
CGM membership queries while the generating set S is dynamically changing with insertions
and deletions. We are able to obtain for the abelian group case the following results.

First, we consider the more general problem of Monoid Membership, where G is a monoid
input by its multiplication table. When G is a commutative monoid we give a deterministic
dynamic CRCW(1) algorithm for membership testing that supports O(1) insertions and
deletions in each step. The algorithm requires a one-time SAC1 preprocessing step. The
main idea is to maintain the monoid M in a tree-like data structure. The cyclic monoids
are at the leaves of the tree and each internal node has the submonoid of M generated by
set of all its descendant leaves. Furthermore, each internal node will also hold submonoids
corresponding to deletions of its descendant nodes.

FSTTCS 2024

4:4 Dynamic Complexity of Abelian CGM

We can use this tree-like data structure more powerfully in the case of abelian groups
to obtain a randomized dynamic CRCW(1) algorithm for abelian CGM that supports
polylog(|G|) insertions/deletions to S in each step. The algorithm needs a one-time
CRCW(log n) (O(log n) time algorithm with polynomially many parallel processors)
preprocessing step. The main fact that we exploit here is that adding polylog(n) many
unary numbers can be done in CRCW(1). Thus, from an abelian subgroup H given by
polylog(n) many generators we can randomly sample from H and hence list out all of H

with high probability in CRCW(1).
If the number of insertions/deletions is at most O(log n/ log log n) then we obtain a
deterministic dynamic CRCW(1) algorithm for abelian CGM which needs a one-time
CRCW(log n) preprocessing step. Here our techniques are linear algebra based: we need
to consider some miniature linear algebra problems where the number of variables is
O(log n) and we adapt existing linear algebraic techniques to solve this.
We obtain analogous results for the dynamic abelian Group Isomorphism. We also
consider sublinearly many modifications to the Cayley table as well in all the cases.

The techniques used. The main dynamic complexity technique used is the idea of mud-
dling [9]. Imagine that for a dynamic problem we have an CRCW(1) algorithm A that after
each small changes answers queries and updates the auxiliary data structures in O(1) time.
And it uses a AC1 preprocessing step at the beginning to setup the auxiliary data structures.
However with successive updates, the auxiliary data structures gradually deteriorate, to the
point that after log n change steps the algorithm can no longer answer the queries and the
auxiliary data structures are rendered ineffective. The muddling technique implies that such
a problem is in fact in dynamic CRCW(1), meaning that there exists an CRCW(1) algorithm
that answers the queries after each small change, and updates the auxiliary data structures,
and does so for arbitrarily long sequence of changes. This broad technique is applied in this
paper to the problems considered and we will have occasion to see the muddling technique in
detail.

In addition, we crucially use the structure of finite abelian groups, and some tree-like
data structures. We are also able to use reductions of the CGM problem to some linear
algebra problems, such that in the dynamic setting we can utilize efficient matrix inverse
and determinant updates under small rank changes to the matrices.

Organization. In Section 2 we give some basic definitions and notation, and some background
about the dynamic parallel complexity model. In Section 3 we explain the dynamic CRCW(1)
algorithm for commutative monoid membership under single insertions/deletions to the
generating set. Sections 4 and 5 contain, respectively, the randomized and deterministic
dynamic CRCW(1) algorithms for abelian CGM. In Section 6 we apply the CGM results to
obtain dynamic CRCW(1) algorithms for Abelian Group Isomorphism. Finally, in Section 7
we discuss dealing with small changes to the group multiplication table itself. In the interest
of space, proofs are pushed to the Appendix. Lemma statements in the main are hyperlinked
to their proofs in the Appendix.

2 Preliminaries

Group Theory. A monoid (M, ·) is a set M equipped with a binary operation ·, that is
associative and has an identity element. (N, ·) is called a submonoid of (M, ·) if N ⊆ M

containing the identity element and is closed under the binary operation ·. A monoid whose

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:5

binary operation is commutative is called a commutative monoid. A monoid is called a group
if all its elements have inverses, i.e., for each monoid element there exists another element
such that their product gives the identity. A commutative group is called an Abelian Group.

Complexity Classes. We will mainly consider parallel complexity classes defined by boolean
circuits. Let AC(t(n)) denote the class of decision problems that have polynomial-size circuits
of depth t(n) for inputs of size n, where the AND and OR gates of the circuit are allowed
to be unbounded fanin. This circuit model is essentially equivalent to t(n) parallel time
on a CRCW PRAM model (with polynomially many processors, denoted by CRCW(t(n))),
where CRCW allows for concurrent reads and writes to a memory location. More details
of these connections can be found in [20]. In particular, AC(1) is usually denoted AC0 and
AC1 denotes AC(log n). The class AC(log log n) is of interest in this paper due to the result
of Barrington et al [6] showing that abelian CGM is in uniform AC(log log n). This class is
also denoted FOLL in [6] (for first-order formulas with log log n depth quantifiers for size n

inputs). We use both notations interchangeably. If we restrict the circuits to be monotone
(negation allowed at the input gates) and fanin of AND gates to be constant in the above
circuit families, then the corresponding complexity classes are denoted by SAC(t(n)). For
example, SAC0 and SAC1 circuit families are same as AC0 and AC1 respectively, except that
the AND gates can have only a constant size fanin and the negations are allowed only at the
input gates [31].

An AC((t(n)) algorithm will actually be given by a family of circuits {Cn}n>0, where
Cn solves the problem for inputs of length n, has depth t(n), and size bounded by some
polynomial nc for a constant c > 0. We need a uniformity condition that tells us how efficiently
we can construct the circuits Cn. A stringent condition is the so-called dlogtime uniformity:
Each gate in the circuit Cn can be described using O(log n) bits and the uniformity condition
requires that the gate connections can be checked in deterministic time linear in O(log n) by
a random access machine [5]. The class dlogtime uniform AC0 coincides with FO, where the
structures on which the formulas are evaluated are equipped with some suitable predicates [5].

The parallel dynamic algorithms in this paper are describable by circuits that are dlogtime
uniform.

The parallel dynamic complexity model. We briefly explain the parallel dynamic complexity
model. The underlying model for describing the algorithms can seen as a CRCW PRAM.
That means the algorithm can use polynomially many parallel processors accessing a shared
memory that allows concurrent reads and concurrent writes with well defined notion of which
write succeeds. We can also give a circuit complexity description for the model.
1. For each problem there is a well-defined notion of small changes to the input.
2. In the CRCW PRAM setting, the algorithm uses nc processors for length n inputs for

some constant c > 0 that depends on the problem.
3. At each time instant the algorithm receives as input i(n) small changes to the problem

input. With respect to the problem input at time instant t, the algorithm is required to
output the answer in constant time. I.e., within time instant t + O(1).

4. In the boolean circuit setting, for inputs of length n the model can be seen as a layered
boolean circuit that is of width nc for length n inputs, where the layers denote the time
instants. At each layer it receives as input the i(n) changes. For the input at layer t it
needs to output the answer before layer t + O(1).

FSTTCS 2024

4:6 Dynamic Complexity of Abelian CGM

5. We use DynAC0 to broadly denote the class of problems that have dynamic algorithms
that take O(1) time with polynomially many processors2. We explicitly state the number
of small changes to the input that can be handled at each time step. We also refer to
such dynamic algorithms as DynAC0 algorithms, or equivalently as dynamic CRCW(1)
algorithms.

Depending on the problem at hand, the dynamic algorithm usually works by creating a
suitable data structure from the given input which it updates with the small changes to the
input.

3 A Dynamic CGM Algorithm for Commutative Monoids

In this section, we consider the more general problem of Cayley Monoid Membership for
commutative monoids: Given a commutative monoid M by its multiplication table, a subset
S ⊆ M , and an element m ∈ M , check if m is in the submonoid ⟨S⟩ generated by S. By
abuse of notation, we term this the CGM problem for commutative monoids.

We present a tree-based data structure to maintain the generating set S, using which we
obtain a DynAC0 algorithm that supports a single insertion/deletion to/from the subset S at
each step. We will use this data structure with suitable modifications in Section 4.

The CGM problem for monoids. It is known that CGM for monoids is reducible to directed
graph reachability. To see this just construct the Cayley digraph Cay(M, S) of the monoid
M corresponding to generating set S. The graph has vertex set M and for every m ∈M and
every m′ ∈ S, the directed edge (m, m ·m′) is in the edge set. Clearly, an element t ∈ M

is in the submonoid ⟨S⟩ iff there is a directed path from the monoid identity e to t in this
digraph. Hence Cayley Membership for monoids is in NL. We note here that, though we
know dynamic reachability to be in DynAC0 under constantly many changes, this reduction
of the monoid membership problem to reachability doesn’t directly give a DynAC0 bound
for the monoid membership problem. This is because, even after the insertion/deletion of a
single element to/from S, the graph Cay(M, S) changes drastically, i.e., O(n) many edges
are affected. We only know how to handle polylog(n) many changes in DynAC0 even for the
undirected reachability problem.

So, we will use the weaker upper bound of SAC1 for the CGM problem for commutative
monoids. This upper bound actually gives a tree-like data structure, using which we obtain
the DynAC0 algorithm for the problem that supports single insertions/deletions to S.

As M is commutative, any element of the submonoid ⟨S⟩ is expressible as a product of
powers of elements in S:

∏
s∈S ses , where 0 ⩽ es ⩽ n and n = |M |.

We claim that the entire submonoid ⟨S⟩ can be listed as the output of an SAC1 circuit.
The circuit takes S as input, as a n-bit binary number with ith bit indicating whether the
element mi ∈M is in S, and outputs an n-bit binary number whose ith bit is 1 iff mi ∈M

is in the submonoid ⟨S⟩.
Let S1, S2 ⊆M such that the monoid identity 1 is in both S1 and S2. Their product is

defined as S1 · S2 = {a · b | a ∈ S1, b ∈ S2}.

▶ Proposition 1. Given as input the subsets S1 and S2 of a monoid M their product S1 · S2
can be computed in SAC0.

2 This coincides with DynFO [26] when the dlogtime uniformity conditions are met.

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:7

For each a ∈ S let Pa = {ai : 1 ⩽ i ⩽ n}. Notice that Pa can be computed directly from
the multiplication table for M in L which is contained in SAC1.

The tree-like data structure for S. We create a balanced binary tree T with leaves labelled
by the distinct elements a ∈ S. Let the root of T be ρ. To the leaf labelled a, we associate
the submonoid Pa. With each internal node τ , we associate a commutative submonoid Mτ

of M , inductively defined as the product Mτ = Mµ ·Mν , where µ and ν are its two children.
Since |M | = n, the tree T has depth bounded by log n. By Proposition 1 the tree T can be
created by an SAC1 circuit. Moreover, for each internal node of T , the following is immediate.

▶ Proposition 2. For each node τ of the tree T the subset Mτ associated with τ is the
commutative submonoid generated by the subset Lτ = {a ∈ S | a such that τ has the leaf
labelled a as descendant}. I.e., Mτ = ⟨Lτ ⟩.

It is clear that the subset associated with root ρ of the tree T , is actually ⟨S⟩. Thus, we
have:

▶ Lemma 3. The CGM problem for commutative monoids is in SAC1.

The Dynamic Setting. We will modify the above construction to obtain a dynamic data
structure. First we expand the tree T , by including leaves for every element of M . For each
element a ∈M , we pre-compute its power set Pa as already defined. However, we will make
Pa to be the submonoid associated with the leaf labelled a, Ma = Pa, precisely if a ∈ S, and
otherwise we associate the identity element 1, i.e., Ma = {1}.

We will need to dynamically maintain the following data at each node of the expanded
tree. Only the data associated with the tree nodes change with the changing generating set
S, while the tree structure itself remains unchanged.
1. For each node ν of the tree we have the submonoid Mν generated by the subsets associated

with the leaves below node ν in the tree.
2. Additionally, at each node ν we will maintain the submonoid Mν:µ for each descendant µ

of ν in the tree, where Mν:µ denotes the submonoid generated by the subsets associated
with all leaves that are descendants of ν but are not descendants of µ. Equivalently, it
is as if the submonoid associated with node µ is reset to {1} and then the rest of the
submonoid Mν is computed.

Essentially, as in Propositions 1 and 2, given a subset S we can construct the tree data
structure along with the data at each node as described above.

▶ Proposition 4. Given as input a subset S ⊆M for a commutative monoid M (given by its
multiplication table), we can construct the tree data structure T along with the data at each
node as described above in SAC1. Furthermore, given a membership query m ∈M , testing if
m is in the current submonoid ⟨S⟩ can be done in AC0.

Handling single insertions and deletions. Next we show that the above data structure
supports single insertions and deletions to S at each time step. The updates to the data
structure can be carried out in AC0 as described below.

First we consider deletions. Suppose a ∈ S is deleted. Then we need to update for each
tree node ν, the submonoid Mν associated with it and the submonoids Mν:µ for each of
its descendant µ. Clearly, Mν remains unchanged if a is not a descendant of ν. Similarly,
Mν:µ also remains unchanged if a is a descendant of µ. In general, the required updates

FSTTCS 2024

4:8 Dynamic Complexity of Abelian CGM

are explicated by the Algorithm 1 (which contains the description of both delete and insert
updates colour coded as red and blue respectively). Similarly, in the case of insertion of an
element a ∈M to S, we need to update the submonoids associated with the tree nodes.

Algorithm 1 Delete(a). Insert(a).

1 Ma ← {1} Ma ← Pa

2 for ν ∈ V (T) such that a ∈ descendants(ν) do in parallel
3 Mν ←Mν:a Mν ←Mν · Pa

4 for µ, ν ∈ V (T) such that µ and a are descendants of ν do in parallel
5 µ′ ← LCA(µ, a)
6 if µ′ ̸= µ then
7 Let µ1, µ2 be the children of µ′ such that a and µ are descendants of µ1 and

µ2 respectively
8 Mν:µ ← (Mν:µ′) · (Mµ1:a) · (Mµ2:µ) Mν:µ ← (Mν:µ′) · (Mµ1 · Pa) · (Mµ2:µ)

As each node in the tree can be processed in parallel and each requires just a product of
a constant number of pre-computed submonoids (lines 3 and 8), we have the following

▶ Proposition 5. The above deletion and insertion operations can be carried out in AC0.

The correctness of the update procedures in Algorithm 1 follows by induction on the validity
of the tree data structure. The inductive hypothesis being that the data structure contains
valid information about the various submonoids at the time step just before the insert/delete
updates. To summarize the above results, we have the main theorem of this section.

▶ Theorem 6. Let M be a commutative monoid given by its multiplication table and S ⊆M

generate a submonoid ⟨S⟩ of M . Then there is a deterministic DynAC0 algorithm that answers
membership queries m ∈ ⟨S⟩ given m ∈M and supports single insertions and deletions to
the generating set S at each time step, which requires a one-time SAC1 preprocessing step for
initialization of auxiliary data structures.

4 The Dynamic CGM Problem for Abelian Groups

Let G be an n-element abelian group given as input by its multiplication table. Let S be a
subset of G. We want to maintain a structure that supports efficient membership testing
in the subgroup H = ⟨S⟩ generated by S. That means efficiently supporting the following
operations.

1. Given a query element g ∈ G test if g ∈ H = ⟨S⟩ and, if so, express g as a product of the
generators in S.

2. The dynamic version of the problem requires that we efficiently support insertions/dele-
tions to set S. We have seen how to handle, even in the setting of commutative monoids,
single insertions or deletions to S at each step. More generally, we would like to handle
bulk insertions and deletions at each step.

Preprocessing for dynamic abelian CGM. We will first obtain a generating set of size at
most log n for G using which we can represent all elements of G.

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:9

An independent generating set [16, Section 3.2] for an abelian group G is a generating
set {g1, g2, . . . , gℓ} such that ge1

1 · g
e2
2 · · · g

eℓ

ℓ = 1 for 0 ⩽ ei ⩽ o(gi)− 1 if and only if ei = 0,
where o(gi) is the order of gi for each i. As a consequence of independence, every element
g ∈ G is uniquely expressible as g = ge1

1 · g
e2
2 · · · g

eℓ

ℓ for 0 ⩽ ei ⩽ o(gi)− 1. It is easy to see
that ℓ ⩽ log |G|. The next proposition easily follows from [16, Theorem 3.2.2].

▶ Proposition 7. Given as input a finite abelian group G by its multiplication table, an
independent generating set for G (of size at most log n) can be computed in AC(log n).

Thus, in a one-time preprocessing step, we can compute an independent generating set
{g1, g2, . . . , gℓ} from the multiplication table of the input group G as well as the unique
expression for each g ∈ G as g = ge1

1 · g
e2
2 · · · g

eℓ

ℓ for 0 ⩽ ei ⩽ o(gi)− 1. The two preprocessing
steps for G are summarized below.
1. For each pair (g, i), g ∈ G, 0 ⩽ i ⩽ n− 1, we compute and store the power gi in an n× n

table. This can be done in a straightforward AC(log n) computation, since the product
of two elements in the table is computable in AC0. In particular, this computation also
yields the order o(g) of each g ∈ G.

2. By Proposition 7, in AC(log n) we compute for G an independent generating set T =
{g1, g2, . . . , gt}, t ⩽ log n and also a representation for each g ∈ G as a product g =∏t

i=1 gei
i .

Additionally, we note the easy consequence of Barrington et al’s FOLL algorithm [6] for
abelian CGM.

▶ Lemma 8. Let S ⊆ G, for an abelian group G given by its multiplication table as input.
In FOLL a log |G| size subset T of S can be computed that generates the same subgroup as S.

Randomized DynAC0 Algorithm for Abelian CGM
We now present a randomized DynAC0 algorithm for maintaining the subgroup H = ⟨S⟩ of G,
given by its generating set. More precisely, the algorithm can process polylog(n) insertions
and deletions per step and answer membership queries to the group ⟨S⟩ in O(1) parallel
time3. The following is a crucial lemma that is used by the query algorithm in this section.

▶ Lemma 9. Let T ⊆ G be of size at most logc n for some constant c, where G is an
abelian group, |G| = n, given by its multiplication table with independent generating set
G = ⟨g1, g2, . . . , gℓ⟩. Then in randomized AC0 we can list out the subgroup ⟨T ⟩ generated
by T . In particular, membership testing in the subgroup generated by T can be done in
randomized AC0.

Given Lemma 9, we can focus on just maintaining a polylog(n) size generating set for the
subgroup ⟨S⟩ while it undergoes polylog(n) many insertions/deletions in a step.

Auxiliary data structure. First we will create a variant of the tree-based data structure
described in Section 3 to represent the generating set S and certain subgroups of ⟨S⟩. We
will continually update this data structure, as we process the bulk insertions and deletions
that occur at each time step.

3 Updates to the auxiliary data structures are in deterministic AC0, while queries require randomization.

FSTTCS 2024

4:10 Dynamic Complexity of Abelian CGM

1. Let S be the current generating set and 2k−1 < |S| ⩽ 2k, for positive integer k ⩽ ⌈log n⌉.
To begin with, we create an O(log n) depth full binary tree B, with 2k leaves. We
associate, for each generator x ∈ S, the cyclic subgroup ⟨x⟩ with a distinct leaf of B. The
remaining leaves are associated with the trivial subgroup {1}. As it is a full binary tree,
its nodes can be indexed by 1, 2, . . . , 2k+1− 1 with 1 as index for the root. For each i > 1,
the node indexed i has as parent the node indexed ⌊i/2⌋.

2. Let τ be an internal node of the tree B with children µ and ν. Inductively, to each
internal node τ we associate the subgroup, Hτ = Hµ ·Hν which is the product of the
subgroups Hµ and Hν that are associated with the two children. Notice that the product
Hµ ·Hν is indeed a subgroup of G as G is abelian. Letting Sτ denote the set of leaves in
S below node τ . Then, notice that Hτ = ⟨Sτ ⟩ for each node τ of the tree. The root is
labeled with H = ⟨S⟩.

3. Additionally, for each internal node τ and for each descendant µ of τ we keep the subgroup
generated by Sτ \ Sµ, which we denote by Hτ :µ. Thus, at each node τ we have the list of
subgroups Hτ :µ with generating set Sτ \ Sµ, one for each descendant µ of τ .

4. Finally, using Lemma 8 we compute, in FOLL, log n size generating sets Tτµ ⊆ Sτ \ Sµ

for each subgroup Hτ :µ at each node τ in parallel. Similarly, for subgroup Hτ associated
with each internal node τ , a log n size generating set Tτ ⊆ Sτ is computed.

5. For access to the data maintained at each node in the tree, we will have an array
of pointers indexed by 1, . . . , 2k+1 − 1. Furthermore, we will keep a boolean array
A[i, j], 1 ⩽ i, j ⩽ 2k+1 − 1 where A[i, j] = 1 if and only if i is an ancestor of j.

The following lemma is immediate.

▶ Lemma 10. The tree data structure B, for the generating set S can be built in O(log n)
parallel time (i.e. in AC(log n)).

The tree data structure B useful in Section 5 as well.

Handling bulk insertions and deletions. At any point of time during the computation, the
current generating set S, is maintained as a data structure described above. Then changes
to the generating set arrive in the form of two sets I and D for insertions and deletions
respectively, such that |I|, |D| = O(logc+1 n). The actual generating set then becomes
S ∪ I \D. We will first show that a membership query occurring at this point of time can be
answered in O(1) parallel time.

▶ Lemma 11. Given the data structure for S along with the update sets of insertions I and
deletions D, each of logc+1 n size, we can test if some group element g is in the subgroup
generated by (S ∪ I) \D in AC0.

Continual rebuilding of the tree data structure B. This is the crucial part of the dynamic
algorithm4. Let’s assume that at time instant t, we have the tree data structure for the current
generating set, denoted by S(t), available (this assumption is particularly valid at the starting
time instant because of the preprocessing). At this instant, the new insertion and deletion
bulk updates, denoted by I(t) and D(t) respectively, arrive. Using Lemma 11, we can answer
membership queries about the subgroup generated by S(t+1) = (S(t) ∪ I(t)) \D(t) in O(1)

4 This continual rebuilding of data structure is a modified adaptation of the muddling technique from [9].

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:11

time. In fact, we can do this for any time instant t + i (1 ⩽ i < log n), by using Lemma 11,
keeping the generating set S to be S(t) and I and D to be the insertions and deletions
respectively accumulated so far from time instant t to t + i, since I and D are still bounded
by polylog(n) (| ∪i

j=1 I(t+j)|, | ∪i
j=1 D(t+j)| ⩽ i logc n < logc+1 n since i < log n). But, we

can’t keep doing this forever, as eventually the accumulated I and D grow beyond polylog(n).
In a sense, the tree data structure is only useful for log n rounds. To remedy this, we will
start AC1 computation for building the tree data structure for the subgroup generated by
(S(t)∪ I(t))\D(t) at the time instant t+1 using Lemma 10 and the result of this computation
will be available at time instant t + log n. After this point we can continue to use Lemma 11
for another log n rounds to answer the CGM queries. In fact, at each time instant t + i we
will have an AC1 computation thread started up for building the tree data structure for
the subgroup generated by S(t+i). At any time instant there are at most log n such thread
running and hence the number of gates in any layer remains polynomially bounded.

To summarize, we have shown the following theorem.

▶ Theorem 12. There is a randomized DynAC0 algorithm for the abelian Cayley Group
Membership problem, CGM, that requires a one-time AC1 preprocessing step, and supports
polylog(n) insertions and deletions to the generating set.

5 A Deterministic Dynamic Algorithm for Abelian CGM

We now present a deterministic DynAC0 algorithm for abelian CGM that can process bulk
insertions/deletions of size t = O(log n

log log n). The algorithm is linear algebraic. We first observe
a property of abelian groups in terms of prime factorization of their order. Let G be an
n-element abelian group given by its multiplication table. Let n = pa1

1 × pa2
2 × · · · × p

aµ
µ

be its prime factorization, where pi are distinct primes. By the structure of finite abelian
groups [16, Theorem 3.3.1] G = G1×G2×· · ·Gµ is a direct product where Gi is the pi-Sylow
subgroup of G.5

For a subset S ⊆ G consider the subgroup H = ⟨S⟩ generated by S. Let bi = n/pai
i , 1 ⩽

i ⩽ µ and Si = {xbi | x ∈ S}, 1 ⩽ i ⩽ µ. Then Hi = ⟨Si⟩ is a subgroup of Gi for each i and
H = H1 ×H2 × · · · ×Hµ.

An element g ∈ G is in the subgroup H if and only if gbi ∈ Hi for each i. As a consequence
we can reduce the dynamic abelian CGM problem to the dynamic abelian CGM problem for
abelian p-groups. We state this as a lemma.

▶ Lemma 13. Given an n-element abelian group G by its Cayley table, by a one-time
preprocessing computation in AC1 we can compute Cayley tables for each Sylow subgroup
Gi. Furthermore, all powers of elements of G can be pre-computed and stored in an array.
Hence the parallel dynamic complexity of abelian CGM maintaining S, supporting say t(n)
insertions/deletions at each step is AC0 reducible to the same problem for abelian p-groups.

Now, we can focus on the CGM problem restricted to abelian p-groups only.

Reduction to integer linear equations. Using the Proposition 7 we can pre-compute an
independent generating set {g1, g2, . . . , gℓ} for the abelian p-group G. Let |G| = n = pm

and o(gi) = pmi for each i, where m1 + m2 + · · · + mℓ = m, and ℓ ⩽ log n. We also

5 Let G be a finite group of order n = pa1
1 × pa2

2 × · · · × p
aµ
µ . Then for each i, G has at least one subgroup

of order pai

i , which is known as a pi-Sylow subgroup of G. However, if G is abelian then there is a
unique pi-Sylow subgroup of G which we can denote by Gi. In that case, G = G1 × G2 × · · · Gµ.

FSTTCS 2024

4:12 Dynamic Complexity of Abelian CGM

have m = logp n ⩽ log n. Each g ∈ G has a unique representation (pre-computed) as
g =

∏ℓ
i=1 gbi

i , 0 ⩽ bi ⩽ pmi − 1. Thus g can also be represented as an ℓ-dimensional integer
column vector b̄ = [b1b2 . . . bℓ]T .

We will dynamically maintain a logarithmically bounded subset T of the generating set S

such that T generate the same group as S, i.e., |T | = O(log n) and ⟨S⟩ = ⟨T ⟩. As explained,
we will represent elements of T by ℓ-dimensional column vectors. Thus, g ∈ ⟨T ⟩ iff the system
of integer linear equations Ax = b̄ is feasible, where the matrix A has columns corresponding
to each generator in T , and the ith row of the system of equations is computed modulo
pmi for 1 ⩽ i ⩽ ℓ. We can suitably scale each equation to get a system of integer linear
equations modulo pm. Since pm is a composite for m > 1, the usual recipe for feasibility
of linear equations based on matrix rank does not directly apply. However, we can rewrite
Ax = b̄ (mod pm) equivalently as integer linear equations

Ax + pmy = b̄ (1)

where y is a column vector of ℓ new variables. Letting [A|pmIℓ] = Ã, and z = [x|y]T we can
write this as Ãz = b̄, noting that Ã is full row rank. Thus, the CGM problem for abelian
p-groups is reduced to finding integer solution to Equation (1). To test the feasibilty of such
system of equations, we have the following lemma.

▶ Lemma 14 ([3], Theorem 3.13). For a prime p, the system Ãz = b̄ (and hence Ax =
b̄ (mod pm)) is feasible (i.e., has an integer solution) iff GCD of the ℓ× ℓ subdeterminants
of Ã and the GCD of the ℓ× ℓ subdeterminants of the augmented matrix [Ã|b̄] have the same
highest power of p dividing them both.

Since the matrix A in Equation (1) has ℓ ⩽ log n rows and t ⩽ 2 log n columns the number
of ℓ× ℓ subdeterminants is polynomially bounded. So, if we could compute the determinant
of each ℓ× ℓ submatrix in AC(log log n), we can execute the above feasibility test as well in
AC(log log n), and hence solve the CGM problem. Indeed, we have the following lemma to
compute determinant of such small matrices.

▶ Lemma 15. Let A be a square matrix of dimension polylog(n) with entries that are
polynomially bounded in n, then each bit of det(A) can be computed in AC(log log n).

We will need to dynamically maintain the determinants and inverses of all the ℓ×ℓ submatrices
of Ã = [A|pmIℓ]. The following lemma shows that, at least in the beginning, all these can be
precomputed in AC(log log n), giving way for an AC0 algorithm for CGM (part 3).

▶ Lemma 16. Let Ax = b̄ (mod pm) be a system of integer linear equations modulo pm,
where pm = n is input in unary, and A ∈ Zℓ×t and b̄ ∈ Zl, t = O(log n).
1. Let Ã = [A|pmIℓ]. We can compute the determinants of all square submatrices of Ã and

[Ã|b̄] in AC(log log n) (i.e. in log log n parallel time).
2. Furthermore, for the nonsingular submatrices we can also compute their inverses in

AC(log log n).
3. Given the above we can test the feasibility of Ax = b̄ (mod pm) and solve for x in AC0.
This preprocessing of the matrix Ã needs to be combined with a variant of the matrix inverse
lemma stated below [18] (this is a variant of the so-called Sherman-Morrison-Woodbury
formula) to dynamically compute solutions to Ãz = b̄. This formula essentially allows for a
quick updation of the data computed using Lemma 16 for A, if A is replaced with A + A′ for
a small rank matrix A′.

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:13

▶ Lemma 17 (Binomial Matrix Theorem [18]). Let M be an invertible r × r matrix over
any field (or ring). Let C, U and V be t× t, r × t and t× r matrices respectively, over the
same field/ring. The inverse of M + UCV is M−1 −M−1U(I + CV M−1U)−1CV M−1 if
M + UCV is invertible.

Similarly to update determinants quickly we will need the following.

▶ Lemma 18 (Matrix Determinant Lemma). If M is a r × r matrix over a field and U and
V are r × t and t× r matrices then det(M + UV T) = det(It + V T M−1U) det(M).

Finally, we will also require the following lemma to compute the small matrix inverses
and determinants, viz. (I + CV M−1U)−1 and det(It + V T M−1U) respectively, required
by Lemmas 17 and 18.

▶ Lemma 19 ([10], Theorem 8).
1. Let t = O(log n

log log n) and B be a t × t integer matrix with entries bounded by pm and q

be an O(log log n) bit prime number. Then both det(B)(mod q) and B−1 over Fq can be
computed in AC0.

2. Furthermore, by Chinese remaindering, det(B) and hence B−1, if it exists, can both be
computed in AC0 by applying the first part for several distinct primes qi and different
submatrices.

We will now see how to use these in the context of processing O(log n/ log log n) bulk
insertions and deletions.

Processing Bulk Insertions. Suppose T̂ is the set of insertions to S, where |T̂ | = t =
O(log n/ log log n). Thus, the system of linear equations Ax = b̄ (mod pm) is now modified
to [A|Â]x = b̄ (mod pm), where the columns of A correspond to T , the new columns Â

correspond to the insertions T̂ , and b̄ is the integer vector corresponding to a g ∈ G whose
membership we want to test in ⟨T ∪ T̂ ⟩.

We note that in the modified linear equation above, the original coefficient matrix has
been modified in at most t columns. Thus, Lemmas 17 and 18 are applicable. With these
we can update the data computed by Lemma 16 in AC0. It can be recomputed in AC0 by
Lemma 19 as at most O(log n/ log log n) columns are modified in any submatrix, thinking
of the new columns as modifications of zero columns. Furthermore the recomputations
involves computing the determinant and inverse of matrices of dimension at most t =
O(log n/ log log n), where those matrices have integer entries given as input in unary (because
each of them is at most pm in magnitude). A crucial difficulty in the application of Lemmas 17
and 18 is that a submatrix M of A, whose inverse/determinant we need to update, may itself
not be invertible. We can deal with this by maintaining the data computed by Lemma 16
for the invertible matrices ξI −M , for all submatrices M of A, where ξ is an indeterminate.
Lemma 15 and parts 1 and 2 of Lemma 16 can be applied mutatis mutandis to matrices ξI−M

(for the submatrices M of Ã). The determinant of ξI −M will be a degree r polynomial
in ξ and (ξI −M)−1 will have entries that are rational functions f(ξ)/g(ξ) where f and g

are of degree at most r, where r = O(log n). Consider Lemma 17 and Lemma 18 applied to
ξI−M instead of M . Notice that det(M +UV T) is the constant term of det(M +UV T − ξI)
which we can compute in AC0, essentially by Lemma 19. Similarly, by Lemma 19 the inverse
(M + UCV T)−1, if it exists, can be computed in AC0 from Lemma 17 applied to ξI −M .

FSTTCS 2024

4:14 Dynamic Complexity of Abelian CGM

Processing Bulk Deletions. Let T̂ be the set of elements that are deleted from S. It is clear
that modifications to the matrix A are required only if some elements from T are deleted,
i.e., T ∩ T̂ ̸= ∅. However, deletions are bit trickier than insertions to handle. This is because,
we can’t simply drop the columns from A corresponding to T̂ ∩ T after bulk deletion T̂ , as it
need not be the case that what remains in T is still a generating set for the ⟨S \ T̂ ⟩. We
might possibly need to include some elements from S \ T̂ to T \ T̂ for getting a correct small
generating set for S \ T̂ . The number of columns to be dropped from A is clearly bounded
by O(log n/ log log n). However, with respect to number of columns that are to be included
in A after the change, Lemmas 17 and 18 enable us to update the submatrices’ inverse and
determinant only if this number is bounded by O(log n/ log log n). To our relief, it is indeed
the case. We show the following about finite abelian p-groups in general. For a finite abelian
p-group G, |G| = pm, let S ⊆ G. Let T be a subset of S such that ⟨S⟩ = ⟨T ⟩. Without loss
of generality, we assume that |S| ⩾ 2. Then we have the following.

▶ Lemma 20. Let G be a finite abelian p-group, |G| = pm, and T ⊆ S ⊆ G such that
⟨T ⟩ = ⟨S⟩. Then for any g ∈ T , there is an h ∈ S \T such that, ⟨S \{g}⟩ = ⟨(T \{g})∪{h}⟩.

Proof. Let H = ⟨T ⟩ and K = ⟨T \ {g}⟩. Since the groups are abelian H = K⟨g⟩. Suppose
|H| = pm1 and |K| = pm2 . Let µ = m1 −m2. Then |H|/|K| = pµ, which is the number of
distinct cosets of K in H. Furthermore, as H/K is cyclic, generated by Kg, it follows that
Kg ∈ H/K is an element of order pµ. Hence, we have the disjoint union H = ⊔pµ−1

j=0 Kgj .

▷ Claim 21. For j ⩾ 0 and α relatively prime to p, the subgroups K⟨gpj ⟩ and K⟨gpjα⟩ are
identical.

To see this it suffices to note that for any finite cyclic group ⟨a⟩ of order d and any α relatively
prime to d, aα is also a generator of the cyclic group ⟨a⟩. Hence, the cyclic subgroups ⟨gpj ⟩
and ⟨gpjα⟩ are identical which proves the claim.

For each s ∈ S, let Kges be the coset to which it belongs. Writing es = pℓsαs for αs

relatively prime to p, the above claim implies the subgroups K⟨s⟩ and K⟨gpℓs ⟩ are identical.
That means the two subgroups ⟨T ∪ {s} \ {g}⟩ and ⟨T ∪ {gpℓs } \ {g}⟩ are identical.

Now, among elements in S \ T , let h be an element with the least ℓh. We claim that
⟨S \ {g}⟩ = ⟨T ∪ {h} \ {g}⟩.

Suppose s ∈ S \ {g} is some other element. Then ℓs ⩾ ℓh, by the choice of h. That means
K⟨gpℓs ⟩ is a subgroup of K⟨gpℓh ⟩, which implies s ∈ K⟨gpℓh ⟩ = K⟨h⟩ = ⟨(T \ {g}) ∪ {h}⟩,
completing the proof. ◀

From Lemma 20, it is clear that after deletion of T̂ , there is a O(log n/ log log n) size
set R ⊆ (S \ T̂) such that ⟨(T \ T̂) ∪ R⟩ = ⟨S \ T̂ ⟩. Hence, after the deletion of T̂ from S

if we can find such a set R, then we can update the matrix A by dropping the columns
corresponding to the elements in T̂ and including columns corresponding to R so that the
modified matrix A in Equation (1) correctly corresponds to the CGM question with respect
to the modified generating set S. For the modified matrix, we can update for each ℓ × ℓ

submatrix its inverse and determinant in AC0 using binomial matrix theorem and matrix
determinant lemma (Lemmas 17 and 18). This is because the determinants and inverses
involved in Lemmas 17 and 18 can be computed in AC0 due to Lemma 19 as their size
bounded by O(log n/ log log n).

But, we can’t afford to search for R in S \ T̂ , which is of O(n) size. However, we can
make use of the tree data structure B, of Section 4 that essentially maintains a polylog(n)
size generating set for S. That is, given B, we always have a polylog(n) size subset P of S

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:15

available, such that it generates the same group as S. We can exhaustively search for a valid
R in P , since the search space is polynomially bounded (

(polylog(n)
O(log n/ log log n)

)
= poly(n)). For

each choice of R we can use the AC0 routine for handling O(log n/ log log n) insertions to the
generating set, to find the span ⟨(T \ T̂) ∪R⟩. On top of that, we can find an R′ such that
⟨(T \ T̂) ∪R′⟩ contains all the elements that could be generated with any other choice of R.
With R′, we finally update T \ T̂ to become (T \ T̂) ∪R′ and update all the relevant matrix
inverses and determinants.

Continual rebuilding of data structure. We note that the data required by the algorithm
to answer membership queries in AC0 are:

A generating set T of size O(log n) such that ⟨T ⟩ = ⟨S⟩.
A polylog(n) size generating set P of ⟨S⟩ such that P ⊆ S.
An ℓ× |T | dimensional matrix A corresponding to the generating set. Determinant and
inverses of all non-singular ℓ× ℓ submatrices of [A|pmIℓ].

We have already seen in Section 4 that polylog(n) size generating set P can be maintained in
DynAC0 even under polylog(n) size bulk changes with help of the tree data structure, though
it requires a one time AC1 preprocessing step.

Having intialized the above auxiliary data structure, after every bulk insertion/deletion
we can update them in AC0 at least for log log n time steps. Within this time period, the
small generating set T remains logarithmically bounded, because even though after every
time step, size of T could grow by O(log n/ log log n), it can only grow by O(log n) over
log log n steps. Also, within this time period, we can check feasibility of Ax = b̄ (mod pm)
in AC0 and hence answer membership queries. We use the muddling technique to extend
this log log n window such that we can, for arbitrary long sequence change-steps, answer the
CGM queries in AC0 after each bulk insertion/deletion step.

In the beginning we have the correct small generating set T0 = T , because of initialization.
After the first change step, say i = 1, we start an AC(log log n) computation thread for
computing an at most log n size subset T1 of the modified T such that it generates the same
subgroup. The result of this thread, T1 is available after a delay of log log n time steps,
i.e., at time step i = log log n + 1. With respect to T1 and the insertion/deletions that
accumulate during the recomputation phase, we have all the updated information about the
corresponding matrix A, i.e., the determinants and inverses of all ℓ × ℓ submatrices of A.
So, when the next bulk insertion/deletion arrives, we can update the auxiliary information
again in AC0. In fact, we start an AC(log log n) recomputation thread for computing the
small generating set Ti at every time step i within the log log n time window so that we
have logarithmically bounded generating set at time step i + log log n. Still the number
of recomputation threads running at any given time step is O(log log n), thus keeping the
overall circuit size polynomially bounded.

To summarize we have shown the following theorem.

▶ Theorem 22. There is a deterministic dynamic AC0 algorithm for the abelian Cayley
Group Membership problem, CGM, that supports O(log n/ log log n) insertions and deletions
to the generating set, and requires a one-time AC1 preprocessing step.

6 Dynamic Abelian group isomorphism

Let G1 and G2 be abelian groups, each given a multiplication table as input, say T1 and T2,
respectively. Let S1 ⊆ G1 and S2 ⊆ G2 be subsets. In the static setting, there is a simple
polynomial time algorithm for checking if ⟨S1⟩ and ⟨S2⟩ are isomorphic: it suffices to list

FSTTCS 2024

4:16 Dynamic Complexity of Abelian CGM

out the two subgroups ⟨S1⟩ and ⟨S2⟩, check they have the same order n, and check for each
factor k of n that the number of elements of order k in the two subgroups ⟨S1⟩ and ⟨S2⟩ is
the same.6

In Section D we give a DynAC0 algorithm for dynamic abelian group isomorphism that
supports insertions and deletions to both S1, S2. Thus, we have shown the following.

▶ Theorem 23. There is a randomized (respectively deterministic) DynAC0 algorithm for
abelian group isomorphism that supports polylog(n) (respectively O(log n/ log log n)) insertions
and deletions at each step to the generating sets of the two groups.

7 Making the multiplication table dynamic

We have assumed so far that the overall group G (or monoid) is unchanged and only the
generating set for the CGM problem is dynamic. Suppose now that the entries of the
multiplication table of G can be modified dynamically. When the table’s entries change, it
may no longer represent a group (or a monoid). The binary operation ∗ : G×G→ G is just
a magma, in general. However, we can show that the dynamic algorithms for abelian CGM
still hold, with the proviso that the membership query answers are correct only when the
magma is actually an abelian group.

The main property we use here is that at most one group has its multiplication table
within linear (i.e. O(n)) edit distance from the multiplication table of an n-element magma
G.7 Moreover, from the magma multiplication table we can decode this unique group in AC0.
We note that Ergün et al [13] have shown stronger results for this problem in the context
of spot checkers; they give randomized self-correction algorithms for a variety of problems.
However, for a self-contained presentation, we include a simple proof of a weaker Lemma 28
yielding:

▶ Theorem 24. There is a randomized DynAC0 algorithm that supports O(n/ log n) changes
to the multiplication table and polylog(n) insertions/deletions to the generating set, with the
proviso that when the multiplication table decodes to an abelian group the membership queries
are answered with respect to it, and when it does not decode to an abelian group then the query
answers could be incorrect. There is also a deterministic DynAC0 algorithm that supports
O(n/ log n) changes to the multiplication table and log n/ log log n insertions/deletions to the
generating set, with the same proviso as described above.

8 Conclusion and open ends

We address the dynamic complexity of CGM and isomorphism problems for finite abelian
groups input by their multiplication table under O(log n/ log log n) changes to the generating
set while also allowing sublinear changes to the table itself to be in constant parallel time with
an initial logarithmic parallel time precomputation. We can also handle polylog(n) changes
to the generating set by allowing randomness. For the more general algebraic structures,
namely commutative monoids, we gave a foundational method to handle single changes, on
which the preceding are built.

Natural open questions are to extend the results to more general groups like nilpotent
and solvable groups.

6 Two finite abelian groups are isomorphic iff for each positive integer k the number of elements of order
k in the two groups coincide [16].

7 By the edit distance between multiplication tables op1 : G × G → G and op2 : G × G → G we mean the
number of pairs (a, b) ∈ G × G such that op1(a, b) ̸= op2(a, b).

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:17

References

1 Miklós Ajtai.
∑1

1-formulae on finite structures. Ann. Pure Appl. Log., 24(1):1–48, 1983.
doi:10.1016/0168-0072(83)90038-6.

2 Miklós Ajtai. Approximate counting with uniform constant-depth circuits. In Advances In
Computational Complexity Theory, Proceedings of a DIMACS Workshop, New Jersey, USA,
December 3-7, 1990, pages 1–20, 1990. doi:10.1090/DIMACS/013/01.

3 Vikraman Arvind and T. C. Vijayaraghavan. Classifying problems on linear congruences and
abelian permutation groups using logspace counting classes. Comput. Complex., 19(1):57–98,
2010. doi:10.1007/S00037-009-0280-6.

4 László Babai, Eugene M. Luks, and Ákos Seress. Permutation groups in NC. In Alfred V.
Aho, editor, Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, New York, USA, pages 409–420. ACM, 1987. doi:10.1145/28395.28439.

5 David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within
NC1. In Proceedings: Third Annual Structure in Complexity Theory Conference, Georgetown
University, Washington, D. C., USA, June 14-17, 1988, pages 47–59, 1988.

6 David Mix Barrington, Peter Kadau, Klaus-Jörn Lange, and Pierre McKenzie. On the
complexity of some problems on groups input as multiplication tables. Journal of Computer
and System Sciences, 63(2):186–200, 2001. doi:10.1006/JCSS.2001.1764.

7 Arkadev Chattopadhyay, Jacobo Torán, and Fabian Wagner. Graph isomorphism is not
AC0-reducible to group isomorphism. ACM Trans. Comput. Theory, 5(4):13:1–13:13, 2013.
doi:10.1145/2540088.

8 Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick, and Thomas Zeume.
Reachability is in DynFO. J. ACM, 65(5):33:1–33:24, 2018. doi:10.1145/3212685.

9 Samir Datta, Anish Mukherjee, Thomas Schwentick, Nils Vortmeier, and Thomas Zeume. A
strategy for dynamic programs: Start over and muddle through. Log. Methods Comput. Sci.,
15(2), 2019. doi:10.23638/LMCS-15(2:12)2019.

10 Samir Datta, Anish Mukherjee, Nils Vortmeier, and Thomas Zeume. Reachability and distances
under multiple changes. In 45th International Colloquium on Automata, Languages, and
Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages 120:1–120:14,
2018. doi:10.4230/LIPICS.ICALP.2018.120.

11 Laxman Dhulipala, David Durfee, Janardhan Kulkarni, Richard Peng, Saurabh Sawlani, and
Xiaorui Sun. Parallel batch-dynamic graphs: Algorithms and lower bounds. In Proceedings of
the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 1300–1319, 2020. doi:10.1137/1.9781611975994.79.

12 Guozhu Dong, Jianwen Su, and Rodney W. Topor. Nonrecursive incremental evaluation of
datalog queries. Ann. Math. Artif. Intell., 14(2-4):187–223, 1995. doi:10.1007/BF01530820.

13 Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. J. Comput. Syst. Sci., 60(3):717–751, 2000. doi:10.1006/JCSS.1999.1692.

14 Joshua A. Grochow and Youming Qiao. On p-group isomorphism: Search-to-decision, counting-
to-decision, and nilpotency class reductions via tensors. In Valentine Kabanets, editor, 36th
Computational Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada
(Virtual Conference), volume 200 of LIPIcs, pages 16:1–16:38. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPICS.CCC.2021.16.

15 Joshua A. Grochow and Youming Qiao. On the complexity of isomorphism problems for
tensors, groups, and polynomials I: tensor isomorphism-completeness. In James R. Lee,
editor, 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, January
6-8, 2021, Virtual Conference, volume 185 of LIPIcs, pages 31:1–31:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ITCS.2021.31.

16 M. Hall. The Theory of Groups. AMS Chelsea Publishing Series. AMS Chelsea Pub., 1999.
17 Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Recent advances in fully dynamic

graph algorithms - A quick reference guide. ACM J. Exp. Algorithmics, 27:1.11:1–1.11:45,
2022. doi:10.1145/3555806.

FSTTCS 2024

https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1090/DIMACS/013/01
https://doi.org/10.1007/S00037-009-0280-6
https://doi.org/10.1145/28395.28439
https://doi.org/10.1006/JCSS.2001.1764
https://doi.org/10.1145/2540088
https://doi.org/10.1145/3212685
https://doi.org/10.23638/LMCS-15(2:12)2019
https://doi.org/10.4230/LIPICS.ICALP.2018.120
https://doi.org/10.1137/1.9781611975994.79
https://doi.org/10.1007/BF01530820
https://doi.org/10.1006/JCSS.1999.1692
https://doi.org/10.4230/LIPICS.CCC.2021.16
https://doi.org/10.4230/LIPICS.ITCS.2021.31
https://doi.org/10.1145/3555806

4:18 Dynamic Complexity of Abelian CGM

18 H.V. Henderson and S.R. Searle. On deriving the inverse of a sum of matrices. SIAM Review,
23(1):53–60, 1981.

19 William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-depth threshold
circuits for division and iterated multiplication. J. Comput. Syst. Sci., 65(4):695–716, 2002.
doi:10.1016/S0022-0000(02)00025-9.

20 Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.
doi:10.1007/978-1-4612-0539-5.

21 Giuseppe F. Italiano, Silvio Lattanzi, Vahab S. Mirrokni, and Nikos Parotsidis. Dynamic
algorithms for the massively parallel computation model. In The 31st ACM on Symposium
on Parallelism in Algorithms and Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-24,
2019, pages 49–58, 2019. doi:10.1145/3323165.3323202.

22 T. Kavitha. Linear time algorithms for abelian group isomorphism and related problems.
Journal of Computer and System Sciences, 73(6):986–996, 2007. doi:10.1016/J.JCSS.2007.
03.013.

23 Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complexity.
Chic. J. Theor. Comput. Sci., 1997, 1997. URL: http://cjtcs.cs.uchicago.edu/articles/
1997/5/contents.html.

24 Pierre McKenzie and Stephen A. Cook. The parallel complexity of abelian permutation group
problems. SIAM J. Comput., 16(5):880–909, 1987. doi:10.1137/0216058.

25 Krzysztof Nowicki and Krzysztof Onak. Dynamic graph algorithms with batch updates in the
massively parallel computation model. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2939–2958,
2021. doi:10.1137/1.9781611976465.175.

26 Sushant Patnaik and Neil Immerman. Dyn-fo: A parallel, dynamic complexity class. J.
Comput. Syst. Sci., 55(2):199–209, 1997. doi:10.1006/JCSS.1997.1520.

27 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, 2008.
doi:10.1145/1391289.1391291.

28 Á. Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge
University Press, 2003.

29 Charles C. Sims. Computation with permutation groups. In Stanley R. Petrick, Jean E.
Sammet, Robert G. Tobey, and Joel Moses, editors, Proceedings of the second ACM symposium
on Symbolic and algebraic manipulation, SYMSAC 1971, Los Angeles, California, USA, March
23-25, 1971, pages 23–28. ACM, 1971. doi:10.1145/800204.806264.

30 Xiaorui Sun. Faster isomorphism for p-groups of class 2 and exponent p. In Proceedings of
the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, pages 433–440, New
York, NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3564246.3585250.

31 H. Venkateswaran. Circuit definitions of nondeterministic complexity classes. SIAM J. Comput.,
21(4):655–670, 1992. doi:10.1137/0221040.

A Missing proofs from Section 3

▶ Proposition 2. For each node τ of the tree T the subset Mτ associated with τ is the
commutative submonoid generated by the subset Lτ = {a ∈ S | a such that τ has the leaf
labelled a as descendant}. I.e., Mτ = ⟨Lτ ⟩.

Proof. This is easily proved by induction on the tree T . The point to note is that commut-
ativity of the monoid M is crucial: if Mµ = ⟨Lµ⟩ and Mν = ⟨Lν⟩ by induction hypothesis,
then we note that Mµ ·Mν = ⟨Lµ ∪ Lν⟩ because all the elements commute with each other.
Hence Mτ = Mµ ·Mν = ⟨Lτ ⟩. ◀

▶ Lemma 3. The CGM problem for commutative monoids is in SAC1.

https://doi.org/10.1016/S0022-0000(02)00025-9
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1145/3323165.3323202
https://doi.org/10.1016/J.JCSS.2007.03.013
https://doi.org/10.1016/J.JCSS.2007.03.013
http://cjtcs.cs.uchicago.edu/articles/1997/5/contents.html
http://cjtcs.cs.uchicago.edu/articles/1997/5/contents.html
https://doi.org/10.1137/0216058
https://doi.org/10.1137/1.9781611976465.175
https://doi.org/10.1006/JCSS.1997.1520
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1145/800204.806264
https://doi.org/10.1145/3564246.3585250
https://doi.org/10.1137/0221040

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:19

Proof. Given m ∈ M , to check if m ∈ ⟨S⟩ we just need to check if m is in the submonoid
Mρ associated with the root ρ of T . ◀

▶ Proposition 4. Given as input a subset S ⊆M for a commutative monoid M (given by its
multiplication table), we can construct the tree data structure T along with the data at each
node as described above in SAC1. Furthermore, given a membership query m ∈M , testing if
m is in the current submonoid ⟨S⟩ can be done in AC0.

Proof. For the tree construction, it suffices to observe that we can do the computation of
each Mν:µ in parallel in SAC1. For membership testing, if the ρ is the root of the tree then
the submonoid Mρ = ⟨S⟩ is available as a list at the node ρ. Hence membership testing is
in AC0. ◀

B Missing proofs from Section 4

▶ Lemma 8. Let S ⊆ G, for an abelian group G given by its multiplication table as input.
In FOLL a log |G| size subset T of S can be computed that generates the same subgroup as S.

Proof. Let S = {x1, x2, . . . , xs}. For each i > 1 in parallel, we can check if xi+1 is in
⟨x1, x2, . . . , xi⟩ using the FOLL algorithm of [6]. If xi+1 /∈ ⟨x1, x2, . . . , xi⟩ then we include
xi+1 into the set T . Clearly, |T | ⩽ log |G| and generates the same subgroup and S. ◀

▶ Lemma 9. Let T ⊆ G be of size at most logc n for some constant c, where G is an
abelian group, |G| = n, given by its multiplication table with independent generating set
G = ⟨g1, g2, . . . , gℓ⟩. Then in randomized AC0 we can list out the subgroup ⟨T ⟩ generated
by T . In particular, membership testing in the subgroup generated by T can be done in
randomized AC0.

Proof. Let T = {x1, x2, . . . , xr}. For each g ∈ G we have the pre-computed unique product

g =
ℓ∏

i=1
gαi

i ,

using the independent generating set {g1, g2, . . . , gℓ}. In particular, for each xj ∈ T we have

xj =
ℓ∏

i=1
g

αij

i ,

where 0 ⩽ αij ⩽ o(gi)− 1 for each i ∈ [ℓ]. As explained below, we can randomly sample from
the group generated by T by picking numbers βj ∈R [n], 1 ⩽ j ⩽ r uniformly at random and
computing the product

x =
r∏

j=1
x

βj

j .

The number of such products is nr. Furthermore, each element of the subgroup ⟨T ⟩ occurs in
this product with multiplicity exactly |{(β1, β2, . . . , βr) |

∏
j x

βj

j = 1}, as this set is the kernel
of the group homomorphism mapping (β1, β2, . . . , βr) 7→

∏r
j=1 x

βj

j . Thus, x is uniformly
distributed in ⟨T ⟩. If we draw, say n2 such samples x in parallel, the probability that all
elements of ⟨T ⟩ appear is at least 1−e−n. Finally, we analyze the complexity of computing the

product x =
∏r

j=1 x
βj

j . Notice that it amounts to computing the product
∏ℓ

i=1 g

∑r

j=1
βjαij

i .

FSTTCS 2024

4:20 Dynamic Complexity of Abelian CGM

Now, each of these ℓ exponents
∑r

j=1 βjαij is a logc n sum of unary numbers and can be
computed modulo the unary number o(gi) in AC0. The final product can be looked up in the
pre-computed table to find x. This proves that the group ⟨T ⟩ can be listed in randomized
AC0 and hence membership testing in ⟨T ⟩ is also in randomized AC0. ◀

▶ Lemma 10. The tree data structure B, for the generating set S can be built in O(log n)
parallel time (i.e. in AC(log n)).

Proof. The tree has log n levels and the straightforward computation required at each of
the (at most |S|) nodes at each level is AC0. ◀

▶ Lemma 11. Given the data structure for S along with the update sets of insertions I and
deletions D, each of logc+1 n size, we can test if some group element g is in the subgroup
generated by (S ∪ I) \D in AC0.

Proof. Let D = {xi1 , xi2 , . . . , xid
} be the deletions from S, d = logc+1 n. From the data

structure for S we can find the d subtrees rooted at nodes νi1 , νi2 , . . . , νid
where each node

νij
is the root of the maximal subtree that has exactly one deletion xij

occurring among
its leaves. This can be done in O(1) parallel time using the ancestor boolean array A[u, v].
In the data structure for S we already have a log n size generating set, say Tνij

xij
, for each

subgroup Hνij
:xij

.
Additionally, we find the maximal subtrees, rooted at nodes µℓ1 , µℓ2 , . . . , µℓs of the tree,

such that these subtrees contain no deletion xij
as descendant. To get a bound on s, note

that each such maximal subtree has as sibling a subtree that contains one or more deletions
among its leaves. The roots of all subtrees that have deletions among its leaves are just
the ancestors of the νij nodes, and hence are at most d⌈log n⌉ in number (each leaf has at
most ⌈log n⌉ ancestors). Thus, s = O(d log n) = O(logc+2 n). At each node µℓj

(j ∈ [s]) we
already have a log n size generating set, Tµℓj

for each subgroup Hµℓj
. Let T = ∪jTνij

xij
and

T̂ = ∪jTµℓj
. It follows from the above that we can compute T and T̂ in O(1) parallel time.

Putting it all together, the group generated by (S ∪ I) \ D is actually generated by
T̂ ∪ T ∪ I which is of polylog(n) size. Therefore, applying Lemma 9 we can do membership
testing in this subgroup in randomized AC0. ◀

C Missing proofs from Section 5

▶ Lemma 15. Let A be a square matrix of dimension polylog(n) with entries that are
polynomially bounded in n, then each bit of det(A) can be computed in AC(log log n).

Proof. It is well known that the determinant of a matrix of n variables can be computed by
boolean threshold circuits8 of polynomial size and logarithmic depth, i.e. it is in TC1. (Proof
sketch: the determinant of a matrix of polynomial dimension with polynomial in n bit entries
can be computed in arithmetic SAC1 [23, Table 2]. In other words, it can be computed by a
layered logarithmic depth circuit with gates from {+,−, ∗} where the ∗-gates have fan-in 2.
Now by applying [19, Corollary 6.7] each layer of this arithmetic circuit can be simulated in
TC0, i.e. constant-depth threshold circuits). Hence, replacing n with log n, it follows that the
determinant of matrices of polylog(n) dimension with polylog(n) bit entries can be computed
by a threshold circuit of depth O(log log n) and size polylog(n). Furthermore, threshold
gates of polylog n fanin can be computed by poly(n) size uniform AC0 [1, 2]. Replacing the
threshold gates by the corresponding AC0-circuit of size poly(n) completes the proof. ◀

8 Threshold circuits allow for unbounded fanin threshold gates apart from NOT, AND, and OR gates.

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:21

▶ Lemma 16. Let Ax = b̄ (mod pm) be a system of integer linear equations modulo pm,
where pm = n is input in unary, and A ∈ Zℓ×t and b̄ ∈ Zl, t = O(log n).
1. Let Ã = [A|pmIℓ]. We can compute the determinants of all square submatrices of Ã and

[Ã|b̄] in AC(log log n) (i.e. in log log n parallel time).
2. Furthermore, for the nonsingular submatrices we can also compute their inverses in

AC(log log n).
3. Given the above we can test the feasibility of Ax = b̄ (mod pm) and solve for x in AC0.

Proof. For the first part, the number of square submatrices is polynomially bounded as
Ã has dimension O(log n) × O(log n). Reducing modulo pm, the entries of the matrix are
bounded by n. Thus, by Lemma 15 it follows that the determinant as an integer can be
computed in AC(log log n). Reducing modulo pm yields the answer and we know from [19]
that the division by a unary number is possible in AC0.

For the second part, consider every nonsingular submatrix N , i.e. det N is non-zero. We
can compute the entries of N−1 by Cramer’s rule, as each cofactor of N is also a submatrix
of Ã. Since we can compute division of O(log n)-bit integers in AC0 (see [19, Theorem 5.1])
it follows that these computations can also be done in AC(log log n).

For the last part, notice that feasibility can be tested in AC0, given the data of first two
parts, by Lemma 14. From the set of all l × l non-singular submatrices of Ã, we choose N ,
that has the least power of p dividing its determinant, νp(det(N)) is the smallest.

W.l.o.g. N is the first l columns of Ã. Let Nz′ = b̄ be the system of equations obtained
by keeping only the first l columns of Ã and truncating z beyond the lth coordinate. The
solution to this is z′ = N−1b̄, where the right hand side is computable in AC0 given N−1.
Now we can extend this solution to a solution of Ãz = b̄ by putting zi = z′

i for each column i

in [l] and zi = 0 for other columns. It is easy to see that this must be a solution of Ãz = b̄,
as we know the latter is feasible. However, this solution may not necessarily be integer, as
we would like. But this rational solution will have the property that denominators of the
solution are relatively prime to p as we show below.

Because of Cramer’s rule, for any i ∈ [l], zi = det([Ni|b̄])/ det(N), where Ni is the matrix
obtained from N by dropping its ith column. Let s be the gcd of the determinants of all
l × l submatrices of Ã. Let t be the gcd of the determinants of all l × l submatrices of [Ã|b̄].
From the feasibility criterion of Lemma 14, we have that νp(s) = νp(t). But, from the choice
of N it is clear that, νp(s) = νp(det(N)) and hence νp(det(N)) = νp(t). In particular, this
implies that, νp([Ni|b̄]) ⩾ det(N). From this, we have that the denominator of zi is relatively
prime to p for any i ∈ [l].

Now, we can uniquely modify such a solution to be integral easily in AC0. ◀

D Missing parts from Section 6

Let G1 and G2 be abelian groups, each given a multiplication table as input, say T1 and T2,
respectively. Let S1 ⊆ G1 and S2 ⊆ G2 be subsets. In the static setting, there is a simple
polynomial time algorithm for checking if ⟨S1⟩ and ⟨S2⟩ are isomorphic: it suffices to list
out the two subgroups ⟨S1⟩ and ⟨S2⟩, check they have the same order n, and check for each
factor k of n that the number of elements of order k in the two subgroups ⟨S1⟩ and ⟨S2⟩ is
the same.9

9 Two finite abelian groups are isomorphic iff for each positive integer k the number of elements of order
k in the two groups coincide [16].

FSTTCS 2024

4:22 Dynamic Complexity of Abelian CGM

We give a DynAC0 algorithm for the dynamic version of abelian group isomorphism
that supports insertions and deletions to both S1 and S2. Let n1 =

∏
x∈S1

o(x) and
n2 =

∏
y∈S2

o(y), where the orders o(x), o(y), x ∈ S1, y ∈ S2 can be pre-computed for the
elements of the two groups G1 and G2. Let n1 =

∏r
i=1 pai

i and n2 =
∏r

i=1 pbi
i be their prime

factorizations. We can assume both n1 and n2 have the same prime factors. Otherwise, ⟨S1⟩
and ⟨S2⟩ are not isomorphic. Let n1i = n1/pai

i and n2i = n2/pbi
i and S1i = {xn1i | x ∈ S1}

and S1i = {yn1i | y ∈ S2} for 1 ⩽ i ⩽ r. Since a finite abelian group is a direct product of its
(unique) Sylow subgroups we have

▶ Proposition 25. The groups ⟨S1⟩ and ⟨S2⟩ are isomorphic iff their pi-Sylow subgroups
⟨S1i⟩ and ⟨S2i⟩ are isomorphic.

Thus, as argued in Sections 4 and 5, it suffices to solve the problem for abelian p-groups.
Henceforth, we assume both ⟨S1⟩ and ⟨S2⟩ are p-groups. The following lemma from Mckenzie
and Cook’s work [24], paraphrased in our context, is useful for our algorithm.

▶ Lemma 26 ([24], Proposition 6.4). Let ⟨S1⟩ ⩽ G1 and ⟨S2⟩ ⩽ G2 be abelian p-groups,
and k be largest positive integer such that pk ⩽ max{|G1|, |G2|}. For 1 ⩽ j ⩽ k let
S1j = {xpj | x ∈ S1} and S2j = {ypj | y ∈ S2}. Then ⟨S1⟩ and ⟨S2⟩ are isomorphic if and
only if |⟨S1j⟩| = |⟨S2j⟩| for 1 ⩽ j ⩽ k.

Effectively, the above lemma is a reduction from abelian group isomorphism to abelian
CGM. Thus, as observed in [7], in the static setting we can note that the above lemma
immediately shows that abelian group isomorphism problem we consider can be solved by
AC(log log n) circuits with majority gates. This is by applying the Barrington et al algorithm
[6] to enumerate the subgroups ⟨S1j⟩ and ⟨S2j⟩ in AC(log log n) for each 1 ⩽ j ⩽ k and then
comparing their orders (for which majority gates are required).

Our strategy for the dynamic version is also based on Lemma 26 because we can apply
the results for abelian CGM shown in Sections 4 and 5.

In the dynamic setting, where we have insertions and deletions to the generating sets
S1, S2, we will use the same data structures developed in Section 4 (for supporting polylog(n)
insertions and deletions) and Section 5 (for supporting log n/ log log n insertions and deletions)
for the abelian CGM problem but now in parallel for all the generating sets ⟨S1j⟩ and ⟨S2j⟩
for 1 ⩽ j ⩽ k.

In order to compute |⟨S1j⟩| and |⟨S2j⟩| from membership queries the following lemma,
from [24], is useful.

▶ Lemma 27 ([24], Proposition 6.6). Let H = ⟨g1, . . . , gr⟩ be a finite abelian p-group. Then,
|H| = t1t2 . . . tr where tj is the least positive integer such that g

tj

j ∈ ⟨gj+1, . . . , gr⟩ for
1 ⩽ j ⩽ r.

In the above lemma, as H is a p-group notice that each tj is a power of p. We will
be applying this lemma to groups ⟨S1j⟩ and ⟨S2j⟩. As |⟨S1j⟩| ⩽ n1 ⩽ |G1| and |⟨S2j⟩| ⩽
n2 ⩽ |G2|, and both n1 and n2 are logarithmic size in binary, for these groups H at most
logarithmically many of the integers ti are more than 1. Letting tj = prj , computing
the product

∏
j tj = p

∑
j

rj amounts to adding at most logarithmically many rj , each
logarithmically bounded. As already observed, such tiny additions can be computed in AC0.

E Missing parts from Section 7

▶ Lemma 28. Let MG denote the multiplication table of the group G. Suppose M is a
multiplication table obtained from MG by changing at most δn many entries of MG, for
δ < 1/13. Then there is an AC0 circuit that takes M as input and outputs MG.

V. Arvind, S. Datta, A. Khan, S. Sharma, Y. Vasudev, and S. R. Vasudevan 4:23

Proof. For each xi ∈ G the row of xi in M has at most δn errors in it. Thus, the row for the
identity element, say x1 = e is uniquely determined, because x1 ∈ G is the unique element
with x1xj = xj for majority of j ∈ [n].

For each z ∈ G there is a unique inverse z−1 ∈ G and zz−1 = e = z−1z. That means in
MG there are exactly n occurrences of e in the multiplication table. Therefore, in M there
are at most (1 + δ)n occurrences of e and at least (1− δ)n occurrences of e.

Let S = {(z, w) | z, w ∈ G, z ∗ w = e}, where ∗ is the product operation in the table M .
Then

(1− δ)n ⩽ |S| ⩽ (1 + δ)n.

Thus, for at least (1− 2δ)n pairs (z, w) ∈ S we have z ∗ w = zw = e in G.
Now, in order to recover the correct value of the product xixj , we look up the products

(xi ∗ z) ∗ (w ∗ xj) in the table M . Then we have
|{z ∈ G | xi ∗ z ̸= xiz}| ⩽ δn.
|{w ∈ G | w ∗ xj ̸= wxj}| ⩽ δn.
|{(z, w) ∈ S | z ∗ w ̸= zw}| ⩽ δn.
|{(z, w) ∈ S | (xiz) ∗ (wxj) ̸= (xiz)(wxj)}| ⩽ δn.

Thus, for at least (1− 6δ)n pairs (z, w) ∈ S we have (xi ∗ z) ∗ (w ∗ xj) = (xiz)(wxj) =
xi(zw)xj = xixj .

If we choose δ < 1/13 then the number of such pairs (z, w) ∈ S is more than 7n/13. By
approximate majority which can be computed in AC0 [1, 2], we can find this correct value of
xixj . We can thus recover the entire table MG in AC0. ◀

The above lemma suggests the following simple dynamic algorithm for the abelian CGM
problem that supports polylog(n) changes to the group multiplication table, as well as bulk
insertions/deletions to the generating set (as discussed in Sections 4 and 5).
1. Let M be the current multiplication table. We apply the AC0 algorithm of Lemma 28 to

decode M . Let G be the resulting table.
2. If the decoded table does not give an abelian group, the query answers can be arbitrary

(but consistent which can be ensured by remembering the answers to queries already
made).

3. Suppose the decoded table gives an abelian group G′. If G′ ̸= G then for the next
log n steps we rebuild the static data structure for G′ in AC(log n). We can answer any
membership queries, occurring in this window of log n time steps, arbitrarily. After log n

steps we can replace G with G′ and its data structure and continue.

In summary, we have the following.

▶ Theorem 24. There is a randomized DynAC0 algorithm that supports O(n/ log n) changes
to the multiplication table and polylog(n) insertions/deletions to the generating set, with the
proviso that when the multiplication table decodes to an abelian group the membership queries
are answered with respect to it, and when it does not decode to an abelian group then the query
answers could be incorrect. There is also a deterministic DynAC0 algorithm that supports
O(n/ log n) changes to the multiplication table and log n/ log log n insertions/deletions to the
generating set, with the same proviso as described above.

FSTTCS 2024

Concurrent Stochastic Games with
Stateful-Discounted and Parity Objectives:
Complexity and Algorithms
Ali Asadi #

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Krishnendu Chatterjee #

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Raimundo Saona #

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Jakub Svoboda #

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Abstract
We study two-player zero-sum concurrent stochastic games with finite state and action space played
for an infinite number of steps. In every step, the two players simultaneously and independently
choose an action. Given the current state and the chosen actions, the next state is obtained
according to a stochastic transition function. An objective is a measurable function on plays (or
infinite trajectories) of the game, and the value for an objective is the maximal expectation that the
player can guarantee against the adversarial player. We consider: (a) stateful-discounted objectives,
which are similar to the classic discounted-sum objectives, but states are associated with different
discount factors rather than a single discount factor; and (b) parity objectives, which are a canonical
representation for ω-regular objectives. For stateful-discounted objectives, given an ordering of the
discount factors, the limit value is the limit of the value of the stateful-discounted objectives, as the
discount factors approach zero according to the given order.

The computational problem we consider is the approximation of the value within an arbitrary
additive error. The above problem is known to be in EXPSPACE for the limit value of stateful-
discounted objectives and in PSPACE for parity objectives. The best-known algorithms for both
the above problems are at least exponential time, with an exponential dependence on the number
of states and actions. Our main results for the value approximation problem for the limit value
of stateful-discounted objectives and parity objectives are as follows: (a) we establish TFNP[NP]
complexity; and (b) we present algorithms that improve the dependency on the number of actions
in the exponent from linear to logarithmic. In particular, if the number of states is constant, our
algorithms run in polynomial time.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Concurrent Stochastic Games, Parity Objectives, Discounted-sum Objectives

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.5

Related Version Full Version: https://arxiv.org/abs/2405.02486

Funding This research was partially supported by ERC CoG 863818 (ForM-SMArt), Austrian
Science Fund (FWF) 10.55776/COE12, and French Agence Nationale de la Recherche (ANR)
ANR-21-CE40-0020 (CONVERGENCE project).

1 Introduction

In this work, we present improved complexity results and algorithms for the value approx-
imation of concurrent stochastic games with two classic objectives. Below we present the
model of concurrent stochastic games, the relevant objectives, the computational problems,
previous results, and finally our contributions.

© Ali Asadi, Krishnendu Chatterjee, Raimundo Saona, and Jakub Svoboda;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 5; pp. 5:1–5:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ali.asadi@ista.ac.at
https://orcid.org/0009-0005-2839-953X
mailto:krishnendu.chatterjee@ista.ac.at
https://orcid.org/0000-0002-4561-241X
mailto:raimundojulian.saonaurmeneta@ista.ac.at
https://orcid.org/0000-0001-5103-038X
mailto:jakub.svoboda@ista.ac.at
https://orcid.org/0000-0002-1419-3267
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.5
https://arxiv.org/abs/2405.02486
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Concurrent Stochastic Games with Stateful-Discounted and Parity Objectives

Concurrent stochastic games. Concurrent stochastic games are two-player zero-sum games
played on finite-state graphs for an infinite number of steps. These games were introduced
in the seminal work of Shapley [26] and are a fundamental model in game theory. In each
step, both players simultaneously and independently of the other player choose an action.
Given the current state and the chosen actions, the next state is obtained according to a
stochastic transition function. An infinite number of such steps results in a play which is
an infinite sequence of states and actions. Concurrent stochastic games have been widely
studied in the literature from the mathematical perspective [26, 15, 16, 24], and from the
algorithmic and computational complexity perspective, including: complexity for reachability
objectives [9, 14, 17, 22], algorithms for limit-average objectives [21, 25], complexity for
qualitative solutions for omega-regular objectives [8], complexity for quantitative solutions
for omega-regular objectives [6, 13], and in the context of temporal logic [1]. In particular, in
the analysis of reactive systems, concurrent games provide the appropriate model for reactive
systems with components that interact synchronously [1, 11, 12]. Hence, concurrent parity
games are relevant for the verification of synchronous reactive systems.

Objectives. An objective is a measurable function that assigns to every play a real-valued
reward. The classic discounted-sum objective is as follows: every transition is assigned a
reward and the objective assigns to a play the discounted-sum of the rewards. While the
classic objective has a single discount factor, the stateful-discounted objective has multiple
discount factors. In the stateful-discounted objective, each state is associated with a discount
factor, and, in the objective, the discount at a step depends on the current state. We also
consider the boolean parity objectives, which are a canonical form to express all ω-regular
objectives [27], which provide a robust specification for all properties that arise in verification.
For example, all LTL formulas can be converted to deterministic parity automata. In parity
objectives, every state is associated with an integer priority, and a play is winning for (or
satisfies) the objective if the minimum priority visited infinitely often is even.

Strategies and values. Strategies are recipes that define the choice of actions of the players.
They are functions that, given a game history, return a distribution over actions. Given a
concurrent stochastic game and an objective, the value of Player 1 at a state is the maximal
expectation that the player can guarantee for the objective against all strategies of Player 2.
For stateful-discounted objectives, given an ordering of the discount factors, the limit value
at a state is the limit of the value function for the discounted objective as the discount factors
approach zero in the given order.

Computational problems. Given a concurrent stochastic game, the main computational
problems are: (a) the value-decision problem, given a state and a threshold α, asks whether
the value at the state is at least α; and (b) the value-approximation problem, given a state
and an error ε > 0, asks to compute an approximation of the value for the state within an
additive error of ε. We consider the above problems for the limit value of stateful-discounted
objectives and the value for parity objectives.

Motivation. The motivation to study the limit of the stateful-discounted objective is
as follows. First, this limit generalizes the classic limit-average objectives. Second, it
characterizes the value for the parity objectives in concurrent stochastic games [18, 10], where
the order of limit corresponds to the order of importance of priorities in parity objectives.
Third, the limit value has been shown to correspond to the value for other objectives such
as priority mean-payoff for various subclasses of concurrent stochastic games [19]. The

A. Asadi, K. Chatterjee, R. Saona, and J. Svoboda 5:3

motivation to study the value-approximation problem as opposed to the value-decision is that
for concurrent games, even for special classes of objectives such as reachability and safety,
values can be irrational, and the decision problem related to exact value is SQRT-SUM
hard [14] as explained below. Hence, approximation of values is a natural problem to study
from an algorithmic and computational complexity perspective.

Previous results. For a single discount factor, the limit value corresponds to the value of
the well-studied mean-payoff or long-run average objectives [24], and, for parity objectives,
the computational problems admit a linear reduction to the limit value of stateful-discounted
objectives [18, 10]. The value-decision problem for concurrent stochastic games is SQRT-SUM
hard [14]: this result holds for reachability objectives, and hence also for parity objectives
and the limit value for even a single discount factor. The SQRT-SUM problem is a classic
problem in computational geometry, and whether SQRT-SUM belongs to NP has been a
long-standing open problem. The complexity upper bounds for the value-approximation
problem of concurrent stochastic games are as follows: (a) EXPSPACE for the limit value
of stateful-discounted objectives; and (b) PSPACE for parity objectives [5, 6]. The above
result for the limit value follows from a reduction to the theory of reals, where the number
of discount factors corresponds to the number of quantifier alternation. For the special
class of reachability objectives, the complexity upper bound of TFNP[NP] for the value-
approximation problem has been established in [17], where TFNP[NP] is the total functional
form of the second level of the polynomial hierarchy. The result of [17] has been recently
extended to limit-average objectives (which correspond to the limit-value of single discount
factor) [4]. To the best of our knowledge, the above complexity upper bounds are the
best bounds for limit value of general stateful-discounted objectives and parity objectives.
The best-known algorithms for the value-approximation problem are as follows: (a) double
exponential time for the limit value of stateful-discounted objectives; (b) exponential time
for parity objectives, where the exponent is a product that depends at least linearly on
the number of states and actions [6, 5] (see Section 3 for further details). While iterative
approaches are desirable, they neither exist for parity objectives nor guarantee efficiency even
in special cases. For example, for reachability and safety objectives, iterative approaches
like value-iteration or strategy-iteration have a double-exponential lower bound [20]; and,
for parity objectives, iterative approaches like strategy iteration are not known as strategies
require infinite-memory [8].

Our contributions. In this work, our main contributions are as follows: (a) we establish
TFNP[NP] upper bounds for the value-approximation problem for concurrent stochastic
games, both for the limit value of stateful-discounted and parity objectives; and (b) we
present algorithms which are exponential time and improve the dependency on the number
of actions in the exponent from linear to logarithmic. In particular, if the number of states
is constant, our algorithms run in polynomial time. The comparison of previous results and
our results is summarized in Tables 1 and 2.

Technical contributions. We first present a bound on the roots of multi-variate polynomials
with integer coefficients (Section 4.2). Given the bounds on roots of polynomials, we establish
new characterizations for the limit and stateful-discounted values (Section 4.3 and Section 4.4),
which lead to an approximation of the limit value by the stateful-discounted value when
the discount factors are double-exponentially small (Section 4.5). Given this connection,
we establish the improved complexities and algorithms for the value-approximation for the
limit value of stateful-discounted objectives and parity objectives in Section 5 and Section 6.
Proofs omitted due to space restrictions are provided in the Full version.

FSTTCS 2024

5:4 Concurrent Stochastic Games with Stateful-Discounted and Parity Objectives

Table 1 Complexity upper bounds of the value-approximation in concurrent stochastic games for
the limit value of stateful-discounted objectives and parity objectives.

Complexity
Previous Ours

Limit EXPSPACE
(Theory of reals) TFNP[NP]

Parity PSPACE (Theorem 5-Item 1, Theorem 6-Item 1)
[6, 5]

Table 2 Algorithmic upper bounds of the value-approximation in concurrent stochastic games
for the limit value of stateful-discounted objectives and parity objectives, where n is the number of
states, m is the number of actions, d is the number of discount factors/parity index, B is the bit-size
of numbers in the input, ε is the additive error, and exp is the exponential function.

Algorithms
Previous Ours

Limit exp
(
O(2dm2n + log(1/ε) + log(B))

)
exp

(
O

(
nd log(m) + log(B)

+ log(log(1/ε))

))
(Theorem 5-Item 2,
Theorem 6-Item 2)

(Theory of reals)

Parity
exp

(
O

(
mn + d log(n) + log(B)

+ log(log(1/ε))

))
[6, 5]

2 Preliminaries

We present standard definitions related to concurrent stochastic games.

Basic Notations. Given a finite set X , a probability distribution over X is a function
µ : X → [0, 1] such that

∑
x∈X µ(x) = 1. The set of all probability distributions over X is

denoted by ∆(X). For µ ∈ ∆(X), the support of µ is defined as supp(µ) := {x | µ(x) > 0}.
For a positive integer k, the set of positive integers smaller than or equal to k is defined as
[k] := {1, . . . , k}. Given a real x, we denote 2x by exp(x).

Concurrent stochastic games. A concurrent stochastic game (CSG) is a two-player finite
game G = (S,A,B, δ) consisting of

the set of states S, of size n;
the sets of actions for each player A and B, with at most m actions; and
the stochastic transition function δ : S ×A× B → ∆(S).

Steps. Given an initial state s ∈ S, the game proceeds as follows. In each step, both players
choose an action simultaneously, a ∈ A and b ∈ B. Based on both actions (a, b) and current
state s, the next state is drawn according to the probability distribution δ(s, a, b).

Histories and plays. At step k of CSGs, each player possesses information in the form of
the finite sequence of the states visited and the actions chosen by both players. A k-history
ω(k) = ⟨s0, a0, b0, s1, a1, b1, . . . , sk⟩ is a finite sequence of states and actions such that, for
all steps 0 ≤ t < k, we have st+1 ∈ supp(δ(st, at, bt)). The set of all k-histories is denoted
by Ω(k). Similarly, a play ω = ⟨s0, a0, b0, s1, a1, b1, . . .⟩ is an infinite sequence of states and
actions such that, for all steps t ≥ 0, we have st+1 ∈ supp(δ(st, at, bt)). The set of all plays
is denoted by Ω. For any state s, the set of all plays starting at s, i.e., ω = ⟨s0, a0, b0, . . .⟩
where s0 = s, is denoted by Ωs.

A. Asadi, K. Chatterjee, R. Saona, and J. Svoboda 5:5

Objectives. An objective is a measurable function that assigns a real number to all plays.
Player 1 aims to maximize the expectation of the objective, while Player 2 minimizes it.

Parity objective. Given a priority function p : S → {0, . . . , d} with d as its index, the
parity objective is an indicator of the even parity condition on minimal priority visited
infinitely often in plays. More formally, we define Parityp : Ω→ {0, 1} as

Parityp(ω) :=
{

1 min{p(s) | ∀i ≥ 0 ∃j ≥ i sj = s} is even
0 otherwise

Stateful-discounted objective. Consider d discount factors λ1, · · · , λd ∈ (0, 1]. Given an
assignment function χ : S → [d], we define the discount function Λ: S → {λ1, · · · , λd}
as Λ(s) := λχ(s) for all states s ∈ S. Given a reward function r : S × A × B → [0, 1]
that assigns a reward value r(s, a, b) for all (s, a, b), the stateful-discounted objective
DiscΛ : Ω→ [0, 1] is defined as, for all ω = ⟨s0, a0, b0, · · · ⟩,

DiscΛ(ω) :=
∑
i≥0

r(si, ai, bi)Λ(si)
∏
j<i

1− Λ(sj)

 .

Strategies. A strategy is a function that assigns a probability distribution over actions to
every finite history and is denoted by σ :

⋃
k Ω(k) → ∆(A) for Player 1 (resp. τ :

⋃
k Ω(k) →

∆(B) for Player 2). Given strategies σ and τ , the game proceeds as follows. At step k, the
current history is some ω(k) ∈ Ω(k). Player 1 (resp. Player 2) chooses an action according to
the distribution σ

(
ω(k)) (resp. τ

(
ω(k))). The set of all strategies for Player 1 and Player 2

is denoted by Σ and Γ respectively. A stationary strategy depends on the past observations
only through the current state. A stationary strategy for Player 1 (resp. Player 2) is denoted
by σ : S → ∆(A) (resp. τ : S → ∆(B)). The set of all stationary strategies for Player 1
and Player 2 is denoted by ΣS and ΓS respectively. A pure stationary strategy σ : S → A
(resp. τ : S → B) for Player 1 (resp. Player 2) is a stationary strategy that maps to Dirac
distributions only. The set of all pure stationary strategies for Player 1 and Player 2 is
denoted by ΣP S and ΓP S respectively.

Probability space. An initial state s and a pair of strategies (σ, τ) induce a unique probability
over Ωs, endowed with the sigma-algebra generated by the cylinders corresponding to finite
histories. We denote by Pσ,τ

s and Eσ,τ
s the probability and the expectation respectively.

We state the determinacy for CSGs with stateful-discounted and parity objectives.

▶ Theorem 1 (Parity determinacy [23]). For all CSGs, states s, and priority functions p,

sup
σ∈Σ

inf
τ∈Γ

Eσ,τ
s [Parityp] = inf

τ∈Γ
sup
σ∈Σ

Eσ,τ
s [Parityp] .

▶ Theorem 2 (Stateful-discounted determinacy [26]). For all CSGs, states s, reward functions,
and discount functions Λ, we have

sup
σ∈ΣS

inf
τ∈ΓS

Eσ,τ
s [DiscΛ] = inf

τ∈ΓS
sup

σ∈ΣS

Eσ,τ
s [DiscΛ] .

Values. The above determinacy results imply that switching the quantification order of
strategies do not make a difference and leads to the unique notion of value. The stateful-
discounted value for a state s is defined as valΛ(s) := supσ∈ΣS infτ∈ΓS Eσ,τ

s [DiscΛ]. We define
the parity value valp(s) for a state s analogously. The limit value for a state s is defined as
valχ(s) := limλ1→0+ · · · limλd→0+ valΛ(s).

FSTTCS 2024

5:6 Concurrent Stochastic Games with Stateful-Discounted and Parity Objectives

ε-optimal strategies. Given ε ≥ 0, a strategy σ for Player 1 is ε-optimal for the stateful-
discounted objective if, for all states s ∈ S, we have infτ∈ΓS Eσ,τ

s [DiscΛ] ≥ valΛ(s)− ε. We
say the strategy is optimal if ε = 0. The notion of ε-optimal strategies for Player 2 is defined
analogously. Similarly, we define ε-optimal strategies for the parity objectives.

Approximate value problems. We consider two value problems stated as follows.

LimitValue. Consider a CSG G, a state s, a reward function r, an assignment
function χ : S → [d], and an additive error ε. The transition function δ and the reward
function r are represented by rational numbers using at most B bits. Compute an
approximation v of the limit value at state s such that |v − valχ(s)| ≤ ε.

ParityValue. Consider a CSG G, a state s, a priority function p with index d, and
an additive error ε. The transition function δ is represented by rational numbers
using at most B bits. Compute an approximation v of the parity value at state s such
that |v − valp(s)| ≤ ε.

3 Overview of Results

We first discuss the previous results in the literature, and then, we show our contributions.

Previous results. We discuss the previous works on computing the approximation of limit
and parity values in CSGs. A natural approach for these computational problems is via the
theory of reals. We first recall the main computational result of the theory of reals, which is
a specialization of [3, Theorem 1].

▶ Theorem 3 ([3, Theorem 1]). Consider ℓ variables x1, · · · , xℓ and the set of polynomials P =
{P1, · · · , Pk}, where, for all i ∈ [k], we have Pi is a polynomial in x1, · · · , xℓ of degree at most
D with integer coefficients of bit-size at most B. Let X1, · · · , Xd be a partition of x1, · · · , xℓ

into d subsets such that Xi has size ℓi. Let Φ = (QdXd) · · · (Q1X1) ϕ(P1, · · · , Pk) be a
sentence with d alternating quantifiers Qi ∈ {∃, ∀} such that Qi+1 ̸= Qi, and ϕ(P1, · · · , Pk)
is a quantifier-free formula with atomic formulas of the form Pi ▷◁ 0 where ▷◁∈ {<, >, =}.
Then, there exists an algorithm to decide the truth of Φ in time

k
∏

i
O(ℓi+1) ·D

∏
i

O(ℓi) · O(len(ϕ)B2) ,

where len(ϕ) is the length of the quantifier-free formula ϕ.

Along with the above algorithmic result, the following complexity result also follows from [3]:
if there is constant number of quantifier alternations, then complexity is PSPACE, and
in general the complexity is EXPSPACE. We now discuss the algorithms and complexity
results from the literature for the limit value of stateful discounted-sum objectives. The
basic computational approach is via the theory of reals. For a single discount factor, the
reduction to the theory of reals and dealing with its limit (which corresponds to limit-average
objectives) was presented in [7]. In the general case (d discount factors), each limit can
be considered as the quantification ∃εi′ ∀εi ≤ εi′ in the theory of reals. Thus, concurrent

A. Asadi, K. Chatterjee, R. Saona, and J. Svoboda 5:7

stochastic games with the limit value of stateful-discounted objectives can be reduced to the
theory of reals with quantifier alternation. This reduction gives a theory of reals sentence
with the following parameters:

ℓ = O(m2n), k = O(m2n), D = 4,
∏

i

(ℓi + 1) = O(2dm2n) ,

Applying Theorem 3 to the reduction we obtain the following result.

▶ Theorem 4 (LimitValue: Previous Result). For the LimitValue problem, the following
assertions hold.
1. The problem is in EXPSPACE; and
2. the problem can be solved in time exp

(
O

(
2dm2n + log(1/ε) + log(B)

))
.

For parity objectives, the result of [18, 10] reduces CSGs with parity objectives to CSGs
with the limit value of stateful-discounted objectives. The reduction is achieved as follows.
Consider the formula R(a0, a1, . . . , a2n−1) from [10], which is a formula with multiple discount
factors. Since for stateful-discounted objectives the mapping is contractive, the fixpoints are
unique (least and greatest fixpoints coincide). The last sentence of [10, Theorem 4] states
that the limit of R(a0, a1, . . . , a2n−1) corresponds to the value for parity objectives. The
Pre operator of the formula corresponds to the Bellman-operator for stateful-discounted
objectives, which establish the connection to stateful-discounted games. This connection is
made more explicit in the construction provided in [18, Section 2.2]. This linear reduction
and the above theorem lead to similar results for parity objectives.

Besides this reduction to the theory of reals, there are two other approaches for the
ParityValue problem. First, we can consider the nested fixpoint characterization as
provided in [13] and a reduction to the theory of reals with quantifier alternation. However,
this does not lead to a better complexity. Second, a different approach is presented in [6, 5,
Chapter 8]. This approach has the following components: (a) it enumerates over all possible
subsets of actions for every state; (b) for each of the enumeration, it requires a solution of a
qualitative value problem (or limit-sure winning) in concurrent stochastic games with parity
objectives, and the value-approximation for concurrent stochastic games with reachability
objectives. This approach gives PSPACE complexity and the algorithmic complexity is
exp (O (mn + d log(n) + log(log(1/ε)) + log(B))).

Our contributions. Our main results are the following.

▶ Theorem 5 (LimitValue: Complexity and Algorithm). For the LimitValue problem, the
following assertions hold.
1. The problem is in TFNP[NP]; and
2. the problem can be solved in time exp (O (nd log(m) + log(B) + log(log(1/ε)))).

▶ Theorem 6 (ParityValue: Complexity and Algorithm). For the ParityValue problem,
the following assertions hold.
1. The problem is in TFNP[NP]; and
2. the problem can be solved in time exp (O (nd log(m) + log(B) + log(log(1/ε)))).

4 Mathematical Properties

In this section, we present an approach of the limit value approximation via the stateful-
discounted value (Theorem 12). We follow the approach of [2] extending it step by step using
similar arguments. We use this technical result to improve complexities and algorithmic

FSTTCS 2024

5:8 Concurrent Stochastic Games with Stateful-Discounted and Parity Objectives

bounds of computing ε-approximation of the limit and parity values. This section is organized
as follows. In Section 4.1, we present some useful definitions. In Section 4.2, we present
a bound on the roots of multi-variate polynomials which is used to establish a connection
between the stateful-discounted and limit values. In Sections 4.3 and 4.4, we introduce
new characterizations of the stateful-discounted and limit values. In Section 4.5, we show
Theorem 12.

4.1 Definitions

We present some basic notations and definitions related to polynomials and matrices.

Basic notations. Given a positive integer k, we define bit(k) := ⌈log2(k +2)⌉. For a rational
k1/k2, we define bit(k1/k2) := bit(k1) + bit(k2). Given a real x, the standard sign function
is sign(x) = −1 if x < 0, 0 if x = 0, 1 if x > 0. Moreover, we use the classic arithmetic with
infinity, i.e., x +∞ =∞ and x−∞ = −∞.

Polynomials. A uni-variate polynomial P of degree D with integer coefficients of bit-size B
is defined as P (x) :=

∑D
i=0 cix

i where |ci| < 2B. A k-variate polynomial P in x1, · · · , xk of
degree D1, · · · , Dk with integer coefficients of bit-size B is defined as

P (x1, · · · , xk) :=
∑

0≤i1≤D1

· · ·
∑

0≤ik≤Dk

ci1,··· ,ik

k∏
j=1

x
ij

j ,

where |ci1,··· ,ik
| < 2B. Polynomial P is nonzero if ci1,··· ,ik

≠ 0 for some i1, · · · , ik. We say α

is a root of P if P (α) = 0. In this work, we only consider real roots.

Matrix notations. Given a square matrix M , we denote the determinant of M by det(M)
and denote the signed sum of all minors of M by S(M). Given two k × ℓ matrices M1 and
M2, we denote the Hadamard product of M1 and M2 by M1 ⊙M2. Given a positive integer
k, often implicitly clear from context, we denote by 1 (resp. 0) the k-dimensional vector
with all elements equal to 1 (resp. 0) and denote by Id the k × k identity matrix.

Matrix games. A matrix M defines a game played between two opponents, where rows
(resp. columns) correspond to possible actions for the row- (resp. column-) player, and the
entry (M)i,j is the reward the column-player pays the row-player when the pair of actions
(i, j) is chosen. The value of a matrix game, denoted val M , is the maximum amount the
row-player can guarantee, i.e., the amount they can obtain regardless of the column-player’s
strategy.

4.2 Bounds on Roots of Polynomials with Integer Coefficients

We present a bound on the roots of multi-variate polynomials P with integer coefficients
(Theorem 7). This result shows that there exists a region close to 0 within which P

does not have a root. We use this technical result to establish a connection between the
stateful-discounted value and limit value.

A. Asadi, K. Chatterjee, R. Saona, and J. Svoboda 5:9

▶ Lemma 7. Consider a nonzero polynomial P in x1, · · · , xℓ of degrees D1, · · · , Dℓ with
integer coefficients of bit-size B. Let D := max(D1, · · · , Dℓ) and B1 := 4ℓ bit(D) + B + 1.
Then,

∀x1 ∈ (0, exp(−B1)] ∀x2 ∈
(
0, (x1)D+1]

· · · ∀xℓ ∈
(
0, (xℓ−1)D+1]

|P (x1, · · · , xℓ)| ≥ exp(B1 − ℓ) · (xℓ)D+1 .

Proof sketch. We partition P into P (x) = P0 + P1(x1) + · · ·+ Pℓ(x1, · · · , xℓ). Consider the
smallest i where Pi ̸= 0. The proof has following key components: (a) By fixing x1, · · · , xi−1,
we obtain a uni-variate polynomial from Pi. By the fact that xi ≪ xj for all j < i, we obtain
|Pi(x1, · · · , xi)| ̸= 0. (b) Due to the constraints over the variables, xj ≪ xi for all j > i, we
have |Pj(x1, · · · , xj)| ≪ |Pi(x1, · · · , xi)|. Thus, we can ignore the effect of Pj(x1, · · · , xj) on
|P (x1, · · · , xℓ)| for all j > i. Thus, P (x1, · · · , xℓ) ≈ Pi(x1, · · · , xi) ̸= 0. ◀

4.3 Characterization of Stateful-discounted Value
We introduce a new characterization of the stateful-discounted value in CSGs (Theorems 8
and 9), which generalizes results of [2] from a single discount factor to multiple discount
factors. In particular, Theorem 9 generalizes Theorem 1 of [2].

Stateful-discounted payoff. Consider a CSG G, a state s, a reward function r, and a discount
function Λ. Given a pair of stationary strategies (σ, τ), we define the stateful-discounted payoff
as νσ,τ (s) := Eσ,τ

s [DiscΛ]. By fixing σ and τ , we obtain a transition function δσ,τ (s, s′) :=∑
a∈A

∑
b∈B σ(s)(a) · τ(s)(b) · δ(s, a, b)(s′), which is described as a matrix, i.e., δσ,τ ∈ Rn×n.

The stage reward function is defined as rσ,τ (s) :=
∑

a∈A
∑

b∈B σ(s)(a) · τ(s)(b) · r(s, a, b),
which is described as a vector, i.e., rσ,τ ∈ Rn. Therefore, the Bellman operator defined in [26]
can be written as a recursive expression:

νσ,τ = Λ⊙ rσ,τ + (1− Λ)⊙ (δσ,τ νσ,τ) .

The matrix Id −
(

(1− Λ) 1⊤)
⊙ δσ,τ is strictly diagonally dominant, and therefore, is

invertible. By Cramer’s rule, we have

νσ,τ (s) = ∇
s
Λ(σ, τ)
∇Λ(σ, τ) , (1)

where ∇Λ(σ, τ) := det
(
Id−

(
(1− Λ) 1⊤)

⊙ δσ,τ
)

and ∇s
Λ(σ, τ) is the determinant of a

matrix derived by substituting the s-th column of the matrix Id−
(
(1− Λ)1⊤)

⊙ δσ,τ with
Λ⊙ rσ,τ .

Auxiliary matrix game W s
Λ(z). We define a matrix game where the actions of each player

are the pure stationary strategies in the stochastic game. The payoff of the game is obtained
by the linearization of the quotient in Eq. (1). More formally, for all parameters z ∈ R,
σ̂ ∈ ΣP S , and τ̂ ∈ ΓP S , we define the payoff of the matrix game as

W s
Λ(z)[σ̂, τ̂] := ∇s

Λ(σ̂, τ̂)− z · ∇Λ(σ̂, τ̂) .

The value of W s
Λ(z) is denoted by val (W s

Λ(z)).
The following results (Theorem 8 and Theorem 9) connect the stateful-discounted value

with the value of the matrix game.

FSTTCS 2024

5:10 Concurrent Stochastic Games with Stateful-Discounted and Parity Objectives

▶ Lemma 8. Consider a CSG G, a state s, a reward function, and an assignment function
χ : S → [d]. Then, the following assertions hold.
1. The map (z, λ1, · · · , λd) 7→ val(W s

Λ(z)) is continuous;
2. for all discount factors λ1, · · · , λd and z1, z2 ∈ R such that z1 ≤ z2, we have that

val (W s
Λ(z1)) ≥ val (W s

Λ(z2)) + (z2 − z1) (mini λi)n, in particular, z 7→ val(W s
Λ(z)) is

strictly decreasing; and
3. for all discount factors λ1, · · · , λd, we have val (W s

Λ(valΛ(s))) = 0.

Proof sketch. We present the proof sketch for each item as follows.
1. The entries of the matrix game depend continuously on the parameters z, λ1, · · · , λd.

Thus, its value is also continuous in the parameters.
2. For all z1 < z2, we show that all of the entries of W s

Λ(z1) are strictly larger than W s
Λ(z2).

By quantifying this difference in each entry of the matrix, we obtain the desired inequality.
3. We show that there exist optimal strategies in the matrix game W s

Λ(valΛ(s)) which are
derived from optimal strategies in G. These strategies guarantee that the value of the
matrix game is 0. ◀

▶ Corollary 9. Consider a CSG G, a state s, a reward function, and a discount function Λ.
Then, valΛ(s) is the unique z∗ ∈ R such that val (W s

Λ(z∗)) = 0.

Proof. By Theorem 8-Item 2, the mapping z 7→ val (W s
Λ(z)) is strictly decreasing. By

Theorem 8-Item 3, we know that val (W s
Λ(valΛ(s))) = 0. Hence, there exists the unique

z∗ = valΛ(s) ∈ R such that val (W s
Λ(z∗)) = 0, which yields the result. ◀

4.4 Characterization of Limit Value
We introduce a new characterization of the limit value in CSGs (Theorems 10 and 11), which
generalizes results presented in [2] from a single discount factor to multiple discount factors.
In particular, Theorem 11 generalizes Theorem 2 of [2].

Limit function. Given a CSG G, a reward function, and an assignment function χ : S → [d],
we define the limit function as

F s
χ(z) := lim

λ1→0+
· · · lim

λd→0+

val (W s
Λ(z))

(λd)n
.

The following statements (Theorem 10 and Theorem 11) connect the limit value with the
limit function.

▶ Lemma 10. Consider a CSG G, a state s, a reward function, and an assignment function
χ : S → [d]. Then, the following assertions hold.
1. For all z ∈ R, the limit F s

χ(z) exists in R ∪ {−∞, +∞}; and
2. There exists z1, z2 ∈ R such that F s

χ(z2) ≤ 0 ≤ F s
χ(z1).

Proof sketch. We present the proof sketch for each item as follows.
1. By Theorem 7, we show that given a fixed parameter z, there exist two multi-variate

polynomials P and Q in λ1, · · · , λd such that for all small enough λ1, · · · , λd, we have
val(W s

Λ(z)) = P (λ1,··· ,λd)
Q(λ1,··· ,λd) , which implies the existence of the limit.

2. We provide two numbers z1 and z2 such that sign(F s
χ(z1)) ̸= sign(F s

χ(z2)). ◀

▶ Corollary 11. Consider a CSG G, a state s, a reward function, and an assignment function
χ : S → [d]. Then, valχ(s) is the unique z∗ ∈ R such that

∀z > z∗ F s
χ(z) < 0 and ∀z < z∗ F s

χ(z) > 0 .

A. Asadi, K. Chatterjee, R. Saona, and J. Svoboda 5:11

Proof sketch. By Theorem 8-Item 2, F s
χ is decreasing. By Theorem 10-Item 2, there exists

a unique sign-changing point. By the definition of the limit value and F s
χ, we show that this

sign-changing point is valχ(s). ◀

4.5 Approximation of Limit Value
We introduce an approach for the approximation of the limit value via the stateful-discounted
value (Theorem 12).

▶ Theorem 12. Consider a CSG G, a state s, a reward function r, an assignment function
χ : S → [d], and an additive error ε > 0. The transition function δ and the reward function r

are represented by rational numbers of bit-size B. Fix

D := max(|ΣP S |, |ΓP S |), B1 := 11Dn(B + bit(n) + bit(D) + bit(ε)) ,

and, for all 1 ≤ i ≤ d, we set λ0
i := exp

(
−B1(nD + 1)i−1)

. Then, we have

| valΛ0(s)− valχ(s)| ≤ ε .

Proof sketch. The proof has following key components:
We show that there exists a finite set of rational functions with bounded degrees and
coefficients such that for all z, λ1, · · · , λd, the value of W s

Λ(z) corresponds to one of these
functions evaluated in z, λ1, · · · , λd.
We derive some insights on the asymptotic behavior of the sign of the map (λ1, · · · , λd) 7→
val(W s

Λ(z)) as λd, · · · , λ1 go to 0 respectively.
We establish the connection between the stateful-discounted and limit value by the
characterizations introduced in Theorem 9 and Theorem 11, and above insights. ◀

Novelty. As mentioned previously, our result is a generalization of [2]. The key non-trivial
aspect of the generalization relies on the fact that [2] considers uni-variate polynomials,
whereas our result requires analysis of multi-variate polynomials. Theorem 7 is the key
mathematical foundation, and the proofs require significant technical generalization.

5 Algorithms for LIMITVALUE and PARITYVALUE

In this section, we present algorithms for computing ε-approximation of stateful-discounted,
limit, and parity values. The section is organized as follows. In Section 5.1, we present an
algorithm for computing ε-approximate stateful-discounted value. In Section 5.2, we present
an algorithm for computing ε-approximate limit value, and as a consequence, we also obtain
an algorithm for computing ε-approximate parity value.

5.1 Algorithm for Approximate Stateful-discounted Value
In this subsection, we present an algorithm for computing ε-approximation of the stateful-
discounted value in CSGs. Given a CSG G, a reward function, and a discount function Λ,
Algorithm 1 runs a binary search over the stateful-discounted value of state s. At the
beginning, z and z are the under and over approximation of valΛ(s). In each step, the
algorithm halves the interval [z, z] by increasing z or decreasing z based on the sign of
val

(
W s

Λ

(
z+z

2

))
. After bit(ε) steps, the algorithm outputs the ε-approximate value (z +z)/2.

The correctness and the time complexity of the algorithm are shown in Theorem 13.

FSTTCS 2024

5:12 Concurrent Stochastic Games with Stateful-Discounted and Parity Objectives

Algorithm 1 ApproxDiscounted.

Input: Game G, state s, reward function r, a discount function Λ, additive error ε

Output: Approximate stateful-discounted value v such that |v − valΛ(s)| ≤ ε

1: procedure ApproxDiscounted(G, s, r, Λ, ε)
2: z ← 0 and z ← 1
3: while z − z > ε do
4: z ← z+z

2
5: ν ← val(W s

Λ(z))
6: if ν ≥ 0 then z ← z

7: else z ← z

8: return z+z
2

▶ Lemma 13. Consider a CSG G, a state s, a reward function r, a discount function Λ, and
an additive error ε > 0. The transition function δ, the reward function r, and the discount
function Λ are represented by rational numbers of bit-size B. Then, Algorithm 1 computes
the ε-approximation of the stateful-discounted value of state s. Moreover, the algorithm runs
in time exp (O(n log(m) + log(B) + log(log(1/ε))).

Proof sketch. The correctness of Algorithm 1 is due to the properties established in Theo-
rem 8. The time complexity of Algorithm 1 is due to the construction of the matrix game
and computing its value. ◀

5.2 Algorithms for Approximate Limit and Parity Values

In this subsection, we present an algorithm for computing ε-approximation of the limit and
parity values in CSGs. Given a CSG G, a reward function, and an assignment function χ,
Algorithm 2 outputs the ε/2-approximate of the stateful-discounted value of state s for some
Λ0 by calling ApproxDiscounted. By Theorem 12, the stateful-discounted value is an
ε/2-approximation of the limit value. Thus, the returned value of the algorithm is indeed an
ε-approximate of the limit value. The correctness and the time complexity of the algorithm
is shown in Theorem 14. Since CSGs with parity objectives have a linear-size reduction to
CSGs with the limit value of stateful-discounted objectives, as a consequence of the above
algorithm, we obtain an algorithm for parity value approximation.

Algorithm 2 ApproxLimit.

Input: Game G, state s, reward function r, assignment function χ, additive error ε

Output: Approximate limit value v such that |v − val(s)| ≤ ε

1: procedure ApproxLimit(G, s, r, χ, ε)
2: D ← mn

3: B1 ← 11Dn (B + bit(n) + bit(D) + bit(ε))
4: for i← 1 to d do
5: λ0

i ← exp
(
−B1(nD + 1)i−1)

6: v ← ApproxDiscounted(G, s, r, Λ0, ε/2)
7: return v

A. Asadi, K. Chatterjee, R. Saona, and J. Svoboda 5:13

▶ Lemma 14. Consider a CSG G, a state s, a reward function r, an assignment function
χ : S → [d], and an additive error ε > 0. The transition function δ and the reward
function r are represented by rational numbers of bit-size B. Then, Algorithm 2 computes
the ε-approximation of the limit value of state s. Moreover, the algorithm runs in time
exp (O(nd log(m) + log(B) + log(log(1/ε)))).

Proof sketch. The correctness of the algorithm is due to Theorem 13 and Theorem 12. The
time complexity is due to the size of the representation of Λ0 and Theorem 13. ◀

Proof of Theorem 5-Item 2. It is a direct implication of Theorem 14. ◀

▶ Corollary 15. Consider a CSG G, a priority function p, a state s, and an additive error
ε > 0. The transition function δ is represented by rational numbers of bit-size B. Then,
there exists an algorithm that computes the ε-approximation of the parity value of state s.
Moreover, the algorithm runs in time exp (O(nd log(m) + log(B) + log(log(1/ε)))).

Proof. By [18, 10], there exists a linear-size reduction from the CSGs with parity objectives
to the CSGs with the limit-value of stateful-discounted objectives. Therefore, the result
follows from Theorem 14. ◀

Proof of Theorem 6-Item 2. It is a direct implication of Theorem 15. ◀

6 Computational Complexities of LIMITVALUE and PARITYVALUE

In this section, we show that the LimitValue and ParityValue problems are in TFNP[NP].
This section is organized as follows. In Section 6.1, we present some useful definitions
related to Markov Chains (MCs) and Markov Decision Processes (MDPs), and floating-point
representation. In Section 6.2, we present the complexity results for LimitValue and
ParityValue problems.

6.1 Definitions

We present some basic notations and definitions related to Markov Chains, Markov Decision
Processes, and the classic symbolic representation for numbers and probability distributions,
called floating-point.

Markov decision processes and Markov chains. For i ∈ {1, 2}, a Player-i Markov decision
process (Player-i MDP) is a special class of CSGs where the other player has only one action
and is denoted by P = (S,A, δ : S ×A → ∆(S)). A Markov chain (MC) is a special class of
MDPs where both players have only one action and is denoted by C = (S, δ : S → ∆(S)). In
Markov chains we write δ(s, s′) to denote δ(s)(s′).

Absorbing MCs. We say an MC C is absorbing if there exists a subset of absorbing states
S0 ⊆ S such that

For all s ∈ S0, we have δ(s, s) = 1; and
For all s0 ∈ S \ S0, there exist states s1, . . . , sk such that δ(si, si+1) > 0 and sk ∈ S0.

States in S0 are called absorbing.

FSTTCS 2024

5:14 Concurrent Stochastic Games with Stateful-Discounted and Parity Objectives

MDPs and MCs given stationary strategies in CSGs. Given a stationary strategy σ for
Player 1 in a game G, by fixing the strategy σ, we obtain a Player-2 MDP Gσ = (S,B, δσ)
where the transition function δσ : S×B → ∆(S) is given by δσ(s, b)(s′) :=

∑
a∈A δ(s, a, b)(s′) ·

σ(s)(a), for all s, s′ ∈ S and b ∈ B. Analogously, we obtain Player-1 MDP Gτ by fixing a
stationary strategy τ for Player 2. Moreover, by fixing stationary strategies σ and τ for both
players, we obtain an MC Gσ,τ = (S, δσ,τ), where the transition function δσ,τ : S → ∆(S) is
given by δσ,τ (s)(s′) =

∑
a∈A

∑
b∈B δ(s, a, b)(s′) · σ(s)(a) · τ(s)(b), for all s, s′ ∈ S.

Reachability objectives in MCs. Given an MC C and a target set T ⊆ S, the reachability
objective is the indicator function of plays eventually reaching T . More formally, for a play
ω = ⟨s0, s1, · · · ⟩, we define ReachT : Ω→ {0, 1} as

ReachT (ω) :=
{

1 ∃i ∈ N si ∈ T

0 . otherwise

We define the probability of reaching the target set T from state s as valT (s) := Es[ReachT].

Floating-point number representation. We define the set of floating-point numbers with
precision ℓ as F(ℓ) :=

{
m · 2e | m ∈ {0, · · · , 2ℓ − 1}, e ∈ Z

}
. The floating-point representa-

tion of an element x = m ·2e ∈ F(ℓ) uses bit(m)+bit(|e|) bits. We define the relative distance
of two positive real numbers x, x̃ as rel(x, x̃) := max

{
x

x̃
, x̃

x

}
− 1. We say x is (ℓ, i)-close to x̃

if rel(x, x̃) ≤ (1− 21−ℓ)−i − 1, where ℓ is a positive integer and i is a non-negative integer.

Floating-point probability distribution representation. We denote by D(ℓ) the set of all
floating-point probability distributions with precision ℓ. A probability distribution µ ∈ ∆([t])
belongs to D(ℓ) if there exists w1, w2, · · · , wt ∈ F(ℓ) such that

For all i ∈ [t], we have µ(i) = wi∑
j∈[t]

wj
; and∑

j∈[t] wj and 1 are (ℓ, t)-close.
We define the relative distance rel for probability distributions as rel(µ, µ̃) :=
max{rel(µ(i), µ̃(i)) : i ∈ [t]}. We say µ is (ℓ, i)-close to µ̃ if rel(µ, µ̃) ≤ (1 − 21−ℓ)−i − 1,
where ℓ is a positive integer and i is a non-negative integer.

6.2 Complexity Results
We present algorithms for computing ε-approximate stateful-discounted value in MCs, MDPs,
and CSGs, which generalize the result of [4] from a single discount factor to multiple discount
factors. The algorithm for MCs (Theorem 16) is achieved by a reduction from stateful-
discounted objective to reachability objectives in MCs and using the algorithm for computing
reachability values in MCs presented in [17]. By our technical result on the limit value
approximation via the stateful-discounted value (Theorem 12), we consequently obtain a
TFNP[NP] procedure for LimitValue. Since there exists a linear-size reduction from CSGs
with parity objectives to CSGs with the limit-value of stateful-discounted objectives [18, 10],
ParityValue is also in TFNP[NP].

▶ Lemma 16. Consider an MC C, a reward function r, and a discount function Λ. For all
s ∈ S, we set

δ(s) ∈ D(ℓ), r(s) ∈ F(ℓ), Λ(s) ∈ F(ℓ) ,

A. Asadi, K. Chatterjee, R. Saona, and J. Svoboda 5:15

where ℓ ≥ 1000n2. Then, there exists a polynomial-time algorithm that for all states s ∈ S,
computes an approximation v for the stateful-discounted value such that |v − valΛ(s)| ≤
104n42−ℓ.

Proof sketch. We construct a new MC C̃ with a reachability objective derived from the MC
C such that the reachability value of C̃ is an approximation of the stateful-discounted value
of C. The result follows from the algorithm for computing ε-approximation of reachability
value in MCs presented in [17]. ◀

▶ Lemma 17. The problem of deciding if the stateful-discounted value for Player-1 MDPs is
below a threshold up to an additive error is in NP where the input is a Player-1 MDP P, a
reward function r, a discount function Λ, a state s, a threshold 0 ≤ α ≤ 1, an additive error
ε = 2−κ and a positive integer ℓ such that, for all s′ ∈ S and a ∈ A, we have

δ(s′, a) ∈ D(ℓ), r(s′, a) ∈ F(ℓ), Λ(s′) ∈ F(ℓ), ℓ ≥ 1000n2 + κ .

Note that, the numbers α and ε are represented in fixed-point binary and the NP procedure is
such that

If α ≤ valΛ(s)− ε, then it outputs YES; and
If α ≥ valΛ(s) + ε, then it outputs NO.

Proof sketch. The procedure guesses a pure stationary strategy σ. By fixing σ, we obtain an
MC Pσ. The algorithm verifies whether the threshold can be approximately achieved if the
player follows the strategy σ. The verification procedure is implemented by Theorem 16. ◀

Theorem 17 also holds for Player-2 MDPs by symmetric arguments. More formally, we
have the following result.

▶ Corollary 18. The problem of deciding if the stateful-discounted value for Player-2 MDPs
is above a threshold up to an additive error is in NP where the input is a Player-2 MDP P, a
reward function r, a discount function Λ, a state s, a threshold 0 ≤ α ≤ 1, an additive error
ε = 2−κ and a positive integer ℓ such that, for all s′ ∈ S and a ∈ A, we have

δ(s′, a) ∈ D(ℓ), r(s′, a) ∈ F(ℓ), Λ(s′) ∈ F(ℓ), ℓ ≥ 1000n2 + κ .

▶ Lemma 19. The problem of computing an ε-approximation of the stateful-discounted
value for CSGs is in TFNP[NP] for inputs CSGs G, reward functions, discount functions Λ,
states s, additive errors ε = 2−κ, and positive integers ℓ such that, for all states s′ ∈ S, we
have Λ(s′) ∈ F(ℓ).

Proof sketch. The procedure guesses two stationary strategies σ and τ and an approximate
value α. By fixing the strategy σ (resp. τ), we obtain a Player-1 MDP Gσ (resp. Player-2
MDP Gτ). By the NP oracles calling the procedures defined in Theorems 17 and 18, the
algorithm verifies whether the guessed threshold can be approximately achieved by both of
the strategies. ◀

Proof of Theorem 5-Item 1. It is a direct implication of Theorem 19 and Theorem 12. ◀

Proof of Theorem 6-Item 1. By [18, 10], there exists a linear-size reduction from Parity-
Value to LimitValue. Therefore, the result follows from Theorem 5-Item 1. ◀

FSTTCS 2024

5:16 Concurrent Stochastic Games with Stateful-Discounted and Parity Objectives

Concluding remarks. In this work, we present improved complexity upper bounds and
algorithms for the value approximation problem for concurrent stochastic games with two
classic objectives. There are several interesting directions for future work. First, whether the
complexity can be further improved from TFNP[NP] to TFNP is a major open question,
even for reachability objectives. Second, whether for parity objectives, the dependency on d

can be improved from linear to logarithmic, retaining the logarithmic dependence on m, is
another interesting open question. Finally, the study of priority mean-payoff objectives for
concurrent stochastic games and their connection to stateful-discounted objectives is another
interesting direction for future work.

References
1 Rajeev Alur, Thomas A Henzinger, and Orna Kupferman. Alternating-time temporal logic.

Journal of the ACM (JACM), 49(5):672–713, 2002. doi:10.1145/585265.585270.
2 Luc Attia and Miquel Oliu-Barton. A formula for the value of a stochastic game. Proceedings

of the National Academy of Sciences, 116(52):26435–26443, 2019.
3 Saugata Basu. New results on quantifier elimination over real closed fields and applications

to constraint databases. Journal of the ACM (JACM), 46(4):537–555, 1999. doi:10.1145/
320211.320240.

4 Sougata Bose, Rasmus Ibsen-Jensen, and Patrick Totzke. Bounded-memory strategies in
partial-information games. In Proceedings of the 39th Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 1–14, 2024. doi:10.1145/3661814.3662096.

5 Krishnendu Chatterjee. Stochastic ω-regular games. University of California, Berkeley, 2007.
6 Krishnendu Chatterjee, Luca de Alfaro, and Thomas A Henzinger. The complexity of

quantitative concurrent parity games. In Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pages 678–687, 2006. URL: http://dl.acm.org/citation.
cfm?id=1109557.1109631.

7 Krishnendu Chatterjee, Rupak Majumdar, and Thomas A Henzinger. Stochastic limit-
average games are in EXPTIME. International Journal of Game Theory, 37(2):219–234, 2008.
doi:10.1007/S00182-007-0110-5.

8 Luca de Alfaro and Thomas A Henzinger. Concurrent omega-regular games. In Proceedings
Fifteenth Annual IEEE Symposium on Logic in Computer Science, pages 141–154. IEEE, 2000.
doi:10.1109/LICS.2000.855763.

9 Luca de Alfaro, Thomas A Henzinger, and Orna Kupferman. Concurrent reachability games.
In Proceedings 39th Annual Symposium on Foundations of Computer Science, pages 564–564.
IEEE Computer Society, 1998.

10 Luca de Alfaro, Thomas A Henzinger, and Rupak Majumdar. Discounting the future in
systems theory. In International Colloquium on Automata, Languages, and Programming,
pages 1022–1037. Springer, 2003. doi:10.1007/3-540-45061-0_79.

11 Luca de Alfaro, Thomas A Henzinger, and Freddy YC Mang. The control of synchronous
systems. In International Conference on Concurrency Theory, pages 458–473. Springer, 2000.

12 Luca de Alfaro, Thomas A Henzinger, and Freddy YC Mang. The control of synchronous
systems, part II. In International Conference on Concurrency Theory, pages 566–581. Springer,
2001.

13 Luca de Alfaro and Rupak Majumdar. Quantitative solution of omega-regular games. In
Proceedings of the thirty-third annual ACM symposium on Theory of computing, pages 675–683,
2001. doi:10.1145/380752.380871.

14 Kousha Etessami and Mihalis Yannakakis. Recursive concurrent stochastic games. Logical
Methods in Computer Science, 4, 2008. doi:10.2168/LMCS-4(4:7)2008.

15 Hugh Everett. Recursive games. Contributions to the Theory of Games, 3(39):47–78, 1957.
16 Jerzy Filar and Koos Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.

https://doi.org/10.1145/585265.585270
https://doi.org/10.1145/320211.320240
https://doi.org/10.1145/320211.320240
https://doi.org/10.1145/3661814.3662096
http://dl.acm.org/citation.cfm?id=1109557.1109631
http://dl.acm.org/citation.cfm?id=1109557.1109631
https://doi.org/10.1007/S00182-007-0110-5
https://doi.org/10.1109/LICS.2000.855763
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1145/380752.380871
https://doi.org/10.2168/LMCS-4(4:7)2008

A. Asadi, K. Chatterjee, R. Saona, and J. Svoboda 5:17

17 Søren Kristoffer Stiil Frederiksen and Peter Bro Miltersen. Approximating the value of a concur-
rent reachability game in the polynomial time hierarchy. In International Symposium on Algo-
rithms and Computation, pages 457–467. Springer, 2013. doi:10.1007/978-3-642-45030-3_
43.

18 Hugo Gimbert and Wiesław Zielonka. Discounting infinite games but how and why? Electronic
Notes in Theoretical Computer Science, 119(1):3–9, 2005. doi:10.1016/J.ENTCS.2004.07.005.

19 Hugo Gimbert and Wiesław Zielonka. Blackwell optimal strategies in priority mean-payoff
games. International Journal of Foundations of Computer Science, 23(03):687–711, 2012.
doi:10.1142/S0129054112400345.

20 Kristoffer Arnsfelt Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. The complexity of
solving reachability games using value and strategy iteration. In International Computer Science
Symposium in Russia, pages 77–90. Springer, 2011. doi:10.1007/978-3-642-20712-9_7.

21 Kristoffer Arnsfelt Hansen, Michal Koucky, Niels Lauritzen, Peter Bro Miltersen, and Elias P
Tsigaridas. Exact algorithms for solving stochastic games. In Proceedings of the forty-third
annual ACM symposium on Theory of computing, pages 205–214, 2011.

22 Kristoffer Arnsfelt Hansen, Michal Koucky, and Peter Bro Miltersen. Winning concurrent
reachability games requires doubly-exponential patience. In 2009 24th Annual IEEE Symposium
on Logic In Computer Science, pages 332–341. IEEE, 2009. doi:10.1109/LICS.2009.44.

23 Donald A Martin. The determinacy of Blackwell games. The Journal of Symbolic Logic,
63(4):1565–1581, 1998. doi:10.2307/2586667.

24 Jean-François Mertens and Abraham Neyman. Stochastic games. International Journal of
Game Theory, 10:53–66, 1981.

25 Miquel Oliu-Barton. New algorithms for solving zero-sum stochastic games. Mathematics of
Operations Research, 46(1):255–267, 2021. doi:10.1287/MOOR.2020.1055.

26 Lloyd Stowell Shapley. Stochastic games. Proceedings of the national academy of sciences,
39(10):1095–1100, 1953.

27 Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal Languages: Volume
3 Beyond Words, pages 389–455. Springer, 1997. doi:10.1007/978-3-642-59126-6_7.

FSTTCS 2024

https://doi.org/10.1007/978-3-642-45030-3_43
https://doi.org/10.1007/978-3-642-45030-3_43
https://doi.org/10.1016/J.ENTCS.2004.07.005
https://doi.org/10.1142/S0129054112400345
https://doi.org/10.1007/978-3-642-20712-9_7
https://doi.org/10.1109/LICS.2009.44
https://doi.org/10.2307/2586667
https://doi.org/10.1287/MOOR.2020.1055
https://doi.org/10.1007/978-3-642-59126-6_7

A Decomposition Approach to the Weighted
k-Server Problem
Nikhil Ayyadevara #

University of Michigan, Ann Arbor, MI, USA

Ashish Chiplunkar # Ñ

Indian Institute of Technology, New Delhi, India

Amatya Sharma #

University of Michigan, Ann Arbor, MI, USA

Abstract
A natural variant of the classical online k-server problem is the weighted k-server problem, where
the cost of moving a server is its weight times the distance through which it moves. Despite its
apparent simplicity, the weighted k-server problem is extremely poorly understood. Specifically,
even on uniform metric spaces, finding the optimum competitive ratio of randomized algorithms
remains an open problem – the best upper bound known is 22k+O(1)

due to a deterministic algorithm
(Bansal et al., 2018), and the best lower bound known is Ω(2k) (Ayyadevara and Chiplunkar, 2021).

With the aim of closing this exponential gap between the upper and lower bounds, we propose
a decomposition approach for designing a randomized algorithm for weighted k-server on uniform
metrics. Our first contribution includes two relaxed versions of the problem and a technique to
obtain an algorithm for weighted k-server from algorithms for the two relaxed versions. Specifically,
we prove that if there exists an α1-competitive algorithm for one version (which we call Weighted
k-Server – Service Pattern Construction) and there exists an α2-competitive algorithm for the other
version (which we call Weighted k-server – Revealed Service Pattern), then there exists an (α1α2)-
competitive algorithm for weighted k-server on uniform metric spaces. Our second contribution is a
2O(k2)-competitive randomized algorithm for Weighted k-server – Revealed Service Pattern. As a
consequence, the task of designing a 2poly(k)-competitive randomized algorithm for weighted k-server
on uniform metrics reduces to designing a 2poly(k)-competitive randomized algorithm for Weighted
k-Server – Service Pattern Construction. Finally, we also prove that the Ω(2k) lower bound for
weighted k-server, in fact, holds for Weighted k-server – Revealed Service Pattern.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-
tion → Caching and paging algorithms

Keywords and phrases Online Algorithms, k-server, paging

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.6

1 Introduction

The k-server problem proposed by Manasse et al. [12] is a fundamental problem in online
computation, and it has been actively studied for over three decades. In this problem, we are
given a metric space M and k identical servers s1, . . . , sk located at points of M . In every
round, a point of M is requested, and an online algorithm serves the request by moving (at
least) one server to the requested point. The objective is to minimize the total distance
traversed by all k servers.

Like several other online problems, the performance of algorithms for the k-server problem
is measured using the framework of competitive analysis introduced by Sleator and Tarjan [15].
An online algorithm for a minimization problem is said to be α-competitive if, on every
input, the ratio of the algorithm’s (expected) cost to the cost of the optimal solution is
at most α, possibly modulo an additive constant independent of the online input. In the
deterministic setup, Manasse et al. [12] showed that no k-server algorithm can be better than

© Nikhil Ayyadevara, Ashish Chiplunkar, and Amatya Sharma;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 6; pp. 6:1–6:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vsnikhil@umich.edu
https://orcid.org/0009-0001-9093-3677
mailto:ashishc@iitd.ac.in
https://www.cse.iitd.ac.in/~ashishc/
https://orcid.org/0000-0002-6661-8124
mailto:amatya@umich.edu
https://orcid.org/0000-0003-1392-7174
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 A Decomposition Approach to the Weighted k-Server Problem

k-competitive on any metric space with more than k points. In their breakthrough result,
Koutsoupias and Papadimitriou [11] gave the best known deterministic algorithm that is
(2k− 1)-competitive on every metric space, famously known as the Work Function Algorithm
(WFA). In the setup of randomized algorithms, it is conjectured that the competitive ratio
of k-server is O(poly(log k)), and this remains unsolved. Very recently, refuting the so-called
randomized k-server conjecture, Bubeck, Coester, and Rabani [6] exhibited a family of metric
spaces on which the randomized competitive ratio of the k-server problem is Ω(log2 k).

The k-server problem is a generalization of the online paging problem. The paging
problem concerns maintaining in a “fast” memory a subset of k pages out of the n pages
in a “slow” memory. In each round, one of n (≫ k) pages is requested, and it must replace
some page in the fast memory, unless it is already in the fast memory. The objective is
to minimize the number of page replacements. The paging problem is exactly the k-server
under the uniform metric on the set of pages. The paging problem has been well studied,
and several deterministic algorithms like Least Recently Used (LRU), First In First Out
(FIFO), etc. are known to be k-competitive [15]. The randomized algorithm by Achlioptas et
al. [1] is known to be H(k)-competitive, matching the lower bound by Fiat et al. [8]. Here
H(k) = 1 + 1/2 + · · ·+ 1/k = Θ(log k).

1.1 Weighted k-server
The weighted k-server problem, first defined by Newberg [13], is a natural generalization
of the k-server problem. In the weighted k-server problem, the servers are distinguishable:
the i’th server has weight wi, where w1 ≤ · · · ≤ wk. The cost incurred in moving a server
is its weight times the distance it travels. The objective is to minimize the total weighted
distance moved by all k servers. It is easy to see that an α-competitive algorithm for the
(unweighted) k-server problem has a competitive ratio of at most α · wk/w1 for the weighted
k-server problem. However, this bound can be arbitrarily bad as wk/w1 is unbounded. So,
the challenge is to establish weight-independent bounds on the competitive ratio of the
weighted k-server problem. Surprisingly, this simple introduction of weights makes this
problem incredibly difficult, and a weight-independent upper bound on the competitive ratio
for an arbitrary metric is only known for the case when k ≤ 2 [14].

Owing to its difficulty on general metric spaces, it is natural to completely understand the
weighted k-server problem on the simplest class of metric spaces, the uniform metric spaces
first. Uniform metric spaces are the ones in which every pair of points is separated by a unit
distance. The objective of this problem translates to minimizing the weighted sum of the
number of movements of each server, and thus, this problem is equivalent to paging with the
cost of a page replacement dependent on the cache slot it is stored in1. In their seminal work,
Fiat and Ricklin [9] gave a deterministic algorithm for the weighted k-server problem on
uniform metrics with a competitive ratio doubly exponential in k, which was later improved
by Bansal et al. [4] to 22k+2 . This doubly exponential behavior of the competitive ratio was
proven tight by Bansal et al. [3] when they showed that the deterministic competitive ratio
is no less than 22k−4 .

In the randomized setup, the only known algorithm which uses randomization in a non-
trivial manner is the memoryless algorithm of Chiplunkar and Vishwanathan [7], which has a
competitive ratio of 1.62k . Chiplunkar and Vishwanathan also showed that this ratio is tight

1 Note that this problem is different from weighted paging [16], where the weights are on the pages (points
in the metric space) instead on the cache slots (servers). In fact, weighted paging is equivalent to
unweighted k-server on star metrics.

N. Ayyadevara, A. Chiplunkar, and A. Sharma 6:3

for the class of randomized memoryless algorithms. Recently, Ayyadevara and Chiplunkar [2]
showed that no randomized algorithm (memoryless or otherwise) can achieve a competitive
ratio better than Ω(2k). Closing the exponential gap between the 1.62k upper bound and
the Ω(2k) lower bound on the randomized competitive ratio is still an open problem.

Very recently, Gupta et al. [10] studied the weighted k-server problem in the offline
and resource augmentation settings, showing the first hardness of approximation result for
polynomial-time algorithms.

1.2 Our Contributions
Throughout this paper, we focus on the weighted k-server problem on uniform metrics,
and we avoid mentioning the metric space henceforward. Considering the fact that the
competitive ratio of a server problem is typically exponentially better in the randomized
setting than the deterministic setting, it is reasonable to conjecture that there exists a
randomized 2poly(k)-competitive randomized algorithm for weighted k-server. In this paper,
we propose a way of designing such an algorithm using our key idea of decomposing the
weighted k-server problem into the following two relaxed versions.

Weighted k-Server – Service Pattern Construction (WkS-SPC)

The input is the same as the weighted k-server. The difference is that, in response to each
request, the algorithm must only commit to the movement of some subset of servers, without
specifying where those servers move to. However, it is required that there exists some solution
to the given instance that agrees with the algorithm’s server movements. Note that the
algorithm could potentially benefit from not being lazy, that is, by moving more than one
server at the same time. The (expected) cost of the algorithm is, as defined earlier, the
weighted sum of the number of movements of each server (recall that we are working on a
uniform metric space so the distance between every pair of points is one unit). An algorithm
is said to be α-competitive if the (expected) cost of its solution is at most α times the
optimum cost.

Weighted k-Server – Revealed Service Pattern (WkS-RSP)

In this version, the adversary, in addition to giving requests, is obliged to help the algorithm
by providing additional information as follows. The adversary must serve each request
and reveal to the algorithm the subset of servers it moved. Note that the adversary does
not reveal the destination to which it moved its servers – revealing destinations makes the
problem trivial because the algorithm can simply copy the adversary’s movements. Given a
request and the additional information about the adversary’s server movements, the algorithm
is required to move its own servers to cover the request. In an ideal scenario where the
adversary serves the requests optimally, we require the algorithm to produce a solution
whose cost competes with the cost of the optimal solution. However, consider a malicious
adversary which, in an attempt to be as unhelpful to the algorithm as possible, produces a
far-from-optimum solution and shares its information with the algorithm. In this case, we
do not require that the algorithm competes with the optimum solution – such an algorithm
would already solve the weighted k-server problem without the adversary’s help. Instead,
we require the algorithm to compete with the adversary’s revealed solution. Formally, an
algorithm is said to be α-competitive if the (expected) cost of its output is at most α times
the cost of the adversary’s (possibly sub-optimal) solution.

FSTTCS 2024

6:4 A Decomposition Approach to the Weighted k-Server Problem

Obviously, an algorithm for the weighted k-server problem gives an algorithm for each of
the above problems. Interestingly, we prove that the converse is also true. Formally,

▶ Theorem 1 (Composition Theorem). If there exists an α1-competitive algorithm for WkS-
SPC and there exists an α2-competitive algorithm for WkS-RSP, then there is an (α1α2)-
competitive algorithm for the weighted k-server on uniform metrics.

We prove this theorem in Section 3. As a consequence of this theorem, it is enough to
design 2poly(k)-competitive algorithms for WkS-SPC and WkS-RSP to close the exponential
gap between the upper and lower bounds on the randomized competitive ratio of weighted
k-server. We already present such an algorithm for WkS-RSP in Section 4. We prove,

▶ Theorem 2. There is a randomized algorithm for WkS-RSP with a competitive ratio of
2O(k2).

This reduces the task of designing a 2poly(k)-competitive algorithm for weighted k-server
to designing such an algorithm for WkS-SPC, a potentially easier problem.

Can we improve the 2O(k2) upper bound for WkS-RSP to, for example, poly(k)? We
answer this question in the negative. We show that, in fact, the lower bound construction by
Ayyadevara and Chiplunkar [2] for weighted k-server applies to WkS-RSP too2, giving the
following result.

▶ Theorem 3. The randomized competitive ratio of WkS-RSP is Ω(2k).

The proof of this result is deferred to Section A.

2 Preliminaries

In this section we define the problems WkS-SPC and WkS-RSP formally, but before that,
we restate the definitions of some terms introduced by Bansal et al. [3] which will be needed
in our problem definitions.

2.1 Service Patterns, Feasible Labelings, Extensions

Throughout this paper, we assume without loss of generality that all the servers of the
algorithm and the adversary move in response to the first request. Given a solution to an
instance of the weighted k-server problem with T requests, focus on the movements of the ℓ’th
server for an arbitrary ℓ. The time instants at which these movements take place partition
the interval [1, T + 1) into left-closed-right-open intervals so that the server stays put at
some point during each of these intervals. Thus, ignoring the locations of the servers and
focusing only on the time instants at which each server moves, we get a tuple of k partitions
of [1, T + 1), also known as a service pattern. Formally,

▶ Definition 4 (Service Pattern and Levels [3]). A k-tuple I = (I1, . . . , Ik) is called a service
pattern over an interval [tbegin, tend) if each Iℓ is a partition of [tbegin, tend) comprising of
left-closed-right-open intervals with integer boundaries. We call Iℓ the ℓ’th level of I.

2 The construction by Bansal et al. [3] applies too, and for the same reason, implying a doubly exponential
lower bound on the deterministic competitive ratio of WkS-RSP.

N. Ayyadevara, A. Chiplunkar, and A. Sharma 6:5

Observe that the cost of a solution is completely determined by its service pattern
I = (I1, . . . , Ik): the cost equals the sum over ℓ ∈ {1, . . . , k} of the number of intervals in
Iℓ times the weight of the ℓ’th server.

In order to completely specify a solution, in addition to a service pattern I = (I1, . . . , Ik),
we need to specify for each ℓ and each interval I ∈ Iℓ the location of the ℓ’th server during
the time interval I. We refer to this assignment as a labeling of the service pattern. Moreover,
to serve the t’th request σt, we need at least one server to occupy σt at time t, that is, we
need that there exists a level of I in which the (unique) interval containing t is labeled σt.
Such a labeling is called a feasible labeling. Formally,

▶ Definition 5 (Labeling and Feasibility [3]). A labeling of a service pattern I = (I1, . . . , Ik)
is a function from the multi-set I1 ⊎ · · · ⊎ Ik to the set U of points in the metric space. We
say that a labeling γ of I is feasible with respect to a request sequence ρ = (σ1, . . . , σT), if
for each time t, there exists an interval I ∈ I1 ⊎ · · · ⊎ Ik containing t such that γ(I) = σt.
We say that a service pattern I is feasible with respect to ρ if there exists a feasible labeling
of I with respect to ρ.

Recall that in the definition of the weighted k-server problem in Section 1, we assumed
that the servers are numbered in a non-decreasing order of their weights. Consider the more
interesting case where the weights increase at least geometrically. If we enforce that every
time a server moves, all servers lighter than it move too, we lose at most a constant factor in
the competitive ratio. The advantage of this enforcement is that we have a more structured
class of service patterns, called hierarchical service patterns.

▶ Definition 6 (Hierarchical Service Pattern [3]). A service pattern I = (I1, . . . , Ik) is
hierarchical if for every ℓ ∈ {1, . . . , k − 1}, the partition Iℓ refines the partition Iℓ+1.

Clearly, any service pattern can be made hierarchical in an online manner with at most a
k factor loss in the cost. Since we aim to obtain 2poly(k)-competitive algorithms, the k factor
loss is affordable, and therefore, we only consider hierarchical service patterns throughout
this paper. Henceforth, by service pattern we actually mean a hierarchical service pattern.

Next, consider some online algorithm for the weighted k-server problem and the solution it
outputs on some request sequence. For each t, let It denote the service pattern corresponding
to the algorithm’s solution until the t’th request. Observe that It−1 and It are closely related:
if the algorithm moves the lightest ℓ servers to serve the t’th request (possibly ℓ = 0), then
the interval [t, t + 1) gets added to the first ℓ levels of It−1, whereas in each of the remaining
levels, the last interval in the level merges with [t, t + 1). We call It the ℓ-extension of It−1.
More formally,

▶ Definition 7 (ℓ-extension). Let It−1 = (I1
t−1, . . . , Ik

t−1) be a hierarchical service pattern
over the interval [1, t), and let Li

t−1 be the last interval in Ii
t−1. For ℓ ∈ {0, . . . , k}, we define

the ℓ-extension of It−1 to be the service pattern It = (I1
t , . . . , Ik

t) over the interval [1, t + 1)
where:
∀i ≤ ℓ, Ii

t = Ii
t−1 ∪ {[t, t + 1)}.

∀i > ℓ, Ii
t = (Ii

t−1 \ Li
t−1) ∪ {Li

t−1 ∪ [t, t + 1)}.

Observe that the ℓ-extension of a hierarchical service pattern is a hierarchical service
pattern.

FSTTCS 2024

6:6 A Decomposition Approach to the Weighted k-Server Problem

2.2 Problem Definitions
Recall that our core idea to solve weighted k-server problem is to construct an algorithm
using algorithms for its two relaxed versions. We defined them informally in Section 1. Their
formal definitions are as follows.

▶ Definition 8 (Weighted k-Server – Service Pattern Construction (WkS-SPC)). For every
online request σt ∈ U , an algorithm for WkS-SPC is required to output a service pattern It,
which is the ℓt-extension of It−1 for some ℓt ∈ {0, . . . , k}, such that It is feasible with respect
to the request sequence σ1, σ2, . . . , σt. Equivalently, the algorithm outputs ℓt for each t. An
algorithm for WkS-SPC is said to be α-competitive if the (expected) cost of the algorithm’s
service pattern is at most α times the optimal cost.

▶ Definition 9 (Weighted k-server – Revealed Service Pattern (WkS-RSP)). For every online
request σt ∈ U , the adversary reveals a service pattern It, which is the ℓt-extension of It−1 for
some ℓt ∈ {0, . . . , k}, such that It is feasible with respect to the request sequence σ1, σ2, . . . , σt.
Equivalently, the algorithm’s input is the pair (σt, ℓt). An algorithm for WkS-RSP is required
to serve the request σt, i.e., move servers to ensure that σt is covered by some server. An
algorithm for WkS-RSP is said to be β-competitive if the (expected) cost of the algorithm’s
solution is at most β times the cost of the final service pattern revealed by the adversary.

3 The Composition Theorem

In this section, we explain how we can construct a weighted k-server algorithm using
algorithms for its two relaxations – WkS-SPC and WkS-RSP3.

▶ Theorem 1 (Composition Theorem). If there exists an α1-competitive algorithm for WkS-
SPC and there exists an α2-competitive algorithm for WkS-RSP, then there is an (α1α2)-
competitive algorithm for the weighted k-server on uniform metrics.

Proof. Let A1 be an α1-competitive algorithm for WkS-SPC, and A2 be an α2-competitive
algorithm for WkS-RSP. Our algorithm A for weighted k-server internally runs the two
algorithms A1 and A2. At all times, A keeps each of its servers at the same point where the
corresponding server of A2 is located. For every input request σt, A performs the following
sequence of steps.
1. A passes σt to A1.
2. In response, A1 outputs an ℓt such that the service pattern It, which is the ℓt-extension

to It−1, is feasible for the request sequence σ1, σ2, . . . , σt.
3. A passes (σt, ℓt) to A2.
4. In response, A2 moves its servers to serve the request σt.
5. A copies the movements of A2’s servers.

To analyze the competitiveness of A, consider an arbitrary sequence ρ of requests, and
let T denote its length. Let OPT denote the cost of an optimal solution for ρ. Denote the
cost of a service pattern I by cost(I). Recall that IT is the final service pattern output by
A1. Let I ′

T denote the service pattern corresponding to A2’s output. Note that IT and I ′
T

are random variables, and since A’s output is same as A2’s output, the cost of A’s output is
cost(I ′

T).

3 On a high level, our construction resembles the result by Ben-David et al. [5], which states that if there
is an α1-competitive randomized algorithm against online adversary and an α2-competitive algorithm
against any oblivious adversary, then there is an (α1α2) competitive randomized algorithm for any
adaptive offline adversary.

N. Ayyadevara, A. Chiplunkar, and A. Sharma 6:7

Since the output of A1 is a sequence of extensions such that the service pattern remains
feasible with respect to the request sequence at all times, the sequence (σt, ℓt)t=1,...,T is a
valid instance of WkS-RSP (with probability one over the randomness of A1). Since A2
is α2-competitive, we have E[cost(I ′

T) | IT = I] ≤ α2 · cost(I) for every service pattern
I feasible with respect to ρ. This implies E[cost(I ′

T)] ≤ α2 · E[cost(IT)]. Since A1 is α1-
competitive, E[cost(IT)] ≤ α1 ·OPT. Thus, E[cost(I ′

T)] ≤ α1α2 ·OPT. This implies that A
is (α1α2)-competitive. ◀

4 Competing with a Revealed Service Pattern

We organize this section as follows. In Section 4.1, we prove some structural results that
are used in the definition and analysis of our algorithm. We define our algorithm formally
in Section 4.2 and analyze its competitive ratio in Section 4.3. We use the following notation.

U denotes the set of points in a uniform metric space.
For t from 1 to T , The t’th request is σt ∈ U , and ρt = (σ1, . . . , σt) denotes the sequence
of requests received until time t.
The service pattern revealed by the adversary with the t’th request is denoted by
It = (I1

t , . . . , Ik
t). Recall that It is the ℓt-extension of It−1. Without loss of generality,

we assume that the adversary moves all its servers with the first request, and therefore
ℓ1 = k.
Lℓ

t denotes the last interval in Iℓ
t , that is, the unique interval in Iℓ

t that covers [t, t + 1).
sℓ

t denotes the location of our algorithm’s ℓ’th server after processing the t’th request.
Since our algorithm is randomized, sℓ

t is a random variable. Note that for the t’th request
to be served, we must have σt ∈ {s1

t , . . . , sk
t } with probability one.

Consider the adversary’s service pattern It = (I1
t , . . . , Ik

t). For an arbitrary ℓ, fix the
labels of the last intervals Lℓ+1

t , . . . , Lk
t in the top k− ℓ levels Iℓ+1

t , . . . , Ik
t of It, and consider

all feasible labelings of It with respect to ρ that agree with the fixed labels. The set of labels
that these labelings assign to the last interval Lℓ

t of Iℓ
t will be crucial for our algorithm. We

now define this set formally.

▶ Definition 10. For any t ∈ {1, . . . , T}, ℓ ∈ {1, . . . , k}, and pℓ+1, . . . , pk ∈ U , the set
Qℓ

t(pℓ+1, . . . , pk) is defined to be the set of points pℓ for which there exists a feasible labeling
γ of It with respect to ρt such that γ(Li

t) = pi for all i ∈ {ℓ, . . . , k}.

4.1 Structural Results
Bansal et al. [3] considered the following combinatorial question: given a service pattern I
and a request sequence ρ, how many labels can an interval in the k’th level of I get, over
all possible feasible labelings of I with respect to ρ? They derived the following interesting
property.

▶ Fact 11 (Dichotomy Property [3]). There exists a sequence n1, n2, . . . of integers with
nk ≤ 22k+3 log k such that the following holds: for every k, every sequence of requests ρ =
(σ1, . . . , σT), every service pattern I = (I1, . . . , Ik) over [1, T + 1), and every I ∈ Ik, the set
Q of labels of I over all feasible labelings of I with respect to ρ is the entire U , or it has size
at most nk.

The next lemma generalizes the above result to intervals in every level.

FSTTCS 2024

6:8 A Decomposition Approach to the Weighted k-Server Problem

▶ Lemma 12 (Generalized Dichotomy Property). For every t ∈ {1, . . . , T}, ℓ ∈ {1, . . . , k},
and pℓ+1, . . . , pk ∈ U , the set Qℓ

t(pℓ+1, . . . , pk) is the entire U , or it has size at most nℓ,
where nℓ ≤ 22ℓ+3 log ℓ is the constant from Fact 11.

Proof. The lemma holds trivially when Qℓ
t(pℓ+1, . . . , pk) = ∅, so assume Qℓ

t(pℓ+1, . . . , pk) ̸= ∅.
Let ρ′ denote the request sequence during the interval Lℓ

t and J denote the restriction of
the service pattern It to the interval Lℓ

t and levels 1, . . . , ℓ. Let ρ′′ denote the subsequence
of ρ′ formed by removing all the requests to pℓ+1, . . . , pk. Let Q denote the set of labels of
the interval Lℓ

t over all the feasible labelings of the ℓ-level service pattern J with respect to
ρ′′. From Fact 11 we get that the set Q is either U or has size at most nℓ. We argue that
Qℓ

t(pℓ+1, . . . , pk) = Q, and this implies the claim. Refer to Figure 1 for a working illustration
on an instance with k = 5 and ℓ = 3.

It labelled with γ level

5

4

3

2

1

ρ′

L5
t

L4
t

L3
t

1

2

3

4 5

6 7 8 9

6 1 2 1 4 7 1 8 5 8 2 3 5 9

(a)

k = 5, ℓ = 3

J labelled with restriction of γ level

3

2

1

ρ′′

L3
t3

4 5

6 7 8 9

6 4 7 8 5 8 3 5 9

(b)

It labelled with γnew level

5

4

3

2

1

ρ′

L5
t

L4
t

L3
t

1

2

5

7 9

6 4 8 3

6 1 2 1 4 7 1 8 5 8 2 3 5 9

(c)

k = 5, ℓ = 3

J labelled with γ′ level

3

2

1

ρ′′

L3
t5

7 9

6 4 8 3

6 4 7 8 5 8 3 5 9

(d)

Figure 1 An illustration of Lemma 12 for k = 5 and ℓ = 3. (a) Depicts It with a labeling γ

(colored in red) feasible with respect to ρt such that γ(L5
t) = 1 and γ(L4

t) = 2. (b) Depicts the
3-level service pattern J labeled with the restriction of γ, along with ρ′′, the subsequence of ρ′

formed by removing all the requests to points 1 and 2. (d) Depicts the labeling γ′ of J feasible
with respect to ρ′′. (c) Shows the new labeling γnew constructed by overwriting γ′ onto γ for every
interval in J .

For any pℓ ∈ Qℓ
t(pℓ+1, . . . , pk), from Definition 10 we get that there exists a feasible

labeling γ of It with respect to ρt such that γ(Li
t) = pi for all i ∈ {ℓ, . . . , k}. In the labeling

γ, the servers ℓ + 1, . . . , k can only serve the requests to the points pℓ+1, . . . , pk during the
interval Lℓ

t . This implies that all the requests in ρ′′ must be served by servers 1, . . . , ℓ. Thus,
the restriction γ′ of γ to J is feasible with respect to ρ′′. But γ′(Lℓ

t) = γ(Lℓ
t) = pℓ. Therefore,

pℓ ∈ Q. Thus, Qℓ
t(pℓ+1, . . . , pk) ⊆ Q.

N. Ayyadevara, A. Chiplunkar, and A. Sharma 6:9

Now consider any point pℓ ∈ Q, and let γ′ be a feasible labeling of J with respect
to ρ′′ such that γ′(Lℓ

t) = pℓ. Suppose γ is a feasible labeling of It with respect to ρt

such that γ(Li
t) = pi for all i ∈ {ℓ + 1, . . . , k} (such a labeling exists because we assumed

Qℓ
t(pℓ+1, . . . , pk) ̸= ∅). Overwrite the labeling γ′ onto γ to get a new labeling γnew. Formally,

γnew(I) = γ′(I) if interval I is in J , else γnew(I) = γ(I). We claim that γnew is also a feasible
labeling of It with respect to ρt. This can be argued as follows.

The labeling γnew serves all the requests in ρ′′ because it agrees with γ′ in the service
pattern J . γnew serves all the requests during the interval Lℓ

t other than those in ρ′′ because
all these requests are made at points in {pℓ+1, . . . , pk}, and γnew(Li

t) = γ(Li
t) = pi for all

i ∈ {ℓ+ 1, . . . , k}. Finally, γnew serves all the requests before the interval Lℓ
t because it agrees

with γ before the interval Lℓ
t.

Thus, γnew is a feasible labeling of It with respect to ρt such that γnew(Li
t) = pi for all

i ∈ {ℓ + 1, . . . , k}. From Definition 10, we get that γnew(Lℓ
t) = pℓ ∈ Qℓ

t(pℓ+1, . . . , pk). This
implies Q ⊆ Qℓ

t(pℓ+1, . . . , pk). ◀

We now state a useful consequence of the simple fact that the restriction of a solution for
the first t requests to the first t− 1 requests is a solution for the first t− 1 requests.

▶ Lemma 13. For every t ∈ {2, . . . , T}, ℓ ∈ {ℓt + 1, . . . , k}, and pℓ+1, . . . , pk ∈ U ,
Qℓ

t(pℓ+1, . . . , pk) ⊆ Qℓ
t−1(pℓ+1, . . . , pk).

Proof. Recall that It = (I1
t , . . . , Ik

t) is the ℓt-extension of It−1 = (I1
t−1, . . . , Ik

t−1), which
means Lℓ

t−1 = Lℓ
t \ [t, t + 1) ̸= ∅. By Definition 10, if some point pℓ is in Qℓ

t(pℓ+1, . . . , pk),
then there exists a feasible labeling γ of It with respect to ρt such that γ(Li

t) = pi for all
i ∈ {ℓ, . . . , t}. Restrict γ to obtain a labeling γ′ of It−1 in the obvious manner: γ′(Li

t−1) =
γ(Li

t) = pi for all i ∈ {ℓ, . . . , t} and γ′(I) = γ(I) for all other intervals I of It−1 (which are
also intervals of It). It is easy to check that γ′ is a feasible labeling of It−1 with respect to
ρt−1. Thus, from Definition 10 we get, pℓ ∈ Qℓ

t−1(pℓ+1, . . . , pk). ◀

4.2 Algorithm
Before stating our WkS-RSP algorithm formally, we give some intuitive explanation. Recall
that sℓ

t denotes the location of the algorithm’s ℓ’th server after serving the t’th request. The
critical invariant maintained by our algorithm is the following.

▶ Invariant 14. For every t and ℓ, in response to the t’th request, the algorithm keeps its
ℓ’th server at a uniformly random point in Qℓ

t(sℓ+1
t , . . . , sk

t).

Lemma 16 states this claim formally. For now, let us just understand the scenarios in which
the algorithm needs to move the ℓ’th server at time t so that it occupies some point in
Qℓ

t(sℓ+1
t , . . . , sk

t). These scenarios are as follows.

1. The algorithm moves the ℓ′’th server for some ℓ′ > ℓ. This means that, potentially,
sℓ′

t ̸= sℓ′

t−1, so Qℓ
t(sℓ+1

t , . . . , sk
t) could be different from Qℓ

t−1(sℓ+1
t−1, . . . , sk

t−1).

2. ℓt ≥ ℓ. This means that Lℓ
t = [t, t + 1) is disjoint from Lℓ

t−1, and again, potentially,
Qℓ

t(sℓ+1
t , . . . , sk

t) could be different from Qℓ
t−1(sℓ+1

t−1, . . . , sk
t−1).

3. None of the above happens, so by Lemma 13, Qℓ
t(sℓ+1

t , . . . , sk
t) ⊆ Qℓ

t−1(sℓ+1
t−1, . . . , sk

t−1).
However, sℓ

t−1 /∈ Qℓ
t(sℓ+1

t , . . . , sk
t) (that is, sℓ

t−1 ∈ Qℓ
t−1(sℓ+1

t−1, . . . , sk
t−1)\Qℓ

t(sℓ+1
t , . . . , sk

t)),
so the ℓ’th server can no longer remain at the same place sℓ

t−1 as before.

FSTTCS 2024

6:10 A Decomposition Approach to the Weighted k-Server Problem

We call the movement in the first two scenarios a forced movement (because the movement of
some other server forced this movement), and the movement in the third scenario an unforced
movement. If none of the above scenarios arises, then the ℓ’th server stays put. Algorithm 1
is the formal description of our algorithm for WkS-RSP.

Algorithm 1 WkS-RSP.
1: for t = 1 to T do
2: Input: request σt ∈ U , and ℓt ∈ {0, . . . , k}.
3: {Recall: It is the ℓt-extension of It−1.}
4: flag ← FALSE
5: for ℓ = k to 1 do
6: {Decide movements of servers in decreasing order of weight.}
7: {flag = TRUE indicates that an unforced movement of some server heavier than the

ℓ’th has happened.}
8: Compute Qℓ

t(sℓ+1
t , . . . , sk

t) (by brute force).
9: if flag OR ℓ ≤ ℓt then

10: sℓ
t ← a uniformly random point in Qℓ

t(sℓ+1
t , . . . , sk

t). {forced movement}
11: else if sℓ

t−1 /∈ Qℓ
t(sℓ+1

t , . . . , sk
t) then

12: sℓ
t ← a uniformly random point in Qℓ

t(sℓ+1
t , . . . , sk

t). {unforced movement}
13: flag ← TRUE.
14: else
15: sℓ

t ← sℓ
t−1. {no movement}

16: end if
17: end for
18: end for

Note that it is unclear so far why Algorithm 1 is well-defined – why the set Qℓ
t(sℓ+1

t , . . . , sk
t)

is nonempty when we attempt to send the ℓ’th server to a uniformly random point in it in
steps 10 and 12 – and why every request gets served. We provide an answer now.

▶ Lemma 15. For every t ∈ {1, . . . , T} the following statements hold with probability one.

1. For every ℓ ∈ {0, . . . , k}, there exists a feasible labeling γ of It with respect to ρt such
that γ(Li

t) = si
t for all i ∈ {ℓ + 1, . . . , k}.

2. For every ℓ ∈ {1, . . . , k}, the set Qℓ
t(sℓ+1

t , . . . , sk
t) is non-empty.

3. Algorithm 1 serves the t’th request.

Proof. For an arbitrary t ∈ {1, . . . , T}, we prove the lemma by reverse induction on ℓ ∈
{0, . . . , k} in an interleaved manner. More precisely, as the base case, we prove the first claim
for ℓ = k. Assuming that the first claim holds for an arbitrary ℓ > 0, we prove that the
second claim holds for the same ℓ. Assuming that the second claim holds for an arbitrary
ℓ > 0, we prove that the first claim holds for ℓ− 1. Finally, assuming that the first claim
holds for ℓ = 0, we prove that the third claim holds.

As the base case, we need to prove the first claim for ℓ = k. We know that the service
pattern It that the adversary provides is feasible. This implies that there exists a feasible
labeling γ of It with respect to ρt. The condition γ(Li

t) = si
t for all i ∈ {ℓ + 1, . . . , k} is

vacuously true.
For the inductive step, assume that the first claim holds for some 0 < ℓ ≤ k. Hence,

there exists a feasible labeling γ of It such that γ(Li
t) = si

t, for all i ∈ {ℓ + 1, . . . , k}. By
Definition 10, the point γ(Lℓ

t) lies in Qℓ
t(sℓ+1

t , . . . , sk
t). Thus, Qℓ

t(sℓ+1
t , . . . , sk

t) ̸= ∅.

N. Ayyadevara, A. Chiplunkar, and A. Sharma 6:11

We designed the algorithm so that sℓ
t is guaranteed to be in Qℓ

t(sℓ+1
t , . . . , sk

t). By
Definition 10, there exists a feasible labeling γ′ of It such that γ′(Li

t) = si
t for all i ∈ {ℓ, . . . , k}.

Hence, the first claim holds for ℓ− 1 as well. This proves the first two claims.
Finally, since the first claim holds for ℓ = 0, there exists a feasible labeling γ of It with

respect to ρt such that γ(Li
t) = si

t for all i ∈ {1, . . . , k}. By definition of feasibility of a
labeling (Definition 5), γ must assign the label σt to some interval in It that contains t.
Since the only intervals in It that contains t are the Li

t’s, we must have σt = si
t for some i.

Since si
t’s are the positions of the algorithm’s servers after processing the t’th request, the

request gets served. ◀

4.3 Competitive Analysis
We begin by proving that the algorithm indeed maintains Invariant 14 after serving every
request.

▶ Lemma 16. For every t ∈ {1, . . . , T}, every ℓ ∈ {1, . . . , k}, and every pℓ+1, . . . , pk ∈ U ,
conditioned on si

t = pi for all i ∈ {ℓ + 1, . . . , k} and Qℓ
t(pℓ+1, . . . , pk) ̸= ∅, sℓ

t is a uniformly
random point in Qℓ

t(pℓ+1, . . . , pk).

Proof. We prove this lemma by induction of time t. The base case of t = 1 is true because
we are assuming ℓ1 = k, which makes the condition in step 9 of the algorithm true.

Consider the inductive case, where t > 1. Note that the algorithm executes exactly
one step out of 10, 12, and 15. Conditioned on the algorithm executing step 10 or 12, sℓ

t

is located at a uniformly random point in Qℓ
t(pℓ+1, . . . , pk) by design. On the other hand,

suppose the algorithm executes step 15, that is, the checks in steps 9 and 11 fail. Then
the fact that the check of step 9 failed implies that the algorithm did not move any server
heavier than the ℓ’th. Thus (sℓ+1

t−1, . . . , sk
t−1) = (sℓ+1

t , . . . , sk
t) = (pℓ+1, . . . , pk). Therefore, by

induction hypothesis, sℓ
t−1 is a uniformly random point in Qℓ

t−1(pℓ+1, . . . , pk). Additionally,
conditioned on the failure of the check in step 11, sℓ

t−1 ∈ Qℓ
t(sℓ+1

t , . . . , sk
t), so sℓ

t = sℓ
t−1

is a uniformly random point in Qℓ
t−1(pℓ+1, . . . , pk) ∩ Qℓ

t(pℓ+1, . . . , pk). But by Lemma 13,
Qℓ

t−1(pℓ+1, . . . , pk) ∩Qℓ
t(pℓ+1, . . . , pk) = Qℓ

t(pℓ+1, . . . , pk), so sℓ
t is a uniformly random point

in Qℓ
t(pℓ+1, . . . , pk). Thus, irrespective of which one of steps 10, 12, and 15 is executed, sℓ

t is
a uniformly random point in Qℓ

t(pℓ+1, . . . , pk), and this implies the claim. ◀

Having established that our algorithm is well-defined and that it indeed serves every
request, we now focus on bounding the cost of algorithm’s solution. For each ℓ ∈ {1, . . . , k},
define the random variables Xℓ and Y ℓ to be the number of forced movements and unforced
movements respectively, of the algorithm’s ℓ’th server. First, we bound Xℓ for all ℓ as follows.

▶ Lemma 17. The following inequalities hold with probability one.
1. Xℓ ≤ Xℓ+1 + Y ℓ+1 + |Iℓ

T | for all ℓ ∈ {1, . . . , k − 1}.
2. Xk ≤ |Ik

T |.

Proof. For ℓ < k, every forced movement of the ℓ’th server happens at time t only if flag is
true or ℓ ≤ ℓt. Observe that in the former case, the (ℓ + 1)’th server must have moved at
time t too, so we charge the movement of the ℓ’th server to the movement of the (ℓ + 1)’th
server, which could be either forced or unforced. In the latter case, since IT is a hierarchical
service pattern, a new interval starts at time t in the ℓ’th level Iℓ

T of IT , so we charge the
movement of the ℓ’th server to that interval. The argument for the second claim is the same
as above except that flag is never true; a forced movement of the k’th server happens at
time t only if ℓt = k. ◀

FSTTCS 2024

6:12 A Decomposition Approach to the Weighted k-Server Problem

Next, we bound Y ℓ by first bounding the number of unforced movements of the ℓ’th
server in an arbitrary interval in which no forced movement of the ℓ’th server happens.

▶ Lemma 18. For every ℓ ∈ {1, . . . , k}, every pℓ+1, . . . , pk ∈ U , and every tbegin, tend such
that 1 ≤ tbegin < tend ≤ T + 1, the following holds. Conditioned on the event that sj

t = pj for
all j ∈ {ℓ + 1, . . . , k}, and all t ∈ (tbegin, tend), the expected number of unforced movements of
the algorithm’s ℓ’th server is at most H(nℓ), where H denotes the harmonic function defined
as H(n) = 1 + 1/2 + · · ·+ 1/n.

Proof. Conditioned on the event that sj
t = pj for all j ∈ {ℓ + 1, . . . , k} and all t ∈

(tbegin, tend), we use Lemma 13 to claim that Qℓ
t−1(pℓ+1, . . . , pk) ⊇ Qℓ

t(pℓ+1, . . . , pk) for
every t ∈ (tbegin, tend). For brevity we write Qt for Qℓ

t(pℓ+1, . . . , pk). Let Zt be the indicator
random variable of the event that an unforced movement happens at time t. From the
algorithm, we know that this event happens if and only if sℓ

t−1 ∈ Qt−1 \Qt. From Lemma 16,
we know that sℓ

t−1 is a uniformly random point in Qt−1. Thus,

E[Zt] = |Qt−1| − |Qt|
|Qt−1|

≤ 1
|Qt−1|

+ 1
|Qt−1| − 1 + · · ·+ 1

|Qt|+ 1 = H(|Qt−1|)−H(|Qt|)

Let t1 denote the earliest time t for which Qt ⊊ Qt−1. Then the expected number of unforced
movements is bounded as

tend−1∑
t=t1

E[Zt] ≤ 1 +
tend−1∑
t=t1+1

H(|Qt−1|)−H(|Qt|) = 1 + H(|Qt1 |)−H(|Qtend−1|).

Since Qt1 ⊊ Qt1−1 ⊆ U , by Lemma 12, we have |Qt1 | ≤ nℓ. By the second claim of Lemma 15,
|Qtend−1| ≥ 1. Thus, the expected number of unforced movements is at most H(nℓ). ◀

▶ Lemma 19. For every ℓ ∈ {1, . . . , k}, we have E[Y ℓ] ≤ H(nℓ) · E[Xℓ].

Proof. Let us condition on the sequence of timestamps at which a forced movement of
the ℓ’th server takes place. If t1, t2 are two consecutive timestamps in this sequence, it is
easy to notice that the servers ℓ + 1, . . . , k remain at the same position throughout this
interval. Then Lemma 18 applied to the interval (t1, t2) implies that the expected number of
unforced movements of the ℓ’th server in this interval is at most H(nℓ). Summing up over
all pairs t1, t2 of consecutive timestamps, we get E[Y ℓ|Xℓ = x] ≤ H(nℓ) · x, and therefore,
E[Y ℓ] ≤ H(nℓ) · E[Xℓ]. ◀

▶ Theorem 2. There is a randomized algorithm for WkS-RSP with a competitive ratio of
2O(k2).

Proof. From Lemma 15, we already know that Algorithm 1 serves every request in ρT .
Towards proving competitiveness of the algorithm, we first define the constants ck, . . . , c1
inductively as follows: ck = H(nk) + 1 and cℓ = (H(nℓ) + 1) · (cℓ+1 + 1), for every ℓ ∈
{1, . . . , k − 1}. We claim that for every ℓ ∈ {1, . . . , k}, the expected number of movements
of the algorithm’s ℓ’th server, which equals E[Xℓ] + E[Y ℓ], is at most cℓ times the number
of movements of the adversary’s ℓ’th server, which equals |Iℓ

T |. We prove this claim using
reverse induction on ℓ from k to 1.

For the base case, i.e. ℓ = k, from Lemma 19 we have that E[Y k] ≤ H(nk) · E[Xk]. From
Lemma 17, we know that E[Xk] ≤ |Ik

T |. Thus, the expected number of algorithm’s k’th
server movements is,

E[Xk] + E[Y k] ≤ (H(nk) + 1) · E[Xk] = ck · |Ik
T |.

N. Ayyadevara, A. Chiplunkar, and A. Sharma 6:13

For the inductive case, assume that E[Xℓ+1] + E[Y ℓ+1] ≤ cℓ+1 · |Iℓ+1
T |, for an arbitrary

ℓ ∈ {1, . . . , k−1}. From Lemma 19, we have that E[Y ℓ] ≤ H(nℓ) ·E[Xℓ], and from Lemma 17,
we have that E[Xℓ] ≤ E[Xℓ+1] + E[Y ℓ+1] + |Iℓ

T |. Thus, we have,

E[Xℓ] + E[Y ℓ] ≤ (H(nℓ) + 1) · E[Xℓ] ≤ (H(nℓ) + 1) ·
(
E[Xℓ+1] + E[Y ℓ+1] + |Iℓ

T |
)

.

Recall that IT = (I1
T , . . . , Ik

T) is a hierarchical service pattern, and therefore, |Iℓ+1
T | ≤ |Iℓ

T |.
Using this fact, the induction hypothesis, and the definition of cℓ, we get,

E[Xℓ]+E[Y ℓ] ≤ (H(nℓ)+1) ·
(
cℓ+1 · |Iℓ+1

T |+ |Iℓ
T |

)
≤ (H(nℓ)+1) ·(cℓ+1 +1) · |Iℓ

T | = cℓ · |Iℓ
T |,

as required.
As a consequence of the above inductive claim, the total cost of the algorithm is at most

max{c1, . . . , ck} = c1 times the cost of the adversary’s service pattern. Moreover, from the
recurrence relation defining ck, . . . , c1 and the upper bound on nℓ from Fact 11, it is clear
that c1 is 2O(k2). Thus, the competitive ratio of our algorithm is 2O(k2). ◀

5 Concluding Remarks and Open Problems

The main open question of finding the randomized competitive ratio of weighted k-server
on uniform metrics still remains unresolved. Our decomposition approach and the ran-
domized algorithm for WkS-RSP imply that the task of designing a 2poly(k)-competitive
randomized algorithm for weighted k-server on uniform metrics is equivalent to designing
a 2poly(k)-competitive algorithm for WkS-SPC. We do not know any non-trivial bounds on
the competitive ratio of WkS-SPC and it is not even clear whether it is easier or harder
than WkS-RSP in terms of competitiveness. While the known lower bound constructions for
weighted k-server also apply to WkS-RSP, these constructions fail to get a lower bound on
the competitive ratio of WkS-SPC. We therefore propose the open problem of finding bounds
on the competitive ratio of WkS-SPC in the deterministic as well as randomized setting.

In the deterministic setting, the competitive ratio of WkS-SPC is bounded from below by
the competitive ratio of weighted k-server divided by the competitive ratio of WkS-RSP, again
due to Theorem 1. However, for this to give a non-trivial lower bound on the competitive
ratio of WkS-SPC, we require an upper bound on the competitive ratio of WkS-RSP that is
less than the known lower bound on the competitive ratio of weighted k-server. Unfortunately,
no such upper bound is known. Thus, showing a separation between weighted k-server and
WkS-RSP is an interesting open problem.

Additionally, we also believe that closing the quadratic gap between the exponents in the
upper and lower bounds on the randomized competitive ratio of WkS-RSP is an interesting
open problem, because it will result in a better understanding of the weighted k-server
problem.

Finally, for the weighted k-server problem with k > 2, no weight-independent and metric-
independent upper bounds on the competitive ratio are known on any well-structured class of
metrics larger than the class of uniform metrics. Proving such bounds seems rather ambitious,
given our limited understanding of weighted k-server on uniform metrics.

References
1 Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized pa-

ging algorithms. Theor. Comput. Sci., 234(1-2):203–218, 2000. doi:10.1016/S0304-3975(98)
00116-9.

FSTTCS 2024

https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1016/S0304-3975(98)00116-9

6:14 A Decomposition Approach to the Weighted k-Server Problem

2 Nikhil Ayyadevara and Ashish Chiplunkar. The randomized competitive ratio of weighted
k-server is at least exponential. In ESA, volume 204 of LIPIcs, pages 9:1–9:11. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ESA.2021.9.

3 Nikhil Bansal, Marek Eliás, and Grigorios Koumoutsos. Weighted k-server bounds via
combinatorial dichotomies. In FOCS, pages 493–504, 2017. doi:10.1109/FOCS.2017.52.

4 Nikhil Bansal, Marek Eliás, Grigorios Koumoutsos, and Jesper Nederlof. Competitive al-
gorithms for generalized k-server in uniform metrics. In SODA, pages 992–1001, 2018.
doi:10.1137/1.9781611975031.64.

5 Shai Ben-David, Allan Borodin, Richard M. Karp, Gábor Tardos, and Avi Wigderson. On
the power of randomization in on-line algorithms. Algorithmica, 11(1):2–14, 1994. doi:
10.1007/BF01294260.

6 Sébastien Bubeck, Christian Coester, and Yuval Rabani. The randomized k-server conjecture
is false! In STOC, pages 581–594. ACM, 2023. doi:10.1145/3564246.3585132.

7 Ashish Chiplunkar and Sundar Vishwanathan. Randomized memoryless algorithms for the
weighted and the generalized k-server problems. ACM Trans. Algorithms, 16(1):14:1–14:28,
2020. doi:10.1145/3365002.

8 Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator,
and Neal E. Young. Competitive paging algorithms. J. Algorithms, 12(4):685–699, 1991.
doi:10.1016/0196-6774(91)90041-V.

9 Amos Fiat and Moty Ricklin. Competitive algorithms for the weighted server problem.
Theoretical Computer Science, 130(1):85–99, 1994. doi:10.1016/0304-3975(94)90154-6.

10 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Efficient algorithms and hardness
results for the weighted k-server problem. In APPROX/RANDOM, volume 275 of LIPIcs,
pages 12:1–12:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/
LIPIcs.APPROX/RANDOM.2023.12.

11 Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. J. ACM,
42(5):971–983, 1995. doi:10.1145/210118.210128.

12 Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive algorithms for
on-line problems. In STOC, pages 322–333, 1988. doi:10.1145/62212.62243.

13 Lee A. Newberg. The k-server problem with distinguishable servers. Master’s thesis, University
of California, Berkeley, 1991.

14 René Sitters. The generalized work function algorithm is competitive for the generalized
2-server problem. SIAM J. Comput., 43(1):96–125, 2014. doi:10.1137/120885309.

15 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and
paging rules. Commun. ACM, 28(2):202–208, 1985. doi:10.1145/2786.2793.

16 Neal E. Young. On-line file caching. Algorithmica, 33(3):371–383, 2002. doi:10.1007/
s00453-001-0124-5.

A Lower Bound for WkS-RSP

In this section, we show that the lower-bound construction for weighted k-server by Ayy-
adevara and Chiplunkar [2] applies to WkS-RSP and gives the same lower bound. In [2]
the generation of an adversarial request sequence involves repeatedly calling a randomized
recursive procedure named strategy. Their analysis bounds the adversary’s cost and the
expected cost of an arbitrary deterministic algorithm, both amortized per strategy call. Then
the exponential lower bound is established by an application of Yao’s principle. We show that
essentially the same adversarial construction of input distribution works for WkS-RSP. The
only change needed in the construction is that now the adversary must provide its service
pattern along with the requested point in an online manner.

https://doi.org/10.4230/LIPIcs.ESA.2021.9
https://doi.org/10.1109/FOCS.2017.52
https://doi.org/10.1137/1.9781611975031.64
https://doi.org/10.1007/BF01294260
https://doi.org/10.1007/BF01294260
https://doi.org/10.1145/3564246.3585132
https://doi.org/10.1145/3365002
https://doi.org/10.1016/0196-6774(91)90041-V
https://doi.org/10.1016/0304-3975(94)90154-6
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.12
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.12
https://doi.org/10.1145/210118.210128
https://doi.org/10.1145/62212.62243
https://doi.org/10.1137/120885309
https://doi.org/10.1145/2786.2793
https://doi.org/10.1007/s00453-001-0124-5
https://doi.org/10.1007/s00453-001-0124-5

N. Ayyadevara, A. Chiplunkar, and A. Sharma 6:15

The weights of the servers are 1, β, . . . , βk−1 where β is a large integer. The sequence
n0, n1, . . . is defined as n0 = 1 and for ℓ > 0,

nℓ =
(⌈nℓ−1

2

⌉
+ 1

)
·
(⌊nℓ−1

2

⌋
+ 1

)
.

The adversarial strategy in [2] uses the following combinatorial result from [3].

▶ Fact 20 ([3]). Let ℓ ∈ N and let P be a set of nℓ points. There exists a set-system Qℓ ⊆ 2P

satisfying the following properties.
1. Qℓ contains ⌈nℓ−1/2⌉+ 1 sets, each of size nℓ−1.
2. For every p ∈ P , there exists a set in Qℓ not containing p.
3. For every p ∈ P , there exists a q ∈ P such that every set in Qℓ contains at least one of p

and q.

We modify the adversarial strategy from [2] for weighted k-server to get the following
strategy for WkS-RSP.

Procedure 2 adversary.

Mark all points in S;
repeat infinitely many times

Pick a point p uniformly at random from S (with replacement);
Mark p;
if All points in S are marked then

ℓext ← k;
Unmark all points q ∈ S other than p;

else
ℓext ← k − 1;

Call strategy(k − 1, S \ {p}, ℓext);

Procedure 3 strategy(ℓ, P, ℓext) (Promise: |P | = nℓ and ℓext ≥ ℓ).

if ℓ = 0 (and therefore, |P | = n0 = 1) then
Output (p, ℓext), where p is the unique point in P ;

else
Construct the set-system Qℓ ⊆ 2P using Fact 20;
repeat (β − 1) · (⌈nℓ−1/2⌉+ 1) times

Pick a set P ′ uniformly at random from Qℓ (with replacement);
Call strategy(ℓ− 1, P ′, ℓext);
ℓext ← ℓ− 1;

The following claim bounds the expected cost of an arbitrary online algorithm for every
strategy call made by adversary. Its proof is identical to the proof of Corollary 6 in [2]. It is
noteworthy that all the arguments involved in that proof go through even in the revealed
service pattern setting.

▶ Lemma 21. For ℓext = k or k−1, the expected cost of the algorithm per strategy(k−1, P, ℓext)
call made by adversary is (β − 1)k−1/(nk−1 + 1).

We now show that the service pattern I = (I1, . . . , Ik) created by the procedure adversary
is feasible, that is, it can be labeled in a way that all requests get served. We start by noting
the following.

FSTTCS 2024

6:16 A Decomposition Approach to the Weighted k-Server Problem

▶ Observation 22. Let (pt1 , ℓt1), . . . , (pt2 , ℓt2) be the input generated by a strategy(ℓ, P, ℓext)
call which starts at time t1 and ends at time t2. Then ℓt1 = ℓext ≥ ℓ and ℓt1+1, . . . , ℓt2 are all
less than ℓ. As a consequence, the following statements about the adversary’s service pattern
I = (I1, . . . , Ik) hold.
1. For all ℓ′ ≥ ℓ, a single interval in Iℓ′ covers the interval [t1, t2 + 1).
2. For all ℓ′ ≤ ℓ, the interval in Iℓ′ covering t1 starts at t1, and the interval in Iℓ′ covering

t2 ends at t2 + 1.
In particular, [t1, t2 + 1) is an interval in Iℓ.

▶ Lemma 23. Consider an arbitrary strategy(ℓ, P, ℓext) call which starts at time t1, ends
at time t2, and generates the input (pt1 , ℓt1), . . . , (pt2 , ℓt2). Suppose for all ℓ′ > ℓ, the single
interval in Iℓ′ covering [t1, t2+1) is labeled with some point pℓ′ , such that P∩{pℓ+1, . . . , pk} ≠
∅. Then the intervals in I1, . . . , Iℓ that intersect [t1, t2 + 1) (and therefore, are subsets of
[t1, t2 + 1)) can be labeled in such a way that for all t ∈ {t1, . . . , t2} there exists i ∈ {1, . . . , k}
such that the unique interval in Ii covering t is labeled with pt.

Proof. We prove by induction on ℓ. For ℓ = 0, the set P contains a single point, which gets
requested. Since P ∩ {p1, . . . , pk} ̸= ∅, the claim holds.

For ℓ > 0, consider a point p ∈ P ∩ {pℓ+1, . . . , pk}. From the third property in Fact 20,
there exists a point q ∈ P such that every set in the set system Qℓ contains at least one of
the points p or q. Label the interval [t1, t2 + 1) in Iℓ by such a point q. Consider an arbitrary
recursive call strategy(ℓ− 1, P ′, ℓext) which starts at time t′

1 ≥ t1 and ends at time t′
2 ≤ t2.

We have P ′ ∩ {q, pℓ+1, . . . , pk} ≠ ∅. By induction hypothesis, the intervals in I1, . . . , Iℓ−1

that intersect [t′
1, t′

2 + 1) can be labeled in such a way that for all t ∈ {t′
1, . . . , t′

2} there exists
i ∈ {1, . . . , k} such that the unique interval in Ii covering t is labeled with pt. ◀

▶ Lemma 24. The service pattern I = (I1, . . . , Ik) created by the procedure adversary is
feasible.

Proof. Every interval in Ik starts exactly when all points in S are found to be marked. For
every interval Ik in Ik do the following. Label it by the point q whose marking results in
the beginning of the next interval in Ik. In other words, q is the last point to get marked
after the unmarking step in the beginning of Ik. Thus, q is never sampled by adversary
during the interval Ik, and therefore q belongs to the set S \ {p} passed to every strategy call
made by adversary during the interval Ik. Thus, by Lemma 23 for ℓ = k − 1, the intervals
in I1, . . . , Ik−1 that are subsets of Ik can be labeled in such a way that all requests given
during the interval Ik are served. Thus, the service pattern I is feasible. ◀

Now, we bound the cost of the service pattern I = (I1, . . . , Ik) created by the procedure
adversary. We start by bounding the total cost of intervals created during a strategy(ℓ, P, ℓext)
call.

▶ Lemma 25. Define the sequence c0, c1, . . . inductively as follows: c0 = 0 and for ℓ > 0

cℓ = βℓ−1 + β · (⌈nℓ−1/2⌉+ 1) · cℓ−1

For an arbitrary ℓ ∈ {0, . . . , k − 1} and ℓext ≥ ℓ, consider a call of strategy(ℓ, P, ℓext) which
starts at time t1 and ends at time t2. The total cost of the intervals in layers I1, . . . , Iℓ that
intersect the interval [t1, t2 + 1) (equivalently, are subsets of [t1, t2 + 1), by Observation 22)
is at most cℓ.

N. Ayyadevara, A. Chiplunkar, and A. Sharma 6:17

Proof. We prove this by induction on ℓ. The claim is trivially true for ℓ = 0. For ℓ > 0, the
strategy(ℓ, P, ℓext) makes (β − 1) · (⌈nℓ−1/2⌉ + 1) recursive calls of strategy(ℓ − 1, P ′, ℓext).
For each of these calls, the following holds by induction hypothesis. If the call starts at time
t′
1 ≥ t1 and ends at time t′

2 ≤ t2, then the total cost of intervals in layers I1, . . . , Iℓ−1 that
intersect the interval [t′

1, t′
2 + 1) is at most cℓ−1. Since there are (β − 1) · (⌈nℓ−1/2⌉ + 1)

such recursive calls the total cost of intervals in layers I1, . . . , Iℓ−1 that intersect the interval
[t1, t2 + 1) is at most (β − 1) · (⌈nℓ−1/2⌉ + 1) · cℓ−1. Adding to this the cost βℓ−1 of the
interval [t1, t2 + 1) ∈ Iℓ gives the required bound. ◀

▶ Theorem 3. The randomized competitive ratio of WkS-RSP is Ω(2k).

Proof. Consider the service pattern I = (I1, . . . , Ik) of the adversary. Every interval
in Ik starts with one marked point and ends just before all the points in the set S are
marked in the procedure adversary. Using the standard coupon collector argument, we get
that the expected number of strategy(k − 1, S \ {p}, ℓext) made during an interval in Ik is
(nk−1 +1)H(nk−1). Thus, the amortized cost of intervals in Ik per strategy(k−1, S \{p}, ℓext)
call is βk−1/((nk−1 + 1)H(nk−1)). From Lemma 25, we get that the total cost of intervals in
I1, . . . , Ik−1 per strategy(k − 1, S \ {p}, ℓext) call is at most ck−1. The cost of the revealed
service pattern per strategy(k−1, S\{p}, ℓext) call is at most βk−1/((nk−1+1)H(nk−1))+ck−1.
The rest of the proof is identical to the proof of Theorem 2 in [2]. Essentially, for a large β,
the dominant term in the adversary’s cost is βk−1/((nk−1 +1)H(nk−1)), while the algorithm’s
cost is βk−1/(nk−1 + 1) modulo a lower order term due to Lemma 21, thus implying a lower
bound of H(nk−1) = Ω(2k) on the competitive ratio. ◀

FSTTCS 2024

Minimum Consistent Subset in Trees and Interval
Graphs
Aritra Banik #

National Institute of Science, Education and
Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, India

Sayani Das #

Theoretical Computer Science,
The Institute of Mathematical Sciences,
Chennai, India

Anil Maheshwari #

School of Computer Science, Carleton University,
Ottawa, Canada

Bubai Manna #

Department of Mathematics, Indian Institute of
Technology Kharagpur, India

Subhas C. Nandy #

Advanced Computing and Microelectronics Unit,
Indian Statistical Institute, Kolkata, India

Krishna Priya K. M. #

National Institute of Science, Education and
Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, India

Bodhayan Roy #

Department of Mathematics, Indian Institute of
Technology Kharagpur, India

Sasanka Roy #

Advanced Computing and Microelectronics Unit,
Indian Statistical Institute, Kolkata, India

Abhishek Sahu #

National Institute of Science, Education and
Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, India

Abstract
In the Minimum Consistent Subset (MCS) problem, we are presented with a connected simple
undirected graph G, consisting of a vertex set V (G) of size n and an edge set E(G). Each vertex in
V (G) is assigned a color from the set {1, 2, . . . , c}. The objective is to determine a subset V ′ ⊆ V (G)
with minimum possible cardinality, such that for every vertex v ∈ V (G), at least one of its nearest
neighbors in V ′ (measured in terms of the hop distance) shares the same color as v. The decision
problem, indicating whether there exists a subset V ′ of cardinality at most l for some positive integer
l, is known to be NP-complete even for planar graphs.

In this paper, we establish that the MCS problem is NP-complete on trees. We also provide
a fixed-parameter tractable (FPT) algorithm for MCS on trees parameterized by the number of
colors (c) running in O(26cn6) time, significantly improving the currently best-known algorithm
whose running time is O(24cn2c+3). In an effort to comprehensively understand the computational
complexity of the MCS problem across different graph classes, we extend our investigation to interval
graphs. We show that it remains NP-complete for interval graphs, thus enriching graph classes where
MCS remains intractable.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Graph algorithms analysis; Theory of computation → Dynamic graph algorithms

Keywords and phrases Nearest-Neighbor Classification, Minimum Consistent Subset, Trees, Interval
Graphs, Parameterized complexity, NP-complete

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.7

Related Version Full Version: https://arxiv.org/abs/2404.15487

Funding Aritra Banik: Supported by the Science and Engineering Research Board (SERB) via the
project MTR/2022/000253.
Anil Maheshwari: Supported by Natural Sciences and Engineering Research Council of Canada
(NSERC)
Bodhayan Roy: Supported by the Science and Engineering Research Board (SERB) via the project
MTR/2021/000474.

© Aritra Banik, Sayani Das, Anil Maheshwari, Bubai Manna, Subhas C. Nandy, Krishna Priya K. M.,
Bodhayan Roy, Sasanka Roy, and Abhishek Sahu;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aritra@niser.ac.in
mailto:sayani.dasmath@gmail.com
mailto:anil@scs.carleton.ca
https://orcid.org/0000-0002-1274-4598
mailto:bubaimanna11@gmail.com
mailto:nandysc@isical.ac.in
mailto:krishnapriya.km@niser.ac.in
mailto:bodhayan.roy@gmail.com
mailto:sasanka@isical.ac.in
mailto:abhisheksahu@niser.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.7
https://arxiv.org/abs/2404.15487
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Minimum Consistent Subset in Trees and Interval Graphs

1 Introduction

For many supervised learning algorithms, the input comprises a colored training dataset T

in a metric space (X , d) where each element t ∈ T is assigned a color C(t) from the set of
colors [c]. The objective is to preprocess T in a manner that enables rapid assignment of
color to any uncolored element in X , satisfying specific optimality criteria. One commonly
used optimality criterion is the nearest neighbor rule, where each uncolored element x is
assigned a color based on the colors of its k nearest neighbors in the training dataset T

(where k is a fixed integer). The efficiency of such an algorithm relies on the size of the
training dataset. Therefore, it is crucial to reduce the size of the training set while preserving
distance information. This concept was formalized by Hart [11] in 1968 as the minimum
consistent subset (MCS) problem. In this problem, given a colored training dataset T , the
objective is to find a subset S ⊆ T of minimum cardinality such that for every point t ∈ T ,
the color of t is the same as the color of one of its nearest neighbors in S. Since its inception,
the MCS problem has found numerous applications, as can be judged by over 2800 citations
to [11] in Google Scholar.

The MCS problem for points in ℜ2 under the Euclidean norm is shown to be NP-complete
if at least three colors color the input points. Furthermore, it remains NP-complete even for
two colors [15, 12]. Recently, it has been shown that the MCS problem is W[1]-hard when
parameterized by the output size [5]. For some algorithmic results on the MCS problem in
ℜ2, see [3, 15].

In this paper, we explore the minimum consistent subset problem when (X , d) is a graph
metric. Without loss of generality, we will use [n] to denote the set of integers {1, . . . , n}.
For any graph G, we denote the set of vertices of G by V (G) and the set of edges by E(G).
Consider any graph G and an arbitrary vertex coloring function C : V (G) → [c]. For a subset
of vertices U , let C(U) represent the set of colors of the vertices in U , formally denoted
as C(U) = {C(u) : u ∈ U}. For any two vertices u, v ∈ V (G), the shortest path distance
between u and v in G is denoted by d(u, v). For a vertex v ∈ V (G) and any subset of
vertices U ⊆ V (G), let d(v, U) = minu∈U d(v, u). The nearest neighbors of v in the set U

are denoted as NN(v, U), formally defined as NN(v, U) = {u ∈ U : d(v, u) = d(v, U)}. A
subset of vertices S ⊆ V (G), is called a consistent subset for (G, C) if for every v ∈ V (G),
C(v) ∈ C(NN(v, S)). The consistent subset problem on graphs is defined as follows:

Consistent Subset Problem on Graphs(CSPG)

Input: A graph G, a coloring function C : V (G) → [c], and an integer ℓ.
Question: Does there exist a consistent subset of size ≤ ℓ for (G, C)?

A consistent subset of minimum size is called a minimum consistent subset (MCS).
Banerjee et al. [2] proved that the CSPG is W[2]-hard [6] when parameterized by the size of
the minimum consistent set, even when limited to two colors, thus refuting the possibility of
an FPT algorithm parameterized by (c + ℓ) under standard complexity-theoretic assumptions
for general graphs. This naturally raises the question of determining the simplest graph
classes where the problem remains computationally intractable. Dey et al. [8] presented
a polynomial-time algorithm for CSPG on simple graph classes such as paths, spiders,
combs, and caterpillars. The CSPG has gained significant research attention in recent years
when the underlying graph is a tree. Dey et al. [7] presented a polynomial-time algorithm
for bi-colored trees, and Arimura et al. [1] presented an XP algorithm parameterized by
the number of colors c, with a running time of O(24cn2c+3). Very recently, the paper [4]
demonstrated a polynomial time algorithm for the minimum consistent spanning subset (a
variant of MCS) in trees.

A. Banik et al. 7:3

New Results. The most intriguing question yet to be answered is whether CSPG remains
NP-hard for trees [1, 7]. In this paper, we decisively answer this question in the affirmative.
This is particularly noteworthy given the scarcity of naturally occurring problems known to
be NP-hard on trees. Our contribution includes a reduction from the MAX-2SAT problem,
detailed in Section 3. Next, we show that CSPG is fixed-parameter tractable (FPT) for trees
on n vertices, significantly improving the results presented in Arimura et al. [1]. Our intricate
dynamic programming algorithm runs in O(26cn6) time, whereas [1] requires O(24cn2c+3)
time; see Section 4.

Moreover, in Section 5, we show that CSPG on interval graphs is NP-hard. While interval
graphs are unrelated to trees, our hardness result for interval graphs raises new questions
about the fixed-parameter tractability of CSPG on this distinct graph class.

2 Notation and Preliminary Results

Notations. For any graph G and any vertex v ∈ V (G), let N(v) = {u : u ∈ V (G), (u, v) ∈
E(G)} denotes the set of neighbours of v and N [v] = {v} ∪ N(v). We denote the distance
between two subgraphs G1 and G2 in G by d(G1, G2) = min{d(v1, v2) : v1 ∈ V (G1), v2 ∈
V (G2)}. For any subset of vertices U ⊆ V (G) in a graph G, G[U] denotes the subgraph of
G induced on U . Most of the symbols and notations of graph theory used are standard and
taken from [9].

As an elementary result, we prove that MCS is log-APX-hard [14]. We reduce the
dominating set problem to the consistent subset problem (CSPG). In the dominating set
problem given a graph G and an integer k the objective is to find out whether there exists a
subset U ⊆ V (G) of size k such that for any vertex v ∈ V (G), N [v] ∩ U ̸= ∅. It is known that
the set cover problem is log-APX-hard, or in other words, it is NP-hard to approximate the
set cover problem within a c · log n factor [13]. As there exists an L-reduction from set cover
to dominating set problem, the dominating set problem is known to be log-APX-hard. Let
(G, k) be any arbitrary instance of the dominating set problem with a graph G and an integer
k. We construct an instance (H, C, k + 1) of CSPG as follows. V (H) = V (G) ∪ {x} and
E(H) = E(G) ∪ {(x, v) : v ∈ V (G)}. For all v ∈ V (G), we set C(v) = 1, and set C(x) = 2.
For the sake of completeness, we state the following lemma.

▶ Lemma 1. There exists a dominating set for G of size at most k if and only if there is a
consistent subset of size at most k + 1 for the graph H.

Proof. Let D be a dominating set of size k for the graph G. We claim that D′ = {x} ∪ D

is a consistent subset of H. If not, then there is a vertex vi ∈ V (H) \ D′ such that
d(vi, D) > d(vi, x) = 1. This contradicts the assumption that D is a dominating set for G

and the claim holds.
On the other hand, suppose D′ is a consistent subset of size k + 1 in the graph H.

Observe that x ∈ D′ as x is the only vertex with color 2. We claim that D = D′ \ {x} is
a dominating set of G. If not, then there is a vertex v ∈ V (G)\D such that N(v) ∩ D = ∅.
Thus d(v, D′) > 1 but d(v, x) = 1 and C(v) ̸= C(x). This contradicts the assumption that C

is a consistent subset and hence the claim holds. ◀

From Lemma 1, we have the following theorem.

▶ Theorem 2. There exists a constant c > 0 such that it is NP-hard to approximate the
Minimum Consistent Set problem within a factor of c · log n.

FSTTCS 2024

7:4 Minimum Consistent Subset in Trees and Interval Graphs

3 NP-hardness of MCS for Trees

In this section, we prove that CSPG is NP-hard even when the input graph is a tree. We
present a reduction from MAX-2SAT problem to CSPG. Let θ be a given MAX-2SAT
formula with n variables {x1, . . . , xn} and m clauses {c1, . . . , cm}, n, m ≥ 50. We construct
an instance (Tθ, Cθ) of the MCS problem from θ as follows.

Interval Graph Construction.

Construction of (Tθ, Cθ).
The constructed tree Tθ is composed of variable gadgets, clause gadgets, and central
vertex gadgets.
Variable Gadget.
A variable gadget Xi for the variable xi ∈ θ has two components where each component
has a literal path and M pairs of stabilizer vertices, as described below (see Figure 1),
where M is very large (we will define the exact value of M later).
Literal paths: The two literal paths of the variable gadget Xi are P ℓ

i = ⟨x1
i , x2

i , x3
i , x4

i ⟩
and P

ℓ

i = ⟨x1
i , x2

i , x3
i , x4

i ⟩, each consisting of four vertices; these are referred to as
positive literal path, and negative literal path respectively. Here, by a path of k (> 2)
vertices, we mean a connected graph with k − 2 nodes having degree 2 and the
remaining two nodes having degree 1. All the vertices on the path P ℓ

i are of color cℓ
i

and all the vertices on the path P
ℓ

i are of color cℓ
i .

Stabilizer vertices: M pairs of vertices {s1
i , s1

i }, . . . , {sM
i , sM

i }, where the color of
each pair of vertices {sj

i , sj
i } is cs(i, j). We denote the set of vertices Si = {s1

i , . . . , sM
i }

as positive stabilizer vertices and the set of vertices Si = {s1
i , . . . , sM

i } as negative
stabilizer vertices. Each vertex in Si is connected to x1

i and each vertex in Si is
connected to x1

i .
The intuition behind this set of stabilizer vertices is that by setting a large value of
M we ensure that either {s1

i , . . . , sM
i } or {s1

i , . . . , sM
i } is present in any “small” sized

solution.
Clause Gadget.
For each clause ci = (yi ∨ zi), where yi and zi are two (positive/negative) literals,
we define the clause gadget Ci as follows. It consists of three paths, namely left
occurrence path P Y

i = ⟨y1
i , · · · y7

i ⟩, right occurrence path P Z
i = ⟨z1

i , · · · z7
i ⟩, and clause

path P W
i = ⟨w1

i , · · · w7
i ⟩ (see Figure 1). All the vertices in P Y

i (resp. P Z
i) have the

same color as that of the corresponding literal path in their respective variable gadgets,
i.e. for any literal, say yi in Ci, if yi = xi (resp. xi) then we set the color of the
vertices of P Y

i as cx
i (resp. cx

i). The color of the vertices on the path P Z
i is set in the

same manner. We color the vertices in P W
i by cw

i , which is different from that of the
vertices in P Y

i and P Z
i . We create the clause gadget Ci by connecting y1

i with w2
i and

z1
i with w6

i by an edge (see Figure 1).
Central Vertex Gadget.
We also have a central path P v = ⟨v1, v2, v3⟩. The color of all the vertices in P v is the
same, say cv, which is different from the color of all other vertices in the construction.
For each variable gadget Xi, x1

i and x1
i are connected with the vertex v1 (see Figure 1).

For each clause Ci, w4
i is connected with v1. The color of the vertices of P v is cv.

A. Banik et al. 7:5

x1 = false x2 = false x3 = false

(x1 ∨ x2) (x1 ∨ x3) (x2 ∨ x3)

x11

x41

x11

x41

x12

x42

x12

x42

x13

x43

x13

x43
s11

sM1

s11

sM1

s13

sM3

s13

sM3

y11
y71 z11

z71 y13
y73 z13

z73

w1
1 w7

1
w1

3 w7
3

v1
v3

w4
i w4

3

S1 S3

PW
1

PW
3

Figure 1 An example of construction of (Tθ, Cθ) where θ = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3). For
the assignment x1 = x2 = x3 = false, we have shown the corresponding CS with a red box around
the vertices. For the assignment x1 = x2 = x3 = false, (x1 ∨ x2) is not satisfied whereas the rest of
the clauses are satisfied.

Our objective is to show that there exists an MCS of size at most N(k) = n(M + 2) +
2k + 3(m − k) + 1 in the tree Tθ if at least k clauses of θ are satisfied; otherwise, the size
is strictly greater than N(k). We now prove a set of auxiliary claims about a minimum
consistent subset for (Tθ, Cθ).

▶ Lemma 3. For any consistent subset VC of size at most N(k) = n(M +2)+2k+3(m−k)+1
in the tree Tθ, the following are true.

For any variable xi, exactly one of the following is true.
Si ⊂ VC , Si ∩ VC = ∅, and x2

i , x4
i ∈ VC .

Si ⊂ VC , Si ∩ VC = ∅, and x2
i , x4

i ∈ VC

, and
v3 ∈ VC .

Lemma 3, states that by strategically choosing the vertices in a variable gadget, the
vertices of the tree corresponding to that variable gadget can be consistently covered by
choosing its only one set of stabilizer vertices.

Proof. For a variable xi, let Si∩VC ̸= ∅. Let sj
i ∈ Si∩VC . But then every vertex v ∈ Si\{sj

i }
must have a vertex within distance 2 of its own color, since dist(sj

i , v) = 2. Hence Si ⊂ VC .
One can similarly prove that Si ∩ VC ̸= ∅ =⇒ Si ⊆ VC . Also, every variable gadget contains
M uniquely colored vertices and hence has at least M vertices in VC . So, if M >> n, we
have that N(k) < (n + 1)M , and there exists no variable gadget that contains vertices from
both Si and Si. In other words exactly one of the following holds for every variable gadget
corresponding to a variable xi:

Si ⊂ VC , Si ∩ VC = ∅
Si ⊂ VC , Si ∩ VC = ∅,

FSTTCS 2024

7:6 Minimum Consistent Subset in Trees and Interval Graphs

Below, we look into one of these cases, and a similar argument may be made for the other
case as well.

Case 1: Si ⊂ VC , Si ∩ VC = ∅. Notice that there must be a vertex in the literal path
{x1

i , x2
i , x3

i , x4
i } from {x1

i , x2
i } of the variable gadget Xi since dist(Si, x1

i) = 1 and the distance
to any other vertex of the same color (other than these two vertices) is more than 1. But
x1

i /∈ VC , as Si ∩ VC = ∅ and dist(x1
i , Si) < dist(Si, Si). Hence x2

i ∈ VC .
Similarly there must be a vertex in the literal path {x1

i , x2
i , x3

i , x4
i } of the variable gadget

Xi since dist(Si, x1
i) = 3 and the distance to any other vertex of the same color (other

than {x2
i , x3

i , x4
i }) is more than 3. And the distance of 4 between Si and Si eliminates the

possibility of belonging any of x1
i , x2

i or x3
i belonging in VC . Thus, x4

i ∈ VC .

Case 2: Si ⊂ VC , Si ∩ VC = ∅. Case 2 may be argued in a manner similar to Case 1.
Moreover, VC must contain at least one veretx from the set {v1, v2, v3}. However, the

distance of 4 between Si and Si rules out the possibility of either v1 or v2 being in VC .
Consequently, v3 ∈ VC . ◀

To satisfy the inequality in the above lemma, we now set the value of M as n3. In the
next lemma, we present a bound on the vertices from each clause gadget that are contained
in a consistent subset of size at most N(k). For any clause Ci, denote the corresponding
clause gadget by T C

i = G[{wa
i , ya

i , za
i |1 ≤ a ≤ 7}].

▶ Lemma 4. In any consistent subset VC of the tree Tθ, for each clause Ci, 2 ≤ |V (T C
i)∩VC |.

Proof. There needs to be a vertex among the vertices {wa
i | 1 ≤ a ≤ 7} since they are

distinctly colored from all other vertices. If this vertex belongs to {wa
i | 1 ≤ a ≤ 4}, then

there must also be a vertex in {ya
i | 1 ≤ a ≤ 7} since the nearest vertex of the same color

(any ya
i) is farther away than the vertex with the color of any wa

i . Similarly, if this vertex
belongs to {wa

i | 4 ≤ a ≤ 7}, then there must be a vertex in {za
i | 1 ≤ a ≤ 7}. Therefore,

2 ≤ |V (T C
i) ∩ VC |. ◀

▶ Theorem 5. There exists a truth assignment of the variables in θ which satisfies at least k

clauses if and only if there exists a consistent subset of size at most N(k) for (Tθ, Cθ).

Proof. (⇒) For the forward direction, let there exist an assignment A to the variables of θ

that satisfies k clauses. Consider the following set of vertices VA. For each variable xi if xi is
true, include all the vertices of Si in VA. Also include x2

i and x4
i in VA. If xi = false then

include all the vertices of Si in VA. Also include x4
i and x2

i in VA.
For every satisfied clause Ci = (yi ∨ zi) with respect to A we include the following vertices

in VA. Without loss of generality assume that yi = true. We include w7
i and z1

i in VA. For
every unsatisfied clause Ci = (yi ∨ zi), we include w1

i , y1
i and z7

i in VA. We also include v3
in VA.

Observe that the cardinality of VA is N(k) = n(M + 2) + 2k + 3(m − k) + 1. Next, we
prove that VA is a consistent subset for Tθ. Observe that for any pair of vertices (sj

i , sj
i),

exactly one of them is in VA. Without loss of generality assume that sj
i ∈ VA. Observe that

d(sj
i , sj

i) = d(sj
i , VA) = 4. If xi = true then d(xj

i , x2
i) ≤ d(xj

i , VA) and d(xj
i , x4

i) ≤ d(xj
i , VA).

The case when xi = false is symmetric.
For any clause gadget either w1

i or w7
i is in VA. Without loss of generality assume that

w1
i ∈ VA. Observe that for every vertex wj

i , d(wj
i , w1

i) = d(wj
i , VA). Let Ci = (yi ∨ zi) be

a satisfied clause and without loss of generality assume that yi = xj = true. Observe

A. Banik et al. 7:7

that d(y1
i , x2

j) = 6, and d(y3
i , VA) = 6, and d(ya

i , x2
j) = d(ya

i , VA). For any unsatisfied
clause Ci = (yi ∨ zi) observe that d(ya

i , x2
j) = d(ya

i , VA). Also for any vj where 1 ≤ j ≤ 3
d(vj , v3) = d(vj , VA). Therefore VA is a consistent subset for Tθ.
(⇐) In the backward direction, let there be a consistent subset VC of size at most N(k) for
(Tθ, Cθ). We know from Lemma 3 that either Si ⊂ VC or Si ⊂ VC . From Lemma 3 any such
solution has at least n(M + 2) + 1 many vertices from VC outside the clause gadgets leaving
at most 2k + 3(m − k) that may be chosen from the clause gadgets.

Each clause gadget comprises of vertices of three distinct colors: one color exclusive to
the clause itself and two colors dedicated to literals. An essential insight is that if there
are no vertices in VC of colors specific to the literals from a clause in the variable gadgets,
then such a clause gadget must contain at least three vertices from VC . This assertion is
valid because the distance between two sets of vertices of the same color (corresponding to
the same literal in two clauses) across any two clauses is at least 8, while vertices in VC of
clause-specific colors are at a distance of at most 6.

This fact, coupled with Lemma 4 implies that there are at least k clauses for whom colors
specific to at least one of their literals have the vertices in VC of the same color from the
variable gadgets. Making the same literals true and setting other variables arbitrarily gives
us an assignment that satisfies at least k clauses. ◀

4 MCS for Trees: A Parameterized Algorithm

In this section, we consider the optimization version of the MCS problem for the trees.

Minimum Consistent Subset for Trees Parameter: c

Input: A rooted tree T , whose vertices V (T) are coloured with a set C of c colours.
Question: Find the minimum possible size of a consistent subset (MCS) for T?

We consider T as a rooted tree by taking an arbitrary vertex r as its root. We use V (T ′)
to denote the vertices of a subtree T ′ of T , and C(U) ⊆ C to denote the subset of colors
assigned to subset of vertices U ⊆ V , and C(u) to denote the color attached to the vertex
u ∈ V (T). For any vertex v, let ηv denote the number of children of v and we denote the
children of v by v1, v2, · · · , vηv

. We denote the subtree rooted at a vertex v by T (v). For
any vertex v and any integer i < ηv, we use Ti+(v) to denote the union of subtrees rooted
at vi+1 to vηv

, and Ti(v) to denote the subtree rooted at v and containing first i many
children of v. Thus, Ti+(v) = ∪i+1≤j≤ηv T (vj), which is a forest, and Ti(v) = T (v) \ Ti+(v).
In Figure 2(a), the light yellow part is Ti(v), and the light sky-colored part is Ti+(v). We
define T out(v) = T \ T (v).

For any positive integer d and for any vertex v ∈ V (T), a set of vertices U ⊂ V (T) is
called d-equidistant from v if d(ui, v) = d for all ui ∈ U . Any subset of vertices U spans
a set of colors C ′ ⊆ C if C(U) = C ′. For any vertex v ∈ V (T), we use E sib

i (v, d, C ′) (resp.
Eout

i (v, d, C ′)) to denote the set of subsets of vertices in Ti+(v) (resp. T \ T (v)), which are
d-equidistant from v and span the colors in C ′. Next, we define a (partial) consistent subset
for a subtree Ti(v).

Intuition. Our dynamic programming (DP) routine exploits the key observation that a
(partial) consistent subset (formally defined below) for a subtree T (v) can be computed
in FPT time. This computation is possible given the distance to the closest vertex in the
consistent subset that lies outside T (v) and the colors of those vertices. The entries in our

FSTTCS 2024

7:8 Minimum Consistent Subset in Trees and Interval Graphs

v1 vi
Ti+

Ti

v

vη

(a)

v

v1 vi
Ti(v)

S in

v S sib

v

S out

v

NN(v, S in

v)
NN(v, S sib

v)

NN(v, S out

v)

(b)

Figure 2 Illustration of the bottom-up dynamic programming routine, ■ vertices denotes
consistent subset. δin

S = 1, δout
S = 2, δsib

S = 1.

DP table store the minimum size of partial consistent subsets for all subtrees Ti(v). These
subsets are defined based on six parameters: distance to the closest vertex from v in the
consistent subset in Ti(v), T out(v) and Ti+(v) and colors of these three set of closest vertices.

▶ Definition 6. Let din ∈ Z+
0 and dout, dsib ∈ Z+, and let three subsets of colors C in, Cout, C sib ⊆

C. A (partial) consistent subset of the subtree Ti(v) with respect to the parameters din, dout,
dsib, C in, Cout, C sib is defined as a set of vertices W ⊆ V (Ti(v)) such that for any arbitrary
subset X ∈ E sib

i (v, dsib, C sib) and Y ∈ Eout

i (v, dout, Cout) (assuming they exist), W satisfies the
following (see Figure 2(b)):

d(v, W) = din. (i.e., the distance of v to its nearest member(s) in W is din)
C(NN(v, W)) = C in. (i.e., C in is the set of colors of the nearest members of v in the
set W)
For every vertex u ∈ Ti(v), C(u) ∈ C(NN(u, W ∪ X ∪ Y)).

Note that for some values of din, dout, dsib, C in, Cout, C sib there may not exist any (partial)
consistent subset for Ti(v); in such a case we define it is undefined. Also note that, for
some values, the (partial) consistent subset can be empty as well, such as when din = ∞ and
C(u) ∈ C(NN(u, X ∪ Y)) for every vertex u ∈ Ti(v). For ease of notation, we will denote a
(partial) consistent subset for Ti(v) as a consistent subset with respect to the parameters
din, dout, dsib, C in, Cout, C sib.

Consider an arbitrary consistent subset ST of T , an arbitrary vertex v ∈ V (T) and
an integer i ∈ [ηv] (see Figure 2(b)). For any vertex v ∈ V (T) and 1 ≤ i ≤ ηv, define
S in

v = ST ∩ V (Ti(v)), Ssib
v = ST ∩ V (Ti+(v)), and Sout

v = ST ∩ V (T \ T (v)). Also define
δin

S = d(v, S in
v), C in

S = C(NN(v, S in
v)), δsib

S = d(v, Ssib
v), C sib

S = C(NN(v, Ssib
v)), δout

S = d(v, Sout
v),

Cout
S = C(NN(v, Sout

v)). Let W be any arbitrary (partial) consistent subset with respect to the
parameters δin

S , δout
S , δsib

S , C in
S , Cout

S , C sib
S (see Definition 6). Next, we have the following lemma.

▶ Lemma 7. SW = (ST \ S in
v) ∪ W is a consistent subset for T .

Proof. Suppose that A = W ∪ NN(v, Ssib
v) ∪ NN(v, Sout

v) is the set of vertices which are
either in W or in the nearest neighbor of v outside Ti(v) in SW . We will show that for any
vertex u ∈ Ti(v), NN(u, SW) ⊆ A and there is a vertex in NN(u, A) of the color same as
u. Similarly, let B = (SW \ W) ∪ NN(v, W). We show that for any vertex w outside Ti(v),
NN(w, SW) ⊆ B and there is a vertex in NN(w, B) of the color same as w. Please note
that A and B are not necessarily disjoint.

A. Banik et al. 7:9

Consider a vertex u ∈ Ti(v) and w ∈ T \ Ti(v). Since NN(v, Ssib
v) ∈ E sib

i (v, δsib
S , C sib

S),
NN(v, Sout

v) ∈ Eout

i (v, δout
S , Cout

S), and W is a consistent subset with respect to the parame-
ters δin

S , δout
S , δsib

S , C in
S , Cout

S , C sib
S , we have C(u) ∈ C(NN(u, W ∪ NN(v, Ssib

v) ∪ NN(v, Sout
v))) =

C(NN(u, A)). Also, as ST is a consistent subset, we have C(w) ∈ C(NN(w, ST \ S in
v) ∪ C in

S).
From the properties of W , we have C(NN(v, W)) = C in

S . Hence, C(w) ∈ C(NN(w, B)). Thus,
to prove the result, it is enough to show that (i) no vertex from B \ A can be the closest to
the vertex u in the set SW , and (ii) no vertex from A \ B can be the closest vertex of w in
the set SW . We prove these two claims by contradiction.

Assume that Claim (i) is false. Then, there will be a vertex x ∈ B \ A, which is closest
to u. Note that, (B \ A) ∩ ((Ti(v) ∪ NN(v, Ssib

v) ∪ NN(v, Sout
v)) = ∅. Hence we have d(u, x) =

d(u, v) + d(v, x), d(v, x) > min(δsib
S , δout

S). This is a contradiction as the closest vertex from v

in SW ∪ (T \ Ti(v)) (if it exists) is at distance min(δsib
S , δout

S) = d(v, NN(v, Ssib
v) ∪ NN(v, Sout

v)).
Hence, x cannot be the closest vertex of u in SW . Thus, Claim (i) follows.

Now, assume that Claim (ii) is false. Then there is a vertex y ∈ A\B, which is closest to w.
As w ̸∈ Ti(v) and y ∈ Ti(v), we have d(w, y) = d(w, v) + d(v, y). Since d(v, NN(v, W)) = δin

S

and w ∈ (A \ B = W \ NN(v, W)), we have d(v, y) > δin
S . This contradicts the fact that the

closest vertex from v in SW ∪ Ti(v) (if it exists) is at distance δ
in from v. Hence, Claim (ii)

is true. ◀

Motivated by Lemma 7, we design the following algorithm based on the dynamic program-
ming technique. For each choice of v ∈ V (T), i ∈ [ηv], δin

v ∈ [n] ∪ {0, ∞}, δout
v ∈ [n] ∪ {∞},

δsib
v ∈ [n]∪{∞}, and C in

v , Cout
v , C sib

v ⊆ C, we define a subproblem which computes the cardinality
of a minimum sized (partial) consistent subset for the subtree Ti(v) with respect to the pa-
rameters ⟨δin

v , δout
v , δsib

v , C in
v , Cout

v , C sib
v ⟩, and denote its size by P (Ti(v), δin

v , δout
v , δsib

v , C in
v , Cout

v , C sib
v).

Let us use δmin
v = min(δin

v , δout
v , δsib

v).

A =
{

C in
v if δin

v = δmin
v

∅ otherwise
, B =

{
C sib

v if δsib
v = δmin

v

∅ otherwise
, D =

{
Cout

v if δout
v = δmin

v

∅ otherwise

We define Cmin
v = A ∪ B ∪ D. Note that δmin

v is the distance of the closest vertex to v in
any X ∈ E sib

i (v, δsib
v , C sib

v), any Y ∈ Eout

i (v, δout
v , Cout

v) or the consistent subset, and that Cmin
v

denotes the colors of all such vertices.
To compute any DP entry, we take into account the following six cases. The first two

cases are for checking whether a DP entry is valid. The third case considers the scenario
in which v is part of the solution; the fourth, fifth, and sixth cases collectively consider the
scenario in which v is not in the solution.

Case 1: If C(v) /∈ Cmin
v , return undefined.

Case 2: δin
v = 0 and C in

v ̸= {C(v)}. Here, return ∞.
Case 3: δin

v = 0 and C in
v = {C(v)}. Here, return P (Ti(v), δin

v , δout
v , δsib

v , C in
v , Cout

v , C sib
v) =

1 +
∑

1≤j≤i

{
min
δ,C′

P
(

Tηvj
(vj), δ, 1, ∞, C ′, {C(v)}, ∅

)}

Explanation. Case 1 and Case 2 are self-explanatory. Case 3 implies that the vertex v

is included in the consistent subset. Consequently, for the optimal solution, we need to
determine a consistent subset for each tree rooted at a child vj of v, independently of each
other, assuming that v is part of the consistent subset (refer to Figure 2(a)). For every child vj

of v, we iterate through all possible choices of C ′ ⊆ C and δin
vj

= δ ∈ {1, . . . , h(T (vj)} ∪ {∞}

FSTTCS 2024

7:10 Minimum Consistent Subset in Trees and Interval Graphs

vjv1 vi

v

vjηvj
vj1

Ti+(v)

Figure 3 Illustration of the Case 3, where δin
v = 0.

where h(T (vj)) is the height of the tree rooted at vj , to identify the minimum consistent
subset for Tηvj

(vj). This is done with the constraints that the closest vertex in the consistent
subset inside Tηvj

(vj) is at a distance of δ and spans C ′. For any vertex in T (vj), the path of
the closest vertex of its own color outside Ti(v) has to pass through v, which is considered to
be in the consistent subset and has color C(v). Thus, δout

v = 1 is taken for the tree Tηvj
(vj).

Since we are solving for the complete tree rooted at vj with no siblings, we set the distance
to the closest sibling vertex as δsib

v = ∞ and the corresponding color set as ∅.

Notations for Subsequent Cases. In the rest of the section, we consider three more cases
where δin

v > 0, and hence δin
v , δout

v , δsib
v > 0. Intuitively, while solving the problem recursively,

we will recursively solve MCS in Ti−1(v) and Tηvi
(vi). We try all possible sets of choices

of Ca, Cb with C in
v = Ca ∪ Cb, and recursively solve for a solution assuming that the nodes

of colors in Ca are present in Ti−1(v) at a distance of δin
v (if Ca ̸= ∅ and such choices are

feasible) and nodes of colors in Cb ⊆ C in
v are present in Tηvi

(vi) at a distance of δin
v − 1 from

vi (if Cb ̸= ∅ and such choices are feasible).

v1 vi

v

Ti+(v)
vi−1v2

Ti−1(v)

Ca Cb

Figure 4 Illustration of the Case 4.

Case 4: Ca, Cb ̸= ∅. In this case, the closest vertices in the consistent subset from v in both
Ti−1(v) and Tη(vi)(vi) are located at a distance of precisely δin

v . We start by defining the
following. Let δx = min(δin

v , δsib
v) and recall δmin

v = min(δin
v , δout

v , δsib
v).

Observe that both Ti+(v) and Tηvi
(vi) contains siblings of Ti−1(v). Thus, in a hypothetical

consistent subset, which is compatible with the current partial consistent subset, for the
tree T , the closest vertices from v in T(i−1)+(v) are either in Ti+(v) or Tηvi

(vi). Here, δx is

A. Banik et al. 7:11

trying to capture this distance information, and C sib
i−1 represents the colors of such vertices.

Similarly, from vi in a hypothetical consistent subset CS for T , which is compatible with
the current partial consistent subset, δmin

v + 1 denotes the distance to the vertices in CS

contained in T \ T (vi). Note that these vertices can be either in T(i−1)(v) or in Ti+(v) or
in T \ T (v). Cout

i represents the colors of such vertices.

C sib
i−1 =

Cb if δin

v < δsib
v and Cb ̸= ∅

Cb ∪ C sib
v if δin

v = δsib
v

C sib
v otherwise

Also, define Cout
i = A ∪ B ∪ D, where

A =
{

Ca if δin
v = δmin

v

∅ otherwise
, B =

{
C sib

v if δsib
v = δmin

v

∅ otherwise
, D =

{
Cout

v if δout
v = δmin

v

∅ otherwise

Now we can safely assume that there is a δx-equidistant set from v contained in T(i−1)+(v)
that spans C sib

i−1.

Return P (Ti(v), δin
v , δout

v , δsib
v , C in

v , Cout
v , Csib

v) = min
Ca,Cb

(
P

(
Ti−1(v), δin

v , δout
v , δx, Ca, Cout

v , Csib
i−1

)
+ P

(
Tηvi

(vi), δin
v − 1, δmin

v + 1, ∞, Cb, Cout
i , ∅

))
Explanation. In this case we iterate over all possible choices of Ca and Cb, assuming
Ca, Cb ̸= ∅ and Ca ∪ Cb = C in

v . In the first part of the recursive formula, we recursively
solve the problem for the tree Ti−1(v) with the restriction that we have to include a set of
vertices of color Ca in Ti−1(v) at distance δin

v from v (see Figure 2(b)). The restriction on
Cout

v and δout
v among the vertices in T \ T (v) remains the same as that of the parent problem.

Regarding C sib
v and δsib

v , observe that vertices in T (vi) and Ti+ are part of T(i−1)+. Therefore
the parameters for the sibling depend on the value of δin

v and δsib
v , and accordingly, we have

defined C sib
i−1.

In the second part of the recursive formula, we are solving the problem recursively for
the tree Tηvi

(vi), with the restriction that, in the consistent set in the consistent set we have
to include a set of vertices from Tηvi

(vi) which are of colors Cb, and at distance δin
v − 1 from

vi. Observe that the vertices in Ti−1(v), Ti+(v) and T \ T (v) are all outside T (vi). Thus the
restriction on the distance to the vertices on the consistent subset outside T (vi) and their
colors depend on the values of δin

v , δsib
v and δout

v . Thus the distance δout
v of this subproblem is

defined as δmin
v = min(δin

v , δsib
v , δout

v), and the set of colors Cout
i is defined accordingly. As we

are solving for the whole tree rooted at vi, there are no siblings; so δsib
v = 0 and C sib

i = ∅.

Case 5: Ca = ∅ and Cb = C in
v . Note that in this case, the closest vertices in the consistent

subset from v in Tη(vi)(vi) are located at a distance of δin
v while in Ti−1(v), they are

located at a distance of at least δ ≥ δin
v + 1

We iterate over all values δ > δin
v and all possible choices of colors to find the size of a

minimum consistent subset. We define δx and C sib
i−1 the same as in Case 4. For any values

δ > δin
v and C ⊆ [c], we define δmin

v (δ, C) = min(δ, δsib
v , δout

v), and Cout
i (δ, C) = A ∪ B ∪ D

where

A =
{

C if δ = δmin
v

∅ otherwise
, B =

{
C sib

v if δsib
v = δmin

v

∅ otherwise
, D =

{
Cout

v if δout
v = δmin

v

∅ otherwise

FSTTCS 2024

7:12 Minimum Consistent Subset in Trees and Interval Graphs

From vi in a hypothetical consistent subset CS for T , which is compatible with the
current partial consistent subset, δmin

v (δ, C) denotes the distance to the vertices in CS

contained in T \ T (vi). Note that these vertices can be either in T(i−1)(v) or in Ti+(v) or
in T \ T (v). Cout

i (δ, C) represents the colors of such vertices.

Return P (Ti(v), δin
v , δout

v , δsib
v , C in

v , Cout
v , Csib

v) = min
δ>δin

v ,C⊆[c]

(
P

(
Ti−1(v), δ, δout

v , δx, C, Cout
v , Csib

i−1

)
+ P

(
Tηvi

(vi), δin
v − 1, δmin

v (δ, C) + 1, ∞, Cb, Cout
i (δ, C), ∅

))
Explanation. The explanation for this case is the same as Case 4 except for the fact that
we have to make sure that the closest vertex chosen in the consistent subset from Ti−1(v) is
at distance at least δin

v + 1.

Case 6: Cb = ∅ and Ca = C in
v .

Here we consider the case when Cb = ∅ and Ca = C in
v . Note that in this case, the closest

vertices in the consistent subset from v in Ti−1(v) are located at a distance of δin
v while in

Tη(vi)(vi), they are located at a distance of at least δ ≥ δin
v + 1

We define δmin
v (δ, C) = min(δin

v , δsib
v , δout

v). We define Cout
i (δ, C) = A ∪ B ∪ D where

A =
{

Ca if δin
v = δmin

v

∅ otherwise
, B =

{
C sib

v if δsib
v = δmin

v

∅ otherwise
, D =

{
Cout

v if δout
v = δmin

v

∅ otherwise

For any values δ > δin
v and C ⊆ [c] we define δx(δ, C) = min(δsib

v , δ) We define C sib
i−1(δ, C) =

E ∪ F where

E =
{

C if δ = δx(δ, C)
∅ otherwise

, F =
{

C sib
v if δsib

v = δx(δ, C)
∅ otherwise

The meaning and the reasoning behind the defining of δmin
v (δ, C) and Cout

i (δ, C) remains the
same as in previous cases. Thus, in a hypothetical consistent subset, which is compatible
with the current partial consistent subset, for the tree T , the closest vertices from v

in T(i−1)+(v) are either in Ti+(v) or Tηvi
(vi). Here, δx(δ, C) is trying to capture this

distance information, and C sib
i−1(δ, C) represents the colors of such vertices.

In this case we return:

Return P (Ti(v), δin
v , δout

v , δsib
v , C in

v , Cout
v , C sib

v) =
min

δ>δin
v , C⊆[c]

(
P

(
Ti−1(v), δin

v , δout
v , δx(δ, C), Ca, Cout

v , C sib
i−1(δ, C)

)
+P

(
Tηvi

(vi), δ, δmin
v + 1, ∞, Cb, C, ∅

))
Explanation. The explanation for this case is the same as the previous two cases.

Running time of the algorithm. The total number of choices of δin
v , δout

v , δsib
v , C in

v , Cout
v and

C sib
v is bounded by n323c. For each choice Ca and Cb, the algorithm takes at-most n2c time

to go through all possible entries of δ and C (in case 5 and case 6) and there are at-most
22c choices of Ca and Cb. The recursion runs for at most n2 times. Hence, the worst-case
running time of the algorithm is O(26cn6).

A. Banik et al. 7:13

5 NP-hardness of MCS for Interval Graphs

A graph H is said to be an interval graph if there exists an interval layout of the graph H,
or in other words, for each node, vi ∈ V (H) one can assign an interval αi on the real line
such that (vi, vj) ∈ E(H) if and only if αi and αj (completely or partially) overlap in the
layout of those intervals.

We prove that the Minimum Consistent Subset problem is NP-complete even when the
input graph is an interval graph. We present a reduction from the Vertex Cover problem for
cubic graphs. It is known that Vertex Cover remains NP-complete even for cubic graphs [10].
For any set of intervals I, let G(I) be the interval graph corresponding to the set of intervals I.

Interval Graph Construction.

Interval Graph Construction.
Let G be any cubic graph, where V (G) = {v1, . . . , vn} is the set of vertices, and
E(G) = {e1, . . . , em} is the set of edges in G. We create the set of intervals IG for G

on a real line L. The set of intervals in IG is represented by intervals of three different
sizes, medium, small and large, where each medium interval is of unit length, each
small interval is of length ϵ << 1

2n3 and the length of the large interval is ℓ >> 2n.
We define IG = I1 ∪ I2 ∪ I3 ∪ I4 where I1 contains 2m medium size intervals (two
intervals for each edge) and defined as I1 = {I(ei, vj) : ei = (vj , y) ∈ E(G), y ∈ V (G)}.
We set color ci to the interval I(ei, vj). I2 contain n · n3 small intervals of color cm+1,
and I3 contain n · n4 small intervals of color cm+1. I4 contains one large interval Iℓ of
color c1.
We create the following vertex gadget Xi for each vertex vi ∈ V (G). Xi contains the
following medium size intervals {I(e, vi) : e = (vi, x) ∈ E(G)} corresponding to the
edges that are incident on vi. These intervals span the same region si of unit length on
the real line L; hence they are mutually completely overlapping. In the vertex gadget
Xi, we also include a total of n3 mutually non-overlapping small intervals in the set
I2. Span of all the small intervals in Xi is contained in the span si of the medium
sized intervals in Xi (see Figure 5).
Each vertex gadget is placed one after another (in a non-overlapping manner) along
the line L in an arbitrary order, such that a total of n4 mutually non-overlapping small
intervals can be drawn between two consecutive vertex gadgets. Thus, I3 contains n

sets of n4 non-overlapping small intervals. Finally, I4 contains a single large interval
Iℓ that contains all the intervals in I1 ∪ I2 ∪ I3. This completes the construction.

n3 small intervals
n4 small intervalsmedium intervals

G

IG

v1

v2

v3

v4

IℓX1 X2 X3 X4

Figure 5 An example reduction.

▶ Lemma 8. The graph G has a vertex cover of size at most k if and only if the corresponding
interval graph G(IG) has a consistent subset of size at most K = k(3 + n3).

FSTTCS 2024

7:14 Minimum Consistent Subset in Trees and Interval Graphs

Proof. With a slight abuse of notations, we will denote the vertex in G(IG) corresponding
to an interval I ∈ IG by I. (⇒) Let A ⊆ V (G) be a vertex cover of G. Consider the set of
intervals IA =

⋃
vi∈A Xi. We prove that IA is a consistent subset of G(IG). Note that as

|Xi| = 3 + n3, |IA| = k(3 + n3).
As the vertices in A cover all the edges in G, IA must contain at least one interval of each

color {c1, · · · , cm}. As the unit intervals in Xi associated with a vertex vi ∈ A are of colors
different from the color of the small intervals in Xi, IA contains at least n3 small intervals.
Therefore IA contains at least one interval from each color in {c1, . . . cm+1}. Observe that,
(i) the interval Iℓ ∈ I4 of color c1 contains an interval of color c1 that corresponds to the
edge e1, and (ii) the distance between any two nodes corresponding to medium intervals in
two different vertex gadgets of G(IG) is 2 (via the node corresponding to the interval Iℓ in
G(IG)). Thus, IA is a consistent subset.
(⇐) Let IB ⊆ IG be any consistent subset of G(IG) of cardinality (3 + n3)k. Now, if IB

contains Iℓ then |IG| − 2 ≤ |IB | ≤ |IG| because if e1 = (vi, vj) be the edge of color c1, then
we can only do not take the medium intervals of color c1 from the vertex gadget Xi and
Xj in IB because they are covered by Iℓ, which contradicts the fact that |IB | = (3 + n3)k.
Thus, we have Iℓ /∈ IB .

By the definition, IB contains at least one color from {c1, · · · , cm, cm+1}. Also, if IB

contains one interval from the gadget Xi of any vertex vi, then it must contain all the
intervals from Xi; otherwise, it can not be a consistent subset. Thus IB is the union X
of at most k sets from {Xi : i ∈ [n]}, and it contains at least one interval from each color
{c1, · · · , cm}, and a few intervals of color cm+1. Now, consider the set VB = {vi : Xi ∈ X },
which is a vertex cover for the graph G of size at most k.

Hence, the lemma is proved. ◀

6 Conclusion

We have shown that MCS is NP-complete for trees and interval graphs, and have given
an exact algorithm parameterized w.r.t. the number of colors for trees. As a direction for
future research, possibilities of approximating MCS can be explored for interval graphs and
related graph classes like circle graphs, circular arc graphs, etc. Parameterized algorithms
may also be explored where, in addition to a parameter for the number of colours, there is
also a parameter specifying the structural properties of the input graph.

References
1 Hiroki Arimura, Tatsuya Gima, Yasuaki Kobayashi, Hiroomi Nochide, and Yota Otachi.

Minimum consistent subset for trees revisited. CoRR, abs/2305.07259, 2023. doi:10.48550/
arXiv.2305.07259.

2 Sandip Banerjee, Sujoy Bhore, and Rajesh Chitnis. Algorithms and hardness results for
nearest neighbor problems in bicolored point sets. In Michael A. Bender, Martín Farach-
Colton, and Miguel A. Mosteiro, editors, LATIN 2018: Theoretical Informatics, pages 80–93,
2018. doi:10.1007/978-3-319-77404-6_7.

3 Ahmad Biniaz, Sergio Cabello, Paz Carmi, Jean-Lou De Carufel, Anil Maheshwari, Saeed
Mehrabi, and Michiel Smid. On the minimum consistent subset problem. Algorithmica,
83(7):2273–2302, 2021. doi:10.1007/S00453-021-00825-8.

4 Ahmad Biniaz and Parham Khamsepour. The minimum consistent spanning subset problem
on trees. Journal of Graph Algorithms and Applications, 28(1):81–93, 2024. doi:10.7155/
JGAA.V28I1.2929.

https://doi.org/10.48550/arXiv.2305.07259
https://doi.org/10.48550/arXiv.2305.07259
https://doi.org/10.1007/978-3-319-77404-6_7
https://doi.org/10.1007/S00453-021-00825-8
https://doi.org/10.7155/JGAA.V28I1.2929
https://doi.org/10.7155/JGAA.V28I1.2929

A. Banik et al. 7:15

5 Rajesh Chitnis. Refined lower bounds for nearest neighbor condensation. In Sanjoy Das-
gupta and Nika Haghtalab, editors, International Conference on Algorithmic Learning The-
ory, 29 March - 1 April 2022, Paris, France, volume 167 of Proceedings of Machine Learn-
ing Research, pages 262–281. PMLR, 2022. URL: https://proceedings.mlr.press/v167/
chitnis22a.html.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer Publishing
Company, Incorporated, 1st edition, 2015.

7 Sanjana Dey, Anil Maheshwari, and Subhas C. Nandy. Minimum consistent subset problem
for trees. In Evripidis Bampis and Aris Pagourtzis, editors, Fundamentals of Computation
Theory - 23rd International Symposium, FCT 2021, Athens, Greece, September 12-15, 2021,
Proceedings, volume 12867 of Lecture Notes in Computer Science, pages 204–216. Springer,
2021. doi:10.1007/978-3-030-86593-1_14.

8 Sanjana Dey, Anil Maheshwari, and Subhas C. Nandy. Minimum consistent subset of simple
graph classes. Discret. Appl. Math., 338:255–277, 2023. doi:10.1016/J.DAM.2023.05.024.

9 Reinhard Diestel. Graph theory, volume 173 of. Graduate texts in mathematics, page 7, 2012.
10 Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-

complete graph problems. Theoretical Computer Science, 1(3):237–267, 1976. doi:10.1016/
0304-3975(76)90059-1.

11 Peter E. Hart. The condensed nearest neighbor rule (corresp.). IEEE Transactions on
Information Theory, 14(3):515–516, 1968. doi:10.1109/TIT.1968.1054155.

12 Kamyar Khodamoradi, Ramesh Krishnamurti, and Bodhayan Roy. Consistent subset problem
with two labels. In B.S. Panda and Partha P. Goswami, editors, Algorithms and Discrete
Applied Mathematics, pages 131–142, 2018. doi:10.1007/978-3-319-74180-2_11.

13 Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability pcp characterization of np. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, STOC ’97, pages 475–484, New York, NY,
USA, 1997. Association for Computing Machinery. doi:10.1145/258533.258641.

14 Vijay V. Vazirani. Approximation Algorithms. Springer Publishing Company, Incorporated,
2010.

15 Gordon Wilfong. Nearest neighbor problems. In Proceedings of the Seventh Annual Symposium
on Computational Geometry, SCG ’91, pages 224–233, 1991. doi:10.1145/109648.109673.

FSTTCS 2024

https://proceedings.mlr.press/v167/chitnis22a.html
https://proceedings.mlr.press/v167/chitnis22a.html
https://doi.org/10.1007/978-3-030-86593-1_14
https://doi.org/10.1016/J.DAM.2023.05.024
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1109/TIT.1968.1054155
https://doi.org/10.1007/978-3-319-74180-2_11
https://doi.org/10.1145/258533.258641
https://doi.org/10.1145/109648.109673

Beyond Decisiveness of Infinite Markov Chains
Benoît Barbot #

Univ Paris Est Creteil, LACL, F-94010 Creteil, France

Patricia Bouyer #

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles,
91190 Gif-sur-Yvette, France

Serge Haddad #

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles,
91190 Gif-sur-Yvette, France

Abstract
Verification of infinite-state Markov chains is still a challenge despite several fruitful numerical or
statistical approaches. For decisive Markov chains, there is a simple numerical algorithm that frames
the reachability probability as accurately as required (however with an unknown complexity). On
the other hand when applicable, statistical model checking is in most of the cases very efficient. Here
we study the relation between these two approaches showing first that decisiveness is a necessary
and sufficient condition for almost sure termination of statistical model checking. Afterwards we
develop an approach with application to both methods that substitutes to a non decisive Markov
chain a decisive Markov chain with the same reachability probability. This approach combines
two key ingredients: abstraction and importance sampling (a technique that was formerly used for
efficiency). We develop this approach on a generic formalism called layered Markov chain (LMC).
Afterwards we perform an empirical study on probabilistic pushdown automata (an instance of
LMC) to understand the complexity factors of the statistical and numerical algorithms. To the
best of our knowledge, this prototype is the first implementation of the deterministic algorithm for
decisive Markov chains and required us to solve several qualitative and numerical issues.

2012 ACM Subject Classification Mathematics of computing → Markov processes; Theory of
computation → Concurrency

Keywords and phrases Markov Chains, Infinite State Systems, Numerical and Statistical Verification

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.8

Related Version Full Version: https://doi.org/10.48550/arXiv.2409.18670 [3]

Supplementary Material Software (Source Code): https://git.lacl.fr/barbot/Cosmos
archived at swh:1:dir:36e5a6f37d834251fb9a96becb481e96f5c68e6c

Funding This work has been partly supported by ANR projects MAVeriQ (ANR-20-CE25-0012)
and BisoUS (ANR-22-CE48-0012).

1 Introduction

Infinite-state discrete time Markov chains. In finite Markov chains, computing reachability
probabilities can be performed in polynomial time using linear algebra techniques [14]. The
case of infinite Markov chains is much more difficult, and has initiated several complementary
proposals:

A first approach consists in analyzing the high-level probabilistic model that generates
the infinite Markov chains. For instance in [5], the authors study probabilistic pushdown
automata and show that the reachability probability can be expressed in the first-
order theory of the reals. Thus (by a dichotomous algorithm) this probability can be
approximated within an arbitrary precision.

© Benoît Barbot, Patricia Bouyer, and Serge Haddad;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 8; pp. 8:1–8:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benoit.barbot@lacl.com
https://orcid.org/0000-0003-2417-3064
mailto:patricia.bouyer@lmf.cnrs.fr
https://orcid.org/0000-0002-2823-0911
mailto:serge.haddad@lmf.cnrs.fr
https://orcid.org/0000-0002-1759-1201
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.8
https://doi.org/10.48550/arXiv.2409.18670
https://git.lacl.fr/barbot/Cosmos
https://archive.softwareheritage.org/swh:1:dir:36e5a6f37d834251fb9a96becb481e96f5c68e6c;origin=https://git.lacl.fr/barbot/Cosmos;visit=swh:1:snp:d6ac63543eb104087f5443c9a7601da52727688c;anchor=swh:1:rev:cbfc87f4ee3809247496bf79bf94e84382972651
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Beyond Decisiveness of Infinite Markov Chains

A second approach consists in designing algorithms, whose correctness relies on a semantic
property of the Markov chains, and which outputs an interval of the required precision
that contains the reachability probability. Decisiveness [1] is such a property: given
a target set T , it requires that almost surely, a random path either visits T or some
state from which T is unreachable. In order to be effective, this algorithm needs the
decidability of the (qualitative) reachability problem. For instance finite Markov chains
are decisive w.r.t. any set of states. Several other classes of denumerable Markov
chains are decisive by construction: Petri nets (or equivalently VASS) with constant
weights1 on transitions w.r.t. any upward-closed target set [1], lossy channel systems
with constant weights and constant message loss probability [1] w.r.t. any finite target
set, regular Petri nets with arbitrary weights w.r.t. any finite target set [7]. Also a
critical associated decision problem is the decidability of decisiveness in the high-level
model that generates the Markov chains. Decisiveness is decidable for several classes of
systems: probabilistic pushdown automata with constant weights [5], random walks with
polynomial weights [7] which can be generalized to probabilistic homogeneous one-counter
machines with polynomial weights [7]. This class is particularly interesting since it extends
the well-known model of quasi-birth death processes (QBDs).
The statistical model checking (SMC) [17, 16] approach consists in generating numerous
random paths and computing an interval of the required precision that contains the
reachability probability with an arbitrary high probability (the confidence level). As we
will show later on, the effectiveness of SMC also requires some semantic property, which
will happen to be decisiveness.

SMC and importance sampling. When the reachability probability is very small, the
SMC approach requires a huge number of random paths, which prohibits its use. In order
to circumvent this problem (called the rare event problem), several approaches have been
proposed (see for instance [13]), among which the importance sampling method. This seems
to be in practice, one of the most efficient approaches to tackle this problem. Importance
sampling consists in sampling the paths in a biased2 Markov chain (w.r.t. the original one)
that increases the reachability probability. In order to take into account the bias, a likelihood
for any path is computed (on-the-fly) and the importance sampling algorithm returns the
empirical average value of the likelihood. While the expected returned value is equal to the
reachability probability under evaluation, the confidence interval returned by the algorithm
is, without further assumption, only “indicative” (i.e., it does not necessary fulfill the features
of a confidence interval) – boundedness of the likelihood is indeed required (but hard to
ensure). In [4], a simple relation between the biased and the original finite Markov chain
is stated that (1) ensures that the confidence interval returned by the algorithm is a “true”
interval and that (2) the variance of the estimator (here the likelihood) is reduced w.r.t. the
original estimator, entailing an increased efficiency of the SMC.

Related work when the Markov chain is not decisive. Very few works have addressed the
effectiveness of SMC for infinite non decisive Markov chains. The main proposal [15] consists
in stopping the computation at each step with some fixed (small) probability. The successful
paths are equipped with a numerical value, whose average over the paths is returned by the

1 That is, each transition is assigned a weight, and the probability for a transition to be fired is its relative
weight w.r.t. all enabled transitions.

2 In the sense that probability values in the biased chain differ from the original chain.

B. Barbot, P. Bouyer, and S. Haddad 8:3

algorithm. It turns out that it is an importance sampling method, which has surprisingly not
been pointed out by the authors. However here again, since the likelihood is (in general) not
bounded, the interval returned by the algorithm is not a confidence interval. An alternative
notion called divergence has been proposed in [8] to partly cover the case of non-decisive
Markov chains.

Our contributions. We introduce the reward reachability problem (a slight generalization of
the reachability problem) by associating a reward with every successful path and looking
for the expected reward. We first establish that decisiveness is a necessary and sufficient
condition for the almost-sure termination of SMC for bounded rewards.

Our major contribution consists in establishing a relation between a non-decisive Markov
chain and an auxiliary Markov chain, called an abstraction, with the following property:
they can be combined into a biased Markov chain, which happens to be decisive; the
SMC with importance sampling on this chain provides a confidence interval for the
reachability probability of the original Markov chain.
We furthermore show that importance sampling can be applied to adapt (based on the
abstraction) the deterministic algorithm of [1].
Afterwards we illustrate the interest of this approach, by exhibiting a generic model called
layered Markov chains (LMC), which can be instantiated for instance by probabilistic
pushdown automata with polynomial weights. These automata cannot be handled with
the technique of [5].
Finally we present several experiments, based on the tool Cosmos [2], which compare
the SMC and the deterministic approaches. It allows to identify how various factors
impact the efficiency of the algorithms. We provide within the tool Cosmos the first
implementation of the deterministic approach for decisive Markov chains, which required
us to solve several numerical issues. As a rough summary, at the price of a confidence
level against certainty, the computing time of SMC is generally several magnitude orders
smaller than the one of the deterministic algorithm.

Organization. In section 2, we introduce the numerical and statistical specification of the
reward reachability problem, and we recall the notion of decisiveness. In section 3, we
focus on the decisiveness property establishing that decisiveness is a necessary and sufficient
condition for almost sure termination of statistical model checking. Section 4 contains our
main contribution: the specification of an abstraction of a Markov chain, its use for solving
the reward reachability problems for non decisive Markov chains via importance sampling
and the development of this method for LMCs. Afterwards in Section 5, we present some
implementation details and experimentally compare the deterministic and the statistical
approaches. We conclude and give some perspectives to this work in Section 6.

Some missing proofs and more details on the implementation can be found in the appendix.
Full proofs are given in [3].

2 Preliminaries

In this preliminary section we define Markov chains, and the decisiveness property.

▶ Definition 1. A discrete-time Markov chain (or simply Markov chain) C = (S, P) is defined
by a countable set of states S and a transition probability matrix P of size S × S. Given an
initial state s0 ∈ S, the state of the chain at time n is a random variable (r.v. in short)
XC,s0

n defined by: Pr
(
XC,s0

0 = s0
)

= 1 and Pr
(
XC,s0

n+1 = s′ |
∧

i≤n XC,s0
i = si

)
= P(sn, s′).

FSTTCS 2024

8:4 Beyond Decisiveness of Infinite Markov Chains

If C = (S, P) is a Markov chain, we write EC = {(s, s′) ∈ S × S | P(s, s′) > 0} for the
set of edges of C, and →C for the corresponding edge relation. A state s is absorbing if
P(s, s) = 1. A Markov chain C is said effective whenever for every s ∈ S, the support of
P(s, ·) is finite and computable, and for every s, s′ ∈ S, P(s, s′) is computable. A target
set T ⊆ S is said effective whenever its membership problem is decidable. In the following,
we will always consider effective Markov chains and effective target sets when speaking of
algorithms, without always specifying it.

A finite (resp. infinite) path is a finite (resp. infinite) sequence of states ρ = s0s1s2 . . . ∈ S+

(resp. Sω) such that for every 0 ≤ i, (si, si+1) ∈ EC . We write first(ρ) for s0, and whenever
ρ ∈ S+, we write last(ρ) for the last state of ρ. For every n ∈ N, we write ρ[n] def= sn and
ρ≤n

def= s0s1s2 . . . sn. If ρ = s0 . . . sn, Pr(ρ) is equal to
∏

i<n P(si, si+1) and corresponds to
the probability that this path is followed when starting from its initial state s0.

The random infinite path generated by process (XC,s0
n)n∈N will be denoted ϱC,s0 . Note that

s →∗
C s′ if and only if Pr

(
ϱC,s |= ♢{s′}

)
> 0 (we use the ♢ modality of temporal logics, which

expresses Eventually, and later, we will also write ♢>0 for the strict Eventually modality –
eventually but not now –, as well as ♢≤n for n-steps Eventually). Finally, for every s, s′ ∈ S, we
define the time from s to s′ as the random variable τC,s,s′ = min{i ∈ N | i > 0 and XC,s

i = s′},
with values in N>0 ∪ {+∞}. To ease the reading, we will omit subscripts C and T , or
superscripts C in the various notations, whenever it is obvious in the context.

In this paper we are interested in evaluating the probability to reach a designed target
set T from an initial state s0 in a Markov chain C, that is, µC,T (s0) def= Pr

(
ϱC,s0 |= ♢T

)
. In

general, it might be difficult to compute such a value, which will often not even be a rational
number. That is why like many other research works we will show how to compute accurate
approximations (surely or with a high level of confidence). We present our solutions in a
more general setting which would anyway be necessary in the following developments.

▶ Definition 2. Let T ⊆ S and ρ ∈ Sω. We let firstT (ρ) := min{i ∈ N | ρ[i] ∈ T} ∈ N∪{∞}.
Let L : S+ → R be a function. The function fL,T : Sω → R is then defined by:3

fL,T (ρ) :=
{

L
(
ρ≤firstT (ρ)

)
if firstT (ρ) ∈ N

0 otherwise

We say that fL,T (ρ) is the reward of ρ. The function fL,T is called the T -function for L;
let B ∈ R>0, fL,T is said B-bounded whenever max(|fL,T (ρ)| | ρ ∈ Sω) ≤ B. Observe that
fL,T could be B-bounded for some B even if L is unbounded.

We will be interested in evaluating the expected reward νC,L,T (s0) def= E
(
fL,T (ϱC,s0)

)
.4

Note that if L is constant equal to 1, then fL,T = 1♢T is the indicator function for paths
that visit T , in which case νC,L,T (s0) = µC,T (s0).

We define two problems related to the accurate estimation of these values:
The EvalER problem (EvalER stands for “Evaluation of the Expected Reward”) asks for a
deterministic algorithm, which:

1. takes as input a Markov chain C, an initial state s0, a computable function L : S+ →
R≥0, a target set T , a precision ε > 0, and

2. outputs an interval I ⊆ R of length bounded by ε such that νC,L,T (s0) ∈ I.
The particular case of the reachability probability (when L is constant equal to 1) is
denoted EvalRP.

3 This function is measurable as a pointwise limit of measurable functions.
4 E denotes the expectation.

B. Barbot, P. Bouyer, and S. Haddad 8:5

The EstimER problem (EstimER stands for “Estimation of the Expected Reward”) asks
for a probabilistic Las Vegas algorithm, which:

1. takes as input a Markov chain C, an initial state s0, a computable function L : S+ →
R≥0, a target set T , a precision ε > 0, a confidence value δ > 0, and

2. outputs a random interval I ⊆ R of length bounded by ε such that Pr
(
νC,L,T (s0) /∈

I
)

≤ δ, and E(mid(I)) = νC,L,T (s0), where mid(I) is the middle of interval I.5

The particular case of the reachability probability (when L is constant equal to 1) is
denoted EstimRP.

In [1], the concept of decisiveness for Markov chains was introduced. Roughly, decisiveness
allows to lift some “good” properties of finite Markov chains to countable Markov chains.
We recall this concept here. Let T ⊆ S and denote the “avoid set” of T by AvC(T) def= {s ∈
S | Pr(ϱC,s |= ♢T) = 0}.

▶ Definition 3. The Markov chain C is decisive w.r.t. T from s0 if Pr
(
ϱC,s0 |= ♢T ∨

♢AvC(T)
)

= 1.

3 Analysis of decisive Markov chains

We fix for this section a Markov chain C = (S, P), an initial state s0, a computable function
L : S+ → R≥0 and a target set T , and we assume w.l.o.g. that T is a set of absorbing states.
We present two approaches (extended from the original ones) to compute the expected value
of the function fL,T that require C to be decisive w.r.t. T from s0.

3.1 Decisiveness and approximation algorithm
In the original paper proposing the concept of decisiveness [1], “theoretical” approximation
schemes were designed. We slightly extend the one designed for reachability objectives in
our more general setting, see Algorithm 1.

Algorithm 1 Approximation scheme for the EvalER problem; the fair_extract operation
ensures that any element put in the set cannot stay forever in an execution including an
infinite number of extractions; a simple implementation can be done with a queue.

input : C = (S, P) a countable Markov chain, s0 ∈ S an initial state, L : S+ → R≥0
a computable function, T ⊆ S a target set s.t. AvC(T) is effective and fL,T

is B-bounded, ε > 0 a precision.
1 e := 0, pfail := 0, psucc := 0; set := {(1, s0)};
2 while 1 − (psucc + pfail) > ε/2B do
3 (p, ρ) := fair_extract(set); s := last(ρ);
4 if s ∈ T then e := e + p · L(ρ); psucc := psucc + p;
5 else if s ∈ Av(T) then pfail := pfail + p;
6 else
7 for s →C s′ do insert(set, (p · P(s, s′), ρs′));
8 end
9 return [e − ε/2, e + ε/2]

5 The last condition on the middle of I means that the estimator is unbiased.

FSTTCS 2024

8:6 Beyond Decisiveness of Infinite Markov Chains

The termination and correctness of this algorithm is established by the following proposi-
tion, whose proof is given in [3] and a special case of which is given in [1].

▶ Proposition 4 (Termination and correctness of Algorithm 1). Algorithm 1 solves the EvalER
problem if and only if C is decisive w.r.t. T from s0.

Up to our knowledge, the version of this algorithm for computing reachability probabilities
has not been implemented, hence the terminology “theoretical” scheme above. Also, there is
no known convergence speed. Later in section 5, we briefly describe an efficient implementation
of this scheme by designing some tricks.

3.2 Decisiveness and (standard) statistical model-checking
The standard statistical model-checking (SMC in short) consists in sampling a large number
of paths to simulate the random variables Xs0 = (Xs0

n)n≥0; a sampling is stopped when it
hits T or Av(T), and a value 1 (resp. 0) is assigned when T (resp. Av(T)) is hit; finally
the average of all the values is computed. This requires that almost-surely a path hits T or
Av(T), which is precisely decisiveness of the Markov chain w.r.t. T from s0. This allows to
compute an estimate of the probability to reach T . We describe more precisely the approach
and extend the context to allow the estimation of the expected value of fL,T .

Algorithm 2 Statistical model-checking for the EstimER problem.

input : C = (S, P) a countable Markov chain, s0 ∈ S an initial state, L : S+ → R a
computable function, T ⊆ S a target set s.t. AvC(T) is effective and fL,T is
B-bounded, ε > 0 a precision, δ > 0 a confidence value.

1 N :=
⌈

8B2

ε2 log
(2

δ

) ⌉
; f̂ := 0;

2 for i from 1 to N do
3 ρ := s0; s := s0;
4 while s /∈ T ∪ Av(T) do s′ := sample(P(s, ·)); ρ := ρs′; s := s′ ;
5 if s ∈ T then f̂ := f̂ + L(ρ);
6 end
7 f̂ := f̂

N ; return [f̂ − ε/2, f̂ + ε/2]

The SMC approach is presented as Algorithm 2 (where Av(T) is assumed to be effective).
This is in general a semi-algorithm, since it may happen that the while loop is never left at
some iteration i. Nevertheless, decisiveness ensures almost sure (a.s.) termination:

▶ Lemma 5. The while loop a.s. terminates if and only if C is decisive w.r.t. T from s0.

The correctness of the algorithm will rely on this proposition that can be straightforwardly
deduced from the Hoeffding inequality [10].

▶ Proposition 6. Let V1, . . . , VN be B-bounded independent random variables and let V =
1
N

∑N
i=1 Vi. Let ε, δ > 0 be such that N ≥ 8B2

ε2 log
(2

δ

)
. Then: Pr

(∣∣V − E
(
V

)∣∣ ≥ ε
2
)

≤ δ.

We can now state the following important result.

▶ Proposition 7 (Termination and correctness of Algorithm 2). Algorithm 2 solves the EstimER
problem if and only if C is decisive w.r.t. T from s0.

B. Barbot, P. Bouyer, and S. Haddad 8:7

Proof. The termination is a consequence of Lemma 5. The correctness is a consequence of
Proposition 6, by taking random variable Vi as fL,T

(
ϱC,s0

)
. In this case, V is equal to the

value of f̂ at the end of the algorithm, which completes the argument. ◀

While termination is guaranteed by the previous corollary the (time) efficiency of the
simulation remains a critical factor. In particular, the expected value D of the random time
τ s0,T ∪Av(T) to reach T ∪ Av(T) from s0 should be finite; in this case, the average simulation
time will be D and therefore the complexity of the whole approach will be linear in the
number of simulations. Decisiveness does not ensure this; so a dedicated analysis needs to be
done to ensure efficiency of the approach.

4 Beyond decisiveness

In the previous section, we have presented two generic approaches for analyzing infinite
(denumerable) Markov chains. They both only apply to decisive Markov chains. In this
section, we twist the previous approaches, so that they will be applicable to analyze some
non decisive Markov chains as well. Our proposition follows the following steps:

based on the importance sampling approach, we explain how the analysis of the original
Markov chain can be transferred to that of a biased Markov chain (Subsection 4.1);
we explain how a biased Markov chain can be automatically constructed via an abstraction,
and give conditions ensuring that the obtained biased Markov chain can be analyzed
(Subsection 4.2);
we give a generic framework based on layered Markov chains and random walks, with
conditions on various parameters to safely apply the designed approach (Subsection 4.3).

We fix an effective countable Markov chain C = (S, P), s0 ∈ S an initial state, L : S+ →
R≥0 a computable function, and T ⊆ F ⊆ S two effective sets, with both AvC(F) and AvC(T)
being effective (note that AvC(F) ⊆ AvC(T)). Since we are interested in the probability to
reach T , from now on, we assume that T is absorbing in C and that s0 /∈ AvC(F).

4.1 Model-checking via a biased Markov chain
Importance sampling has been introduced in the fifties [12] to evaluate rare-event probabilities
(see the book [13] for more details). We revisit the approach in our more general setting of
reward reachability, with the extra set F .6 The role of F will be discussed page 10. This
approach applies the standard SMC approach with a correction factor, called likelihood, to
another Markov chain.

▶ Definition 8 (biased Markov chain and likelihood). Let C = (S, P) with T ⊆ F ⊆ S and
C′ = (S′, P′) be Markov chains such that:

S′ = (S \ AvC(F)) ⊎ {s−}, where s− /∈ S;
In C′ all states of T ∪ {s−} are absorbing;
∀s, s′ ∈ S \ AvC(F), P(s, s′) > 0 ⇒ P′(s, s′) > 0 (1)

Then C′ is a biased Markov chain of (C, T, F) and the likelihood γC,C′ is the non negative
function defined for finite paths ρ ∈ S′+ s.t. Pr′(ρ) > 0 by: γC,C′(ρ) def= Pr(ρ)

Pr′(ρ) if ρ does not

visit s−, and γC,C′(ρ) def= 0 otherwise.

6 The standard importance sampling method is recovered when F = T .

FSTTCS 2024

8:8 Beyond Decisiveness of Infinite Markov Chains

(a) C

p0 q0

p1 q1

0.3 0.2
1 1

· · · · · ·
pi−1 qi−1

pi qi

0.3 0.2

pi+1 qi+1

0.3 0.4 0.40.4

· · · · · ·

(b) C•

· · ·

0 1

1
0.4

i−1

i

i+1

0.4

0.6

· · ·

α

α

α

α

α

(c) C′

q0s−

p1 q1
18
60

1 1

· · · · · ·
pi−1 qi−1

pi qi

27
60

18
60

pi+1 qi+1
12
60

16
60

16
6016

60

10
60

5
60

10
60

32
60

· · · · · ·

Figure 1 C, C•, C′ are three Markov chains and α is defined by α(q0) = 0 and for all n > 0,
α(pn) = α(qn) = n. C′ is a biased Markov chain of (C, {q0})

α
↪→ (C•, {0}).

Eqn. (1) ensures that this modification cannot remove transitions between states of
S \ AvC(F), but it can add transitions. So, AvC′(F) = {s−}. We fix a biased Markov chain
C′ for the rest of this subsection and omit the subscripts for the likelihood function γ. The
likelihood can be computed greedily from the initial state: if ρ · s is a finite path of C′ such

that γ(ρ) has been computed, then γ(ρ · s) is equal to 0 if s = s−, and γ(ρ) · P
(

last(ρ),s
)

P′
(

last(ρ),s
)

otherwise.

▶ Example 9. Figure 1(c) depicts a Markov chain which is a biased Markov chain of
Figure 1(a) with T = F = {q0} and AvC(F) = AvC(T) = {p0}.

Using the likelihood, we can define the new function of interest in Markov chain C′. We
let L′ def= L · γ and we realize that the expected reward of fL′,T in C′ from s0 coincides with
the expected reward of fL,T in C from s0, as stated below.

▶ Proposition 10. E
(
fL′,T

(
ϱC′,s0

))
= E

(
fL,T

(
ϱC,s0

))
.

The proof of this proposition is given in Appendix A.1. The idea is that the likelihood in
C′ compensates for the bias in the probabilities in C′ w.r.t. original probabilities in C. Thanks
to this result, the computation of the expected value of fL,T in C can be reduced to the
computation of the expected value of fL′,T in C′. Thus, as soon as C′ and fL′,T satisfy the
hypotheses of Proposition 4 (resp. Proposition 7) for the EvalER (resp. EstimER) problem,
Algorithm 1 (resp. Algorithm 2) can be applied to C′, which will solve the corresponding
problem in C. Specifically, the second method is what is called the importance sampling of C
via C′. Observe the following facts:

the decisiveness hypothesis only applies to the biased Markov chain C′, not to the original
Markov chain C;
the requirement that fL′,T be B-bounded (for some B) does not follow from any hypothesis
on fL,T since the likelihood might be unbounded.

B. Barbot, P. Bouyer, and S. Haddad 8:9

4.2 Construction of a biased Markov chain via an abstraction
The approach designed in the previous subsection requires the decisiveness of the biased
Markov chain and the effective boundedness of the function which is evaluated. We now
deport these various assumptions on another Markov chain, for which numerical (or sym-
bolical) computations can be done, and which will serve as an abstraction. This approach
generalizes [4] in several directions: first, [4] was designed for finite Markov chains; then, we
consider a superset F of T which will allow us to relax conditions over S \ T to its subset
S \ F .

▶ Definition 11. A Markov chain C• = (S•, P•) together with a set F • is called an abstraction
of C with set F by function α : S \ AvC(F) → S• whenever, the following conditions hold:
(A) for all s ∈ F , α(s) ∈ F •;
(B) for all s ∈ S \ (F ∪ AvC(F)),

∑
s′ /∈AvC(F)

P(s, s′) · µC•,F •(α(s′)) ≤ µC•,F •(α(s)).

Condition (B) is called monotony and is only required outside F ∪ AvC(F). We write
more succinctly that (C•, F •) is an α-abstraction of (C, F), denoted (C, F) α

↪→ (C•, F •) and
µF •

def= µC•,F • and µF
def= µC,F .

▶ Example 12. We claim that the Markov chain C• in Figure 1(b) with F • = {0} is an
abstraction of C in Figure 1(a) with s0 = p1. Indeed, the monotony condition is satisfied: for
all n > 0:

in pn : 0.3
(2

3
)n+1 + 0.4

(2
3
)n+1 + 0.3

(2
3
)n−1= 55

60
(2

3
)n

<
(2

3
)n;

in qn : 0.4
(2

3
)n+1 + 0.4

(2
3
)n+1 + 0.2

(2
3
)n−1= 25

30
(2

3
)n

<
(2

3
)n.

Observe that µF •(n) =
(0.4

0.6
)n =

(2
3
)n.

As will be explicit in the next lemma, an abstraction is a stochastic bound of the initial
Markov chain outside AvC(F).

▶ Lemma 13. Let (C, F) α
↪→ (C•, F •). Then for all s ∈ S \ AvC(F), µF (s) ≤ µF •(α(s)). In

particular, for all s ∈ S \ AvC(F), µF •(α(s)) > 0.

Proof. Let µ
(n)
F (s) def= Pr(s |= ♢≤nF). Observe that µF (s) = limn→+∞ µ

(n)
F (s). We show by

induction on n that for all s ∈ S and all n ∈ N, µ
(n)
F (s) ≤ µF •(α(s)).

Case n = 0:
s ∈ F implies α(s) ∈ F • (condition (A)). Hence µF •(α(s)) = 1 = µ

(0)
F (s).

s ∈ S \ F : µ
(0)
F (s) = 0 ≤ µF •(α(s)).

Inductive case:
s ∈ F implies α(s) ∈ F • (condition (A)). Hence µF •(α(s)) = 1 = µ

(n+1)
F (s).

s ∈ S \ F : µ
(n+1)
F (s) =

∑
s′ P(s, s′) · µ

(n)
F (s′) =

∑
s′ /∈AvC(F) P(s, s′) · µ

(n)
F (s′) ≤∑

s′ /∈AvC(F) P(s, s′) · µF • (α(s′)) by induction hypothesis. Hence µ
(n+1)
F (s) ≤ µF •(α(s))

by condition (B). ◀

Given an abstraction (C, F) α
↪→ (C•, F •) and s ∈ S \ AvC(F), let h(s) be the decreasing

ratio at s: h(s) def= 1
µF •(α(s)) ·

∑
s′∈S\AvC(F)

P(s, s′) · µF •(α(s′)). For all s ∈ S, h(s) ≤ 1: this

is obvious when s ∈ S \ F ∪ AvC(F) by the monotony condition (B); if s ∈ F , then α(s) ∈ F •

by condition (A), and hence µF •(α(s)) = 1.

FSTTCS 2024

8:10 Beyond Decisiveness of Infinite Markov Chains

We now define a biased Markov chain based on the above abstraction, which will be
interesting for both methods (approximation and estimation).

▶ Definition 14. Let (C, F) α
↪→ (C•, F •). Then C′ =

(
(S \ AvC(F)) ⊎ {s−}, P′) is the Markov

chain, where s− is absorbing and for all s, s′ ∈ S \ AvC(F), P′(s, s′) = P(s, s′) · µF •(α(s′))
µF •(α(s))

and P′(s, s−) = 1 − h(s).

By assumption, for all s ∈ T , s is absorbing in C. This implies in particular that s is also
absorbing in C′. Also, notice that P′ coincides with P within F , which means that there is
no bias in the zone F in C′ w.r.t. C.

▶ Lemma 15. Let (C, F) α
↪→ (C•, F •). Then the Markov chain C′ defined in Definition 14 is

a biased Markov chain of (C, T, F).

Proof. First probabilities are well-defined, thanks to the remark on h being bounded by 1.
The only thing which needs to be checked is the following: if s, s′ /∈ AvC(F) and P(s, s′) > 0,
then P′(s, s′) > 0. Since P′(s, s′) = P(s, s′) · µF • (α(s′))

µF • (α(s)) and s′ /∈ AvC(F) using Lemma 13,
µF •(α(s′)) ≥ µF (s′) > 0. So C′ is a biased Markov chain of (C, T, F). ◀

Since the only transitions added to C, when defining C′, lead to s−, the (qualitative)
reachability of T is unchanged and so AvC′(T) = (AvC(T) \ AvC(F)) ∪ {s−}. Furthermore
C′ does not depend on T . So we call C′ the biased Markov chain of (C, F) α

↪→ (C•, F •). As
above, we define the likelihood γ, and accordingly the function L′ = L · γ. So the approach
of Subsection 4.1 can be applied, provided C′ satisfies the required properties (decisiveness
and boundedness of the evaluated function). In subsection 4.3, we will be more specific and
give a generic framework guaranteeing those properties.

Role of F . In the original importance sampling method, there was no superset F ⊇ T ,
and the monotony condition was imposed on S \ T . However, in practice, the monotony
condition may not be satisfied in F \ T while being satisfied in S \ F ; hence the formulation
with a superset F ⊇ T widens the applicability of the approach. It should be noted that
once a set F has been found, which ensures the monotony condition, any of its supersets will
also do the work. Its choice will impact the efficiency of the approach, as will be illustrated
in Section 5, and will therefore serve as a parameter of the approach that can be adjusted
for improving efficiency.

We end up this subsection with some property of the reward function that is to be
analyzed in the biased Markov chain obtained using an abstraction.

▶ Proposition 16. Let (C, F) α
↪→ (C•, F •) and L a computable function from S+ to R

such that fL,T is B-bounded. Let C′ be the biased Markov chain of (C, F) α
↪→ (C•, F •) and

L′ = L · γC,C′ . Let s0 ∈ S, then for every infinite path ρ in C′ starting at s0:

fL′,T (ρ) =
{

L(ρ≤firstT (ρ)) · µF •(α(s0)) if ρ |= ♢T

0 otherwise

Thus fL′,T is B-bounded.

The proof of this proposition is given in Appendix A.2. Thus in addition to be a biased
Markov chain of C, C′ preserves a necessary condition for applying algorithms of Section 3:
the boundedness of the reward function. Furthermore, when fL,T = 1♢T (corresponding to
the standard reachability property), fL′,T for paths starting at s0 is a bivaluated function:
fL′,T = µF •(α(s0)) · 1♢T which does not need to be computed on the fly by the algorithms.

B. Barbot, P. Bouyer, and S. Haddad 8:11

4.3 A generic framework based on random walks
Our objective is to apply the algorithms of Section 3 to the biased Markov chain C′ defined in
the previous subsection via an abstraction, and to exploit Proposition 16. This requires C′ to
be effective and to be decisive w.r.t. T . The effectiveness will be obtained via the numerical
or symbolic computation (since C• is infinite) of µF •(α(s)). To that purpose, we use random
walks as abstractions since they have closed forms for the reachability probabilities and
layered Markov chains as generic models. The proofs of this section are either omitted or
sketched and full proofs can be found in Appendix. The proofs of this section are only partly
given in the core and in the appendix of this paper, but are fully given in [3].

▶ Definition 17. A layered Markov chain (LMC in short) is a tuple (C, λ) where C = (S, P) is
a countable Markov chain, λ : S → N is a mapping such that for all s →C s′, λ(s)−λ(s′) ≤ 1,
and for all n ∈ N, λ−1(n) is finite.

Given s ∈ S, λ(s) is the level of s. In words there are two requirements on λ: (1) after
one step the level can be decreased by at most one unit while it can be arbitrarily increased,
and (2) for any level ℓ, the set of states with level ℓ is finite. We define P+(s), P−(s) and
P=(s) (with P+(s) + P−(s) + P=(s) = 1) as follows:

P+(s) =
∑

s′∈S s.t.
λ(s′)≥λ(s)+1

P(s, s′), P−(s) =
∑

s′∈S s.t.
λ(s′)=λ(s)−1

P(s, s′), P=(s) =
∑

s′∈S s.t.
λ(s′)=λ(s)

P(s, s′)

In the sequel we fix an LMC (C, λ) and we consider a finite target set T . We want to
apply the previous approach to C using an α-abstraction (C, F) α

↪→ (C•, F •), where C• is the
random walk Wp = (N, Pp) with some probability parameter 0 < p < 1 defined as follows:
Pp(0, 0) = 1; for every i > 0, Pp(i, i + 1) = p and Pp(i, i − 1) = 1 − p (it is depicted in
Figure 1(b) for p = 0.6). We define κ

def= 1−p
p and recall this folk result.

▶ Proposition 18. In Wp, the probability to reach state 0 from state m is 1 when p ≤ 1
2 and

κm otherwise.

Here we introduce a subclass of LMC useful for our aims.

▶ Definition 19. A LMC (C, λ) is said (p+, N0)- divergent with p+ > 1
2 and N0 ∈ N if

letting F
def= λ−1([0, N0]), for every s ∈ S \ F , P=(s) < 1 implies P+(s)

P−(s)+P+(s) ≥ p+.

The (p+, N0)-divergence constrains states of levels larger than N0, and imposes that,
from those states that do not stay at the same level, the relative proportion of successors
increasing their levels compared with those decreasing their levels is at least the value p+

(itself larger than 1
2). Note that a (p+, N0)-divergent LMC is also (p′+, N ′

0)-divergent for all
1
2 < p′+ ≤ p+ and N ′

0 ≥ N0. This will allow to adjust the corresponding set F that will be
used in the approach, as will be seen in the experiments (Section 5).

To be able to apply the previous approach, it remains to examine under which conditions
starting from a (p+, N0)-divergent LMC C: (1) Wp is an abstraction, and (2) C′ obtained
via this abstraction is decisive w.r.t. F from s0. The next proposition shows that Wp is an
abstraction as soon as 1/2 < p < p+.

▶ Proposition 20. Let (C, λ) be a (p+, N0)-divergent LMC and write F
def= λ−1([0, N0]).

We define α as the restriction of λ to S \ Av(F), and we let 1
2 < p < p+. Then (C, F) α

↪→
(Wp, [0, N0]) is an abstraction.

FSTTCS 2024

8:12 Beyond Decisiveness of Infinite Markov Chains

The only point that needs to be checked is the monotony condition defining an abstraction.
The proof is given in Appendix A.3 and distinguishes the states that almost-surely stay
within the same level, and the other states; the rest is just calculation. The condition which is
satisfied is even stronger than monotony: for all s ∈ S \ (F ∪Av(F)) such that α(s) = n > N0
and P=(s) < 1: 1 − h(s) ≥ 2p−1

(1−p)p · (P−(s) + P+(s)) · (p+ − p), where h(s) is the decreasing
ratio at s, see page 9.

It remains to understand under which conditions the biased Markov chain of (C, F) α
↪→

(Wp, [0, N0]) is decisive w.r.t. T . To do that, let us introduce the key notion of attractor [1]:
given a Markov chain C = (S, P) and R ⊆ S, R is an attractor if for all s ∈ S, Pr

(
ϱC,s |=

♢R
)

= 1. There is a relation between attractor and decisiveness, stated as follows: if R is a
finite attractor and B ⊆ R, then C is decisive w.r.t. B.

The next theorem gives a simple condition for a set R to be an attractor in a Markov
chain, using a Lyapunov function.

▶ Theorem 21. Let C = (S, P) be a Markov chain and R ⊆ S s.t. for all s ∈ S,
Pr

(
ϱC,s |= ♢R

)
> 0, and let L : S → R+ be a Lyapunov function s.t. (1) for all n ∈ N,

L−1([0, n]) is finite, and (2) for all s ∈ S \ R,
∑

s′∈S P(s, s′) · L(s′) ≤ L(s). Then for all
s ∈ S, Pr

(
ϱC,s |= ♢R

)
= 1.

The full proof is rather involved and partly relies on martingale theory; it is given in
Appendix A.3.

Using the previous theorem, we show that choosing Wp as an abstraction with 1/2 < p <

p+ ensures decisiveness of C′. The Lyapunov function will be obtained via the level function.

▶ Proposition 22. Let (C, λ) be a (p+, N0)-divergent LMC, write F
def= λ−1([0, N0]), let α be

the restriction of λ to S \ Av(F), and fix 1
2 < p < p+. Then the biased Markov chain C′ of

(C, F) α
↪→ (Wp, [0, N0]) is decisive w.r.t. any T ⊆ F .

The detailed proof is given in Appendix A.3; we explain here the rough idea. This proposition
will be an application of Theorem 21 to C′ with Lyapunov function L given by α (and
additionally L(s−) = 0). So there will be some N1 ≥ N0 such that R

def= L−1 ([0, N1]) is a
finite attractor in C′. Condition (2) of Theorem 21 is ensured by the fact that the level is
unchanged after a transition from s if P=(s) = 1, and by the stronger condition given after
Proposition 20 otherwise.

This proposition allows to apply the analysis of Subsection 4.1 to the biased Markov
chain of (C, F) α

↪→ (Wp, [0, N0]), yielding approximation and estimation algorithms for the
original Markov chain. Nevertheless, as argued in Subsection 3.2, decisiveness is enough
to ensure correctness of the SMC, but not enough for efficiency. Efficiency can be ensured,
if the expected time for reaching T ∪ Av(T) is finite. We will do so by strengthening the
divergence condition of LMC.

To do so we present another theorem for the existence of an attractor, inspired by Foster’s
theorem [9], whose proof is given in Appendix A.3. Observe that here the requirement
becomes: the average level decreases by some fixed ε > 0, and the other requirements are no
more necessary.

▶ Theorem 23. Let C = (S, P) be a Markov chain and R ⊆ S. If there exists L : S → R≥0
and ε > 0 such that for all s /∈ R, L(s) −

∑
s′∈S P(s, s′) · L(s′) ≥ ε, then for all s /∈ R the

expected time to reach R is finite and bounded by L(s)
ε ; in particular, R is an attractor of C.

We are now in a position to establish a sufficient condition for the biased LMC C′ of
(C, F) α

↪→ (Wp, [0, N0]) to be decisive with finite expected time to reach some finite target T .

B. Barbot, P. Bouyer, and S. Haddad 8:13

▶ Proposition 24. Let (C, λ) be a (p+, N0)-divergent LMC such that infs∈λ−1(]N0,∞[) P+(s) >

0, and write F
def= λ−1([0, N0]). We define α as the restriction of λ to S \ Av(F), and we fix

1
2 < p < p+. Then the biased Markov chain C′ of (C, F) α

↪→ (Wp, [0, N0]) is decisive w.r.t.
T ⊆ F with finite expected time to reach T ∪ AvC′(T).

The full proof is given in Appendix A.3; the idea is as follows. We use the same Lyapunov
function as before, and the stronger condition mentioned after Proposition 22 together
with the constraint on P+: applying Theorem 23, we are able to find a finite attractor
R

def= L−1([0, N1]) ∪ {s−} for some N1 ≥ N0, reachable in finite expected time (given by α).
By analyzing the successive visits of R before reaching T ∪ AvC′(T), we derive a bound on
the expected time to reach T ∪ AvC′(T), which (linearly) depends on the level of the initial
state.

5 Applications and experiments

Probabilistic pushdown automata. Our method is applied to the setting of probabilistic
pushdown automaton (pPDA) using the height of the stack as the level function λ. We only
provide an informal definition for pPDA (see [5] for a formal definition).

A pPDA configuration consists of a stack of letters from an alphabet Σ and a state
of an automaton. A set of rules describes how the top of the stack is modified. A rule
(q, a) w−→ (q′, u) applies if the top of the stack matches the letter a and the current state is q.
Then it replaces a by the word u and q by q′. The weight w of the rule is a polynomial in n,
the size of the stack. Probability rules are defined with the relative weight of the rule which
applies w.r.t. all rules that could apply. If the target T is defined as a regular language on
the stack Av(T) is also a regular language (see [5]) that can be computed: the membership
of a configuration to T and Av(T) is effective and not costly.

▶ Example 25. We consider the pPDA with a single (omitted) state with stack alphabet
{A, B, C} defined by the set of rules: {A 1−→ C, A n−→ BB, B 5−→ ε, B n−→ AA, C 1−→ C}. Starting
with the stack containing only A, the target set T = {ε} is the configuration with the empty
stack and Av(T) is the set of configurations containing a C. Let us describe some possible
evolutions. From the initial configuration two rules apply by reading A: the new stack is C
with probability 1

2 or BB with probability 1
2 . From the stack BB, two rules apply by reading

the first B: the new stack is then B with probability 5
7 (7 is the sum of the weight of B 5−→ ε

and of B n−→ AA, with n = 2), and BAA with probability 2
7 .

The approach described previously applies to pPDA, as soon as the LMC defined by the
pPDA can be proven to be (p+, N0)-divergent for some p+ > 1

2 and N0 ∈ N. This condition
can be ensured by some syntactical constraints on the pPDA.

Implementation. Since SMC with importance sampling is already present in the tool
Cosmos [4], we only added the mapping function λ in order to apply our method. We focus
here on the implementation details of Algorithm 1, which (to the best of our knowledge) has
never been done.

Algorithm 1 requires to sum up a large number of probabilities accurately while those
probabilities are of different magnitudes. We have experimentally observed that without
dedicated summation algorithms, the implementation of this algorithm does not converge.
We therefore propose a data structure with better accuracy when summing up positive values
at the cost of increased memory consumption and time. This data structure encodes a

FSTTCS 2024

8:14 Beyond Decisiveness of Infinite Markov Chains

floating point number r as a table of integers of size 512 where the cell c at index i stores the
value c2−i, with c being a small enough integer to be represented exactly. The probability r

is the sum of the values of the table.
We specialized Algorithm 1 (called AlgoDec in the following), when the function to be

evaluated satisfies the following monoidal property: for all ρ = ρ1ρ2, f(ρ) = f(ρ1) · f(ρ2);
this property is in particular satisfied by the likelihood related to an importance sampling.
It is thus possible to merge paths leading to the same state and store only for each state
the probability to reach it and the weighted average likelihood of the merged paths. In
practice, this leads to a large improvement. Another improvement is the use of a heap where
states are ordered by their probability to be reached: the algorithm will converge faster. The
termination of the algorithm still holds as the heap management happens to be fair, see [3]
for details.

Experimental studies. We first ran experiments7 on the example depicted on Figure 1.
As there are only two states per level, the numerical algorithm (AlgoDec) with important
sampling is very efficient and computes an interval of 0.0258657 ± 10−8 in 10ms. The SMC
approach computes a confidence interval of 0.02586 ± 10−4 in 135s. As expected the SMC
approach is much slower on such a small toy example.

The pPDA of Example 25 is both decisive and a (p, N0)-divergent LMC for 1/2 < p ≤ N0
N0+5

so that (Wp, [0, N0]) defines an abstraction. We compare the use of importance sampling
with different values of p to standard SMC and AlgoDec. In Figure 2 each point is the result
of a computation with or without importance sampling. The value 0.3151 is contained in
the intervals returned by all numerical computations and all but one confidence intervals of
SMC (consistent with 120 experiments and a confidence level of 0.99).

Figure 2a depicts the computation time w.r.t. the width of the confidence interval for the
two algorithms over three Markov chains: the initial Markov chain, the importance sampling
using W0.6 as abstraction and the importance sampling with W0.51 as abstraction. Looking
only at SMC (dotted line on the figure) the computation time scales the same way on the
three curves with the standard SMC taking more time. Looking at the AlgoDec curves (solid
line) with a well-chosen value of p = 0.6 this algorithm is very fast but with another value of
p or without importance sampling the performance quickly degrades.

To better understand how the computation time increases w.r.t. p we plot it in Figure 2b.
The SMC is barely sensible to the value of p while the computation time of AlgoDec reaches
a minimum at around p = 0.6 and becomes intractable when p moves away from this value.

▶ Example 26. We consider the pPDA with a single state with stack alphabet {A, B, C}
defined by the set of rules: {A 1−→ B, A 1−→ C, B 10−→ ε, B 10+n−−−→ AA, C 10−→ A, C 10+n−−−→ BB} starting
with stack A, target configuration T = {ε} and Av(T) = ∅.

Example 26 is not decisive but is a (p, N0)-divergent LMC for 1/2 < p ≤ 10+N0
20+N0

thus
(Wp, [0, N0]) defines an abstraction. In Figure 3 we plot the computation time w.r.t. p.
The probability 0.516318 is contained in all the results. As in Example 25, AlgoDec is very
sensitive to the value of p while SMC is not. In this example SMC is always faster than
AlgoDec with similar computation times for a well-chosen value of p.

From our experiments we observe that while importance sampling can be applied both to
AlgoDec and SMC, as soon as the size of the state space grows, AlgoDec is not tractable.

7 All the experiments are run with a timeout of 1 hour and a confidence level set to 0.99.

B. Barbot, P. Bouyer, and S. Haddad 8:15

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1

Ti
m

e(
s)

Width

C SMC
C AlgoDec

C' SMC p=0.6
C' AlgoDec p=0.6

C' SMC p=0.51
C' AlgoDec p=0.51

(a) Computation time as a function of the precision,
the width is given in logarithmic scale.

 0.01

 0.1

 1

 10

 100

 1000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Ti
m

e(
s)

p

SMC 0.1
AlgoDec 0.1

SMC 0.02
AlgoDec 0.02

SMC 0.005
AlgoDec 0.005

(b) Computation time as a function of p.

Figure 2 Computation time for Example 25 in logarithmic scale. Given a value for p, the
threshold N0 is chosen as the smallest integer such that (Wp, [0, N0]) defines an α-abstraction.

 1

 10

 100

 1000

 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Ti
m

e(
s)

p

SMC 0.1

AlgoDec 0.1

SMC 0.02

AlgoDec 0.02

SMC 0.005

AlgoDec 0.005

Figure 3 Computation time as a function of p for Example 26.

Additionally, the few experiments that we have conducted suggest the following methodo-
logy to analyze Markov chains: apply SMC with importance sampling for various values of p;
find the “best” p; apply AlgoDec with that value of p (when possible).

6 Conclusion

We have recalled two standard approaches to the analysis of reachability properties in infinite
Markov chains, a deterministic approximation algorithm, and a probabilistic algorithm based
on statistical model checking. For their correctness or termination, they both require the
Markov chain to satisfy a decisiveness property. Analyzing non decisive Markov chains is
therefore a challenge.

In this work, we have introduced the notion of abstraction for a Markov chain and
developed a theoretical method based on importance sampling to “transform” a non decisive
Markov chain into a decisive one, allowing to transfer the analysis of the non decisive Markov
chain to the decisive one. Then we have presented a concrete framework where the Markov
chain is a layered Markov chain (LMC), the abstraction is done via a random walk, and given
conditions that ensure that this abstract chain is decisive. Finally we have implemented the
two algorithms within the tool Cosmos, and compared their respective performances on some
examples given as probabilistic pushdown automata (which are specific LMCs).

There are several further research directions that could be investigated. First while
(one-dimensional) random walks have closed forms for reachability probabilities, other (more
complex) models also enjoy such a property, and could therefore be used for abstractions.
Second, the divergence requirements are based on conditions for one-step transitions and
could be relaxed to an arbitrary (but fixed) number of steps. Finally, more systematic, and
even automatic, approaches could be investigated, that would compute adequate abstractions
to adequate classes of Markov chains allowing to use our approach.

FSTTCS 2024

8:16 Beyond Decisiveness of Infinite Markov Chains

References

1 P. A. Abdulla, N. B. Henda, and R. Mayr. Decisive Markov chains. Logical Methods in
Computer Science, 3(4), 2007. doi:10.2168/LMCS-3(4:7)2007.

2 P. Ballarini, B. Barbot, M. Duflot, S. Haddad, and N. Pekergin. HASL: A new approach for
performance evaluation and model checking from concepts to experimentation. Performance
Evaluation, 90:53–77, 2015. doi:10.1016/j.peva.2015.04.003.

3 B. Barbot, P. Bouyer, and S. Haddad. Beyond decisiveness of infinite markov chains. CoRR
arXiV, 2024. doi:10.48550/arXiv.2409.18670.

4 B. Barbot, S. Haddad, and C. Picaronny. Coupling and importance sampling for statistical
model checking. In 18th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’12), volume 7214 of LNCS, pages 331–346. Springer, 2012.
doi:10.1007/978-3-642-28756-5_23.

5 J. Esparza, A. Kucera, and R. Mayr. Model Checking Probabilistic Pushdown Automata.
Logical Methods in Computer Science, 2(1), 2006. doi:10.2168/LMCS-2(1:2)2006.

6 G. Fayolle, V.A. Malyshev, and M. V. Menshikov. Topics in the Constructive Theory of
Countable Markov Chains. Cambridge University Press, 1995.

7 A. Finkel, S. Haddad, and L. Ye. About decisiveness of dynamic probabilistic models. In 34th
International Conference on Concurrency Theory (CONCUR’23), volume 279 of LIPIcs, pages
14:1–14:17. Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.CONCUR.2023.14.

8 A. Finkel, S. Haddad, and L. Ye. Introducing divergence for infinite probabilistic models.
In 17th International Conference on Reachability Problems (RP’23), volume 14235 of LNCS,
pages 1–14. Springer, 2023. doi:10.1007/978-3-031-45286-4_10.

9 F. G. Foster. On the Stochastic Matrices Associated with Certain Queuing Processes. The
Annals of Mathematical Statistics, 24(3):355–360, 1953. doi:10.1214/aoms/1177728976.

10 W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist.
Assoc., 58:13–30, 1963.

11 W. Kahan. Pracniques: further remarks on reducing truncation errors. Comm. ACM, 8(1):40,
1965. doi:10.1145/363707.363723.

12 H. Kahn and T. E. Harris. Estimation of particle transmission by random sampling. National
Bureau of Standards applied mathematics series, 12:27–30, 1951.

13 G. Rubino and B. Tuffin, editors. Rare Event Simulation using Monte Carlo Methods. Wiley,
2009. doi:10.1002/9780470745403.

14 J. M. Rutten, M. Z. Kwiatkowska, G. Norman, D. Parker, and P. Panangaden. Mathematical
techniques for analyzing concurrent and probabilistic systems, volume 23 of CRM monograph
series. American Mathematical Society, 2004. URL: http://www.ams.org/publications/
authors/books/postpub/crmm-23.

15 H. L. S. Younes, E. M. Clarke, and P. Zuliani. Statistical verification of probabilistic properties
with unbounded until. In 13th Brazilian Symposium on Formal Methods (SBMF’10), volume
6527 of LNCS, pages 144–160. Springer, 2010. doi:10.1007/978-3-642-19829-8_10.

16 H. L. S. Younes and R. G. Simmons. Statistical probabilistic model checking with a focus
on time-bounded properties. Information and Computation, 204(9):1368–1409, 2006. doi:
10.1016/J.IC.2006.05.002.

17 H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete event systems using ac-
ceptance sampling. In 14th International Conference on Computer-Aided Verification (CAV’02),
volume 2404 of LNCS, pages 223–235. Springer, 2022. doi:10.1007/3-540-45657-0_17.

https://doi.org/10.2168/LMCS-3(4:7)2007
https://doi.org/10.1016/j.peva.2015.04.003
https://doi.org/10.48550/arXiv.2409.18670
https://doi.org/10.1007/978-3-642-28756-5_23
https://doi.org/10.2168/LMCS-2(1:2)2006
https://doi.org/10.4230/LIPICS.CONCUR.2023.14
https://doi.org/10.1007/978-3-031-45286-4_10
https://doi.org/10.1214/aoms/1177728976
https://doi.org/10.1145/363707.363723
https://doi.org/10.1002/9780470745403
http://www.ams.org/publications/authors/books/postpub/crmm-23
http://www.ams.org/publications/authors/books/postpub/crmm-23
https://doi.org/10.1007/978-3-642-19829-8_10
https://doi.org/10.1016/J.IC.2006.05.002
https://doi.org/10.1016/J.IC.2006.05.002
https://doi.org/10.1007/3-540-45657-0_17

B. Barbot, P. Bouyer, and S. Haddad 8:17

We report here some of the missing proofs and discussions. More details are given in [3].

A Some missing proofs of Section 4

A.1 Proofs of results of Section 4.1
We first state a useful lemma proved in a simple way.

▶ Lemma 27. Pr(ρ) > 0 and last(ρ) /∈ AvC(F) imply Pr′(ρ) > 0.

Proof of Proposition 10. We proceed by a sequence of equalities:

E
(
fL′,T

(
ϱC′,s0

))
= E

((
fL′,T · 1¬♢T

)(
ϱC′,s0

)
+

(
fL′,T · 1♢T

)(
ϱC′,s0

))
= E

((
fL′,T · 1♢T

)(
ϱC′,s0

))
=

∑
ρ∈(S\AvC(F))+ s.t.

Pr′(ρ)>0 and last(ρ)=firstT (ρ)

L′(ρ) · Pr′(ρ)

=
∑

ρ∈(S\AvC(F))+ s.t.
Pr′(ρ)>0 and last(ρ)=firstT (ρ)

L(ρ) · Pr(ρ)
Pr′(ρ)

· Pr′(ρ)

=
∑

ρ∈(S\AvC(F))+ s.t.
Pr′(ρ)>0, Pr(ρ)>0 and last(ρ)=firstT (ρ)

L(ρ) · Pr(ρ)

=
∑

ρ∈(S\AvC(F))+ s.t.
Pr(ρ)>0, and last(ρ)=firstT (ρ)

L(ρ) · Pr(ρ) (by Lemma 27)

=
∑

ρ∈S+ s.t.
Pr(ρ)>0, and last(ρ)=firstT (ρ)

L(ρ) · Pr(ρ) (since AvC(F) ⊆ AvC(T)) = E
(
fL,T

(
ϱC,s0

))

◀

A.2 Proofs of results of Section 4.2
Before going to the proof of Proposition 16, we state a useful lemma.

▶ Lemma 28. Let C′ be the biased Markov chain of (C, F) α
↪→ (C•, F •). Then for all

s ∈ S \ AvC(F),
for all ρ starting from s with Pr′(ρ) > 0 and last(ρ) ̸= s−, Pr(ρ) = Pr′(ρ) · µF • (α(s))

µF • (α(last(ρ))) ;
µC,T (s) = µF •(α(s)) · µC′,T (s) and µC,F (s) = µF •(α(s)) · µC′,F (s).

Proof. We establish the first property by induction. Let ρ be a path starting from s with
Pr′(ρ) > 0 and last(ρ) ̸= s−. If ρ is the single state s then Pr′(ρ) = Pr(ρ) = 1. Since
last(ρ) = s, the base case is proved. Assume now that ρ = ρ′s′′ with Pr′(ρ) > 0 and
s′ def= last(ρ′) ̸= s−. Then: Pr(ρ) = Pr(ρ′) · P(s′, s′′) = Pr(ρ′) · P′(s′, s′′) · µF • (α(s′))

µF • (α(s′′)) . It is
well-defined due to Lemma 13. Applying the induction hypothesis, we getthe induction step:

Pr(ρ) = Pr′(ρ′) · µF •(α(s))
µF •(α(s′)) · P′(s′, s′′) · µF •(α(s′))

µF •(α(s′′)) = Pr′(ρ) · µF •(α(s))
µF •(α(s′′)) .

The paths that reach T (resp. F) from s are the same in C and C′, and they do not reach
s−. Pick such a path ρ. Then due to the previous property: Pr(ρ) = Pr′(ρ) · µF •(α(s)).
Summing over all such paths establishes the second property. ◀

FSTTCS 2024

8:18 Beyond Decisiveness of Infinite Markov Chains

While the previous property allows to solve the reachability problem in C using C′, the
next proposition extends it to the reward reachability problem.

Proof of Proposition 16. By definition, fL′,T assigns 0 to infinite paths not visiting T .
Assume now that ρ is an infinite path visiting T . Then fL′,T (ρ) = (L · γ)

(
ρ≤firstT (ρ)

)
. Let

ρ′ = ρ≤firstT (ρ). It does not visit s−, hence γ(ρ′) = Pr(ρ′)
Pr′(ρ′) = µF • (α(s))

µF • (α(last(ρ′))) by Lemma 28.
Since last(ρ′) ∈ T , γ(ρ′) = µF •(α(s)). This implies the first part of the proposition. The
restriction to the case of the indicator function is immediate. ◀

A.3 Proofs of results of Section 4.3
We first establish that random walks parametrized by 1

2 < p < p+ are abstractions for a
(p+, N0)- divergent LMC and give useful information on the decreasing ratio for states s with
P+(s) < 1.

Proof of Proposition 20. We denote µWp,[0,N0] more simply by µ•
[0,N0]. We pick s ∈ S \(F ∪

Av(F)) such that α(s) = n > N0, and we distinguish between two cases. If P=(s) = 1, since
α(s′) = n for all s′ s.t. P(s, s′) > 0, we easily infer that

∑
s′ /∈AvC(F) P(s, s′) · µ•

[0,N0](α(s′)) ≥
µ•

[0,N0](α(s)). Otherwise, we can compute (all details are given in [3]):

1 − h(s) ≥ 1 − 1
µ•

[0,N0](n)
(
µ•

[0,N0](n − 1) · P−(s) + µ•
[0,N0](n) · P=(s) + µ•

[0,N0](n + 1) · P+(s)
)

(since P+(s) + P−(s) + P=(s) = 1 and µ•
[0,N0](x) is non increasing w.r.t. x)

= (1 − 1
κ

) · P−(s) + (1 − κ) · P+(s)

= 2p−1
(1−p)p

(P−(s) + P+(s))
(

−p · (1 − P+(s)
P−(s) + P+(s)

) + (1 − p) · P+(s)
P−(s) + P+(s)

)
≥ 2p−1

(1−p)p
(P−(s) + P+(s))

(
p+ − p

)
> 0 (since 1

2 < p < p+)

This concludes the proof of monotony, implying that (C, F) α
↪→ (Wp, [0, N0]) is an abstraction.

◀

Out of the above proof, a stronger condition than monotony happens to be satisfied.

▶ Corollary 29. Let (C, λ) be a (p+, N0)-divergent LMC. We define α as the restriction
of λ to S \ Av(F), and we let 1

2 < p < p+. Then the monotony condition satisfied by the
abstraction (C, F) α

↪→ (Wp, [0, N0]) can be strengthened as follows. For all s ∈ S \ (F ∪ Av(F))
such that α(s) = n > N0 and P=(s) < 1: 1 − h(s) ≥ 2p−1

(1−p)p · (P−(s) + P+(s)) · (p+ − p) > 0,
where h(s) is the decreasing ratio at s, see page 9.

Before turning to the proof of Theorem 21, we first establish a sufficient condition to be
an attractor in a Markov chain.

▶ Lemma 30. Let C = (S, P) be a Markov chain, s0 ∈ S and R ⊆ S s.t. for all s ∈ S,
Pr

(
ϱC,s |= ♢R

)
> 0. Assume that for every δ > 0, there exists a finite set Sδ ⊆ S and

mδ ∈ N such that Pr
(∧

i≥mδ
XC,s0

i ∈ Sδ

)
> 1 − δ. Then Pr

(
ϱC,s0 |= ♢R

)
= 1.

Proof. Fix some δ > 0. Let ℓ ∈ N be the maximal length over s ∈ Sδ of a shortest path
from s to R and pmin > 0 the minimal probability of these paths. Let k ∈ N. Then
Pr

(∧
mδ≤i≤mδ+kℓ XC,s0

i /∈ R |
∧

mδ≤i XC,s0
i ∈ Sδ

)
≤ (1 − pmin)k.

B. Barbot, P. Bouyer, and S. Haddad 8:19

Letting k go to ∞, one gets Pr
(∧

mδ≤i XC,s0
i /∈ R |

∧
mδ≤i Xi ∈ Sδ

)
= 0 implying

Pr
(

ϱC,s0 |= ♢R |
∧

mδ≤i XC,s0
i ∈ Sδ

)
= 1. Thus Pr

(
ϱC,s0 |= ♢R

)
> 1 − δ. Since δ is arbit-

rary, one gets Pr
(
ϱC,s0 |= ♢R

)
= 1. ◀

Then using both martingale theory and the previous lemma we establish another sufficient
condition based on a non negative state function non increasing on average (i.e. the expected
next value). A similar proof for recurrence of irreducible Markov chains can be found in [6].

Proof of Theorem 21. Since we are interested in reachability of R, w.l.o.g. we assume that
all s ∈ R are absorbing and thus

∑
s′∈S P(s, s′) · L(s′) = L(s).

We fix some initial state s0 and consider the random sequence of states (XC,s0
n)n∈N, which

we simply write (Xn)n∈N. Define Fn the σ-algebra generated by (Xm)m≤n and Yn = L(Xn).
Due to the inequation

∑
s′∈S P(s, s′)L(s′) ≤ L(s) for all s ∈ S and the memoryless property

of Markov chain E (Yn+1 | Fn) = E (Yn+1 | Xn) =
∑

s′∈S P(Xn, s′) · L(s′) ≤ L(Xn) = Yn.
Thus (Yn)n∈N is a supermartingale. Consider the limit Y∞ of this supermartingale: it satisfies
E (Y∞) ≤ L(s0) < ∞.

We use Lemma 30 to conclude that R is an attractor. Towards a contradiction assume
that the sufficient condition of Lemma 30 is not satisfied. There is some δ > 0 such that for all
finite set S∗ and m ∈ N, Pr

(∨
m≤i Xi /∈ S∗

)
≥ δ. For every n ∈ N, choose S∗

n = L−1([0, n]).

The event E1 =
{∧

m∈N
∨

m≤i Xi /∈ S∗
n

}
is the limit of decreasing events with probability

larger than or equal to δ. So Pr(E1) ≥ δ. Consider the event E2 = {Y∞ ≥ n}: then
E1 ⊆ E2. Thus Pr (E2) ≥ δ. Now, by Markov’s inequality applied to the random variable
Y∞, E (Y∞) ≥ n · Pr (Y∞ ≥ n) ≥ nδ. Since this is true for all n, E (Y∞) = ∞, which is a
contradiction. The sufficient condition of Lemma 30 is then satisfied, which implies that R is
an attractor. ◀

The next proposition shows that choosing Wp as an abstraction with 1/2 < p < p+

ensures decisiveness of C′.

Proof of Proposition 22. From Proposition 20, (Wp, [0, N0]) is a α-abstraction of (C, F), so
C′ is well-defined. We exhibit some N1 ≥ N0 s.t. α−1([0, N1]) ∪ {s−} is a finite attractor of
C′, which implies decisiveness of C′ w.r.t. T (thanks to Lemma 3.4 of [1]).

To do so, we apply Theorem 21 to the Markov chain C, using the layered function L,
which coincides with α on S \ Av(F) and extended by L(s−) = 0 as the Lyapunov function.
It remains to show the inequation on L.

Let s ∈ S′ \{s−} with α(s) = n > N0. If P=(s) = 1, it is easy to get that
∑

s′∈S′ P′(s, s′) ·
L(s′) ≤ n = L(s). If P=(s) < 1, we compute:

L(s) −
∑

s′∈S′ P′(s, s′) · L(s′) =
∑

s′∈S′ P′(s, s′) · (L(s) − L(s′))

=
∑

k≥n+1
∑

s′∈S′s.t.
L(s′)=k

(n − k)P′(s, s′) +
∑

s′∈S′ s.t.
L(s′)=n−1

P′(s, s′) + nP′(s, s−)

=
∑

k≥n+1
∑

s′∈S′ s.t.
L(s′)=k

−κk−n(k − n)P(s, s′) +
∑

s′∈S′ s.t.
L(s′)=n−1

1
κ P(s, s′) + n(1 − h(s))

Since limx→+∞ xκx = 0, we let B = supx≥0 xκx ≥ κ. We get after some calculation, and
using Corollary 29:

L(s) −
∑

s′∈S′ P(s, s′) · L(s′) ≥ P+(s)(−B + n 2p−1
(1−p)p · (p+ − p))

FSTTCS 2024

8:20 Beyond Decisiveness of Infinite Markov Chains

It is then sufficient to define N1 such that −B + N1
2p−1

(1−p)p · (p+ − p) ≥ 0. The condition of
Theorem 21 holds for all states. By the theorem, L−1([0, N1]) = α−1([0, N1]) ∪ {s−} is then
a finite attractor of C′, which concludes the proof. ◀

This theorem shows that the existence of a Lyapunov state function L for some set R

ensures that R is an attractor and that the expected time to reach it with an explicit upper
bound (given in the proof) depending on the value of L for the initial state.

Proof of Theorem 23. W.l.o.g. we assume that all states in R are absorbing. Pick some
s ∈ S. Define Xn(s) as the random state at time n when starting from s (that is, XC,s

n)
and Ts,R the random time (in N ∪ {∞}) to reach R from s. Observe that: E (Ts,R) =∑

n∈N Pr (Xn(s) /∈ R).
On the other hand, the inequality satisfied by L can be rewritten as follows. For Y

random variable over S \ R, E(L(X1(Y)) − L(Y)) ≤ −ε.
Let n ∈ N. Since states of R are absorbing,

E (L(Xn+1(s)) − L(X0(s))) =
∑

k≤n E
(
L(Xk+1(s)) − L(Xk(s)) · 1Xk(s)/∈R

)
=

∑
k≤n E (L(Xk+1(s)) − L(Xk(s)) | Xk(s) /∈ R) · Pr (Xk(s) /∈ R)

≤ −ε
∑

k≤n Pr (Xk(s) /∈ R)

Since L is nonnegative and E(L(X0(s))) = L(s), one gets:
∑

k≤n Pr(Xk(s) /∈ R) ≤ L(s)
ε .

Letting n go to ∞, one gets E(Ts,R) ≤ L(s)
ε , which concludes the proof. ◀

The next proposition shows that choosing Wp as an abstraction with 1
2 < p < p+ ensures

decisiveness of C′ and finite expected time for statistical model checking due to the previous
theorem.

Proof of Proposition 24. Let p̂ = infs∈λ−1(]N0,∞[) P+(s). Due to Proposition 22, we already
know that C′ is decisive w.r.t. T . It remains to establish that the expected time to reach
T ∪ AvC′(T) = T ∪ {s−} is finite. For every s ∈ S \ Av(F) with α(s) > N0, 0 < p̂ ≤ P+(s),
hence P=(s) < 1. Therefore, using Corollary 29, for all s ∈ S′ \ {s−} = S \ AvC(F) with
α(s) > N0,

L(s) −
∑

s′∈S′ P(s, s′) · L(s′) ≥ P+(s) ·
(

−B + n · 2p−1
(1−p)p · (p+ − p)

)
≥ p̂ ·

(
−B + n · 2p−1

(1−p)p · (p+ − p)
)

Let N1 ≥ N0 be such that p̂ ·
(

−B + N1 · 2p−1
(1−p)p · (p+ − p)

)
≥ 1 and R = L−1([0, N1]) =

α−1([0, N1]) ∪ {s−}. Then the condition of Theorem 23 holds with ε = 1. Applying it, the
expected time to reach R from s ∈ S \ Av(F) with α(s) > N1 is finite and bounded by
L(s) = α(s).

It remains to establish that the expected time to reach T from every state is finite. We fix
an initial state s0 ∈ S′ and we consider the infinite random sequence (γ(n))n∈N, defined induct-
ively as follows: γ(0) = min {k | Xk(s0) ∈ R} and γ(n + 1) = min {k > γ(n) | Xk(s0) ∈ R};
those are the successive times of visits in R. Since R is an attractor, this sequence is defined
almost everywhere. Let hmax = max

{
L(s′) | ∃s ∈ R s.t. P′(s, s′) > 0

}
the maximal level

that can be reached in one step from R. Due to the previous paragraph, for all n and s ∈ R,
E

(
γ(n + 1) − γ(n) | Xγ(n) = s

)
≤ 1 + hmax and E (γ(0)) ≤ L(s0).

B. Barbot, P. Bouyer, and S. Haddad 8:21

Define T̃ = T ∪ AvC′(T) = T ∪ {s−}, τ
def= τC′,s0,T̃ the (random) time to reach T̃ from s0

in C′, ℓmax as the maximal length of a shortest path from s ∈ R to T ∪ AvC′(T) and pmin the
minimal probability of these paths. Then:

E (τ)
= E(γ(0)) +

∑
n∈N E

(
γ(n + 1) − γ(n) |

∧
m≤n Xγ(m) /∈ T̃

)
· Pr

(∧
m≤n Xγ(m) /∈ T̃

)
= E(γ(0)) +

∑
n∈N E

(
γ(n + 1) − γ(n) | Xγ(n) /∈ T̃

)
· Pr

(
Xγ(n) /∈ T̃

)
≤ L(s0) + (1 + hmax)

∑
n∈N Pr

(
Xγ(n) /∈ T̃

)
= L(s0) + (1 + hmax)

∑
n∈N

∑
0≤j<ℓmax

Pr
(
Xγ(nℓmax+j) /∈ T̃

)
≤ L(s0) + (1 + hmax)ℓmax

∑
n∈N Pr

(
Xγ(nℓmax) /∈ T̃

)
≤ L(s0) + (1 + hmax)ℓmax

∑
n∈N(1 − pmin)n < ∞

◀

B Details on the implementation presented in Section 5

B.1 Data-structure for exact summation
Algorithm 1 heavily relies on the capacity to accurately sum probabilities of very different
magnitudes a large number of times. Indeed in early versions of the implementation, we
have observed that without refined dedicated summation algorithms, the program does not
terminate. Some methods exist to improve the accuracy of summation like Kahan summation
algorithms [11] but are not sufficient in our setting. So we propose a data structure with better
accuracy when summing up positive values, at the cost of increased memory consumption
and time.

We present our data structure in the context of values in the interval [0, 1], which is
sufficient for probabilities. It encodes such a value r as a table of 512 integers (each encoded
on 64 bits) such that the content each cell c[i] represents a floating point value (float) with
the content of the cell being the mantissa and the index of the cell i being the exponent. The
value is encoded as the sum of the floats encoded by the cells, i.e. r =

∑
i≤512 c[i]2−i.

The addition of a float x to a table T encoding a number is done as follows (more details
in [3]). The float is broken down into its exponent and mantissa i.e., x = m2−u with m ≤ 252

and 1 ≤ u ≤ 512. There are two cases. First if T [u] = 0 then T [u] is set to m. Otherwise the
float stored at index u is built (y = T [u]2−u) and x and y are added. If this sum is at most
252, then it is stored in T [u]; otherwise there is an overflow, and T [u] is assigned x + y − 252,
while the procedure is applied recursively with exponent u + 1. In the worst case there are
recursive calls over the whole range of T .

B.2 Heap with update
Algorithm 1 requires a data structure storing the set of states that have been visited with
the probability and likelihood of the path reaching them. This data structure maps states to
two real numbers representing the probability and the likelihood of the state. It requires to
support three operations:

insertion of a new mapping s 7→ (p, l) of a state to its probability and likelihood in the
data structure;
removing and retrieving the mapping with maximal probability;
given a state s updating the probability and likelihood of this state.

FSTTCS 2024

8:22 Beyond Decisiveness of Infinite Markov Chains

Such a data structure can be implemented with a heap and a hash table, which points to the
node in the heap allowing update. All operations are performed in logarithmic time w.r.t. to
the number of elements in the data structure.

B.3 Implementation of the numerical algorithm for decisive Markov
chains

Algorithm 1 can be specialized to likelihood functions that are “monoidal” functions of the
path, in the sense that paths leading to the same state can be merged while only retaining
the probability to reach it together with a weighted average (over the paths) of the likelihood.
Furthermore, using a heap where states are ordered by their probability to be reached
(and merging them) represents a large improvement. The data structure for the heap is
described in section B.2. One can show that the heap management policy is fair, and that
the corresponding algorithm terminates on decisive Markov chains (see [3]).

Plan Logic
Dylan Bellier #

Univ Rennes, IRISA, CNRS, France

Massimo Benerecetti #

Università degli Studi di Napoli Federico II, Italy

Fabio Mogavero #

Università degli Studi di Napoli Federico II, Italy

Sophie Pinchinat #

Univ Rennes, IRISA, CNRS, France

Abstract
When reasoning about games, one is often interested in verifying more intricate strategic properties
than the mere existence of a winning strategy for a given coalition. Several languages, among which
the very expressive Strategy Logic (SL), have been proposed that explicitly quantify over strategies
in order to express and verify such properties. However, quantifying over strategies poses serious
issues: not only does this lead to a non-elementary model-checking problem, but the classic Tarskian
semantics is not fully adequate, both from a conceptual and practical viewpoint, since it does not
guarantee the realisability of the strategies involved.

In this paper, we follow a different approach and introduce Plan Logic (PL), a logic that takes
plans, i.e., sequences of actions, as first-class citizens instead of strategies. Since plans are much
simpler objects than strategies, it becomes easier to enforce realisability. In this setting, we can
recover strategic reasoning by means of a compositional hyperteams semantics, inspired by the
well-known team semantics. We show that the Conjunctive-Goal and Disjunctive-Goal fragments of
SL are captured by PL, with an effective polynomial translation. This result relies on the definition
of a suitable game-theoretic semantics for the two fragments. We also investigate the model-checking
problem for PL. For the full prenex fragment, the problem is shown to be fixed-parameter-tractable:
it is polynomial in the size of the model, when the formula is fixed, and 2-ExpTime-complete in
the size of the formula. For the Conjunctive-Goal and Disjunctive-Goal fragments of PL this result
can be improved to match the optimal polynomial complexity in the size of the model, regardless of
the size of the formula.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Modal and temporal logics; Theory of computation → Complexity theory and logic

Keywords and phrases Logic for strategic reasoning, Strategy Logic, Realisable strategies, Strategies
vs. plans, Hyperteam semantics

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.9

1 Introduction

When reasoning about games, one is often interested in verifying strategic properties involving
the players participating in a game. The simplest such property asks whether one of the
players is able to win the game, possibly under specific conditions, regardless of what the
other players do. This corresponds to checking whether that player has a winning strategy,
namely a set of rules, ideally in the form of a procedure or a function, stipulating how the
player must choose its moves in each situation or position during the game in order to achieve
the goal corresponding to its winning condition. This has led to the development of a number
of logical languages specifically tailored to allow for expressing temporal properties that can
predicate, more or less explicitly, over strategies. Notable examples are Alternating Temporal
Logic (ATL*) [2, 3, 19] and Strategy Logic (SL) [7, 18, 8, 16, 17]. In its general form, a

© Dylan Bellier, Massimo Benerecetti, Fabio Mogavero, and Sophie Pinchinat;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 9; pp. 9:1–9:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dylan.bellier@ens-rennes.fr
https://orcid.org/0000-0003-4763-5655
mailto:massimo.benerecetti@unina.it
https://orcid.org/0000-0003-4664-6061
mailto:fabio.mogavero@unina.it
https://orcid.org/0000-0002-5140-5783
mailto:sophie.pinchinat@irisa.fr
https://orcid.org/0000-0002-0901-8480
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Plan Logic

strategy can be viewed as a function that maps histories, i.e., finite sequences of observables
encoding what players have seen up to the current situation in the game, to moves that the
player following that strategy has to perform in the current position. In SL notation, for
instance, one would express the property that player a can win a game against some other
player, say b, by means of the following first-order-like sentence ∃X. ∀Y. (a,X)(b,Y)ψ, where
variables X and Y range over strategies, (a,X) and (b,Y) bind each player to a specific strategy,
and ψ is an LTL formula encoding a’s winning condition. The sentence can be read as follows:
there exists a strategy X such that, for all strategies Y, if player a follows X and b follows Y,
then the objective ψ is achieved. The separation of strategy quantifications and bindings is a
distinctive feature of SL and allows for comparing different strategies for multiple objectives,
called goals, each corresponding to a binding of agents and variables followed by an LTL
formula. This is what provides the logic with the ability to directly express complex strategic
properties, such as, for instance, the existence of Nash equilibria [7, 18].

Ideally, once we know that an objective in a game is achievable, we would like to be able
to synthesise the existentially quantified strategies that witness the possibility of achieving
that goal. This, in turn, would provide a concrete way to obtain a solution to the game by
means of logical reasoning. However, quantification over strategies may lead to situations
where a formula can be satisfied only if the witness strategies are built with full knowledge
of the strategies of the opponents. What this means is that, in order to synthesise such
strategies, one may need to know what the other strategies prescribe in the future or even
in counterfactual situations, that is along histories different from the one actually followed.
Satisfaction of the sentence ∀Y. ∃Z. (a, Z)(b,Y)ψ, for instance, boils down to the existence of
a Skolem function f such that the purely universal sentence ∀Y. (a, f(Y))(b,Y)ψ is satisfied.
Function f essentially encodes the mechanism that allows one to build the required witness
strategy. However, the input to f is a full-fledged strategy, namely a tree-like object that
dictates a response to every history of the game. As a consequence, the response f(σ)(ϖ)
of the strategy f(σ) on a given history ϖ may well depend on what the input strategy σ

dictates on histories different from ϖ. Such information is, however, usually not available
while playing the game, as neither future nor counterfactual situations have been encountered
by the players. In many cases, the dependency of the Skolem function on these situations
is actually not necessary to satisfy the formula and, in those cases, one can prove that a
Skolem function exists that indeed does not. When the only Skolem functions that provide
satisfaction of a formula do depend on future or counterfactual situations, we say that the
corresponding witness existential strategies are unrealisable. For instance, this is the case
for the multi-goal sentence ∀Y. ∃Z. ((a,Y)X X p↔ (a, Z)X p), requiring that, for any strategy Y,
there exists a response strategy Z which, when followed by the same agent a, ensures in the
next step the same literal granted by Y two steps ahead. On structures where all positions
have successors for each literal, that sentence can clearly only be satisfied by non-realisable
strategies. The phenomenon where a sentence turns out to be satisfied only with unrealisable
witnesses is referred to as non-behavioural satisfaction in the literature [16, 11]. Not only
does this allow for satisfiable sentences for which no concrete and effective mechanisms can
be implemented that synthesise the corresponding winning strategies for the game, it has
also been shown to be the main source of complexity in strategic reasoning [16, 5], often
leading to non-elementary procedures for the decision problems.

Interestingly enough, there are fragments of SL that are not intrinsically affected by the
problem. More specifically, it was shown in [16] that every formula in the One-Goal fragment
of SL is behaviourally satisfiable, meaning that if it is satisfiable then there exists a realisable
Skolem function that, along each history, only needs to look at that history to choose the

D. Bellier, M. Benerecetti, F. Mogavero, and S. Pinchinat 9:3

next move. This result was later generalised in [11, 12], where a new semantics for SL, called
timeline semantics, was proposed and the maximal fragment SL[eg], based on the semantic
notion of semi-stability, was identified that enjoys the realisability property. These results
try to overcome the problem of non-behavioural satisfaction by identifying well-behaved sets
of formulae, for which focusing only on the observations of the current history is enough to
decide satisfaction. One may argue that, while reasoning about games, those are the only
formulae we are really interested in when we want to figure out how to enforce the objectives.

Based on the above observations, we propose here a logic, called Plan Logic (PL), for
which, by design, no such problem can arise and which can nonetheless express most of the
relevant game-theoretic strategic properties. In addition, the truth of all such properties
can be checked in doubly-exponential time at most, with the additional guarantee that
any satisfied sentence is realisable in the sense discussed above. This is achieved by taking
plans, namely infinite sequence of moves, as primary objects for the domain of quantification
instead of strategies. Plans are much simpler objects compared to strategies, as they have an
intrinsically linear nature. Strategies, by contrast, exhibit a branching nature, as they must
take care of a player’s behaviours along all possible histories, which, taken all together, form
a tree-like structure. In a sense, strategies can be viewed as adaptive plans that may react
differently depending on the context and the same strategy can also be used for different
goals. Such a strategy would prescribe the same choices for two goals as long as they are
indistinguishable to the players, that is as long as the histories along the corresponding plays
for the two goals coincide, still allowing for different behaviours when the two goals can be
distinguished. This feature is not a native one for plans though. Hence, in order to enforce
the same behaviour in indistinguishable contexts, we allow for plans to be tied together
by means of specific operators. Essentially, as long as two goals are indistinguishable for
the players, two tied plans are required to prescribe the same actions, exactly like a single
strategy would do.

The linear nature of plans, on the other hand, makes it much easier to enforce realisability.
For one, dependence on counterfactual futures becomes a non-issue, since each plan dictates
the moves an agent has to take along a single history and different goals would use distinct,
though possibly tied, plans. In order to ensure that the choices of a plan do not depend on
the future choices of other plans along the same history, we simply need to impose suitable
restrictions on the possible dependencies between the quantified variables at the semantic
level. Capturing such constraints requires a semantics able to meaningfully express functional
dependencies among quantified variables and, at the same time, retain the determinacy of
the logic, meaning that each sentence is either true or false in a given structure. To this end,
we employ the Alternating Hodges’ semantics, a semantics based on hyperteams, namely sets
of sets of variable assignments, in a similar vein to what has been done for QPTL in [5].

Besides the design of PL and the corresponding compositional hyperteam semantics,
our contribution is manifold. We provide a polynomial translation of the Conjunctive-
Goal and Disjunctive-Goal fragments of SL under timeline semantics into PL, whose spirit
consists in simulating strategy variables by means of several suitably-tied plan variables.
The soundness of this translation (Theorem 7) deeply relies upon the introduction of a
game-theoretic semantics for these fragments (Theorem 8), which, to our knowledge, has
never been proposed in the literature. The result also shows that each Boolean connective,
taken in isolation, exhibits a game-theoretic behaviour. In addition, we study the model-
checking problem for PL, taking inspiration from the introduced game-theoretic approach.
We prove that, for the Boolean-Goal fragment of PL, the problem is 2-ExpTime-complete
in the length of the formula and fixed-parameter-tractable in the size of the model, once

FSTTCS 2024

9:4 Plan Logic

the maximum number of bindings is fixed in the formula (Theorem 14). This is the first
result with an elementary complexity of the entire Boolean-Goal fragment of a logic for
strategic reasoning, in stark contrast with the tower-complete complexity of Boolean-Goal
SL under standard semantics [6]. Incidentally, note that no model-checking procedure exists
for Boolean-Goal SL under timeline semantics [11, 12]. By leveraging the similarity between
the game-theoretic semantics of the Conjunctive and Disjunctive-Goal fragments of both PL
and SL, we improve the model-checking complexity of those fragments to PTime-complete
in the size of the model (Theorem 16).

In light of all these results, we argue that plans not only appear to be a powerful alternative
to strategies, but they may also be preferable in terms of adequacy, as most of the difficulties
and annoyances that come into play when dealing with strategies do not affect plans.

2 Preliminaries

We denote by Σ∞ (resp., Σ∗, Σ+, Σω) the set of (resp., finite, non-empty finite, infinite)
sequences w over the alphabet Σ, with length |w| ∈ N ∪ {∞}. Given n < |w|, the element at
n of w is denoted by (w)n, while its prefix up to n by (w)≤n. Two sequences w, u ∈ Σ∞ are
equal up to n ∈ N, in symbols w =≤n u, if w = u or n < min{|w|, |u|} and (w)≤n = (u)≤n.
This equivalence relation lifts to partial functions f, g : Z⇀X∞ on an arbitrary domain Z as
follows: f =≤n g if dom(f)=dom(g) and f(z)=≤n g(z), for all z∈dom(f).

A concurrent game structure (CGS, for short) w.r.t. an a priori fixed countably-infinite
set of atomic propositions AP is a structure G≜ ⟨Ag,Ac,Ps, vI , δ, λ⟩, where Ag is a finite non-
empty set of agents, Ac and Ps are countable non-empty sets of actions and positions, vI ∈ Ps
is an initial position, δ : Ps × AcAg → Ps is a transition function mapping every position
v ∈ Ps and action profile c⃗ ∈ AcAg to a position δ(v, c⃗) ∈ Ps, and, finally, λ : Ps → 2AP is
a labelling function mapping every position v ∈ Ps to the finite set of atomic propositions
λ(v) ⊂fin AP true at that position. The size of G is the number of its positions, i.e., |G|≜|Ps|.
By abuse of notation, δ ⊆ Ps × Ps also denotes the transition relation between positions such
that (v, u) ∈ δ iff δ(v, c⃗) = u, for some c⃗ ∈ AcAg. A path π ∈ Pth ⊆ Ps∞ \ {ε} is a sequence
of positions compatible with the transition function and beginning with the initial position,
i.e., (π)0 = vI and ((π)i, (π)i+1) ∈ δ, for each 0 ≤ i < |π| − 1. The labelling function lifts
from positions to paths in the usual way: λ : Pth → (2AP)+. A history is a finite path
ϖ ∈ Hst ≜ Pth ∩ Ps+, while a play π ∈ Play ≜ Pth ∩ Psω is an infinite one. A strategy is a
function σ ∈ Str ≜ Hst → Ac mapping every history ϖ ∈ Hst to an action σ(ϖ) ∈ Ac. A
play π ∈ Play is compatible with a strategy profile σ⃗ ∈ StrAg if, for all i ∈ N, it holds that
(π)i+1 = δ((π)i, c⃗i), where c⃗i ∈ AcAg is the action profile with c⃗i(a) = σ⃗(a)((π)≤i), for all
agents a ∈ Ag. The function play : StrAg → Play assigns to each profile σ⃗ ∈ StrAg the unique
play play(σ⃗) ∈ Play compatible with σ⃗; we also say that σ⃗ induces play(σ⃗).

3 A Logic of Plans

As opposed to existing logics for strategic reasoning, such as ATL* [2] and SL [7, 18], where
the (implicit or explicit) domain of quantification is composed of strategies, quite complex
objects, we introduce Plan Logic that relies on the much simpler notion of plan. Plans are
infinite sequences ρ ∈ Pln ≜ Acω that describes the course of actions an agent chooses to
execute in response to what the other agents already decided to do.

D. Bellier, M. Benerecetti, F. Mogavero, and S. Pinchinat 9:5

From a syntactic standpoint, Plan Logic bears a strong similarity with SL. In particular,
PL extends LTL by allowing (i) to quantify explicitly over plans, (ii) to assign plans to
agents by means of a binding mechanism similar to the one of SL that connects agents and
plan variables, and (iii) to form bundles of plan variables via tying operations that are crucial
to correlate different plans as parts of essentially the same strategy in the game model.

Syntax. Throughout this work, we implicitly assume an a priori fixed countably-infinite set
of variables Vr. A binding ♭ ∈ Bn≜VrAg is a function mapping every agent a ∈ Ag to a variable
♭(a) ∈ Vr, commonly represented as a finite sequence of binding pairs (a1, x1), . . . , (ak, xk),
where each agent occurs exactly once. By vr(♭) ⊂ Vr we denote the set of variables occurring in
♭ and lift the notation to sets of bindings as the union of the corresponding sets element-wise.

For simplicity, the syntax of the full logic forces formulae to be flat, as in the flat fragments
of CTL* [9] and ATL* [13], where sentences can be combined in a Boolean way, but cannot
be nested. Notice that this flatness constraint comes w.l.o.g., when the model-checking
problem is considered, as the latter can always be reduced to reasoning about flat formulae
via a relabelling of the underlying structure (see [15, 3], for details).

▶ Definition 1. Plan Logic (PL, for short) is the set of formulae built according to the
following context-free grammar, where ♭ ∈ Bn, ψ ∈ LTL, V ⊂fin Vr, and x ∈ Vr:

φ := ♭ψ | ¬φ | φ ∧ φ | φ ∨ φ | ⟨V⟩φ | [V]φ | ∃x. φ | ∀x. φ.

We shall denote by free(φ) ⊆ vr(φ) ⊂ Vr the sets of free variables and variables occurring
in φ. Specifically, free(♭ψ) ≜ vr(♭) and free(⟨V⟩φ) = free([V]φ) ≜ V ∪ free(φ); all other cases
are as usual. A sentence φ is a formula without free variables, i.e., free(φ) = ∅. Similarly,
bnd(φ) ⊂ Bn denotes the set of bindings occurring in φ.

The binding ♭ in a PL goal ♭ψ have basically the same interpretation as in SL, namely
as the mechanism that associates agents with the content of variables, plans in our case,
against which LTL formulae can be evaluated, once the corresponding play is determined.
Quantifiers and tying operators, on the other hand, need some explaining in game-theoretic
terms. Since we are interested in realisability, we require that the plans we quantify over must
be effectively computable, namely that each action chosen at some instant can only depend
on the past choices of all the quantified plans. This allows us to view plans as branches
of the tree representations of strategies. With this view in mind, the quantifier ∃x (resp.,
∀x) can be read as “there exists a realisable plan ...” (resp., “for all realisable plans ...”).
Tying operators, instead, are precisely the mechanism that connects plans to strategies in the
following sense. Different plan variables denote branches of the same strategy, as long as they
provide the same choices for any two bindings that share the same history. The operator ⟨V⟩
(resp., [V]) can then be read as “the plans in V are part of a strategy and ...” (resp., “if the
plans associated with V are part of a strategy then ...”). Essentially, the two operators filter
out sets of plans that cannot be part of the same strategy, because they prescribe different
actions for the same history. In a sense, these operators play the role of strategic constructs,
implicitly quantifying existentially and universally over strategies via their component plans.

To better understand these intuitions, let us discuss some examples of SL formulae and
their corresponding PL equivalents. The simple SL sentence ΦW = ∃X. ∀Y. (a,X)(b,Y)ψ states
that an agent a can win a two-player game with LTL objective ψ. Specifically, it requires
the existence of a strategy X whose induced plays, each one induced by some strategy Y of
the adversary b, satisfy ψ. This same property would be expressed in PL by the sentence
φW = ∃x. ∀y. ⟨x⟩ [y](a, x)(b, y)ψ, which states that there exists a realisable plan followed by
a that is part of some strategy, e.g., the witness strategy for X of the SL sentence, and

FSTTCS 2024

9:6 Plan Logic

ensures the objective, regardless of the realisable plans y that are part of possible strategies
Y followed by the adversary. Note that the realisability requirement for plans is crucial here,
since it means that their actions must be chosen on-the-fly only with knowledge of the past
history, in order to mimic the behaviour of strategies.

For a second example, let us consider the property claiming the existence of a strategy for
some objective ψ that is not strictly dominated by any other strategy. This is expressed by
the SL sentence ΦNSD = ∃X. ∀X′. ∃Y. ((a,X′)(b,Y)ψ → (a,X)(b,Y)ψ) . The formula asserts that,
for some strategy X and any other strategy X′, both for the same agent a, there is at least
one strategy Y for the opponent such that following X′ instead of X would not give a a better
outcome. In PL terms, that property is captured by the sentence φNSD = ∃x. ∀x′. ∃y1, y2. ⟨x⟩
[x′] ⟨y1, y2⟩ ((a, x′)(b, y1)ψ → (a, x)(b, y2)ψ), where we ensure that the two plans y1 and y2
are part of the same existentially quantified strategy Y for b.

As a final example, consider the existence of a Nash equilibrium for the two agents, a
and b, whose objectives are ψa and ψb, respectively. An SL sentence for this property is
ΦNE = ∃X. ∃Y. ∀Z. (((a, Z)(b,Y)ψa → (a,X)(b,Y)ψa) ∧ ((a,X)(b, Z)ψb → (a,X)(b,Y)ψb)) , where
X and Y represent the equilibrium strategies. The sentence asserts that neither agent can
improve by unilaterally deviating from the profile, i.e., by deciding to follow any other
strategy Z instead of X and Y. The corresponding PL sentence is

φNE = ∃x1, x2. ∃y1, y2. ∀z1, z2. ⟨x1, x2⟩ ⟨y1, y2⟩ [z1, z2]

 ((a, z1)(b, y1)ψa → (a, x2)(b, y2)ψa)
∧

((a, x1)(b, z2)ψb → (a, x2)(b, y2)ψb)

,
where the existential strategies X and Y are simulated via the operators ⟨x1, x2⟩ and ⟨y1, y2⟩
on the pairs of plans x1, x2 and y1, y2, while the universal strategy Z via [z1, z2] on z1, z2.

The overall intuition underlying the correspondence between SL and PL is that, in order
to express a strategic property comprising a given set of different bindings, one really only
needs to be able to predicate on a small portion of the strategies involved, namely on a single
plan for each binding occurring in the property. This intuition is formally substantiated in
Section 4, where a formal translation of some behavioural fragments of SL is provided.

Semantics. The semantics of PL formulae relies on the basic notion of assignment, a partial
function χ ∈ Asg≜Vr⇀Pln interpreting variables as plans. We may distinguish assignments
defined exactly over some set V ⊆ Vr, i.e., elements of Asg(V) ≜ {χ ∈ Asg | dom(χ) = V},
and those defined on a superset of V, i.e., elements of Asg⊇(V) ≜ {χ ∈ Asg | V ⊆ dom(χ)}.
The assignment χ[x 7→ ρ] is derived from χ by assigning plan ρ ∈ Pln to variable x ∈ Vr.

To interpret a goal ♭ψ w.r.t. an assignment χ ∈ Asg⊇(vr(♭)), one needs to consider the
play play♭(χ) that is induced by the plan profile ρ⃗ ≜ χ ◦ ♭ ∈ PlnAg obtained as the functional
composition of χ and ♭ and associating a plan in χ with every agent, in accordance with the
binding ♭. Formally, play♭(χ) is the unique play π ∈ Play such that (π)i+1 = δ((π)i, c⃗i), for
all i ∈ N, where c⃗i ∈ AcAg is the action profile associating with each agent a ∈ Ag the action
stipulated at time i by the plan assigned to a in the plan profile ρ⃗, i.e., c⃗i(a) = (ρ⃗(a))i.

The semantics of the tying operators ⟨V⟩ and [V] requires some intermediate notions. Two
bindings ♭1, ♭2 ∈ Bn agree up to n ∈ N on an assignment χ ∈ Asg if play♭1

(χ̂) =≤n play♭2
(χ̂),

for some extension χ ⊆ χ̂ ∈ Asg⊇(vr({♭1, ♭2})). Intuitively, ♭1 and ♭2 agree up to n on
χ if two corresponding plan profiles induce the same history ϖ of length n + 1, where n
evolution steps have occurred since the initial position. Note that ♭1 and ♭2 agree up to
0 on every assignment, since the initial position is always a common history of length 1.
For an assignment χ ∈ Asg, two variables x1, x2 ∈ dom(χ), and two bindings ♭1, ♭2 ∈ B,

D. Bellier, M. Benerecetti, F. Mogavero, and S. Pinchinat 9:7

with x1 ∈ vr(♭1) and x2 ∈ vr(♭2), we say that the pair (x1, x2) is (♭1, ♭2)-tied in χ when, for
every n ∈ N, if ♭1, ♭2 agree up to n on χ then χ(x1) =≤n χ(x2). This condition ensures the
existence of a strategy σ such that the actions (χ(x1))n and (χ(x2))n, at every instant of
time n, coincide with the action σ(ϖ), for some n-evolution-step history ϖ. We lift the
notion to sets of variables V ⊆ dom(χ) and bindings B ⊆ Bn as follows: V is B-tied in χ if
(x1, x2) is (♭1, ♭2)-tied in χ, for all x1, x2 ∈ V and ♭1, ♭2 ∈ B, with x1 ∈ vr(♭1) and x2 ∈ vr(♭2).

A Tarskian semantics for PL, à la SL, would be formalised as follows.

▶ Definition 2. For an implicitly given CGS G, Tarski’s semantic relation χ |= φ for PL is
inductively defined as follows, for all PL formulae φ and assignments χ ∈ Asg⊇(free(φ)).
1. χ |= ♭ψ, if λ(play♭(χ)) |=LTL ψ;
2. the semantics of Boolean connectives is defined as usual;
3. χ |= ⟨V⟩φ, if χ |= φ and V is bnd(φ)-tied in χ;
4. χ |= [V]φ, if χ |= φ when V is bnd(φ)-tied in χ;
5. χ |= ∃x. ϕ, if χ[x 7→ ρ] |= ϕ, for some plan ρ ∈ Pln;
6. χ |= ∀x. ϕ, if χ[x 7→ ρ] |= ϕ, for all plans ρ ∈ Pln.

The meaning of all conditions above should be self-evident. In particular, Item 3 requires,
besides the satisfaction of the formula φ, that the set of variables V be tied in the assignment
w.r.t. the entire set of bindings bnd(φ) occurring in φ, thus ensuring the existence of a
strategy containing the plans associated with V. Item 4 just expresses the dual condition,
witnessing the equivalence between ¬ ⟨V⟩φ and [V] ¬φ.

Despite its simplicity, the treatment of plan quantifiers in this semantics does not correctly
capture the effective computability requirement for the plans discussed above. To see why,
consider again the non-behaviourally satisfiable SL sentence given in the introduction: ΦNB ≜
∀Y. ∃Z. ((a,Y)X X p↔ (a, Z)X p). The corresponding PL translation, obtained similarly to the
previous examples, can be, indeed, shown satisfiable under the Tarskian semantics as follows.

▶ Example 3. Consider the sentence φNB =∀y. ∃z. [y] ⟨z⟩((a, y)XX p↔ (a, z)X p) and the single-
agent two-action two-position CGS G = ⟨{a}, {0, 1}, {v0, v1}, v0, δ, λ⟩, where (i) action 0
always leads to v0 and action 1 always to v1, regardless of the current position, i.e., δ(vi, {a 7→
j}) = vj , and (ii) position v1 is the only one labelled by p, i.e., λ = {v0 7→ ∅, v1 7→ {p}}.
Being a sentence, we evaluate φNB against the empty assignment ∅. By applying Items 6 and 5
of Definition 2, we obtain G,∅ |= φNB iff, for every plan ρy, there exists a plan ρz such that
G, {y 7→ ρy, z 7→ ρz} |= [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p). Now, by Items 4 and 3, it is immediate
to see that the two tying operators [y] and ⟨z⟩ do not affect the reasoning, since a singleton set
of variables is always trivially tied, no matter which assignment or set of bindings is taken into
account. Thus, G, {y 7→ρy, z 7→ρz} |= [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p) iff G, {y 7→ρy, z 7→ρz} |=
(a, y)X X p ↔ (a, z)X p. At this point, one can simply choose ρz ≜ (ρy)1 · 0ω to satisfy the
formula. Hence, following the naive interpretation of φNB via Tarski’s semantics, it holds that
G satisfies φNB in a non-realisable way, since ρz requires knowledge of ρy one step ahead.

This example clearly shows that a precise formalisation of game-theoretic plan quantifica-
tions cannot be achieved by following a first-order Tarskian approach, due to treatment of
plans as monolithic entities. To adequately model plans both as realisable objects and linear
components of strategies, we are, indeed, faced with a challenge. We need to ensure that,
when a plan is chosen by a quantifier, the selection of the action provided by that plan at each
time instant can only depend on the choices made by the other plans so far during the play.
This means that the choice must be made with knowledge of the past, but no knowledge of the
future. Not only does this requirement guarantee the realisability of the plans, which is one of

FSTTCS 2024

9:8 Plan Logic

the main concerns of this work, but it also makes plans compatible with strategies, where the
choices of actions are functionally dependent only on the histories. To overcome this challenge,
we resort to a semantic framework recently proposed in [5] precisely to handle behavioural
functional dependencies among quantified variables. Alternating Hodges’ semantics is a
compositional formulation of the interpretation of formulae with a distinctive game-theoretic
flavour involving two players: Eloise, who wishes to prove the formula true, and Abelard,
who tries to disprove it. The underlying idea is that the interpretations of the free variables
of a formula φ correspond to the choices that the two players have made prior to the current
stage of evaluation of φ. These possible choices are recorded in a two-level structure, called
hyperteam, which is a set of sets of assignments or, in team-semantics terminology [20], a set
of teams. Each level summarises the information about the choices a given player can make
in its turns. To evaluate φ, then, one player chooses a team, while the opponent chooses one
assignment in that team. We shall use a flag α ∈ {∃∀, ∀∃}, called alternation flag, to keep
track of which player is assigned to which level of choice, together with two corresponding
satisfaction relations, |=∃∀ and |=∀∃, for the evaluation. If α = ∃∀, Eloise chooses the team,
while Abelard chooses one of the contained assignments, which must satisfy φ; if α = ∀∃,
the dual reasoning applies. Given a flag α ∈ {∃∀, ∀∃}, we denote by α the dual flag, i.e.,
α ∈ {∃∀, ∀∃} with α ̸= α. For the sake of space, we refer to [5, 4] for a detailed analysis of
this semantic framework, for the proofs of classic model-theoretic properties, e.g., De Morgan
laws, the closure under positive normal form, and for further discussions and explanations.

First-order quantifiers Qx are dealt with by means of the notion of response function, a
refined version of Skolem function, namely a map F ∈ Rsp ⊆ Asg → Pln from assignments
to plans such that if χ1 =≤n χ2 then F(χ1) =≤n F(χ2), for all χ1, χ2 ∈ Asg and n ∈ N.
Intuitively, at each time instant n, the action (F(χ))n of the chosen plan F(χ) only depends on
the actions (χ(x))t of the plan χ(x) at the time instants t ≤ n, for each variable x ∈ dom(χ).
This obviously means that (F(χ))n is independent of (χ(x))t at any future instant t > n. This
corresponds precisely to the notion of behavioural functor in [5] and captures the realisability
constraint on plans discussed earlier. For an assignment χ ∈ Asg and a variable x ∈ Vr, the
F-extension with x of χ is the assignment ext(χ,F, x) ≜ χ[x 7→ F(χ)].

Similar to [14, 20], a team X ∈ Tm≜{X ⊆ Asg(V) | V ⊆ Vr} is a set of assignments on the
same domain. Teams defined over some prescribed V ⊆ Vr and those defined at least over V
are grouped in Tm(V) ≜ {X ∈ Tm | X ⊆ Asg(V)} and Tm⊇(V) ≜

{
X ∈ Tm

∣∣ X ⊆ Asg⊇(V)
}

.
The set of variables on which all the assignments inside a team X ∈ Tm are defined is denoted
by vr(X). The team {∅} only containing the empty assignment ∅ is called the trivial team. A
set of variables V ⊆ vr(X) is B-tied in X, for a set of bindings B ⊆ Bn, if V is B-tied in every
assignment χ ∈ X. For a response function F ∈ Rsp and a variable x ∈ Vr, the notion of F-
extension with x lifts from assignments to teams as follows: ext(X,F, x)≜{ext(χ,F, x) |χ ∈ X}.

As defined in [5, 4], a hyperteam X ∈ HTm ≜ {X ⊆ Tm(V) | V ⊆ Vr} is a set of teams.
Hyperteams defined over some given V ⊆ Vr and those defined at least over V are grouped
in HTm(V) ≜ {X ∈ HTm |X ⊆ Tm(V)} and HTm⊇(V) ≜ {X ∈ HTm |X ⊆ Tm⊇(V)}. The
set of variables shared by all teams inside a hyperteam X ∈ HTm is denoted by vr(X). The
hyperteam {{∅}} comprised only of the trivial team is called the trivial hyperteam.

The semantics of PL is based on four operations on hyperteams, that take care of the
various logical operators. The partitioning par(X) ≜ {(X1,X2) ∈ 2X × 2X |X1 ⊎ X2 = X}
handles the Boolean connectives, by reducing the evaluation of the entire formula w.r.t. X to
the evaluation of its Boolean components w.r.t. disjoint parts X1 and X2 of X. The filtering
flt(X,V,B) ≜ {X ∈ X | V is B-tied in X} w.r.t. the sets of variables V ⊆ vr(X) and bindings
B ⊆ Bn deals with the tying operators, by filtering out of X all teams X in which V is

D. Bellier, M. Benerecetti, F. Mogavero, and S. Pinchinat 9:9

not B-tied. The extension ext(X, x) ≜ {ext(X,F, x) | X ∈ X and F ∈ Rsp} w.r.t. the variable
x ∈ Vr takes care of the first-order quantifiers, by F-extending with x every team X in
X, for all possible response functions F. Finally, the dualisation X swaps the role of the
two players in a hyperteam, allowing for connecting the two satisfaction relations and for
a symmetric treatment of all PL constructs. The swap is accomplished via the notion of
choice function Γ : X → Asg over a hyperteam X, which picks a single assignment from each
team: Chc(X)≜ {Γ : X → Asg | Γ(X)∈X, for each X∈X}. Then, the dualisation builds a new
hyperteam, whose teams are obtained by gathering all the assignments chosen by one of the
choice functions: X≜ {img(Γ) | Γ ∈ Chc(X)}. Observe that the trivial hyperteam is self-dual,
i.e., {{∅}} = {{∅}}. This approach bears strong similarity with the transformations between
DNF and CNF formulae, where a hyperteam can be viewed as a disjunction of conjunctive
clauses over assignments, if α = ∀∃, and as a conjunction of disjunctive clauses, if α = ∃∀.

The compositional semantics of PL based on hyperteams can then be defined as follows.

▶ Definition 4. For an implicitly given CGS G, Hodges’ alternating semantic relation
X |=α

φ for PL is inductively defined as follows, for all PL formulae φ, alternation flags
α ∈ {∃∀, ∀∃}, and hyperteams X ∈ HTm⊇(free(φ)):
1. X |=∃∀

♭ψ, if there exists X ∈ X such that λ(play♭(χ)) |=LTL ψ, for all χ ∈ X;
2. X |=α ¬φ, if X ̸|=α

φ;
3. X |=∃∀

φ1 ∧ φ2, if X1 |=∃∀
φ1 or X2 |=∃∀

φ2, for all (X1,X2) ∈ par(X);
4. X |=∀∃

φ1 ∨ φ2, if X1 |=∀∃
φ1 and X2 |=∀∃

φ2, for some (X1,X2) ∈ par(X);
5. X |=∃∀ ⟨V⟩φ, if flt(X,V, bnd(φ)) |=∃∀

φ;
6. X |=∀∃ [V]φ, if flt(X,V, bnd(φ)) |=∀∃

φ;
7. X |=∃∀ ∃x. φ, if ext(X, x) |=∃∀

φ;
8. X |=∀∃ ∀x. φ, if ext(X, x) |=∀∃

φ;
9. X |=α

φ, if X |=α
φ, for all other cases.

The base case (Item 1) for the goals ♭ψ formalises the intuition for satisfaction relative to
the flag ∃∀: there exists a team X in X, all assignments χ of which induce a play play♭(χ) with
a labelling that satisfy the LTL formula ψ. One could equivalently define the semantics for
the dual flag ∀∃: for all X ∈ X, it holds that λ(play♭(χ)) |=LTL ψ, for some χ ∈ X. The choice
here is immaterial, thanks to the dualisation rule of Item 9. Negation, in accordance with the
game-theoretic interpretation, is dealt with in Item 2 by swapping the players associated with
the two internal levels of the hyperteam. The semantics of the Boolean connectives (Items 3
and 4), tying operators (Items 5 and 6), and first-order quantifiers (Items 7 and 8) relies
on the first three hyperteam operations discussed above. Finally, the semantics for all the
remaining cases reduce, thanks to Item 9, to one of the cases presented, after dualising both
the hyperteam and the alternation flag. It is immediate to observe that, for a fixed CGS
G, the truth value of a PL sentence φ, when evaluated w.r.t. the trivial hyperteam, does
not depend on the specific flag, i.e., {{∅}} |=∃∀

φ iff {{∅}} |=∀∃
φ, due to the self duality of

{{∅}}. We shall thus write G |=PL φ to assert both {{∅}} |=∃∀
φ and {{∅}} |=∀∃

φ.
The following result, whose proof is a trivial adaptation of the corresponding one in [5],

shows that, when no quantifiers are present, the hyperteam semantics bears a natural
correspondence with the Tarskian one.

▶ Theorem 5. For all PL quantifier-free formulae φ and hyperteams X ∈ HTm⊇(free(φ)):
1. X |=∃∀

φ iff there exists X ∈ X such that χ |= φ, for all χ ∈ X;
2. X |=∀∃

φ iff, for all X ∈ X, it holds that χ |= φ, for some χ ∈ X.

FSTTCS 2024

9:10 Plan Logic

We can now show that, under the hyperteam semantics, the non-behavioural property
reported in the introduction is, as expected, no more satisfiable.

▶ Example 6. Consider again the sentence φNB = ∀y. ∃z. [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p) and
the CGS G of Example 3. We want to show that G ̸|=PL φNB, meaning that φNB is not
behaviourally satisfiable on G, i.e., there is no realisable plan for z ensuring a match of the
truth values of p at time instants 1 and 2. Since free(φNB) = ∅, we evaluate φNB against the
trivial hyperteam {{∅}}, which, as observed before, implies that the alternation flag is of no
consequence. W.l.o.g., we choose α = ∀∃, thus focusing on proving {{∅}} ̸|=∀∃

φNB.
The rule for the universal quantifier ∀y (Item 8) requires to compute the extension

X ≜ ext({{∅}}, y) = {{y : 000ω}, {y : 010ω}, {y : 100ω}, {y : 110ω}, . . .} of {{∅}}, containing a
singleton team for each one of the uncountably many plans to assign to y. This results in

{{∅}} |=∀∃ ∀y. ∃z. [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p) iff X |=∀∃ ∃z. [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p).

To apply the rule for the existential quantifier ∃z (Item 7), we first need to dualise the
hyperteam and switch to the ∃∀ flag (Item 9). Since every team of X is a singleton set, there
is only one possible choice function for it, thus, the result is

X |=∀∃ ∃z. [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p) iff X |=∃∀ ∃z. [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p),

where X = {{y :000ω, y :010ω, y :100ω, y :110ω, . . .}} is the singleton hyperteam composed of
the unique team containing all plans for y. The quantifier ∃z and the alternation flag ∃∀ are
coherent, so we can proceed extending the hyperteam to obtain X′ ≜ ext

(
X, z

)
. The result is

X |=∃∀ ∃z. [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p) iff X′ |=∃∀ [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p),

where
{{
y :000ω

z :00ω ,
y :010ω

z :00ω ,
y :100ω

z :00ω ,
y :110ω

z :00ω , . . .

}
,

{
y :000ω

z :10ω ,
y :010ω

z :10ω ,
y :100ω

z :00ω ,
y :110ω

z :00ω , . . .

}
, . . .

}
is the hyperteam X′ containing one team ext(X,F, z) for every response function F ∈ Rsp,
where X = {y : 000ω, y : 010ω, y : 100ω, y : 110ω, . . .} is the unique team in X. For instance,
the first team in X′ is obtained by applying the constant function F(χ) = 0ω, while, for
the second one, we use the time-0-flip function F(χ) = (1 − (χ(y))0) · 0ω. In general, by
the behavioural restriction, the action (F(χ))0 may only depend on the action (χ(y))0.
Hence, every team X′ of X′ contains at least one assignment χ such that (χ(y))1 ̸= (χ(z))0,
which implies that (play(a,y)(χ))2 ̸= (play(a,z)(χ))1. Therefore, for all X′ ∈ X′, it holds
that χ ̸|= [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p), for some χ ∈ X′. As a consequence of Item 1 of
Theorem 5, it holds that X′ ̸|=∃∀ [y] ⟨z⟩ ((a, y)X X p↔ (a, z)X p), which, in turn, means that
{{∅}} ̸|=∀∃

φNB and, so, G ̸|=PL φNB, as expected.

4 Adequacy with Strategy Logic under Timeline Semantics

While the PL semantics – thanks to the tying operators – ensures that the strategies
involved are also realisable, we have shown for instance that the SL formula
∀y. ∃z. ((a, y)X X p↔ (a, z)X p) involves strategies that are not. As an immediate consequence,
the two logics are not directly comparable. Still, as shown in [16], for the one-goal fragment
of SL, written SL[1g] here, a formula is satisfiable iff it is satisfiable when quantifying only
over realisable strategies [16]. Moreover, prenex formulae of SL can be given the so-called
timeline semantics [11, 12] that enforces realisability of the strategies. This semantics relies
on the important notion of maps – which are objects very close to Skolem functions.

D. Bellier, M. Benerecetti, F. Mogavero, and S. Pinchinat 9:11

We relate SL with timeline semantics and PL, by showing that the SL conjunctive goal
and the disjunctive goal fragments, respectively denoted by SL[cg] and SL[dg] (their union
is written SL[cg/dg]) can be translated into PL. Due to lack of space, we do not recall
here the original timeline semantics of SL, instead we introduce a game-theoretic version
(whose correctness is established in Theorem 8), that we use to prove the soundness of this
translation. It is worth noting that the SL[cg] fragment encompasses the ATL* extension
studied in [10].

4.1 Strategy Logic under Timeline Semantics and Plan Logic

Syntax. The timeline semantics of SL is given for the prenex fragment of the language, in
which each formula starts with a quantifier prefix, namely a finite sequence ℘ of existential ∃X

and universal ∀X quantifiers, where each variable occurs at most once. The set of variables
occurring in a quantifier prefix ℘ is vr(℘), and we let vr∃(℘) (resp. vr∀(℘)) be the set of
existentially (resp. universally) quantified variables. In the rest of this section, we implicitly
consider SL under the timeline semantics, and thus every SL formula is in prenex form.

Formulae of the fragments SL[cg] and SL[dg] are, respectively, of the form ℘
∧

♭∈B♭ψ♭

and ℘
∨

♭∈B♭ψ♭ , where ℘ is a quantifier prefix, B is a set of bindings, and each ψ♭ is an LTL
formula. Observe that the one-goal fragment SL[1g] of SL is contained in the intersection
of SL[cg] and SL[dg], which amounts to requiring B to be a singleton set. We may use
notation SL[bg] to refer to the SL fragment allowing for arbitrary Boolean combinations of
goals.

Translation from SL to PL. The translation for the full SL[bg] fragment involves three
steps. First we encode each strategy variable with as many plan variables as there are goals in
the formula. These plan variables inherit the same quantifier as the original SL variable in the
resulting quantifier prefix. Second, to account for the fact that the corresponding plans must
be part of the same strategy, we tie such plan variables together by means of a tying prefix of
suitable tying operators. Third, we replace the strategy variables occurring in the goals of the
matrix, i.e. the quantifier free subformula following the prefix, with the corresponding plan
variable for that goal. More in detail, let Φ = ℘ϕ be a SL[bg] formula. Each quantifier QX in
℘ is transformed into a sequence of quantifiers of the form Qx♭ , one for every ♭ ∈ bnd(Φ) with
X ∈ vr(♭). Formally, the quantifier prefix of the translation is ℘SL2PL(Φ)≜((QXx♭)♭∈BX)X∈vr(℘)
with BX = {♭ ∈ bnd(φ) | X ∈ vr(♭)} and QX = ∃ if X ∈ vr∃(℘) and QX = ∀ if X ∈ vr∀(℘).

We now keep track of the fact that the various obtained variables x♭ stem from a single
variable X by tying them in a coherent manner via a tying prefix τSL2PL(Φ): when variable
X was existentially (resp. universally) quantified, the tying of the x♭ ’s is existential (resp.
universal) as follows. Writing VX ≜

{
x♭

∣∣ ♭ ∈ BX

}
for the set of plan variables associated

with the strategy variable X, we let τSL2PL(Φ) ≜ (⟨VX⟩)X∈vr∃(℘)([VX])X∈vr∀(℘). Finally, in
each original goal subformula ♭ψ, we replace every occurrence of variable X with the new
variable x♭ . The complete translation of the matrix ϕ (a Boolean combination of goals) is
denoted by ϕSL2PL(Φ). Gathering all the translation components we have defined, we obtain
SL2PL(Φ)≜℘SL2PL(Φ) τSL2PL(Φ)ϕSL2PL(Φ), whose size is polynomial in that of Φ. In the next
subsection we show that this translation is sound for both the conjunctive and disjunctive
goal fragments of SL. We refer the reader to the examples in Section 3 for instances of this
translation.

▶ Theorem 7. G|=SLΦ iff G |=SL2PL(Φ), for every SL[cg/dg] sentence Φ and CGS G.

FSTTCS 2024

9:12 Plan Logic

The proof of Theorem 7 is reported in Section 4.2. A crucial step in the proof is
the introduction of a game-theoretic semantics for SL, which reduces the evaluation of
an SL[cg/dg] sentence Φ in a given CGS G to the evaluation of a corresponding PL
formula GTSSL(Φ) in a modified CGS GTSSL(G,Φ). This construction turns out to be a
game-theoretic semantics for the conjunctive and disjunctive goal fragments of SL.

4.2 Game-theoretic Semantics of SL[CG/DG]
The game-theoretic semantics of SL[cg/dg] employs an additional operator agent, who plays
the role of the single Boolean operator involved in the quantifier-free matrix of the sentence
(either ∧ or ∨) and can choose the specific goal formula to be falsified/verified. Essentially,
the key idea behind the proposed semantics is that, as long as two bindings follow the same
play, the operator agent can postpone the decision of which of the corresponding goal formula
to falsify/verify.

Given a CGS G = ⟨Ag,Ac,Ps, vI , δ, λ⟩ and an SL[cg/dg] sentence Φ = ℘ϕ, we build
the new CGS GTSSL(G,Φ) and the new formula GTSSL(Φ) as follows, where BΦ = bnd(Φ).

▶ Construction 1. In CGS GTSSL(G,Φ), a position v̂ = (v,B) stems from a position v

in G equipped with a set B of bindings, precisely those that agree so far along the history
that led to v̂ . We set P̂s ≜ {v̂∃, v̂∀, v̂⊛} ∪ Ps × 2BΦ , where three special sink positions v̂∃, v̂∀
and v̂⊛ are explained later. The initial position of GTSSL(G,Φ) is v̂I = (vI , BΦ), since at
the beginning all the bindings agree on the empty history. The set of agents in GTSSL(G,Φ)
gathers the variable agents, one for each variable quantified in ℘, and the extra operator
agent, written x⊛, i.e. Âg≜vr(Φ)∪{x⊛}. The actions of GTSSL(G,Φ) include all the actions
of the original CGS G and a new binding action for each binding occurring in the original
formula Φ, i.e. Âc≜Ac ∪BΦ . The variable agents are only allowed to choose an action from
the original CGS , while binding actions are reserved to agent x⊛, who can only choose a
binding belonging to the decoration of the current position. To force each agent to always
pick the right type of action, we use the three sink positions v̂∃, v̂∀ and v̂⊛. Specifically,
position v̂∃ (resp. v̂∀) is reached every time the agent for a universally (resp. existentially)
quantified variable mischooses a binding action instead of a proper one. Conversely, v̂⊛
is reached any time agent x⊛ either mischooses a proper action or takes a binding action
outside of the decoration of the current position. Formally, we say that an action profile
c⃗ ∈ (Ac ∪ bnd(φ))vr(℘)∪{x⊛} is Q-ill-typed, for Q ∈ {∀, ∃}, if the leftmost variable x in the
quantifier prefix ℘ such that c⃗(x) /∈ Ac is Q-quantified, and that c⃗ is ⊛-ill-typed in position
v̂ = (v,B) if c⃗(x) /∈ B. An action profile is well-typed in position v̂ if it is neither Q-ill-typed
nor ⊛-ill-typed in position v̂ . The notion of bindings that agree with the choice of x⊛ is
formalized as follows. We say that two bindings ♭1, ♭2 ∈ Bn (whose variables are in vr(℘)) are
indistinguishable at position v ∈ Ps w.r.t. action assignment c⃗ ∈ Acvr(℘) of variable agents,
in symbols ♭1 ≡c⃗

v ♭2, whenever δ(v, c⃗ ◦ ♭1) = δ(v, c⃗ ◦ ♭2), i.e., the same position is reached by
playing either c⃗ ◦ ♭1 or c⃗ ◦ ♭2. A move at position v̂ = (v,B) with well-typed action profile
c⃗ in v̂ leads to position û = (u,C) where u = δ(v, c⃗ ◦ ♭) for the choice ♭ = c⃗(x⊛) of agent
x⊛, and C ⊆ B retains only the bindings that are indistinguishable from ♭ (at v w.r.t. c⃗).
Formally,

δ̂(v̂ , c⃗) ≜

v̂Q if v̂ = v̂Q , or v̂ ̸= v̂⊛ and c⃗ is Q-ill-typed, with Q ∈ {∃, ∀};
v̂⊛ if v̂ = v̂⊛ or c⃗ is ⊛-ill-typed in v̂ ;
(δ(v, c⃗ ◦ ♭),

{
♭

′ ∈ B
∣∣ ♭′ ≡c⃗

v ♭
}

) with (v,B) = v̂ and ♭ = c⃗(x⊛), otherwise.
Finally, the label of v̂ = (v,B) inherits from the label of v in G with the extra propositions

q♭ , one for each binding ♭ ∈ B. Formally, λ̂(v̂∃) ≜ {p∃}, λ̂(v̂∀) ≜ {p∀}, λ̂(v̂⊛) ≜ ∅, and
λ̂((v,B)) ≜ λ(v) ∪

{
q♭ ∈ AP

∣∣ ♭ ∈ B
}

.

D. Bellier, M. Benerecetti, F. Mogavero, and S. Pinchinat 9:13

We now turn to the definition of GTSSL(Φ) that is to be evaluated on GTSSL(G,Φ).
Since in the construction above variables turned into agents, the involved bindings all
collapse to the single identity binding ♭id, i.e. ♭id(x) = x for every x ∈ vr(℘) ∪ {x⊛}. As a
consequence, formula GTSSL(Φ) contains only one goal of the form ♭idψ, where the definition
of ψ depends on whether Φ belongs to SL[cg] or to SL[dg]. Here we illustrate the case
Φ = ℘

∧
♭∈B♭ψ♭ ∈ SL[cg], for which we set:

GTSSL(℘
∧
♭∈B

♭ψ♭) ≜ ℘ ∀x⊛ ♭id((F p∃) ∨ ((G ¬p∀) ∧
∧
♭∈B

((G q♭) → ψ♭))).

Intuitively, formula (F p∃) ∨ ((G ¬p∀) ∧
∧

♭∈B((G q♭) →ψ♭)) gives the win to the existential
agents as soon as a universal variable agent makes an ill-typed decision (this is the disjunct
F p∃). Otherwise, for the existential variable agents to win, they should never make an
ill-typed decision (see the G ¬p∀ subformula) and should guarantee each ♭-objective ψ♭ if the
obtained play coincides with the original play, namely the one induced by ♭ in the original
arena; note that in case operator agent chooses an ill-typed action, no such original play
exits.

A dual approach holds for the disjunctive case, that results in setting:

GTSSL(℘
∨
♭∈B

♭ψ♭) ≜ ℘ ∃x⊛ ♭id((G ¬p∀) ∧ ((F p∃) ∨
∨
♭∈B

((G q♭) ∧ ψ♭))).

The following theorem states that the above constructions provide a proper game-theoretic
semantics for SL[cg/dg].

▶ Theorem 8. G|=SLΦ iff GTSSL(G,Φ) |= GTSSL(Φ), for all SL[cg/dg] sentences Φ.

We sketch the proof road-map of Theorem 8 that consists in showing both (a) that the
truth of an SL[cg] formula entails the truth of its GTSSL translation, and (b) that the truth
of an SL[dg] formula entails the truth of its GTSSL translation. Observe that the if direction
of Theorem 8 follows from (the contrapositions of) items (a) and (b), the determinacy of
SL, and the duality of the GTSSL constructions for SL[cg] and SL[dg]. Recall that one
quantifies over strategies in SL and over plans in PL, the target setting of the game-theoretic
semantics. According to the hyperteam semantics of PL, quantifications of plan variables is
dealt with by means of responses to variable assignments. What one needs to do, then, is
design a correspondence between the strategies of the SL sentence and those responses.

▶ Theorem 9. G |=SL2PL(Φ) iff GTSSL(G,Φ) |=GTSSL(Φ), for all SL[cg/dg] sentences Φ.

Similarly to the preceding proof approach, we show that (a) the truth of SL2PL(Φ), where
Φ ∈ SL[cg], entails the truth of its GTSSL translation, and (b) the truth of SL2PL(Φ), where
Φ ∈ SL[dg], entails the truth of its GTSSL translation. Notice that both formulae are in PL,
but that formula SL2PL(Φ) is based on duplicates x♭ ’s of the original variables x in Φ, while
in GTSSL(Φ) the original variables of Φ are kept as is, with an extra operator agent variable.
Reconstructing a response for x from those of the x♭ ’s is made possible thanks to the tying
operators introduced in the formula SL2PL(Φ).

Theorems 8 and 9 entail Theorem 7.

5 Model Checking of Plan Logic

We finally consider the model-checking problem of four fragments of PL, namely PL[bg],
PL[cg], PL[dg], and PL[1g], similar to the ones exhibited for SL. Recall that the model-
checking problem of PL (and its fragments) is a decision problem that asks whether an

FSTTCS 2024

9:14 Plan Logic

input CGS is a model of an input PL sentence. In [6], it has been shown that, due to the
non-behaviouralness, i.e., unrealisability, of the Tarskian semantics of the Boolean-Goal
fragment of SL (SL[bg]) [16], its model-checking problem is tower complete in the alternation
of quantifiers. We prove instead that, despite its high expressive power, PL[bg] enjoys a
problem with a 2ExpTime-complete formula complexity, which is not harder than the
one for the much simpler logic ATL*. This result is obtained by reducing the evaluation
of a PL[bg] sentence φ in a given CGS G to the evaluation of a PL[1g] sentence φ̂ in a
modified structure Ĝ. Also, by tuning the reduction for PL[cg] and PL[dg], we obtain a
model-checking procedure with an optimal PTime-complete model complexity.

Goal Fragments of PL. The Boolean-Goal fragment of PL (PL[bg]) comprises all positive
Boolean combinations of formulae (in prenex form) ℘ τ ϕ, where ℘ is a quantifier prefix,
τ a tying prefix, and ϕ a positive Boolean combination of goals ♭ψ. The Conjunctive-
Goal fragment of PL (PL[cg]) (resp., Disjunctive-Goal fragment of PL (PL[dg])) further
restricts PL[bg] by requiring ϕ to be a conjunction (resp, disjunction) of goals. Finally, in
the One-Goal fragment of PL (PL[1g]), ϕ is assumed to be a single goal ♭ψ.

The encoding φNE of the existence of a Nash equilibrium discussed in Section 3 is an
example of PL[bg] formula, as well as the sentence φNB of Example 3. The sentence φW

stating the existence of a winning strategy in a two player game clearly belongs to PL[1g],
while the existence of a non strictly-dominated strategy can be expressed in PL[dg], as
witnessed by the encoding φNSD. By turning ¬φNSD into positive normal form, we obtain the
following PL[cg] sentence:

∀x. ∃x′. ∀y1, y2. [x] ⟨x′⟩ [y1, y2] ((a, x′)(b, y1)¬ψ ∧ (a, x)(b, y2)¬ψ) .

In [1], it has been shown that Nash equilibria can actually be expressed in SL[cg]. Thus,
the corresponding translations into PL would result in sentences of the PL[cg] fragment.
Indeed, the conversion function SL2PL : SL → PL, when applied to an SL[cg/dg] sentence,
necessarily returns a PL[cg/dg] one. Finally, GTSSL : SL → PL always produces a PL[1g]
sentence.

The One-Goal Fragment. A simple inspection of the syntactic translation SL2PL : SL → PL
of the previous section shows that its application to an SL[1g] sentence results in a PL[1g]
one with the same quantifier prefix, the same goal, and an eliminable prefix of tying operators
on a single variable. Actually, a more general elimination property can be proven for arbitrary
tying operators in a PL[1g] formula ℘τ♭ψ: (a) if τ contains ⟨V⟩, with two variables x, y ∈ V,
where y is universally quantified after x in ℘, then the subformula originating in ⟨V⟩ is
equivalent to ⊥; (b) dually, if τ contains [V], with two variables x, y ∈ V, where y is
existentially quantified after x in ℘, then the subformula originating in [V] is equivalent to ⊤;
(c) in all other cases, the tying operator can be eliminated, by replacing all the variables in V
with the first one of V quantified in ℘. E.g., assuming ℘ = ∀x∃y∀z and ♭ = (a, x)(b, y)(c, y),
we have that (i) ℘ [x, y]⟨y, z⟩ ♭ψ ≡ ⊤, (ii) ℘ ⟨y, z⟩[x, y] ♭ψ ≡ ⊥, and (iii) ℘ ⟨x, y⟩[y, z] ♭ψ ≡
∀x. (a, x)(b, x)(c, x)ψ. Thus, the following tying-elimination property holds true.

▶ Proposition 10. Every sentence ℘τ♭ψ in PL[1g] has an equivalent sentence of the form
℘′♭′ψ.

By combining this proposition with Theorem 7, we obtain that the One-Goal fragments
of SL and PL semantically coincide.

D. Bellier, M. Benerecetti, F. Mogavero, and S. Pinchinat 9:15

▶ Theorem 11. For every SL[1g] sentence Φ, there is a PL[1g] sentence φ and, vice versa,
for every PL[1g] sentence φ, there is an SL[1g] sentence Φ such that: |Φ| = Θ(|φ|) and
G |=SL Φ iff G |=PL φ.

Due to the known 22O(|φ|) · |G|O(1) complexity of the model-checking problem of SL[1g] [16,
Theorem 5.14], we can immediately derive the following theorem.

▶ Theorem 12. PL[1g] model-checking problem is 2-ExpTime-complete(|φ|) in the length
of the specification φ and PTime-complete(|G|) in the size of the model G.

The Boolean-Goal Fragment. The encoding underlying Theorem 8 of the game-theoretic
semantics for SL[cg/dg] into PL[1g] allowed us to prove the equivalence between these
logics and the corresponding fragments of PL. We shall leverage the same idea here to
solve the model-checking problem of PL[bg]. Given a CGS G and a sentence φ = ℘τϕ,
with binding set Bφ ≜ bnd(φ), we build a new CGS GTSBG(G, φ), whose plays are bundles
of plays from G, one per binding in ϕ. This is done, intuitively, by composing in parallel
as many copies of G as there are bindings in ϕ, resulting in positions that correspond to
vectors v̂ ∈ PsBφ of original positions of G. Agents of the new game coincide with the
variables quantified in ℘, while actions carries over unchanged. A move from a position v̂

to a position û is then a vector of parallel moves in G, one per original position contained
in v̂, while forbidding incoherent concurrent choices w.r.t. the tying operators occurring in
τ . Formally, an action assignment c⃗ ∈Acvr(℘) is V-incoherent at v̂ w.r.t. φ, where V ⊂ Vr,
if there are two variables x1, x2 ∈ V and two bindings ♭1, ♭2 ∈ Bφ, with x1 ∈ vr(♭1) and
x2 ∈ vr(♭2), such that v̂(♭1) = v̂(♭2), but c⃗(x1) ̸= c⃗(x2). In other words, a concurrent move c⃗
is V-incoherent at v̂ w.r.t. φ, if there are variables in V whose different associated actions in
c⃗ should have been equal, being part of bindings that are indistinguishable at v̂. We say that
c⃗ is ∃-incoherent (resp., ∀-incoherent) at v̂ w.r.t. φ if the leftmost set of variables V in τ ,
such that c⃗ is V-incoherent at v̂ w.r.t. φ, occurs in a tying operator of type ⟨V ⟩ (resp., [V]).
Intuitively, c⃗ is ∃/∀-incoherent at v̂ w.r.t. φ if the first violated tying constraint specified in
τ is existential/universal. If c⃗ is neither ∃-incoherent nor ∀-incoherent at v̂ w.r.t. φ, we say
that c⃗ is coherent at v̂ w.r.t. φ.

▶ Construction 2. Given a CGS G = ⟨Ag,Ac,Ps, vI , δ, λ⟩ and a PL[bg] sentence φ, with
binding set Bφ ≜ bnd(φ), let GTSBG(G, φ) ≜ ⟨Âg, Âc, P̂s, v̂I , δ̂, λ̂⟩ be the CGS obtained as
follows: (a) agents are the variables quantified in φ, i.e., Âg≜vr(φ); (b) Âc≜Ac; (c) positions
are Bφ-indexed vectors of original positions from G, plus two distinguished sink positions
v̂∃ and v̂∀, i.e., P̂s ≜ {v̂∃, v̂∀} ∪ PsBφ ; (d) the initial position is the vI-constant vector, i.e.,
v̂I ≜ {♭ ∈ Bφ 7→ vI}; (e) every position, but the distinguished ones, are labelled with a
set of fresh atomic propositions, one per binding and original labelling, i.e., λ̂(v̂∃) ≜ {p∃},
λ̂(v̂∀) ≜ {p∀}, and λ̂(v̂) ≜ {p♭ ∈ AP | ♭ ∈ Bφ, p ∈ λ(v̂(♭))}; (f) the transition function δ̂ maps
every position v̂ ∈ P̂s \ {v̂∃, v̂∀} and action profile c⃗ ∈Acvr(φ) coherent at v̂ w.r.t. φ to position
û ∈ P̂s \ {v̂∃, v̂∀}, where, for each binding ♭ ∈ Bφ, the position û(♭) is the successor of v̂(♭)
in G following the action profile c⃗ ◦ ♭, which associates with each agent a ∈ Ag the action
stipulated by c⃗ for the variable ♭(a); formally,

δ̂(v̂, c⃗) ≜
{
v̂Q, if v̂ = v̂Q or c⃗ is Q-incoherent at v̂ w.r.t. φ, with Q ∈ {∃, ∀};
û, otherwise, where û(♭) ≜ δ(v̂(♭), c⃗ ◦ ♭), for all ♭ ∈ Bφ.

The PL[1g] encoding of the game-theoretic semantics for the PL[bg] sentence φ = ℘τϕ is
relatively easy to formalise at this point: besides verifying the coherence constraints dictated
by the tying prefix τ , we only need to check that the bundles of plays induced by plans in

FSTTCS 2024

9:16 Plan Logic

the CGS GTSBG(G, φ) satisfy the matrix ϕ. Checking the constraints amounts to requiring
avoidance of the two distinguished sink positions v̂∃ and v̂∀. The verification of the matrix is
obtained by transforming ϕ into the LTL formula ϕ̂, where each goal ♭ψ is replaced by the
LTL formula ψ̂, in turn obtained by replacing in ψ every atomic proposition p with p♭, i.e.,
ϕ̂≜ ϕ

[
♭ψ/ψ̂

]
, with ψ̂ ≜ ψ [p/p♭]. Altogether, we get the following:

GTSBG(℘τϕ) ≜ ℘ ♭id

(
(F p∃) ∨

(
(G ¬p∀) ∧ ϕ̂

))
.

Since the original PL[bg] sentence φ and its PL[1g] translation GTSBG(φ) share the
same quantifier prefix ℘, thanks to Theorem 5, we can prove the correctness of the encoding,
on the basis that χ |= τϕ iff χ |= ♭id((F p∃) ∨ ((G ¬p∀) → ϕ̂)), for all χ ∈ Asg⊇(vr(℘)), which
can be done by structural induction on τϕ (using the simple semantic rules of Definition 2).

▶ Theorem 13. G |= φ iff GTSBG(G, φ) |= GTSBG(φ), for every PL[bg] sentence φ.

Once we observe that |GTSBG(G, φ)| = 2+ |G||bnd(φ)| and |GTSBG(φ)| = O(|φ|), thanks to
Theorem 12, we can derive the following result, where FPT means fixed-parameter tractable.

▶ Theorem 14. The model-checking problem for PL[bg] is 2-ExpTime-complete(|φ|) in
the length of the specification φ and FPT|φ|(|G|) in the size of the model G, with the length
of the specification φ as parameter, once the maximum number of bindings is fixed.

The Conjunctive & Disjunctive Goal Fragments. The simpler conjunctive/disjunctive
nature of goal combinations in PL[cg/dg] allows us to considerably improve on the model
complexity of the model-checking problem of PL[bg], by removing redundant information
from the position space, which is necessary only to handle arbitrary Boolean combinations.
This is done by suitably merging ideas from Constructions 1 and 2: from the former we
inherit the structure topology, while of the latter we use the criteria for determining the
compliance of the choices w.r.t. the tying operators (compliance issues are irrelevant in
Construction 1, since strategies are considered). We end-up with an ad hoc game-theoretic
semantics for PL[cg/dg], whose resulting CGS encoding GTSCDG(G, φ) is virtually identical
to Construction 1, where the notion of well-typed action assignment is generalised to take
into account the coherence constraints introduced for Construction 2. The sentence encoding
GTSCDG(φ) is also identical to the one used for SL[cg/dg] in association with Construction 1.

The following theorem can be obtained as a slight adaptation of the proof of Theorem 9.

▶ Theorem 15. G |= φ iff GTSCDG(G, φ) |= GTSCDG(φ), for every PL[cg/dg] sentence φ.

Once we observe that |GTSCDG(G, φ)| = 2 + 2|bnd(φ)| · |G| and |GTSCDG(φ)| = O(|φ|), we
can derive the following result, again thanks to Theorem 12.

▶ Theorem 16. The model-checking problem for PL[cg/dg] is 2-ExpTime-complete(|φ|)
in the length of the specification φ and PTime-complete(|G|) in the size of the model G.

6 Conclusion

We have introduced Plan Logic as a language for strategic reasoning, alternative to Strategy
Logic, based on the notion of plans instead of strategies. We show that this conceptual shift is
quite beneficial, as the intrinsic linear nature of plans allows for a semantics that guarantees
realisability of the satisfiable sentences via behavioural functional constraints. To this end,
we propose hyperteams as a novel semantic framework for strategic reasoning, which enjoys

D. Bellier, M. Benerecetti, F. Mogavero, and S. Pinchinat 9:17

several important model-theoretic properties, e.g., compositionality and determinacy. Observe
that, for instance, the only semantics for SL that tackle the problem is the timeline semantics
proposed in [11, 12], which, however, exhibits neither compositionality nor determinacy. The
authors of [12] show, indeed, that such a semantics is not adequate already when applied
to SL[bg], as it is undetermined on sentences of that fragment. It is worth noting that the
hyperteam semantics, unlike the timeline one based on an ad hoc Skolem semantics, is a
principled approach that has been applied to model very general functional dependencies
among variables in other logics, such as QPTL [5] and Fol [4].

We showed that, thanks to the behavioural nature of the semantics, the model-checking
problem of PL[bg] is still 2-ExpTime-complete, in stark contrast with the non-elementarity
of the same problem for SL[bg] [6]. This further highlights the importance of enforcing
behavioural constraints. In addition, we study the conjunctive and disjunctive goal fragments
of PL in direct comparison with the respective fragments of SL. We show their expressive
equivalence, by introducing a novel game-theoretic semantics that allows for a direct compar-
ison between the two logics. Thanks to the connection between the game-theoretic semantics
of the PL[cg] and SL[cg], on the one hand, and of PL[dg] and SL[dg], on the other, we
can improve the model-checking complexity of those fragments to PTime-complete in
the size of the model (Theorem 16). Note that these fragments strictly include ATL*, a
prominent logic in strategic reasoning, which, in turn, is subsumed by the one-goal fragment
of both SL and PL. These fragments are quite interesting, as they enable several forms of
complex strategic reasoning, such as strategy domination and various forms of equilibria
(e.g., Nash equilibria).

References
1 E. Acar, M. Benerecetti, and F. Mogavero. Satisfiability in Strategy Logic Can Be Easier

than Model Checking. In AAAI’19, pages 2638–2645. AAAI Press, 2019. doi:10.1609/AAAI.
V33I01.33012638.

2 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic. In FOCS’97,
pages 100–109. IEEECS, 1997.

3 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic. JACM,
49(5):672–713, 2002. doi:10.1145/585265.585270.

4 D. Bellier, M. Benerecetti, D. Della Monica, and F. Mogavero. Alternating (In)Dependence-
Friendly Logic. APAL, 174(10):103315:1–58, 2023.

5 D. Bellier, M. Benerecetti, D. Della Monica, and F. Mogavero. Good-for-Game QPTL: An
Alternating Hodges Semantics. TOCL, 24(1):4:1–57, 2023. doi:10.1145/3565365.

6 P. Bouyer, P. Gardy, and N. Markey. Weighted Strategy Logic with Boolean Goals Over
One-Counter Games. In FSTTCS’15, LIPIcs 45, pages 69–83. Leibniz-Zentrum fuer Informatik,
2015.

7 K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. In CONCUR’07, LNCS
4703, pages 59–73. Springer, 2007. doi:10.1007/978-3-540-74407-8_5.

8 K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. IC, 208(6):677–693, 2010.
doi:10.1016/J.IC.2009.07.004.

9 D. Dams. Flat Fragments of CTL and CTL*: Separating the Expressive and Distinguishing
Powers. LJIGPL, 7(1):55–78, 1999. doi:10.1093/JIGPAL/7.1.55.

10 S. Enqvist and V. Goranko. The Temporal Logic of Coalitional Goal Assignments in Concurrent
Multiplayer Games. TOCL, 23(4):21:1–58, 2022. doi:10.1145/3517128.

11 P. Gardy, P. Bouyer, and N. Markey. Dependences in Strategy Logic. In STACS’18, LIPIcs
96, pages 34:1–15. Leibniz-Zentrum fuer Informatik, 2018.

12 P. Gardy, P. Bouyer, and N. Markey. Dependences in Strategy Logic. TCS, 64(3):467–507,
2020. doi:10.1007/S00224-019-09926-Y.

FSTTCS 2024

https://doi.org/10.1609/AAAI.V33I01.33012638
https://doi.org/10.1609/AAAI.V33I01.33012638
https://doi.org/10.1145/585265.585270
https://doi.org/10.1145/3565365
https://doi.org/10.1007/978-3-540-74407-8_5
https://doi.org/10.1016/J.IC.2009.07.004
https://doi.org/10.1093/JIGPAL/7.1.55
https://doi.org/10.1145/3517128
https://doi.org/10.1007/S00224-019-09926-Y

9:18 Plan Logic

13 V. Goranko and S. Vester. Optimal Decision Procedures for Satisfiability in Fragments of
Alternating-time Temporal Logics. In AIML’14, pages 234–253. College Publications, 2014.
URL: http://www.aiml.net/volumes/volume10/Goranko-Vester.pdf.

14 W. Hodges. Compositional Semantics for a Language of Imperfect Information. LJIGPL,
5(4):539–563, 1997. doi:10.1093/JIGPAL/5.4.539.

15 O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic Approach to Branching-
Time Model Checking. JACM, 47(2):312–360, 2000. doi:10.1145/333979.333987.

16 F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. Reasoning About Strategies: On the
Model-Checking Problem. TOCL, 15(4):34:1–42, 2014.

17 F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. Reasoning About Strategies: On the
Satisfiability Problem. LMCS, 13(1:9):1–37, 2017.

18 F. Mogavero, A. Murano, and M.Y. Vardi. Reasoning About Strategies. In FSTTCS’10,
LIPIcs 8, pages 133–144. Leibniz-Zentrum fuer Informatik, 2010.

19 S. Schewe. ATL* Satisfiability is 2ExpTime-Complete. In ICALP’08, LNCS 5126, pages
373–385. Springer, 2008. doi:10.1007/978-3-540-70583-3_31.

20 J.A. Väänänen. Dependence Logic: A New Approach to Independence Friendly Logic, volume 70
of London Mathematical Society Student Texts. CUP, 2007.

http://www.aiml.net/volumes/volume10/Goranko-Vester.pdf
https://doi.org/10.1093/JIGPAL/5.4.539
https://doi.org/10.1145/333979.333987
https://doi.org/10.1007/978-3-540-70583-3_31

Explicit Commutative ROABPs from Partial
Derivatives
Vishwas Bhargava # Ñ

Department of Computing and Mathematical Sciences, Caltech, Pasadena, CA, USA

Anamay Tengse # Ñ

School of Computer Sciences, NISER, Bhubaneswar, India

Abstract
The dimension of partial derivatives (Nisan and Wigderson, 1997) is a popular measure for proving
lower bounds in algebraic complexity. It is used to give strong lower bounds on the Waring
decomposition of polynomials (called Waring rank). This naturally leads to an interesting open
question: does this measure essentially characterize the Waring rank of any polynomial?

The well-studied model of Read-once Oblivious ABPs (ROABPs for short) lends itself to an
interesting hierarchy of “sub-models”: Any-Order-ROABPs (ARO), Commutative ROABPs, and
Diagonal ROABPs. It follows from previous works that for any polynomial, a bound on its Waring
rank implies an analogous bound on its Diagonal ROABP complexity (called the duality trick),
and a bound on its dimension of partial derivatives implies an analogous bound on its “ARO
complexity”: ROABP complexity in any order (Nisan, 1991). Our work strengthens the latter
connection by showing that a bound on the dimension of partial derivatives in fact implies a bound
on the commutative ROABP complexity. Thus, we improve our understanding of partial derivatives
and move a step closer towards answering the above question.

Our proof builds on the work of Ramya and Tengse (2022) to show that the commutative-
ROABP-width of any homogeneous polynomial is at most the dimension of its partial derivatives.
The technique itself is a generalization of the proof of the duality trick due to Saxena (2008).

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Partial derivatives, Apolar ideals, Commuting matrices, Branching programs

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.10

Funding Vishwas Bhargava: Part of this work was done as a postdoc at University of Waterloo,
Canada.
Anamay Tengse: Part of this work was done as a postdoc at Reichman University, Herzliya.

Acknowledgements VB thanks Rafael Oliveira and Abhiroop Sanyal for numerous insightful discus-
sions. AT thanks Prerona Chatterjee, C Ramya, and Ramprasad Saptharishi for several fruitful
discussions about ROABPs over the recent years. AT is also deeply grateful to Ramprasad Saptharishi,
Susmita Biswas and Lulu, for hosting him during a part of this work.

1 Introduction

How many points do we need to evaluate an expression like the following on, to determinist-
ically tell if it is computing the zero polynomial?

f(x1, . . . , xn) = (a1,1x1 + a1,2x2 + · · · + a1,nxn)d + · · · + (as,1x1 + · · · + as,nxn)d (1.1)

As of now, the answer to this question stands at (nds)O(log log n), just a (rather annoying)
smidgen away from a legit efficient algorithm. The above bound follows from a combination
of the works of Forbes, Saptharishi and Shpilka [5] and Gurjar, Korwar and Saxena [7].

© Vishwas Bhargava and Anamay Tengse;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vishwas1384@gmail.com
https://sites.google.com/view/vishwas/
https://orcid.org/0009-0005-7869-377X
mailto:anamay.tengse@gmail.com
https://anamay.bitbucket.io
https://orcid.org/0000-0002-7305-8110
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Commutative ROABPs from Partial Derivatives

An expression like (1.1) is called a Waring decomposition for f of size s; the name comes
from “Waring’s problem” in number theory1. Analogously, for a homogeneous polynomial
f(x) of degree d, its Waring rank is the smallest number s for which f can be written
as a sum of d-th powers of s-many linear forms; that is, the size of its smallest Waring
decomposition. The Waring rank of different polynomials has been studied in mathematics
for over a century now (see e.g. [8]), and some recent works have even found its applications
in parameterized algorithms (e.g. [16]). It is known that any polynomial has a finite Waring
rank [4, 2], except for over finite fields of small characteristic. We now also know the Waring
rank of monomials exactly [18]. For example, it is known that the monomial x1x2 · · · xn has
Waring rank exactly 2n−1.

The corresponding algebraic model of computation: called a “depth-3-powering circuit”,
was first introduced in algebraic circuit complexity by Saxena [21], who studied it from
the perspective of polynomial identity testing (PIT for short). PIT is the algorithmic
task mentioned above: determine whether the given circuit computes the identically zero
polynomial. In what is sometimes called a “whitebox PIT”, the algorithm has access to
the circuit itself; Saxena [21] gave an efficient whitebox test for a more general model. In a
“blackbox PIT”, the algorithm cannot access the expression and can only query it on a few
points (independent of the actual circuit), which is exactly the question stated at the start.

Dimension of partial derivatives
All the currently known blackbox PITs for depth 3 powering circuits build on the fact that any
n-variate, degree-d polynomial with Waring rank s has at most s(d + 1) dimension of partial
derivatives (see Definition 1.3). The measure was introduced by Nisan and Wigderson [15] as
a tool to prove lower bounds against sums of products of linear forms, and thus the above
statement is implicit from their work. The myriad variants of this measure now form the basis
of several strong lower bounds throughout algebraic circuit complexity (see e.g. [23, 20]).

Returning to Waring decompositions, almost all known lower bounds on Waring ranks of
different polynomials use the dimension of partial derivatives in one way or the other. In view
of this, and given the strong connections between proofs of hardness and derandomization of
PIT (see e.g. [10]), it stands to reason that obtaining an efficient blackbox PIT for depth 3
powering circuits requires us to answer the following question.

▶ Question 1.1. Is it the case that any n-variate polynomial with dimension of partial
derivatives r has a Waring rank that is at most poly(n, r)?

To the best of our knowledge, there aren’t even any candidate negative examples to this
question, except for the symbolic determinant: Detn. The n × n determinant has a dimension
of partial derivatives that is 2Θ(n), but the best known upper bound on its Waring rank
stands at 2O(n log n).

The only other “deviation” that these two measures – dimension of partial derivatives and
Waring rank – exhibit, comes from their respective connections with a different well-studied
model, which we will now see.

1.1 Read-once Oblivious ABPs (ROABPs)
An ROABP is an expression of the form: u⊺ · M1(x1) · M2(x2) · · · Mn(xn) · v, where u, v
are vectors over the base field and each Mj(xj) is a univariate polynomial with matrices as
coefficients, as follows.

1 See this wikipedia article for a summary.

https://en.wikipedia.org/wiki/Waring%27s_problem

V. Bhargava and A. Tengse 10:3

Mj(xj) = Aj,0 + Aj,1xi + Aj,2x2
i + · · · + Aj,dxd

j (1.2)

That is, there is exactly one “matrix-polynomial” corresponding to each variable. Thus, each
variable is “read” exactly once, oblivious to the other variables; hence the name. We formally
define ROABPs in Definition 2.1.

Here, the dimension of u, v and all the n(d + 1) many matrices (assumed to be the same
without loss of generality) is said to be the width of the ROABP, and is typically denoted by
w. Note that the width of an ROABP is the single parameter that dictates its complexity,
since n and d arise straight from the polynomial being computed. A subtle point here is that
for the same polynomial, the smallest possible ROABP-width can vary widely depending
on the order in which the variables appear (see Observation 2.8), and hence the order of an
ROABP is also an important parameter. Nevertheless, for any polynomial and any order, the
exact size of the smallest corresponding ROABP can be obtained using a characterization
given by Nisan [13]. As we will soon see, even this characterization is in a way connected to
the partial derivatives of the given polynomial; we provide a formal definition and statement
in Definition 2.5 and Theorem 2.6.

ROABPs were formally introduced by Forbes and Shpilka [6] as algebraic analogues
of ROBPs from the boolean world, where they showed a quasi-polynomial time blackbox
PIT for ROABPs, inspired by Nisan’s PRG construction against ROBPs [14]. As the name
suggests, ROABPs are a special case of “algebraic branching programs” which are an algebraic
analogue of the (boolean) branching programs. However, we omit those definitions of ABPs
and ROABPs, as seeing them as the matrix-vector product expressions like above would be
more useful for the discussions in this paper. We now introduce the structured variants of
ROABPs that are relevant to this work.

1.2 Variants of ROABPs
Since the ROABP-complexity of some polynomials depends heavily on the underlying order,
we can further cut out a subclass of polynomials that admit poly(n, d)-sized ROABPs: those
that admit poly(n, d)-sized ROABPs in every order. This class of polynomials is sometimes
referred to as “Any-order ROABPs” (AROs for short)2.

A syntactic way of ensuring that a polynomial computed by an efficient ROABP belongs
to ARO, is to ensure that all the n(d + 1)-many coefficient matrices (Aj,∗s in (1.2)) commute
with each other under multiplication. This then means that for any j, j′ ∈ [n], we have that
Mj(xj)Mj′(xj′) = Mj′(xj′)Mj(xj), and then the layers of the same ROABP can be shuffled
to work for any order. Such an ROABP with commuting coefficient matrices is called a
commutative ROABP (commRO for short); a formal definition is in Definition 2.2.

Finally, an easy way to pick coefficient matrices that commute with each other is to choose
all of them as diagonal matrices. Such an ROABP is called a diagonal ROABP (diagRO for
short), defined in Definition 2.3.

These variants of ROABPs appear implicitly in some previous works on ROABPs, but
they were explicitly defined and proposed as objects of study in a recent work of Ramya
and Tengse [17]. As mentioned earlier, our proof technique also borrows from the algebraic
machinery that appears in their work.

We now proceed to look at the connections between Waring rank, dimension of partial
derivatives and these structured ROABPs, before stating our main result.

2 Contrary to what the name suggests, this is not a special type of ROABPs, it is a class of polynomials.

FSTTCS 2024

10:4 Commutative ROABPs from Partial Derivatives

1.3 Waring rank, partial derivatives and ROABPs
The aforementioned whitebox PIT for depth 3 powering circuits due to Saxena [21] has the
following result at its core.

▶ Theorem 1.2 (Duality trick [21, Lemma 1] (Informal)). For any linear form ℓ(x) =
a1x1 + a2x2 + · · · + anxn, and any d, the polynomial ℓ(x)d can be expressed as:

ℓ(x)d =
t∑

i=1
βi · gi,1(x1) · gi,2(x2) · · · gi,n(xn),

for constants β1, . . . , βt and degree-d univariates g1,1, . . . , gt,n, with t ≤ nd + 1.

Note that this gives an ROABP of width t = O(nd) for the d-th power of any n-variate
linear form, by using the gi,js appropriately to obtain each of the matrix polynomials Mj(xj)
and using βis in the vector u (or v). In fact, the “coefficient matrices” (the Aj,∗s from (1.2))
of this ROABP are just diagonal matrices. Consequently, an n-variate, degree-d polynomial
with Waring rank r has a diagRO of width O(ndr).

The duality trick actually provides diagROs for a more general model called “depth 4
diagonal circuits”, and the corresponding whitebox PIT also holds for this more general
model. In fact, this relation between powering circuits and diagROs is a crucial component
of the current state-of-the-art blackbox PIT for depth 3 powering circuits [5, 7] mentioned
earlier.

Given that polynomials with small Waring rank have small diagROs, it is natural to ask
what happens to polynomials with small dimension of partial derivatives.

ROABPs and partial derivatives

Suppose we are given an n-variate, degree-d polynomial f(x), whose dimension of partial
derivatives is at most r. It turns out, via Nisan’s characterization, that such a polynomial has
an ROABP of width at most r in every order (see Observation 2.7). That is, for any σ ∈ sn,
we are guaranteed some ROABP, say Rσ(x), that computes f in that order. However, it is
not clear from this non-constructive upper bound whether the ROABPs Rσ across different
σs are related in any way. This brings us to our main result.

1.4 Our contribution
We first formally define the measure: dimension of partial derivatives.

▶ Definition 1.3 (Dimension of partial derivatives). For a polynomial f(x1, . . . , xn), the
dimension of its partial derivatives is defined as follows.

dim ∂<∞ (f) := dim (spanC {∂ef : e ∈ Nn})

Here ∂ef denotes the partial derivative of f with respect to the monomial xe = xe1
1 xe2

2 · · · xen
n .

For a polynomial f , let commRO (f) denote the width of the smallest commRO that
computes it; our main result is as follows.

▶ Theorem 1.4. For any homogeneous polynomial f(x) ∈ C[x], commRO (f) ≤ dim ∂<∞ (f).

Since the dimension of partial derivatives of any homogeneous component of f is at most
deg(f) times that of f (see Lemma 2.4), we get the following result in the general case.

▶ Corollary 1.5. For any f(x) ∈ C[x] of degree d, commRO (f) ≤ (d + 1)2 · dim ∂<∞ (f).

V. Bhargava and A. Tengse 10:5

Set multilinear upper bounds

In fact, our method for constructing commutative ROABPs using dim ∂<∞ (f) also lets us
obtain what we call “commutative set-multilinear ABPs” for f with a minor tweak in our
proof. Informally, a degree-d polynomial f(x) is called set-multilinear under a partition
x = x1 ⊔ x2 ⊔ · · · ⊔ xd, if each of its monomials contains exactly one variable from each of the
xis. A(n ordered) set-multilinear ABP is then a product of matrices with linear polynomials
as entries, with the variables in those polynomials obeying the partition (see definitions 4.2
and 4.3).

▶ Theorem 1.6. For any set-multilinear polynomial f(x) ∈ C[x], the commutative-set-
multilinear-ABP-width(f) ≤ dim ∂<∞ (f).

Explicitness

We note that our proof provides an explicit construction of a commRO for any polynomial f ,
given the dependencies between the partial derivatives of f . In fact, as mentioned earlier, this
construction itself is a generalization of the proof of the duality trick from Saxena’s work [21]
(see Remark 3.6). We describe a width-2O(n) commRO, and a commutative set-multilinear
ABP for the n × n determinant to illustrate this point in Section 4.

2 Preliminaries

Throughout the paper, we work with the field of complex numbers, but most of our proofs
extend to fields whose characteristic is zero or large enough.

Notation

For a vector e ∈ Nn, we write te for the monomial te1
1 te2

2 · · · ten
n , where t is a set of

variables. We also use e! to refer to the product of factorials e1!e2! · en!.
For a monomial m, we write ∂mf for the partial derivative ∂|e|f

∂te . When m = te, we
shorten it further to ∂ef .

2.1 Formal definitions
▶ Definition 2.1 (Read-once Oblivious ABP (ROABP)). For any n, d, w ∈ N, and an n-variate
polynomial f(x) of individual degree d, we say that it has a width w ROABP, if there exists
a permutation σ ∈ sn for which there exist matrices {Aj,k} in Cw×w for all j ∈ [n] and
0 ≤ k ≤ d, and vectors u, v ∈ Cw, such that the following holds.

f(x) = u⊺ · Mσ(1)(xσ(1)) · Mσ(2)(xσ(2)) · · · Mσ(n)(xσ(n)) · v,

where for all j ∈ [n],
Mj(xj) = Aj,0 + Aj,1xj + Aj,2x2

j + · · · + Aj,dxd
j .

We call the matrices {Aj,k} the coefficient matrices of the ROABP.

▶ Definition 2.2 (Commutative ROABP (commRO)). An ROABP is said to be a commutative
ROABP, if all its coefficient matrices commute with each other pairwise.

For a polynomial f , we use commRO (f) to denote the smallest width w such that there
is width-w commRO computing f .

FSTTCS 2024

10:6 Commutative ROABPs from Partial Derivatives

▶ Definition 2.3 (Diagonal ROABP (diagRO)). An ROABP is said to be a diagonal ROABP,
if all its coefficient matrices are diagonal matrices.

For a polynomial f , we use diagRO (f) to refer to the smallest width w such that there is
width-w diagRO computing f .

Partial Derivatives and the Nisan matrix

▶ Lemma 2.4. Let f(x) be a polynomial of degree d and let h(x) be some homogeneous
component of f . Then dim ∂<∞ (h) ≤ (d + 1) · dim ∂<∞ (f).

Proof. Note that for any nonzero scalar α, the polynomial fα(x) := f(αx1, αx2, . . . , αxn)
satisfies dim ∂<∞ (fα) = dim ∂<∞ (f), since it is an invertible operation. Next, for dis-
tinct α0, α1, . . . , αd ∈ C, we can use interpolation to write h as a linear combination of
fα0 , fα1 , . . . , fαd

. Thus, dim ∂<∞ (h) ≤
∑

0≤i≤d dim ∂<∞ (fαi
) ≤ (d + 1) · dim ∂<∞ (f). ◀

▶ Definition 2.5 (Nisan Matrix [13]). For an n-variate polynomial f(x) of individual degree d,
and a partition S ⊔ T = [n], the (S, T)-Nisan matrix for f , Mf

(S,T), is a (d + 1)|S| × (d + 1)|T |

matrix as follows.
The rows are indexed by all the individual degree d monomials over {xi | i ∈ S},
The columns are indexed by all the individual degree d monomials over {xj | j ∈ T},
The entry Mf

(S,T)[m, m′] is the coefficient of the monomial m · m′ in f .

▶ Theorem 2.6 (Nisan’s characterization [13]). For any n-variate polynomial f(x), and any
order σ ∈ sn on the variables, define Si = {σ(1), . . . , σ(i)} and Ti = {σ(i + 1), . . . , σ(n)} for
each i ∈ [n].
Then the size of the smallest ROABP for f in the order σ is exactly

∑
i∈[n] rank(Mf

(Si,Ti)).
Further, the width of the ROABP is exactly maxi∈[n] rank(Mf

(Si,Ti)).

It is not difficult to see that for any polynomial, the Nisan matrix for any partition is a
scaling of a submatrix of a matrix whose rows are all the partial derivatives of that polynomial.
This then leads to the following observation, which is a weaker and non-constructive version
of Theorem 1.4.

▶ Observation 2.7. Let n, d ∈ N be arbitrary and F be any field of characteristic 0 or greater
than d. Then for any n-variate f(x) of individual degree d, and any partition S ⊔ T = [n],
rank(Mf

(S,T)) ≤ dim ∂<∞ (f).
Thus, any polynomial f has an ROABP in every order of width at most dim ∂<∞ (f).

▶ Observation 2.8. The polynomial (x1 + y1)(x2 + y2) · · · (xn + yn) has width-2 ROABPs in
the order (x1, y1, . . . , xn, yn), but requires width 2n in the order (x1, . . . , xn, y1, . . . , yn).

2.2 Concepts from algebra
We will need a few concepts from elementary algebraic geometry; the reader may refer to
any standard texts for more details on these concepts (e.g. [3, 8]).

▶ Definition 2.9 (Ideal). For a set of polynomials {f1, . . . , fs} ⊂ C[x], the ideal generated by
them is the smallest set of polynomials I that satisfies the following.

∀g ∈ C[x] and ∀f ∈ I, fg ∈ I.
∀f, f ′ ∈ I, we have f + f ′ ∈ I.

The ideal is denoted by ⟨{f1, . . . , fs}⟩.

▶ Definition 2.10 (Variety of an ideal). For an ideal I ⊂ C[x], the variety of I, written as
V(I), is the largest set of points V ⊂ C|x| such that ∀f ∈ I and ∀a ∈ V , f(a) = 0.

V. Bhargava and A. Tengse 10:7

Derivative operators

▶ Definition 2.11 (Derivative Operator). A derivative operator is a linear combination
of finitely many partial derivatives of the form D =

∑r
i=1 αi∂mi . It acts on polynomials

naturally: Df =
∑r

i=1 αi∂mi
f .

Clearly, for any polynomial g =
∑

m gmm, we can define a derivative operator Dg =∑
m gm∂m, and vice versa. Therefore, we always refer to a derivative operator as Dg with

an implicit polynomial g.

▶ Definition 2.12 (Closed space of derivative operators). A vector space of operators ∆ is
said to be closed if for every Dg ∈ ∆, and any monomial m such that g′ := ∂mg ̸≡ 0, the
corresponding operator Dg′ is also in ∆.

▶ Observation 2.13. For any f(t), g(t) ∈ C[t], we have the following.

(Df g) (0) =
∑

e
coefff (te) · e! · coeffg(te) = (Dgf) (0)

Primary ideals and derivative operators

The following result follows from the joint works of Möller, Marinari and Mora [11], and
Möller and Stetter [12]. A proof, with a statement as follows, can be found in [17].

▶ Theorem 2.14 ([11, 12]). Let J ⊆ C[t] be an ideal with the variety V(J) = {0}, and
suppose that the quotient ring RJ := C[t]/J is a w-dimensional vector space over C. Then,
there exists a w-dimensional C-vector space of derivative of operators ∆(J) that characterizes
the quotient ring RJ .

That is, for any basis {D1, . . . , Dw} of ∆(J), there is an invertible matrix M ∈ Cw×w

such that for any polynomial g(t) ∈ C[t],

[D1(g)(0) D2(g)(0) · · · Dw(g)(0)]⊺ = M · coeff([g]),

where coeff([g]) is the coefficient vector of [g] := (g mod J).

The above correspondence works for any point a ∈ Cn in the variety; we will work with 0
to keep the exposition simple, since that is the only case relevant for our application. We also
note that the space of derivative operators ∆(J) corresponding to an ideal J can equivalently
be defined as follows; and there is also a correspondence in the other direction: “from ∆(J)
to J”.

▶ Definition 2.15 (Operator space of an ideal). For an ideal J ⊆ C[t] with V(J) = {0}, we
define the corresponding space of derivative operators ∆(J) as follows.

∆(J) := {Dg ∈ C[∂t] : ∀h ∈ J, (Dgh)(0) = 0}

▶ Definition 2.16 (Ideal of an operator space). Let ∆ be a closed space of derivative operators.
We define the corresponding annihilating ideal (at the point 0), denoted by I0(∆) as follows.

I0(∆) := {h ∈ C[t] : ∀D ∈ ∆, (Dh)(0) = 0}

FSTTCS 2024

10:8 Commutative ROABPs from Partial Derivatives

2.3 Multiplication tables: from ideals to matrices
Univariate ideals
Let J = ⟨p(t)⟩ ⊆ C[t] be an ideal, and consider the quotient ring R := C[t]/J. If p(t) has degree
d, then the multiplication table for t in the ring R, is a d×d matrix whose minimal polynomial
is p(t). Such a matrix, say A, can easily be defined by setting Ai,j = coefftj (

[
t · ti

]
), for all

0 ≤ i, j ≤ (d − 1). Here, [t · ti] is (ti+1 mod J).
For instance, when p(t) = t5 − 10t4 − 7t3 + 2t2 − 3, the multiplication table would be the

following 5 × 5 matrix; it can be checked that p(t) is indeed the minimal polynomial of A.

A =

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
3 0 −2 7 10

Further, A satisfies that g(A)i,j is exactly coefftj (

[
g(t) · ti

]
), for any g(t) ∈ C[t]. In

particular, this means that the first row of g(A) is precisely the coefficient vector of [g(t)].

Multivariate ideals
One key change when we move to the multivariate setting, is that there is no inherent
ordering on the monomials; so we have to choose one. A monomial ordering is any “total
order” on monomials, which respects divisions and has 1 as the least monomial. We will work
with the degree-wise lexicographical ordering (“deg-lex”) with respect to t1 ≺ t2 ≺ · · · ≺ tr.
We use this monomial ordering to uniquely identify the leading (“greatest”) and trailing
(“least”) monomials in any polynomial in C[t1, . . . , tr].

This then allows us to identify a set of leading monomials of the ideal, and then define
what is called a normal set and the quotient ring corresponding to the ideal, as follows.

▶ Definition 2.17 (Leading monomials and normal set). Given an ideal I ⊂ C[x], and a
monomial ordering, the set of its leading monomials is defined as LM(I) := {LM(f) | f ∈ I}.

The complement of LM(I) is called the normal set of I, denoted by N(I).

▶ Definition 2.18 (Quotient ring). For any ideal I ⊂ C[x], and any polynomial g ∈ C[x], we
can define g mod I to be the polynomial g0 all of whose monomials are from N(I) and which
satisfies g − g0 ∈ I. We denote the polynomial g mod I by [g] when the ideal is clear from
the context.

We can thus define the quotient ring corresponding to I denoted by C[x]/I, by reducing
each polynomial in C[x] modulo I.

Intuitively, the quotient ring C[t]/J is obtained by “setting all polynomials in J to zero”.
Then any monomial from LM(J) can be written in terms of those in the normal set, and the
polynomials in the quotient ring are supported entirely on the monomials from N(J).

Let the normal set of J ∈ C[t1, . . . , tr] be {m1, . . . , mw}, where 1 = m1 ≺ m2 ≺ · · · ≺ mw.
The multiplication tables A1, A2, . . . , Ar for J are then the w × w matrices that satisfy the
following, for every ℓ ∈ [r], and all i, j ∈ [w].

Aℓ(i, j) = coeffmj
([tℓ · mi])

Just as before, for any polynomial g(t), we have that g(A1, . . . , Ar)(i, j) = coeffmj
([g · mi]).

Thus, the first row of any matrix of the form g(A1, . . . , Ar) is just the coefficient vector of
g(t) mod J , for any polynomial g.

V. Bhargava and A. Tengse 10:9

3 Constructing commutative ROABPs from apolarities

3.1 Apolar ideal of a polynomial
▶ Definition 3.1 (Apolar Ideal). Let f(t1, . . . , tn) be a homogeneous polynomial of degree d.
The apolar ideal of f is defined as follows.

f⊥ := ⟨{h(t) ∈ C[t] : Dhf ≡ 0}⟩

▶ Observation 3.2. For any polynomial f(t), the variety of its apolar ideal, V(f⊥), is a
single point 0.

Proof. For each i ∈ [n], td+1
i ∈ f⊥ where d = deg(f); so the variety is contained in {0}. Also,

when f ̸≡ 0, any polynomial in f⊥ has a zero constant term because a nonzero polynomial
cannot be linearly dependent on its derivatives. Hence, V(f⊥) = {0}. ◀

Note that the apolar ideal is a polynomial ideal, but is defined using derivative operators.
The apolar ideal of f is related to its partial derivatives in the following way.

▶ Lemma 3.3 (Apolar ideal and partial derivatives). Let f(t) be a homogeneous polynomial
with {g1, g2, . . . , gw} being a basis for its space of partial derivatives of all degrees. For the
corresponding closed space of derivative operators ∆f := spanC {Dg1 , Dg2 , . . . , Dgw }, and its
annihilating ideal J := I0(∆f), we have that J = f⊥ and equivalently, ∆f = ∆(f⊥).

Proof. We can assume that f = g1 without loss of any generality.

f⊥ ⊆ J . Let h ∈ f⊥, and say g = ∂mf is some arbitrary partial derivative of f , so
Dg ∈ ∆f .
Now (Dgh) (0) =

∑
e coeffh(te) · e! · coeffg(te) = (Dhg) (0), from Observation 2.13.

Further, Dhg = Dh∂mf = D(h·m)f , and since m · h ∈ f⊥, Dgh = D(h·m)f = 0. Since our
choice of g and h was arbitrary, this is true for each g ∈ ∆f , and each h ∈ J , showing
that f⊥ ⊆ J .

J ⊆ f⊥. Let h ∈ J be arbitrary, and consider Dhf =
∑

e
∑

e′ coeffh(te) ·coefff (te′) ·∂e(te′).

Dhf =
∑

e

∑
e′≥e

coeffh(te) · coefff (te′
) · ∂e(te′

)

=
∑

e

∑
e′≥e

coeffh(te) · coefff (te′
) · e′!

(e′ − e)! · (te′−e)

=
∑

e0:=e′−e

[∑
e

coeffh(te) · (e + e0)! · coefff (te+e0) ·
(

te0

e0!

)]

Now let g0 := ∂e0(f), and note that coeffg0(te) = (e0+e)!
e! · coefff (te0+e). Therefore, we

can further simplify our expression for Dhf as follows.

Dhf =
∑
e0

te0

e0! ·

(∑
e

coeffh(te) · e! · coeffg0(te)
)

=
∑
e0

te0

e0! · (Dg0h) (0) (Using Observation 2.13)

=
∑
e0

0 · te0

e0! ≡ 0 (Dg0 ∈ ∆f and h ∈ J)

Thus, h ∈ f⊥. ◀

FSTTCS 2024

10:10 Commutative ROABPs from Partial Derivatives

3.2 Proof of Theorem 1.4
We are now ready state the general recipe for constructing a commutative ROABP for
any homogeneous f(x1, . . . , xn) of degree d. We start by defining the following polynomial
over x, and an auxiliary set of variables t = {t1, . . . , tn}, which is the product of the
degree-d-truncations of the Taylor series of etixis.

G(x, t) :=
n∏

i=1

(
1 + tixi + 1

2! t
2
i x2

i + · · · + 1
(d − 1)! t

d−1
i xd−1

i + 1
d! t

d
i xd

i

)
(3.1)

▶ Observation 3.4. Let D := Df = f(∂t1, ∂t2, . . . , ∂tn). Then (D ◦ G) = f(x).

▶ Lemma 3.5. Suppose f(x) is a homogeneous polynomial with dimension of partial derivat-
ives exactly w. Then, there exists a vector v ∈ Cw, such that for the multiplication tables
A1, . . . , An of the apolar ideal f⊥, we have that∑

j∈[w]

vj · G(A1, . . . , An, x1, . . . , xn)[1, j] = f(x).

Proof. Since A1, . . . , An are multiplication tables of f⊥, we get that the first row of G(A, x)
is exactly the coefficient vector of (G(t, x) mod f⊥(t)) which is an object in C[t][x]/f⊥(t) =
(C[t]/f⊥)[x].

Next, suppose that {g1(t), . . . , gw(t)} is a basis for the partial derivatives of f(t). Then
by Lemma 3.3, we know that ∆(f⊥) has a basis given by the operators {Dg1 , . . . , Dgw }. Also,
the variety of f⊥ is exactly the singleton set {0}. Thus, by Theorem 2.14, the coefficients of
[G(t, x)] := G(t, x) mod f⊥(t) are spanned by Dg1(G)(0), Dg2(G)(0), . . . , Dgw (G)(0). More
importantly, the set of Dgi

(G)’s is spanned by the coefficients of [G(t, x)], and further,
Dg1(G) = Df (G) = f(x).

Thus, the vector v can be obtained from the matrix M guaranteed by Theorem 2.14, as
claimed. ◀

This proves the main theorem, restated below.

▶ Theorem 1.4. For any homogeneous polynomial f(x) ∈ C[x], commRO (f) ≤ dim ∂<∞ (f).

▶ Remark 3.6. Note that Saxena’s proof of the duality trick [21, Lemma 1] can be seen as
starting with the same “template polynomial” as (3.1), homogenizing it through interpolation,
and then just evaluating it on the “points” given by the Waring decomposition for f . Since it is
known by the Apolarity lemma (see e.g. [8]) that the points given by a Waring decomposition
of f define a radical ideal J that sits inside f⊥, the action of evaluating on those points can
be viewed as going modulo J .

In that sense, our proof generalizes this method by directly going modulo f⊥. As this
uses a less strict property of f , the resulting expression is less simple, and is therefore a
commRO instead of a diagRO.

4 The Determinant

In this section, we will use the proof of Theorem 1.4 to construct explicit commutative
ROABPs. In particular, we will construct a commutative ROABP for the determinant (Detn)
of width 2Θ(n).

The choice of this example is deliberate, as the determinant is the only candidate where
there is an asymptotic gap between Waring rank upper bounds and partial derivative
dimension.

V. Bhargava and A. Tengse 10:11

The determinant of n-dimensional symbolic matrix has partial derivative dimension
exactly

(2n
n

)
= 2Θ(n). But, the best upper bound for the Waring rank of the determinant is

2O(n log n). In fact, there are reasons to believe that the Waring rank of the determinant is
2ω(n). This is due to the fact that the set-multilinear depth-3 complexity or Tensor rank of
Detn, and (to the best of our knowledge) even the best constant-depth multilinear formula
that we know of for the determinant, is 2O(n log n). See [9, 19] for details on tensor rank and
syntactic multilinear formulas of the determinant.

For Detn, Theorem 1.4 directly gives a commutative ROABP of width 2Θ(n). We show
the explicit calculations behind this commutative ROABP below. Let’s recall what our
overall step-by-step process will be for any polynomial f ∈ C[x]:
1. Compute the closed derivative space ∆ = ∂<∞f , the apolar ideal corresponding to it

I0(∆) = f⊥ and the normal set of N(f⊥). Let, m :=
∣∣N(f⊥)

∣∣ = |∆|.
2. Compute the multiplication tables (Mi) corresponding to each of the variables.
3. The final commutative ROABP of f ≡ a⊺ ·

∏
i∈[n](1 + xiMi) · b for a, b ∈ Cm.

4.1 Derivative Space, Apolar Ideal, and its Normal Set
In this subsection, we will state and discuss some facts about the derivative space, apolar
ideal, and the normal set of the apolar ideal of the determinant. We will use X to denote the
n × n symbolic matrix, that is, X = (xi,j)i,j∈[n]. Similarly, let U = (ti,j)i,j∈[n] be a symbolic
matrix in t-variables. Let S, T be arbitrary subsets of [n]. We will denote the minor (of X)
picked by selecting rows from S and columns from T by XS,T .

We will start with the well-known fact that the derivative space of determinant is just
the determinant of its minors. Formally, the following set is a basis of ∂<∞ Detn(X),

{Det(XS,T) : for S, T ⊆ [n] such that |S| = |T |} .

The apolar ideal of the determinant is generated by permanents of 2 × 2 minors and
certain unacceptable degree two monomials, as stated formally below.

▶ Theorem 4.1 (e.g. [22, Theorem 2.12]). Det⊥
n (X) = ⟨PX , UX⟩, where PX is the collection

of permanents of all 2×2 minors of X, and UX denotes all quadratic unacceptable monomials,
that is, monomials that don’t divide any monomial in the support of Detn(X).

Now, for the normal set computation, we will focus on the degree-wise lexicographical
ordering of monomials (“deg-lex”); the ordering on variables is in the “row-major” form:

x1,1 ≻ x1,2 ≻ . . . ≻ x1,n ≻ x2,1 ≻ . . . ≻ xn,n.

The trailing monomial of Det(XS,T) in this ordering is just the product of the anti-diagonal
entries of XS,T . To see this, note that the only variable you can pick from the first row is
the last element. Now that we have picked something from the last column and the first
row, we can strip them off as none of the variables can contribute anymore. Now focus on
the resulting minor (after stripping) and proceed by induction. Let’s denote this trailing
monomial by τS,T := anti-diag(XS,T).

We now claim that the normal set of J is just a collection of these anti-diagonal monomials
corresponding to all minors, as follows.

N(J) = {anti-diag(XS,T) : for S, T ⊆ [n] such that |S| = |T |}

To see this, observe that any non-anti-diagonal monomial (for any minor) will be a multiple
of the leading term of a 2 × 2 minor’s permanent and thus will be in LM(Det⊥). At the same
time, the anti-diagonal monomial will never be a multiple of such terms, so it is never in
LM(Det⊥). Note that here, |∆| = |N(J)| =

(2n
n

)
.

FSTTCS 2024

10:12 Commutative ROABPs from Partial Derivatives

4.2 Multiplication tables for the apolar ideal
Let Ai,j be the matrix corresponding to ti,j with dimension |N(J)| × |N(J)|. For any row of
Ai,j , indexed by (S, T) such that |S| = |T |, we have that

row(S, T)(Ai,j) =
{

0 if i ∈ S or j ∈ T

sgn(τS′,T ′) · sgn(τS,T · xi,j) · τ(S∪{i},T ∪{j}) if i /∈ S, j /∈ T
.

Here, sgn of any monomial denotes the sign of its corresponding permutation (obtained by
viewing S, T ≡ {1, . . . , |S|}). To see this, note that by definition row(S, T)(Ai,j) is just the
coefficient vector of (ti,j · τS,T mod J).

Thus, as discussed (in proof of Theorem 1.4) we get

Detn(X) = a⊺ ·
∏

i,j∈[n]

(I + Ai,jxi,j) · b for a, b ∈ C(2n
n).

Below, we give an explicit description of the commutative ROABP for Det2. Here, the
normal set is N(Det⊥

2) = {1, x1,1, x1,2, x2,1, x2,2, x1,2x2,1}. Running our analysis to compute
the multiplication tables followed by then replacing it in the template polynomial yields that
the Det2(X) is the (1, n)-th entry of the product of the following four matrices (in any order).

M1,1 =

1 x1,1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 −x1,1
0 0 0 0 0 1

, M1,2 =

1 0 x1,2 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 x1,2
0 0 0 0 1 0
0 0 0 0 0 1

,

M2,1 =

1 0 0 x2,1 0 0
0 1 0 0 0 0
0 0 1 0 0 x2,1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, M2,2 =

1 0 0 0 x2,2 0
0 1 0 0 0 −x2,2
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

.

4.3 Commutative Set-multilinear ABP
The commutative matrices Ai,j generated in the previous subsections using multiplication
tables from Det⊥

n can in fact be used to design a commutative set-multilinear ABP for Det
as well.

The benefit of studying this model stems from the fact that if we could somehow
“diagonalize” these commutative matrices, then that would indeed give a set-multilinear
depth-3 representation of the determinant of size 2O(n). That, in turn, would yield that the
Waring rank of the determinant is also 2O(n). By “diagonalizable,” we simply mean if the
above matrices can be replaced by diagonal matrices with at most a polynomial blow-up in
the dimension.

In fact, the commutative matrices constructed for Detn are provably not diagonalizable
by invertible transformations. But for Permn, the matrices that we will get by running our
entire analysis are indeed “diagonalizable”! In the sense that we can replace them by diagonal
matrices of similar dimension to compute Permn.

V. Bhargava and A. Tengse 10:13

Let ⊔j∈[d]xj be a partition of the set x of input variables. Then a polynomial is set-
multilinear under partition ⊔j∈[d]xj if each monomial of the polynomial picks up exactly one
variable from each part in the partition. Note that, Det is set-multilinear w.r.t. the variable
partition being the row variables (or column variables).

▶ Definition 4.2 (Set-multilinear ABP (smABP)). Let n, d, w ∈ N, and let f(x) be an n-variate
set-multilinear polynomial under the partition x1 ⊔ x2 ⊔ · · · ⊔ xd. We say that f has a width
w set-multilinear ABP3, if there exists a permutation σ ∈ sd for which there exist matrices
{Aj,k} in Cw×w for all j ∈ [d] and 1 ≤ k ≤ |xj |, and vectors u, v ∈ Cw, such that the
following holds.

f(x) = u⊺ · Mσ(1)(xσ(1)) · Mσ(2)(xσ(2)) · · · Mσ(d)(xσ(d)) · v,

where for all j ∈ [d],
Mj(xj) = Aj,1xj,1 + Aj,2xj,2 + · · · + Aj,|xj |xj,|xj |.

We call the matrices {Aj,k} the coefficient matrices of the smABP.

▶ Definition 4.3 (Commutative smABP). An smABP is said to be a commutative smABP if
all its coefficient matrices pairwise commute with each other.

Now, we will show that by simply changing the template polynomial (from (3.1)) appro-
priately, we can get a commutative set-multilinear ABP representation for Detn.

Define, G(x, t) :=
n∏

i=1

∑
j∈[n]

ti,jxi,j

 . (4.1)

Again, just like Observation 3.4, we have that Detn(∂t1,1 , ∂t1,2 , . . . , ∂tn,n) ◦ G = Detn(X).
And this gives that,

Detn(X) = a⊺ ·
n∏

i=1

∑
j∈[n]

Ai,jxi,j

 · b for some a, b ∈ C(2n
n).

We remark that the above analysis works for any set-multilinear polynomial, along the
same lines as the proof of Theorem 1.4. This directly gives us the following theorem.

▶ Theorem 1.6. For any set-multilinear polynomial f(x) ∈ C[x], the commutative-set-
multilinear-ABP-width(f) ≤ dim ∂<∞ (f).

5 Discussion

In summary, we utilize the knowledge of commuting matrices outlined in [17] to provide a
generic recipe for explicit constructions of commutative branching programs. For the specific
setting of ROABPs, this improves upon the earlier known connection (Observation 2.7) and
takes us a step closer towards answering Question 1.1. An immediate direction for further
study is as follows.

3 Strictly speaking this defines ordered set-multilinear algebraic branching programs, but we drop this
detail for brevity.

FSTTCS 2024

10:14 Commutative ROABPs from Partial Derivatives

Can we show any bounds on the commRO width of a polynomial in terms of its diagRO
width? In addition to shedding further light on Question 1.1, such a result should also
provide us with a new hardness measure for structured ROABPs and possibly even depth 3
powering circuits, particularly if the bound is a super-linear lower bound on diagRO width.
As alluded to in the introduction, perhaps a new hardness measure against depth 3 powering
circuits is what is required to fully derandomize blackbox PIT for the model. A concrete
way in which this is true is that a polynomial time blackbox PIT for width-w, degree-d,
O(log dw)-variate diagRO would give a polynomial time blackbox PIT for depth 3 powering
circuits [1, Lemma 2.12]. This gives the lower bound question a much larger and more
interesting context.

References
1 Pranav Bisht and Nitin Saxena. Blackbox identity testing for sum of special roabps and its

border class. Computational Complexity, 30(1):8, 2021. doi:10.1007/s00037-021-00209-y.
2 Enrico Carlini, Maria Virginia Catalisano, and Anthony V. Geramita. The solution to the

waring problem for monomials and the sum of coprime monomials. Journal of Algebra, 370:5–14,
2012. doi:10.1016/j.jalgebra.2012.07.028.

3 David A. Cox, John B. Little, and Donal O’Shea. Ideals, Varieties and Algorithms. Under-
graduate texts in mathematics. Springer, 2007. doi:10.1007/978-0-387-35651-8.

4 Ismor Fischer. Sums of like powers of multivariate linear forms. Mathematics Magazine,
67(1):59–61, 1994.

5 Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multilinear
read-once algebraic branching programs, in any order. In Proceedings of the 46th Annual
ACM Symposium on Theory of Computing (STOC 2014), pages 867–875, 2014. doi:10.1145/
2591796.2591816.

6 Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In Proceedings of the 54th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013), pages 243–252,
2013. Full version at arXiv:1209.2408. doi:10.1109/FOCS.2013.34.

7 Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity testing for constant-width, and com-
mutative, read-once oblivious abps. Theory of Computing, 13(1):1–21, 2017. Preliminary version
in the 31st Annual Computational Complexity Conference (CCC 2016). arXiv:1601.08031.
doi:10.4086/toc.2017.v013a002.

8 Anthony Iarrobino and Vassil Kanev. Power Sums, Gorenstein Algebras, and Determinantal
Loci. Springer-Verlag Berlin Heidelberg, 1999. doi:10.1007/BFb0093426.

9 Siddharth Krishna and Visu Makam. On the tensor rank of 3s×3 permanent and determinant.
CoRR, abs/1801.00496, 2018. arXiv:1801.00496.

10 Mrinal Kumar and Ramprasad Saptharishi. Hardness-randomness tradeoffs for algebraic
computation. Bulletin of EATCS, 1(129), 2019.

11 M.G. Marinari, H.M. Möller, and T. Mora. Gröbner bases of ideals defined by functionals with
an application to ideals of projective points. Applicable Algebra in Engineering, Communication
and Computing, 4(2):103–145, 1993. doi:10.1007/BF01386834.

12 H. Michael Möller and Hans J. Stetter. Multivariate polynomial equations with multiple
zeros solved by matrix eigenproblems. Numerische Mathematik, 70, 1995. doi:10.1007/
s002110050122.

13 Noam Nisan. Lower bounds for non-commutative computation. In Proceedings of the 23rd An-
nual ACM Symposium on Theory of Computing (STOC 1991), pages 410–418, 1991. Available
on citeseer:10.1.1.17.5067. doi:10.1145/103418.103462.

14 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992. doi:10.1007/BF01305237.

https://doi.org/10.1007/s00037-021-00209-y
https://doi.org/10.1016/j.jalgebra.2012.07.028
https://doi.org/10.1007/978-0-387-35651-8
https://doi.org/10.1145/2591796.2591816
https://doi.org/10.1145/2591796.2591816
http://arxiv.org/abs/1209.2408
https://doi.org/10.1109/FOCS.2013.34
http://arxiv.org/abs/1601.08031
https://doi.org/10.4086/toc.2017.v013a002
https://doi.org/10.1007/BFb0093426
https://arxiv.org/abs/1801.00496
https://doi.org/10.1007/BF01386834
https://doi.org/10.1007/s002110050122
https://doi.org/10.1007/s002110050122
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.5067
https://doi.org/10.1145/103418.103462
https://doi.org/10.1007/BF01305237

V. Bhargava and A. Tengse 10:15

15 Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Computational Complexity, 6(3):217–234, 1997. Available on citeseer:10.1.1.90.2644. doi:
10.1007/BF01294256.

16 Kevin Pratt. Waring rank, parameterized and exact algorithms. In David Zuckerman, editor,
Proceedings of the 60th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2019), pages 806–823. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00053.

17 C. Ramya and Anamay Tengse. On finer separations between subclasses of read-once oblivious
abps. In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium
on Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille,
France (Virtual Conference), volume 219 of LIPIcs, pages 53:1–53:23. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.STACS.2022.53.

18 Kristian Ranestad and Frank-Olaf Schreyer. On the rank of a symmetric form. Journal of
Algebra, 346(1):340–342, 2011.

19 Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. In Proceedings of the
42nd Annual ACM Symposium on Theory of Computing (STOC 2010), pages 659–666, 2010.
doi:10.1145/2535928.

20 Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Github
survey, 2015. URL: https://github.com/dasarpmar/lowerbounds-survey/releases/.

21 Nitin Saxena. Diagonal Circuit Identity Testing and Lower Bounds. In Proceedings of the 35th
International Colloquium on Automata, Languages and Programming (ICALP 2008), pages
60–71, 2008. doi:10.1007/978-3-540-70575-8_6.

22 Sepideh Masoumeh Shafiei. Apolarity for determinants and permanents of generic matrices.
Journal of Commutative Algebra, 7(1):89–123, 2015. URL: https://www.jstor.org/stable/
26174731.

23 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5:207–388, March 2010.
doi:10.1561/0400000039.

FSTTCS 2024

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.2644
https://doi.org/10.1007/BF01294256
https://doi.org/10.1007/BF01294256
https://doi.org/10.1109/FOCS.2019.00053
https://doi.org/10.4230/LIPICS.STACS.2022.53
https://doi.org/10.1145/2535928
https://github.com/dasarpmar/lowerbounds-survey/releases/
https://doi.org/10.1007/978-3-540-70575-8_6
https://www.jstor.org/stable/26174731
https://www.jstor.org/stable/26174731
https://doi.org/10.1561/0400000039

Many Flavors of Edit Distance
Sudatta Bhattacharya #

Charles University, Prague, Czech Republic

Sanjana Dey #

National University of Singapore, Singapore

Elazar Goldenberg #

The Academic College of Tel-Aviv-Yaffo, Israel

Michal Koucký #

Charles University, Prague, Czech Republic

Abstract
Several measures exist for string similarity, including notable ones like the edit distance and the
indel distance. The former measures the count of insertions, deletions, and substitutions required to
transform one string into another, while the latter specifically quantifies the number of insertions
and deletions. Many algorithmic solutions explicitly address one of these measures, and frequently
techniques applicable to one can also be adapted to work with the other. In this paper, we
investigate whether there exists a standardized approach for applying results from one setting to
another. Specifically, we demonstrate the capability to reduce questions regarding string similarity
over arbitrary alphabets to equivalent questions over a binary alphabet. Furthermore, we illustrate
how to transform questions concerning indel distance into equivalent questions based on edit distance.
This complements an earlier result of Tiskin (2007) which addresses the inverse direction.

2012 ACM Subject Classification Theory of computation → Random projections and metric
embeddings

Keywords and phrases Edit distance, Indel distance, Embedding, LCS, Alphabet Reduction

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.11

Related Version Full Version: https://arxiv.org/abs/2410.09877

Funding Sudatta Bhattacharya: Partially supported by the project of Czech Science Foundation no.
19-27871X, 24-10306S and by the project GAUK125424 of the Charles University Grant Agency.
Michal Koucký: Partially supported by the project of Czech Science Foundation no. 19-27871X and
24-10306S.

Acknowledgements The project started at EPAC Workshop: Algorithms and Complexity partially
supported by the project of Czech Science Foundation no. 19-27871X.

1 Introduction

String-related metrics, such as edit distance, longest common subsequence distance, are
pivotal in numerous applications that deal with text or sequence data. Edit distance metric,
also referred to as Levenshtein distance [18], quantifies the minimum number of single-
character edits (insertions, deletions, or substitutions) necessary to convert one string into
another. This metric finds extensive application in spell checking and correction systems,
DNA sequence alignment and bioinformatics for comparing genetic sequences, as well as
in natural language processing tasks such as machine translation and text summarization,
among other fields. The longest common subsequence metric, also known as Indel or LCS
distance, evaluates the disparity between two strings by determining the minimum number
of single-character edits while forbidding substitutions. This metric has diverse applications,
including text comparison and plagiarism detection, DNA and protein sequence analysis for
recognizing shared regions or motifs, music analysis to uncover similarities between musical
sequences, and document clustering and classification based on content similarity.

© Sudatta Bhattacharya, Sanjana Dey, Elazar Goldenberg, and Michal Koucký;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 11; pp. 11:1–11:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sudatta@iuuk.mff.cuni.cz
https://orcid.org/0000-0002-6576-5931
mailto:info4.sanjana@gmail.com
https://orcid.org/0000-0001-5429-3150
mailto:elazargo@mta.ac.il
https://orcid.org/0000-0001-7993-3580
mailto:koucky@iuuk.mff.cuni.cz
https://orcid.org/0000-0003-0808-2269
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.11
https://arxiv.org/abs/2410.09877
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Many Flavors of Edit Distance

From a computational complexity perspective computing distances under the Edit or Indel
metric typically takes quadratic time complexity, as initially demonstrated by Wagner [23].
Subsequent research has marginally improved this complexity by reducing logarithmic factors,
as evidenced by Masek and Paterson [19] and Grabowski [15]. Additionally, Backurs and
Indyk [5] demonstrated that a truly sub-quadratic algorithm O(n2−δ) for some δ > 0 would
lead to a 2(1−γ)n-time algorithm for CNF-satisfiability, contradicting the Strong Exponential
Time Hypothesis. Similarly, Abboud et al. [1] established a similar result for computing the
Indel metric between string pairs. Notably, obtaining an efficient isometric embedding for
the edit metric into the Indel metric would effortlessly yield the latter result.

Extensive research has been conducted on approximating edit distance, with studies dating
back to the work of Landau et al. [17, 6, 8, 4, 7, 9, 11, 14, 16, 10], ultimately culminating in
the breakthrough result of Andoni and Nosatzki [3], which offers a (large) constant factor
approximation in nearly linear time. However, approximating the Indel distance has not
received similar attention, and although one expects the same techniques should provide
similar results for Indel distance, one would need to check all the details of the construction
to verify the exact properties of such a result. This exhibits a general pattern where results
for one of the measures can often be adapted for the other but there is no simple tool that
would guarantee such an automatic transformation.

Similar pattern emerges when dealing with the string measures over different size alphabets.
For example, the hardness result elucidated by Backurs and Indyk [5] is constrained to some
“large” constant-size alphabets. Subsequent research has revealed that the computational
task of computing edit distance is also hard for binary alphabets using an ad hoc approach.
Once more, the possibility of achieving an efficient isometric embedding between strings
residing in large alphabets and those in smaller ones could potentially resolve these questions
automatically. Another scenario where the alphabet size becomes relevant is in the simple
linear-time approximation algorithm for the length of the LCS. The naive algorithm provides
a |Σ|-approximation, where Σ represents the alphabet to which the strings reside. Therefore,
if one can embed strings from a large alphabet into those from a smaller alphabet while
approximately preserving distances, it may lead to an improvement in the approximation
factor. Given the current circumstances, we pose the following questions, which we then
delve into extensively:

▶ Question 1. Does an isometric embedding exist between the edit metric and the Indel
metric? Can it be computed efficiently?

▶ Question 2. Does an isometric embedding exist between edit metric on arbitrary alphabets
and the edit distance on binary alphabets? Can it be computed efficiently?

1.1 Our Contribution
This paper introduces multiple mappings that establish connections between various string
metrics. Specifically, we transform points residing within a designated input metric space
(M, d) into points within an output metric space (M ′, d′), ensuring that the distance between
any pair of points in M under d, is (approximately) preserved on the output pairs under d′.
In this paper, we introduce a relaxation of the concept of isometric embedding, permitting
scaling factors, as outlined below.

We say an embedding E : M → M ′ is scaled isometric if there exists a function
f : N→ N that maps distances from the original space to the embedded one, such that for
every pair of points x, y ∈M we have: d′(E(x), E(y)) = f(d(x, y)). This implies that such an
embedding can be utilized to reduce the computation of distances in the original metric M to
computing distances under M ′, provided that f is invertible and computationally tractable.

S. Bhattacharya, S. Dey, E. Goldenberg, and M. Koucký 11:3

A special case of scaling involves preserving the normalized distances. That is, for any
metric on a string space, it is intuitive to define the normalized distance between a pair of
strings of a specified length, as their distance divided by the maximum distance of pairs of
that same length. Subsequently, for an embedding E : M →M ′ that preserves lengths (i.e.,
the length of the output string is a function of the input string), we further assert that it is
normalized scaled isometric if, for every pair from M , the normalized distance of the
embedded strings preserves the normalized distance of the original ones.

Utilizing normalized scaled isometric embedding can facilitate the computational process
of approximating distances in the original metric M to compute approximate distances
under M ′, even if the normalized distances are not perfectly preserved by the embedding but
distorted by a (multiplicative) factor of c. In such a case, any c′ approximation algorithm for
the metric M ′ could thus be transformed into a c · c′ approximation algorithm for M .

1.1.1 Our Results
In the sequel, we utilize the notation ∆indel to represent the Indel distance between a pair
of strings, ∆edit to denote their edit distance. Additionally, we use ∆̃indel and ∆̃edit to
represent the normalized Indel distance between a pair of strings (for precise definitions, refer
to Section 2).

Alphabet Reduction – Succinct Embedding. Our first result pertains to alphabet reduction
achieving normalized scaled isometric embedding. In this context, as elaborated in Section 3,
any embedding contracts the normalized distances of some of the pairs. Consequently, we
shift our focus to approximate normalized scaled isometric embedding, where we permit
slight distortions in the normalized distances. Our main result is outlined below:

▶ Theorem 3 (Alphabet Reduction - Succinct Embedding). Let Γ be a finite alphabet, and let
0 < ε < 1/4. There exists an alphabet Σ, where |Σ| = O(1

ε2) and there exists E : Γ∗ → Σ∗

satisfying:

∀X, Y ∈ Γ∗ : ∆̃indel(E(X), E(Y)) ∈
[
(1− ε)∆̃indel(X, Y), ∆̃indel(X, Y)

]
.

Moreover, for every X ∈ Γn we have: |E(X)| = O(n log(|Γ|)).

Observe that embedded string length is optimal up to logarithmic factors. The size of
the alphabet Σ must exceed 1/ε, as otherwise, by a claim proved later, there will be a pair
of strings whose distance will be contracted by at least

(
1− 1

|Σ|

)
-factor.

As a result, we find that when focusing on ∆indel approximation, we can, without loss of
generality, limit our scope to a constant alphabet size without significantly impacting the
quality of the approximation. This is captured in the following corollary which we provide
without a proof.

▶ Corollary 4. Let Γ be a finite alphabet, and let 0 < ε < 1/4. Suppose that there exists an
algorithm ALG that provides a c-factor approximation for the ∆indel metric for any pairs of
strings in Σ of total length N , where Σ = O(1/ε2), running in time t(N).

Then there exists an algorithm ALG′ that, given any pair of string in Γ of total length n,
provides a c + ε-approximation for their ∆indel distance in time t(n log|Γ|).

The proof strategy of Theorem 3 is as follows: Initially, we construct an error-correcting
code within the smaller alphabet Σ, where |Σ| = O(1/ε2). This code ensures that every
distinct pair of codewords shares only a small portion of LCS, indicating a significant ∆indel

FSTTCS 2024

11:4 Many Flavors of Edit Distance

between them. The code comprises |Γ| words, with its dimension being logarithmic in the
size of Γ. We interpret this code as a mapping from characters within Γ to short strings
in Σ. The existence of such a code can be demonstrated using the probabilistic method.
The construction is almost tight in terms of the smaller alphabet size: it is not hard to
show that for any code C ⊆ Σk, if |C| > |Σ|, then there exist c ̸= c′ ∈ C, satisfying:
∆indel(c, c′) < (1− 1

|Σ|)2k.

Employing the code construction, we embed input strings in a straightforward and
natural manner: Consider a string residing in Γ∗, then each of its characters is sequentially
encoded using the code. This encoding ensures that identical characters are mapped to
the same codeword, while the code’s distance guarantees that distinct characters may have
only a few shared matches, akin to the global nature of ∆indel alignments. If there were
no matches between distinct characters’ encodings, any alignment for the embedded strings
could be converted into an alignment between the input strings without any distortion in the
normalized costs. However, these few matches between non-matching codewords introduce a
slight distortion and complicate the proof.

Alphabet Reduction – Binary Alphabets. Our previous method relied on a local approach,
wherein the characters of the string from the large alphabet were encoded sequentially
and independently. It appears that such a local strategy may not result in a normalized
scaled isometric embedding into a small, particularly binary alphabet. As codes in such
alphabets have a relative distance of at most 1/2, and this distance affects the distortion of the
normalized distances. Therefore, achieving alphabet reduction into binary alphabets requires
a scaling that is not normalized, as well as a more global approach that does not encode the
characters sequentially and independently. However, there’s a caveat: the encoding still needs
to be performed independently on each string rather than on a pair of strings. Specifically,
if we take a particular string X its encoding will remain the same regardless of the second
string Y . This aspect forms the focal point of our forthcoming result.

For clarity, we present our results for the ∆indel metric, with a similar approach applicable
to the ∆edit metric. Our main result states that one can embed ∆indel over any alphabet
Σ into binary alphabet. We employ asymmetric embedding and prove that the distances
are preserved up to some scaling function. The dimension of the embedded strings is quasi-
polynomial, making this result more of a proof of concept at the moment. Nonetheless, we
find it conceptually intriguing and pose the question of decreasing the target dimension as
an open question. Our main result is as follows:

▶ Theorem 5 (Informal statement of Theorem 16). For any alphabet Σ and for every n ∈ N
there exist functions G, H : Σn → {0, 1}N , f : [n]→ [N] where N = nO(log n) such that for
any X, Y ∈ Σn,

∆indel(G(X), H(Y)) = f(∆indel(X, Y)).

Our initial consideration revolves around the fact that deciding whether ∆indel(X, Y) ≤ k

for two strings X, Y ∈ Σn and a threshold parameter k, can be accomplished by a Turing
machine utilizing log(n)-space. This capability can then be translated into a SAT formula of
log2(n)-depth.

The foundation of our construction converts this formula into a pair of binary strings
X ′, Y ′ of quasi-polynomial length, where X ′ (respectively, Y ′) depends solely on X (Y)
and the Indel distance between X ′, Y ′ is contingent on the distance between X, Y . This is
achieved by recursively transforming the formula into such a pair of strings gate by gate.
Two essential components, referred to as AND- and OR-gadgets, implement this process.

S. Bhattacharya, S. Dey, E. Goldenberg, and M. Koucký 11:5

The input for the AND-gadget consists of two pairs of strings (X0, Y0), (X1, Y1), which
can be thought of as outputs from previous levels. Here the Xi’s only depend on X and the
Yi’s only depend on Y . Moreover, we are guaranteed that ∆indel(Xi, Yi) can only take two
values {F, T}, where F < T . The goal is to concatenate the Xi into a single string X and the
Yi’s into a different string Y such that: ∆indel(X, Y) can also take value in {F ′, T ′}, where
F ′ < T ′ and: ∆indel(X, Y) = T ′ if and only if ∆indel(X0, Y0) = T ∧ ∆indel(X1, Y1) = T .
Similarly for the OR-gadget. Our construction of the LCS instance from the Formula
Evaluation is similar to that of Abboud and Bringmann [2] which considers reduction of the
Formula Satisfiability to LCS. The purpose of our reduction is different, though.

Scaled Isometric Embedding of Indel into Edit Metrics. While our previous results aimed
on reducing the alphabet size while keeping the underlying metric (either ∆indel or ∆edit),
this section focuses on converting one metric into another. Tiskin [21] in section 6.1 proposed
a straightforward embedding from the ∆edit metric to the ∆indel metric. This inspired our
exploration into embedding in the reverse direction i.e. from the ∆indel metric to the ∆edit

metric. Our primary contribution in this realm is a scaled isometric embedding from the
∆indel metric to ∆edit, as outlined below.

▶ Theorem 6 (Indel Into Edit Metrics Embedding - Approximate embedding). For any alphabet
Σ, n ∈ N and ε ∈ (0, 1], there exist mappings E : Σn → Σn and E′ : Σn → (Σ∪{$})N , where
N = Θ(n/ε), such that for any X, Y ∈ Σn, we have

∆edit(E(X), E′(Y)) = N − n + k, where k ∈
[

∆indel(X, Y)
2 , (1 + ε)∆indel(X, Y)

2

)
.

Observe that while plugging ε ≤ 1
n we obtain a scaled isometry at the expense of a

quadratic increase in the length of the second string. Conversely, for constant values of ε, N

scales as O(n) albeit with the trade-off of only approximately preserving distances within a
constant factor. For intermediate values of ε, we can compromise between the accuracy and
the stretch length.

Let us revisit Tiskin’s (section 6.1 of [21]) construction of the reverse embedding, namely,
from ∆edit into ∆indel. The embedding proceeds as follows: a special character $ is appended
after every symbol of each string. It is easy to check that for each pair of strings, the ∆indel

between the embedded pair of strings equals twice the ∆edit between the original pair. In
our construction, one string remains unaltered, while for the second string, we append after
every symbol a block of length n consisting of the special character.

The core of the proof demonstrates the conversion of any ∆indel-alignment for the input
strings into an ∆edit-alignment for the embedded strings, preserving the distances up to a
scaling factor. This process involves replacing any deletions originally performed on the first
string by substituting the characters with the special inserted character. Deletions made on
the second string remain unaffected.

1.2 Related Work
The problem of embedding edit distance into other distance measures, such as Hamming
distance, ℓ1, etc., has attracted significant attention in the literature. Let us briefly survey
some of these approaches.

Chakraborty et al. [12] introduced a randomized embedding scheme from the edit distance
to the Hamming distance. This embedding transforms strings from a given alphabet into
strings that are three times longer. For each pair of strings embedded using the same random

FSTTCS 2024

11:6 Many Flavors of Edit Distance

sequence, with high probability the edit distance between the embedded strings is at most
quadratic in the Hamming distance of the original strings. Batu et al. [8] introduced a
dimensionality reduction technique: Given a parameter r > 1, they reduce the dimension by
a factor of r at the expense of distorting the distances by the same factor. They employed
the locally consistent parsing technique for their embedding. Ostrovsky and Rabani [20]
presented a polynomial time embedding from edit distance to ℓ1 distance with a distortion of
O(2
√

log n log log n). They proposed a randomized embedding where the length of the output
strings is quadratic in the input strings, and the distances are preserved, with high probability,
up to the distortion factor.

1.3 Future Directions

Introducing a Robust Concept of Approximation: Transitioning from Approximating
∆edit into Approximating ∆indel. Recall that one of the reasons we aimed to isometrically
embed the ∆indel metric into the ∆edit metric stemmed from the abundance of approximation
results for ∆edit that might not easily extend to the ∆indel metric. A natural approach,
based on our embedding result, is to approximate the ∆indel distance between X, Y by
approximating the ∆edit between the embedded strings. However, this is not an immediate
consequence due to the substantial disparity in length between the embedded strings and
the notion of approximation in this case, as detailed next:

Recall that in Theorem 6 the scaling mechanism is not normalized, i.e, the embedding
function did not preserve normalized distances, but instead:

∆edit(E1(X), E3(Y)) = N − n + k, where k ∈
[

∆indel(X, Y)
2 , . . . , (1 + ε)∆indel(X, Y)

2

]
where N, n are the length of the embedded strings, and N = Θ(n

ε). Observe that the ∆edit

between the embedded strings lies in the range of [N − n, N].
Considering the substantial difference in length between the embedded strings, an al-

gorithm that consistently outputs the value N − n, regardless of the embedded strings,
already yields a 1 + O(ε)-approximation for the distance between the embedded strings.
Certainly, such an outcome provides no information about the ∆indel of the original strings.
Therefore, we introduce a more robust notion of approximation that generally addresses the
discrepancy in string lengths:

▶ Definition 7 (A Robust Notion of Approximation). Let c > 1, let Σ be a finite set, and
let X, Y ∈ Σ∗. Define |X| = N, |Y | = n, and assume N ≥ n. Define kX,Y such that:
∆edit(X, Y) = N − n + kX,Y .

An algorithm is considered to provide a robust c-approximation for ∆edit if for all pairs
X, Y it outputs k′ such that: k′ ∈ [kX,Y , ckX,Y].

We assert that for any value of ε, any algorithm ALG that provides a robust c-
approximation for ∆edit yields an algorithm ALG′ that provides (1 + ε)c-approximation for
∆indel. Moreover, if the running time ALG on input strings of lengths N, n is t(N, n), then
the running time of ALG′ is t

(
n
ε , n

)
. The construction of ALG′ is straightforward: on input

strings X, Y we first apply the embedding, then apply ALG on the resulting strings and
finally output: 2k′.

We leave the quest of discovering a robust approximation algorithm for ∆edit as an open
question, which falls outside the scope of this paper.

S. Bhattacharya, S. Dey, E. Goldenberg, and M. Koucký 11:7

1.4 Organization Of The Paper

We structure the paper as follows. In Section 3 we prove our main result, namely Theorem 3,
discussing normalized scaled isometric embedding between large and small alphabets. In
Section 4 we establish Theorem 5 focusing on alphabet reduction with binary alphabets. We
also demonstrate the existence of an indel to edit scaled isometric embedding, as stated in
Theorem 6 the proof of which is in the full version of the paper.

2 Preliminaries and Notations

In this section we introduce the notations that is used throughout the rest of the paper. For
any string X = x1x2 . . . xn and integers i, j, X[i] 1 denotes xi, X[i, j] represents substring
X ′ = xi . . . xj of X, and X[i, j) = X[i, j − 1]. “·”-operator denotes concatenation, e.g X · Y
is the concatenation of two strings X and Y . Λ denotes the empty string.

Edit Distance with Substitutions (∆edit). For strings X, Y ∈ Σ∗, ∆edit(X, Y) is defined
as the minimal number of edit operations required to transform X into Y . The set of edit
operations includes character insertion, deletion, and substitutions.

Indel Distance (∆indel). For strings X, Y ∈ Σ∗, ∆indel(X, Y) is defined as the LCS
(Longest Common Subsequence) metric between X and Y . It counts the minimal number of
edit operations needed to convert the strings, where substitutions are excluded.

Normalized Distance. To assess the distance between each pair of strings in a standardized
manner, it is advantageous to express it as a normalized value within the range [0, 1]. To
achieve this, we introduce the following definition:

∆̃edit(X, Y) = ∆edit(X, Y)
max(|X|, |Y |) , ∆̃indel(X, Y) = ∆indel(X, Y)

|X|+ |Y |

A string X ′ is considered a subsequence of another string X if ∆indel(X, X ′) = |X|−|X ′|.
X ′ is considered a substring of X if X ′ is a contiguous subsequence of X.

Alignment. For an alphabet Σ and any two strings X, Y ∈ Σ∗ , an ∆edit alignment of
X and Y is a a sequence of edit operations (insertions, deletions, and substitutions) that
transform the string X into Y . The cost of the alignment is determined by the number of
edit operations. An alignment is optimal if it achieves the lowest possible cost. Observe
that for each character of X that wasn’t deleted or substituted, can be matched with a
unique character from Y . The collection of matched characters is referred to as the matching
characters of the alignment.

Similarly we define an ∆indel alignment of X and Y as a sequence of edit operations,
with the exception that substitutions are not permitted. The cost, optimality, and matching
characters of an alignment are defined analogously. See Figure 1 for an example.

1 We use xi or Xi or X[i] to denote the ith character of the string X interchangeably.

FSTTCS 2024

11:8 Many Flavors of Edit Distance

(a) (b)

G R A P E

A P P L E

I N T E N T I O N

E X E C U T I O N

X

Y

X

Y

Figure 1 Example for (a) ∆indel alignment and (b) ∆edit alignment (the matched characters are
highlighted in blue, the deleted characters in red and the substituted characters in orange).

3 Alphabet Reduction

Within this section, we tackle the task of embedding strings from a sizable alphabet into a
smaller one while preserving the global nature of the original metric space. Our main result
demonstrates that it’s possible to embed strings from any large alphabet Γ into strings of
a smaller alphabet Σ, where the length of the strings remains approximately unchanged,
and the normalized distances are distorted by at most a factor of (1 + ε). The size of the
alphabet Σ increases quadratically with 1/ε. To provide clarity, we present our results for
the ∆indel metric; a similar approach can be applied to the ∆edit metric. This section is
structured as follows: In subsection 3.1 we outline our findings regarding normalized scaled
alphabet reductions, covering both lower and upper bounds. Section 3.2 discusses our upper
bounds, while Section 3.3 addresses lower bounds.

3.1 Normalized Scaled Isometric Embedding – Our Finding
An embedding E is said to preserve lengths, if there exists: ℓ : N → N such that: ∀X ∈
Γn : |E(X)| = ℓ(n). It is non-shrinking if ℓ(n) ≥ n. It is natural to focus on non-shrinking
embeddings otherwise if the embedding maps from a large alphabet to smaller one some
distinct strings will get mapped to the same string.

The following claim shows that any length-preserving embedding, mapping strings from
large alphabet into strings of smaller one, necessarily contracts the normalized distances
between certain pairs of strings. The proof of the claim is deferred to Section 3.3.

▷ Claim 8. Let Γ, Σ be finite alphabets, such that: |Γ| > |Σ|, and let E : Γ∗ → Σ∗, which is
a length-preserving embedding, then for any n ∈ N we have:

∃X, Y ∈ Γn : ∆̃indel(E(X), E(Y)) < ∆̃indel(X, Y).

Therefore, we redirect our attention to approximate embedding, where we allow for a
slight distortion in distances. Our main result is as follows:

▶ Theorem 3 (Alphabet Reduction - Succinct Embedding). Let Γ be a finite alphabet, and let
0 < ε < 1/4. There exists an alphabet Σ, where |Σ| = O(1

ε2) and there exists E : Γ∗ → Σ∗

satisfying:

∀X, Y ∈ Γ∗ : ∆̃indel(E(X), E(Y)) ∈
[
(1− ε)∆̃indel(X, Y), ∆̃indel(X, Y)

]
.

Moreover, for every X ∈ Γn we have: |E(X)| = O(n log(|Γ|)).

Note that the distortion is “one-sided” in the sense that the normalized distances of the
embedded strings cannot surpass the normalized distance of the original strings. However,
for the lower bound, a (1− ε)-factor may be incurred. Furthermore, we demonstrate that for

S. Bhattacharya, S. Dey, E. Goldenberg, and M. Koucký 11:9

any embedding, the normalized distances cannot be uniformly scaled by a fixed factor. In
particular, we demonstrate that there exist pairs of strings whose normalized distances are
reduced, while for other pairs, their normalized distances converge to each other arbitrarily
closely. This, in turn, illustrates that we cannot deduce the value of ∆̃indel(X, Y) directly
from the value of ∆̃indel(E(X), E(Y)) by a simple scaling.

▷ Claim 9. Let Γ, Σ be finite alphabets, such that: |Γ| > |Σ|, and let E : Γ∗ → Σ∗, which is
a length-preserving non-shrinking embedding. We have:
1. For any n ∈ N, there exist X, Y ∈ Γn such that

∆̃indel(E(X), E(Y)) ≤ (1− 1
|Σ|)∆̃indel(X, Y).

2. For any sequence Z1, Z2, . . . where |Zn| = n,

lim
n→∞

∆̃indel(E(Zn), E(Λ))− ∆̃indel(Zn, Λ) = 0, where Λ denotes the empty string.

3.2 Upper Bounds
The crux of Theorem 3 lies in the existence of an error correcting code with respect to the
∆indel metric, even when the alphabet size is small. More specifically, given a proximity
parameter ε > 0, and |Γ|, we pick a set C of strings residing in Σk of cardinality |Γ|, with
large pairwise distance. The construction of C follows a greedy approach reminiscent of
the Gilbert-Varshamov bound [13, 22]. Properties of the code are summarized in the next
statement.

▶ Lemma 10. For any ε < 1/2, let Σ be a finite alphabet satisfying |Σ| > 32/ε2. For every
n ∈ N, there exists k ∈ N with k = O(log n) for which the following conditions are satisfied:
1. There exists a code Cn,ε ⊆ Σk with |Cn,ε| = n.
2. ∀c ̸= c′ ∈ Cn,ε : ∆indel(c, c′) ≥ (2− ε)k.

The proof of Lemma 10 is given in the full version of the paper.
Endowed with the existence of such an error correcting code we assign a distinct codeword

to each of the characters in the larger alphabet Γ. The embedding procedure is as follows:
Given a string X ∈ Γn, we embed it into a string in (Σk)n, where the encoding of X is
formed by concatenating the codewords assigned to each of its characters. The presentation
of the embedding, along with its proof of correctness, is provided in Section 3.2.1.

3.2.1 The Embedding
Let Γ be an alphabet, and let ε be a proximity parameter, and let C := C|Γ|,ε be the code
whose existence is guaranteed by Lemma 10. We interpret the code C as a function mapping
characters from Γ into (short) strings in Σk. The embedding proceeds as follows: each string
in Γ∗ is encoded sequentially character by character, where the encoding of each character is
performed using the code C. Our main technical lemma is as follows:

▶ Lemma 11. For any finite alphabet Γ and ε > 0, consider the encoding C|Γ|,ε : Γ→ Σk

as implied by Lemma 10. For any string X ∈ Γ∗ define: E(X) = C(X1) . . . C(Xn) (where
n = |X|).

Then for any pair of strings X, Y ∈ Γ∗ the following inequality holds:

(1− 48ε)∆indel(X, Y) ≤ ∆indel(E(X), E(Y)) ≤ ∆indel(X, Y)

Moreover, for every X ∈ Γn we have: |E(X)| = O(n log|Γ|).

FSTTCS 2024

11:10 Many Flavors of Edit Distance

In the sequel, an ∆indel-alignment converting E(X) into E(Y) is simply referred as
an alignment. In the course of the proof, we introduce the concepts of blocks and block-
structured alignments. For X ∈ Γn we define the i-th block of E(X) to be the substring of
E(X) corresponding to Xi, namely it equals C(Xi). Furthermore, given an alignment A that
transforms E(X) into E(Y), we label it as a block-structured alignment if, for each i-th block
in E(X), the alignment either fully matches all the characters of the block to some block j

in E(Y) or entirely deletes the i-th block. It is clear that block-structured alignments for the
embedded strings correspond one-to-one with alignments for the original strings, and their
normalized distance remains unchanged. To prove our main technical lemma we transform
any alignment converting E(X) to E(Y) into a block-structured one without significantly
increasing its cost.

We will introduce certain notations to facilitate the presentation of the proof. For any
X ∈ Γn we employ lowercase letters such as: i, j, k etc. to represent indices of Xi. We utilize
tuples from [n]× [k] to represent indices of E(X), where the first index signifies the block
index denoted by lowercase letters, and the second one describes the index within the block
represented by a lowercase Greek letter.

The following claim, stated without a formal proof, will be useful in the subsequent proof.

▷ Claim 12. For an alignment A transforming E(X) into E(Y), we have that the set of
matching characters has to be monotone, indicating that for (i, α) < (i′, α′) in lexicographical
order if (i, α) is matched to (j, β) and (i′, α′) to (j′, β′) by A, we must have: (j, β) < (j′, β′).

Given an alignment A, we partition E(Y) into n segments based on its matching blocks
in E(X). Define the i-th segment as follows: if no character of the i-th block of E(X) is
matched under A, then the i-th segment is empty. Otherwise, let j denote the first block of
E(Y) that includes a matching character for one of the characters in the i-th block. If i is
the smallest block containing a matching coordinate within j, then the i-th segment starts
at (j, 1), otherwise it starts at the first coordinate within the j-th block matching with the
i-th block.

The ending point of the segment is defined similarly: Let j′ be the initial block of E(Y)
containing a match for the (i + 1)-th block of E(X). If the i-th block does not match any
of the j′-th coordinates, then the i-th segment ends at (j − 1, k). Otherwise, it ends at the
coordinate preceding the first match of (i + 1) and j. We define the starting point of the
first non-empty segment as (1, 1) and the end point of the last non-empty segment as (n, k).
See Figure 2 for an illustration.

Additionally, we define costA(i), the cost of the i-th block, as the sum of unmatched
coordinates in E(X) within its i-th block and the unmatched coordinates in E(Y) within its
i-th segment. For example, in the illustration provided in Figure 2, we have costA(1) = 0 + 3
since all the characters of the first block of E(X) are matched, and there are 3 unmatched
coordinates in the first segment of E(Y). As the decomposition of E(Y) results in disjoint
parts, the sum of the costs across the different blocks equals the cost of A, which we denote
by: cost(A).

3.2.1.1 Converting Into Block-Structured Alignments

In this section, we introduce an algorithm that takes an arbitrary alignment A transforming
E(X) into E(Y) as input and produces an alignment A∗. The resulting alignment A∗ is
block-structured, and its cost does not substantially exceed that of A.

To design the new matching we need few definitions. We say that blocks i and j are
partially matched by an alignment A if there exists a pair (i, α) and (j, β) matched by A.
Furthermore, i and j are significantly matched by A if more than εk characters in the i-th

S. Bhattacharya, S. Dey, E. Goldenberg, and M. Koucký 11:11

E(X)

E(Y)

A

C(X1)

1 1 0

C(X2)

0 1 0

C(X3)

1 1 1

C(Y1)
0 0 1

C(Y2)
1 0 1

C(Y3)
0 0 1

C(Y4)
0 1 0

Figure 2 An illustration of the matching between the strings E(X) and E(Y). Arrows indicate
matching coordinates, and dashed lines represent the beginning/end points of the segments. The
first segment starts at (1, 1) and ends at (2, 3), as the first matched coordinate in the second block
of E(X) is mapped to the third block, and no character from the first block of E(X) is mapped to
that block. The second segment starts at (3, 1) and ends at (4, 1) (as the first matched coordinate
in the second block of E(X) is mapped to the third block, and there exists a character from the
second block of E(X) that is mapped to that block).

block of X are matched into the j-th block; we say that i and j are perfectly matched if A
matches every character in E(X) into a character in E(Y). The algorithm operates in two
stages. In the first stage, the algorithm iteratively takes two significantly matched blocks
that are not perfectly matched, removes all matches that the characters of the two blocks
participate in, and introduces a perfect match between the two blocks. In the second stage,
we remove all the matches from blocks that are not matched perfectly.

A key observation is that if i and j are significantly matched then we have the following
inequality: ∆indel(C(Xi), C(Yj)) < (2− ε)k. Therefore, by the distance guarantee regarding
C, we must have Xi = Yj . The algorithm is given next. For the sake of the analysis its
second stage is divided into two cases.

3.2.1.2 The Correctness of the Algorithm

We break down the proof of correctness into three claims. Claim 13 states that the output
produced by Algorithm 1 is a block-structured alignment. The subsequent two claims provide
bounds on the cost difference between the input and output alignments.

▷ Claim 13. The alignment A′ produced by Algorithm 1 from any alignment A converting
E(X) into E(Y) is a block-structured alignment converting E(X) into E(Y).

The proof of Lemma 11 is derived from the following claims, let us first state the claims.

▷ Claim 14. Let ε < 1/4 and let A be any alignment converting E(X) into E(Y). Let AI
be the resulting alignment obtained by applying the algorithm described in stage I on A
with a proximity parameter of ε. Then,

cost(AI) ≤ (1 + 4ε)cost(A).

▷ Claim 15. Let AI be any resulting alignment obtained by applying the algorithm described
in stage I on some alignment A with a proximity parameter of ε. Let AII be the resulting
alignment obtained by applying the algorithm described in stage II on AI with a proximity
parameter of ε. Then,

cost(AII) ≤ (1 + 4ε)cost(AI).

The proofs of claims 13, 14 and 15 are given in the full version of the paper.

FSTTCS 2024

11:12 Many Flavors of Edit Distance

Algorithm 1 Converting Into Block-Structured Alignments.

Data: An alignment A converting E(X) into E(Y)
Result: An alignment A′ that is block-structured, converting E(X) into E(Y)
A′ ← A;
; /* Stage I: */
for i = 1 · · · |X| do

if i has some significant match then
j ← smallest block in E(Y) that significantly matches i;
Remove all matches incident with blocks i and j from A′, and add a perfect
match between the two blocks;

end
end
i← 1 ; /* Stage II: */
while i <= |X| do

if i has a partial and not perfect match then
if i is partially matched to more than a single block then

Delete from A′ all matches of characters from the i-th block of E(X);
i + +;

end
else

j ← smallest E(Y)-block that partially matches i;
i′ ← smallest E(X) that does not match with the j-th block;
Delete from A′ all matches of characters from the j-th block of E(Y);
i← i′;

end
end

end

Proof of Lemma 11 (using Claim 14 and Claim 15). Let OPT represent the normalized
cost of the optimal alignment between X and Y , and ÕPT denote the normalized cost of
the optimal alignment between E(X) and E(Y). Notice that any alignment between X

and Y can be paired with an alignment between E(X) and E(Y) having the same cost.
Consequently, we have: ÕPT ≤ OPT. To complete the argument, it remains to establish that:
(1− 48ε)OPT ≤ ÕPT , which can be achieved by demonstrating: OPT ≤ (1 + 24ε)ÕPT .

Consider the optimal alignment A that transforms X into Y , and let A′ be the alignment
generated by Algorithm 1 when applied to A. According to Claims 14 and 15, we obtain:

1
2|E(X)| ·cost(A′) ≤ 1

2|E(X)| ·(1+4ε)2cost(A) ≤ 1
2|E(X)| ·(1+24ε)cost(A) = (1+24ε)OPT.

We conclude the proof by noting that: ÕPT ≤ 1
2|E(X)| · cost(A′). ◀

3.3 Lower Bounds

Proof of Claim 8. For any value of n ∈ N, define An as the set of length n strings composed
of a single character from Γ. Clearly, |An| = |Γ| and moreover, for every distinct pair of
strings in An, their Indel distance is 2n.

S. Bhattacharya, S. Dey, E. Goldenberg, and M. Koucký 11:13

Now consider any embedding E : Γ∗ → Σ∗. Since |An| = |Γ| > |Σ|, by the pi-
geonhole principle there exist X ̸= Y ∈ An satisfying: E(X)1 = E(Y)1

2. Hence,
∆indel(E(X), E(Y)) < 2ℓ(n) while ∆edit(X, Y) = 2n. ◁

Proof of Claim 9.
1. Fix n ∈ N and consider any embedding E : Γ∗ → Σ∗. For any X ∈ Γn, define

the value p(E(X)) ∈ Σ as the plurality value among {E(X)i}i∈N (ties are broken
arbitrarily). Observe that the character p(E(X)) appears at least ℓ(n)

|Σ| times in the
string E(X). Furthermore, for any X, Y ∈ Σn if: p(E(X)) = p(E(Y)), then we get:
LCS(E(X), E(Y)) ≥ ℓ(n)

|Σ| and hence: ∆indel(E(X), E(Y)) ≤
(

1− 1
|Σ|

)
2ℓ(n).

As in the proof of Claim 8, define An as the set of strings composed of a single character
from Γ. Recall that |An| = |Γ| and moreover, for every distinct pair of points in An, their
LCS distance is 2n.
Since |An| = |Γ| > |Σ|, by the pigeonhole principle there exist X ̸= Y ∈ An satis-
fying: p(E(X)) = p(E(Y)), yielding: ∆indel(E(X), E(Y)) ≤

(
1− 1

|Σ|

)
2ℓ(n), whereas

∆indel(X, Y) = 2n, as claimed.
2. Let k = |E(Λ)|. For Z ∈ Γn, we have: ∆indel(E(Z), E(Λ)) ≥ ℓ(n) − k so

∆̃indel(E(Z), E(Λ)) ≥ 1 − k
ℓ(n) ≥ 1 − k

n . On the other hand, ∆indel(Z, Λ) = n so
∆̃indel(Z, Λ) = 1. ◁

4 Alphabet Reduction – Binary Alphabets

In this section we show a reduction of ∆edit and ∆indel over an arbitrary alphabet to the
binary alphabet. The reduction expands the strings super-polynomially, but one can think
of it as a proof of concept that more efficient reduction might exist. The main theorem of
this section is the following statement which is a formal statement of Theorem 5. For ease of
presentation it is beneficial to think about Longest Common Subsequence instead of ∆indel.
That is how we state the theorem here.

▶ Theorem 16. For any integer n ≥ 1, any alphabet Σ of size at most n3, there exist integers
S, R, N where N = nO(log n) and functions G, H, G′, H ′ : Σn → {0, 1}N such that for any
X, Y ∈ Σn,

LCS(X, Y) = LCS(G(X), H(Y))−R

S

∆edit(X, Y) = LCS(G′(X), H ′(Y))−R

S
.

Hence, for any pair of strings X, Y one can recover ∆edit(X, Y) from ∆indel(G′(X), H ′(Y))
over a binary alphabet. Both mappings G, H and G′, H ′ can be computed efficiently in the
length of their output. Indeed, they will be defined explicitly below. We remark that the
bound n3 on the size of Σ is essentially arbitrary and could be replaced for example by a bound
2n without change in the other parameters (except for multiplicative constants). However,
the n3 bound allows for hashing any large alphabet by a random pair-wise independent hash
function to an alphabet of size n3 without affecting the distance of any given pair of strings
except with probability < 1/n.

2 E(X)i is the ith character of the string E(X).

FSTTCS 2024

11:14 Many Flavors of Edit Distance

In order to prove the theorem we will need several auxiliary functions. We say that a
0-1 string is balanced if it contains the same number of 0’s and 1’s. We say a formula ϕ is
normalized if it consists of alternating layers of binary AND and OR and all of its literals
are at the same depth; each literal is either a constant, a variable or its negation.

We define two functions g, h : {0, 1}∗×{normalized formulas} → {0, 1}∗ and two threshold
functions f, t : {normalized formulas} → N as follows: Let us consider sets of variables
U = {u1, . . . , up} and V = {v1, . . . , vq}, and let A = {a1, . . . , ap} where ai is the assignment
to the variable ui for all 1 ≤ i ≤ p, and B = {b1, . . . , bq} where bi is the assignment to the
variable vi for all 1 ≤ i ≤ q.

Let ϕ(U, V) be a normalized formula which is defined over two disjoint sets of variables
U = {u1, . . . , up} and V = {v1, . . . , vq}. Let A ∈ {0, 1}p, B ∈ {0, 1}q where A and B are
interpreted as assignments for U and V respectively. We define two functions g, h, such that
g gets as an input a pair (ϕ, A) and outputs a string in {0, 1}∗, similarly h takes a pair (ϕ, B)
as its input and outputs a string in {0, 1}∗. We also define threshold functions f, t which
take such a formula as input and output a natural number. The crux of the construction is
that for any assignment A for U and B for V we have that if ϕ is satisfied by the assignment
pair A, B then LCS(g(ϕ, A), h(ϕ, B)) = t(ϕ), otherwise LCS(g(ϕ, A), h(ϕ, B)) = f(ϕ)

We establish the recursive definitions of g, h, f and t based on the depth of the formula.
The base case is when ϕ is either a constant 0, 1 or single literals ui,¬ui, vj ,¬vj , where,
ui ∈ U, vj ∈ V . Here by ¬0 we understand symbol 1, and similarly by ¬1 we understand
symbol 0.

ϕ = ui ϕ = ¬ui ϕ = vj ϕ = ¬vj ϕ = 1 ϕ = 0

g(A, ϕ) ¬aiai ai¬ai 0 1 0 1 0 1 1 0

h(B, ϕ) 0 1 0 1 ¬bjbj bj¬bj 0 1 0 1

t(ϕ) 2 2 2 2 2 2

f(ϕ) 1 1 1 1 1 1

and further inductively:

ϕ = ϕ0 OR ϕ1 ϕ = ϕ0 AND ϕ1

g(A, ϕ) 1k/2 14k g(A, ϕ0) 14k 04k g(A, ϕ1) 04k 0k/2 0T +F 111k+T +F 05k g(A, ϕ0) 0k 1k 0k g(A, ϕ1) 05k

h(B, ϕ) 0k/2 04k h(B, ϕ0) 04k 14k h(B, ϕ1) 14k 1k/2 0T +F 05k h(B, ϕ0) 0k 1k 0k h(B, ϕ1) 05k 111k+T +F

t(ϕ) 9k + T 13k + 3T + F

f(ϕ) 9k + F 13k + 2T + 2F .

where k = |g(x, ϕ0)|, T = t(ϕ0), and F = f(ϕ0).

Key properties of our functions are summarized in the next lemma.

▶ Lemma 17. Let ϕ(U, V) be a balanced formula of depth d with set of variables U =
{u1, . . . , up} and V = {v1, . . . , vq}. For every two assignments A, A′ ∈ {0, 1}p to variables
U , we have |g(A, ϕ)| = |g(A′, ϕ)|. Similarly, for every two assignments B, B′ ∈ {0, 1}q to
variables V , |h(B, ϕ)| = |h(B′, ϕ)|. Additionally, |g(A, ϕ)| = |h(B, ϕ)| ≤ 30d.

Furthermore, the following holds:

S. Bhattacharya, S. Dey, E. Goldenberg, and M. Koucký 11:15

If ϕ(A, B) is true then LCS(g(A, ϕ), h(B, ϕ)) = t(ϕ).
If ϕ(A, B) is false then LCS(g(A, ϕ), h(B, ϕ)) = f(ϕ).

Finally, f(ϕ) < t(ϕ).

In order to prove the above lemma we also need two gadgets which we call the AND-
gadget and the OR-gadget. We need the lemmas on these gadgets (statement and proofs
included in the full version of the paper) which analyze the composition of AND and OR.

The proofs of theorem 16 and lemma 17 can also be found in the full version of the paper.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for

LCS and other sequence similarity measures. In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, pages 59–78, 2015. doi:10.1109/FOCS.2015.14.

2 Amir Abboud and Karl Bringmann. Tighter connections between formula-sat and shaving
logs. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella,
editors, 45th International Colloquium on Automata, Languages, and Programming, ICALP
2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 8:1–8:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.ICALP.2018.8.

3 Alexandr Andoni and Negev Shekel Nosatzki. Edit distance in near-linear time: it’s a constant
factor. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 990–1001. IEEE, 2020.
doi:10.1109/FOCS46700.2020.00096.

4 Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time. In
Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09,
pages 199–204, New York, NY, USA, 2009. ACM. doi:10.1145/1536414.1536444.

5 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC ’15, pages 51–58, New York, NY, USA, 2015. ACM. doi:
10.1145/2746539.2746612.

6 Ziv Bar-Yossef, TS Jayram, Robert Krauthgamer, and Ravi Kumar. Approximating edit
distance efficiently. In 45th Annual IEEE Symposium on Foundations of Computer Science,
pages 550–559. IEEE, 2004.

7 Tugkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Rahul Sami. A sublinear algorithm for weakly approximating edit distance. In Proceedings
of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC ’03, pages 316–324,
New York, NY, USA, 2003. ACM. doi:10.1145/780542.780590.

8 Tuğkan Batu, Funda Ergun, and Cenk Sahinalp. Oblivious string embeddings and edit distance
approximations. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithm, SODA ’06, pages 792–801, Philadelphia, PA, USA, 2006. Society for Industrial and
Applied Mathematics.

9 Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi HajiAghayi, and
Saeed Seddighin. Approximating edit distance in truly subquadratic time: Quantum and
mapreduce. Journal of the ACM (JACM), 68(3):1–41, 2021. doi:10.1145/3456807.

10 Joshua Brakensiek and Aviad Rubinstein. Constant-factor approximation of near-linear
edit distance in near-linear time. In Konstantin Makarychev, Yury Makarychev, Madhur
Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, pages 685–698. ACM, 2020.
doi:10.1145/3357713.3384282.

11 Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Kouckỳ, and Michael Saks.
Approximating edit distance within constant factor in truly sub-quadratic time. Journal of
the ACM (JACM), 67(6):1–22, 2020. doi:10.1145/3422823.

FSTTCS 2024

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.4230/LIPICS.ICALP.2018.8
https://doi.org/10.1109/FOCS46700.2020.00096
https://doi.org/10.1145/1536414.1536444
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1145/780542.780590
https://doi.org/10.1145/3456807
https://doi.org/10.1145/3357713.3384282
https://doi.org/10.1145/3422823

11:16 Many Flavors of Edit Distance

12 Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. Streaming algorithms for
embedding and computing edit distance in the low distance regime. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,
USA, June 18-21, 2016, pages 712–725, 2016. doi:10.1145/2897518.2897577.

13 E. N. Gilbert. A comparison of signalling alphabets. The Bell System Technical Journal,
31(3):504–522, 1952. doi:10.1002/j.1538-7305.1952.tb01393.x.

14 Elazar Goldenberg, Aviad Rubinstein, and Barna Saha. Does preprocessing help in fast
sequence comparisons? In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 657–670, 2020. doi:10.1145/3357713.3384300.

15 Szymon Grabowski. New tabulation and sparse dynamic programming based techniques
for sequence similarity problems. Discrete Applied Mathematics, 212:96–103, 2016. doi:
10.1016/J.DAM.2015.10.040.

16 Michal Koucký and Michael E. Saks. Constant factor approximations to edit distance on
far input pairs in nearly linear time. In Konstantin Makarychev, Yury Makarychev, Madhur
Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, pages 699–712. ACM, 2020.
doi:10.1145/3357713.3384307.

17 Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string comparison.
SIAM J. Comput., 27(2):557–582, April 1998. doi:10.1137/S0097539794264810.

18 Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10(8), pages 707–710. Soviet Union, 1966.

19 William J Masek and Michael S Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System sciences, 20(1):18–31, 1980. doi:10.1016/0022-0000(80)
90002-1.

20 Rafail Ostrovsky and Yuval Rabani. Low distortion embeddings for edit distance. J. ACM,
54(5):23, 2007. doi:10.1145/1284320.1284322.

21 Alexander Tiskin. Semi-local string comparison: Algorithmic techniques and applications.
Mathematics in Computer Science, 1:571–603, 2008. doi:10.1007/S11786-007-0033-3.

22 Rom Rubenovich Varshamov. Estimate of the number of signals in error correcting codes.
Docklady Akad. Nauk, SSSR, 117:739–741, 1957.

23 Robert A Wagner and Michael J Fischer. The string-to-string correction problem. Journal of
the ACM (JACM), 21(1):168–173, 1974. doi:10.1145/321796.321811.

https://doi.org/10.1145/2897518.2897577
https://doi.org/10.1002/j.1538-7305.1952.tb01393.x
https://doi.org/10.1145/3357713.3384300
https://doi.org/10.1016/J.DAM.2015.10.040
https://doi.org/10.1016/J.DAM.2015.10.040
https://doi.org/10.1145/3357713.3384307
https://doi.org/10.1137/S0097539794264810
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1145/1284320.1284322
https://doi.org/10.1007/S11786-007-0033-3
https://doi.org/10.1145/321796.321811

Parallel Complexity of Geometric Bipartite
Matching
Sujoy Bhore #

Department of Computer Science & Engineering, Indian Institute of Technology Bombay, India

Sarfaraz Equbal #

Department of Computer Science & Engineering, Indian Institute of Technology Bombay, India

Rohit Gurjar #

Department of Computer Science & Engineering, Indian Institute of Technology Bombay, India

Abstract
In this work, we study the parallel complexity of the geometric minimum-weight bipartite perfect
matching (GWBPM) problem in R2. Here our graph is the complete bipartite graph G on two sets of
points A and B in R2 (|A| = |B| = n) and the weight of each edge (a, b) ∈ A × B is the ℓp distance
(for some integer p ≥ 2) between the corresponding points, i.e., ||a − b||p. The objective is to find
a minimum weight perfect matching of A ∪ B. In their seminal work, Mulmuley, Vazirani, and
Vazirani (STOC 1987) showed that the weighted perfect matching problem on general bipartite
graphs is in RNC. Almost three decades later, Fenner, Gurjar, and Thierauf (STOC 2016) showed
that the problem is in Quasi-NC. Both of these results work only when the weights are of O(log n)
bits. It is a long-standing open question to show the problem to be in NC.

First, we show that in a geometric bipartite graph under the ℓp metric for any p ≥ 2, unless we
take Ω(n) bits of approximation for weights, we cannot distinguish the minimum-weight perfect
matching from other perfect matchings. This means that we cannot hope for an MVV-like NC/RNC
algorithm for solving GWBPM exactly (even when vertex coordinates are small integers).

Next, we give an NC algorithm (assuming vertex coordinates are small integers) that solves
GWBPM up to 1/poly(n) additive error, under the lp metric for any p ≥ 2.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation → Computational geometry

Keywords and phrases Parallel algorithms, Geometric matching, Derandomization, Isolation Lemma

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.12

Funding Rohit Gurjar : supported by SERB MATRICS grant MTR/2022/001009.

1 Introduction

The perfect matching problem is one of the well-studied problems in Complexity theory,
especially, in the context of derandomization and parallelization. Given a graph G = (V, E),
the problem asks, whether the graph contains a matching that matches every vertex of G.
Due to Edmonds [12], the problem is known to be solvable in polynomial time. However,
the parallel complexity of the problem has not been completely resolved till today. In 1979,
Lovász [19] showed that perfect matching can be solved by efficient randomized parallel
algorithms, i.e., the problem is in RNC. Hence, the main question, with respect to its parallel
complexity, is whether this randomness is necessary, i.e., whether the problem is in NC1.

1 The class NC represents the problems that have efficient parallel algorithms, i.e., they have uniform
circuits of polynomial size and polylog depth

© Sujoy Bhore, Sarfaraz Equbal, and Rohit Gurjar;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 12; pp. 12:1–12:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sujoy@cse.iitb.ac.in
https://orcid.org/0000-0003-0104-1659
mailto:sequbal@cse.iitb.ac.in
https://orcid.org/0009-0008-5549-8367
mailto:rgurjar@cse.iitb.ac.in
https://orcid.org/0000-0002-8623-0872
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Parallel Complexity of Geometric Bipartite Matching

The search version of the problem asks to explicitly construct a perfect matching in a
graph if one exists. Note that in the parallel setting, there is no obvious reduction from search
to decision. This version is also known to be in RNC [18, 21]. The Mulmuley-Vazirani-Vazirani
(MVV) algorithm [21], in fact, also works for the weighted version of the problem, where
there is a polynomially bounded weight assignment given on the edges of the graph.

The MVV algorithm [21] introduced the celebrated Isolation lemma. A weight assignment
is called isolating for a graph G, if the minimum weight perfect matching in G is unique
if one exists. Mulmuley, Vazirani, and Vazirani [21] showed that given an isolating weight
assignment with polynomially bounded integer weights for a graph G, a perfect matching
in G can be constructed in NC. The only place where they use randomization is to get an
isolating weight assignment. Their Isolation lemma states that a random weight assignment
is isolating!

Derandomizing the Isolation lemma means to construct such a weight assignment determ-
inistically in NC. A line of work derandomized the Isolation Lemma for special families of
graphs, e.g., planar bipartite graphs [11, 27], strongly chordal graphs [10], graphs with a small
number of perfect matchings [16]. In 2016, Fenner, Gurjar, and Thierauf [14] showed that the
bipartite perfect matching problem is in quasi-NC, by an almost complete derandomization of
the Isolation Lemma. Later, Svensson and Tarnawski [26] showed that the problem in general
graphs is also in Quasi-NC. Subsequently, Anari and Vazirani [5] gave an NC algorithm for
finding a perfect matching in general planar graphs. All of these algorithms work for the
weighted version (poly-bounded) of the problem as well.

What remains a challenging open question is to find an NC algorithm for any versions
(decision/search/weighted) of the perfect matching problem, even for bipartite graphs.
Inspired by the positive results on planar bipartite graphs, we investigate the weighted
version of the perfect matching problem in the geometric setting (2 dimensional).

Geometric Bipartite Matching

Let A and B be two point sets in R2 of size n each. Consider the complete bipartite graph
G(A, B, E) with the following cost function on the edges: for any edge e = (a, b), define
C(e) = ||a − b||p, where || · ||p denotes the ℓp norm for some integer p ≥ 2. In other words, we
consider the ℓp distance between the endpoints as the cost of an edge. The cost of a perfect
matching M is the sum of its edge costs C(M) = Σe∈M C(e). The Geometric Minimum-Weight
Bipartite Perfect Matching (GWBPM) problem is to find Mopt = argmin|M |=n C(M), that is,
the optimal perfect matching with respect to function C. GWBPM is a fundamental problem
in Computational Geometry and has been studied extensively over the years. See Section 1.2
for an overview of the results. In this work, we focus on the parallel complexity of the
GWBPM problem, and ask the following question –

▶ Question 1. Is GWBPM in NC?

Optimization problems in computational geometry are usually studied in real arithmetic
computational model, where comparing two distances or sums of distances is assumed to
be a unit cost operation. However, in the bit complexity model, it is not clear if distances,
which can be irrational numbers (under ℓp metric for p ≥ 2), can be efficiently added or
compared. In fact, the problem of comparing two sums of square roots (or other pth roots)
is not known to be in P (see, for example, [22, 1]). See [13] for some recent progress on the
sum of square roots problem.

S. Bhore, S. Equbal, and R. Gurjar 12:3

Our path towards showing an NC algorithm for GWBPM naturally goes via the MVV
algorithm. Recall that the MVV algorithm works only when the given weights/costs are
polynomially bounded integers, because in intermediate steps, it needs to put weights in the
exponent. Hence, inevitably we need to consider the bit complexity of the weights. Note that
there are other parallel algorithms for the weighted perfect matching problem (e.g., [15]),
but there too it is important that the weights are polynomially bounded integers.

It is not clear if the GWBPM problem (for p ≥ 2) is in P (or even in NP) in the bit-
complexity model. To the best of our knowledge, the existing algorithms for GWBPM require
comparisons between two sums of pth roots. For p ≥ 2, this naturally leads us to consider
an approximate version of the problem. Let us define the δ-GWBPM problem, which asks
for a perfect matching whose weight is at most δ more than the minimum-weight perfect
matching. We aim to get an NC algorithm for the problem whenever 1/δ is poly(n).

1.1 Our Contribution
In this work, we study the parallel complexity of δ-GWBPM problem. First, it is natural
to ask whether solving δ-GWBPM for some δ = 1/ poly(n) will already solve the GWBPM
problem. In other words, by considering only O(log n) bit approximations of ℓp distances,
can we hope to find the geometric minimum weight perfect matching? Our first result
rules out this possibility. We show that for GWBPM (under ℓp metric for any p ≥ 2), a
super-linear number of bit approximations is required to distinguish the minimum-weight
perfect matching from others.

▶ Theorem 1.1. There is a set of 2n points in the O(n7) × O(n7) integer grid such that in
the corresponding complete bipartite graph, the difference between the weights of the minimum
weight perfect matching and another perfect matching is at most 1/(n − 1)! (under any ℓp

metric with p ≥ 2).

This theorem is proved in Section 2. The first part of the proof goes via a known counting
technique [8], where we construct a geometric bipartite graph and argue that there must be
two perfect matchings whose weights are distinct but very close. In the second part of the
proof, we construct another geometric bipartite graph based on these two matchings, where
one of the two is the minimum weight perfect matching.

Next, we come to our positive result. We affirmatively answer Question 1, by showing
that the geometric minimum weight perfect matching problem that allows up to 1

poly(n) error,
is in NC.

▶ Theorem 1.2. The δ-GWBPM under ℓp metric (p ≥ 2) is in NC, assuming the points are
on a polynomially bounded integer grid, where δ is 1/ poly(n).

This theorem is proved in Section 3. The main idea is to reduce the problem to bipartite
planar matching and then use known techniques for the planar case [27].

1.2 Related Work
The classical Hopcroft-Karp algorithm computes a maximum-cardinality matching in a
bipartite graph with n vertices and m edges in O(m

√
n) time [17]. After almost three

decades, Madry [20] improved the running time to O(m10/7 polylog n) time, which was
further improved to O(m + n3/2 polylog n) by Brand et al. [29]. The Hungarian algorithm

FSTTCS 2024

12:4 Parallel Complexity of Geometric Bipartite Matching

computes the minimum-weight maximum cardinality matching in O(mn + n2 log n) time [23].
In some recent breakthrough results [28, 9], they have shown that maximum-cardinality
matching in bipartite graphs can be solved in near-linear time.

For two sets of points A and B in R2, the best known algorithm for computing GWBPM
runs in O(n2 polylog n) time [3, 4]. Moreover, if points have integer coordinates bounded
by ∆, the running time can be improved to O(n3/2 polylog n log ∆) [24]. If coordinates of
input points have real values, it is not known whether a subquadratic algorithm exists.
However, for the non-bipartite case, Varadarajan [30] presented an O(n3/2 polylog n)-time
algorithm under any ℓp-norm. For bipartite matching, a large body of literature focused on
obtaining approximate matching for points in Rd. Varadarajan and Agarwal [31] presented
an O(n3/2ε−d logd n)-time ε-approximation algorithm for geometric matching in Rd. Later,
Agarwal and Raghavendra [25] improved the running time. Recently, Agarwal et al. [2]
presented a deterministic algorithm with running time n · (ε−1 log n)O(d) time, and computes
a perfect matching whose cost is within a (1 + ε) factor of the optimal matching under any
ℓp-norm.

2 Lower Bound

In this section, we want to show that for a geometric bipartite graph with n + n vertices, we
need at least Ω(n log n) bits of precision to distinguish the minimum weight perfect matching
from others (under ℓp metric for any integer p ≥ 2). We will show this by constructing a
bipartite set of 2n points in the integer grid of size O(n7) × O(n7) such that the difference
between the weights of the minimum weight perfect matching and the one with the next
higher weight will be 1/(n − 1)!. Towards this, the first step is to construct a geometric
graph where there are two perfect matchings whose weights differ by at most 1/(n − 1)!
(Claim 2.2). Here we use an argument based on the pigeonhole principle. A similar argument
was used to show such a bound on the difference of two sums of square roots [8].

In the above construction, it is not necessary that one of the two perfect matchings is
of minimum weight. In the second step, we show that the above geometric graph can be
modified to construct another one where the same two perfect matchings appear, but now
one of them is of minimum weight (Claim 2.4).

▶ Construction 1. Consider the left hand side vertices u0, u1, . . . , un−1 at points

{(0, 0), (0, 1), (0, 2), . . . , (0, n − 1)}.

Similarly, consider the right hand side vertices v0, v1, . . . , vn−1 at points

{(q, n), (q, 2n), (q, 3n), . . . , (q, n2)},

where q = n6.

▷ Claim 2.1. The geometric bipartite graph in Construction 1 has all its perfect matchings
with distinct weights (under ℓp metric for any integer p > 1).

Proof. Recall that edge weights are pth roots of integers. We will argue that the edge weights
are linearly independent over rationals, which immediately implies that any two different
subsets of edges cannot have equal weights. It is known that to show linear independence of
a set of pth roots of integers, it suffices to show that they are pairwise linearly independent
(see, for example, [7]). So, now we just argue that the edge weights are pairwise linearly
independent.

S. Bhore, S. Equbal, and R. Gurjar 12:5

First we observe that none of the edge weights is an integer. This is because from our
construction, we have n6 < p

√
n6p + 1 < w(e) ≤ p

√
n6p + n2p < n6 + 1.

For the sake of contradiction, suppose we have two edges e and e′, whose weights are
linearly dependent. Then we have aw(e) = bw(e′) for some integers a and b. From here
we get that w(e)pw(e′)p = (a/b)pw(e)2p. That is, the product w(e)pw(e′)p is pth power of
a rational number. Since it is an integer, it must be pth power of an integer. From our
construction, for any edge e, we have q < w(e) ≤ p

√
qp + n2p. Moreover, note that only one

of the edges e or e′ can match the upper bound. Hence,

(q2)p < w(e)pw(e′)p < (qp + n2p)2. (1)

Now, we consider two cases p ≥ 3 and p = 2.

Case I (p ≥ 3). As w(e)pw(e′)p is pth power of an integer, from Equation (1) we have

(q2 + 1)p ≤ w(e)pw(e′)p < (qp + n2p)2.

Comparing the first and the last terms, we get

pq2p−2 +
(

p

2

)
q2p−4 + · · · + 1 < 2qpn2p + n4p.

Putting q = n6, we see that the above inequality is false. Hence, we get a contradiction.

Case II (p = 2). From Equation 1, we have

q4 < w(e)2w(e′)2 < (q2 + n4)2.

Since w(e)2w(e′)2 is square of an integer, we can write w(e)pw(e′)p = (q2 + α)p for some
integer 0 < α < n4.

For any edge e, let us denote by ∆e, the difference in the y coordinates of the two
endpoints of the edge. Then, the weight of an edge e can be written as w(e) =

√
q2 + ∆2

e.
Now, we have

w(e)2w(e′)2 = (q2 + ∆2
e)(q2 + ∆2

e′) = (q2 + α)2.

Equivalently,

q2(∆2
e + ∆2

e′) + ∆2
e∆2

e′ = 2q2α + α2.

Observe that ∆2
e∆2

e′ ≤ n8 < q2 (from construction) and also α2 < n8 < q2. Hence, we
conclude from above that

∆2
e + ∆2

e′ = 2α and ∆2
e∆2

e′ = α2.

This implies that ∆e = ∆e′ .
Now, we will argue that for any two distinct edges, we have ∆e ̸= ∆e′ , which will give

us a contradiction. Indeed for the edge (ui, vj), we have ∆e = jn − i, which comes from a
unique choice of 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n. ◁

▷ Claim 2.2. In the geometric bipartite graph from Construction 1, there are two perfect
matchings whose weights are different and differ by at most 1/(n − 1)!.

FSTTCS 2024

12:6 Parallel Complexity of Geometric Bipartite Matching

Proof. From Claim 2.1, all n! perfect matchings have distinct weights. From the construction,
any perfect matching has its weight between n7 and n p

√
n6p + n2p ≤ n(n6 + 1). The bound

follows from the pigeonhole principle. ◁

Now, consider the two perfect matchings from Claim 2.2, say M1 and M2, whose weights
differ by at most 1/(n − 1)!. Let M1 be the one with a smaller weight. The union of two
perfect matchings M1 ∪ M2 is a set of vertex-disjoint cycles and edges. We are going to
ignore the common edges between M1 and M2. Let (e1, e2, . . . , e2ℓ) be the sequence of
edges generated from the cycles in M1 ∪ M2 as follows: arrange the cycles in an arbitrary
order. For each cycle, start from that edge in M1 which has its left endpoint with minimum
y-coordinate, and traverse along the cycle till we hit the starting vertex. Note that the
sequence (e1, e2, . . . , e2ℓ) has edges alternating from M1 and M2. The new graph will be
constructed by “unrolling” these cycles. The construction will be such that edges outside
these cycles will be long, and hence, will not be a part of any minimum weight perfect
matching. Recall that for any edge e = (ui, vj) (Construction 1), we denote by ∆e the
difference in the y-coordinates of the endpoints, i.e., jn − i.

▶ Construction 2. Consider the vertex t0 at (0, 0). Let y0 = 0. For 1 ≤ k ≤ 2ℓ, we place the
vertex tk at (kq, yk), where

yk = yk−1 + ∆ek
if k is odd

yk = yk−1 − ∆ek
if k is even

We add three more vertices: s0 at (0, −2ℓq), s1 at (ℓq, −2ℓq), and s2 at (2ℓq, −2ℓq). See
Figure 1.

0 q

e1

e3

e2

e4

0 q 2q 3q 4q

e1

e2

e3

e4

s0 s1 s2

Figure 1 The left-hand side figure shows a cycle in the union of two perfect matchings. The
right-hand side figure shows how we “unroll” this cycle.

Corresponding to perfect matchings M1 and M2, here we will have perfect matchings M ′
1

and M ′
2 as

M ′
1 = {e1, e3, . . . , e2ℓ−1, (t2ℓ, s2), (s0, s1)}

M ′
2 = {e2, e4, . . . , e2ℓ, (t0, s0), (s1, s2)}.

S. Bhore, S. Equbal, and R. Gurjar 12:7

The following are easy observations about Construction 2.
1. The edge lengths of e1, e2, . . . , e2ℓ are exactly the same as their lengths in Construction 1.
2. yk ≥ 0 for each 1 ≤ k ≤ 2ℓ, because for each cycle, the cycle traversal starts from the

lowest y coordinate on the left. Moreover, y2ℓ must be zero, because any cycle traversal
ends at the starting vertex.

3. Any pair of vertices are at least distance q apart.
4. w(M ′

1) = w(M1) + 3ℓq and w(M ′
2) = w(M2) + 3ℓq.

▷ Claim 2.3. The minimum weight perfect matching in Construction 2 is M ′
1, with weight

w(M1) + 3ℓq.

Proof. Recall that weight of any edge ek is at most p
√

qp + n2p = p
√

n6p + n2p < n6 +
1/(pn4p−6) < q + 1/(pn4p−6). Hence, w(M ′

1) ≤ ℓ(q + 1/(pn4p−6)) + 3ℓq = ℓ(4q + 1/(pn4p−6)).
We have already assumed that M ′

2 has weight higher than M ′
1. Now, consider any perfect

matching M other than M ′
1 and M ′

2. We will consider different cases and argue that in each
case M has a larger weight.

If M matches s1 with one of the tk vertices, the weight of that edge will be at least 2ℓq.
The vertices s0 and s2 will either match with each other or to some tk vertices. In either
case, they will contribute at least 2ℓq to the weight. The remaining vertices must have at
least ℓ − 3 edges, each with weight at least q. Hence, the total weight will be at least
5ℓq − 3q, which is larger than w(M ′

1).
Consider the case when M has (s1, s2) (the other case is similar) and s0 is matched
with one of the tk vertices, other than t0. Recall that yk ≥ 0 and s0 = (0, −2ℓq).
Then the weight of (s0, tk) (for k > 0) is at least p

√
(2ℓq)p + qp ≥ 2ℓq + 2ℓq/(4ℓ)p. The

remaining 2ℓ vertices will have ℓ matching edges, each with weight at least q. Hence, the
weight of the matching M will be at least ℓq + 2ℓq + 2ℓq/(4ℓ)p + qℓ. This is larger than
w(M ′

1) ≤ 4ℓq + ℓ/(pn4p−6) (as q = n6 and ℓ ≤ n).
Consider the case when M has (s1, s2) and (s0, t0). These two edges will add up to weight
3ℓq. Since the matching M is different from M ′

1 and M ′
2, it must match a vertex tk with

another vertex tj such that j ̸= {k − 1, k + 1}. Then |j − k| must be at least 3, because
the graph is bipartite. The edge (tk, tj) will have weight at least 3q. The other ℓ − 1
edges will have weight at least q. Hence, the total weight is at least 4ℓq + 2q, which is
again larger than w(M ′

1).
The other cases when M has (s0, s1) matched are similar to the above two cases. ◁

Now, we finally come to our main claim.

▷ Claim 2.4. In the geometric bipartite graph from Construction 2, the difference between
the minimum weight perfect matching and the perfect matching with the next higher weight
is at most 1/(n − 1)!.

Proof. From Claim 2.3, we know that M ′
1 is the minimum weight perfect matching. We had

observed that w(M ′
1) − w(M ′

2) = w(M1) − w(M2). From Claim 2.2, this difference is at most
1/(n − 1)!. ◁

3 Geometric Bipartite Matching

In this section, we study the parallel complexity of δ-GWBPM (under ℓp metric for p ≥ 2),
and show that the problem lies in the class NC, for δ = 1/ poly(n).

First of all, we assume that no three vertex points are colinear. There is a simple fix
to break colinearity by way of small perturbations in coordinates. Specifically, for the ith
vertex at point (xi, yi), let us assign its new coordinates to be (xi + i/K, yi + i2/K), where

FSTTCS 2024

12:8 Parallel Complexity of Geometric Bipartite Matching

K is a large enough number. This specific perturbation guarantees that no three points are
colinear. To see this, consider ith, jth, and kth vertices after the perturbation. They will be
colinear if and only if the following matrix has zero determinant.

1 1 1
xi + i/K xj + j/K xk + k/K

yi + i2/K yj + j2/K yk + k2/K

Consider the coefficient of the term 1/K2 in the determinant, which is (i−j)(j −k)(k− i) ̸= 0.
Other terms in the determinant will be an integer multiple of 1/K and hence, cannot cancel
this term, when K is large enough (poly(n)). This perturbation can cause additive error in
the weights of perfect matchings, but the error will remain bounded by O(n3/K). Thus, the
minimum weight perfect matching with respect to perturbed coordinates will be an GWBPM
up to a 1/ poly(n) additive error. To make the coordinate integral, we can multiply them by
K. Now, give a brief overview of our ideas.

Our main idea is to design an isolating weight assignment for the given graph and then
use the MVV algorithm. Let G be a complete bipartite graph of two sets of points A and B

in R2. The MVV theorem asserts that if a graph has an isolating weight assignment, then
the task of finding the minimum weight perfect matching in G can be accomplished in NC.

To construct an isolating weight assignment, we adopt the weight scheme introduced by
Tewari and Vinodchandran [27], which was designed specifically for planar bipartite graphs.
However, note that our graph is a complete bipartite graph and hence, far from planar. Our
first key observation is that the union of minimum weight perfect matchings (with respect
to ℓp distances or even approximate ℓp distances) forms a planar subgraph. Then one can
hope to use the Tewari and Vinodchandran [27] weight scheme on this planar subgraph.
However, we cannot compute this planar subgraph (i.e., the union of minimum weight perfect
matchings). What proves to be useful is the fact that the Tewari-Vinodchandran weight
scheme is black-box, i.e., it does not care what the underlying planar graph is, it only
needs to know the points in the plane where vertices are situated. Finally, we combine the
approximate distance function with the Tewari-Vinodchandran weight function on a smaller
scale and apply it to the complete bipartite graph. We show that this combined weight
function is indeed isolating.

Towards showing the planarity of the union of minimum weight perfect matchings, first,
we establish the simple fact that for any convex quadrilateral, there is a significant difference
between the sum of diagonals and the sum of any opposite sides.

▶ Lemma 3.1. Consider a convex quadrilateral formed by a quadruple in an integer grid of
size N × N . The sum of lengths of its diagonals is larger than the sum of any two opposite
sides. And the gap between the two sums in ℓp metric is at least 1

4 p√2Np4−1 (p ≥ 2).

Proof. Intuitively, the sum of the diagonals will be larger than the sum of any two opposite
sides because of triangle inequality (the diagonals combined with any two opposite edges
form two triangles). The significance of this gap arises from the fact that if the points
are from a grid and are not collinear, then the angle between any side and the diagonal
cannot be arbitrarily small. Formally, let the four corners of the quadrilateral be A, B, C, D

(in cyclic order). See Figure 2. Let O be the intersection point of the diagonals AC and
BD (diagonals always intersect in a convex quadrilateral). By triangle inequality, we have
|AO| + |OB| ≥ AB and |CO| + |OD| ≥ CD. Adding the two we get,

|AC| + |BD| ≥ |AB| + |CD|.

S. Bhore, S. Equbal, and R. Gurjar 12:9

A

B

C

D

O

Figure 2 A convex quadrilateral with its two diagonals.

Now, we lower bound the gap. To calculate the lower bound of the gap we directly use the
result of [6]. They gave an easy way to calculate the lower bound for an arithmetic expression
over operators +, −, ∗, / and p

√, with integer operands. Our aim to lower bound the gap
between, |AC| + |BD| and |AB| + |CD|. Let us find the expression for the same where A, B,
C, and D are the points on the N × N grid from R2. Let the co-ordinates of the points are
(i, j), (k, ℓ), (m, n), and (o, p) respectively. Then the expression we want to lower bound is,

E = ||AC||p + ||BD||p − ||AB||p − ||CD||p.

E = p
√

(m − i)p + (n − j)p+ p
√

(o − k)p + (p − l)p− p
√

(k − i)p + (l − j)p− p
√

(o − m)p + (p − n)p.

Our expression also uses only +, −, ∗ and p
√ operators over the integer operands, we can

use the Corollary 2 from [6]. It says that for any division-free expression E whose value ξ is
nonzero, we have

(u(E)D(E)−1)−1 ≤ |ξ| ≤ u(E).

Here u(E) represents the upper bound on the absolute value of E and D(E) represents the
product of indices of all the radicals involved in E. The detailed methodology for calculating
u(E) and D(E) can be found in [6]. The values of u(E) and D(E) for our specific case turn
out to be as follows:

u(E) = 4 p
√

2N,

D(E) = p4.

So the value of the expression E i.e ξ is bounded by,
1

4 p
√

2Np4−1
≤ |ξ| ≤ 4 p

√
2N

The statement of our Lemma 3.1 easily follows from this. ◀

3.1 Union of Near-Minimum Weight Perfect Matchings
In this subsection, we establish our main lemma that in a geometric bipartite graph G, the
union of near-minimum weight perfect matchings forms a planar subgraph of G. This allows
us to use the Tewari and Vinodchandran [27] isolating weight scheme for planar bipartite
graphs. We first define a near-minimum weight perfect matching.

▶ Definition 3.2. Let the vertices of the geometric bipartite graph lie in the N × N integer
grid. A perfect matching is said to be of near-minimum weight under the ℓp metric if its weight
is less than w∗ + 1/(8 p

√
2Np4−1), where w∗ is the minimum weight of a perfect matching.

FSTTCS 2024

12:10 Parallel Complexity of Geometric Bipartite Matching

▶ Lemma 3.3. For a geometric bipartite graph G with vertices in the N × N integer grid,
the union of near-minimum weight perfect matchings forms a planar graph (under ℓp metric
for any p ≥ 2).

Proof. Let A ∪ B be the bipartition of the vertices. We will first show that no two edges in
a near-minimum weight perfect matching M cross each other. For the sake of contradiction,
let there be two edges {a1, b1} and {a2, b2} in M that cross each other, where a1, a2 ∈ A and
b1, b2 ∈ B. Since G is a complete bipartite graph, every vertex of set A must have an edge
to every vertex of set B in G. We can construct another matching M ′ from M by replacing
the crossing edges {a1, b1} and {a2, b2} with {a1, b2} and {a2, b1}, respectively.

Note that (a1, a2, b1, b2) form a convex quadrilateral, since its diagonals a1b1 and a2b2
cross each other. From Lemma 3.1, we know that

|a1b2| + |a2b1| ≤ |a1b1| + |a2b2| − 1/(4 p
√

2Np4−1).

From here, we can conclude that w(M ′) ≤ w(M) − 1/(4 p
√

2Np4−1), where w(M ′) and
w(M) are the weights of M ′ and M , respectively. This contradicts the fact that M is a
near-minimum weight perfect matching.

Now, we will show that two edges belonging to two different near-minimum weight perfect
matchings cannot cross. Consider two such near-minimum weight perfect matchings M1 and
M2, where the edges {a1, b1} ∈ M1 and {a2, b2} ∈ M2 cross each other. Observe that the
union of these two perfect matchings forms a set of vertex-disjoint cycles and a set of disjoint
edges (which are common to both). There are two cases: (i) the edges {a1, b1} and {a2, b2}
are part of one of these cycles and (ii) they are part of two different cycles. In each of the
cases, we will create two new perfect matchings with significantly smaller weight, which will
contradict the near-minimumness of M1 and M2.

Case (i): {a1, b1} and {a2, b2} are part of one cycle C. See Figure 3. Note that the
edges of this cycle come alternatingly from M1 and M2 (shown in the figure in red and blue
colors).

a1

b1
a2

b2 a1

b1
a2

b2

C1
C2

C1
C2

Figure 3 Construction of M ′
1 and M ′

2, when the crossing edges are part of one cycle.

a1

b1a2

b2
a1

b1a2

b2C1C2 C1C2

Figure 4 Construction of M ′
1 and M ′

2, when the crossing edges are part of two different cycles.

S. Bhore, S. Equbal, and R. Gurjar 12:11

We construct two distinct perfect matchings, M ′
1 and M ′

2, using M1 and M2. Removing
the edges {a1, b1} and {a2, b2} from cycle C divides it into two parts. Note that both parts
must have an even number of edges since the edges are alternating between M1 and M2. It
follows that one of these parts is a path from a1 to a2, let us call it C1. And the other one is
a path from b1 to b2, let us call it C2 (as shown in Figure 3).

Let us put {a1, b2} into M ′
1 and {a2, b1} into M ′

2. For the edges in C1, we put the M1
edges into M ′

1 and the M2 edges into M ′
2. For the edges in C2 we do the opposite, put the

M1 edges into M ′
2 and the M2 edges into M ′

1. For edges outside of the cycle C, we put edges
from M1 into M ′

1 and edges from M2 into M ′
2.

Case (ii): {a1, b1} and {a2, b2} are part of two different cycles. Let C1 and C2 be the
paths obtained from removing {a1, b1} and {a2, b2} from the two cycles, respectively. See
Figure 4. Here again we construct two distinct perfect matchings, M ′

1 and M ′
2, using a

similar uncrossing of edges. Let us put both {a1, b2} and {a2, b1} into M ′
1. For the edges in

C1, we put the M1 edges into M ′
1 and the M2 edges into M ′

2. For the edges in C2 we do the
opposite, put the M1 edges into M ′

2 and the M2 edges into M ′
1. For edges outside the two

cycles, we put edges from M1 into M ′
1 and edges from M2 into M ′

2.
Note that in both Case (i) and Case (ii), the newly constructed perfect matchings M ′

1
and M ′

2 together have the same edges as M1 ∪ M2, except for {a1, b1} and {a2, b2} being
replaced with {a2, b1} and {a1, b2}.

Let w1, w2, w′
1, w′

2 be the weights of matchings M1, M2, M ′
1, M ′

2, respectively. Then,

w′
1 + w′

2 = w1 + w2 − |a1b1| − |a2b2| + |a1b2| + |a2b1|.

From Lemma 3.1, we have that

|a1b1| + |a2b2| − |a1b2| − |a2b1| ≥ 1/(4 p
√

2Np4−1).

Thus,

w′
1 + w′

2 ≤ w1 + w2 − 1/(4 p
√

2Np4−1).

Let w∗ be the weight of the minimum weight perfect matching. Since M1 and M2 are of
near-minimum weight, we have w1, w2 < w∗ + 1/(8 p

√
2Np4−1). Using this with the above

inequality, we get w′
1 + w′

2 < 2w∗. This implies that at least one of the two matchings M ′
1

and M ′
2 have weight smaller than w∗, which is a contradiction. ◀

3.2 Weight scheme
Now, we come to the design of an isolating weight assignment for the graph and the proof
of our main theorem. One of the components of our weight scheme is the isolating weight
assignment WT V constructed by Tewari and Vinodchandran [27] for planar bipartite graph.
We will use the same weight scheme, but for any graph (not necessarily planar) embedded in
the plane.

Consider a bipartite graph G = (A, B, E) (not necessarily planar) with a straight-line
embedding in R2. For any vertex u, let (xu, yu) be the associated point in R2. For an edge
e = (u, v), where u ∈ A and v ∈ B, we define the weight function WT V as follows:

WT V (e) = (yv − yu) × (xv + xu)

Then, the theorem below says that WT V is isolating for bipartite planar graphs.

FSTTCS 2024

12:12 Parallel Complexity of Geometric Bipartite Matching

▶ Theorem 3.4 ([27]). Let G be a planar bipartite graph. Then with respect to weight
function WT V (defined using any planar embedding), the minimum weight perfect matching
in G, if one exists, is unique.

For a geometric bipartite graph, our main idea is to combine WT V with the approximate
distance function (up to a certain number of bits of precision) The purpose of combining
WT V is to break ties among minimum weight perfect matchings according to the approximate
distance function.

Let G(A, B, E) be a geometric bipartite graph on the N × N integer grid. Let d(·) be
the weight function on the edges defined using the ℓp distance and let it naturally extend to
subsets of edges. For any positive integer ℓ, let us define the approximate distance function
dℓ : E → Z as

dℓ(e) = ⌊d(e) × 2ℓ⌋.

First, let us show that the minimum weight perfect matchings with respect to approximate
distance function remains near-minimum with respect to the exact distance function.

▷ Claim 3.5. For any positive integer ℓ, let M and M∗ be minimum weight perfect matchings
with respect to functions dℓ and d, respectively. Then,

d(M) < d(M∗) + n/2ℓ.

Proof. Observe that for any edge e, 2ℓd(e) − 1 < dℓ(e) ≤ 2ℓd(e). Hence, for perfect
matching M ,

2ℓd(M) − n < dℓ(M) ≤ 2ℓd(M).

Then, we can write

2ℓd(M) < dℓ(M) + n ≤ dℓ(M∗) + n ≤ 2ℓd(M∗) + n.

This implies that d(M) < d(M∗) + n/2ℓ. ◁

3.2.1 Weight scheme
For any integer ℓ, now let us define the combined weight function Wℓ on the edges as follows:

Wℓ := (2nN2 + 1) × dℓ + WT V

Here, the scaling dℓ with a large number ensures that Wℓ has the same ordering of perfect
matchings as dℓ, and the WT V function plays the role of tie breaking. Our next lemma says
that when to take enough number of bits from the distance function and then combine it
with WT V as above, the resulting weight function is isolating.

▶ Lemma 3.6. For any integer ℓ ≥ (p4 − 1) log N + log n + 3 + 1/p, the minimum weight
perfect matching in G with respect to the weight function Wℓ is unique.

Proof. First, observe that for any two perfect matchings M1 and M2,

dℓ(M1) > dℓ(M2) =⇒ Wℓ(M1) > Wℓ(M2).

S. Bhore, S. Equbal, and R. Gurjar 12:13

This is because the maximum contribution of WT V to the weight of a matching can be at
most n × 2N2. Thus, we can write

Wℓ(M1) − Wℓ(M2) = (2nN2 + 1)(dℓ(M1) − dℓ(M2)) + WT V (M1) − WT V (M2)
≥ (2nN2 + 1) · 1 + 0 − 2nN2.

≥ 1

It follows that the set of minimum weight perfect matchings with respect to Wℓ is a
subset of that with respect to dℓ. Now, we argue that these sets form a planar subgraph.

▷ Claim 3.7. The union of minimum weight perfect matchings with respect to dℓ forms a
planar subgraph.

Proof. Let M and M∗ be the minimum weight perfect matchings with respect to functions
dℓ and d, respectively. From Claim 3.5 we have that d(M) < d(M∗) + n/2ℓ. By substituting
ℓ ≥ (p4 − 1) log N + log n + 3 + 1/p, we get that the gap is less than 1/(8 p

√
2Np4−1). Hence,

M is a near-minimum weight perfect matching with respect to the d(·). Then, the claim
follows from Lemma 3.3. ◁

To finish the proof of the lemma, let H be the subgraph formed by the union of minimum
weight perfect matchings with respect to dℓ. Clearly, dℓ gives equal weights to all the perfect
matchings in H. Thus, the function Wℓ is the same as WT V on H (up to an additive
constant). From Theorem 3.4, we know that WT V ensures a unique minimum weight perfect
matching in the planar graph H. Hence, so does Wℓ. ◀

3.2.2 Proof of the main theorem (Theorem 1.2)

Once we have shown how to construct an isolating weight assignment, we just need to use
the algorithm of Mulmuley, Vazirani and Vazirani [21] to construct the minimum weight
perfect matching.

▶ Theorem 3.8 ([21]). Given a graph G = (V, E) with an isolating weight assignment on the
edges that uses O(log n) bits, there is an NC algorithm to find the minimum-weight perfect
matching.

Now, we are ready to prove the main theorem. Suppose we are given a bipartite set of 2n

points in N × N integer grid. Recall that the weight of an edge is defined to be the Euclidean
distance between the endpoints. Our goal is to construct a perfect matching whose weight is
at most w∗ + δ, where δ is the given error parameter and w∗ is the minimum weight of a
perfect matching. If we choose ℓ ≥ log(n/δ), then from Claim 3.5, we know that a minimum
weight perfect matching with respect to function dℓ(·) will have the desired property.

We choose ℓ = max{log(n/δ), (p4 − 1) log N + log n + 4}. Then we use the weight scheme
Wℓ with the MVV algorithm (Theorem 3.8). Recall that from Lemma 3.6, we have the
isolation property required in Theorem 3.8. Finally, let us analyse the number of bits used
by weight function Wℓ. The maximum weight given to any edge by function d(·) is at most
p
√

2N and by function WT V , it is at most 2N2. Thus, the maximum weight given to any edge
by function Wℓ will be at most 2ℓ × p

√
2N × (2nN2 + 1) + 2N2. The number of bits in weight

of any edge comes out to be O(log(Nn/δ)). Hence, we have an NC algorithm, whenever N

and 1/δ are polynomial in n.

FSTTCS 2024

12:14 Parallel Complexity of Geometric Bipartite Matching

4 Conclusion

In this work, we explored the parallel complexity of GWBPM problem. We established a
lower bound which shows that for GWBPM, a linear number of bits is required to distinguish
the minimum-weight perfect matching from others. Next, we showed that GWBPM problem
(under ℓp metric for p ≥ 2) that allows up to 1

poly(n) additive error, is in NC. The main
question that arises from our work is whether the non-bipartite version of GWBPM is also in
NC. Another possible extension is to consider the bipartite version in 3 or higher dimensions.

References

1 The open problems project: problem 33 sum of square roots. https://topp.openproblem.
net/p33. Accessed: 2010-09-30.

2 Pankaj K Agarwal, Hsien-Chih Chang, Sharath Raghvendra, and Allen Xiao. Deterministic,
near-linear ε-approximation algorithm for geometric bipartite matching. In Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1052–1065, 2022.
doi:10.1145/3519935.3519977.

3 Pankaj K Agarwal, Hsien-Chih Chang, and Allen Xiao. Efficient algorithms for geometric
partial matching. In 35th International Symposium on Computational Geometry (SoCG 2019).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

4 Pankaj K Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposition of shallow levels
in 3-dimensional arrangements and its applications. In Proceedings of the eleventh annual
symposium on Computational geometry, pages 39–50, 1995. doi:10.1145/220279.220284.

5 Nima Anari and Vijay V. Vazirani. Planar graph perfect matching is in NC. J. ACM,
67(4):21:1–21:34, 2020. doi:10.1145/3397504.

6 Christoph Burnikel, Rudolf Fleischer, Kurt Mehlhorn, and Stefan Schirra. A strong and easily
computable separation bound for arithmetic expressions involving radicals. Algorithmica,
27(1):87–99, 2000. doi:10.1007/S004530010005.

7 Richard Carr and Cormac O’Sullivan. On the linear independence of roots. International
Journal of Number Theory, 05:161–171, 2007.

8 Qi Cheng and Yu-Hsin Li. Finding the smallest gap between sums of square roots. In Alejandro
López-Ortiz, editor, LATIN 2010: Theoretical Informatics, pages 446–455, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg. doi:10.1007/978-3-642-12200-2_39.

9 Julia Chuzhoy and Sanjeev Khanna. Maximum bipartite matching in n2+o(1) time via a
combinatorial algorithm. In Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, STOC 2024, pages 83–94, New York, NY, USA, 2024. Association for Computing
Machinery. doi:10.1145/3618260.3649725.

10 Elias Dahlhaus and Marek Karpinski. Matching and multidimensional matching in chordal
and strongly chordal graphs. Discrete Applied Mathematics, 84(1-3):79–91, 1998. doi:
10.1016/S0166-218X(98)00006-7.

11 Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating a perfect
matching in bipartite planar graphs. Theory of Computing Systems, 47(3):737–757, 2010.
doi:10.1007/S00224-009-9204-8.

12 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.
13 Friedrich Eisenbrand, Matthieu Haeberle, and Neta Singer. An improved bound on sums of

square roots via the subspace theorem. CoRR, abs/2312.02057, 2023. To appear in SoCG
2024. doi:10.48550/arXiv.2312.02057.

14 Stephen Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in quasi-
NC. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,
pages 754–763, 2016. doi:10.1145/2897518.2897564.

https://topp.openproblem.net/p33
https://topp.openproblem.net/p33
https://doi.org/10.1145/3519935.3519977
https://doi.org/10.1145/220279.220284
https://doi.org/10.1145/3397504
https://doi.org/10.1007/S004530010005
https://doi.org/10.1007/978-3-642-12200-2_39
https://doi.org/10.1145/3618260.3649725
https://doi.org/10.1016/S0166-218X(98)00006-7
https://doi.org/10.1016/S0166-218X(98)00006-7
https://doi.org/10.1007/S00224-009-9204-8
https://doi.org/10.48550/arXiv.2312.02057
https://doi.org/10.1145/2897518.2897564

S. Bhore, S. Equbal, and R. Gurjar 12:15

15 Andrew V. Goldberg, Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Using interior-point
methods for fast parallel algorithms for bipartite matching and related problems. SIAM J.
Comput., 21(1):140–150, February 1992. doi:10.1137/0221011.

16 Dima Yu Grigoriev and Marek Karpinski. The matching problem for bipartite graphs with
polynomially bounded permanents is in NC. In 28th Annual Symposium on Foundations of
Computer Science (sfcs 1987), pages 166–172. IEEE, 1987.

17 John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973. doi:10.1137/0202019.

18 Richard M Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in random
NC. In Proceedings of the seventeenth annual ACM symposium on Theory of computing, pages
22–32, 1985. doi:10.1145/22145.22148.

19 László Lovász. On determinants, matchings, and random algorithms. In FCT, volume 79,
pages 565–574, 1979.

20 Aleksander Madry. Navigating central path with electrical flows: From flows to matchings,
and back. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages
253–262. IEEE, 2013. doi:10.1109/FOCS.2013.35.

21 Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy as matrix
inversion. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 345–354, 1987. doi:10.1145/28395.383347.

22 Joseph O’Rourke. Advanced problem 6369. Amer. Math. Monthly, 88(10):769, 1981.
23 Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and

complexity. Courier Corporation, 1998.
24 R Sharathkumar. A sub-quadratic algorithm for bipartite matching of planar points with

bounded integer coordinates. In Proceedings of the twenty-ninth annual symposium on Com-
putational geometry, pages 9–16, 2013. doi:10.1145/2462356.2480283.

25 R Sharathkumar and Pankaj K Agarwal. Algorithms for the transportation problem in
geometric settings. In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms, pages 306–317. SIAM, 2012. doi:10.1137/1.9781611973099.29.

26 Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in quasi-NC.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
696–707. Ieee, 2017. doi:10.1109/FOCS.2017.70.

27 Raghunath Tewari and NV Vinodchandran. Green’s theorem and isolation in planar graphs.
Information and Computation, 215:1–7, 2012. doi:10.1016/J.IC.2012.03.002.

28 Jan Van Den Brand, Li Chen, Richard Peng, Rasmus Kyng, Yang P Liu, Maximilian Probst
Gutenberg, Sushant Sachdeva, and Aaron Sidford. A deterministic almost-linear time algorithm
for minimum-cost flow. In 2023 IEEE 64th Annual Symposium on Foundations of Computer
Science (FOCS), pages 503–514. IEEE, 2023. doi:10.1109/FOCS57990.2023.00037.

29 Jan van den Brand, Yin-Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak,
Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-linear time on moderately
dense graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 919–930. IEEE, 2020. doi:10.1109/FOCS46700.2020.00090.

30 Kasturi R Varadarajan. A divide-and-conquer algorithm for min-cost perfect matching in the
plane. In Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.
98CB36280), pages 320–329. IEEE, 1998.

31 Kasturi R Varadarajan and Pankaj K Agarwal. Approximation algorithms for bipartite
and non-bipartite matching in the plane. In SODA, volume 99, pages 805–814, 1999. URL:
http://dl.acm.org/citation.cfm?id=314500.314918.

FSTTCS 2024

https://doi.org/10.1137/0221011
https://doi.org/10.1137/0202019
https://doi.org/10.1145/22145.22148
https://doi.org/10.1109/FOCS.2013.35
https://doi.org/10.1145/28395.383347
https://doi.org/10.1145/2462356.2480283
https://doi.org/10.1137/1.9781611973099.29
https://doi.org/10.1109/FOCS.2017.70
https://doi.org/10.1016/J.IC.2012.03.002
https://doi.org/10.1109/FOCS57990.2023.00037
https://doi.org/10.1109/FOCS46700.2020.00090
http://dl.acm.org/citation.cfm?id=314500.314918

PosSLP and Sum of Squares
Markus Bläser # Ñ

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Julian Dörfler # Ñ

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Gorav Jindal # Ñ

Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
The problem PosSLP is the problem of determining whether a given straight-line program (SLP)
computes a positive integer. PosSLP was introduced by Allender et al. to study the complexity
of numerical analysis (Allender et al., 2009). PosSLP can also be reformulated as the problem of
deciding whether the integer computed by a given SLP can be expressed as the sum of squares of
four integers, based on the well-known result by Lagrange in 1770, which demonstrated that every
natural number can be represented as the sum of four non-negative integer squares.

In this paper, we explore several natural extensions of this problem by investigating whether the
positive integer computed by a given SLP can be written as the sum of squares of two or three integers.
We delve into the complexity of these variations and demonstrate relations between the complexity
of the original PosSLP problem and the complexity of these related problems. Additionally, we
introduce a new intriguing problem called Div2SLP and illustrate how Div2SLP is connected to
DegSLP and the problem of whether an SLP computes an integer expressible as the sum of three
squares.

By comprehending the connections between these problems, our results offer a deeper under-
standing of decision problems associated with SLPs and open avenues for further exciting research.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of com-
putation → Algebraic complexity theory; Theory of computation → Problems, reductions and
completeness

Keywords and phrases PosSLP, Straight-line program, Polynomial identity testing, Sum of squares

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.13

Related Version arXiv Version: https://arxiv.org/abs/2403.00115 [6]

Acknowledgements We would like to thank Robert Andrews for providing a simpler proof of
Lemma 2.6. We had a proof of it that was a bit longer. Robert Andrews simplified the proof after
reviewing our proof in a personal communication.

1 Introduction

1.1 Straight Line Programs and PosSLP

The problem PosSLP was introduced in [1] to study the complexity of numerical analysis
and relate the computations over the reals (in the so-called Blum-Shub-Smale model, see [5])
to classical computational complexity. PosSLP asks whether a given integer is positive or
not. The problem may seem trivial at first glance but becomes highly non-trivial when the
given integer is not explicitly provided but rather represented by an implicit expression which
computes it. One way to model the implicit computations of integers and polynomials is
through arithmetic circuits and straight line programs (SLPs).

© Markus Bläser, Julian Dörfler, and Gorav Jindal;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mblaeser@cs.uni-saarland.de
https://cc.cs.uni-saarland.de/mblaeser/
https://orcid.org/0000-0002-1750-9036
mailto:jdoerfler@cs.uni-saarland.de
https://cc.cs.uni-saarland.de/people/
https://orcid.org/0000-0002-0943-8282
mailto:gjindal@mpi-sws.org
https://goravjindal.github.io/
https://orcid.org/0000-0002-9749-5032
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.13
https://arxiv.org/abs/2403.00115
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 PosSLP and Sum of Squares

An arithmetic circuit takes the form of a directed acyclic graph where input nodes are
designated with constants 0, 1, or variables x1, x2, . . . , xm. Internal nodes are labeled with
mathematical operations such as addition (+), subtraction (−), multiplication (×), or division
(÷). Such arithmetic circuits are said to be constant-free. In the algebraic complexity theory
literature, usually, one studies arithmetic circuits where constants are arbitrary scalars from
the underlying field. But in this paper, we are only concerned with arithmetic circuits that
are constant-free.

On the other hand, a straight-line program is a series of instructions corresponding to a
sequential evaluation of an arithmetic circuit. If this program does not contain any division
operations, it is called “division-free”. Unless explicitly specified otherwise, we will exclusively
consider division-free straight-line programs. Consequently, straight-line programs can be
viewed as a compact representation of polynomials or integers. In many instances, we will
be concerned with division-free straight-line programs that do not incorporate variables,
representing an integer. Arithmetic circuits and SLPs are used interchangeably in this paper.
Now we define the central object of study in this paper.

▶ Problem 1.1 (PosSLP). Given a straight-line program representing N ∈ Z, decide whether
N > 0.

An SLP P computing an integer is a sequence (b0, b1, b2, . . . , bm) of integers such that b0 = 1
and bi = bj ◦i bk for all i > 0, where j, k < i and ◦i ∈ {+, −, ×}. Given such an SLP
P , PosSLP is the problem of determining the sign of the integer computed by P , i.e., the
sign of bm. Note that we cannot simply compute bm from a description of P because the
absolute value of bm can be as large as 22m . Therefore computing bm exactly might require
exponential time. Hence this brute-force approach of determining the sign of bm is too
computationally inefficient. [1] also show some evidence that PosSLP might be a hard
problem computationally. They achieve this by proving that PosSLP is polynomial-time
Turing equivalent to the Boolean component of problems that are solvable in polynomial
time in the Blum-Shub-Smale (BSS) model, as well as to the general problem of numerical
computation. We briefly survey this relevance of PosSLP to emphasize its importance in
numerical analysis. For a more detailed discussion, the interested reader is referred to [1,
Section 1].

The Blum-Shub-Smale (BSS) computational model deals with computations using real
numbers. It is a well-explored area where complexity theory and numerical analysis meet. For
a detailed understanding, see [5]. Here we only describe the constant-free BSS model. BSS
machines handle inputs from R∞ := ∪k∈NRk, allowing polynomial-time computations over
R to solve “decision problems” L ⊆ R∞. The set of problems solvable by polynomial-time
BSS machines is denoted by P0

R, see e.g., [8]. To relate the complexity class P0
R to classical

complexity classes, one considers the boolean part of P0
R, defined as: BP(P0

R) := {L∩{0, 1}∞ |
L ∈ P0

R}. To highlight the importance of PosSLP as a bridge between the BSS model and
Turing machine model, [1] proved the following Theorem 1.2.

▶ Theorem 1.2 (Proposition 1.1 in [1]). We have PPosSLP = BP(P0
R).

Another motivation for the complexity of PosSLP comes from its connection to the task
of numerical computation. Here we recall this connection from [1]. [1] defined the following
problem to formalize the task of numerical computation:

▶ Problem 1.3 (Generic Task of Numerical Computation (GTNC) [1]). Given a straight-line
program P with n variables, and given inputs a1, a2, . . . , an for P (as floating-point numbers)
and an integer k in unary, compute a floating-point approximation of P (a1, a2, . . . , an) with
k significant bits.

M. Bläser, J. Dörfler, and G. Jindal 13:3

The following result was also demonstrated in [1].

▶ Theorem 1.4 (Proposition 1.2 in [1]). GTNC is polynomial-time Turing equivalent to
PosSLP.

1.2 How Hard is PosSLP?
GTNC can be viewed as the task that formalizes what is computationally efficient when we
are allowed to compute with arbitrary precision arithmetic. Conversely, the BSS model can
be viewed as formalizing computational efficiency, where we have infinite precision arithmetic
at no cost. Theorem 1.2 and Theorem 1.4 show that both these models are equivalent
to PosSLP under polynomial-time Turing reductions. One can also view these results as
an indication that PosSLP is computationally intractable. Despite this, no unconditional
non-trivial hardness results for PosSLP beyond P-hardness (which holds due to a reduction
from EquSLP) are known. Still, a lot of important computational problems reduce to PosSLP.
We briefly survey some of these problems now. By the n-bit binary representation of an
integer N with the condition |N | < 2n, we mean a binary string with a length of n + 1. This
string consists of a sign bit followed by n bits encoding the absolute value of N , with leading
zeros added if necessary. A very important problem in complexity theory is the EquSLP
problem defined as:

▶ Problem 1.5 (EquSLP, [1]). Given a straight-line program representing an integer N ,
decide whether N = 0.

EquSLP is also known to be equivalent to arithmetic circuit identity testing (ACIT) or
polynomial identity testing [1]. It is easy to see that EquSLP reduces to PosSLP: N ∈ Z
is zero if and only if 1 − N2 > 0. Recently, a conditional hardness result was proved for
PosSLP in [9], formalized below.

▶ Theorem 1.6 (Theorem 1.2 in [9]). If a constructive variant of the radical conjecture of [13]
is true and PosSLP ∈ BPP then NP ⊆ BPP.

As for upper bounds on PosSLP, PosSLP was shown to be in the counting hierarchy CH
in [1]. This is still the best-known upper bound on the complexity of PosSLP. Another
important problem is the sum of square roots, defined as follows:

▶ Problem 1.7 (Sum of Square Roots (SoSRoot)). Given a list (a1, a2, . . . , an) of positive
integers and a list (δ1, δ2, . . . , δn) ∈ {±1}n of signs, decide if

∑n
i=1 δi

√
ai is positive.

SoSRoot is well-known and has applications in computational geometry, as well as in several
other fields. The Euclidean traveling salesman problem, whose inclusion in NP is not known,
is easily seen to be in NP relative to SoSRoot. SoSRoot is conjectured to be in P in [24] but
this is far from clear. Still, one can show that SoSRoot reduces to PosSLP [31, 1]. There
are several other problems related to straight line program which are intimately related to
PosSLP. For instance, the following problems were also introduced in [1]. These problems
will be useful in our discussion later.

▶ Problem 1.8 (BitSLP). Given a straight-line program representing N , and given n, i ∈ N
in binary, decide whether the ith bit of the n-bit binary representation of N is 1.

It was also shown in [1] that PosSLP reduces to BitSLP. Although we do not know any
unconditional hardness results for PosSLP, BitSLP was shown to be #P-hard in [1]. Another
important problem related to PosSLP is the following DegSLP problem, which was shown to
be reducible to PosSLP in [1].

FSTTCS 2024

13:4 PosSLP and Sum of Squares

▶ Problem 1.9 (DegSLP). Given a straight-line program representing a polynomial f ∈ Z[x]
and a natural number d in binary, decide whether deg(f) ≤ d.

The problem DegSLP was posed in [1] for multivariate polynomials, here we have considered
its univariate version. But these are seen to be equivalent under polynomial time many-one
reductions [1, Proof of Proposition 2.3], we recall this reduction in Section C. We also recall
the following new problem from [12] related to straight line programs, which is important to
results in this paper.

▶ Problem 1.10 (OrdSLP). Given a straight-line program representing a polynomial f ∈ Z[x]
and a natural number ℓ in binary, decide whether ord (f) ≥ ℓ. Here, the order of f , denoted
as ord (f), is defined to be the largest k such that xk | f .

1.3 Our Results
Lagrange proved in 1770 that every natural number can be represented as a sum of four
non-negative integer squares [27, Theorem 6.26]. Therefore PosSLP can be reformulated as:
Given a straight-line program representing N ∈ Z, decide if there exist a, b, c, d ∈ N (not all
zero) such that N = a2 + b2 + c2 + d2. In light of this rephrasing of PosSLP, we study the
various sum of squares variants of PosSLP in Section 2 and Section 3. To formally state our
results, we define these problems now. For convenience, we say that n ∈ N is 3SoS if it can
be expressed as the sum of three squares (of integers). We study the following problem.

▶ Problem 1.11 (3SoSSLP). Given a straight-line program representing N ∈ Z, decide
whether N is a 3SoS.

One might expect that 3SoSSLP is easier than PosSLP, but we show that PosSLP reduces to
3SoSSLP under polynomial-time Turing reductions. More precisely, we prove the following
Theorem 1.12 in Section 2.

▶ Theorem 1.12. PosSLP ∈ P3SoSSLP.

Similarly, we say that n ∈ N is 2SoS if it can be expressed as the sum of two squares (of
integers). We also study the following problem.

▶ Problem 1.13 (2SoSSLP). Given a straight-line program representing N ∈ Z, decide
whether N is a 2SoS.

These problems 3SoSSLP and 2SoSSLP can also be seen as special cases of the renowned
Waring problem. The Waring problem has an intriguing history in number theory. It asks
whether for each k ∈ N there exists a positive integer g(k) such that any natural number
can be written as the sum of at most g(k) many kth powers of natural numbers. Lagrange’s
four-square theorem can be seen as the equality g(2) = 4. Later, Hilbert settled the Waring
problem for integers by proving that g(k) is finite for every k [16]. Therefore, problems
2SoSSLP and 3SoSSLP can be seen as computational variants of the Waring problem. These
computational variants of the Waring problems are extensively studied in computer algebra
and algebraic complexity theory, and Shitov actually proved that computing the Waring rank
of multivariate polynomials is ∃R-hard [30]. For 2SoSSLP, we prove the following conditional
hardness result in Section 3.

▶ Theorem 1.14. If the generalized Cramér conjecture A (Conjecture 3.3) is true, then
PosSLP ∈ NP2SoSSLP.

M. Bläser, J. Dörfler, and G. Jindal 13:5

We also study whether 3SoSSLP can be reduced to PosSLP. Unfortunately, we cannot
show this reduction unconditionally. Hence we study and rely on the following problem
Div2SLP, which might be of independent interest. One can view Div2SLP as the variant of
OrdSLP for numbers in binary.

▶ Problem 1.15 (Div2SLP). Given a straight-line program representing N ∈ Z, and a
natural number ℓ in binary, decide if 2ℓ divides |N | , i.e., the ℓ least significant bits of |N |
are zero.

We show that if we are allowed oracle access to both PosSLP and Div2SLP oracles then
3SoSSLP can be decided in polynomial time, formalized below in Theorem 1.16. A proof
can be found in Section 2.

▶ Theorem 1.16. 3SoSSLP ∈ P{Div2SLP,PosSLP}.

We also study how Div2SLP is related to other problems related to straight line programs.
To this end, we prove the following Theorem 1.17 in Section 2.

▶ Theorem 1.17. OrdSLP ≡P DegSLP ≤P Div2SLP.

As for the hardness results for 3SoSSLP and 2SoSSLP, we also show that similar to
PosSLP, EquSLP reduces to both 3SoSSLP and 2SoSSLP. Analogous to integers, we also
study the complexity of deciding the positivity of univariate polynomials computed by a
given SLP. In this context, we study the following problem.

▶ Problem 1.18 (PosPolySLP). Given a straight-line program representing a univariate
polynomial f ∈ Z[x], decide if f is positive, i.e., f(x) ≥ 0 for all x ∈ R.

We prove that in contrast to PosSLP, hardness of PosPolySLP can be proved uncondi-
tionally, formalized below in Theorem 1.19.

▶ Theorem 1.19. PosPolySLP is coNP-hard under polynomial-time many-one reductions.

In contrast to numbers, every positive polynomial can be written as the sum of two
squares (but only over the reals, see Section 4 for a detailed discussion). So PosPolySLP is
equivalent to the question whether f is the sum of two squares. To conclude, we motivate
and study the following problem (see Section 4 for more details).

▶ Problem 1.20 (SqPolySLP). Given a straight-line program representing a univariate
polynomial f ∈ Z[x], decide if ∃g ∈ Z[x] such that f = g2.

We show in Section 4 that SqPolySLP is in coRP.

2 SLPs as Sums of Three Squares

This section is concerned with studying the complexity of 3SoSSLP and related problems.

2.1 Lower Bound for 3SoSSLP
In this section, we prove Theorem 1.12. We use the following characterization of integers
which can be expressed as the sum of three squares.

▶ Theorem 2.1 ([23, 15, 3, 25]). An integer n is 3SoS if and only if it is not of the form
4a(8k + 7), with a, k ∈ N.

FSTTCS 2024

13:6 PosSLP and Sum of Squares

Theorem 2.1 informally implies that 3SoS integers are “dense” in N and hence occur
very frequently. A useful application of this intuitive high density of 3SoS integers is
demonstrated below in Lemma 2.2. More formally, Landau showed that the asymptotic
density of 3SoS integers in N is 5/6 [21]. To reduce PosSLP to 3SoSSLP, we shift the given
integer (represented by a given SLP) by a positive number to convert into 3SoS. To this end
we prove the following Lemma 2.2.

▶ Lemma 2.2. For every n ∈ N, at least one element in the set {n, n + 2} is 3SoS.

Proof. If n is 3SoS then we are done. Suppose n is not 3SoS, by using Theorem 2.1 we know
that n = 4a(8k + 7) for some a, k ∈ N. If a = 0 then n = 8k + 7 and hence n + 2 = 8k + 9 is
clearly not of the form 4b(8c + 7) for any b, c ∈ N. If a > 0 then n + 2 = 4a(8k + 7) + 2 is not
divisible by 4. Hence for n + 2 of the form 4b(8c + 7), we have to have 4a(8k + 7) + 2 = 8c + 7.
This is clearly impossible because the LHS is even whereas RHS is odd. ◀

▶ Lemma 2.3. If M ∈ Z+ then 7M4 not a 3SoS.

Proof. Suppose M = 4a(4b+c) where a is the largest power of 4 dividing M, c = M
4a (mod 4)

and b = ⌊ M
4a+1 ⌋. We prove the claim by analyzing the following cases.

If c = 0 then M = 4ab for some a, b ∈ N and 4 does not divide b. Note that here a > 0,
otherwise c cannot be zero by its definition. Therefore 7M4 = 44a · 7b4. Now we can
apply this Lemma recursively on b (which is smaller than M) to infer that 7b4 is of the
form 4α(8β + 7) for some α, β ∈ N. Hence 7M4 is also of this form and thus not a 3SoS
by using Theorem 2.1.

If c = 1 then 7M4 = 44a · 7 · (256b4 + 256b3 + 96b2 + 16b + 1) = 4α(8β + 7) for some α, β ∈ N,
hence 7M4 is not a 3SoS by using Theorem 2.1.

If c = 2 then 7M4 = 44a+2 · 7 · (16b4 + 32b3 + 24b2 + 8b + 1) = 4α(8β + 7) for some α, β ∈ N,
hence 7M4 is not a 3SoS by using Theorem 2.1.

If c = 3 then 7M4 = 44a · 7 · (256b4 + 768b3 + 964b2 + 12496b + 81) = 4α(8β + 7) for some
α, β ∈ N, hence 7M4 is not a 3SoS by using Theorem 2.1. ◀

Lemma 2.3 implies the following EquSLP hardness of 3SoSSLP.

▶ Lemma 2.4. EquSLP ≤P 3SoSSLP.

Proof. Given a straight-line program representing an integer N , we want to decide whether
N = 0. Suppose M = N2. We have M ≥ 0 and M = 0 iff N = 0. By using Lemma 2.3, we
know that 7M4 is a 3SoS iff M = 0. ◀

▶ Remark 2.5. Lemma 2.4 illustrates that 3SoSSLP is at least as hard as EquSLP under
deterministic polynomial time Turing reductions. This may not appear as a very strong
result, since EquSLP can be decided in randomized polynomial time anyway. However,
unconditionally, even PosSLP is known to be only EquSLP-hard. Moreover, we rely on
Lemma 2.4 in the proof of Theorem 1.12 below.

▶ Theorem 1.12. PosSLP ∈ P3SoSSLP.

Proof of Theorem 1.12. Given a straight-line program representing an integer N , we want
to decide whether N > 0. Using an EquSLP oracle, we first check if N ∈ {0, −1, −2}. By
using Lemma 2.4, these oracle calls to EquSLP can also be simulated by oracle calls to
the 3SoSSLP oracle. Hence this task belongs to P3SoSSLP. If N ∈ {0, −1, −2}, then clearly
N > 0 is false, and we answer “No”. Otherwise we check if N is a 3SoS, if it is then clearly
N > 0 and we answer “Yes”. If it is not a 3SoS then we check if N + 2 is a 3SoS. If N + 2
is a 3SoS then clearly N > 0 because N ̸∈ {0, −1, −2}. If N + 2 is not a 3SoS, then by
Lemma 2.2 we can conclude that N < −2 and hence we answer “No”. ◀

M. Bläser, J. Dörfler, and G. Jindal 13:7

2.2 Upper Bound for 3SoSSLP
Now we prove the upper bound for 3SoSSLP, claimed in Theorem 1.16.

▶ Theorem 1.16. 3SoSSLP ∈ P{Div2SLP,PosSLP}.

Proof of Theorem 1.16. Given an N ∈ Z represented by a given SLP, we want to decide if
N is a 3SoS. By using the PosSLP oracle, we first check if N ≥ 0. If N < 0 then we answer
“No”. By invoking the PosSLP oracle again on 1 − N2, we can determine whether N = 0, in
which case we answer “Yes”. Hence we can now assume that N > 0. By using Theorem 2.1,
it is easy to see that N is not a 3SoS iff the binary representation Bin (N) of N looks like
below:

N is not a 3SoS ⇐⇒ Bin (N) = S1110t where t is even and S ∈ {0, 1}∗.

By using the Div2SLP oracle, we compute the number of trailing zeroes (call it again t) in
the binary representation of N . This can be achieved by doing a binary search and repeatedly
using the Div2SLP oracle. If t is not even, then N is a 3SoS. Next we construct an SLP
which computes 2t, i.e., the number 10t in the binary representation. Such an SLP can be
constructed in time poly(log t) and is of size O(log2 t). This can be seen by looking at the
binary representation of t and then using repeated squaring. We have:

Bin
(
N + 2t

)
= S′0t+3 ⇐⇒ Bin (N) = S1110t for some S, S′ ∈ {0, 1}∗.

Hence N is not a 3SoS iff N + 2t has t + 3 trailing zeroes, which again can be decided using
the Div2SLP oracle. ◀

2.3 Complexity of Div2SLP
In this section, we show a DegSLP lower bound for Div2SLP. To this end, we first prove the
following equivalence of DegSLP and OrdSLP.

▶ Lemma 2.6. Given a straight-line program P of length s computing a polynomial f ∈ Z[x],
we can compute in poly(s) time:
1. A number m ∈ N such that deg(f) ≤ m ≤ 2s.
2. A straight line program Q of length O(s) such that Q computes the polynomial xmf

(1
x

)
.

Proof. We generate the desired straight line program Q in an inductive manner. Namely,
if a gate g in P computes a polynomial Rg then the corresponding gate in Q computes a
number mg ≥ deg(Rg) (the gate itself does not compute a number, to be precise, but our
reduction algorithm does) and the polynomial xmg Rg

(1
x

)
∈ Z[x]. It is clear how to do it for

leaf nodes. Suppose g = g1 + g2 is a + gate in P . So we have already computed integers
mg1 , mg2 and polynomials xmg1 Rg1

(1
x

)
, xmg2 Rg2

(1
x

)
. We consider mg := mg1 + mg2 . We

then have:

xmg Rg

(
1
x

)
= xmg2 xmg1 Rg1

(
1
x

)
+ xmg1 xmg2 Rg2

(
1
x

)
.

We also construct a straight-line program of length O(s) that simultaneously computes xmh

for all gates h in P . With this, we can compute xmg Rg

(1
x

)
using 3 additional gates. This

implies the straight-line program for Q can be implemented using only O(s) gates. Similarly,
for a × gate g = g1 × g2, we can simply use xmg Rg

(1
x

)
= xmg1 +mg2 Rg1

(1
x

)
Rg2

(1
x

)
with

mg = mg1 + mg2 . By induction, it is also clear that at the top gate g, we have mg ≤ 2s.

FSTTCS 2024

13:8 PosSLP and Sum of Squares

It remains to describe a straight-line program of length O(s) which computes xmh for all
gates h in P . Consider the straight-line program P ′ obtained from P by changing every
addition gate into a multiplication gate. If g′ is a gate in P ′ corresponding to the gate g in
P , then one can show via induction that Rg′ (x) = xmg . This gives the desired straight-line
program. ◀

▶ Lemma 2.7. DegSLP ≤P OrdSLP.

Proof. Suppose we are given a straight line program P of length s computing a polynomial
f ∈ Z[x]. By using Lemma 2.6, we compute:
1. A number m ∈ N such that deg(f) ≤ m ≤ 2s.
2. A straight line program Q of length O(s) such that Q computes the polynomial xmf

(1
x

)
∈

Z[x].
Now it is clear that:

deg(f) ≤ d ⇐⇒ ord
(

xmf

(
1
x

))
≥ (m − d).

Hence the claim follows. ◀

The proof of the following Lemma 2.8 is almost the same to that of Lemma 2.7, hence we
omit it.

▶ Lemma 2.8. OrdSLP ≤P DegSLP.

▶ Theorem 2.9. OrdSLP ≡P DegSLP.

Proof. Follows immediately from Lemma 2.7 and Lemma 2.8. ◀

▶ Theorem 2.10. OrdSLP ≡P DegSLP ≤P Div2SLP.

Proof. We only need to show that OrdSLP ≤P Div2SLP. Suppose we are given a straight
line program P of length s computing a polynomial f ∈ Z[x] and ℓ ∈ N in binary, we want
to decide if ord (f) ≥ ℓ. We know that ∥f∥∞≤ 22s , where ∥f∥∞ is the maximum absolute
value of coefficients of f(x). We now construct an SLP which computes f(B) where B is a
suitably chosen large integer, which we will specify in a moment. If ord (f) ≥ ℓ then clearly
Bℓ divides f(B). Now consider the case when ord (f) = m < ℓ . So we have f = xm(f0 + xg)
for some f0 ∈ Z, g ∈ Z[x] and m < ℓ. Here f0 ̸= 0. In this case we have:

f(B) = Bm(f0 + Bg(B)).

If B is chosen large enough then B does not divide f0 + Bg(B) and hence Bℓ does not divide
f(B). It can be verified that choosing B = 223s suffices for this argument. It is also not hard
to see that a SLP for f(B) can be constructed in polynomial time. Hence we conclude:

ord (f) ≥ ℓ ⇐⇒ 2ℓ23s

divides f(223s

).

This completes the reduction. ◀

▶ Problem 2.11. What is the exact complexity of Div2SLP?

Now we show that Div2SLP is in CH, this claim follows by employing ideas from [1].

▶ Lemma 2.12. Div2SLP is in CH.

M. Bläser, J. Dörfler, and G. Jindal 13:9

Proof. Given a straight-line program representing N ∈ Z, and a natural number ℓ in binary,
we want to decide if 2ℓ divides |N |, i.e., if the ℓ least significant bits of |N | are zero. We show
that this can be done in coNPBitSLP. The condition 2ℓ ∤ |N | is equivalent to the statement that
at least one bit in ℓ least significant bits of |N | is one. Hence there is a witness of this statement,
i.e., the index i ≤ ℓ such that ith bit of |N | is one. By using the BitSLP oracle, we can verify
the existence of such a witness in polynomial time. Therefore Div2SLP ∈ coNPBitSLP. By
using [1, Theorem 4.1], we get that Div2SLP ∈ coNPCH ⊆ CH. ◀

In Section B, we provide a more general proof showing that “SLP versions” of problems
in dlogtime uniform TC0 are in CH, although it is not required for the main results.

3 SLPs as Sum of Two and Fewer Squares

This section is primarily concerned with studying the complexity of 2SoSSLP. To this end, we
first recall the following renowned Theorem 3.1 which characterizes when a natural number
is a sum of two squares.

▶ Theorem 3.1 ([11, Section 18]). An integer n > 1 is not 2SoS if and only if the prime-power
decomposition of n contains a prime of the form 4k + 3 with an odd power.

When the input integer n is given explicitly as a bit string, Theorem 3.1 illustrates that
a factorization oracle suffices to determine whether n is a 2SoS. In fact, we are not aware
of any algorithm that bypasses the need for factorization. For x ∈ Z+, let B(x) denote
the number of 2SoS integers in [x]. Landau’s Theorem [22] gives the following asymptotic
formula for B(x).

▶ Theorem 3.2 ([22]). B(x) = K x√
ln x

+ O
(

x
ln3/2 x

)
as x → ∞, where K is the Landau-

Ramanujan constant with K ≈ 0.764.

Ideally, we want to use the above Theorem 3.2 on the density of 2SoS to show that PosSLP
reduces to 2SoSSLP, as we did for 3SoSSLP. There are two issues with this approach:
1. The density of 2SoS integers is not as high as 3SoS integers, hence to find the next 2SoS

integer after a given N ∈ N might require a larger shift (as compared to the shift of
2 for 3SoS). This issue is overcome below by using NP oracle reductions instead of P
reductions.

2. A more serious issue is that Theorem 3.2 says something about the density of 2SoS
integers only asymptotically, as x → ∞. But this idea of finding the next 2SoS integer
after a given integer only works if this density bound is true for all intervals of naturals.
This issue is side stepped by relying on the Conjecture 3.3 below.

Let q and r be positive integers such that 1 ≤ r < q and gcd(q, r) = 1. We use Gq,r(x)
to denote the maximum gap between primes in the arithmetic progression {qn + r | n ∈
N, qn + r ≤ x}. We use φ(n) to denote the Euler’s totient function, i.e., the number of
positive m ≤ n with gcd(m, n) = 1.

▶ Conjecture 3.3 (Generalized Cramér conjecture A, [20]). For any q > r ≥ 1 with gcd(q, r) =
1, we have

Gq,r(p) = O(φ(q) log2 p).

FSTTCS 2024

13:10 PosSLP and Sum of Squares

3.1 Lower Bounds for 2SoSSLP
▶ Lemma 3.4. EquSLP ≤P 2SoSSLP.

Proof. Given a straight-line program representing an integer N , we want to decide whether
N = 0. Suppose M = N2. We have M ≥ 0 and M = 0 iff N = 0. If M ̸= 0 then by
employing Theorem 3.1, 3M2 cannot be a 2SoS. Hence 3M2 is a 2SoS iff M = 0. ◀

▶ Lemma 3.5 (Zweiter Teil in [7]). For x ≥ 7, there exists at least one prime number in the
interval (x, 2x] that belongs to the arithmetic progression 4n + 1.

▶ Theorem 1.14. If the generalized Cramér conjecture A (Conjecture 3.3) is true, then
PosSLP ∈ NP2SoSSLP.

Proof of Theorem 1.14. Given a straight-line program (SLP) of size s representing an
integer N , we aim to decide whether N > 0.

To proceed, choose M := 23s. Our first step is to compute N mod T , where T := 2M + 1.
Specifically, we compute an integer K such that K ∈ [−M, M] and K = N mod T .

This computation can be done in poly(s)-time by simulating the SLP that computes N ,
modulo T . If |N | ≤ M , then we know that N = K. Using the EquSLP oracle (which can
be simulated by the 2SoSSLP oracle via Lemma 3.4), we check whether N = K holds. If
N = K, we can immediately determine the sign of N . Otherwise, our assumption |N | ≤ M

is false, meaning we can conclude that |N | > M .
Now, suppose p ≥ |N | is the smallest prime of the form 4k + 1. By Lemma 3.5, we know

that p ≤ 2 |N | for |N | ≥ 7. Moreover, by using Conjecture 3.3 with q = 4, r = 1, we obtain
p ≤ |N | + O(φ(4) log2 p) ≤ |N | + c log2 |N | for some absolute constant c. For sufficiently
large |N |, this implies p ≤ |N | + log3 |N | ≤ |N | + 23s. Consequently, p − |N | ≤ M . Since p is
a prime of the form 4k + 1, we know, by Theorem 3.1, that p is a sum of two squares (2SoS).

To establish that PosSLP ∈ NP2SoSSLP, we must provide a witness for the positivity of
N , which can be verified in polynomial time using the 2SoSSLP oracle. The desired witness
is S := p − |N | ≤ M , which has a binary description of size at most O(s). We then use the
2SoSSLP oracle to check whether N + S is a sum of two squares.

If N > 0, such a witness exists. On the other hand, if N < 0, we know that N < −M ,
which implies that N + S < 0, and thus N + S cannot be a sum of two squares. Therefore if
Conjecture 3.3 holds, we conclude that PosSLP ∈ NP2SoSSLP. ◀

Similarly to 2SoSSLP and 3SoSSLP, one can also study the complexity of the following
problem SquSLP.

▶ Problem 3.6 (SquSLP, Problem 7 in [17]). Given a straight-line program representing
N ∈ Z, decide whether N = a2 for some a ∈ Z.

SquSLP was shown to be decidable in randomized polynomial time in [17, Sec 4.2],
assuming GRH. The complexity of 2SoSSLP remains an intriguing open problem. If 2SoSSLP
were to be in P then this would disprove Conjecture 3.3 or prove that PosSLP ∈ NP, neither
of which is currently known.

4 Polynomials as Sum of Squares

4.1 Positivity of Polynomials
Analogous to PosSLP, we also study the positivity problem for polynomials represented by
straight line programs. In particular, we study the following problem, called PosPolySLP.

M. Bläser, J. Dörfler, and G. Jindal 13:11

▶ Problem 4.1 (PosPolySLP). Given a straight-line program representing a univariate
polynomial f ∈ Z[x], decide if f is positive, i.e., f(x) ≥ 0 for all x ∈ R.

It is known that every positive univariate polynomial f can be written as sum of two
squares. The formal statement (Lemma A.1) and its folklore proof can be found in the
appendix.

Now we look at the rational variant of the Lemma A.1. Suppose f ∈ Z[x] ⊂ Q[x] is
a positive polynomial. We know that it can be written as a sum of squares of two real
polynomials. Can it also be written as sum of squares of rational polynomials? In this
direction, Landau proved that each positive polynomial in Q[x] can be expressed as a sum
of at most eight polynomial squares in Q[x] [14]. Pourchet improved this result and proved
that only five or fewer squares are needed [33].

We now show that PosPolySLP is coNP-hard, this result follows from an application
of results proved in [28]. Suppose W is a 3-SAT formula on n literals x1, x2, . . . , xn with
W = C1 ∧ C2 ∧ · · · ∧ Cℓ, here Ci is a clause composed of 3 literals. We choose any n distinct
odd primes p1 < p2 < · · · < pn. So xi is associated with the prime pi. Thereafter, we define
M :=

∏
i∈[n] pi. The following Theorem 4.2 was proved in [28].

▶ Theorem 4.2 ([28]). One can construct a SLP C of size poly(pn, ℓ) which computes a
polynomial PM (W) of the form:

PM (W) :=
∑
i∈[ℓ]

(FM (Ci))2

such that PM (W) has a real root iff W is satisfiable. Here, FM (Ci) is a univariate polynomial
that depends on Ci (see [28] for more details).

▶ Theorem 4.3 (Theorem 1.2 in [4]). Let f ∈ Z[x] be a univariate polynomial of degree d

taking only positive values on the interval [0, 1]. Let τ be an upper bound on the bit size of
the coefficients of f . Let m denote the minimum of f over [0, 1]. Then

m >
3d/2

2(2d−1)τ (d + 1)2d−1/2 .

The theorem above proves the lower bound for the interval [0, 1]. Next, we extend it to
the whole real line.

▶ Lemma 4.4. Let f ∈ Z[x] be a positive univariate polynomial of degree d. Let τ be an
upper bound on the bit size of the coefficients of f . Let m denote the minimum of f over R.
If m ̸= 0 then

m >
3d/2

2(2d−1)τ (d + 1)2d−1/2 .

Proof. We assume m ̸= 0. Consider the reverse polynomial frev := xdf
(1

x

)
. It is clear that

frev is positive on [0, ∞). Moreover, frev has degree d and τ is an upper bound on the bit
size of its coefficients. By employing Theorem 4.3 on frev, we infer that

min
a∈[0,1]

frev(a) >
3d/2

2(2d−1)τ (d + 1)2d−1/2 .

Theorem 4.3 implies that:

min
a∈[0,1]

f(a) >
3d/2

2(2d−1)τ (d + 1)2d−1/2 . (1)

FSTTCS 2024

13:12 PosSLP and Sum of Squares

Now consider a λ ∈ [0, 1], we have:

f

(
1
λ

)
= frev(λ)

λd
≥ frev(λ) >

3d/2

2(2d−1)τ (d + 1)2d−1/2 . (2)

By combining Equation (1) and Equation (2), we obtain that:

min
a∈[0,∞)

f(a) >
3d/2

2(2d−1)τ (d + 1)2d−1/2 .

By repeating the above argument on f(−x) instead of f(x), we obtain:

m = min
a∈(−∞,∞)

f(a) >
3d/2

2(2d−1)τ (d + 1)2d−1/2 . ◀

▶ Theorem 1.19. PosPolySLP is coNP-hard under polynomial-time many-one reductions.

Proof of Theorem 1.19. Suppose W is 3-SAT formula on n literals x1, x2, . . . , xn with
W = C1 ∧ C2 ∧ · · · ∧ Cℓ, here Ci is a clause composed of 3 literals. By using Theorem 4.2,
we can construct a SLP of size poly(pn, ℓ) which computes a polynomial P (W) ∈ Z[x] such
that P (W) has a real root iff W is satisfiable. (Recall that p1 < · · · < pn was a sequence of
odd primes.) Since P (W) is a sum of squares, P (W) is positive. Suppose m is the minimum
value of P (W) over R. We know that m ≥ 0.

By the prime number theorem, we can assume pn = O(n log n). Moreover, it is easy to
see that ℓ ≤ 8n3. Hence the constructed SLP is of size s = poly(n). Suppose τ is an upper
bound on the bit size of the coefficients of P (W). It is easy to see that deg(P (W)) ≤ 2s and
τ ≤ 2s. If W is not satisfiable then we know that m ̸= 0 and therefore Lemma 4.4 implies
that

log(m) > 2s−1 log 3 − (2s+1 − 1)2s − (2s+1 − 1/2) log(2s + 1) > −22s+2.

Hence

m >
1

222s+2 .

Suppose B = 222s+2 . Then B · P (W) − 1 is positive iff m > 0. Hence we have:

B · P (W) − 1 is positive iff W is unsatisfiable.

Moreover B · P (W) − 1 has a SLP of size O(s) = poly(n) and this SLP can be constructed in
time poly(n). Since determining the unsatisfiability of W is coNP-complete, it follows that
PosPolySLP is coNP-hard. ◀

4.2 Checking if a Polynomial is a Square
In light of the results in [33] and Theorem 1.19, we also study the following related problem
SqPolySLP. Another motivation to study this problem also comes from the quest for
studying the complexity of factors of polynomials. In this context, one wants to prove that if
a polynomial can be computed by a small arithmetic circuit, then so can be its factors. In
this direction, Kaltofen showed that if a polynomial f = geh can be computed an arithmetic
circuit of size s and g, h are coprime, then g can also be computed by a circuit of size
poly(e, deg(g), s) [18]. When f = ge, Kaltofen also showed that g can be computed by an
arithmetic circuit of size poly(deg(g), s) [18]. This question for finite fields is posed as an
open question in [19]. What if we do not want to find a small circuit for polynomial g in

M. Bläser, J. Dörfler, and G. Jindal 13:13

case f = ge but only want to determine if f is eth power of some polynomial. And in this
decision problem, we want to avoid the dependency on deg(g) in running time, which can be
exponential in s. We study this problem for e = 2 in SqPolySLP, but our results work for
any arbitrary constant e.

▶ Problem 4.5 (SqPolySLP). Given a straight-line program representing a univariate poly-
nomial f ∈ Z[x], decide if ∃g ∈ Z[x] such that f = g2.

One can also study the complexity of determining if the given univariate polynomial can
be written as a sum of two, three or four squares, but in this section, we only focus on the
problem SqPolySLP. The following Theorem 4.6 hints to an approach that SqPolySLP can
be reduced to SquSLP.

▶ Theorem 4.6 (Theorem 4 in [26]). For f ∈ Z[x], ∃g ∈ Z[x] with f = g2 iff ∀t ∈ Z, f(t) is
a perfect square.

We shall use an effective variant of Theorem 4.6 which follows from the following effective
variant of the Hilbert’s irreducibility theorem. For an integer polynomial f , H(f) is the
height of f , i.e., the maximum of the absolute values of the coefficients of f .

▶ Theorem 4.7 ([32, 10]). Suppose P (T, Y) is an irreducible polynomial in Q[T, Y] with
degY (P) ≥ 2 and with coefficients in Z assumed to be relatively prime. Suppose B is a
positive integer such that B ≥ 2. We define:

m := degT (P)
n := degY (P)

H := max(H(P), ee)
S(P, B) := |{1 ≤ t ≤ B | P (t, Y) is reducible in Q[Y]}|

Then we have:

S(P, B) ≤ 2165m642296n log19(H)B 1
2 log5(B).

▶ Corollary 4.8. Suppose f(x) ∈ Z[x] is an integer polynomial computed by a SLP of size s.
Define S(f) :=

∣∣{1 ≤ t ≤ 2200s | f(t) is a square }
∣∣. If f is not a square, then we have:

S(f) < 2800s52183s.

Proof. Consider the polynomial P (T, Y) := Y 2 − f(T). Since f(x) is not a square, we
infer that P (T, Y) is an irreducible polynomial in Q[T, Y]. Now we employ Theorem 4.7
on P (T, Y) with B = 2200s, we have m ≤ 2s, n = 2 and H ≤ 22s

. In this case, we have
S(P, B) = S(f). By using Theorem 4.7, we have:

S(f) ≤ 2165264s2592219s2100s(200s)5 < 2800s52183s. ◀

Corollary 4.8 implies a randomized polynomial time algorithm for SqPolySLP, as demon-
strated below in Theorem 4.9.

▶ Theorem 4.9. SqPolySLP is in coRP.

Proof. Given an integer polynomial f(x) computed by a SLP of size s, we want to decide if
f = g2 for some g ∈ Z[x]. We sample a positive integer uniformly at random from the set
{1 ≤ t ≤ 2200s | t ∈ N}. Using the algorithm in [17, Sec 4.2], we test if f(t) is a square. We
output “Yes” if f(t) is a square. If f = g2 for some g ∈ Z[x], then we always output “Yes”.
Suppose f ̸= g2 for any g ∈ Z[x]. By using Corollary 4.8, we obtain that:

FSTTCS 2024

13:14 PosSLP and Sum of Squares

Pr[f(t) is a square] <
2800s52183s

2200s
<

1
100 for s > 100.

Hence with probability at least 0.99 we sample a t such that f(t) is not a square. The
algorithm for SquSLP verifies that f(t) is not a square with probability at least 1

3 [17, Sec 4.2].
Hence we output “No” with probability at least 0.33. This implies SqPolySLP ∈ coRP. ◀

5 Conclusion and Open Problems

We studied the connection between PosSLP and problems related to the representation of
integers as sums of squares, drawing on Lagrange’s four-square theorem from 1770. We
investigated variants of the problem, considering whether the positive integer computed
by a given SLP can be represented as the sum of squares of two or three integers. We
analyzed the complexity of these variations and established relationships between them and
the original PosSLP problem. Additionally, we introduced the Div2SLP problem, which
involves determining if a given SLP computes an integer divisible by a given power of 2.
We showed that Div2SLP is at least as hard as DegSLP. We also showed the relevance of
Div2SLP in connecting the 3SoSSLP to PosSLP. In contrast to PosSLP, we also showed that
the polynomial variant of the PosSLP problem is unconditionally coNP-hard. Overall, this
paper contributes to a deeper understanding of decision problems associated with SLPs and
provides insights into the computational complexity of problems related to the representation
of integers as sums of squares. A visual representation illustrating the problems discussed
in this paper and their interrelations is available in Figure 1. Our results open avenues for
further research in this area; in particular, we highlight the following research avenues:
1. What is the complexity of Div2SLP? We showed it is DegSLP hard. Is it NP-hard too?

How does it relate to PosSLP?
2. Can we prove Theorem 1.14 without relying on Conjecture 3.3?
3. One can also study the problems of deciding whether a given SLP computes an integer

univariate polynomial, which can be written as the sum of two, three, or four squares.
We studied these questions for integers in this paper. But it makes for an interesting
research to study these questions for polynomials.

4. And finally, can we prove unconditional hardness results for PosSLP?

Div2SLP

OrdSLP DegSLP

PosSLP

EquSLP

3SoSSLP 2SoSSLP

Div2SLP ∪ PosSLP

≡

NP, cond.

Figure 1 A visualization of the relations between the problems studied in this work. An
arrow means that there is a Turing reduction. A thicker arrow indicates a polynomial time
many-one reduction. The reduction from PosSLP to 2SoSSLP is nondeterministic and depends on
Conjecture 3.3.

M. Bläser, J. Dörfler, and G. Jindal 13:15

References
1 Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On

the complexity of numerical analysis. SIAM Journal on Computing, 38(5):1987–2006, 2009.
doi:10.1137/070697926.

2 Eric Allender, Michal Koucký, Detlef Ronneburger, Sambuddha Roy, and V. Vinay. Time-space
tradeoffs in the counting hierarchy. In Proceedings of the 16th Annual IEEE Conference on
Computational Complexity, Chicago, Illinois, USA, June 18-21, 2001, pages 295–302. IEEE
Computer Society, 2001. doi:10.1109/CCC.2001.933896.

3 N. C. Ankeny. Sums of three squares. Proceedings of the American Mathematical Society,
8(2):316–319, 1957. doi:10.1090/s0002-9939-1957-0085275-8.

4 Saugata Basu, Richard Leroy, and Marie-Francoise Roy. A bound on the minimum of a real
positive polynomial over the standard simplex, 2009. arXiv:0902.3304.

5 Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Computation.
Springer-Verlag, Berlin, Heidelberg, 1997.

6 Markus Bläser, Julian Dörfler, and Gorav Jindal. Posslp and sum of squares, 2024. doi:
10.48550/arXiv.2403.00115.

7 R. Breusch. Zur verallgemeinerung des bertrandschen postulates, dass zwischen x und 2x stets
primzahlen liegen. Mathematische Zeitschrift, 34:505–526, 1932. URL: http://eudml.org/
doc/168326.

8 Peter Bürgisser and Felipe Cucker. Counting complexity classes for numeric computations
ii: Algebraic and semialgebraic sets. Journal of Complexity, 22(2):147–191, 2006. doi:
10.1016/j.jco.2005.11.001.

9 Peter Bürgisser and Gorav Jindal. On the Hardness of PosSLP, pages 1872–1886. Society for
Industrial and Applied Mathematics, 2024. doi:10.1137/1.9781611977912.75.

10 Pierre Debes and Yann Walkowiak. Bounds for hilbert’s irreducibility theorem. Pure and
Applied Mathematics Quarterly, 4(4):1059–1083, 2008. doi:10.4310/pamq.2008.v4.n4.a4.

11 U. Dudley. Elementary Number Theory: Second Edition. Dover Books on Mathematics. Dover
Publications, 2012.

12 Pranjal Dutta, Gorav Jindal, Anurag Pandey, and Amit Sinhababu. Arithmetic Circuit
Complexity of Division and Truncation. In Valentine Kabanets, editor, 36th Computational
Complexity Conference (CCC 2021), volume 200 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 25:1–25:36, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.CCC.2021.25.

13 Pranjal Dutta, Nitin Saxena, and Amit Sinhababu. Discovering the roots: Uniform closure
results for algebraic classes under factoring. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, pages 1152–1165, New York, NY, USA,
2018. Association for Computing Machinery. doi:10.1145/3188745.3188760.

14 Landau Edmund. Über die darstellung definiter funktionen durch quadrate. Mathematische
Annalen, 62:272–285, 1906. URL: http://eudml.org/doc/158257.

15 C.F. Gauss. Disquisitiones arithmeticae. Apud G. Fleischer, 1801. URL: https://books.
google.de/books?id=OwX6GwAACAAJ.

16 David R. Hilbert. Beweis für die darstellbarkeit der ganzen zahlen durch eine feste anzahlnter
potenzen (waringsches problem). Mathematische Annalen, 67:281–300, 1909.

17 Gorav Jindal and Louis Gaillard. On the order of power series and the sum of square roots
problem. In Proceedings of the 2023 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’23, pages 354–362, New York, NY, USA, 2023. Association for Computing
Machinery. doi:10.1145/3597066.3597079.

18 E. Kaltofen. Single-factor hensel lifting and its application to the straight-line complexity of
certain polynomials. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, STOC ’87, pages 443–452, New York, NY, USA, 1987. Association for Computing
Machinery. doi:10.1145/28395.28443.

FSTTCS 2024

https://doi.org/10.1137/070697926
https://doi.org/10.1109/CCC.2001.933896
https://doi.org/10.1090/s0002-9939-1957-0085275-8
https://arxiv.org/abs/0902.3304
https://doi.org/10.48550/arXiv.2403.00115
https://doi.org/10.48550/arXiv.2403.00115
http://eudml.org/doc/168326
http://eudml.org/doc/168326
https://doi.org/10.1016/j.jco.2005.11.001
https://doi.org/10.1016/j.jco.2005.11.001
https://doi.org/10.1137/1.9781611977912.75
https://doi.org/10.4310/pamq.2008.v4.n4.a4
https://doi.org/10.4230/LIPIcs.CCC.2021.25
https://doi.org/10.1145/3188745.3188760
http://eudml.org/doc/158257
https://books.google.de/books?id=OwX6GwAACAAJ
https://books.google.de/books?id=OwX6GwAACAAJ
https://doi.org/10.1145/3597066.3597079
https://doi.org/10.1145/28395.28443

13:16 PosSLP and Sum of Squares

19 Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial identity
testing and deterministic multivariate polynomial factorization. In 2014 IEEE 29th Conference
on Computational Complexity (CCC), pages 169–180. IEEE, 2014. doi:10.1109/CCC.2014.25.

20 Alexei Kourbatov. On the distribution of maximal gaps between primes in residue classes,
2018. arXiv:1610.03340.

21 E. Landau. Über die einteilung der positiven ganzen zahlen in vier klassen nach der mindestzahl
der zu ihrer additiven zusammensetzung erforderlichen quadrate. Arch. Math. und Physik (3),
13, 1908.

22 Edmund Landau. Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der
Mindestzahl der zu ihrer additiven Zusammensetzung erforderliche Quadrate, 1908. URL:
https://books.google.de/books?id=e3XBnQAACAAJ.

23 Adrien Marie Legendre. Essai Sur La Théorie Des Nombres. Duprat, 1797. URL: http:
//eudml.org/doc/204253.

24 Gregorio Malajovich. An effective version of kronecker’s theorem on simultaneous diophantine
approximation. Technical report, Citeseer, 1996.

25 LJ Mordell. On the representation of a number as a sum of three squares. Rev. Math. Pures
Appl, 3:25–27, 1958.

26 M Ram Murty. Polynomials assuming square values. Number theory and discrete geometry,
pages 155–163, 2008.

27 Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery. An Introduction to the Theory
of Numbers. Wiley, hardcover edition, January 1991. URL: https://lead.to/amazon/com/
?op=bt&la=en&cu=usd&key=0471625469.

28 Daniel Perrucci and Juan Sabia. Real roots of univariate polynomials and straight line
programs. Journal of Discrete Algorithms, 5(3):471–478, 2007. Selected papers from Ad Hoc
Now 2005. doi:10.1016/j.jda.2006.10.002.

29 Walter L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci., 22(3):365–383, 1981.
doi:10.1016/0022-0000(81)90038-6.

30 Yaroslav Shitov. How hard is the tensor rank?, 2016. arXiv:1611.01559.
31 Prasoon Tiwari. A problem that is easier to solve on the unit-cost algebraic ram. Journal of

Complexity, 8(4):393–397, 1992. doi:10.1016/0885-064X(92)90003-T.
32 Yann Walkowiak. Théorème d’irréductibilité de hilbert effectif. Acta Arithmetica, 116(4):343–

362, 2005. URL: http://eudml.org/doc/277977.
33 Pourchet Y. Sur la représentation en somme de carrés des polynômes à une indéterminée

sur un corps de nombres algébriques. Acta Arithmetica, 19(1):89–104, 1971. URL: http:
//eudml.org/doc/205020.

A Missing Proofs

▶ Lemma A.1. For every positive polynomial f ∈ R[x], there exist polynomials g, h ∈ R[x]
such that f = g2 + h2.

Proof. Let f(x) ∈ R[x] be a polynomial such that f(x) ≥ 0 for all x ∈ R. We aim to express
f as a sum of two squares of real polynomials.

If α ∈ R is a real root of f , it must have even multiplicity, as f(x) is non-negative.
Specifically, if α is a root of multiplicity 2k, we can write:

(x − α)2k =
(
(x − α)k

)2 + 02,

which is already in the form of a sum of two squares.
If f has complex-conjugate roots, say β = s + ıt and β = s − ıt with t ̸= 0, the quadratic

factor associated with these roots is:

(x − β)(x − β) = (x − s)2 + t2,

https://doi.org/10.1109/CCC.2014.25
https://arxiv.org/abs/1610.03340
https://books.google.de/books?id=e3XBnQAACAAJ
http://eudml.org/doc/204253
http://eudml.org/doc/204253
https://lead.to/amazon/com/?op=bt&la=en&cu=usd&key=0471625469
https://lead.to/amazon/com/?op=bt&la=en&cu=usd&key=0471625469
https://doi.org/10.1016/j.jda.2006.10.002
https://doi.org/10.1016/0022-0000(81)90038-6
https://arxiv.org/abs/1611.01559
https://doi.org/10.1016/0885-064X(92)90003-T
http://eudml.org/doc/277977
http://eudml.org/doc/205020
http://eudml.org/doc/205020

M. Bläser, J. Dörfler, and G. Jindal 13:17

which is clearly a sum of two squares. Since f(x) is the product of factors corresponding to
its real roots and complex-conjugate pairs of roots, we now combine these factors by using
the following identity:

(a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2.

By applying this identity iteratively to the factors of f(x), we can express f(x) as a sum of
two squares of real polynomials. ◀

B Alternative Proof of Lemma 2.12

We prove a general theorem on how to show that problems involving SLPs are in CH. It
is similar to the proof of [2, Lemma 5]. Let C be a Boolean circuit in TC0. C consists of
unbounded AND, unbounded OR, and unbounded majority gates (MAJ). According to [29],
when a family (Cn) is in dlogtime-uniform TC0, this means that there is a deterministic
Turing machine (DTM) that decides in time O(log n) whether given (n, f, g) the gate f is
connected to the gate g and whether given (n, f, t) the gate f has type t. All numbers are
given in binary. For a language B ⊆ {0, 1}∗, let SLP(B) be the language:

SLP(B) := {P | P is an SLP computing a number N such that Bin (N) ∈ B}

This can be viewed as the “SLP-version” of B.

▶ Lemma B.1. Let B be in dlogtime-uniform TC0. Then SLP(B) ∈ CH.

Proof. The proof is by induction on the depth. We prove the more general statement: Let
M be a DTM from the definition of dlogtime and (Cn) be the sequence of circuits for B. Let
P be the given SLP encoding a number N . Given (P, g, b) we can decide in CHt+c whether
the value of the gate g on input N given by P is b. t is the depth of g. If t = 0, then g is an
input gate. Thus this problem is BitSLP which is in CHc for some c. If t > 0, then we have
to decide whether the majority of the gates that are children of g are 1. This can be done
using a PP-machine with oracle to CHc+t−1. We guess a gate f and check using the DTM M

whether f is a predecessor of g. If not, we add an accepting and rejecting path. If yes, we
use the oracle to check whether f has value 1. If yes, we accept and otherwise, we reject. ◀

It is easy to see that checking whether the ℓ least significant bits of a number given in
binary are 0 can be done in dlogtime-uniform TC0. Thus Div2SLP is in CH by Lemma B.1
above.

C Reduction from multivariate DegSLP to univariate DegSLP

We use mDegSLP to denote the multivariate variant of the DegSLP problem, which we define
formally below.

▶ Problem C.1 (mDegSLP). Given a straight line program representing a polynomial
f ∈ Z[x1, x2, . . . , xn], and given a natural number d in binary, decide whether deg(f) ≤ d.

mDegSLP was simply called DegSLP in [1]. Now we recall the proof in [1], to show that
to study the hardness of mDegSLP, it is enough to focus on its univariate variant DegSLP.
To this end, we note the following Observation C.2.

▶ Observation C.2 ([1]). mDegSLP is equivalent to DegSLP under deterministic polynomial
time many-one reductions.

FSTTCS 2024

13:18 PosSLP and Sum of Squares

Proof. We only need to show that mDegSLP reduces o DegSLP under deterministic poly-
nomial time many-one reductions, other direction is trivial. Suppose we are given an SLP
of size s which computes f ∈ Z[x1, x2, . . . , xn], and we want to decide whether deg(f) ≤ d

for a given d ∈ N. Suppose D = deg(f). For all i ∈ {0, 1, . . . , D}, we use fi to denote the
homogeneous degree i part of f . Now notice that for any α = (α1, α2, . . . , αn) ∈ Zd, we
have:

f(yα) = f(yα1, yα2, . . . , yαn) =
D∑

i=0
yifi(α),

where y is a fresh variable. So if α is chosen such that fD(α) is non-zero, then deg(f(yα)) =
deg(f) = D. If we choose αi = 22is2

then it can be seen that fD(α) is non-zero, see e.g. [1,
Proof of Proposition 2.2]. SLPs computing αi can be constructed using iterated squaring in
polynomial time. Hence we can construct an SLP for f(yα) in polynomial time. By this
argument, we know that deg(f(yα)) ≤ d if and only if deg(f) ≤ d . Therefore mDegSLP
reduces to DegSLP under polynomial time many-one reductions. ◀

Unifying Asynchronous Logics for Hyperproperties
Alberto Bombardelli #

Fondazione Bruno Kessler, Trento, Italy

Laura Bozzelli
University of Napoli “Federico II”, Italy

César Sánchez #

IMDEA Software Institute, Madrid, Spain

Stefano Tonetta #

Fondazione Bruno Kessler, Trento, Italy

Abstract
We introduce and investigate a powerful hyper logical framework in the linear-time setting that we call
generalized HyperLTL with stuttering and contexts (GHyperLTLS+C for short). GHyperLTLS+C unifies
the asynchronous extensions of HyperLTL called HyperLTLS and HyperLTLC, and the well-known
extension KLTL of LTL with knowledge modalities under both the synchronous and asynchronous
perfect recall semantics. As a main contribution, we identify a meaningful fragment of GHyperLTLS+C,
that we call simple GHyperLTLS+C, with a decidable model-checking problem, which is more expressive
than HyperLTL and known fragments of asynchronous extensions of HyperLTL with a decidable
model-checking problem. Simple GHyperLTLS+C subsumes KLTL under the synchronous semantics
and the one-agent fragment of KLTL under the asynchronous semantics and to the best of our
knowledge, it represents the unique hyper logic with a decidable model-checking problem which can
express powerful non-regular trace properties when interpreted on singleton sets of traces. We justify
the relevance of simple GHyperLTLS+C by showing that it can express diagnosability properties,
interesting classes of information-flow security policies, both in the synchronous and asynchronous
settings, and bounded termination (more in general, global promptness in the style of Prompt LTL).

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Asynchronous hyperproperties, Temporal logics for hyperproperties, Express-
iveness, Decidability, Model checking

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.14

Related Version Full Version: https://arxiv.org/abs/2404.16778 [4]

Funding César Sánchez : funded in part by PRODIGY Project (TED2021-132464B-I00) – funded
by MCIN/AEI/10.13039/501100011033/ and the European Union NextGenerationEU/PRTR – by
DECO Project (PID2022-138072OB-I00) – funded by MCIN/AEI/10.13039/501100011033 and by
the ESF+ – and by a research grant from Nomadic Labs and the Tezos Foundation.

1 Introduction

Temporal logics [27] play a fundamental role in the formal verification of the dynamic
behaviour of complex reactive systems. Classic regular temporal logics such as LTL, CTL,
and CTL∗ [29, 13] are suited for the specification of trace properties which describe the
ordering of events along individual execution traces of a system. In the last 15 years, a novel
specification paradigm has been introduced that generalizes traditional regular trace properties
by properties of sets of traces, the so called hyperproperties [10]. Hyperproperties relate
distinct traces and are useful to formalize a wide range of properties of prime interest which go,
in general, beyond regular properties and cannot be expressed in standard regular temporal
logics. A relevant example concerns information-flow security policies like noninterference [18,
28] and observational determinism [36] which compare observations made by an external

© Alberto Bombardelli, Laura Bozzelli, César Sánchez, and Stefano Tonetta;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abombardelli@fbk.eu
https://orcid.org/0000-0003-3385-3205
https://orcid.org/0000-0003-0963-8169
mailto:cesar.sanchez@imdea.org
https://orcid.org/0000-0003-3927-4773
mailto:tonettas@fbk.eu
https://orcid.org/0000-0001-9091-7899
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.14
https://arxiv.org/abs/2404.16778
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Unifying Asynchronous Logics for Hyperproperties

low-security agent along traces resulting from different values of not directly observable
inputs. Other examples include bounded termination of programs, diagnosability of critical
systems (which amounts to checking whether the available sensor information is sufficient to
infer the presence of faults on the hidden behaviour of the system) [31, 5, 3], and epistemic
properties describing the knowledge of agents in distributed systems [23, 33, 22].

In the context of model checking of finite-state reactive systems, many temporal logics
for hyperproperties have been proposed [12, 9, 6, 30, 15, 11, 20] for which model checking is
decidable, including HyperLTL [9], HyperCTL∗ [9], HyperQPTL [30, 11], and HyperPDL−∆ [20]
which extend LTL, CTL∗, QPTL [32], and PDL [17], respectively, by explicit first-order
quantification over traces and trace variables to refer to multiple traces at the same time.
The semantics of all these logics is synchronous: the temporal modalities are evaluated by
a lockstepwise traversal of all the traces assigned to the quantified trace variables. Other
approaches for the formalization of synchronous hyper logics are either based on hyper variants
of monadic second-order logic over traces or trees [11], or the adoption of a team semantics
for standard temporal logics, in particular, LTL [24, 26, 35]. For the first approach in the
linear-time setting, we recall the logic S1S[E] [11] (and its first-order fragment FO[<,E] [16])
which syntactically extends monadic second-order logic of one successor S1S with the equal-
level predicate E, which relates the same time point on different traces. More recently, an
extension of HyperLTL with second-order quantification over traces has been introduced [2]
which allows to express common knowledge in multi-agent distributed systems. Like S1S[E],
model checking of this extension of HyperLTL is highly undecidable [2].

Hyper logics supporting asynchronous features have been introduced recently [21, 1, 7].
These logics allow to relate traces at distinct time points which can be arbitrarily far
from each other. Asynchronicity is ubiquitous in many real-world systems, for example, in
multithreaded environments in which threads are not scheduled lockstepwise, and traces
associated with distinct threads progress with different speed. Asynchronous hyperproperties
are also useful in information-flow security and diagnosability settings where an observer
cannot distinguish consecutive time points along an execution having the same observations.
This requires to match asynchronously sequences of observations along distinct execution
traces. The first systematic study of asynchronous hyperproperties was done by Gutsfeld
et al. [21], who introduced the temporal fixpoint calculus Hµ and its automata-theoretic
counterpart for expressing such properties in the linear-time setting.

More recently, three temporal logics [1, 7] which syntactically extend HyperLTL have
been introduced for expressing asynchronous hyperproperties: Asynchronous HyperLTL
(A-HyperLTL) [1] and Stuttering HyperLTL (HyperLTLS) [7], both useful for asynchronous
security analysis, and Context HyperLTL (HyperLTLC) [7], useful for expressing hyper-bounded-
time response requirements. The logic A-HyperLTL, which is expressively incomparable
with both HyperLTL and HyperLTLS [8], models asynchronicity by means of an additional
quantification layer over the so called trajectories which control the relative speed at which
traces progress by choosing at each instant which traces move and which traces stutter. On
the other hand, the logic HyperLTLS exploits relativized versions of the temporal modalities
with respect to finite sets Γ of LTL formulas: these modalities are evaluated by a lockstepwise
traversal of the sub-traces of the given traces which are obtained by removing “redundant”
positions with respect to the pointwise evaluation of the LTL formulas in Γ. Finally, the
logic HyperLTLC is more expressive than HyperLTL and is not expressively subsumed by
either A-HyperLTL or HyperLTLS [8]. HyperLTLC extends HyperLTL by unary modalities ⟨C⟩
parameterized by a non-empty subset C of trace variables – called the context – which restrict
the evaluation of the temporal modalities to the traces associated with the variables in C.

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:3

Note that the temporal modalities in HyperLTLC are evaluated by a lockstepwise traversal of
the traces assigned to the variables in the current context, and unlike HyperLTL, the current
time points of these traces from which the evaluation starts are in general different. It is
known that these three syntactical extensions of HyperLTL are less expressive than Hµ [8]
and like Hµ, model checking the respective quantifier alternation-free fragments are already
undecidable [1, 7]. The works [1, 7] identify practical fragments of the logics A-HyperLTL
and HyperLTLS with a decidable model checking problem. In particular, we recall the so
called simple fragment of HyperLTLS [7], which is more expressive than HyperLTL [8] and can
specify interesting security policies in both the asynchronous and synchronous settings.

Formalization of asynchronous hyperproperties in the team semantics setting following an
approach similar to the trajectory construct of A-HyperLTL has been investigated in [19]. It
is worth noting that unlike other hyper logics (including logics with team semantics) which
only capture regular trace properties when interpreted on singleton sets of traces, the logics
HyperLTLC, A-HyperLTL, and Hµ can express non-regular trace properties [8].

Our contribution. Specifications in HyperLTL and in the known asynchronous extensions
of HyperLTL, whose most expressive representative is Hµ [21], consist of a prefix of trace
quantifiers followed by a quantifier-free formula which expresses temporal requirements on
a fixed number of traces. Thus, these hyper logics lack mechanisms to relate directly an
unbounded number of traces, which are required for example to express bounded termination
or diagnosability properties [31, 5, 3]. This ability is partially supported by temporal logics
with team semantics [24, 26, 35] and extensions of temporal logics with the knowledge mod-
alities of epistemic logic [14], which relate computations whose histories are observationally
equivalent for a given agent. In this paper, we introduce and investigate a hyper logical
framework in the linear-time setting which unifies two known asynchronous extensions of
HyperLTL and the well-known extension KLTL [23] of LTL with knowledge modalities under
both the synchronous and asynchronous perfect recall semantics (where an agent remembers
the whole sequence of its observations). The novel logic, that we call generalized HyperLTL
with stuttering and contexts (GHyperLTLS+C for short), merges HyperLTLS and HyperLTLC
and adds two new natural modeling facilities: past temporal modalities for asynchronous
hyperproperties and general trace quantification where trace quantifiers can occur in the
scope of temporal modalities. Past temporal modalities used in combination with context
modalities provide a powerful mechanism to compare histories of computations at distinct
time points. Moreover, unrestricted trace quantification allows to relate an unbounded
number of traces.

As a main contribution, we identify a meaningful fragment of GHyperLTLS+C with a
decidable model-checking problem, that we call simple GHyperLTLS+C. This fragment is
obtained from GHyperLTLS+C by carefully imposing restrictions on the use of the stuttering
and context modalities. Simple GHyperLTLS+C allows quantification over arbitrary pointed
traces (i.e., traces plus time points) in the style of FO[<,E] [16], it is more expressive than the
simple fragment of HyperLTLS [7], and it is expressively incomparable with full HyperLTLS
and S1S[E]. Moreover, this fragment subsumes both KLTL under the synchronous semantics
and the one-agent fragment of KLTL under the asynchronous semantics. In fact, simple
GHyperLTLS+C can be seen as a very large fragment of GHyperLTLS+C with a decidable
model checking problem which (1) strictly subsumes HyperLTL and the simple fragment of
HyperLTLS, (2) is closed under Boolean connectives, and (3) allows an unrestricted nesting
of temporal modalities. We justify the relevance of simple GHyperLTLS+C by showing that it
can express diagnosability properties, interesting classes of information-flow security policies,

FSTTCS 2024

14:4 Unifying Asynchronous Logics for Hyperproperties

both in the synchronous and asynchronous settings, and bounded termination (more in
general, global promptness in the style of Prompt LTL [25]). To the best of our knowledge,
simple GHyperLTLS+C represents the unique hyper logic with a decidable model-checking
problem which can express powerful non-regular trace properties when interpreted over
singleton sets of traces.

2 Background

We denote by N the set of natural numbers. Given i, j ∈ N, we write [i, j] for the set of
natural numbers h such that i ≤ h ≤ j, we use [i, j) for the set [i, j] \ {j}, we use (i, j] for the
set [i, j] \ {i}, and [i,∞) for the set of natural numbers h such that h ≥ i. Given a word w

over some alphabet Σ, |w| is the length of w (|w| = ∞ if w is infinite). For each 0 ≤ i < |w|,
w(i) is the (i + 1)th symbol of w, wi is the suffix of w from position i, that is, the word
w(i)w(i+ 1) . . ., and w[0, i] is the prefix of w that ends at position i.

We fix a finite set AP of atomic propositions. A trace is an infinite word over 2AP, while
a finite trace is a nonempty finite word over 2AP. A pointed trace is a pair (σ, i) consisting of
a trace σ and a position (timestamp) i ∈ N along σ.

Kripke structures. We define the dynamic behaviour of reactive systems by Kripke structures
K = ⟨S, S0, E, Lab⟩ over a finite set AP of atomic propositions, where S is a set of states,
S0 ⊆ S is the set of initial states, E ⊆ S × S is a transition relation which is total in the
first argument (i.e., for each s ∈ S there is s′ ∈ S with (s, s′) ∈ E), and Lab : S → 2AP is
a labeling map assigning to each state s the set of propositions holding at s. The Kripke
structure K is finite if S is finite. A path π of K is an infinite word π = s0, s1, . . . over S
such that s0 ∈ S0 and for all i ≥ 0, (si, si+1) ∈ E. The path π = s0, s1, . . . induces the trace
Lab(s0)Lab(s1) A trace of K is a trace induced by some path of K. We denote by L(K)
the set of traces of K. A finite path of K is a non-empty infix of some path of K. We also
consider fair finite Kripke structures (K, F), that is, finite Kripke structures K equipped with
a subset F of K-states. A path π of K is F -fair if π visits infinitely many times some state
in F . We denote by L(K, F) the set of traces of K associated with the F -fair paths of K.

Standard LTL with past (PLTL for short) [29]. Formulas ψ of PLTL over the given finite
set AP of atomic propositions are defined by the following grammar:

ψ ::= ⊤ | p | ¬ψ | ψ ∨ ψ | Xψ | Yψ | ψ U ψ | ψ S ψ

where p ∈ AP, X and U are the next and until temporal modalities respectively, and Y
(previous or yesterday) and S (since) are their past counterparts. LTL is the fragment of
PLTL that does not contain the past temporal modalities Y and S. We also use the following
abbreviations: Fψ := ⊤ U ψ (eventually), Oψ := ⊤ S ψ (past eventually or once), and their
duals Gψ := ¬ F ¬ψ (always) and Hψ := ¬ O ¬ψ (past always or historically).

The semantics of PLTL is defined over pointed traces (σ, i). The satisfaction relation
(σ, i) |= ψ, that defines whether formula ψ holds at position i along σ, is inductively defined
as follows (we omit the semantics for the Boolean connectives which is standard):

(σ, i) |= p ⇔ p ∈ σ(i)
(σ, i) |= Xψ ⇔ (σ, i+ 1) |= ψ

(σ, i) |= Yψ ⇔ i > 0 and (σ, i− 1) |= ψ

(σ, i) |= ψ1 U ψ2 ⇔ for some j ≥ i : (σ, j) |= ψ2 and (σ, k) |= ψ1 for all i ≤ k < j

(σ, i) |= ψ1 S ψ2 ⇔ for some j ≤ i : (σ, j) |= ψ2 and (σ, k) |= ψ1 for all j < k ≤ i

A trace σ is a model of ψ, written σ |= ψ, whenever (σ, 0) |= ψ.

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:5

The logic HyperLTL [9]. The syntax of HyperLTL formulas φ over the given finite set AP
of atomic propositions and a finite set VAR of trace variables is as follows:

φ := ∃x. φ | ∀x. φ | ψ ψ := ⊤ | p[x] | ¬ψ | ψ ∨ ψ | Xψ | ψ U ψ

where p ∈ AP, x ∈ VAR, and ∃x and ∀x are the hyper existential and universal trace
quantifiers for variable x, respectively, which allow relating different traces of the given set
of traces. Note that a HyperLTL formula consists of a prefix of traces quantifiers followed
by a quantifier-free formula, where the latter corresponds to an LTL formula whose atomic
propositions p are replaced with x-relativized versions p[x]. Intuitively, p[x] asserts that
p holds at the pointed trace assigned to variable x. A sentence is a formula where each
relativized proposition p[x] occurs in the scope of trace quantifier ∃x or ∀x.

In order to define the semantics of HyperLTL, we need additional definitions. The successor
succ(σ, i) of a pointed trace (σ, i) is the pointed trace (σ, i+ 1), which captures the standard
local successor of a position along a trace.

Given a set of traces L, a (pointed) trace assignment over L is a partial mapping
Π : VAR → L × N assigning to each trace variable x – where Π is defined – a pointed
trace (σ, i) such that σ ∈ L. We use Dom(Π) to refer to the trace variables for which
Π is defined. The successor succ(Π) of Π is the trace assignment over L having domain
Dom(Π) such that succ(Π)(x) = succ(Π(x)) for each x ∈ Dom(Π). For each i ≥ 0, we use
succi for the function obtained by i applications of the function succ: succ0(Π) := Π and
succi+1(Π) := succ(succi(Π)).

Given x ∈ VAR and a pointed trace (σ, i) with σ ∈ L, we denote by Π[x 7→ (σ, i)] the
trace assignment that is identical to Π besides for x, which is mapped to (σ, i).

Given a formula φ, a set of traces L, and a trace assignment Π over L such that Dom(Π)
contains all the trace variables occurring free in φ, the satisfaction relation Π |=L φ is
inductively defined as follows (we again omit the semantics of the Boolean connectives):

Π |=L p[x] ⇔ Π(x) = (σ, i) and p ∈ σ(i)
Π |=L ∃x. φ ⇔ for some σ ∈ L, Π[x 7→ (σ, 0)] |=L φ
Π |=L ∀x. φ ⇔ for all σ ∈ L, Π[x 7→ (σ, 0)] |=L φ
Π |=L Xψ ⇔ succ(Π) |= ψ

Π |=L ψ1 U ψ2 ⇔ for some i ≥ 0 : succi(Π) |=L ψ2 and succj(Π) |=L ψ1 for all 0 ≤ j < i

Note that trace quantification ranges over initial pointed traces (σ, 0) over L (the timestamp
is 0). As an example, the sentence ∀x1. ∀x2.

∧
p∈AP G(p[x1] ↔ p[x2]) captures the sets of

traces which are singletons.
For a sentence φ and a set of traces L, L is a model of φ, written L |= φ, if Π∅ |=L φ

where Π∅ is the trace assignment with empty domain.

3 Unifying Framework for Asynchronous Extensions of HyperLTL

In this section, we introduce a novel logical framework for specifying both asynchronous and
synchronous linear-time hyperproperties which unifies two known more expressive extensions
of HyperLTL [9], namely Stuttering HyperLTL (HyperLTLS for short) [7] and Context HyperLTL
(HyperLTLC for short) [7]. The proposed hyper logic, that we call generalized HyperLTL with
stuttering and contexts (GHyperLTLS+C for short), merges HyperLTLS and HyperLTLC and
adds two new features: past temporal modalities for asynchronous/synchronous hyperprop-
erties and general trace quantification where trace quantifiers can occur in the scope of
temporal modalities. Since model checking of the logics HyperLTLS and HyperLTLC is already

FSTTCS 2024

14:6 Unifying Asynchronous Logics for Hyperproperties

undecidable [7], we also consider a meaningful fragment of GHyperLTLS+C which is strictly
more expressive than the known simple fragment of HyperLTLS [7]. Our fragment is able to
express relevant classes of hyperproperties and, as we show in Section 4, its model checking
problem is decidable.

3.1 PLTL-Relativized Stuttering and Context Modalities
Classically, a trace is stutter-free if there are no consecutive positions having the same
propositional valuation unless the valuation is repeated ad-infinitum. We can associate
to each trace a unique stutter-free trace by removing “redundant” positions. The logic
HyperLTLS [7] generalizes these notions with respect to the pointwise evaluation of a finite
set of LTL formulas. Here, we consider LTL with past (PLTL).

▶ Definition 3.1 (PLTL stutter factorization [7]). Let Γ be a finite set of PLTL formulas and
σ a trace. The Γ-stutter factorization of σ is the unique increasing sequence of positions
{ik}k∈[0,m∞] for some m∞ ∈ N ∪ {∞} such that the following holds for all j < m∞:

i0 = 0 and ij < ij+1;
for each θ ∈ Γ, the truth value of θ along the segment [ij , ij+1) does not change, that
is, for all h, k ∈ [ij , ij+1), (σ, h) |= θ iff (σ, k) |= θ, and the same holds for the infinite
segment [m∞,∞] in case m∞ ̸= ∞;
the truth value of some formula in Γ changes along adjacent segments, that is, for some
θ ∈ Γ (depending on j), (σ, ij) |= θ iff (σ, ij+1) ̸|= θ.

Thus, the Γ-stutter factorization {ik}k∈[0,m∞] of σ partitions the trace in adjacent non-
empty segments such that the valuation of formulas in Γ does not change within a segment,
and changes in moving from a segment to the adjacent ones. This factorization induces in
a natural way a trace obtained by selecting the first positions of the finite segments and
all the positions of the unique tail infinite segment, if any. These positions form an infinite
increasing sequence {ℓk}k∈N called (Γ, ω)-stutter factorization of σ, where:

ℓ0, ℓ1, . . . :=
{
i0, i1, . . . if m∞ = ∞
i0, i1, . . . , im∞ , im∞ + 1, . . . otherwise

The Γ-stutter trace stfrΓ(σ) of σ (see [7]) is defined as follows: stfrΓ(σ) := σ(ℓ0)σ(ℓ1)
Note that for Γ = ∅, stfrΓ(σ) = σ. A trace σ is Γ-stutter free if it coincides with its Γ-stutter
trace, i.e. stfrΓ(σ) = σ.

As an example, assume that AP = {p, q, r} and let Γ = {pU q}. Given h, k ≥ 1, let σh,k

be the trace σh,k = phqkrω. These traces have the same Γ-stutter trace given by prω.
The semantics of the Γ-relativized temporal modalities in HyperLTLS is based on the

notion of Γ-successor succΓ(σ, i) of a pointed trace (σ, i) [7]: succΓ(σ, i) is the pointed trace
(σ, ℓ) where ℓ is the smallest position ℓj in the (Γ, ω)-stutter factorization {ℓk}k∈N of σ which
is greater than i. Note that for Γ = ∅, succ∅(σ, i) = succ(σ, i) = (σ, i+1). Hence, ∅-relativized
temporal modalities in HyperLTLS correspond to the temporal modalities of HyperLTL.

In this paper we extend HyperLTLS with past temporal modalities, so that we introduce
the past counterpart of the successor function. The Γ-predecessor predΓ(σ, i) of a pointed
trace (σ, i) is undefined if i = 0 (written predΓ(σ, i) = und); otherwise, predΓ(σ, i) is the
pointed trace (σ, ℓ) where ℓ is the greatest position ℓj in the (Γ, ω)-stutter factorization
{ℓk}k∈N of σ which is smaller than i (since ℓ0 = 0 such an ℓj exists). Note that for Γ = ∅,
pred∅(σ, i) captures the standard local predecessor of a position along a trace.

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:7

Successors and predecessors of trace assignments. We now define a generalization of
the successor succ(Π) of a trace assignment Π in HyperLTL. This generalization is based
on the notion of Γ-successor succΓ(σ, i) of a pointed trace (σ, i) and also takes into account
the context modalities ⟨C⟩ of HyperLTLC [7], where a context C is a non-empty subset of
VAR. Intuitively, modality ⟨C⟩ allows reasoning over a subset of the traces assigned to the
variables in the formula, by restricting the temporal progress to those traces.

Formally, let Π be a trace assignment over some set of traces L, Γ be a finite set of PLTL
formulas, and C be a context. The (Γ, C)-successor of Π, denoted by succ(Γ,C)(Π), is the
trace assignment over L having domain Dom(Π), and defined as follows for each x ∈ Dom(Π):

succ(Γ,C)(Π)(x) :=
{

succΓ(Π(x)) if x ∈ C

Π(x) otherwise

Note that succ(∅,VAR)(Π) = succ(Π). Moreover, we define the (Γ, C)-predecessor pred(Γ,C)(Π)
of Π as follows: pred(Γ,C)(Π) is undefined, written pred(Γ,C)(Π) = und, if there is x ∈ Dom(Π)
such that predΓ(Π(x)) = und. Otherwise, pred(Γ,C)(Π) is the trace assignment over L having
domain Dom(Π), and defined as follows for each x ∈ Dom(Π):

pred(Γ,C)(Π)(x) :=
{

predΓ(Π(x)) if x ∈ C

Π(x) otherwise

Finally, for each i ≥ 0, we define the ith application succi
(Γ,C) of succ(Γ,C) and the ith

application pred i
(Γ,C) of pred(Γ,C) as follows, where pred(Γ,C)(und) := und:

succ0
(Γ,C)(Π) := Π and succi+1

(Γ,C)(Π) := succ(Γ,C)(succi
(Γ,C)(Π)).

pred 0
(Γ,C)(Π) := Π and pred i+1

(Γ,C)(Π) := pred(Γ,C)(pred i
(Γ,C)(Π)).

3.2 Generalized HyperLTL with Stuttering and Contexts
We introduce now the novel logic GHyperLTLS+C. GHyperLTLS+C formulas φ over AP and a
finite set VAR of trace variables are defined by the following syntax:

φ := ⊤ | p[x] | ¬φ | φ ∨ φ | ∃x. φ | ⟨C⟩φ | XΓφ | YΓφ | φUΓ φ | φ SΓ φ

where p ∈ AP, x ∈ VAR, ⟨C⟩ is the context modality with ∅ ≠ C ⊆ VAR, Γ is a finite set
of PLTL formulas, and XΓ, YΓ, UΓ and SΓ are the stutter-relativized versions of the PLTL
temporal modalities. Intuitively, the context modality ⟨C⟩ restricts the evaluation of the
temporal modalities to the traces associated with the variables in C, while the temporal
modalities XΓ, YΓ, UΓ and SΓ are evaluated by a lockstepwise traversal of the Γ-stutter
traces associated to the traces assigned to the variables in the current context C. Note that
the hyper universal quantifier ∀x can be introduced as an abbreviation: ∀x. φ ≡ ¬∃x.¬φ.
For a variable x, we write ⟨x⟩ instead of ⟨{x}⟩. Moreover, we write X, Y, U and S instead
of X∅, Y∅, U∅ and S∅, respectively. Furthermore, for a PLTL formula ψ and a variable x,
ψ[x] is the formula obtained from ψ by replacing each proposition p with its x-version p[x].
A sentence is a formula where each relativized proposition p[x] occurs in the scope of trace
quantifier ∃x or ∀x, and each temporal modality occurs in the scope of a trace quantifier.

The known logics HyperLTLS, HyperLTLC, and simple HyperLTLS. A formula φ of
GHyperLTLS+C is in prenex form if it is of the form Q1x1. . . .Qnxn. ψ where ψ is quantifier-
free and Qi ∈ {∃, ∀} for all i ∈ [1, n]. The logics HyperLTLS and HyperLTLC introduced in [7]

FSTTCS 2024

14:8 Unifying Asynchronous Logics for Hyperproperties

correspond to syntactical fragments of GHyperLTLS+C where the formulas are in prenex form
and past temporal modalities are not used. Moreover, in HyperLTLS, the context modalities
are not allowed, while in HyperLTLC, the subscript Γ of every temporal modality must be
the empty set. Note that in HyperLTL [9], both the context modalities and the temporal
modalities where the subscript Γ is not empty are disallowed. Finally, we recall the simple
fragment of HyperLTLS [7], which is more expressive than HyperLTL and is parameterized
by a finite set Γ of LTL formulas. The quantifier-free formulas of simple HyperLTLS for the
parameter Γ are defined as Boolean combinations of formulas of the form ψ[x], where ψ is
an LTL formula, and formulas ψΓ defined by the following grammar:

ψΓ := ⊤ | p[x] | ¬ψΓ | ψΓ ∨ ψΓ | XΓψΓ | ψΓ UΓ ψΓ

Semantics of GHyperLTLS+C. Given a formula φ, a set of traces L, a trace assignment Π
over L such that Dom(Π) contains all the trace variables occurring free in φ, and a context
C ⊆ VAR, the satisfaction relation (Π, C) |=L φ, meaning that the assignment Π over L
satisfies φ under the context C, is inductively defined as follows (we again omit the semantics
of the Boolean connectives):

(Π, C) |=L p[x] ⇔ Π(x) = (σ, i) and p ∈ σ(i)
(Π, C) |=L ∃x. φ ⇔ for some σ ∈ L, (Π[x 7→ (σ, 0)], C) |=L φ

(Π, C) |=L ⟨C′⟩φ ⇔ (Π, C′) |=L φ

(Π, C) |=L XΓφ ⇔ (succ(Γ,C)(Π), C) |= φ

(Π, C) |=L YΓφ ⇔ pred(Γ,C)(Π) ̸= und and (pred(Γ,C)(Π), C) |=L φ

(Π, C) |=L φ1 UΓ φ2 ⇔ for some i ≥ 0: (succi
(Γ,C)(Π), C) |=L φ2 and

(succj
(Γ,C)(Π), C) |=L φ1 for all 0 ≤ j < i,

(Π, C) |=L φ1 SΓ φ2 ⇔ for some i ≥ 0 such that pred i
(Γ,C)(Π) ̸= und: (pred i

(Γ,C)(Π), C) |=L φ2

and (pred j
(Γ,C)(Π), C) |=L φ1 for all 0 ≤ j < i

For a sentence φ and a set of traces L, L is a model of φ, written L |= φ, if (Π∅,VAR) |=L φ
where Π∅ is the trace assignment with empty domain.

Fair model checking and standard model checking. For a fragment F of GHyperLTLS+C,
the fair model checking problem for F consists on deciding, given a fair finite Kripke structure
(K, F) and a sentence φ of F , whether L(K, F) |= φ. The previous problem is simply called
model checking problem whenever F coincides with the set of K-states. We consider fair
model checking just for technical convenience. For the decidable fragment of GHyperLTLS+C
introduced in Section 3.3, we will obtain the same complexity bounds for both fair model
checking and standard model checking (see Section 4).

3.3 The Simple Fragment of GHyperLTLS+C

We introduce now a fragment of GHyperLTLS+C, that we call simple GHyperLTLS+C, which
syntactically subsumes the simple fragment of HyperLTLS [7].

In order to define the syntax of simple GHyperLTLS+C, we first consider some shorthands,
obtained by a restricted use of the context modalities. The pointed existential quantifier ∃Px

and the pointed universal quantifier ∀Px are defined as follows: ∃Px. φ := ∃x. ⟨x⟩ F ⟨VAR⟩φ
and ∀Px. φ ::= ¬∃Px.¬φ. Thus the pointed quantifiers quantify on arbitrary pointed traces
over the given set of traces and set the global context for the given operand. Formally,
(Π, C) |=L ∃Px. φ if for some pointed trace (σ, i) with σ ∈ L, (Π[x 7→ (σ, i)],VAR) |=L φ.
For example, the sentence ∃x1. ∃Px2.

(∧
p∈AP G(p[x1] ↔ p[x2]) ∧ ⟨x2⟩Y⊤

)
asserts that there

are two traces σ1 and σ2 in the given model s.t. some proper suffix of σ2 coincides with σ1.

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:9

Simple GHyperLTLS+C is parameterized by a finite set Γ of PLTL formulas. The set of
formulas φΓ in the Γ-fragment is defined as follows:

φΓ := ⊤ | ⟨x⟩ψ[x] | ¬φΓ | φΓ ∨ φΓ | ∃Px. φΓ | XΓφΓ | YΓφΓ | φΓ UΓ φΓ | φΓ SΓ φΓ

where ψ is a PLTL formula. Note that ∃x. φ can be expressed as ∃Px. (φ ∧ ⟨x⟩¬Y⊤).
SHyperLTLΓ

S+C is the class of formulas obtained with the syntax above for a given Γ. Simple
GHyperLTLS+C is the union SHyperLTLΓ

S+C for all Γ. We say that a formula φ of simple
GHyperLTLS+C is singleton-free if for each subformula ⟨x⟩ψ[x] of φ, ψ is an atomic proposition.
Evidently, for an atomic proposition p, ⟨x⟩p[x] is equivalent to p[x].

In Section 4, we will show that (fair) model checking of simple GHyperLTLS+C is decidable.
Simple GHyperLTLS+C can be seen as a very large fragment of GHyperLTLS+C with a decidable
model checking problem which subsumes the simple fragment of HyperLTLS, is closed under
Boolean connectives, and allows an unrestricted nesting of temporal modalities. We conjecture
(without proof) that this is the largest such sub-class of GHyperLTLS+C because:
1. Model checking of HyperLTLS is already undecidable [7] for sentences whose relativized

temporal modalities exploit two distinct sets of LTL formulas and, in particular, for
two-variable quantifier alternation-free sentences of the form ∃x1. ∃x2. (φ ∧ GΓψ), where
ψ is a propositional formula, Γ is a nonempty set of propositions, and φ is a quantifier-free
formula which use only the temporal modalities F∅ and G∅.

2. Model checking of HyperLTLC is undecidable [8] even for the fragment consisting of two-
variable quantifier alternation-free sentences of the form ∃x1.∃x2. ψ0 ∧ ⟨x2⟩ F ⟨{x1, x2}⟩ψ,
where ψ0 and ψ are quantifier-free HyperLTL formulas (note that ψ0 is evaluated in the
global context ⟨{x1, x2}⟩).

The second undecidability result suggests to consider the extension of simple
GHyperLTLS+C where singleton-context subformulas of the form ⟨x⟩ψ[x] are replaced with
quantifier-free GHyperLTLS+C formulas with multiple variables of the form ⟨x⟩ξ, where ξ only
uses singleton contexts ⟨y⟩ and temporal modalities with subscript ∅. However, we can show
that the resulting logic is not more expressive than simple GHyperLTLS+C: a sentence in the
considered extension can be translated into an equivalent simple GHyperLTLS+C sentence
though with a non-elementary blowup (for details, see [4]).

3.4 Examples of Specifications in Simple GHyperLTLS+C

We consider some relevant properties which can be expressed in simple GHyperLTLS+C. Simple
GHyperLTLS+C subsumes the simple fragment of HyperLTLS, and this fragment (as shown
in [7]) can express relevant information-flow security properties for asynchronous frameworks
such as distributed systems or cryptographic protocols. An example is the asynchronous
variant of the noninterference property, as defined by Goguen and Meseguer [18], which
asserts that the observations of low users (users accessing only to public information) do not
change when all inputs of high users (users accessing secret information) are removed.

Observational Determinism

An important information-flow property is observational determinism, which states that
traces which have the same initial low inputs are indistinguishable to a low user. In an
asynchronous setting, a user cannot infer that a transition occurred if consecutive observations
remain unchanged. Thus, for instance, observational determinism with equivalence of traces

FSTTCS 2024

14:10 Unifying Asynchronous Logics for Hyperproperties

up to stuttering (as formulated in [36]) can be captured by the following simple HyperLTLS
sentence (where LI is the set of propositions describing inputs of low users and LO is set of
propositions describing outputs of low users):

∀x. ∀y.
∧

p∈LI

(p[x] ↔ p[y]) → GLO

∧
p∈LO

(p[x] ↔ p[y])

After-initialization Properties

Simple GHyperLTLS+C also allows to specify complex combinations of asynchronous and
synchronous constraints. As an example, we consider the property [21] that for an HyperLTL
sentence Q1x1. . . .Qnxn. ψ(x1, . . . , xn), the quantifier-free formula ψ(x1, . . . , xn) holds along
the traces bound by variables x1, . . . , xn after an initialization phase. Note that this phase
can take a different (and unbounded) number of steps on each trace. Let in be a proposition
characterizing the initialization phase. The formula PI(x) := ⟨x⟩(¬in[x] ∧ (¬Y⊤ ∨ Yin[x]))
is a simple GHyperLTLS+C formula that asserts that for the pointed trace (σ, i) assigned to
variable x, the position i is the first position of σ following the initialization phase. In other
words, i is the first position at which ¬in[] holds. Then, the previous requirement can be
expressed in simple GHyperLTLS+C as follows:

Q1x1. . . .Qnxn.
(
PI(x1) ◦1 . . .PI(xn) ◦n ψ(x1, . . . xn)

where ◦i is ∧ if Qi = ∃ and ◦i is → if Qi = ∀.

Global Promptness

As another meaningful example, we consider global promptness (in the style of Prompt
LTL [25]), where one need to check that there is a uniform bound on the response time
in all the traces of the system, that is, “there is k such that for every trace, each request
q is followed by a response p within k steps”. Global promptness is expressible in simple
GHyperLTLS+C as follows:

∃Px.
(
q[x] ∧ ∀Py. (q[y] → (¬p[x] U p[y]))

)
The previous sentence asserts that there is request (x in the formula) that has the longest
response. Note that y is quantified universally (so it can be instantiated to the same trace as
x), and that the use of until in (¬p[x] U p[y]))

)
implies that the response p[y] eventually

happens. Hence, all requests, including receive a response. Now, the pointed trace (σx, i)
assigned to x is such that σx(i) is a request (q[x]) and for every pointed trace (σy, j) in the
model such that σy(j) is a request (q[y]), it holds that (i) the request σy(j) is followed by a
response σy(j + k) for some k ≥ 0, and (ii) no response occurs in σx in the interval [i, i+ k).
Therefore, the response time h for x is the smallest h such that σx(i+ h) is a response is a
global bound on the response time.

Diagnosability

We now show that simple GHyperLTLS+C is also able to express diagnosability of systems [31,
5, 3] in a general asynchronous setting. In the diagnosis process, faults of a critical system
(referred as the plant) are handled by a dedicated module (the diagnoser) which runs in
parallel with the plant. The diagnoser analyzes the observable information from the plant –
made available by predefined sensors – and triggers suitable alarms in correspondence to

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:11

(typically unobservable) conditions of interest, called faults. An alarm condition specifies the
relation (delay) between a given diagnosis condition and the raising of an alarm. A plant
P is diagnosable with respect to a given alarm condition α, if there is a diagnoser D which
satisfies α when D runs in parallel with P.

The given set of propositions AP is partitioned into a set of observable propositions Obs
and a set of unobservable propositions Int. Two finite traces σ and σ′ are observationally
equivalent iff the projections of stfrObs(σ ·Pω) and stfrObs(σ′ · (P ′)ω) over Obs coincide, where
P is the last symbol of σ and similarly P ′ is the last symbol of σ′. Given a pointed trace (σ, i),
i is an observation point of σ if either i = 0, or i > 0 and σ(i− 1) ∩ Obs ̸= σ(i) ∩ Obs. Then
a plant P can be modeled as a finite Kripke structure ⟨S, S0, E, Lab⟩, where E is partitioned
into internal transitions (s, s′) where Lab(s) ∩ Obs = Lab(s′) ∩ Obs and observable transitions
where Lab(s) ∩ Obs ̸= Lab(s′) ∩ Obs. A diagnoser D is modelled as a finite deterministic
Kripke structure over AP′ ⊇ Obs (with AP′ ∩ Int = ∅). In the behavioural composition of the
plant P with D, the diagnoser only reacts to the observable transitions of the plant, that
is, every transition of the diagnoser is associated with an observable transition of the plant.
Simple GHyperLTLS+C can express diagnosability with finite delay, bounded delay, or exact
delay as defined in [5, 3]. Here, we focus for simplicity on finite delay diagnosability. Consider
a diagnosis condition specified by a PLTL formula β. A plant P is finite delay diagnosable
with respect to β whenever for every pointed trace (σ, i) of P such that (σ, i) |= β, there
exists an observation point k ≥ i of σ such that for all pointed traces (σ′, k′) of P so that k′
is an observation point of σ′ and σ[0, k] and σ′[0, k′] are observationally equivalent, it holds
that (σ′, i′) |= β for some i′ ≤ k′. Finite delay diagnosability w.r.t. β can be expressed in
simple GHyperLTLS+C as follows:

∀Px.
(

⟨x⟩β[x] → FObs
(
ObsPt(x) ∧ ∀Py. {(ObsPt(y) ∧ θObs(x, y)) → ⟨y⟩ O β[y]}

))
where

θObs(x, y) :=
∧

p∈Obs

HObs (p[x] ↔ p[y]) ∧ OObs(⟨x⟩¬Y⊤ ∧ ⟨y⟩¬Y⊤)

ObsPt(x) := ⟨x⟩(¬Y⊤ ∧
∨

p∈Obs

(p[x] ↔ ¬Yp[x])

Essentially ObsPt(x) determines the observation points and θObs captures that both traces
have the same history of observations. The main formula establishes that if x detects a failure
β then there is future observation point in x and for all other traces that are observationally
equivalent to x have also detected β.

3.5 Expressiveness Issues
In this section, we present some results and conjectures about the expressiveness comparison
among GHyperLTLS+C (which subsumes HyperLTLS and HyperLTLC), its simple fragment and
the logic HyperLTLS. We also consider the logics for linear-time hyperproperties based on the
equal-level predicate whose most powerful representative is S1S[E]. Recall that the first-order
fragment FO[<,E] of S1S[E] is already strictly more expressive than HyperLTL [16] and, unlike
S1S[E], its model-checking problem is decidable [11]. Moreover, we show that GHyperLTLS+C
and its simple fragment represent a unifying framework in the linear-time setting for specifying
both hyperproperties and the knowledge modalities of epistemic temporal logics under both
the synchronous and asynchronous perfect recall semantics.

Our expressiveness results about linear-time hyper logics can be summarized as follows.

FSTTCS 2024

14:12 Unifying Asynchronous Logics for Hyperproperties

▶ Theorem 3.2. The following hold:
GHyperLTLS+C is more expressive than HyperLTLS, simple GHyperLTLS+C, and FO[<,E].
Simple GHyperLTLS+C is more expressive than simple HyperLTLS.
Simple GHyperLTLS+C and HyperLTLS are expressively incomparable.
Simple GHyperLTLS+C and S1S[E] are expressively incomparable.

Proof. We first show that there are hyperproperties expressible in simple GHyperLTLS+C
but not in HyperLTLS and in S1S[E]. Given a sentence φ, the trace property denoted by
φ is the set of traces σ such that the singleton set of traces {σ} satisfies φ. It is known
that HyperLTLS and S1S[E] capture only regular trace properties [8]. In contrast simple
GHyperLTLS+C can express powerful non-regular trace properties. For example, consider the
so called suffix property over AP = {p}: a trace σ satisfies the suffix property if there exists
a proper suffix σk of σ for some k > 0 such that σk = σ. This non-regular trace property
can be expressed in SHyperLTL∅S+C as follows:

∀x1. ∀x2.
∧

p∈AP
G(p[x1] ↔ p[x2]) ∧ ∀x1. ∃Px2.

(∧
p∈AP

G(p[x1] ↔ p[x2]) ∧ ⟨x2⟩Y⊤
)

The first conjunct asserts that each model is a singleton, and the second conjunct requires
that for the unique trace σ in a model, there is k > 0 such that σ(i) = σ(i+ k) for all i ≥ 0.

Next, we observe that FO[<,E] can be easily translated into GHyperLTLS+C, since the
pointer quantifiers of GHyperLTLS+C correspond to the quantifiers of FO[<,E]. Moreover, the
predicate x ≤ x′ of FO[<,E], expressing that for the pointed traces (σ, i) and (σ′, i′) bound to
x and x′, σ = σ′ and i ≤ i′, can be easily captured in GHyperLTLS+C. This is also the case for
the equal-level predicate E(x, x′), which can be expressed as ⟨{x, x′}⟩O (⟨x⟩¬Y⊤∧⟨x′⟩¬Y⊤).

In Section 4 we show that model checking of simple GHyperLTLS+C is decidable. Thus,
since model checking of both HyperLTLS and S1S[E] are undecidable [7, 11] and GHyperLTLS+C
subsumes HyperLTLS, by the previous argumentation, the theorem follows. ◀

It remains an open question whether FO[<,E] is subsumed by simple GHyperLTLS+C.
We conjecture that neither HyperLTLC nor the fix-point calculus Hµ [21] (which captures
both HyperLTLC and HyperLTLS [8]) subsume simple GHyperLTLS+C. The motivation for our
conjecture is that Hµ sentences consist of a prefix of quantifiers followed by a quantifier-
free formula where quantifiers range over initial pointed traces (σ, 0). Thus, unlike simple
GHyperLTLS+C, Hµ cannot express requirements which relate at some point in time an
unbounded number of traces. Diagnosability (see Subsection 3.4) falls in this class of
requirements. It is known that the following property, which can be easily expressed in
simple GHyperLTLS+C, is not definable in HyperLTL [6]: for some i > 0, every trace in the
given set of traces does not satisfy proposition p at position i. We conjecture that similarly
to HyperLTL, such a property (and diagnosability as well) cannot be expressed in Hµ.

Epistemic Temporal Logic KLTL and its relation with GHyperLTLS+C. The logic
KLTL [23] is a well-known extension of LTL obtained by adding the unary knowledge modalit-
ies Ka, where a ranges over a finite set Agts of agents, interpreted under the synchronous or
asynchronous (perfect recall) semantics. The semantics is given with respect to an observation
map Obs : Agts 7→ 2AP that assigns to each agent a the set of propositions which agent a
can observe. Given two finite traces σ and σ′ and a ∈ Agts, σ and σ′ are synchronously
equivalent for agent a, written σ ∼sy

a σ′, if the projections of σ and σ′ over Obs(a) coincide.
The finite traces σ and σ′ are asynchronously equivalent for agent a, written σ ∼as

a σ′, if
the projections of stfrObs(a)(σ · Pω) and stfrObs(a)(σ′ · (P ′)ω) over Obs(a) coincide, where

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:13

P is the last symbol of σ and P ′ is the last symbol of σ′. For a set of traces L and a
pointed trace (σ, i) over L, the semantics of the knowledge modalities is as follows, where
∼a is ∼sy

a under the synchronous semantics, and ∼as
a otherwise: (σ, i) |=L,Obs Ka φ ⇔

for all pointed traces (σ′, i′) on L such that σ[0, i] ∼a σ
′[0, i′], (σ′, i′) |=L,Obs φ.

We say that L satisfies φ w.r.t. the observation map Obs, written L |=Obs φ, if for all
traces σ ∈ L, (σ, 0) |=L,Obs φ. The logic KLTL can be easily embedded into GHyperLTLS+C.
In particular, the following holds (for details, see [4]).

▶ Theorem 3.3. Given an observation map Obs and a KLTL formula ψ over AP, one can
construct in linear time a SHyperLTL∅S+C sentence φ∅ and a GHyperLTLS+C sentence φ such
that φ∅ is equivalent to ψ w.r.t. Obs under the synchronous semantics and φ is equivalent
to ψ w.r.t. Obs under the asynchronous semantics. Moreover, φ is a simple GHyperLTLS+C
sentence if ψ is in the single-agent fragment of KLTL.

4 Decidability of Model Checking against Simple GHyperLTLS+C

In this section, we show that (fair) model checking against simple GHyperLTLS+C is decidable.
We first prove the result for the fragment SHyperLTL∅S+C of simple GHyperLTLS+C by a
linear-time reduction to satisfiability of full Quantified Propositional Temporal Logic (QPTL,
for short) [32], where the latter extends PLTL by quantification over propositions. Then,
we show that (fair) model checking of simple GHyperLTLS+C can be reduced in time singly
exponential in the size of the formula to fair model checking of SHyperLTL∅S+C. We also
provide optimal complexity bounds for (fair) model checking the fragment SHyperLTL∅S+C in
terms of a parameter of the given formula called strong alternation depth. For this, we first
give similar optimal complexity bounds for satisfiability of QPTL.
The syntax of QPTL formulas φ over a finite set AP of atomic propositions is as follows:

φ ::= ⊤ | p | ¬φ | φ ∨ φ | Xφ | Yφ | φU φ | φ S φ | ∃p .φ

where p ∈ AP and ∃p is the propositional existential quantifier. A QPTL formula φ is a
sentence if each proposition p occurs in the scope of a quantifier binding p and each temporal
modality occurs in the scope of a quantifier. By introducing ∧ and the operators R (release,
dual of U), P (past release, dual of S) and ∀p (propositional universal quantifier), every
QPTL formula can be converted into an equivalent formula in negation normal form, where
negation only appears in front of atomic propositions. QPTL formulas are interpreted over
pointed traces (σ, i) over AP. All QPTL temporal operators have the same semantics as in
PLTL. The semantics of propositional quantification is as follows:

(σ, i) |= ∃p.φ ⇔ there is a trace σ′ such that σ =AP\{p} σ
′ and (σ′, i) |= φ

where σ =AP\{p} σ
′ means that the projections of σ and σ′ over AP \ {p} coincide. A

formula φ is satisfiable if (σ, 0) |= φ for some trace σ. We now give a generalization of the
standard notion of alternation depth between existential and universal quantifiers which
corresponds to the one given in [30] for HyperCTL∗. Our notion takes into account also the
occurrences of temporal modalities between quantifier occurrences, but the nesting depth
of temporal modalities is not considered (intuitively, it is collapsed to one). Formally, the
strong alternation depth sad(φ) of a QPTL formula φ in negation normal form is inductively
defined as follows, where an existential formula is a formula of the form ∃p. ψ, a universal
formula is of the form ∀p. ψ, and for a formula ψ, ψ̃ denotes the negation normal form of ¬ψ:

FSTTCS 2024

14:14 Unifying Asynchronous Logics for Hyperproperties

For φ = p and φ = ¬p for a given p ∈ AP: sad(φ) := 0.
For φ = φ1 ∨ φ2 and for φ = φ1 ∧ φ2: sad(φ) := max({sad(φ1), sad(φ2)}).
For φ = ∃p. φ1: if there is no universal sub-formula ∀ψ of φ1 such that sad(∀ψ) = sad(φ1),
then sad(φ) := sad(φ1). Otherwise, sad(φ) := sad(φ1) + 1.
For φ = ∀p. φ1: sad(φ) := sad(∃p. φ̃1).
For φ = Xφ1 or φ = Yφ1: sad(φ) := sad(φ1).
For φ = φ1 Uφ2 or φ = φ1 Sφ2: let h be the maximum over the strong alternation depths
of the universal and existential sub-formulas of φ1 and φ2 (the maximum of the empty set
is 0). If the following conditions are met, then sad(φ) := h; otherwise, sad(φ) := h+ 1:

there is no existential or universal sub-formula ψ of φ1 with sad(ψ) = h;
there is no universal sub-formula ψ of φ2 with sad(ψ) = h;
no existential formula ψ with sad(ψ) = h occurs in the left operand (resp., right operand)
of a sub-formula of φ2 of the form ψ1Oψ2, where O ∈ {U,S} (resp., O ∈ {R,P}).

Finally, for φ = φ1 R φ2 or φ = φ1 P φ2: sad(φ) := sad(φ̃).

For example, sad(∃p.(pU∃q.q)) = 0 and sad(∃p.(∃p.pUq)) = 1. The strong alternation depth
of an arbitrary QPTL formula corresponds to the one of its negation normal form. The strong
alternation depth of a simple GHyperLTLS+C formula is defined similarly but we replace
quantification over propositions with quantification over trace variables. For all n, h ∈ N,
Tower(h, n) denotes a tower of exponentials of height h and argument n: Tower(0, n) = n

and Tower(h+ 1, n) = 2Tower(h,n). Essnetially, the strong alternation depth corresponds to
the (unavoidable) power set construction related to the alternation of quantifiers to solve the
model-checking problem.

The following result represents an improved version of Theorem 6 in [6] where h-
EXPSPACE is the class of languages decided by deterministic Turing machines bounded in
space by functions of n in O(Tower(h, nc)) for some constant c ≥ 1. While the lower bound
directly follows from [32], the upper bound improves the result in [6], since there, occurrences
of temporal modalities immediately preceding propositional quantification always count as
additional alternations (for details, see [4]).

▶ Theorem 4.1. For all h ≥ 0, satisfiability of QPTL sentences with strong alternation depth
at most h is h-EXPSPACE-complete.

(Fair) Model checking against SHyperLTL∅
S+C. We provide now linear-time reductions

of (fair) model checking against SHyperLTL∅S+C to (and from) satisfiability of QPTL which
preserve the strong alternation depth. We start with the reduction of (fair) model checking
SHyperLTL∅S+C to QPTL satisfiability.

▶ Theorem 4.2. Given a fair finite Kripke structure (K, F) and a SHyperLTL∅S+C sentence
φ, one can construct in linear time a QPTL sentence ψ with the same strong alternation
depth as φ such that ψ is satisfiable if and only if L(K, F) |= φ.

Sketched proof. Let K = ⟨S, S0, E, Lab⟩. In the reduction of model checking (K, F) against
φ to QPTL satisfiability, we need to merge multiple traces into a unique trace where just
one position is considered at any time. An issue is that the hyper quantifiers range over
arbitrary pointed traces so that the positions of the different pointed traces in the current
trace assignment do not necessarily coincide (intuitively, the different pointed traces are
not aligned with respect to the relative current positions). However, we can solve this issue
because the offsets between the positions of the pointed traces in the current trace assignment
remain constant during the evaluation of the temporal modalities. In particular, assume that

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:15

(σ, i) is the first pointed trace selected by a hyper quantifier during the evaluation along a
path in the syntax tree of φ. We encode σ by keeping track also of the variable x to which
(σ, i) is bound and the F -fair path of K whose associated trace is σ. Let (σ′, i′) be another
pointed trace introduced by another hyper quantifier y during the evaluation of φ. If i′ < i,
we consider an encoding of σ′ which is similar to the previous encoding but we precede it
with a padding prefix of length i− i′ of the form {#−→y }i−i′ . The arrow → indicates that the
encoding is along the forward direction. Now, assume that i′ > i. In this case, the encoding
of σ′ is the merging of two encodings over disjoint sets of propositions: one along the forward
direction which encodes the suffix (σ′)i′−i and another one along the backward direction
which is of the form {#←−y } · ρ · {#←−y }ω, where ρ is a backward encoding of the reverse of
the prefix of σ′ of length i′ − i. In such a way, the encodings of the pointed traces later
introduced in the evaluation of φ are aligned with the reference pointed trace (σ, i). Since
the positions in the backward direction overlap some positions in the forward direction, in
the translation, we keep track of whether the current position refers to the forward or to the
backward direction. The details of the reduction are in [4]. ◀

By an adaptation of the known reduction of satisfiability of QPTL without past to model
checking of HyperCTL∗ [9], we obtain the following result (for details, see [4]).

▶ Theorem 4.3. Given a QPTL sentence ψ over AP, one can build in linear time a finite
Kripke structure KAP (depending only on AP) and a singleton-free SHyperLTL∅S+C sentence φ
having the same strong alternation depth as ψ such that ψ is satisfiable iff L(KAP) |= φ.

Hence, by Theorems 4.1–4.3, we obtain the following result.

▶ Corollary 4.4. For all h ≥ 0, (fair) model checking against SHyperLTL∅S+C sentences with
strong alternation depth at most h is h-EXPSPACE-complete.

Reduction to fair model checking against SHyperLTL∅
S+C. We solve the (fair) model

checking problem for simple GHyperLTLS+C by a reduction to fair model checking against
the fragment SHyperLTL∅S+C. Our reduction is exponential in the size of the given sentence
and is an adaptation of the reduction from model checking simple HyperLTLS to model
checking HyperLTL shown in [7]. As a preliminary step, we first show, by an easy adaptation
of the standard automata-theoretic approach for PLTL [34], that the problem for a simple
GHyperLTLS+C sentence φ can be reduced in exponential time to the fair model checking
problem against a singleton-free sentence in the fragment SHyperLTLΓ

S+C for some set Γ of
atomic propositions depending on φ. For details, see [4].

▶ Proposition 4.5. Given a simple GHyperLTLS+C sentence φ and a fair finite Kripke
structure (K, F) over AP, one can build in single exponential time in the size of φ, a fair finite
Kripke structure (K′, F ′) over an extension AP ′ of AP and a singleton-free SHyperLTLΓ′

S+C
sentence φ′ for some Γ′ ⊆ AP ′ such that L(K′, F ′) |= φ′ if and only if L(K, F) |= φ. Moreover,
φ′ has the same strong alternation depth as φ, |φ′| = O(|φ|), and |K′| = O(|K| ∗ 2O(|φ|)).

Let us fix a non-empty finite set Γ ⊆ AP of atomic propositions. We now show that fair
model checking of the singleton-free fragment of SHyperLTLΓ

S+C can be reduced in polynomial
time to fair model checking of SHyperLTL∅S+C. We observe that in the singleton-free fragment
of SHyperLTLΓ

S+C, when a pointed trace (σ, i) is selected by a pointed quantifier ∃Px, the
positions of σ which are visited during the evaluation of the temporal modalities are all in
the (Γ, ω)-stutter factorization of σ with the possible exception of the position i chosen by
∃Px. Thus, given a set L of traces and a special proposition # /∈ AP, we define an extension

FSTTCS 2024

14:16 Unifying Asynchronous Logics for Hyperproperties

stfr#
Γ (L) of the set stfrΓ(L) = {stfrΓ(σ) | σ ∈ L} as follows. Intuitively, we consider for each

trace σ ∈ L, its Γ-stutter trace stfrΓ(σ) and the extensions of stfrΓ(σ) which are obtained
by adding an extra position marked by proposition # (this extra position does not belong
to the (Γ, ω)-stutter factorization of σ). Formally, stfr#

Γ (L) is the smallest set containing
stfrΓ(L) and satisfying the following condition:

for each trace σ ∈ L with (Γ, ω)-stutter factorization {ℓk}k≥0 and position i ∈ (ℓk, ℓk+1)
for some k ≥ 0, the trace σ(ℓ0) . . . σ(ℓk) (σ(i) ∪ {#})σ(ℓk+1)σ(ℓk+2) . . . ∈ stfr#

Γ (L).

Given a singleton-free formula φ in SHyperLTLΓ
S+C, we denote by T#(φ) the formula in

SHyperLTL∅S+C obtained from φ by applying inductively the following transformations:
the Γ-relativized temporal modalities are replaced with their ∅-relativized counterparts;
each formula ∃Px. ϕ is replaced with ∃Px.

(
T#(ϕ)∧⟨x⟩(XG¬#[x]∧(Y⊤ → YH¬#[x]))

)
.

Intuitively, the formula T#(∃Px. ϕ) states that for the pointed trace (σ, i) selected by the
pointed quantifier, at most position i may be marked by the special proposition #. By the
semantics of the logics considered, the following holds.
▶ Remark 4.6. Given a singleton-free sentence φ of SHyperLTLΓ

S+C and a set L of traces, it
holds that L |= φ if and only if stfr#

Γ (L) |= T#(φ).
Let us fix now a fair finite Kripke structure (K, F). We first show that one can build

in polynomial time a finite Kripke structure (KΓ, FΓ) and a LTL formula θΓ such that
stfr#

Γ (L(K, F)) coincides with the traces of L(KΓ, FΓ) satisfying θΓ (details are in [4]).

▶ Proposition 4.7. Given ∅ ≠ Γ ⊆ AP and a fair finite Kripke structure (K, F) over AP, one
can construct in polynomial time a fair finite Kripke structure (KΓ, FΓ) and a LTL formula
θΓ such that stfr#

Γ (L(K, F)) is the set of traces σ ∈ L(KΓ, FΓ) so that σ |= θΓ.

Fix now a singleton-free sentence φ of SHyperLTLΓ
S+C. For the given fair finite Kripke

structure (K, F) over AP, let (KΓ, FΓ) and θΓ as in the statement of Proposition 4.7. We
consider the SHyperLTL∅S+C sentence T(φ) obtained from T#(φ) by inductively replacing
each subformula ∃Px. ϕ of T#(φ) with ∃Px. (T(ϕ) ∧ ⟨x⟩ O (¬Y⊤ ∧ θΓ[x])). In other terms,
we ensure that in T#(φ) the hyper quantification ranges over traces which satisfy the LTL
formula θΓ. By Remark 4.6 and Proposition 4.7, we obtain that L(K, F) |= φ if and only if
L(KΓ, FΓ) |= T(φ). Thus, together with Proposition 4.5, we obtain the following result.

▶ Theorem 4.8. The (fair) model checking problem against simple GHyperLTLS+C can be
reduced in singly exponential time to fair model checking against SHyperLTL∅S+C.

5 Conclusion

We have introduced a novel hyper logic GHyperLTLS+C which merges two known asynchronous
temporal logics for hyperproperties, namely stuttering HyperLTL and context HyperLTL. Even
though model checking of the resulting logic GHyperLTLS+C is undecidable, we have identified
a useful fragment, called simple GHyperLTLS+C, that has a decidable model checking, is strictly
more expressive than HyperLTL and than previously proposed fragments of asynchronous
temporal logics for hyperproperties with a decidable model checking. For the fragment
SHyperLTL∅S+C of simple GHyperLTLS+C, we have given optimal complexity bounds of (fair)
model checking in terms of the strong alternation depth of the given sentence. For arbitrary
sentences in simple GHyperLTLS+C, (fair) model checking is reduced in exponential time to
fair model checking of SHyperLTL∅S+C. It is worth noting that simple GHyperLTLS+C can
express non-regular trace properties over singleton sets of traces which are not definable
in S1S[E]. An intriguing open question is whether FO[<,E] can be embedded in simple

A. Bombardelli, L. Bozzelli, C. Sánchez, and S. Tonetta 14:17

GHyperLTLS+C. In a companion paper, we study asynchronous properties on finite traces
by adapting simple GHyperLTLS+C in prenex form to finite traces, and introduce practical
model-checking algorithms for useful fragments of this logic.

References
1 Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner, and César Sánchez.

A Temporal Logic for Asynchronous Hyperproperties. In Proc. 33rd CAV, volume 12759 of
LNCS 12759, pages 694–717. Springer, 2021. doi:10.1007/978-3-030-81685-8_33.

2 Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. Second-Order Hyper-
properties. In Proc. 35th CAV, volume 13965 of Lecture Notes in Computer Science, pages
309–332. Springer, 2023. doi:10.1007/978-3-031-37703-7_15.

3 Benjamin Bittner, Marco Bozzano, Alessandro Cimatti, Marco Gario, Stefano Tonetta, and
Viktoria Vozárová. Diagnosability of fair transition systems. Artif. Intell., 309:103725, 2022.
doi:10.1016/J.ARTINT.2022.103725.

4 Alberto Bombardelli, Laura Bozzelli, César Sánchez, and Stefano Tonetta. Unifying asyn-
chronous logics for hyperproperties, 2024. doi:10.48550/arXiv.2404.16778.

5 Marco Bozzano, Alessandro Cimatti, Marco Gario, and Stefano Tonetta. Formal Design of
Asynchronous Fault Detection and Identification Components using Temporal Epistemic Logic.
Log. Methods Comput. Sci., 11(4), 2015. doi:10.2168/LMCS-11(4:4)2015.

6 Laura Bozzelli, Bastien Maubert, and Spophie Pinchinat. Unifying Hyper and Epistemic
Temporal Logics. In Proc. 18th FoSSaCS, LNCS 9034, pages 167–182. Springer, 2015. doi:
10.1007/978-3-662-46678-0_11.

7 Laura Bozzelli, Adriano Peron, and César Sánchez. Asynchronous Extensions of HyperLTL.
In Proc. 36th LICS, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470583.

8 Laura Bozzelli, Adriano Peron, and César Sánchez. Expressiveness and Decidability of
Temporal Logics for Asynchronous Hyperproperties. In Proc. 33rd CONCUR, volume 243
of LIPIcs, pages 27:1–27:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPICS.CONCUR.2022.27.

9 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal Logics for Hyperproperties. In Proc. 3rd POST, LNCS
8414, pages 265–284. Springer, 2014. doi:10.1007/978-3-642-54792-8_15.

10 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010. doi:10.3233/JCS-2009-0393.

11 Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. The hierarchy of
hyperlogics. In Proc. 34th LICS, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785713.

12 Rayna Dimitrova, Bernd Finkbeiner, Máté M Kovács, Markus N. Rabe, and Helmut Seidl.
Model Checking Information Flow in Reactive Systems. In Proc. 13th VMCAI, LNCS 7148,
pages 169–185. Springer, 2012. doi:10.1007/978-3-642-27940-9_12.

13 E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “Not Never” revisited: on
branching versus linear time temporal logic. J. ACM, 33(1):151–178, 1986. doi:10.1145/
4904.4999.

14 Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about
knowledge, volume 4. MIT Press Cambridge, 1995. doi:10.7551/mitpress/5803.001.0001.

15 Bernd Finkbeiner and Christopher Hahn. Deciding Hyperproperties. In Proc. 27th CONCUR,
LIPIcs 59, pages 13:1–13:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.CONCUR.2016.13.

16 Bernd Finkbeiner and Martin Zimmermann. The first-order logic of hyperproperties. In Proc.
34th STACS, LIPIcs 66, pages 30:1–30:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.STACS.2017.30.

17 Michael J. Fischer and Richard E. Ladner. Propositional Dynamic Logic of Regular Programs.
J. Comput. Syst. Sci., 18(2):194–211, 1979. doi:10.1016/0022-0000(79)90046-1.

FSTTCS 2024

https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-031-37703-7_15
https://doi.org/10.1016/J.ARTINT.2022.103725
https://doi.org/10.48550/arXiv.2404.16778
https://doi.org/10.2168/LMCS-11(4:4)2015
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.4230/LIPICS.CONCUR.2022.27
https://doi.org/10.4230/LIPICS.CONCUR.2022.27
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1007/978-3-642-27940-9_12
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/4904.4999
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.1016/0022-0000(79)90046-1

14:18 Unifying Asynchronous Logics for Hyperproperties

18 Joseph A. Goguen and José Meseguer. Security Policies and Security Models. In IEEE
Symposium on Security and Privacy, pages 11–20. IEEE Computer Society, 1982. doi:
10.1109/SP.1982.10014.

19 Jens Oliver Gutsfeld, Arne Meier, Christoph Ohrem, and Jonni Virtema. Temporal Team
Semantics Revisited. In Proc. 37th LICS, pages 44:1–44:13. ACM, 2022. doi:10.1145/3531130.
3533360.

20 Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. Propositional dynamic logic
for hyperproperties. In Proc. 31st CONCUR, LIPIcs 171, pages 50:1–50:22. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.50.

21 Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. Automata and fixpoints for
asynchronous hyperproperties. Proc. ACM Program. Lang., 4(POPL), 2021. doi:10.1145/
3434319.

22 Joseph Y. Halpern and Kevin R. O’Neill. Secrecy in multiagent systems. ACM Trans. Inf.
Syst. Secur., 12(1), 2008. doi:10.1145/1410234.1410239.

23 Joseph Y. Halpern and Moshe Y. Vardi. The Complexity of Reasoning about Knowledge
and Time: Extended Abstract. In Proc. 18th STOC, pages 304–315. ACM, 1986. doi:
10.1145/12130.12161.

24 Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. Team Semantics for
the Specification and Verification of Hyperproperties. In Proc. 43rd MFCS, LIPIcs 117, pages
10:1–10:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.
MFCS.2018.10.

25 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness to promptness. Formal
Methods Syst. Des., 34(2):83–103, 2009. doi:10.1007/S10703-009-0067-Z.

26 Martin Lück. On the complexity of linear temporal logic with team semantics. Theor. Comput.
Sci., 837:1–25, 2020. doi:10.1016/j.tcs.2020.04.019.

27 Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems -
Specification. Springer-Verlag, 1992. doi:10.1007/978-1-4612-0931-7.

28 John D. McLean. A General Theory of Composition for a Class of "Possibilistic” Properties.
IEEE Trans. Software Eng., 22(1):53–67, 1996. doi:10.1109/32.481534.

29 Amir Pnueli. The Temporal Logic of Programs. In Proc. 18th FOCS, pages 46–57. IEEE
Computer Society, 1977. doi:10.1109/SFCS.1977.32.

30 Markus N. Rabe. A temporal logic approach to information-flow control. PhD thesis, Saarland
University, 2016. URL: http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/.

31 Meera Sampath, Raja Sengupta, Stephen Lafortune, Kazin Sinnamohideen, and Demosthenis
Teneketzis. Diagnosability of discrete-event systems. IEEE Trans. Autom. Control., 40(9):1555–
1575, 1995. doi:10.1109/9.412626.

32 A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The Complementation Problem for Büchi
Automata with Applications to Temporal Logic. Theoretical Computer Science, 49:217–237,
1987. doi:10.1016/0304-3975(87)90008-9.

33 Ron van der Meyden and Nikolay V. Shilov. Model checking knowledge and time in systems
with perfect recall (extended abstract). In Proc. 19th FSTTCS, LNCS 1738, pages 432–445.
Springer, 1999. doi:10.1007/3-540-46691-6_35.

34 Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Inf. Comput.,
115(1):1–37, 1994. doi:10.1006/inco.1994.1092.

35 Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen, and Fan Yang. Linear-Time
Temporal Logic with Team Semantics: Expressivity and Complexity. In Proc. 41st IARCS
FSTTCS, LIPIcs 213, pages 52:1–52:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.FSTTCS.2021.52.

36 Steve Zdancewic and Andrew C. Myers. Observational Determinism for Concurrent Program
Security. In Proc. 16th IEEE CSFW-16, pages 29–43. IEEE Computer Society, 2003. doi:
10.1109/CSFW.2003.1212703.

https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/3531130.3533360
https://doi.org/10.1145/3531130.3533360
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://doi.org/10.1145/3434319
https://doi.org/10.1145/3434319
https://doi.org/10.1145/1410234.1410239
https://doi.org/10.1145/12130.12161
https://doi.org/10.1145/12130.12161
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.1007/S10703-009-0067-Z
https://doi.org/10.1016/j.tcs.2020.04.019
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1109/32.481534
https://doi.org/10.1109/SFCS.1977.32
http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/
https://doi.org/10.1109/9.412626
https://doi.org/10.1016/0304-3975(87)90008-9
https://doi.org/10.1007/3-540-46691-6_35
https://doi.org/10.1006/inco.1994.1092
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.52
https://doi.org/10.1109/CSFW.2003.1212703
https://doi.org/10.1109/CSFW.2003.1212703

Promptness and Fairness in Muller LTL Formulas
Damien Busatto-Gaston #

Univ Paris Est Creteil, LACL, F-94010 Creteil, France

Youssouf Oualhadj #

Univ Paris Est Creteil, LACL, F-94010 Creteil, France
CNRS, ReLaX, IRL 2000, Siruseri, India

Léo Tible #

Univ Paris Est Creteil, LACL, F-94010 Creteil, France

Daniele Varacca #

Univ Paris Est Creteil, LACL, F-94010 Creteil, France

Abstract
In this paper we consider two different views of the model checking problem for the Linear Temporal
Logic (LTL). On the one hand, we consider the universal model checking problem for LTL, where
one asks that for a given system and a given formula all the runs of the system satisfy the formula.
On the other hand, the fair model checking problem for LTL asks that for a given system and a
given formula almost all the runs of the system satisfy the formula.

It was shown that these two problems have the same theoretical complexity, i.e. PSPACE-
complete. A less expensive fragment was identified in a previous work, namely the Muller fragment,
which consists of combinations of repeated reachability properties.

We consider prompt LTL formulas (pLTL), that extend LTL with an additional operator, i.e. the
prompt-eventually. This operator ensures the existence of a bound such that reachability properties
are satisfied within this bound. This extension comes at no cost since the model checking problem
remains PSPACE-complete.

We show that the corresponding Muller fragment of pLTL, with prompt repeated reachability
properties, enjoys similar computational improvements. Another feature of Muller formulas is that
the model checking problem becomes easier under the fairness assumption. This distinction is lost
in the prompt setting, as we show that the two problems are equivalent instance-wise. Subsequently,
we identify a new prefix independent fragment of pLTL for which the fair model checking problem is
less expensive than the universal one.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Model checking, Fairness, Temporal logics

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.15

Related Version Full Version: https://arxiv.org/abs/2204.13215v5 [4]

1 Introduction

Linear Temporal Logic (LTL) allows system designers to easily describe behavioral properties
of a system [17]. Its expressive power and convenience of use proved useful in many areas such
as system design and verification [8, 20], agent planning [5, 12], knowledge representation [11],
and control and synthesis [18, 19]. At the heart of these applications a fundamental formal
approach is always to be found, i.e. the model checking problem [22].

Universal and fair model checking. When trying to verify a system against a specification,
one usually models the system as directed graphs called Labeled Transition Systems (LTS). A
run of the system is an infinite path in the LTS. The standard approach to model checking
consists in verifying that all possible runs of the LTS comply with the specification. Some

© Damien Busatto-Gaston, Youssouf Oualhadj, Léo Tible, and Daniele Varacca;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 15; pp. 15:1–15:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:damien.busatto-gaston@u-pec.fr
https://orcid.org/0000-0002-7266-0927
mailto:youssouf.oualhadj@u-pec.fr
https://orcid.org/0000-0003-0200-4032
mailto:leo.tible@u-pec.fr
mailto:daniele.varacca@u-pec.fr
https://orcid.org/0009-0007-6500-2153
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.15
https://arxiv.org/abs/2204.13215v5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Promptness and Fairness in Muller LTL Formulas

a

Idle
b

Query

c

Grant
a

Idle
b

Query

c

Grant

1
2

1
2

2
3

3
4

1
3

1
4

Figure 1 A protocol modeled as an LTS on the left, and as a probabilistic system on the right.

systems may not satisfy the specification because of a few unlikely runs. To avoid discarding
these systems, the fair model checking approach gives a formal definition of small sets of
executions, and then verifies that the set of executions that do not satisfy the specification is
indeed small.

▶ Example 1. Consider the example on the left of Figure 1, this figure models a “toy
protocol” that could either be in an idle state, a querying state or granting state. Assume
now that the modeler wants to check that the protocol is not always idle. Without
any fairness assumption, this system will be rejected since it could always repeat the loop
on state a. Now, consider that this LTS is an abstracted view of the real protocol, which
is a probabilistic system modeled as a Markov chain on the right of Figure 1. Then, the
probability associated with the system remaining idle forever is 0. We can decide to ignore
this “unlikely” possibility and say that the system fairly satisfies the specification.

In general, a set of executions of a Markov chain is considered small if it has probability
0. It turns out that the precise probabilities that appear in the system have no impact on
which sets of executions have probability 0. Thus, we can assume without loss of generality
every probability distribution to be uniform, and represent systems as LTS instead.

LTL model checking. The complexity of verifying that every run of a system satisfies an
LTL formula is known to be a PSPACE-complete problem [22]. This complexity is measured
with respect to the size of the LTS and its specification, an LTL formula in our case. This high
complexity is due to the fact that one has to encode the specification as a non-deterministic
Büchi automaton, that can be exponential in size. This yields an exponential blow-up and
further techniques are required to keep the complexity within PSPACE, see e.g. [1].

In order to circumvent this blow-up, a natural idea is to identify fragments of LTL where
the model checking problem becomes easier to solve. In the seminal work of Sistla and
Clarke [22], they identified fragments where model checking is coNP-complete, which is more
amenable to implementation than PSPACE as it opens the door to symbolic approaches using
SAT-solvers. In particular they showed this complexity for the class of formulas that consists
of Boolean combinations of reachability properties. We also cite the fragment identified
by Muscholl et al. [16]. This fragment is obtained by prohibiting the use of reachability
operators (until) and restricting the formula to exclusively using next operators indexed by
a letter. They showed that the model checking problem is NP-complete for this fragment.
Finally we highlight the work of Emerson et al. [10] where they studied the fragment of
Muller formulas, i.e. the fragment combining repeated reachability (i.e. Büchi) properties.
They showed that model checking becomes coNP-complete for Muller formulas.

The PSPACE-complete complexity result also holds for the fair model checking problem [9].
However, for the fragment of Muller Formulas, while the universal model checking problem
becomes coNP-complete, the fair model checking problem can be solved by a polynomial
time algorithm presented in [21]. In other words, this fragment allows one to take advantage
of the fairness assumption to obtain tractable model checking procedures.

D. Busatto-Gaston, Y. Oualhadj, L. Tible, and D. Varacca 15:3

a

Msg
b

Ack

Figure 2 An LTS that satisfies a Muller formula but not its prompt variant, as per Example 3.

▶ Example 2. We go back to the example of Figure 1, and consider the following specification:
infinitely often a query is made and infinitely often a grant is granted. This
specification can be expressed as a conjunction of repeated reachability objectives, and thus
as a Muller formula.

Prompt Formulas. Consider the following natural specification for messaging protocols: All
along the execution, whenever a message is sent an acknowledgment is received
at a later step. A system may satisfy this specification in an unpractical way, where the
waiting time for the acknowledgment grows arbitrarily large along some executions. Prompt
LTL (pLTL), introduced by Kupferman et al. [15], can express a variant of this specification
that enforces an upper limit on waiting times: There exists a bound k such that, along
any execution, whenever a message is sent an acknowledgment is received within
the next k steps

▶ Example 3. Consider the LTS of Figure 2, and consider the specification asking that
either Msg or Ack is seen infinitely often. Clearly enough, any infinite path in the system
will satisfy this specification. Consider now the prompt variant of this specification, asking
for the existence of a bound k such that either Msg is seen infinitely often in a prompt way,
i.e. with a maximum of k steps in between successive occurrences, or Ack is seen infinitely
often in a prompt way. Now, for any bound k ≥ 0, the run ak+1bk+1 · · · does not satisfy this
specification. As such, the system does not satisfy the prompt specification.

The model checking problem for pLTL is also known to be PSPACE-complete [15]. This
is achieved through an efficient translation into LTL. The fair model checking problem has
the same complexity as well: although an explicit proof is not published, a careful inspection
of the proof of [15] shows that the translation into LTL formulas holds for the fair setting,
and thus it is sufficient to invoke the algorithm from [9] without further blowup.

In this paper we consider the Muller fragment of pLTL, that combines the prompt variants
of repeated reachability properties such as the one described in Example 3.

Contributions and organisation. Our original contributions are as follows.
We first show that universal model checking for the Muller fragment of pLTL is coNP-

complete. In order to show the membership, we had to depart from the already existing
reduction to classical LTL and develop new technical tools. Roughly speaking, we develop
combinatorial tools to represent runs and the reasons why they might not satisfy a prompt
repeated reachability property of bound k. If one thinks about a faulty run as an infinite
run containing a finite window of k consecutive faulty states, then pumping a cycle within
that window leads to a longer window of faulty states. Thus, this run can be used as a
generator for faulty runs of arbitrarily long bounds k′ > k, cf. Lem. 14. However, one has
to pay particular attention to the case where temporal operators are nested. In particular,
“pumping” these finite sequences of faulty runs is done according to a well chosen order,
cf. Section 3.1 for a formal definition of the notion of multi-pumpings.

FSTTCS 2024

15:4 Promptness and Fairness in Muller LTL Formulas

Table 1 Summary of our contributions on variants of the model checking problem.

Model checking non-prompt prompt
LTL Muller pLTL Muller initialized Muller

Universal PSPACE-c coNP-c PSPACE-c coNP
[22] [10] [15] coNP-c Thm. 26

Fair PSPACE-c PTIME PSPACE-c Thm. 9, 21 PTIME
[9] [21] [15] Thm. 28

In Section 3.2, we prove a small witness property. This notion, in some sense, efficiently
stores data about the existence of counter-examples, and results in a coNP procedure.

Our second contribution is to show that the fair model checking problem for this fragment
does not need to be studied separately as it coincides with the universal model checking
problem, cf. Thm. 21. Indeed we prove that if a system is a fair model for some pLTL Muller
formula, then every path must satisfy the formula.

Further, we note that prompt Muller formulas may sometimes require “too much” from a
system. In particular it is possible for a system to violate a specification during an initial
phase of the execution, but once it enters a steady regime the specification might be satisfied.

Our last contribution is to address this issue by introducing the initialized Muller fragment
for pLTL. This fragment expresses the fact that a system should satisfy a specification in
the long run, i.e. we ignore the finite initialization phase. This vision is inspired from prefix
independent specifications. Such specification are only interested in the asymptotic behavior
of a system. For instance, parity, Rabin, Street, Büchi are all ω-regular specifications whose
satisfaction is independent of any finite prefix [1]. Not only do these specifications seem to be
more suited to real life applications, they also in general enjoy nice properties, especially in the
probabilistic setting, cf. [6, 13, 14]. We also mention results [3, 7] where prefix independence
has been considered in a setting rather close to ours, and there again they exhibited well
behaved properties [2].

In our case, we show that the fair model checking of prompt Muller formulas is more
tractable on initialized formulas: the universal model checking is still in coNP, but there is a
polynomial time algorithm solving the fair model checking problem for this fragment.

Due to page limit, ommitted material can be found at https://arxiv.org/pdf/2204.
13215.

2 Preliminaries

Throughout the document we will use the following notations and conventions: AP is a finite
set of atomic propositions. For an arbitrary set E, E∗ is the set of finite sequences in E, and
Eω is the set of infinite sequences of E. When E is a finite set, |E| will denote its size.

Labelled Transition System. An LTS is a tuple S =
〈
S, sinit,T, lbl : S → 2AP〉

such that S is
a set of states, sinit ∈ S is an initial state, T ⊆ S × S is a set of transitions, and lbl : S → 2AP

is a labeling function mapping every state to the atomic propositions that hold on it.
For a state s ∈ S, the set of successors of s is Succ(s) = {t ∈ S | (s, t) ∈ T}. A

finite path in S is a finite sequence of states π = s0s1 · · · sk of length k + 1 such that
∀0 ≤ i ≤ k − 1, si+1 ∈ Succ(si). We denote by |π| the length of π, i.e. |π| = k + 1. A run in
S is an infinite sequence of states ρ = s0s1 · · · such that ∀i ≥ 0, si+1 ∈ Succ(si). Let ρ be a
run and let i ≥ 0, then ρ[i] = si, ρ[i..] = sisi+1 · · · , that is the infinite suffix starting in the

https://arxiv.org/pdf/2204.13215
https://arxiv.org/pdf/2204.13215

D. Busatto-Gaston, Y. Oualhadj, L. Tible, and D. Varacca 15:5

(i+ 1)th letter, and ρ[..i] is the prefix up to the (i)th position, that is ρ[..i] = s0 · · · si−1. For
i < j, ρ[i..j] is the finite path si · · · sj−1. We use the same notations for a finite path π, and
in this case π[i..] will be a finite suffix. The concatenation of a finite path π with a finite
path (or a run) π′ is denoted ππ′. A cycle (or a loop) is a finite path π = s0s1 · · · sk such
that s0 ∈ Succ(sk). In particular, the finite path πn repeats for n iterations the cycle π.

The set of states visited infinitely often by a run ρ is denoted Inf(ρ), and is formally
defined as {s ∈ S | ∀i ≥ 0, ∃j ≥ i, ρ[j] = s}. Finally, let FPaths (resp. Runs) be the set of all
the finite paths (resp. runs) in S, and let Runsinit be the set of all runs starting from sinit,
that is {ρ ∈ Runs | ρ[0] = sinit}. These notations assume that S is clear from context.

Linear Temporal Logic. An LTL formula φ is defined using the following grammar:

φ ::= α | ¬φ | φ ∨ φ | Xφ | φUφ , where α ranges over AP.

Runs ρ of S are evaluated inductively over LTL formulas as follows:

ρ |= α iff α ∈ lbl(ρ[0]) , ρ |= ¬φ iff ρ ̸|= φ ,

ρ |= φ ∨ ψ iff ρ |= φ or ρ |= ψ , ρ |= Xφ iff ρ[1..] |= φ ,

ρ |= φUψ iff ∃i ≥ 0, ρ[i..] |= ψ and ∀j < i, ρ[j..] |= φ ,

A state formula is a formula that only contains Boolean operators (¬ and ∨) and atomic
propositions, and is thus entirely evaluated on the first position of ρ. The operators X and U
are called temporal operators. We derive all standard Boolean operators from ¬ and ∨, let ⊤
and ⊥ be atomic propositions that are respectively always true and always false, and define a
few extra temporal operators as syntactic sugar: Fφ = ⊤ Uφ ,Gφ = ¬ F ¬φ ,F∞ φ = G Fφ.
The formula Fφ is true for any run where φ is eventually true, while the formula Gφ is true
for any run where φ always holds. The formula F∞ φ holds for any run where there exists
infinitely many positions from where φ is true, and is used to encode repeated reachability
properties, such as the winning condition of a Büchi automaton.

▶ Problem 4 (Universal model checking). Given an LTS S and an LTL formula φ, does
ρ |= φ hold true for every run ρ ∈ Runsinit? In this case, we write S |= φ.

The universal model checking problem is PSPACE-complete [22]. We express the complex-
ity of our model checking problems with respect to both the size of the formula |φ|, i.e. the num-
ber of operators that appear in φ, and the size of the system |S|, i.e. |T| + |S| maxs∈S |lbl(s)|.

Fairness in model checking. The fairness assumption presented in Example 1 relies on the
idea that a set of runs is sometimes considered quantitatively small. In particular, we use a
fair coin to view an LTS as a probabilistic system and derive a measure over paths. At each
state, a fair coin is flipped and the successor state is chosen accordingly. This coin flipping
procedure is assumed to be i.i.d. and it induces a natural probability measure over Runsinit.
In the fair model checking problem, one asks whether almost all the runs of an LTS satisfy a
given formula φ i.e. if a run obtained from the fair coin process satisfies φ with probability 1.

Formally, in order to build the probability measure over Runsinit, we use the classical
notion of cylinders. For π ∈ FPaths, the cylinder induced by π, denoted Cyl(π), is the set
{ρ ∈ Runs | π is a prefix of ρ}. Then, the probability of a run being in a cylinder PS(Cyl(π))
is defined as the probability that π is followed under the fair coin process. This measure can
be uniquely extended over the set Runsinit using Carathéodory’s extension theorem.

FSTTCS 2024

15:6 Promptness and Fairness in Muller LTL Formulas

▶ Problem 5 (Fair model checking). Given an LTS S and an LTL formula φ, does it holds
that PS({ρ ∈ Runsinit | ρ |= φ}) = 1? In this case, we will S |=AS φ, where |=AS stands for the
“almost sure” satisfaction of a formula.

Under the fairness assumption, a model checking procedure is intuitively allowed to ignore
unrealistic behaviours. However, this does not simplify the complexity of the problem, as it
has been shown that the fair model checking problem is also PSPACE-complete [9].

The Muller fragment of LTL. In an effort to obtain lower complexity results for the model
checking problem, subclasses of LTL formulas, defined by syntactic restrictions, have been
considered. In particular, an LTL formula φ is in the Muller fragment, denoted φ ∈ L(F∞),
if the repeated reachability operator F∞ is the only temporal operator that is allowed:

φ ::= α | ¬φ | φ ∨ φ | F∞ φ .

The key property of Muller formulas is that their satisfaction on a run ρ is entirely
determined by the initial state and Inf(ρ), the states visited infinitely often. This leads to
lower complexity results: in [21], it was shown that the universal model checking problem for
Muller formulas is coNP-complete, while the fair model checking problem can be solved in
polynomial time.

Promptness in LTL. A prompt LTL formula φ is defined according to the following
grammar [15]: φ ::= α | ¬α | φ ∨ φ | φ ∧ φ | Xφ | φUφ | φRφ | FP φ.

The main difference with LTL lies in the addition of FP. This operator states that φ has to
be satisfied eventually, but in a “prompt” fashion. The semantics of this operator are defined
with respect to a bound k ∈ N. For a given k, we write (ρ, k) |= FP φ if ∃i ≤ k, (ρ[i..], k) |= φ,
in contrast, recall that ρ |= Fφ if ∃i ∈ N, ρ[i..] |= φ. The other operators ignore the bound k

and are evaluated using the semantics of LTL defined earlier. Another difference with LTL is
that Boolean negations are not allowed in pLTL, as the negation of the newly added operator
FP is deemed unnatural from a modelling point of view. Therefore, the grammar explicitly
contains the conjunction ∧, and the release operator R, the dual of the until operator U,
previously expressed with negations.

▶ Problem 6 (Universal prompt model checking). Given an LTS S and a pLTL formula φ,
does there exists a bound k ∈ N such that for all ρ ∈ Runsinit in S, (ρ, k) |= φ? In this case,
we write S |= φ.

▶ Problem 7 (Fair prompt model checking). Given an LTS S and a pLTL formula φ, does
there exists a bound k ∈ N such that PS({ρ ∈ Runsinit | (ρ, k) |= φ}) = 1? In this case, we
write S |=AS φ.

The addition of the prompt eventually operator FP comes at no extra cost compared with
LTL, as both universal and fair model checking remain PSPACE-complete [15].

The prompt Muller fragment. In this work, we consider a subclass of pLTL formulas
inspired by Muller formulas. We define a new operator, F∞

P φ = G FP φ, as a prompt variant
of F∞. Thus, F∞

P φ holds true for a pair (ρ, k) if from every position i ∈ N, a position
j ∈ [i, i+ k] can be found so that (ρ[j..], k) |= φ. A pLTL fromula φ is in the prompt Muller
fragment, denoted φ ∈ L(F∞

P), if it is obtained by the following grammar:

φ ::= α | ¬α | φ ∨ φ | φ ∧ φ | F∞
P φ .

D. Busatto-Gaston, Y. Oualhadj, L. Tible, and D. Varacca 15:7

▶ Example 8. Consider the specifications mentioned in Example 3, that asks that either
Msg or Ack is seen infinitely often. This is expressed by the Muller formula F∞ Msg ∨ F∞ Ack.
The prompt variant is the formula F∞

P Msg ∨ F∞
P Ack, that intuitively asks that either Msg or

Ack are seen frequently, i.e. with a frequency that does not vanish along the execution.

3 Prompt Muller formulas

A remarkable property of the Muller fragment of LTL is that the satisfaction of a formula
only depends on the asymptotic behavior of the system. Therefore, as shown in [21] (a
corollary of a result from [10]), a system satisfies a Muller formula when every strongly
connected set satisfies the formula. This property yields an easier model checking problem,
namely coNP-complete. In this section we focus on the prompt Muller fragment of pLTL. We
show that the complexity of the model checking problem is again coNP-complete. However,
the techniques involved are different. Indeed, they do not follow from structural properties of
the transition system. We introduce combinatorial tools to establish a small witness property.
We further deepen our study by considering runs obtained under the fairness assumption. We
show that prompt Muller formulas describe the same set of runs with or without the fairness
assumption. This differs from (non-prompt) Muller formulas, where fairness allowed for more
tractable approaches. As a corollary, we obtain that fair model checking is as expensive as
universal model checking for the prompt Muller fragment.

Most of this section will be devoted to the proof of the following theorem:

▶ Theorem 9. The universal model checking problem for L(F∞
P) is coNP-complete.

3.1 Pumping a counter example
The first stepping stone to prove Thm. 9 is to define the notion of pumping. The idea is
quite simple: for a run ρ, a pumping of ρ is a run where some cycle of ρ has been repeated.
Formally, it is defined as follows.

▶ Definition 10 (Pumping). Given an LTS S and a run ρ ∈ Runs, a pumping of ρ is
a run ρ′ ∈ Runs such that there exist 0 ≤ i < j and l > 0, with ρ[i..j] a cycle, so that
ρ′ = ρ[..i]ρ[i..j]l−1ρ[i..].

If i = 0, then by convention ρ[..0] = ε is the empty path. In particular, ρ′ contains l copies
of the cycle ρ[i..j], as the last one is in ρ[i..]. We will say that a pumping is a 1-pumping,
as one cycle is iterated. A natural extension of this notion is to allow for the pumping of
several cycles in a run. Formally, we define a multi-pumping inductively as follows, with a
run being the only 0-pumping of itself.

▶ Definition 11 (Multi-pumping). Given an LTS S, a run ρ ∈ Runs, and n > 0, an n-
pumping of ρ is a run ρ′ ∈ Runs such that there exist 0 ≤ i < j, with ρ[i..j] a cycle, and there
is a (n− 1)-pumping ρ̃ of ρ[i..] and some l > 0 so that ρ′ = ρ[..i]ρ[i..j]l−1ρ̃. A multi-pumping
of ρ is a run ρ′ such that ρ′ is an n-pumping of ρ for some n ≥ 0.

The construction of an n-pumping allows for several cycles of a run to be pumped, but
only consecutively in a left-to-right fashion. This keeps the n individual pumpings ordered
and will allow for inductive proofs on n.

▶ Example 12. Consider the run ρ = ab(abcb)aadω represented if Figure 3, and note that
abcb is a cycle that can be pumped. Therefore, ρ′ = ab(abcb)4aadω is a 1-pumping of ρ. Now,
imagine that you also want to pump the cycle bc. By definition, further pumpings can only
occur starting from the last “copy” of the cycle abcb. In particular, ρ′′ = ab(abcb)3a(bc)3baadω

is a 2-pumping of ρ.

FSTTCS 2024

15:8 Promptness and Fairness in Muller LTL Formulas

ρ = a b a b c b a a d

ρ′ = a b a b c b a b c b a b c b a b c b a a d

ρ′′ = a b a b c b a b c b a b c b a b c b c b c b a a d

a

bc

d

Figure 3 Graphical representation of Example 12. Added loops are dashed.

The main property of multi-pumpings is that they preserve counter-examples, i.e. if a
run ρ does not satisfy a prompt Muller formula φ for some bound, then for the same bound
any multi-pumping of ρ will not satisfy φ either.

▶ Proposition 13. Given an lts S, a run ρ ∈ Runs, a multi-pumping ρ′ of ρ, a formula
φ ∈ L(F∞

P) and k ≥ 0, if (ρ, k) ̸|= φ, then (ρ′, k) ̸|= φ.

Proof scheme. Intuitively, if there is no nesting of F∞
P operator in the formula, then the

formula being false on (ρ, k) only depends on “faulty” windows of length k that can be
found in ρ. As a multi-pumping only extends faulty windows by duplicating cycles, any
faulty window in the original run also exists somewhere in the multi-pumping. If φ has some
nesting of F∞

P operators, then a window being faulty or not depends on the suffix run that
comes after it, which makes these considerations significantly more involved technically, as
pumping changes the suffix of our runs. A full proof is detailed in Appendix A. ◀

The second core property of multi-pumpings, derived from Prop. 13, is that they can
be used to generate counter-examples for arbitrarily large bounds k, as long as there is a
counter example for the bound N = |S| + 1. This is formalised as follows:

▶ Lemma 14. Let S =
〈
S, sinit,T, lbl : S → 2AP〉

be an LTS, φ ∈ L(F∞
P), and let N = |S| + 1.

If there is ρN ∈ Runsinit such that (ρN , N) ̸|= φ then for all k ≥ N , there is a multi-pumping
ρk of ρN such that (ρk, k) ̸|= φ.

Thus, in order to show that a system does not satisfy a prompt Muller formula for any
bound k, it is enough to exhibit a single run ρ so that (ρ,N) ̸|= φ. Indeed, (ρ, k) ̸|= φ is
immediate for every k ≤ N by definition of pLTL,1 and for any k > N , Lem. 14 can be used
to generate another run that will not satisfy φ either.

3.2 Canonical representation for witnesses
Let ρ be a run, and assume that (ρ,N) ̸|= φ. Such a run witnesses that S ̸|= φ, however,
it is an infinite sequence. Moreover, even with a finite representation of ρ, checking that
(ρ,N) ̸|= φ remains a challenging task. In this section, we introduce a new data structure,
that carries a representation of ρ and enough information to efficiently check that (ρ,N) ̸|= φ.

Given an LTL formula φ, let SubF(φ) be the set of all subformulas of φ.

▶ Definition 15. Given an LTS S =
〈
S, sinit,T, lbl : S → 2AP〉

, a run ρ ∈ Runs, a bound k ≥ 0
and a formula φ ∈ L(F∞

P), a witness for ρ with bound k is a function Wρ,k : SubF(φ) 7→ 2N
that maps subformulas to finite sets and satisfies the following conditions:

1 Intuitively, if a faulty window exists to falsify an F∞
P operator for some bound, then every shorter bound

admits the same faulty window to falsify F∞
P .

D. Busatto-Gaston, Y. Oualhadj, L. Tible, and D. Varacca 15:9

ρ = 0 i1 i2 i1 + k i3 i3 + k

a c
¬φ ¬c ¬a

¬ F∞
P b ¬b

F∞
P

∧

a ∨

F∞
P

b

c

Wρ,k := 7→ {0}

7→ {i1, . . . , i2,i2 + 1, . . . , i1 + k}

7→ {i2 + 1, . . . , i1 + k} 7→ {i1, . . . , i2}

7→ {i1, . . . , i2} 7→ {i1, . . . , i2}

7→ {i3, . . . , i3 + k}

Figure 4 Example of a run that does not satisfy a formula, and the corresponding witness.

∀i ∈ Wρ,k(α), α ̸∈ lbl(ρ[i])
∀i ∈ Wρ,k(¬α), α ∈ lbl(ρ[i])
∀i ∈ Wρ,k(ψ1 ∨ ψ2), i ∈ Wρ,k(ψ1) ∩ Wρ,k(ψ2)
∀i ∈ Wρ,k(ψ1 ∧ ψ2), i ∈ Wρ,k(ψ1) ∪ Wρ,k(ψ2)
∀i ∈ Wρ,k(F∞

P ψ), ∃i′ ≥ i, ∀i′ ≤ j ≤ i′ + k, j ∈ Wρ,k(ψ)
0 ∈ Wρ,k(φ)

Then, we denote max(Wρ,k) = max{i ∈ N | ψ ∈ SubF(φ) ∧ i ∈ W(ψ)}.

Intuitively, such a witness justifies that (ρ, k) ̸|= φ by describing for each subformula
a relevant set of positions from where they are falsified. In particular, 0 ∈ Wρ,k(φ) en-
sures (ρ, k) ̸|= φ. Then, the other conditions ensure that inductively, the positions falsify
subformulas up to reaching the atomic propositions.

▶ Example 16. Consider the run ρ of Figure 4, and the formula φ = F∞
P (a∧(F∞

P b∨c)). Some
of the labels of states in ρ are represented, so that a holds between positions i1 and i2 for
example. The syntactic tree of the formula is also represented in Figure 4, where every subtree
corresponds to a subformula. Here, for a given bound k, it is assumed that (ρ, k) ̸|= φ, and a
potential witness for ρ with bound k is described on the syntactic tree of φ: every subformula
is mapped to a set of positions. Then, one can check that every inductive rule of Def. 15
holds. For example, for the subformula a, no state ρ[i] such that i ∈ Wρ,k has label a, and for
the subformula a ∧ (F∞

P b ∨ c), it holds that Wρ,k(a ∧ (F∞
P b ∨ c)) = Wρ,k(a) ∪ Wρ,k(F∞

P b ∨ c).
Note how the witness describes which positions along ρ are relevant to prove where each
subformula is falsified, up to the position 0 at the root Wρ,k(φ), so that (ρ, k) ̸|= φ.

Note that Def. 15 does not require a witness W to be small in size, as it could:
map subformulas ψ1 and ψ2 to positions that are lost by intersection in W(ψ1 ∨ ψ2),
map ψ to more than the k positions needed to falsify W(F∞

P ψ), and
use positions that are needlessly far away, so that max(W) is too large.

We address all of these concerns by proving a small witness property, i.e., there is a path
ρ with (ρ, k) ̸|= φ iff there exists a small witness for some path ρ′ with bound k. Here, small
is meant as a polynomial upper bound on the size needed to represent W, i.e. |φ| max(W).

FSTTCS 2024

15:10 Promptness and Fairness in Muller LTL Formulas

▶ Proposition 17. Given a formula φ ∈ L(F∞
P), an LTS S =

〈
S, sinit,T, lbl : S → 2AP〉

and a
bound k ≥ 0, there exists a run ρ ∈ Runs such that (ρ, k) ̸|= φ iff there exists a finite path
π and a function W such that for all runs πρ′, W is a witness for πρ′ with bound k and
|π| ≤ (k + 1)|φ|(|S| + 1) and max(W) < |π|.

Proof scheme. First, we show that if S ̸|= φ then a witness W can be obtained from any
counter-example run based on the semantics of pLTL. Then, we show that if there exists
a witness then there is one of size polynomial in k and φ. This intuitively comes from the
fact that for the case F∞

P ψ, one window of length k falsifying ψ is sufficient, which prevents
the sets of indexes from needing to be large. Third, we show that given a witness, we can
construct a finite path π of length polynomial in the size of the witness and the size of the
system such that for any run ρ′, we have (πρ′, k) ̸|= φ. This holds because the states of ρ that
appear in the witness are enough to guarantee that the formula is falsified, and in-between
those states, we can always find a short path. This construction yields a polynomial bound
for max(W), and the proposition follows. ◀

Therefore, in order to show that a system does not satisfy φ, it is now enough to search
for a finite path π and a witness W of polynomial size, as described in Prop. 17.

3.3 Universal model checking
We are now ready to prove coNP membership, as a corollary of Prop. 17:

▶ Lemma 18. The universal model checking problem for L(F∞
P) is in coNP.

Proof. Given a formula φ and a system S =
〈
S, sinit,T, lbl : S → 2AP〉

, one can guess a witness
of polynomial size for the bound N = |S| + 1, and check that it is indeed a witness. The
check can be done bottom up on the formula and is clearly polynomial, as it consists of label
checks and standard set operations. Prop. 17 guarantees that the algorithm is correct, while
Lem. 14 ensures that checking the bound k equal to N is equivalent to checking every bound
in N. This non-deterministic procedure is detailed in Algorithm 1. ◀

In order to finish the proof of Thm. 9, we show the following lower complexity bound.

▶ Lemma 19. The universal model checking problem for L(F∞
P) is coNP-hard.

This result is obtained as a reduction from the Boolean satisfiability problem to model
checking, based on Figure 5. Somewhat classically, the reduction draws parallels between
executions in this system and valuations over the Boolean variables x1, . . . , xn, based on
which states xi are visited. The main novelty resides in the L(F∞

P) formula built in the
reduction: as we cannot use reachability properties directly, we need to carefully encode
“reaching xi” in a roundabout way, that uses F∞

P operators and the self-loops on each xi.

Proof. Let
l∧

i=1

3∨
j=1

li,j be an instance of 3-SAT over variables x1, . . . , xn, where every literal

li,j is either a variable x or its negation x̄. Consider the system S in Figure 5, and the L(F∞
P)

formula φ = φ1 ∨ φ2, obtained from φ1 =
n∨

i=1
(F∞

P ¬xi ∧ F∞
P ¬x̄i) and φ2 =

l∨
i=1

3∧
j=1

F∞
P ¬li,j .

We show that the 3-SAT formula is unsatisfiable (a coNP-hard problem) iff S |= φ.

D. Busatto-Gaston, Y. Oualhadj, L. Tible, and D. Varacca 15:11

Algorithm 1 coNP algorithm for the universal model checking of L(F∞
P).

Data: An lts S =
〈
S, sinit,T, lbl : S → 2AP〉

and a formula φ ∈ L(F∞
P)

Result: whether S ̸|= φ

GuessAndCheck (S, φ)
guess a finite path π such that |π| ≤ (|S| + 2)|φ|(|S| + 1);
guess a function W : SubF(φ) 7→ 2N such that max(W) < |π|;
return (0 ∈ W(φ))∧CheckW(S,W, φ, π);

CheckW(S,W, φ, π)
if φ = α then

return ∀i ∈ W(φ), a ̸∈ lbl(π[i]);
else if φ = ¬α then

return ∀i ∈ W(φ), a ∈ lbl(π[i]);
else if φ = ψ1 ∨ ψ2 then

return (W(φ) = W(ψ1) ∩ W(ψ2))∧CheckW(S,W, ψ1, π) ∧
CheckW(S,W, ψ2, π);

else if φ = ψ1 ∧ ψ2 then
return (W(φ) = W(ψ1) ∪ W(ψ2))∧CheckW(S,W, ψ1, π) ∧
CheckW(S,W, ψ2, π);

else if φ = F∞
P ψ then

return (∃0 ≤ i ≤ |π|, ∀i ≤ j ≤ i+ |S| + 1, j ∈ W(ψ))∧ CheckW(S,W, ψ, π);

sinit

x1

x1

x2

x2

· · ·

xn

xn

sn

Figure 5 System used in Lem. 19. States are labeled by their name, e.g. x1 ∈ lbl(x1).

Assume that for every valuation ν, ν ̸|=
l∧

i=1

3∨
j=1

li,j , and thus ν |=
l∨

i=1

3∧
j=1

l̄i,j . Every path

from sinit to sn can be seen as encoding a valuation ν, based on the visited variables. Then,

for every run ρ in S that reaches sn, we have ρ |=
l∨

i=1

3∧
j=1

F l̄i,j . Note that a run that does

not reach sn (and gets stuck in one of the loops) also satisfies this formula, as removing F
terms from conjunctions can only help. Moreover, we note that ρ |= F l̄i,j implies ρ |= G ¬li,j ,
as a run of S cannot visit both a variable and its negation. Then, by definition of F∞

P as
G FP, we have that ρ |= G ¬li,j is equivalent with (ρ, 0) |= F∞

P ¬li,j . Therefore, for every
run ρ, (ρ, 0) |= φ2. This implies that there exists a k such that every run satisfies φ1 ∨ φ2,
i.e. S |= φ.

Assume now that S |= φ, i.e. there is a k so that every run satisfies φ1 ∨φ2. Let R be the
set of runs that go through S by iterating every self-loop on the states xi or x̄i exactly k + 1
times before continuing, until sn is reached. Then, for every run ρ ∈ R and every variable x,
we have that either (ρ, k) |= F∞

P ¬x holds (if x is not visited), or (ρ, k) |= F∞
P ¬x̄ holds (if x̄ is

FSTTCS 2024

15:12 Promptness and Fairness in Muller LTL Formulas

not visited). This is an exclusive either/or because every state that is seen is iterated k + 1
times, so that (ρ, k) ̸|= φ1. It follows that the runs in R must all satisfy φ2. Since a run in R

satisfies F∞
P ¬x iff it satisfies F x̄, every run in R satisfies

l∨
i=1

3∧
j=1

F l̄i,j . Then, if we interpret

the runs in R as valuations ν based on which variables are visited, we have ν |=
l∨

i=1

3∧
j=1

l̄i,j

for every valuations ν, so that the 3-SAT formula
l∧

i=1

3∨
j=1

li,j is unsatisfiable. ◀

3.4 Expressiveness under the fairness assumption
Let us focus our attention on the expressiveness of the prompt Muller fragment under fairness.
It turns out that for this fragment, assuming fairness does not change the interpretation of a
formula. In particular, the complexity of the model checking problem remains the same.

Indeed, we note the following property of L(F∞
P), obtained as a corollary of Prop. 17:

▶ Corollary 20. Given a formula φ ∈ L(F∞
P), an LTS S and a bound k ≥ 0, if there exists a

run ρ so that (ρ, k) ̸|= φ, then there is a finite path π such that for all ρ′ ∈ Cyl(π), (ρ′, k) ̸|= φ.

Thus, S ̸|= φ implies for any choice of k the existence of an entire cylinder Cyl(π) of
counterexamples for the bound k. The cylinder of a finite path must always have non-
zero measure under PS , by definition of our coin-toss process. As such, S ̸|= φ implies
PS({ρ) ∈ Runsinit | (ρ, k) |= φ}) < 1 for every k, so that S ̸|=AS φ. This proves the following
theorem, as the reverse implication holds by definition.

▶ Theorem 21. For all LTS S and every formula φ ∈ L(F∞
P), S |= φ iff S |=AS φ.

Let us give some alternative intuition as to why the complexity drop between the universal
and fair model checking problems for Muller formulas does not extend under promptness:

The study of an L(F∞) formula in a system under the fairness assumption is based on
the core principle that the only thing that matters is the “bottom SCC” the run ends up
in, as Inf(ρ) is almost always equal to such a component. A PTIME algorithm is derived
from this principle [21]. Crucially, this approach exploits the fact that a formula of the
shape F∞ φ is prefix independent, in the sense that any deviation made within a finite
prefix of a run ρ will not change Inf(ρ), and thus will not change its satisfaction of F∞ φ.
In the prompt setting however, a formula of the shape F∞

P φ is clearly not prefix inde-
pendent, as its satisfaction for a bound k is impacted by whether finite prefixes contain
faulty windows of length k or not. Thus, the fairness assumption does not allow us to
restrict the analysis of prompt Muller formulas to bottom SCCs in the same way.

4 Initialized systems

We now reflect on the expressiveness of the prompt Muller fragment. The motivation to
replace F∞ φ by F∞

P φ was to reinforce the guarantees obtained by executions of the system:
By enforcing a strong notion of regularity in the occurrences of φ, we prevent a good event
φ from being seen infinitely often but with a vanishing frequency. Indeed, requiring F∞

P φ is
sufficient to imply a frequency for φ of at least 1/k for some k.

We now argue that this requirement may be “too strong”, as some systems may be
rejected despite enforcing this kind of non-zero frequency guarantee on the occurrences of φ.

D. Busatto-Gaston, Y. Oualhadj, L. Tible, and D. Varacca 15:13

▶ Example 22. Consider the system presented on the left in Figure 6, of atomic propositions
a and b, and the prompt Muller formula φ = F∞

P A ∨ F∞
P B. Despite satisfying the Muller

formula F∞ A ∨ F∞ B (every run will either stay in a forever or jump to b and stay there
forever), this system does not satisfy the prompt variant φ. However, in every run either a
or b happen with a long-term average frequency of 1. the key difference here, once again, is
that the long-term average frequency of an event is a prefix independent notion, unlike φ.

4.1 Towards prefix independence
We argue that being unaffected by the addition of a prefix is a desirable property for a
specification: in practice, a system might require a “guarantee-less” initialization period
before reaching a steady regime where stronger conditions can be enforced. We introduce a
new fragment of pLTL, capturing specifications that allow the system to pass the initialization
period while enforcing prompt Muller guarantees on the regularity of good events eventually.
The intuition for this construction is based on the following reasoning:

Coro. 20 means that the satisfaction of a formula in L(F∞
P) can always be proven false

because of some finite path. From that point of view, prompt Muller formulas behave like
safety conditions Gα, as opposed to Muller formulas that behave like repeated reachability
objectives. This is the crux of what prevents prefix independence.
In order to allow a safety formula Gα to accommodate for an initialisation period in the
system, a natural idea is to replace it with the formula F Gα, that is prefix independent.
Following this intuition, we introduce the initialized variant of L(F∞

P), that contains
formulas of the shape Fφ, with φ ∈ L(F∞

P).

▶ Example 23. Consider again the system on the left of Figure 6, and the prompt Muller
formula φ = F∞

P A∨ F∞
P B. Despite not satisfying φ, this system does satisfy Fφ, as in every

run ρ either G a or G b eventually holds, and thus (ρ, 0) |= F(F∞
P A ∨ F∞

P B). Consider now
the system on the right of Figure 6. There, the run abaabbaaabbb . . . witnesses that neither
φ nor Fφ are satisfied.

We must finally address a last point of detail. Even without promptness, a Muller formula
in L(F∞) may not be prefix-independent: indeed, a state formula with no F∞ operators
solely depends on the initial state. In more general terms, the presence of atomic propositions
outside of the scope of an F∞ prevents prefix independence, and must be forbidden. This is
without loss of generality for L(F∞) formulas, as replacing such atomic propositions by true
or false depending on the initial state of the system can be done as a pre-processing step [23].

Formally, we introduce L+(F∞
P) as formulas where every atomic proposition is in the

scope of an F∞
P operator. They are generated by the nonterminal φ in the following grammar:

φ ::=φ ∨ φ | φ ∧ φ | F∞
P ψ

ψ ::=α | ¬α | ψ ∨ ψ | ψ ∧ ψ | F∞
P ψ .

For example, F∞
P A belongs to L+(F∞

P), but B ∨ F∞
P A does not.

a

A

b

B

a

A

b

B

Figure 6 Two systems that satisfy F∞ A∨F∞ B. The one on the left does not satisfy F∞
P A∨F∞

P B

unless its “initialization period” is ignored. The rightmost one does not satisfy it either ways.

FSTTCS 2024

15:14 Promptness and Fairness in Muller LTL Formulas

▶ Definition 24. The initialized fragment F
(
L+(F∞

P)
)

is defined as {Fφ | φ ∈ L+(F∞
P)}.

This fragment enjoys the property of prefix independence:

▶ Proposition 25. If ρ is a run and Fφ is a formula in F
(
L+(F∞

P)
)
, then for any k ≥ 0

and i ≥ 0, (ρ, k) |= Fφ iff (ρ[i..], k) |= Fφ.

4.2 Universal model checking
In this section, we show that the universal model checking problem remains in coNP for
F

(
L+(F∞

P)
)
, by adapting the techniques we developed for L(F∞

P). However, we note that
the lower bound is lost in the process, as the reduction detailed in Lemma 19 does not play
well with Fφ formulas.

▶ Theorem 26. The universal model checking problem for F
(
L+(F∞

P)
)

is in coNP.

The idea is to make use of the same pumpings and witness structures as Section 3 to build
a short witness for S ̸|= Fφ, while taking into account the fact that only long-term behaviours
of the system should matter. This means that a “faulty window” where a subformula ψ

does not hold can only serve as counter-example to F(F∞
P ψ) if it can be reached after an

arbitrarily long prefix. Intuitively, faulty windows that are reached infinitely often along a
run fit that description, as any suffix of the run will eventually reach them. We show that
these are the only witnesses that we need, and that they remain small in size:

▶ Proposition 27. Given an LTS S =
〈
S, sinit,T, lbl : S → 2AP〉

, a formula Fφ ∈ F(L+(F∞
P))

and a bound k ≥ 0, there exists a run ρ ∈ Runs such that (ρ, k) ̸|= Fφ iff there exists a
finite path π and a function W such that for all run πρ′, W is a witness for πρ′ and k,
|π| ≤ (k + 1)|φ|(|S| + 1), max(W) < |π| and π[0] is reachable from ρ[0] and π[|π| − 1].

This statement is very close to Prop. 17, the only difference is the last condition, that is
π[0] is reachable from ρ[0] and π[|π| − 1], so that the finite path π can be repeated infinitely
often, as part of a lasso π0(ππ1)ω for some finite paths π0 and π1.

Proof scheme. If (ρ, k) ̸|= Fφ, then for every suffix of ρ we can apply Prop. 17 to get a
short witness of (ρ[i..], k) ̸|= φ. Note that these paths π and mappings W are all bounded in
size by the same bounds on k and |φ|, so that there are finitely many of them. Eventually,
we must visit the same state at two positions i and j far enough apart to enforce that the
witness path π for (ρ[i..], k) ̸|= φ ends before j. Thus, we get π[0] is reachable from ρ[0] and
π[|π| − 1].

The converse direction of the proof is straight-forward, as we can deduce from such a
lasso-shaped witness run that (ρ[i..], k) ̸|= φ for infinitely many positions i. This implies
(ρ, k) ̸|= Fφ by prefix-independence. ◀

The proof of Thm. 26 is then obtained from Prop. 27. More precisely, we use a variation
of Algorithm 1, that guesses π and W and adds the extra reachability checks of Prop. 27 over
the end-points of π. Notice that this extra step is polynomial and therefore is not detrimental
to membership in coNP.

4.3 Fair model checking
Going back to the bigger picture, we recall that in the non-prompt setting a polynomial
procedure is obtained for the Muller fragment under fairness. This is based on exploiting
the prefix-independence property on the one side, and the propensity of almost all runs to

D. Busatto-Gaston, Y. Oualhadj, L. Tible, and D. Varacca 15:15

maximise the strongly connected sets of states they visit infinitely often on the other side.
As such, only runs visiting bottom SCCs (maximal strongly connected sets of states almost
always reached by runs in probabilistic systems) are relevant under fairness.

The intuition is then that every such SCC is either entirely winning for a prefix-independent
L(F∞) objective φ, regardless of what initial state is picked, or entirely losing. Moreover,
checking this fact for a given bottom SCC and a given formula is straightforward, as φ
satisfaction is entirely determined by Inf(ρ) on a given run ρ, and Inf(ρ) is almost always
equal to the full bottom SCC by fairness.

For a F
(
L+(F∞

P)
)

formula, we follow the same recipe: bottom SCCs will also be eventually
reached, and will either be entirely winning for a given φ, or entirely losing for φ. The main
difference brought by promptness is that we can no longer simply rely on fairness to make
sure that every state of the SCC is visited infinitely often: in order to guarantee prompt
visits, we must assume the fair coin to be adversarial and make sure that every state of the
SCC will be visited shortly no matter what. This results in a kind of attractor computation
to check if a bottom SCC is winning or not, that can then be paired with the algorithm from
L(F∞). This is the key to proving that indeed, prefix independence makes the fair model
checking problem for F

(
L+(F∞

P)
)

polynomial.

▶ Theorem 28. The fair model checking problem for F
(
L+(F∞

P)
)

is in PTIME.

5 Discussion and conclusion

In this section we discuss our results, some immediate corollaries and future work. The
first point we address might seem technical at a first glance, but we believe that it is worth
mentioning; it concerns the quantification of the bound k used in the semantics of pLTL.

Strong against weak semantics. Recall that pLTL formulas are evaluated with respect to
a uniform bound k, i.e. for a system to be a model to some formula, all its runs are evaluated
using the same bound k. Let us refer to this semantics as strong. One could want to relax this
semantics and define the following semantics: A system S satisfies a formula φ if for every
run ρ there exists a bound k such that (ρ, k) |= φ. Let us call this semantics weak. Indeed
one could argue that the strong semantics is too conservative and that a system designer
might be interested in a more permissive behavior. This raises the following questions: are
both semantics equivalent? Obviously, the strong semantics always implies the weak one.
However, the converse does not hold. To separate these two semantics, consider the system
depicted on the left of Figure 6, and the formula φ = F∞

P A ∨ F∞
P B. This system satisfies the

formula φ with respect to the weak semantics but not the strong one. This raises in turn
another natural question: Are these two semantics equivalent in some fragment? We answer
positively to this question by noticing that they collapse for formulas in F(L+(F∞

P)). This
follows from the following observation:

The weak and strong semantics are equivalent for formulas in φ ∈ L(F∞
P) if they are

evaluated over a strongly connected LTS .

Indeed, if for every k there is a counter-example run ρk so that (ρk, k) ̸|= φ, then by our
small witness property (Prop. 17) we can get paths π1, π2, . . . that are sufficient to falsify
φ for k = 1, 2, . . . respectively. It is then sufficient to chain them one after the other – by
exploiting the strongly connected assumption – to construct a single path ρ that falsifies
every bound k, as required by the weak semantics. As a consequence, both semantics are
equivalent in our prefix independent fragment F

(
L+(F∞

P)
)
, where satisfaction for a run ρ is

determined by the long-term behavior of ρ, i.e. the suffixes that stay confined to the strongly
connected set Inf(ρ).

FSTTCS 2024

15:16 Promptness and Fairness in Muller LTL Formulas

Probabilistic model checking. The last point we want to discuss is the complexity of
quantitative verification for the fragment F(L+(F∞

P)). Once again, our fragment behaves
well. We argue that one can compute the satisfaction probability of a system with respect to
a formula in F(L+(F∞

P)) in polynomial time. This nice property follows from the following
zero-one-law for the bottom SCCs of an LTS S:

Let B be a bottom SCC and φ be a formula in L+(F∞
P), then either almost all the runs of B

satisfy φ or almost no run of B does.

This is a consequence of Coro. 20, as any finite path that witnesses the falsification of φ in
a bottom SCC will eventually be visited with probability 1. Now to conclude, one has to
notice that computing the probability of reaching B can be done in PTIME, and use the
prefix independence of F(L+(F∞

P)).

Future work. Finally, we hint at some future directions. The fragment F(L+(F∞
P)) turned

out to behave well in the presence of fairness, leading to a tractable model checking procedure.
While, this is an improvement over the coNP procedure for the universal problem, we are still
missing a matching lower bound to separate the two formally. A more ambitious perspective
is the study of the controller synthesis problem induced by these fragments in 2-player games.

References
1 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
2 Thomas Brihaye, Florent Delgrange, Youssouf Oualhadj, and Mickael Randour. Life is random,

time is not: Markov decision processes with window objectives. Log. Methods Comput. Sci.,
16(4), 2020. URL: https://lmcs.episciences.org/6975.

3 Véronique Bruyère, Quentin Hautem, and Mickael Randour. Window parity games: an
alternative approach toward parity games with time bounds. In Domenico Cantone and
Giorgio Delzanno, editors, Proceedings of the Seventh International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2016, Catania, Italy, 14-16 September
2016, volume 226 of EPTCS, pages 135–148, 2016. doi:10.4204/EPTCS.226.10.

4 Damien Busatto-Gaston, Youssouf Oualhadj, Léo Tible, and Daniele Varacca. Fairness and
promptness in muller formulas, 2024. arXiv:2204.13215.

5 Diego Calvanese, Giuseppe De Giacomo, and Moshe Y. Vardi. Reasoning about actions and
planning in LTL action theories. In Dieter Fensel, Fausto Giunchiglia, Deborah L. McGuinness,
and Mary-Anne Williams, editors, Proceedings of the Eights International Conference on
Principles and Knowledge Representation and Reasoning (KR-02), Toulouse, France, April
22-25, 2002, pages 593–602. Morgan Kaufmann, 2002.

6 Krishnendu Chatterjee. Concurrent games with tail objectives. Theor. Comput. Sci., 388(1-
3):181–198, 2007. doi:10.1016/j.tcs.2007.07.047.

7 Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin. Looking
at mean-payoff and total-payoff through windows. Inf. Comput., 242:25–52, 2015. doi:
10.1016/j.ic.2015.03.010.

8 Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst., 8(2):244–263, 1986. doi:10.1145/5397.5399.

9 Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic verification. J.
ACM, 42(4):857–907, 1995. doi:10.1145/210332.210339.

10 E. Allen Emerson and Chin-Laung Lei. Modalities for model checking: Branching time
logic strikes back. Sci. Comput. Program., 8(3):275–306, 1987. doi:10.1016/0167-6423(87)
90036-0.

11 Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning About
Knowledge. MIT Press, Cambridge, MA, USA, 2003.

https://lmcs.episciences.org/6975
https://doi.org/10.4204/EPTCS.226.10
https://arxiv.org/abs/2204.13215
https://doi.org/10.1016/j.tcs.2007.07.047
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/210332.210339
https://doi.org/10.1016/0167-6423(87)90036-0
https://doi.org/10.1016/0167-6423(87)90036-0

D. Busatto-Gaston, Y. Oualhadj, L. Tible, and D. Varacca 15:17

12 Giuseppe De Giacomo and Moshe Y. Vardi. Automata-theoretic approach to planning for
temporally extended goals. In Susanne Biundo and Maria Fox, editors, Recent Advances in
AI Planning, 5th European Conference on Planning, ECP’99, Durham, UK, September 8-10,
1999, Proceedings, volume 1809 of Lecture Notes in Computer Science, pages 226–238. Springer,
1999. doi:10.1007/10720246_18.

13 Hugo Gimbert and Florian Horn. Solving simple stochastic tail games. In Moses Charikar,
editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 847–862. SIAM, 2010. doi:
10.1137/1.9781611973075.69.

14 Hugo Gimbert and Edon Kelmendi. Two-player perfect-information shift-invariant submixing
stochastic games are half-positional. CoRR, abs/1401.6575, 2014. arXiv:1401.6575.

15 Orna Kupferman, Nir Piterman, and Moshe Vardi. From liveness to promptness. Formal
Methods in System Design, 34, April 2009. doi:10.1007/s10703-009-0067-z.

16 Anca Muscholl and Igor Walukiewicz. An np-complete fragment of LTL. Int. J. Found.
Comput. Sci., 16(4):743–753, 2005. doi:10.1142/S0129054105003261.

17 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pages 46–57, 1977. doi:10.1109/SFCS.1977.32.

18 Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Conference Record of
the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas,
USA, January 11-13, 1989, pages 179–190. ACM Press, 1989. doi:10.1145/75277.75293.

19 Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive module. In
Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona Ronchi Della Rocca, editors,
Automata, Languages and Programming, 16th International Colloquium, ICALP89, Stresa,
Italy, July 11-15, 1989, Proceedings, volume 372 of Lecture Notes in Computer Science, pages
652–671. Springer, 1989. doi:10.1007/BFb0035790.

20 Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems
in CESAR. In Mariangiola Dezani-Ciancaglini and Ugo Montanari, editors, International
Symposium on Programming, 5th Colloquium, Torino, Italy, April 6-8, 1982, Proceedings,
volume 137 of Lecture Notes in Computer Science, pages 337–351. Springer, 1982. doi:
10.1007/3-540-11494-7_22.

21 Matthias Schmalz, Hagen Völzer, and Daniele Varacca. Model checking almost all paths can
be less expensive than checking all paths. In Vikraman Arvind and Sanjiva Prasad, editors,
FSTTCS 2007: Foundations of Software Technology and Theoretical Computer Science, 27th
International Conference, New Delhi, India, December 12-14, 2007, Proceedings, volume
4855 of Lecture Notes in Computer Science, pages 532–543. Springer, 2007. doi:10.1007/
978-3-540-77050-3_44.

22 A. Sistla and Edmund Clarke. The complexity of propositional linear temporal logics. J. ACM,
32:733–749, July 1985. doi:10.1145/800070.802189.

23 Hagen Völzer and Daniele Varacca. Defining fairness in reactive and concurrent systems. J.
ACM, 59(3):13:1–13:37, 2012. doi:10.1145/2220357.2220360.

A Multi-pumpings and their properties

▶ Proposition 13. Given an lts S, a run ρ ∈ Runs, a multi-pumping ρ′ of ρ, a formula
φ ∈ L(F∞

P) and k ≥ 0, if (ρ, k) ̸|= φ, then (ρ′, k) ̸|= φ.

In order to prove Prop. 13. we establish some structural properties of multi-pumpings.
A multi-pumping of a run can be seen as pumping multiple loops of the same run, but

with an ordering of the loops first. Indeed, loops are pumped in order, one after the other,
and not one inside another. This implies that merging two multi-pumpings is quite easy. It
suffices to respect the order of the loops, as illustrated in Figure 7. This is formalise by the
following lemma.

FSTTCS 2024

https://doi.org/10.1007/10720246_18
https://doi.org/10.1137/1.9781611973075.69
https://doi.org/10.1137/1.9781611973075.69
https://arxiv.org/abs/1401.6575
https://doi.org/10.1007/s10703-009-0067-z
https://doi.org/10.1142/S0129054105003261
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/978-3-540-77050-3_44
https://doi.org/10.1007/978-3-540-77050-3_44
https://doi.org/10.1145/800070.802189
https://doi.org/10.1145/2220357.2220360

15:18 Promptness and Fairness in Muller LTL Formulas

ρ =

ρ1 =

ρ2 =

ρ′ =

Figure 7 Illustration of the merging of two multi-pumpings, as per the construction of Lem. 29.

▶ Lemma 29. Given an LTS S and a run ρ ∈ Runs, let ρ1 and ρ2 be two multi-pumpings
of ρ. Then, there exists a multi-pumping ρ′ of ρ such that ρ′ is also a multi-pumping of ρ1
and of ρ2.

The idea behind the proof is to do all the pumpings of ρ1 and ρ2 in the right order in
order to merge the two pumpings.

Proof. As ρ1 and ρ2 are two multi-pumping of ρ, there are n1 and n2 such that ρ1 is a
n1-pumping of ρ and ρ2 is a n2-pumping of ρ. Let us prove the result by induction over
n1 + n2.

n1 + n2 = 0 : In that case n1 = n2 = 0 and ρ1 = ρ2 = ρ are trivial pumpings. Therefore
the result trivially holds.
Assume now that n1 + n2 ≥ 1. If n1 = 0, then ρ1 = ρ and the result trivially holds.
The same is true if n2 = 0. Now assume that n1 > 0 and n2 > 0. Then by definition
∃i1 < j1, ρ[i1] = ρ[j1] such that there exists a (n1 − 1)-pumping ρ̃1 of ρ[i1..] and ρ1 =
ρ[..i1]ρ[i1..j1]l1−1ρ̃1, where l1 > 0. In the same way, ∃i2 < j2, ρ[i2] = ρ[j2] such that
there exists a (n2 − 1)-pumping ρ̃2 of ρ[i2..] and ρ2 = ρ[..i2]ρ[i2..j2]l2−1ρ̃2, where l2 > 0.
Without loss of generality assume that i1 ≤ i2. By construction, as i1 ≤ i2, ρ2[i1..] is a
n2-pumping of ρ[i1..], and ρ̃1 is by definition a (n1 − 1)-pumping of ρ[i1..]. By induction
hypothesis, there exists a multi-pumping ρ̃′ of ρ[i1..] that is also a multi-pumping of ρ2[i1..]
and ρ̃1. Then, by construction, the run ρ′ = ρ[..i1]ρ[i1..j1]l1−1ρ̃′ is a multi-pumping of
both ρ1 and ρ2. ◀

Note that the merging ρ′ is not unique. For example, if i1 = i2, one can do the pumping
in any order and the resulting pumping will work, inducing two different multi-pumping. In
the following, when we refer to the merging of two multi-pumping, we fix an arbitrary one.

▶ Lemma 30. Given an LTS S, a run ρ ∈ Runs and ρ′ a multi-pumping of ρ, let i0 be the
first index of a repeating state in ρ, that is, there exists a 0 ≤ i′ < i0 such that ρ[i′] = ρ[i0]
and for all 0 ≤ j < j′ < i0, ρ[j] ̸= ρ[j′]. Then, ρ′[0..i0 + 1] = ρ[0..i0 + 1].

The intuitive idea behind this lemma is that a pumping can not modify the run before
the first loop.

▶ Lemma 31. Given an LTS S, a finite path π, and two runs πρ ∈ Runs, and πρ′ ∈ Runs
such that ρ′ is a multi-pumping of ρ, then πρ′ is a multi-pumping of πρ.

D. Busatto-Gaston, Y. Oualhadj, L. Tible, and D. Varacca 15:19

π

π

Figure 8 Graphical representation of Lem. 31.

▶ Lemma 32. Given an lts S, a run ρ ∈ Runs, and a pumping ρ′ of ρ such that ρ′ =
ρ[0..i1]ρ[i1..i2]lρ[i2..], then one of the following holds for any position j ≥ 0:

ρ′[j..] is a pumping of ρ[j..].
There is i1 ≤ j′ ≤ j such that ρ′[j..] = ρ[j′..].
There is a cycle π and i1 ≤ j′ ≤ j such that ρ′[j..] = πρ[j′..].

The idea of this lemma is that every position of a pumping can be matched to a position
of the original run. Depending on whether the position is before the added loop, in the middle
of it or afterwards, the structure is a bit different, but the matching still holds. Mainly, this
lemma is a tool used in other proofs. As the proof is rather technical, we will explain the
idea of this lemma with some figures.

ρ =
i1 i2

ρ′ =
i1 i2j

j

ρ[j..] =

ρ′[j..] =

Figure 9 First case : j < i1.

Consider the run ρ and the position j describe in Figure 9, and the pumping ρ′ of ρ where
two loop i1 · · · i2 are added. Clearly, ρ[..j] = ρ′[..j] and thus ρ′[j..] is a pumping of ρ[j..].

ρ =
i1 i2

ρ′ =
i1 i2 j

j′

ρ[j′..] =

ρ′[j..] =

Figure 10 Second case : j > i2 + (i2 − i1)(l − 1).

Now, consider the same run and same pumping, but consider that j > i2 + (i2 − i1)(l− 1),
as represented in Figure 10. Here, two loops are added, therefore l = 2. As j is after every
added loops in ρ′, one can find a j′ such that ρ′[j..] = ρ[j′..]. Note that if j is in the last
loop i1 · · · i2, then j > i2 + (i2 − i1)(l − 1) and this idea still works.

FSTTCS 2024

15:20 Promptness and Fairness in Muller LTL Formulas

ρ =
i1 i2

ρ′ =
i1 i2 j j̃

j′

ρ[j′..] =

ρ′[j..] =
π ρ′[j̃..] = ρ[j′..]

Figure 11 Third case : i1 ≤ j ≤ i2 + (i2 − i1)(l − 1).

The last case is the most technical. Consider the same run ρ and same pumping ρ′, but
with i1 ≤ j ≤ i2 + (i2 − i1)(l− 1), that is, j is somewhere inside an added loop, as described
in Figure 11. Then, ρ′[j..] may not be a pumping of any ρ[j′..], as ρ′[j..] starts with a bit of
the loop, then has some complete occurrences of the loop, and then continues in the same
way as ρ. Yet, one can consider the last occurrence of ρ′[j], that is, the same vertex but
in the last loop, let say ρ′[j̃]. Then, ρ′[j..] can be described as a loop π = ρ′[j..j̃] followed
by ρ′[j̃..]. Then, by the same argument as in the second case, there exists a j′ such that
ρ[j′..] = ρ′[j̃..].

Those ideas are formalised in the following proof.

Proof of Lem. 32. Let us look at every possibility.
Firstly, assume that j < i1. Then, ρ′[j..] = ρ[j..i1]ρ[i1..i2]lρ[i2..]. By definition, ρ[j..] is a

pumping of ρ[j..].
Secondly, assume that j > i2 + (i2 − i1)(l − 1). Then, let j′ = j − (i2 − i1)(l − 1). We

have j′ > i2, and thus by construction ρ′[j..] = ρ[j′..].
Thirdly, we have i1 ≤ j ≤ i2 + (i2 − i1)(l − 1). There is a 0 ≤ l′ ≤ l − 2 such that

i1 + (i2 − i1)l′ ≤ j ≤ i1 + (i2 − i1)(l′ + 1).

Let j′ = j − (i2 − i1)l′, and let us write

ρ′ = ρ[0..i1]ρ[i1..i2]l
′
ρ[i1..j′]ρ[j′..i2]ρ[i1..i2]l−l′−2ρ[i1..j′]ρ[j′..i2]ρ[i2..] .

Note that ρ′[j..] = ρ[j′..i2]ρ[i1..i2]l−l′−2ρ[i1..j′]ρ[j′..i2]ρ[i2..].
Let π = ρ[j′..i2]ρ[i1..i2]l−l′−2ρ[i1..j′]. Note that π[0] = ρ[j′] ∈ Succ(π[|π| − 1]) and π is a
cycle. Therefore, ρ′[j..] = πρ[j′..]. ◀

Now, we show some properties of pumpings in regard to the satisfaction of formulas.
Those properties are necessary in order to use pumpings and still keep satisfaction, or
invalidation, of the formula.

π k

̸|= ψ
̸|= F∞

P ψ

̸|= F∞
P ψ

Figure 12 Visual representation of Lem. 33.

D. Busatto-Gaston, Y. Oualhadj, L. Tible, and D. Varacca 15:21

▶ Lemma 33. Given an LTS S, a finite path π, a run ρ = πρ′ ∈ Runs, a bound k ≥ 0, and
a formula φ ∈ L(F∞

P), if ρ′[0] = π[0] and (ρ′, k) ̸|= φ, then (ρ, k) ̸|= φ.

Intuitively, the idea is that adding a finite prefix to a run will not remove any faulty
window, just postpone them, as can be seen in Figure 12. For state formulas, we have to
check that the initial state stays the same.

π

̸|= ψ

π π π

̸|= ψ

Figure 13 Visual representation of Lem. 34.

▶ Lemma 34. Given an LTS S, a finite path π, a run ρ = πρ′ ∈ Runs such that π[0] = ρ′[0],
a bound k ≥ 0, a formula φ, and the run ρl = πlρ′ for l > 0, if for all 0 ≤ j ≤ |π|,
(ρ[j..], k) ̸|= φ, then for all 0 ≤ j′ ≤ l × |π|, (ρl[j..], k) ̸|= φ.

This lemma is quite technical and used only as a tool in other proofs. The idea is that
if a loop does not satisfy a formula, no iteration of that loop can satisfy the formula, as
represented in Figure 13. It is a direct corollary of Lem. 33, as formally shown in the following
proof.

Proof of Lem. 34. First, notice that π[0] = ρ′[0] ensures that πlρ′ is indeed a valid run in
the system. Now, consider 0 ≤ j′ ≤ l× |π|, and j = j′ modulo |π|. As ρl[((l− 1) × |π|)..] = ρ

by definition of ρl, we have that ρl[((l − 1) × |π| + j)..] = ρ[j..]. Moreover, by definition,
0 ≤ j ≤ |π|, and ρl[j′] = ρ[j]. By noting that ρl[j′..] = ρl[j′..((l − 1) × |π| + j)]ρ[j..] and
(ρ[j..], k) ̸|= φ, Lem. 33 is enough to conclude. ◀

We have now presented every tool needed to prove Prop. 13

Proof of Prop. 13. By definition, a multi-pumping is a n-pumping for some n ≥ 0, that is,
a multi-pumping is a succession of a finite number of pumpings. Therefore, to show the
result for ρ′ a pumping of ρ is enough to conclude with a structural induction.

Let us prove by structural induction over φ that if ρ′ is a pumping of ρ, then (ρ, k) ̸|= φ

implies that (ρ′, k) ̸|= φ.
φ = α or φ = ¬α : Then the result trivially holds as ρ[0] = ρ′[0] by construction.
φ = ψ1 ∨ ψ2 : By definition, (ρ, k) ̸|= φ if (ρ, k) ̸|= ψ1 and (ρ, k) ̸|= ψ2. By induction
hypothesis, this implies that (ρ′, k) ̸|= ψ1 and (ρ′, k) ̸|= ψ2, and therefore (ρ′, k) ̸|= φ.
φ = ψ1 ∧ ψ2 : By definition, (ρ, k) ̸|= φ if (ρ, k) ̸|= ψ1 or (ρ, k) ̸|= ψ2. Without loss of
generality assume that (ρ, k) ̸|= ψ1. By induction hypothesis, this implies that (ρ′, k) ̸|= ψ1
and therefore (ρ′, k) ̸|= φ.
φ = F∞

P ψ : By definition, there exists a position i ≥ 0 such that for all i ≤ j ≤ i + k,
ρ[j..] ̸|= ψ. Write ρ′ = ρ[0..i1]ρ[i1..i2]lρ[i2..] with l > 0 and i1 < i2. Firstly, if i1 < i then
for all i ≤ j ≤ i+k, ρ′[(j+(i2 − i1)(l−1))..] = ρ[j..]. Therefore for all i+(i2 − i1)(l−1) ≤
j ≤ i + (i2 − i1)(l − 1) + k, ρ′[j..] ̸|= ψ. Secondly, we have i ≤ i1. Let us show that
∀i ≤ j ≤ i+ k, ρ′[j..] ̸|= ψ. By Lem. 32, there are three cases.

FSTTCS 2024

15:22 Promptness and Fairness in Muller LTL Formulas

If ρ′[j..] is a pumping of ρ[j..], then by induction hypothesis ρ′[j..] ̸|= ψ.
If there exists i1 ≤ j′ ≤ j such that ρ′[j..] = ρ[j′..] then, as i ≤ i1, we have that
i ≤ j′ ≤ i+ k, so that ρ[j′..] ̸|= ψ, and thus ρ′[j..] ̸|= ψ.
If there exists a cycle π and i1 ≤ j′ ≤ j such that ρ′[j..] = πρ[j′..], then once again
i ≤ j′ ≤ i+ k, so that ρ[j′..] ̸|= ψ, and by Lem. 33 ρ′[j..] ̸|= ψ. ◀

▶ Lemma 14. Let S =
〈
S, sinit,T, lbl : S → 2AP〉

be an LTS, φ ∈ L(F∞
P), and let N = |S| + 1.

If there is ρN ∈ Runsinit such that (ρN , N) ̸|= φ then for all k ≥ N , there is a multi-pumping
ρk of ρN such that (ρk, k) ̸|= φ.

Proof. By structural induction over φ.
φ = α or φ = ¬α: The result trivially holds as the bound is irrelevant to the satisfaction
of φ, and ρN is a multi-pumping of itself.
φ = ψ1 ∨ ψ2 : By definition, (ρN , N) ̸|= φ if (ρN , N) ̸|= ψ1 and (ρN , N) ̸|= ψ2. By
induction hypothesis, for all k ≥ N , there are two multi-pumpings ρ1

k and ρ2
k of ρN such

that (ρ1
k, k) ̸|= ψ1 and (ρ2

k, k) ̸|= ψ2. By lemma 29, there exists a multi-pumping ρk of ρN

such that ρk is also a multi-pumping of ρ1
k and ρ2

k. Then, by lemma 13, (ρk, k) ̸|= ψ1 and
(ρk, k) ̸|= ψ2. Therefore, (ρk, k) ̸|= ψ1 ∨ ψ2.
φ = ψ1 ∧ ψ2 : By definition, (ρN , N) ̸|= φ if (ρN , N) ̸|= ψ1 or (ρN , N) ̸|= ψ2. Without
loss of generality, suppose that (ρN , N) ̸|= ψ1. By induction hypothesis, for all k ≥ N ,
there exists a multi-pumping ρk of ρN such that (ρk, k) ̸|= ψ1. Then, by definition,
(ρk, k) ̸|= ψ1 ∧ ψ2.
φ = F∞

P ψ : By definition, if (ρN , N) ̸|= φ then ∃i, ∀0 ≤ j ≤ N, (ρN [(i+ j)..], N) ̸|= ψ. As
N > |S|, there are two positions i1, i2 with i ≤ i1 < i2 ≤ i+N such that ρN [i1] = ρN [i2].
Moreover, one can assume w.l.o.g. that i1 and i2 are chosen such that the finite path
ρN [i1..i2] is such that for each i1 ≤ j1 < j2 ≤ i2 −1, ρN [j1] ̸= ρN [j2]. For each i1 ≤ j ≤ i2,
we have (ρN [j..], N) ̸|= ψ. For each i1 ≤ j ≤ i2, we can apply the induction hypothesis
to obtain a multi-pumping ρj

k of ρN [j..] such that (ρj
k, k) ̸|= ψ. By Lem. 31, for each

i1 ≤ j ≤ i2, we have that ρN [i1..j]ρj
k is a multi-pumping of ρN [i1..]. By applying Lem. 29

multiple times, there exists a run ρ̃k such that for each i1 ≤ j ≤ i2, ρ̃k is a multi-pumping
of ρN [i1..j]ρj

k. Moreover, observe that it is not possible to have a loop between i1 and
i2 in ρ. Therefore, by construction, for each i1 ≤ j ≤ i2, we have that ρ̃k[(j − i1)..]
is a multi-pumping of ρj

k and therefore, by Prop. 13, (ρ̃k[(j − i1)..], k) ̸|= ψ. Consider
the run ρ̃′

k = ρ̃k[0..(i2 − i1)]kρ̃k[(i2 − i1)..]. By Lem. 34, for all 0 ≤ j ≤ k × (i2 − i1),
(ρ̃′

k[j..], k) ̸|= ψ. Consider the run ρk = ρN [0..i1]]ρ̃k. Then, as i2 > i1, k× (i2 − i1) > k, for
each 0 ≤ j ≤ k, ρk[(i1 + j)..] = ρ̃′

k[j..], and therefore (ρk[(i1 + j)..], k) ̸|= ψ. By definition,
(ρk, k) ̸|= F∞

P ψ. ◀

Learning Partitions Using Rank Queries
Deeparnab Chakrabarty # Ñ

Dartmouth College, Hanover, NH, USA

Hang Liao # Ñ

Dartmouth College, Hanover, NH, USA

Abstract
We consider the problem of learning an unknown partition of an n element universe using rank
queries. Such queries take as input a subset of the universe and return the number of parts of
the partition it intersects. We give a simple O(n)-query, efficient, deterministic algorithm for this
problem. We also generalize to give an O(n + k log r)-rank query algorithm for a general partition
matroid where k is the number of parts and r is the rank of the matroid.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Query Complexity, Hypergraph Learning, Matroids

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.16

Related Version Extended Version: https://arxiv.org/abs/2409.13092

Funding Deeparnab Chakrabarty: Supported by NSF grants 2041920 and 2402571.
Hang Liao: Supported by NSF grant 2041920.

1 Introduction

Let V be a universe of n elements and suppose there is an unknown partition P = (P1, . . . , Pk)
that we want to learn. We have an oracle called rank that takes as input any subset
S ⊆ V and returns the number of different parts this subset intersects. More precisely
rank(S) :=

∑k
i=1 min(|S ∩ Pi|, 1). How many queries suffice to learn P?

This natural question is a special case of the problem of learning hypergraphs under
the additive query model initially studied by [28]. In this problem, we have an unknown
hypergraph on a vertex set V , and an additive query add(T) on a subset T ⊆ V returns
the number of hyperedges completely contained in T . Our unknown partition P is a special
hypergraph whose k hyperedges are disjoint (that is, it is a hypermatching); and for any
subset S we observe that rank(S) is precisely k − add(V \ S). And so, the problem we
study can be rephrased as in how few additive queries can a hypermatching be learnt.
Although hypermatchings may feel too specialized, the now mature literature on graph
learning (cf. [22, 17, 15, 16, 23]) began with understanding the case of graph matchings
(cf. [28, 4, 3]).

The problem we study is also a special case of a matroid learning problem with access to
rank oracle queries. Matroids are set systems, whose elements are called independent sets,
that are defined using certain axioms and these are fundamental objects in combinatorial
optimization. It is well known that a partition P induces the following simple partition
matroid: a subset I ⊆ V is independent if |I ∩ Pi| ≤ 1 for all i. The rank of a matroid is the
cardinality of the largest independent set of the matroid, and more generally, the rank of
subset S is the cardinality of the largest independent set that is a subset of S. A moment’s
notice shows that for the simple partition matroid this is precisely rank(S) which explains
the name we give to our oracle. So, our problem we study asks: in how few rank queries can
a simple partition matroid be learnt?

© Deeparnab Chakrabarty and Hang Liao;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 16; pp. 16:1–16:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:deeparnab@dartmouth.edu
https://www.cs.dartmouth.edu/~deepc/
https://orcid.org/0000-0001-7596-6035
mailto:hang.liao.gr@dartmouth.edu
https://hangliao.github.io/
https://orcid.org/0009-0005-6643-1991
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.16
https://arxiv.org/abs/2409.13092
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Learning Partitions Using Rank Queries

It is rather straightforward1 to learn the partition using O(n log k) queries as follows.
First, one learns a representative from each part with n-queries; given a set of already learned
representatives R, a vertex v is in a new unrepresented part if and only if rank(R∪v) > rank(R).
After learning the k representatives, we can learn every other vertex’s part by performing a
binary search style algorithm. Can one do better? It is instructive to note that the algorithm
sketched above does not really utilize the full power of the query model we have. In particular,
it would have sufficed if the query took a subset S and said YES if every element in S

was in a different part, or NO otherwise. Using the matroid language, an independence
oracle suffices which only states if a set S is independent or not. Now, an independence
oracle answer gives at most 1 bit of information; on the other hand, there are roughly kn

different partitions possible with ≤ k parts. Therefore, via an information theoretic argument
Ω(n log k) independence queries are necessary to learn the partition. In contrast, the rank
oracle gives the number of different parts hit by a subset; this is an integer in {0, 1, . . . , k}
and the information theoretic argument only proves an Ω(n) lower bound on the number of
queries. This naturally leads to the question: can an O(n)-query algorithm exist? The main
result of this paper is a simple affirmative answer to this question.

▶ Theorem 1. There is a deterministic, constructive algorithm that solves unknown partition
learning problem using O(n) rank queries.

▶ Remark. We have not optimized the constant in front of n. We think it can be made less
than 10 but don’t believe can be made less than 4 using our methods. The best lower bound
one can prove using the above information theory argument is n. Figuring out the precise
coefficient is left as an open question.

We also consider the generalization of learning a general partition matroid using rank
queries. In this case, along with the unknown partition P , we have unknown positive integers
r1, . . . , rk associated with each part, where 1 ≤ ri < |Pi|. A subset I is independent in this
matroid if |I ∩ Pi| ≤ ri, for all 1 ≤ i ≤ k. When all ri = 1, we have the simple partition
matroid. The rank query corresponds to rank(S) :=

∑k
i=1 min(|S ∩ Pi|, ri). In how few rank

queries can we learn a general partition matroid?
As in the simple partition matroid case, one can get an O(n log k)-query algorithm using

just an independent set oracle via a more delicate2 binary-search-style algorithm. Can we
obtain O(n) query algorithm with rank queries? We believe the answer should be yes and
take the following first step.

▶ Theorem 2. There is a deterministic, constructive algorithm that learns a general partition
matroid using O(n + k log r) rank queries where r := rank(V) =

∑
i ri.

▶ Remark. When the number of parts k ≤ n/ log n, we thus get an O(n)-rank query algorithm.
However, when k = Ω(n) we don’t do any better than just with independence queries.

Perspective

Our motivation to look at the problem arose from trying to understand the connectivity
question in hypergraphs using CUT queries. Although, as mentioned earlier, graph learning
under query models has been extensively studied, over the last few years, multiple works
such as [36, 27, 29, 8, 6, 20, 30] have focused on trying to understand if fewer queries can

1 Something that can be given in an undergraduate algorithms course when teaching binary search.
2 Maybe a challenging exercise in the aforementioned algorithms course; see Section 3 for this algorithm.

D. Chakrabarty and H. Liao 16:3

lead to understanding properties of graphs. Of particular interest is understanding the
connectivity/finding spanning forest of a graph using CUT queries. A CUT query takes a
subset of vertices as input and returns the number/weight of the cut edges crossing the
subset. While graph learning can take Θ̃(m) cut queries, a spanning forest of an undirected
graph, unweighted or weighted, can be constructed3 in O(n) queries (see [6, 30]). Can such
results be generalized4 to hypergraphs? To us, the easiest case of a hypergraph was the
hypermatching whose only spanning forest is the hypergraph itself. It is not too hard to see
that CUT queries and rank queries are intimately related. Formally, after n cut queries, any
rank query can be simulated with 2 cut queries. The interesting open question is: can the
connectivity question of an arbitrary hypergraph be solved in O(n) queries?

The other related problem is matroid intersection. Given rank/independence oracle to
two matroids over the same universe, the matroid intersection problem asks to find the largest
common independent set. It is a classic result in combinatorial optimization due to [26]
that this can be solved in polynomially many independence oracle queries. The current
state-of-the-art is that Õ(n1.5)-rank queries suffice (see [19]) and Õ(n7/4)-independence oracle
queries suffice (see [10]). On the other hand, no super-linear lower bounds are known for
rank-queries, and only recently, [11] proved an Ω(n log n)-lower bound for independence
queries. The big open question is: can matroid intersection be solved in O(n) rank-queries,
or can a ω(n)-lower bound be proved?

As noted earlier, if we wish to obtain an o(n log k)-query algorithm, we must exploit
the fact that rank-queries output “more” than the independence oracle queries. Our second
motivation in writing this paper is to showcase how the techniques that arise from coin
weighing problems a la [18, 31] exploit this “more”. In the basic coin-weighing problem,
one is asked to recover an unknown Boolean vector x with the ability to query any subset
S and obtain

∑
i∈S xi (a sum-query). The aforementioned papers showed how to do this

making roughly 2n/ log2 n sum-queries. [13] generalized this to learn a Boolean vector with
at most d ones in roughly 2d log2 n

log2 d queries. In a different application, [28] showed how to use
the coin-weighing result to learn a hidden perfect matching in a bipartite graph using 2n

CUT queries. These form the backbone of our algorithms. Having said that, there are some
big differences between sum-queries and rank-queries since the latter is not “linear” and
this underlies the difficulties we’ve faced in generalizing Theorem 2 to obtain a O(n)-query
algorithm to the general partition matroid case.

1.1 Related works
There is a vast literature on combinatorial search [1, 25], and we restrict ourselves to
the works that are related the most. As mentioned above, our problem can be thought
of as learning a hypermatching using additive/cut queries. (Hyper)-graph reconstruction
questions have been widely studied in the last two decades. A significant body of work has
been dedicated to reconstructing graphs using queries, as evidenced by the works of (cf.
[28, 4, 3, 35, 23, 34, 15, 17, 22]). These efforts encompass various types of graphs, including
unweighted graphs, graphs with positive weights, and graphs with non-zero edge weights, using
CUT queries. This has culminated in a result of [22] gives an polynomial time, randomized
O(m log n

log m)-query algorithm for learning graphs on n nodes and m edges with non-zero edge
weights, and this query complexity is information theoretic optimal. Concurrently, there has

3 using a randomized Las Vegas algorithm which makes O(n) queries in expectation
4 At first glance even a polynomial query algorithm may not be clear; a little thought can lead to an

O(n log n) query algorithm.

FSTTCS 2024

16:4 Learning Partitions Using Rank Queries

been ongoing research on recovering specific structures within graphs without necessarily
reconstructing the entire graph, such as figuring its connectivity (see [28, 20, 30]). [5] started
the research on learning a hypergraph using edge-detecting queries, that is, whether the
input set contains a hyperedge or not; they described algorithms for r-uniform hypergraphs
(every hyperedge has exactly r vertices) but the dependence on r was exponential. [14]
considered the additive model where one gets the number of edge (this was mentioned in
the Introduction above) and proved existence of algorithms to learn rank d hypergraphs
(every hyperedge has at most d vertices) for constant d using Od(m log(nd/m)/ log m)-queries;
the dependence on d is exponential. [9] considered high-rank but low-degree hypergraphs,
including hypermatchings. The focus was on edge-detecting queries (indicator whether
additive query is zero or non-zero), and they gave O(npolylogn)-query algorithms which
were also “low depth”, that is, with few rounds of adaptivity.

Our problem is also related to the problem of recovering a clustering with active queries
(see [7, 33, 37, 2, 21, 12, 32]). The setting is the same: there is a universe of n points which
we assume is clustered into k unknown parts. The query model, however, is often quite
different and much more restrictive usually constraining queries to asking whether a pair
or a constant number of elements are in the same cluster/part or not. Such a study was
initiated in the works of [24, 7, 33] which prove an Ω(nk) lower bound, and then provide
better upper bounds with extra assumptions. The above-cited works continue on this line.

2 O(n) Query Deterministic Algorithm

Throughout the rest of the paper, unless otherwise mentioned all logarithm base is 2. We
begin with an overview of the algorithm. We maintain a collection J of disjoint independent
sets; recall that a subset is independent if it contains at most one element from each part.
Initially, J is the collection of n independent sets each of which is a single element. Let
J denote the union of all these independent sets, and so, initially J = V . The algorithm
will modify this collection J in iterations, removing some elements from J while doing so.
Anytime such an element e is removed, we maintain a map rep(e) to an element in the
current J with the property that e and rep(e) are in the same partition in P. We will call
two elements in the same parts “friends”, and so, rep(e) is e’s friend.

The key routine in the algorithm is a merge operation over independent sets. Given
two independent sets I1, I2, define the set of common nodes com(I1, I2) := {v1 ∈ I1 : ∃v2 ∈
I2, Pi, {v1, v2} ⊆ Pi} to be the subset of nodes in I1 which have a friend in I2. Note that
this friend needs to be unique since I2 is independent. The Merge operation takes two
independent sets I1 and I2 and then (a) finds the set com(I1, I2), (b) for each e ∈ com(I1, I2),
finds its unique neighbor rep(e) ∈ com(I2, I1), and (c) returns com(I1, I2), com(I2, I1), and
I3 := I1 + I2 − com(I1, I2). See Figure 1 for an illustration.

Given the Merge routine, the algorithm is very simple: while there exists two independent
sets I1 and I2 of comparable size (within factor 2), merge them and replace I1 and I2 with
I3 returned by the merge. This may remove some elements from J , and in particular this is
com(I1, I2), but all these elements will have rep(e) pointing to their friends who are still in J .
When the algorithm can’t do this anymore, there must be at most ℓ = ⌈log k⌉ independent
sets remaining in J . These can be sequentially merged in any order to get one single
independent set J , indeed a basis, in J . To find the partition, consider the directed graph on
V where we add the edge (e, rep(e)) for all e ∈ V \ J ; note this forms a collection of directed
in-trees rooted at vertices in J , and the connected components are precisely the parts that

D. Chakrabarty and H. Liao 16:5

Figure 1 After we merge I1, I2 on the left, we get I3 and a mapping from com(I1, I2) to com(I2, I1).

we desire. In what follows we show how to implement Merge using existing results from
coin-weighing and graph reconstruction, and then argue why the total number of rank queries
made by our algorithm is O(n).

2.1 Definitions
We review or introduce several definitions for completeness.

▶ Definition 3 (add query). An add query on an unweighted graph G = (V, E): given S ⊆ V ,
obtain |{e ∈ E : e ∈ S × S}|.

▶ Definition 4 (sum query). A sum query on a boolean vector x ∈ {0, 1}N : given S ⊆ [N],
obtain

∑
i∈S xi.

▶ Definition 5 (com of two sets). Given two independent sets I1, I2. The set of common
nodes com(I1, I2) := {v1 ∈ I1 : ∃v2 ∈ I2, Pi, {v1, v2} ⊆ Pi} is the subset of nodes in I1 which
have a friend in I2.

▶ Definition 6 (rep(e) of a node). We maintain a map rep with the property that a node e

and rep(e) (representative of e) are in the same partition in P. rep keeps track of the learned
partition by mapping the learned node to its friend who is still in J .

2.2 Merging Independent Sets
We begin by introducing some vector/graph reconstruction algorithms from the literature.

▶ Lemma 7 ([13]). Let x ∈ {0, 1}N be an unknown Boolean vector with sum-query access. If
x has d ones, then there is a polynomial time, adaptive, deterministic algorithm to reconstruct
x which makes O(d log(N/d)/ log d) sum queries.

▶ Lemma 8 (Paraphrasing Theorem 4 & Section 4.3 [28]). A bipartite graph G = (V, W, E)
with |V | = |W | = m where E forms a perfect matching can be learnt in O(m) add queries.

Now we are ready to describe Merge whose properties are encapsulated in the following
lemma.

▶ Lemma 9. Let I1, I2 be two independent sets and let k1 = |I1| and k2 = |I2|. Suppose d =
|com(I1, I2)| = |com(I2, I1)|. The procedure Merge is an adaptive deterministic polynomial
time algorithm which returns I3 = I1 + I2 − com(I1, I2) and rep(e) ∈ com(I2, I1) for all
e ∈ com(I1, I2). The procedure makes O(d log(max(k1,k2)/d)

log d) rank queries.

FSTTCS 2024

16:6 Learning Partitions Using Rank Queries

Proof. Given I1 and I2, define the Boolean vector x := x(I1,I2) ∈ {0, 1}k1 where xe = 1 if and
only if e ∈ com(I1, I2). We note that a sum query can be simulated on x using a single rank
query. This is due to the observation that for all S ⊆ I1,

∑
e∈S xe = |S|+ |I2| − rank(S ∪ I2).

This is because the RHS precisely counts the number of parts of S that are already present in
I2, or com(I1, I2)∩S. Therefore, we can apply Lemma 7 to learn com(I1, I2) in O(d log(k1/d)

log d)
many rank queries. Similarly, we can get com(I2, I1) in O(d log(k2/d)

log d) queries. Note that
the above doesn’t give us the friends for e ∈ com(I1, I2) in com(I2, I1). This pairing can be
found as follows. For simplicity, let’s use X := com(I1, I2) and Y := com(I2, I1). Consider
the bipartite graph G = (X, Y, E) where e ∈ X has an edge to f ∈ Y if and only if f is e’s
friend. So, G is a perfect matching whose edges are yet unknown. We can now use Lemma 8
to find them. To see why this can be done, note that we can simulate the add query because
for any S ⊆ X ∪ Y , simply because add(S) = |S| − rank(S) This is because any edge (e, f)
with both endpoints in S are precisely the pairs which are counted once in rank(S) but twice
in |S|. Thus, finding this matching takes O(d) rank queries. ◀

Algorithm 1 Merging Independent Sets.
1: procedure Merge(I1, I2):
2: ▷ Input: Two independent sets
3: ▷ Output: com(I1, I2) and rep(e) ∈ com(I2, I1) for e ∈ com(I1, I2).
4: Learn com(I1, I2) and com(I2, I1) as described above using

O(d log(max(k1, k2))/ log d) rank queries.
5: Learn rep(e) ∈ com(I2, I1) for e ∈ com(I1, I2) as described above in O(d) rank

queries.
6: I3 ← I1 ∪ I2 − com(I1, I2). ▷ Note that I3 is independent and rep(e) ∈ I3 for all

e ∈ com(I1, I2).
7: return (I3, rep)

2.3 The algorithm and analysis
We give the pseudocode of the algorithm in Algorithm 2. We now claim that the algorithm
makes O(n) queries. All the queries to rank occur in the calls to Merge in line 7 or line 14.
Let’s take care of the second ones first since it’s straightforward.

▷ Claim 10. The total number of rank queries made in Merge calls in line 14 over the
for-loop is O(n).

Proof. There are ℓ = O(log n) merges made; that is the only fact we will use. By Lemma 9,
the tth Merge would make at most O(dt log n/ log dt) many rank queries, where dt is the
size of com(It, I) at that time. All we care for is that

∑ℓ
t=1 dt ≤ n. Now we observe (an

explicit reference is Claim 3 of [20]) that if ℓ ≤ C log n, then
∑ℓ

t=1
dt

log dt
= O(n/ log n). To

see this, note that the contribution to this sum of all the dt’s which are ≤ n
C log2 n

is at
most nℓ

C log2 n
< n/ log n. All the other dt’s have log dt = Ω(log n) and so their contribution

is O(
∑

t dt/ log n) = O(n/ log n). Altogether, we see that O(
∑ℓ

t=1 dt log n/ log dt) = O(n).
◁

▷ Claim 11. The total number of rank queries made in Merge calls in line 7 over the
while-loop is O(n).

D. Chakrabarty and H. Liao 16:7

Algorithm 2 Find Partition.
1: procedure FindPartition(V, rank):
2: ▷ Input: n elements with rank query access to hidden partition P.
3: ▷ Output: the partition.
4: Create J ← {{e1}, {e2}, . . . , {en}}; J ← V

5: Create graph G = (V, F) with F ← ∅. ▷ this will be used to find the parts
6: while ∃I1, I2 ∈ J : |I1|/|I2| ∈ [1/2, 2] do:
7: (I3, rep(e))←Merge(I1, I2).
8: For all e ∈ com(I1, I2), add (e, rep(e)) to the edge-set F .
9: J ← J − {I1, I2}+ I3; J ← J \ com(I1, I2).

10: ▷ At this point there can be at most ⌈log n⌉ elements in J
11: ▷ Merge all these sets in any order to get a single set. We provide one below.
12: Let J = {I1, I2, . . . , Iℓ} with ℓ ≤ ⌈log n⌉; I ← I1; J ← J \ I1
13: for 2 ≤ t ≤ ℓ do:
14: (I3, rep(e))← Merge(It, I).
15: For all e ∈ com(It, I), add (e, rep(e)) to the edge-set F .
16: J ← J − {It, I}+ I3; I ← I3.
17: ▷ At this point J has a single independent set I. Every element in e ∈ V \ I has a

single representative rep(e). So G is a collection of directed in-trees with roots in I

18: return Connected components of G.

Proof. To argue about the Merge’s in Line 7, we need to partition these into two classes.
Note that all such merges take two independent sets I1 and I2 which are of similar size k1
and k2 respectively; without loss of generality, let k1 ≤ k2 ≤ 2k1. Let d := |com(I1, I2)|. We
call a merge thick if d ≥

√
k1 and thin otherwise. We argue about the thick and thin merges

differently.
Using Lemma 9, we see that a thick merge costs O(d log(max(k1, k2))/ log d) = O(d) rank
queries; we have used here that k2 ≤ 2k1 and d ≥

√
k1. Thus, we can charge these rank

queries to the d elements which leave J . Thus, the total number of rank queries made
across all thick merges is O(n).
To argue about thin merges, we make a further definition. Let us say that an independent
set I is in class t if |I| ∈ [2t, 2t+1), for 0 ≤ t ≤ ⌊log n⌋. Fix such a t. A thin merge (I1, I2)
is called a class t thin-merge if the smaller cardinality set is in class t. An element e ∈ V

participates in a class t thin-merge (I1, I2) if it is present in the smaller set. Observe
that for a thin class t merge, the resulting independent set I3 almost doubles in size;
in particular, |I3| = |I1| + |I2| − |com(I1, I2)| ≥ 2t+1 − 2t/2. Using this one can argue
that the same element cannot participate in more than two class t-thin merges; after
two merges the set ceases to be class t. In particular, this means the number of thin
class t merges is at most 2 · n/2t, and each such merge, by Lemma 9, can be done with
O(d log(2t+1)/ log d) many rank queries where d = |com(I1, I2)| < 2t/2. Since d/ log d

is an increasing function of d, we conclude that any class t thin-merge takes at most
O(2t/2 log(2t+1)/ log(2t/2)) = O(2t/2) many rank queries. Therefore, the total number of
rank queries made within thin merges is at most

∑log n
t=0

2n
2t ·O(2t/2) = O(n) ◀

The above two claims imply the proof of Theorem 1.

FSTTCS 2024

16:8 Learning Partitions Using Rank Queries

3 General Partition Matroids

We recall the problem. As before, the universe is V and there is a hidden partition P =
(P1, . . . , Pk). Furthermore, there are integers r1, . . . , rk where 0 < ri < |Pi|.5 This defines a
partition matroid where a set I is independent if and only if |I ∩ Pi| ≤ ri for 1 ≤ i ≤ k. The
rank-oracle for this matroid is the following rank(S) =

∑k
i=1 min(|S ∩ Pi|, ri).

We will prove the following theorem in this section.

▶ Theorem 2. There is a deterministic, constructive algorithm that learns a general partition
matroid using O(n + k log r) rank queries where r := rank(V) =

∑
i ri.

Our proof technique will be a reduction to the simple partition matroid setting of Section 2.
Before we get there, let’s first begin with a simple well-known observation.

▶ Lemma 12. There is an O(n) rank query algorithm that finds a basis B of a partition
matroid.

Proof. This is standard and we give it below for completeness. Note that although described
as a “for-loop”, the above algorithm can be implemented in a single round of n many rank
queries. ◀

Algorithm 3 Finding a Basis Using Rank Queries.
1: procedure FindBasis(V, rank):
2: ▷ Input: n elements in V with rank query access
3: ▷ Output: A basis of V .
4: B ← {}.
5: for v ∈ V do:
6: if rank(B + {v}) = rank(B) + 1 then:
7: B ← B + {v}.
8: return B.

To obtain our reduction, what we need apart from this basis B are two sets of representatives.
A subset T ⊆ V is a set of representative if |T ∩ Pi| = 1 for each 1 ≤ i ≤ k. The
reduction will need two representative sets: T1 ⊆ B and T2 ∩ B = ∅, and the subroutine
FindRepresentatives(B) will find this. Furthermore, it will also return a map ϕ : T1 → T2
where for each e ∈ T1, ϕ(e) belongs to the same part as e. The algorithm does so in
O(n + k log r) queries; in fact, only independence oracle queries suffice. This is slightly
non-trivial and we described this in Section 3.1. Let us now show how these representatives
imply an O(n)-query algorithm to learn the partition P and the ri’s.

▷ Claim 13. Algorithm 4 returns the correct partition P and ri’s making O(n) many rank
queries.

Proof. The main idea is that the representatives allow us to simulate a simple partition
matroid rank query on the basis and outside. More precisely, we claim that for any subset
S ⊆ B, rank1(S) =

∑k
i=1 min(|S ∩ Pi|, 1). If so, the correctness of Algorithm 4 follows

5 Suppose we allow ri ≥ |Pi|. Let M := {i|ri ≥ |Pi|}. Now rank(S) =
∑

i∈M
|S ∩ Pi| +

∑
i/∈M

min(|S ∩
Pi|, ri). This means we get no information for partitions with index in M . To see this, we pick
x1 ∈ Pi1 , x2 ∈ Pi2 with i1, i2 ∈ M and i1 ̸= i2. If we swap x1 with x2 in every set we give to the
rank-oracle, the answer it returns is the same. Thus no rank query algorithm can tell x1, x2 apart.

D. Chakrabarty and H. Liao 16:9

Algorithm 4 Using Representatives to Learn Partition.
1: procedure LearnMatroidwithReps(V, rank, B, T1, T2, ϕ : T1 → T2):
2: ▷ Input: n elements in V with rank query; basis B, set of representatives T1 ⊆ B,

T2 ∩B = ∅, ϕ(t) is a friend of t.
3: ▷ Output: the partition P.
4: For any subset S ⊆ B, define rank1(S) := rank(B − S + T2)− rank(B − S).
5: P1 ← FindPartition(B, rank1) ▷ Takes O(|B|) queries.
6: For each 1 ≤ i ≤ k, ri ← |B ∩ P

(1)
i | where P1 = (P (1)

1 , . . . , P
(1)
k).

7: For any subset S ⊆ V \B, define rank2(S) := rank(B + S − T1)− rank(B − T1).
8: P2 ← FindPartition(V \B, rank2) ▷ Takes O(|V \ B|) queries.
9: Use ϕ to merge P1 and P2 into P: for t ∈ T1, merge the part in P1 containing T1

with the part in P2 containing ϕ(t).
10: return (P, {ri}k

i=1)

from Theorem 1. Indeed, rank(B−S + T2)− rank(B−S) gives +1 for each part where B−S

loses at least one element to which the unique element of T2 contributes. Similarly, one argues
that for any S ⊆ V \B, rank2(S) =

∑k
i=1 min(|S ∩ Pi|, 1). This is also for a similar reason;

B − T1 loses exactly one element from each part and so rank(B + S − T1) − rank(B − T1)
counts the parts that S intersects at least once. See Figure 2 for an illustration. ◁

3.1 Finding Representatives via Binary Search
We now describe a procedure which takes a basis B of the partition matroid, and finds two
subsets of representatives T1 ⊆ B and T2 ∩ B = ∅. The idea behind is a delicate binary
search. Fix some e ∈ V \B and without loss of generality, say e ∈ P1. We now show how to
find one element in B ∩ P1 in O(log r) queries. The way to do it is by halving B to X1 ⊔X2
and keep the half with at least P1 element in it as “search half”. This can be checked by
seeing whether rank(X1 + {e}) = rank(X1): if so then X1 contains all element of P1 and this
is the half we stick with; otherwise X2 contains some P1 element and takes precedence. The
other half is now added to the new “test half”. We keep searching in our search set until
it has exactly 1 class P1 element left. For instance, say X2 is further divided to X21 and
X22. The next query would be to check if rank((X1 + {e}) + X21) = rank(X1 + X21). If so,
then X1 + X21 contains all class P1 elements, and so will make X21 our new “search set”;
otherwise, we continue on X22. We describe the pseudocode in detail in Algorithm 5.

▷ Claim 14. Algorithm 5 returns (T1, T2, ϕ) correctly and makes O(n + k log r) many rank
queries.

Proof. The proof is by induction: we claim that T1, T2 contains at most one element from
each part and the size |T1| = |T2| equals the number of parts spanned by the elements seen by
the outer for-loop. And furthermore, the ϕ-relation is correct. This is obviously true before
anything occurs, and consider the for-loop for and element e. Now suppose the if-statement
in line 6 is not true; that is, say rank(B − T1 + e) > rank(B − T1). This would mean that
e contains a friend in T1; the only way the rank could increase is if e filled the “hole” in
the part which has exactly one element missing in B − T1. We discard this e. On the other
hand if the if-statement holds, then we will discover a new part in B and thus by inductive
hypothesis, in V \B. We therefore add e to T2.

Now consider the invariant in line 10. If that indeed holds true, then when the while-loop
terminates, and it does so with |X| = 1, the single element x ∈ X must be in the same part
as e. Thus, adding x ∈ T1 and setting ϕ(x) = e is the correct thing to do. To see that the

FSTTCS 2024

16:10 Learning Partitions Using Rank Queries

Figure 2 Illustration of how we simulate a simple partition matroid rank query inside of a basis with
representatives outside. We have a basis with bis equal to 1 (purple nodes), 2 (green), 3 (blue) and 4
(black) respectively. rank(B) = 10, rank(B −S) = 5. Note |B −S +T2| = 10, yet rank(B −S +T2) = 9
because the number of green nodes is capped at 2. rank(B − S + T2) − rank(B − S) = 3 simulate a
simple partition matroid rank query for S. The circled nodes correspond to the 3 partitions included
in S.

invariant in line 10 holds, we include the invariant in line 11. This is readily checked in both
the “then” and “else” case of the forthcoming if-statement. If line 13 holds true, then akin
to the argument above, Y + X1 contains all friends of e in B. So, we focus our search on
X1 since it contains at least one friend of e because, by invariant, X contained at least one
friend of e. So setting X to X1 keeps the invariant satisfied. On the other hand, if line 13
doesn’t hold true, then X2 must contain at least one friend of e. And so setting X to X2
keeps the invariant fulfilled.
To find the number of queries is simple. First notice that only line 6 and 13 make any
queries. And even then one of them is superfluous. More precisely, since B − T1 and Y + X1
are independent sets, their rank is |B| − |T1| and |Y | + |X1| respectively. We make n − r

queries in line 13. Of these at most k many satisfy the condition. Each of them leads to a
binary-search style argument which takes at most ⌈log r⌉ many queries. ◁

▶ Remark. Note that line 6 and line 13 can be implemented using only independence oracle
queries since they are really asking, respectively, if B−T1 +e and Y +X1 +e are independent
or not; if the ranks are equal, they are not. This also implies an O(n log k) algorithm to
learn the partition matroid using only independence oracle as alluded to in the Introduction.
Let |T1| = |T2| = k. Once we have the representative sets T1 ⊆ B and T2 ∩B = ∅, for any
element e /∈ V \B, we can use a binary-search style argument on T1 to find e’s friend among
T1 in O(log k) many independence oracle queries. More precisely, we halve T1 into (X, Y)
and check if B −X + e is independent or not. If it is, then X contains e’s friend; otherwise,
Y does. Similarly, for any e ∈ B, we can find e’s friend in T2 in O(log k) many independence
oracle queries.

D. Chakrabarty and H. Liao 16:11

Algorithm 5 Finding Representatives.
1: procedure FindRepresentatives(V, rank, B):
2: ▷ Input: n elements in V with rank query; basis B

3: ▷ Output: Sets of Representatives T1 ⊆ B, T2 ∩B = ∅ and map ϕ : T1 → T2.
4: T1, T2 ← ∅.
5: for e ∈ V \B do:
6: if rank(B − T1 + {e}) = rank(B − T1) then:▷ e is an element with no friends in T1

and T2:
7: T2 ← T2 + e.
8: X ← B; Y ← ∅.
9: while |X| > 1 do:

10: ▷ Invariant: X has at least one element in same part as e

11: ▷ Invariant: X ∪ Y = B

12: (X1, X2)← arbitrary equipartition of X.
13: if rank(Y + X1 + e) = rank(Y + X1) then: ▷ X2 contains no friends of e

14: Y ← Y + X2; X ← X1.
15: else: ▷ X2 contains at least one friend of e

16: Y ← Y + X1; X ← X2.
17: ▷ X is a singleton element of B; let X = {x}
18: T1 ← T1 + x; Set ϕ(x) = e.
19: return (T1, T2, ϕ).

Algorithm 6 Learning a Partition Matroid.
1: procedure LearnPartition(V, rank):
2: ▷ Input: partition matroid on n elements in V with rank query
3: ▷ Output: the partition P and ri’s
4: Learn a basis B using FindBasis(V, rank) a la Algorithm 3.
5: (T1, T2, ϕ)← FindRepresentatives (V, B, rank) a la Algorithm 5.
6: return (P, {ri})← LearnMatroidWithReps(V, rank, B, T1, T2, ϕ) a la Al-

gorithm 4.

For completeness, we end the section by giving the pseudocode for the final algorithm
in Algorithm 6. Lemma 12 establishes that Algorithm 6 makes n rank queries, Claim 14
establishes that Algorithm 6 makes n + k log r rank (in fact independence oracle) queries,
and Claim 13 establishes that Algorithm 6 makes O(n) rank queries. This completes the
proof of Theorem 2.

4 Conclusion

In this paper we looked at the question of learning a hidden partition using rank queries
which given a subset tells how many different parts it hits. We gave a simple but non-
trivial, deterministic, and efficient algorithm which makes O(n)-rank queries. This is optimal
up to constant factors. The main non-triviality arises in the use of techniques devised
in coin-weighing algorithms a la [18, 31], and our work falls in a growing line of such
results [28, 23, 14, 6, 20, 30] which explores the use of these techniques to solve combinatorial
search problems.

FSTTCS 2024

16:12 Learning Partitions Using Rank Queries

The obvious question left open by our paper is whether there are O(n) algorithms to
learn general partition matroids especially when k = Θ(n). We have not been able to directly
port the coin-weighing techniques to solve this problem even in the case of ri = 2 for all
i. The main technical challenge that the rank query, ultimately, is not a linear query and
in Section 3 we could make it “behave linear” with the help of representatives. Our algorithm
to find representatives, however, didn’t utilize the “more information” given by rank-queries
over independence oracle queries. Investigating this may lead to new algorithmic primitives.
On the other hand, perhaps there is a ω(n) lower bound for this problem when k = Θ(n).

References
1 Martin Aigner. Combinatorial search. John Wiley & Sons, Inc., 1988.
2 Nir Ailon, Anup Bhattacharya, and Ragesh Jaiswal. Approximate correlation clustering using

same-cluster queries. In Proc., Latin American Theoretical Informatics Symposium, pages
14–27, 2018. doi:10.1007/978-3-319-77404-6_2.

3 Noga Alon and Vera Asodi. Learning a hidden subgraph. SIAM Journal on Discrete Mathem-
atics (SIDMA), 18(4):697–712, 2005. doi:10.1137/S0895480103431071.

4 Noga Alon, Richard Beigel, Simon Kasif, Steven Rudich, and Benny Sudakov. Learning
a hidden matching. SIAM Journal on Computing (SICOMP), 33(2):487–501, 2004. doi:
10.1137/S0097539702420139.

5 Dana Angluin and Jiang Chen. Learning a hidden hypergraph. In Proc., Conf. on Learning
Theory (COLT), pages 561–575. Springer, 2005. doi:10.1007/11503415_38.

6 Simon Apers, Yuval Efron, Pawel Gawrychowski, Troy Lee, Sagnik Mukhopadhyay, and
Danupon Nanongkai. Cut query algorithms with star contraction. Proc., IEEE Conference on
the Foundations of Computer Science (FOCS), 2022.

7 Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-cluster queries.
Adv. in Neu. Inf. Proc. Sys. (NeurIPS), 29, 2016.

8 Arinta Auza and Troy Lee. On the query complexity of connectivity with global queries. arXiv
preprint arXiv:2109.02115, 2021. arXiv:2109.02115.

9 Eric Balkanski, Oussama Hanguir, and Shatian Wang. Learning low degree hypergraphs.
In Proc., Conf. on Learning Theory (COLT), pages 419–420. PMLR, 2022. URL: https:
//proceedings.mlr.press/v178/balkanski22a.html.

10 Joakim Blikstad. Breaking O(nr) for Matroid Intersection. In Proc., International Conference
on Algorithms, Logic, and Programming (ICALP), pages 31:1–31:17, 2021. doi:10.4230/
LIPICS.ICALP.2021.31.

11 Joakim Blikstad, Sagnik Mukhopadhyay, Danupon Nanongkai, and Ta-Wei Tu. Fast algorithms
via dynamic-oracle matroids. In Proc., ACM Symposium on the Theory of Computing (STOC),
pages 1229–1242, 2023. doi:10.1145/3564246.3585219.

12 Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi, and Andrea Paudice. On margin-based
cluster recovery with oracle queries. Adv. in Neu. Inf. Proc. Sys. (NeurIPS), pages 25231–25243,
2021.

13 Nader H. Bshouty. Optimal algorithms for the coin weighing problem with a spring scale. In
Proc., Conf. on Learning Theory (COLT), 2009.

14 Nader H. Bshouty and Hanna Mazzawi. Optimal Query Complexity for Reconstructing
Hypergraphs. In Proc., Symposium on the Theoretical Aspects of Computer Science (STACS),
pages 143–154, 2010. doi:10.4230/LIPICS.STACS.2010.2496.

15 Nader H. Bshouty and Hanna Mazzawi. Algorithms for the coin weighing problems with
the presence of noise. Electron. Colloquium Comput. Complex., page 124, 2011. URL:
https://eccc.weizmann.ac.il/report/2011/124, arXiv:TR11-124.

16 Nader H. Bshouty and Hanna Mazzawi. On parity check (0, 1)-matrix over Zp. In Proc.,
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1383–1394, 2011.

https://doi.org/10.1007/978-3-319-77404-6_2
https://doi.org/10.1137/S0895480103431071
https://doi.org/10.1137/S0097539702420139
https://doi.org/10.1137/S0097539702420139
https://doi.org/10.1007/11503415_38
https://arxiv.org/abs/2109.02115
https://proceedings.mlr.press/v178/balkanski22a.html
https://proceedings.mlr.press/v178/balkanski22a.html
https://doi.org/10.4230/LIPICS.ICALP.2021.31
https://doi.org/10.4230/LIPICS.ICALP.2021.31
https://doi.org/10.1145/3564246.3585219
https://doi.org/10.4230/LIPICS.STACS.2010.2496
https://eccc.weizmann.ac.il/report/2011/124
https://arxiv.org/abs/TR11-124

D. Chakrabarty and H. Liao 16:13

17 Nader H. Bshouty and Hanna Mazzawi. Toward a deterministic polynomial time algorithm
with optimal additive query complexity. Theoretical Computer Science, 417:23–35, 2012.
doi:10.1016/J.TCS.2011.09.005.

18 David G. Cantor and W. H. Mills. Determination of a subset from certain combinatorial
properties. Canadian Journal of Mathematics, 18:42–48, 1966.

19 Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, Sahil Singla, and Sam Chiu-wai Wong.
Faster matroid intersection. In Proc., IEEE Conference on the Foundations of Computer
Science (FOCS), pages 1146–1168, 2019. doi:10.1109/FOCS.2019.00072.

20 Deeparnab Chakrabarty and Hang Liao. A query algorithm for learning a spanning forest in
weighted undirected graphs. In Proc., International Conference on Algorithmic Learning Theory
(ALT), pages 259–274, 2023. URL: https://proceedings.mlr.press/v201/chakrabarty23a.
html.

21 I Eli Chien, Huozhi Zhou, and Pan Li. hs2: Active learning over hypergraphs with pointwise
and pairwise queries. In Proc., International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 2466–2475, 2019. URL: http://proceedings.mlr.press/v89/chien19a.
html.

22 Sung-Soon Choi. Polynomial time optimal query algorithms for finding graphs with arbitrary
real weights. In Shai Shalev-Shwartz and Ingo Steinwart, editors, Proc., Conf. on Learning
Theory (COLT), volume 30, pages 797–818, 2013. URL: http://proceedings.mlr.press/
v30/Choi13.html.

23 Sung-Soon Choi and Jeong Han Kim. Optimal query complexity bounds for finding graphs.
Artif. Intell., 174(9-10):551–569, 2010. doi:10.1016/J.ARTINT.2010.02.003.

24 Susan Davidson, Sanjeev Khanna, Tova Milo, and Sudeepa Roy. Top-k and clustering with
noisy comparisons. ACM Transactions on Database Systems (TODS), 39(4):1–39, 2014.
doi:10.1145/2684066.

25 Dingzhu Du and Frank K Hwang. Combinatorial group testing and its applications, volume 12.
World Scientific, 2000.

26 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. Combinatorial
Structures and their Applications, 18:69–87, 1970.

27 Andrei Graur, Tristan Pollner, Vidhya Ramaswamy, and S Matthew Weinberg. New query lower
bounds for submodular function minimization. Proc., Innovations in Theoretical Computer
Science (ITCS), page 64, 2020.

28 Vladimir Grebinski and Gregory Kucherov. Optimal reconstruction of graphs under the
additive model. Algorithmica, 28(1):104–124, 2000. doi:10.1007/S004530010033.

29 Troy Lee, Miklos Santha, and Shengyu Zhang. Quantum algorithms for graph problems with
cut queries. In Proc., ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 939–958,
2021. doi:10.1137/1.9781611976465.59.

30 Hang Liao and Deeparnab Chakrabarty. Learning spanning forests optimally in weighted
undirected graphs with cut queries. In Proc., International Conference on Algorithmic Learning
Theory (ALT), 2024.

31 Bernt Lindström. On a combinatorial problem in number theory. Canadian Mathematical
Bulletin, 8(4):477–490, 1965.

32 Xizhi Liu and Sayan Mukherjee. Tight query complexity bounds for learning graph partitions.
In Proc., Conf. on Learning Theory (COLT), pages 167–181. PMLR, 2022. URL: https:
//proceedings.mlr.press/v178/liu22a.html.

33 Arya Mazumdar and Barna Saha. Query complexity of clustering with side information. Adv.
in Neu. Inf. Proc. Sys. (NeurIPS), 2017.

34 Hanna Mazzawi. Optimally reconstructing weighted graphs using queries. In Proc., ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 608–615, 2010. doi:10.1137/1.
9781611973075.51.

FSTTCS 2024

https://doi.org/10.1016/J.TCS.2011.09.005
https://doi.org/10.1109/FOCS.2019.00072
https://proceedings.mlr.press/v201/chakrabarty23a.html
https://proceedings.mlr.press/v201/chakrabarty23a.html
http://proceedings.mlr.press/v89/chien19a.html
http://proceedings.mlr.press/v89/chien19a.html
http://proceedings.mlr.press/v30/Choi13.html
http://proceedings.mlr.press/v30/Choi13.html
https://doi.org/10.1016/J.ARTINT.2010.02.003
https://doi.org/10.1145/2684066
https://doi.org/10.1007/S004530010033
https://doi.org/10.1137/1.9781611976465.59
https://proceedings.mlr.press/v178/liu22a.html
https://proceedings.mlr.press/v178/liu22a.html
https://doi.org/10.1137/1.9781611973075.51
https://doi.org/10.1137/1.9781611973075.51

16:14 Learning Partitions Using Rank Queries

35 Lev Reyzin and Nikhil Srivastava. Learning and verifying graphs using queries with a focus
on edge counting. In Proc., International Conference on Algorithmic Learning Theory (ALT),
pages 285–297. Springer, 2007. doi:10.1007/978-3-540-75225-7_24.

36 Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact minimum cuts
without knowing the graph. In Proc., Innovations in Theoretical Computer Science (ITCS),
pages 39:1–39:16, 2018. doi:10.4230/LIPICS.ITCS.2018.39.

37 Barna Saha and Sanjay Subramanian. Correlation clustering with same-cluster queries
bounded by optimal cost. In Proc., European Symposium on Algorithms, pages 81:1–81:17,
2019. doi:10.4230/LIPICS.ESA.2019.81.

https://doi.org/10.1007/978-3-540-75225-7_24
https://doi.org/10.4230/LIPICS.ITCS.2018.39
https://doi.org/10.4230/LIPICS.ESA.2019.81

Two Results on LPT: A Near-Linear Time
Algorithm and Parcel Delivery Using Drones
L. Sunil Chandran # Ñ

Indian Institute of Science, Bengaluru, India

Rishikesh Gajjala # Ñ

Indian Institute of Science, Bengaluru, India

Shravan Mehra #

Indian Institute of Science, Bengaluru, India
University of Birmingham, UK

Saladi Rahul # Ñ

Indian Institute of Science, Bengaluru, India

Abstract
The focus of this paper is to increase our understanding of the Longest Processing Time First (LPT)
heuristic. LPT is a classical heuristic for the fundamental problem of uniform machine scheduling.
For different machine speeds, LPT was first considered by Gonzalez et al. (SIAM J. Comput.
6(1):155–166, 1977). Since then, extensive work has been done to improve the approximation factor
of the LPT heuristic. However, all known implementations of the LPT heuristic take O(mn) time,
where m is the number of machines and n is the number of jobs. In this work, we come up with the first
near-linear time implementation for LPT. Specifically, the running time is O((n+m)(log2 m+log n)).
Somewhat surprisingly, the result is obtained by mapping the problem to dynamic maintenance of
lower envelope of lines, which has been well studied in the computational geometry community.

Our second contribution is to analyze the performance of LPT for the Drones Warehouse Problem
(DWP), which is a natural generalization of the uniform machine scheduling problem motivated by
drone-based parcel delivery from a warehouse. In this problem, a warehouse has multiple drones
and wants to deliver parcels to several customers. Each drone picks a parcel from the warehouse,
delivers it, and returns to the warehouse (where it can also get charged). The speeds and battery
lives of the drones could be different, and due to the limited battery life, each drone has a bounded
range in which it can deliver parcels. The goal is to assign parcels to the drones so that the time
taken to deliver all the parcels is minimized. We prove that the natural approach of solving this
problem via the LPT heuristic has an approximation factor of ϕ, where ϕ ≈ 1.62 is the golden ratio.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Scheduling, Approximation algorithms, Fine-grained complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.17

Related Version Full Version: https://arxiv.org/abs/2407.16323

Funding Shravan Mehra: This work was supported by SERB Core Research Grant (CRG/2022/
006770): “Bridging Quantum Physics with Theoretical Computer Science and Graph Theory”.
Saladi Rahul: This work was supported by the Walmart Center for Tech Excellence at IISc (CSR
Grant WMGT-230001).

1 LPT heuristic for uniform scheduling

Uniform machine scheduling with the minimum makespan objective is a fundamental problem.
In this problem, we are given a set of n jobs (not necessarily of the same size) and a set of
m machines (not necessarily of the same speeds). The goal is to schedule the n jobs on m

© L. Sunil Chandran, Rishikesh Gajjala, Shravan Mehra, and Saladi Rahul;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 17; pp. 17:1–17:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sunil@iisc.ac.in
https://www.csa.iisc.ac.in/~sunil/
https://orcid.org/0000-0001-5451-6975
mailto:rishikeshg@iisc.ac.in
https://sites.google.com/view/rishikeshg
https://orcid.org/0000-0002-8726-3465
mailto:shravansinghmehra@gmail.com
mailto:saladi@iisc.ac.in
https://www.csa.iisc.ac.in/~saladi/
https://orcid.org/0000-0001-5984-0934
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.17
https://arxiv.org/abs/2407.16323
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 LPT in Near-Linear Time and Parcel Delivery Using Drones

machines so that the time required to execute the schedule (makespan) is minimised. This
is an NP-hard problem even for two machines [13] of the same speed, but polynomial time
approximation schemes (PTASs) are known [20, 21].

A commonly studied heuristic for this problem is the Longest Processing Time First
(LPT) heuristic. In the LPT heuristic, each job is assigned one by one, in non-increasing
order of size, so that every job is assigned to a machine where it will be completed earliest
(with ties being broken arbitrarily). Note that a machine might already have some jobs
assigned to it and the execution of the current job happens only after finishing the already
assigned jobs.

More intricate algorithms were designed in the literature to get a good approximation
factor for uniform scheduling. For example, Horowitz and Sahni gave an exact dynamic
programming algorithm which runs in exponential time [22]. When there are only two
machines, they could build upon this algorithm to obtain a Polynomial-time approximation
scheme (PTAS). Later, Hochbaum and Shmoys gave a PTAS when all the machines had
identical speeds [20]. This was later extended to obtain a PTAS for the uniform scheduling
problem (USP) [21].

However, the LPT algorithm remains popular in practice due to its simplicity and
scalability (compared to the PTAS-type results which are relatively complicated and have
expensive running time). As a result, there has been a long line of research on improving the
approximation ratio of the LPT algorithm for USP. In two independent works, the ratio of
the LPT algorithm was improved by Dobson [10] to 19

12 and by Friesen [12] to 5
3 . Kovacs [28]

further improved the approximation factor of the LPT algorithm to 1.58 and proved that
the LPT algorithm cannot give an approximation factor better than 1.54.

2 First result: A near-linear time implementation of LPT

In spite of all the focus in the literature on adapting LPT to various settings of machine
scheduling and analyzing its approximation factor, to the best of our knowledge, there has
been no work on fast implementation of LPT. The known implementation of the LPT heuristic
takes O(mn) time (via the naive approach). In this work, we give the first near-linear time
implementation of the LPT heuristic.

▶ Theorem 1. There is an O((n + m)(log2 m + log n)) time implementation of the LPT
heuristic.

For a set of given lines in 2- D, the lower envelope is the point-wise minimum of the lines
(a more formal definition will follow later). In the dynamic maintenance of the lower envelope
problem, in each step, a new line is added (or removed), as shown in Figure 2, and one has
to maintain the lower envelope with a small update time. This has been well-studied in the
computational geometry community. We establish a connection from LPT to the dynamic
maintenance of the lower envelope of lines to prove Theorem 1 in Section 5.

3 Second result: LPT for the drones warehouse problem (DWP)

Our second contribution is to analyze the performance of LPT for the Drones warehouse
problem (DWP) (formally defined in Section 3.1) which is a natural generalization of the
uniform scheduling problem to drone-based parcel delivery from a warehouse.

Vehicle routing [14, 47] is a classical problem in which parcel deliveries are done by a single
truck or a collection of trucks. Researchers have explored variations with different vehicle
velocities [15] or scenarios where each parcel can only be delivered by a specific subset of

L. S. Chandran, R. Gajjala, S. Mehra, and S. Rahul 17:3

vehicles [49]. With the advent of drones, a generalization of the vehicle routing problem has
been studied in the literature in which a truck is carrying drones along with it. The drones
pick up parcels from the truck, deliver the package and return to the truck (the truck might
have now moved to a different location). This problem is more challenging than the traditional
vehicle routing problem [8]. Several MIP (mixed integer programming) formulations and
heuristics have been used to solve this problem [38, 2]. Theoretical guarantees have also been
proved for this problem by Carlsson and Song using geometric methods [8].

The transition towards using only drones like in DWP (instead of trucks with drones) is
evident in the gradual shift within the research community, as it is a more sustainable option
for the future. Extensive efforts have been dedicated to developing algorithms for scheduling
drones under various constraints [44]. Some MIP formulations were studied to minimize
various objectives like the number of drones [18, 24] and bio-inspired algorithms were used to
manage large fleets of drones [40]. As drones have a limited battery life, considerations for
fuel stations were explored in [25]. Further, the drones might not all have the same features
like speed and battery life and this was taken into account in [46]. For a comprehensive
review of research in several related problems involving only drones, the reader can refer to
the survey presented in [41]. There has also been a lot of work by the multi-agent community
for scheduling [26], pathfinding [9, 19] and coordinating drones [39, 36, 6, 48].

In this paper, we consider the problem where a warehouse wants to use drones to deliver
a large number of parcels to customers around it. Due to limited battery life, each drone has
a restricted range around the warehouse in which it can deliver parcels. Also, depending on
the manufacturer, the speed of each drone can vary. We will now formally define the DWP
problem, state the result obtained by applying the LPT heuristic for DWP and provide a
high-level overview of the analysis. We also provide a detailed literature review on the use of
LPT for several other machine scheduling problems and connect it to our result on DWP in
Section 4.

3.1 The drones warehouse problem (DWP)
For the sake of better readability, we deviate from the notation used in scheduling literature.
The warehouse has a set of m drones D = {D1, D2 · · ·Dm} and a set of n parcels P =
{P1, P2 · · ·Pn}. The parcels in set P need to be delivered by drones in set D. Each drone
can pick up one parcel at a time from the warehouse, deliver it and return to the warehouse.
For all 1 ≤ j ≤ n, let the distance at which parcel Pj needs to be delivered be ℓj/2. So each
drone must travel a distance of ℓj in total to deliver the parcel Pj and come back to the
warehouse.

Additionally, the drones have a limited battery life which can be different for each drone.
Let di be the distance which drone Di can travel, for all 1 ≤ i ≤ m. Therefore, for a parcel
Pj to be delivered by a drone Di, it must be the case that ℓj ≤ di. The speed at which the
drone Di travels is vi, for all 1 ≤ i ≤ m. After each delivery, the drone recharges its battery
in the warehouse, and for the sake of simplicity we assume the time taken to recharge is
negligible. Our goal is to assign each parcel to a drone such that the time taken to execute
the schedule is minimised.

More precisely, we define a valid schedule f : D → 2P (power set of P) such that the
following properties hold

Each parcel is assigned to exactly one drone, i.e., f(Di) ∩ f(Dj) = ∅ for all i ̸= j and⋃
D∈D f(D) = P.

Each drone must be able to deliver the parcel assigned to it, i.e., ℓi ≤ dj for all j ∈ [m]
and i : Pi ∈ f(Dj).

FSTTCS 2024

17:4 LPT in Near-Linear Time and Parcel Delivery Using Drones

ISP USP DWP USP-C UnrelSP

= 4/3
[16]

[1.54, 1.58]
[28]

[1.54, ϕ]
[This work]

≥ 2
[Folklore]

Not Applicable

⊂ ⊂ ⊂ ⊂

Figure 1 Landscape of the approximation ratio of the LPT heuristic for machine scheduling
problems and our drone warehouse problem (DWP). The relation A ⊂ B in the figure implies that A

is a special case of B. Therefore, the approximation factor increases from left to right in the figure.
The interval [a, b] means that the approximation ratio of the LPT heuristic is at least a and at most
b. As there is no total order among jobs in UnrelSP, LPT is not applicable for UnrelSP.

Our goal is to find a valid schedule such that T (f) is minimised where

T (f) = max
j∈[m]

∑
i:Pi∈f(Dj)

ℓi

vj

We assume that there is at least one drone capable of delivering all parcels. Otherwise, there
would be no valid solution (this can be checked in linear time).

3.2 Our results and techniques

We implement the LPT algorithm with additional battery life constraints to solve DWP
in near-linear time. Our key contribution is to prove that this algorithm always returns a
solution which has delivery time at most ϕ times the optimal solution, where ϕ ≈ 1.62 is the
golden ratio. We summarize our results and compare them with previous work in Figure 1
(discussed in more detail in Section 4)

▶ Theorem 2. There is a ϕ-approximation algorithm for the DWP problem where ϕ = 1+
√

5
2

is the golden ratio. The algorithm runs in O((n + m)(log2 m + log n)) time, where m and n

are the number of drones and parcels, respectively.

At a high level, our proof is inspired by the analysis of the LPT algorithm for the uniform
scheduling problem (USP) [28]. However, the constraint of battery life makes our problem
significantly more challenging. As the total distance travelled by the drones is the same
for any valid schedule, if some drone in the LPT algorithm travels more distance than its
counterpart in the optimal assignment, then some other drone in the LPT algorithm must
travel lesser distance than its counterpart in the optimal assignment as a compensation.
However, if we assume that the approximation factor is greater than ϕ, we can create instances
for which such compensation does not occur, which leads to a contradiction. The proof
requires ideas such as (a) working with a minimal instance, (b) removing the parcel which is
closest to the warehouse from the schedule, (c) classifying the parcels into three categories
based on their distance and (d) truncating the parcel distances. We give the complete proof
in Section 6.

4 Related work on machine scheduling

We will now give a detailed literature review of the use of LPT for machine scheduling and
connect our problem DWP with the other variants.

L. S. Chandran, R. Gajjala, S. Mehra, and S. Rahul 17:5

4.1 Uniform machines scheduling problem (USP)
In the uniform machines scheduling problem, let P = {P1, P2, . . . , Pn} be a set of n jobs of
size {ℓ1, ℓ2, . . . , ℓn} respectively and D = {D1, D2, . . . , Dm} be a set of m machines of speed
{v1, v2, . . . , vm} respectively. Our goal is to schedule the n jobs to the m machines so that
the completion time of the schedule is minimised. We will now formally define the problem.

We define a schedule as a function f : D → 2P (power set of P) where f(Di) represents
the set of all jobs assigned to machine Di. We call a schedule a valid schedule if each job is
assigned to exactly one machine, i.e., f is a valid schedule if and only if f(Di) ∩ f(Dj) = ∅
for all i ̸= j and

⋃
D∈D f(D) = P. Each schedule f has an associated completion time

T (f) = max
j∈[m]

∑
i:Pi∈f(Dj)

ℓi

vj

Our goal is to find a valid schedule f such that T (f) is minimised.

4.2 ISP ⊂ USP ⊂ DWP
The special case of USP when all the machines have equal speed is called the identical-
machines scheduling problem (ISP). Therefore, we denote ISP ⊂ USP, where the notation
A ⊂ B means that A is a special case of B (See Figure 1) and therefore, a lower bound
of A is also a lower bound for B and an upper bound of B is also an upper bound for A.
Graham [16, 17] proved that the approximation factor of the LPT algorithm is 4

3 for ISP.
For USP, after a series of works, Kovacs [28] proved that the approximation factor of the
LPT algorithm is at most 1.58 and at least 1.54. It is easy to see that USP is a special case
of DWP (USP ⊂ DWP) when all battery lives are large enough to deliver all parcels. So,
the approximation factor of LPT for DWP can not be better than 1.54. On the other hand,
due to Theorem 2, we get that the LPT heuristic is a ϕ-approximation, which is one of the
main contributions of this work.

4.3 DWP ⊂ USP-C ⊂ UnrelSP
A lot of work in the literature has been devoted to a generalization of USP, namely uniform
scheduling problems with processing constraints (USP-C) [30]. We are given a set of jobs
J = {J1, J2, . . . , Jn} and a set of machines M, where each job Jj has a set of machines
Mj ⊆ M to which they can be assigned to. Different structural restrictions of Mj lead
to different models in USP-C, like the inclusive processing set [42, 35], nested processing
set [37, 11], interval processing set [45, 23], and tree-hierarchical processing set restrictions
[34, 33]. The goal is to assign each job to a machine to minimize the completion time.

DWP is also a special case of USP-C as each parcel can only be delivered by a subset
of drones determined by its battery life. Therefore, DWP ⊂ USP-C. We emphasise that
these two classes are strictly different (and DWP is also different from all known variants of
USP-C, including nested intervals). Consider two machines and two jobs. Let the size of
J1, J2 be 10, 10 + ϵ respectively and the speeds of M1, M2 be 10, 10 + ϵ respectively for ϵ > 0.
Moreover, assume that the job J1 can only be done by M2, but J2 can be done by both M1
and M2. The LPT heuristic would take 20+ϵ

10+ϵ time, while the optimum assignment would
take only 10+ϵ

10 time. This gives us an approximation ratio of 2 as ϵ approaches zero in this
example (whether this ratio is optimal or not for the LPT heuristic on USP-C is an open
question). We also note that this is not a valid lower bound instance for DWP as any drone
which can do a job at a distance of 10 + ϵ can also do the job at a distance of 10.

FSTTCS 2024

17:6 LPT in Near-Linear Time and Parcel Delivery Using Drones

The unrelated Scheduling Problem (UnrelSP) is the scheduling problem in which the
time taken by machine D ∈ D to complete job P ∈ P is determined by an arbitrary function
f : D × P → R. Note that USP-C ⊂ UnrelSP and furthermore the LPT heuristic is not
applicable for UnrelSP as there is no total order among the jobs to sort. This finishes the
description of Figure 1.

4.4 Other algorithms and optimization measures

A PTAS for ISP was given by Hochbaum and Shmoys [20]. This was later extended to
obtain a PTAS for USP [21]. Due to the seminal result of Lenstra, Shmoys and Tardos [29],
there is an LP-based 2-approximation algorithm for UnrelSP. This is also the best known
approximation algorithm for USP-C. For a special case of USP-C (including DWP) with
nested intervals, there is 4/3 approximation algorithm [32]. For more results on USP-C, we
refer the reader to the latest survey [31]. We emphasise that despite knowing PTASs and
other algorithms with a better approximation ratio, the LPT heuristic remains popular in
practice due to its simplicity and scalability. This motivated researchers from the algorithms
and operations research community to extensively study it as described in Figure 1.

Instead of optimizing the time taken to complete all jobs (makespan), other objectives
like the average completion time [7], weighted-average completion time [22] and monotonicity
and truthfulness have also been studied [5, 27, 4, 3].

5 Near linear time implementation

5.1 Longest processing time first (LPT)

A classical approach for the Uniform Scheduling problem is using a greedy algorithm called
LPT scheduling which gives a 1.58-approximate solution [28]. First, we sort the jobs P
in decreasing order of their size and let P1, P2, . . . , Pn be the sorted sequence. Then we
initialise Tj , the time taken by the jth machine to be zero for all j ∈ [m]. Now we assign the
jobs sequentially from P1 to Pn. We assign job Pi to a machine Dj for which the value of
Tj + (ℓi/vj) is minimum and we update the value Tj to Tj + (ℓi/vj) for this specific j (see
Algorithm 1).

Algorithm 1 LPT algorithm in O(nm) time.

Input: List of jobs P and machines D.
Output: Time required for LPT scheduling.
Sort P in non-increasing order of size.
Initialise Tj = 0 for all j ∈ [m]
for i in {1 . . . n} do

α = arg minj∈[m]

(
Tj + ℓi

vj

)
Tα ← Tα + ℓi

vα

end for
return max

j∈[m]
Tj

As arg minj∈[m] Tj + ℓi

vj
can be found in O(m) time, we can implement the above algorithm

to run in O(nm) time. To improve the run time of this algorithm, we implement a faster
way to find arg minj∈[m] Tj + ℓi

vj
.

L. S. Chandran, R. Gajjala, S. Mehra, and S. Rahul 17:7

L1

L2

L1

L2

L3

L1

L2

L3

L4

Figure 2 Dynamic lower envelope of lines L1 : y = −x + 4, L2 : y = x, L3 : y = 2x, L4 : y = 1.

5.2 Dynamic Lower Envelope
One can visualise the step in which arg minj∈[m] Tj + ℓi

vj
is computed in the following way:

Consider the m linear functions h1, h2, . . . , hm where hj(x) = 1
vj
· x + Tj . We need to find

the index of j ∈ [m] for which hj(x) = 1
vj
· x + Tj is minimum at x = li. This is exactly the

same as finding the line in the lower envelope for the h1, h2 · · ·hm at x = li. Our idea now
is to maintain a dynamic lower envelope data structure capable of inserting and deleting
functions. We will now describe this formally.

Let H be a set of functions where h ∈ H is of the form h : R→ R. Then the lower envelope
is the function hmin : R→ R such that hmin(x) = minh∈H h(x). We are interested in the case
when these functions correspond to straight lines, i.e., they are of the form hi(x) = mix + ci.
More particularly, we are interested in the problem of dynamically maintaining the lower
envelope problem of lines, i.e., in each step, a new line is added (or removed), as shown in
Figure 2, and one has to maintain the lower envelope with a small update time. This has
been well-studied in the computational geometry community. From [43], there is a data
structure to maintain a dynamic lower envelope of lines (further extended to dynamic lower
envelope of pseudo lines in [1]):
H.Insert(h): Adds the linear function h to set H in O(log2 |H|) time.
H.Delete(h): Removes the function h from set H in O(log2 |H|) time.
H.LowerEnvelope(x): Returns h∗ = arg minh∈H h(x) in O(log |H|) time.

Using this, we can implement the LPT algorithm in O((n+m)) log2 m) time (Algorithm 2).
We initialise the lower envelope data structure H and store lines hj(x) = 1

vj
x + 0 (initially

Tj = 0) for all j ∈ [m]. To assign parcel Pi to drone Dj , we remove the line hj(x) = 1
vj

x + Tj

from H and replace it with h′
j(x) = 1

vj
x + Tj + ℓi

vj
. To find out which drone Pi is assigned to,

we have to find arg minj∈[m] Tj + ℓi

vj
, which is the same as querying H.LowerEnvelope(ℓi).

Observe that sorting P takes O(n log n) time. We have called H.Insert(·) O(n+m) times
and H.Delete(·) O(n) times. Therefore, the runtime of the algorithm is O((n + m) log2 m +
n log n) or O((n + m)(log2 m + log n))

6 ϕ-approximation for the Drone Warehouse Problem

In this section, we will prove Theorem 2.

6.1 Algorithm
We use an algorithm similar to LPT but modify it slightly so that the battery constraints
are respected. First, we sort the parcels P in non-increasing order of their distance. Then,
we initiate Tj , the time taken by the jth drone to be zero for all j ∈ [m]. We now assign

FSTTCS 2024

17:8 LPT in Near-Linear Time and Parcel Delivery Using Drones

Algorithm 2 LPT algorithm in O((n + m)(log2 m + log n) time.

Input: List of jobs P and machines D.
Output: Time required for LPT scheduling.
Sort P in non-increasing order of size.
Initialise lower envelope data structure H
for j in {1 . . . m} do

hj(x) = 1
vj

x

H.Insert(hj)
end for
for i in {1 . . . n} do

hj = H.LowerEnvelope(ℓi)
Let hj(x) = 1

vj
x + Tj

Set h′
j(x) = 1

vj
x + Tj + ℓi

vj

H.Delete(hj)
H.Insert(h′

j)
end for
return max

j∈[m]
hj(0)

the parcels sequentially from P1 to Pn. We assign parcel Pi to a drone Dj for which ℓi ≤ dj

and the value of Tj + (ℓi/vj) is minimum. We update the value Tj to Tj + (ℓi/vj) (see
Algorithm 3). It is easy to see that the running time of the LPT algorithm is O(mn + n log n)

6.2 Implementation

Let us sort all the drones in decreasing order of their battery life. Observe that if drone Dj

is capable of delivering parcel Pi, then all drones Dj′ , j′ ≤ j are capable of delivering parcel
Pi. Therefore, we can represent all the drones capable of delivering Pi by a pointer ptr so
that all drones Dj , j ∈ {1, . . . , ptr} can deliver parcel Pi. Also, as the parcels are sorted in
decreasing order of distance, the value of ptr will only increase in each iteration (as any
drone capable of delivering Pi can also deliver Pi′ , i′ > i). We again use the lower envelope
data structure to implement LPT. (see Algorithm 3).

Observe, that sorting P and D takes O(n log n + m log m) time. We call H.Insert(·)
O(n + m) times and H.Delete(·) O(n) times. As these function calls only use O(log2 m)
time, the above algorithm runs in O((n + m)(log2 m + logn)) time.

6.3 Proof for ϕ-approximation

Simplifying steps

Assume that the parcels are sorted in decreasing order of distance, i.e., if i < j then ℓi ≥ ℓj

for all i, j ∈ [n]. Let AlgI represent the valid schedule obtained from the LPT-algorithm and
let OptI represent some fixed optimal valid schedule on instance I = {D,P}. We show that
T (AlgI)
T (OptI) ≤ ϕ. We will start by performing some simplifying steps on I.

▶ Lemma 3. For any instance I = {D,P}, we can assume that ℓn = 1, T (OptI) = 1 and no
drone has battery life less than ℓn.

L. S. Chandran, R. Gajjala, S. Mehra, and S. Rahul 17:9

Algorithm 3 LPT algorithm for DWP.

Input: List of drones D and parcels P.
Output: Minimum time required to deliver all parcels.
Sort P in non-increasing order of distance.
Sort D in non-increasing order of battery life
Initialise lower envelope data structure H
ptr ← 0
for i in {1 . . . n} do

while ptr < n and dptr+1 ≥ ℓi do
ptr ← ptr + 1
hptr(x) = 1

vptr
x

H.Insert(hptr)
end while
hj = H.LowerEnvelope(ℓi)
Let hj(x) = 1

vj
x + Tj

Set h′
j(x) = 1

vj
x + Tj + ℓi

vj

H.Remove(hj)
H.Insert(h′

j)
end for
return max

j∈[m]
hj(0)

Proof. Observe that scaling all values {ℓi}i∈[n], {dj}j∈[m] by some constant α scales T (AlgI)
and T (OptI) by α. Similarly, scaling all values {vj}j∈[m] by some constant β scales T (AlgI)
and T (OptI) by β−1. However, this procedure does not affect the value of the approximation
factor T (AlgI)

T (OptI) . Therefore, we can choose values α, β such that ℓn = 1 and T (OptI) = 1
(choosing α = ℓ−1

n , β = ℓ−1
n T (OptI) gives us the desired result). Also, as Pn is the smallest

job, we can remove all drones which do not have enough battery life to deliver it as such
drones would be empty in any schedule. ◀

6.3.1 Idea-1: Working with minimal instances

Our goal is to prove that T (AlgI) ≤ ϕ for all instances I. Towards a contradiction, assume
that there exists an instance I for which T (AlgI)

T (OptI) > ϕ. Among all such contradicting
instances, let I be a contradicting instance which has the minimum number of parcels.
We will sometimes drop the subscripts in AlgI and OptI and write them as Alg and Opt,
respectively, for simplicity.

6.3.2 Idea-2: A schedule without the last parcel

As I = {D,P} is a contradicting instance with the least number of parcels, it means that for
any other instance I ′ with fewer parcels that I is not a contradicting instance. In particular,
this is true for I ′ = {D,P \ {Pn}}. Intuitively, this implies T (AlgI′) ≤ ϕ and T (Alg) > ϕ,
and adding parcel Pn causes the increase in time. We will now prove this rigorously.

▶ Definition 4. Let Alg0 be the schedule obtained by removing parcel Pn from the schedule
Alg, i.e., Alg0 is a schedule such that Alg0(Di) = Alg(Di) \ {Pn} for all i ∈ [m].

FSTTCS 2024

17:10 LPT in Near-Linear Time and Parcel Delivery Using Drones

▶ Definition 5. Let Lj(f) represent the total distance travelled by drone Dj in schedule f .
Then,

Lj(f) =
∑

i:Pi∈f(Dj)

ℓi.

▶ Definition 6. The completion time of a drone in schedule f is the time taken by the drone
to deliver all parcels assigned to it by the schedule f .

▶ Lemma 7. ℓn + Li(Alg0) = 1 + Li(Alg0) > ϕvi, for all i ∈ [m].

Proof. We claim that T (Alg0) ≤ ϕ. Suppose not. Then consider the instance I ′ = {D,P \
{Pn}} obtained from the minimal instance I = {D,P}. Observe that the schedule AlgI′

and schedule Alg0 are the same (as the assignment of the first n− 1 parcels is independent
of the nth parcel). Therefore, T (AlgI′) > ϕ. Also, observe that T (OptI′) ≤ T (OptI) = 1.
This implies that T (AlgI′)

T (OptI′) > ϕ which contradicts the fact that I is an instance with the least
number of parcels such that T (AlgI)

T (OptI) > ϕ.
Now as T (Alg) > ϕ and T (Alg0) ≤ ϕ, this means that only the drone which delivers Pn

has completion time greater than ϕ. Also as the LPT algorithm assigns parcels to drones
which have the least completion time, this implies that assigning Pn to any drone Di in Alg0
would result in its completion time being greater than ϕ. Note that Pn can be assigned to
any drone as all drones have battery life at least ℓn (from Lemma 3).

Therefore, (Li(Alg0) + ℓn)/vi > ϕ. As ℓn = 1, it follows that Li(Alg0) + 1 > ϕvi. ◀

6.3.3 Idea-3: Classification of parcels
We classify parcels for which the drone travels a distance in the range [1, ϕ) as small jobs,
[ϕ, 2) as medium jobs and [2,∞) as large jobs. We first define a rounding function R(x) such
that

R(x) =

1 if x ∈ [1, ϕ)
1.5 if x ∈ [ϕ, 2)
⌊x⌋ if x ∈ [2,∞)

Note that R is a function such that

x ≥ R(x) ≥ x/ϕ for all x ≥ 1

Define L′
i(f) =

∑
j:Pj∈f(Di) R(ℓj). The motivation for defining R(x) is that the value

of L′
i(f) can only be integer multiples of 0.5 whereas Li(f) can take any arbitrary value

depending on the input.

6.3.4 Idea-4: Discretizing Distances
Ideally, we would like to show that each drone in Alg0 travels more distance than its
counterpart in Opt. This would show that the total distance travelled by drones in Alg0
is greater than that of drones in Opt which is a contradiction as fewer parcels have been
delivered in Alg0 than in Opt. Unfortunately, it turns out that Li(Alg0) can be lesser than
Li(Opt). Instead, we show that L′

i(Opt) ≤ L′
i(Alg0) for all i ∈ [m] and arrive at a similar

contradiction by analogous argument.

▶ Lemma 8. L′
i(Alg0) + ϕ− 1 > vi for all i ∈ [m]

L. S. Chandran, R. Gajjala, S. Mehra, and S. Rahul 17:11

Proof. From Lemma 7, we get that

vi <
1 + Li(Alg0)

ϕ
≤ 1

ϕ
+ L′

i(Alg0) = ϕ− 1 + L′
i(Alg0)

The second inequality and the third equality follow from x/ϕ ≤ R(x) and ϕ being the golden
ratio, respectively. ◀

▶ Lemma 9. If a drone Di has a medium job assigned to it, then L′
i(Alg0) + 0.5 > vi

Proof. Let a medium-sized job of size y be assigned to drone Di. Then,

L′
i(Alg0) = R(y) +

∑
z∈Alg0(Di)\{y}

R(z)

Since y ∈ [ϕ, 2), we get R(y) = 1.5 > y − 0.5, and hence,

L′
i(Alg0) > y − 0.5 +

∑
z∈Alg0(Di)\{y}

R(z) ≥ y − 0.5 + Li(Alg)− y

ϕ

Using Lemma 7 and y ≥ ϕ, we get

L′
i(Alg0) > y − 0.5 + ϕvi − 1− y

ϕ
= y(1− 1

ϕ
)− 0.5− 1

ϕ
+ vi

≥ ϕ− 1− 1
ϕ

+ vi − 0.5 = vi − 0.5 ◀

▶ Lemma 10. L′
i(Opt) ≤ L′

i(Alg0) for all i ∈ [m]

Proof. Towards a contradiction, let us assume that L′
j(Opt) > L′

j(Alg0) for some drone Dj .
Observe that L′

j(Opt) ≤ Lj(Opt) ≤ vj as T (Opt) = 1. Using this and Lemma 8 we get,

L′
j(Alg0) < L′

j(Opt) ≤ vj < ϕ− 1 + L′
j(Alg0)

As L′
j(Alg0) and L′

j(Opt) are both integer multiples of 0.5, the only value which satisfies the
inequality is, L′

j(Opt) = L′
j(Alg0) + 0.5. Let L′

j(Alg0) = k/2 where k is an integer.
Case 1: L′

j(Alg0) = k/2 is not an integer. This can only happen if Dj contains at least
one medium job in Alg0 (as small and large sized jobs have integral values and cannot
add to give a non-integer). But then by Lemma 9, we get L′

j(Opt) = L′
j(Alg0) + 0.5 > vj ,

which is a contradiction as L′
j(Opt) ≤ vj .

Case 2: L′
j(Alg0) = k/2 is an integer. This means that L′

j(Opt) = (k + 1)/2 is not an
integer and hence, Dj has at least one medium job assigned to it in Opt. Therefore, by
definition of the R(·) function, we get Lj(Opt) ≥ L′

j(Opt) + ϕ− 1.5 = L′
j(Alg0) + ϕ− 1.

Using Lemma 8, we get Lj(Opt) > vj , which is a contradiction as Lj(Opt) ≤ vj . ◀

Using Lemma 10, we get that
m∑

i=1
L′

i(Opt) ≤
m∑

i=1
L′

i(Alg0).

Observe that
∑m

i=1 L′
i(Opt) =

∑n
1 R(ℓi) and

∑m
i=1 L′

i(Alg0) =
∑n−1

1 R(ℓi). Substituting
this, we get

n∑
1

R(ℓi) ≤
n−1∑

1
R(ℓi),

which is a contradiction. Therefore, our initial assumption must be wrong, implying that
T (Alg) ≤ ϕ.

FSTTCS 2024

17:12 LPT in Near-Linear Time and Parcel Delivery Using Drones

6.4 How much can the above analysis of LPT be improved?
Recall that the special case of DWP when all drones have the same battery life (di = dj ≥
maxk(ℓk) for all i, j ∈ [m]) is equivalent to USP. It is known that LPT cannot give an
approximation better than 1.54 for USP [28]. Therefore, the LPT algorithm can also not
give an approximation ratio better than 1.54 for DWP.

7 Future work

A couple of immediate open problems are the following:
1. Can the implementation of the LPT heuristic be done in optimal time, i.e. O((n + m) ·

(log m + log n) time? We believe that it should be possible, since the jobs are known
upfront, i.e., it is actually an offline problem.

2. Can the approximation ratio of the LPT heuristic be improved for DWP from ϕ?
In general, delivering parcels from the warehouse using drones is a rich source of scheduling
and vehicle routing problems. We mention two general directions:
1. As a concrete setting, consider a warehouse which has a truck and a drone, both of which

operate independently. As in the paper, the goal is to assign parcels to the truck and the
drone so that time taken to deliver is minimized. The parcels will be delivered by the
drone using the same model as in this paper, whereas the truck will deliver using the
traditional technique. A generalized version of the problem would involve multiple trucks
and drones.

2. Some companies might have multiple warehouses and as such, a parcel can be delivered
by any of the warehouses. As a concrete setting, consider the generalization of the
DWP studied in this paper to the setting where there are two warehouses at different
locations. The goal is to perform a two-level partition: first partition the parcels among
the warehouses and then partition them among the drones. The goal is to deliver all the
parcels as quickly as possible.

References
1 Pankaj K. Agarwal, Ravid Cohen, Dan Halperin, and Wolfgang Mulzer. Maintaining the union

of unit discs under insertions with near-optimal overhead. In Gill Barequet and Yusu Wang,
editors, 35th International Symposium on Computational Geometry, SoCG 2019, June 18-21,
2019, Portland, Oregon, USA, volume 129 of LIPIcs, pages 26:1–26:15. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.SOCG.2019.26.

2 Niels A. H. Agatz, Paul C. Bouman, and Marie Schmidt. Optimization approaches for the
traveling salesman problem with drone. Transp. Sci., 52(4):965–981, 2018. doi:10.1287/TRSC.
2017.0791.

3 Pasquale Ambrosio and Vincenzo Auletta. Deterministic monotone algorithms for scheduling
on related machines. Theor. Comput. Sci., 406(3):173–186, 2008. doi:10.1016/J.TCS.2008.
06.050.

4 Nir Andelman, Yossi Azar, and Motti Sorani. Truthful approximation mechanisms for
scheduling selfish related machines. Theory Comput. Syst., 40(4):423–436, 2007. doi:10.1007/
S00224-006-1316-9.

5 Vincenzo Auletta, Roberto De Prisco, Paolo Penna, and Giuseppe Persiano. Deterministic
truthful approximation mechanisms for scheduling related machines. In Volker Diekert
and Michel Habib, editors, STACS 2004, 21st Annual Symposium on Theoretical Aspects of
Computer Science, Montpellier, France, March 25-27, 2004, Proceedings, volume 2996 of Lecture
Notes in Computer Science, pages 608–619. Springer, 2004. doi:10.1007/978-3-540-24749-4_
53.

https://doi.org/10.4230/LIPICS.SOCG.2019.26
https://doi.org/10.1287/TRSC.2017.0791
https://doi.org/10.1287/TRSC.2017.0791
https://doi.org/10.1016/J.TCS.2008.06.050
https://doi.org/10.1016/J.TCS.2008.06.050
https://doi.org/10.1007/S00224-006-1316-9
https://doi.org/10.1007/S00224-006-1316-9
https://doi.org/10.1007/978-3-540-24749-4_53
https://doi.org/10.1007/978-3-540-24749-4_53

L. S. Chandran, R. Gajjala, S. Mehra, and S. Rahul 17:13

6 François Bodin, Tristan Charrier, Arthur Queffelec, and François Schwarzentruber. Generating
plans for cooperative connected uavs. In Jérôme Lang, editor, Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19,
2018, Stockholm, Sweden, pages 5811–5813. ijcai.org, 2018. doi:10.24963/IJCAI.2018/846.

7 John L. Bruno, Edward G. Coffman Jr., and Ravi Sethi. Scheduling independent tasks to reduce
mean finishing time. Commun. ACM, 17(7):382–387, 1974. doi:10.1145/361011.361064.

8 John Gunnar Carlsson and Siyuan Song. Coordinated logistics with a truck and a drone.
Manag. Sci., 64(9):4052–4069, 2018. doi:10.1287/MNSC.2017.2824.

9 Shushman Choudhury, Kiril Solovey, Mykel J. Kochenderfer, and Marco Pavone. Coordinated
multi-agent pathfinding for drones and trucks over road networks. In 21st International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2022, Auckland, New
Zealand, May 9-13, 2022, pages 272–280. IFAAMAS, 2022. doi:10.5555/3535850.3535882.

10 Gregory Dobson. Scheduling independent tasks on uniform processors. SIAM Journal on
Computing, 13(4):705–716, 1984. doi:10.1137/0213044.

11 Leah Epstein and Asaf Levin. Scheduling with processing set restrictions: Ptas results
for several variants. International Journal of Production Economics, 133(2):586–595, 2011.
Towards High Performance Manufacturing. doi:10.1016/j.ijpe.2011.04.024.

12 Donald K. Friesen. Tighter bounds for lpt scheduling on uniform processors. SIAM Journal
on Computing, 16(3):554–560, 1987. doi:10.1137/0216037.

13 Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

14 Michel Gendreau, Alain Hertz, and Gilbert Laporte. A tabu search heuristic for the vehicle
routing problem. Management Science, 40(10):1276–1290, 1994.

15 Inge Li Gørtz, Marco Molinaro, Viswanath Nagarajan, and R. Ravi. Capacitated vehicle
routing with non-uniform speeds. In Oktay Günlük and Gerhard J. Woeginger, editors,
Integer Programming and Combinatoral Optimization, pages 235–247, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-20807-2_19.

16 R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal,
45(9):1563–1581, 1966.

17 R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics, 17(2):416–429, 1969.

18 F. Guerriero, R. Surace, V. Loscrí, and E. Natalizio. A multi-objective approach for unmanned
aerial vehicle routing problem with soft time windows constraints. Applied Mathematical
Modelling, 38(3):839–852, 2014.

19 Erez Hartuv, Noa Agmon, and Sarit Kraus. Scheduling spare drones for persistent task
performance under energy constraints. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden, July 10-15,
2018, pages 532–540. International Foundation for Autonomous Agents and Multiagent Systems
Richland, SC, USA / ACM, 2018. URL: http://dl.acm.org/citation.cfm?id=3237463.

20 Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algorithms for scheduling
problems theoretical and practical results. J. ACM, 34(1):144–162, 1987. doi:10.1145/7531.
7535.

21 Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation scheme for scheduling
on uniform processors: Using the dual approximation approach. SIAM J. Comput., 17(3):539–
551, 1988. doi:10.1137/0217033.

22 Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for scheduling nonidentical
processors. J. ACM, 23(2):317–327, 1976. doi:10.1145/321941.321951.

23 Shlomo Karhi and Dvir Shabtay. Online scheduling of two job types on a set of multipurpose
machines. International Journal of Production Economics, 150:155–162, 2014. doi:10.1016/
j.ijpe.2013.12.015.

FSTTCS 2024

https://doi.org/10.24963/IJCAI.2018/846
https://doi.org/10.1145/361011.361064
https://doi.org/10.1287/MNSC.2017.2824
https://doi.org/10.5555/3535850.3535882
https://doi.org/10.1137/0213044
https://doi.org/10.1016/j.ijpe.2011.04.024
https://doi.org/10.1137/0216037
https://doi.org/10.1007/978-3-642-20807-2_19
http://dl.acm.org/citation.cfm?id=3237463
https://doi.org/10.1145/7531.7535
https://doi.org/10.1145/7531.7535
https://doi.org/10.1137/0217033
https://doi.org/10.1145/321941.321951
https://doi.org/10.1016/j.ijpe.2013.12.015
https://doi.org/10.1016/j.ijpe.2013.12.015

17:14 LPT in Near-Linear Time and Parcel Delivery Using Drones

24 Jonghoe Kim and James R. Morrison. On the concerted design and scheduling of multiple
resources for persistent uav operations. In 2013 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 942–951, 2013.

25 Jonghoe Kim, Byung Duk Song, and James R. Morrison. On the scheduling of systems
of uavs and fuel service stations for long-term mission fulfillment. J. Intell. Robotic Syst.,
70(1-4):347–359, 2013. doi:10.1007/S10846-012-9727-0.

26 David Klaska, Antonín Kucera, and Vojtech Rehák. Adversarial patrolling with drones.
In Proceedings of the 19th International Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’20, Auckland, New Zealand, May 9-13, 2020, pages 629–637, 2020. doi:
10.5555/3398761.3398837.

27 Annamária Kovács. Fast monotone 3-approximation algorithm for scheduling related machines.
In Gerth Stølting Brodal and Stefano Leonardi, editors, Algorithms - ESA 2005, 13th Annual
European Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings, volume
3669 of Lecture Notes in Computer Science, pages 616–627. Springer, 2005. doi:10.1007/
11561071_55.

28 Annamária Kovács. New approximation bounds for lpt scheduling. Algorithmica, 57(2):413–433,
2010. doi:10.1007/S00453-008-9224-9.

29 Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Math. Program., 46:259–271, 1990. doi:10.1007/BF01585745.

30 Joseph Y.-T. Leung and Chung-Lun Li. Scheduling with processing set restrictions: A survey.
International Journal of Production Economics, 116(2):251–262, 2008. doi:10.1016/j.ijpe.
2008.09.003.

31 Joseph Y.-T. Leung and Chung-Lun Li. Scheduling with processing set restrictions: A
literature update. International Journal of Production Economics, 175:1–11, 2016. doi:
10.1016/j.ijpe.2014.09.038.

32 Joseph Y.-T. Leung and C. T. Ng. Fast approximation algorithms for uniform machine
scheduling with processing set restrictions. Eur. J. Oper. Res., 260(2):507–513, 2017. doi:
10.1016/J.EJOR.2017.01.013.

33 Chung-Lun Li and Kangbok Lee. A note on scheduling jobs with equal processing times and
inclusive processing set restrictions. J. Oper. Res. Soc., 67(1):83–86, 2016. doi:10.1057/JORS.
2015.56.

34 Chung-Lun Li and Qingying Li. Scheduling jobs with release dates, equal processing times,
and inclusive processing set restrictions. J. Oper. Res. Soc., 66(3):516–523, 2015. doi:
10.1057/JORS.2014.22.

35 Chung-Lun Li and Xiuli Wang. Scheduling parallel machines with inclusive processing set
restrictions and job release times. Eur. J. Oper. Res., 200(3):702–710, 2010. doi:10.1016/J.
EJOR.2009.02.011.

36 Amith Manoharan. Strategies for cooperative uavs using model predictive control. In Christian
Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI 2020, pages 5196–5197. ijcai.org, 2020. doi:10.24963/IJCAI.2020/738.

37 Gabriella Muratore, Ulrich M. Schwarz, and Gerhard J. Woeginger. Parallel machine scheduling
with nested job assignment restrictions. Operations Research Letters, 38(1):47–50, 2010.
doi:10.1016/j.orl.2009.09.010.

38 Chase C. Murray and Amanda G. Chu. The flying sidekick traveling salesman problem:
Optimization of drone-assisted parcel delivery. Transportation Research Part C: Emerging
Technologies, 54:86–109, 2015.

39 Ty Nguyen and Tsz-Chiu Au. Extending the range of delivery drones by exploratory learning of
energy models. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent
Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017, pages 1658–1660. ACM, 2017.
URL: http://dl.acm.org/citation.cfm?id=3091395.

https://doi.org/10.1007/S10846-012-9727-0
https://doi.org/10.5555/3398761.3398837
https://doi.org/10.5555/3398761.3398837
https://doi.org/10.1007/11561071_55
https://doi.org/10.1007/11561071_55
https://doi.org/10.1007/S00453-008-9224-9
https://doi.org/10.1007/BF01585745
https://doi.org/10.1016/j.ijpe.2008.09.003
https://doi.org/10.1016/j.ijpe.2008.09.003
https://doi.org/10.1016/j.ijpe.2014.09.038
https://doi.org/10.1016/j.ijpe.2014.09.038
https://doi.org/10.1016/J.EJOR.2017.01.013
https://doi.org/10.1016/J.EJOR.2017.01.013
https://doi.org/10.1057/JORS.2015.56
https://doi.org/10.1057/JORS.2015.56
https://doi.org/10.1057/JORS.2014.22
https://doi.org/10.1057/JORS.2014.22
https://doi.org/10.1016/J.EJOR.2009.02.011
https://doi.org/10.1016/J.EJOR.2009.02.011
https://doi.org/10.24963/IJCAI.2020/738
https://doi.org/10.1016/j.orl.2009.09.010
http://dl.acm.org/citation.cfm?id=3091395

L. S. Chandran, R. Gajjala, S. Mehra, and S. Rahul 17:15

40 Marta Niccolini, Mario Innocenti, and Lorenzo Pollini. Multiple uav task assignment using
descriptor functions. IFAC Proceedings Volumes, 43(15):93–98, 2010. 18th IFAC Symposium
on Automatic Control in Aerospace.

41 Alena Otto, Niels A. H. Agatz, James F. Campbell, Bruce L. Golden, and Erwin Pesch.
Optimization approaches for civil applications of unmanned aerial vehicles (uavs) or aerial
drones: A survey. Networks, 72(4):411–458, 2018. doi:10.1002/NET.21818.

42 Jinwen Ou, Joseph Leung, and Chung-Lun Li. Scheduling parallel machines with inclusive
processing set restrictions. Naval Research Logistics (NRL), 55:328–338, June 2008. doi:
10.1002/nav.20286.

43 Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. J.
Comput. Syst. Sci., 23(2):166–204, 1981. doi:10.1016/0022-0000(81)90012-X.

44 Sivakumar Rathinam and Raja Sengupta. Algorithms for routing problems involving uavs. In
Innovations in Intelligent Machines - 1, volume 70 of Studies in Computational Intelligence,
pages 147–172. Springer, 2007. doi:10.1007/978-3-540-72696-8_6.

45 Dvir Shabtay and Shlomo Karhi. Online scheduling of two job types on a set of multipurpose
machines with unit processing times. Computers and Operations Research, 39(2):405–412,
2012. doi:10.1016/j.cor.2011.05.002.

46 Kaarthik Sundar and Sivakumar Rathinam. Algorithms for heterogeneous, multiple depot,
multiple unmanned vehicle path planning problems. J. Intell. Robotic Syst., 88(2-4):513–526,
2017. doi:10.1007/S10846-016-0458-5.

47 Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. Society for Industrial and Applied
Mathematics, 2002.

48 Feng Wu, Sarvapali D. Ramchurn, and Xiaoping Chen. Coordinating human-uav teams
in disaster response. In Subbarao Kambhampati, editor, Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016, pages 524–530. IJCAI/AAAI Press, 2016. URL: http://www.ijcai.org/
Abstract/16/081.

49 Miao Yu, Viswanath Nagarajan, and Siqian Shen. An approximation algorithm for vehicle
routing with compatibility constraints. Operations Research Letters, 46(6):579–584, 2018.
doi:10.1016/j.orl.2018.10.002.

FSTTCS 2024

https://doi.org/10.1002/NET.21818
https://doi.org/10.1002/nav.20286
https://doi.org/10.1002/nav.20286
https://doi.org/10.1016/0022-0000(81)90012-X
https://doi.org/10.1007/978-3-540-72696-8_6
https://doi.org/10.1016/j.cor.2011.05.002
https://doi.org/10.1007/S10846-016-0458-5
http://www.ijcai.org/Abstract/16/081
http://www.ijcai.org/Abstract/16/081
https://doi.org/10.1016/j.orl.2018.10.002

Circuits, Proofs and Propositional Model Counting
Sravanthi Chede #

Indian Institute of Technology Ropar, Rupnagar, India

Leroy Chew #

TU Wien, Austria

Anil Shukla #

Indian Institute of Technology Ropar, Rupnagar, India

Abstract
In this paper we present a new proof system framework CLIP (Circuit Linear Induction Proposition)
for propositional model counting (#SAT). A CLIP proof firstly involves a Boolean circuit, calculating
the cumulative function (or running count) of models counted up to a point, and secondly a
propositional proof arguing for the correctness of the circuit.

This concept is remarkably simple and CLIP is modular so it allows us to use existing checking
formats from propositional logic, especially strong proof systems. CLIP has polynomial-size proofs
for XOR-pairs which are known to require exponential-size proofs in MICE [16]. The existence
of a strong proof system that can tackle these hard problems was posed as an open problem in
Beyersdorff et al. [3]. In addition, CLIP systems can p-simulate all other existing #SAT proofs
systems (KCPS(#SAT) [8], CPOG [4], MICE). Furthermore, CLIP has a theoretical advantage over the
other #SAT proof systems in the sense that CLIP only has lower bounds from its propositional proof
system or if P#P is not contained in P/poly, which is a major open problem in circuit complexity.

CLIP uses unrestricted circuits in its proof as compared to restricted structures used by the
existing #SAT proof systems. In this way, CLIP avoids hardness or limitations due to circuit
restrictions.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Propositional model counting, Boolean circuits, #SAT, Proof Systems,
Certified Partition Operation Graph (CPOG)

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.18

Funding Leroy Chew: This work was supported by FWF ESPRIT grant no. ESP 197.

Acknowledgements We thank Olaf Beyersdorff, Tim Hoffmann, Luc Nicolas Spachmann for useful
discussions on this topic. We also thank the anonymous reviewers for helpful suggestions on the
paper.

1 Introduction

Given a propositional formula, the problem of finding its total number of satisfying assign-
ments (models) is known as the propositional model counting problem #SAT [24]. The
problem is known to be #P-complete and is considered one of the hardest problem in the field
of computational complexity. In fact, it is known that with a single call to a #SAT-oracle, any
problem from polynomial hierarchy can be solved in polynomial time (Toda’s Theorem [27]).

Over the last few years, some important proof systems have been developed for #SAT.
The knowledge compilation based proof system (KCPS(#SAT)) [8] is the first non-trivial proof
system designed for #SAT. A KCPS(#SAT) proof for a CNF represents the proposition as a
decision-DNNF (Decomposable Negation Normal Form), with some additional annotations
for checking. A decision-DNNF allows for model counting to be easily extracted. However,
limitations and lower bounds for KCPS(#SAT) have already been established [2, 8].

© Sravanthi Chede, Leroy Chew, and Anil Shukla;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 18; pp. 18:1–18:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sravanthi.20csz0001@iitrpr.ac.in
https://orcid.org/0000-0001-7170-6156
mailto:lchew@ac.tuwien.ac.at
https://orcid.org/0000-0003-0226-2832
mailto:anilshukla@iitrpr.ac.in
https://orcid.org/0009-0009-9051-4374
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Circuits, Proofs and Propositional Model Counting

The second proof system designed for #SAT is MICE (Model-counting Induction by Claim
Extension) [16]. Unlike KCPS(#SAT), it is a line based proof system which computes the
model count in a step-by-step fashion using some simple inference rules. Several lower bounds
for MICE have been established in the literature [2, 3]. For example, XOR-PAIRS [3], are
shown to be hard for the MICE proof system. Recently, an important proof system CPOG [4]
was introduced for #SAT. Similar to KCPS(#SAT), CPOG is also based on knowledge
compilation. A CPOG proof for a CNF formula ϕ consists of a Partitioned-Operation Graph
(POG) G along with a Resolution proof of the fact that G ≡ ϕ.

The relationship between these three proof systems are now well known. It has been shown
in [2], that CPOG is exponentially stronger than KCPS(#SAT) and MICE. On the other hand,
KCPS(#SAT) and MICE are incomparable [2, Figure 1]. This means that KCPS(#SAT) and
MICE have unconditional lower bounds. For CPOG a lower bound is currently unknown, but
its proof complexity is necessarily tied to the limitations of POGs.

In this paper, we introduce a new #SAT proof format CLIP (Circuit Linear Induction
Proposition) (Definition 5). A CLIP based proof for a CNF formula ϕ consists of a Boolean
circuit calculating the running count of models up to an assignment treated in some fixed
lexicographical order. We denote this Boolean circuit as a cumulator (Definition 3). In
addition to the cumulator, the CLIP proof also contains a certificate proving the correctness of
the cumulator. The CLIP format is similar to CPOG in the sense that instead of a POG, CLIP
has a cumulator. Since POG uses restricted versions of AND and OR gates, as compared
to cumulators, we believe that CLIP format is much stronger than CPOG. In this direction,
we show that CLIP can p-simulate CPOG (Theorem 30). In fact, we show that CLIP has
lower bounds only if some major open problems of proof complexity or circuit complexity
are solved (Theorem 7).

In MICE and KCPS(#SAT), proofs can grow exponentially because of unsatisfiable for-
mulas that have lower bounds in Resolution. In this direction, for any unsatisfiable formula
which is hard in Resolution, it is unclear how large the CPOG proofs will be. However,
for unsatisfiable formulas in CLIP, proofs are no bigger than their shortest DRAT proofs
(Proposition 35). In addition, we also show that XOR-PAIRS which are known to be hard
for existing proof systems are easy for the CLIP format (Theorem 34). We sum up our
contributions in the Figure 1. We explain the same in detail in the following subsection.

MICE KCPS(#SAT)

CPOG

CLIP+eFrege ≡
CLIP+DRAT

Known L.B.

L.B. ≡ Major open problems

p-simulates
strictly stronger
incomparable

Figure 1 Hierarchy of #SAT proof systems. New results are shown in bold.

S. Chede, L. Chew, and A. Shukla 18:3

Our Contributions

1. Introducing a new proof system framework for #SAT (CLIP): We present a
proof system where proofs are pairs containing a circuit and a propositional proof. The
circuit is a multi-output Boolean circuit we call the cumulator which takes a complete
assignment α and returns the number (in binary) of models of a propositional formula up
to α in some fixed lexicographical ordering of assignments. In addition, CLIP proofs also
contain a certificate showing the correctness of the cumulator. The certificate here is a
propositional proof. This is possible because we can construct a tautology that covers
every inductive step for any two consecutive complete assignments. The CLIP format
allows us to use any known propositional proof system P for proving the correctness of the
cumulator. In this paper we focus on CLIP+ Extended Frege (CLIP+eFrege). We show
that CLIP+eFrege is a powerful proof system in the sense that it has a lower bound only
if a super-polynomial lower bound for eFrege is found or it is proven that P#P ⊈ P/poly
(Theorem 7). Hence proving lower bounds in CLIP+eFrege will lead to solving major
open problems in the fields of proof complexity or circuit complexity. Another way to say
this is that CLIP is the first #SAT proof system which is conditionally optimal. Note
that such systems already exist in the propositional and QBF worlds, i.e. IPS (Ideal
Proof System) [18] and eFrege +∀red [1] system respectively.

2. A CLIP+eFrege simulation technique for all existing #SAT proof systems: The
CLIP+eFrege simulation technique consists of three parts. The first part consists of
extracting a cumulator from any #SAT proof system which is closed under restrictions.
The second part establishes that if a #SAT proof system admits easy eFrege proofs of
the “properties of restriction” (Definition 15) then it can be p-simulated by CLIP+eFrege.
The final part proves that the CPOG system admits all the required properties and hence
can be p-simulated by CLIP+eFrege. Let us briefly explain each of them separately.
a. Cumulator extraction (Section 4.1). We show that from any #SAT proof system

which is closed under restrictions (Definition 1), there is a simple technique to efficiently
extract a cumulator from its proofs. For this, we carefully use the concept of Fenwick
trees [15, 26] to introduce and compute the Fenwick assignments (Definition 11). In-
formally, the Fenwick assignments are a small set of partial assignments that collectively
covers all assignments up to a given complete assignment (Definition 9).

b. Extended Frege (eFrege) certification of the cumulator (Section 4.2). Informally,
the properties of restriction imply that after restricting a proof with a complete
assignment α, the model count will be “one” or “Zero” depending on whether α satisfies
the formula or not. Whereas, in the case of restricting a proof with a partial assignment
α undefined on some variable x, the model count returned should be the sum of model
counts returned when restricting seperately with α0 and α1, where αb = α ∪ {x = b}.
These two are the only properties we need to know which when globally combined
tell us that the model count under the restriction of a partial assignment is correct.
If a #SAT proof system admits easy eFrege proofs for these properties of restriction
(Definition 15), we show that it can be p-simulated by CLIP+eFrege (Theorem 19).

c. CLIP+eFrege p-simulates CPOG (Section 5). Using the structure of the POG to form
an inductive proof. We explicitly show that the CPOG proof system admits easy eFrege
proofs of the properties of restriction (Lemma 29). Thereby, proving that CLIP+eFrege
p-simulates CPOG (Theorem 30), which in-turn p-simulates KCPS(#SAT) and MICE [2].
This shows that CLIP+eFrege p-simulates all existing #SAT proof systems.

FSTTCS 2024

18:4 Circuits, Proofs and Propositional Model Counting

3. Upperbounds in CLIP for some hard formulas of existing #SAT systems:
a. XOR-PAIRS. Since the CLIP framework uses unrestricted Boolean circuits in its proof

as compared to other existing #SAT proof systems, CLIP is capable of handling
formulas that are hard for other systems. We show this for the family XOR-PAIRS,
which are known to be hard for MICE [3], and give an easy proof for the same in the
CLIP+eFrege proof system (Theorem 34). For the short proof, we first carefully define
a short cumulator for the XOR-PAIRS. Then, using a constant case analysis we certify
the correctness of the cumulator in eFrege.

b. Unsatisfiable formulas. We show that any unsatisfiable formula which has an
easy eFrege proof, also has an easy CLIP+eFrege proof (Proposition 35). It is already
known that for unsatisfiable formulas, MICE and KCPS(#SAT) are p-equivalent to
Resolution and regular-Resolution respectively [2, Proposition 5.1, 5.3]. As a result, all
unsatisfiable formulas, which are hard for Resolution and easy for eFrege are all hard
for MICE and KCPS(#SAT) but easy for CLIP+eFrege. We list three such important
counting based unsatisfiable formulas. Namely, the pigeonhole principle (PHP), the
clique-coloring principle [22, Definition 7.1] and the Random Parity principle, which
are known to be hard for Resolution [19, 22, 9] but are easy for eFrege [13, 6, 7, 10].

2 Preliminaries

For a Boolean variable x, its literals can be x or ¬x. We use the notation ℓ = ¬x when ℓ = x

and ℓ = x when ℓ = ¬x. A clause C is a disjunction of literals and a conjunctive normal
form (CNF) formula ϕ is a conjunction of clauses. We denote the empty clause by ⊥. vars(ϕ)
is the set of all variables in formula ϕ.

2.1 Assignments
A partial assignment is a partial mapping from a set of propositional variables X to {0, 1},
when the mapping is defined everywhere we say the assignment is complete. ⟨X⟩ is the
set of all complete assignments. Consider a totally ordered set of variables X. An initial
assignment α is a partial assignment to X such that there are no pairs x, y ∈ X where x < y

and x is undefined in α and y is defined. vars(α) are the variables for which α is defined and
|α| represents |vars(α)|. A partial assignment α can be extended to a total assignment by
appending 0/1 assignment to the variables X \ vars(α). Two partial assignments α, β are
called non-overlapping, if there does not exist any total assignment γ which can be obtained
by extending both α and β.

For a CNF ϕ, ϕ|α (similarly C|α) denotes the restricted formula (or clause) resulting from
replacing all occurrences of vars(α) in ϕ (or C) with assignments from α. For a propositional
formula F we define the indicator function 1F , this acts on the free variables of F . 1F is
equal to an assignment that corresponds to 0 when F is false and 1 when F is true.

When variables are ordered as X =< xn−1, . . . x0 >, complete assignments can be seen
as binary numbers i.e. {x2 = 1, x1 = 0, x0 = 1} represents 5.

Let num map assignments to integers using the standard binary encoding (num(α) =∑i<n
i=0 1α(xi) · 2i), and num−1 be its inverse. We also encapsulate arithmetic statements with

|| · || to indicate that we revert this into a proposition. Later we will drop this notation when
obvious. We denote [J] to denote numbers {1,2, . . . , J−1, J} and [J1, J2] to denote numbers
{J1, J1 + 1, . . . , J2 − 1, J2}. We distinguish numerals 0 and 1 from Boolean constants 0 and
1 through the use of boldface.

S. Chede, L. Chew, and A. Shukla 18:5

Given a formula ϕ over a set of variables X, a model is an complete assignment to X that
satisfies ϕ. The set of models of ϕ isM(ϕ). We denote the total number of models of a CNF
ϕ as #models(ϕ) = |M(ϕ)|. #SAT is the computational problem of calculating #models(ϕ)
from a CNF ϕ. The class of languages decidable in polynomial time with an oracle to #SAT
are denoted by P#P .

2.2 Circuits
A Boolean circuit σ on variables X is a directed acyclic graph, in which the input nodes (with
in-degree 0) are Boolean variables ∈ X and other nodes are the basic Boolean operations:
∨ (OR), ∧ (AND) and ¬ (NOT) and have in-degree at most 2. Every Boolean circuit σ
evaluates a Boolean function whose output is that of the node with out-degree 0 in σ. P/poly
is the class of Boolean functions computed by polynomial-sized circuit families.

We refer to a multi-circuit when we have multiple nodes with out-degree 0. This is
simultaneously many overlapping circuits. Multi-circuits take inputs and outputs of Boolean
vectors of fixed length. We denote the Boolean XOR gate with ⊕ in the paper. Likewise
we use ↔ (or =, or ≡) for bi-equivalence and A |= B to mean that models of A are also
models of B. A CNF ϕ can trivially be represented as a Boolean circuit σ as follows: for
every C ∈ ϕ, σ has |vars(C)| number of OR-gates. Then, σ has m− 1 AND-gates where m
is the number of clauses ∈ ϕ.

2.3 Proof Systems
A proof system [12] is a polynomial-time function that maps proofs to theorems, where the
set of theorems is some fixed language L. A proof system is sound if its image is contained
in L and complete if L is contained in its image. A proof system takes in strings as its
inputs. Let π be such a proof we denote its size, i.e. the string length by |π|. Given two
proof systems f and g for the same language L. We that the f p-simulates g, when there is a
polynomial time function r that maps g-proofs to f -proofs such that g(π1) = f(r(π1)). f and
g are said to be p-equivalent if they both p-simulate each other,f and g are incomaparable if
neither of them p-simulates the other. We say that f is exponentially stronger than g, if f
p-simulates g but g does not p-simulate f .

Conventionally we may take L to be the set of propositional tautologies (as in Section 2.3.1).
For propositional model counting, we take L as the set of all pairs (ϕ,#models(ϕ)), where ϕ
is any propositional formula. We refer to a #SAT proof of (ϕ,#models(ϕ)) as a proof of ϕ.

▶ Definition 1 (Closure under restrictions [23]). A proof system P is closed under restrictions
if for every P -proof π of a CNF formula ϕ and any partial assignment α to vars(ϕ), there
exists a P -proof π′ of ϕ|α such that |π′| ≤ p(|π|) for some polynomial p. In addition, there
exists a polynomial time procedure (w.r.t. |π|) to extract π′ from π.

A similar definition called “closure under conditioning” exists in the knowledge-compilation
domain [14, Definition 3]. Precisely, a knowledge representation structure S (like DNNF,
POG, etc) is closed under conditioning if from an S structure T and an assignment α to
vars(T), another S structure T ′ can be computed just by replacing all occurrences of free
variables by α wherever defined. Additionally T ′ should be equivalent to T ∧ α.

2.3.1 Propositional Proof Systems
Resolution [25] is arguably the most studied propositional proof system. It has the rule
(C∨x) (D∨x)

(C∪D) where C,D are clauses and x is a variable. Resolution refutation ρ of CNF ϕ is
a derivation of ⊥ using the above rule. Resolution is known to be closed under restrictions.

FSTTCS 2024

18:6 Circuits, Proofs and Propositional Model Counting

Frege systems [17] are important propositional proof systems. They consist of a sound
and complete set of axioms and rules where any variable can be substituted by any formula.
All Frege systems are p-equivalent [12]. Figure 2 gives one example of a Frege system.

1 x1 → (x2 → x1) ((x1 → 0)→ 0)→ x1

(x1 → (x2 → x3))→ ((x1 → x2)→ (x1 → x3))
x1 x1 → x2

x2

Figure 2 A Frege system for connectives →, 0, 1.

Extended Frege (eFrege) [12] allows the introduction of new variables as well as all
Frege rules. Simultaneously we can imagine it as a Frege system where lines are circuits
instead of formulas, or as Substitution Frege, where derived tautologies can be generalised.
eFrege is also p-equivalent to DRAT (Deletion Resolution Asymmetric Tautology) [21], a
practical proof-format widely used in certifying SAT solvers. In Figure 3 we show that eFrege
sits at the top of the simulation hierarchy of propositional proof systems. In fact eFrege can
simulate any proof system as long as there is a short proof of the reflection principle of said
proof system [20].

Res

Frege

eFregeDRAT

CPPCR

PC

Truth Table

Figure 3 The p-simulation hierarchy of propositional proof systems [12].

When showing that eFrege has short proofs for complicated tautologies, it does not help
us to be committed to one strictly defined proof system. Instead, we can use the fact that it
can simulate many different proof systems such as Resolution, Cutting planes, Polynomial
calculus and Truth Tables. Any tautology that has a short proof in any weaker system will
also have a short proof in eFrege.

3 Circuit Linear Induction Proposition (CLIP) Proof Framework

In this section, we define a propositional model counting proof framework (CLIP+P) for any
propositional proof system P. Given a CNF ϕ over n variables, a CLIP+P proof consists
of a Boolean circuit ξ (denoted as a cumulator) which outputs the total number of models
of ϕ from complete assignment 0 to a given complete assignment num(α) (denoted as
Cmodels(ϕ, α), Definition 2). Clearly, when num(α) = 2n − 1, Cmodels(ϕ, α) = #models(ϕ). In
addition, the CLIP+P-proof also requires a P-proof of a statement which carefully encodes
the correctness of cumulator ξ using the induction-principle (see Definition 5). We need the
following definitions.

S. Chede, L. Chew, and A. Shukla 18:7

▶ Definition 2 (Cmodels(ϕ, α)). Let ϕ be an CNF formula, fix an order among vars(ϕ). For
any complete assignment α to vars(ϕ), the cumulative number of models of CNF ϕ w.r.t. α
(denoted by Cmodels(ϕ, α)) is the number of models of ϕ between assignment 0 to assignment
num(α). In other words Cmodels(ϕ, α) := Σnum(β)≤num(α)1ϕ(β), where 1ϕ(β) is the indicator
function for when β is a model of ϕ.

▶ Definition 3 (Cumulator). A cumulator for a CNF ϕ over n variables is a Boolean multi-
circuit ξ(α) which takes as input a complete assignment α to vars(ϕ) (as n binary bits) and
calculates the cumulative number of models of ϕ, i.e. Cmodels(ϕ, α) outputted as n+ 1 binary
bits. As a result, when α is the last assignment (i.e. num(α) = 2n − 1), ξ(α) outputs the
total number of models of ϕ, we denote this as the final output of ξ.

A trivial cumulator for ϕ would be to keep a counter and given any α, input every
assignment from 0 to num(α) into the trivial Boolean circuit representing ϕ. If an assignment
is a model then increment the counter. This will take O(2|vars(ϕ)|) computations in the case
of α being the last assignment.
Consider a CNF ϕ and let k be its number of models. Given a cumulator ξ(α) for ϕ, the
correctness of the cumulator can be encoded inductively as follows:

For the base case when num(α) = 0, we need to verify that the following is satisfied:
(ϕ(α) ∧ ||ξ(α) = 1||) ∨ (ϕ(α) ∧ ||ξ(α) = 0||). This covers the case that if the first
assignment is a model for ϕ then the cumulator should return 1, else a 0.

For the inductive step when num(α) = num(β) + 1, the following should be satisfied
(ϕ(α) ∧ ||ξ(α) = ξ(β) + 1||) ∨ (ϕ(α) ∧ ||ξ(α) = ξ(β)||). This covers the case that if the
next assignment α after β is a model of ϕ, then the cumulator should increment its output
by 1. Otherwise, the cumulator should output the same number under both assignments.

For the final case when num(α) = 2|vars(ϕ)| − 1, it should be true that ξ(x) = k. This
covers the case that the cumulator computes the correct total number of models of ϕ.

It is clear to see that if all of the above cases are true, the cumulator ξ is proven to be a
correct cumulator of ϕ. From the above discussion, one can encode the correctness of ξ as
the following statement (|| · || encloses the arithmetic comparisons needed):
||num(α) = 0|| →

(
(ϕ(α) ∧ ||ξ(α) = 1||) ∨ (¬ϕ(α) ∧ ||ξ(α) = 0||)

)
∧||num(α) = num(β) + 1|| →

(
(ϕ(α) ∧ ||ξ(α) = ξ(β) + 1||) ∨ (¬ϕ(α) ∧ ||ξ(α) = ξ(β)||)

)
∧||num(α) = 2|vars(ϕ)| − 1|| → ||ξ(x) = k||.

To convert this into a purely propositional statement, we need Boolean circuits to
implement the arithmetic conditions ||x = y|| and ||x = y + 1|| for any integers x, y. We
define polynomial sized Boolean circuits for the same as E(x, y) and T (x, y) respectively in
Definition 4 below.

▶ Definition 4. Let Z be a set of variables of size n, and let γ and δ be assignments to Z.
For pairs of individual variables a, b, use a = b to denote (¬a ∨ b) ∧ (a ∨ ¬b). We can encode
polynomial size propositional circuits:

E(γ, δ), that denotes num(γ) = num(δ): E0(γ, δ) := (γ0 ↔ δ0). For 1 ≤ i < n,
Ei(γ, δ) := (γi ↔ δi) ∧ Ei−1(γ, δ). E(γ, δ) := En−1(γ, δ).
T (γ, δ), that denotes num(γ) = num(δ) + 1 using an intermediate definition S that will
denote the successor function. For 0 ≤ i < n and accepting the empty conjunction as
true, S(δ)i := ¬(δi ↔

∧j<i
j≥0 δj). T (γ, δ) := E(γ, S(δ)) ∧

∨i<n
i≥0 δi.

▶ Definition 5 (CLIP+P). For every propositional proof system P, the CLIP+P system for
#SAT is a cumulator ξ for a CNF ϕ along with its correctness presented as a valid P-proof
of the following linear induction proposition statement lip(ξ).

FSTTCS 2024

18:8 Circuits, Proofs and Propositional Model Counting

Let A and B be two disjoint copies of the variables in ϕ. The following is a tautology in
the variables of A ∪B:

lip(ξ) :=

E
(
A,num−1(0)

)
→

((
ϕ(A)→ E

(
ξ(A),num−1(0)

))
∧

(
ϕ(A)→ T (ξ(A),num−1(0))

))
∧

T (B,A)→
((

ϕ(B)→ E
(
ξ(B), ξ(A)

))
∧

(
ϕ(B)→ T

(
ξ(B), ξ(A)

)))
∧

E
(
A,num−1(2|vars(ϕ)| − 1)

)
→ E

(
ξ(A),num−1(k)

)
.

The existence of a valid P-proof of lip(ξ), ensures that ξ is correct and the final output
k of ξ is the correct number of models of ϕ. Note that in a technical sense the proof of
inductive step (i.e. line 2 in lip(ξ)) is sufficient to verify the cumulator ξ, as the base and
final case can be managed in the checker.

▶ Theorem 6. If P is a propositional proof system then CLIP+P is a propositional model
counting proof system.

Proof. CLIP+P is sound and complete for #SAT as a trivial cumulator always exists for any
ϕ and the propositional proof system P is sound and complete. Note that for a refutational
proof system P ′, CLIP+P ′ can include the correctness of ξ by including a P ′-refutation
of lip(ξ) from the above definition. For polynomial time checkability, we perform three
steps: a) Verify that ξ is indeed a circuit. b) Using ξ, generate lip(ξ) once again, to make
sure it matches (where P does not accept circuits a canonical translation, i.e. a Tseitin
transformation is needed). c) Verifying the P proof. ◀

▶ Theorem 7. CLIP+eFrege has a super-polynomial lower bound only if eFrege has a super-
polynomial lower bound or P#P ⊈ P/poly.

Proof. Suppose there is a family (ϕn)n≥0 of propositional formulas that are a super-
polynomial lower bound to CLIP+eFrege. Let fn,i be the ith bit of the cumulative function
for ϕn. (fn,i)0≤i≤|vars(ϕn)|

n≥0 is a P#P family. Finding the value of the cumulator at assignment
α can be found by adding a constraint to ϕ that the only acceptable models are less than or
equal to α and querying for the number of models.

Now suppose P#P ⊂ P/poly, then there are polynomial size circuits for each fn,i and thus
a polynomial size cumulator ξn for each ϕn. For each n, lip(ξn) is also polynomial size in ϕn.
Thus the family (lip(ξn))n≥0 is super-polynomial lower bound for eFrege. ◀

4 CLIP+eFrege simulates existing #SAT proof systems

In this section, we give an important CLIP+eFrege p-simulation technique for any #SAT proof
systems which are closed under restrictions and have short eFrege proofs of the properties
of restriction (Definition 15). To be precise, we show that CLIP+eFrege can p-simulate any
model counting proof system P which obey the following conditions:

I. The polynomial-time ability to extract circuits θ from a P-proof π of CNF ϕ over n
variables (xn−1 . . . x0) that calculate closure under restrictions for any given (partial)
assignment α. That is, θ : α→ #SAT(ϕ|α) (Definition 8).

II. P has short eFrege proofs for properties of restriction (Definition 15) that confirm the
correctness of closure under restrictions in P.

Let us formally define the circuit θ used in above conditions.

S. Chede, L. Chew, and A. Shukla 18:9

▶ Definition 8. Let ϕ be a CNF on n variables and α be a (partial) assignment of length
n − i. We define θi(α) to be a Boolean circuit that returns #models(ϕ|α). Also, θi

j(α) is a
circuit that returns the jth bit of θi(α).

In the upcoming subsections, we give the complete simulation technique. Recall that
CLIP+eFrege proof consists of a cumulator ξ and a eFrege-proof of validity of the propositional
“lip” statement which encodes the correctness of ξ. Using the condition-I above, in Section 4.1
we derive the cumulator ξ for ϕ (Part 1 of our simulation technique). In Section 4.2, we use
the condition-II to derive the eFrege-proof of lip(ξ) (Part 2 of our simulation technique).

4.1 Simulation Technique (Part 1) : Cumulator Extraction
In this section, we give a general framework of extracting efficiently a cumulator from
the proofs of existing propositional model counting proof systems. We need the following
definition.

▶ Definition 9 (Disjoint binary partial assignment cover (Cov(J1,J2))). Let J1, J2 be integers
representing some complete assignments to variables X :=< xn−1, ..., x0 > in this order. The
cover Cov(J1,J2) is a set of partial assignments to X which are non-overlapping and together
cover the entire assignment space between J1 and J2 inclusive of both.

For instance, let X := {x3, x2, x1, x0}, J1 := 5 and J2 := 15. One possible
Cov(J1,J2):=

{
{x3 = 1}, {x3 = 0, x2 = 1, x1 = 1}, {x3 = 0, x2 = 1, x1 = 0, x0 = 1}

}
.

Observe that the first partial assignment (i.e. {x3 = 1}) is covering all assignments from
[8 ,15]. Similarly the second and third partial assignments are covering the assignments
[6 ,7] and 5 respectively. Another possible Cov(J1,J2):=

{
{x2 = 1, x0 = 1}, {x3 = 1, x2 =

0}, {x3 = 1, x2 = 1, x0 = 0}, {x3 = 0, x2 = 1, x1 = 1, x0 = 0}
}

which cover assignments
{5 ,7 ,13 ,15}, {8 ,9 ,10 ,11}, {12 ,14} and {6} respectively.

Let us now outline the general extraction technique.

Cumulator Extraction Technique. Let P ∈ {MICE,KCPS(#SAT),CPOG} be a proposi-
tional model counting proof system. Consider a CNF ϕ over n variables and its P-proof π.
In order to efficiently extract a correct cumulator ξ for ϕ, we follow the following steps:
1. Show that P is closed under restrictions (see Definition 1). That is, show that P obeys

condition-I from above.
2. For any complete assignment J to vars(ϕ), find the set of non-overlapping partial as-

signments (to vars(ϕ)) which cover the entire assignment space from assignment-0 up to
assignment-J (i.e Cov(0,J) see Definition 9).
Using Fenwick’s idea [15, 26], it is easy to compute Cov(0,J) for any complete assignment
J (Lemma 10). Moreover, |Cov(0,J)|≤ n.

3. For each partial assignment α ∈ Cov(0,J), restrict π with α and consider the P-proof π′ of
CNF ϕ|α. Observe that π′ and θi(α) agree on the value of #SAT (ϕ|α) where i = n− |α|.
Since P is closed under restrictions, this step takes O(|π|) time for every α.

4. Finally add the number of models returned by all the π′ proofs obtained in the above
step. (This step will need a full-adder circuit as integers are represented as (n+ 1)-bit
numbers).

This process will return ξ(J) which computes Cmodels(ϕ, J) and takes O(n.|π|) time.
We prove Step-1 of our simulation technique individually for existing proof system CPOG

in Section 5 (Lemma 23). For Step-2, consider the following lemma.

FSTTCS 2024

18:10 Circuits, Proofs and Propositional Model Counting

▶ Lemma 10. Given an input size n, and binary integer 0 ≤ J < 2n. There is a polynomial
time algorithm in n that returns a disjoint binary partial assignment cover for [0 , J] (Cov(0,J))
with at most n many partial assignments.

We have proved Lemma 10 by using a deterministic Fenwick-based algorithm in Appendix A.
Note that extracting the cumulator is not enough for the full CLIP simulation, because

CLIP proofs also consist of the validity proof of the lip statement. However, with an access
to an NP-oracle, the validity of the lip statement can be obtained in one step due to the
correctness of our simulation technique. We call such a system as CLIPNP . Thus the efficient
cumulator extraction shows that CLIPNP p-simulates any #SAT system which is closed
under restrictions. Observe that CLIPNP is a proof system only if P = NP.

In the upcoming sections, we give full CLIP framework simulations of all the existing
#SAT proof systems using the powerful eFrege system for validating the lip statement.

Recall that for the cumulator extraction, we used the concepts of Fenwick assignments.
In upcoming proofs, we also need some additional results on Fenwick assignments. We finish
this subsection with these results before proceeding to the part 2 of our simulation technique.

4.1.1 Formalising Fenwick Assignments
In Lemma 10, we show how to compute the partial assignment cover of a given complete
assignment α with |Cov(0,α)| ≤ |α|. In this section, we formalise it as a Boolean circuit
(Definition 11) which outputs a partial assignment cover for any given complete assignment
α. We call the output Cov(0,J) of the Boolean circuit as Fenwick assignments. We further
show that eFrege can handle a few essential properties of Fenwick assignments. We use these
in the next section for part-2 of the simulation technique.

▶ Definition 11 (Fenwick Assignments). Let α be a complete assignment to n variables with
ordering < xn−1 . . . x0 >. For every i, 0 ≤ i ≤ n, we define an existence function ei(α) and
the set of initial assignment bits fi,j for 0 ≤ i ≤ j < n as follows:

ei(α) =

1 α(xi) ∧

∨k<i
k≥0 α(xk) and 0 < i < n

1 α(xi) ∧
∧k<i

k≥0 α(xk) and 0 ≤ i < n

1
∧k<n

k≥0 α(xk) and i = n

0 otherwise

fi,j(α) =
{

1 α(xj) and j > i

0 otherwise

We denote for 0 ≤ i < n, fi(α) = {fi,j |i ≤ j < n} as the ith partial assignment for α
(note that fn is the empty assignment and needs no variables to be defined). For a complete
assignment α, Fenwick assignments are {fi(α)|ei(α) = 1, 0 ≤ i ≤ n}. Here, ei(α) can be
seen as a single-bit value that indicates if there is an initial assignment defined on n − i
variables in the Fenwick assignments of α. Similarly, fi,j(α) is the value of xj in the ith
partial assignment corresponding to ei(α) in Fenwick assignments of α.

Below we give an example of how we represent Fenwick assignments as in Definition 11.

▶ Example 12. Let n = 4 and J = 12. Let the variables be lexicographical ordered as
< x3, . . . , x0 >. The corresponding Cov(0,12) is the following set of partial assignments:{
{x3 = 1, x2 = 1, x1 = 0, x0 = 0}, {x3 = 1, x2 = 0}, {x3 = 0}

}
.

The Fenwick circuits have the following values: e0(12) = 1, e1(12) = 0, e2(12) =
1, e3(12) = 1, e4(12) = 0. This indicates that there are 3 partial Fenwick assignments in
Cov(0,12) ending at x0, x2 and x3 respectively. The exact assignments are computed as
follows:

S. Chede, L. Chew, and A. Shukla 18:11

f0,3(12) = 1, f0,2(12) = 1, f0,1(12) = 0, f0,0(12) = 0 → {x3 = 1, x2 = 1, x1 = 0, x0 = 0}
f2,3(12) = 1, f2,2(12) = 0 → {x3 = 1, x2 = 0}
f3,3(12) = 0 → {x3 = 0}

We will be able to prove few properties of how Fenwick assignments change as num(α)
increases slowly (see Appendix B). Step 3,4 of our simulation technique require restricting the
θ circuit with all the Fenwick assignments of some complete assignment α and adding them
up to get ξ(α). Using the formal definition of the Fenwick assignments from Definition 11,
we have the following.

▶ Definition 13. For a complete assignment α on n variables, we define the vector of Boolean
variables ξ(α) as the following sum:

(en(α) ∧ θn(fn(α))) + (en−1(α) ∧ θn−1(fn−1(α))) + · · ·+ (e0(α) ∧ θ0(f0(α)))

This circuit ξ is the required cumulator.

4.2 Simulation Technique (Part 2): eFrege certification of the cumulator
Recall that, for a full CLIP+eFrege simulation, the proof system must have short eFrege
proofs of the properties of restriction, i.e. condition-II from Section 4. Let us formally
define the properties of restriction in Definition 15 which are based on the following simple
observations of partial assignments.

▶ Observation 14. Let ϕ be a CNF on variables < xn−1 . . . x0 > (used in that lexicographic
ordering in CLIP). Let α be a partial assignment defined on xn−1 . . . xi, undefined on
xi−1 . . . x0. Given a {0, 1}-value b, let αb := α ∪ {xi−1 = b}. Then, #models(ϕ|α) =
#models(ϕ|α0) + #models(ϕ|α1). If α is a complete assignment, #models(ϕ|α) = 1ϕ(α).

▶ Definition 15 (Properties of Restriction). Let S be a propositional model counting proof
system and ϕ be a CNF on n variables (< xn−1 . . . x0 >). Suppose ϕ has an S-proof π with
θ being the associated circuit for restriction. We consider the following properties for all
assignments α over xn−1 . . . x0.
1. If α is a complete assignment: θ0(α) = 1ϕ(α).
2. If α is a partial assignment defined on xn−1 . . . xi : θi(α) = θi−1(α0) + θi−1(α1)

▶ Observation 16. Any propositional model counting proof system P which is closed under
restrictions, satisfies the properties of restriction mentioned in Definition 15.

Next we prove that short eFrege proofs of the properties of restriction can be used to give
short eFrege-proofs of the lip statement from Definition 5.

▶ Lemma 17. Suppose P is a propositional model counting proof system which is closed under
restrictions. Let ϕ be a CNF and ξ be a cumulator obtained by using Fenwick assignments
on the P-proof of ϕ. If P has polynomial-sized eFrege proofs of the properties of restriction,
then it has short eFrege proof of lip(ξ).

Before presenting the detailed proof of Lemma 17, we briefly give the proof idea of it.
For a CNF ϕ and any two consecutive assignments β2 = β1 + 1, we need to show that
ξ(β2) = ξ(β1) + 1ϕ(β2). We show this in the following two cases: β2 being odd or even. In
the case of β1=odd and β2=even, we use the property of Fenwick assignments (Lemma 37,
see Appendix B) that the Fenwick assignments of β2 are the Fenwick assignment of β1 and
β2. This directly implies ξ(β2) = ξ(β1) + 1ϕ(β2).

FSTTCS 2024

18:12 Circuits, Proofs and Propositional Model Counting

In the case of β1 is even and β2 is odd, we also relate the Fenwick assignments of the two
total assignments. We use the property of Fenwick assignments (Lemma 38, see Appendix B)
that the Fenwick assignment of β2 is some common set of assignments β∗ and a single
partial assignment γ, γ is the common prefix of β1 and β2. We then show that using
Observation 16 a linear number of times, we can prove that θ(γ) decomposes so that it
implies that ξ(β2) = ξ(β1) + 1ϕ(β2).

Proof. Line-1 of the lip statement assumes the assignment α = 0. From a simple computation,
only e0(0) = 1 with the corresponding f0(0) = 0. From Definition 13, ξ(0) = θ0(0). From
the properties of restriction θ0(0) = 1ϕ(0).

Line-3 of the lip statement assumes the assignment α = 2n − 1. Similarly, we can compute
that only en(2n − 1) = 1 and fn(2n − 1) = ∅. Then ξ(2n − 1) = θn(∅). θn contains no
restriction, so it is the intended answer for the entire model count.
The main part of CLIP is the inductive step for assignments β2 = β1 + 1.

For an even β2, We can use the cases for short proofs in Lemma 38 (see Appendix B).
We can argue that ei(β1) ↔ ei(β2) and ei(β1) → (fi,j(β1) ↔ fi,j(β2)) for i > 0. That
is, all Fenwick assignments for β1 and β2 are the same except the one corresponding
to e0(β2). Additionally that f0(β2) = β2. Along with associativity, this easily leads to
ξ(β2) = ξ(β1) + 1ϕ(β2) in eFrege.

For an odd β2, we can use the short proofs from Lemma 38 of the various cases (Ap-
pendix B). We take the maximum p : 0 ≤ p ≤ n such that

∧j≥0
j<p β

2
j . We can derive

(case-3a,3b) ej(β1) ↔ ej(β2) and fj,k(β1) ↔ fj,k(β2) for j > p. At j = p, we have that
(case-2a,2b) fp(β2) = the common prefix of β1 and β2 up to p (say γ). For j < p, we derive
(case-1b) that γ is the prefix of all these Fenwick assignments. Further we show (case-1c,1d)
that these assignments extend γ by p − j − 1 number of 1s and end with a 0. That is,
{fj(β1)}p>j≥0 = γ0, γ10, γ110, . . . , β

1. Using the split property of restrictions for i times, we
have θ(γ) =

∑j≥0
j≤p(ej(β1) ∧ θj(fj(β1))) + θ0(β2). Adding fj,k(β1) ↔ fj,k(β2) for j > p to

the above gives us ξ(β2) = ξ(β1) + 1ϕ(β2). ◀

Next, we give a supplementary example of Lemma 17.

▶ Example 18. Let a CNF ϕ be defined on n = 5 variables and β1, β2 be 10010, 10011
(i.e 18, 19) respectively. Let the variables be lexicographical ordered as < x4 . . . x0 >.
The corresponding Cov(0,18) and Cov(0,19) are:

{
{x4 = 1, x3 = 0, x2 = 0, x1 = 1, x0 =

0}, {x4 = 1, x3 = 0, x2 = 0, x1 = 0}, {x4 = 0}
}

and
{
{x4 = 1, x3 = 0, x2 = 0}, {x4 = 0}

}
respectively.

The first zero of β2 occurs for the second digit therefore we take p = 2. For j > p,
clearly e4(β1) = e4(β2) and f4(β1) = f4(β2). There is one partial assignment that is in
β2 but not in β1, it is f2(β2) (i.e {x4 = 1, x3 = 0, x2 = 0}). This is also the common
prefix γ of both β1 and β2. Using the split property on γ twice, we have the following:
θ2(γ) = θ1(γ0) + θ1(γ1) = θ1(γ0) + θ0(γ10) + θ0(γ11). Adding f4(β1) = f4(β2) to this implies
that ξ(19) = ξ(18) + 1ϕ(19).

For a model counting proof system P and a CNF ϕ with it’s P-proof π, we have a
cumulator ξ from part 1 of our simulation technique. In Lemma 17, we also have an eFrege
proof of lip(ξ). Therefore, we have the following.

▶ Theorem 19. CLIP+eFrege p-simulates any model counting proof system which is closed
under restrictions and has short eFrege proofs of the properties of restriction.

S. Chede, L. Chew, and A. Shukla 18:13

In conclusion, for any propositional model counting proof system P , part 2 of our simulation
technique consists of the following step:
5. Show that P has short eFrege-proofs of the two properties of restriction (Definition 15).

That is, show that P obeys condition-II from above.

5 CLIP framework simulation of CPOG

In this section, we apply our simulation technique to the CPOG (Certified Partitioned-
Operation Graphs) [4] proof system. That is, we show that CPOG is closed under restrictions
(Lemma 23) and admits easy eFrege proofs of the properties of restriction (Lemma 29). For
a CNF formula ϕ, CPOG is a propositional weighted-model counting proof system which
consists of a POG structure G (Definition 20) along with Resolution proofs of ϕ↔ G. It is
well known that model counting is easy for POG [4, p. 16]. However, given a POG G and a
CNF ϕ, verifying that G ≡ ϕ is hard. In this paper, we only study CPOG for the unweighted
(standard) model counting. The missing proofs of this section are included in Appendix C.

The proofs in this section need to prove basic properties of arithmetic in short eFrege
proofs which are considered to be academic folklore.

We first define the POG structure (Definition 20) and the CPOG proof system (Defini-
tion 22) which is based on POG from [4]. For an example of POG see [5].

▶ Definition 20 (POG [4]). A Partitioned-Operation Graph (POG) (say G) is a directed
acyclic graph defined on n variables (say X). Each node v in a POG has an associated
dependency set D(v) ⊆ X and a set of models M(v), consisting of all complete assignments
that satisfy the formula represented by the POG rooted at v. The leaf nodes (with outdegree
= 0) can be of the following:

Boolean constants 0 or 1. Here, D(1) = D(0) = 0, M(0) = ∅ and M(0) = ⟨X⟩.
Literal l for some variable x such that vars(l) = x ∈ X. Here, D(l) = x, M(l) = {α ∈
⟨X⟩ | α(x) ≡ l}.

The rest of the nodes (internal nodes) can be of the following:
Decomposable AND-gate (∧p) 1 with outgoing edges to v1, . . . , vk for k > 1. Here,
D(∧p) =

⋃
1≤i≤k D(vi) and M(∧p) =

⋂
1≤i≤kM(vi). This node needs to follow the

decomposable property namely, D(vi) ∩ D(vj) = ∅ for every i, j ∈ [k] and i ̸= j.
Deterministic OR-gate (∨p) with outgoing edges to v1, v2. Here, D(∨p) = D(v1) ∪ D(v2)
and M(∨p) = M(v1) ∪M(v2). This node needs to follow the deterministic property
namely, M(v1) ∩M(v2) = ∅.

The edges of G have an optional polarity to indicate if they need to be negated (polarity
= 1) or not (polarity = 0). Here, D(¬v) = D(v) and M(¬v) = ⟨X⟩ −M(v). Every POG
has a designated root node r with indegree = 0 and models of the POG would be M(r).

The weighted model counting can be seen as a ring-evaluation problem for a commutative
ring over rational numbers ∈ [0,1]. The ring evaluation problem takes a weight function
w(x) ∈ [0,1] for all variables x ∈ X and computes the following:

R(v, w) = Σα∈M(v) Πl∈α w(l) (1)

where w(x) = 1− w(x). For standard unweighted model-counting (i.e |M(v)|), one can fix
w(x) = 1

2 for all x ∈ X and |M(v)| = 2|X| · R(v, w). The following properties of the ring
evaluation function are well known.

1 For simplicity, we use the same notations from [4]. Here, p stands for partitioned-operation formulas.

FSTTCS 2024

18:14 Circuits, Proofs and Propositional Model Counting

▶ Proposition 21 ([4]). Ring evaluations for operations ¬, ∧p and ∨p satisfies the following for
any weight function w: (i) R(¬v, w) = 1−R(v, w), (ii) R(

∧p
1≤i≤k vi, w) =

∏
1≤i≤k R(vi, w),

(iii) R(v1 ∨p v2, w) = R(v1, w) +R(v2, w).

For a CNF ϕ, a CPOG proof π consists of a POG G such that G ≡ ϕ. However, to make
the proof easily verifiable, π explicitly has the proof that G is a POG and is equivalent to ϕ.
We present the precise definition from [2] below.

▶ Definition 22 (CPOG [2, 4]). A CPOG proof π of ϕ is the tuple (E(G), δ, ρ, ψ), where
G is a POG such that G ≡ ϕ and E(G) is a clausal encoding of the POG G by defining
an extension variable for every internal node of G.
δ is the determinism proof for OR-gates which contains a Resolution proof of E(G) ∧
(v1) ∧ (v2) for every ∨p-gate v with outgoing edges to v1, v2.
ρ is the forward implication proof (i.e. ϕ |= G) consisting of a Resolution proof of
E(G) ∧ ϕ ∧ (r).
ψ is the reverse implication proof (i.e. G |= ϕ) consisting of a Resolution proof of
E(G) ∧ (r) ∧ C for every clause C ∈ ϕ.

Observe that extension variables used in CPOG are restrictive as compared to those in eFrege.

▶ Lemma 23. CPOG is closed under restrictions.

This proof is fairly simple and we include it in Appendix C. This completes Step 1 of our
simulation technique for CPOG. Thus we have the following:

▶ Corollary 24. There is a polynomial time method of extracting a cumulator circuit from a
CPOG proof.

Now we are ready to prove that CPOG admits easy eFrege proofs for the properties of
restriction. Recall, the weight function w is defined for all the variables (X) of POG G as 1

2 .
In this case, the value of R(r, w) = 2|X| · |M(r)|. For an assignment α, conditioning the POG
with α (Lemma 23) will give G′ and the following will hold R(r′, w) = 2|X−|α|| · |M(r)|α|.

Instead of changing the POG structure, we change the weight function as defined below
to obtain the same model count as above i.e. R(r, wα) = 2|X−|α|| · |M(r)|α|.

▶ Definition 25. Given a CNF ϕ and an initial assignment α defined on xn−1 . . . xi and
undefined on xi−1 . . . x0, we define the weight wα which weighs variables according to the
following

wα(xj) =

1 j ≥ i & α(xj) = 1,
0 j ≥ i & α(xj) = 0,
1
2 j < i.

Next, in Lemma 26, 27, 28, we prove some properties of R(v, wα) for every node v of the
POG recursively. We use the general properties of the ring function from Proposition 21
in these proofs. Informally, in Lemma 26, we show that if α was undefined on x and x is
not in the dependency set of v (i.e. x /∈ D(v)), the value of R does not change when weight
function is changed to wα0 or wα1 where αb = α ∪ {x = b}. In Lemma 27, we show that if x
is in D(v), the values of R hold a weaker relation of R(v, wα) = 1

2 (R(v, wα0) + R(v, wα1)).
We consider complete assignments α in Lemma 28 and prove that the function R(v, wα)
returns 1 if α is a satisfying assignment of the POG rooted at v and 0 otherwise. We use
these Lemmas to prove that CPOG has easy eFrege proofs of the properties of restriction in
Lemma 29. The detailed proofs of these lemmas are pushed to Appendix C.

S. Chede, L. Chew, and A. Shukla 18:15

▶ Lemma 26. Let α be an initial partial assignment defined up to xi where i > 0. We can
prove in the structure of the POG that R(v, wα) = R(v, wα0) = R(v, wα1) when xi−1 is not
in the dependency set of v. This proof can be formalised in a short eFrege proof.

▶ Lemma 27. Let α be an initial partial assignment defined up to xi where i > 0. We can
prove in the structure of the POG that R(v, wα) = 1

2 · (R(v, wα0) +R(v, wα1)). Furthermore
we can formalise this in short eFrege proofs.

▶ Lemma 28. For complete assignment α, we can prove using eFrege in the structure of the
POG that R(v, wα) = 1v(α).

▶ Lemma 29. CPOG has short eFrege proofs of θ(α) = 1ϕ(α), when α is a complete
assignment, and θ(α) = θ(α0) + θ(α1), when α is strictly initial and partial.

Proof. We define θi(α) = 2i ·R(r, wα). Using Lemma 27 we can show for the root node r
that R(r, wα) = 1

2 · (R(r, wα0) +R(r, wα1)) when α is initial and strictly partial. This proves
the second property of restriction.

Using Lemma 28 we can show that R(r, α) = 1r(α) when α is complete. Hence θ0(α) =
1r(α). Here for the first property of restriction, we still need to prove that 1r(α) = 1ϕ(α).
For this, we use the Resolution proofs for r ↔ ϕ in the CPOG proof. Since eFrege p-simulates
Resolution, these are easily converted to show 1r(α) = 1ϕ(α). ◀

This proves Step 5 of our simulation technique for CPOG. Therefore from our simulation
technique part 1 and 2, we have the following.

▶ Theorem 30. CLIP+DRAT p-simulates CPOG.

In [2], the authors prove that CPOG is strictly stronger than the other existing proof
systems (i.e. MICE, KCPS(#SAT)). Therefore we have the following.

▶ Corollary 31. CLIP+DRAT p-simulates MICE and KCPS(#SAT).

6 Exponential Improvement on Existing #SAT proof systems

In this section, we give easy CLIP+eFrege proofs for hard formulas of existing proof systems.
Below, we give easy proofs of XOR-PAIRS in CLIP+eFrege system (Theorem 34). These
formulas were previously proven to be hard for MICE [3, Theorem 23]. Later in Corollary 36,
we give easy CLIP+eFrege proofs of some unsatisfiable formulas which are hard in MICE and
KCPS(#SAT).

▶ Definition 32 (XOR-PAIRS [3]). Let X = {x1, . . . xn} and Z = {z1,1, z1,2 . . . , zn,n−1, zn,n}.
C1

ij = (xi ∨ xj ∨ z̄ij), C2
ij = (x̄i ∨ xj ∨ zij), C3

ij = (xi ∨ x̄j ∨ zij), C4
ij = (x̄i ∨ x̄j ∨ z̄ij)

ϕ(X,Z) contains C1
ij , C

2
ij , C

3
ij , C

4
ij for i, j ∈ [n].

The models of XOR-PAIRS are the assignments where zi,j = (xi ⊕ xj) for all i, j ∈ [n].
Hence, #models(XOR-PAIRS) = 2n. The family XOR-PAIRS is hard for proof systems MICE [3,
Theorem 23]. We will show in Theorem 34 that these formulas are easy in CLIP+eFrege.

▶ Definition 33. Fix an input length n, and let γ and δ be vectors of n variables. For pairs
of individual variables a, b, use a = b to denote (¬a∨ b)∧ (¬b∨a). We can encode polynomial
size propositional circuits: L(γ, δ), that denotes num(γ) < num(δ).

▶ Theorem 34. CLIP+eFrege has short proofs of XOR-PAIRS

FSTTCS 2024

18:16 Circuits, Proofs and Propositional Model Counting

Proof. First we fix that all Z-bits are less significant than all X-bits, otherwise the cumulative
function is affected by the variable ordering. We begin by arguing that the cumulative function
for XOR-PAIRS is easy to compute. This comes from the fact the truth function itself behaves
in a way that makes it amenable to counting, it only ever increases by one, once for each
complete assignment to X. There is a function p : 2X → 2Z that maps the binary assignment
α on X to the unique assignment in Z such that ϕ(α, p(α)) for every α. We can construct
a multi-output circuit P (a sequence of circuits Pi,j for i, j ∈ {|X|}) for p, easily through
O(Z) many gates: Pi,j(X) = (xi ∨ xj) ∧ (xi ∨ xj).

We then express the cumulative function in a cumulator circuit that we will use for CLIP.

ξ(α, β) =
{
α β < P (α)
α+ 1 β ≥ P (α)

Note that since ξ(α, β) outputs in binary we can actually express each digit as a Boolean
circuit.

Now we have to argue why the remaining propositional proof is easy for eFrege. This is
basically a number of tautological implications we have to show individually. The idea is to
break each implication into a number of cases. Case analysis is typically easy for eFrege as it
is just resolving with a disjunction of possibilities.

Base case. If AX = 0, P (AX) always evaluates to 0. If AZ is also 0, ϕ(AX , AZ) evaluates
to true, while L(AZ , P (AX)) evaluates to false (because of strictness). This makes ξ(α, β)
evaluate to the integer 1 (in other words ξ(α, β)i = 1 if and only if i = n). Each of these
evaluations are shown in eFrege through the extension clauses. These will satisfy the two
disjunctions that use the base case.

Inductive Step. Here we firstly argue that ϕ(BX , BZ)↔ E(BZ , P (BX)) has a short eFrege
proof. We show that for each pair i, j the four clauses are implied by (xi∨xj)∧(xi∨xj)↔ zi,j .
And then we show the four clauses show the truth table for(xi ∨ xj) ∧ (xi ∨ xj)↔ zi,j . The
proof size is linear. If BX = AX and BZ = AZ + 1, we make 3 cases.
1. Let BZ = P (BX), we can get a short eFrege proof of ¬L(BZ , P (BX)) and L(AZ , P (AX)),

and thus a proof of T (ξ(BX , BZ), BX) and E(ξ(AX , AZ), AX). We use BX = AX to
show T (ξ(BX , BZ), ξ(AX , AZ)). ϕ(BX , BZ)↔ E(BZ , P (BX)) is a proven tautology.

2. Let BZ < P (BX), we get a short eFrege proof that L(AZ , P (AX)) is true, and
thus a proof that E(ξ(BX , BZ), BX) and E(ξ(AX , AZ), AX). We use BX = AX

to show E(ξ(BX , BZ), ξ(AX , AZ)). ϕ(BX , BZ) falls into provable contradiction with
L(BZ , P (BX)) by showing a bit must be different.

3. Let BZ > P (BX), we can get a short eFrege proof of ¬L(BZ , P (BX)) and ¬L(AZ , P (AX)),
and thus that T (ξ(BX , BZ) = BX + 1) and T (ξ(AX , AZ) = AX + 1). We use BX = AX

to show E(ξ(BX , BZ), ξ(AX , AZ)). ϕ(BX , BZ) contradicts L(P (BX), BZ).

Now consider ||BX = AX + 1||, ||BZ = 0|| and ||AZ = 2|Z| − 1||. Part of the trichotomy
is impossible. We can prove L(P (BX), BZ) fails when ||BZ = 0||. For the remaining cases
we firstly prove that ¬||2|Z|− 1 < P (AX)|| which is proven from the fact that one digit must
be 0 to be less than. Therefore ξ(AX , AZ) = AX + 1 in both cases.
1. Let BZ = P (BX) then we can get a short eFrege proof that L(BZ , P (BX)) is false and

so ξ(BX , BZ) = BX + 1 = AX + 1 + 1 = ξ(AX , AZ) + 1. We can find an equality proof
here. ϕ(BX , BZ)↔ E(BZ , P (BX)) is a tautology.

S. Chede, L. Chew, and A. Shukla 18:17

2. Let L(BZ , P (BX)) be true so ξ(BX , BZ) = BX = AX + 1 = ξ(AX , AZ). ϕ(BX , BZ) falls
into provable contradiction with L(BZ , P (BX)).

For the final case, we use ¬||2|Z| − 1 < P (AX)||, hence ξ(2|X| − 1,2|Z| − 1) = 2|X|. ◀

Let us briefly discuss about unsatisfiable formulas. That is, CNF formulas for which the model
counts are 0. In [2], it has been shown that for unsatisfiable formulas, KCPS(#SAT) is p-
equivalent to regular Resolution [2, Proposition 5.1] and MICE is p-equivalent to Resolution [2,
Proposition 5.3]. In this paper, we observed the following for the unsatisfiable CNF formulas:

▶ Proposition 35. For unsatisfiable formulas ϕ, if ϕ has an eFrege proof π of unsatisfiability,
then ϕ has a CLIP+eFrege proof of linear size w.r.t. |π|.

Proof. For a unsatisfiable CNF ϕ, assume that it has an easy eFrege-proof of unsatisfiability.
We can have an easy CLIP+eFrege proof of ϕ as follows: The cumulator ξ for ϕ is a
trivial circuit that only outputs “0” for any input. For any two consecutive assignments i.e
β2 = β1+1, the inductive statement of lip encodes that ξ(β2) = ξ(β1)+1ϕ(β2). Therefore, the
eFrege proof of lip statement needs only the unsatisfiability proof of ϕ (i.e. 1ϕ(β2) = 0). ◀

This gives more separation results for unsatisfiable formulas which are hard for Resolution
but easy for eFrege. That is, we have the following:

▶ Corollary 36. The unsatisfiable formulas, PHP, clique-color and Random Parity have
polynomial-size proofs [11, 6, 10] in CLIP+eFrege but require exponential-size proofs in
[19, 22, 9] MICE and KCPS(#SAT).

Note that the Clique-coloring principle [22, Definition 7.1] is well studied in proof complexity.
Informally, it encodes that if a graph G has a clique of size k, then G needs at least k colors.
PHP is the famous Pigeon hole principle which encodes that if there are n pigeons and
n− 1 holes, at least one hole has more than one pigeon in it. Random Parity formulas are
contradictions expressing both the parity and non-parity on a set of variables.

7 Conclusion

We have introduced the CLIP framework for propositional model counting. We have demon-
strated the advantages CLIP has by having an unrestricted underlying circuit format. Our
approach here has been theoretical and no version of CLIP has been implemented.

The main checking task in CLIP proofs can use existing tools in SAT such as DRAT-
trim [28]. We have given a p-simulation of all other #SAT proof systems, in theory this
can be used to extract CLIP+eFrege (or CLIP+DRAT) proofs from #SAT solvers. However
the number of arithmetic lemmas may make the complete programming of the extractor a
difficult task. It could be compensated with assistance from a certifying SAT solver.

Future work should take into account weighted and projected model counting.

References
1 Olaf Beyersdorff, Ilario Bonacina, Leroy Chew, and Ján Pich. Frege systems for quantified

boolean logic. J. ACM, 67(2):9:1–9:36, 2020. doi:10.1145/3381881.
2 Olaf Beyersdorff, Johannes Klaus Fichte, Markus Hecher, Tim Hoffmann, and Kaspar Kasche.

The relative strength of #sat proof systems. In 27th International Conference on Theory and
Applications of Satisfiability Testing, SAT 2024, August 21-24, 2024, Pune, India, volume
305 of LIPIcs, pages 5:1–5:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
doi:10.4230/LIPICS.SAT.2024.5.

FSTTCS 2024

https://doi.org/10.1145/3381881
https://doi.org/10.4230/LIPICS.SAT.2024.5

18:18 Circuits, Proofs and Propositional Model Counting

3 Olaf Beyersdorff, Tim Hoffmann, and Luc Nicolas Spachmann. Proof complexity of proposi-
tional model counting. In Meena Mahajan and Friedrich Slivovsky, editors, 26th International
Conference on Theory and Applications of Satisfiability Testing, SAT 2023, July 4-8, 2023,
Alghero, Italy, volume 271 of LIPIcs, pages 2:1–2:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPICS.SAT.2023.2.

4 Randal E Bryant, Wojciech Nawrocki, Jeremy Avigad, and Marijn J. H. Heule. Certified
knowledge compilation with application to verified model counting. In 26th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2023), 2023. doi:
10.4230/LIPICS.SAT.2023.6.

5 Randal E. Bryant, Wojciech Nawrocki, Jeremy Avigad, and Marijn J. H. Heule. Supplement
to certified knowledge compilation with application to verified model counting, 2023. URL:
https://zenodo.org/records/7966174.

6 Sam Buss and Neil Thapen. DRAT and propagation redundancy proofs without new variables.
Log. Methods Comput. Sci., 17(2), 2021. URL: https://lmcs.episciences.org/7400.

7 Samuel R. Buss. Towards NP-P via proof complexity and search. Ann. Pure Appl. Log.,
163(7):906–917, 2012. doi:10.1016/J.APAL.2011.09.009.

8 Florent Capelli. Knowledge compilation languages as proof systems. In Theory and Applications
of Satisfiability Testing - SAT 2019 - 22nd International Conference, SAT 2019, Lisbon,
Portugal, July 9-12, 2019, Proceedings, volume 11628 of Lecture Notes in Computer Science,
pages 90–99. Springer, 2019. doi:10.1007/978-3-030-24258-9_6.

9 Leroy Chew, Alexis de Colnet, Friedrich Slivovsky, and Stefan Szeider. Hardness of random
reordered encodings of parity for resolution and CDCL. In Thirty-Eighth AAAI Conference
on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications
of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in
Artificial Intelligence, EAAI 2014, pages 7978–7986. AAAI Press, 2024. doi:10.1609/AAAI.
V38I8.28635.

10 Leroy Chew and Marijn J. H. Heule. Sorting parity encodings by reusing variables. In Theory
and Applications of Satisfiability Testing - SAT 2020 - 23rd International Conference, Alghero,
Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages
1–10. Springer, 2020. doi:10.1007/978-3-030-51825-7_1.

11 Stephen A Cook. A short proof of the pigeon hole principle using extended resolution. Acm
Sigact News, 8(4):28–32, 1976. doi:10.1145/1008335.1008338.

12 Stephen A Cook and Robert A Reckhow. The relative efficiency of propositional proof systems.
In Logic, Automata, and Computational Complexity: The Works of Stephen A. Cook, pages
173–192. ACM, 2023. doi:10.1145/3588287.3588299.

13 William J. Cook, Collette R. Coullard, and György Turán. On the complexity of cutting-plane
proofs. Discret. Appl. Math., 18(1):25–38, 1987. doi:10.1016/0166-218X(87)90039-4.

14 Adnan Darwiche. Decomposable negation normal form. J. ACM, 48(4):608–647, 2001.
doi:10.1145/502090.502091.

15 Peter M. Fenwick. A new data structure for cumulative frequency tables. Softw. Pract. Exp.,
24(3):327–336, 1994. doi:10.1002/SPE.4380240306.

16 Johannes K Fichte, Markus Hecher, and Valentin Roland. Proofs for propositional model
counting. In 25th International Conference on Theory and Applications of Satisfiability Testing
(SAT 2022), 2022. doi:10.4230/LIPICS.SAT.2022.30.

17 Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache der reinen
Denkens, Halle. Lubrecht & Cramer, 1879. English translation in: from Frege to Gödel,
a source book in mathematical logic (J. van Heijenoord editor), Harvard University Press,
Cambridge 1967.

18 Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and polynomial
identity testing: The ideal proof system. J. ACM, 65(6), November 2018. doi:10.1145/
3230742.

https://doi.org/10.4230/LIPICS.SAT.2023.2
https://doi.org/10.4230/LIPICS.SAT.2023.6
https://doi.org/10.4230/LIPICS.SAT.2023.6
https://zenodo.org/records/7966174
https://lmcs.episciences.org/7400
https://doi.org/10.1016/J.APAL.2011.09.009
https://doi.org/10.1007/978-3-030-24258-9_6
https://doi.org/10.1609/AAAI.V38I8.28635
https://doi.org/10.1609/AAAI.V38I8.28635
https://doi.org/10.1007/978-3-030-51825-7_1
https://doi.org/10.1145/1008335.1008338
https://doi.org/10.1145/3588287.3588299
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1145/502090.502091
https://doi.org/10.1002/SPE.4380240306
https://doi.org/10.4230/LIPICS.SAT.2022.30
https://doi.org/10.1145/3230742
https://doi.org/10.1145/3230742

S. Chede, L. Chew, and A. Shukla 18:19

19 Armin Haken. The intractability of resolution. Theor. Comput. Sci., 39:297–308, 1985.
doi:10.1016/0304-3975(85)90144-6.

20 Jan Krajíček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge
University Press, New York, NY, USA, 1995.

21 Benjamin Kiesl, Adrián Rebola-Pardo, and Marijn JH Heule. Extended resolution simulates
DRAT. In Automated Reasoning: 9th International Joint Conference, IJCAR 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
pages 516–531. Springer, 2018. doi:10.1007/978-3-319-94205-6_34.

22 Jan Krajícek. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. J. Symb. Log., 62(2):457–486, 1997. doi:10.2307/2275541.

23 Meena Mahajan and Gaurav Sood. QBF merge resolution is powerful but unnatural. In
25th International Conference on Theory and Applications of Satisfiability Testing, SAT 2022,
August 2-5, 2022, Haifa, Israel, volume 236 of LIPIcs, pages 22:1–22:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.SAT.2022.22.

24 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
25 John Alan Robinson. Theorem-proving on the computer. Journal of the ACM, 10(2):163–174,

1963. doi:10.1145/321160.321166.
26 Boris Ryabko. A fast on-line adaptive code. IEEE Trans. Inf. Theory, 38(4):1400–1404, 1992.

doi:10.1109/18.144725.
27 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–

877, 1991. doi:10.1137/0220053.
28 Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and

trimming using expressive clausal proofs. In SAT 2014, volume 8561 of Lecture Notes in
Computer Science, pages 422–429. Springer, 2014. doi:10.1007/978-3-319-09284-3_31.

A Missing proof and algorithm from Section 4.1

▶ Lemma 10. Given an input size n, and binary integer 0 ≤ J < 2n. There is a polynomial
time algorithm in n that returns a disjoint binary partial assignment cover for [0 , J] (Cov(0,J))
with at most n many partial assignments.

Proof. Refer to Algorithm 1 for the exact procedure. The correctness of Algorithm 1 stems
from the correctness of Fenwick trees [15] which efficiently computes the cumulative sum of
numbers stored between any two indices of the array by visiting atmost logarithmic indices
in the tree. Algorithm 1 similarly computes Cov(0,J) by finding the least number of partial
assignments to include such that they cover the entire range from [0, J] i.e. log(2n) = n. ◀

B Missing lemmas and proofs from Section 4.1.1

▶ Lemma 37. Assume T (Y,X) (i.e. Y = X + 1) and ¬Y0 then
1. e0(Y) ∧ ¬e0(X)
2. For i > 0, ei(X)↔ ei(Y)
3. For 0 < i ≤ j < n, ei(X)→ (fi,j(X)↔ fi,j(Y))
4. For 0 ≤ j < n, f0,j(Y)↔ Yj

And we can prove these formally in eFrege in short proofs even in the case that Y and X are
vectors of variables (or extension variables).

Proof. Ȳ0 ∧
∧k<0

k≥0 Yk is true hence e0(Y) can be shown via definition. Since, Y0 = X0 ⊕∧k<0
k≥0 Xk and

∧k<0
k≥0 Xk is just 1 therefore X0 is true and so e0(X) must be false and we can

show this through a short derivation.

FSTTCS 2024

https://doi.org/10.1016/0304-3975(85)90144-6
https://doi.org/10.1007/978-3-319-94205-6_34
https://doi.org/10.2307/2275541
https://doi.org/10.4230/LIPICS.SAT.2022.22
https://doi.org/10.1145/321160.321166
https://doi.org/10.1109/18.144725
https://doi.org/10.1137/0220053
https://doi.org/10.1007/978-3-319-09284-3_31

18:20 Circuits, Proofs and Propositional Model Counting

Algorithm 1 Fenwick tree [15] based algorithm to find Cov(0,J).

Require: J < 2n

function Fenwick-assignments(int J , int n)
int α := {}, dash:= {} /*α, dash are each a set of integers*/
int indx← J + 1 /*assignments ∈ [0, 2n − 1] but the Fenwick tree handles [1, 2n]*/
while indx > 0 do

parent = indx− (indx & − indx) /*& is the bit-wise AND operator*/
α.append(parent)
dash.append(log(indx − parent)) /*records no. of variables to forget from α*/
indx← parent

end while
return α′ = process(α, dash)
/*“process” function does the following: for i ∈ |α|, α′[i] is the partial assignment obtained
from α[i] after discarding “dash[i]” number of variables from the right end of the fixed
ordering of variables*/
end function

Take p to be the maximum such that
∧k<p

k≥0 Xi is true, we can prove such a maximum
exists by exhibiting a disjunction. Then for 0 < i < p, ei(X) = 0. Yk = 0 for k ≤ i by
definition of T and so ¬ei(Y) by definition of ei(Y). For i = p, Xi = 0 while

∧k<i
k≥0 Xi and

Yi = 1 while
∨k<i

k≥0 Ȳi so both ei(X) and ei(Y) are true. fp,p(X) = fp,p(Y) = 0 because i
is not strictly greater than itself. For j > p, we have to show that Xj and Yj are equal.
Recall that Yj = Xj ⊕

∧k<j
k≥0 Xk, but since Xp is false,

∧k<j
k≥0 Xk = 0 and so Yj = Xj . Hence

fp,j(X) = fp,j(Y).
For i > p, if ei(X) is true then Xi ∧

∨k<i
k≥0 X̄k must be true.

∨k<i
k≥0 Ȳk must also be true

because Y0 is true. Since Xi = Yi then Yi ∧
∨k<i

k≥0 Ȳk is also true and so ei(Y) can be proven
that way. Since Xj = Yj for j ≥ i then by definition fi,j(X) = fi,j(Y).

By definition, for j > 0, f0,j(Y) = Yj and f0,0(Y) = 0 = Y0. ◀

▶ Lemma 38. Assume T (Y,X) (i.e. Y = X + 1) and Y0 then there is some maximum
p : 0 < p ≤ n such that

∧j<p
j≥0 Yj. Further the following properties are true and have short

formal eFrege proofs.
1. a. ei(X) ∧ ¬ei(Y) for 0 ≤ i < p

b. fi,j(X)↔ Yj for 0 ≤ i < p ≤ j < n

c. fi,j(X) for 0 ≤ i < j < p ≤ n
d. ¬fi,p(X) for 0 ≤ i < p

2. a. ¬ep(X) ∧ ep(Y) if p < n

b. fp,j(X)↔ fp,j(Y) for p ≤ j < n.
c. ¬fp,p(X) ∧ ¬fp,p(Y) if p < n

3. a. ei(X)↔ ei(Y) for p < i < n

b. fi,j(X)↔ fi,j(Y) for p < i ≤ j < n

Proof. Because Y0 = 1, then by definition of T we can prove X0 = 0, hence
∨k<i

k≥0 X̄k is
always true for i > 0. This means that through the definition of T , Yi = Xi for i > 0. This
will be important for many items when i > 0.

For i = 0 we get e0(X) and ¬e0(Y) through definition and use of Y0 ∧ ¬X0. And for
0 < i < p, Xi = 1 and since

∨k<i
k≥0 X̄k is true ei(X) is true. However

∧j≤i
j≥0 Yj is true so ei(Y)

is false. Through Yi = Xi we also get that for 0 ≤ i < j, fi,j(X) = Xj = Yj . For j < p we
specifically get Yj = 1 and for j = p we get Yj = 0. This completes all cases from 1.

S. Chede, L. Chew, and A. Shukla 18:21

In case 2, ep(X) is false because Xp = Yp = 0 and
∧k<p

k≥0 Xk is false. Likewise, ep(X)
is true because Yp = 0 and

∧k<p
k≥0 Yk is true. fp,p(X) = fp,p(Y) = 0 by definition and

fp,j(X) = fp,j(Y), for j > p because then Xj = Yj .
In case 3, again fi,j(X) = fi,j(Y), for j ≥ i > p because Xj = Yj . We can also use

Xj = Yj to show ei(X) = ei(Y) because
∨k<i

k≥0 X̄k and
∨k<i

k≥0 Ȳk are now both true.
All these cases can be formalised in eFrege proofs due to their simplicity for each choice

of p. One final important step is to create and prove disjunction over all possible p. ◀

C Missing proofs from Section 5

▶ Lemma 23. CPOG is closed under restrictions.

Proof. For a given CNF ϕ, a CPOG proof consists of a POG G and a Resolution proof
of ϕ ↔ G. A POG is closed under conditioning as for any partial assignment α: replace
the inputs labelled by x with α(x) for every x assigned by α and the resulting structure
is still a POG G′. This is because, constants are allowed in POG and the ∧p-nodes will
remain decomposable since we are only reducing variables. Also, the ∨p-gates will remain
deterministic because if A and B has disjoint models, so are A|α and B|α. The Resolution
proof witness is closed under restrictions. The CPOG proof of ϕ↔ G uses Resolution proofs
which are closed under restrictions, it implies ϕ|α ↔ G|α. ◀

▶ Corollary 24. There is a polynomial time method of extracting a cumulator circuit from a
CPOG proof.

Proof. With a CPOG proof, given an assignment α, in polynomial time we can calculate the
Cov(0,α) via Fenwick’s method (Lemma 10) and use closure under restrictions to find the
values for the sum. By formalising these steps into a circuit as in Definition 13 we get the
cumulator circuit. ◀

▶ Lemma 26. Let α be an initial partial assignment defined up to xi where i > 0. We can
prove in the structure of the POG that R(v, wα) = R(v, wα0) = R(v, wα1) when xi−1 is not
in the dependency set of v. This proof can be formalised in a short eFrege proof.

Proof. In all cases, except at leaves, the dependency set is the union of the dependency sets
of its children.
Boolean leaf: R(1, wα) = 1 and R(0, wα) = 0 independent of α. Therefore the Lemma

statement is easily derived in this case.
Variable leaf: Let the variable leaf be xj . R(xj , w) takes the value of w(xj). If xi−1 /∈ D(xj),

then either j ≥ i or j < i− 1. This is formalised in a tautological disjunction in eFrege.

In either case we show equality is easily derived. If j ≥ i then wα(xj) = 1 when α(j) = 1
which also extends to α0(j) = 1 and α1(j) = 1 in which case wα0(xj) = 1 and wα1(xj) = 1.
Similarly all wα(xj) = wα0(xj) = wα1(xj) = 0 when α(j) = 0. If j < i− 1 then α, α0, α1 are
all undefined on xj , so the weights are all 1

2 .

Negation: Using the induction hypothesis on the child node c, R(c, wα) = R(c, wα0) =
R(c, wα1) and so R(¬c, wα) = 1 − R(c, wα) = 1 − R(c, wα0) = 1 − R(c, wα1) therefore
R(¬c, wα) = R(¬c, wα0) = R(¬c, wα1).

FSTTCS 2024

18:22 Circuits, Proofs and Propositional Model Counting

Partition Conjunction: Let C be the set of child nodes for ∧p. Using the induction hypothesis
R(c, wα) = R(c, wα0) = R(c, wα1) for each child c ∈ C. We get the following equality for
the products Πc∈CR(c, wα) = Πc∈CR(c, wα0) = Πc∈CR(c, wα1). Thus R(

∧p
c∈C , wα) =

R(
∧p

c∈C , wα0) = R(
∧p

c∈C , wα1).

Partition Disjunction: Let the child nodes of ∨p be c, d. Using the induction hypothesis
R(c, wα) = R(c, wα0) = R(c, wα1) and R(d,wα) = R(d,wα0) = R(d,wα1).
R(c∨p d,wα) = R(c, wα) +R(d,wα) = R(c, wα0) +R(d,wα0) = R(c∨p d,wα0). Similarly,
it can be derived that R(c ∨p d,wα) = R(c ∨p d,wα1).

Each inductive step involves a bounded application of implications using the definitions
hence we get short eFrege proofs. ◀

▶ Lemma 27. Let α be an initial partial assignment defined up to xi where i > 0. We can
prove in the structure of the POG that R(v, wα) = 1

2 · (R(v, wα0) +R(v, wα1)). Furthermore
we can formalise this in short eFrege proofs.

Proof. If xi−1 /∈ D(v), this directly holds from Lemma 26, along with arithmetic properties
i.e. a = 1

2 · (a+ a). So here we only consider the case that xi−1 ∈ D(v).
Variable leaf: Let the variable leaf be xj . xi−1 ∈ D(v) implies that j = i − 1, then

R(v, wα) = 1
2 . R(v, wα0) = 1 → R(v, wα1) = 0 and R(v, wα0) = 0 → R(v, wα1) = 1, in

both cases they sum to 1 which is the right identity when multiplied with 1
2 .

Negation: Using the induction hypothesis on the child node c, i.e. R(c, wα) = 1
2 ·(R(c, wα0)+

R(c, wα1)), it implies the following.
R(¬c, wα) = 1−R(c, wα) = 1− 1

2 · (R(c, wα0) +R(c, wα1))
= 1− 1

2 · (1−R(¬c, wα0) + 1−R(¬c, wα1))
= 1− 1

2 · (2−R(¬c, wα0)−R(¬c, wα1))
= 1

2 · (R(¬c, wα0) +R(¬c, wα1)).

Partition Conjunction: Let C be the set of child nodes for ∧p. Observe that, xi−1 ∈ D(c∗)
for exactly one child c∗. Along with multiplicative commutativity and associativity, we
know the following from Proposition 21:
R(

∧p

c∈C

c, wα) = R(c∗, wα) ·
∏

c∈{C\c∗} R(c, wα).

Using the induction hypothesis on c∗ we get
= 1

2 · (R(c∗, wα0) +R(c∗, wα1)) ·
∏

c∈{C\c∗} R(c, wα).
We can use left-distributivity to get

= 1
2 ·R(c∗, wα0) ·

∏
c∈{C\c∗} R(c, wα) + 1

2 ·R(c∗, wα1) ·
∏

c∈{C\c∗} R(c, wα).
At this point we know that xi−1 /∈ D(c ∈ {C \ c∗}), using Lemma 26 we get

= 1
2 ·R(c∗, wα0) ·

∏
c∈{C\c∗} R(c, wα0) + 1

2 ·R(c∗, wα1) ·
∏

c∈{C\c∗} R(c, wα1)
= 1

2 ·R(
∧p

c∈C

c, wα0) + 1
2 ·R(

∧p

c∈C

c, wα1) = 1
2 · (R(

∧p

c∈C

c, wα0) +R(
∧p

c∈C

c, wα1)).

Partition Disjunction: Let the child nodes of ∨p be c, d.
R(c ∨p d,wα) = R(c, wα) +R(d,wα)
Using the induction hypothesis on c, d we get

= 1
2 (R(c, wα0) +R(c, wα1)) + 1

2 (R(d,wα0) +R(d,wα1))
We can use additive commutativity and distributivity to get

= 1
2 · (R(c, wα0) +R(d,wα0) +R(c, wα1) +R(d,wα1))

= 1
2 · (R(c ∨p d,wα0) +R(c ∨p d,wα1))

Extended Frege can handle the bounded steps in each case of the inductive step. ◀

S. Chede, L. Chew, and A. Shukla 18:23

▶ Lemma 28. For complete assignment α, we can prove using eFrege in the structure of the
POG that R(v, wα) = 1v(α).

Proof. Again we show the base and inductive cases involve polynomially many basic steps.
Variable leaf: Let the variable leaf be xi. R(xi, wα) = 1 or R(xi, wα) = 0 since |α| = |X|

and the value is determined entirely by 1xi
(α).

Negation: Suppose R(c, wα) = 1 then by the induction hypothesis α satisfies c, so α falsifies
¬c and R(¬c, wα) = 1−R(c, wα) = 0.
Similarly, it can be derived for R(c, wα) = 0 that R(¬c, wα) = 1.

Partition Conjunction: Let C be the set of child nodes for ∧p. If there is some c∗ ∈ C such
that α falsifies c∗ then by the induction hypothesis R(c∗, wα) = 0. Then we can prove∏

c∈C R(c, wα) = 0 which is the formula for R(
∧p

c∈C c, wα). Also, α must falsify
∧p

c∈C c

as it falsifies c∗.
In the other case, if no c ∈ C is falsified, α satisfies all of C (we can state and prove this
formally as a disjunction). Here, R(c, wα) = 1 for all c ∈ C and

∏
c∈C R(c, wα) = 1 .

Also, α must satisfy
∧p

c∈C c as it satisfies all c ∈ C.

Partition Disjunction: Let the child nodes of ∨p be c, d. If α falsifies both c and d then
by induction hypothesis, R(c, wα) = R(d,wα) = 0. By adding these we get 0 =
R(c, wα) +R(d,wα) = R(c ∨p d,wα). Also, α must falsify c ∨p d as it falsifies both c, d.
Suppose α satisfies c, we can prove that α falsifies d using the Resolution proof δ included
in the CPOG proof (and this is simulated by eFrege). Hence, R(c, wα) = 1, R(d,wα) = 0.
Then R(c ∨p d,wα) = 1 + 0 = 1. This can be repeated for when α satisfies d by using
left identity instead of right identity. ◀

FSTTCS 2024

Quantum Sabotage Complexity
Arjan Cornelissen # Ñ

Simons Institute for the Theory of Computing, University of California, Berkeley, CA, USA
IRIF – CNRS, Paris, France

Nikhil S. Mande # Ñ

University of Liverpool, UK

Subhasree Patro # Ñ

Technische Universiteit Eindhoven, The Netherlands
Centrum Wiskunde en Informatica (QuSoft), Amsterdam, The Netherlands

Abstract
Given a Boolean function f : {0, 1}n → {0, 1}, the goal in the usual query model is to compute f on
an unknown input x ∈ {0, 1}n while minimizing the number of queries to x. One can also consider a
“distinguishing” problem denoted by fsab: given an input x ∈ f−1(0) and an input y ∈ f−1(1), either
all differing bits are replaced by a ∗, or all differing bits are replaced by †, and an algorithm’s goal is
to identify which of these is the case while minimizing the number of queries.

Ben-David and Kothari [ToC’18] introduced the notion of randomized sabotage complexity of
a Boolean function to be the zero-error randomized query complexity of fsab. A natural follow-up
question is to understand the Q(fsab), the quantum query complexity of fsab. In this paper, we
initiate a systematic study of this. The following are our main results for all Boolean functions
f : {0, 1}n → {0, 1}.

If we have additional query access to x and y, then Q(fsab) = O(min{Q(f),
√

n}).
If an algorithm is also required to output a differing index of a 0-input and a 1-input, then
Q(fsab) = O(min

{
Q(f)1.5,

√
n
}

).
Q(fsab) = Ω(

√
fbs(f)), where fbs(f) denotes the fractional block sensitivity of f . By known

results, along with the results in the previous bullets, this implies that Q(fsab) is polynomially
related to Q(f).
The bound above is easily seen to be tight for standard functions such as And, Or, Majority
and Parity. We show that when f is the Indexing function, Q(fsab) = Θ(fbs(f)), ruling out the
possibility that Q(fsab) = Θ(

√
fbs(f)) for all f .

2012 ACM Subject Classification Theory of computation → Oracles and decision trees; Theory of
computation → Quantum complexity theory

Keywords and phrases Sabotage complexity, quantum query complexity, Boolean functions, fractional
block sensitivity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.19

Related Version Full Version: https://arxiv.org/abs/2408.12595

Funding Subhasree Patro: This work is co-funded by the European Union (ERC, ASC-Q, 101040624).

Acknowledgements We thank the anonymous reviewers for useful comments and pointers to related
results that we had missed.

1 Introduction

Given a Boolean function f : {0, 1}n → {0, 1}, the goal in the standard query complexity
model is to compute f(x) on an unknown input x ∈ {0, 1}n using as few queries to x as
possible. One can also consider the following distinguishing problem: given x ∈ f−1(0) and
y ∈ f−1(1), output an index i ∈ [n] such that xi ≠ yi. This task can be formulated as follows:
Consider an arbitrary x ∈ f−1(0), an arbitrary y ∈ f−1(1), and then either all indices where

© Arjan Cornelissen, Nikhil S. Mande, and Subhasree Patro;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 19; pp. 19:1–19:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ajcornelissen@outlook.com
https://arriopolis.github.io/
mailto:mande@liverpool.ac.uk
https://mande-nikhil.github.io/
https://orcid.org/0000-0002-9520-7340
mailto:patrofied@gmail.com
https://subhasree-patro.github.io/
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.19
https://arxiv.org/abs/2408.12595
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Quantum Sabotage Complexity

x and y differ are replaced by the symbol ∗, or all such indices are replaced by the symbol †.
The goal of an algorithm is to identify which of these is the case, with query access to this
“sabotaged” input. A formal description of this task is given below.

Let f : D → {0, 1} with D ⊆ {0, 1}n be a (partial) Boolean function. Let D0 = f−1(0)
and D1 = f−1(1). For any pair (x, y) ∈ D0 ×D1, define [x, y, ∗] ∈ {0, 1, ∗}n to be

[x, y, ∗]i =
{
xi, if xi = yi,

∗, otherwise.

Similarly, for any pair (x, y) ∈ D0 ×D1, define [x, y, †] ∈ {0, 1, †}n to be

[x, y, †]i =
{
xi, if xi = yi,

†, otherwise.

Let S∗ = {[x, y, ∗] | (x, y) ∈ D0 ×D1} and S† = {[x, y, †] | (x, y) ∈ D0 ×D1}. That is, S∗ is
the set of ∗-sabotaged inputs for f and S† is the set of †-sabotaged inputs for f . Finally, let
fsab : S∗ ∪ S† → {0, 1} be the function defined by

fsab(z) =
{

0, z ∈ S∗,

1, z ∈ S†.

That is, fsab takes as input a sabotaged input to f and identifies if the input is ∗-sabotaged
or if it is †-sabotaged.

Ben-David and Kothari [10] introduced the notion of randomized sabotage complexity
of a Boolean function f , defined to be RS(f) := R0(fsab), where R0(·) denotes randomized
zero-error query complexity. It is not hard to see that RS(f) = O(R(f)) (where R(·) denotes
randomized bounded-error query complexity); this is because a randomized algorithm
that succeeds with high probability on both a 0-input x and a 1-input y must, with high
probability, query an index where x and y differ. Ben-David and Kothari also showed that
randomized sabotage complexity admits nice composition properties. It is still open whether
RS(f) = Θ(R(f)) for all total Boolean functions f . If true, this would imply that randomized
query complexity admits a perfect composition theorem, a goal towards which a lot of
research has been done [5, 16, 14, 8, 6, 9, 13, 24]. This motivates the study of randomized
sabotage complexity.

In the same paper, they mentioned that one could define QS(f) := Q(fsab) (here, Q(·)
denotes bounded-error quantum query complexity), but they were unable to show that it
lower bounds Q(f). In a subsequent work [11], they defined a quantum analog, denoted
QD(f), and called it quantum distinguishing complexity. QD(f) is the minimum number
of queries to the input x ∈ D to produce an output state such that the output states
corresponding to 0-inputs and 1-inputs are far from each other. Analogous to their earlier
result, they were also able to show that QD(f) = O(Q(f)) for all total f . Additionally, using
QD(f) as an intermediate measure, they were able to show a (then) state-of-the-art 5th-power
relationship between zero-error quantum query complexity and bounded-error quantum query
complexity: Q0(f) = Õ(Q(f)5) for all total f . We note here that a 4th-power relationship
was subsequently shown between D(f) and Q(f) [2], also implying Q0(f) = O(Q(f)4) for all
total f . The proof of this relied on Huang’s celebrated sensitivity theorem [19].

Our results
In this paper, we initiate a systematic study of the natural quantum analog of randomized
sabotage complexity alluded to in the previous paragraph, which we call quantum sabotage
complexity, denoted by QS(f) := Q(fsab). Slightly more formally, we consider the following
variants:

A. Cornelissen, N. S. Mande, and S. Patro 19:3

We consider two input models. In the weak input model, the oracle simply has query
access to an input in z ∈ S∗ ∪ S†. In the strong input model, the oracle additionally has
access to the original inputs x ∈ D0 and y ∈ D1 that yield the corresponding input in
S∗ ∪ S†. The model under consideration will be clear by adding either weak or str as a
subscript to QS.
We also consider two different output models: one where an algorithm is only required to
output whether the input was in S∗ or in S†, and a stronger version where an algorithm
is required to output an index i ∈ [n] with zi ∈ {∗, †}. The model under consideration
will be clear by adding either no superscript or ind as a superscript to QS.

As an example, QSind
weak(f) denotes the quantum sabotage complexity of f under the weak

input model, and in the output model where an algorithm needs to output a differing index.
One can also consider these nuances in defining the input and output models in the

randomized setting. However, one can easily show that they are all equivalent for randomized
algorithms. We refer the reader to Section 3 for a proof of this, and for a formal description
of these models.

An immediate upper bound on QS(f), for any (partial) Boolean function f , follows
directly from Grover’s search algorithm [17]. Indeed, for any sabotaged input, we know that
at least one of the input symbols must be either a ∗ or †. Thus, we can simply use the
unstructured search algorithm by Grover to find (the position of) such an element in O(

√
n)

queries. This immediately tells us that for Boolean functions where Q(f) = ω(
√
n), QS(f) is

significantly smaller than Q(f).
As mentioned earlier, Ben-David and Kothari left open the question of whether QS(f) =

O(Q(f)), the quantum analog of randomized sabotage complexity being at most randomized
query complexity. We first observe that in the strong input model, this holds true.

▶ Lemma 1. Let n be a positive integer, let D ⊆ {0, 1}n. Let f : D → {0, 1} be a (partial)
Boolean function. Then, QSstr(f) = O(Q(f)).

The proof idea is simple: consider an input z ∈ S∗ ∪S† obtained by sabotaging x ∈ f−1(0)
and y ∈ f−1(1). Run a quantum query algorithm for f on input z, such that:

Whenever a bit in {0, 1} is encountered, the algorithm proceeds as normal.
Whenever a ∗ is encountered, query the corresponding bit in x.
Whenever a † is encountered, query the corresponding bit in y.

The correctness follows from the following observation: if z ∈ S∗, then the run of the
algorithm is exactly that of the original algorithm on x, and if z ∈ S†, then the run is the
same of the original algorithm on y.

This procedure does not return a ∗/†-index, and it is natural to ask if QSind
str (f) = O(Q(f))

as well. While we are unable to show this, we make progress towards this by showing the
following, which is our first main result.

▶ Theorem 2. Let n be a positive integer, let D ⊆ {0, 1}n, and let f : D → {0, 1} be a
(partial) Boolean function. Then, QSind

str (f) = O(Q(f)1.5).

Our result is actually slightly stronger than this; our proof shows that QSind
str (f) =

O(QD(f)1.5). This implies Theorem 2 using the observation of Ben-David and Kothari that
QD(f) = O(Q(f)) for all (partial) f .

In order to show Theorem 2, we take inspiration from the observation that randomized
sabotage complexity is at most randomized query complexity. This is true because with
high probability, a randomized query algorithm must spot a differing bit between any pair of
inputs with different output values. However, this argument cannot immediately be ported

FSTTCS 2024

19:4 Quantum Sabotage Complexity

to the quantum setting because quantum algorithms can make queries in superposition. We
are able to do this, though, by stopping a quantum query algorithm for f at a random time
and measuring the index register. We note here that it is important that we have oracle
access not only to a sabotaged input z ∈ S∗ ∪ S†, but also the inputs (x, y) ∈ D0 ×D1 that
yielded the underlying sabotaged input. Using arguments reminiscent of the arguments in the
hybrid method [12], we are able to show that the success probability of this is only 1/Q(f).
Applying amplitude amplification to this process leads to an overhead of

√
Q(f), and yields

Theorem 2.
We remark here that this proof idea is reminiscent of the proof of [11, Theorem 1].

However, there are some technical subtleties. At a high level, the main subtleties are the
following: in the strong oracle model that we consider, it is easy to check whether or not a
terminated run of a Q algorithm actually gives us a ∗/† index. This is not the case in [11,
Proof of Theorem 1]. This allows us to save upon a quadratic factor because we can do
amplitude amplification.

Our proof approach modifies a core observation by Ben-David and Kothari [11, Lemma 12].
In their setting, they consider a T -query algorithm A that computes a function f with high
probability. Take two inputs x and y such that f(x) ̸= f(y), and let B ⊆ [n] be the indices
on which x and y differ. Suppose we run this algorithm on x, interrupt it right before the
tth query, and then measure the query register. The probability that we measure an index
i ∈ B, we denote by pt. Then, [11, Lemma 12] shows that

T∑
t=1

pt = Ω
(

1
T

)
.

We show that by adding the probabilities that come from running the algorithm at input
y, we can replace the lower bound of Ω(1/T) by a much stronger lower bound of Ω(1). We
state this observation more formally in the following lemma.

▶ Lemma 3. Let x ∈ {0, 1}n be an input and let B ⊆ [n]. Let A be a T -query quantum
algorithm that accepts x and rejects xB with high probability, or more generally produces
output states that are a constant distance apart in trace distance for x and xB. Let pt, resp.
pB

t , be the probability that, when A is run on x, resp. xB, up until, but not including, the
t-th query and then measured, it is found to be querying a position i ∈ B. Then,

T∑
t=1

(pt + pB
t) = Ω(1).

▶ Remark 4. We remark here that a stronger statement than that in Lemma 3 has already
been shown in [21, Lemma 3.1]. We thank an anonymous reviewer for pointing this out to us.

We find this lemma independently interesting and are confident that it will find use in future
research, given the use of such statements in showing quantum lower bounds via the adversary
method, for example (see [26, Chapters 11-12] and the references therein). Note that this
lemma is very amenable to our “strong” sabotage complexity setup: imagine running an
algorithm simultaneously on inputs x and xB that have different function values. Lemma 3
says that on stopping at a random time in the algorithm, and choosing one of x and xB at
random, the probability of seeing an index in B (i.e., a ∗-index or a †-index) is a constant.
Indeed, this lemma is a natural quantum generalization of the phenomenon that occurs in
the randomized setting: a randomized algorithm that distinguishes x and xB must read an
index in B with constant probability (on input either x or xB).

A. Cornelissen, N. S. Mande, and S. Patro 19:5

We now discuss our remaining results. Given Theorem 2, it is natural to ask if QSind
str (·) is

polynomially related to Q(·). Using the positive-weighted adversary lower bound for quantum
query complexity [4], we are able to show that QSstr(f) = Ω(

√
fbs(f)) for all total f (and

hence the same lower bound holds for QSweak(f), and QSind
weak(f), and QSind

str (f) as well).

▶ Theorem 5. Let f : {0, 1}n → {0, 1} be a Boolean function. Then QSstr(f) = Ω(
√

fbs(f)).

Fractional block sensitivity is further lower bounded by block sensitivity, which is known
to be polynomially related to R(·) and Q(·) [23, 7]. Using the best-known relationship of
Q(f) = Õ(bs3(f)) [1], Theorem 2 and Theorem 5 implies the following polynomial relationship
between QSstr(f), QSind

str (f) and Q(f) for all total Boolean functions f .

QSstr(f) = O(Q(f)), Q(f) = Õ(QSstr(f)6). (1)

QSind
str (f) = O(Q(f)1.5), Q(f) = Õ(QSind

str (f)6). (2)

In the weakest input model, we have QSweak(f) = O(QSind
weak(f)) = O(R(fsab)) = O(R(f)) =

O(Q(f)4) (where the last inequality follows from [2]). Thus, in the weakest input model for
sabotage complexity, Theorem 5 implies the following polynomial relationship with Q(f):

QSweak(f) = O(Q(f)4), Q(f) = Õ(QSweak(f)6). (3)

QSind
weak(f) = O(Q(f)4), Q(f) = Õ(QSind

weak(f)6). (4)

It would be interesting to find the correct polynomial relationships between all of these
measures. In particular, we suspect that QSind

str (f) = O(Q(f)) for all total f , but we are
unable to show this.

As mentioned in the discussion before Theorem 2, it is easy to show that QSind
str (f) = O(

√
n)

for all f : {0, 1}n → {0, 1}. Thus, the lower bound in terms of block sensitivity given by
Theorem 5 is actually tight for standard functions like And, Or, Parity and Majority. Given
this, it is natural to ask if QSind

str (f) = Θ(
√

fbs(f)) for all total Boolean f . We show that
this is false, by showing that for the Indexing function INDn : {0, 1}n+2n

→ {0, 1} defined by
INDn(x, y) = ybin(x) (where bin(x) denotes the integer in [2n] with the binary representation
x), QSind

str (INDn) = Θ(fbs(INDn)) = Θ(n).

▶ Theorem 6. Let n be a positive integer. Then, QSind
str (INDn) = Θ(n).

In order to show this, we use a variation of Ambainis’ basic adversary method [3, Theorem 5.1],
also presented in the same paper [3, Theorem 6.1] (see Lemma 19).

Finally, we summarize the relations we proved in Figure 1.

2 Preliminaries

All logarithms in this paper are taken base 2 unless mentioned otherwise. For a positive
integer n, we use the notation [n] to denote the set {1, 2, . . . , n} and use [n]0 to denote
{0, 1, . . . , n− 1}. Let v ∈ Cd, the ∥v∥2 =

√∑d
i=1 |vi|2. Let A,B be square matrices in

Cd×d. We use A† to denote the conjugate transpose of matrix A. The operator norm of a
matrix A, denoted by ∥A∥, is the largest singular value of A, i.e., ∥A∥ = maxv:∥v∥2=1 ∥Av∥2.
The trace distance between two matrices A,B, denoted by ∥A−B∥tr = 1

2 ∥A−B∥1 where
∥A∥1 = Tr(

√
A†A). For two d× d matrices A,B, A ◦B denotes the Hadamard, or entry-wise,

product of A and B.
We refer the reader to [26, Chapter 1] for the relevant basics of quantum computing.

FSTTCS 2024

19:6 Quantum Sabotage Complexity

√
fbs

QSstr

QSind
str QSweak

QSind
weakQD3/2

Theorem 5

√
nRS

Lemma 23

√
RS

Theorem 17

[11, Proposition 6]
Q3/2

Lemma 1

Q

Figure 1 Overview of the relations proved in this work. If nodes A and B are connected, and A

is below B, then A = O(B). All the red edges are reasonably straightforward inclusions, and they
are proved in Proposition 16.

Let D ⊆ {0, 1}n, let R be a finite set, and let f ⊆ D×R be a relation. A quantum query
algorithm A for f begins in a fixed initial state |ψ0⟩ in a finite-dimensional Hilbert space,
applies a sequence of unitaries U0, Ox, U1, Ox, . . . , UT , and performs a measurement. Here,
the initial state |ψ0⟩ and the unitaries U0, U1, . . . , UT are independent of the input. The
unitary Ox represents the “query” operation, and does the following for each basis state: it
maps |i⟩ |b⟩ to |i⟩ |b+ xi mod 2⟩ for all i ∈ [n]. The algorithm then performs a measurement
and outputs the observed value. We say that A is a bounded-error quantum query algorithm
computing f if for all x ∈ D the probability of outputting r such that (x, r) ∈ f is at least
2/3. The (bounded-error) quantum query complexity of f , denoted by Q(f), is the least
number of queries required for a quantum query algorithm to compute f with error at most
1/3. We use R(f) to denote the randomized query complexity of f , which is the worst-case
cost (number of queries) of the best randomized algorithm that computes f to error at most
1/3 on all inputs.

We recall some known complexity measures.

▶ Definition 7 (Block sensitivity). Let n be a positive integer and f : {0, 1}n → {0, 1} be a
Boolean function. For any x ∈ {0, 1}n, a block B ⊆ [n] is said to be sensitive on an input
x ∈ {0, 1}n if f(x) ̸= f(x⊕B), where x⊕B (or xB) denotes the string obtained by taking x
and flipping all bits in B. The block sensitivity of f on x, denoted bs(f, x), is the maximum
number of pairwise disjoint blocks that are sensitive on x. The block sensitivity of f , denoted
by bs(f), is maxx∈{0,1}n bs(f, x).

The fractional block sensitivity of f on x, denoted fbs(f, x), is the optimum value of the
linear program below. We refer the reader to [15, 20] for a formal treatment of fractional
block sensitivity and related measures, and we simply state its definition here.

▶ Definition 8 (Fractional block sensitivity). Let n be a positive integer and f : {0, 1}n → {0, 1}
be a Boolean function. Let x ∈ {0, 1}n and let Yx = {z ∈ {0, 1}n : f(x) ̸= f(z)}. The
fractional block sensitivity of f on x, denoted by fbs(f, x), is the optimal value of the
following optimization program.

A. Cornelissen, N. S. Mande, and S. Patro 19:7

max
∑

y∈Yx

wy,

subject to
∑

y∈Yx

xj ̸=yj

wy ≤ 1, ∀j ∈ [n],

wy ≥ 0, ∀y ∈ Yx.

The fractional block sensitivity of f , denoted by fbs(f), is maxx∈{0,1}n fbs(f, x).1

We also state the non-negative weight adversary bound. It appears in many forms in
the literature. We refer to the form mentioned in [18] which is equivalent to the following
definition.

▶ Definition 9 (Non-negative weight adversary bound). Let n be a positive integer, Σ and Π
finite sets, D ⊆ (Σ)n, and f : D → Π. The adversary bound is the following optimization
program.

max ∥Γ∥
s.t. ∥Γ ◦ ∆j∥ ≤ 1, ∀j ∈ [n],

Γ[x, y] = 0, if f(x) = f(y).

Here, the optimization is over all symmetric, entry-wise non-negative adversary matrices
Γ ∈ RD×D. The matrix ∆j ∈ {0, 1}D×D has entries ∆j [x, y] = 1 if and only if xj ̸= yj . The
optimal value of this optimization program is denoted by ADV+(f).

Sometimes, the optimal value of the non-negative weight adversary bound is also written
as ADV(f). However, one can also consider the general adversary bound, in which the entries
of the matrix Γ are not constrained to be non-negative. To clearly differentiate between the
optimal values of these optimization programs, we distinguish between them by explicitly
writing ADV+(f) and ADV±(f).

▶ Definition 10 (Quantum distinguishing complexity). Let n be a positive integer. The
quantum distinguishing complexity of a (partial) Boolean function f : D → {0, 1} (where
D ⊆ {0, 1}n), denoted by QD(f), is the smallest integer k such that there exists a k-query
algorithm that on input x ∈ D outputs a quantum state ρx such that

∀x, y ∈ D, ∥ρx − ρy∥tr ≥ 1/6,

whenever f(x) ̸= f(y).

The non-negative weight adversary bound is known to be a lower bound to the quantum
distinguishing complexity, which in turn is a lower bound on the quantum query complexity,
by [11, Proposition 6]. We state it below.

▶ Theorem 11 ([11]). Let n be a positive integer, D ⊆ {0, 1}n, and f : D → {0, 1}. Then,

ADV+(f) = O(QD(f)) = O(Q(f))).

The relation ADV+(f) = O(Q(f)) holds in the non-Boolean case as well, which follows
directly from the definition and known results about the non-negative weight adversary
bound, as can be found in [22], for instance.

1 The block sensitivity of f on x is captured by the integral version of this linear program, where the
variable wy ∈ {0, 1} enforces that the blocks must be disjoint.

FSTTCS 2024

19:8 Quantum Sabotage Complexity

3 Sabotage complexity

In this section we first define sabotage variants of a Boolean function f that are convenient
to work with. Specifically, these variants are useful because they enable us to work with the
usual quantum query complexity model in the quantum setting, allowing us to use known
results in this setting. After this, we analyze some basic properties of quantum sabotage
complexities.

3.1 Formal setup of sabotage complexity
We start by formally defining the sabotage function of f .

▶ Definition 12 (Sabotage functions and relations). Let n be a positive integer, D ⊆ {0, 1}n.
Let f : D → {0, 1} be a (partial) Boolean function. For any input pair x ∈ f−1(0) and
y ∈ f−1(1), we define [x, y, ∗], [x, y, †] ∈ {0, 1, ∗, †}n by

[x, y, ∗]j =
{
xj , if xj = yj ,

∗, otherwise,
and [x, y, †]j =

{
xj , if xj = yj ,

†, otherwise.

We let S∗ = {[x, y, ∗] : x ∈ f−1(0), y ∈ f−1(1)}, S† = {[x, y, †] : x ∈ f−1(0), y ∈ f−1(1)}, and
we let Dsab = S∗ ∪ S† ⊆ {0, 1, ∗, †}n.

The sabotage function of f is defined as fsab : Dsab → {0, 1}, where fsab(z) = 1 iff z ∈ S†.
The sabotage relation of f is defined as f ind

sab ⊆ Dsab × [n], where (z, j) ∈ f ind
sab iff zj ∈ {∗, †}.

For every x ∈ f−1(0) and y ∈ f−1(1), we let (x, y, ∗) denote ((xj , yj , zj))n
j=1, where

z = [x, y, ∗]. Similarly, for every x ∈ f−1(0) and y ∈ f−1(1), we let (x, y, †) denote
((xj , yj , zj))n

j=1, where z = [x, y, †]. For b ∈ {∗, †}, let Sstr
b = {(x, y, b) : x ∈ f−1(0), y ∈

f−1(1)}, and Dstr
sab = Sstr

∗ ∪ Sstr
† .

We define the strong sabotage function of f as f str
sab : Dstr

sab → {0, 1}, where f str
sab(w) = 1 iff

w ∈ Sstr
† .

We define the strong sabotage relation of f as f str,ind
sab ⊆ Dstr

sab × [n], where (w, j) ∈ f str,ind
sab

iff zj ∈ {∗, †} where w = ((xj , yj , zj))n
j=1.

If we want to compute fsab, we need to consider how we are given access to the input
of fsab. To that end, we consider two input models, the weak and the strong input model.
Both can be viewed as having regular query access to the inputs of the function fsab and
f str

sab, respectively.

▶ Definition 13 (Weak sabotage input model). Let n be a positive integer, D ⊆ {0, 1}n, and
f : D → {0, 1} be a (partial) Boolean function. Let Dsab be as in Definition 12. In the weak
sabotage input model, on some input z ∈ Dsab, we are given access to an oracle Oweak

z that
when queried the jth position returns zj. In the quantum setting, this means that the oracle
performs the mapping

Oweak
z : |j⟩ |b⟩ 7→ |j⟩ |(b+ zj) mod 4⟩ , ∀b ∈ [4]0, ∀j ∈ [n],

where ∗ is identified with 2 and † is identified with 3.

We also consider a stronger model.

A. Cornelissen, N. S. Mande, and S. Patro 19:9

▶ Definition 14 (Strong sabotage input model). Let n be a positive integer, D ⊆ {0, 1}n, and
f : D → {0, 1} be a (partial) Boolean function. Let Dstr

sab be as in Definition 12. In the strong
sabotage input model, on some input w = ((xj , yj , zj))n

j=1, we are given access to an oracle
Ostr

w that when queried the jth position returns the tuple (xj , yj , zj). In the quantum setting,
this means that the oracle performs the mapping

Ostr
w : |j⟩ |bx⟩ |by⟩ |bz⟩ 7→ |j⟩ |bx ⊕ xj⟩ |by ⊕ yj⟩ |(bz + zj) mod 4⟩ ,

for all bx, by ∈ {0, 1}, bz ∈ [4]0 and for all j ∈ [n]. As in the previous definition, ∗ is
identified with 2 and † is identified with 3.

Note that in the stronger model, we are implicitly also given the information which of
the two inputs x and y are the 0- and 1-inputs of f . Indeed, we assume that the bits queried
in the first entry of the tuple, always correspond to the 0-input that defined the sabotaged
input z. We remark here that we can always remove this assumption if we allow for additive
overhead of O(Q(f)), after all we can always run a quantum algorithm that computes f on
the first bits from all our queried tuple, to compute f(x), and thus finding out whether it
was a 0- or 1-input to begin with.

Having defined the sabotage functions/relations and the input models we now define four
different notions of quantum sabotage complexity of f .

▶ Definition 15 (Sabotage complexity). Let n be a positive integer, D ⊆ {0, 1}n, and let
f : D → {0, 1} be a (partial) Boolean function. Define,

QSweak(f) := Q(fsab), QSind
weak(f) := Q(f ind

sab), QSstr(f) := Q(f str
sab), QSind

str (f) := Q(f str,ind
sab).

Analogously, define

RSweak(f) := R(fsab), RSind
weak(f) := R(f ind

sab), RSstr(f) := R(f str
sab), RSind

str (f) := R(f str,ind
sab).

3.2 Quantum sabotage complexity
In Appendix A we show that the randomized sabotage complexity of a function is (asymp-
totically) the same in all of the four models we consider. In the quantum case, we have not
been able to prove such equivalences. However, we can still prove some bounds between
them. We refer the reader to Figure 1 for a pictorial representation of all relationships.

▶ Proposition 16. Let n be a positive integer, D ⊆ {0, 1}n, and let f : D → {0, 1} be a
(partial) Boolean function. Then,

QSstr(f) = O(QSind
str (f)) = O(QSind

weak(f)) = O(min{RS(f)),
√
n}),

and

QSstr(f) = O(QSweak(f)) = O(QSind
weak(f)).

Proof. Just as in the randomized case, QSstr(f) = O(QSweak(f)) and QSind
str (f) =

O(QSind
weak)(f), because the input model is stronger, i.e., we can simulate a query to the weak

oracle with O(1) queries to the strong oracle. Furthermore, QSstr(f) = O(QSind
str (f)) and

QSweak(f) = O(QSind
weak(f)), because once we have found a j ∈ [n] where xj ̸= yj , we can

query that index with one more query to find figure out whether we have a ∗-input or a
†-input.

In the strong input model, we can always simply run Grover’s algorithm to find a position
j ∈ [n] where zj ∈ {∗, †}. This takes O(

√
n) queries. Thus, it remains to show that

QSind
weak(f) = O(RS(f)). We showed in the previous proposition that RS(f) is the same up to

constants to RSind
weak(f), and since the quantum computational model is only stronger than

the randomized one, we find QSind
weak(f) = O(RSind

weak(f)) = O(RS(f)). ◀

FSTTCS 2024

19:10 Quantum Sabotage Complexity

4 Upper bounds on QS

In this section, we prove upper bounds on the complexity measures introduced in Section 3.
We start by showing that the quantum sabotage complexity in the strong model is upper
bounded by the regular bounded-error quantum query complexity. Thereby, we prove that
QSstr(f) has the property that was sought for in [10], i.e., in this model computing fsab
indeed costs at most as many queries as computing f itself.

▶ Lemma 1. Let n be a positive integer, let D ⊆ {0, 1}n. Let f : D → {0, 1} be a (partial)
Boolean function. Then, QSstr(f) = O(Q(f)).

Proof. Let A be a bounded-error quantum query algorithm that computes f . We construct
a quantum query algorithm B that computes fsab in the strong input model.

Recall that in the strong input model (as in Definition 14), our input is viewed as
w = ((xj , yj , zj))n

j=1 where f(x) = 0, f(y) = 1 and z is the sabotaged input constructed from
x and y. A query on the jth position to the oracle Ostr

w returns a tuple (xj , yj , zj). Now, we
define B to be the same algorithm as A, but whenever A makes a query, it performs the
following operation instead:
1. Query Ostr

w , denote the outcome by (xj , yj , zj).
2. If zj ∈ {0, 1}, return zj .
3. If zj = ∗, return xj .
4. If zj = †, return yj .

Note that this operation can indeed be implemented quantumly making 2 queries to
Ostr

w . The initial query performs the instructions described above, and the second query
uncomputes the values from the tuple we don’t need for the rest of the computation. Note
here that (Ostr

w)4 = I, and thus (Ostr
w)3 = (Ostr

w)−1, which is what we need to implement for
our uncompute operations.

We observe that the above operation always returns xj whenever we have a ∗-input, and
yj whenever we have a †-input. Thus, if we run algorithm B with this oracle operation (in
superposition, including uncomputation), then we output f(x) = 0 on a ∗-input, and f(y) = 1
on a †-input, with the same success probability as that of A. As this query operation can
be implemented with a constant number of calls to the query oracle Ostr

w , we conclude that
QSstr(f) = O(Q(f)). ◀

It is not obvious how we can modify the above algorithm to also output the index where
x and y differ. However, we can design such an algorithm using very different techniques,
and give an upper bound on QSind

str (f) in terms of QD(f). To that end, we first prove a
fundamental lemma that is similar to [11, Lemma 12] and [21, Lemma 3.1].

▶ Lemma 3. Let x ∈ {0, 1}n be an input and let B ⊆ [n]. Let A be a T -query quantum
algorithm that accepts x and rejects xB with high probability, or more generally produces
output states that are a constant distance apart in trace distance for x and xB. Let pt, resp.
pB

t , be the probability that, when A is run on x, resp. xB, up until, but not including, the
t-th query and then measured, it is found to be querying a position i ∈ B. Then,

T∑
t=1

(pt + pB
t) = Ω(1).

A. Cornelissen, N. S. Mande, and S. Patro 19:11

Proof. We write y = xB, and we let |ψt
x⟩ and

∣∣ψt
y

〉
be the states right before the th query,

when we run A on inputs x and y, respectively. We also let |ψx⟩ and |ψy⟩ be the final states
of the algorithm run on x and y, respectively. Since A can distinguish x and y with high
probability, we observe that |ψx⟩ and |ψy⟩ must be far apart, i.e., their inner product must
satisfy

1 − | ⟨ψx|ψy⟩ | = Ω(1).

For every j ∈ [n], let Hj be the subspace of the state space of A that queries the jth
bit of the input. In other words, we let Hj be the span of all states that pick up a phase
of (−1)xj , when the algorithm A calls the oracle Ox. We let Πj be the projector on this
subspace.

Next, we let HB be the subspace that contains all Hj ’s with j ∈ B. In other words, we
write HB = ⊕j∈BHj . We immediately observe that the projector onto HB , denoted by ΠB ,
satisfies ΠB =

∑
j∈B Πj . Note that it is exactly the subspace HB on which the oracles Ox

and Oy act differently. So, intuitively, if a state |ψ⟩ has a big component in HB , then Ox |ψ⟩
and Oy |ψ⟩ will be far apart from each other.

Now, we define px,t := ∥ΠB |ψt
x⟩∥2, i.e., the squared overlap of the state |ψt

x⟩ with the
subspace HB . Intuitively, if we were to interrupt the algorithm A run on input x right before
the tth query, and we were to measure the query register, then the probability of measuring
a j ∈ B is px,t.

The crucial observation that we make is that∣∣〈ψt
x

∣∣ψt
y

〉∣∣ −
∣∣〈ψt+1

x

∣∣ψt+1
y

〉∣∣ ≤
∣∣〈ψt

x

∣∣ψt
y

〉
−

〈
ψt+1

x

∣∣ψt+1
y

〉∣∣ =
∣∣〈ψt

x

∣∣ψt
y

〉
−

〈
ψt

x

∣∣O†
xOy

∣∣ψt
y

〉∣∣
=

∣∣〈ψt
x

∣∣ (
I −O†

xOy

) ∣∣ψt
y

〉∣∣ = 2
∣∣〈ψt

x

∣∣ ΠB

∣∣ψt
y

〉∣∣ ≤ 2
∥∥ΠB

∣∣ψt
x

〉∥∥ ·
∥∥ΠB

∣∣ψt
y

〉∥∥
= 2√

px,t · py,t ≤ px,t + py,t.

Here, we used the triangle inequality, the Cauchy-Schwarz inequality, and the AM-GM
inequality, in order. Finally, we observe that the initial states for algorithm A run on x and
y are the same, and so |

〈
ψ1

x

∣∣ψ1
y

〉
| = 1. Thus, identifying

∣∣ψT +1
x

〉
with |ψx⟩, and similarly for

y, we obtain that

1 − | ⟨ψx|ψy⟩ | =
T∑

t=1
|
〈
ψt

x

∣∣ψt
y

〉
| − |

〈
ψt+1

x

∣∣ψt+1
y

〉
| ≤

T∑
t=1

(px,t + py,t). ◀

We now show how the above lemma can be used to prove a connection between QSind
str (f)

and QD(f).

▶ Theorem 17. Let f : {0, 1}n → {0, 1}. We have QSind
str (f) = O(QD(f)3/2).

Proof. Suppose we have an algorithm A that distinguishes between input x ∈ f−1(0) and
y ∈ f−1(1) with high probability in T queries. Then, we construct an algorithm B that
works in the strong sabotage input model, and finds an index j ∈ [n] where xj ̸= yj .

First, consider the following procedure. We pick an input x or y with probability 1/2,
and we pick a time step t ∈ {1, . . . , T} uniformly at random. We run A until right before
the tth query, and then we measure the query register to obtain an index j ∈ [n]. From

FSTTCS 2024

19:12 Quantum Sabotage Complexity

Lemma 3, we obtain that the probability that xj ̸= yj is lower bounded by Ω(1/T).2 Thus,
running this algorithm O(T) times would suffice to find a j ∈ [n] such that xj ̸= yj , with
high probability.

However, we can do slightly better than that. Note that once the algorithm gives us
an index j ∈ [n], it takes just one query (to z) to find out if zj ∈ {∗, †}. Thus, we can use
amplitude amplification, and use O(

√
T) iterations of the above procedure, to find a j ∈ [n]

such that zj ∈ {∗, †} (equivalently, xj ̸= yj). Each application of the procedure takes O(T)
queries to implement in the worst case. Thus, the final query complexity is O(T 3/2). ◀

Combining the above result with [11, Proposition 6], which states that QD(f) = O(Q(f)),
immediately yields the following theorem.

▶ Theorem 2. Let n be a positive integer, let D ⊆ {0, 1}n, and let f : D → {0, 1} be a
(partial) Boolean function. Then, QSind

str (f) = O(Q(f)1.5).

5 QSstr(f) vs.
√

fbs(f)

So far we have shown upper bounds on quantum sabotage complexity. In this section we show
our lower bounds. We first show that QSstr(f) (and hence QSind

str (f),QSweak(f),QSind
weak(f) as

well) is bounded from below by
√

fbs(f). This is a generalization of the known bound of
Q(f) = Ω(

√
bs(f)) [7]. In particular, this already implies that quantum sabotage complexity

is polynomially related to quantum query complexity for all total Boolean functions f . Next
observe that, unlike in the usual quantum query setting, this

√
fbs(f) lower bound is tight

for standard functions such as Or, And, Majority and Parity because of the Grover-based
O(

√
n) upper bound on the quantum sabotage complexity of all functions. This suggests the

possibility of the quantum sabotage complexity of f being Θ(
√

fbs(f)) for all total f . In the
next subsection we rule this out, witnessed by f as the Indexing function, for which we show
the quantum sabotage complexity to be Θ(fbs(f)).

5.1 A general lower bound
In the appendix we show that RS(f) = Ω(fbs(f)), as well as the quantum bound of Q(f) =
Ω(

√
fbs(f)). We now wish to follow the same approach as in the proof of the latter bound

for proving a lower bound on QSstr(f). To that end, we know that QSstr(f) := Q(f str
sab) =

Ω(ADV+(f str
sab)) [4], so it remains to show that ADV+(f str

sab) = Ω(
√

fbs(f)). Thus, we adapt
the proof of Lemma 24 in the sabotaged setting.

▶ Lemma 18. Let n be a positive integer, D ⊆ {0, 1}n and f : D → {0, 1}. Then,
ADV+(f str

sab) = Ω(
√

fbs(f)).

Proof. Let x be the instance for which fbs(f) = fbs(f, x), and let (wy)y∈Y be the optimal
weight assignment (see Definition 8). Similar to the proof of Lemma 24, we generate a (non-
negative weight) adversary matrix, Γ ∈ RDstr

sab×Dstr
sab . We define Γ to be the all-zeros matrix,

except for the instances where ((x, y, ∗), (x, y′, †)) and ((x, y, †), (x, y′, ∗)), with y, y′ ∈ Y ,
where we define it to be

Γ[(x, y, ∗), (x, y′, †)] = Γ[(x, y′, †), (x, y, ∗)] = √
wywy′ .

2 It is important to remark here that we have access to our strong sabotage oracle now (Definition 14).
Recall that there are four registers: |j⟩ , |bx⟩ , |by⟩ , |bz⟩. When we say “run A” with this oracle, we mean
all operations act as identity on the last register.

A. Cornelissen, N. S. Mande, and S. Patro 19:13

Again Γ has a simple sparsity pattern. Only the rows and columns that are labeled by
(x, y, ∗) and (x, y, †), with y ∈ Y , are non-zero. Additionally, observe from the definition of
the matrix entries that for any y, y′ ∈ Y , we have

Γ[(x, y, ∗), (x, y′, †)] = √
wywy′ = Γ[(x, y, †), (x, y′, ∗)].

Thus, in every 2 × 2-block formed by rows (x, y, ∗) and (x, y, †) and columns (x, y′, ∗) and
(x, y, †), we have that the two diagonal elements are 0, and the two off-diagonal elements are
equal. Hence, by removing unimportant rows and columns that are completely zero, we can
rewrite Γ as

Γ = Γ′ ⊗
[
0 1
1 0

]
, where Γ′ ∈ RY ×Y , with Γ′[y, y′] = √

wywy′ .

It now becomes apparent that Γ′ is of rank 1. Indeed, it is the outer product of a vector√
w ∈ RY , that contains the entries √

wy at every index labeled by y. From some matrix
arithmetic, we now obtain

∥Γ∥ = ∥Γ′∥ · 1 =
∥∥∥√

w
√
w

T
∥∥∥ =

∥∥√
w

∥∥2 =
∑
y∈Y

wy = fbs(f).

Thus, it remains to prove that ∥Γ ◦ ∆j∥ = O(
√

fbs(f)), for all j ∈ [n]. Indeed, then
we can scale our matrix Γ down by Θ(

√
fbs(f)) so that it is feasible for the optimization

program in Definition 9, and the objective value will then become Θ(
√

fbs(f)) as predicted.
Let j ∈ [n]. To compute ∥Γ ◦ ∆j∥, we look at its sparsity pattern. Observe that whenever

we query the jth bit of (x, y, ∗) and (x, y′, †), we obtain the tuples (xj , yj , zj) and (xj , y
′
j , z

′
j).

If yj ≠ y′
j , then it is clear that these tuples are not the same. Similarly, if xj ̸= yj = y′

j , then
both zj ’s will be different, as one will be a ∗ and the other will be a †. Thus, the queried
tuples are only identical whenever xj = yj = y′

j , which implies that we can rewrite

Γ ◦ ∆j = Γ′
j ⊗

[
0 1
1 0

]
, where Γ′

j ∈ RY ×Y , with Γ′
j [y, y′] =

{
0, if yj = y′

j = xj ,
√

wywy′ , otherwise.

We now let Y0 = {y ∈ Y : xj ̸= yj} and Y1 = {y ∈ Y : xj = yj}. We interpret Γ′
j as a

2 × 2-block matrix, where the first rows and columns are indexed by Y0 and the last ones

are indexed by Y1. Then, Γ′
j takes on the shape Γ′

j =
[
A B

BT 0

]
, with A ∈ RY0×Y0 and

B ∈ RY0×Y1 , defined as

A[y, y′] = √
wywy′ , and B[y, y′] = √

wywy′ .

We observe that

∥Γ ◦ ∆j∥ =
∥∥Γ′

j

∥∥ · 1 ≤ ∥A∥ + ∥B∥ ,

and hence it remains to compute ∥A∥ and ∥B∥.
We now define the vectors √

w0 ∈ RY0 and √
w1 ∈ RY1 , defined by (√w0)y = √

wy, and
(√w1)y = √

wy. We observe that A = √
w0

√
w0

T , and B = √
w0

√
w1

T . Thus, we obtain

∥A∥2 =
∥∥∥√

w0
√
w0

T
∥∥∥2

= ∥
√
w0∥4 =

 ∑
y∈Y0

wy

2

=

 ∑
y∈Y

xj ̸=wj

wy

2

≤ 1,

FSTTCS 2024

19:14 Quantum Sabotage Complexity

and similarly

∥B∥2 =
∥∥∥√

w0
√
w1

T
∥∥∥2

= ∥
√
w0∥ · ∥

√
w1∥2 =

 ∑
y∈Y

xj ̸=yj

wy

 ·

 ∑
y∈Y

xj=yj

wy

 ≤ 1 · fbs(f). ◀

The proof of Theorem 5 now follows as a simple corollary from this lemma and the
fact that QSstr(f) := Q(f str

sab) = Ω(ADV+(f str
sab)), where the last bound follows from the

positive-weighted adversary lower bound of Ambainis [4].

5.2 A stronger lower bound for Indexing
As observed in the discussion following Theorem 2, we have QSind

weak(f) (and hence QSweak(f)
and QSind

str (f) and QSstr(f)) is O(
√
n) for all f : {0, 1}n → {0, 1}. In particular, the

√
fbs(f)

lower bound for QSstr(f) is tight for standard functions like AND, OR, Parity, Majority. In
view of this it is feasible that QSstr(f) = O(

√
fbs(f)) for all total f : {0, 1}n → {0, 1}. In

the remaining part of this section, we rule this out, witnessed by the Indexing function.
We use Ambainis’ adversary method to prove lower bounds on quantum query complex-

ity [3].

▶ Lemma 19 ([3, Theorem 6.1]). Let f : {0, 1, ∗, †}k → {0, 1} be a (partial) Boolean function.
Let X,Y ⊆ {0, 1, ∗, †}k be two sets of inputs such that f(x) ̸= f(y) if x ∈ X and y ∈ Y . Let
R ⊆ X × Y be nonempty, and satisfy:

For every x ∈ X there exist at least mX different y ∈ Y such that (x, y) ∈ R.
For every y ∈ Y there exist at least mY different x ∈ X such that (x, y) ∈ R.

Let ℓx,i be the number of y ∈ Y such that (x, y) ∈ R and xi ̸= yi, and similarly for ℓy,i. Let
ℓmax = maxi∈[k] max(x,y)∈R,xi ̸=yi

ℓx,iℓy,i. Then any algorithm that computes f with success
probability at least 2/3 uses Ω

(√
mX mY

ℓmax

)
quantum queries to the input function.

Define the Indexing function as follows. For a positive integer n > 0, define the function
INDn : {0, 1}n × {0, 1}2n

→ {0, 1} as INDn(a, b) = bbin(a), where bin(a) denotes the integer
in [2n] whose binary representation is a.

We first note that the fractional block sensitivity is easily seen to be bounded from
below by block sensitivity, and bounded from above by deterministic (in fact randomized)
query complexity. Both the block sensitivity (in fact, sensitivity) and deterministic query
complexity of INDn are easily seen to be n+ 1, implying fbs(INDn) = n+ 1.

▶ Theorem 20. Let n be a positive integer. Then, QSweak(INDn) = Ω(n).

Proof. Recall from Definition 15 that QSweak(INDn) = Q(INDn,sab). We construct a hard
relation for f = INDn,sab and use Lemma 19. Recall that this relation must contain pairs of
inputs. For each pair, the function must evaluate to different outputs. For ease of notation
we first define the pairs of inputs (a1, b1), (a2, b2) in the relation, and then justify that these
inputs are indeed in S∗ and S†, respectively.

Define (a1, b1), (a2, b2) ∈ R if and only if all of the following hold true:
1. (a1, b1) ∈ f−1(0) (i.e., (a1, b1) ∈ S∗ for INDn), (x2, y2) ∈ f−1(1) (i.e., (a2, b2) ∈ S† for

INDn),
2. |a1 ⊕ a2| = 2, i.e., the Hamming distance between a1 and a2 is 2,
3. b1 is all-0, except for the bin(a1)’th index, which is ∗,
4. b2 is all-0, except for the bin(a2)’th index, which is †.

A. Cornelissen, N. S. Mande, and S. Patro 19:15

First note that (a1, b1) = [(a1, 02n), (a1, ea1), ∗], where ea1 ∈ {0, 1}2n

is the all-0 string except
for the bin(a1)’th location, which is a 1. Similarly, (a2, b2) = [(a2, 02n), (a2, ea2), †]. Thus,
(a1, b1) and (a2, b2) are in S∗ and S†, respectively. In particular, in the language of Lemma 19
we have

X =
{

(a, b) ∈ {0, 1}n × {0, 1, ∗}2n

: b is all-0 except for the bin(a)’th index, which is ∗
}

. (5)

Similarly,

Y =
{

(a, b) ∈ {0, 1}n × {0, 1, †}2n

: b is all-0 except for the bin(a)’th index, which is †
}

. (6)

We now analyze the quantities mX ,mY and ℓmax from Lemma 19.
1. mX = mY =

(
n
2
)
: Consider (a, b) ∈ X. The number of elements (a′, b′) ∈ Y such that

((a, b), (a′, b′) ∈ R) is simply the number of strings a′ that have a Hamming distance of 2
from a, since each such a′ corresponds to exactly one b′ with ((a, b), (a′, b′) ∈ R), where
b′ is the all-0 string except for the bin(a)′th location which is a †. Thus mX =

(
n
2
)
. The

argument for mY is essentially the same.
2. ℓmax = min

{(
n
2
)
, (n− 1)2}

: We consider two cases.
a. i ∈ [n]: Fix ((a, b), (a′, b′)) ∈ R with ai ̸= a′

i. Recall that ℓ(a,b),i is the number of
(a′′, b′′) ∈ Y such that ((a, b), (a′′, b′′)) ∈ R and ai ̸= a′′

i . Following a similar logic as in
the previous argument, this is simply the number of a′′ that have Hamming distance
2 from a and additionally satisfy ai ̸= a′′

i . There are n− 1 possible locations for the
other difference between a and a′′, so ℓ(a,b),i = n− 1 in this case. Essentially the same
argument shows ℓ(a′,b′),i = n− 1, and so ℓ(a,b),i · ℓ(a′,b′),i = (n− 1)2.

b. i ∈ [2n]: Fix ((a, b), (a′, b′)) ∈ R with bi ≠ b′
i. By the structure of R, b is the all-0 string

except for the bin(a)’th location which is a ∗, and b′ is the all-0 string except for the
bin(a′)’th location which is a †. Thus i ∈ {bin(a), bin(a′)}. Without loss of generality,
assume i = bin(a), and thus bbin(a) = ∗. For each a′′ with Hamming distance 2 from
a, we have ((a, b), (a′′, b′′)) ∈ R where b′′ is all-0 except for the a′′th index which is
†. In particular, b′′

bin(a) = 0. So we have ℓ(a,b),i =
(

n
2
)
. On the other hand, we have

b′
bin(a) = 0. So the only (a′′, b′′) with ((a′′, b′′), (a′, b′)) ∈ R and with b′′

bin(a) ≠ b′
bin(a) is

(a′′, b′′) = (a, b). Thus ℓ(a′,b′),i = 1.
Lemma 19 then implies

QSweak(INDn) = Q(INDn,sab) = Q(f) = Ω

√√√√ (

n
2
)2

min
{(

n
2
)
, (n− 1)2

}
 = Ω(n), (7)

proving the theorem. ◀

This proof can easily be adapted to also yield a lower bound of QSstr(INDn) = Ω(n). We
include a proof in the appendix for completeness. As a corollary we obtain the following.

▶ Corollary 21. Let n be a positive integer. Then, QSind
str (INDn) = Ω(n) and QSind

weak(INDn) =
Ω(n).

FSTTCS 2024

19:16 Quantum Sabotage Complexity

6 Open questions

In this paper we studied the quantum sabotage complexity of Boolean functions, which we
believe is a natural extension of randomized sabotage complexity introduced by Ben-David
and Kothari [10]. We note here that in a subsequent work [11] they also defined a quantum
analog, but this is fairly different from the notion that we studied in this paper.

We argued, by showing several results, that it makes sense to consider four different models
depending on the access to input, and output requirements. While it is easily seen that the
randomized sabotage complexity of a function remains (asymptotically) the same regardless
of the choice of model (see Proposition 22), such a statement is not clear in the quantum
setting. In our view, the most interesting problem left open from our work is to prove or
disprove that even the quantum sabotage complexity of a function is asymptotically the same
in all of these four models. It would also be interesting to see tight polynomial relationships
between the various quantum sabotage complexities and quantum query complexity.

References
1 Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity using

cheat sheets. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC, pages 863–876. ACM, 2016. doi:10.1145/2897518.2897644.

2 Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay Tal. Degree vs.
approximate degree and quantum implications of huang’s sensitivity theorem. In STOC ’21:
53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1330–1342. ACM,
2021. doi:10.1145/3406325.3451047.

3 Andris Ambainis. Quantum lower bounds by quantum arguments. J. Comput. Syst. Sci.,
64(4):750–767, 2002. Earlier version in STOC’00. doi:10.1006/JCSS.2002.1826.

4 Andris Ambainis. Polynomial degree vs. quantum query complexity. J. Comput. Syst. Sci.,
72(2):220–238, 2006. doi:10.1016/J.JCSS.2005.06.006.

5 Anurag Anshu, Dmitry Gavinsky, Rahul Jain, Srijita Kundu, Troy Lee, Priyanka Mukho-
padhyay, Miklos Santha, and Swagato Sanyal. A composition theorem for randomized query
complexity. In 37th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS, volume 93 of LIPIcs, pages 10:1–10:13. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.FSTTCS.2017.10.

6 Andrew Bassilakis, Andrew Drucker, Mika Göös, Lunjia Hu, Weiyun Ma, and Li-Yang Tan. The
power of many samples in query complexity. In 47th International Colloquium on Automata,
Languages, and Programming, ICALP, volume 168 of LIPIcs, pages 9:1–9:18. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.ICALP.2020.9.

7 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. J. ACM, 48(4):778–797, 2001. Earlier version in FOCS’98.
doi:10.1145/502090.502097.

8 Shalev Ben-David and Eric Blais. A tight composition theorem for the randomized
query complexity of partial functions: Extended abstract. In 61st IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS, pages 240–246. IEEE, 2020. doi:
10.1109/FOCS46700.2020.00031.

9 Shalev Ben-David, Eric Blais, Mika Göös, and Gilbert Maystre. Randomised composition and
small-bias minimax. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS, pages 624–635. IEEE, 2022. doi:10.1109/FOCS54457.2022.00065.

10 Shalev Ben-David and Robin Kothari. Randomized query complexity of sabotaged and
composed functions. Theory Comput., 14(1):1–27, 2018. Earlier version in ICALP’16. doi:
10.4086/TOC.2018.V014A005.

https://doi.org/10.1145/2897518.2897644
https://doi.org/10.1145/3406325.3451047
https://doi.org/10.1006/JCSS.2002.1826
https://doi.org/10.1016/J.JCSS.2005.06.006
https://doi.org/10.4230/LIPICS.FSTTCS.2017.10
https://doi.org/10.4230/LIPICS.ICALP.2020.9
https://doi.org/10.1145/502090.502097
https://doi.org/10.1109/FOCS46700.2020.00031
https://doi.org/10.1109/FOCS46700.2020.00031
https://doi.org/10.1109/FOCS54457.2022.00065
https://doi.org/10.4086/TOC.2018.V014A005
https://doi.org/10.4086/TOC.2018.V014A005

A. Cornelissen, N. S. Mande, and S. Patro 19:17

11 Shalev Ben-David and Robin Kothari. Quantum distinguishing complexity, zero-error al-
gorithms, and statistical zero knowledge. In 14th Conference on the Theory of Quantum
Computation, Communication and Cryptography, TQC, volume 135 of LIPIcs, pages 2:1–2:23.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.TQC.2019.2.

12 Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and
weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510–1523, 1997.
doi:10.1137/S0097539796300933.

13 Sourav Chakraborty, Chandrima Kayal, Rajat Mittal, Manaswi Paraashar, Swagato Sanyal,
and Nitin Saurabh. On the composition of randomized query complexity and approximate
degree. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM, volume 275 of LIPIcs, pages 63:1–63:23. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.APPROX/RANDOM.2023.63.

14 Dmitry Gavinsky, Troy Lee, Miklos Santha, and Swagato Sanyal. A composition theorem for
randomized query complexity via max-conflict complexity. In 46th International Colloquium
on Automata, Languages, and Programming, ICALP, volume 132 of LIPIcs, pages 64:1–64:13.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.ICALP.2019.
64.

15 Justin Gilmer, Michael E. Saks, and Srikanth Srinivasan. Composition limits and separating
examples for some boolean function complexity measures. Comb., 36(3):265–311, 2016.
doi:10.1007/S00493-014-3189-X.

16 Mika Göös, T. S. Jayram, Toniann Pitassi, and Thomas Watson. Randomized communication
versus partition number. ACM Trans. Comput. Theory, 10(1):4:1–4:20, 2018. Earlier version
in ICALP’17. doi:10.1145/3170711.

17 Lov K. Grover. A fast quantum mechanical algorithm for database search. In Gary L. Miller,
editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing
(STOC), pages 212–219. ACM, 1996. doi:10.1145/237814.237866.

18 Peter Høyer, Troy Lee, and Robert Spalek. Negative weights make adversaries stronger. In
David S. Johnson and Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on
Theory of Computing (STOC), pages 526–535. ACM, 2007. doi:10.1145/1250790.1250867.

19 Hao Huang. Induced subgraphs of hypercubes and a proof of the sensitivity conjecture. Annals
of Mathematics, 190(3):949–955, 2019.

20 Raghav Kulkarni and Avishay Tal. On fractional block sensitivity. Chic. J. Theor. Comput.
Sci., 2016, 2016. URL: http://cjtcs.cs.uchicago.edu/articles/2016/8/contents.html.

21 Sophie Laplante and Frédéric Magniez. Lower bounds for randomized and quantum query
complexity using kolmogorov arguments. SIAM J. Comput., 38(1):46–62, 2008. doi:10.1137/
050639090.

22 Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy. Quantum
query complexity of state conversion. In Proceedings of the IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS, pages 344–353. IEEE Computer Society, 2011.
doi:10.1109/FOCS.2011.75.

23 Noam Nisan. CREW prams and decision trees. SIAM J. Comput., 20(6):999–1007, 1991.
Earlier version in STOC’89. doi:10.1137/0220062.

24 Swagato Sanyal. Randomized query composition and product distributions. In 41st In-
ternational Symposium on Theoretical Aspects of Computer Science, STACS, volume 289
of LIPIcs, pages 56:1–56:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
doi:10.4230/LIPICS.STACS.2024.56.

25 Robert Spalek and Mario Szegedy. All quantum adversary methods are equivalent. Theory
Comput., 2(1):1–18, 2006. doi:10.4086/TOC.2006.V002A001.

26 Ronald de Wolf. Quantum computing: Lecture notes, 2023. Version 5. arXiv:1907.09415.

FSTTCS 2024

https://doi.org/10.4230/LIPICS.TQC.2019.2
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.63
https://doi.org/10.4230/LIPICS.ICALP.2019.64
https://doi.org/10.4230/LIPICS.ICALP.2019.64
https://doi.org/10.1007/S00493-014-3189-X
https://doi.org/10.1145/3170711
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/1250790.1250867
http://cjtcs.cs.uchicago.edu/articles/2016/8/contents.html
https://doi.org/10.1137/050639090
https://doi.org/10.1137/050639090
https://doi.org/10.1109/FOCS.2011.75
https://doi.org/10.1137/0220062
https://doi.org/10.4230/LIPICS.STACS.2024.56
https://doi.org/10.4086/TOC.2006.V002A001
https://arxiv.org/abs/1907.09415

19:18 Quantum Sabotage Complexity

A Randomized sabotage complexity

By comparing the definitions in Definition 15 to those in [10], we observe that RS = RSweak.
However, we argue that for all functions, the other randomized complexity measures are
equal up to constants.

▶ Proposition 22. Let n be a positive integer, and D ⊆ {0, 1}n. Let f : D → {0, 1} be a
(partial) Boolean function. Then,

RS(f) := RSweak(f) = Θ(RSstr(f)) = Θ(RSind
weak(f)) = Θ(RSind

str (f)).

Proof. It is clear that we have RSstr(f) ≤ RSweak(f), and RSind
str (f) ≤ RSind

weak(f) because
the input model is strictly stronger. For the opposite directions, suppose that we have an
algorithm A in the strong input model. Let x ∈ f−1(0) and y ∈ f−1(1). Note that for every
j ∈ [n] on queries where xj = yj , the oracle outputs (0, 0, 0) or (1, 1, 1). Thus, on these
indices, the same algorithm in the weak model would yield the outputs 0 or 1, respectively.
Moreover, with high probability A must query a j ∈ [n] where xj ≠ yj at some point,
since otherwise it cannot distinguish [x, y, ∗] and [x, y, †]. This gives us the following RSind

weak
algorithm: run A constantly many times (with strong queries replaced by weak queries) until
we query a j ∈ [n] where xj ̸= yj . At that point, we can interrupt the algorithm and we have
enough information to solve the sabotage problem, in both the decision and index model.
Thus RSweak(f) = O(RSstr(f)), and RSind

weak(f) = O(RSind
str (f)).

It remains to show that RSstr(f) = Θ(RSind
str (f)). By the definitions of the models, we

have RSstr(f) ≤ RSind
str (f). On the other hand, suppose that we have an algorithm B that

figures out whether we have a ∗- or †-input. Then, by the same logic as given in the previous
paragraph, with high probability, B must have encountered at least one ∗ or †, so we can
read back in the transcript to find out at which position it made that query. Repeating B a
constant number of times this way yields RSind

str (f) = O(RSstr(f)). ◀

Note that we did not do a formal analysis of success probabilities in the above argument,
but this is not hard to do. We omit precise details for the sake of brevity.

B Lower bounds on QS(f) and RS(f) in terms of fbs(f)

To the best of our knowledge, the only lower bound on randomized sabotage complexity
RS(f) in the existing literature is Ω(QD(f)) [11, Corollary 11]. We remark that RS(f) can
also be lower bounded by fbs(f). This result was essentially shown in [10, Theorem 7.2], but
we include a proof here for completeness.

▶ Lemma 23. fbs(f) = O(RS(f)).

Proof. From [10, Theorem 3.3], we find that R(fsab) = Θ(RS(f)), and so it suffices to show
that fbs(f) ≤ 10R(fsab). By Yao’s minimax principle, it suffices to exhibit a distribution over
inputs for which any deterministic algorithm fails to compute fsab correctly with probability
at least 2/3 in less than fbs(f)/10 queries.

Without loss of generality, let x ∈ f−1(0) be the instance for which fractional block-
sensitivity is maximized, let Y = f−1(1), and let (wy)y∈Y be the optimal weight assignment
in the fractional block sensitivity linear program (see Definition 8). We can similarly think
of every y ∈ Y as obtained by flipping the bits in x that belong to a sensitive block B. We
denote y = xB , and write wy = wB .

A. Cornelissen, N. S. Mande, and S. Patro 19:19

Let T be a deterministic algorithm for fsab with query complexity less than fbs(f)/10,
and let µ be a distribution defined as follows: for all B ⊆ [n] that is a sensitive block for f ,
let µ([x, xB , ∗]) = µ([x, xB , †]) = wB/(2fbs(f)). Since

∑
B⊆[n] wB = fbs(f) where the sum is

over all sensitive blocks for f , µ forms a legitimate probability distribution.
Consider a leaf L of T , and suppose that the output at L is b ∈ {0, 1}. By the definition

of fractional block sensitivity, we know that for any j ∈ [n], we have
∑

B:j∈B wB ≤ 1. Thus,
by a union bound, the µ-mass of inputs supported by our distribution (of the form [x, xB , ∗]
or [x, xB , †]) reaching L, and such that no bit of B has been read on this path is at least
1 −

(
fbs(f)

10 · 1
fbs(f)

)
≥ 9/10. Note that for each such B, both the input [x, xB , ∗] and [x, xB , †]

reach L. Since µ allotted equal mass to each such pair, this means an error is made at L for
inputs with µ-mass at least 9/20 > 1/3, concluding the proof. ◀

We now turn to lower bounding QSstr(f) by Ω(
√

fbs(f)). To that end, recall that for any
Boolean function f , we have the chain of inequalities Q(f) = Ω(ADV+(f)) = Ω(

√
fbs(f)).

The first inequality can be found in [25], for example. While we believe the second inequality
is known, we were again unable to find a published proof of it. We include a proof here for
completeness.

▶ Lemma 24. Let n be a positive integer, D ⊆ {0, 1}n, and f : D → {0, 1} be a (partial)
Boolean function. Then,

√
fbs(f) = O(ADV+(f)).

Proof. Recall the definition of fractional block sensitivity, Definition 8. Let x be the input
to f for which fbs(f, x) = fbs(f). Let (wy)y∈Y be the optimal solution of the linear program.
We now define an adversary matrix Γ, that forms a feasible solution to the optimization
program in Definition 9. In particular, we define Γ ∈ RD×D as the all-zeros matrix, except
for the entries (x, y) and (y, x) where y ∈ Y , which we define to be

Γ[x, y] = Γ[y, x] = √
wy.

The matrix Γ we constructed is very sparse. It is only non-zero in the row and column
that is indexed by x. Moreover, Γ[x, x] = 0 as well. In particular, this makes computing its
norm quite easy, we just have to compute the ℓ2-norm of the column indexed by x.

For any j ∈ [n], we thus find

∥Γ ◦ ∆j∥2 =
∑
y∈Y

xj ̸=yj

Γ[x, y]2 =
∑
y∈Y

xj ̸=yj

wy ≤ 1,

and so Γ is a feasible solution to the optimization program in Definition 9. Finally, we have

ADV+(f)2 ≥ ∥Γ∥2 =
∑
y∈Y

Γ[x, y]2 =
∑
y∈Y

wy = fbs(f). ◀

C Missing proof

In Theorem 20 we showed using the adversary method that QSweak(INDn) = Ω(n). We now
show that the same proof can be adapted to show the same lower bound on QSstr(INDn) as
well.

▶ Corollary 25. Let n be a positive integer. Then, QSstr(INDn) = Ω(n).

FSTTCS 2024

19:20 Quantum Sabotage Complexity

Proof. Let N = n+ 2n. In the proof of Theorem 20 we constructed a hard relation R for
f = INDn,sab to show a Ω(n) lower bound in the weak sabotage model. Using R we construct
a hard relation for INDstr

n,sab, which we denote by Rstr in the strong sabotage model, and use
Lemma 19. Define ((x, y, ∗), (x′, y′, †)) ∈ Rstr if and only if all of the following hold true:3
1. (x, y, ∗) := ((xj , yj , zj))N

j=1 ∈ Sstr
∗ for INDn, (x′, y′, †) := ((x′

j , y
′
j , z

′
j))N

j=1 ∈ Sstr
† for INDn,

2. (z, z′) ∈ R.
Following the language of Lemma 19 we have

Xstr = {(x, y, ∗) := ((xj , yj , zj))N
j=1 : z ∈ X as defined in Equation 5}. (8)

Similarly,

Y str = {(x, y, †) := ((xj , yj , zj))N
j=1 : z ∈ Y as defined in Equation 6}. (9)

We now analyze the quantities mXstr , mY str and ℓmax from Lemma 19.
1. As described above, the way we construct Rstr using elements of R ensures thatmXstr ≥ mX

and mY str ≥ mY . Additionally, for every z ∈ X ∪ Y there is exactly one pair in
IND−1(0) × IND−1(1) for which z is the sabotaged input. Hence, mXstr = mX =

(
n
2
)

and
mY str = mY =

(
n
2
)
.

2. ℓmax = max
{(

n
2
)
, (n− 1)2}

: we consider two cases.
a. i ∈ [n]: Fix an (x, y, ∗), (x′, y′, †) ∈ Rstr differing at an index i ∈ [n]. Recall that

ℓ(x,y,∗),i denotes the number of (x′, y′, †) ∈ Y str such that (x, y, ∗), (x′, y′, †) ∈ Rstr and
(xi, yi, zi) ̸= (x′

i, y
′
i, z

′
i). The construction of sets Xstr, Y str (which is in turn based on

X,Y , respectively) ensures that for all i ∈ [n] we have xi = yi = zi and x′
i = y′

i = z′
i.

Hence, directly using the same arguments as in Item 2a, we get ℓ(x,y,∗),i = n− 1 and
ℓ(x′,y′,†),i = n− 1, hence ℓ(x,y,∗),i · ℓ(x′,y′,†),i = (n− 1)2.

b. i ∈ [n + 1, N]: Fix an (x, y, ∗) := ((xj , yj , zj))N
j=1, (x′, y′, †) := ((x′

j , y
′
j , z

′
j))N

j=1 ∈ Rstr

differing at an index i ∈ [n+ 1, N]. By the structure of R and by extension of Rstr, for
strings z := (a, b) and z′ := (a′, b′) the string b is all-0 string except for the bin(a)’th
location which is a ∗, and string b′ is all-0 string except for the bin(a′)’th location
which is a †. Thus the only important case is for i ∈ {n+ bin(a), n+ bin(a′)}. Without
loss of generality, assume i = n+ bin(a), and thus zi = bbin(a) = ∗. Moreover, for every
z ∈ X ∪ Y there is exactly one pair in IND−1(0) × IND−1(1) that sabotage as z. So,
we have ℓz,i =

(
n
2
)

and ℓz′,i = 1 as z′
i = b

′

bin(a′) = 0. Therefore, ℓz,i · ℓz′,i =
(

n
2
)
.

Lemma 19 then implies

QSstr(INDn) = Q(INDstr
n,sab) = Ω

√√√√ (

n
2
)2

max
{(

n
2
)
, (n− 1)2

}
 = Ω(n). (10)

◀

3 Recall that (x, y, ∗) denotes ((xj , yj , zj))N
j=1 where z = [x, y, ∗] and (x, y, †) denotes ((xj , yj , zj))N

j=1
where z = [x, y, †]; see Definition 12.

The Isomorphism Problem of Power Graphs and a
Question of Cameron
Bireswar Das #

Indian Institute of Technology Gandhinagar, India

Jinia Ghosh #

Indian Institute of Technology Gandhinagar, India

Anant Kumar #

Indian Institute of Technology Gandhinagar, India

Abstract
We study the isomorphism problem of graphs that are defined in terms of groups, namely power
graphs, directed power graphs, and enhanced power graphs. We design polynomial-time algorithms
for the isomorphism problems for the power graphs, the directed power graphs and the enhanced
power graphs arising from finite nilpotent groups. In contrast, no polynomial-time algorithm is
known for the group isomorphism problem, even for nilpotent groups of class 2.

Our algorithms do not require the underlying groups of the input graphs to be given. A crucial
step in our algorithms is to reconstruct the directed power graph from the given power graph or
the enhanced power graph. The problem of efficiently computing the directed power graph from a
power graph or an enhanced power graph is due to Cameron [IJGT’22]. Bubboloni and Pinzauti
[Arxiv’22] gave a polynomial-time algorithm to reconstruct the directed power graph from a power
graph. We give an efficient algorithm to compute the directed power graph from an enhanced power
graph. The tools and techniques that we design are general enough to give a different algorithm to
compute the directed power graph from a power graph as well.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Graph algorithms analysis

Keywords and phrases Graph Isomorphism, Graphs defined on Groups, Power Graphs, Enhanced
Power Graphs, Directed Power Graphs, Nilpotent Groups

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.20

Related Version Full Version: https://arxiv.org/pdf/2305.18936 [12]

1 Introduction

Given two graphs as input, the graph isomorphism problem (GI) is to check if the graphs are
isomorphic. Despite extensive research, the complexity status of GI is still open. The graph
isomorphism problem is in NP but is very unlikely to be NP-hard as it is also in coAM [6].

Efficient algorithms for the graph isomorphism problem are known for several restricted
graph classes, for example, graphs with bounded genus [28, 16], graphs with bounded
degree [26], graphs with bounded eigenvalue multiplicity [3], graphs with bounded tree-
width [5], graphs with bounded rank-width [20, 17].

Group-theoretic tools have played an important role in the design of efficient algorithms
for the GI. Some of the early works on GI using the structure of groups non-trivially
include the isomorphism algorithm for bounded degree graphs by Luks [26], and the graph
canonization framework developed by Babai and Luks [4]. Babai developed sophisticated
new techniques to give a quasipolynomial time isomorphism algorithm [2]. Currently, it is
the best known isomorphism algorithm for general graphs. Group-theoretic machinery has
been used to design faster isomorphism algorithms for bounded degree graphs by Grohe,

© Bireswar Das, Jinia Ghosh, and Anant Kumar;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 20; pp. 20:1–20:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bireswar@iitgn.ac.in
mailto:jiniag@iitgn.ac.in
https://orcid.org/0009-0005-8227-5124
mailto:kumar_anant@iitgn.ac.in
https://orcid.org/0009-0002-8659-3101
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.20
https://arxiv.org/pdf/2305.18936
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 The Isomorphism Problem of Power Graphs and a Question of Cameron

Neuen and Schweitzer [18]; for graphs with bounded tree-width by Grohe, Neuen, Schweitzer,
Wiebking [19] and Wiebking [36]; for bounded rank-width graphs by Grohe and Schweitzer [20]
and graphs excluding small topological subgraphs [32].

In this paper, we study the isomorphism problem of graphs defined on finite groups. More
precisely, we study the class of power graphs, directed power graphs, and enhanced power
graphs. For two elements x and y in a finite group G, we say that y is a power of x if y = xi

for some integer i. For a group G, the vertex set of the power graph Pow(G) of G consists of
elements of G. Two vertices x and y are adjacent in Pow(G) if x is a power of y or y is a
power of x. We refer to G as the underlying group of Pow(G). The definition of directed
power graphs and enhanced power graphs can be found in Section 2.

Kelarev and Quinn defined the concept of directed power graphs of semigroups [24]. Power
graphs were defined by Chakrabarty et al. [11] again for semigroups. Cameron in [9] discusses
several graph classes defined in terms of groups and surveys many interesting results on these
graphs. Kumar et al. [25] gave a survey on the power graphs of finite groups. Questions
related to isomorphism of graphs defined on groups have also been studied [34, 13, 30, 14].

Our motivation for studying the isomorphism of graphs defined in terms of groups is to
explore if the group structure can be exploited to give efficient algorithms for the isomorphism
problems of these graphs. There are two versions of the isomorphism problem for each class
of graphs defined on groups. Let us consider the case for the class of power graphs. In the
first version of the problem, two groups G1 and G2 are given by their Cayley tables, and
the task is to check if Pow(G1) is isomorphic to Pow(G2). In the second version, two power
graphs Γ1 and Γ2 are given and we need to check if Γ1 is isomorphic to Γ2. Note that in the
second version, the underlying groups are not given as input.

In the first version of the problem, it is tempting to use the isomorphism of the underlying
groups in the hope that it might yield an easier 1 quasipolynomial time algorithm because,
unlike graphs, the quasipolynomial time algorithm for groups attributed to Tarjan by
Miller [29] is technically and conceptually much easier. However, we note that it is not
enough to check the isomorphism of the underlying groups, as two nonisomorphic groups can
have isomorphic power graphs2.

The second version looks more challenging since we do not have the underlying groups. As
one of our main results, we show that the isomorphism problem of power graphs of nilpotent
groups can be tested in polynomial-time even in the second version of the isomorphism
problem (Section 6). Thus, we do not need the underlying groups to be given. In contrast,
the group isomorphism problem for nilpotent groups, even for class 2, is still unresolved and
is considered to be a bottleneck for the group isomorphism problem [15].

Our algorithm for solving the isomorphism problem of power graphs works by first
computing the directed power graphs of the input power graphs. Next, we use the algorithm
for the isomorphism problem of directed power graphs for nilpotent groups that we design in
Section 6.

The question of efficiently computing the directed power graph from the power graph
(or the enhanced power graph) was asked by Cameron [9]: “Question 2: Is there a simple
algorithm for constructing the directed power graph or the enhanced power graph from
the power graph, or the directed power graph from the enhanced power graph?” Recently,

1 compared to Babai’s quasipolynomial time isomorphism algorithm.
2 To see this, we can take the elementary abelian group of order 27 and the non-abelian group of order 27

with exponent 3 ([10]). In general, consider the power graphs of two nonisomorphic groups of order pi

for any i ≥ 2 and exponent p for some prime p. One can check that the power graphs are isomorphic
while the groups are not.

B. Das, J. Ghosh, and A. Kumar 20:3

Bubboloni and Pinzauti [7] gave a polynomial-time algorithm to reconstruct the directed
power graph from the power graph. We give a different solution to the problem of efficiently
computing the directed power graph from the power graph. Moreover, we also design an
efficient algorithm to compute the directed power graph from the enhanced power graph.
This fully resolves Cameron’s question.

Cameron [8], and Zahirović et al. [37] proved that for two finite groups, the power graphs
are isomorphic if and only if the directed power graphs of the groups are isomorphic if and
only if the enhanced power graphs of the groups are isomorphic. The algorithms to solve
Cameron’s question provide a complete algorithmic proof of this result.

This paper makes contributions in three algebraic and combinatorial techniques, which
form the foundation of our algorithms. Firstly, we introduce a simple yet effective concept
of a certain type of generating sets of a group which we call covering cycle generating sets
(CCG-sets). In essence, these are defined in terms of the set of maximal cyclic subgroups
(Section 3). Secondly, we present a set of results concerning the structure of closed-twins
within specific subgraphs of power graphs. While Cameron previously explored the structure
of closed-twins in a power graph [8], we extend this investigation to focus on the subgraph
induced by the closed neighbourhood of a vertex (Section 4). These structures form the
basis of our algorithm to determine whether a vertex in a power graph can be part of a
CCG-set. Lastly, we introduce a series of reduction rules that facilitate the simplification of
the structure of a directed power graph while preserving its isomorphism-invariant properties
(Section 6).

Related work on Cameron’s question. The algorithm to reconstruct the directed power
graph from a power graph by Bubboloni and Pinzauti works by first considering the notion of
plain and compound closed-twin classes in a power graph3. The other notion is that of critical
closed-twin classes. Depending on whether a closed-twin class is critical or non-critical they
design efficient tests to determine if the class is plain or compound. Once this is done, they
put directions to the edges of the power graph to reconstruct the directed power graph. The
details can be found in [7]. In contrast, our algorithm identifies a CCG-set in the power
graph by using the properties and algorithms associated with the graph reductions that we
give in this paper.

2 Preliminaries

For a simple graph X, the vertex set of X is denoted by V (X), and the edge set of X is
denoted by E(X). For basic definitions and notations from graph theory, an interested reader
can refer to any standard textbook (for example, [35]). A subgraph of X is a graph Y , where
V (Y) ⊆ V (X) and E(Y) ⊆ E(X). The subgraph with the vertex set S ⊆ V (X), and all
such edges in E(X) whose both endpoints are in S, is called the induced subgraph of X on S,
and it is denoted by X[S].

The set of vertices adjacent to a vertex u in an undirected graph X is called the open
neighborhood of u in X and is denoted by NX(u). The cardinality of NX(u) is called the
degree of u in X, denoted by degX(u). The closed neighborhood of a vertex u in X is denoted
by NX [u] and defined by NX [u] = NX(u) ∪ {u}. Two vertices in X are called closed-twins4

in X if their closed neighborhoods in X are the same.

3 These notions are similar to the closed-twin classes that Cameron calls type (a) and type (b) (Proposi-
tion 5, [8]).

4 In the previous related literature, both the terms ‘false twins’ and ‘closed twins’ are used. However, in
this paper, we follow the terminology used by Cameron and other authors in their works on graphs
defined on groups.

FSTTCS 2024

20:4 The Isomorphism Problem of Power Graphs and a Question of Cameron

For a directed graph X (with no multiple edges), the out-neighborhood of a vertex u in X

is the set {v ∈ V (X) : (u, v) ∈ E(X)} and out-degree of u in X, denoted by out-degX(u),
is the size of the out-neighborhood of u in X. Similarly, the in-neighborhood of a vertex u in
X is the set {v ∈ V (X) : (v, u) ∈ E(X)} and in-degree of u in X, denoted by in-degX(u),
is the size of the in-neighborhood of u in X.5 Two vertices in a directed graph X are called
the closed-twins in X if their closed-out-neighborhoods in X are the same and also the
closed-in-neighborhoods in X are the same. An edge of the form (u, u) in a directed graph is
called a self-loop.

In any graph X, the closed-twin-class of a vertex u in X is the set of all closed-twins of
u in X. In this paper, if the underlying graphs are colored, then by isomorphism we mean
color preserving isomorphism only.

A graph is called prime with respect to strong product if it cannot be represented as a
strong product of two non-trivial graphs.

▶ Definition 1. Two graphs X and Y are called isomorphic if and only if there exists a
bijection f from V (X) to V (Y) such that {u, v} ∈ E(X) if and only if {f(u), f(v)} ∈ E(Y).
Moreover, if X and Y are vertex-colored, then an isomorphism f is called a color preserving
isomorphism if for all u ∈ V (X), the color of u and the color of f(u) are the same.

▶ Definition 2 (see for example [22]). Let X and Y be two directed graphs. The strong
product (X ⊠ Y) of X and Y is the graph with the vertex set V (X)× V (Y), where there is
an edge from (u, u′) to a distinct vertex (v, v′) in X ⊠ Y if and only if one of the following
holds: (i) u = v and there is an edge from u′ to v′ in Y . (ii) u′ = v′ and there is an edge
from u is to v in X. (iii) There is an edge from u to v in X and an edge from u′ to v′ in Y .

▶ Definition 3 (see e.g., [23]). Vertex identification of a pair of vertices v1 and v2 of a graph
is the operation that produces a graph in which the two vertices v1 and v2 are replaced with
a new vertex v such that v is adjacent to the union of the vertices to which v1 and v2 were
originally adjacent. In vertex identification, it doesn’t matter whether v1 and v2 are connected
by an edge or not.

All the groups considered in this paper are finite. The basic definitions and properties
from group theory can be found in any standard book (see, for example, [33]). A subset H

of a group G is called a subgroup of G if H forms a group under the binary operation of G;
it is denoted by H ≤ G. The number of elements in G is called the order of the group and it
is denoted by |G|. The order of an element g in G, denoted by o(g), is the smallest positive
integer m such that gm = e, where e is the identity element. The set {g, g2, g3, . . . , gm−1, e}
is the set of all group elements that are generated by g, where m = o(g). Moreover, this set
forms a subgroup of G and is called the cyclic subgroup generated by g and denoted by ⟨g⟩.
The number of generators of a cyclic subgroup ⟨g⟩ is ϕ(o(g)), where ϕ is the Euler’s totient
function. A group G is called cyclic if G = ⟨g⟩, for some g ∈ G. In a finite cyclic group
G, for any factor m of |G|, G has a unique subgroup of order m (known as the converse of
Langrance’s theorem).

A group G is called a p-group if the order of each element is some power of p, where p

is a prime. For a prime p, if pm is the highest power of p such that pm divides |G|, then a
subgroup H ≤ G with the property |H| = pm is called a Sylow p-subgroup of G. The direct
product of two groups G and H, denoted by G×H, is the group with elements (g, h) where

5 When the graph is clear from the context, we drop the suffixes.

B. Das, J. Ghosh, and A. Kumar 20:5

g ∈ G and h ∈ H. The group operation of G×H is given by (g1, h1)(g2, h2) = (g1g2, h1h2),
where the co-ordinate wise operations are the group operations of G and H respectively. A
finite group is called a nilpotent group if it is a direct product of its Sylow p-subgroups.

We now give the definitions of graphs defined on groups that we discuss in this paper
(see [9]).

▶ Definition 4. The directed power graph of a group G (DPow(G)), is a directed graph
with vertex set G, and edge set E = {(x, y) : y = xm for some integer m }. The power graph
of a group G, denoted by Pow(G), is the undirected version DPow(G).

If (x, y) is an edge in DPow(G), then o(y) divides o(x) whereas if {x, y} is an edge in Pow(G),
then o(x)|o(y) or o(y)|o(x). Let DPow denote the set {DPow(G) : G is a finite group }.
Let Pow denote the set {Pow(G) : G is a finite group }.

▶ Definition 5. The enhanced power graph of a group G, denoted EPow(G), is an undirected
graph with vertex set G, in which two vertices x and y are adjacent if and only if they are in
a common cyclic subgroup of G, i.e., there exists z in G such that x, y ∈ ⟨z⟩.

Let EPow denote the set {EPow(G) : G is a finite group }.

3 Cyclic cover of a group and organization of the paper

In this section, we introduce the notion of minimal cyclic cover and covering cycle generating
set. We start with the following definitions.

▶ Definition 6. We say that a proper cyclic subgroup C of G is a maximal cyclic subgroup
if for all cyclic subgroups C ′, C ≤ C ′ implies C = C ′ or C ′ = G.

▶ Definition 7. Let G be a finite group. Let {C1, . . . , Cm} be a set of the cyclic subgroups
of G. We say that {C1, . . . , Cm} is a minimal cyclic cover (MCC) if G = ∪m

i=1Ci and
∪i̸=jCi ̸= G for all j = 1, . . . , m.

It is not hard to see from the following lemma that the set of all maximal cyclic subgroups
forms the minimum cyclic cover of a non-cyclic group.

▶ Lemma 8. For a cyclic group G the only MCC is {G}. For non-cyclic groups the set of
all maximal cyclic subgroups forms the unique minimal cyclic cover.

▶ Definition 9. Let {C1, . . . , Cm} be the minimum cyclic cover (MCC) of G. Each Ci is
called a covering cycle. For a cyclic group C, let gen(C) be the set of generators of C.
An element in ∪m

i=1gen(Ci) is called a covering cycle generator or CC-generator. We call
a set {g1, g2, . . . , gm} a covering cycle generating set (CCG-set) if {⟨g1⟩, ⟨g2⟩, . . . , ⟨gm⟩} =
{C1, C2, . . . , Cm}.

The above definition includes the case when m = 1, i.e., G is cyclic.

Organization of the paper. With the notion of CCG-set defined above, we are now ready
to describe the organization of the paper. For the sake of clarity we give the organization in
a somewhat nonlinear manner.

How to identify a CCG-set in a power graph or in an enhanced power graph when the
underlying group is not given? We design algorithms in Section 5 to solve this problem.
These are iterative algorithms that take one of the potential vertices and decide if that vertex
can be safely marked as a member of the CCG-set.

FSTTCS 2024

20:6 The Isomorphism Problem of Power Graphs and a Question of Cameron

The correctness of the algorithm, in the case of power graphs, crucially depends on
the structure of closed-twins in the subgraph induced by the closed neighbourhood of the
potential vertex that the algorithm examines in each iterative step. In Section 4, we derive a
collection of results that characterizes these structures.

In Section 6, we define a set of reduction rules that simplifies the structure of the directed
power graph of a group G while retaining all its isomorphism-invariant properties. There are
four reductions, Reduction 1, 2, 3, and 4, and they are applied one after the other in that
order. The graph obtained after i-th reduction is denoted by Ri(G). We also show that these
reductions can be efficiently reversed. At the end of Section 6 we design an isomorphism
algorithm for the directed power graphs of nilpotent groups using the structure of R3.

In Section 7, we show how to obtain the reduced graph R4 from an input power graph
(or an enhanced power) graph given along with a CCG-set.

Combining the above, we have an efficient way of going from a power graph (or an
enhanced power graph) to R4 to R3 to the directed power graph. This answers Cameron’s
question positively.

The isomorphism of the power graphs (or the enhanced power graphs) of nilpotent groups
can be done as follows: compute the directed power graphs from the input graphs and apply
the algorithm developed in Section 6.

4 Structure of closed-twins in a power graph

The structure of closed-twins in a power graph has been studied by Cameron [8], and by
Bubboloni and Pinzauti [7]. In this section, we explore the structures of closed-twins in
the subgraph of a power graph induced by the closed neighborhood of a vertex. We show
in Section 5.1 that these structures can be used to find a CCG-set of a group from the
corresponding power graph, even when the group is not given.

First, we note an easy fact about the closed-twins in any graph.

▶ Lemma 10. Let X be a graph and let v ∈ V (X). Suppose x and y are closed-twins in X.
If x ∈ N [v], then y ∈ N [v] and x and y are closed-twins in X[N [v]].

In a group G, an element x ∈ G and any generator of ⟨x⟩ are closed-twins in Γ = Pow(G).
Therefore, by Lemma 10, we have the following corollary.

▶ Corollary 11. Let v ∈ V (Γ). If x ∈ N [v], then all the generators of ⟨x⟩ are in N [v].
Moreover, they are closed-twins in Γv, where Γv = Γ[N [v]].

Now consider a vertex v ∈ V (Γ), where Γ ∈ Pow and the subgraph Γv = Γ[N [v]] induced
on the closed neighborhood of v. For any vertex x in Γv, o(x)|o(v) or o(v)|o(x). We partition
V (Γv) according to the order of the vertices in the following way:

Uv = {x ∈ V (Γv) : o(x) > o(v)}, Ev = {x ∈ V (Γv) : o(x) = o(v)},
Lv = {x ∈ V (Γv) : o(x) < o(v)}

For a vertex x ∈ Uv, we have o(v)|o(x) and for a vertex x ∈ Lv, we have o(x)|o(v).

▶ Definition 12. For a prime p, an element x in a group is called a p-power element if
o(x) = pi for some i ≥ 0, x is a nontrivial p-power element if i > 0.

▶ Lemma 13. Suppose v ∈ V (Γ) is not a p-power element for any prime p and x ∈ Uv is a
closed-twin of v in Γv. Then, degΓ(x) > degΓ(v).

B. Das, J. Ghosh, and A. Kumar 20:7

Proof. In this case, there exists prime q and positive integer s such that qs|o(x) but qs ∤ o(v).
Then, x has a neighbor z = x

o(x)
qs of order qs (by the converse of Lagrange’s theorem in finite

cyclic groups). Note that z is not a neighbor of v as o(z) ∤ o(v) and also o(v) ∤ o(z). The
latter is true as o(v) is divisible by at least two distinct primes. ◀

The proofs of the next lemma is in Section A.1.

▶ Lemma 14. Let v ∈ V (Γ) be a CC-generator such that o(v) is not a prime power. Let
u ∈ V (Γv). If u = e or u is a generator of ⟨v⟩, then the closed-twins of u in Γv are exactly
the generators of ⟨v⟩ and e; otherwise, the closed-twins of u in Γv are exactly the generators
of ⟨u⟩.

▶ Remark 15. If a|b, a ̸= b, then (1) ϕ(a)|ϕ(b), (2) ϕ(a) ≤ ϕ(b) and the equality holds only
when b = 2a where a is an odd number.

If v ∈ V (Γ) is a CC-generator, it is easy to see that o(v) = deg(v) + 1 = |Γv|. Let o(v) be
not a prime power. Then, using Lemma 14, the set of dominating vertices in Γv is the set of
generators of ⟨v⟩ and identity. Thus, the size of the closed-twin-class of v in Γv is ϕ(o(v)) + 1,
i.e., ϕ(|Γv|) + 1. Also, for all divisors, 1 < k < o(v), of o(v), there exists a closed-twin-class
of size ϕ(o(k)) in Γv. The proof of the following corollary can be found in the full version of
the paper [12].

▶ Corollary 16. Let v ∈ V (Γ) be a CC-generator and o(v) be not a prime power. Then the
following holds: (1) The size of the closed-twin-class of v in Γv, i.e., the set of dominating
vertices in Γv, is ϕ(o(v)) + 1. (2) For each divisor k of o(v), 1 < k < o(v), there is a
closed-twin-class of size ϕ(k) in Γv. Moreover, ϕ(k) divides ϕ(o(v)). (3) There are at most
two closed-twin-classes of size greater or equal to ϕ(o(v)).

The following theorem is a well-known result [11].

▶ Theorem 17 ([11]). Let G be a finite group. Then, Γ = Pow(G) is complete if and only if
G is cyclic of prime power order.

From the above theorem, the following corollary is immediate.

▶ Corollary 18. Let v ∈ V (Γ) be a p-power element for some prime p. Then, Γ[Ev ∪ Lv] is
a complete graph. Moreover, the elements of Ev ∪ Lv are closed-twins of v in Γv.

▶ Lemma 19. Let v ∈ V (Γ) be a nontrivial p-power element and not a CC-generator.
Suppose for all u ∈ Uv such that u is a closed-twin of v in Γv, degΓ(u) is at most degΓ(v).
Let y be a closed-twin of v in Γv with maximum order and S denote the set {x ∈ V (Γv) :
o(y)|o(x) and o(x) ̸= o(y)}. Then, (1) The closed-twins of v are exactly the elements in ⟨y⟩.
(2) V (Γv) = ⟨y⟩ ⊔ S, where ⊔ denotes the disjoint union.

(3) Moreover, if o(y) = pj where j ≥ 2, then p divides |V (Γv)|.

Proof. Suppose o(v) = pi. From Corollary 18, we know that the elements in Ev and Lv are
closed-twins of v. Observe that these elements have order pr for some r ≤ i. Next, we show
that all closed-twins of v in Uv have orders of the form pl for some l > i. Suppose not, then
let u be a closed-twin of v in Uv. As u ∈ Uv, pi divides o(u). Then o(u) = k · pi, where k > 1
and gcd(k, p) = 1. Since u is a closed-twin of v, |Γv| − 1 = degΓv

(u) = degΓv
(v) = degΓ(v).

Now, ⟨u⟩ has an element of order k and this element cannot be a neighbor of v. So,
degΓ(u) > degΓv (u) = degΓ(v). Therefore, degΓ(u) > degΓ(v). This is a contradiction.
Hence, o(u) = pl, for some l > i.

FSTTCS 2024

20:8 The Isomorphism Problem of Power Graphs and a Question of Cameron

Given that y is the closed-twin of v in Γv with maximum order, say pj . Suppose z ∈ ⟨y⟩.
If y ∈ Ev ∪ Lv, then clearly ⟨y⟩ = ⟨v⟩ (because y cannot be in Lv). If y ∈ Uv, then noting
that degΓ(y) ≤ degΓ(v) and y is a closed-twin of v in Γv, we can say that z is in Γv. In
both the cases ⟨y⟩ ⊆ V (Γv). We show that every vertex w ∈ V (Γv) is adjacent to z. Since
w ∈ V (Γv) and y is a closed-twin of v, there is an edge between w and y. So, o(y)|o(w) or
o(w)|o(y). In the first case, z ∈ ⟨y⟩ ⊆ ⟨w⟩. On the other hand, if o(w)|o(y), then w ∈ ⟨y⟩. So
either z ∈ ⟨w⟩ or w ∈ ⟨z⟩ as ⟨y⟩ is a cyclic group of prime power order. In any case, {w, z}
is an edge. So, any element z in ⟨y⟩ is a closed-twin of v.

Let z be a closed-twin of v. If z ∈ ⟨v⟩ then z ∈ ⟨y⟩. On the other hand, if z /∈ ⟨v⟩, then
z ∈ Uv. Therefore, o(z) is a power of p. As y is a closed-twin of v, there is an edge between
y and z. Therefore, z ∈ ⟨y⟩ or y ∈ ⟨z⟩. If y ∈ ⟨z⟩, we must have ⟨y⟩ = ⟨z⟩ as o(z) ≤ o(y)
(as both are p-power order closed-twins of v and y is with maximum order). This forces
⟨z⟩ = ⟨y⟩. Thus, z ∈ ⟨y⟩ in both cases. This completes the proof of part (1).

Now, we prove part (2). Let x ∈ V (Γv) \ ⟨y⟩. In this case, x /∈ Ev ∪ Lv by Corollary 18.
Since y is a closed-twin of v, {x, y} is an edge. Therefore, x ∈ ⟨y⟩ or y ∈ ⟨x⟩. However, by
assumption, x /∈ ⟨y⟩. So, y ∈ ⟨x⟩. Therefore, o(y)|o(x). So, o(x) = pj · k for some k > 1.

Therefore, V (Γv) = ⟨y⟩ ⊔ {x ∈ V (Γv) : pj |o(x) and o(x) ̸= pj}, i.e., V (Γv) = ⟨y⟩ ⊔ S.
To prove part (3), we define an equivalence relation ≡ on S as follows: x1 ≡ x2, if and only

if ⟨x1⟩ = ⟨x2⟩. Note that if x ∈ S, then generators of ⟨x⟩ are in S by Corollary 11. Therefore,
the equivalence class of any vertex x ∈ S is of size ϕ(o(x)). Recall that, o(x) = o(y) ·k = pj ·k.
Now, as pj ≥ p2, so p divides ϕ(o(x)). Therefore, p divides |V (Γv)|, as claimed. ◀

5 Finding a CCG-set of a group from its power graph and enhanced
power graph

For a directed power graph, even if the underlying group is not given, the set of vertices
corresponding to a CCG-set {g1, . . . , gm} of the underlying group G can be readily found
in the graph. The scenario changes when the input graph is a power graph or an enhanced
power graph and the underlying group is not given as input. Then, it is not possible to
recognise these vertices exactly in the input graph as we can not distinguish two closed-twins
gi and g′

i in Pow(G) (or EPow(G)). For example, if we take Zpm for some prime p and
integer m, then Pow(Zpm) is a clique (Theorem 17). If the vertices of Pow(Zpm) are named
arbitrarily, then it is not possible to distinguish a generator of Zpm from any other vertex.
Fortunately, the fact that the underlying group is Zpm can be concluded just from the graph
by Theorem 17.

Therefore, we aim to do the following: Given a power graph (or an enhanced power
graph) Γ, mark a set {g1, g2, . . . , gm} of vertices such that (1) each gi is a CC-generator or gi

is a closed-twin of a CC-generator g′
i in the graph Γ, and (2) {h1, h2, . . . , hm} is a CCG-set

where hi = gi, if gi is a CC-generator; otherwise, hi = g′
i.

5.1 Finding a CCG-set of a group from its power graph
The next theorem states that given a power graph Γ as input, we can essentially compute a
CCG-set corresponding to Γ, even if the underlying group is not given.

▶ Theorem 20. There is a polynomial-time algorithm that, on input a power graph Γ ∈ Pow,
outputs a set {g1, g2, . . . , gm} where gi is a CC-generator or gi is a closed-twin of a CC-
generator g′

i in the graph Γ such that {h1, h2, . . . , hm} is a CCG-set where hi = gi, if gi is a
CC-generator, otherwise, hi = g′

i.

B. Das, J. Ghosh, and A. Kumar 20:9

Hence, without loss of generality, we call the set {g1, g2, . . . , gm} as CCG-set and gi’s
as CC-generators. Before we give the proof of the above theorem, we need the following
definition that is required in the algorithm.

▶ Definition 21. Let d be a positive integer. Let Γ ∈ Pow and v be a vertex in Γ. Let
T1, . . . , Tr be the partition of V (Γv) into closed-twin classes of Γv. Similarly, let S1, . . . , Sr′

be the closed-twin classes of Pow(Zd). We say that Γv closed-twin-partition-wise matches
with Pow(Zd) if (1) the closed-twin class containing the dominating vertices6 of both the
graphs have the same size, and (2) r = r′ and there is some permutation π ∈ Sym(r) such
that |Ti| = |Sπ(i)|.

If v is a CC-generator and o(v) = d is not a prime power then, Γv twin-partition-wise-
matches with Pow(Zd), by Corollary 16.

It is not hard to see that testing if Γv closed-twin-partition-wise matches with Pow(Zd)
can be done in polynomial-time. Also, when d is not prime power, the size of the closed-twin
class containing v has size ϕ(d)+1.

Proof of Theorem 20. The process of finding a CCG-set of the underlying group of a given
power graph is described in Algorithm 1.

Algorithm 1 Algorithm to mark a CCG-set in a finite power graph.

Input: Γ ∈ Pow

First, isolate the case when the power graph Γ is a complete graph using Theorem 17.
Then, return a singleton set, consisting of any vertex, as the CCG-set.
If Γ is not a clique, then mark any of the Dominating vertices as the identity. Next, all
vertices except the identity are stored in a list L in decreasing order of their degrees.
During the algorithm, we use the labels: U (undecided), CC (a CC-generator) and NC
(not a CC-generator). To start with, mark all the vertices U in the list. Note that identity
is not marked with any label.
The algorithm marks the vertices further in phases. In each phase, pick the first U marked
vertex, say v, in the list L and do the following: Let a = deg(v) + 1
[Rule 1a] If a is a prime power and Γv = Γ[N [v]] is complete, then mark v as CC and
mark all its neighbors NC.
[Rule 1b] Else if a is a prime power and Γv is not complete, then mark v as NC.
[Rule 2a] Else if a is not a prime power and if v has a closed-twin w in Γv such that w

has been marked NC, then mark v as NC.
[Rule 2b] Else (i.e., a is not a prime power and v does not have a NC marked closed-twin
in Γv)

If Γv closed-twin-partition-wise matches with Pow(Zd), where d = deg(v) + 1
Mark v as CC and all its neighbors NC.

Else
Mark v as NC.

Return the set of vertices marked CC.

A vertex picked at any phase is either marked CC or NC, thereby reducing the number
of vertices marked U. Therefore, Algorithm 1 terminates in O(n) phases.

6 Dominating vertex in a graph is a vertex that is adjacent to all other vertices in the graph.

FSTTCS 2024

20:10 The Isomorphism Problem of Power Graphs and a Question of Cameron

We prove the correctness of the algorithm by induction on the number of phases. In each
phase, a set of vertices is relabeled using one of the 4 rules. We prove that this labelling is
correct. In phase i, we assume that up to phase (i− 1), all the labellings were done correctly.
In base case, this means that all the vertices are still labelled U.
If Rule 1a is applied: If v is not a CC-generator, then v is contained in at least one covering

cycle. If v is contained in two covering cycles, say ⟨g1⟩ and ⟨g2⟩, then Γv is not complete, as
the CC-generators g1 and g2 are not adjacent. Now consider the case when v is contained
in exactly one covering cycle ⟨x⟩. Then NΓv

(v) ⊆ NΓv
(x). So, if degΓ(x) > degΓ(v), then

x or one of its closed-twins has already been marked as CC in some previous phase, and
then v would have been marked as NC. Now if degΓ(x) = degΓ(v), then v and x are
closed-twins and thus v is also a CC-generator. This is a contradiction.

If Rule 1b is applied: If v is a CC-generator, then Γv is a complete graph. Thus, this step
works correctly.

If Rule 2a is applied: If v is a CC-generator, then by Lemma 14 its closed-twins in Γv are
exactly e (identity) and generators of ⟨v⟩. So, if any of the closed-twins is marked NC, it
must have been because some other closed-twin is already marked CC in some previous
phase t ≤ i− 1 of the algorithm. In phase t, the algorithm would have also marked v as
NC.

If Rule 2b is applied: If v is a CC-generator, then Γv closed-twin-partition-wise matches
with Pow(Zd). Now if none of v’s closed-twins in Γv are already marked CC, then v can
be marked CC.

On the other hand, suppose that v is not a CC-generator. We first consider the case
when v is contained in only one covering cycle, say generated by x. The proof of the next
claim is in Section A.1.

▷ Claim 22. degΓ(x) > degΓ(v).

By the above claim, the algorithm considers x and other generators of ⟨x⟩ before v. Then,
by the induction hypothesis, one of these generators would be marked CC, and v would not
be labelled U.

Now we consider the case when v is contained in at least two covering cycles, say ⟨g1⟩ and
⟨g2⟩. We prove that if v is not a CC-generator, then Γv cannot closed-twin-partition-wise
match with Pow(Zd). This case is divided into two subcases.

In the 1st subcase, we assume that o(v) is not a prime power. Now we count the
closed-twins of v in Γv present in each of the sets Uv, Ev and Lv.

If x ∈ Uv is a closed-twin of v in Γv, then by Lemma 13, degΓ(x) > degΓ(v). So, the
algorithm must have considered x before v. At that phase, the algorithm either marked x as
NC or CC. If x was marked as NC, v would not satisfy the condition of Rule 2b (i.e., no
closed-twin of v in Γv is marked NC). Moreover, if x was marked CC, the algorithm would
have marked v as NC. So, v has no closed-twin in Uv.

The number of closed-twins of v in Γv which are present in Ev is ϕ(o(v)). By noting that
Γv[Ev ⊔ Lv] = Pow(⟨v⟩) and using Lemma 14 on Pow(⟨v⟩), we see that the only closed-twin
of v in Lv is the identity. Therefore, the total number of closed-twins of v in Γv is ϕ(o(v)) + 1.

Now CC-generators g1 and g2 have distinct 7 closed-twin-classes of size at least ϕ(o(g1))
and ϕ(o(g2)). But, ϕ(o(gi)) ≥ ϕ(o(v)) for i = 1, 2 by Remark 15. This is a contradiction
since Pow(Zd) can have at most two closed-twin-classes of size greater than or equal to
ϕ(o(v)), by (3) of Corollary 16.

7 g1 and g2 are not adjacent.

B. Das, J. Ghosh, and A. Kumar 20:11

In the 2nd subcase, we assume that o(v) is a prime power, say o(v) = pi for some prime p

and some integer i > 0. Consider y and S as in Lemma 19. Note that degΓ(y) ≤ degΓ(v).
Since otherwise, the algorithm would have marked y as NC or CC. In both cases, the
algorithm would not satisfy the conditions of Rule 2b.
Subsubcase 1: o(y) = pj, j ≥ 2. In this case, by (3) of Lemma 19, p divides |V (Γv)|.

Therefore, Γv must have a closed-twin-class of size p− 1 for it to closed-twin-partition-
wise match with Pow(Zd) (because of (2) of Corollary 16). By (1) of Lemma 19, if
x ∈ ⟨y⟩, then the number of closed-twins of x in Γv is |⟨y⟩| = pj > p− 1. Also, if x ∈ S,
then number of closed-twins of x in Γv ≥ ϕ(o(x)) ≥ ϕ(o(y)) ≥ ϕ(p2) > p− 1. Therefore,
there is no closed-twin-class of size p− 1.

Subsubcase 2: o(y) = p. Recall that ⟨g1⟩ and ⟨g2⟩ are covering cycles containing v. Since
y and v are closed-twins in Γv, we can see that y ∈ ⟨g1⟩ ∩ ⟨g2⟩. Now by (1) of Lemma 19,
the size of the closed-twin-class of v is p. Since o(y)

∣∣o(g1) and o(y)
∣∣o(g2), the size of

the closed-twin-class of both g1 and g2 is at least p − 1. This is not possible by (3) of
Corollary 16. ◀

5.2 Finding a CCG-set of a group from its enhanced power graph

▶ Lemma 23. If v is a CC-generator of a group G, then NEP ow(G)[v] ⊆ NEP ow(G)[u] for
all u ∈ ⟨v⟩.

Algorithm 2 performs the task of finding a CCG-set. The next theorem ensures the
correctness of the algorithm.

▶ Theorem 24. Algorithm 2 on input an enhanced power graph8 Γ ∈ EPow outputs a set
{g1, g2, . . . , gm} where gi is a CC-generator or gi is a closed-twin of a CC-generator g′

i in
the graph Γ such that {h1, h2, . . . , hm} is a CCG-set where hi = gi if gi is a CC-generator,
otherwise, hi = g′

i.

As before, we call the set {g1, g2, . . . , gm} as CCG-set and gi’s as CC-generators.

Proof. The proof of correctness of Algorithm 2 is by induction on the number of iterations.
In any iteration, the first unmarked vertex is marked as CC and its neighbors in the graph
are marked as NC. Our goal is to prove that this marking process is correct.

For the base case, x = v1. By Lemma 23, v1 is either a CC-generator or v1 ∈ ⟨g1⟩, where
g1 is a CC-generator and v1 is a closed-twin of g1 in Γ. Since N [v1] corresponds to ⟨g1⟩ by
Lemma 23, we can safely mark the vertices adjacent to v1 as NC.

In phase i, we assume that up to iteration (i−1), all the markings were done correctly. Let
us pick the first unmarked vertex, say x, in A. It is easy to see that x does not belong to any
covering cycle marked till the (i− 1)th iteration, i.e., x does not belong to the neighborhood
of any CC marked vertex till the (i− 1)th iteration. So, again using the same argument given
in the base case, it can be seen that the markings done in the ith iteration are correct. ◀

8 Recall that the underlying group is not given.

FSTTCS 2024

20:12 The Isomorphism Problem of Power Graphs and a Question of Cameron

Algorithm 2 Algorithm to mark a CCG-set of G in a finite enhanced power graph.

Input: Γ ∈ EPow

1. Sort the vertices of Γ by their degree in increasing order. Let the sorted array be
A = {v1, v2, . . . , vm}.

2. Pick the first unmarked element x of A and mark it CC.
Mark all the elements of N [x] as NC.

3. Pick the next unmarked element in A and repeat Step 2 till all elements of A are marked.

6 Isomorphism of directed power graphs

The isomorphism problems of power graphs, directed power graphs, and enhanced power
graphs are equivalent (see [9, 8, 37]). Thus, an algorithm for the isomorphism problem of
directed power graphs automatically gives an isomorphism algorithm for power graphs (or
enhanced power graphs), provided we can obtain the directed power graph from the power
graph (respectively, the enhanced power graph). This is done in Section 7. In the currect
section, we focus on the isomorphism problem of directed power graphs. In the last part of
this section, we discuss a necessary result that is used in Section 7 for obtaining the directed
power graph of an input power graph (or an enhanced power graph).

We perform several reductions on a directed power graph that are isomorphism invariant.
The out-degree of a vertex in DPow(G) is the order of the element in the group G, i.e., for a
vertex u, out-deg(u) = o(u). Therefore we can color the vertices by their out-degrees. We
call the colored graph CDPow(G). We emphasise that here the colors are numbers, and
hence we can perform arithmetic operations on these colors and use the natural ordering of
integers inherited by these colors. We recall that by isomorphism we mean color preserving
isomorphism when the graphs are colored.

Two vertices u and v are closed-twins in CDPow(G) (in DPow(G) also) if and only if
⟨u⟩ = ⟨v⟩ in G, i.e., u and v are two generators of the same cyclic subgroup in G. There
are ϕ(o(u)) generators of ⟨u⟩ in G. So, for each vertex u ∈ CDPow(G), there are exactly
ϕ(col(u)) closed-twins in CDPow(G). By the converse of Lagrange’s theorem, in each cyclic
subgroup of order n, for each divisor k of n, there are exactly ϕ(k) generators. So, for each k

in the color set of CDPow(G), there are ϕ(k) closed-twins in the graph. Observe that u and
v are closed-twins in CDPow(G), if and only if (u, v) ∈ E(CDPow(G)) and col(u) = col(v).

Reduction rule 1: Closed-twin Reduction. If there are two closed-twins u and v in
CDPow(G), then do a vertex identification of u and v and color the identified vertex with
col(u) = col(v). Let R1(G) denote the reduced graph after applying Reduction rule 1 to
CDPow(G).

From the discussion above, the next lemma follows easily.

▶ Lemma 25. CDPow(G) ∼= CDPow(H) if and only if R1(G) ∼= R1(H).

▶ Remark 26. It is easy to see that we can get back an isomorphic copy of CDPow(G) from
R1(G), by adding ϕ(col(u)) closed-twins at each vertex u in R1(G).

Since each vertex has a self-loop, for the purpose of isomorphism we can delete these
self-loops. One can check that R1(G) is a transitively closed directed graph.

B. Das, J. Ghosh, and A. Kumar 20:13

Reduction rule 2: Edge-deletion. Let us consider R1(G). Do the following steps: (1)
Delete all self-loops. (2) For all a, b, c, if (a, b) and (b, c) are edges, then mark (a, c) as a
transitive edge. Then, delete all edges that are marked as transitive edges. Let R2(G) denote
the resulting graph. Since R1(G) is the reflexive and transitive closure of R2(G), we have
the following lemma:

▶ Lemma 27. R1(G) ∼= R1(H) if and only if R2(G) ∼= R2(H).

Due to space constraints we omit the proof of the following lemma (see the full version
for a proof [12]).

▶ Lemma 28. The reduced graph R2(G) satisfies the following properties: (1) Vertices
with in-degree zero in R2(G) form a CCG-set of G, (2) If (u, v) is an edge in R2(G), then
col(u) > col(v) and col(u) = col(v) · p for some prime p, (3) R2(G) is a directed acyclic
graph.

Note that using (1) of Lemma 28, we can easily find a set of vertices, say {g1, g2, . . . , gm},
that form a covering cycle generating set (CCG-set) of G.

Reduction rule 3: Removing the direction. Remove the direction of the edges in R2(G) to
obtain an undirected colored graph R3(G).

Note that the CCG-set of G can still be identified easily in R3(G): A vertex g is a
CC-generator if and only if all its neighbours have smaller orders (or colors).

The following result is an easy consequence of (2) of Lemma 28.

▶ Lemma 29. R2(G) ∼= R2(H) if and only if R3(G) ∼= R3(H).

▶ Definition 30. A path u1u2 . . . ul in R3(G) is said to be a descendant path if col(ui) >

col(ui+1). The vertices in the graph reachable from u using descendant path are called
descendant reachable vertices from u. We denote the set of descendant reachable vertices
from u in R3(G) by Des(u).

Observe that Des(u) in R3(G) is same as the closed out-neighborhood of u in R1(G). The
colors of the vertices of Des(u) in R3(G) form the set of all divisors of col(u). Also, no two
vertices of Des(u) in R3 have the same color.

▶ Theorem 31. If G is a finite p-group, then R3(G) is a colored tree.

Proof. Let |G| = pα. Any edge in R3(G) is of the form {u, v} where by using (2) of
Lemma 28 we can assume without loss of generality that col(u) = pt and col(v) = pt−1,

for some t ∈ {1, 2, . . . , α}. Suppose the graph contains a cycle u0u1u2 . . . unu0. By (2)
of Lemma 28, we can assume without loss of generality that the colors of the vertices
form the following sequence: ptpt−1pt−2 . . . pt−(i−1)pt−ipt−(i−1) . . . pt−1pt for some i. Now,
u1, un ∈ Des(u0) such that col(u1) = col(un) = pt−1. This is a contradiction since no two
vertices of Des(u) for any vertex u have the same color. Hence, our assumption is wrong
and R3(G) has no cycle. ◀

Since the isomorphism of trees can be tested in linear time (see, for example, [1]), the
isomorphism of the directed power graphs of p-groups can also be tested in polynomial-time.9
Now we extend our algorithm to check the isomorphism of directed power graphs of finite
nilpotent groups. For that, we use the following two results.

9 It can actually be done in linear time.

FSTTCS 2024

20:14 The Isomorphism Problem of Power Graphs and a Question of Cameron

▶ Lemma 32 ([31]). Let G1 and G2 be two finite groups such that |G1| and |G2| are co-prime
to each other. Then, DPow(G1 × G2) = DPow(G1) ⊠ DPow(G2), where ⊠ denotes the
strong product of two graphs.

▶ Lemma 33 ([27]). There exists a unique prime factor decomposition of a simple connected 10

directed graph with respect to strong product and the uniqueness is up to isomorphism and
ordering of the factors.

It is easy to verify that the next lemma follows from the above two lemmas. However, we
can prove Lemma 34 without using Lemma 33 and the proof is given in Section A.1.

▶ Lemma 34. Let G = G1 × · · · × Gk and H = H1 × · · · × Hk where |Gi| = |Hi| for all
1 ≤ i ≤ k. Suppose gcd(|Gi|, |Gj |) = gcd(|Hi|, |Hj |) = 1, for all 1 ≤ i < j ≤ k. Then,
DPow(G) ∼= DPow(H) if and only if DPow(Gi) ∼= DPow(Hi), for all 1 ≤ i ≤ k.

We are now ready to present one of the main results of the paper. Namely, we show
that the isomorphism of the directed power graphs of nilpotent groups can be tested in
polynomial-time. Let DPownil = {DPow(G) : G is a finite nilpotent group}.

Theorem 31 and Lemma 34 suggest that obtaining the directed power graphs corresponding
to the factor groups might be useful. One approach would be to decompose an input directed
power graph into prime factors with respect to strong product in polynomial-time using
the algorithm by Hellmuth et al. [21]. Note that, in a general setting, the prime graphs in
the strong product decomposition may not correspond to the directed power graphs of the
direct factors of the underlying group. We are also not sure if the Sylow-p subgroups of a
nilpotent group generate prime graphs. If not, then just applying the algorithm of Hellmuth
et al. is not enough and we need to regroup the prime factors properly to apply Theorem 31.
Fortunately, all these complications can be easily avoided as shown in the next theorem.

▶ Theorem 35. There is an efficient polynomial-time algorithm that on inputs Γ1, Γ2 ∈
DPownil checks if Γ1 and Γ2 are isomorphic.

Proof. We know that a finite nilpotent group is the direct product of its Sylow subgroups.
Since the orders of the Sylow subgroups are coprime with each other, by Lemma 34, Γ1
and Γ2 are isomorphic if and only if for each prime p dividing |V (Γ1)| (which is same as
the order of the underlying group), the directed power graphs of the Sylow p-subgroups of
the underlying groups of Γ1 and Γ2 are isomorphic. Therefore, if we can find the directed
power graphs of the Sylow subgroups associated with each prime divisor, we can test the
isomorphism of Γ1 and Γ2.

While the underlying groups are not given as input, we can still compute the directed
power graph of a Sylow p-subgroup of an input graph by finding the set Vp of all vertices
whose order in the underlying group is pi for some i ≥ 0. More precisely, the subgraph
induced by the set Vp is the directed power graph associated with the Sylow p-subgroup.
Note that the order of a vertex (which is also an element in the underlying group) is the
out-degree of the vertex in the directed power graph. ◀

We show that all the isomorphism invariant information of R3(G) is captured by a) the
CCG-set of G in R3(G) along with their colors, and b) elements corresponding to their
pairwise common neighborhood along with their colors. For this, we do a further reduction.
The results in the rest of this section are required in Section 7.

10 Here connected directed graph means that the underlying undirected graph is connected.

B. Das, J. Ghosh, and A. Kumar 20:15

We define a new simple undirected colored graph HD[n] = (V, E) for any natural number
n, where V = {d : d|n}. The name of each vertex is treated as its color, i.e., here col(v) = v.
The edge set is E = {{u, v} : v = u · p or u = v · p for some prime p}. One can see that
HD[n] is the Hasse diagram of the Poset defined over the set of all divisors of n with respect
to the divisibility relation. Moreover, HD[n] is also isomorphic to R3(Zn) (as a consequence
of (2) of Lemma 28).
▶ Remark 36. (1) It is easy to see that R3(G)[Des(gi)] is isomorphic to HD[col(gi)] for all
1 ≤ i ≤ m. We can see that the isomorphism is unique as in each of these graphs, there is
only one vertex with a particular color.
(2) Note that {y, y′} ∈ E(R3(G)) if and only if (a) y, y′ ∈ Des(gi) for some 1 ≤ i ≤ m and
(b) col(y) = p · col(y′) or col(y′) = p · col(y) for some prime p.

Let Ī(i, j) denote the vertex in R3(G) that is of maximum color among the common
descendant reachable vertices from both gi and gj . It is not hard to see that in the group
G, col(Ī(i, j)) = |⟨gi⟩ ∩ ⟨gj⟩|. Note that for two distinct pairs (i, j) and (i′, j′), Ī(i, j) and
Ī(i′, j′) can be the same vertex in R3(G). It is not hard to see the proof of the following
claim.

▷ Claim 37. In R3(G), gcd(col(Ī(i, j)), col(Ī(s, j))) divides col(Ī(i, s)).

Reduction rule 4. Consider R3(G). Recall that, in R3(G) a CCG-set {g1, g2, ..., gm} of G

can be readily found. We make a new graph R4(G) as follows:
(1) Introduce the vertices g1, g2, . . . , gm with their colors. (2) For each pair (i, j), 1 ≤ i < j ≤
m, do the following: Find the vertex Ī(i, j) that is of maximum color among the descendant
reachable vertices from both gi and gj . We add a vertex I(i, j) in R4(G) and color it with
col(Ī(i, j)). Add edges {gi, I(i, j)} and {gj , I(i, j)}.

Note that R4(G) is a bipartite graph where one part is a CCG-set and another part
contains vertices marked as I(i, j) for all (i, j). In R4(G), for distinct pairs (i, j) and (i′, j′),
I(i, j) and I(i′, j′) are distinct vertices, while in R3(G), Ī(i, j) and Ī(i′, j′) may be the same
vertex. In other words, R4(G) may have several copies of vertex Ī(i, j).

We now present an algorithm to get back an isomorphic copy of R3(G) from R4(G).

Idea of the algorithm. In R4(G), we have a set of colored CC-generators. Also, there
exist vertices I(i, j) corresponding to each pairwise intersection of maximal cyclic subgroups
⟨gi⟩ and ⟨gj⟩ in G. I(i, j) is the only common neighbor of gi and gj in R4(G). Using this
information, we construct R3(G) in an iterative manner. First, we describe a sketch of the idea
behind the process. There are m iterations in the process. In the 1st iteration, we introduce
HD[col(g1)]. One can easily verify that R3(G)[Des(g1)] is isomorphic to HD[col(g1)] (by (2)
of Remark 36). In the 2nd iteration, we introduce HD[col(g2)]. As we know the color of I(1, 2),
we have information about the set of vertices common to both HD[col(g1)] and HD[col(g2)].
Let u and v be the vertices with color col(I(1, 2)) in HD[col(g1)] and HD[col(g2)] respectively.
We identify (via vertex-identification) the vertices with the same colors in Des(u) (which
is in HD[col(g1)]) and Des(v) (which is in HD[col(g2)])11. One can see that the resulting
graph is isomorphic to the induced subgraph of R3(G) on Des(g1) ∪Des(g2). Inductively
the algorithm introduces Des(g1) ∪Des(g2) ∪ . . . ∪Des(gj−1) at the end of the (j − 1)th

iteration. In the jth iteration, we introduce HD[col(gj)]. It is easy to note that the set of

11 Since HD[col(gi)] is isomorphic to R3(G)[Des(gi)], we can use the concept of Des in the graph
HD[col(gi)] for all i.

FSTTCS 2024

20:16 The Isomorphism Problem of Power Graphs and a Question of Cameron

vertices in HD[col(gj)] that are contained in Des(gj) ∩Des(gs) for all s ≤ j − 1 has already
been introduced. So, we need to identify the vertices introduced by the algorithm earlier
with the corresponding subset of vertices in HD[col(gj)]. We get the information of such
vertices using the color of I(s, j) for s ≤ j − 1. The details and correctness of the algorithm
(Algorithm 3) are given in Section A.2.

7 Reconstruction Algorithms

Cameron asked the following question: “Question 2 [9]: Is there a simple algorithm for
constructing the directed power graph or enhanced power graph from the power graph, or the
directed power graph from the enhanced power graph?” Bubboloni and Pinzauti [7] gave an
algorithm to reconstruct the directed power graph from the power graph. In this section, we
show that with the tools we have developed, we can readily design algorithms to reconstruct
the directed power graph from both the enhanced power graph and the power graph.

Suppose we are given a power graph (or an enhanced power graph) of some finite group
G as input, i.e., Γ = Pow(G) (or, Γ = EPow(G)). However, the group G is not given.
As discussed in Section 5, we can find a CCG-set for G from the input graph. Next, we
describe how to obtain a graph isomorphic to R4(G) from the CCG-set. From the vertices
corresponding to a CCG-set of G, say {g1, g2, . . . , gm}, we get the information about their
degree in Γ and the pairwise common neighborhood of gi and gj in the respective graph.
This immediately gives us R4(G). From R4(G), we know how to get back an isomorphic copy
of DPow(G) using the results in Section 6. All the steps in the process can be performed in
polynomial-time.

For any two vertices u and v we can easily decide when to put an edge between them in
the enhanced power graph by looking into the corresponding directed power graph: there
is an edge {u, v} in the enhanced power graph, if and only if both u and v belong to the
closed-out-neighbourhood of some vertex in the directed power graph. In this way, we can
construct the enhanced power graph from an input directed power graph. Therefore, we get
a complete solution to Cameron’s question.

References
1 Alfred V. Aho and John E. Hopcroft. The design and analysis of computer algorithms. Pearson

Education India, 1974.
2 László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth

annual ACM symposium on Theory of Computing, pages 684–697, 2016.
3 László Babai, D. Yu Grigoryev, and David M. Mount. Isomorphism of graphs with bounded

eigenvalue multiplicity. In Proceedings of the fourteenth annual ACM symposium on Theory of
computing, pages 310–324, 1982. doi:10.1145/800070.802206.

4 László Babai and Eugene M Luks. Canonical labeling of graphs. In Proceedings of the fifteenth
annual ACM symposium on Theory of computing, pages 171–183, 1983. doi:10.1145/800061.
808746.

5 Hans L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic index on
partial k-trees. Journal of Algorithms, 11(4):631–643, 1990. doi:10.1016/0196-6774(90)
90013-5.

6 Ravi B. Boppana, Johan Hastad, and Stathis Zachos. Does co-np have short interactive proofs?
Information Processing Letters, 25(2):127–132, 1987. doi:10.1016/0020-0190(87)90232-8.

7 Daniela Bubboloni and Nicolas Pinzauti. Critical classes of power graphs and reconstruction
of directed power graphs. arXiv preprint arXiv:2211.14778, 2022.

https://doi.org/10.1145/800070.802206
https://doi.org/10.1145/800061.808746
https://doi.org/10.1145/800061.808746
https://doi.org/10.1016/0196-6774(90)90013-5
https://doi.org/10.1016/0196-6774(90)90013-5
https://doi.org/10.1016/0020-0190(87)90232-8

B. Das, J. Ghosh, and A. Kumar 20:17

8 Peter J. Cameron. The power graph of a finite group, ii. Journal of Group Theory, 13(6):779–
783, 2010.

9 Peter J. Cameron. Graphs defined on groups. International Journal of Group Theory,
11(2):53–107, 2022.

10 Peter J. Cameron and Shamik Ghosh. The power graph of a finite group. Discrete Mathematics,
311(13):1220–1222, 2011. doi:10.1016/J.DISC.2010.02.011.

11 Ivy Chakrabarty, Shamik Ghosh, and M. K. Sen. Undirected power graphs of semigroups. In
Semigroup Forum, volume 78, pages 410–426. Springer, 2009.

12 Bireswar Das, Jinia Ghosh, and Anant Kumar. The isomorphism problem of power graphs
and a question of cameron. arXiv preprint arXiv:2305.18936, 2023. doi:10.48550/arXiv.
2305.18936.

13 Min Feng, Xuanlong Ma, and Kaishun Wang. The full automorphism group of the power
(di) graph of a finite group. European Journal of Combinatorics, 52:197–206, 2016. doi:
10.1016/J.EJC.2015.10.006.

14 Valentina Grazian and Carmine Monetta. A conjecture related to the nilpotency of groups
with isomorphic non-commuting graphs. Journal of Algebra, 633:389–402, 2023.

15 Joshua A. Grochow and Youming Qiao. On p-group isomorphism: search-to-decision, counting-
to-decision, and nilpotency class reductions via tensors. In 36th Computational Complexity
Conference (CCC 2021), volume 200, 2021. doi:10.4230/LIPICS.CCC.2021.16.

16 Martin Grohe and Sandra Kiefer. A linear upper bound on the Weisfeiler-Leman dimension of
graphs of bounded genus. In 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

17 Martin Grohe and Daniel Neuen. Isomorphism, canonization, and definability for graphs of
bounded rank width. Communications of the ACM, 64(5):98–105, 2021. doi:10.1145/3453943.

18 Martin Grohe, Daniel Neuen, and Pascal Schweitzer. A faster isomorphism test for graphs of
small degree. SIAM Journal on Computing, pages FOCS18–1, 2020.

19 Martin Grohe, Daniel Neuen, Pascal Schweitzer, and Daniel Wiebking. An improved iso-
morphism test for bounded-tree-width graphs. ACM Transactions on Algorithms (TALG),
16(3):1–31, 2020. doi:10.1145/3382082.

20 Martin Grohe and Pascal Schweitzer. Isomorphism testing for graphs of bounded rank width.
In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 1010–1029.
IEEE, 2015. doi:10.1109/FOCS.2015.66.

21 Marc Hellmuth and Tilen Marc. On the cartesian skeleton and the factorization of the strong
product of digraphs. Theoretical Computer Science, 565:16–29, 2015. doi:10.1016/J.TCS.
2014.10.045.

22 Wilfried Imrich, Sandi Klavzar, and Douglas F. Rall. Topics in graph theory: Graphs and
their Cartesian product. CRC Press, 2008.

23 G. James Oxley. Matroid Theory. Oxford graduate texts in mathematics. Oxford University
Press, 2006.

24 Andrei V. Kelarev and Stephen J. Quinn. A combinatorial property and power graphs of
groups. Contributions to general algebra, 12(58):3–6, 2000.

25 Ajay Kumar, Lavanya Selvaganesh, Peter J. Cameron, and T. Tamizh Chelvam. Recent
developments on the power graph of finite groups–a survey. AKCE International Journal of
Graphs and Combinatorics, 18(2):65–94, 2021. doi:10.1080/09728600.2021.1953359.

26 Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of computer and system sciences, 25(1):42–65, 1982. doi:10.1016/0022-0000(82)
90009-5.

27 Ralph McKenzie. Cardinal multiplication of structures with a reflexive relation. Fundamenta
Mathematicae, 70(1):59–101, 1971.

28 Gary Miller. Isomorphism testing for graphs of bounded genus. In Proceedings of the twelfth
annual ACM symposium on Theory of computing, pages 225–235, 1980. doi:10.1145/800141.
804670.

FSTTCS 2024

https://doi.org/10.1016/J.DISC.2010.02.011
https://doi.org/10.48550/arXiv.2305.18936
https://doi.org/10.48550/arXiv.2305.18936
https://doi.org/10.1016/J.EJC.2015.10.006
https://doi.org/10.1016/J.EJC.2015.10.006
https://doi.org/10.4230/LIPICS.CCC.2021.16
https://doi.org/10.1145/3453943
https://doi.org/10.1145/3382082
https://doi.org/10.1109/FOCS.2015.66
https://doi.org/10.1016/J.TCS.2014.10.045
https://doi.org/10.1016/J.TCS.2014.10.045
https://doi.org/10.1080/09728600.2021.1953359
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1145/800141.804670
https://doi.org/10.1145/800141.804670

20:18 The Isomorphism Problem of Power Graphs and a Question of Cameron

29 Gary L. Miller. On the nlog n isomorphism technique (a preliminary report). In Proceedings
of the tenth annual ACM symposium on theory of computing, pages 51–58, 1978. doi:
10.1145/800133.804331.

30 Dave Witte Morris, Joy Morris, and Gabriel Verret. Isomorphisms of cayley graphs on nilpotent
groups. New York J. Math, 22:453–467, 2016.

31 Himadri Mukherjee. Hamiltonian cycles of power graph of abelian groups. Afrika Matematika,
30:1025–1040, 2019.

32 Daniel Neuen. Isomorphism testing for graphs excluding small topological subgraphs. In
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1411–1434. SIAM, 2022. doi:10.1137/1.9781611977073.59.

33 Joseph J. Rotman. An introduction to the theory of groups, volume 148. Springer Science &
Business Media, 2012.

34 V. Vikraman Arvind and Peter J. Cameron. Recognizing the commuting graph of a finite
group. arXiv preprint, 2022. doi:10.48550/arXiv.2206.01059.

35 Douglas B. West. Introduction to Graph Theory. Prentice Hall, September 2000.
36 Daniel Wiebking. Graph isomorphism in quasipolynomial time parameterized by treewidth.

In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

37 Samir Zahirović, Ivica Bošnjak, and Rozália Madarász. A study of enhanced power graphs of
finite groups. Journal of Algebra and Its Applications, 19(04):2050062, 2020.

A Appendix

A.1 Omitted Proofs
Proof of Lemma 14. Let o(v) = pr1

1 pr2
2 . . . prk

k , where k ≥ 2. The case when u = e or u is
a generator of ⟨v⟩ is easy as N [u] = V (Γv) for any such element. Otherwise, since v is a
CC-generator, ⟨u⟩ ⪇ ⟨v⟩. For u and z to be closed-twins, we must have u ∈ ⟨z⟩ or z ∈ ⟨u⟩.
We show that for z to be a closed-twin of u, its order must be the same as that of u. We
consider the case when z ∈ ⟨u⟩. The other case can be handled similarly. In this case, we
have o(z)|o(u).

Suppose both u and z are p-power elements for some prime p ∈ {p1, p2, . . . , pk}. Moreover,
without loss of generality, assume that o(u) = ps1

1 and o(z) = p
s′

1
1 where s1 > s′

1. Note that
r1 ≥ s1. In this case, there is an element in V (Γv) of order p

s′
1

1 p2 which is adjacent to z but
not to u. More precisely, this element is an element in ⟨v⟩ of order p

s′
1

1 p2. So, in this case, u

and z are not closed-twins in Γv.
Now suppose o(u) is not a prime power. We first take z to be non-identity. Then, let

o(u) = ps1
1 . . . psk

k , where k ≥ 2. Let o(z) = p
s′

1
1 . . . p

s′
k

k , where sj ≥ s′
j . Assume without loss

of generality that s1 > s′
1. As o(u) is not a prime power order, we can take s2 ̸= 0. Now if

s′
2 = 0, consider an element x of order p2 in Γv. Then x is a neighbor of u, but not of z. On

the other hand, if s′
2 ̸= 0, we take an element y of order ps1

1 . Again y is a neighbor of u but
not of z. So, in this case also, u and z are not closed-twins in Γv.

Now suppose o(u) is not a prime power, i.e., o(u) = ps1
1 ps2

2 . . . psk

k where k ≥ 2 and z is
the identity. We recall that since u is not a generator ⟨v⟩, there exists i such that ri > si.
We take an element x of order pri

i in Γv. One can check that x is adjacent to z but not to u.
So, here also u and z are not closed-twins in Γv.

Note that if o(u) = o(z), then they are closed-twins in Γv. ◀

▷ Claim 22. degΓ(x) > degΓ(v).

https://doi.org/10.1145/800133.804331
https://doi.org/10.1145/800133.804331
https://doi.org/10.1137/1.9781611977073.59
https://doi.org/10.48550/arXiv.2206.01059

B. Das, J. Ghosh, and A. Kumar 20:19

Proof. As v is contained in only one covering cycle, we have NΓ(v) ⊆ NΓ(x). This implies
degΓ(x) ≥ degΓ(v). Moreover in Γv, the vertices x and v are closed-twins. If o(x) = pi,

then deg(x) + 1 = pi. The graph Γx = Γ[N [x]] is complete. So, deg(v) + 1 = pi. Therefore,
this case cannot arise. On the other hand, if o(x) is not a prime power, we can apply 12

Lemma 14 and since v ≠ e and v is not a CC-generator, we can see that v and x are not
closed-twins in Γx. Thus,degΓ(x) > degΓ(v). ◁

Proof of Lemma 34. It is enough to prove the lemma for k = 2. Let f1 : V (DPow(G1))→
V (DPow(H1)) and f2 : V (DPow(G2)) → V (DPow(H2)) be two isomorphisms from
DPow(G1) to DPow(H1) and from DPow(G2) to DPow(H2) respectively. Let us define f :
V (DPow(G))→ V (DPow(H)) as f((u1, u2)) = (f1(u1), f2(u2)). Since f1 and f2 are bijec-
tions, so is f . We show that f preserves the edge relations between DPow(G) and DPow(H).
Let us consider an edge ((u1, u2), (v1, v2)) from E(DPow(G)) = E(DPow(G1)⊠DPow(G2))
(This equality follows from Lemma 32.). Now from Definition 2 and the facts that f1 and
f2 are isomorphisms from DPow(G1) to DPow(H1) and from DPow(G2) to DPow(H2)
respectively, we have the following three scenarios:
1. u1 = v1 and (u2, v2) ∈ E(DPow(G2)). In this case, f1(u1) = f1(v1) and (f2(u2), f2(v2)) ∈

E(DPow(H2)).
2. u2 = v2 and (u1, v1) ∈ E(DPow(G1)). In this case, f2(u2) = f2(v2) and (f1(u1), f1(v1)) ∈

E(DPow(H1).
3. (u1, v1) ∈ E(DPow(G1)) and (u2, v2) ∈ E(DPow(G2)). In this case, (f1(u1), f1(v1)) ∈

E(DPow(H1)) and (f2(u2), f2(v2)) ∈ E(DPow(H2)).
In all the three scenarios, by Definition 2, we have ((f1(u1), f2(u2)), (f1(v1), f2(v2))) ∈
E(Dpow(H1) ⊠ DPow(H2)). Therefore by Lemma 32, (f((u1, u2)), f((v1, v2))) ∈
E(DPow(H)).

For the other direction, let f : V (DPow(G))→ V (DPow(H)) be an isomorphism between
DPow(G) and DPow(H). Consider the sets Ai = {(u, v) ∈ V (DPow(G)) : out-deg((u, v))
divides |Gi|} and Bi = {(u′, v′) ∈ V (DPow(H)) : out-deg((u′, v′)) divides |Hi|} for i = 1, 2.
Recall that here the out-degree of a vertex is the order of the element and o((u, v)) = o(u)·o(v).
Since |G1|×|G2| = |G| and gcd(|G1|, |G2|) = 1, it is easy to see that Ai indeed corresponds to
V (DPow(Gi)) for i = 1, 2. Also, the subgraph of DPow(G1×G2) induced by Ai corresponds
to DPow(Gi) for i = 1, 2. Similarly, we can see that Bi corresponds to V (DPow(Hi)) and
the subgraph induced by Bi corresponds to DPow(Hi) for i = 1, 2. Now the isomorphism f

preserves the out-degrees of the vertices. We denote the restriction of f on Ai by fi. Then it
is easy to see that fi is a bijection from Ai to Bi. Also, there is only one element, namely
the identity element, of out-degree 1 (self-loop) and common in both A1 and A2. Also, that
element is unique in DPow(G). One can see that fi : V (DPow(Gi))→ V (DPow(Hi)) is an
isomorphism between DPow(Gi) and DPow(Hi), for all i = 1, 2. ◀

A.2 Algorithm to construct an isomorphic copy of Reduction graph
Here, we give a detailed description of the algorithm to construct R3(G) from R4(G) discussed
in Section 6.

As indicated in the idea behind the algorithm in Section 6 and in Line 12 of Algorithm 3,
vertices in the old graph and HD[col(gj)] are identified. In Claim 40 we show that these
vertices can be identified without conflict.

12 Here x and v are to be treated as the variables v and u in Lemma 14.

FSTTCS 2024

20:20 The Isomorphism Problem of Power Graphs and a Question of Cameron

Algorithm 3 To construct an isomorphic copy of R3(G) from R4(G).

Input: R4(G)
1: X1 ← HD[col(g1)]
2: j ← 2
3: while j ≤ m do
4: Introduce Yj = HD[col(gj)]
5: s← 1
6: hj,0 ← ∅ ▷ Mapping for vertex identification
7: while s ≤ j − 1 do
8: Consider I(s, j).
9: hj,s ← hj,s−1∪

{(u, v) : col(u) = col(v) where u ∈ Des(gs) ⊆ V (Xj−1) s.t col(u)
∣∣col(I(s, j)) and

v ∈ V (Yj)}
10: s← s + 1
11: end while
12: For all (u, v) ∈ hj,j−1 vertex-identify u and v and color the new vertex with col(u).
13: Xj ← The graph obtained after the above vertex identification of Xj−1 and Yj .
14: j ← j + 1
15: end while
16: Return Xm

▶ Lemma 38. The graph Xm returned by Algorithm 3 is isomorphic to R3(G).

Proof. We show by induction on j that the constructed graph up to the jth step is isomorphic
to the subgraph of R3(G) induced on Des(g1) ∪Des(g2) ∪ . . . ∪Des(gj). This shows that
after the mth iteration, we can get an isomorphic copy of R3(G).

▷ Claim 39. Xj
∼= R3(G)[Des(g1) ∪Des(g2) ∪ · · · ∪Des(gj)], ∀1 ≤ j ≤ m .

Proof of claim. For simplicity, we denote R3(G)[Des(g1) ∪Des(g2) ∪ · · · ∪Des(gj)] by R3(j)
in the remaining part of the proof. With this, R3(1) denotes R3(G)[Des(g1)].

By Remark 36, X1 = HD[col(g1)] is isomorphic to R3(1) by a unique isomorphism, say
f1. If we take f0 to be the empty map, then f1 extends f0.

We prove by induction on j that Xj is isomorphic to R3(j) = R3[Des(g1) ∪Des(g2) ∪
· · · ∪Des(gj)] via a map fj that extends the isomorphism fj−1.

By induction hypothesis, let us assume that Xj−1 ∼= R3(G)[Des(g1) ∪ · · · ∪Des(gj−1)]
and fj−1 is an isomorphism between Xj−1 and R3(j − 1) derived by extending fj−2. We
show that fj is an extension of fj−1 and fj is an isomorphism between Xj and R3(j).

However, before we go into the details of the inductive case, we address the following
important issue.

In the jth iteration of the outer while loop and just after the execution of Line 4 of
Algorithm 3, the current graph is the disjoint union of Xj−1 and Yj . Now to get Xj , some
vertices of Xj−1 and Yj are vertex-identified using the tuples stored in hj,j−1 as described in
Line 12 of Algorithm 3. Observe that two vertices in Yj cannot be identified with the same
vertex in Xj−1, because in Yj = HD[col(gj)], no two vertices have the same color. However,
there is a possibility that two or more vertices of Xj−1 are assigned to be identified with
the same vertex of Yj . We show that this case does not arise. To do this, we first define the
following sets:

B. Das, J. Ghosh, and A. Kumar 20:21

Yj,1 = {v ∈ V (Yj) : col(v)
∣∣col(I(1, j))}

Yj,s = Yj,s−1 ∪ {v ∈ V (Yj) : col(v)
∣∣col(I(s, j))}, s = 2, . . . , j − 1

Xj−1,1 = {u ∈ V (Xj−1) : u ∈ Des(g1) and col(u)
∣∣col(I(1, j))}

Xj−1,s = Xj−1,s−1 ∪ {u ∈ V (Xj−1) : u ∈ Des(gs) and col(u)
∣∣col(I(s, j))}, s = 2, . . . , j − 1

Now hj,j−1 is updated from hj,0 = ∅ by the following rule: hj,s = hj,s−1∪{(u, v) | col(u) =
col(v) where u ∈ Xj−1,s and v ∈ Yj,s} (as described in Line 9 in Algorithm 3)13. Since there
is a unique vertex of any particular color in Yj , we can see hj,s as a well-defined function from
Xj−1,s to Yj,s. Now to show that hj,j−1 gives a conflict-free vertex identification process, we
show that hj,s is a bijection and an extension of hj,s−1. Since hj,s−1 ⊆ hj,s, it is enough to
prove the following claim:

▷ Claim 40. The map hj,s : Xj−1,s −→ Yj,s is a bijection, for all 1 ≤ s ≤ j − 1.

Proof of claim: First, we show that hj,s is onto for all s = 1, . . . , j− 1. For this, take a vertex
v from Yj,s. Then col(v)|col(I(i, j)) for some i ≤ s. So,14 there exists a vertex u ∈ Des(gi)
in Xj−1,s such that col(u) = col(v) and hj,s(u) = v.

Now we prove that hj,s is one-to-one using induction on s. For the base case, it is easy
to see that hj,1 : Xj−1,1 −→ Yj,1 is a bijection since Xj−1,1 and Yj,1 contains colored vertices
corresponding to each divisor of col(I(1, j)) and color of each vertex is distinct. By induction
hypothesis we assume that hj,s−1 : Xj−1,s−1 −→ Yj,s−1 is a bijection. Now for the inductive
case, we consider hj,s : Xj−1,s −→ Yj,s. We need to prove that hj,s is one-one. Suppose
that u ∈ Xj−1,s is paired with v ∈ Yj,s to be stored at hj,s in the sth iteration of the inner
while loop (Line 9 of Algorithm 3). We need to argue that the pairing does not violate the
one-to-one condition. We do this in two cases.
Case 1: The vertex v was not encountered in any of the previous iterations, i.e., v /∈ Yj,s−1.

So by definition of Xj−1,s−1, there is no vertex of color col(v) in Xj−1,s−1. Since
col(u) = col(v), we have u ∈ Xj−1,s \ Xj−1,s−1. So, (u, v) is added to hj,s in the sth

iteration only, where v is in Yj,s. Therefore, Xj−1,s contains exactly one vertex of color
col(u). This implies that v cannot be paired with any vertex except u.

Case 2: The vertex v was encountered before the sth iteration, and i ≤ (s− 1) is the most
recent such iteration. This means that there exists u′ in the old graph (i.e., Xj−1,s−1)
such that hj,s−1(u′) = v. Since hj,s−1 is a bijection by induction hypothesis, u′ is the
only preimage of v under hj,s−1. We show that u = u′.
Observe that there is a vertex w ∈ Des(gs) in Xj−1 such that col(w) = col(I(s, j)). By the
algorithm, col(u)|col(I(s, j)). So, u ∈ Des(w). Similarly, there is a vertex w′ ∈ Des(gi)
in Xj−1 such that col(w′) = col(I(i, j)) and by the algorithm col(u′)|col(I(i, j)). So u′ ∈
Des(w′). Since col(u) = col(u′), col(u′)|col(I(i, j)) and col(u)|col(I(s, j)), we conclude
that col(u) divides gcd(col(I(i, j)), col(I(s, j))). So, by Claim 37, col(u)|col(I(i, s)).
Now we consider the subgraph of Xj−1 induced by Des(gi) ∩Des(gs). If x ∈ Des(gi) ∩
Des(gs) is the vertex with color col(I(i, s)), then this subgraph is formed by the descend-
ants of x. Since the descendants of x are exactly the vertices in Des(gi) and Des(gs)
with colors as factors of col(I(i, s)), both u and u′ are in Des(x). Now, Des(x) has a
unique vertex of a particular color. Therefore, as u and u′ have the same color, u = u′.

13 Note that when u ∈ Xj−1,j−1 is identified with v ∈ Yj,j−1, we color it with col(u) and for simplicity we
name the new vertex as u.

14 Since Xj−1 ∼= R3(j − 1), the concept of descendant reachability can also be defined in Xj−1. Therefore,
it makes sense to use Des(g) in Xj−1 for any vertex g.

FSTTCS 2024

20:22 The Isomorphism Problem of Power Graphs and a Question of Cameron

Hence, we have proved that hj,s is one-one in both the cases. Therefore, we can conclude
that hj,s : Xj−1,s → Yj,s is a bijection for all 1 ≤ s ≤ j − 1. ◁

From the above claim, we can conclude that in the jth iteration of the outer while loop,
the identification process done in Line 12 in Algorithm 3 via the mapping hj,j−1 is correct.
Next, we show that the graph Xj (output in Line 13), derived after the identification process
on Xj−1 and Yj , is indeed isomorphic to R3(j).

For j ≥ 2, we define fj : V (Xj) −→ V (R3(j)) in the following manner:

fj(x) =

fj−1(x) if x ∈ V (Xj−1)
y otherwise where y ∈ V (R3(j)) \ V (R3(j − 1))
and col(y) = col(x).

(1)

To show that fj is well defined, it is enough to argue that for each x ∈ V (Xj) \ V (Xj−1),
there exists a unique y ∈ V (R3(j)) \ V (R3(j − 1)) such that col(y) = col(x). Observe that
V (Xj) \ V (Xj−1) is the set of vertices of Yj = HD[col(gj)] that have not been identified in
the jth iteration. So, for any vertex x ∈ V (Xj) \ V (Xj−1), col(x) divides col(gj) but col(x)
does not divide col(I(i, j)) for any i < j. This means, for each such x, there exists y in
V (R3(j)) \ V (R3(j − 1)) with color col(x) and this y is unique since V (R3(j)) \ V (R3(j − 1))
contains the vertices of Des(gj) that are not descendant reachable from any gi where i < j.
The uniqueness of colors in Yj = HD[col(gj)] also implies that fj is a bijection.

Now to show that fj is an isomorphism between Xj and R3(j), it remains to show that
fj preserves edge relations between Xj and R3(j).

Here, we want to emphasize that it might happen that two vertices x, x′ in Xj−1 are not
adjacent to each other, but after the vertex identification process in the jth iteration, there
is an edge between x and x′ in Xj . Moreover, through the following claim, we want to show
that this incident has a correspondence in R3(j).

▷ Claim 41. Let x, x′ be two vertices in the old graph (i.e., Xj−1) that take part in the vertex
identification process in the jth iteration, i.e., x, x′ ∈ Xj−1,j−1. Then, {x, x′} /∈ E(Xj−1),
but {x, x′} ∈ E(Xj) if and only if {fj−1(x), fj−1(x′)} /∈ E(R3(j − 1)), but {fj(x), fj(x′)} ∈
E(R3(j)).

Proof of claim. As fj−1 is an isomorphism between Xj−1 and R3(j − 1), we have {x, x′} /∈
E(Xj−1) if and only if {fj(x), fj(x′)} /∈ E(R3(j − 1)).

Now, assume that {x, x′} /∈ E(Xj−1) but {x, x′} ∈ E(Xj). Since x, x′ ∈ Xj−1,j−1, the
vertices x, x′ get identified with some elements z, z′ respectively in Yj such that {z, z′} ∈ E(Yj).
Also, col(x) = col(z) = col(fj(x)) and col(x′) = col(z′) = col(fj(x′)). Since Yj = HD[col(gj)]
and {z, z′} ∈ E(Yj), by definition either col(z) = col(z′)·p or col(z′) = col(z)·p for some prime
p. Therefore, either col(fj(x)) = col(fj(x′)) ·p or col(fj(x′)) = col(fj(x)) ·p for some prime p.
Moreover, fj(x), fj(x′) ∈ Des(gj). Hence, by (2) of Remark 36, {fj(x), fj(x′)} ∈ E(R3(j)).

Conversely, assume that {fj(x), fj(x′)} ∈ E(R3(j)). Since x, x′ ∈ Xj−1,j−1, x and x′ must
have been identified with some vertices z and z′ in Yj respectively such that col(x) = col(z)
and col(x′) = col(z′). Now, because of (2) of Remark 36, {fj(x), fj(x′)} ∈ E(R3(j)) implies
either col(fj(x)) = col(fj(x′)) · p or col(fj(x′)) = col(fj(x)) · p for some prime p. Therefore,
either col(z) = col(z′) · p or col(z′) = col(z) · p. So, {z, z′} ∈ E(Yj). Hence, after the vertex
identification, {x, x′} ∈ E(X3(j)). ◁

Now to show the preservation of edge relations, we consider the following cases, not
necessarily disjoint:

B. Das, J. Ghosh, and A. Kumar 20:23

(a) Let x, x′ ∈ V (Xj−1), i.e., both the vertices are from the graph obtained in the previous
iteration of the outer while loop. Then, by definition of fj in 1, fj(x) = fj−1(x) and
fj(x′) = fj−1(x′). Since by induction hypothesis fj−1 is an isomorphism between Xj−1
and R3(j − 1), {x, x′} ∈ E(Xj−1) ⇐⇒ {fj−1(x), fj−1(x′)} ∈ E(R3(j − 1)). The
remaining case is covered by Claim 41.

(b) Let x, x′ be two vertices in Xj that appear in the “Yj-part” of Xj . More precisely, x, x′

belong to the disjoint union of V (Xj) \ V (Xj−1) (which is the set of vertices which are
newly introduced in the jth iteration of the outer while loop but not identified in the
same) and Xj−1,j−1 (which corresponds to the set of vertices that are the result of vertex
identification of Xj−1,j−1 and Yj,j−1 in the jth iteration). Since Yj = HD[col(gj)] ∼=
R3(G)[Des(gj)] by Remark 36, {x, x′} ∈ E(Xj) ⇐⇒ {fj(x), fj(x′)} ∈ E(R3(j)).

(c) Let x be a vertex from the old graph Xj−1 which has not been identified in the jth

iteration, i.e., x ∈ V (Xj−1) \ Xj−1,j−1. Let x′ be a newly added vertex that has not
been identified in the jth iteration, i.e., x′ ∈ V (Xj) \ V (Xj−1). It is not hard to see that
{x, x′} is not an edge of the disjoint union of Xj−1 and Yj (before the identification
process). Since none of x and x′ has taken part in the identification process in this
iteration, we have {x, x′} /∈ E(Xj). Now as fj is a bijection, we also have the following:
fj(x) ∈ V (R3(j − 1)) \Des(gj) and fj(x′) ∈ V (R3(j)) \ V (R3(j − 1)). Since fj(x) and
fj(x′) are not in same Des(u) for any vertex u in R3(j), {fj(x), fj(x′)} is not an edge
in R3(j). Thus, it is proved that fj is an isomorphism between Xj and R3(j). So, we
can conclude that Xm

∼= R3(m). It is easy to see that R3(m) is R3(G). This concludes
the proof of Claim 39. ◁

Hence, the algorithm is correct, and we can return an isomorphic copy of R3(G) from
R4(G). ◀

FSTTCS 2024

A Myhill-Nerode Style Characterization for Timed
Automata with Integer Resets
Kyveli Doveri #

University of Warsaw, Poland

Pierre Ganty #

IMDEA Software Institute, Pozuelo de Alarcón, Madrid, Spain

B. Srivathsan #

Chennai Mathematical Institute, India
CNRS IRL 2000, ReLaX, Chennai, India

Abstract
The well-known Nerode equivalence for finite words plays a fundamental role in our understanding of
the class of regular languages. The equivalence leads to the Myhill-Nerode theorem and a canonical
automaton, which in turn, is the basis of several automata learning algorithms. A Nerode-like
equivalence has been studied for various classes of timed languages.

In this work, we focus on timed automata with integer resets. This class is known to have good
automata-theoretic properties and is also useful for practical modeling. Our main contribution is a
Nerode-style equivalence for this class that depends on a constant K. We show that the equivalence
leads to a Myhill-Nerode theorem and a canonical one-clock integer-reset timed automaton with
maximum constant K. Based on the canonical form, we develop an Angluin-style active learning
algorithm whose query complexity is polynomial in the size of the canonical form.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Timed languages, Timed automata, Canonical representation, Myhill-Nerode
equivalence, Integer reset

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.21

Related Version Full Version: https://arxiv.org/abs/2410.02464 [9]

Funding Kyveli Doveri: Supported by the ERC grant INFSYS, agreement no. 950398. Results
partly obtained when previously affiliated with the IMDEA Software Institute.
Pierre Ganty: This publication is part of the grant PID2022-138072OB-I00, funded by
MCIN/AEI/10.13039/501100011033/FEDER, UE.

1 Introduction

A cornerstone in our understanding of regular languages is the Myhill-Nerode theorem. This
theorem characterizes regular languages in terms of the Nerode equivalence ∼L: for a word
w we write w−1L = {z | wz ∈ L} for the residual language of w w.r.t. L; and for two words
u, v we say u ∼L v if u−1L = v−1L.

▶ Theorem 1.1 (Myhill-Nerode theorem). Let L be a language of finite words.
L is regular iff the Nerode equivalence has a finite index.
The Nerode equivalence is coarser than any other monotonic L-preserving equivalence.

An equivalence is said to be monotonic if u ≈ v implies ua ≈ va for all letters a and
is L-preserving if each equivalence class is either contained in L or disjoint from L. 1 An
equivalence over words being monotonic makes it possible to construct an automaton with

1 The exact term would be “right monotonic” because it only considers concatenation to the right of the
word. Throughout the paper we simply write monotonic to keep it short but we mean right monotonic.

© Kyveli Doveri, Pierre Ganty, and B. Srivathsan;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 21; pp. 21:1–21:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:k.doveri@mimuw.edu.pl
https://orcid.org/0000-0001-9403-2860
mailto:pierre.ganty@imdea.org
https://orcid.org/0000-0002-3625-6003
mailto:sri@cmi.ac.in
https://orcid.org/0000-0003-2666-0691
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.21
https://arxiv.org/abs/2410.02464
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

qI q

a, x = 1, 1
a, x < 1, 1 a, x = 1, 1

Figure 1 Automaton accepting L = {(t1 · a) . . . (tn · a) | t1 + · · · + tn = 1} with alphabet Σ = {a}.

states being the equivalence classes. The Nerode equivalence being the coarsest makes the
associated automaton the minimal (and a canonical) deterministic automaton for the regular
language. Our goal in this work is to obtain a similar characterization for certain subclasses
of timed languages.

Timed languages and timed automata were introduced by Alur and Dill [1] as a model
for systems with real-time constraints between actions. Ever since its inception, the model
has been extensively studied for its theoretical aspects and practical applications. In this
setting, words are decorated with a delay between consecutive letters. A timed word is a
finite sequence (t1 · a1)(t2 · a2) · · · (tn · an) where each ti ∈ R≥0 and each ai is a letter taken
from a finite set Σ called an alphabet. A timed word associates a time delay between letters:
a1 was seen after a delay of t1 from the start, the next letter a2 appears t2 time units after
a1, and so on. Naturally, a timed language is a set of timed words. A timed automaton
is an automaton model that recognizes timed languages. Figures 1 and 2 present some
examples (formal definitions appear later). In essence, a timed automaton makes use of
clocks to constrain time between the occurrence of transitions. In Figure 1, the variable x

denotes a clock. The transition labels are given by triples comprising a letter (e.g. a), a clock
constraint (e.g. x = 1), and a multiplicative factor (0 or 1) for the clock update. Intuitively,
the semantics of the transition from qI to q is as follows: the automaton reads the letter a

when the value of the clock held in x is exactly 1 and updates the clock value to 1 × x. If
the third element of the transition label is 0, then the transition updates the value of x to
0 × x = 0. We refer to the second element of the transition label as the transition guard
and the third element as the reset. It is worth mentioning that the transition guards feature
constants given by integer values, meaning that a guard like x = 0.33 is not allowed. Next,
we argue how challenging it is to define a Nerode-style equivalence for timed languages.

Challenge 1. The Nerode equivalence lifted as it is has infinitely many classes. For example,
the timed automaton of Figure 1 accepts a timed word (t1 ·a) . . . (tn ·a) as long as t1+· · ·+tn =
1. The timed language L of that automaton has infinitely many quotients. Indeed let
0 < t1 < 1, we have that (t1 · a)−1L = {(t2 · a) . . . (tn · a) | t2 + · · · + tn = 1 − t1}. Observe
that different values for t1 yield different quotients, hence L has uncountably many quotients.

Challenge 2. Two words with the same residual languages may never go to the same control
state in any timed automaton. Figure 2 gives an example of a timed language that exhibits
this challenge. Consider the words u = (0.5 · a) and v = (1.5 · a). The residual of both these
words is the singleton language {(0.5 · b)}. Suppose both u and v go to the same control
state q in the timed automaton. After reading u (resp. v), clocks which are possibly reset
will be 0, whereas the others will be 0.5 (resp. 1.5). Suppose v is accepted via a transition
sequence qI −→ q −→ qF . Since guards contain only integer constants, the guard on q −→ qF

should necessarily be of the form x = 2 for some clock x which reaches q with value 1.5. The
same transition can then be taken from u to give u(2 · b) or u(1.5 · b) depending on the value
of x after reading u. A contradiction. This example shows there is no hope to identify states
of a timed automaton through quotients of a Nerode-type equivalence. The equivalence that
we are aiming for needs to be stronger, and further divide words based on some past history.

K. Doveri, P. Ganty, and B. Srivathsan 21:3

q0

q1

q2

q3
a, 0 < x < 1, 1

a, 1 < x < 2, 1

b, x = 1, 0

b, x = 2, 0

Figure 2 Automaton accepting L2 = {(t1 · a)(t2 · b) | either 0 < t1 < 1 and t1 + t2 = 1, or 1 <

t1 < 2 and t1 + t2 = 2} with alphabet Σ = {a, b}.

Challenge 3. The Nerode-style equivalence should be amenable to a timed automaton con-
struction. In the case of untimed word languages, monotonicity of the Nerode equivalence
immediately led to an automaton construction. We need to find the right notion of monoton-
icity for the class of automata that we want to build from the equivalence.

A machine independent characterization for deterministic timed languages has been
studied by Bojańczyk and Lasota [6]. They circumvented the above challenges by considering
a new automaton model timed register automata that generalizes timed automata. This
automaton model makes use of registers to store useful information, for instance for the
language in Figure 2, a register stores the value 0.5 after reading (0.5 · a) and (1.5 · a).
This feature helps in resolving Challenge 2. For the question of finiteness mentioned in
Challenge 1, timed register automata are further viewed as a restriction of a more general
model of automata that uses the abstract concept of Frankel-Mostowski sets in its definition.
Finiteness is relaxed to a notion of orbit-finiteness.

The work of An et al. [3] takes another approach to these challenges by considering a
subclass of timed languages which are called real-time languages. These are languages that
can be recognized using timed automata with a single clock that is reset in every transition.
Therefore, after reading a letter, the value of the clock is always 0. This helps in solving the
challenges, resulting in a canonical form for real-time languages.

Our work. As we have seen, to get a characterization which also lends to an automaton
construction, either the automaton model has been modified or the characterization is applied
to a class of languages where the role of the clock is restricted to consecutive letters. Our goal
is to continue working with the same model as timed automata and apply a characterization
to a different subclass.

In this work, we look at languages recognized by timed automata with integer resets
(IRTA). These are automata where clock resets are restricted to transitions that contain a
guard of the form x = c for some clock x and some integer c [17]. The class of languages
recognized by IRTA is incomparable with real-time languages. Moreover, it is known that
IRTA can be reduced to 1-clock-deterministic IRTA [15], or 1-IRDTA for short. The proof of
this result effectively computes, given an IRTA, a timed language equivalent 1-IRDTA. Here
is our main result which gives a Myhill-Nerode style characterization for IRTA languages.

▶ Theorem 1.2. Let L be a timed language.
L is accepted by a timed automaton with integer resets iff there exists a constant K such
that ≈L,K is K-monotonic and has a finite index.
The ≈L,K equivalence is coarser than any K-monotonic L-preserving equivalence.

Intuitively, one should think of K as the largest integer that needs to appear in the guards
of an accepting automaton. The goal of the paper is to identify the notion of K-monotonicity
and the equivalence ≈L,K that exhibit the above theorem. The characterization also leads
to a canonical form for IRTA. In practice, the integer reset assumption allows for modeling
multiple situations [17].

FSTTCS 2024

21:4 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

To the best of our knowledge, there is no learning algorithm that can compute an IRTA
for systems that are known to satisfy the integer reset assumption. We fill this gap and show
how Angluin’s style learning [4] can be adapted to learn 1-IRDTA.

Related work. Getting a canonical form for timed languages has been studied in several
works: [6] and [14] focus on a machine independent characterization for deterministic timed
languages, whereas the works [10, 3, 21] extend the study of the canonical forms to an
active learning algorithm. Languages accepted by event-recording automata are a class of
languages where the value of the clocks is determined by the input word. This helps in
coming up with a canonical form [10]. In [21], the author presents a Myhill-Nerode style
characterization for deterministic timed languages by making use symbolic words rather
than timed words directly. The author shows that the equivalence has a finite index iff the
language is recognizable (under the notion of recognizability using right-morphisms proposed
by Maler and Pnueli [14]). Further, Maler and Pnueli have given an algorithm to convert
recognizable timed languages to deterministic timed automata, which resets a fresh clock in
every transition and makes use of clock-copy updates x := y in the transitions. It is known
that automata with such updates can be translated to classical timed automata [16, 7].

Learning timed automata is a topic of active research. The foundations of timed automata
learning were laid in the pioneering work of Grinchtein et al. [10] by providing a canonical
form for event-recording automata (ERAs). These are automata having a clock for each letter
in the alphabet, and a clock xa records the time since the last occurrence of a. The canonical
form essentially considers a separate state for each region. Since there are as many clocks
as the number of letters, there are at least |Σ|! number of regions. This makes the learning
algorithm prohibitively expensive to implement. In contrast, as we will see, we are able to
convert IRTAs into a subclass of single-clock IRTAs. If K is the maximum constant, there
are only 2K + 2 many regions. Later works on learning ERAs have considered identifying
other forms of automata that merge the states of the canonical form [12, 11, 13]. Other
models for learning timed systems consider one-clock timed automata [22, 2] and Mealy
machines with timers [8, 19]. Approaches other than active learning for timed automata
include passive learning of discrete timed automata [20] and learning timed automata using
genetic programming [18].

We have considered a subclass of deterministic timed languages. Therefore, our class
does fall under the purview of the [21, 14] work – however, the fundamental difference is
that we continue to work with timed words and not symbolic timed words. This gives an
alternate perspective and a direct and simpler 1-clock IRTA construction. The simplicity
and directness also apply when it comes to learning 1-clock IRTA.

Outline of the paper. In Section 3, we define the class of one-clock languages with integer
resets, and their acceptors thereof: the 1-clock Timed Automata (or 1-TA) with clock
constraints given by region equivalence classes and transitions that always reset on integer
clock values. Section 4 puts forward a notion of K-monotonicity and characterizates K-
monotonic equivalences as a certain type of integer reset automata. Subsequently, Section 5
presents the Nerode-style equivalence, the Myhill-Nerode theorem and some examples applying
the theorem. Finally, in Section 6, we give an algorithm to compute and learn the canonical
form.

K. Doveri, P. Ganty, and B. Srivathsan 21:5

2 Background

Words and languages. An alphabet is a finite set of letters which we typically denote by
Σ. An untimed word is a finite sequence a1 · · · an of letters ai ∈ Σ. We denote by Σ∗ the
set of untimed words over Σ. An untimed language is a subset of Σ∗. A timestamp is a
finite sequence of non-negative real numbers. We denote the latter set by R≥0 and the
set of all timestamps by T. A timed word is a finite sequence (t1 · a1) · · · (tn · an) where
a1 · · · an ∈ Σ∗ and t1 · · · tn ∈ T. We denote the set of timed words by TΣ∗. Given a timed
word u = (t1 ·a1) . . . (tn ·an) ∈ TΣ∗ we denote by σ(u) the sum t1 + · · ·+ tn of its timestamps.
A timed language is a set of timed words. As usual, we denote the empty (un)timed word
by ϵ. The residual language of an (un)timed language L with regard to a (un)timed word
u is defined as u−1L = {w | uw ∈ L}. Therefore it is easy to see that ϵ−1L = L for every
(un)timed language L.

Timed automata [1] are recognizers of timed languages. Since we focus on subclasses
of timed automata with a single clock, we do not present the definition of general timed
automata. Instead, we give a modified presentation of one-clock timed automata that will be
convenient for our work.

One-clock timed automata. A One-clock Timed Automaton (1-TA) over Σ is a tuple
A = (Q, qI , T, F) where Q is a finite set of states, qI ∈ Q is the initial state, F ⊆ Q is the
set of final states and T ⊆ Q × Q × Σ × Φ × {0, 1} is a finite set of transitions where Φ is the
set of clock constraints given by

ϕ ::= x < m | m < x | x = m | ϕ ∧ ϕ , where m ∈ N.

For a clock constraint ϕ, we write JϕK for the set of non-negative real values for x that
satisfies the constraint. Notice that we have disallowed guards of the form x ≤ m which
appear in standard timed automata literature, since its effect can be captured using two
transitions, one with x = m and another with x < m. A transition is a tuple (q, q′, a, ϕ, r)
where ϕ is a clock constraint called the guard of the transition and r ∈ {0, 1} denotes whether
the single clock x is reset in the transition.

We say that a 1-TA with transitions T is deterministic whenever for every pair θ =
(q, q′, a, ϕ, r) and θ1 = (q1, q′

1, a1, ϕ1, r1) of transitions in T such that θ ̸= θ1 we have that
either q ̸= q1, a ̸= a1 or JϕK ∩ Jϕ1K = ∅.

A run of A on a timed word (t1 · a1) . . . (tk · ak) ∈ TΣ∗ is a finite sequence

e = (q0, ν0) t1,θ1−−−→ (q1, ν1) t2,θ2−−−→ · · · tk,θk−−−→ (qk, νk) ,

where {q0, . . . , qk} ⊆ Q, {ν0, . . . , νk} ⊆ R≥0 and for each i ∈ {1, . . . , k} the following
hold: θi ∈ T and θi is of the form (qi−1, qi, ai, ϕi, ri), νi−1 + ti ∈ JϕiK, and νi = ri(νi−1 + ti).
Therefore if ri = 0, we have νi = 0 and if ri = 1 we have νi = νi−1+ti. A pair (q, ν) ∈ Q×R≥0
like the ones occurring in the run e is called a configuration of A and the configuration (qI , 0)
is called initial. The run e is deemed accepting if qk ∈ F .

For w ∈ TΣ∗ we write (q, ν)⇝w (q′, ν′) if there is a run of A on w from (q, ν) to (q′, ν′).
Observe that if A is deterministic then for every timed word w there is at most one run on
w starting from the initial configuration. We say that A is complete if every word admits a
run. In the rest, we will always assume, without loss of generality, that our timed automata
are complete. Finally, given a configuration (q, x) define L(q, x) = {w ∈ TΣ∗ | (q, x) ⇝w

(p, ν), p ∈ F, ν ∈ R≥0}, hence define L(A) as L(qI , 0).

FSTTCS 2024

21:6 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

Equivalence relation. A relation ∼ ⊆ S × S on a set S is an equivalence if it is reflexive (i.e.
x ∼ x), transitive (i.e. x ∼ y ∧ y ∼ z =⇒ x ∼ z) and symmetric (i.e. x ∼ y =⇒ y ∼ x).
The equivalence class of s ∈ S w.r.t. ∼ is the subset [s]∼ = {s′ ∈ S | s ∼ s′}. A
representative of the class [s]∼ is any element s′ ∈ [s]∼. Given a subset D of S we define
[D]∼ = {[d]∼ | d ∈ D}. We say that ∼ has finite index when [S]∼ is a finite set. An
important notion in the analysis of timed automata is the region equivalence which we recall
next for one-clock timed automata.

Region equivalence. Given a constant K ∈ N define the equivalence ≡K ⊆ R≥0 × R≥0 by

x ≡K y ⇐⇒
(
⌊x⌋ = ⌊y⌋ ∧ ({x} = 0 ⇔ {y} = 0)

)
∨ (x > K ∧ y > K) ,

where given x ∈ R≥0 we denote by ⌊x⌋ its integral part and by {x} its fractional part.

3 Languages with Integer Resets

We are interested in timed languages recognized by IRTAs. It is known that IRTAs can
be converted to 1-clock deterministic IRTAs [15]. The key idea is that in any reachable
valuation of an IRTA, all clocks have the same fractional value. Therefore, the integral values
of all clocks can be encoded inside the control state, and the fractional values can be read
from a single clock. In the sequel, we simply define IRTAs with a single clock, due to the
equi-expressivity.

We define the class of one-clock integer-reset timed automata (1-IRTA) where transitions
reset the clock provided its value is an integer. Formally, we say that a 1-TA A = (Q, qI , T, F)
is a 1-IRTA when for every resetting transition (q, q′, a, ϕ, 0) ∈ T the clock constraint ϕ is of
the form x = m, or, equivalently, JϕK ∈ N. A deterministic 1-IRTA is called a 1-IRDTA.

▶ Example 3.1. The one-clock timed automata in Figures 1, 2 and 3 are all 1-IRTAs.

The definition of a run of a 1-IRTA on a timed word simply follows that of 1-TA. However,
for 1-IRTA, we can identify positions in input timed words where resets can potentially
happen. The next definition makes this idea precise.

▶ Definition 3.2. Given d = t1 · · · tn ∈ T and a K ∈ N, we define the longest sequence of
indices sd = {0 = i0 < i1 < · · · < ip ≤ n} such that for every j ∈ {0, . . . , p − 1} the value∑i(j+1)

i=(ij)+1 ti is an integer between 0 and K. We refer to the set of positions of the sequence
sd as the integral positions of d. Note that sd is never empty since it always contains 0.
Next, define

cK(d) =
n∑

i=(ip)+1

ti .

The definitions of integral positions and the function cK apply equally to timed words by
taking the timestamp of the timed word.

Notice that the sequence sd depends on the constant K (we do not explicitly add K to the
notation for simplicity, as in our later usage, K will be clear from the context). Note also
that when ip = n then cK(d) = 0, otherwise cK(d) can be any real value except an integer
value between 0 and K, i.e. cK(d) ∈ R≥0 \ {0, . . . , K}.

K. Doveri, P. Ganty, and B. Srivathsan 21:7

a, x = 0, 0 a, 0 < x < 1, 1

a, x = 1, 0

a, 1 < x, 1
a, 0 < x < 1, 1

a, x = 1, 0

a, 1 < x, 1

a, 1 < x, 1

Figure 3 A strict 1-IRTA with alphabet Σ = {a} accepting M = {u ∈ TΣ∗ | c1(u) = 0}.

▶ Example 3.3. For K = 1 and u = (0.2 · a)(0.8 · a)(0.2 · a) we have su = {0 < 2} and
c1(u) = 0.2. For K = 1 and u′ = (1.2 · a)(0.8 · a)(0.2 · a) we have su′ = {0} and c1(u′) = 2.2.
For K = 2, we have su′ = {0 < 2} and c2(u′) = 0.2.

Consider a run of a 1-IRTA on a word u = (t1 · a1) · · · (tn · an) ∈ TΣ∗ and factor it according
to su = {0 = i0 < i1 < · · · < ip ≤ n}:

(qi0 , νi0)
t(i0)+1,θ(i0)+1···ti1 ,θi1−−−−−−−−−−−−−−−→ (qi1 , νi1)

t(i1)+1,θ(i1)+1···ti2 ,θi2−−−−−−−−−−−−−−−→ (qi2νi2) −→ · · ·

−→ (qip
, νip

)
t(ip)+1,θ(ip)+1···tn,θn

−−−−−−−−−−−−−−→ (qn, νn)

At each position ij with j ∈ {0, . . . , p}, νij ∈ N and, moreover, νij = 0 when rij = 0.
In Definition 3.2 we identified the integral positions at which a 1-IRTA could potentially

reset the clock. In the following, we recall a subclass of 1-IRTAs called strict 1-IRTAs [5]
where every transition with an equality guard ϕ (ϕ is of the form x = m or, equivalently,
JϕK ∈ N) must reset the clock. This feature, along with a special requirement on guards
forces a reset on every position given by su for a word u.

Strict 1-IRTA
A 1-IRTA is said to be strict if there exists K ∈ N such that for each of its transitions
(q, q′, a, ϕ, r) the following holds:
1. the clock constraint of the guard ϕ is either x = m, m < x ∧ x < m + 1, or K < x,
2. the clock constraint of the guard ϕ is an equality iff r = 0.

▶ Example 3.4. The 1-IRTA in Figures 2 and 3 are strict 1-IRTAs whereas the one in Figure 1
is not strict since the transition qI

a,x=1,1−−−−−→ q does not reset the clock. To make it strict
while accepting the same language, we replace the transitions of guard x = 1 by resetting
transitions of guard x = 0 and, split the transition qI

a,x<1,1−−−−−→ qI into qI
a,0<x<1,1−−−−−−−→ qI and

qI
a,x=0,0−−−−−→ qI .

A run of a strict 1-IRTA on a word u can be factored similarly as explained for a general
1-IRTA, however now, every rij will be a reset transition: notice that we require each
transition to be guarded using constraints of a special form, either x = m or m < x < m + 1
or K < x; therefore, the transition reading (ti1 , ai1) will necessarily have an equality guard
x = m forcing a reset, similarly at i2 and so on. Therefore, the sequence su identifies the
exact reset points in the word, no matter which strict 1-IRTA reads it. The quantity cK(u)
gives the value of the clock on reading u by any strict 1-IRTA. This input-determinism is
a fundamental property of strict 1-IRTAs that helps in the Myhill-Nerode characterization
that we present in the later sections.

FSTTCS 2024

21:8 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

The question now is how expressive are strict 1-IRTAs. As shown by the proposition
below, every language definable by a 1-IRTA is also definable by a strict 1-IRTA. Therefore,
we could simply consider strict 1-IRTAs instead of 1-IRTAs. Even though a proof of this
equi-expressivity theorem is known [5] we provide one in the full version [9].

▶ Proposition 3.5 (see also Theorem 1 [5]). A language accepted by a (deterministic) 1-IRTA
is also accepted by a (deterministic) strict 1-IRTA with no greater constant in guards.

4 From Equivalences to Automata and Back

We start the study of equivalences for languages accepted by integer reset automata. Pro-
position 3.5 says that every IRTA language can be recognized by a strict 1-IRDTAs. There
are two advantages of strict 1-IRDTAs: there is a single clock; and the value of the clock on
reading the word is simply determined by the word and not by the automaton that is reading
it. This motivates us to restrict our attention to equivalences that make use of the quantity
cK(u), and from which one can construct a strict 1-IRDTA with states as the equivalence
classes. In order to be able to do so, we need a good notion of monotonicity (Challenge 3 of
the Introduction).

Intuitively, the equivalence should satisfy two conditions whenever u is equivalent to v:
(1) when u can elapse time and satisfy a guard, v should be able to elapse some time and
satisfy the same guard, and (2) all one step extensions of u and v, say u′ = u(t · a) and
v′ = v(t′ · a) such that the clock values cK(u′) and cK(v′) satisfy the same set of guards
w.r.t constant K, should be made equivalent. Each guard in a strict 1-IRDTA represents a
K-region. All these remarks lead to the following definition of K-monotonicity.

▶ Definition 4.1 (L-preserving, K-monotonic). An equivalence ≈ ⊆ TΣ∗ × TΣ∗ is L-
preserving when u ≈ v =⇒ (u ∈ L ⇐⇒ v ∈ L). Given a constant K ∈ N, ≈ ⊆ TΣ∗ × TΣ∗

is K-monotonic when u ≈ v implies:
(a) cK(u) ≡K cK(v), and
(b) ∀a ∈ Σ, ∀t, t′ ∈ R≥0 : cK(u) + t ≡K cK(v) + t′ =⇒ u(t · a) ≈ v(t′ · a).

From a K-monotonic equivalence, we can construct a strict 1-IRDTA whose states are
the equivalence classes. Here is additional notation. For a number t ∈ R≥0, we define a clock
constraint ϕ([t]≡K) as:

ϕ([t]≡K) =

x = t if t ≤ K ∧ t ∈ N ,

⌊t⌋ < x ∧ x < ⌊t⌋ + 1 if t ≤ K ∧ t /∈ N ,

K < x if K < t .

▶ Definition 4.2 (From equivalence ≈ to strict 1-IRDTA A≈). Let L ⊆ TΣ∗, K ≥ 0, and ≈ a
K-monotonic, L-preserving equivalence with finite index. The strict 1-IRDTA A≈ has states
{[u]≈ | u ∈ TΣ∗}. The initial state is [ϵ]≈. Final states are {[u]≈ | u ∈ L}. Between two
states [u]≈ and [v]≈ there is a transition ([u]≈, [v]≈, a, g, s) if there exists t ∈ R≥0 such that:

u(t · a) ≈ v, and
g = ϕ([cK(u) + t]≡K), and
s = 0 if cK(u) + t ∈ {0, 1, . . . , K} and s = 1 otherwise.

We now explain why the above definition does not depend on the representative picked
from an equivalence class. Suppose ([u]≈, [v]≈, a, g, s) is a transition. Let t ∈ R≥0 be a value
which witnesses the transition, that is, it satisfies the conditions of the above definition.

K. Doveri, P. Ganty, and B. Srivathsan 21:9

Pick another word u′ equivalent to u, that is, u ≈ u′. By Definition 4.1 (a), we have
cK(u) ≡K cK(u′). Therefore, there exists t′ such that cK(u) + t ≡K cK(u′) + t′. Moreover
by (b), u′(t′ · a) ≈ u(t · a), and hence u′(t′ · a) ≈ v. Therefore, we observe that even if we
had chosen u′ instead of u, we get a witness t′ for the same transition ([u]≈, [v]≈, a, g, s).

▶ Lemma 4.3. Let ≈ be an L-preserving, K-monotonic equivalence with finite index. Then
L(A≈) = L.

Proof. By induction on the length of the timed words we show that for every u ∈ TΣ∗,
([ϵ]≈, 0) ⇝u ([u]≈, cK(u)). Let u(t · a) ∈ TΣ∗. Assume ([ϵ]≈, 0) ⇝u ([u]≈, cK(u)). By
definition of A≈, there is a transition ([u]≈, [u(t · a)]≈, a, g, s) such that g = ϕ([cK(u) + t]≡K)
and, s = 0 if cK(u) + t ∈ {0, 1, . . . , K} and s = 1 otherwise. Since cK(u(t · a)) = (cK(u) + t)s
we deduce that ([ϵ]≈, 0)⇝u ([u]≈, cK(u))⇝(t·a) ([u(t · a)]≈, cK(u(t · a))). Finally, since ≈ is
L-preserving, a word is in L iff A≈ accepts it. ◀

We now look at the reverse question of obtaining a monotonic equivalence from an
automaton. Given a complete strict 1-IRDTA B, we define an equivalence ≈B as u ≈B v

if B reaches the same (control) state on reading u and v from its initial configuration.
If K is the maximum constant appearing in B, it is tempting to think that ≈B is a K-
monotonic equivalence. However ≈B need not satisfy condition (a) of Definition 4.1. For
instance, consider a strict 1-IRDTA B which has two self-looping transitions in its initial state:
q

a,x=0,0−−−−−→ q and q
a,0<x<1,1−−−−−−−→ q. Observe that (0 · a) ≈B (0.5 · a), but c1((0 · a)) ̸= c1((0.5 · a)).

Therefore, the state-based equivalence ≈B needs to be further refined in order to satisfy
monotonicity. This leads us to define an equivalence ≈K

B as: u ≈K
B v if u ≈B v and

cK(u) = cK(v).

▶ Lemma 4.4. Let B be a complete strict 1-IRDTA with maximum constant K. The
equivalence ≈K

B is L(B)-preserving, K-monotonic and has finite index.

Proof. The equivalence ≈K
B is L(B)-preserving because equivalent words reach the same

state in B, thus either both are accepted or both are rejected. It has finite index because the
number of its equivalence classes is bounded by the number of states of B multiplied by the
number of K regions. Condition (a) and (b) of Def. 4.1 respectively hold by definition of
≈K

B and since B is deterministic. ◀

The goal of the section was to go from equivalences to automata and back. Lemma 4.3 talks
about equivalence-to-automata. For the automata-to-equivalence, we needed to strengthen
the state-based equivalence with the region equivalence. A close look at A≈ of Definition 4.2
reveals whenever u ≈ v, we also have cK(u) ≡K cK(v). So, in the equivalence-to-automata,
we get an automaton satisfying a stronger property. This motivates us to explicitly highlight
a class of strict 1-IRDTAs where each state can be associated with a unique region. For this
class, we will be able to go from equivalence-to-automata-and-back directly.

▶ Definition 4.5 (K-acceptor). A K-acceptor B is a complete strict 1-IRDTA with maximum
constant smaller than or equal to K such that for every u, v ∈ TΣ∗, u ≈B v implies
cK(u) ≡K cK(v). Hence every state q of B can be associated to a unique K-region, denoted,
region(q), i.e., whenever (qI , 0)⇝w (q, cK(w)) then cK(w) ∈ region(q).

Every strict 1-IRDTA B with maximum constant K can be converted into a K-acceptor by
starting with the equivalence ≈K

B and building A≈K
B

. Furthermore K-monotonic equivalences
characterize K-acceptors (Lemmas 4.3 and 4.4). Therefore, for the rest of the document, we

FSTTCS 2024

21:10 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

will restrict our focus to K-acceptors. As a next task, we look for the coarsest possible K-
monotonic equivalence for a language. This will give a minimal K-acceptor for the language,
which we deem to be the canonical integer reset timed automaton, with maximum constant
K, for the language.

5 A Nerode-style Equivalence

In the previous section, we have established generic conditions required from an equivalence
to construct a K-acceptor from it. In this section, we will present a concrete such equivalence:
given a language L definable by a 1-IRTA with a maximum constant K ∈ N we define a
syntactic equivalence ≈L,K ⊆ TΣ∗ × TΣ∗. “Syntactic” means this equivalence is independent
of a specific representation of L. We then show that ≈L,K is the coarsest L-preserving and
K-monotonic equivalence.

The idea for defining ≈L,K is to identify two words u and u′ whenever cK(u) ≡K cK(u′)
and the residuals u−1L and u′−1L coincide modulo some rescaling w.r.t. cK(u) and cK(u′).
We start with examples to give some intuition behind the rescaling function.

Examples. Consider an automaton segment q0
a,0<x<1,1−−−−−−−→ q1

b,x=1,0−−−−−→ q2
c,0<x<1,1−−−−−−−→ q3, with

q3 being an accepting state. The words u = (0.2 · a) and v = (0.6 · a) both go to state q1.
Let us assume that all other transitions go to a sink state, and also that the maximum
constant K = 1. The language L accepted is {(t1 · a)(t2 · b)(t3 · c)} where 0 < t1 < 1,
t1 + t2 = 1 and 0 < t3 < 1. Moreover, u−1L = {(0.8 · b)(t3 · c) | 0 < t3 < 1} and
v−1L = {(0.4 · b)(t3 · c) | 0 < t3 < 1}. Here we want to somehow “equate” the residual
languages u−1L and v−1L. The idea is to define a bijection between these two sets u−1L and
v−1L. In this case, the bijection maps (0.8 · b)(t3 · c) to (0.4 · b)(t3 · c) for every t3. Observe
that given u, v the bijection depends on the values cK(u) and cK(v), which in this example
are 0.2 and 0.6 respectively.

Here is another example. Let u1, v1 be words with cK(u1) = 0.2 and cK(v1) = 0.6. Let
u−1

1 L = {(t1 · a)(t2 · b)(t3 · c)(t4 · d) | cK(u1) + t1 + t2 + t3 = 1} and v−1
1 L = {(t′

1 · a)(t′
2 · b)(t′

3 ·
c)(t′

4 · d) | cK(v1) + t′
1 + t′

2 + t′
3 = 1}. The bijection in this case is more complicated than the

previous example. The idea is to first start with cK(u1) = 0.2, cK(v1) = 0.6 and consider
a bijection f of the open unit interval (0, 1) that maps the intervals (0, 0.8] and (0.8, 1)
to (0, 0.4] and (0.4, 1) respectively. This bijection is essentially a rescaling of the intervals
(0, 1 − cK(u1)] and (1 − cK(u1), 1) into the intervals (0, 1 − cK(v1)]) and (1 − cK(v1), 1). We
now pick the first letters in the residual languages u−1

1 L and v−1L and create a mapping:
(t1 · a) 7→ (f(t1) · a). Now we consider cK(u1(t1 · a)) and cK(v1(f(t1) · a)) in the place of
cK(u1), cK(v1), and continue the mapping process one letter at a time.

Rescaling function. We will now formalize this idea. We will start with bijections of the
open unit interval.

Let λ, λ′ ∈ (0, 1) be arbitrary real values. Define a bijection fλ→λ′ : (0, 1) → (0, 1) that
scales the (0, λ] interval to (0, λ′] and the (λ, 1) interval to (λ′, 1):

fλ→λ′(t) =

(

λ′

λ

)
t for 0 < t ≤ λ

λ′ + (1 − λ′)
(1 − λ) (t − λ) for λ < t < 1

K. Doveri, P. Ganty, and B. Srivathsan 21:11

Now, consider x, x′ ∈ R≥0 such that x ≡K x′. We define a length-preserving bijection
τx→x′ : T → T inductively as follows: for the empty sequence ϵ, we define τx→x′(ϵ) = ϵ; for a
timestamp d ∈ T and a t ∈ R≥0, τx→x′(dt) = d′t′ where d′ = τx→x′(d) and t′ is obtained as
follows: let y = cK(xd) and y′ = cK(x′d′). If y, y′ ∈ N or y, y′ > K, then define t′ = t. Else,
define ⌊t′⌋ = ⌊t⌋ and {t′} = f(1−{y})→(1−{y′})({t}).

Here is an additional notation, before we describe some properties of the rescaling
function. For x1, x2, x3 ∈ R≥0 with x1 ≡K x2 ≡K x3, we denote the composed function
(τx2→x3) ◦ (τx1→x2) as τx1→x2→x3 . So, τx1→x2→x3(t) = τx2→x3(τx1→x2(t)).

▶ Lemma 5.1. The bijection τx→x′ satisfies the following properties:
1. for an arbitrary timestamp t1t2 . . . tn ∈ T, if τx→x′(t1t2 . . . tn) = t′

1t′
2 . . . t′

n then, we have
cK(x + t1 + · · · + tn−1) + tn ≡K cK(x′ + t′

1 + · · · + t′
n−1) + t′

n,
2. τ−1

x→x′ is identical to τx′→x,
3. τx1→x2→x3 is identical to τx1→x3 .

The rescaling function τx→x′ can be naturally extended to timed words: τx→x′((t1 ·a1)(t2 ·
a2) . . . (tn · an)) = (t′

1 · a1)(t′
2 · a2) . . . (t′

n · an) where t′
1t′

2 . . . t′
n = τx→x′(t1t2 . . . tn). The next

observation follows from Property 1. of Lemma 5.1.

▶ Lemma 5.2. Let B be a K-acceptor, and q a control state of B. Let x, x′ ∈ R≥0 such that
x ≡K x′. Then, for every timed word w: w ∈ L(q, x) iff τx→x′(w) ∈ L(q, x′).

Syntactic equivalence. For timed words u, v ∈ TΣ∗ such that cK(u) ≡K cK(v), we write
τu→v for the bijection τcK (u)→cK (v). We now present the main equivalence.

▶ Definition 5.3 (Equivalence ≈L,K). Let L be a timed language and K a natural number.
We say u ≈L,K v if cK(u) ≡K cK(v) and τu→v(u−1L) = v−1L.

Note that the equivalence ≈L,K is L-preserving. Assume u ≈L,K v. We have u ∈
L ⇐⇒ ϵ ∈ u−1L and ϵ ∈ u−1L ⇐⇒ ϵ ∈ v−1L since τu→v(ϵ) = ϵ by definition. Thus,
u ∈ L ⇐⇒ v ∈ L.

▶ Proposition 5.4. When L ⊆ TΣ∗ is definable by a K-acceptor, then ≈L,K has finite
index and is K-monotonic. Moreover, ≈L,K is the coarsest K-monotonic and L-preserving
equivalence.

Proof. We start by showing that ≈L,K is K-monotonic. Condition (a) of Definition 4.1
holds by definition. We move to (b). Let tu, tv ∈ R≥0 s.t. cK(u) + tu ≡K cK(v) + tv. Let:

u1 = u(tu · a) v1 = v(tv · a)
To show: τu1→v1(u−1

1 L) = v−1
1 L (1)

Let t′
v = τu→v(tu) and v2 = v(t′

v · a). We will prove 1 using these intermediate claims:

▷ Claim 5.5. τu1→v2(u−1
1 L) = v−1

2 L

▷ Claim 5.6. τv2→v1(v−1
2 L) = v−1

1 L

Hence: τu1→v2→v1(u−1
1 L) = v−1

1 L. By Lemma 5.1, we conclude τu1→v1(u−1
1 L) = v−1

1 L.

Proof of Claim 5.5. Let w ∈ TΣ∗. By definition of u1, we have:

w ∈ u−1
1 L iff (tu · a)w ∈ u−1L (2)

FSTTCS 2024

21:12 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

Since u ≈L,K v, we know that τu→v(u−1L) = v−1L. Therefore:

(tu · a)w ∈ u−1L iff τu→v((tu · a)w) ∈ v−1L (3)

By the way we have constructed the rescaling function, we have

τu→v((tu · a)w) = (t′
v · a)τu1→v2(w) (4)

Finally, by definition of v2:

(t′
v · a)τu1→v2(w) ∈ v−1L iff τu1→v2(w) ∈ v−1

2 L (5)

From (2), (3), (4) and (5), we conclude w ∈ u−1
1 L iff τu1→v2(w) ∈ v−1

1 L for an arbitrary
timed word w. This proves the claim. ◁

Proof of Claim 5.6. Let B be a K-acceptor recognizing L, and let q be the control state
reached by B on reading word v. We first claim that:

cK(v) + tv ≡K cK(v) + t′
v (6)

This is because, by Lemma 5.1, we have cK(u) + tu ≡K cK(v) + t′
v, and by assumption, we

have cK(u) + tu ≡K cK(v) + tv. Since ≡K is transitive, (6) follows.
The observation made in (6) implies on elapsing tv or t′

v from v, the same outgoing
transition is enabled, as B is deterministic. Therefore v1 = v(tv · a) and v2 = v(t′

v · a) reach
the same control state q′. Hence, (6) can be read as cK(v1) ≡K cK(v2). By Lemma 5.2, for
any timed word w, we have w ∈ v−1

2 L iff τv2→v1(w) ∈ v−1
1 L. The claim follows. ◁

We will now show that ≈L,K has finite index and is also the coarsest K-monotonic,
L-preserving equivalence. Let B be a K-acceptor for L. Recall that u ≈B v if B reaches the
same control state on reading u and v. We will show:

u ≈B v implies u ≈L,K v (7)

This will immediately prove that ≈L,K has finite index. Secondly, for any K-monotonic,
L-preserving equivalence ≈, we can build a K-acceptor A≈ (Lemma 4.3) whose equivalence
is identical to ≈. Thus, (7) also shows that ≈L,K is the coarsest such equivalence.

Proof of (7) is as follows. Let q be the control state reached by u and v in B, and
let x = cK(u), x′ = cK(v). Since B is a K-acceptor, we also have x ≡K x′. From
Lemma 5.2, τx→x′(L(q, x)) = L(q, x′). Hence, we deduce: τu→v(u−1L) = v−1L. This proves
u ≈L,K v. ◀

The above proposition leads to the following Myhill-Nerode style characterization for
timed languages recognized by IRTA.

▶ Theorem 5.7.
(a) L ⊆ TΣ∗ is a language definable by an IRTA if and only if there is a constant K ∈ N

such that ≈L,K is K-monotonic and has finite index.
(b) ≈L,K is coarser than any K-monotonic and L-preserving equivalence.

The conversion from a general IRTA to a strict 1-IRTA does not increase the constant.
Similarly, a strict 1-IRTA with maximum constant K can be converted to a K-acceptor.
Therefore, the overall conversion from an IRTA to an acceptor preserves the constant. From
the second part of Theorem 5.7, we deduce that for a language L that is recognized by an

K. Doveri, P. Ganty, and B. Srivathsan 21:13

IRTA with constant K, the K-acceptor A≈L,K built from the equivalence ≈L,K has the least
number of states among all K-acceptors recognizing L. It is therefore a minimal automaton
among all K-acceptors for L. We now present some examples that apply this Myhill-Nerode
characterization.

▶ Example 5.8. Consider the language L = {(x · a) | x ∈ N}. The right-and side of
Theorem 5.7 (a) does not hold. Indeed, there is no K ∈ N such that ≈L,K verifies the
K-monotonicity (b): For every K ∈ N we have cK(ϵ) + K + 1 ≡K cK(ϵ) + K + 1.1. Since
(K + 1 · a) ∈ L and (K + 1.1 · a) /∈ L, by L-preservation, (K + 1 · a) ̸≈L,K (K + 1.1 · a). By
Theorem 5.7, L is not 1-IRTA definable.

▶ Example 5.9. Consider the language L = {(x · a)(1 · b) | 0 < x < 1}. This language is
accepted by a 1-TA that reads a on a guard 0 < x < 1, resets the clock x and reads b at
x = 1. This is clearly not an IRTA. We will once again see that K-monotonicity holds for
no K. For u = (0.2 · a), cK(u) + 1 ≡K cK(u) + 1.1 holds for every constant K ∈ N. Since
u(1 · b) ∈ L and u(1.1 · b) /∈ L, we have u(1 · b) ̸≈L,K u(1.1 · b). Thus, there is no K such that
≈L,K verifies K-monotonicity (b), hence L is not 1-IRTA definable by Theorem 5.7.

▶ Example 5.10. Consider the language M = {u ∈ TΣ∗ | c1(u) = 0} with alphabet Σ = {a}
which has the following residual languages. For u ∈ TΣ∗,

u−1M = M when c1(u) = 0, u−1M = {v ∈ TΣ∗ | σ(uv) = 1} when 0 < c1(u) < 1,

u−1M = ∅ when 1 < c1(u).

The equivalence classes for ≈M,1 are the following:

[ϵ]≈M,1 = M, [(3
2 · a)]≈M,1 = {u ∈ TΣ∗ | 1 < c1(u)}, [(1

2 · a)]≈M,1 = {u ∈ TΣ∗ | 0 < c1(u) < 1}.

The acceptor A≈M,1 is depicted in Figure 3 where [ϵ]≈M,1 is the initial (and final) state,
[(3

2 · a)]≈M,1 the sink state, and [(1
2 · a)]≈M,1 the rightmost state.

▶ Example 5.11. Consider the language L = {(0·a)n(0·b)n | n ∈ N}. There is no K such that
≈L,K has finite index, although ≈L,0 is 0-monotonic: for u ≈L,0 v with 0 < c0(u) ≡0 c0(v),
no extension of u or v belongs to L and hence monotonicity (b) holds; pick u and v with
c0(u) = c0(v) = 0, and let t, t′ such that c0(u) + t ≡0 c0(v) + t′. If t = 0 then t′ = 0 and
monotonicity holds. Suppose 0 < t, t′. Then u(t · α) /∈ L and u(t′ · α) /∈ L for any letter α.
Once again, (b) holds.

We now argue the infinite index, similar to the case of untimed languages. For distinct
integers n and m we have ((0 · a)n)−1L ̸= ((0 · a)m)−1L. Since τ0→0 is the identity we have
τ0→0(((0 · a)n)−1L) ̸= ((0 · a)m)−1L. Thus, (0 · a)n ̸≈L,K (0 · a)m.

▶ Example 5.12. Consider the language L = {u ∈ TΣ∗ | t1 + · · · + tn = 1} given in Figure 1.
Given a timed word u = (t1 · a1) . . . (tn · an) ∈ TΣ∗ we denote by σ(u) the sum t1 + · · · + tn

of its timestamps. Also we have that σ(ϵ) = 0. The residual languages of L are the following.
For u ∈ TΣ∗,

u−1L = ∅ when 1 < σ(u), u−1L = {v ∈ TΣ∗ | σ(v) = 0} when σ(u) = 1,

u−1L = L when σ(u) = 0, u−1L = {v ∈ TΣ∗ | σ(u) + σ(v) = 1} when 0 < σ(u) < 1.

The equivalence classes for ≈L,1 are:

[(1 · a)]≈L,1 = L, [(1 · a)(1
2 · a)]≈L,1 = {u ∈ TΣ∗ | 0 < c1(u) < 1 ∧ 1 < σ(u)},

[ϵ]≈L,1 = {u ∈ TΣ∗ | σ(u) = 0}, [(1
2 · a)]≈L,1 = {u ∈ TΣ∗ | 0 < c1(u), σ(u) < 1},

[(2 · a)]≈L,1 = {u ∈ TΣ∗ | 1 < c1(u)}, [(1 · a)(1 · a)]≈L,1 = {u ∈ TΣ∗ | c1(u) = 0 ∧ 1 < σ(u)}.

FSTTCS 2024

21:14 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

ϵ

(1
2 · a)

(1 · a)(2 · a)

(1·a)(1
2 ·a)

(1·a)(1·a)

a, x = 0, 0

a, 0 <
x < 1, 1

a, x = 1, 0

a, 1 < x, 1

a, 0 < x < 1, 1

a, x
= 1, 0a, 1 < x, 1

a, x = 0, 0
a, 0 <

x < 1, 1

a, x
= 1, 0

a, 1 < x, 1

a, 1 < x, 1

a, x = 0, 0

a
, 0

<
x

<
1, 1

a, x = 1, 0

a, 1 < x, 1

a, 0 < x < 1, 1

a
,x

=
1,

0

a, 1 < x, 1

Figure 4 A strict 1-IRDTA A≈L,1 accepting L = {u ∈ TΣ∗ | σ(u) = 1}.

The acceptor A≈L,1 is depicted in Figure 4 and has six states, whereas the (strict)
1-IRDTA given in Example 3.4 for L only has two.

6 The Canonical Form

Sections 4 and 5 developed the idea of a canonical K-acceptor for a language recognized by
an IRTA with constant K. In this section, we will further study this canonical form. We
present a crucial property that will help effectively compute the canonical form, and also
apply an Angluin-style L∗ algorithm.

▶ Definition 6.1 (Half-integral words). We call a timed word (t1 · a1)(t2 · a2) . . . (tn · an) to be
a half-integral if for each 1 ≤ i ≤ n, the fractional part {ti} is either 0 or 1

2 : in other words,
each delay is either an integer or a rational with fractional value 1

2 . Also, the empty word ϵ

is a half-integral word.

▶ Definition 6.2 (Small half-integral words). Let K ∈ N. A half-integral word (t1 · a1)(t2 ·
a2) . . . (tn · an) is said to be small w.r.t K if ti < K + 1 for all 1 ≤ i ≤ n.

For a finite alphabet Σ and K ∈ N, let ΣK := {0, 1
2 , 1, . . . , K − 1

2 , K, K + 1
2 } × Σ. Every

small integral word is therefore in Σ∗
K . The next lemma is a generalization of the following

statement: for every timed word u, there is a small half-integral timed word w such that
every K-acceptor reaches the same state on reading both u and w.

▶ Lemma 6.3. Let u0 be a half-integral word which is small w.r.t. K. For every timed
word u, there is a half-integral word w such that u0w is small w.r.t K and every K-acceptor
reaches the same state on reading u0u or u0w.

This allows us to identify the canonical equivalence ≈L,K using small integral words.

▶ Proposition 6.4. Let B be a K-acceptor for a language L. Then, the equivalence ≈B

coincides with ≈L,K iff for all half-integral words u, v ∈ (ΣK)∗: u ≈B v iff u ≈L,K v.

We make use of Proposition 6.4 to compute the canonical form.

K. Doveri, P. Ganty, and B. Srivathsan 21:15

6.1 Computing the Canonical Form
Given a K-acceptor B, we can minimize it using an algorithm which is similar to the standard
DFA minimization which proceeds by computing a sequence of equivalence relations on the
states.

Equivalence ∼0: for a pair of states p, q of B define p ∼0 q if region(p) = region(q) and
either both are accepting states, or both are non-accepting states.
Suppose we have computed the equivalence ∼i for some i ∈ N. For a pair of states
p, q, define p ∼i+1 q if p ∼i q and for every letter (t, a) ∈ ΣK , the outgoing transitions
(p, p′, a, ϕ([t]≡K), s) and (q, q′, a, ϕ([t]≡K), s) in B satisfy p′ ∼i q′.
Stop when ∼i+1 equals ∼i.

The next lemma is a simple consequence of the definition of ∼i and by an induction on
the number of iterations i.

▶ Lemma 6.5. Let p, q be such that region(p) = region(q). Suppose p ̸∼i q. Then there
exists a word z of length at most i such that δ∗

B(p, z) is accepting whereas δ∗
B(q, z) is not.

We define the quotient of B by ∼i as the K-acceptor whose states are the equivalence
classes for ∼i. There is a transition ([q]∼i , [p]∼i , a, ϕ([t]≡K), s) if there is q′ ∈ [q]∼i and
p′ ∈ [p]∼i such that (q′, p′, a, ϕ([t]≡K , s) is a transition of B. The initial state is the class of
the initial state of B and the final states are the classes that have a non empty intersection
with the set of final states of B. For i ≥ 1 the quotient of B by ∼i is an acceptor for L(B).

Suppose we reach a fixpoint at m ∈ N. The quotient of B by ∼m gives the canonical
automaton A≈L,K . Suppose the quotient does not induce the canonical equivalence. By
Proposition 6.4 there are two words u, v ∈ (ΣK)∗ such that u and v go to a different state,
but u ≈L,K v. Consider the iteration i when the two states were made non-equivalent. There
is a small half-integral word z of length i which distinguishes u and v by Lemma 6.5 – a
contradiction to u ≈L,K v. Let us say z ∈ u−1L, since u, v are half-integral, τu→v is simply
the identity function. Since z ̸∈ v−1L, we deduce that τu→v(u−1L) ̸= v−1L, hence u ̸≈L,K v.

6.2 Learning the Canonical Form
Our learning algorithm closely follows Angluin’s L∗ approach, so we assume familiarity with
it and provide a brief example of its adaptation to the IRTA setting. Detailed definitions,
proof of correctness, and a complete example are provided in the full version [9].

We assume that the Learner is aware of the maximum constant K for the unknown
language L. The Learner’s goal is to identify the equivalence classes of ≈L,K using small
half-integral words, from Σ∗

K . Correspondingly, the rows and columns in an observation
table are words in Σ∗

K . In the L∗ algorithm, each row of the observation table corresponds
to an identified state. Two identical rows correspond to the same state. In order to make a
similar conclusion, we add a column to the observation table, that maintains cK(u) for every
string u of a row. There is one detail: once cK(u) goes beyond K, we want to store it as
a single entity ⊤. We define cK

⊤ (u) to be equal to cK(u) when this value is bellow K and
equal to ⊤ otherwise.

▶ Lemma 6.6. Let L be a timed language recognized by a K-acceptor, and let u, v ∈ (ΣK)∗.
Then u ≈L,K v iff cK

⊤ (u) = cK
⊤ (v) and for all words z ∈ (ΣK)∗, we have uz ∈ L iff vz ∈ L.

An observation table labels its rows and columns with words in (ΣK)∗. The row words
form a prefix-closed set, and the column words form a suffix-closed set, as in Angluin. Table 1
shows three observation tables. The lower part of these tables includes one-letter extensions
of the row words, and their cK

⊤ values are shown in the extra column in red.

FSTTCS 2024

21:16 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

Table 1 A run of L∗ for IRTA.

T0 ϵ c1
⊤(u)

ϵ 0 0
(0 · a) 0 0
(1

2 · a) 0 1
2

(1 · a) 1 0
(1 + 1

2 · a) 0 ⊤

T1 ϵ c1
⊤(u)

ϵ 0 0
(1

2 · a) 0 1
2

(1 · a) 1 0
(1 + 1

2 · a) 0 ⊤
(0 · a) 0 0

(1
2 · a)(0 · a) 0 1

2
(1

2 · a)(1
2 · a) 1 0

(1
2 · a)(1 · a) 0 ⊤

(1
2 · a)(1 + 1

2 · a) 0 ⊤
(1 · a)(0 · a) 1 0
(1 · a)(1

2 · a) 0 1
2

(1 · a)(1 · a) 0 0
(1 · a)(1 + 1

2 · a) 0 ⊤
(1 + 1

2 · a)(ΣK · a) 0 ⊤

T2 ϵ c1
⊤(u)

ϵ 0 0
(1

2 · a) 0 1
2

(1 · a) 1 0
(1 + 1

2 · a) 0 ⊤
(1 · a)(1 · a) 0 0

(1 · a)(1 · a)(1 · a) 0 0
(0 · a) 0 0

(1
2 · a)(0 · a) 0 1

2
(1

2 · a)(1
2 · a) 1 0

(1
2 · a)(1 · a) 0 ⊤

(1
2 · a)(1 + 1

2 · a) 0 ⊤
(1 · a)(0 · a) 1 0
(1 · a)(1

2 · a) 0 1
2

(1 · a)(1 + 1
2 · a) 0 ⊤

(1 + 1
2 · a)(ΣK · a) 0 ⊤

(1 · a)(1 · a)(0 · a) 0 0
(1 · a)(1 · a)(1

2 · a) 0 1
2

(1 · a)(1 · a)(1 + 1
2 · a) 0 ⊤

(1 · a)(1 · a)(1 · a)(ΣK · a) 0 ..

Suppose the unknown IRTA language is L = {u ∈ TΣ∗ | σ(u) = 1} for Σ = {a} with a
known constant K = 1. The learner starts with T0 containing only the ϵ row which is 0 since
ϵ /∈ L, and the ϵ column. T0 is not closed as witnessed by (1 · a), whose row is 1, while the
row of ϵ is 0. Additionally, (1

2 · a) and (1 + 1
2 · a) also witness non-closure because their cK

⊤
values are non zero. This highlights the difference from the untimed case: row words are
distinguished based on their clock values as well.

To obtain a closed table, the learner successively adds the words (1
2 · a), (1 · a), (1 + 1

2 · a),
forming T1. Every two words in T1 are distinguished either by their row or by their cK

⊤
value. Thus, T1 is consistent: if two words have identical rows and same cK

⊤ value then their
extensions also satisfy this. Since T1 is closed and consistent the learner conjectures AT1

(see [9] for details), the K-acceptor induced by T1 (formal definition in [9]). The teacher
provides a counterexample, assumed to be (1 · a)(1 · a)(1 · a), which is accepted by AT1 but
not in L. The learner processes this counterexample and computes T2, which is closed but
not consistent as shown by ϵ and (1 · a)(1 · a) and their extensions by (1 · a). Hence, the
learner adds a column for (1 · a) and computes T3. The process continues similarly. The rest
of the run is detailed in the full version [9].

7 Conclusion

We have presented a Myhill-Nerode style characterization for timed languages accepted by
timed automata with integer resets. There are three main technical ingredients: (1) the notion
of K-monotonicity (Definition 4.1) that helps characterize equivalences on timed words with
automata, that we call K-acceptors. This was possible since each word u determines the value
cK(u) of the clock on reading u, in any K-acceptor; (2) the definition of the rescaling function
(Section 5) that gives a Nerode-like equivalence, leading to a Myhill-Nerode theorem for IRTA

K. Doveri, P. Ganty, and B. Srivathsan 21:17

languages, and the canonical equivalence ≈L,K ; (3) understanding canonical equivalence
≈L,K through half-integral words (Section 6), which are, in some sense, discretized words.
This helps us to build and learn the canonical form. We believe these technical ingredients
provide insights into understanding the languages recognized by IRTA. Typically, active
learning algorithms begin by setting up a canonical form. We have laid the foundation for
IRTAs. Future work lies in adapting these foundations for better learning algorithms.

References
1 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994. doi:10.1016/0304-3975(94)90010-8.
2 Jie An, Mingshuai Chen, Bohua Zhan, Naijun Zhan, and Miaomiao Zhang. Learning one-clock

timed automata. In TACAS’20: Proc. 26th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, volume 12078 of LNCS, pages 444–462. Springer,
2020. doi:10.1007/978-3-030-45190-5_25.

3 Jie An, Bohua Zhan, Naijun Zhan, and Miaomiao Zhang. Learning Nondeterministic Real-
Time Automata. ACM Transactions on Embedded Computing Systems, 20(5s):1–26, 2021.
doi:10.1145/3477030.

4 Dana Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87–106, 1987. doi:10.1016/0890-5401(87)90052-6.

5 Devendra Bhave and Shibashis Guha. Adding Dense-Timed Stack to Integer Reset Timed
Automata. In RP’17: Proc. 11th International Conference on Reachability Problems, volume
10506 of LNCS, pages 9–25. Springer, 2017. doi:10.1007/978-3-319-67089-8_2.

6 Mikołaj Bojańczyk and Sławomir Lasota. A Machine-Independent Characterization of Timed
Languages. In ICALP’12: Proc. of the 39th Int. Colloquium of Automata, Languages and
Programming, volume 7392, pages 92–103. Springer, 2012. doi:10.1007/978-3-642-31585-5_
12.

7 Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Updatable timed
automata. Theoretical Computer Science, 321(2-3):291–345, 2004. doi:10.1016/j.tcs.2004.
04.003.

8 Véronique Bruyère, Bharat Garhewal, Guillermo A. Pérez, Gaëtan Staquet, and Frits W.
Vaandrager. Active learning of mealy machines with timers. CoRR, abs/2403.02019, 2024.
doi:10.48550/arxiv.2403.02019.

9 Kyveli Doveri, Pierre Ganty, and B. Srivathsan. A myhill-nerode style characterization for timed
automata with integer resets. CoRR, abs/2410.02464, 2024. doi:10.48550/arxiv.2410.02464.

10 Olga Grinchtein, Bengt Jonsson, and Martin Leucker. Learning of event-recording automata.
Theoretical Computer Science, 411(47):4029–4054, 2010. doi:10.1016/j.tcs.2010.07.008.

11 Olga Grinchtein, Bengt Jonsson, and Paul Pettersson. Inference of event-recording automata us-
ing timed decision trees. In CONCUR’06: Proc. 17th International Conference on Concurrency
Theory, volume 4137 of LNCS, pages 435–449. Springer, 2006. doi:10.1007/11817949_29.

12 Shang-Wei Lin, Étienne André, Jin Song Dong, Jun Sun, and Yang Liu. An efficient algorithm
for learning event-recording automata. In ATVA’11: Proc. 9th International Symposium on
Automated Technology for Verification and Analysis, volume 6996 of LNCS, pages 463–472.
Springer, 2011. doi:10.1007/978-3-642-24372-1_35.

13 Anirban Majumdar, Sayan Mukherjee, and Jean-François Raskin. Greybox learning of
languages recognizable by event-recording automata. In ATVA’24: Proc. 22nd International
Symposium on Automated Technology for Verification and Analysis, LNCS. Springer, 2024.

14 Oded Maler and Amir Pnueli. On Recognizable Timed Languages. In FoSSaCS’04: Proc. of
the Int. Conf. on Foundations of Software Science and Computation Structures, volume 2987
of LNCS, pages 348–362. Springer, 2004. doi:10.1007/978-3-540-24727-2_25.

15 Lakshmi Manasa and Krishna S. Integer Reset Timed Automata: Clock Reduction and
Determinizability. CoRR, abs/1001.1215, 2010. doi:10.48550/arxiv.1001.1215.

FSTTCS 2024

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1145/3477030
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-319-67089-8_2
https://doi.org/10.1007/978-3-642-31585-5_12
https://doi.org/10.1007/978-3-642-31585-5_12
https://doi.org/10.1016/j.tcs.2004.04.003
https://doi.org/10.1016/j.tcs.2004.04.003
https://doi.org/10.48550/arxiv.2403.02019
https://doi.org/10.48550/arxiv.2410.02464
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1007/11817949_29
https://doi.org/10.1007/978-3-642-24372-1_35
https://doi.org/10.1007/978-3-540-24727-2_25
https://doi.org/10.48550/arxiv.1001.1215

21:18 A Myhill-Nerode Style Characterization for Timed Automata with Integer Resets

16 Jan Springintveld and Frits W. Vaandrager. Minimizable timed automata. In FTRTFT’96:
Proc. of 4th Int. Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems,
volume 1135 of LNCS, pages 130–147. Springer, 1996. doi:10.1007/3-540-61648-9_38.

17 P. Vijay Suman, Paritosh K. Pandya, Shankara Narayanan Krishna, and Lakshmi Man-
asa. Timed Automata with Integer Resets: Language Inclusion and Expressiveness. In
FORMATS’08: Proc. of the Int. Conf. on Formal Modeling and Analysis of Timed Systems,
volume 5215, pages 78–92. Springer, 2008. doi:10.1007/978-3-540-85778-5_7.

18 Martin Tappler, Bernhard K. Aichernig, Kim Guldstrand Larsen, and Florian Lorber. Time
to learn - learning timed automata from tests. In FORMATS’19: Proc. 17th International
Conference on Formal Modeling and Analysis of Timed Systems, volume 11750 of LNCS, pages
216–235. Springer, 2019. doi:10.1007/978-3-030-29662-9_13.

19 Frits W. Vaandrager, Masoud Ebrahimi, and Roderick Bloem. Learning mealy machines with
one timer. Inf. Comput., 295(Part B):105013, 2023. doi:10.1016/J.IC.2023.105013.

20 Sicco Verwer. Efficient Identification of Timed Automata: Theory and practice. PhD thesis,
Delft University of Technology, Netherlands, 2010. URL: http://resolver.tudelft.nl/uuid:
61d9f199-7b01-45be-a6ed-04498113a212.

21 Masaki Waga. Active Learning of Deterministic Timed Automata with Myhill-Nerode Style
Characterization. In CAV’23: Proc. of the 35th Int. Conf. on Computer Aided Verification,
volume 13964 of LNCS, pages 3–26. Springer, 2023. doi:10.1007/978-3-031-37706-8_1.

22 Runqing Xu, Jie An, and Bohua Zhan. Active learning of one-clock timed automata using
constraint solving. In ATVA’22: Proc. 20th International Symposium on Automated Technology
for Verification and Analysis, volume 13505 of LNCS, pages 249–265. Springer, 2022. doi:
10.1007/978-3-031-19992-9_16.

https://doi.org/10.1007/3-540-61648-9_38
https://doi.org/10.1007/978-3-540-85778-5_7
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1016/J.IC.2023.105013
http://resolver.tudelft.nl/uuid:61d9f199-7b01-45be-a6ed-04498113a212
http://resolver.tudelft.nl/uuid:61d9f199-7b01-45be-a6ed-04498113a212
https://doi.org/10.1007/978-3-031-37706-8_1
https://doi.org/10.1007/978-3-031-19992-9_16
https://doi.org/10.1007/978-3-031-19992-9_16

Counterfactual Explanations for MITL Violations
Bernd Finkbeiner #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Felix Jahn #

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Julian Siber #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract
MITL is a temporal logic that facilitates the verification of real-time systems by expressing the
critical timing constraints placed on these systems. MITL specifications can be checked against
system models expressed as networks of timed automata. A violation of an MITL specification
is then witnessed by a timed trace of the network, i.e., an execution consisting of both discrete
actions and real-valued delays between these actions. Finding and fixing the root cause of such a
violation requires significant manual effort since both discrete actions and real-time delays have to
be considered. In this paper, we present an automatic explanation method that eases this process by
computing the root causes for the violation of an MITL specification on the execution of a network
of timed automata. This method is based on newly developed definitions of counterfactual causality
tailored to networks of timed automata in the style of Halpern and Pearl’s actual causality. We
present and evaluate a prototype implementation that demonstrates the efficacy of our method on
several benchmarks from the literature.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models; Theory of
computation → Modal and temporal logics

Keywords and phrases Timed automata, actual causality, metric interval temporal logic

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.22

Supplementary Material
Software: https://github.com/reactive-systems/rt-causality.git [44]

archived at swh:1:dir:de6b34eb1137d85c4257b5adac4b15646bd8ea3e

Funding This work was partially supported by the DFG in project 389792660 (Center for Perspicuous
Systems, TRR 248) and by the ERC Grant HYPER (No. 101055412).

1 Introduction

Networks of timed automata are a popular formalism to model a wide range of real-time
systems such as automotive controllers [27, 50] and communication protocols [23, 39]. These
models can be automatically checked against specifications in Metric Interval Temporal
Logic (MITL) [4], a real-time extension of linear-time temporal logic that allows to constrain
temporal operators to non-singleton intervals over the real numbers. In case a network of
timed automata does not satisfy an MITL specification, a model-checking procedure will
return an execution of the network as a counterexample. Such an execution is defined by
discrete actions of the automata in the network and by real-valued delays that describe the
time that passes between the discrete actions. Hence, fixing an erroneous system requires
insight into both actions and delays that caused the violation on the given counterexample.

In this paper, we present an approach that facilitates this insight through counterfactual
explanations for the observed violation. Previous approaches for explaining real-time viola-
tions only consider safety properties [52] or only real-time delays without discrete actions [46],
and hence cannot provide a comprehensive insight for violations of unconstrained MITL

© Bernd Finkbeiner, Felix Jahn, and Julian Siber;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 22; pp. 22:1–22:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:finkbeiner@cispa.de
https://orcid.org/0000-0002-4280-8441
mailto:felix.jahn@uni-saarland.de
https://orcid.org/0000-0003-4851-3385
mailto:julian.siber@cispa.de
https://orcid.org/0000-0003-0842-0029
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.22
https://github.com/reactive-systems/rt-causality.git
https://archive.softwareheritage.org/swh:1:dir:de6b34eb1137d85c4257b5adac4b15646bd8ea3e;origin=https://github.com/reactive-systems/rt-causality;visit=swh:1:snp:a9716ce4356b5dd9f88d9df49a2f8e2eb84cb8b1;anchor=swh:1:rev:99da0bec9342b40af8acd08ef7e689173a440ae1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Counterfactual Explanations for MITL Violations

init
crit
x ≤ 3

β

x := 0

β

x = 3α

x := 0

(a) A component automaton of network A1 || A2.

{init1,2} {crit1, init2} {crit1,2}

{init1, crit2}
(
{init1,2}

)ω

β1

1.0
β2

1.0

β2

1.0
α1

2.0
β1

2.0

(b) An execution of the network A1 || A2.

Figure 1 The network and its execution discussed as an illustrative example in Subsection 1.1.

properties. Like related efforts for discrete systems [10, 20], we ground our explanation
method in the theory of actual causality as formalized by Halpern and Pearl [34, 35, 36] and
identify the actions and delays that are actual causes for the violation of the specification on
the observed counterexample. This approach faces several new challenges when confronted
with real-time models expressed as networks of timed automata, instead of the previously
considered structural equation models [35], finite-state machines [20], and traces [10].

The first challenge pertains to the concept of interventions, which describe how the
observed counterexample is modified when hypothetical counterfactual executions are con-
sidered during the analysis. While previous results usually consider models where the set of
counterfactual scenarios is finite, modifying delays in executions of timed automata gives rise
to infinitely many counterfactual scenarios. Our main insight to solve this problem is based on
constructing networks of timed automata that model all such counterfactual executions, such
that checking a causal hypothesis or even synthesizing a cause from scratch can be realized
through model checking of these newly constructed automata. Actual causality in models
with infinitely many variables, each potentially having an infinite domain, is only starting
to be understood [37] and our results suggest that known techniques from timed automata
verification are partially transferable to this general theory, e.g., for cause computation.

A second challenge we face in networks of timed automata pertains to the concept
of contingencies. When two or more potential causes preempt each other, contingencies
allow to isolate the true, non-preempted cause from the others. In structural equations
models [33] and Coenen et al.’s definition for finite-state machines [20], this is realized by
extending the system dynamics with resets that set variables back to the value they had in
the actual, original scenario. Networks of timed automata have both local variables, i.e.,
component locations, and global variables such as clocks. We account for this by defining
two automata constructions that allow such resets through contingencies on the local level
by single components, as well as on the network level for global clock variables.

1.1 Illustrative Example
We discuss our approach for causal analysis with the example of a small network of timed
automata A1 || A2 consisting of two identical component automata as depicted in Figure 1a,
which we will also use as a running example throughout the paper. The two automata can
each switch between the two locations init and crit, but whenever they enter the location crit
with action β, they are required to stay there for exactly three time units. This is realized
through an initial reset of a global clock variable (x := 0) with the first β action and a
location invariant (x ≤ 3) in location crit, as well as a clock guard (x = 3) on the second β

action. We want to check the mutual exclusion property [0,∞)(¬crit1 ∨ ¬crit2) expressed in
MITL, which states that the two automata A1 and A2 are never both in location crit. It is
easy to see that this property is violated, e.g., by the execution depicted in Figure 1b. This

B. Finkbeiner, F. Jahn, and J. Siber 22:3

Table 1 A contrastive overview of the four root causes on the execution in the illustrative example,
inferred using but-for causality and actual causality.

Ref. But-For Causes Actual Causes Intuitive Description

1 {(1.0, 1,A1)} {(1.0, 1,A1)} The first component did not wait.

2 {(2.0, 1,A2)} {(2.0, 1,A2)} The second component did not wait.

3 a: {(β, 1, A1), (β, 2, A1)}
b: {(β, 1, A1), (3.0, 2, A1)}

{(β, 1,A1)} The first component entered crit.

4 {(β, 1,A2)} {(β, 1,A2)} The second component entered crit.

(simplified) execution is an infinite sequence of location labels constructed from delays and
discrete actions, where the ω-part is repeated infinitely often. For abbreviation, we place
the delay values and actions on the same arrow, which means that the action above the
arrow is performed after delaying for as long as specified under the arrow. Both action and
location labels refer to a component automaton performing the action and being in a location,
respectively, through their index. The execution depicted in Figure 1b respects the dynamics
of the automata, e.g., exactly three time units pass between entering and leaving crit. As we
can see, Automaton 2 uses a β action less than three time units after Automaton 1, while
the latter needs to stay in crit for exactly three time units.

We generate explanations through counterfactual reasoning: For instance, we can infer
that one cause of the violation above is that the second component waits only two time
units before entering crit by considering hypothetical executions with alternative delays at
this particular point, all else being the same. This relaxed model allows an execution where
the second component waits with entering the crit location until after the first component
has already left theirs, such that no violation occurs. Hence, we can infer the but-for cause
{(2.0, 1,A2)} which says that the first delay of 2.0 time units by component A2 is a root
cause for the violation. We measure delays locally on the component level and hence need to
add all global delays between actions of the second component as defined in the execution
above. Table 1 lists this cause (Cause 2) along with the other root causes inferred through
but-for causal analysis in the second column. Cause 1 expresses that the delay of component
A1 can similarly be set high enough that no violation occurs.

Cause 3 shows that the but-for counterfactual analysis is not always enough: With this
naïve criterion we cannot infer that the first β action of A1 is a cause for the violation
of the property on this execution, since changing it alone to, e.g., α, does not suffice to
avoid the violation. The second β then steps in to produce the same effect, which means
we are dealing with a preemption of potential causes. In the but-for causal analysis, we
consequently have to additionally intervene on the preempted causes to obtain executions to
avoid the effect. In this case, we can either additionally change the second β (Cause 3a), or
the second delay (Cause 3b – this way we can set the entering of crit to after component
A2 has already left). These larger causes are not desirable, because they do not only point
to the root of the issue. As a solution in such cases of preemption, Halpern and Pearl [35]
suggest contingencies, and Coenen et al. [20] have recently lifted this to finite-state machines
with infinite executions. Inspired by these efforts, we propose a contingency mechanism for
networks of timed automata that similarly allows us to infer the first β as the true cause in
the given scenario (Cause 3). This mechanism extends the network with contingency edges
that, e.g., allow the second β to move to the same location as in the original execution, i.e.,
to init. This then produces a witnessing counterfactual run that avoids the effect.

FSTTCS 2024

22:4 Counterfactual Explanations for MITL Violations

1.2 Outline and Contributions

After recalling preliminaries in Section 2, we develop our definitions of counterfactual
causality in networks of timed automata (Section 3). We follow Halpern’s approach [34]
in first defining a notion of minimal but-for causality. Counterfactual reasoning is realized
through an automaton construction that allows to search for a witnessing intervention in the
infinite set of counterfactual runs through model checking. Inspired by Coenen et al. [20, 21],
we extend but-for causality through a construction of contingency automata, which model
contingencies on the local level of components as well as on the network level for global
variables such as clocks (Subsection 3.3), yielding a main building block for our definition
of actual causality. In Section 4, we present algorithms for computing and checking but-for
and actual causes. These algorithms exploit a property of both notions of causality that
we term cause monotonicity, which allows us to reduce the potential causes we need to
consider during computation. We have implemented a prototype of this algorithm and
report on its experimental evaluation in Section 5. We show that causes can be computed in
reasonable time and help in narrowing down the behavior responsible for an MITL violation.
To summarize, we make the following contributions:

We define and study the notions of but-for causality and actual causality in networks of
timed automata, for effects described by arbitrary MITL properties;
We propose an algorithm for computing these causes and study its theoretical complexity;
We report the results of a prototype implementation of this algorithm for automated
explanations of counterexamples in real-time model checking.

2 Preliminaries

We recall background on actual causality, timed automata as models of real-time systems,
and MITL as a temporal logic for specifying real-time properties.

2.1 Actual Causality

We recall Halpern’s modified version [33] of actual causality [35], which uses structural
equation models to define the causal dependencies of a system. Formally, a causal model
is a tuple M = (S,F) that consists of a signature S = (U ,V,R) and structural equations
F = {FX |X ∈ V}. The sets U and V define exogenous variables and endogenous variables,
respectively. The range R(Y) specifies the possible values of each variable Y ∈ Y = U ∪V . A
structural equation FX ∈ F defines the value of an endogenous variable X ∈ V as a function
FX : (×Y ∈Y\{X}R(Y))→ R(X) of the values of all other variables in U ∪V , without creating
cyclic dependencies in F . Therefore, the structural equations have a unique solution for a
given context u⃗ ∈ (×U∈U R(U)), i.e., a valuation for the variables in U . Actual causality
then defines whether a value assignment X⃗ = x⃗ causes φ, a conjunction of primitive events
Y = y for Y ∈ V , in a given context.

▶ Definition 1 (Halpern’s Version of Actual Causality [33]). X⃗ = x⃗ is an actual cause of φ in
(M, u⃗), if the following three conditions hold:
AC1. (M, u⃗) |= X⃗ = x⃗ and (M, u⃗) |= φ.
AC2. There is a contingency W⃗ ⊆ V with (M, u⃗) |= W⃗ = w⃗ and a setting x⃗′ for the variables

in X⃗ s.t. (M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗]¬φ.
AC3. X⃗ is minimal, i.e., no strict subset of X⃗ satisfies AC1 and AC2.

B. Finkbeiner, F. Jahn, and J. Siber 22:5

AC1 simply states that both the cause and the effect have to be satisfied in the given
context u⃗ and causal model M. AC2 appeals to an intervention X⃗ ← x⃗′ that overrides
the structural equations for all X⃗i ∈ X⃗ such that FX⃗i

= x⃗′
i. While the witness x⃗′ can be

chosen arbitrarily, the valuation w⃗ for the contingency variables W⃗ has to be the same as
in the original context. The contingency is applied after the intervention, and in this way
allows to reset certain variables to their original values, with the aim to infer more precise
causes in certain scenarios. Hence, AC2 requires that some intervention together with a
contingency avoids the effect, i.e., the resulting solution to the modified structural equations
falsifies at least one primitive event in φ. AC3 ensures that X⃗ = x⃗ is a concise description of
causal behavior by enforcing minimality. In particular, this ensures that for no variable the
valuation in x⃗′ (AC2) coincides with its original valuation in x⃗.

▶ Example 2. We recall a classic example of Suzy and Billy throwing rocks at a bottle [35].
We have the endogenous variables BT ,ST for Billy and Suzy throwing their rock, respectively.
BH ,SH signify that they hit, and BB encodes that the bottle breaks from a hit. BT and
ST directly depend on some nondeterministic exogenous variables, while the other structural
equations are BH = BT ∧ ¬ST , SH = ST and BB = BH ∨ SH , i.e., Suzy’s throw is
always faster than Billy’s. Hence, in the context where both throw their rock, we have
BT = ST = SH = BB = 1 and BH = 0. The intervention ST = 0 does not suffice to avoid
the effect, because the structural equations still evaluate to BB = 1 due to Billy’s throw. We
say Billy’s throw was preempted. We can pick the contingency BH = 0 from the original
evaluation as a contingency. This means we set both ST = 0 and BH = 0, the latter of which
“blocks” the influence of Billy’s throw, and obtain an evaluation where the effect disappears,
i.e., with BB = 0. Finally, only the event ST = 1 is in the cause.

2.2 Networks of Timed Automata

We use networks of timed automata [1] to model real-time systems. We fix a finite set AP
of atomic propositions and a finite set of actions Act. Given a set of real-valued clocks
X, a clock constraint is a conjunctive formula of atomic constraints of the form x ∼ n or
x− y ∼ n with x, y ∈ X, ∼∈{<,≤,=,≥, >}, and n ∈ N. The set of clock constraints over a
clock set X is denoted C(X). Then, a timed automaton is a tuple A = (Q, q0, X,E, I, L),
where Q is a finite set of locations, q0 ∈ Q is the initial location, X is a finite set of clocks,
E ⊆ (Q × C(X) × Act × U(X) × Q) is the edge relation, I : Q → C(X) is an invariant
assignment, and L : Q → 2AP is a labeling function. We consider a version of updatable timed
automata that can reset clocks to constants [16]. Hence, the set of clock updates U(X) is the
set of partial functions mapping clocks to natural numbers: U(X) = {U : X ⇀ N}. A clock
assignment for a set of clocks X is a function u : X → R≥0. u0 denotes the assignment where
all clocks are mapped to zero. We write u |= g if u satisfies a clock constraint g ∈ C(C),
u+ δ for the clock assignment that results from u after δ ∈ R≥0 time units have passed, i.e.,
(u+ δ)(x) = u(x) + δ, and u← U for the assignment that updates u in accordance with U ,
i.e., (u← U)(x) = U(x) if x ∈ dom(U) else (u← U)(x) = u(x).

▶ Definition 3 (Semantics of Timed Automata). The semantics of a timed automaton
A = (Q, q0, X,E, I, L) is defined by a transition system (Q × R|X|

≥0), (q0, u0),→), where →
contains:
delays: (q, u) δ−→ (q, u+ δ) iff δ ∈ R≥0 and (u+ δ′) |= I(q) for all 0 ≤ δ′ ≤ δ, and
actions: (q, u) α−→ (q′, u← U) iff (q, g, α, U, q′) ∈ E, u |= g, and (u← U) |= I(q′).

FSTTCS 2024

22:6 Counterfactual Explanations for MITL Violations

A run ρ = (q0, u0) δ1−→ α1−→ (q1, u1) δ2−→ α2−→ . . . of A is a sequence of alternating delay
and action transitions. The set Π(A) is the set of all runs of A. The trace π(ρ) =
⟨δρ

1 , α
ρ
1⟩⟨δ

ρ
2 , α

ρ
2⟩ . . . of a run ρ is the sequence of delay and action transitions. We sometimes

denote the elements of some run ρ or trace π at index i with qρ
i , δρ

i etc. We define the
accumulated delay as δ(i, j) =

∑
k=i,...,j δk and δ0 = 0. The signal σρ of the run ρ maps

time points to location labels: σρ(t) = {a | ∃i. a ∈ L(qi) ∧ δ(0, i) ≤ t < δ(0, i + 1)}. The
language L(A) is the set of all signals with a corresponding run of A. We use this left-closed
right-open interpretation of signals due to Maler et al. [51] because of its simplicity. It is
straightforward to extend our counterfactual analysis technique to other semantics, e.g.,
continuous time and point wise [4], or even to other logics with linear-time semantics, as
long as their model checking problem is decidable. Note that we make use of an intersection
operation ∩ for timed automata which intersects the actions, i.e., the edge label of the
automata. You may assume that the operation unifies the labels of the locations, but we
apply it such that only one operand automaton has location labels. This means that the
result of A1 ∩A2 is not (singal-based) language intersection in the classical sense, i.e., we do
not have L(A1 ∩ A2) = L(A1) ∩ L(A2).

▶ Definition 4 (Network of Timed Automata). A network of timed automata A1 || . . . || An

is constructed through parallel composition. Let Ai = (Qi, li0, X,E
i, Ii, Li) for all 1 ≤ i ≤ n

with a common set of global clocks X. The network A1 || . . . || An is defined by the automaton
A = (Q, q0, X,E, I, L), where the locations are the Cartesian product Q = Q1 × . . . × Qn,
with the initial state qn

0 = (q1
0 , . . . , q

n
0), the invariants are combined as I(q⃗) =

∧
1≤i≤n I

i(qi),
and the labels are unified as L(q) =

⋃
1≤i≤n L

i(qi). The edge relation E contains two types:
internal:

(
q⃗, g, ⟨Ai,Ai, α⟩, U, q⃗ [q′

i/qi]
)

iff (qi, g, α, U, q
′
i) ∈ Ei, and

synchronized:
(
q⃗, gi ∧ gj , ⟨Ai,Aj , α⟩, Ui ∪ Uj , q⃗ [q′

i/qi, q
′
j/qj]

)
iff i ̸= j, (qi, gi, α, U, q

′
i) ∈ Ei,

and (qj , gj , ᾱ, U, q
′
j) ∈ Ej.

Hence, we do explicitly identify the component automata participating in action transitions
by constructing tuples containing actions and automata handles. This is for technical
convenience in later constructions, and we define a predicate to check whether an automaton
participates in an action transition as participates(Ai, ⟨Aj ,Ak, α⟩) := (i = j) ∨ (i = k), as
well as a partial function for accessing the original action as action(Ai, ⟨Aj ,Ak, α⟩) = α iff
i = j and action(Ai, ⟨Aj ,Ak, α⟩) = ᾱ iff i = k.

2.3 Metric Interval Temporal Logic
We use Metric Interval Temporal Logic (MITL) [4] for defining real-time properties such
as system specifications and effects. The syntax of MITL formulas over a set of atomic
propositions AP is defined by ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ UI ϕ, where p ∈ AP and I is a
non-singleton interval of the form [a, b], (a, b], [a, b), (a, b), (a,∞), or [a,∞) with a, b ∈ N and
a < b. We also consider the usual derived Boolean and temporal operators (I ϕ := ⊤ UI ϕ,

I ϕ := ¬ I ¬ϕ, ϕ U ψ := ϕ U [0,∞) ψ, ϕ := [0,∞) ϕ, and ϕ := [0,∞) ϕ).
The semantics of MITL is defined inductively with respect to a signal σ : R≥0 → 2AP and a
timepoint t ∈ R≥0.

σ, t |= p iff p ∈ σ(t)
σ, t |= ¬ϕ iff σ, t ̸|= ϕ

σ, t |= ϕ ∧ ψ iff σ, t |= ϕ and σ, t |= ψ

σ, t |= ϕ UI ψ iff ∃t′ > t. t′ − t ∈ I, σ, t′ |= ψ and ∀t′′ ∈ (t, t′). σ, t′′ |= ϕ

A run ρ satisfies an MITL formula ϕ, iff σ(ρ), 0 |= ϕ. A timed automaton A satisfies ϕ, iff
all of its runs satisfy ϕ. We write ρ |= ϕ and A |= ϕ, respectively.

B. Finkbeiner, F. Jahn, and J. Siber 22:7

3 Counterfactual Causality in Real-Time Systems

In this section, we develop two notions of counterfactual causality in real-time systems. We
first define our language for describing causes and how they define interventions on timed
traces (Subsection 3.1). We then start with a simple notion of but-for causality in networks
of timed automata based on interventions without contingencies (Subsection 3.2). Afterward,
we outline how to model contingencies in a timed automaton (Subsection 3.3) and use them
to define actual causes, in the sense of Halpern and Pearl (cf. Subsection 2.1). Note that the
proofs of all nontrivial statements of this section are in Appendix A.

3.1 Interventions on Timed Traces

We describe actual causes as finite sets of events. Events have two distinct types such that
they either refer to an action or a delay transition in a given run.

▶ Definition 5 (Event). A delay event is a tuple (δ, i) ∈ R≥0 × N and an action event is a
tuple (α, i) ∈ Act× N. The sets of all delay and action events are denoted as DE and AE,
respectively. The set of all events is E = DE ∪̇AE. For a trace π, the set of events on π is
defined as Eπ = {(απ

i , i) | i ∈ N>0} ∪ {(δπ
i , i) | i ∈ N>0}.

When we describe a cause as a set of events, we are mainly interested in the counterfactual
runs obtained by modifying the events contained in the cause. In the style of Halpern and
Pearl, we call such modifications interventions. If the actual run is given in a finite, lasso-
shaped form and the cause is a finite set of events, these interventions can be described by a
timed automaton that follows the dynamics of the actual trace, except for events that appear
in the cause. For these events, the behavior is relaxed to allow arbitrary alternative actions
or delays. We call a run ρ lasso-shaped if it can be composed of a (possibly empty) prefix
and an infinitely occurring loop, i.e., if it is of the form

ρ = (q0, u0) . . .
(
(qn, un) . . . (qp−1, up−1) δp−→ αp−−→

)ω
,

where the ω-part is repeated infinitely often. Note that strictly speaking, a lasso-shaped
trace as defined here does not exists for all models that violate an MITL property, because
clock valuations are not guaranteed to stabilize in some infinitely-repeating loop un . . . up−1.
We use the valuations to reset clock values in our contingency construction that will be
introduced in Subsection 3.3. This construction may be generalized by considering clock
regions or zones [14] instead of the valuations. This requires defining the resets in the
contingency automaton accordingly.

In this paper, we simplify by assuming the existence of a lasso-shaped run as defined
above. In general, we can further assume the clocks to be assigned to values in Q, as timed
automata do not distinguish between the real and rational numbers [3]. For a lasso-shaped
run ρ as described above, we define a function to access the successor index of an action as
dstρ : {1, . . . , p} 7→ {0, . . . , p− 1} with dstρ(k) = k if k ̸= p and dstρ(p) = n else. We define
the length of the run ρ as |ρ| = p. The functions dstπ and |π| are defined analogously for the
trace of a lasso-shaped run. We are now ready to define the automaton modelling traces
with interventions.

FSTTCS 2024

22:8 Counterfactual Explanations for MITL Violations

(δπ
i , i) /∈ C (απ

i , i) /∈ C(
i− 1, d = δπ

i , α
π
i , d := 0, dstπ(i)

)
∈ E

(δπ
i , i) ∈ C (απ

i , i) /∈ C(
i− 1,⊤, απ

i , d := 0, dstπ(i)
)
∈ E

(δπ
i , i) /∈ C (απ

i , i) ∈ C β ∈ Act(
i− 1, d = δπ

i , β, d := 0, dstπ(i)
)
∈ E

(δπ
i , i) ∈ C (απ

i , i) ∈ C β ∈ Act(
i− 1,⊤, β, d := 0, dstπ(i)

)
∈ E

Figure 2 Rules defining the edge relation E of the counterfactual trace automaton AC
π.

▶ Definition 6 (Counterfactual Trace Automaton). Let π be a lasso-shaped trace over the set
of actions Act and let C ⊆ Eπ be a finite set of events. The counterfactual trace automaton of
trace π for the set of events C is defined as AC

π := (Q, q0, X,E, I, L) with Q := {0, . . . , |π|−1},
q0 := 0, X := {d}. The transition relation E is defined by the following rules depicted in
Figure 2, we have L(q) = ∅ for all q ∈ Q, and

I(q) :=
{
d ≤ δπ

q+1, if (δπ
q+1, q + 1) ̸∈ C

⊤, otherwise.

The main idea of the counterfactual automaton AC
π is to follow the actions and delays

of the original run for all events that are not in the event set C, and allow arbitrary action
and delays for events in C. Hence, AC

π modifies the trace of ρ, i.e., the sequence of action
and delay events. Subsequently, we will combine a local AC

π with the dynamics of the
original components to obtain full counterfactual runs of a network of timed automata. The
interventions on actions and delays are captured by the rules that define the transition
relation and are listed in Figure 2, which treat the different combination of events that may
or may not be in the cause at a specific index i. Crucially, the automaton AC

π then captures
not just a single concrete intervention on the events in C with respect to the run ρ, such as
a modified trace with a specific alternative delay deviating from the actual trace, but all
(possibly infinitely many) interventions on the events, i.e., it contains all traces with possibly
varying actions and delays at specific indices.

▶ Example 7. For the trace π = ⟨1.0, β⟩⟨3.0, β⟩(⟨2.0, α⟩)ω and the set of events C =
{(β, 1), (3.0, 2)}, we depict the counterfactual trace automaton AC

π in Figure 3. For the first
action and the second delay, arbitrary interventions are allowed, all other action and delay
events are enforced to be as in π.

3.2 But-For Causality in Networks of Timed Automata
We now use the construction from the previous section to define counterfactual causes for
MITL-expressible effects on runs of networks of timed automata. In practice, an effect ϕ
may be the violation of a specification ψ, such that the effect corresponds to the negation of
the specification: ϕ ≡ ¬ψ. The main idea of our definition is to isolate the local traces of the

d ≤ 1 d ≤ 2
{α, β}, d = 1 β, ⊤ α, d = 2

d := 0d := 0 d := 0

Figure 3 Counterfactual trace automaton AC
π.

B. Finkbeiner, F. Jahn, and J. Siber 22:9

component automata, and then construct a counterfactual trace automaton (cf. Definition 6)
for each component, where the former intervenes on the events in a given cause that refer
to the specific component. Afterward, each counterfactual trace automaton is intersected
with its corresponding component automaton, and the network of all these intersections
describes the counterfactual runs after intervention. To apply interventions locally, we start
by defining the local projections of a run in a network of timed automata.

▶ Definition 8 (Local Projection). For a network An = A1 || . . . || An and one of its runs
ρ, we denote {j1, . . . , jl} := { j ∈ N | participates(Ai, α

ρ
j)} as the the event points of some

component automaton Ai, whereby we let j1 < . . . < jl. Then the local projection ρ(Ai) of
the component automaton Ai is defined as the trace ρ(Ai) := ⟨δ1, α1⟩⟨δ2, α2⟩ . . ., in which

α
ρ(Ai)
k := action(Ai, α

ρ
jk

) for all k = 1, 2, . . ., i.e., the identity of the actions is preserved;

δ
ρ(Ai)
k = Σx=jk−1+1,...,jk

δρ
x for all k = 1, 2, . . . and with j0 := 1, i.e., the delays in the

local projection are the cumulative delays between two actions of the automaton in the
global run of the network.

Furthermore, we denote with locations(ρ,Ai) := (qρ
0)i, (qρ

j1
)i, (qρ

j2
)i, . . . the sequence of local

locations, i.e., the projection to the i-th component of the network location. We define the
localization function as localize(ρ,An) := (ρ(A1), . . . , ρ(An)).

Note that the local projection as defined here differs fundamentally from local runs as
defined for the local time semantics of timed automata [12], as the clocks still advance globally
at the same speed. However, by conducting counterfactual interventions on the delays in a
local projection of a run, we are able to change the order of transitions, which is not possible
by interacting with delays in the global run of the network. It should also be noted that even
if the global run ρ is infinite, the local projections may still turn out to be finite because the
transitions occurring infinitely often may stem from a subset of the automata.

▶ Example 9. For the run ρ from Subsection 1.1, the first local projection ρ(A1) is exactly
the trace π considered in Example 7 and locations(ρ,A1) = init, crit, (init)ω as the sequence of
local locations. The second local projection ρ(A2) is the finite trace ρ(A2) = ⟨2.0, β⟩⟨3.0, β⟩.

It is worth pointing out that every global run induces well-defined local projections,
however, the tuple localize(ρ,A) of local traces may have multiple associated global runs.
This stems from nondeterminism in the order of actions happening at the same timepoint.
In essence, we treat the scheduler’s decisions in such a situation as nondeterministic, and
allow different resolution of this nondeterminism in counterfactual runs of the network.

▶ Proposition 10. The localization function is not injective: There exists a network A and
two runs ρ ̸= ρ′ such that localize(ρ,A) = localize(ρ′,A).

Since we want to apply the construction of the counterfactual trace automaton locally to
every component, we lift the definition of events from traces to (network) runs, such that the
events of a network run are the union of events on local projections of the run.

▶ Definition 11 (Events of a Network Run). Given a run ρ of a network A1 || . . . || An, we
define the set of associated events as

Eρ := { (e, i,Ak) | (e, i) ∈ Eρ(Ak) for some component 1 ≤ k ≤ n } .

We lift the set of all events to a network An and define it as E(An) = {(e, i,Ak) | (e, i) ∈
E ∧ 1 ≤ k ≤ n} and say a run ρ satisfies a set of events C ⊆ E(An), denoted ρ |= C, if C is a
subset of the events on ρ, i.e., if C ⊆ Eρ. We further define an operator to filter for events of
a specific component k: C|k := {(e, i) | (e, i,Ak) ∈ C}.

FSTTCS 2024

22:10 Counterfactual Explanations for MITL Violations

Note that Eρ(Ak) contains both action events as well as locally projected delay events.
Hence, when we speak about the events on a network run we talk about the actions of the
respective component automata (identified through the third position in the event tuple), as
well as about the time between these actions of a component automaton (i.e., the cumulative
delays between two actions of a component). These events are the atomic building blocks
of our counterfactual expalantions. With this at hand we can define our first notion of
counterfactual causality based on allowing arbitrary alternatives for all the events appearing
in a hypothetical cause. The corresponding notion for structural equation models was termed
but-for causality by Halpern [34], so we adopt the same name here. Crucially, in our setting
with networks of timed automata, the alternative delays and events are realized with respect
to the local projections of the network run, such that an alternative delay can change the
order of actions emerging in different component automata.

▶ Definition 12 (But-For Causality in Real-Time Systems). Let A1 || . . . || An be a network of
timed automata and ρ a run of the network. A set of events C ⊆ E(An) is a but-for cause for
ϕ in ρ of A, if the following three conditions hold:
SAT ρ |= C and ρ |= ϕ, i.e., cause and effect are satisfied by the actual run.
CFBF There is an intervention on the events in C s.t. the resulting run avoids the effect ϕ,

i.e., we have

(A1 ∩ AC|1
ρ(A1)) || . . . || (An ∩ AC|n

ρ(An)) ̸|= ϕ .

MIN C is minimal, i.e., no strict subset of C satisfies SAT and CFBF.

▶ Example 13. Consider again the system and run from Subsection 1.1, and the cause
C = {(β, 1,A1), (β, 2,A1)}, i.e., the two β-actions of the first component (Cause 3a). SAT
is satisfied, since the effect ¬ [0,∞)(¬crit1 ∨ ¬crit2), i.e., the negation of the MITL spe-
cification is satisfied and the local projection of A1 is ρ(A1) = ⟨1.0, β⟩⟨3.0, β⟩(⟨2.0, α⟩)ω.
For CFBF, consider that the network run emerging from setting A1’s local projection to
⟨1.0, α⟩⟨3.0, α⟩(⟨2.0, α⟩)ω does not violate the specification since the first component never
enters crit1. To see that C also satisfies MIN consider its two singleton subsets. Setting the
alternative α for either of the actions alone does not suffice to avoid the effect due to the
temporal ordering of the β-actions, e.g., when intervening only on the first β, then the second
β enters crit1 while the second component is also in its critical section, hence the effect is
still present. Similarly, we can show {2.0, 1,A2}, i.e., the first delay of the second component
(Cause 2), as well as all the other but-for causes from Table 1 to be but-for causes for ϕ in ρ.

Besides this intuitive example, we can prove several sanity properties about but-for
causality. These properties concern the existence and identity of causes in certain distinctive
cases. First up, we show that the existence of a but-for cause is guaranteed as long as a
system run avoiding the effect exists.

▶ Proposition 14. Given an effect ϕ and a network of timed automata An = A1 || . . . || An,
then for every run ρ of the network in which ϕ appears, there is a but-for cause for ϕ in ρ of
An, if and only if there exists a run ρ′ of the network with ρ′ ̸|= ϕ.

Next, we consider the case where there is nondeterminism on the actual run, i.e., when
there is another run with the same trace, that does no satisfy the effect. In this case, our
definition returns the empty set as a unique actual cause.

▶ Proposition 15. Given an effect ϕ and a network of timed automata An, ∅ is the (unique)
but-for cause for an effect ϕ on a run ρ of An, if and only if there exists a run η of An

with localize(ρ,An) = localize(η,An) and η ̸|= ϕ, i.e., a run with the same local traces as the
actual run, that does, however, not satisfy the effect.

B. Finkbeiner, F. Jahn, and J. Siber 22:11

From a philosophical point of view, the empty set is a desirable verdict: It conveys that
the smallest change necessary to avoid the effect does not consist of any changes of delay or
action events, instead simply an alternative resolution of the underlying nondeterminism of
this trace suffices to obtain a witnessing counterfactual run. Also from a practical perspective,
it is helpful to know that the empty set gets returned only in this distinguishable scenario.

3.3 Contingencies in Networks of Timed Automata
Actual causality employs a contingency mechanism to isolate the true cause in the case of
preemption. The key idea of contingencies to overcome this preemption is to reset certain
propositions in counterfactual executions to their value as it is in the actual world. Coenen et
al. [20] have outlined how to model contingencies for lasso-shaped traces of a Moore machine.
We now describe a construction that applies this idea to networks of timed automata. The
central idea is that the state resets resulting from applying a contingency now do not only
reset the discrete machine state, but the clock assignment and the location of the timed
automaton, i.e., the full underlying state. However, a central issue in networks of timed
automata is that clocks are global variables shared by all component automata of the network,
while the location is a local attribute of single components. We respect this dichotomy by
allowing location contingencies only by actions of the corresponding component automaton
and clock contingencies by any action in the global network. This is realized by two automata
constructions, i.e., a local one applied to all component automata (for resetting locations)
and a global one applied to the full network (for resetting clocks). In both cases, we model
the behavior as an updatable timed automaton, as we outline in the following.

▶ Definition 16 (Location Contingency Automaton). Let ρ be a lasso-shaped run of a network
and the timed automaton A = (Q, q0, X,E, I, L) a component of this network. The location
contingency automaton of A and ρ is defined as Aloc(ρ) := (Q′, q′

0, X,E
′, I ′, L′) with Q′ :=

Q × {0, . . . , |locations(ρ,A)| − 1}, q′
0 := ⟨q0, 0⟩, I ′(⟨q, i⟩) := I(q), L′(⟨q, i⟩) := L(q), and E′

is defined as follows, where π = localize(ρ,A).

(q, g, α, U, q′) ∈ E i = 1, . . . , |ρ|
(⟨q, i− 1⟩, g, α, U, ⟨q′, dstπ(i)⟩) ∈ E′

(q, g, α, U, q′) ∈ E i = 1, . . . , |ρ|
(⟨q, i− 1⟩, g, α, U, ⟨qπ

j , dstπ(i)⟩) ∈ E′

The location contingency automaton Aloc
ρ hence consists of copies of the original system, one

for each position in the lasso-shaped local projection π. With an action transition, it moves
from one copy into the next, either following the edge (q, g, α, U, q′) of the original system
(left rule in Definition 16) or moving to the same location qπ

j as present in π at the respective
position dstπ(i) by applying a contingency (right rule in Definition 16). Note that after the
end of the loop in the lasso-shaped projection, the transitions are redirected to the copy
corresponding to the initial position of the loop by the definition of the function dstπ. The
same principle can now also be applied to global variables. In our setting, this only concerns
clocks, but the following definition of the clock contingency automaton can be generalized to
all global variables such as integers, if these are included in the system model.

▶ Definition 17 (Clock Contingency Automaton). Let ρ be a lasso-shaped run of a timed
automaton A = (Q, q0, X,E, I, L). The clock contingency automaton of A and ρ is defined as
Aclk(ρ) := (Q′, q′

0, X,E
′, I ′, L′) with Q′ := Q×{0, . . . , |ρ|− 1}, q′

0 := ⟨q0, 0⟩, I ′(⟨q, i⟩) := I(q),
L′(⟨q, i⟩) := L(q), and E′ is defined as follows.

(q, g, α, U, q′) ∈ E i = 1, . . . , |ρ|
(⟨q, i− 1⟩, g, α, U, ⟨q′, dstρ(i)⟩) ∈ E′

(q, g, α, U, q′) ∈ E i = 1, . . . , |ρ|
(⟨q, i− 1⟩, g, α, uρ

j , ⟨q
′, dstρ(i)⟩) ∈ E′

FSTTCS 2024

22:12 Counterfactual Explanations for MITL Violations

Note that strictly speaking we have defined clock updates to values in Q, instead of N
as considered in classic decidability results. It is, however, straightforward to scale these
values to the natural numbers [3]. Clearly, the signals modeled by the contingency automata
subsume the ones by the original automaton, because it is possible to simply never invoke a
contingency and, hence, always follow the dynamics of the original system.

▶ Proposition 18. For all timed automata A and runs ρ of A, we have that the languages of
the contingency automata subsume the language of the original automaton: L(Aloc

ρ) ⊇ L(A)
and L(Aclk

ρ) ⊇ L(A).

▶ Definition 19 (Actual Causality in Real-Time Systems). Let A1 || . . . || An be a network of
timed automata and ρ a run of the network. A set of events C ⊆ E(An) is an actual cause
for ϕ in ρ of A, if the following three conditions hold:
SAT ρ |= C and ρ |= ϕ, i.e., cause and effect are satisfied by the actual run.
CFAct There is an intervention on the events in C and a location and clock contingency

(denoted by loc(ρ) and clk(ρ) resp.) s.t. the resulting run avoids the effect ϕ, i.e., we have(
(Aloc(ρ)

1 ∩ AC|1
ρ(A1)) || . . . || (A

loc(ρ)
n ∩ AC|n

ρ(An))
)clk(ρ) ̸|= ϕ .

MIN C is minimal, i.e., no strict subset of C satisfies SAT and CFAct.

▶ Example 20. Consider the but-for cause C = {(β, 1,A1), (β, 2,A1)} from Example 13.
This C is not an actual cause because it does not satisfy the MIN condition of Definition 19:
The subset C′ = {(β, 1,A1)} satisfies SAT and CFAct. For CFAct we can use contingencies to
neutralize the effect of the second β in the local projection ρ(A1) = ⟨1.0, β⟩⟨3.0, β⟩(⟨2.0, α⟩)ω.
Since this action moves to init in the original run (cf. Subsection 1.1), it can also move to
this location in the contingency automaton Aloc(ρ)

1 . Hence we find an intervention (setting
⟨1.0,β⟩ to ⟨1.0,α⟩) and a contingency (setting the target location of ⟨3.0, β⟩ to init) that
avoid the effect together. A more detailed construction of the contingency automaton is
given in Appendix C. In fact, C′ = {(β, 1,A1)} is an actual cause (Cause 3) since additionally
to SAT and CFAct it also satisfies MIN – the empty set does not satisfy CFAct. Again, also
all the other actual causes from Table 1 can be shown to fulfill our definition.

▶ Remark 21. Note that as a consequence of Proposition 18, the statements regarding the
existence and identity of causes as proven in Propositions 14 and 15 can be lifted to actual
causality, but require replacing the original networks in the equivalence statements by the
contingency automata construction used in CFAct (cf. Definition 19).

4 Computing Counterfactual Causes

In this section, we develop algorithms for computing but-for and actual causes for any MITL
effect. Proofs and further details related to this section can be found in Appendix B. We
only explicitly present the algorithm for but-for causes; for actual causes the central model
checking query needs to be substituted (cf. Definition 19, Lines 4 and 10 in Algorithm 1).

In principle, the algorithms are based on enumerating all candidate causes. However, we
can speed up this process significantly by utilizing what we term the monotonicity of causes.

▶ Lemma 22 (Cause Monotonicity). For every network of timed automaton A, run ρ, and
effect ϕ, we have that
1. if a set of events C fulfills SAT also every subset C′ ⊆ C fulfills SAT.
2. if a set of events C fulfills CFBF (fulfills CFAct) also every superset C′ ⊇ C fulfills

CFBF (fulfills CFAct).

B. Finkbeiner, F. Jahn, and J. Siber 22:13

Algorithm 1 Compute But-For Causes.

Input: network A = A1 || . . . || An, run ρ of A satisfying effect ϕ, i.e. ρ |= ϕ

Output: set of all but-for causes for ϕ in ρ of A
1 Ress := {}, Resl := {}, Power := P(Eρ)
2 for i = 0, 1, 2, . . . , |Eρ|

2 do
3 for C ∈ Power with |C| = i: do
4 if (A1 ∩ AC|1

ρ(A1)) || . . . || (An ∩ AC|n

ρ(An)) ̸|= ϕ then // cause found?
5 Ress := Ress ∪ C
6 Power := {C′ ∈ Power | C ̸⊆ C′}; // remove all supersets
7 end
8 end
9 for C ∈ Power with |C| = |Eρ|

2 − i: do
10 if (A1 ∩ AC|1

ρ(A1)) || . . . || (An ∩ AC|n

ρ(An)) ̸|= ϕ then // cause found?
11 Resl := Resl ∪ C
12 else
13 Power := {C′ ∈ Power | C′ ̸⊆ C}; // remove all subsets
14 end
15 end
16 end
17 return Ress ∪ {C ∈ Resl | ¬∃ C′ ⊊ C. C′ ∈ Ress ∪Resl}; // filter Resl for MIN

The second monotonicity property enables efficient checking of the MIN condition, as it
suffices to check only the subsets with one element less instead of checking all subsets of a
potential cause. For the computation of causes on a given run ρ, a naive approach could
now simply enumerate all elements of P(Eρ), that is, all subsets of the all events Eρ on ρ,
and check whether they form a cause. By further exploiting monotonicity properties, we can
find a more efficient enumeration significantly accelerating the computation of causes. The
key idea is to enumerate through the powerset P(Eρ) simultaneously from below (starting
with the empty cause and then causes of increasing size) and above (starting with the full
cause and then causes of decreasing size). This then allows to exclude certain parts of the
powerset from the computation in two ways: First, when finding a set of events C fulfilling
CFBF, we can exclude all of its supersets as we know that they cannot satisfy MIN. Second,
when finding a set of events C not fulfilling CFBF, we can exclude all of its subsets as
the monotonicity of CFBF implies that C′ ⊆ C will neither fulfill CFBF. This idea of the
simultaneous enumeration of P(Eρ) is implemented in Algorithm 1.

▶ Theorem 23. Algorithm 1 is sound and complete, i.e., it terminates with

Compute But-For Causes(A, ρ, ϕ) = { C | C is a but-for cause for ϕ in ρ of A} ,

for all networks A = A1 || . . . || An and runs ρ of A satisfying an effect ϕ.

While it is clear that our algorithm requires to solve several model checking problems
for the effect ϕ, we can show that we cannot do better: Model checking some formula ϕ

can be encoded as a cause checking problem. Hence, asymptotically, cause checking and
computation scale similar to MITL model checking for the formula φ.

▶ Theorem 24. Checking and computing causes for an effect ϕ on the run ρ in a network of
timed automata A is EXPSPACE(ϕ)-complete.

FSTTCS 2024

22:14 Counterfactual Explanations for MITL Violations

Table 2 Experimental results. n: number of automata in the network; |ρ|: run length; |Eρ|:
number of events on the run; #C: number of but-for/actual causes; |C|: average but-for/actual
cause size; t: runtime for computing but-for/actual causes.

Instance n |ρ| |Eρ| #CBF #CAct |CBF | |CAct| tBF tAct

Run. Ex. 2 5
6

11
16

6
10

5
7

1.83
3.2

1.2
2

5.67s
88.2s

5.42s
128.8s

Run. Ex. 3 5
7

11
16

6
6

5
6

1.83
1.5

1.2
1.17

5.70s
55.0s

5.53s
78.6s

Run. Ex. 4 9 19 8 7 1.625 1.14 279.3s 331.8s

Fischer 2 4
7

12
20

2
5

2
5

1
1.2

1
1.2

2.37s
273.1s

9.73s
1499s

Fischer 3 5
7

14
20

2
5

2
5

1
1.2

1
1.2

3.40s
283.6s

16.9s
1516s

Fischer 4 6
7

16
20

2
5

2
5

1
1.2

1
1.2

4.58s
295.3s

28.8s
1535s

Note that this discussion on the complexity with respect to the size of the effect abstracts
away from the, e.g., the length of the counterexample, which contributes polynomially to
cause checking and exponentially to cause computation since we need to check all subsets
of events. In practice, we have observed that the bidirectional enumeration of the powerset
realized in Algorithm 1 significantly speeds up the compuation of causes.

5 Experimental Evaluation

We have implemented a prototype in Python.1 For model checking networks of timed
automata, we use Uppaal [13] and the library PyUppaal [56]. Our tool can check and
compute causes for effects in the fragment of MITL that is supported by the Uppaal
verification suite. We conducted experiments on the running example of this paper, as well as
on Fischer’s protocol, a popular benchmark for real-time model checking. The experiments
were run on a MacBook Pro with an Apple M3 Max and 64GB of memory. The results can
be found in Table 2. For the running example, the tool found exactly the causes depicted in
Table 1; for Fischer’s protocol, we report details in Appendix D. The computed causes narrow
down the responsible behavior on a given execution, with the average size of the causes
between 1 and 3.2 on execution with a large number of events (|Eρ|). Using contingencies
does result in smaller causes (cf. Avg. |CBF | vs. |CAct |) on the running example. This is
not the case for Fischer’s protocol, where but-for and actual causes are identical. These
findings suggest some directions for optimization, since computing but-for causes is more
efficient than computing actual causes. Since the latter are always subsets of the former, it
may be sensible to first compute but-for causes and then refine them by taking into account
contingencies. Further, the times in Table 2 refer to the time to compute all causes. Hence,
the performance in practical applications may be improved by iteratively presenting the user
with (but-for or actual) causes that have already been found during the execution.

1 Our prototype and benchmarks are available on GitHub [43].

B. Finkbeiner, F. Jahn, and J. Siber 22:15

6 Related Work

Providing explanatory insight into why a system does not satisfy a specification has been
of growing interest in the verification community: Baier et al. [6] provide a recent and
detailed survey. Most works focus on discrete systems and perform error localization in
executions [9, 31, 59, 45] or by identifying responsible components [58, 29, 28, 60, 32, 5]. There
are also several works on program slicing for analyzing dependencies between different parts
of a program [61, 41, 38]. The concepts of vacuity and coverage can be used to gain causal
insight also in the case of a successful verification [11, 8, 42, 18]. There are several recent
works that take a state-based view of responsibility allocation in transition systems [7, 53], but
they do not consider infinite state systems where such an approach is not directly applicable.
There are several works [54, 21, 26] that use a notion of distance defined by similarity relations
in the counterfactual tradition of Lewis [49]. These are more closely related to our work since
the minimality criterion in our definitions of but-for and actual causality can be interpreted
as a similarity relation [26]. Like this paper, a range of works has been inspired by Halpern
and Pearl’s actual causality for generating explanations [10, 22, 32, 20, 48, 57, 15]. Our
contingency automata constructions are particularly inspired by Coenen et al. [20, 21]. There
is a growing interest in counterfactual causality in models with infinitely many variables
or infinite domains [26, 37]. In the latter work, Halpern and Peters provide an axiomatic
account for counterfactual causes in such (structural equation) models, where variables are
further allowed to have infinite ranges. Our results suggest that fragments of structural
equation models related to networks of timed automata as studied here may be particularly
amenable to cause computation. A correspondence between these modeling formalisms has
already been pointed out by the same authors [55], albeit to the even more expressive hybrid
automata [2] that subsume timed automata. For real-time systems, Dierks et al. develop an
automated abstraction refinement technique [19] for timed automata based on considering
causal relationships [24]. Wang et al. introduce a framework for the causal analysis of
component-based real-time systems [60]. Kölbl et al. follow a similar direction and propose
a repairing technique of timed systems focusing on static clock bounds [47]. In a further
contribution, they consider the delay values of timed systems to compute causal delay values
and ranges in traces violating reachability properties [46]. Mari et al. propose an explanation
technique for the violation of safety properties in real-time systems [52], their approach is
based on their corresponding work on explaining discrete systems [30]. Hence, in the domain
of real-time systems ours is the first technique to consider arbitrary MITL properties, i.e.,
safety and liveness, as effects, together with both actions and real-time delays as causes.

7 Conclusion

Based on the seminal works of Halpern and Pearl, we have proposed notions of but-for and
actual causality for networks of timed automata, which define counterfactual explanations for
violations of MITL specifications. Our definitions rely on the idea of counterfactual automata
that represent infinitely many possible counterfactual executions. We then leveraged results
on real-time model checking for algorithms that check and compute but-for and counterfactual
causes, demonstrating with a prototype that our explanations significantly narrow down
the root causes in counterexamples of MITL properties. Interesting directions of future
work are to study symbolic causes [48, 21, 25] in real-time system, i.e., to consider real-time
properties specified in MITL or an event-based logic as causes [48, 17], and to develop tools
for visualizing [40] counterfactual explanations in networks of timed automata.

FSTTCS 2024

22:16 Counterfactual Explanations for MITL Violations

References

1 Rajeev Alur. Timed automata. In Nicolas Halbwachs and Doron A. Peled, editors, Computer
Aided Verification, 11th International Conference, CAV ’99, Trento, Italy, July 6-10, 1999,
Proceedings, volume 1633 of Lecture Notes in Computer Science, pages 8–22. Springer, 1999.
doi:10.1007/3-540-48683-6_3.

2 Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid systems. In Robert L.
Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel, editors, Hybrid Systems, volume
736 of Lecture Notes in Computer Science, pages 209–229. Springer, 1992. doi:10.1007/
3-540-57318-6_30.

3 Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–
235, 1994. doi:10.1016/0304-3975(94)90010-8.

4 Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality. J.
ACM, 43(1):116–146, January 1996. doi:10.1145/227595.227602.

5 Uwe Aßmann, Christel Baier, Clemens Dubslaff, Dominik Grzelak, Simon Hanisch, Ardhi
Putra Pratama Hartono, Stefan Köpsell, Tianfang Lin, and Thorsten Strufe. Tactile computing:
Essential building blocks for the Tactile Internet, pages 293–317. Academic Press, 2021. 46.23.01;
LK 01. doi:10.1016/B978-0-12-821343-8.00025-3.

6 Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Rupak Majumdar, Jakob
Piribauer, and Robin Ziemek. From verification to causality-based explications (invited talk).
In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium
on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland
(Virtual Conference), volume 198 of LIPIcs, pages 1:1–1:20. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPICS.ICALP.2021.1.

7 Christel Baier, Roxane van den Bossche, Sascha Klüppelholz, Johannes Lehmann, and Jakob
Piribauer. Backward responsibility in transition systems using general power indices. In
Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan, editors, Thirty-Eighth AAAI
Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada,
pages 20320–20327. AAAI Press, 2024. doi:10.1609/AAAI.V38I18.30013.

8 Thomas Ball and Orna Kupferman. Vacuity in testing. In Bernhard Beckert and Reiner Hähnle,
editors, Tests and Proofs, pages 4–17, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
doi:10.1007/978-3-540-79124-9_2.

9 Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom to cause: Localizing errors
in counterexample traces. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’03, pages 97–105, New York, NY, USA, 2003.
Association for Computing Machinery. doi:10.1145/604131.604140.

10 Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard Trefler. Explaining
counterexamples using causality. In Ahmed Bouajjani and Oded Maler, editors, Computer
Aided Verification, pages 94–108, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-02658-4_11.

11 Ilan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh. Efficient detection of vacuity
in actl formulas. In Orna Grumberg, editor, Computer Aided Verification, pages 279–290,
Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. doi:10.1007/3-540-63166-6_28.

12 Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Partial order reductions
for timed systems. In Davide Sangiorgi and Robert de Simone, editors, CONCUR ’98:
Concurrency Theory, 9th International Conference, Nice, France, September 8-11, 1998,
Proceedings, volume 1466 of Lecture Notes in Computer Science, pages 485–500. Springer,
1998. doi:10.1007/BFB0055643.

https://doi.org/10.1007/3-540-48683-6_3
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/227595.227602
https://doi.org/10.1016/B978-0-12-821343-8.00025-3
https://doi.org/10.4230/LIPICS.ICALP.2021.1
https://doi.org/10.1609/AAAI.V38I18.30013
https://doi.org/10.1007/978-3-540-79124-9_2
https://doi.org/10.1145/604131.604140
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/3-540-63166-6_28
https://doi.org/10.1007/BFB0055643

B. Finkbeiner, F. Jahn, and J. Siber 22:17

13 Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
UPPAAL – A tool suite for automatic verification of real-time systems. In Rajeev Alur,
Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems III: Verification and
Control, Proceedings of the DIMACS/SYCON Workshop on Verification and Control of Hybrid
Systems, October 22-25, 1995, Ruttgers University, New Brunswick, NJ, USA, volume 1066 of
Lecture Notes in Computer Science, pages 232–243. Springer, 1995. doi:10.1007/BFB0020949.

14 Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In Jörg
Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency and Petri
Nets, Advances in Petri Nets [This tutorial volume originates from the 4th Advanced Course on
Petri Nets, ACPN 2003, held in Eichstätt, Germany in September 2003. In addition to lectures
given at ACPN 2003, additional chapters have been commissioned], volume 3098 of Lecture Notes
in Computer Science, pages 87–124. Springer, 2003. doi:10.1007/978-3-540-27755-2_3.

15 Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Julian Siber. Checking and sketching
causes on temporal sequences. In Étienne André and Jun Sun, editors, Automated Technology
for Verification and Analysis - 21st International Symposium, ATVA 2023, Singapore, October
24-27, 2023, Proceedings, Part II, volume 14216 of Lecture Notes in Computer Science, pages
314–327. Springer, 2023. doi:10.1007/978-3-031-45332-8_18.

16 Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Updatable timed
automata. Theor. Comput. Sci., 321(2-3):291–345, 2004. doi:10.1016/J.TCS.2004.04.003.

17 Georgiana Caltais, Sophie Linnea Guetlein, and Stefan Leue. Causality for general LTL-
definable properties. Electronic Proceedings in Theoretical Computer Science, 286:1–15,
January 2019. doi:10.4204/eptcs.286.1.

18 Hana Chockler, Joseph Y. Halpern, and Orna Kupferman. What causes a system to satisfy a
specification? ACM Trans. Comput. Logic, 9(3), June 2008. doi:10.1145/1352582.1352588.

19 Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-
guided abstraction refinement. In E. Allen Emerson and Aravinda Prasad Sistla, editors,
Computer Aided Verification, pages 154–169, Berlin, Heidelberg, 2000. Springer Berlin Heidel-
berg. doi:10.1007/10722167_15.

20 Norine Coenen, Raimund Dachselt, Bernd Finkbeiner, Hadar Frenkel, Christopher Hahn, Tom
Horak, Niklas Metzger, and Julian Siber. Explaining hyperproperty violations. In Sharon
Shoham and Yakir Vizel, editors, Computer Aided Verification - 34th International Conference,
CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I, volume 13371 of Lecture Notes
in Computer Science, pages 407–429. Springer, 2022. doi:10.1007/978-3-031-13185-1_20.

21 Norine Coenen, Bernd Finkbeiner, Hadar Frenkel, Christopher Hahn, Niklas Metzger,
and Julian Siber. Temporal causality in reactive systems. In Ahmed Bouajjani, Lukás
Holík, and Zhilin Wu, editors, Automated Technology for Verification and Analysis -
20th International Symposium, ATVA 2022, Virtual Event, October 25-28, 2022, Proceed-
ings, volume 13505 of Lecture Notes in Computer Science, pages 208–224. Springer, 2022.
doi:10.1007/978-3-031-19992-9_13.

22 Anupam Datta, Deepak Garg, Dilsun Kaynar, Divya Sharma, and Arunesh Sinha. Program
actions as actual causes: A building block for accountability. In 2015 IEEE 28th Computer
Security Foundations Symposium, pages 261–275, 2015. doi:10.1109/CSF.2015.25.

23 Alexandre David and Wang Yi. Modelling and analysis of a commercial field bus protocol. In
12th Euromicro Conference on Real-Time Systems (ECRTS 2000), 19-21 June 2000, Stockholm,
Sweden, Proceedings, pages 165–172. IEEE Computer Society, 2000. doi:10.1109/EMRTS.2000.
854004.

24 Henning Dierks, Sebastian Kupferschmid, and Kim Guldstrand Larsen. Automatic abstraction
refinement for timed automata. In Jean-François Raskin and P. S. Thiagarajan, editors, Formal
Modeling and Analysis of Timed Systems, 5th International Conference, FORMATS 2007,
Salzburg, Austria, October 3-5, 2007, Proceedings, volume 4763 of Lecture Notes in Computer
Science, pages 114–129. Springer, 2007. doi:10.1007/978-3-540-75454-1_10.

FSTTCS 2024

https://doi.org/10.1007/BFB0020949
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-031-45332-8_18
https://doi.org/10.1016/J.TCS.2004.04.003
https://doi.org/10.4204/eptcs.286.1
https://doi.org/10.1145/1352582.1352588
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-031-13185-1_20
https://doi.org/10.1007/978-3-031-19992-9_13
https://doi.org/10.1109/CSF.2015.25
https://doi.org/10.1109/EMRTS.2000.854004
https://doi.org/10.1109/EMRTS.2000.854004
https://doi.org/10.1007/978-3-540-75454-1_10

22:18 Counterfactual Explanations for MITL Violations

25 Bernd Finkbeiner, Hadar Frenkel, Niklas Metzger, and Julian Siber. Synthesis of temporal
causality. In Arie Gurfinkel and Vijay Ganesh, editors, Computer Aided Verification - 36th
International Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings,
Part III, volume 14683 of Lecture Notes in Computer Science, pages 87–111. Springer, 2024.
doi:10.1007/978-3-031-65633-0_5.

26 Bernd Finkbeiner and Julian Siber. Counterfactuals modulo temporal logics. In Ruzica
Piskac and Andrei Voronkov, editors, LPAR 2023: 24th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning, Manizales, Colombia, June 4-9, 2023,
volume 94 of EPiC Series in Computing, pages 181–204. EasyChair, 2023. doi:10.29007/qtw7.

27 Michael Gerke, Rüdiger Ehlers, Bernd Finkbeiner, and Hans-Jörg Peter. Model checking
the flexray physical layer protocol. In Stefan Kowalewski and Marco Roveri, editors, Formal
Methods for Industrial Critical Systems - 15th International Workshop, FMICS 2010, Antwerp,
Belgium, September 20-21, 2010. Proceedings, volume 6371 of Lecture Notes in Computer
Science, pages 132–147. Springer, 2010. doi:10.1007/978-3-642-15898-8_9.

28 Gregor Gössler and Daniel Le Métayer. A General Trace-Based Framework of Logical Causal-
ity. Research Report RR-8378, INRIA, October 2013. URL: https://inria.hal.science/
hal-00873665.

29 Gregor Gössler, Daniel Le Métayer, and Jean-Baptiste Raclet. Causality analysis in contract
violation. In Howard Barringer, Ylies Falcone, Bernd Finkbeiner, Klaus Havelund, Insup
Lee, Gordon Pace, Grigore Roşu, Oleg Sokolsky, and Nikolai Tillmann, editors, Runtime
Verification, pages 270–284, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

30 Gregor Gössler, Thomas Mari, Yannick Pencolé, and Louise Travé-Massuyès. Towards Causal
Explanations of Property Violations in Discrete Event Systems. In DX’19 - 30th International
Workshop on Principles of Diagnosis, pages 1–8, Klagenfurt, Austria, November 2019. URL:
https://inria.hal.science/hal-02369014.

31 Alex Groce. Error explanation with distance metrics. In Kurt Jensen and Andreas Podelski,
editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 108–122,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. doi:10.1007/978-3-540-24730-2_8.

32 Gregor Gössler and Jean-Bernard Stefani. Causality analysis and fault ascription in component-
based systems. Theoretical Computer Science, 837:158–180, 2020. doi:10.1016/j.tcs.2020.
06.010.

33 Joseph Y. Halpern. A modification of the halpern-pearl definition of causality. In Qiang Yang
and Michael J. Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015,
pages 3022–3033. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/427.

34 Joseph Y. Halpern. Actual Causality. MIT Press, 2016.
35 Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model approach.

part i: Causes. The British Journal for the Philosophy of Science, 2005.
36 Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model approach.

part ii: Explanations. The British Journal for the Philosophy of Science, 2005.
37 Joseph Y. Halpern and Spencer Peters. Reasoning about causal models with infinitely many

variables. Proceedings of the AAAI Conference on Artificial Intelligence, 36(5):5668–5675,
June 2022. doi:10.1609/aaai.v36i5.20508.

38 Mark Harman and Robert M. Hierons. An overview of program slicing. Softw. Focus, 2(3):85–92,
2001. doi:10.1002/SWF.41.

39 K. Havelund, A. Skou, K.G. Larsen, and K. Lund. Formal modeling and analysis of an
audio/video protocol: an industrial case study using uppaal. In Proceedings Real-Time Systems
Symposium, pages 2–13, 1997. doi:10.1109/REAL.1997.641264.

40 Tom Horak, Norine Coenen, Niklas Metzger, Christopher Hahn, Tamara Flemisch, Julián
Méndez, Dennis Dimov, Bernd Finkbeiner, and Raimund Dachselt. Visual analysis of hy-
perproperties for understanding model checking results. IEEE Trans. Vis. Comput. Graph.,
28(1):357–367, 2022. doi:10.1109/TVCG.2021.3114866.

https://doi.org/10.1007/978-3-031-65633-0_5
https://doi.org/10.29007/qtw7
https://doi.org/10.1007/978-3-642-15898-8_9
https://inria.hal.science/hal-00873665
https://inria.hal.science/hal-00873665
https://inria.hal.science/hal-02369014
https://doi.org/10.1007/978-3-540-24730-2_8
https://doi.org/10.1016/j.tcs.2020.06.010
https://doi.org/10.1016/j.tcs.2020.06.010
http://ijcai.org/Abstract/15/427
https://doi.org/10.1609/aaai.v36i5.20508
https://doi.org/10.1002/SWF.41
https://doi.org/10.1109/REAL.1997.641264
https://doi.org/10.1109/TVCG.2021.3114866

B. Finkbeiner, F. Jahn, and J. Siber 22:19

41 Susan B. Horwitz, Thomas Reps, and Dave Binkley. Interprocedural slicing using dependence
graphs. SIGPLAN Not., 23(7):35–46, June 1988. doi:10.1145/960116.53994.

42 Yatin Vasant Hoskote, Timothy Kam, Pei-Hsin Ho, and Xudong Zhao. Coverage estimation
for symbolic model checking. In Mary Jane Irwin, editor, Proceedings of the 36th Conference
on Design Automation, New Orleans, LA, USA, June 21-25, 1999, pages 300–305. ACM Press,
1999. doi:10.1145/309847.309936.

43 Felix Jahn. Prototype tool of our approach. URL: https://github.com/FelixJahnFJ/
Real-Time-Causality-Tool.git.

44 Felix Jahn. Real Time Causality Analysis Tool. Software, swhId: swh:1:dir:
de6b34eb1137d85c4257b5adac4b15646bd8ea3e (visited on 2024-10-11). URL: https://
github.com/reactive-systems/rt-causality.git.

45 Manu Jose and Rupak Majumdar. Cause clue clauses: error localization using maximum
satisfiability. In Mary W. Hall and David A. Padua, editors, Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, San
Jose, CA, USA, June 4-8, 2011, pages 437–446. ACM, 2011. doi:10.1145/1993498.1993550.

46 Martin Kölbl, Stefan Leue, and Robert Schmid. Dynamic causes for the violation of timed
reachability properties. In Nathalie Bertrand and Nils Jansen, editors, Formal Modeling and
Analysis of Timed Systems - 18th International Conference, FORMATS 2020, Vienna, Austria,
September 1-3, 2020, Proceedings, volume 12288 of Lecture Notes in Computer Science, pages
127–143. Springer, 2020. doi:10.1007/978-3-030-57628-8_8.

47 Martin Kölbl, Stefan Leue, and Thomas Wies. Clock bound repair for timed systems. In
Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification - 31st International
Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I,
volume 11561 of Lecture Notes in Computer Science, pages 79–96. Springer, 2019. doi:
10.1007/978-3-030-25540-4_5.

48 Florian Leitner-Fischer and Stefan Leue. Causality checking for complex system models.
In Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni, editors, Verification, Model
Checking, and Abstract Interpretation, 14th International Conference, VMCAI 2013, Rome,
Italy, January 20-22, 2013. Proceedings, volume 7737 of Lecture Notes in Computer Science,
pages 248–267. Springer, 2013. doi:10.1007/978-3-642-35873-9_16.

49 David K. Lewis. Counterfactuals. Cambridge, MA, USA: Blackwell, 1973.
50 Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal design and analysis of a gear controller.

In Bernhard Steffen, editor, Tools and Algorithms for Construction and Analysis of Systems,
4th International Conference, TACAS ’98, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998,
Proceedings, volume 1384 of Lecture Notes in Computer Science, pages 281–297. Springer,
1998. doi:10.1007/BFB0054178.

51 Oded Maler, Dejan Nickovic, and Amir Pnueli. From MITL to timed automata. In Eugene
Asarin and Patricia Bouyer, editors, Formal Modeling and Analysis of Timed Systems, 4th
International Conference, FORMATS 2006, Paris, France, September 25-27, 2006, Proceedings,
volume 4202 of Lecture Notes in Computer Science, pages 274–289. Springer, 2006. doi:
10.1007/11867340_20.

52 Thomas Marix, Thao Dang, and Gregor Gössler. Explaining safety violations in real-time
systems. In Catalin Dima and Mahsa Shirmohammadi, editors, Formal Modeling and Analysis
of Timed Systems - 19th International Conference, FORMATS 2021, Paris, France, August
24-26, 2021, Proceedings, volume 12860 of Lecture Notes in Computer Science, pages 100–116.
Springer, 2021. doi:10.1007/978-3-030-85037-1_7.

53 Corto Mascle, Christel Baier, Florian Funke, Simon Jantsch, and Stefan Kiefer. Responsibility
and verification: Importance value in temporal logics. In 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–14.
IEEE, 2021. doi:10.1109/LICS52264.2021.9470597.

FSTTCS 2024

https://doi.org/10.1145/960116.53994
https://doi.org/10.1145/309847.309936
https://github.com/FelixJahnFJ/Real-Time-Causality-Tool.git
https://github.com/FelixJahnFJ/Real-Time-Causality-Tool.git
https://archive.softwareheritage.org/swh:1:dir:de6b34eb1137d85c4257b5adac4b15646bd8ea3e;origin=https://github.com/reactive-systems/rt-causality;visit=swh:1:snp:a9716ce4356b5dd9f88d9df49a2f8e2eb84cb8b1;anchor=swh:1:rev:99da0bec9342b40af8acd08ef7e689173a440ae1
https://archive.softwareheritage.org/swh:1:dir:de6b34eb1137d85c4257b5adac4b15646bd8ea3e;origin=https://github.com/reactive-systems/rt-causality;visit=swh:1:snp:a9716ce4356b5dd9f88d9df49a2f8e2eb84cb8b1;anchor=swh:1:rev:99da0bec9342b40af8acd08ef7e689173a440ae1
https://github.com/reactive-systems/rt-causality.git
https://github.com/reactive-systems/rt-causality.git
https://doi.org/10.1145/1993498.1993550
https://doi.org/10.1007/978-3-030-57628-8_8
https://doi.org/10.1007/978-3-030-25540-4_5
https://doi.org/10.1007/978-3-030-25540-4_5
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/BFB0054178
https://doi.org/10.1007/11867340_20
https://doi.org/10.1007/11867340_20
https://doi.org/10.1007/978-3-030-85037-1_7
https://doi.org/10.1109/LICS52264.2021.9470597

22:20 Counterfactual Explanations for MITL Violations

54 Julie Parreaux, Jakob Piribauer, and Christel Baier. Counterfactual causality for reachability
and safety based on distance functions. In Antonis Achilleos and Dario Della Monica, editors,
Proceedings of the Fourteenth International Symposium on Games, Automata, Logics, and
Formal Verification, GandALF 2023, Udine, Italy, 18-20th September 2023, volume 390 of
EPTCS, pages 132–149, 2023. doi:10.4204/EPTCS.390.9.

55 Spencer Peters and Joseph Y. Halpern. Causal modeling with infinitely many variables. CoRR,
abs/2112.09171, 2021. arXiv:2112.09171.

56 Pyuppaal library webpage. URL: https://pypi.org/project/pyuppaal/1.0.0/.
57 Arshia Rafieioskouei and Borzoo Bonakdarpour. Efficient discovery of actual causality using

abstraction-refinement. CoRR, abs/2407.16629, 2024. doi:10.48550/arXiv.2407.16629.
58 Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–95,

1987. doi:10.1016/0004-3702(87)90062-2.
59 Chao Wang, Zijiang Yang, Franjo Ivančić, and Aarti Gupta. Whodunit? causal analysis for

counterexamples. In Susanne Graf and Wenhui Zhang, editors, Automated Technology for
Verification and Analysis, pages 82–95, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

60 Shaohui Wang, Anaheed Ayoub, BaekGyu Kim, Gregor Gössler, Oleg Sokolsky, and Insup
Lee. A causality analysis framework for component-based real-time systems. In Axel Legay
and Saddek Bensalem, editors, Runtime Verification, pages 285–303, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-40787-1_17.

61 Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-10(4):352–357,
1984. doi:10.1109/TSE.1984.5010248.

A Proofs of Section 3

▶ Proposition 14. Given an effect ϕ and a network of timed automata An = A1 || . . . || An,
then for every run ρ of the network in which ϕ appears, there is a but-for cause for ϕ in ρ of
An, if and only if there exists a run ρ′ of the network with ρ′ ̸|= ϕ.

Proof. Let ρ be a run of such a network with ρ |= ϕ. We show both direction of the
equivalence separately.
“⇒”: Assume there is a but-for cause C for ϕ in ρ of A. From CFBF, we know that

there exists a run ρ′ ∈ Π
(
(A1 ∩ AC|1

ρ(A1)) || . . . || (An ∩ AC|n

ρ(An))
)

such that ρ′ ̸|= ϕ. Since
the components of the network are built from (trace) intersections, is easy to see that
Π(Ai∩AC

ρ(Ai)) ⊆ Π(Ai) for all components 1 ≤ i ≤ n. From the semantics of the network
based on parallel composition, it follows that Π

(
(A1 ∩ AC|1

ρ(A1)) || . . . || (An ∩ AC|n

ρ(An))
)
⊆

Π(A1 || . . . || An), from which this direction of the claim immediately follows.
“⇐”: Let ρ′ be a run of the network A1 || . . . || An with ρ′ ̸|= ϕ. We show that the set

of events Eρ, i.e., the set of all events appearing on the path ρ, fulfills the SAT and
the CFBF condition: From our initial assumption, it follows that ρ |= ϕ and from
the definition of Eρ we have ρ |= Eρ, hence the SAT condition is fulfilled. From the
definition of the counterfactual trace automaton, it follows that the language AEρ|i

ρ(Ai) of
every component i describes all possible traces, i.e., arbitrary orderings of actions, with
arbitrary delays, over the alphabet of actions Act. From this we can deduce that the
runs of the network under arbitrary interventions are in fact the runs of the original
network, i.e., we have Π

(
(A1 ∩ A

Eρ|1
ρ(A1)) || . . . || (An ∩ A

Eρ|n

ρ(An))
)

= Π(A1 || . . . || An). Since
by our initial assumption there exists a ρ′ ̸|= ϕ in A1 || . . . || An, we can deduce that
CFBF is fulfilled. Finally, since Eρ is finite, it either has a minimal subset that satisfies
the two criteria and hence witnesses this direction of our claim, or Eρ itself is the desired
witness. ◀

https://doi.org/10.4204/EPTCS.390.9
https://arxiv.org/abs/2112.09171
https://pypi.org/project/pyuppaal/1.0.0/
https://doi.org/10.48550/arXiv.2407.16629
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/978-3-642-40787-1_17
https://doi.org/10.1109/TSE.1984.5010248

B. Finkbeiner, F. Jahn, and J. Siber 22:21

▶ Proposition 15. Given an effect ϕ and a network of timed automata An, ∅ is the (unique)
but-for cause for an effect ϕ on a run ρ of An, if and only if there exists a run η of An

with localize(ρ,An) = localize(η,An) and η ̸|= ϕ, i.e., a run with the same local traces as the
actual run, that does, however, not satisfy the effect.

Proof. Let a network An = A1 || . . . || An be given. First up, it is easy to see that whenever
∅ is a but-for cause, it is unique: No other set C ̸= ∅ can satisfy MIN, since ∅ ⊂ C and ∅
satisfies SAT and CFBF by assumption. We proceed with proving the equivalence:
“⇒”: Assume that ∅ is a but-for cause on some run ρ, then from CFBF it follows that there

exists a run ρ′ ∈ Π
(
(A1 ∩ A∅

ρ(A1)) || . . . || (An ∩ A∅
ρ(An))

)
such that ρ′ ̸|= ϕ. From the

definition of the counterfactual trace automaton A∅
ρ(Ai) it follows that for all components

i and for all ρi ∈ Π(Ai ∩ A∅
ρ(Ai)) we have that πρi = ρ(Ai). From the definition of the

localization function it then follows that for all ζ ∈ Π
(
(A1∩A∅

ρ(A1)) || . . . || (An∩A∅
ρ(An))

)
we have that localize(ρ,A) = localize(ζ,A), so in particular for ρ′, which shows this
direction of the claim.

“⇐”: Assume there is such an η with localize(ρ,A) = localize(η,A) and η ̸|= ϕ. It is
easy to see that ∅ trivially satisfies SAT and MIN. Hence, we only need to show that
Π

(
(A1 ∩ A∅

ρ(A1)) || . . . || (An ∩ A∅
ρ(An))

)
includes η (and indeed all runs with the same

local traces as ρ). This follows from the fact that Π(Ai ∩A∅
ρ(Ai)) includes all runs ηi that

have the same trace as the local projection of ρ with respect to this component, i.e., all
ηi = ρ(Ai), due to the definition of A∅

ρ(Ai) and of trace intersection. By the definition
of parallel composition, we can conclude that Π

(
(A1 ∩ A∅

ρ(A1)) || . . . || (An ∩ A∅
ρ(An))

)
includes all ρ′ with localize(ρ,A) = localize(ρ′,A), hence it also includes η, which can then
serve as a witness for ∅ satisfying CFBF, which closes this direction of the equivalence. ◀

B Algorithms and Proofs of Section 4

In this section, we give the algorithm for checking causality and detailed proofs of the
statements from Section 4. We start by proving the monotonicity properties.

▶ Lemma 22 (Cause Monotonicity). For every network of timed automaton A1 || . . . || TAn,
run ρ, and effect ϕ, we have that
1. if a set of events C fulfills SAT also every subset C′ ⊆ C fulfills SAT.
2. if a set of events C fulfills CFBF (fulfills CFAct) also every superset C′ ⊇ C fulfills

CFBF (fulfills CFAct).

Proof. We show the two statements separately:
1. Follows by the transitivity of set inclusions: If C fulfills SAT, we have that ρ |= C and ρ |=

E. Hence, C′ ⊆ C ⊆ Eρ and therefore ρ |= C′ such that also C′ fulfills SAT.
2. Let C fulfill CFBF, that is, there is a counterfactual run ρ′ of (A1 ∩AC|1

ρ(A1)) || . . . || (An ∩
AC|n

ρ(An)) with ρ ̸|= ϕ. Now notice that for C′ ⊇ C, also the transition relation of each
counterfactual trace automaton of C′ is a superset of the one of C such that we also have
Π(AC′|i

ρ(Ai)) ⊇ Π(AC|i

ρ(Ai)). Therefore, ρ′ is also a run of (A1 ∩AC′|1
ρ(A1)) || . . . || (An ∩AC′|n

ρ(An))
such that C′ fulfills CFBF. The proof for CFAct works analogously for the run in
intersection of the contingency and counterfactual trace automata. ◀

Algorithm 2 decides whether a given set of events forms a but-for cause. It is a straight-
forward implementation of Definition 12 of but-for causality under the use of monotonicity
for accelerating the verification of the MIN condition. Hence, we do not give a detailed
proof of correctness for Algorithm 2 and continue directly with cause computation.

FSTTCS 2024

22:22 Counterfactual Explanations for MITL Violations

Algorithm 2 Checking But-For Cause.

Input: network A = A1 || . . . || An, run ρ, effect ϕ, set of events C
Output: “Is C a but-for cause for ϕ in ρ of A?”

1 if ρ ̸|= ϕ or C ̸⊆ Eρ then // checking SAT
2 return false
3 end
4 if (A1 ∩ AC|1

ρ(A1)) || . . . || (An ∩ AC|n

ρ(An)) |= ϕ then // checking CFBF

5 return false
6 end
7 for event e ∈ C do // checking MIN
8 C ′ := C \ {e}
9 if (A1 ∩ AC′|1

ρ(A1)) || . . . || (An ∩ AC′|n

ρ(An)) ̸|= ϕ then
10 return false
11 end
12 end
13 return true

▶ Theorem 23. Algorithm 1 is sound and complete, i.e., it terminates with

Compute But-For Causes(A, ρ, ϕ) = {C | C is a but-for cause for ϕ in ρ of A},

for all networks A = A1 || . . . || An and runs ρ of A satisfying an effect ϕ.

Proof. We argue for soundness (⊆) and completeness (⊇) separately:
“⊇”: Let C be a but-for cause for ϕ in ρ of A, i.e. fulfilling SAT, CFBF, MIN. We first

notice that the algorithm does then not remove C from Power (until it may be added to
Ress): C is not removed by Line 6 since the minimality of C implies that it has no subset
fulfilling CFBF; and C is not removed by Line 13 since the monotonicity of CFBF implies
that it has no superset not fulfilling CFBF. Now since C fulfills CFBF, if |C| ≤ Eρ

2 , C is
added to Ress in Line 5, if |C| > Eρ

2 it is added to Resl in Line 11 and is, in addition,
not removed in the last line as C fulfills the MIN condition. Therefore, C is returned by
Compute But-For Causes(A, ρ, ϕ).

“⊆”: Let C ∈ Compute But-For Causes(A, ρ, ϕ). As for all set of events considered by the
algorithm, we have C ∈ P(Eρ) and, hence, C ⊆ Eρ such that C fulfills SAT. By definition
of the algorithm, C is only returned as a result when it was added to Ress or Resl. This,
in turn, is only the case, if (A1 ∩ AC|1

ρ(A1)) || . . . || (An ∩ AC|n

ρ(An)) ̸|= ϕ. Therefore, C fulfills
CFBF. Lastly to establish the MIN condition, we have to show that there are no proper
subsets of C that fulfill SAT and CFBF. Towards a contradiction, lets assume there are
such subsets and let C′ ⊊ C be the minimal one. Then, C′ is but-for cause and by the first
inclusion C′ ∈ Compute But-For Causes(A, ρ, ϕ). Now, if C was returned by the algorithm
since C ∈ Ress, then |C′| < |C| implies that the algorithm has considered C′ earlier. From
this point, however, C ̸∈ Power, a contradiction. If C was returned since C ∈ Resl, the
filtering in Line 17 results in a contradiction. Therefore, C is a but-for cause for ϕ in ρ of
A. ◀

▶ Theorem 24. Checking and computing causes for an effect ϕ on the run ρ in a network of
timed automata A is EXPSPACE(ϕ)-complete.

B. Finkbeiner, F. Jahn, and J. Siber 22:23

Proof. Analyzing the computational compexity of Algorithms 1 and 2 shows the two prob-
lems of cause checking and computations to be solvalbe in EXPSPACE(ϕ). For showing
EXPSPACE(ϕ)-hardness, we present a reduction from the model checking problem, that is
EXPSPACE-complete [4]. We construct for a timed automaton A = (Q, q0, X,E, I, L) an
extended reduction automaton Ared := (Q ∪̇ {snew, qnew} , snew , X ∪̇ {xnew} , E′ , I ′ , L′) over
an extended set of actions Act ∪̇ {αnew, βnew} and labels AP ∪̇ {pnew} whereby snew and qnew
are fresh locations, αnew and βnew are fresh actions, xnew is a fresh clock, pnew is a fresh atomic
proposition, and we have

E′ := E ∪ {(snew,⊤, αnew, {xnew := 1}, qnew) , (qnew,⊤, αnew, ∅, qnew) , (snew,⊤, βnew, ϵ, q0)},

I ′(q) :=

I(q), q ∈ Q,
xnew ≤ 0, q = snew,

xnew ≤ 1, q = qnew,

and L′(q) :=

L(q), q ∈ Q,
{ }, q = snew,

{pnew}, q = qnew.

That is, Ared is an extension of A that has a new initial location snew from which a
direct transition (delay of 0) to either a second new location qnew or to the initial state
of the original automaton A is enforced. This new automaton has a new run, namely
ρred := (snew, u0) 0.0−−→ αnew−−→ (qnew, u0) 1.0−−→ αnew−−→)ω fulfilling the effect ϕred := ϕ ∨ pnew.

Instances (A, ϕ) of the model checking problem are now mapped to instances of the
cause checking problem via the reduction r : (A, ϕ) 7→ (Ared, ρred, ϕred, Cred) with Cred :=
{((αnew, 1, ρ(Ared)}. Now, we have that A ̸|= ϕ iff Cred is a cause for ϕred in ρred of Ared. ◀

C Contingency Automaton

In this section, we illustrate the contingency automaton construction from Example 20. For
automaton A1, run ρ from Subsection 1.1 and its sequence of local locations loc(ρ,A1) =
init, crit, init, the location contingency automaton Aloc(ρ)

1 is depicted in Figure 4. Following
Definiton 16, the contingency automaton is constructed in the following way:

we copy the automaton |ρ(A1)| times, to encode the current step in the states (second
component of the tuple);
we redirect the transitions from the original automata (black transitions) to their target
location in the next copy;
in each step, we add contingency transitions (red transitions), allowing the location to be
reset to what it had been in the corresponding step of the original run ρ.

We can now find a counterfactual run in Aloc(ρ)
1 avoiding the critical section by taking

the contingency from (init, 1) β−→ (init, 2). That is, the location after the second transition is
reset to what it had been in the original run, namely to location init. The construction of
the clock contingency automaton works in a similar way: We allow additional transitions to
reset the clocks as they had been in the original run at the respective positions.

D Experimental Setup and Results for Fischer’s Protocol

We report on the details in the experimental evaluation for Fischer’s protocol and the causes
identified by the tool. Fischer’s protocol is a popular real-time mutual exclusion protocol, we
depict one component Ai in Figure 5. We then test the effect ϕ := ¬ [0,∞) ¬crit1 on the
network A1 || . . . || An, i.e. that the first component reaches its critical section.

FSTTCS 2024

22:24 Counterfactual Explanations for MITL Violations

(init, 0)

(crit, 0)
x ≤ 3

(init, 1)

(crit, 1)
x ≤ 3

(init, 2)

(crit, 2)
x ≤ 3

β

x := 0

β

x = 3

α

x := 0

α

α

β

x := 0

β

x := 0

β

x = 3

α

x := 0

α

β

x = 3

α

x := 0 β

x := 0
β

x = 3

α

x := 0

α

β

x := 0

α

Figure 4 The contingency automaton Aloc(ρ)
1 from Example 20.

init req

waitcrit

xi ≤ 2
id := i

xi := 0

id = 0
xi := 0

xi ≥ 2 ∧ id = i

id := 0

id = 0
xi := 0

xi ≤ 2

Figure 5 A single component automaton Ai of Fischer’s protocol network A1 || . . . || An.

We state the tested runs and results exemplary for n = 2:

ρ1 :=
(
{init1,2} τ1−−→

1.0
{req1, init2} τ1−−→

1.0
{req1, init2} τ1−−→

4.0
{wait1, init2} τ1−−→

1.0
{crit1, init2} τ1−−→

2.0

)ω

ρ2 :={init1,2} τ2−−→
1.0

(
{init1, req2} τ1−−→

1.0
{req1, req2} τ2−−→

1.0
{req1, wait2}

τ1−−→
1.0

{wait1, wait2} τ1−−→
3.0

{crit1, wait2} τ1−−→
1.0

{init1, wait2} τ2−−→
1.0

)ω

The detected causes for those two runs are reported in Table 3. As in Fischer’s protocol
only internal actions are used, the detected root causes only consist out of delay actions.
Further, since we do not encounter cases of preemption, but-for and actual causes agree on
this example. For n = 3, 4 we tested runs with the same lasso-part.

B. Finkbeiner, F. Jahn, and J. Siber 22:25

Table 3 Overview of the root causes found in the experiments for Fischer’s protocol.

Ref.ρ1: BF Causes ρ1 : Actual Causes ρ2: BF Causes ρ2 : Actual Causes

1 {(1.0, 1,A1)} {(1.0, 1,A1)} {(1.0, 1,A2)} {(1.0, 1,A2)}

2 {(4.0, 3,A1)} {(4.0, 3,A1)} {(2.0, 1,A1)} {(2.0, 1,A1)}

3 {(2.0, 2,A2)} {(2.0, 2,A2)}

4 {(2.0, 2,A1)} {(2.0, 2,A1)}

5 {(3.0, 3, A1),
(6.0, 3, A2)}

{(3.0, 3, A1),
(6.0, 3, A2)}

FSTTCS 2024

Oblivious Complexity Classes Revisited: Lower
Bounds and Hierarchies
Karthik Gajulapalli # Ñ

Georgetown University, Washington, DC, USA

Zeyong Li # Ñ

National University of Singapore, Singapore

Ilya Volkovich # Ñ

Boston College, MA, USA

Abstract
In this work we study oblivious complexity classes. These classes capture the power of interactive
proofs where the prover(s) are only given the input size rather than the actual input. In particular,
we study the connections between the symmetric polynomial time – S2P and its oblivious counterpart
– O2P. Among our results:

For each k ∈ N, we construct an explicit language Lk ∈ O2P that cannot be computed by circuits
of size nk.
We prove a hierarchy theorem for O2TIME. In particular, for any time constructible function
t : N → N and any ε > 0 we show that: O2TIME[t(n)] ⊊ O2TIME[t(n)1+ε].
We prove new structural results connecting O2P and S2P.
We make partial progress towards the resolution of an open question posed by Goldreich and
Meir (TOCT 2015) that relates the complexity of NP to its oblivious counterpart - ONP.
We identify a natural class of problems in O2P from computational Ramsey theory, that are not
expected to be in P or even BPP.

To the best of our knowledge, these results constitute the first explicit fixed-polynomial lower
bound and hierarchy theorem for O2P. The smallest uniform complexity class for which such lower
bounds were previously known was S2P due to Cai (JCSS 2007). In addition, this is the first uniform
hierarchy theorem for a semantic class. All previous results required some non-uniformity. In order
to obtain some of the results in the paper, we introduce the notion of uniformly-sparse extensions
which could be of independent interest.

Our techniques build upon the de-randomization framework of the powerful Range Avoidance
problem that has yielded many new interesting explicit circuit lower bounds.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Problems, reductions and completeness; Theory of computation → Circuit complexity;
Theory of computation → Interactive proof systems; Theory of computation → Pseudorandomness
and derandomization

Keywords and phrases fixed circuit lower bounds, semantic time hierarchy, oblivious complexity,
range avoidance

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.23

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/049/

Acknowledgements The authors would like to thank Alexander Golovnev, William Gasarch and
Edward Hirsch for many helpful discussions and feedback on an earlier draft of this manuscript. The
authors would also like to thank the anonymous referees for useful comments.

© Karthik Gajulapalli, Zeyong Li, and Ilya Volkovich;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kg816@georgetown.edu
https://kgajulapalli.org
https://orcid.org/0009-0000-1029-1882
mailto:li.zeyong@u.nus.edu
https://sites.google.com/view/zeyong
mailto:ilya.volkovich@bc.edu
https://sites.google.com/site/ilyavv/
https://orcid.org/0000-0002-7616-0751
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.23
https://eccc.weizmann.ac.il/report/2024/049/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

1 Introduction

Proving circuit lower bounds has been one of the holy grails of theory of computation
with strong connections to many fundamental questions in complexity theory. For instance,
proving that there exists a function in E1 that requires exponential-size circuits would entail
a strong derandomization: BPP = P and MA = NP [46, 32]. And yet, while by counting
arguments (i.e. [52]) the vast majority of Boolean functions/languages do require exponential-
size circuits, the best “explicit” lower bounds are still linear! (in fact the best known lower
bound for any language in ENP is just linear [39]). Indeed, although it is widely believed that
NP requires super-polynomial-size circuits (i.e. NP ̸⊆ P/poly) establishing the statement
even for NEXP (i.e. NEXP ̸⊆ P/poly), the exponential version of NP, has remained elusive for
many years. The best known explicit lower bound is due to a seminal work of Williams [54],
where it was shown that NEXP requires super-polynomial-size circuits in a “very” restricted
model (NEXP ̸⊆ ACC0).

In the high-end regime, Kannan [33] has shown that the exponential hierarchy requires
exponential-size circuits, via diagonalization2. More precisely, it was shown that the class
Σ3E ∩ Π3E contains a language that cannot be computed by a circuit family of size 2n/n.
This result was later improved to ∆3E = EΣ2P by Miltersen, Vinodchandran and Watanabe
[45]. Moreover, it was shown that ∆3E actually requires circuits of “maximum possible” size.
Subsequently, the status of the problem remained stagnant for more than two decades until
very recently, Chen, Hirahara and Ren [13] and a follow-up work by Li [41] improved the
result to S2E 3. In particular, this result was obtained via solving the Range Avoidance
(Avoid) problem with “single-valued, symmetric polynomial-time” algorithm. Indeed, the
focus of our work is on “oblivious” symmetric polynomial time and related complexity classes.

1.1 Background

1.1.1 Symmetric Time

Symmetric polynomial time, denoted by S2P, was introduced independently by Canetti [9], and
Russell and Sundaram [49]. Intuitively speaking, this class captures the interaction between
an efficient (polynomial-time) verifier V and two all-powerful provers: the “YES”-prover Y

and the “NO”-prover Z, exhibiting the following behaviour:
If x is a yes-instance, then the “YES”-prover Y can send an irrefutable proof/certificate
y to V that will make V accept, regardless of the communication from Z.
Likewise, if x is a no-instance, then the “NO”-prover can send an irrefutable proof/certi-
ficate proof z to V that will make V reject, regardless of the communication from Y .

We stress that in both cases the irrefutable certificates can depend on x itself. One can also
define S2E - the exponential version of S2P, by allowing the verifier to run in linear-exponential
time. For a formal definition see Definition 8. A seminal result of [7] provides the best known
upper bound S2P ⊆ ZPPNP. At the same time, S2P appears to be a very powerful class as it
contains MA and ∆2P = PNP.

1 Deterministic time 2O(n).
2 In fact, this argument could be viewed as solving an instance of the Range Avoidance problem. See

below.
3 Symmetric exponential time. Indeed, S2E ⊆ Σ2E ∩ Π2E ⊆ ∆3E. For a formal definition see Definition 8.

K. Gajulapalli, Z. Li, and I. Volkovich 23:3

1.1.2 Oblivious Complexity Classes
The study of oblivious complexity classes was initiated in [10] and has subsequently received
more attention [2, 22, 11, 27]. Roughly speaking, let Λ be a complexity class such that in
addition to the input x, the machines M(x, w) of Λ also take a witness w (and possibly other
inputs). Examples of such classes include: NP, MA, S2P, etc. The corresponding oblivious
version of Λ is obtained by stipulating that the for every n ∈ N there exists a “common”
witness wn for all the “respective” inputs of length n. For instance, a language L belongs
to ONP – the oblivious version of NP, if there exists a polynomial-time machine M(x, w)
such that:
1. ∀n ∈ N there exists wn such that ∀x ∈ {0, 1}n : x ∈ L =⇒ M(x, wn) = 1.
2. x ̸∈ L =⇒ ∀w : M(x, w) = 0.

Thus, in a similar manner, one can define the class O2P – the oblivious version of S2P,
that is referred to as “oblivious symmetric polynomial time” in the literature. O2P has the
additional requirement that for every n ∈ N there exist an irrefutable yes-certificate y∗ and
an irrefutable no-certificate z∗ for all the yes-instances and the no-instances of length n,
respectively. For a formal definition, see Definition 10.

It is immediate from the definitions that ONP ⊆ NP, O2P ⊆ S2P and ONP ⊆ O2P. On the
other hand, by hard-coding the witnesses/certificates we get that RP ⊆ ONP ⊆ O2P ⊆ P/poly.

In addition, it was also observed in [10] that O2P is self-low. That is O2PO2P = O2P. While
the oblivious classes seem to be more restricted than their non-oblivious counterparts, proving
any non-trivial upper bounds could still be challenging. In terms of lower bounds, the best
known containment of a non-oblivious class is BPP ⊆ O2P 4. For more details and discussion
see [10, 27]. Nonetheless, to the best of our knowledge, no “natural” problem for O2P (or
even ONP), known to lie outside of BPP, has been identified in the literature.

1.1.3 Sparsity
A language L is sparse, if for every input length n ∈ N the number of yes-instances of size
n is at most poly(n). We will denote the class of all sparse languages by SPARSE. Sparse
languages have seen many applications in complexity theory. Perhaps, the most fundamental
one is known as “Mahaney’s theorem” [43] that implies that a sparse language cannot be
NP-hard, unless P = NP. In [22] and [27], sparse languages were also studied in the context of
oblivious complexly classes. In particular, they observed that NP ∩ SPARSE ⊆ ONP. That is,
every sparse NP language is also in ONP. The same argument also implies that NE = ONE,
that is, equality between the exponential versions of NP and ONP, respectively. Given the
former claim we observe that the Grid Coloring problem, defined in [3], constitutes a natural
ONP (and hence O2P) problem. For a formal statement, see Observation 6.

Subsequently, Goldreich and Meir [27] posed an open question whether a similar relation
holds true for coNP and coONP. That is, whether every sparse coNP language is also in
coONP5. Motivated by this question, we observe that essentially the same issues arise when
one attempts to show that every sparse S2P language is also in O2P. While we do not
accomplish this task, we make a partial progress by introducing uniformly-sparse extensions.
The intuition behind this definition is to have a uniform “cover” of the segments of the
yes-instances for all input lengths. For a formal definition see Definition 25. This is our main

4 One way to see this is by observing that BPP ⊆ RPONP and then using the self-lowness of O2P.
5 The original (equivalent) formulation of the question in [27] was w.r.t NP and co-sparse languages.

FSTTCS 2024

23:4 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

conceptual contribution. As a corollary, we obtain that S2E = O2E. Although this might not
be a new result, to the best of our knowledge, this result has not appeared in the literature
previously.

1.1.4 Range Avoidance
The study of the Range Avoidance problem (Avoid) was initiated in [35]. The problem itself
takes an input-expanding Boolean Circuit C : {0, 1}n → {0, 1}n+1 as input and asks to find
an element y, outside the range of C. Since its introduction, there has been a steady line of
exciting work studying the complexity and applications of Avoid [37, 28, 48, 15, 24, 31, 17,
13, 41, 16, 38].

Informally, Avoid algorithmically captures the probabilistic method where the existence of
an object with some property follows from a union bound. In particular, Korten [37] showed
that solving Avoid (deterministically) would result in finding optimal explicit constructions
of many important combinatorial objects, including but not limited to Ramsey graphs [47],
rigid matrices [28, 24], pseudorandom generators [14], two-source extractors [12, 40], linear
codes [28], strings with maximum time-bounded Kolmogorov complexity (Kpoly-random
strings) [48] and truth tables of high circuit complexity [37].

The connection between Avoid and hard truth table makes it relevant to the study of
circuit lower bounds. It has been observed and pointed out in many prior works (see, e.g. [13])
that proving explicit circuit lower bounds is effectively finding single-valued6 constructions
of hard truth tables. Indeed, this is the framework adopted for proving circuit lower bounds
in [15, 13, 41]: Designing a single-valued algorithm for solving Avoid.

1.1.5 Time Hierarchy Theorem
Time Hierarchy theorems are among the most fundamental results in computational com-
plexity theory, which (loosely speaking) assert that computation with more time is strictly
more powerful. Time hierarchy theorems are known for deterministic computation (DTIME)
[29, 30] and non-deterministic computation (NTIME) [18, 51, 55] which are syntactic classes.
The situation for semantic classes such as BPTIME is much more elusive as it is unclear
how to enumerate and simulate all BPTIME machines while ensuring that the simulating
machine itself remains a proper BPTIME machine. In fact, even verifying that a machine is
a BPTIME machine is itself an undecidable problem. For BPTIME, a time hierarchy theorem
is only known for its promise version, or when given one bit of advice [5, 20, 21]. This was
further generalized in [44], where they show most semantic classes (e.g. MA, S2TIME) admit
a time hierarchy theorem with one bit of advice.

Along a different line of research, it was shown in [42, 19] that coming up with a pseudo-
deterministic algorithm (single-valued randomized algorithms) for estimating the acceptance
probability of a circuit would imply a uniform hierarchy theorem for BPTIME.

1.2 Previous Results
A parallel line of work focused on the “low-end” regime by proving the so-called “fixed-
polynomial” circuit lower bounds. That is, the goal is to show that for every k ∈ N there
is a language Lk (that may depend on k) which cannot be computed by circuits of size

6 Roughly speaking, a single-valued algorithm on successful executions should output a fixed (canonical)
solution given the same input.

K. Gajulapalli, Z. Li, and I. Volkovich 23:5

nk. The first result in this sequel – fixed-polynomial lower bounds for the polynomial
hierarchy, was obtained by Kannan [33] via diagonalization. In particular, it was shown
that for every k ∈ N there exists a language Lk ∈ Σ4P that cannot be computed by circuits
of size nk. This result was then improved to Σ2P. The key idea behind this and, in fact,
the vast majority of subsequent improvements is a “win-win” argument that relies on the
Karp-Lipton collapse theorem [34]: if NP has polynomial-size circuits (i.e NP ⊆ P/poly) then
the (whole) polynomial hierarchy collapses to Σ2P. More specifically, the argument proceeds
by a two-pronged approach:

Suppose NP ̸⊆ P/poly. Then the claim follows as NP ⊆ Σ2P.
On the other hand, suppose NP ⊆ P/poly. Then by Karp-Lipton: Σ4P = Σ2P and in
particular for all k ∈ N : Lk ∈ Σ2P.

Indeed, by deepening the collapse, the result was further improved to ZPPNP [36, 6], PprMA [11]
and S2P [7]. By using different versions of the Karp-Lipton theorem, the result has also been
extended to PP [53, 1] and MA/1 [50].

Yet, despite the success of the “win-win” argument, the obtained lower bounds are often
non-explicit due to the non-constructiveness nature of the argument. Different results [8, 50]
were required to exhibit explicit “hard” languages in Σ2P, PP and MA/1. Nonetheless, the
last word about S2P is yet to be said. For instance, we know that there is a language in S2P
that requires circuits of size, say, n2 from such arguments. However, prior to the results of
[13, 41], one could not prove any super-linear lower bound for any particular language in
S2P. Another limitation of the “win-win” argument stems from the fact that it only applies
to complexity classes which (provably) contain NP. In particular, in [10] it was actually
shown that if NP ⊆ P/poly then the polynomial hierarchy collapses all the way to O2P!
Unfortunately, this result does not immediately imply fixed-polynomial lower bounds for
O2P7 as it is unknown and, in fact, unlikely that O2P contains NP. Furthermore, such a
containment will be “self-defeating”. Recall that O2P ⊆ P/poly. Hence, if NP ⊆ O2P then
NP ⊆ P/poly which in and of itself already implies the collapse of the whole polynomial
hierarchy!

Finally, it is important to mention a result of [22] that for any k ∈ N, NP has circuits of
size nk iff ONP/1 does. In that sense ONP already nearly captures the hardness of showing
fixed-polynomial lower bounds for NP.

1.3 Our Results

In our first result we extend the lower bounds for S2P and S2E, to their weaker oblivious
counterparts O2P and O2E, respectively. This result follows the recent line of research
that obtains circuit lower bounds by means of deterministically solving (i.e. derandomizing)
instances of the Range Avoidance problem [15, 13, 41].

▶ Theorem 1. For all k ∈ N, O2P ̸⊆ SIZE[nk]. Moreover, for each k there exists an explicit
language Lk ∈ O2P such that Lk ̸∈ SIZE[nk].

In fact we prove a stronger parameterized version of this statement (see Theorem 29,
Corollary 36, and Corollary 30). We now highlight three main reasons why such a result is
fascinating:

7 Indeed, the authors in [10] could only obtain fixed-polynomial lower bounds for NPO2P which was later
subsumed by the results of [50].

FSTTCS 2024

23:6 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

1. Our lower bound does not follow the framework of “win-win” style Karp-Lipton collapses.
As was mentioned above, since already O2P ⊆ P/poly the pre-requisite for proving the
bound via the “win-win” argument will be self-defeating.

2. Our proof is constructive and for every k ∈ N we define an explicit language Lk ∈ O2P
for which Lk ̸⊆ SIZE[nk].

3. O2P becomes the smallest uniform complexity class known for which fixed-polynomial
lower bounds are known. Moreover, after more than 15 years, this class coincides again
with the deepest known collapse result of the Karp-Lipton Theorem8.

Our second result gives a hierarchy theorem for O2TIME.

▶ Theorem 2. For any time constructible function t : N → N such that t(n) ≥ n and any
ε > 0 it holds that: O2TIME[t(n)] ⊊ O2TIME[t(n)1+ε].

We remark, that to the best of our knowledge, this is the first known hierarchy theorem
for a uniform semantic class (that contains BPTIME). At the same time, we observe that the
proof of the non-deterministic time hierarchy theorem (NTIME) (see e.g. [55]) actually extends
to the oblivious non-deterministic time (ONTIME) since the hard language constructed in
their proof is unary and hence is contained in ONTIME. On the other hand, that same
language also diagonalizes against all NTIME machines which is a superset of all ONTIME
machines.

In our time hierarchy theorem for O2TIME, which goes through a reduction to Avoid,
one can view Avoid as a tool for diagonalization against all circuits of fixed size, which in
turn contains all O2TIME machines with bounded time complexity. This (together with the
time hierarchy theorem for ONTIME) might suggest an approach for proving time hierarchy
theorem for semantic classes in general: diagonalize against a syntactic class that encompasses
the semantic class in consideration.

Finally, we introduce the notion of uniformly-sparse extensions (for a formal definition,
see Definition 25) to get structural complexity results relating O2TIME and S2TIME. This
relation provides an alternate method of proving Theorem 1.

▶ Theorem 3. Let L ∈ S2P. If L has a uniformly-sparse extension then L ∈ O2P.

While not much was known between the classes O2TIME and S2TIME, except that
O2TIME ⊆ S2TIME, we show new connections between the two classes. In fact, we prove
a stronger parameterized version of Theorem 3 that yields as a corollary a proof of the
equivalence S2E = O2E (see Corollary 37). Going back to the original motivation, by repeating
the same argument, we make a partial progress towards the resolution of the open question
posed by Goldreich and Meir in [27]. See Lemma 35 for more details.

▶ Theorem 4. Let L ∈ coNP. If L has a uniformly-sparse extension then L ∈ coONP.

Finally, we observe that computational Ramsey theory provides some very natural
problems in ONP (and hence O2P). As an example, we re-introduce the grid coloring problem
below. While Claim 2.5 in [27] suggests a generic way to generate problems via padding
arguments9, these problems are, however, not very intuitive.

8 Indeed, in the universe of [7] and [10] prior to our work, the smallest class has been S2P, while the
deepest known collapse was to O2P.

9 The approach is to pick a language L in S2E that is (conjectured) not in BPE. Then the padded version
of L will be in O2P \ BPP.

K. Gajulapalli, Z. Li, and I. Volkovich 23:7

▶ Definition 5 (Grid Coloring [3]).
GC = {(1n01m01c) | the n × m grid can be c-colored and not have any monochromatic squares. }

Note that Grid Coloring is an example of one of such problems that are in NP∩SPARSE ⊆
ONP, and hence unlikely to be in BPP. Other problems that come from computational
Ramsey theory like the Gallai-Witt theorem, and the Van der Waerden’s theorem have a
very similar flavor.

▶ Observation 6. GC ∈ ONP ⊆ O2P.

Below we make a few remarks. For a further discussion see [25].
GC ∈ NP since the coloring itself is a witness.
GC is not known to be in P or even BPP.
GC ∈ SPARSE. In fact, GC has a uniformly-sparse extension.
Therefore, by the results of [22, 27], GC ∈ ONP.
On the other hand, by Mahaney’s theorem GC is unlikely to be NP-complete.

1.4 Proof Overview
Our work builds on the recent line of work on Range Avoidance. [37] provides a reduction of
generating hard truth tables from Avoid, and [13, 41] give a single-valued S2P time algorithm
for Avoid.

Avoid Framework for Circuit Lower bounds

Let TTn,s : {0, 1}s log s → {0, 1}2n be the truth table generator circuit (see Definition 19), i.e.
TTn,s take as input an encoding of a n-input s-size circuit and outputs the truth table of the
circuit. By construction, TTn,s maps all circuits of size s (encoded using s log s bits) to their
corresponding truth tables. Then, Avoid(TTn,s) will output a truth-table not in the range of
TTn,s and hence not decided by any s-sized circuit (a circuit lower bound!!). For correctness
we only need to ensure that s log s < 2n, so the TTn,s is input-expanding, and hence a valid
instance of Avoid.

While the above construction gives us a way of getting explicit exponential lower bounds
against even SIZE[2n/n], the input to Avoid is also exponential in input length n. As a result,
the lower bounds we get are for the exponential class S2E and not S2P. Note that one can
scale down this lower bound in a black-box manner to get fixed-polynomial lower bounds for
S2P, but will lose explicitness in the process.

To fix this we modify the above reduction to take as input the prefix truth table generator
circuit, PTTn,s : {0, 1}s log s → {0, 1}s log s+1, where instead of evaluating the input circuit on
the whole truth table, PTTn,s evaluates on the lexicographically first (s log s + 1) inputs (see
Definition 20). Let fn,s = Avoid(PTTn,s), and define the truth table of the hard language to
be L := fn,s||02n−s log s−1. By construction, L cannot be decided by any n-input s-size circuit.
Moreover, when s is polynomial, the size of PTTn,s is also polynomial10 (Lemma 21). Hence
the single-valued11 algorithm computing fn,s is in S2P and the explicit fixed-polynomial
bounds follow.

10 In literature the complexity of computing PTTn,s (Circuit-Eval) is often left as poly, however for our
application of getting explicit lower bounds it is crucial to get its fine-grained complexity (see Lemma 16
and Lemma 21).

11 For the language to be well defined it is essential for the output of our algorithm to be single-valued.

FSTTCS 2024

23:8 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

To see that the language L ∈ O2P, observe that the S2P time algorithm is oblivious to x,
since for any x of length n, fn,s is the same. One important observation here is that, for the
purpose of obtaining circuit lower bound, it suffices to solve Range Avoidance on one specific
family of circuits (the truth table generating circuit that maps another circuit to its truth
table). Hence, while it is unclear whether Range Avoidance can be solved in FO2P, we could
still obtain circuit lower bound for O2P.

Hierarchy Theorems for O2TIME

To get a hierarchy theorem for O2TIME, we first get an upper bound on O2TIME computation
via a standard Cook-Levin argument that converts the O2TIME verifier into a circuit (SAT-
formula) for which we can hard code the “YES” and “NO” irrefutable certificates at every
input length (Lemma 31). A lower bound follows via the Avoid framework discussed above
(Theorem 29). We can now lift the hierarchy theorem on circuit size (Theorem 14) to get a
hierarchy on O2TIME (see Theorem 32).

Sparsity and Lower Bounds

We begin by introducing the notion of uniformly-sparse extensions. Roughly speaking a
sparse language L has a uniformly-sparse extension if there is a language L′ ∈ P, such that
L ⊆ L′ and L′ is also sparse (for formal definitions see Section 2.4).

We show that if a language L ∈ S2P has a uniformly-sparse extension, then L ∈ O2P. Let
L′ be the uniformly-sparse extension of a language L ∈ S2P and let X = {x ∈ L′}. Since
L′ ∈ P, we first apply the polynomial time algorithm for L′ which let us filter out most
inputs, i.e. x /∈ L′, and hence x /∈ L. We are now left with deciding membership in L over
the set X, where |X| ≤ poly.

Let V ∗ be the polynomial time S2-verifier for L, then for every x ∈ X there exists either
an irrefutable YES certificate (yx) s.t. V ∗(x, yx, ·) = 1, or an irrefutable NO certificate (zx)
s.t. V ∗(x, ·, zx) = 0. Let Y be the set of all such yx’s and Z be the set of all such zx’s. Now
for any x ∈ X, it suffices to find the correct yx from Y (or zx from Z) and apply V ∗(x, yx, zx)
to decide x.

In Lemma 35 we prove a more efficient parameterized version of this argument. In addition,
we are able to apply this in the exponential regime to show the equivalence O2E = S2E (see
Corollary 37).

2 Preliminaries

Let L ⊆ {0, 1}∗ be a language. For n ≥ 1 we define the n-th slice of L, L|n := L ∩ {0, 1}n

as all the strings in L of length n. The characteristic string of L|n, denoted by XL|n
, is the

binary string of length 2n which represents the truth table defined by L|n.

2.1 Complexity Classes
We assume familiarity with complexity theory and notion of non-uniform circuit families (see
for e.g. [4, 26]).

▶ Definition 7 (Deterministic Time). Let t : N → N. We say that a language L ∈ TIME[t(n)],
if there exists a deterministic time multi-tape Turing machine that decides L, in at most
O(t(n)) steps.

K. Gajulapalli, Z. Li, and I. Volkovich 23:9

▶ Definition 8 (Symmetric Time). Let t : N → N. We say that a language L ∈ S2TIME[t(n)],
if there exists a O(t(n))-time predicate P (x, y, z) that takes x ∈ {0, 1}n and y, z ∈ {0, 1}t(n)

as input, satisfying that:
1. If x ∈ L , then there exists a y such that for all z, P (x, y, z) = 1.
2. If x /∈ L, then there exists a z such that for all y, P (x, y, z) = 0.
Moreover, we say L ∈ S2P, if L ∈ S2TIME[p(n)] for some polynomial p(n), and L ∈ S2E, if
L ∈ S2TIME[t(n)] for t(n) ≤ 2O(n).

▶ Definition 9 (Single-valued FS2P algorithm). A single-valued FS2P algorithm A is specified
by a polynomial ℓ(·) together with a polynomial-time algorithm VA(x, π1, π2). On an input
x ∈ {0, 1}∗, we say that A outputs yx ∈ {0, 1}∗, if the following hold:
1. There exists a π1 ∈ {0, 1}ℓ(|x|) such that for every π2 ∈ {0, 1}ℓ(|x|), VA(x, π1, π2) outputs

yx.
2. For every π1 ∈ {0, 1}ℓ(|x|) there exists a π2 ∈ {0, 1}ℓ(|x|), such that VA(x, π1, π2) outputs

either yx or ⊥.
And we say that A solves a search problem Π if on any input x it outputs a string yx

and yx ∈ Πx, where a search problem Π maps every input x ∈ {0, 1}∗ into a solution set
Πx ⊆ {0, 1}∗.

We now formally define O2TIME - the oblivious version of the class S2TIME. The key
difference is that unlike S2TIME, where each irrefutable yes/no certificate can depend on
the input x itself, in O2TIME the yes/no certificates can only depend on |x|, the length of
x. In other words, for every input length n, there exist a common YES-certificate y∗ and a
common NO-certificate z∗ for checking membership of x ∈ L|n.

▶ Definition 10 (Oblivious Symmetric Time). Let t : N → N. We say that a language
L ∈ O2TIME[t(n)], if there exists a O(t(n))-time predicate P (x, y, z) such that for every
n ∈ N there exist y∗ and z∗ of length O(t(n)) satisfying the following for every input
x ∈ {0, 1}n :
1. If x ∈ L, then for all z, P (x, y∗, z) = 1.

2. If x /∈ L, then for all y, P (x, y, z∗) = 0.
Moreover, we say L ∈ O2P, if L ∈ O2TIME[p(n)] for some polynomial p(n), and L ∈ O2E, if
L ∈ O2TIME[t(n)] for t(n) ≤ 2O(n).

2.2 Nonuniformity

We recall certain circuit properties:

▶ Definition 11. A boolean circuit C with n inputs and size s, is a Directed Acyclic Graph
(DAG) with (s + n) nodes. There are n source nodes corresponding to the inputs labelled
1, . . . , n and one sink node labelled (n + s) corresponding to the output. Each node, labelled
(n + i), for 1 ≤ i ≤ s has an in-degree of 2 and corresponds to a gate computing a binary
operation over its two incoming edges.

▶ Definition 12. Let s : N → N. We say that a language L ∈ SIZE[s(n)] if L can be computed
by circuit families of size O(s(n)) for all sufficiently large input size n.

▶ Definition 13. Let s : N → N. We say that a language L ∈ i.o.-SIZE[s(n)] if L can be
computed by circuit families of size O(s(n)) for infinitely many input size n.

FSTTCS 2024

23:10 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

By definition, we have SIZE[s(n)] ⊆ i.o.-SIZE[s(n)]. Hence, circuit lower bounds against
i.o.-SIZE[s(n)] are stronger and sometimes denoted as almost-everywhere circuit lower bound
in the literature.

We now state the hierarchy theorem for circuit size. The standard proof of this result is
existential and goes through a counting argument (see e.g. [4]). However, we comment that
using the framework of Avoid, we can now actually get a constructive size hierarchy theorem,
albeit with worse parameters.

▶ Theorem 14 (Circuit Size Hierarchy Theorem[4]). For all functions s : N → N with
n ≤ s(n) < o(2n/n):

SIZE[s(n)] ⊊ SIZE[10s(n)] .

For our applications, it will be essential to have a tight encoding scheme for circuits.
In fact, we will also need the fine-grained complexity of the Turing machine computing
Circuit-Eval (i.e. given as input a description of a circuit C and a point x, computes C(x)).

▶ Lemma 15. For n, s ∈ N, and s ≥ n ≥ 12 , any n-input, s-size circuit C, there exists an
encoding scheme En,s which encodes C using 5s log s bits.

Proof. Let C be an n-input, s-size circuit, we now define En,s. Each gate label from
1, . . . , n + s can be encoded using log(n + s) bits. First encode the n inputs using n log(n + s)
bits. Next fix a topological ordering of the remaining gates. For each gate we can encode
its two inputs (two previous gates) with 2 log(n + s) bits and the binary operation which
requires 4 bits (since there 16 possible binary operations). So the length of our encoding is
n log(n + s) + s(2 log(n + s) + 4) ≤ 3s log(2s) + 4s ≤ 5s log s for all n ≥ 12. ◀

▶ Lemma 16. For n, s ∈ N, and s ≥ n, let En,s be an encoding of an n-input, s-size
circuit C using Lemma 15. Then there exists a multi-tape Turing machine M such that
M(En,s, x) = C(x) and it runs in O(s2 log s) time.

Proof. We utilize one tape (memory tape) to store all the intermediate values computed at
each gate gi using n + s cells, and a second tape (evaluation tape) using 6 cells to compute
the value at each gi. We process each gate sequentially as it appears in the encoding scheme,
and let gil

and gir be the two gates feeding into gi. Since Lemma 15 encodes the gates in
a topological order, we can assume that when computing gi, both gil

and gir
have already

been computed. First copy the value of input bits of x onto the memory tape, and move
the head of the input tape to the right by n log(n + s) steps in O(s log s) time. Now to
compute a gate gi we write the values of gil

and gir along with the binary operation onto
the evaluation tape. We can compute any binary operation with just constant overhead
and write its value onto the ith cell of the memory tape. To output the evaluation of the
circuit we output the value on the (n + s)th cell of the memory tape. The cost of evaluating
each gate is dominated by the 2 read and 1 write operations on the memory tape that take
O(s) time. Since the size of the input upper bounds the number of gates we have that the
simulation takes O(s|En,s|) = O(s2 log s) time. ◀

Finally, we recall the famous Cook-Levin theorem that lets us convert a machine M ∈
TIME[t(n)] into a circuit C ∈ SIZE[t(n) log t(n)].

▶ Theorem 17 (Cook-Levin Theorem [4]). Let t : N → N be a time constructible function.
Then any multi-tape Turing machine running in TIME[t(n)] time can be simulated by a
circuit-family of SIZE[t(n) log t(n)].

K. Gajulapalli, Z. Li, and I. Volkovich 23:11

2.3 Range Avoidance
▶ Definition 18. The Range Avoidance (Avoid) problem is defined as follows: given as input
the description of a Boolean circuit C : {0, 1}n → {0, 1}m, for m > n, find a y ∈ {0, 1}m

such that ∀x ∈ {0, 1}n : C(x) ̸= y.

An important object that connects Avoid and circuit lower bound is the truth table
generator circuit.

▶ Definition 19 ([13], Section 2.3). For n, s ∈ N where n ≤ s ≤ 2n, the truth table
generator circuit TTn,s : {0, 1}Ln,s → {0, 1}2n maps a n-input size s circuit using Ln,s =
(s + 1)(7 + log(n + s)) bits of description12 into its truth table. Moreover, such circuit can be
uniformly constructed in time poly(2n).

For the purpose of obtaining fixed polynomial circuit lower bound, we generalise the
truth table generator circuit above into one that outputs the prefix of the truth table. We
also use a different encoding scheme (with constant factor loss in the parameter) for the
convenience of presentation.

▶ Definition 20. For n, s ∈ N where 12 ≤ n ≤ s ≤ 2n and |En,s| = 5s log s < 2n, the prefix
truth table generator circuit PTTn,s : {0, 1}|En,s| → {0, 1}|En,s|+1 maps a n-input circuit of
size s described with |En,s| bits into the lexicographically first |En,s| + 1 entries of its truth
table.

Since we want to prove lower bounds not just in the exponential regime, but also in the
polynomial regime for any fixed polynomial, we need a more fine-grained analysis for the
running time of uniformly generating PTTn,s

▶ Lemma 21. The prefix truth table generator circuit PTTn,s : {0, 1}|En,s| → {0, 1}|En,s|+1

has size O(|En,s|3) and can be uniformly constructed in time O(|En,s|3).

Proof. Let M be the multi-tape Turing machine from Lemma 16 that takes as input an
encoding of a circuit and a bitstring, and evaluates the circuit on that bitstring. Let C be
the circuit generated from Theorem 17 that simulates M . Then SIZE(C) = O(s2 log2 s) =
O(|En,s|2). Making |En,s|+1 copies of C for each output gate gives a circuit of size O(|En,s|3).

◀

▶ Theorem 22 ([41, 13]). There exists a single-valued FS2P algorithm for Avoid. Moreover,
on input circuit C : {0, 1}n → {0, 1}n+1, the algorithm runs in time O(n|C|)13.

▶ Theorem 23 ([41, 13]). There exists an explicit language L ∈ S2E \ i.o.-SIZE[2n/n].

Proof. For any n ∈ Z, let TTn : {0, 1}2n−1 → {0, 1}2n be the truth table generator circuit.
Let fn ∈ {0, 1}2n be the canonical solution output by the single-valued algorithm from
Theorem 22 on input TTn.

The hard language L is defined as follows: for any x ∈ {0, 1}∗, x ∈ L if and only if the
(x + 1)-th bit of f|x| = 1, treating x as an integer from 0 to 2n − 1. ◀

12 in fact, it maps a stack program of description size Ln,s and it is known that every n-input size s circuit
has an equivalent stack program of size Ln,s [23].

13 the running time was implicit in the proof of [41], but easy to verify.

FSTTCS 2024

23:12 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

2.4 Sparse Languages
We define some notions of sparsity below, we first introduce natural definitions of sparsity
and sparse extensions in the polynomial regime, and then give their generalizations in the
fine-grained setting.

▶ Definition 24. A language L ∈ SPARSE if for all n, |L ∩ {0, 1}n| ≤ poly(n). Moreover, L

is called uniformly-sparse if L ∈ P ∩ SPARSE.

It is easy to see that SPARSE ⊆ P/poly. That is, one can identify the yes-instances
efficiently, albeit in non-uniform fashion. The purpose of introducing the uniform-sparsity is
to be able to identify these inputs efficiently in a uniform fashion. Unfortunately, we cannot
expect any such language L to lie even in a modestly hard class as, by definition, L ∈ P. The
purpose of the uniformly-sparse extensions, on the other hand, is to bridge this gap. One
can observe that unlike the uniformly-sparse languages, which are contained in P, languages
with uniformly-sparse extension can even be undecidable! In particular, any unary language
has uniformly-sparse extension in form of 1∗.

▶ Definition 25. A language L has a uniformly-sparse extension, if there exists a L′ s.t. :
1. L ⊆ L′

2. L′ is uniformly-sparse

Generalizing the above definitions in the fine-grained setting, we get:

▶ Definition 26. Let t : N → N be a computable function, then a language L is t(n)-SPARSE
if for all n, |L ∩ {0, 1}n| = O(t(n)). Moreover we say that L is t(n)-uniformly-sparse if
L ∈ TIME[t(n)] ∩ t(n)-SPARSE.

▶ Definition 27. L has a t(n)-uniformly-sparse extension, if there exists a L′ s.t.:
1. L ⊆ L′

2. L′ is t(n)-uniformly-sparse.

Observe that every binary language L is 2n-SPARSE. Furthermore, every such L has a
trivial 2n-uniformly-sparse extension: {0, 1}∗.

3 Lower Bounds & Hierarchy Theorem

In this section, we first present (Theorem 28) a fine-grained, parameterised version of
Theorem 23. This allows us to use the Avoid framework and get circuit lower bounds in
S2TIME[t(n)] instead of S2E. We then observe that our S2TIME[t(n)] witness is oblivious of
the input, and hence the lower bounds we get are actually in O2TIME[t(n)] as highlighted in
Theorem 29.

In Theorem 32 we present the first time hierarchy theorem for O2P. In fact, we note to
the best of our knowledge that this is the first known time hierarchy theorem for a semantic
class.

▶ Theorem 28. For n ∈ N, let t : N → N be a time-constructible function, s.t. t(n) > n ≥ 12
then

S2TIME[t(n)] ̸⊆ i.o.-SIZE
[

t(n)1/4

log(t(n))

]
.

K. Gajulapalli, Z. Li, and I. Volkovich 23:13

Proof. We construct a language Lt ∈ S2TIME[t(n)] and Lt ̸⊆ i.o.-SIZE
[

t(n)1/4

log(t(n))

]
.

For any n ∈ N, let s = ⌊ t(n)1/4

log(t(n)) ⌋ and |En,s| = ⌈5s log s⌉. Let PTTn,s : {0, 1}|En,s| →
{0, 1}|En,s|+1 be the prefix truth table generator circuit as in Definition 20. Let fn ∈
{0, 1}|En,s|+1 be the canonical solution to Avoid(PTTn,s) as outputted by the single-valued
algorithm from Theorem 22.

The hard language Lt is defined as follows: for any n ∈ Z, the characteristic string of
Lt|n is set to be XLt|n

:= fn||02n−|En,s|−1.
By definition of PTTn,s and the fact that fn /∈ Image(PTTn,s), we have that Lt /∈

i.o.-SIZE [s]. On the other hand, the single-valued algorithm for finding fn runs in time
O(|En,s| · |PTTn,s|) = O(t(n)). Hence, Lt ∈ S2TIME[t(n)]. ◀

We make the observation that the witness in the S2TIME machine above is oblivious to
the actual input x.

▶ Theorem 29. For n ∈ N, let t : N → N be a time-constructible function, s.t. t(n) > n ≥ 12
then

O2TIME[t(n)] ̸⊆ i.o.-SIZE
[

t(n)1/4

log(t(n))

]
.

Proof. Consider the same language Lt in the proof of Theorem 28. Notice that for any input
x of the same length n, the FS2P algorithm is run on the same circuit PTTn,s and hence the
witness is the same for inputs of the same length. Thus, it follows that Lt ∈ O2TIME[t(n)]. ◀

We now get as a corollary a proof of Theorem 1.

▶ Corollary 30. For all k ∈ N, there exists an explicit language Lk ∈ O2P s.t. Lk ̸⊆ SIZE[nk].

Proof. Fix t(n) = n5k. Then there is an explicit hard language Lt as defined in the proof of
Theorem 28, such that Lt ̸⊆ SIZE[nk]. Moreover, by Theorem 29 we have that Lt ∈ O2P. ◀

Before proving our hierarchy theorem for O2TIME, we prove a simple lemma that bounds
from above the size of a circuit family computing languages in O2TIME.

▶ Lemma 31. O2TIME[t(n)] ⊆ SIZE[t(n) log(t(n))].

Proof. Consider any language L ∈ O2TIME[t(n)], and let V (·, ·, ·) be its t(n)-time verifier.
For any integer n ∈ N, let yn, zn ∈ {0, 1}t(n) be the irrefutable proofs for input size n. By
Theorem 17 we can convert V (·, ·, ·) into a circuit family {Cn} ⊆ SIZE[t(n) log(t(n)]. The
values yn and zn can be hard-coded into Cn, and hence this circuit will decide L on all inputs
of size n. ◀

Having both an upper bound on the size of circuits simulating an O2TIME computation,
and also a lower bound for O2TIME against circuits, we can use the circuit size hierarchy
(Theorem 14) to define a time hierarchy on O2TIME.

▶ Theorem 32. For n ∈ N, let t : N → N be a time constructible function, s.t. t(n) > n ≥ 12
then: O2TIME[t(n)] ⊊ O2TIME[t(n)4 log9(t(n))].

Proof. Combining Theorem 29, Lemma 31, and Circuit Size Hierarchy (Theorem 14) we have:

O2TIME[t(n)] ⊆ SIZE[t(n) log t(n)] ⊊ SIZE[t(n) log
5
4 t(n)] ,

and

O2TIME[t(n)4 log9(t(n))] ̸⊆ SIZE[t(n) log
5
4 t(n)] . ◀

FSTTCS 2024

23:14 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

▶ Theorem 33. For n ∈ N, let t : N → N be a time constructible function, s.t. t(n) ≥ n

then: for all ε > 0, O2TIME[t(n)] ⊊ O2TIME[t(n)1+ε].

Proof. Let us assume that O2TIME[t(n)1+ε] ⊆ O2TIME[t(n)], then by translation we have
that:

O2TIME[t(n)(1+ε)2
] ⊆ O2TIME[t(n)1+ε] ⊆ O2TIME[t(n)]

Inducting on any k > 2, we get that O2TIME[t(n)(1+ε)k] ⊆ O2TIME[t(n)]. Now setting
k = ⌈3.1/ε⌉, by Bernoulli’s inequality we have that (1 + ε)k ≥ (1 + ε)3.1/ε ≥ 4.1. Therefore,
O2TIME[t(n)4.1] ⊆ O2TIME[t(n)], which contradicts Theorem 32. ◀

▶ Remark 34. We note here that while we are able to achieve a better gap in our hierarchy
theorem in Theorem 33 over Theorem 32, there is a trade off. The hierarchy theorem defined
in Theorem 32 is explicit, that is we have an explicit language not known to be contained in
the smaller class. However, when we apply our translation argument to get better parameters
in Theorem 33 we lose this explicitness.

4 Sparsity

In this section, we use sparse extensions to get various structural complexity results. We prove
a more fine-grained statement of Theorem 3 which states that any language in S2TIME[t(n)]
with a uniformly-sparse extension is actually in O2TIME[t(n)2]. This lets us extract as a
corollary another proof of S2E = O2E. As another application of sparse extensions, we are
able to recover the fixed polynomial lowerbounds for O2P from the previous section as stated
in Theorem 1. Finally we show connections between sparse extensions and open problems
posed by [27].

▶ Lemma 35. Let L ∈ S2TIME[t(n)]. If L has a t(n)-uniformly-sparse extension then
L ∈ O2TIME[t(n)2].

Proof. For any n, let L′ be the t(n)-uniformly-sparse extension of L, and let F be the
TIME[t(n)] predicate that decides membership in L′. We will now design an O2TIME[t(n)2]
verifier V for L|n. Since both L and L′ are t(n)-SPARSE, we have that for most x ∈ {0, 1}n:
L|n(x) = L′|n(x) = 0. V will first use F to efficiently filter out most non-membership in L′|n,
and hence L|n in TIME[t(n)]. Now V only has to decide membership in L over t(n) many
inputs X = {x ∈ {0, 1}n : F(x) = 1}. We will use the fact that since L ∈ S2TIME[t(n)],
for all x ∈ X, if x ∈ L there is an irrefutable YES certificate yx and if x /∈ L there is an
irrefutable NO certificate zx and a verifier V ∗, running in TIME[t(n)] s.t.

if x ∈ L, ∃yx, ∀z s.t. V ∗(x, yx, z) = 1
if x /∈ L, ∃zx, ∀y s.t. V ∗(x, y, zx) = 0

Consider the string Y ∗ which encodes a table of YES witnesses y∗
x for every input x ∈ X.

When x ∈ L we set y∗
x = yx, and when x /∈ L we will set y∗

x = 0t(n). The size of Y ∗ is
O(t(n)2), since there are at most t(n) entries in the table each of length t(n) + n. For every
x ∈ X ∩ L, let zx be the irrefutable NO-certificate corresponding to x for V ∗. We set Z∗ to
be the concatenation of all such zx. The size of Z∗ is also at most t(n)2.

We now show that Y ∗ and Z∗ will serve as oblivious irrefutable “YES” and “NO” certific-
ates respectively for V . On input (x, Y ∗, Z∗), V first parses Y ∗ to find the corresponding y∗

x

in time TIME[t(n)2]. Then for each zi ∈ Z∗ we run V ∗(x, y∗
x, zi). If for all zi, V ∗(x, y∗

x, zi) = 1
then V outputs 1, otherwise V will output 0. Since we are making at most t(n) calls that
each cost TIME[t(n)], V runs in TIME[t(n)2].

K. Gajulapalli, Z. Li, and I. Volkovich 23:15

V (x, Y ∗, Z∗) :
(1) Set output = 1.
(2) If F(x) = 0, return 0.
(3) Parse Y ∗ to get y∗

x.
(4) For zi ∈ Z∗, do:

(a) output = output ∧ V ∗(x, y∗
x, zi).

(5) Return output.

Figure 1 O2TIME[t(n)2] Verifier for Language in S2TIME[t(n)] with t(n)-uniformly-sparse exten-
sion.

To see correctness, we first analyze the case when x ∈ L, then by construction Y ∗ includes
y∗

x = yx and V will output 1. On the other hand if x /∈ L then there is an irrefutable
no-certificate zx in Z∗ so there is no yi such that V (x, yi, zx) = 1. Hence V outputs 0. ◀

By taking t(n) to be a polynomial in Lemma 35 we directly get Corollary 36 (also
Theorem 3) relating O2P and S2P.

▶ Corollary 36. If L ∈ S2P and L has an uniformly-sparse extension, then L ∈ O2P

Similarly, one can prove Theorem 4 by showing the same consequence for coNP vs coONP,
thus making a partial progress towards the open questions posed by Goldreich and Meir
in [27]. In the exponential regime, since all languages have the trivial 2n-uniformly-sparse
extension we get the equivalence between O2E and S2E as seen in Corollary 37.

▶ Corollary 37. S2E = O2E

Proof. As noted in Section 2.4, every language is 2n-SPARSE, and has the trivial 2n-uniformly-
sparse extension: {0, 1}∗. When t(n) = 2n, by Lemma 35 we get that S2TIME[2n] ⊆
O2TIME[22n]. ◀

In particular, the following lemma shows that the hard language in S2TIME[t(n)] defined
in Theorem 28 admits a t(n)-uniformly-sparse extension, giving another proof of Corollary 30.

▶ Lemma 38. For n ∈ N, let t : N → N be a time-constructible function, s.t. t(n) > n ≥ 12
then, there is an explicit language Lt ∈ S2TIME[t(n)] s.t. Lt /∈ SIZE

[
t(n)1/4

log(t(n))

]
. Moreover, Lt

has a t(n)-uniformly-sparse extension L′
t.

Proof. Let Lt be the S2TIME[t(n)] language defined in the proof Theorem 28 with the
characteristic string XLt|n

:= fn||02n−|En,s|−1. We now define the language L′
t whose

characteristic string XL′
t|n

:= 1|En,s|+1||02n−|En,s|−1. To see that this L′
t is a t(n)-

uniformly-sparse extension of Lt, clearly Lt ⊆ L′
t. Moreover membership of x ∈ L′

t can
be decided by checking if the binary value of x is less than or equal to |En,s| + 1 which can
be done in TIME[n] ⊆ TIME[t(n)]. ◀

Equipped with this lemma we have an alternative proof of fixed polynomial lower bounds
for O2P as stated in Theorem 1.

▶ Corollary 39 (Theorem 1). For every k ∈ N, O2P ̸⊆ SIZE[nk]. Moreover, for every k there
is an explicit language Lk in O2P s.t. Lk /∈ SIZE[nk].

FSTTCS 2024

23:16 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

Proof. Fix t(n) = n5k. Then by Lemma 38 there is an explicit language Lk such that
Lk ̸⊆ SIZE[nk], and Lk has an uniformly-sparse extension. Applying Lemma 35 we have that
Lk ∈ O2TIME[n10k] ⊆ O2P. ◀

5 Open Problems

We conclude with a few interesting open problems:
Can we show that every sparse S2P language is also in O2P?
Can we show a non-trivial upper bound for O2P, for example PNP, MA, PP? This would
imply explicit fixed-polynomial lower bounds for such classes. On the other hand, we do
note that under reasonable derandomization assumptions, O2P ⊆ S2P = PNP.
Can we arrive at something interesting about time hierarchy theorem for semantic classes
where fixed-polynomial lower bounds are known e.g. S2P, ZPPNP, assuming NP ̸⊆ P/poly?
For instance, if NP ⊆ P/poly, then it follows that S2P ⊆ P/poly. One could then invoke
the circuit size hierarchy theorem (Theorem 14) to establish a hierarchy theorem for
S2TIME, similar to how we obtain the hierarchy theorem for O2TIME.

References
1 S. Aaronson. Oracles are subtle but not malicious. In 21st Annual IEEE Conference on

Computational Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages
340–354. IEEE Computer Society, 2006. doi:10.1109/CCC.2006.32. 5

2 S. Aaronson. The learnability of quantum states. In Proceedings of the Royal Society A,
volume 463, pages 3089–3114, 2007. doi:10.1098/rspa.2007.0113. 3

3 D. Apon, W. Gasarch, and K. Lawler. The complexity of grid coloring. Theory Comput. Syst.,
67(3):521–547, 2023. doi:10.1007/S00224-022-10098-5. 3, 7

4 S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge University
Press, 2009. 8, 10

5 B. Barak. A probabilistic-time hierarchy theorem for “slightly non-uniform" algorithms. In
RANDOM, pages 194–208, 2002. 4

6 N. H. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles and queries
that are sufficient for exact learning. J. Comput. Syst. Sci., 52(3):421–433, 1996. doi:
10.1006/JCSS.1996.0032. 5

7 J.-Y. Cai. S2P ⊆ ZP P NP . Journal of Computer and System Sciences, 73(1):25–35, 2007. 2,
5, 6

8 J.-Y. Cai and O. Watanabe. On proving circuit lower bounds against the polynomial-time
hierarchy. SIAM J. Comput., 33(4):984–1009, 2004. doi:10.1137/S0097539703422716. 5

9 R. Canetti. More on BPP and the polynomial-time hierarchy. Inf. Process. Lett., 57(5):237–241,
1996. doi:10.1016/0020-0190(96)00016-6. 2

10 V. T. Chakaravarthy and S. Roy. Oblivious symmetric alternation. In STACS, pages 230–241,
2006. 3, 5, 6

11 V. T. Chakaravarthy and S. Roy. Arthur and merlin as oracles. Comput. Complex., 20(3):505–
558, 2011. doi:10.1007/S00037-011-0015-3. 3, 5

12 E. Chattopadhyay and D. Zuckerman. Explicit two-source extractors and resilient functions.
Annals of Mathematics, 189(3):653–705, 2019. doi:10.4007/annals.2019.189.3.1. 4

13 L. Chen, S. Hirahara, and H. Ren. Symmetric exponential time requires near-maximum circuit
size. In Proceedings of the 56th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2024, to appear. Association for Computing Machinery, 2024. 2, 4, 5, 7, 11

14 L. Chen and R. Tell. Hardness vs randomness, revised: Uniform, non-black-box, and instance-
wise. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 125–136, 2022. doi:10.1109/FOCS52979.2021.00021. 4

https://doi.org/10.1109/CCC.2006.32
https://doi.org/10.1098/rspa.2007.0113
https://doi.org/10.1007/S00224-022-10098-5
https://doi.org/10.1006/JCSS.1996.0032
https://doi.org/10.1006/JCSS.1996.0032
https://doi.org/10.1137/S0097539703422716
https://doi.org/10.1016/0020-0190(96)00016-6
https://doi.org/10.1007/S00037-011-0015-3
https://doi.org/10.4007/annals.2019.189.3.1
https://doi.org/10.1109/FOCS52979.2021.00021

K. Gajulapalli, Z. Li, and I. Volkovich 23:17

15 Y. Chen, Y. Huang, J. Li, and H. Ren. Range avoidance, remote point, and hard partial truth
table via satisfying-pairs algorithms. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, pages 1058–1066, New York, NY, USA, 2023. Association
for Computing Machinery. doi:10.1145/3564246.3585147. 4, 5

16 Y. Chen and J. Li. Hardness of range avoidance and remote point for restricted circuits via
cryptography. In Proceedings of the 56th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2024, to appear. Association for Computing Machinery, 2024. 4

17 E. Chung, A. Golovnev, Z. Li, M. Obremski, S. Saraogi, and N. Stephens-Davidowitz. On the
randomized complexity of range avoidance, with applications to cryptography and metacom-
plexity. ECCC preprint, 2023. https://eccc.weizmann.ac.il/report/2023/193/. 4

18 S. A. Cook. A hierarchy for nondeterministic time complexity. In Proceedings of the fourth
annual ACM symposium on Theory of computing - STOC ’72, STOC ’72. ACM Press, 1972.
doi:10.1145/800152.804913. 4

19 P. Dixon, A. Pavan, J. Vander Woude, and N. V. Vinodchandran. Pseudodeterminism:
promises and lowerbounds. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2022, pages 1552–1565, New York, NY, USA, 2022. Association
for Computing Machinery. doi:10.1145/3519935.3520043. 4

20 L. Fortnow and R. Santhanam. Hierarchy theorems for probabilistic polynomial time. In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 316–324, 2004. 4

21 L. Fortnow, R. Santhanam, and L. Trevisan. Hierarchies for semantic classes. In Proceedings
of the 37th Annual ACM SIGACT Symposium on Theory of Computing, pages 348–355. ACM,
New York, 2005. doi:10.1145/1060590.1060642. 4

22 L. Fortnow, R. Santhanam, and R. Williams. Fixed-polynomial size circuit bounds. In
Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009,
Paris, France, 15-18 July 2009, pages 19–26. IEEE Computer Society, 2009. doi:10.1109/
CCC.2009.21. 3, 5, 7

23 G. S. Frandsen and P. B. Miltersen. Reviewing bounds on the circuit size of the hardest functions.
Information processing letters, 95(2):354–357, 2005. doi:10.1016/J.IPL.2005.03.009. 11

24 K. Gajulapalli, A. Golovnev, S. Nagargoje, and S. Saraogi. Range avoidance for constant
depth circuits: Hardness and algorithms. In Nicole Megow and Adam D. Smith, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2023, September 11-13, 2023, Atlanta, Georgia, USA, volume 275 of
LIPIcs, pages 65:1–65:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.APPROX/RANDOM.2023.65. 4

25 W. Gasarch. https://blog.computationalcomplexity.org/2010/07/spares-problems-in-np-
thought-to-not-be.html, 2010. URL: https://blog.computationalcomplexity.org/2010/
07/spares-problems-in-np-thought-to-not-be.html. 7

26 O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008. 8

27 O. Goldreich and O. Meir. Input-oblivious proof systems and a uniform complexity perspective
on p/poly. ACM Transactions on Computation Theory (TOCT), 7(4):1–13, 2015. doi:
10.1145/2799645. 3, 6, 7, 14, 15

28 V. Guruswami, X. Lyu, and X. Wang. Range avoidance for low-depth circuits and connections
to pseudorandomness. In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM 2022, September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual
Conference), volume 245 of LIPIcs, pages 20:1–20:21. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.APPROX/RANDOM.2022.20. 4

29 J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms.
Transactions of the American Mathematical Society, 117(0):285–306, 1965. doi:10.1090/
s0002-9947-1965-0170805-7. 4

FSTTCS 2024

https://doi.org/10.1145/3564246.3585147
https://eccc.weizmann.ac.il/report/2023/193/
https://doi.org/10.1145/800152.804913
https://doi.org/10.1145/3519935.3520043
https://doi.org/10.1145/1060590.1060642
https://doi.org/10.1109/CCC.2009.21
https://doi.org/10.1109/CCC.2009.21
https://doi.org/10.1016/J.IPL.2005.03.009
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.65
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.65
https://blog.computationalcomplexity.org/2010/07/spares-problems-in-np-thought-to-not-be.html
https://blog.computationalcomplexity.org/2010/07/spares-problems-in-np-thought-to-not-be.html
https://doi.org/10.1145/2799645
https://doi.org/10.1145/2799645
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.20
https://doi.org/10.1090/s0002-9947-1965-0170805-7
https://doi.org/10.1090/s0002-9947-1965-0170805-7

23:18 Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

30 F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape turing machines. J. ACM,
13(4):533–546, October 1966. doi:10.1145/321356.321362. 4

31 R. Ilango, J. Li, and R. Williams. Indistinguishability obfuscation, range avoidance, and
bounded arithmetic. In Proceedings of the 55th Annual ACM Symposium on Theory of Com-
puting, STOC 2023, pages 1076–1089, New York, NY, USA, 2023. Association for Computing
Machinery. doi:10.1145/3564246.3585187. 4

32 R. Impagliazzo and A. Wigderson. P=BPP unless E has subexponential circuits: derandomizing
the xor lemma. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing
(STOC), pages 220–229, 1997. 2

33 R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and
Control, 55(1-3):40–56, 1982. doi:10.1016/S0019-9958(82)90382-5. 2, 5

34 R. M. Karp and R. J. Lipton. Some connections between nonuniform and uniform complexity
classes. In Proceedings of the 12th Annual ACM Symposium on Theory of Computing, April
28-30, 1980, Los Angeles, California, USA, pages 302–309, 1980. doi:10.1145/800141.804678.
5

35 R. Kleinberg, O. Korten, D. Mitropolsky, and C. Papadimitriou. Total Functions in the
Polynomial Hierarchy. In James R. Lee, editor, 12th Innovations in Theoretical Computer Sci-
ence Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 44:1–44:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ITCS.2021.44. 4

36 J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits. SIAM J.
Comput., 28(1):311–324, 1998. doi:10.1137/S0097539795296206. 5

37 O. Korten. The hardest explicit construction. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 433–444. IEEE, 2022. 4, 7

38 O. Korten and T. Pitassi. Strong vs. weak range avoidance and the linear ordering principle.
In 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS). IEEE
Computer Society, 2024. URL: https://eccc.weizmann.ac.il/report/2024/076/. 4

39 J. Li and T. Yang. 3.1n- o (n) circuit lower bounds for explicit functions. In Proceedings of the
54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1180–1193, 2022. 2

40 X. Li. Two source extractors for asymptotically optimal entropy, and (many) more. In 2023
IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 1271–1281,
Los Alamitos, CA, USA, November 2023. IEEE Computer Society. doi:10.1109/FOCS57990.
2023.00075. 4

41 Z. Li. Symmetric exponential time requires near-maximum circuit size: Simplified, truly
uniform. In Proceedings of the 56th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2024. Association for Computing Machinery, 2024. 2, 4, 5, 7, 11

42 Z. Lu, I. C. Oliveira, and R. Santhanam. Pseudodeterministic algorithms and the structure of
probabilistic time. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2021, pages 303–316, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3406325.3451085. 4

43 S. R. Mahaney. Sparse complete sets of NP: solution of a conjecture of berman and hartmanis.
J. Comput. Syst. Sci., 25(2):130–143, 1982. doi:10.1016/0022-0000(82)90002-2. 3

44 D. van Melkebeek and K. Pervyshev. A generic time hierarchy with one bit of advice.
Computational Complexity, 16(2):139–179, 2007. doi:10.1007/S00037-007-0227-8. 4

45 P. B. Miltersen, N. V. Vinodchandran, and O. Watanabe. Super-polynomial versus half-
exponential circuit size in the exponential hierarchy. In COCOON, pages 210–220, 1999.
2

46 N. Nisan and A. Wigderson. Hardness vs. randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994. doi:10.1016/S0022-0000(05)80043-1. 2

47 S. P. Radziszowski. Small ramsey numbers. The Electronic Journal of Combinatorics [electronic
only], DS01, 2021. URL: https://www.combinatorics.org/ojs/index.php/eljc/article/
view/DS1. 4

https://doi.org/10.1145/321356.321362
https://doi.org/10.1145/3564246.3585187
https://doi.org/10.1016/S0019-9958(82)90382-5
https://doi.org/10.1145/800141.804678
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.1137/S0097539795296206
https://eccc.weizmann.ac.il/report/2024/076/
https://doi.org/10.1109/FOCS57990.2023.00075
https://doi.org/10.1109/FOCS57990.2023.00075
https://doi.org/10.1145/3406325.3451085
https://doi.org/10.1016/0022-0000(82)90002-2
https://doi.org/10.1007/S00037-007-0227-8
https://doi.org/10.1016/S0022-0000(05)80043-1
https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1
https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1

K. Gajulapalli, Z. Li, and I. Volkovich 23:19

48 H. Ren, R. Santhanam, and Z. Wang. On the range avoidance problem for circuits. In 2022
IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 640–650,
Los Alamitos, CA, USA, November 2022. IEEE Computer Society. doi:10.1109/FOCS54457.
2022.00067. 4

49 A. Russell and R. Sundaram. Symmetric alternation captures BPP. Comput. Complex.,
7(2):152–162, 1998. doi:10.1007/S000370050007. 2

50 R. Santhanam. Circuit lower bounds for merlin–arthur classes. SIAM J. Comput., 39(3):1038–
1061, 2009. doi:10.1137/070702680. 5

51 J. I. Seiferas, M. J. Fischer, and A. R. Meyer. Separating nondeterministic time complexity
classes. Journal of the ACM, 25(1):146–167, January 1978. doi:10.1145/322047.322061. 4

52 C. E. Shannon. The synthesis of two-terminal switching circuits. Bell Syst. Tech. J., 28(1):59–
98, 1949. doi:10.1002/J.1538-7305.1949.TB03624.X. 2

53 N. V. Vinodchandran. A note on the circuit complexity of PP. Theor. Comput. Sci., 347(1-
2):415–418, 2005. doi:10.1016/J.TCS.2005.07.032. 5

54 R. Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014. doi:
10.1145/2559903. 2

55 S. Žák. A turing machine time hierarchy. Theoretical Computer Science, 26(3):327–333,
October 1983. doi:10.1016/0304-3975(83)90015-4. 4, 6

FSTTCS 2024

https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1007/S000370050007
https://doi.org/10.1137/070702680
https://doi.org/10.1145/322047.322061
https://doi.org/10.1002/J.1538-7305.1949.TB03624.X
https://doi.org/10.1016/J.TCS.2005.07.032
https://doi.org/10.1145/2559903
https://doi.org/10.1145/2559903
https://doi.org/10.1016/0304-3975(83)90015-4

When Far Is Better: The Chamberlin-Courant
Approach to Obnoxious Committee Selection
Sushmita Gupta #

The Institute of Mathematical Sciences, HBNI, Chennai, India

Tanmay Inamdar #

Indian Institute of Technology Jodhpur, Jodhpur, India

Pallavi Jain #

Indian Institute of Technology Jodhpur, Jodhpur, India

Daniel Lokshtanov #

University of California Santa Barbara, CA, USA

Fahad Panolan #

School of Computer Science, University of Leeds, UK

Saket Saurabh #

The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Norway

Abstract
Classical work on metric space based committee selection problem interprets distance as “near
is better”. In this work, motivated by real-life situations, we interpret distance as “far is better”.
Formally stated, we initiate the study of “obnoxious” committee scoring rules when the voters’
preferences are expressed via a metric space. To accomplish this, we propose a model where large
distances imply high satisfaction (in contrast to the classical setting where shorter distances imply
high satisfaction) and study the egalitarian avatar of the well-known Chamberlin-Courant voting
rule and some of its generalizations. For a given integer value λ between 1 and k, the committee size,
a voter derives satisfaction from only the λth favorite committee member; the goal is to maximize
the satisfaction of the least satisfied voter. For the special case of λ = 1, this yields the egalitarian
Chamberlin-Courant rule. In this paper, we consider general metric space and the special case of a
d-dimensional Euclidean space.

We show that when λ is 1 and k, the problem is polynomial-time solvable in R2 and general
metric space, respectively. However, for λ = k − 1, it is NP-hard even in R2. Thus, we have
“double-dichotomy” in R2 with respect to the value of λ, where the extreme cases are solvable in
polynomial time but an intermediate case is NP-hard. Furthermore, this phenomenon appears to be
“tight” for R2 because the problem is NP-hard for general metric space, even for λ = 1. Consequently,
we are motivated to explore the problem in the realm of (parameterized) approximation algorithms
and obtain positive results. Interestingly, we note that this generalization of Chamberlin-Courant
rules encodes practical constraints that are relevant to solutions for certain facility locations.

2012 ACM Subject Classification Theory of computation → Facility location and clustering; Theory
of computation → Fixed parameter tractability

Keywords and phrases Metric Space, Parameterized Complexity, Approximation, Obnoxious Facility
Location

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.24

Related Version Full Version: https://arxiv.org/abs/2405.15372 [36]

Funding Sushmita Gupta and Pallavi Jain acknowledge support from SERB-SUPRA (grant
number SPR/2021/000860).
Sushmita Gupta: The author acknowledges the support from SERB-MATRICS (grant
number MTR/2021/000869).

© Sushmita Gupta, Tanmay Inamdar, Pallavi Jain, Daniel Lokshtanov, Fahad Panolan, and
Saket Saurabh;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 24; pp. 24:1–24:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sushmita.gupta@gmail.com
https://orcid.org/0000-0003-1255-8266
mailto:taninamdar@gmail.com
https://orcid.org/0000-0002-0184-5932
mailto:pallavijain.t.cms@gmail.com
https://orcid.org/0000-0001-8900-9797
mailto:daniello@ucsb.edu
https://orcid.org/0000-0002-3166-9212
mailto:F.Panolan@leeds.ac.uk
https://orcid.org/0000-0001-6213-8687
mailto:saket@imsc.res.in
https://orcid.org/0000-0001-7847-6402
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.24
https://arxiv.org/abs/2405.15372
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 The Chamberlin-Courant Approach to Obnoxious Committee Selection

Tanmay Inamdar : The author acknowledges support from IITJ Research Initiation Grant (grant
number I/RIG/TNI/20240072).
Pallavi Jain: The author acknowledges support from IITJ Seed Grant (grant number I/SEED/PJ/
20210119).
Daniel Lokshtanov: The author acknowledges support from NSF award CCF-2008838.
Saket Saurabh: The author acknowledges support from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 819416); and he also acknowledges the support of Swarnajayanti Fellowship (grant number
DST/SJF/MSA-01/2017-18).

1 Introduction

Initiated in the 18th century, the multiwinner election problem, also known as the committee
selection problem, has been central to social choice theory for over a century [16, 68, 53]
and in the last decade and a half it has been among the most well-studied problems in
computational social choice [3, 29, 9, 8]. In this problem, given a set of candidates C, a profile
P of voters’ preferences, and an integer k; the goal is to find a k-sized subset of candidates
(called a committee) using a multiwinner voting rule. The committee selection problem has
many applications beyond parliamentary elections, such as selecting movies to be shown on
a plane, making various business decisions, choosing PC members for a conference, choosing
locations for fire stations in a city, and so on. For more details on the committee selection
problem, we refer the reader to [29, 46].

The Chamberlin-Courant (CC) committee is a central solution concept in the world
of committee selection. Named after Chamberlin and Courant [16], it is derived from a
multiwinner voting rule where the voter’s preference for a given k-sized committee is evaluated
by adding the preference of each voter for its representative, the most preferred candidate in
the committee.The CC committee is one with the highest value. There has been a significant
amount of work in computational social choice centered around this concept and has to
date engendered several CC-type rules that can be viewed as a generalization of the above.
Specifically, ordered weighted average(OWA) operator-based rules such as the median scoring
rule, defined formally later in [62, 4] can be seen as a direct generalization of CC. Moreover,
there are other notions of generalization based on the preference aggregation principle: the
original CC rule is utilitarian, that is, it takes the summation of each voter’s preference value
toward its representative, [62, 10, 37]. The egalitarian variant studied by Aziz et al. [4]
and Gupta et al. [37] is one where only the least satisfied voter’s preference value towards
its representative is taken. Clearly, there could be many other variants where some other
aggregation principle is considered. We refer to all these variants collectively as the CC-type
rules and the egalitarian variants as the egalitarian CC-type rules. The egalitarian rules, also
known as Rawlsian rules, are based on the highly influential Rawls’s theory of “justice as
fairness” [58, 59] that favors equality in some sense by maximising the minimum satisfaction.
Egalitarian rules are very well-studied in voting theory [44, 4, 37, 24, 66].

In this paper, we consider the situation where the voters’ preferences are expressed via
a metric space, a natural setting in the facility location problem. Facility location can
be viewed as an application of the committee selection (also known multi-winner voting)
problem [17] and spatial voting [48]. Furthermore, we consider egalitarian scoring rules,
which aim to maximize the “satisfaction” of the least satisfied voter. Moreover, Gupta et
al. [37] study a wide range of egalitarian rules, called the egalitarian median rule, which is
a generalization of the egalitarian CC rule and is defined as follows: for a voter v and a

S. Gupta, T. Inamdar, P. Jain, D. Lokshtanov, F. Panolan, and S. Saurabh 24:3

committee S, let posS
v (called a position vector) be the vector of positions of candidates in S

in the ranking of v in increasing order. For example, for the voter v : a ≻ b ≻ d ≻ c and set
S = {c, d}, the vector posS

v = [3, 4]. In the egalitarian median rule, given a value 1 ≤ λ ≤ k,
the satisfaction of a voter v for a committee S is given by m − posS

v [λ], where m is the total
number of candidates and posS

v [λ] is the position value of the λth candidate in S according
to v’s preference list. Note that when λ = 1, we get the egalitarian CC scoring rule. Gupta
et al. [37] proved that the egalitarian median rule is NP-hard for every λ < k.

In contrast to the aforementioned intractibility results for egalitarian CC-type rules,
Betzler et al.[7] show that for λ = 1, the egalitarian median rule is polynomial-time solvable
for 1-dimensional Euclidean preferences because such preferences are single-peaked. This
motivates us to study egalitarian CC-type rules in the metric space setting that goes beyond
dimension 1.

Preferences via a metric space. For a given metric space, preferences are encoded in the
following manner: each candidate and each voter is represented by a point in the metric
space. In earlier works, distance is viewed as being inversely proportional to preference, that
is, a voter is said to have a higher preference for candidates who are closer to her than those
that are farther in the metric space, [65, 13, 41, 34, 29, 64, 20]. In this paper, we consider the
opposite scenario where distance is directly proportional to preference, that is, a candidate
who is farther away is more preferred than the one who is closer. Inspired by obnoxious
facility location [47, 67, 21], we call our problem obnoxious committee selection. Before we
delve into the formal definition of our problem, we discuss the use of metric space to encode
preference in earlier works.

The facility location problem is actually equivalent to the committee selection problem,
where we assume that the closer facility is more preferred. The well-known k-center
problem (also known as the Minimax Facility Location problem in metric space) is
equivalent to the egalitarian CC committee selection problem when the voters’ preferences
are encoded in a metric space, where higher preference is given to the candidate that
is closer. For some applications, it is natural to demand more than one facility in the
vicinity, e.g., convenience stores, pharmacies, healthcare facilities, playgrounds, etc. This
is known as the fault tolerant k-center problem and is captured by egalitarian median
rules in a metric space [19]. Facility location is among the most widely studied topics in
algorithms, and we point the reader to some recent surveys [1, 22, 35] on the topic and
to [17] for a survey on facility location in mechanism design.
In the spatial theory of voting, voters and candidates are embedded in the d-dimensional
Euclidean space, and each voter ranks the candidates according to their distance from
them [38, 48].

In the last few years, a fair amount of research centered on the theme of voting, committee
selection, especially the CC rule, in metric spaces has appeared in theory and economics
and computation venues [64, 55, 18, 71, 38, 54, 51, 2]. Motivated by the applications stated
above, we consider the general metric spaces as well as the Euclidean space for our study.
Next, we discuss our motivation for studying obnoxious committee selection before presenting
the formal definition.

Why Obnoxious Committee? The committee selection problem has been studied for the
metric space in literature [27, 34, 43, 63, 64]. All these papers use the “closer is better”
perspective and thus candidates that are closer are preferred over those that are farther.
Motivated by real-life scenarios where every kind of facility is not desirable in the vicinity

FSTTCS 2024

24:4 The Chamberlin-Courant Approach to Obnoxious Committee Selection

such as is the case with factories, garbage dumps and so on, we want to study a problem
which allows us to restrict the number of facilities in the vicinity. This is particularly relevant
for facilities that bring some utility but too many lead to loss in value or even to negative
utility. In order to design an appropriate solution concept for scenarios such as these we
associate higher preference to facilities (i.e candidates) that are far and set the value of λ

in a situation-specific way. For example, consider a situation where a local government is
searching locations to build k factories, with the constraint that each of the k factories is
located far from every neighborhood. This can be modeled by our problem by setting each
of the neighborhoods as voters, each potential factory location as a candidate, and λ = k.
Moreover, for facilities such as garbage recycling, we can set λ = k − O(1) so that all but
few facilities are located far from any neighborhood. Since the value of λ can depend on k

(which is part of the input), we take λ to be part of the input. Overall, we observe that as far
as satisfaction is concerned, different facilities bring different levels of satisfaction depending
on how many of them are in the vicinity. Consequently, it is desirable to have a model which
is robust enough to capture this nuance. This translates to λ being user defined, and is thus
specified as part of the input to the problem.

Formal definition. We introduce some notation before giving a formal definition of the
problem studied in this paper. For a given metric space M = (X, d), a point x ∈ X, a
subset S ⊆ X, and λ ∈ [k], we define dλ(x, S) to be the distance of x to the λth farthest
point in S. To define this notion formally, we may sort the distances of a point x to each
s ∈ S in non-increasing order (breaking ties arbitrarily, if needed), and let these distances be
d(x, s1) ≥ d(x, s2) ≥ . . . ≥ d(x, sk). Then, sλ ∈ S is said to be the λth farthest point from x

in S, and dλ(x, S) = d(x, sλ). Note that d1(x, S) is the distance of x from a farthest point in
S. For a point p ∈ X and a non-negative real r, B(p, r) := {q ∈ X : d(p, q) ≤ r} denotes the
ball of radius r centered at p.

Obnoxious Egalitarian Median Committee Selection
(Obnox-Egal-Median-CS, in short)
Input: A metric space M consisting of a set of voters, V , a set of candidates, C; positive
integers k and λ ∈ [k]; and a positive real t.
Question: Does there exist a subset S ⊆ C such that |S| = k and for each v ∈ V ,
dλ(v, S) ≥ t?

When λ = 1, we give the problem a special name, Obnoxious-Egal-CC, due to its
similarity with the egalitarian CC rule. Note that the egalitarian (resp. utilitarian) CC rule
itself is the special case of the egalitarian (resp. utilitarian) median rule when λ = 1.

Our Contributions. In the following, we discuss the highlights of our work in this paper
and the underlying ideas used to obtain the result.

We begin with studying Obnoxious-Egal-CC, that is, Obnox-Egal-Median-CS with
λ = 1, and show that it is polynomial-time solvable when voters and candidates are
embedded in R2 with Euclidean distances, Theorem 1. To design this algorithm, we first
observe that the above setting can be equivalently reformulated as the following geometric
problem. Given V , and a set of equal-sized disks D, find a k-size subset D′ ⊆ D such
that no point of V belongs to the common intersection region of D′. Following that we
use geometric properties of equal-sized disks to design an algorithm that uses dynamic
programming to inductively build such a region. This algorithmic result contrasts with
the intractability of the non-obnoxious version (the k-Center problem) which is known
to be NP-hard in R2.

S. Gupta, T. Inamdar, P. Jain, D. Lokshtanov, F. Panolan, and S. Saurabh 24:5

In Theorem 7, we consider Obnoxious-Egal-CC in general metric spaces. We show
that it is NP-hard, and in fact, the optimization variant is also W[2]-hard to approximate
beyond a factor of 1/3, parameterized by k, the committee size. Informally speaking,
this implies that no algorithm with running time f(k)nO(1) is likely to exist, assuming
widely believed complexity-theoretic assumptions. For more background on parameterized
complexity, the reader may refer to the full version [36], or more generally, a textbook on
the topic [23].
Notwithstanding these negative results, we show that Obnoxious-Egal-CC admits
a factor 1/4 approximation algorithm that runs in polynomial time, Theorem 9. In
this algorithm, we first compute a “t/2-net” S ⊆ C, i.e., S satisfies the following two
properties: (1) d(c, c′) > t/2 for any distinct c, c′ ∈ S, and (2) for any c ̸∈ S, there exists
some c′ ∈ M such that d(c, c′) ≤ t/2. Now, consider a point p ∈ V and a c∗ ∈ C, such
that d(p, c∗) ≥ t. Then, by using the two properties of S, we argue that there exists a
point in c′ ∈ S that is “near” c, and hence, “far from” p. More specifically, we can show
that d(p, c′) ≥ t/4, leading to a 1/4-approximate solution.
Our work on Obnox-Egal-Median-CS for λ > 1 reveals that for λ = k, the problem
can be solved in polynomial time due to the fact that every committee member needs
to be at least t distance away from every voter. So, if possible, we can choose any k

candidates that are t-distance away from every voter; otherwise, a solution does not exist.
The algorithm is same as the one in Proposition 3 in [4], but here we can have ties. We
show that for λ = k − 1, Obnox-Egal-Median-CS is NP-hard (Theorem 11) even when
the voters and candidates are points in R2. Furthermore, we show that the intractability
results we have for Obnoxious-Egal-CC in Theorem 7 carry forward to λ > 1, as shown
in Theorem 13.
For an arbitrary value of λ in Rd space, we exhibit a fixed-parameter tractable approx-
imation scheme, that is, an algorithm that returns a solution of size k, in time FPT in
(ϵ, λ, d), such that for every point v ∈ V there are at least λ points in the solution that
are at distance at least (1− ϵ)t from v, Theorem 22. Note that λ ≤ k, thus, this algorithm
is also FPT in (ϵ, k, d). To obtain this result, we first observe that it is possible to further
refine the idea of t/2-net, and define a set of “representatives”, if the points belong to
a Euclidean space. In this setting, for any 0 < ϵ < 1, we can compute a candidate set
R of representatives, such that for every relevant c ∈ C, there exists a c′ ∈ R such that
d(c, c′) ≥ ϵ/2. Moreover, R is bounded by a function of λ, d, and ϵ. Thus, we can find an
(1 − ϵ)-approximation by enumerating all size-k subsets of R.

Related works. Much of the research on multiwinner voting is concentrated on the compu-
tational complexity of computing winners under various rules, because for many applications
it is crucial to be able to efficiently compute exact winners. As might be expected, com-
puting winners under some committee scoring rules can be done in polynomial time (e.g.,
k-Borda [29]), while for many of the others the decision problem is NP-hard.

Effort towards applying the framework of parameterized complexity to these problems
has primarily focused on parameters such as the committee size k and the number of voters,
n. Indeed, this line of research has proven to be rather successful (see, e.g., [11, 10, 28,
31, 30, 4, 7, 6, 32, 70, 72, 49, 5, 52, 37, 69]). The problem has also been studied through
the perspectives of approximation algorithms [55, 12] and parameterized approximation
algorithms [60, 61, 10].

It is worth noting the similarities between our model and that of the fault tolerant versions
of clustering problems, such as k-Center or k-Median [45, 39, 14], also [15]. In the latter
setting, the clustering objective incorporates the distance of a point to its λth closest chosen

FSTTCS 2024

24:6 The Chamberlin-Courant Approach to Obnoxious Committee Selection

center. Here, λ ≥ 1 is typically assumed to be a small constant. Thus, even if λ − 1 centers
chosen in the solution undergo failure, and if they all happen to be nearby a certain point p,
we still have some (upper) bound on the distance of p to its now-closest center. Note that
this motivation of fault tolerance translates naturally into our setting, where we want some
(lower) bound on the distance of a voter to its λth farthest candidate, which may be useful of
the λ − 1 farthest candidates are unable to perform their duties.

Preliminaries. In the optimization variant of Obnox-Egal-Median-CS, the input consists
of (M , V , C, k, λ) as defined above, and the goal is to find the largest t∗ for which the
resulting instance is a yes-instance of Obnox-Egal-Median-CS, and we call such a t∗ the
optimal value of the instance. We say that an algorithm has an approximation guarantee of
α ≤ 1, if for any input (M , V , C, k, λ), the algorithm finds a subset S ⊆ C of size k such that
for each v ∈ V , dλ(v, S) ≥ α · t∗.

For more details on parameterized complexity, we refer the reader to the textbooks [23,
33, 25, 56].

2 Obnoxious Egalitarian Chamberlin-Courant (CC)

We begin our study with Obnoxious-Egal-CC. Recall that Obnox-Egal-Median-CS
with λ = 1 is Obnoxious-Egal-CC. We begin with the Euclidean space, followed by the
general metric space.

2.1 Polynomial Time algorithm in R2

In this section, we design a polynomial time algorithm when the voters and candidates are
embedded in R2. In particular, we prove the following result.

▶ Theorem 1. There exists a polynomial-time algorithm to solve an instance of Obnoxious-
Egal-CC when V ∪ C ⊂ R2, and the distances are given by Euclidean distances.

Overview. Before delving into a formal description of the polynomial-time algorithm, we
start with a high-level overview of the result. For simplicity of the exposition, we assume
that t = 1 (this can be easily achieved by scaling R2, and thus all points in the input, by a
factor of t). For each c ∈ C, let D(c) denote a unit disk (i.e., an open disk of diameter 1)
with c as its center. In the new formulation, we want to find a subset S ⊆ C of size k, such
that for each v ∈ V , the solution S contains at least one candidate c, such that v is outside
D(c) (which is equivalent to saying that the euclidean distance between v and c is larger
than 1, which was exactly the original goal). This is an equivalent reformulation with a more
geometric flavor, thus enabling us to use techniques from computational geometry.

First, we perform some basic preprocessing steps, that will be help us in the main
algorithm. First, if there is a disk D(c) that does not contain a voter, then any set containing
c is a solution. Similarly, if we have two disjoint unit disks D(c) and D(c′) centered at
distinct c, c′ ∈ C, then any superset of {c, c′} of size k is a valid solution, which can be
found and returned easily. We check this condition for all subsets of size 2. In the final
step of preprocessing, we iterate over all subsets of candidates of size 3, and check whether
the common intersection of the corresponding three disks is empty – if we find such a set,
then it is easy to see that any of its k-sized superset forms a solution. Now, assuming
that the preprocessing step does not already give the solution, we know that each subset
of unit disks of size at most 3 have a common intersection. By a classical result in discrete

S. Gupta, T. Inamdar, P. Jain, D. Lokshtanov, F. Panolan, and S. Saurabh 24:7

geometry called Helly’s theorem [50], this also implies that each non-empty subset must
have a common intersection. Our goal is to find a smallest such subset S, for which, the
common intersection region is devoid of all voters v ∈ V . We design a dynamic programming
algorithm to find such a subset. Note that each subset is in one-to-one correspondence with
a convex region defining the boundary of the common intersection, and the boundary of
the common intersection consists of portions of boundaries of the corresponding unit disks
(also known as “arcs”). The dynamic programming algorithm considers partial solutions
defined by a consecutive sequence of arcs that can be attached end-to-end, while at the same
time, ensuring that the common intersection does not contain any voter v ∈ V . When we
are trying to add another arc to the boundary, we have to make sure that (i) one of the
endpoints of the arc is the same as one of the endpoints of the last arc defining the partial
boundary, and (ii) the new area added to the “partial common intersection” does not contain
a voter. We need to introduce several defintions and handle several special cases in order to
formally prove the correctness of this strategy, which we do next.

Formal description. We work with the rescaled and reformulated version of the problem,
as described above. Further, we assume, by infinitesimally perturbing the points if required
(see, e.g., [26]), that the points C ∪ V satisfy the following general position assumption: no
three unit disks centered at distinct candidates intersect at a common point. Note that this
assumption is only required in order to simplify the algorithmic description.

For each candidate c ∈ C, let D(c) denote the unit disk (i.e., an open disk of radius 1)
with c as center. In the following, we will often omit the qualifier unit, since all disks are
assumed to be open unit disks unless explicitly mentioned otherwise. Note that our original
problem is equivalent to determining whether there exists a subset S ⊆ C of size k such
that for every v ∈ V , there exists a candidate c ∈ S such that v ̸∈ D(c). Equivalently,
we want to find a set S ⊆ C such that

(⋂
c∈S D(c)

)
∩ V = ∅. For a subset S′ ⊆ C, we

let I(S′) :=
⋂

c∈S′ D(c), and let D(S′) = {D(c) : c ∈ S′}. We design a polynomial-time
algorithm to find a smallest-sized subset S′ ⊆ C such that I(S′) ∩ V = ∅. For any two points
x, y ∈ R2, let xy be the straight-line segment joining x and y.

We first perform the following preprocessing steps to handle easy cases. For k = 1, we try
each c ∈ C and check whether d(v, c) ≥ 1 for all voters v ∈ V . Now suppose k ≥ 2. First, we
check whether there exists a pair of disks centered at distinct c1, c2 ∈ C such that the distance
between c1, c2 is at least 2. Then, for any voter v ∈ V , if d(v, c1) < 1, then d(v, c2) > 1 by
triangle inequality. Therefore, {c1, c2} can be augmented by adding arbitrary set of k − 2
candidates in C \ {c1, c2} to obtain a solution. Now suppose that neither of the previous two
steps succeeds. Then, we try all possible subsets S′ ⊆ C of size at most 3, and check whether
I(S′) = ∅, that is, no point in R2 belongs to I(S′) (note that this specifically implies that
I(S′) ∩ V = ∅). If we find such a set S′, then we can add an arbitrary subset of C \ S′ of size
k − |S′| to obtain a set S of size k. Thus, we can make the following assumptions, given that
the preprocessing step does not solve the problem.
1. k ≥ 4,
2. For every c, c′ ∈ C, D(c) ∩ D(c′) ̸= ∅, and the two disks intersect at two distinct points

(this is handled in the second step of preprocessing), and
3. For any subset ∅ ≠ S ⊆ C, I(S) ̸= ∅. In particular, this also holds for sets S with |S| > 3 –

otherwise by Helly’s theorem [50], there would exist a subset S′ ⊆ S of size 3 such that
I(S′) = ∅, a case handled in the preprocessing step.

Let P be a set of intersection points of the boundaries of the disks {D(c) : c ∈ C}. Note
that since the boundaries of every pair of disks intersect exactly twice (this follows from the
item (2) above), |P| = 2

(|C|
2

)
. Furthermore, for c ∈ C, let P(c) ⊂ P be the set of intersection

FSTTCS 2024

24:8 The Chamberlin-Courant Approach to Obnoxious Committee Selection

points that lie on the boundary of D(c). For c ∈ C and distinct p, q ∈ P(c), we define
arc(p, q, c) as the minor arc (i.e., the portion of the boundary of D(c) that is smaller than a
semicircle) of disk D(c) with p and q as its endpoints. Note that p and q are interchangeable
in the definition, and arc(p, q, c) = arc(q, p, c). For a subset S′ ⊆ C, let A(S′) be the set of
arcs defining the boundary of the region I(S′) – note that since I(S′) ̸= ∅ for any S′ ̸= ∅,
A(S′) is well-defined and is a non-empty set of arcs. We first have the following proposition,
the proof of which follows from arguments in planar geometry.

▶ Proposition 2. Fix a set S ⊆ C with |S| ≥ 2. Furthermore, assume that S is a minimal set
with intersection equal to I(S), i.e., there is no subset S′ ⊂ S such that I(S′) = I(S). Then,
for every c ∈ S, A(S) contains exactly one arc of the form arc(p, q, c) for some p, q ∈ P(c).

Proof. First we prove that every arc in A(S) is a minor arc. Suppose for contradiction that
A(S) contains a non-minor arc A on the boundary of some D(c), c ∈ S. Consider any c′ ∈ S

with c′ ̸= c, and let S′ = {c, c′}. Note that I(S) ⊆ I(S′) as S′ ⊆ S and intersection of disk
can only decrease by adding more points to the set. Thus, A(S′) contains an arc A′ that is a
superset of A. Let p and q denote the endpoints of A′, and note that A′ is also a non-minor
arc. Note that p ∈ I(S′) = D(c)∩D(c′). Let p′ denote the point on D(c) that is diametrically
opposite to p, and since A′ is a major arc, it follows that p′ ∈ A′ ⊆ I(S′) = D(c) ∩ D(c′). To
summarize, both p and p′ belong to both D(c) and D(c′). However, since both D(c) and
D(c′) are unit disks, pp′ is a common diameter of D(c) and D(c′), which contradicts that c

and c′ are distinct.
Now we prove the second part of the claim, that is, for each c ∈ S, A(S) contains exactly

one minor arc of the form arc(·, ·, c). Suppose there exists some c such that there exist
two arcs A1 = arc(p1, q1, c) and A2 = arc(p2, q2, c) in A(S). Note that A1 and A2 must be
disjoint, otherwise we can concatenate them to obtain a single arc. Suppose, without loss
of generality, traversing clockwise along the boundary of D(c), the ordering of the points is
p1, q1, q2, p2. Let c1 ∈ S (resp. c2 ∈ S) be the candidate such that q1 (resp. q2) belongs on
the boundaries of D(c) and D(c1) (resp. D(c) and D(c2)). It is clear that c ≠ c1 and c ≠ c2.
We further claim that c1 ̸= c2 – suppose this is not the case. Then, q1 and q2 belong to the
boundaries of D(c) and D(c1). In this case, p1 (or p2) cannot belong to D(c) ∩ D(c1) ⊆ I(S),
which contradicts the assumption that p1 (or p2) lie on the boundary of I(S). Thus, we have
that c, c1, c2 are all distinct. However, again we reach a contradiction since p1 is outside
D(c) ∩ D(c2) ⊆ I(S). It follows that each arc appears at most once in A(S).

Finally, we consider the case when there is some c ∈ S such that no arc of the form
arc(·, ·, c) belongs to A(S). In this case, the region bounded by A(S), i.e., I(S), is completely
contained inside D(c). However, this implies that I(S) =I(S \{c}), which contradicts the
minimality of S. ◀

Next, we proceed towards designing our dynamic programming algorithm.

Algorithm. For any x, y, p ∈ P, c1, c ∈ C, and an integer i ≥ 2, we define a table entry
A[x, y, p, c1, c, i] that denotes whether there exists a region R(x, y, p, c1, c) ⊂ R2 with the
following properties:

R = R(x, y, p, c1, c) is a convex region bounded by a set A(R) of i − 1 circular arcs, and
straight-line segment xy, such that A(R) contains:

At most one arc of the form arc(·, ·, c′) for every c′ ∈ C.
Exactly one arc of the form arc(x, ·, c1), which is the first arc traversed along the
boundary of R in clockwise direction, starting from x. Note that c1 is the center of
this arc.
arc(y, p, c)

R ∩ V = ∅.

S. Gupta, T. Inamdar, P. Jain, D. Lokshtanov, F. Panolan, and S. Saurabh 24:9

(a)

q1 q2

c

c1 c2

(b)

p1
p2

x

y

p

c

c′

z

(c)

c1

Figure 1 Illustration for the proof of Proposition 2 and the algorithm. Fig (a): intersection of
boundaries of two unit disks is defined by two minor arcs. Fig (b): Two disjoint arcs arc(p1, q1, c)
and arc(p2, q2, c) cannot appear on the boundary of a common intersection, since they correspond to
disjoint regions. Fig (c): Illustration for the dynamic program. A region formed by intersection of 5
disks is shown. arc(p, y, c) is shown in red. Blue region corresponds to the entry A[x, p, z, c1, c′, 3],
and green region corresponds to the newly added region to the blue region, corresponding to the
entry A[x, y, p, c1, c, 4].

Note that if arc(y, p, c) is not defined, or any of the other conditions do not hold, then a
region with the required properties does not exist.

First, we compute all entries A[x, y, p, c, c1, i] with i ≤ 3. Note that the number of arcs of
the form arc(·, ·, ·) is bounded by O(|P|2 · |C|) = O(|C|3), and since i ≤ 3, we can explicitly
construct all such candidate regions in polynomial time. Thus, we can correctly populate all
such table entries with true or false.

Now, we discuss how to fill a table entry A[x, y, p, c1, c, i] with i ≥ 4. We fix one such entry
and its arguments. If the region R(x, p, y, c1, c) bounded by xp, xy and arc(y, p, c) contains
a point from V , then the entry A[x, p, y, c1, c, i] is defined to be false. Note that this can
easily be checked in polynomial time. Otherwise, suppose that R(x, p, y, c1, c) ∩ V = ∅. In
this case, let T be a set of tuples of the form (x, p, z, c1, c′, i − 1), where z ∈ P, and c′ ∈ C
such that the following conditions are satisfied. (1) c′ ̸∈ {c, c1}, (2) The minor arc arc(p, z, c′)
exists, and (3) When traversing along this arc from z to p, the arc arc(p, y, c) is a “right turn”.
Formally, consider the tangents ℓc, ℓc′ to the disks D(c) and D(c′) at point p respectively. Let
Hc (resp. Hc′) be the closed halfplane defined by the line ℓc (ℓc′) that contains D(c) (D(c′)).
Then, arcs arc(p, z, c′) and arc(y, p, c) must belong to Hc ∩ Hc′ . See Figure 1(c). Then,

A[x, y, p, c1, c, i] =
∨

(x,p,z,c1,c′,i−1)∈T

A[x, p, z, c1, c′, i − 1].

Since we take an or over at most |C| × |V | many entries, each such entry can be computed in
polynomial time. Furthermore, since the number of entries is polynomial in |C| and |V |, the
entire table can be populated in polynomial time.

Now, we iterate over all entries A[x, y, p, c1, c, i] such that the following conditions hold.
A[x, y, p, c1, c, i] = true,
There exists some c′′ ∈ C \ {c, c1} such that arc(x, y, c′′) exists, and
The region bounded by arc(x, y, c′′) and segment xy does not contain any point from C.
The meaning here is that arc(x, y, c′′) is the last arc bounding the required region.

FSTTCS 2024

24:10 The Chamberlin-Courant Approach to Obnoxious Committee Selection

If such an entry exists with i ≤ k − 1, then we conclude that the given instance of Obnox-
Egal-Median-CS is a yes-instance. Otherwise, it is a no-instance. Finally, using standard
backtracking strategy in dynamic programming, it actually computes a set S ⊆ C such that
I(S) ∩ V = ∅. Next, we establish the proof of correctness of this dynamic program.

A Proof of Correctness.

▶ Lemma 3 (♣).1 Consider an entry A[x, y, p, c1, c, i], corresponding to some x, y, p ∈
P, c1, c ∈ C. Then, A[x, y, p, c1, c, i] = true if and only if the corresponding region R, as in
the definition of the table entry, contains no point of V .

▶ Lemma 4. This algorithm correctly decides whether the given instance of Obnox-Egal-
Median-CS is a yes-instance.

Proof. First, it is easy to see that the preprocessing step correctly finds a minimum-size
subset of at most 3 whose intersection contains no point of V , if such a subset exists. Thus,
we now assume that the preprocessing step does not find a solution, and the algorithm
proceeds to the dynamic programming part.

Recall that due to Proposition 1, if S is a minimal subset of centers, such that I(S)∩V = ∅
(if any), then A(S) contains exactly one minor arc that is part of the circle centered at each
c ∈ S. In particular, this holds for the optimal set S∗ of centers (if any), and let i = |S∗|. Pick
an arbitrary arc in A(S∗), and let c1 be the center of this arc, and x be one of the endpoints
of this arc. By traversing the arcs in A(S∗) in clockwise manner, let the last two arcs be
arc(y, p, c), and arc(y, x, c′). Then, by Lemma 3, it follows that A[x, y, p, c1, c′, i − 1] = true,
and the region bounded by xy and arc(y, x, c′) does not contain a point from C. Thus, the
algorithm outputs the correct solution corresponding to the entry A[x, y, p, c1, c′, i − 1].

In the other direction, if the algorithm finds an entry A[x, y, p, c1, c′, i − 1] = true, such
that (1) arc(x, y, c) exists, (2) c ̸∈ {c′, c1}, and (3) the region bounded by arc(x, y, c) and xy

does not contain a point from C, then using Lemma 3, we can find a set of i disks whose
intersection does not contain a point from C. Therefore, if for all entries it holds that at least
one of the conditions does not hold, then the algorithm correctly concludes that the given
instance is a no-instance. ◀

The algorithm as it is does not work for λ > 1. We do not know whether the problem is
polynomial time solvable for λ > 1.

2.2 Hardness in Graph Metric

In this section, we show the intractability of the problem when the voters and candidates are
embedded in the graph metric space, which implies the intractability in the general metric
space. The metric space defined by the vertex set of a graph as points and distance between
two points as the shortest distance between the corresponding vertices in the graph is called
the graph metric space.

We present a reduction from the Hitting Set problem, defined below, which is known
to be NP-hard [42] and W[2]-parameterized by k [23].

1 The proofs of the statements marked with ♣ can be found in the full version [36].

S. Gupta, T. Inamdar, P. Jain, D. Lokshtanov, F. Panolan, and S. Saurabh 24:11

Hitting Set
Input: Set system (U , F), where U is the ground set of n elements, F is a family of
subsets of U , and a positive integer k

Question: Does there exist H ⊆ U of size k such that for any S ∈ F , H ∩ S ̸= ∅?

Reduction. Define a graph G with vertex set V ∪ C as follows. For every element e ∈ U ,
we add a candidate ce to C, and for every set S ∈ F , we add a voter vS to V . We add an
edge (ce, vS) in G if and only if e ̸∈ S. The weight of all such edges is equal to 1. Also, for
any ce, c′

e ∈ C, we add an edge of weight 2. The distance function d : (V ∪ C) → R+ is given
by the shortest path distances in G.

▶ Observation 5. For any e ∈ U , and S ∈ F , d(ce, vS) = 1 if and only if e ̸∈ S. Otherwise
d(ce, vS) = 3 if and only if e ∈ S.

▶ Lemma 6 (♣). (U , F) admits a hitting set of size k if and only if there exists a set H ⊆ C
of size k such that for any vS ∈ V , maxce∈H d(ce, vS) = 3.

In fact, this construction shows that it is NP-hard to approximate the problem within
a factor of 1/3 + ϵ for any ϵ > 0. Indeed, suppose there existed such a β = (1/3 + ϵ)-
approximation for some ϵ > 0. Then, if (U , F) is a yes-instance of Hitting Set, then
Lemma 6 implies that OPT = 3 – here OPT denotes the largest value of t for which we have
a yes-instance for the decision version. In this case, the β-approximation returns a solution
S of size k and of cost at least β · 3 = 1 + 3ϵ > 1. This implies that for each vS ∈ V , there
exists some ce ∈ S with d(vS , ce) > 1. However, such a ce must correspond to an element
e ∈ S – otherwise d(vS , ce) = 1 by construction. Therefore, the solution S corresponds to a
hitting set of size k. Alternatively, if (U , F) is a no-instance of Hitting Set, then Lemma
6 implies that the there is no solution of size k with cost 3. Thus, a β-approximation can
be used to distinguish between yes- and no-instances of Hitting Set. Hence, we have the
following result.

▶ Theorem 7. Obnoxious-Egal-CC is NP-hard. Furthermore, for any α > 1/3,
Obnoxious-Egal-CC does not admit a polynomial time α-approximation algorithm, unless
P = NP. Furthermore, Obnoxious-Egal-CC does not admit an FPT-approximation al-
gorithm parameterized by k with an approximation guarantee of α > 1/3, unless FPT = W [2].

2.3 Approximation Algorithm in General Metric Space
In this section, we design a polynomial time 1/4-approximation algorithm when voters and
candidates are embedded in a general metric space. Since the problem is trivial for k = 1
(we can simply iterate over all solutions of size 1, i.e., all c ∈ C, and check whether it forms a
solution), we assume in the rest of the section that k > 1.

We first guess a voter p′ ∈ V and a candidate c′ ∈ C such that c′ is the farthest candidate
from p′ in an optimal solution S∗. Let t = d(p′, c′). We know that all candidates in S∗ are
within a distance t from p′, i.e., S∗ ⊆ B, where B = B(p′, t) ∩ C. Let M be a (t/2)-net of
B, i.e., M is a maximal set of candidates with the following properties: (1) d(ci, cj) > t/2
for any distinct ci, cj ∈ M , and (2) for any c ̸∈ M , there exists some c′ ∈ M such that
d(c, c′) ≤ t/2. Note that such a (t/2)-net can be found in polynomial-time using a simple
greedy algorithm.

Now there are two cases. (1) If |M | ≥ k, let M ′ be an arbitrary subset of M of size
exactly k. (2) If |M | < k, then let M ′ = M ∪ Q where Q is an arbitrary subset of candidates
from B \ M such that |M ′| = k.

FSTTCS 2024

24:12 The Chamberlin-Courant Approach to Obnoxious Committee Selection

▶ Lemma 8. Fix some v ∈ V , and let c ∈ C be the farthest center from v in M ′. Then,
d(v, c) ≥ t/4.

Proof. We consider two cases based on the size of M , and the way we obtain M ′ from M .
Case 1: |M | ≥ k, and M ′ is an arbitrary subset of M . Suppose for contradiction d(v, c) <

t/4. Since c is the farthest candidate from v, the same is true for any candidate c′ ∈ M ′. Then,
d(p, c) < t/4 and d(v, c′) < t/4, which implies that d(c, c′) ≤ d(v, c)+d(v, c′) < t/4+t/4 = t/2,
which contradicts property 1 of M .
Case 2: |M | < k and M ′ is obtained by adding arbitrary candidates to M . If d(v, c) ≥
t/2 ≥ t/4, we are done. So assume that d(v, c) < t/2. Let c∗ be the farthest center from v in
an optimal solution. Then, d(v, c∗) ≥ t. Also, c∗ ̸∈ M ⊆ M ′, otherwise d(v, c) ≥ d(v, c∗) ≥ t,
since c is the farthest candidate from v. Therefore, by property 2, there exists some c′ ∈ M

such that d(c′, c∗) ≤ t/2. Again, d(v, c′) ≤ d(v, c) < t/2. Then, d(v, c∗) ≤ d(v, c′)+d(c′, c∗) <

t/2 + t/2 = t. This contradicts d(v, c∗) ≥ t. ◀

Thus, we conclude with the following theorem.

▶ Theorem 9. There is a polynomial-time 1/4-approximation algorithm for the optimization
variant of Obnoxious-Egal-CC when the voters and candidates belong to an arbitrary
metric space M .

3 OBNOXIOUS EGALITARIAN MEDIAN COMMITTEE SELECTION for λ > 1

In this section, we move our study to the case when λ > 1. We first show that λ = k − 1 is
NP-hard in R2. But the extreme cases of λ = 1 or λ = k are tractable: In fact, the λ = 1
case is polynomial-time solvable for R2 but the λ = k is polynomial-time solvable even in a
general metric space. Furthermore, we show that similar to λ = 1, the problem is hard to
approximate for any value of λ in graph metric. Finally, contrary to Theorem 13 we give an
FPT-approximation scheme for arbitrary value of λ in Rd.

3.1 Hardness
In this section, we present results pertaining to NP-hardness and approximation hardness.

NP-hardness for λ = k − 1 in R2. To exhibit this we give a reduction from the 2-
Independent Set problem in unit disk graphs (UDGs). We give a formal definition of
UDGs below, followed by the definition of the aforementioned problem.

▶ Definition 10. Given a set P = {p1, p2, . . . , pn} of points in the plane, a unit disk
graph (UDG, in short) corresponding to the set P is a graph G = (P, E) satisfying E =
{(pi, pj)|d(pi, pj) ≤ 1}, where d(pi, pj) denotes the Euclidean distance between pi and pj.

2-Independent Set In Unit Disk Graph
Input: Given a set V ⊂ R2 of n points, and a positive integer k.
Question: Let G = (V, E) be a unit disk graph defined on V . Does there exist a subset
S ⊆ V such that |S| = k, and for any distinct u, w ∈ S, dG(u, w) > 2?

This problem is shown to be NP-hard in [40].

▶ Theorem 11. Obnox-Egal-Median-CS is NP-hard when λ = k − 1, even in the special
case where V ∪ C ⊂ R2 and the distances are given by standard Euclidean distances.

S. Gupta, T. Inamdar, P. Jain, D. Lokshtanov, F. Panolan, and S. Saurabh 24:13

Proof. Let (V, k) be the given instance of 2-Independent Set In Unit Disk Graph,
where V ⊂ R2. We create an instance of Obnox-Egal-Median-CS as follows. For every
point p ∈ V , we add a voter and a candidate co-located at the point in R2 at the point p.
Let V and C be the resulting sets of n voters and n candidates, and the value of k remains
unchanged. Without loss of generality, we assume that k ≥ 2. We set λ = k−1. We prove the
following lemma. Note that due to the strict inequality, this does not quite fit the definition
of Obnox-Egal-Median-CS. Subsequently, we discuss how to modify the construction so
that this issue is alleviated. In the following proof, we use de(·, ·) to denote the Euclidean
distance and dG(·, ·) to denote the shortest-path distance in the unit disk graph G.

▶ Lemma 12. S is a 2-independent set of size k in G if and only if for the corresponding
set S′ ⊆ C, it holds that, for every voter v ∈ V , dλ

e (v, S′) > 2.

Proof. In the forward direction, let S be a 2-independent set of size k in G, and let S′

be as defined above. Suppose for the contradiction that there exists a voter v for which
dλ

e (v, S′) ≤ 2. That is, there exists two distinct candidates c1, c2 ∈ S′ such that de(v, c1) ≤ 2,
and de(v, c2) ≤ 2. We consider two cases, depending on whether v is co-located with either
of c1 or c2, or not. Suppose v is co-located with c1 (w.l.o.g., the c2 case is symmetric). Then,
let p1 and p2 be the points in S ⊆ P corresponding to v and c2 respectively. However, since
de(p1, p2) ≤ 2, (p1, p2) is an edge in G, which contradicts the 2-independence of S. In the
second case, v is not co-located with c1 as well as c2. Even in this case, let q, p1, p2 be the
points in P corresponding to v, c1, and c2 respectively. Note that q, p1, p2 are distinct, and
p1, p2 ∈ S. However, since de(q, p1) ≤ 2, de(q, p2) ≤ 2, (q, p1) and (q, p2) are edges in G,
which again contradicts the 2-independence of S, as dG(p1, p2) = 2.

In the reverse direction, let S′ ⊆ C be a subset of candidates such that for each voter v ∈ V ,
dλ

e (v, S′) > 2. Let S ⊆ P be the corresponding points of S′, and suppose for contradiction
that S is not a 2-independent set in G, which implies that there exist two distinct p1, p2 ∈ S

such that dG(p1, p2) ≤ 2. Let c1, c2 be the candidates in S′ corresponding to p1 and p2
respectively. Again, we consider two cases. First, suppose that dG(p1, p2) = 1, i.e., (p1, p2) is
an edge in G. Then, let v1 be the voter co-located at p1. Then, for v1, de(v1, c1) = 0, and
de(v1, c2) ≤ 2, since (p1, p2) is an edge. This contradicts that dλ

e (v1, S′) > 2. In the second
case, suppose dG(p1, p2) = 2, then let q ∈ P be a common neighbor of p1 and p2 in G, and
let vq ∈ V be the voter co-located to q. Again, note that de(vq, c1) ≤ 2 and de(vq, c2) ≤ 2,
which contradicts that dλ

e (vq, S′) > 2. ◀

Let t := min
p,q∈P :de(p,q)>2

de(p, q). That is, t is the smallest Euclidean distance between

non-neighbors in G. By definition, for any p′, q′ ∈ P such that de(p′, q′) > 2, it holds that
de(p′, q′) ≥ t. Now, we observe that the proof of Lemma 12 also works after changing
the condition dλ

e (v, S′) > 2 to dλ
e (v, S′) ≥ t. Note that there exists points p, q such that

dG(p, q) > 2, and hence de(p, q) > 2, otherwise, it is a trivial no-instance of 2-Independent
Set In Unit Disk Graph. ◀

Approximation Hardness in Graph Metric. The reduction is same as in Section 2.2. Here,
instead of Hitting Set, we give a reduction from the Multi-Hitting Set problem, where
each set needs to be hit at least λ ≥ 1 times for some constant λ. It can be easily seen that
this is a generalization of Hitting Set and is also NP-complete [57] (for an easy reduction
from Hitting Set, simply add λ − 1 “effectively dummy” sets that contain all the original
elements) Thus, we have the following result.

FSTTCS 2024

24:14 The Chamberlin-Courant Approach to Obnoxious Committee Selection

▶ Theorem 13. For any fixed 1 ≤ λ < k, Obnox-Egal-Median-CS is NP-hard. Further-
more, for any fixed 1 ≤ λ < k, and for any α ≥ 1/3, Obnox-Egal-Median-CS does not
admit a polynomial time α-approximation algorithm, unless P = NP. Furthermore, Obnox-
Egal-Median-CS does not admit an FPT-approximation algorithm parameterized by k with
an approximation guarantee of α ≥ 1/3, unless FPT = W [2].

3.2 FPT-AS in Euclidean and Doubling Spaces
In this section, we design an FPT approximation scheme for the inputs in Rd, parameterized
by λ, d, and ϵ. In fact, the same arguments can be extended to metric spaces of doubling
dimension d. However, we focus on Rd for the ease of exposition, and discuss the case of
doubling spaces at the end.

In the subsequent discussions, we say that S ⊆ C is a solution if it satisfies the following
two properties: (i) |S| ≥ λ, and (ii) for each v ∈ V , dλ(v, S) ≥ t. For any given instance of
Obnox-Egal-Median-CS, we state the following simple observations.

▶ Observation 14. If there exists S ⊆ C of size at least λ, such that each c ∈ S is at distance
at least t from each v ∈ V , then S is a solution.

▶ Observation 15 (♣). A subset S ⊆ C of λ + 1 points that are pairwise 2t distance away
from each other is a solution.

First, note that we can assume λ + 1 ≤ k – otherwise λ = k case can be easily solved in
polynomial-time using the argument mentioned in the preliminaries. Now, if a set S ⊆ C
with |S| ≥ λ + 1 satisfying the conditions of Observation 15 exists, then we can immediately
augment it with arbitrary k − (λ + 1) candidates from C \ S, yielding a solution of size k.
Thus, henceforth, we may assume that any subset S ⊆ C consisting of candidates that are
pairwise 2t distance away from each other, has size at most λ.

Let us fix N to be one such maximal subset – note that we can compute N in polynomial
time using a greedy algorithm. The following observation follows from the maximality of N .

▶ Observation 16. Any point p ∈ C must be in
⋃

c∈N B(c, 2t). In other words, each p ∈ C is
inside a ball of radius 2t centered at one of the points in N .

This simple observation, combined with the following covering-packing property of the
underlying Euclidean space will allow our algorithm to pick points from the vicinity of those
chosen by an optimal algorithm.

▶ Proposition 17 (♣). In Rd, for any 0 < r1 < r2, a ball of radius r2 can be covered by
αd · (r2/r1)d balls of radius r1. Here, αd is a constant that depends only on the dimension d.

Next, for each c ∈ N , we find an “ϵt/4-net” inside the ball B(c, 2t), i.e., a maximal subset
Q ⊆ B(c, 2t) ∩ C, such that (i) for any distinct c1, c2 ∈ Q, d(c1, c2) > ϵt/4, and (ii) For
each c1 ∈ C \ Q, there exists some c2 ∈ Q, such that d(c1, c2) ≤ ϵt/4. Note that Q can be
computed using a greedy algorithm. Next, we iterate over each c′ ∈ Q, and mark the λ − 1
closest unmarked candidates to c′ that are not in Q (if any). Let Rc := Q ∪ M , where M

denotes the set of marked candidates during the second phase.

▶ Observation 18 (♣). For each c ∈ N , |Rc| ≤ Od(λ · (1/ϵ)d), where Od(·) hides a constant
that depends only on the dimension d.

Let S′ =
⋃

c∈N Rc. Finally, let S := N ∪ S′, and note that |S| ≤ Od(λ2 · (1/ϵ)d), where
Od(·) notation hides constants that depend only on d. Now we consider two cases.

S. Gupta, T. Inamdar, P. Jain, D. Lokshtanov, F. Panolan, and S. Saurabh 24:15

If |S| ≤ k, then we augment it with arbitrary k − |S| candidates from C \ S, and output
the resulting set.
If |S| > k, then try all possible k-sized subsets of S to see if it constitutes a solution. There
can be at most

(|S|
k

)
< 2|S| = 2Od(λ2(1/ϵ)d) sets to check resulting in time 2Od(λ2(1/ϵ)d) ·

(|V | + |C|)O(1).

The next lemma completes the proof. We prove it by comparing S to an optimal solution,
and show that for every point in the latter there is a point in the vicinity that is present in S.

▶ Lemma 19. If |S| > k, then there is a subset Q ⊆ S of size k that constitutes a solution.

Proof. Suppose that there is an optimal solution, denoted by O, that contains k points and
for each point v ∈ V there exist at least λ points in O (called representatives, R(v)) that are
at least t distance away from v. Let R =

⋃
v∈V R(v) denote the set of all representatives.

First, due to Observation 16, each c ∈ R is inside some B(c′, 2t) for some c′ ∈ N . Let
c̃ ∈ Q be the closest (breaking ties arbitrarily) candidate to c from Q. By construction,
d(c̃, c) ≤ tϵ/4. Let A(c̃) ⊆ R be the points for which c̃ is the closest point in Rc′ (breaking
ties arbitrarily).

Case 1: |A(c̃)| ≤ λ. In this case, we claim that for each c1 ∈ A(c̃), we have added a
unique c2 to Rc′ ⊆ S′ such that d(c1, c2) ≤ ϵt. First, if A(c̃) ⊆ Rc′ , then the claim is trivially
true (the required bijection is the identity mapping). Otherwise, there exists some c1 ∈ A(c̃)
such that c1 ̸∈ Rc. In particular, this means that c1 was not marked during the iteration of
the marking phase corresponding to c̃ ∈ Q. This means that at least λ − 1 other candidates
with distance at most ϵt/4 from c̃ were marked. For any of these marked candidates c2, it
holds that d(c1, c2) ≤ d(c1, c̃) + d(c̃, c2) ≤ ϵt/2 ≤ ϵt. Accounting for c̃, this implies that, for
each c1 ∈ A(c̃), there are at least λ ≥ |A(c̃)| distinct candidates in Rc within distance ϵt. Let
Q(c̃) ⊆ S′ denote an arbitrary such subset of size λ in this case.

Case 2: |A(c̃)| > λ. In this case, let A′(c̃) ⊂ A(c̃) be an arbitrary subset of size λ.
We claim that A′(c̃) is sufficient for any solution. In particular, consider a v ∈ V and
c ∈ A(c̃) \ A′(c̃) such that c is a representative of v. We claim that for all c′ ∈ A′(c̃),
d(c̃, c′) ≥ (1 − ϵ/2)t, which follows from d(c, c′) ≤ ϵt/2. Thus, the λ points of A′(c̃) constitute
an approximate set of representatives for v. Now, by using the argument from the previous
paragraph w.r.t. A′(c̃), we can obtain a set Q(c̃) of size λ, such that for any voter v ∈ V

such that R(v) ∩ A(c̃) ̸= ∅, every point in Q(c̃) is at distance at least (1 − ϵ)t from v.
Finally, let Q denote the union of all sets Q(c̃) defined in this manner (note that Q(c̃) is

defined only if A(c̃) ̸= ∅). First, by construction, for each v ∈ V , Q contains at least λ points
at distance at least (1 − ϵ)t. Next, Q ⊆ R′ and |Q| ≤ k since for each point in R, we add at
most one point to Q. Now, if |Q| < k, then we can simply add arbitrary k − |Q| points to
obtain the desired set. ◀

In fact, the covering-packing properties of the underlying metric space that are crucial in our
algorithm are abstracted in the following well-known notion.

▶ Definition 20 (Doubling dimension and doubling spaces). Let M = (P, d) be a metric space,
where P is a set of points and d is the distance function. We say that M has doubling
dimension δ, if for any p ∈ P , and any r ≥ 0, the ball B(p, r) := {q ∈ P : d(p, q) ≤ r} can be
covered using at most 2δ balls of radius r/2. If the doubling dimension of a metric space M

is a constant, then we say that M is a doubling space.

FSTTCS 2024

24:16 The Chamberlin-Courant Approach to Obnoxious Committee Selection

Note that Euclidean space of dimension d has doubling dimension O(d). By a simple repeated
application of the above definition, we obtain the following Proposition 21 that is an analogue
of Proposition 17.

▶ Proposition 21. Let M = (P, d) be a metric space of doubling dimension δ. Then, any

ball B(p, r2) can be covered with
(

⌈ r2
r1

⌉
)δ

balls of radius r1, where 0 < r1 ≤ r2.

Our algorithm generalizes to metric spaces of doubling dimension δ in a straightforward
manner, resulting in the following theorem.

▶ Theorem 22. For any ϵ, 0 < ϵ < 1, we have an algorithm that given an instance of
Obnox-Egal-Median-CS in a metric space of doubling dimension δ, computes a solution
of size k such that for every point v ∈ V there are at least λ points in the solution that are at
distance at least (1 − ϵ)t from v in time FPT in (ϵ, λ, δ). In particular, we obtain this result
in Euclidean spaces of dimension d, in time FPT in (ϵ, λ, d).

4 Outlook

In this paper we studied a committee selection problem, where preferences of voters towards
candidates was captured via a metric space. In particular, we studied a variant where larger
distance corresponds to higher preference for a candidate in comparison to a candidate who
is nearer. We showed that our problem is NP-hard in general, and designed some polynomial
time algorithms, as well as (parameterized) approximation algorithms. We conclude with
some research directions for future study. One of our concrete open question is that Is
Obnox-Egal-Median-CS in R2 for λ > 1 polynomial-time solvable? In this paper, we
considered median scoring rules. It would be interesting to study other scoring rules as well,
when the voters and candidates are embedded in a metric space.

Moreover, we note that situations where, for each neighborhood we want exactly λ

facilities nearby, and the remaining k − λ to be far away, is not handled by this model. This
would be the “exact” variant of our problem Obnox-Egal-Median-CS and would be of
natural interest.

References
1 Hyung-Chan An and O. Svensson. Recent developments in approximation algorithms for

facility location and clustering problems. In Combinatorial Optimization and Graph Algorithms:
Communications of NII Shonan Meetings, pages 1–19. Springer, 2017.

2 Nima Anari, Moses Charikar, and Prasanna Ramakrishnan. Distortion in metric matching with
ordinal preferences. In Kevin Leyton-Brown, Jason D. Hartline, and Larry Samuelson, editors,
Proceedings of the 24th ACM Conference on Economics and Computation, EC 2023, London,
United Kingdom, July 9-12, 2023, pages 90–110. ACM, 2023. doi:10.1145/3580507.3597740.

3 Haris Aziz, Felix Brandt, Edith Elkind, and Piotr Skowron. Computational social choice: The
first ten years and beyond. In Bernhard Steffen and Gerhard J. Woeginger, editors, Computing
and Software Science - State of the Art and Perspectives, volume 10000 of Lecture Notes in
Computer Science, pages 48–65. Springer, 2019. doi:10.1007/978-3-319-91908-9_4.

4 Haris Aziz, Piotr Faliszewski, Bernard Grofman, Arkadii Slinko, and Nimrod Talmon. Egalit-
arian committee scoring rules. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden, pages 56–62. ijcai.org, 2018. doi:10.24963/IJCAI.2018/8.

https://doi.org/10.1145/3580507.3597740
https://doi.org/10.1007/978-3-319-91908-9_4
https://doi.org/10.24963/IJCAI.2018/8

S. Gupta, T. Inamdar, P. Jain, D. Lokshtanov, F. Panolan, and S. Saurabh 24:17

5 Haris Aziz, Serge Gaspers, Joachim Gudmundsson, Simon Mackenzie, Nicholas Mattei, and
Toby Walsh. Computational aspects of multi-winner approval voting. In Gerhard Weiss, Pinar
Yolum, Rafael H. Bordini, and Edith Elkind, editors, Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey,
May 4-8, 2015, pages 107–115. ACM, 2015. URL: http://dl.acm.org/citation.cfm?id=
2772896.

6 Nadja Betzler, Robert Bredereck, Jiehua Chen, and Rolf Niedermeier. Studies in computational
aspects of voting - A parameterized complexity perspective. In Hans L. Bodlaender, Rod
Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate Algorithmic Revolution
and Beyond - Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday,
volume 7370 of Lecture Notes in Computer Science, pages 318–363. Springer, 2012. doi:
10.1007/978-3-642-30891-8_16.

7 Nadja Betzler, Arkadii Slinko, and Johannes Uhlmann. On the computation of fully propor-
tional representation. J. Artif. Intell. Res., 47:475–519, 2013. doi:10.1613/JAIR.3896.

8 Steven J Brams, D Marc Kilgour, and M Remzi Sanver. A minimax procedure for electing
committees. Public Choice, 132:401–420, 2007.

9 Felix Brandt, Markus Brill, and Bernhard Harrenstein. Tournament Solutions. In F Brandt,
V Conitzer, U Endriss, J Lang, and A. D. Procaccia, editors, Handbook of Computational
Social Choice, pages 453–474. Cambridge University Press, 2016.

10 Robert Bredereck, Piotr Faliszewski, Andrzej Kaczmarczyk, Dusan Knop, and Rolf Niedermeier.
Parameterized algorithms for finding a collective set of items. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020,
pages 1838–1845. AAAI Press, 2020. doi:10.1609/AAAI.V34I02.5551.

11 Robert Bredereck, Piotr Faliszewski, Andrzej Kaczmarczyk, Rolf Niedermeier, Piotr Skowron,
and Nimrod Talmon. Robustness among multiwinner voting rules. Artif. Intell., 290:103403,
2021. doi:10.1016/J.ARTINT.2020.103403.

12 Markus Brill, Piotr Faliszewski, Frank Sommer, and Nimrod Talmon. Approximation al-
gorithms for balancedcc multiwinner rules. In AAMAS ’19, pages 494–502, 2019. URL:
http://dl.acm.org/citation.cfm?id=3331732.

13 Laurent Bulteau, Gal Shahaf, Ehud Shapiro, and Nimrod Talmon. Aggregation over metric
spaces: Proposing and voting in elections, budgeting, and legislation. J. Artif. Intell. Res.,
70:1413–1439, 2021. doi:10.1613/JAIR.1.12388.

14 Deeparnab Chakrabarty, Luc Côté, and Ankita Sarkar. Fault-tolerant k-supplier with outliers.
In Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna Kupferman, and Daniel Lokshtanov,
editors, 41st International Symposium on Theoretical Aspects of Computer Science, STACS
2024, March 12-14, 2024, Clermont-Ferrand, France, volume 289 of LIPIcs, pages 23:1–23:19.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.STACS.2024.
23.

15 Deeparnab Chakrabarty and Chaitanya Swamy. Interpolating between k-median and k-
center: Approximation algorithms for ordered k-median. In Ioannis Chatzigiannakis, Christos
Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium
on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, volume 107 of LIPIcs, pages 29:1–29:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2018. doi:10.4230/LIPICS.ICALP.2018.29.

16 John R Chamberlin and Paul N Courant. Representative deliberations and representative
decisions: Proportional representation and the borda rule. American Political Science Review,
77(3):718–733, 1983.

17 Hau Chan, Aris Filos-Ratsikas, Bo Li, Minming Li, and Chenhao Wang. Mechanism design
for facility location problems: A survey. In Proceedings of IJCAI, pages 4356–4365, 2021.
doi:10.24963/IJCAI.2021/596.

FSTTCS 2024

http://dl.acm.org/citation.cfm?id=2772896
http://dl.acm.org/citation.cfm?id=2772896
https://doi.org/10.1007/978-3-642-30891-8_16
https://doi.org/10.1007/978-3-642-30891-8_16
https://doi.org/10.1613/JAIR.3896
https://doi.org/10.1609/AAAI.V34I02.5551
https://doi.org/10.1016/J.ARTINT.2020.103403
http://dl.acm.org/citation.cfm?id=3331732
https://doi.org/10.1613/JAIR.1.12388
https://doi.org/10.4230/LIPICS.STACS.2024.23
https://doi.org/10.4230/LIPICS.STACS.2024.23
https://doi.org/10.4230/LIPICS.ICALP.2018.29
https://doi.org/10.24963/IJCAI.2021/596

24:18 The Chamberlin-Courant Approach to Obnoxious Committee Selection

18 Moses Charikar, Kangning Wang, Prasanna Ramakrishnan, and Hongxun Wu. Breaking
the metric voting distortion barrier. In David P. Woodruff, editor, Proceedings of the 2024
ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January
7-10, 2024, pages 1621–1640. SIAM, 2024. doi:10.1137/1.9781611977912.65.

19 Shiri Chechik and David Peleg. The fault-tolerant capacitated k-center problem. Theor.
Comput. Sci., 566:12–25, 2015. doi:10.1016/J.TCS.2014.11.017.

20 Jiehua Chen and Sven Grottke. Small one-dimensional euclidean preference profiles. Soc.
Choice Welf., 57(1):117–144, 2021. doi:10.1007/S00355-020-01301-Y.

21 Richard L Church and Zvi Drezner. Review of obnoxious facilities location problems. Comput.
Oper. Res., 138:105468, 2022. doi:10.1016/J.COR.2021.105468.

22 Vincent Cohen-Addad, Fabrizio Grandoni, Euiwoong Lee, and Chris Schwiegelshohn. Breaching
the 2 LMP approximation barrier for facility location with applications to k-median. In
Proceedings of SODA, pages 940–986, 2023. doi:10.1137/1.9781611977554.CH37.

23 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

24 Eva Michelle Deltl, Till Fluschnik, and Robert Bredereck. Algorithmics of egalitarian versus
equitable sequences of committees. In IJCAI 2023, pages 2651–2658, 2023. doi:10.24963/
IJCAI.2023/295.

25 Robert G. Downey and Michael R. Fellows. Fundamentals of parameterized complexity,
volume 4. Springer, 2013.

26 Herbert Edelsbrunner and Ernst P. Mücke. Simulation of simplicity: a technique to cope
with degenerate cases in geometric algorithms. ACM Trans. Graph., 9(1):66–104, 1990.
doi:10.1145/77635.77639.

27 Edith Elkind, Piotr Faliszewski, Jean-François Laslier, Piotr Skowron, Arkadii Slinko, and
Nimrod Talmon. What do multiwinner voting rules do? an experiment over the two-dimensional
euclidean domain. In Satinder Singh and Shaul Markovitch, editors, Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA, pages 494–501. AAAI Press, 2017. doi:10.1609/AAAI.V31I1.10612.

28 Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon. Multiwinner rules
on paths from k-borda to chamberlin-courant. In Carles Sierra, editor, Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, pages 192–198. ijcai.org, 2017. doi:10.24963/IJCAI.2017/28.

29 Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon. Multiwinner voting: A
new challenge for social choice theory. Trends in computational social choice, 74(2017):27–47,
2017.

30 Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon. Multiwinner analogues
of the plurality rule: axiomatic and algorithmic perspectives. Soc. Choice Welf., 51(3):513–550,
2018. doi:10.1007/S00355-018-1126-4.

31 Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon. Committee scoring rules:
Axiomatic characterization and hierarchy. ACM Trans. Economics and Comput., 7(1):3:1–3:39,
2019. doi:10.1145/3296672.

32 Piotr Faliszewski, Piotr Skowron, and Nimrod Talmon. Bribery as a measure of candidate
success: Complexity results for approval-based multiwinner rules. In Kate Larson, Michael
Winikoff, Sanmay Das, and Edmund H. Durfee, editors, Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12,
2017, pages 6–14. ACM, 2017. URL: http://dl.acm.org/citation.cfm?id=3091133.

33 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006. doi:
10.1007/3-540-29953-X.

34 Michal Tomasz Godziszewski, Pawel Batko, Piotr Skowron, and Piotr Faliszewski. An analysis
of approval-based committee rules for 2d-euclidean elections. In Proceedings of AAAI, pages
5448–5455, 2021. doi:10.1609/AAAI.V35I6.16686.

https://doi.org/10.1137/1.9781611977912.65
https://doi.org/10.1016/J.TCS.2014.11.017
https://doi.org/10.1007/S00355-020-01301-Y
https://doi.org/10.1016/J.COR.2021.105468
https://doi.org/10.1137/1.9781611977554.CH37
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.24963/IJCAI.2023/295
https://doi.org/10.24963/IJCAI.2023/295
https://doi.org/10.1145/77635.77639
https://doi.org/10.1609/AAAI.V31I1.10612
https://doi.org/10.24963/IJCAI.2017/28
https://doi.org/10.1007/S00355-018-1126-4
https://doi.org/10.1145/3296672
http://dl.acm.org/citation.cfm?id=3091133
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1609/AAAI.V35I6.16686

S. Gupta, T. Inamdar, P. Jain, D. Lokshtanov, F. Panolan, and S. Saurabh 24:19

35 Kishen N. Gowda, Thomas W. Pensyl, Aravind Srinivasan, and Khoa Trinh. Improved bi-point
rounding algorithms and a golden barrier for k-median. In Proceedings of SODA, pages
987–1011, 2023. doi:10.1137/1.9781611977554.CH38.

36 Sushmita Gupta, Tanmay Inamdar, Pallavi Jain, Daniel Lokshtanov, Fahad Panolan, and
Saket Saurabh. When far is better: The chamberlin-courant approach to obnoxious committee
selection. CoRR, abs/2405.15372, 2024. doi:10.48550/arXiv.2405.15372.

37 Sushmita Gupta, Pallavi Jain, Saket Saurabh, and Nimrod Talmon. Even more effort towards
improved bounds and fixed-parameter tractability for multiwinner rules. In Proceedings of
IJCAI, pages 217–223, 2021. doi:10.24963/IJCAI.2021/31.

38 Aviram Imber, Jonas Israel, Markus Brill, Hadas Shachnai, and Benny Kimelfeld. Spatial
voting with incomplete voter information. In AAAI 2024, pages 9790–9797, 2024. doi:
10.1609/AAAI.V38I9.28838.

39 Tanmay Inamdar and Kasturi R. Varadarajan. Fault tolerant clustering with outliers. In
Evripidis Bampis and Nicole Megow, editors, Approximation and Online Algorithms - 17th
International Workshop, WAOA 2019, Munich, Germany, September 12-13, 2019, Revised
Selected Papers, volume 11926 of Lecture Notes in Computer Science, pages 188–201. Springer,
2019. doi:10.1007/978-3-030-39479-0_13.

40 Sangram Kishor Jena, Ramesh K. Jallu, Gautam K. Das, and Subhas C. Nandy. The maximum
distance-d independent set problem on unit disk graphs. In Jianer Chen and Pinyan Lu,
editors, Frontiers in Algorithmics - 12th International Workshop, FAW 2018, Guangzhou,
China, May 8-10, 2018, Proceedings, volume 10823 of Lecture Notes in Computer Science,
pages 68–80. Springer, 2018. doi:10.1007/978-3-319-78455-7_6.

41 Yusuf Hakan Kalayci, David Kempe, and Vikram Kher. Proportional representation in
metric spaces and low-distortion committee selection. In AAAI 2024, pages 9815–9823, 2024.
doi:10.1609/AAAI.V38I9.28841.

42 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller
and James W. Thatcher, editors, Proceedings of CCC, pages 85–103, 1972. doi:10.1007/
978-1-4684-2001-2_9.

43 Samir Khuller, Robert Pless, and Yoram J. Sussmann. Fault tolerant k-center problems. Theor.
Comput. Sci., 242(1-2):237–245, 2000. doi:10.1016/S0304-3975(98)00222-9.

44 Steven Klein. On the egalitarian value of electoral democracy. Political Theory, page
00905917231217133, 2023.

45 Nirman Kumar and Benjamin Raichel. Fault tolerant clustering revisited. In Proceedings of
the 25th Canadian Conference on Computational Geometry, CCCG 2013, Waterloo, Ontario,
Canada, August 8-10, 2013. Carleton University, Ottawa, Canada, 2013. URL: http://cccg.
ca/proceedings/2013/papers/paper_36.pdf.

46 Martin Lackner and Piotr Skowron. Multi-winner voting with approval preferences. Springer
Nature, 2023.

47 Alexander Lam, Haris Aziz, Bo Li, Fahimeh Ramezani, and Toby Walsh. Proportional fairness
in obnoxious facility location. In Mehdi Dastani, Jaime Simão Sichman, Natasha Alechina, and
Virginia Dignum, editors, Proceedings of the 23rd International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2024, Auckland, New Zealand, May 6-10, 2024,
pages 1075–1083. International Foundation for Autonomous Agents and Multiagent Systems /
ACM, 2024. doi:10.5555/3635637.3662963.

48 Jean-François Laslier. Spatial approval voting. Political Analysis, 14(2):160–185, 2006.
49 Hong Liu and Jiong Guo. Parameterized complexity of winner determination in minimax

committee elections. In Catholijn M. Jonker, Stacy Marsella, John Thangarajah, and Karl
Tuyls, editors, Proceedings of the 2016 International Conference on Autonomous Agents &
Multiagent Systems, Singapore, May 9-13, 2016, pages 341–349. ACM, 2016. URL: http:
//dl.acm.org/citation.cfm?id=2936975.

50 Jirí Matousek. Lectures on discrete geometry, volume 212 of Graduate texts in mathematics.
Springer, 2002.

FSTTCS 2024

https://doi.org/10.1137/1.9781611977554.CH38
https://doi.org/10.48550/arXiv.2405.15372
https://doi.org/10.24963/IJCAI.2021/31
https://doi.org/10.1609/AAAI.V38I9.28838
https://doi.org/10.1609/AAAI.V38I9.28838
https://doi.org/10.1007/978-3-030-39479-0_13
https://doi.org/10.1007/978-3-319-78455-7_6
https://doi.org/10.1609/AAAI.V38I9.28841
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/S0304-3975(98)00222-9
http://cccg.ca/proceedings/2013/papers/paper_36.pdf
http://cccg.ca/proceedings/2013/papers/paper_36.pdf
https://doi.org/10.5555/3635637.3662963
http://dl.acm.org/citation.cfm?id=2936975
http://dl.acm.org/citation.cfm?id=2936975

24:20 The Chamberlin-Courant Approach to Obnoxious Committee Selection

51 Ivan-Aleksandar Mavrov, Kamesh Munagala, and Yiheng Shen. Fair multiwinner elections
with allocation constraints. In Proceedings of EC, pages 964–990, 2023. doi:10.1145/3580507.
3597685.

52 Neeldhara Misra, Arshed Nabeel, and Harman Singh. On the parameterized complexity of
minimax approval voting. In Gerhard Weiss, Pinar Yolum, Rafael H. Bordini, and Edith
Elkind, editors, Proceedings of the 2015 International Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2015, Istanbul, Turkey, May 4-8, 2015, pages 97–105. ACM,
2015. URL: http://dl.acm.org/citation.cfm?id=2772895.

53 Burt L Monroe. Fully proportional representation. American Political Science Review,
89(4):925–940, 1995.

54 Kamesh Munagala, Yiheng Shen, Kangning Wang, and Zhiyi Wang. Approximate core for
committee selection via multilinear extension and market clearing. In Proceedings of SODA,
pages 2229–2252, 2022. doi:10.1137/1.9781611977073.89.

55 Kamesh Munagala, Zeyu Shen, and Kangning Wang. Optimal algorithms for multiwinner
elections and the chamberlin-courant rule. In EC ’21, pages 697–717. ACM, 2021. doi:
10.1145/3465456.3467624.

56 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
doi:10.1093/ACPROF:OSO/9780198566076.001.0001.

57 Sridhar Rajagopalan and Vijay V. Vazirani. Primal-dual RNC approximation algorithms
for set cover and covering integer programs. SIAM J. Comput., 28(2):525–540, 1998. doi:
10.1137/S0097539793260763.

58 John Rawls. A Theory of Justice: Original Edition. Harvard University Press, 1971. URL:
http://www.jstor.org/stable/j.ctvjf9z6v.

59 John Rawls. Justice as Fairness: Political Not Metaphysical, pages 145–173. Palgrave
Macmillan UK, London, 1991. doi:10.1007/978-1-349-21763-2_10.

60 Piotr Skowron. FPT approximation schemes for maximizing submodular functions. Inf.
Comput., 257:65–78, 2017. doi:10.1016/J.IC.2017.10.002.

61 Piotr Skowron and Piotr Faliszewski. Chamberlin-courant rule with approval ballots: Approx-
imating the maxcover problem with bounded frequencies in FPT time. J. Artif. Intell. Res.,
60:687–716, 2017. doi:10.1613/JAIR.5628.

62 Piotr Skowron, Piotr Faliszewski, and Jérôme Lang. Finding a collective set of items: From
proportional multirepresentation to group recommendation. Artif. Intell., 241:191–216, 2016.
doi:10.1016/J.ARTINT.2016.09.003.

63 Piotr Krzysztof Skowron and Edith Elkind. Social choice under metric preferences: Scoring
rules and STV. In Proceedings of AAAI, pages 706–712. AAAI Press, 2017. doi:10.1609/
AAAI.V31I1.10591.

64 Chinmay Sonar, Subhash Suri, and Jie Xue. Multiwinner elections under minimax chamberlin-
courant rule in euclidean space. In Proceedings of IJCAI, pages 475–481, 2022. doi:10.24963/
IJCAI.2022/68.

65 Chinmay Sonar, Subhash Suri, and Jie Xue. Fault tolerance in euclidean committee selection.
In ESA 2023, volume 274, pages 95:1–95:14, 2023. doi:10.4230/LIPICS.ESA.2023.95.

66 Gogulapati Sreedurga, Mayank Ratan Bhardwaj, and Yadati Narahari. Maxmin participatory
budgeting. In IJCAI 2022, pages 489–495, 2022. doi:10.24963/IJCAI.2022/70.

67 Arie Tamir. Obnoxious facility location on graphs. SIAM J. Discret. Math., 4(4):550–567,
1991. doi:10.1137/0404048.

68 Thorvald N. Thiele. Om flerfoldsvalg. Oversigt over det Kongelige Danske Videnskabernes
Selskabs Forhandlinger, pages 415–441, 1895.

69 Yongjie Yang. On the complexity of calculating approval-based winners in candidates-embedded
metrics. In Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI-22, pages 585–591, 2022. doi:10.24963/IJCAI.2022/83.

https://doi.org/10.1145/3580507.3597685
https://doi.org/10.1145/3580507.3597685
http://dl.acm.org/citation.cfm?id=2772895
https://doi.org/10.1137/1.9781611977073.89
https://doi.org/10.1145/3465456.3467624
https://doi.org/10.1145/3465456.3467624
https://doi.org/10.1093/ACPROF:OSO/9780198566076.001.0001
https://doi.org/10.1137/S0097539793260763
https://doi.org/10.1137/S0097539793260763
http://www.jstor.org/stable/j.ctvjf9z6v
https://doi.org/10.1007/978-1-349-21763-2_10
https://doi.org/10.1016/J.IC.2017.10.002
https://doi.org/10.1613/JAIR.5628
https://doi.org/10.1016/J.ARTINT.2016.09.003
https://doi.org/10.1609/AAAI.V31I1.10591
https://doi.org/10.1609/AAAI.V31I1.10591
https://doi.org/10.24963/IJCAI.2022/68
https://doi.org/10.24963/IJCAI.2022/68
https://doi.org/10.4230/LIPICS.ESA.2023.95
https://doi.org/10.24963/IJCAI.2022/70
https://doi.org/10.1137/0404048
https://doi.org/10.24963/IJCAI.2022/83

S. Gupta, T. Inamdar, P. Jain, D. Lokshtanov, F. Panolan, and S. Saurabh 24:21

70 Yongjie Yang and Jianxin Wang. Parameterized complexity of multi-winner determination:
More effort towards fixed-parameter tractability. In Elisabeth André, Sven Koenig, Mehdi
Dastani, and Gita Sukthankar, editors, Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden, July 10-15,
2018, pages 2142–2144. International Foundation for Autonomous Agents and Multiagent
Systems Richland, SC, USA / ACM, 2018. URL: http://dl.acm.org/citation.cfm?id=
3238099.

71 Vikram Kher Yusuf Hakan Kalayci, David Kempe. Proportional representation in metric
spaces and low-distortion committee selection. In Proceedings of AAAI, 2024.

72 Aizhong Zhou, Yongjie Yang, and Jiong Guo. Parameterized complexity of committee elections
with dichotomous and trichotomous votes. In Edith Elkind, Manuela Veloso, Noa Agmon, and
Matthew E. Taylor, editors, Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019, pages
503–510. International Foundation for Autonomous Agents and Multiagent Systems, 2019.
URL: http://dl.acm.org/citation.cfm?id=3331733.

FSTTCS 2024

http://dl.acm.org/citation.cfm?id=3238099
http://dl.acm.org/citation.cfm?id=3238099
http://dl.acm.org/citation.cfm?id=3331733

Better Boosting of Communication Oracles, or Not
Nathaniel Harms # Ñ

EPFL, Lausanne, Switzerland

Artur Riazanov # Ñ

EPFL, Lausanne, Switzerland

Abstract
Suppose we have a two-party communication protocol for f which allows the parties to make queries
to an oracle computing g; for example, they may query an Equality oracle. To translate this
protocol into a randomized protocol, we must replace the oracle with a randomized subroutine for
solving g. If q queries are made, the standard technique requires that we boost the error of each
subroutine down to O(1/q), leading to communication complexity which grows as q log q. For which
oracles g can this naïve boosting technique be improved?

We focus on the oracles which can be computed by constant-cost randomized protocols, and show
that the naïve boosting strategy can be improved for the Equality oracle but not the 1-Hamming
Distance oracle. Two surprising consequences are (1) a new example of a problem where the cost
of computing k independent copies grows superlinear in k, drastically simplifying the only previous
example due to Blais & Brody (CCC 2019); and (2) a new proof that Equality is not complete
for the class of constant-cost randomized communication (Harms, Wild, & Zamaraev, STOC 2022;
Hambardzumyan, Hatami, & Hatami, Israel Journal of Mathematics 2022).

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases oracles, error reduction, communication complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.25

Funding Nathaniel Harms: Supported by an NSERC postdoctoral fellowship and the Swiss State
Secretariat for Education, Research, and Innovation (SERI) under contract number MB22.00026.
Artur Riazanov: Supported by the Swiss State Secretariat for Education, Research, and Innovation
(SERI) under contract number MB22.00026.

1 Introduction

We typically require that randomized algorithms succeed with probability 2/3, since the
probability can be boosted to any 1− δ by taking a majority vote of O(log(1/δ)) repetitions.
If many randomized subroutines are used within an algorithm, the probability of error may
accumulate, and one may apply standard boosting to each subroutine to bring the error
probability down to an acceptable level. We wish to understand when this is necessary, in
the setting of communication complexity.

Suppose two parties, Alice and Bob, wish to compute a function f(x, y) on their respective
inputs x and y, using as little communication as possible, and they have access to a shared
(i.e. public) source of randomness. A convenient way to design a randomized communication
protocol to compute f(x, y) is to design a deterministic protocol, but assume that Alice
and Bob have access to an oracle (in other words, a subroutine) which computes a certain
problem g that itself has an efficient randomized protocol.

▶ Example 1. The Equality problem is the textbook example of a problem with an efficient
randomized protocol [19, 23]: Given inputs a, b ∈ [N], two parties can decide (with success
probability 3/4) whether a = b, using only 2 bits of (public) randomized communication,
regardless of the domain size N . So, to design a randomized protocol for solving another
problem f(x, y), we may assume that the two parties have access to an Equality oracle.

© Nathaniel Harms and Artur Riazanov;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 25; pp. 25:1–25:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nathaniel.harms@epfl.ch
https://niharms.github.io
https://orcid.org/0000-0003-0259-9355
mailto:tunyash@gmail.com
https://tunyash.github.io/
https://orcid.org/0000-0001-7892-1502
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Better Boosting of Communication Oracles, or Not

For example, suppose Alice and Bob have vertices x and y in a shared tree T , and wish to
decide whether x and y are adjacent in T . If p(x) denotes the parent of x in T , then Alice
and Bob can decide adjacency using two Equality queries: “x = p(y)?” and “y = p(x)?”

▶ Example 2. The 1-Hamming Distance communication problem is denoted HD1 and
defined as HDn

1 (x, y) = 1 if x, y ∈ {0, 1}n differ on exactly 1 bit, and 0 otherwise. It has a
constant-cost randomized protocol, but unlike adjacency in trees, this protocol cannot be
expressed as a deterministic protocol using the Equality oracle [12, 13].

Using oracles makes the protocol simpler, and also makes it clearer how and why random-
ness is used in the protocol, which provides more insight into randomized communication (see
e.g. [5, 12, 13, 8] for recent work using oracles to understand randomized communication).
But when we replace the oracle for g with a randomized protocol for g, we must compensate
for the probability that the randomized protocol produces an incorrect answer. Write Dg(f)
for the optimal cost of a deterministic communication protocol for f using an oracle for g

(where the players pay cost 1 to query the oracle). Write Rδ(f) for the optimal cost of a
randomized protocol for f with error δ. Then the inequality

∀f , Rδ(f) = O

(
Dg(f) · R1/4(g) · log

(
Dg(f)

δ

))
(1)

follows from standard boosting: if there are q = Dg(f) queries made by the protocol in the
worst case, then we obtain a randomized protocol by simulating each of the q queries to
g using a protocol for g with error ≈ δ/q, sending Rδ/q(g) = O(R1/4(g) · log(q/δ)) bits of
communication for each query. But is it possible to improve on this naïve bound? The main
question of this paper is:

▶ Question 3. For which oracle functions g can Equation (1) be improved?

We focus on the oracles g which have constant-cost randomized communication proto-
cols, like Equality. Randomized communication is quite poorly understood, with many
fundamental questions remaining open even when restricted to the surprisingly rich class of
constant-cost problems. Many recent works have focused on understanding these extreme
examples of efficient randomized computation; see [12, 13, 11, 6, 16, 14, 8] and the survey [15].
And indeed some of these works [12, 15] use Equation (1) specifically for the Equality
oracle. So this is a good place to begin studying Question 3. Our main result is:

▶ Theorem 4 (Informal; see Theorems 11 and 14). Equation (1) can be improved for the
Equality oracle, but it is (nearly) tight for the 1-Hamming Distance oracle.

This has some unexpected consequences, described below, and also answers Question 3
for all known constant-cost problems.

Every known constant-cost problem g satisfies either DEq(g) = O(1) or Dg(HD1) = O(1)
([7] gives a survey of all known problems). Therefore we answer Question 3 for all known
constant-cost oracles. Towards an answer for all constant-cost oracles, we show that the
technique which allows us to improve Equation (1) works only for the Equality oracle
(Proposition 21).

Our main proof also has two other surprising consequences:

N. Harms and A. Riazanov 25:3

Direct sums. Direct sum questions ask how the complexity of computing k copies of a
problem grows with k (see e.g. [9, 18, 1, 3]). Recently, [3] answered a long-standing question
of [9] by providing the first example of a problem where the communication complexity
of computing k independent copies grows superlinearly with k. Their example is specially
designed to exhibit this behaviour and goes through the query-to-communication lifting
technique. In our investigation of Question 3, we show that computing k independent copies
of the drastically simpler, constant-cost 1-Hamming Distance problem requires Ω

(
k log k

log log k

)
bits of communication (Theorem 14). As a corollary, we also show a similar direct sum
theorem for randomized parity decision trees (Corollary 15).

Oracle separations. In an effort to better understand the power of randomness in commu-
nication, recent works have studied the relative power of different oracles. [5] show that the
Equality oracle is not powerful enough to simulate the standard communication complexity
class BPP (i.e. N ×N communication matrices with cost poly log log N), i.e. Equality is
not complete for BPP. [12, 13] showed that Equality is also not complete for the class BPP0

of constant-cost communication problems, because 1-Hamming Distance does not reduce
to it; and [8] show that there is no complete problem for BPP0. There are many lower-bound
techniques for communication complexity, but not many lower bounds for communication
with oracles. Our investigation of Question 3 gives an unexpected new proof of the separation
between the Equality and 1-Hamming Distance oracles; our proof is “algorithmic” , and
arguably simpler than the Ramsey-theoretic proof of [13] or the Fourier-analytic proof of [12].

Further Motivation, Discussion & Open Problems
Let’s say a constant-cost oracle function g has better boosting if

∀f : Rδ(f) = O(Dg(f) + log(1/δ)) .

We showed that among the currently-known constant-cost oracle functions g, better boosting
is possible if and only if DEq(g) = O(1), and we observed that among all constant-cost
oracles, only the Equality oracle satisfies the properties used to prove Theorem 11. So,
permit us the following conjecture:

▶ Conjecture 5. An oracle function g ∈ BPP0 has better boosting if and only if DEq(g) =
O(1).

To disprove this conjecture, we need a new example of a constant-cost (total) commu-
nication problem that is not somehow a generalization of 1-Hamming Distance. Such an
example would be very interesting, so in that regard we hope the conjecture is false.

One more motivation of the current study is to find an approach towards a question
of [14] about the intersection between communication complexity classes UPP0∩BPP0, where
UPP0 denotes the class of problems with bounded sign-rank, or equivalently, constant-cost
unbounded-error randomized protocols [22]. Writing EQ0 for the class of problems g where
DEq(g) = O(1), [14] asks:

▶ Question 6 ([14]). Is UPP0 ∩ BPP0 = EQ0?

This question seems challenging; as noted in [14], a positive answer would imply other
conjectures about UPP0 ∩ BPP0, notably the conjecture of [16] that 1-Hamming Distance
does not belong to UPP0, which would be the first example of a problem in BPP0 \ UPP0.

FSTTCS 2024

25:4 Better Boosting of Communication Oracles, or Not

[16] showed that all known lower-bound techniques against UPP0 fail to prove this. But a
positive answer to Question 6 implies that all oracles in UPP0 ∩ BPP0 have better boosting,
so a weaker question is:

▶ Question 7. Do all oracles in UPP0 ∩ BPP0 have better boosting?

Because of Theorem 4, this weaker question would also suffice to prove that 1-Hamming
Distance does not belong to UPP0. It is not clear to us whether Question 7 is easier to
answer than Question 6. If the answer to Question 7 is negative (i.e. there is an oracle in
UPP0 ∩ BPP0 which does not have better boosting), then either Conjecture 5 or Question 6
is false.

Similar questions about probability boosting were studied recently for query complexity
in [2] who focused on the properties of the outer function f of which allow for better boosting
to compute f ◦ g⊗k , whereas one may think of our oracles as the inner functions. We
may rephrase Theorem 11 as a “composition theorem” which says that for any function
f : {0, 1}k → {0, 1}, the composed function f ◦ (Eq)⊗k which applies f to the result of k

instances of Equality has communication cost

Rδ(f ◦ (Eq)⊗k) = O(DT(f) + log(1/δ)) (2)

where DT(f) is the decision-tree depth of f . We prefer the statement in Theorem 11 because
it more clearly differentiates between the protocol and the problem. To see what we mean,
consider taking f to be the And function; the immediate consequence of Equation (2) is
that R1/4(And ◦ (Eq)⊗k) = O(k), whereas the immediate consequence of Theorem 11 is that
R1/4(And ◦ (Eq)⊗k) = O(1) because this function can be computed using 1 Equality query.
To get the same result from Equation (2) one must rewrite the problem And ◦ (Eq)⊗k as a
different decision tree over different inputs.

2 Definitions: Communication Problems and Oracles

We will use some non-standard definitions that are more natural for constant-cost problems.
These definitions come from e.g. [5, 13, 12, 14, 8].

It is convenient to define a communication problem as a set P of Boolean matrices,
closed under row and column permutations. The more standard definition has one fixed
function f : {0, 1}n × {0, 1}n → {0, 1} for each input size n, with communication matrix
Mf ∈ {0, 1}2n×2n , whereas we will think of a communication problem P as possibly containing
many different communication matrices M ∈ {0, 1}N×N on each domain size N . (In the
adjacency-in-trees problem, Example 1, there are many different trees on N vertices, which
define many different communication matrices.)

For a fixed matrix M ∈ {0, 1}N×N and parameter δ < 1/2, we write Rδ(M) for the
two-way, public-coin randomized communication complexity of M . For a communication
problem P, we write Rδ(P) as the function

N 7→ max
{

Rδ(M) : M ∈ P , M ∈ {0, 1}N×N
}

.

Then the class BPP0 is the collection of communication problems P which satisfy R1/4(P) =
O(1).

To define communication with oracles, we require the notion of a query set:

▶ Definition 8 (Query Set). A query set Q is a set of matrices closed under (1) taking
submatrices; (2) permuting rows and columns; and (3) copying rows and columns. For any
set of matrices M, we write QS(M) for the closure of M under these operations.

N. Harms and A. Riazanov 25:5

Observe that if R1/4(P) = O(1) then R1/4(QS(P)) = O(1), since constant-cost protocols
are preserved by row and column copying as well as taking submatrices.

▶ Definition 9 (Communication with oracles). Let P be any communication problem, i.e.
set of Boolean matrices. For any N × N matrix M with values in a set Λ, write DP(M)
for the minimum cost of a two-way deterministic protocol computing M as follows. The
protocol is a binary tree T where each leaf node v is assigned a value ℓ(v) ∈ Λ, and each
inner node v is assigned a query matrix Q ∈ {0, 1}N×N where Q ∈ QS(P). On any pair of
inputs (i, j) ∈ [N]× [N], the protocol proceeds as follows: the current pointer c is initiated as
the root of T , and at every step, if Qc(i, j) = 1 then the pointer c moves to its left child, and
otherwise if Qc(i, j) = 0 then the pointer c moves to the right. Once the pointer c reaches
a leaf, the output of the protocol is the value ℓ(c) assigned to the leaf c. It is required that
ℓ(c) = M(i, j). The cost of the protocol is the depth of T .

This definition differs from the standard definition of oracle communication because we
do not restrict the input size of the oracle. Specifically, each oracle query is represented
by an N × N matrix Q ∈ QS(P), obtained by taking a submatrix of an arbitrarily large
instance of P ∈ P and then copying rows and columns. This is the natural definition because
this preserves constant-cost randomized protocols, whereas preserving non-constant cost
functions usually requires restricting the size of the instance P ∈ P.

▶ Remark 10. For constant-cost communication problems, i.e. problems P ∈ BPP0, we will
simply identify the problem P with its query set QS(P) since this does not change the
communication complexity of P. For example, DEq(·) is DQ(·) where Q is taken to be the
closure QS({IN,N}) of the identity matrices.

3 Better Boosting of Equality Protocols

We prove the first part of Theorem 4, that Equation (1) can be improved for the Equality
oracle. This theorem will also be applied in the later sections of the paper.

The proof uses the “noisy-search-tree” argument of [10]. This is a well-known idea that
was previously applied in [21] to get an upper bound on the communication complexity of
Greater-Than; see also the textbook exercise in [23]. We only require the observation
that the argument works for arbitrary Equality queries, not just the binary search queries
used in those papers. Also, we did not find any complete exposition of the proof of the
Greater-Than upper-bound: the application of [10] in [21] is black-box and informal, and
the models of computation in these two works do not match up, which causes some very
minor gaps in the proof1, so we make an effort to give a complete exposition here.

Informal protocol sketch. The idea of the protocol is that an Equality-oracle protocol is
a binary tree T , where each node is a query to the oracle. On any given input, there is one
“correct” path through T . The randomized protocol keeps track of a current node c in the
tree T . In each round, the node c either moves down to one of its children, or, if it detects
that a mistake has been made in an earlier round, it moves back up the tree. There are two
main ideas:

1 The gap is that the outputs of the Equality subroutine are not independent random variables. As far as
we can tell, this very minor issue persists in the textbook exercise in [23] devoted to the Greater-Than
problem.

FSTTCS 2024

25:6 Better Boosting of Communication Oracles, or Not

1. At every node c, the protocol can “double-check” the answers in all ancestor nodes with
only O(1) communication overhead, which implicitly reduces the error of all previous
queries. This uses a special property of the Equality oracle, that a conjunction of
equalities (a1 = b1) ∧ (a2 = b2) ∧ · · · ∧ (at = bt) is equivalent to a single equality
(a1, a2, . . . , at) = (b1, b2, . . . , bt). We can use this property to check if the current node c

is on the “correct” path. (This simple observation is our contribution to this argument.)
2. The random walk of the node c through the tree is likely to stay close to the “correct”

path; this is essentially the argument of [10].

▶ Theorem 11. For any M ∈ ΛN×N with values in an arbitrary set Λ,

Rδ(M) = O

(
DEq(M) + log 1

δ

)
.

Proof. Let T be the tree of depth d = DEq(M) as in Definition 9. For a node v in T let
av, bv : [N] → N be the functions defining the oracle query at the node v with Qv(i, j) =
Eq(av(i), bv(j)). Let R := 4 ·max{d, C log(1/δ)} where C is a sufficiently large constant,
and construct a tree T ′ by replacing each leaf node v of T with another tree Lv of depth
C log(1/δ) (where C is a sufficiently large constant), with each node v′ of Lv being a copy of
the parent node of v in T (i.e. the functions av′ , bv′ : [N]→ N are identical to those of the
parent of v). We then simulate the protocol defined by T using Algorithm 1.

Algorithm 1 Noisy-Tree Protocol.
Input: Row i, column j of communication matrix M .

1: Initialize pointer c← root(T ′).
2: for r ∈ [R] do
3: Let P = (p1, p2, . . . , pk) be the path in T ′ from root(T ′) to c.
4: Let (q1, q2, . . . , qt) be the subsequence of P where the protocol has taken the left

branch.
▷ (i.e. the nodes where the protocol previously detected “equality”.)

5: Use the Equality protocol with error probability 1/4 to check

(aq1(i), aq2(i), . . . , aqt
(i)) = (bq1(j), bq2(j), . . . , bqt

(j))?

▷ Re-check all previous “equality” answers simultaneously.
6: if inequality is detected on the sequence q1, . . . , qt then

▷ A mistake was detected in an earlier round; go back up.
7: Update c to be the parent of c in T ′.
8: else

▷ Check the current node and continue.
9: Use the Equality protocol with error probability 1/4 to check ac(i) = bc(j)?

10: if Equality is detected then move c to its left child, otherwise move c to its right
child.

11: if c belongs to a subtree Lv (replacing leaf v of T) then
12: return ℓ(v). Otherwise return 0.

Since Algorithm 1 performs R rounds using in each round at most 2 instances of the
randomized Equality protocol with error 1/4, the total amount of communication is at
most O(R) = O(max{d, log(1/δ)}) as desired. Let us now verify correctness.

N. Harms and A. Riazanov 25:7

d

C log(1/δ)

=

̸=

̸=

=

≠=

=

=

Lv

v

Figure 1 The picture represents the runtime of Algorithm 1. The thick green path is P ′
i,j for

some i and j. The walk corresponding to the runtime of Algorithm 1 is represented with thin arrows:
green arrows represent good rounds, solid red arrows represent bad rounds where protocol makes a
mistake, and dashed red arrows represent bad rounds where protocol backtracks.

For any inputs i, j there is a unique root-to-leaf path Pi,j taken in T ending at some leaf
v, and a corresponding unique path P ′

i,j in T ′ which terminates at the subtree Lv. For any
execution of Algorithm 1, we say a round r is “good” if the pointer c starts the round on
a vertex in P ′

i,j ∪ Lv and also ends the round on a vertex in P ′
i,j ∪ Lv. We say round r is

“bad” otherwise. Write g for the number of good rounds and b for the number of bad rounds,
which are random variables satisfying R = b + g.

▷ Claim 12. If g > d then the protocol produces a correct output.

Proof of claim. Observe that, if c ∈ P ′
i,j at the start of round r, then the counter cannot

move back up, because the Equality protocol has one-sided error and will correctly report
that the concatenated strings are equal with probability 1. So the protocol must have
terminated with the counter c at a descendent of the gth node of P ′

i,j . Since g > d, the
protocol terminated with c in the subtree of T ′ that replaced the final node v of Pi,j , meaning
that it will output the correct value. ◁

We say that the protocol makes a mistake in round r if the randomized Equality
protocol erroneously outputs “equal” in Line 5 when (aq1(i), . . . , aqt(i)) ̸= (bq1(j), . . . , bqt(j)),
or if these tuples are truly equal but the protocol erroneously reports “equal” in Line 9 when
ac(i) ̸= bc(j). Define the random variable mr := 1 if the protocol makes a mistake in round
r and 0 otherwise, and define m =

∑R
r=1 mr for the total number of rounds where the

protocol makes a mistake.

▷ Claim 13. b ≤ 2m.

Proof of claim. Consider any bad round r. Either the counter c moves up or down the tree.
If the counter c moves up to its parent c′, then we charge the bad round to the most recent
round r′ < r where the counter started at c′ and observe that the protocol must have made
a mistake at round r′. Otherwise, if the counter c moves down the tree, we charge the bad
round to r itself and observe that the protocol makes a mistake in round r. Then we see

FSTTCS 2024

25:8 Better Boosting of Communication Oracles, or Not

that each round where a mistake is made is charged for at most 2 bad rounds (one for itself,
if the counter moves down; and one for the earliest round where the counter returns to its
current position). ◁

If the protocol outputs the incorrect value then we must have g = R−b ≤ d and therefore
R − d ≤ b ≤ 2m, so m ≥ R−d

2 . It remains to bound the number of mistakes m; we write
m =

∑R
r=1 mr where mr indicates whether the protocol makes a mistake in round r.

In any round r, conditional an all previous rounds, the probability that the protocol
makes a mistake is at most 1/4: either there is an ancestor node in P where a mistake was
made in an earlier round, in which case a mistake is made in round r only if it makes an error
in Line 5; or the path P is entirely correct and the protocol makes a mistake only if there is
an error in Line 9. So P [mr = 1 | m1, . . . , mr−1] ≤ 1/4 for every r and µ := E [m] ≤ R/4.
Using known concentration bounds (e.g. Theorem 3.1 of [17]), for any 1

4 ≤ γ ≤ 1 we have
P [m ≥ γR] ≤ e−R·D(γ∥δ); in particular, since R = 4 ·max{d, C log(1/δ)}, we have R−d

2 ≥ 3R
8 ,

so for constant κ := D
(3

8∥
1
4
)

> 0,

P
[
m ≥ R− d

2

]
≤ P

[
m ≥ 3

8 ·R
]
≤ e−R·κ ≤ e−4C log(1/δ)·κ ≤ δ ,

when we choose C to be a sufficiently large constant. ◀

4 No Better Boosting for Hamming Distance, and Consequences

We now complete the proof of Theorem 4 by showing that Equation (1) is nearly tight for
the 1-Hamming Distance oracle. We prove this with a direct-sum result, showing that
computing k independent copies of 1-Hamming Distance cannot be computed without the
log k-factor loss from boosting. Let us define the direct sum problems.

For any function f : X × Y → Z and any k ∈ N, we define function f⊗k as the function
which computes k copies of f , i.e. f⊗k : Xk ×Y k → Zk where on inputs x ∈ Xk and y ∈ Y k,

f⊗k(x, y) = (f(x1, y1), f(x2, y2), . . . , f(xk, yk)) .

It is easy to see that DHD1((HDn
1)⊗k) = k for n > 1 since we can compute each copy of HDn

1
with one query. In this section we prove:

▶ Theorem 14. For all n ≥ 4k2, R1/4((HDn
1)⊗k) = Ω(k log k/ log log k). Consequently, there

exist matrices M such that

R1/4(M) = Ω
(

DHD1(M) · log DHD1(M)
log log DHD1(M)

)
.

Our proof has two further consequences. The first is about randomized parity decision
trees (see e.g. [4] for definitions and background on parity decision trees): it is not hard
to see that the randomized parity decision tree complexity of the 1-Hamming Weight
function HWn

1 : {0, 1}n → {0, 1} defined by HWn
1 (x) = 1 iff |x| = 1 is RPDT(HWn

1) =
O(1). Since HDn

1 (x, y) = HWn
1 (x ⊕ y) and one can simulate each parity query with two

bits of communication, we get R1/4((HDn
1)⊗k) = O(RPDT1/4((HWn

1)⊗k)). Together these
statements imply:

▶ Corollary 15. For n ≥ 4k2, RPDT((HWn
1)⊗k) = Ω(k log k/ log log k).

The second consequence of our proof, explained in Section 4.3, is the optimal Ω(log n)
lower bound on the number of Equality queries required to compute HDn

1 . All of these
results come from our main lemma, a randomized reduction from HDn

k to (HDn
1)⊗O(k).

N. Harms and A. Riazanov 25:9

4.1 Randomized Reduction Lemma
▶ Lemma 16. For c = 9/10, and for all k ∈ N, let R = log1/c k and δ := 1

10R . Then

R1/4(HDn
k) = O

(
R∑

i=0
Rδ((HDn

1)⊗(4k·ci)

)
.

Proof. Our protocol for HDn
k (x, y) is Algorithm 2. Let c = 9/10 and let C be some constant

to be determined later. For a string x ∈ {0, 1}n and a set S ⊆ [n], we will write xS ∈ {0, 1}|S|

for the substring of x on coordinates S.

Algorithm 2 Hamming Distance Reduction.
Input: x, y ∈ {0, 1}n.

1: Initialize T ← [n]; ℓ← k.

2: while ℓ > C do
3: Let S1, . . . , S4ℓ be a uniformly random partition of T .
4: Let ui = xSi

; vi = ySi
be the substrings of x, y on subsets Si for all i ∈ [4ℓ].

5: Run δ-error protocols for (HDn
1)⊗4ℓ

(
(u1, v1), . . . , (u4ℓ, v4ℓ)

)
and

Eq⊗4ℓ
n

(
(u1, v1), . . . , (u4ℓ, v4ℓ)

)
.

▷ Assuming these subroutines are correct, we know dist(ui, vi) exactly, if dist(ui, vi) ∈
{0, 1}.

6: wi ← dist(ui, vi) if dist(ui, vi) ≤ 1 and 2 otherwise.
▷ We can safely output 0 if we see more than ℓ differences:

7: if
∑

i∈[4ℓ] wi > ℓ then return 0.
▷ In the next step, isolate the sets Si where the protocol finds exactly one difference.

8: s← |{i ∈ [4ℓ] | wi = 1}|.
▷ If dist(xT , yT) > ℓ, we should see many sets with exactly one difference; output 1

otherwise:
9: if s < ℓ/10 then return 1.

▷ Throw out sets Si with at most one difference; update the number ℓ of remaining
differences.

10: T ←
⋃

i∈[4ℓ] : wi=2 Si.
11: ℓ← ℓ− s.
12: return HD|T |

ℓ (xT , yT).

First, let us calculate the cost of the protocol. As guaranteed by Line 9, at each iteration
the value of ℓ is reduced to at most 9

10 ℓ = cℓ, so there are at most R = log1/c k iterations, and
in the i-th iteration (indexed from zero), ℓ ≤ kci. Hence, at each iteration, the communication
cost is at most

Rδ((HDn
1)⊗4kci

) + Rδ((Eq)⊗4kci

) ≤ 2 · Rδ((HDn
1)⊗4kci

) .

Since C is a constant, the cost of the final step with ℓ ≤ C is O(1).
Now let us estimate the error. Since there are at most R = log1/c k iterations and the

2 protocols in Line 5 each have error at most δ = 1/10R, the total probability of an error
occurring in Line 5 is at most 1/5. We may therefore assume from now on the perfect
correctness of the values wi.

Under this assumption, the protocol maintains the invariant that the number of bits
outside T where x, y differ is dist(x[n]\T , y[n]\T) = k − ℓ, so it cannot output the incorrect
value in Line 7. Let us consider the probability that the protocol outputs the incorrect

FSTTCS 2024

25:10 Better Boosting of Communication Oracles, or Not

value in Line 9. This only occurs if dist(xT , yT) > ℓ and s < ℓ/10. We need to estimate
P [|{i ∈ [4ℓ] | wi = 1}| ≥ ℓ/10]. The size of the set {i ∈ [4ℓ] | wi > 0} is the number of unique
colors we get when coloring each element i of the set ∆T := {i ∈ T : xi ̸= yi} of cardinality
|∆T | = dist(xT , yT) uniformly with color χi ∼ [4ℓ]; call this number χ := |{χi : i ∈ ∆T }|.
We know that Line 9 does not halt, so |{i ∈ [4ℓ] | wi = 2}| < ℓ/2. Then, if χ ≥ (6/10)ℓ, it
must be that |{i ∈ [4ℓ] : wi = 1}| ≥ χ− ℓ/2 ≥ ℓ/10, so Line 9 does not halt. For simplicity,
since |∆T | ≥ ℓ, in the next expression we consider only the first ℓ elements of ∆T and identify
them with the set [ℓ]. The probability we need to estimate is

P [|{χi | i ∈ [ℓ]}| ≤ 0.6ℓ] ≤
∑

S∈([ℓ]
0.6ℓ)

P [{χi | i ∈ [ℓ]} ⊆ {χi | i ∈ S}]

≤
(

ℓ

0.6ℓ

)
·
(

6
10 · 4

)0.4ℓ

< 2ℓ · 2log2(3/20)·0.4ℓ ≤ 2−.01ℓ.

We have that the total error is bounded by
∑∞

ℓ=C 2−.01ℓ ≤ 2−.01C/(1− 2−.01) ≤ 100 · 2−.01C ,
so choosing C to be large enough we get arbitrarily small constant error. ◀

4.2 Direct Sum Theorem for 1-Hamming Distance
We require the lower bound on the communication cost of HDn

k :

▶ Theorem 17 ([24]). For all k2 ≤ δn, Rδ(HDn
k) = Ω(k log(k/δ)).

Now we can prove Theorem 14.

Proof of Theorem 14. Assume for contradiction that R1/4((HDn
1)⊗k) = o(k log k/ log log k),

so by standard boosting,

Rδ((HDn
1)⊗k) = o

(
k log k

log log k
· log 1

δ

)
.

Then by Lemma 16, with c = 9/10 and R = log1/c k,

R1/4(HDn
k) = O

(
R∑

i=0
Rδ((HDn

1)4kci

)
)

=
R∑

i=0
o

(
kci log(kci)
log log(kci) log log k

)

=
R∑

i=0
o(cik log k) = o(k log k) ,

which contradicts Theorem 17 when n ≥ 4k2. ◀

Our Corollary 15 for randomized parity decision trees follows easily from this theorem
since a randomized parity decision tree for 1-Hamming Weight, (or k copies of it), can be
simulated by a randomized communication protocol to compute 1-Hamming Distance (or
k copies of it).

4.3 Lower Bound on Computing 1-Hamming Distance with Equality
Queries

Recently, [12, 13] showed that Equality is not complete for the class BPP0 of constant-cost
communication problems, and [8] showed that there is no complete problem for this class.
The independent and concurrent proofs of [12, 13] both showed that DEq(HDn

1) = ω(1).

N. Harms and A. Riazanov 25:11

We showed above that functions which reduce to Equality have better boosting, while
1-Hamming Distance does not, so 1-Hamming Distance cannot reduce to Equality –
this gives a new and unexpected proof that Equality is not complete for BPP0:

▶ Corollary 18. DEq(HDn
1) = ω(1). Therefore, Equality is not a complete problem for

BPP0.

There is an easy upper bound of DEq(HDn
1) = O(log n) obtained using binary search.

With a more careful argument we can strengthen the above result and get a new proof that
this is optimal, matching the lower bound already given in [12] by Fourier analysis.

▶ Theorem 19. DEq(HDn
1) = Θ(log n).

Proof. Assume for the sake of contradiction that DEq(HDn
1) = o(log n), which immedi-

ately implies DEq((HDn
1)⊗k) = o(k log n). By Theorem 11 we then have Rδ((HDn

1)⊗k) ≤
o(k log n) + O(log 1/δ). Applying Lemma 16 we get, for c = 9/10 and δ = 1

10 log1/c k ,

R1/4(HDn
k) = O

log1/c k∑
i=0

Rδ((HDn
1)⊗4kci

)

=

log1/c k∑
i=0

(o(kci log n) + O(log log k)) = o(k log n) + O(log k log log k).

Applying this inequality with n = k4 we get R1/4(HDk4

k) = o(k log k), which contradicts
Theorem 17. ◀

▶ Remark 20. It is interesting that the additive O(log(1/δ)) in Theorem 11 is required for this
proof. If the log(1/δ) term was multiplicative, we would get a bound of o(k log n · log log k)
in the sum, giving o(k log k log log k) when we set n = k4, which is not in contradiction with
Theorem 17. So the weaker (but still non-trivial) bound R1/4(M) = O(DEq(M)) would not
suffice, although it would still allow us to conclude DEq(HDn

1) = ω(1). The trivial bound of
R1/4(M) = O(DEq(M) log DEq(M)) would not allow us to prove even DEq(HDn

1) = ω(1).

5 Noisy-Tree Fails for Other Oracles

At this point we cannot determine whether better boosting is possible only for the constant-
cost protocols which reduce to Equality. But we can make some progress towards this
question by observing that the “noisy-tree” protocol in Theorem 11 does not work for any
other oracles in BPP0. To state this formally, we must define a reasonable generalization of
that protocol.

The noisy-tree protocol relied on two properties of the Equality oracle. The first is
that it has one-sided error (the protocol for Equality will output the correct answer with
probability 1 when the inputs are equal). The second property is what we will call the
conjunction property:

A query set Q has the conjunction property if there exists a constant c such that for all
d ∈ N and all Q1, . . . , Qd ∈ Q, DQ

(∧d
i=1 Qi

)
≤ c where

∧d
i=1 Qi denotes the problem of

computing

Q1(x1, y1) ∧Q2(x2, y2) ∧ · · · ∧Qd(xd, yd) .

on d pairs of inputs (x1, y1), . . . , (xd, yd). For example, Equality has the conjunction
property because computing

Eq(x1, y1) ∧ Eq(x2, y2) ∧ · · · ∧ Eq(xd, yd)

FSTTCS 2024

25:12 Better Boosting of Communication Oracles, or Not

can be done with the single query Eq (((x1, x2, . . . , xd), (y1, y2, . . . , yd)). Following the proof
of Theorem 11, we could claim the following result, which would hold even for oracles Q that
have non-constant cost (but still using arbitrary-size oracle queries2):

▶ “Theorem”. Let Q be any query set satisfying the conjunction property, and whose
elements Q ∈ Q admit one-sided error randomized communication protocols with cost
O(R(Q)). Then for any M ∈ {0, 1}N×N , Rδ(M) = O(DQ(M) · R1/4(Q) + log 1

δ).

But it turns out that this does not really generalize Theorem 11, even if we require only
the conjunction property (i.e. ignore one-sided error):

▶ Proposition 21. If Q is a query set that satisfies the conjunction property, then it is either
a subset of the query set of Equality, or it is the set of all matrices.

To prove this, we use VC dimension. The VC dimension of a Boolean matrix M is the largest
d such that there are d columns of M , where the submatrix of M restricted to those columns
contains all 2d possible distinct rows. A family F of matrices has bounded VC dimension if
there is a constant d such that all M ∈ F have VC dimension at most d. If F is closed under
taking submatrices (and permutations), then it has bounded VC dimension if and only if it
is not the family of all matrices.

Proof of Proposition 21. If Q does not contain the matrix [1 1
1 0], then it is not hard to see

that Q is a subset of the query set of Equality. So we suppose that Q contains the matrix
[1 1

1 0] and satisfies the conjunction property. We first show:

▷ Claim 22. Every matrix M ∈ {0, 1}N×N is a submatrix of
∧N

i=1 Qi where each Qi = [1 1
1 0].

Proof of claim. Let each Qi be a copy of [1 1
1 0], so that Q =

∧N
i=1 Qi has row space [2]N

and column space [2]N . Let M ∈ {0, 1}N×N and map each row x ∈ [N] of M to the row
v(x) ∈ [2]N of Q with

∀j ∈ [N] : v(x)j =
{

1 if M(x, j) = 1
2 if M(x, j) = 0 ,

and map each column y ∈ [N] of M to the column w(y) ∈ [2]N of Q with

∀j ∈ [N] : w(y)j =
{

1 if j ̸= y

2 if j = y .

For any row x and column y of M , if M(x, y) = 1 then

Qi(v(x)j , w(y)j) =

Qi(1, 1) = 1 if M(x, j) = 1 and j ̸= y

Qi(1, 2) = 1 if M(x, j) = 1 and j = y

Qi(2, 1) = 1 if M(x, j) = 0 and j ̸= y .

This covers all the cases, since we never have M(x, j) = 0 and j = y, so Q(v(x), w(y)) = 1.
Finally, if M(x, y) = 0 then

Qi(v(x)y, w(y)y) = Qi(2, 2) = 0 ,

so Q(v(x), w(y)) = 0. Therefore M is a submatrix of Q. ◁

2 Arbitrary-size oracle queries may be sensible for non-constant cost problems that still have bounded VC
dimension, e.g. Greater-Than oracles as in [5].

N. Harms and A. Riazanov 25:13

By the conjunction property, there is a constant c such that DQ(M) ≤ DQ(
∧N

i=1 Qi) ≤ c

for all M ∈ {0, 1}N×N . Therefore, there is a constant C and a function f : {0, 1}C → {0, 1}
such that all matrices M can be written as

M(x, y) := f(Q1(x, y), Q2(x, y), . . . , QC(x, y))

where each Qi ∈ Q (think of f as the function which simulates the protocol for DQ(M) using
the answers to each query Qi; see e.g. [14] for the simple proof of this fact). Let f(Q) denote
the set of all matrices which can be achieved in this way, which we have argued is the set of
all matrices. For the sake of contradiction, assume that Q is not the set of all matrices, so
that the VC dimension VC(Q) is bounded. Then standard VC dimension arguments (see e.g.
[20]) show that the VC dimension of f(Q) is at most O(VC(Q) ·C log C). Since C is constant,
the VC dimension of f(Q) is therefore also bounded, but f(Q) contains all matrices, so this
is a contradiction and Q must contain all matrices. ◀

▶ Remark 23. If one is interested only in constant-cost oracles, we may replace the conjunction
property DQ(

∧
i Qi) ≤ c with the property R1/4

(∧d
i=1 Qi

)
= O(1), but the same proof rules

out this generalization as well.

References
1 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive commu-

nication. SIAM Journal on Computing, 42(3):1327–1363, 2013. doi:10.1137/100811969.
2 Shalev Ben-David, Mika Göös, Robin Kothari, and Thomas Watson. When is amplification

necessary for composition in randomized query complexity? In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020).
Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2020.

3 Eric Blais and Joshua Brody. Optimal separation and strong direct sum for randomized query
complexity. In 34th Computational Complexity Conference (CCC 2019). Schloss-Dagstuhl-
Leibniz Zentrum für Informatik, 2019.

4 Arkadev Chattopadhyay, Ankit Garg, and Suhail Sherif. Towards stronger counterexamples
to the log-approximate-rank conjecture. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, 2021.

5 Arkadev Chattopadhyay, Shachar Lovett, and Marc Vinyals. Equality alone does not simulate
randomness. In 34th Computational Complexity Conference (CCC 2019). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019.

6 Louis Esperet, Nathaniel Harms, and Andrey Kupavskii. Sketching distances in monotone graph
classes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2022). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022.

7 Yuting Fang, Mika Göös, Nathaniel Harms, and Pooya Hatami. Constant-cost communication
does not reduce to k-hamming distance, 2024. arXiv:2407.20204.

8 Yuting Fang, Lianna Hambardzumyan, Nathaniel Harms, and Pooya Hatami. No complete
problem for constant-cost randomized communication. In Proceedings of the Symposium on
Theory of Computing (STOC 2024), 2024.

9 Tomás Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan. Amortized communication com-
plexity. SIAM Journal on computing, 24(4):736–750, 1995. doi:10.1137/S0097539792235864.

10 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy informa-
tion. SIAM Journal on Computing, 23(5):1001–1018, 1994. doi:10.1137/S0097539791195877.

11 Lianna Hambardzumyan, Hamed Hatami, and Pooya Hatami. A counter-example to the
probabilistic universal graph conjecture via randomized communication complexity. Discrete
Applied Mathematics, 322:117–122, 2022. doi:10.1016/J.DAM.2022.07.023.

FSTTCS 2024

https://doi.org/10.1137/100811969
https://arxiv.org/abs/2407.20204
https://doi.org/10.1137/S0097539792235864
https://doi.org/10.1137/S0097539791195877
https://doi.org/10.1016/J.DAM.2022.07.023

25:14 Better Boosting of Communication Oracles, or Not

12 Lianna Hambardzumyan, Hamed Hatami, and Pooya Hatami. Dimension-free bounds and
structural results in communication complexity. Israel Journal of Mathematics, 253(2):555–616,
2022.

13 Nathaniel Harms, Sebastian Wild, and Viktor Zamaraev. Randomized communication and
implicit graph representations. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing (STOC 2022), pages 1220–1233, 2022. doi:10.1145/3519935.3519978.

14 Nathaniel Harms and Viktor Zamaraev. Randomized communication and implicit representa-
tions for matrices and graphs of small sign-rank. In Proceedings of the Symposium on Discrete
Algorithms (SODA). SIAM, 2024.

15 Hamed Hatami and Pooya Hatami. Guest column: Structure in communication complexity
and constant-cost complexity classes. ACM SIGACT News, 55(1):67–93, 2024. doi:10.1145/
3654780.3654788.

16 Hamed Hatami, Pooya Hatami, William Pires, Ran Tao, and Rosie Zhao. Lower bound methods
for sign-rank and their limitations. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022.

17 Russell Impagliazzo and Valentine Kabanets. Constructive proofs of concentration bounds.
In International Workshop on Randomization and Approximation Techniques in Computer
Science, pages 617–631. Springer, 2010. doi:10.1007/978-3-642-15369-3_46.

18 Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower bounds via
the direct sum in communication complexity. Computational Complexity, 5:191–204, 1995.
doi:10.1007/BF01206317.

19 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1996.

20 Jiri Matousek. Lectures on discrete geometry, volume 212. Springer Science & Business Media,
2013.

21 Noam Nisan. The communication complexity of threshold gates. Combinatorics, Paul Erdos
is Eighty, 1:301–315, 1993.

22 Ramamohan Paturi and Janos Simon. Probabilistic communication complexity. Journal of
Computer and System Sciences, 33(1):106–123, 1986. doi:10.1016/0022-0000(86)90046-2.

23 Anup Rao and Amir Yehudayoff. Communication Complexity and Applications. Cambridge
University Press, 2020.

24 Mert Sağlam. Near log-convexity of measured heat in (discrete) time and consequences. In
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages
967–978. IEEE, 2018.

https://doi.org/10.1145/3519935.3519978
https://doi.org/10.1145/3654780.3654788
https://doi.org/10.1145/3654780.3654788
https://doi.org/10.1007/978-3-642-15369-3_46
https://doi.org/10.1007/BF01206317
https://doi.org/10.1016/0022-0000(86)90046-2

Two Views on Unification: Terms as Strategies
Furio Honsell #

Department of Mathematics, Computer Science and Physics, University of Udine, Italy

Marina Lenisa #

Department of Mathematics, Computer Science and Physics, University of Udine, Italy

Ivan Scagnetto #

Department of Mathematics, Computer Science and Physics, University of Udine, Italy

Abstract
In [19], the authors have shown that linear application in Geometry of Interaction (GoI) models of
λ-calculus amounts to resolution between principal types of linear λ-terms. This analogy also works
in the reverse direction. Indeed, an alternative definition of unification between algebraic terms can
be given by viewing the terms to be unified as strategies, i.e. sets of pairs of occurrences of the same
variable, and verifying the termination of the GoI interaction obtained by playing the two strategies.
In this paper we prove that such a criterion of unification is equivalent to the standard one. It can
be viewed as a local, bottom-up, definition of unification. Dually, it can be understood as the GoI
interpretation of unification.
The proof requires generalizing earlier work to arbitrary algebraic constructors and allowing for
multiple occurrences of the same variable in terms. In particular, we show that two terms σ and
τ unify if and only if R(σ) ⊆̂ R(τ) ;̂ (R(σ) ;̂ R(τ))∗ and R(τ) ⊆̂ R(σ) ;̂ (R(τ) ;̂ R(σ))∗, where R(σ)
denotes the set of pairs of paths leading to the same variable in the term σ, ⊆̂ denotes “inclusion up
to substitution” and ;̂ denotes “composition up to substitution”.

2012 ACM Subject Classification Theory of computation → Program semantics; Theory of compu-
tation → Linear logic

Keywords and phrases unification, geometry of interaction, games

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.26

Funding Work supported by project PNRR SERICS PE00000014 M4C2I1.3 – SECCO – “SecCo-OC
– Secure Containers Open Call” – CUP D33C22001300002, and by project PNRR SERICS M4C2I1.3
– COVERT OpenCall In searCh Of eVidence of stEalth cybeR Threats – CUP G23C24000790006.

Acknowledgements The authors express their gratitude to the referees for their useful comments.

1 Introduction

Geometry of Interaction (GoI) is a general programme originated by J.-Y. Girard in the
late 80’s, which aims at giving language-independent mathematical models of algorithms.
An extraordinary amount of results by dozens of logicians and computer scientists has been
triggered by Girard’s seminal papers [13, 14, 15] on the GoI-dynamics of cut-elimination in
Linear Logic. Among these arose Game Semantics, as initiated by Abramsky and Hyland,
which led to far reaching connections through notions such as traced monoidal categories.
Inspired by [2, 3] and in particular by [1], in [19] the authors gave a simple explanation
of GoI-linear application in GoI linear models of λ-calculus in terms of unification, more
specifically resolution, between principal types of linear λ-terms (see also [10, 9, 18, 11, 17]).
The notion of GoI-application was hitherto justified in terms of more complex mathematical
notions, such as proof nets, C∗-algebras, and categorical trace operators.

In this paper we show that the correspondence between GoI linear application and
unification is intrisic. Indeed, we introduce an alternative criterion for unification between
algebraic terms, by viewing the terms to be unified as strategies, i.e. sets of pairs of occurrences

© Furio Honsell, Marina Lenisa, and Ivan Scagnetto;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:furio.honsell@gmail.com
mailto:marina.lenisa@uniud.it
https://orcid.org/0000-0003-0497-0429
mailto:ivan.scagnetto@uniud.it
https://orcid.org/0000-0003-3206-2719
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Two Views on Unification: Terms as Strategies

of the same variable, taken as moves, and checking at the termination of the GoI interaction
between the two strategies. We prove that such a criterion of unification is equivalent to the
standard one. It can be viewed as a local, bottom-up definition of unification w.r.t. the more
top-down approach used in ordinary unification algorithms. But more importantly, this can
be viewed, dually, as a step in Girard’s GoI programme, namely as the GoI-interpretation of
the unification algorithm.

The proof requires generalizing earlier work to arbitrary algebraic constructors and
allowing for multiple occurrences of the same variable. In particular, we show that two terms
σ and τ unify if and only if

R(σ) ⊆̂ R(τ) ;̂ (R(σ) ;̂ R(τ))∗ and R(τ) ⊆̂ R(σ) ;̂ (R(τ) ;̂ R(σ))∗

where R(σ) denotes the set of pairs of paths leading to the same variable, i.e. occurrences of
the same variable, in the term σ, ⊆̂ denotes “inclusion up to substitution”, and ;̂ denotes
“composition up to substitution”.

Since we view terms as strategies, in the form of irreflexive binary relations on variable
occurrences, it is easier for expository purposes to discuss first the case of terms with no
constants and no hapax variables, i.e. variables which occur only once. Moreover, since
variables merely play the role of placeholders within a term, it is easier to discuss first the case
where the terms to be unified do not share variables. Later we remove all these restrictions,
by showing that the case of general terms can be reduced to the initial restricted one.

Summing up, unification can be carried out either in a traditional top down fashion,
taking the view of terms, as in e.g. [20], or bottom up taking the view of variable occurrences.
We will call the former simply unification, while we will call the latter GoI-unification.

Related work. The use of unification and resolution to build or explain GoI models has
a long history. J.-Y. Girard, in [14], first pointed out the close connection between GoI
and resolution. A number of authors pursued this investigation, e.g. [8], and most notably
M.Bagnol in his thesis [7], and subsequent papers on the more recent line of investigation
of “Transcendental syntax”, which has been introduced by Girard (see [16]) and further
investigated in B.Eng’s thesis [12]. While in these works unification and resolution are used
to build GoI models, in the present paper the point of view is different. Namely, here the
goal is to do the converse, i.e. to provide a new perspective on unification through a GoI-like
mechanism.

Finally, we mention the line of research in Geometry of Interaction which has been
probably the most active and fruitful in the last one or two decades, i.e. that of GoI based
abstract machines (see e.g. [4, 6, 5]), which have been studied in particular in connection to
time and space efficiency of the computational model of λ-calculus.

Summary. The paper is organized as follows. In Section 2 we introduce preliminary
definitions. In Section 3 we discuss standard unification. In Section 4 we give the main
definition of when two terms GoI-unify, and state the main results for terms with no constants
and no hapax variables, and under the assumption that the terms to unify do not share
variables. In Section 5 we give examples. In Section 6 we outline the proofs of the main
results. In Section 7 we discuss the extension of GoI-unification to general terms. Final
remarks and possible directions for future work appear in Section 8.

F. Honsell, M. Lenisa, and I. Scagnetto 26:3

2 Preliminaries

Throughout the paper we assume the following definitions.

▶ Definition 1 (Terms and Variable Occurrences).
(i) Terms TΣ are given by a signature Σ =

⋃n
i=0 Σi, where n > 0, and Σi are sets of

i-ary constructors f j
i , for j = 1, . . . , |Σi|. Terms are trees whose leaves are variables

α, β, . . . ∈ TVar , and nodes are operations in Σ, i.e.

(TΣ ∋) σ, τ ::= α | β | . . . | f j
i (σ1, . . . , σi).

(ii) Let T −
Σ be the subset of terms in TΣ with no 0-ary constructors and no hapax variables,

i.e. variables which occur only once.
(iii) Occurrences of variables in terms, or occurrence terms, are given by the following

grammar:

(OΣ ∋) u[α] ::= α | (f j
i , k)u[α] for k ≤ i,

where
α denotes the occurrence of the variable α in the term α,
if u[α] denotes an occurrence of α in σ, then (f j

i , k)u[α] denotes the corresponding
occurrence of α in f j

i (σ1, . . . , σk−1︸ ︷︷ ︸
k−1

, σ, σk+1, . . . , σi︸ ︷︷ ︸
i−k

).

(iv) The (possibly empty) path of an occurrence u[α] is u.
(v) Let R(OΣ) denote the set of binary relations on OΣ containing only pairs of the shape

⟨u[α], v[α]⟩, for α ∈ TVar , and u, v occurrence paths.
(vi) Given a relation R, we denote by R+ the maximal irreflexive subrelation included in

the symmetric and transitive closure of R .

▶ Notation 2.
Syntactical identity of terms is denoted by ≡.
We consider terms up to injective renaming of variables and denote term equality by =.

▶ Example 3. Let f1
1 and f1

2 be a unary and a binary constructor, respectively, and
let σ = f1

2 (α, f1
1 (α)). Then σ has two occurrences of the variable α, i.e. (f1

2 , 1) α and
(f1

2 , 2)(f1
1 , 1) α, with corresponding paths u = (f1

2 , 1) and v = (f1
2 , 2)(f1

1 , 1). ⌟

Terms give rise to non-deterministic strategies for a game where moves are variable
occurrences, in the following sense:

▶ Definition 4 (From Terms to Strategies).
(i) A term τ gives rise to a set of variable occurrences (moves):

O(τ) = {u[α] | u[α] is an occurrence of α in τ}.

(ii) A term τ gives rise to a symmetric and transitive irreflexive relation on OΣ (strategy):

R(τ) = {⟨u[α], v[α]⟩ | u[α], v[α] are different occurrences of α in τ}.

(iii) Two different variable occurrences u[α], v[β] are compatible if u = w(f j
i , k)u′ and

v = w(f j
i , h)v′, for some paths w, u′, v′, and indexes i, j, k ̸= h.

▶ Example 5. Let f1
1 and f1

2 be a unary and a binary constructor, respectively. Then
the variable occurrences (f1

2 , 1)(f1
2 , 1)(f1

1 , 1) α and (f1
2 , 1)(f1

2 , 2) β are compatible, while the
occurrences (f1

2 , 1)(f1
2 , 1)(f1

1 , 1) α and (f1
2 , 1)(f1

2 , 1) β are not. ⌟

FSTTCS 2024

26:4 Two Views on Unification: Terms as Strategies

For a given term τ , it is immediate that all variable occurrences in O(τ) are pairwise
compatible. Vice versa, the compatibility condition permits us to build a term from a set of
pairwise compatible variable occurrences, by tagging some nodes of the term tree with fresh
variables, if needed.

▶ Proposition 6.
(i) Given a set S of pairwise compatible variable occurrences, we can build the tree of a

term, by tagging possible missing leaves with fresh variables in Z = {ζ1, . . . , ζi, . . .}, i.e.

TZ (S) =

ζ if S = ∅, ζ ∈ Z fresh
α if S = {α}
fj

i
(TZ ({u[α] | (fj

i
, 1)u[α] ∈ S}), . . . , TZ ({u[α] | (fj

i
, i)u[α] ∈ S})) if ∀v[α] ∈ S ∃k, v′s.t.

v = (fj
i

, k)v′

(ii) Let σ be a term with no 0-ary constructors. Then we have TZ(O(σ)) = σ.

Proof. By induction on the structure of terms. The compatibility condition ensures that at
any step all occurrence paths start with the same constructor f j

i . ◀

Notice that, in Proposition 6(ii) above we consider terms without constants. In principle,
one could extend this result to the whole set of terms, by suitably generalizing Definition 4
and introducing a notion of constant occurrence. However, we prefer to follow a different
approach, which allows for a simpler theory: we first introduce and study the notion of
GoI-unification for terms without constants, and then, in Section 7, we show how the general
case can be dealt with via a simple encoding into the restricted case.

3 The Top-down Perspective on Unification

First we fix notations for standard notions.

▶ Definition 7 (Terms Unifiers). Let σ and τ be terms.
(i) A substitution is a function U : TΣ → TΣ defined inductively on the structure of terms

from a variable substitution UVar : TV ar → TΣ, i.e.
U(α) = UVar(α)
U(f j

i (σ1, . . . , σi)) = f j
i (U(σ1), . . . , U(σi)).

(ii) A unifier for σ and τ is a substitution U which differs from the identity on a finite
number of variables and such that U(σ) = U(τ). We call domain of U , dom(U), the
finite set of variables on which U is not the identity.

(iii) Given two substitutions, U and V , the composition U ; V is defined as usual, i.e. U ; V =
V ◦ U .

(iv) Given two substitutions, U and V , we define U ≤ V if there exists a substitution U ′

such that U ; U ′ = V , i.e. U is more general than V .
(v) Given terms σ, τ , a most general unifier (m.g.u.) of σ, τ is a unifier U of σ and τ such

that, for any unifier U of σ and τ , U ≤ U .

We introduce now a unification algorithm à la Martelli Montanari, [20], which unifies
simultaneously sets of pairs of terms.

▶ Definition 8 (Martelli-Montanari’s Algorithm). Let E be a set of pairs of the form ⟨σ, τ⟩, for
σ, τ ∈ TΣ. The unification algorithm is defined by the following rules for deriving judgements
of the form U(E):

F. Honsell, M. Lenisa, and I. Scagnetto 26:5

(i) U({⟨f j
i (σ1, . . . , σi), f j

i (τ1, . . . , τi)⟩} ∪ E) → U({⟨σ1, τ1⟩, . . . , ⟨σi, τi⟩} ∪ E)
(ii) U({⟨α, α⟩} ∪ E) → U(E)
(iii) U({⟨f j

i (σ1, . . . , σi), α⟩} ∪ E) → U({⟨α, f j
i (σ1, . . . , σi)} ∪ E)

(iv) U({⟨α, σ⟩} ∪ E) → U({⟨α, σ⟩} ∪ E[σ/α]), if α ̸∈σ ∧ α∈V ar(E)
(v) U({⟨α, σ⟩} ∪ E) → fail, if α ∈ σ ∧ α ̸= σ

(vi) U({⟨f j
i (σ1, . . . , σi), f l

k(τ1, . . . , τk)⟩} ∪ E → fail, if i ̸= k or j ̸= l

The algorithm in Definition 8 is non-deterministic. Moreover, notice that rule (iii) is not
symmetric and that rule (iv) produces a set of pairs of terms to be unified, where there is
only one occurrence of the variable α left.

In particular, termination of the algorithm is guaranteed by the fact that, by applying
any of the rules, the complexity of the set of pairs E decreases, according to the following
measure:

▶ Definition 9. Let E be a set of pairs of the form ⟨σ, τ⟩. We define a complexity measure
of E by m(E) = (mt, mv), where

mt is the sum of the complexities of terms in the lefthand parts of the pairs,
mv is the number of variables appearing in E, except variables α’s for which there is only
one pair ⟨α, σ⟩ such that α /∈ σ and α /∈ E \ {⟨α, σ⟩} .

Then, the following lemma is straightforward.

▶ Lemma 10. Given terms σ, τ ∈ TΣ, Martelli-Montanari’s Algorithm terminates either
with failure or with a set of pairs yielding a substitution.

The following proposition is well-known.

▶ Proposition 11 (Most General Unifier). Let σ, τ ∈ TΣ. The terms σ and τ unify if and
only if Martelli-Montanari’s algorithm on {⟨σ, τ⟩} terminates with a substitution E. Then
{α 7→ ρα | ⟨α, ρα⟩ ∈ E} is a m.g.u. of σ and τ , which is unique up to appropriate injective
renaming of variables.

4 GoI-unification: the Bottom-up Perspective of Paths

In this section we provide a GoI account of unification. Namely, as done in [19], we utilize
the machinery underlying process interaction in game semantics to explain the dynamics of
unification. In this perspective, terms are viewed as non-deterministic strategies over the
language of moves consisting of variable occurrences (see Definition 4). The proofs of the
results in this section appear in Section 6. More specifically, we provide a GoI account of
unification for a restricted class of terms, i.e. terms with no constants and no hapax variables.
Moreover, we assume that the two terms to unify do not share variables. In Section 7 all
these restrictions are removed, namely we show that the general case can be always reduced
to the special case discussed in the previous sections.

Now we need to introduce the notions of occ-substitution and occ-unifier:

▶ Definition 12 (Occ-unifier).
(i) An occ-substitution is a function M : OΣ → OΣ defined inductively on the structure of

variable occurrences, starting from a substitution for variables MVar : TVar → OΣ, i.e.
M(α) = MVar(α)
M((f j

i , k)u[α]) = (f j
i , k)M(u[α]).

FSTTCS 2024

26:6 Two Views on Unification: Terms as Strategies

(ii) An occ-unifier of variable occurrences u[α], v[β] is an occ-substitution M such that
M(u[α]) = M(v[β]).

Notice that occ-unifiers are actually matchings, namely two variable occurrences u[α], v[β]
unify if and only if u is a prefix of v or v is a prefix of u:

▶ Lemma 13. Let u[α], v[β] ∈ OΣ. The following are equivalent:
(i) there exists an occ-unifier of u[α] and v[β];
(ii) there exists an occurrence path w such that u = vw or v = uw.

The following definition introduces a special operation on relations on variable occurrences,
which will be used in the definition of GoI-unification, i.e. the operation of composition up to
occ-substitution, together with the notion of inclusion up to substitution:

▶ Definition 14. Let R, R′, R′′ ∈ R(OΣ) be binary relations on variable occurrences.
(i) We define R(σ) ;̂ R(τ) as composition up to occ-substitution, namely

⟨u′′[γ], v′′[γ]⟩ ∈ R(σ) ;̂ R(τ) if and only if

∃ ⟨u[α], v[α]⟩ ∈ R(σ), ⟨u′[β], v′[β]⟩ ∈ R(τ) and
∃M occ-unifier of v[α], u′[β] s.t. (M(u′′[γ]) = M(u[α]) ∧ M(v′′[γ]) = M(v′[β])) .

(ii) We define the predicate inclusion up to substitution, R ⊆̂ R′, which holds if and only if
for each ⟨u[α], v[α]⟩ ∈ R there exists a pair ⟨u′[β], v′[β]⟩ ∈ R′ and an occ-substitution
M such that M(u[α]) = M(u′[β]) ∧ M(v[α]) = M(v′[β]).

One can easily check (by case analysis on the occ-substitutions) that Definition 14(i)
above determines an associative operation on R(OΣ):

▶ Lemma 15. Composition up to occ-substitution of relations is an associative operation
over R(OΣ).

The following is the crucial definition of the paper:

▶ Definition 16 (GoI-unification). Let σ, τ ∈ T −
Σ be such that V ar(σ) ∩ V ar(τ) = ∅. Then σ

and τ GoI-unify, i.e. UGoI(σ, τ), if and only if

R(σ) ⊆̂ R(τ) ;̂ (R(σ) ;̂ R(τ))∗ and R(τ) ⊆̂ R(σ) ;̂ (R(τ) ;̂ R(σ))∗ ,

where, for a relation R, R∗ denotes the relation IdOΣ ∪
⋃

n≥1 Rn, where IdOΣ denotes the
identity relation on OΣ and Rn the n-ary composition up to substitution of R.
The “flow of control” in checking the two predicates is outlined in the following diagrams

in // •
R(τ)

((•
R(σ)

hh // out in // •
R(σ)

((•
R(τ)

hh // out

Notice the similarity of the above definition with Girard’s Execution Formula, and hence
the connection with game semantics.

The following is the main result of the paper, whose proof will be given in Section 6:

▶ Theorem 17 (Equivalence). Let σ, τ ∈ T −
Σ be such that V ar(σ) ∩ V ar(τ) = ∅. Then σ

and τ unify if and only if they GoI-unify.

F. Honsell, M. Lenisa, and I. Scagnetto 26:7

τ : u1[α]
,,
u′

1[α]

��

. . . un+1[αn+1]
..
u′

n+1[αn+1]

��
σ : u[α]

OO

u2[α2] 22 . . . 22 u′
n[αn]

OO

v[α]

Figure 1 GoI-execution sequence.

The following lemma is very useful in verifying the criterion of Definition 16. It essentially
amounts to spelling out that definition, once we observe that the order in which occ-
unifications are performed in a composition chain is irrelevant. This in turn follows from
Lemma 15.

▶ Lemma 18. Let σ, τ ∈ T −
Σ be such that V ar(σ) ∩ V ar(τ) = ∅. Then σ and τ GoI-unify

(UGoI(σ, τ)) if and only if, for any ⟨u[α], v[α]⟩ ∈ R(σ),
(i) there exist a sequence of odd length ≥ 1 ⟨u1[α1], u′

1[α1]⟩, . . . , ⟨un+1[αn+1], u′
n+1[αn+1]⟩,

n ≥ 0, and
(ii) occ-substitutions M1, . . . , Mn, M⟨u[α],v[α]⟩ such that

⟨ui[αi], u′
i[αi]⟩ ∈ R(τ), for i odd;

⟨ui[αi], u′
i[αi]⟩ ∈ R(σ), for i even;

for all 1 ≤ i ≤ n, (M1; . . . ; Mi)(u′
i[αi]) = Mi(ui+1[αi+1]);

M⟨u[α],v[α]⟩(u[α]) = (M1; . . . ; Mn)(u1[α1]);
M⟨u[α],v[α]⟩(v[α]) = Mn(u′

n+1[αn+1]).
And vice versa, for any ⟨u[α], v[α]⟩ ∈ R(τ) there exists a sequence of pairs of variable
occurrences and occ-substitutions satisfying the properties above.
We call GoI-execution sequence the above sequence of pairs of variable occurrences together
with the corresponding occ-substitutions.

The GoI-execution sequence mimicking the pair ⟨u[α], v[α]⟩ ∈ R(σ) can be visualized
with a diagram as in Figure 1, where vertical arrows denote occ-unifications (which are left
implicit), while horizontal ones connect pairs in R(σ) or in R(τ).

The result in Theorem 17 is far from straightforward, since the two perspectives on
unification, namely the one implemented in the algorithm U , introduced in Definition 8, and
the one given by the flow of control in dealing with pairs in R(σ) and R(τ) in Definition 16
are conceptually different.

In Section 8, we shall briefly outline how term unifiers can be derived from GoI-execution
sequences, thereby suggesting the analogue of Proposition 11.

5 GoI-unification at Work

In this section we illustrate positive examples and failures of the unification criterion given
by Definition 16. But before doing this we need to introduce some notations.

▶ Notation 19. To ease intuition, when dealing with a single binary constructor f1
2 , terms

will be called linear types, moreover we shall use the infix operator ⊸ for f1
2 , and we shall

denote the paths (f1
2 , 1) and (f1

2 , 2) simply by l and r, respectively.

▶ Example 20. Consider the two linear types σ ≡ α ⊸ α and τ ≡ (β ⊸ β) ⊸ (β ⊸ β).
These two terms clearly unify by taking the variable substitution {α 7→ β ⊸ β}. We have
R(σ) = {⟨lα, rα⟩}+ and R(τ) = {⟨llβ, lrβ⟩, ⟨rlβ, rrβ⟩ ⟨lrβ, rlβ⟩}+. For each of the four
pairs we provide appropriate GoI-execution sequences, where the occ-substitutions have been
fully applied:

FSTTCS 2024

26:8 Two Views on Unification: Terms as Strategies

σ : lα

��

rα lα
**
rα

��

rα
**
lα

��
τ : llβ 44 rlβ

OO

llβ

OO

rlβ 33 rrβ

OO

lrβ

Figure 2 Example 20.

(i) ⟨lα, rα⟩ ⇝ llβ
τ⇔ rlβ

(ii) ⟨llβ, lrβ⟩ ⇝ llβ
σ⇔ rlβ

τ⇔ rrβ
σ⇔ lrβ

(iii) ⟨rlβ, rrβ⟩ ⇝ rlβ
σ⇔ llβ

τ⇔ lrβ
σ⇔ rrβ

(iv) ⟨lrβ, rlβ⟩ ⇝ lrβ
σ⇔ rrβ

τ⇔ llβ
σ⇔ rlβ

We compute explicitly all the substitutions M’s arising according Lemma 18 in the
case (ii), i.e. for the pair ⟨llβ, lrβ⟩. The sequence of pairs of variable occurrences are
⟨lα, rα⟩, ⟨rlβ, llβ⟩, ⟨lα, rα⟩. The substitutions are:

M1 : α 7→ rβ, which is used to match rα in the second component of the first pair and
rlβ in the first component of the second pair;
M2 : α 7→ lβ, which matches the second component of the second pair (after the
substitution with M1), and the first component of the third pair;
finally we have M⟨llβ,lrβ⟩ = I d.

In Figure 2, the left-hand diagram represents the GoI sequence for the pair ⟨lα, rα⟩, while
the right-hand diagram represents the GoI sequence for the pair ⟨llβ, lrβ⟩. In the diagrams
of Figure 2, vertical arrows denote occ-unifications (which are left implicit), while horizontal
ones connect pairs in R(σ) or in R(τ). In the present cases, the GoI-execution sequences
can be directly read in the bottom lines of the two diagrams. ⌟

▶ Example 21. Consider the terms σ ≡ f(α, α, α) and τ ≡ f(β, g(γ, γ), β),
where f is a ternary constructor and g is binary. We have that
R(σ) = {⟨(f, 1)α, (f, 2)α⟩, ⟨(f, 1)α, (f, 3)α⟩, ⟨(f, 2)α, (f, 3)α⟩}+, while R(τ) =
{⟨(f, 1)β, (f, 3)β⟩, ⟨(f, 2)(g, 1)γ, (f, 2)(g, 2)γ⟩}+. These two terms clearly unify by
taking the variable substitution {α 7→ g(γ, γ), β 7→ g(γ, γ)}. We provide appropriate
GoI-execution sequences for some of the pairs in the R()’s, the other pairs are dealt with
symmetrically:
⟨(f, 1)α, (f, 3)α⟩ ⇝ (f, 1)β τ⇔ (f, 3)β ⟨(f, 1)β, (f, 3)β⟩ ⇝ (f, 1)α σ⇔ (f, 3)α

⟨(f, 1)α, (f, 2)α⟩ ⇝ (f, 1)(g, 1)γ τ⇔ (f, 3)(g, 1)γ σ⇔ (f, 2)(g, 1)γ τ⇔ (f, 2)(g, 2)γ σ⇔
(f, 1)(g, 2)γ τ⇔ (f, 3)(g, 2)γ σ⇔ (f, 2)(g, 2)γ τ⇔ (f, 2)(g, 1)γ

⟨(f, 2)(g, 1)γ, (f, 2)(g, 2)γ⟩ ⇝ (f, 2)(g, 1)γ σ⇔ (f, 3)(g, 1)γ τ⇔ (f, 1)(g, 1)γ σ⇔ (f, 2)(g, 1)γ τ⇔
(f, 2)(g, 2)γ σ⇔ (f, 3)(g, 2)γ τ⇔ (f, 1)(g, 2)γ σ⇔ (f, 2)(g, 2)γ. ⌟

▶ Example 22. Consider the two linear types σ ≡ α ⊸ α and τ ≡ γ ⊸ ((β ⊸ β) ⊸
γ). Apparently the two terms do not unify. We have R(σ) = {⟨lα, rα⟩}+ and R(τ) =
{⟨lγ, rrrγ⟩, ⟨rllβ, rlrβ⟩}+. In order to achieve an instance of the pair ⟨rllβ, rlrβ⟩ from a
GoI-execution sequence both the first and last term must start with an r and be the first
and second component respectively of pairs in R(σ). We show that there cannot be any
GoI-sequence where both the first and the last terms start with an r. We proceed by
contradiction. Assume that such a sequence exists and consider the shortest one. The other
components of such pairs must then be occurrence terms starting with an l. These in turn
unify with occurrence terms coming from pairs in R(τ), so their other component must
start with an r. Hence the GoI-execution sequence we started from was not the shortest.
Contradiction. ⌟

F. Honsell, M. Lenisa, and I. Scagnetto 26:9

▶ Example 23. Consider the two linear types σ ≡ (α ⊸ α) → α and τ ≡ (α ⊸ α)⊸ α,
where we two binary constructors⊸ and → appear, and whose occurrence components are de-
noted respectively by l, r and L, R. We have that R(σ) = {⟨Llα, Lrα⟩, ⟨Llα, Rα⟩, ⟨lrα, rα⟩}+

while R(τ) = {⟨llα, rlα⟩, ⟨llα, rα⟩, ⟨lrα, rα⟩}+. One can readily check that no GoI execution
sequence can simulate ⟨Llα, Lrα⟩. ⌟

6 Proof of the Main Theorem

For simplicity we shall sketch the proof only for a single binary constructor (_ → _), which
we write in infix form. We need some new notation and a number of invariance lemmata,
whose proofs are essentially straightforward from the definitions.

▶ Notation 24. Let σ be a term where all the variables occur exactly twice. When we
want to highlight one or more pairs of occurrences of some of the variables, we write
σ[(αi, αi)] or σ[(α1, α1), . . . , (αn, αn)]. Moreover we write σ[(τ1, ρ1)] when we denote the
term obtained from σ by replacing the first occurrence of the variable α, which should be
clear form the context, in σ with τ1 and the second occurrence of α in σ with ρ1, and we
write σ[(τ1, ρ1), . . . (τn, ρn))] to denote the term obtained from σ by substituting the variables
α1, . . . , αn. Notice that some pairs in (τ1, ρ1), . . . (τn, ρn) could be equal.

▶ Lemma 25. Let σ, τ be terms which do not share variables, and let α be a fresh variable.
Then

UGoI(σ, τ) ⇐⇒ UGoI(σ → τ, α → α) .

The Lemma above holds trivially, if σ and τ do not share variables. Otherwise, the
righthand side can be taken as the definition of UGoI(σ, τ) when the two terms share variables
(see Section 7.2 below).

▶ Lemma 26. Let σ be a term where all variables occur exactly twice, and let
σ[(τ1, ρ1), . . . , (τn, ρn)] be such that Var(σ[(τ1, ρ1), . . . , (τn, ρn)]) ∩ Var(σ) = ∅. If τi ≡
τi1 → τi2 and ρi ≡ ρi1 → ρi2, for some i ∈ {1, . . . , n}, then

UGoI(σ[(τ1, ρ1), . . . , (τi, ρi), . . . , (τn, ρn)], σ)
⇔ UGoI(σ′[(τ1, ρ1), . . . , (τi1, ρi1), (τi2, ρi2), . . . , (τn, ρn)], σ′)

where σ′[(αi1, αi1), (αi2, αi2)] ≡ σ[(αi1 → αi2, αi1 → αi2)], for αi1, αi2 fresh variables.

Notice that the application of Lemma 26 only modifies the second term of the pair, i.e.
σ, but in a way to preserve the property that its variables occur exactly twice. The proof
is again straightforward, since execution sequences on the left hand side are immediately
reflected on the right hand side, and vice versa.

▶ Example 27. Let σ ≡ α → α, τ ≡ δ → (β → β) → δ, and ρ ≡ γ → γ → γ, where →
associates to the right, as usual. Then σ[(τ, ρ)] ≡ (δ → (β → β) → δ) → (γ → γ → γ). We
have:

τ ≡ τ1 → τ2, where τ1 ≡ δ and τ2 ≡ (β → β) → δ ,

ρ ≡ ρ1 → ρ2, where ρ1 ≡ γ and ρ2 ≡ (γ → γ) .

FSTTCS 2024

26:10 Two Views on Unification: Terms as Strategies

Applying Lemma 26, we get

UGoI(σ[(τ, ρ)], σ) ⇐⇒ UGoI(σ′[(τ1, ρ1), (τ2, ρ2)], σ′) ,

where σ′ ≡ (α1 → α2) → (α1 → α2).
Now both τ2 and ρ2 are arrow types, and so we can apply Lemma 26 again, getting:

UGoI(σ′[(τ1, ρ1), (τ2, ρ2)], σ′) ⇐⇒ UGoI(σ′′[(τ1, ρ1), (τ21, ρ21), (τ22, ρ22)], σ′′) ,

where
σ′′ ≡ (α1 → (α21 → α22)) → (α1 → (α21 → α22))
τ21 ≡ β → β and ρ21 ≡ γ

τ22 ≡ δ and ρ22 ≡ γ .
Notice that the pairs (τ1, ρ1) and (τ22, ρ22) coincide.
At this point Lemma 26 is not applicable anymore. ⌟

▶ Lemma 28. Let σ be a term where all variables occur exactly twice, and let
σ[(τ1, ρ1), . . . , (ξ, ρi), . . . ,

(τn, ρn)] be such that ξ is a variable, and Var(σ[(τ1, ρ1), . . . , (ξ, ρi), . . . , (τn, ρn)])∩Var(σ) = ∅.
Then,

if ξ ∈ V ar(ρi) and ξ ̸≡ ρi, then σ[(τ1, ρ1), . . . , (ξ, ρi), . . . , (τn, ρn)] and σ are not GoI-
unifiable;
if ξ ̸∈ V ar(ρi),

UGoI(σ[(τ1, ρ1), . . . , (ξ, ρi), . . . , (τn, ρn)], σ) ⇐⇒
UGoI(σ[(τ1, ρ1), . . . , (ξ, ρi), . . . , (τn, ρn)][ρi/ξi], σ) .

And vice versa, i.e. the statement holds for σ[(τ1, ρ1), . . . , (τi, ξ), . . . , (τn, ρn)], where the
variable ξ appears as second element in a pair.

The only not immediate part of the proof of the above lemma concerns the case where
ξ ∈ V ar(ρi) and ξ ̸≡ ρi. For simplicity, we just consider the case where σ ≡ α → α. The
argument generalizes quite easily. If UGoI(ξ → ρi, α → α), there exists a GoI-execution
sequence which simulates the occurrence pair ⟨l[ξ], ru[ξ]⟩. But whatever substitution which
is mediated by ⟨l[α], r[α]⟩, it will always produce occ-subsitutions of the same length in both
occurrences, thereby preventing any GoI-execution sequence from reproducing the asymmetry
in the original pair through an occ-substitution.

▶ Example 29. Continuing from Example 27, we can now apply Lemma 28 above to the
last two terms σ′′[(τ1, ρ1), (τ21, ρ21), (τ22, ρ22)] and σ′′, by considering the first pair (τ1, ρ1),
and taking, e.g., ξ ≡ δ. Then we get:

UGoI(σ′′[(τ1, ρ1), (τ21, ρ21), (τ22, ρ22)], σ′′) ⇐⇒
UGoI(σ′′[(τ1, ρ1), (τ21, ρ21), (τ22, ρ22)][γ/δ], σ′′)

where the latter becomes

UGoI((γ → (β → β) → γ) → (γ → γ → γ), (α1 → (α21 → α22)) → (α1 → (α21 → α22)) .

Then, applying again Lemma 28 to the pair (τ21, ρ21), i.e. (β → β, γ), and performing the
corresponding substitution, we finally get

UGoI(((β → β) → (β → β) → (β → β)) → ((β → β) → (β → β) → (β → β)),
(α1 → (α21 → α22)) → (α1 → (α21 → α22)) .

F. Honsell, M. Lenisa, and I. Scagnetto 26:11

Notice that at this point Lemma 26 above becomes again applicable, since the above coincides
with

UGoI(σ′′[((β → β), (β → β)), ((β → β), (β → β)), ((β → β), (β → β))], σ′′) ,

where σ′′ ≡ (α1 → (α21 → α22)) → (α1 → (α21 → α22)). ⌟

Clearly the above Lemmata 25, 26, 28 hold also for U . Hence we can state:

▶ Lemma 30. Lemmata 25, 26, and 28 hold by replacing UGoI by U .

Finally, we have:

▶ Lemma 31. Let σ be a term where all its n variables occur exactly twice. Then

UGoI(σ[(β1, β1), . . . , (βn, βn)], σ) ⇐⇒ U(σ[(β1, β1), . . . , (βn, βn)], σ)

where all the βi’s are fresh, but some of them can be equal.

Now we are ready to prove the main Theorem 17. Namely, we can proceed as follows.

6.1 GoI-unification =⇒ Unification
Assume σ, τ do not share common variables and UGoI(σ, τ). Then, by Lemma 25, UGoI(σ →
τ, α → α), for α fresh variable. Now we repeatedly apply Lemmata 26 or 28 in the (⇒)-
direction, until neither is applicable anymore. This procedure is guaranteed to terminate,
because the complexity of the pair of terms to GoI-unify decreases at each step, according to
the following definition of complexity measure:

▶ Definition 32. Let σ be a term where all its n variables occur exactly twice, and let
σ[(τ1, ρ1), . . . , (τn, ρn)] be such that Var(σ[(τ1, ρ1), . . . , (τn, ρn)]) ∩ Var(σ) = ∅. We define
the complexity of the pair of terms (σ[(τ1, ρ1), . . . , (τn, ρn)], σ) as the pair (mt, mv), where

mt is the sum of the complexities of the terms τ1, . . . , τn, ρ1, . . . , ρn,
mv is the number of variables appearing in (τ1, ρ1), . . . , (τn, ρn).

Now notice that the application of Lemmata 26 and 28 in the (⇒)-direction decreases
the complexity of the pair of terms.
Hence, by repeatedly applying these lemmata, we reach a pair of the shape
(σ[(β1, β1), . . . , (βn, βn)], σ), where σ has n variables and all the βi’s are fresh (some
of them can possibly coincide). Therefore Lemma 31 applies, and we finally get
U(σ[(β1, β1), . . . , (βn, βn)], σ). At this point Lemmata 26 and 28 can be applied to U in the
reverse direction, until we reach U(σ → τ, α → α) (with α fresh), which in turn is equivalent
to U(σ, τ). This completes the proof.

6.2 Unification ⇒ GoI-unification
In order to show the converse, just observe that Lemmata 25, 26, 28 hold also for Martelli-
Montanari’s unification algorithm U , and apply the steps above, exchanging the role of UGoI

with U , starting from U(σ, τ).

7 Generalizations

Here we show how to remove all the restrictions on terms that we have considered up to now.
This is achieved by providing suitable embeddings of terms including constants or/and hapax
variables into the set of terms T −

Σ , and by showing how the case of terms with common
variables can be reduced to the case of terms which do not share variables.

FSTTCS 2024

26:12 Two Views on Unification: Terms as Strategies

7.1 Constants and Hapax Variables
Terms with constants can be easily embedded in the set of terms without constants and
hapax variables, in such a way that the unification problem does not change. Namely, for
any 0-ary constructor f i

0, we introduce a fresh binary constructor f ik
2 and a fresh variable αi,

and we substitute f i
0 by f ik

2 (αi, αi).
Once constants have been eliminated via the simple encoding above, we can address the

issue of variables which occur only once, i.e. hapax variables. In order to extend Definition 16
to include terms with hapax variables, we can simply give the following definition.

▶ Definition 33. Let σ, τ be terms, possibly including hapax variables. Then σ and τ GoI-
unify if there exists a substitution U such that U(σ) and U(τ) do not contain hapax variables
and are GoI-unifiable.

The above definition, however, is highly non-effective. To achieve effectiveness we can go
in the opposite direction and embed the two terms in larger terms with no hapax variables
as follows:

▶ Definition 34 (GoI-unification with hapax variables). Let σ[α1, . . . , αn], τ [β1, . . . , βm] ∈ TΣ
be terms where α1, . . . , αn and β1, . . . , βm are the hapax variables in σ and τ respectively.
Pick a fresh 1 + 2n + 2m constructor, say fk

1+2n+2m, then σ and τ GoI-unify if the terms

fk
1+2n+2m(σ[α1, . . . , αn], α1, . . . , αn, α1, . . . , αn, β1, . . . , βm, β1, . . . , βm)

and

fk
1+2n+2m(τ [β1, . . . , βm], α1, . . . , αn, α1, . . . , αn, β1, . . . , βm, β1, . . . , βm)

GoI-unify.

The intuition behind the above definition is immediate. We have to duplicate variables in
both terms because the set of hapax variables are disjoint and possibly of different cardinality.
Of course we can give more involved definitions which reduce the number of extra occurrence
pairs to consider, but we do not pursue this issue further. Using Definition 34 we can give
the appropriate extensions of Theorem 17, and its consequences, also for terms with hapax
variables.

7.2 Unifying Terms with Common Variables
Up to here we have assumed that terms to unify do not share common variables. The reason
for this is that, given a term σ, the binary relation R(σ) does not keep track of the name of
the variable, which basically plays the role of the place holder for the tail-end of the path.
For instance, applying directly Definition 16 to R((α⊸ α)⊸ α⊸ α) and R(α⊸ α) would
yield success. But clearly the two terms (α⊸ α)⊸ α⊸ α and α⊸ α do not unify, if the
name of the variable in the two terms has to be taken seriously. Now, we show how we can
remove the assumption that the terms to unify do not share variables. We have essentially
already solved the problem in Section 6. Namely, if we want to GoI-unify σ and τ , which
have variables in common, then we can GoI-unify the new terms fk

2 (σ, τ) and fk
2 (α, α), where

α is fresh, and fk
2 is a new binary constructor. Hence we give the following definition:

▶ Definition 35. Let σ, τ ∈ TΣ, let α be a fresh variable, and let fk
2 be a new binary

constructor. Then σ and τ GoI-unify if and only if fk
2 (σ, τ) and fk

2 (α, α) GoI-unify.

F. Honsell, M. Lenisa, and I. Scagnetto 26:13

8 Conclusion and Final Remarks

In this paper we provide an alternative criterion for checking that two terms unify in
terms of Girard’s GoI. It can indeed be seen as the GoI model of unification. The new
definition amounts to carrying out successful GoI-execution sequences over the terms under
consideration. It is inspired by [19], where an explanation, in terms of resolution of principal
types, is given of the notion of linear application between purely linear λ-terms, in the line of
the game model in [1]. In a sense, this paper elaborates further on the close relation between
the two main logic-derived paradigms of computation, namely cut-elimination and resolution.

The following remarks are in order.

Recovering substitutions from occ-substitutions. Considering all possible GoI-execution
sequences, we can derive unifiers thereby providing an analogue of Proposition 11. Namely
we conjecture the following:

▶ Conjecture 36. Let σ, τ ∈ TΣ be terms, and suppose UGoI(σ, τ). Let Γ⟨u[α],v[α]⟩ denote
a successful GoI-execution sequence for a pair of variable occurrences ⟨u[α], v[α]⟩, and let
MΓ⟨u[α],v[α]⟩

⟨u[α],v[α]⟩ be the overall occ-substitution generated along Γ⟨u[α],v[α]⟩, simply denoted by
MΓ⟨u[α],v[α]⟩ in the sequel. Define the substitution

UGoI(α) =
{

T ({MΓ⟨u[α],v[α]⟩(α) | ⟨u[α], v[α]⟩ ∈ R(σ)}) if α ∈ σ

T ({MΓ⟨u[α],v[α]⟩(α) | ⟨u[α], v[α]⟩ ∈ R(τ)}) if α ∈ τ ,

then UGoI(σ) = UGoI(τ).

Moreover, we further conjecture that, if throughout the GoI-execution sequences of Lemma 18
the most general occ-substitutions are always picked, then UGoI is the m.g.u. of σ and τ .

We only provide the intuition behind the above statement. If σ and τ GoI-unify, then for
all occurrence pairs ⟨u[α], v[α]⟩ ∈ R(σ) and GoI sequences Γ⟨u[α],v[α]⟩ we have, by Lemma 18,
that there are occurrences in a substitution instance of τ which match the occurrence
MΓ⟨u[α],v[α]⟩(u[α]). For the definition in Proposition 36 to be well-defined we need to know
that the set {MΓ⟨u[α],v[α]⟩(α) | ⟨u[α], v[α]⟩ ∈ R(σ)} consists of compatible occurrences, so
that Proposition 6 can apply. This is not immediate, but is should ultimately follow from
the fact that the substitutions arise from pairs in R(τ) which in turn are compatible, using
a maximal execution path which passes through all the occurrence pairs of the variables
involved. Finally, the fact that one has chosen all possible execution sequences Γ⟨u[α],v[α]⟩ for
each occurrence pair ensures that, in applying Proposition 6, no extra new variable in Z is
necessary.

Comparison between unification and GoI-unification. GoI-unification is more a criterion
rather than an algorithm, although it permits to synthesize the unifier, when it exists, as
shown above. Usual unification requires a repeated deep substitution of terms for variables,
while GoI unification only requires pattern matching along GoI execution sequences. Moreover
not all possible GoI execution sequences need to be computed to check that unification
achieves. If we were to use Definition 16 for checking unification rather than ordinary
unification, termination would be more difficult to deal with. Termination is easily proved
for standard unification by induction on syntax, while termination of GoI-unification would
require to inspect all the possible finitely many paths along the occurrence terms, or a
maximising path which uses all possible occurrence pairs for the variables involved.

FSTTCS 2024

26:14 Two Views on Unification: Terms as Strategies

Resolution. In [18], only GoI linear application, between purely linear binary types, was
discussed in terms of resolution on terms formed using a single binary constructor, namely
⊸. Clearly the definitions in this paper can be easily extended to encompass resolution in
full generality.

Duplication. We can extend this paper by dealing also with other meta-operations on
terms besides substitution, namely replication of subterms as arise in Linear Logic. This
would amount to generalizing the language of occurrences in the line of [9, 18, 11]. Giving a
top-down account of replication is rather complex, in that a unification-duplication algorithm
needs to be defined (see [11]). On the other hand, a bottom-up approach comes naturally
following the literature on GoI, as Girard has shown, see e.g. [13, 1].

Invariants. In [1] only resolutions on copy-cat strategies, i.e. partial involutions, were
considered, which in our setting amount to terms where each variable occurs exactly twice.
On the other hand, in this paper we open up the possibility of using arbitrary terms, i.e.
non-deterministic strategies. It would be worthwhile to study the λ-models which arise using
resolution on such strategies to model β-reduction or, equivalently, the invariants of λ-terms
that such strategies can express.

References
1 Samson Abramsky. A structural approach to reversible computation. Theoretical Computer

Science, 347(3):441–464, 2005. doi:10.1016/j.tcs.2005.07.002.
2 Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. Geometry of Interaction and linear

combinatory algebras. Mathematical Structures in Computer Science, 12(5):625–665, 2002.
doi:10.1017/S0960129502003730.

3 Samson Abramsky and Marina Lenisa. Linear realizability and full completeness for typed
lambda-calculi. Annals of Pure and Applied Logic, 134(2):122–168, 2005. doi:10.1016/j.
apal.2004.08.003.

4 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The Machinery of Interaction. In
Proceedings of the 22nd International Symposium on Principles and Practice of Declarative
Programming, PPDP ’20, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3414080.3414108.

5 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. Multi types and reasonable space.
Proc. ACM Program. Lang., 6(ICFP), August 2022. doi:10.1145/3547650.

6 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. Reasonable Space for the λ-
Calculus, Logarithmically. In Proceedings of the 37th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’22, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3531130.3533362.

7 Marc Bagnol. On the Resolution Semiring. Theses, Aix-Marseille Universite, December 2014.
URL: https://theses.hal.science/tel-01215334.

8 Patrick Baillot and Marco Pedicini. Elementary complexity and geometry of interaction. Fun-
damenta Informaticae, 45(1-2):1–31, 2001. URL: http://content.iospress.com/articles/
fundamenta-informaticae/fi45-1-2-02.

9 Alberto Ciaffaglione, Pietro Di Gianantonio, Furio Honsell, Marina Lenisa, Ivan Scagnetto,
et al. λ!-calculus, Intersection Types, and Involutions. In Leibniz International Proceedings in
Informatics, LIPIcs, volume 131. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl
Publishing, 2019.

10 Alberto Ciaffaglione, Furio Honsell, Marina Lenisa, Ivan Scagnetto, et al. The involutions-as-
principal types/application-as-unification analogy. EPiC Series in Computing, 57:254–270,
2018. doi:10.29007/NTWG.

https://doi.org/10.1016/j.tcs.2005.07.002
https://doi.org/10.1017/S0960129502003730
https://doi.org/10.1016/j.apal.2004.08.003
https://doi.org/10.1016/j.apal.2004.08.003
https://doi.org/10.1145/3414080.3414108
https://doi.org/10.1145/3547650
https://doi.org/10.1145/3531130.3533362
https://theses.hal.science/tel-01215334
http://content.iospress.com/articles/fundamenta-informaticae/fi45-1-2-02
http://content.iospress.com/articles/fundamenta-informaticae/fi45-1-2-02
https://doi.org/10.29007/NTWG

F. Honsell, M. Lenisa, and I. Scagnetto 26:15

11 Pietro Di Gianantonio and Marina Lenisa. Principal Types as Lambda Nets. In Henning Basold,
Jesper Cockx, and Silvia Ghilezan, editors, 27th International Conference on Types for Proofs
and Programs (TYPES 2021), volume 239 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 5:1–5:23, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.TYPES.2021.5.

12 Boris Eng. An exegesis of transcendental syntax. Theses, Université Sorbonne Paris Nord,
June 2023. URL: https://hal.science/tel-04179276.

13 Jean-Yves Girard. Geometry of Interaction 1: Interpretation of System F. In R. Ferro,
C. Bonotto, S. Valentini, and A. Zanardo, editors, Logic Colloquium ’88, volume 127 of
Studies in Logic and the Foundations of Mathematics, pages 221–260. Elsevier, 1989. doi:
10.1016/S0049-237X(08)70271-4.

14 Jean-Yves Girard. Geometry of interaction 2: Deadlock-free algorithms. In Per Martin-Löf
and Grigori Mints, editors, COLOG-88, pages 76–93, Berlin, Heidelberg, 1990. Springer Berlin
Heidelberg.

15 Jean-Yves Girard. Geometry of Interaction III: accommodating the additives. London
Mathematical Society Lecture Note Series, pages 329–389, 1995.

16 Jean-Yves Girard. Transcendental syntax I: deterministic case. Mathematical Structures in
Computer Science, 27(5):827–849, 2017. doi:10.1017/S0960129515000407.

17 Furio Honsell. Talk delivered at IFIP W.G. 2.2 Bologna Meeting, 2023.
18 Furio Honsell, Marina Lenisa, and Ivan Scagnetto. Λ-Symsym: An Interactive Tool for

Playing with Involutions and Types. In Ugo de’Liguoro, Stefano Berardi, and Thorsten
Altenkirch, editors, 26th International Conference on Types for Proofs and Programs (TYPES
2020), volume 188 of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–
7:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.TYPES.2020.7.

19 Furio Honsell, Marina Lenisa, and Ivan Scagnetto. Principal Types as Partial Involutions,
2024. doi:10.48550/arXiv.2402.07230.

20 Alberto Martelli and Ugo Montanari. An Efficient Unification Algorithm. ACM Trans.
Program. Lang. Syst., 4(2):258–282, April 1982. doi:10.1145/357162.357169.

FSTTCS 2024

https://doi.org/10.4230/LIPIcs.TYPES.2021.5
https://hal.science/tel-04179276
https://doi.org/10.1016/S0049-237X(08)70271-4
https://doi.org/10.1016/S0049-237X(08)70271-4
https://doi.org/10.1017/S0960129515000407
https://doi.org/10.4230/LIPIcs.TYPES.2020.7
https://doi.org/10.4230/LIPIcs.TYPES.2020.7
https://doi.org/10.48550/arXiv.2402.07230
https://doi.org/10.1145/357162.357169

On Approximation Schemes for Stabbing
Rectilinear Polygons
Arindam Khan #

Indian Institute of Science, Bengaluru, India

Aditya Subramanian #

Indian Institute of Science, Bengaluru, India

Tobias Widmann #

Technical University of Munich, Germany

Andreas Wiese #

Technical University of Munich, Germany

Abstract

We study the problem of stabbing rectilinear polygons, where we are given n rectilinear polygons in
the plane that we want to stab, i.e., we want to select horizontal line segments such that for each
given rectilinear polygon there is a line segment that intersects two opposite (parallel) edges of it.
Our goal is to find a set of line segments of minimum total length such that all polygons are stabbed.
For the special case of rectangles, there is an O(1)-approximation algorithm and the problem is
NP-hard [Chan, van Dijk, Fleszar, Spoerhase, and Wolff, 2018]. Also, the problem admits a QPTAS
[Eisenbrand, Gallato, Svensson, and Venzin, 2021] and even a PTAS [Khan, Subramanian, and
Wiese, 2022]. However, the approximability for the setting of more general polygons, e.g., L-shapes
or T-shapes, is completely open.

In this paper, we give conditions under which the problem admits a (1 + ε)-approximation
algorithm. We assume that each input polygon is composed of rectangles that are placed on top of
each other. We show that if all input polygons satisfy the hourglass condition, then the problem
admits a quasi-polynomial time approximation scheme. In particular, it is thus unlikely that this
case is APX-hard. Furthermore, we show that there exists a PTAS if each input polygon is composed
out of rectangles with a bounded range of widths. On the other hand, we prove that the general
case of the problem (in which the input polygons may not satisfy these conditions) is APX-hard,
already if all input polygons have only eight edges. We remark that all polygons with fewer edges
automatically satisfy the hourglass condition. For arbitrary rectilinear polygons we even show a
lower bound of Ω(log n) for the possible approximation ratio, which implies that the best possible
ratio is in Θ(log n) since the problem is a special case of Set Cover.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Approximation Algorithms, Stabbing, Rectangles, Rectilinear Polygons,
QPTAS, APX-hardness

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.27

Related Version Full Version: https://arxiv.org/abs/2402.02412 [34]

Funding Arindam Khan: Research partly supported by Pratiksha Trust Young Investigator Award,
Google India Research Award, SERB Core Research Grant (CRG/2022/001176) on “Optimization
under Intractability and Uncertainty” and Walmart Center for Tech Excellence.
Aditya Subramanian: Research was supported by the Walmart Center for Tech Excellence.

© Arindam Khan, Aditya Subramanian, Tobias Widmann, and Andreas Wiese;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 27; pp. 27:1–27:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arindamkhan@iisc.ac.in
https://orcid.org/0000-0001-7505-1687
mailto:adityasubram@iisc.ac.in
mailto:t.widmann@mailbox.org
mailto:andreas.wiese@tum.de
https://orcid.org/0000-0003-3705-016X
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.27
https://arxiv.org/abs/2402.02412
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 On Approximation Schemes for Stabbing Rectilinear Polygons

1 Introduction

The Stabbing problem is a geometric case of the well-studied Set Cover problem. We
are given a set of geometric objects in the plane. The goal is to compute a set of horizontal
line segments of minimum total length such that each given object R is stabbed, i.e., there is
a line segment ℓ for which R \ ℓ consists of two connected components. The problem was
introduced by Chan, van Dijk, Fleszar, Spoerhase, and Wolff [9] for the case where each
given object is an axis-parallel rectangle. In particular, they argued that this case models a
resource allocation problem for frequencies. In this application, the x-axis models time and
the y-axis represents a frequency spectrum. Each given rectangle represents a request for a
time window [t1, t2] and a frequency band [f1, f2] that needs to be fulfilled. Each selected
segment [t′

1, t′
2] × {f ′} corresponds to opening a communication channel f ′ during a time

interval [t′
1, t′

2] which then serves each request whose time window is contained in [t′
1, t′

2] and
for which f is a frequency in its corresponding band [f1, f2]. Also, Das, Fleszar, Kobourov,
Spoerhase, Veeramoni, and Wolff [13] showed a connection to the Generalized Minimum
Manhattan Network problem.

The first result for the case of rectangles was a polynomial time O(1)-approximation due
to Chan et al. [9]. Subsequently, Eisenbrand, Gallato, Svensson, and Venzin improved the
approximation ratio to 8 and provided a QPTAS, i.e., a (1 + ε)-approximation algorithm that
runs in quasi-polynomial time [16]. In particular, this implies that the problem is unlikely
to be APX-hard. After that, Khan, Subramanian, and Wiese presented a polynomial time
approximation scheme (PTAS) for rectangles [35].

A natural question is the Stabbing problem for geometric shapes that are more general
than rectangles. We restrict ourselves to rectilinear polygons. Rectilinear polygons can model
more general types of requests in the resource allocation problem. Depending on the resource
quality, the requested time period and preprocessing times for jobs may be different. This
can be modeled as an instance of our problem, where each job is represented by multiple
rectangular regions (each of them corresponds to a particular bandwidth interval and a time
period during which the job may be processed), and the aim is to select bandwidths and
corresponding time intervals such that each job is served. This corresponds to stabbing one of
the rectangular regions corresponding to each job. If the rectangular regions are contiguous
(which is quite common due to the locality of bandwidth requirements) they correspond to
k-shapes which motivates studying these objects.

Also, from a theoretical point of view, it is natural to ask which approximation ratios
are possible for more general geometric objects. As mentioned above, Stabbing admits
a (1 + ε)-approximation algorithm when all given objects are rectangles [35]. However, is
this also true for slightly more general polygons, e.g., that have the shape of an L or a T,
polyominoes, or even for arbitrary rectilinear polygons? If not, under which conditions on
the input objects is a (1 + ε)-approximation still possible? Also, given that Stabbing is a
special case of Set Cover, another natural question is whether it is strictly easier than this
problem.

In this paper, we investigate the questions above. We focus on a type of rectilinear
polygons that we call k-shapes. Intuitively, a k-shape is formed by k rectangles that are
stacked on top of each other such that for any two consecutive rectangles, the top edge of
the bottom rectangle is contained in the bottom edge of the top rectangle, or vice versa (see
Figures 1 and 2). We denote by k-Stabbing the setting of the Stabbing problem in which
the input consists of k-shapes.

A. Khan, A. Subramanian, T. Widmann, and A. Wiese 27:3

1.1 Our contribution

In this paper, we give conditions on k-shapes in the input, under which, the k-Stabbing prob-
lem admits a (1 + ε)-approximation algorithm in (quasi-)polynomial time, which makes it
unlikely that it is APX-hard in these cases. We provide two separate conditions for this. Also,
we prove that if the input objects may (slightly) violate these conditions, then the problem
becomes APX-hard. For arbitrary k-shapes, we prove even that the problem is as difficult as
general Set Cover, which yields a lower bound of Ω(log n) for the possible approximation
ratio.

Our first condition on the input k-shapes is the hourglass condition. It requires intuitively
that the rectangles of each k-shape in the input are stacked like an hourglass (see Figure 1 and
Definitions 1 and 3). Formally, it states that if we consider the rectangle of each k-shape of the
smallest width, then the rectangles on top of it are ordered non-decreasingly by width, and an
analogous mirrored ordering holds for the rectangles below it. For example, all L-shapes and
triominoes fulfill this condition. We prove that this setting admits a (1 + ε)-approximation
algorithm for any ε > 0 in quasi-polynomial running time, i.e., in time n(log n/ε)O(1) . In
particular, this makes it unlikely that this case is APX-hard. Our algorithm generalizes the
known QPTAS for the case of rectangles [16]. However, it is arguably simpler. For example,
it does not need an O(1)-approximation algorithm for the problem as a subroutine. Instead,
we show that the calls to this subroutine can be replaced by suitable guessing steps and by
an O(log n)-approximation algorithm for general Set Cover.

Note that when we say guess, we mean that there are only a polynomial number of
possible options to choose from. So one can iterate over all possible options and find one of
the correct options in polynomial time.

Figure 1 Examples of k-shapes satisfying the hourglass condition.

Figure 2 A 3-shape not satisfying the hourglass condition (left), and a stack of rectangles that
does not form a k-shape (right).

FSTTCS 2024

27:4 On Approximation Schemes for Stabbing Rectilinear Polygons

Our algorithm is based on a hierarchical decomposition of the plane into smaller and
smaller rectangular regions. Intuitively, given such a region R, we guess all line segments
that are relatively long compared to the width of R. Then, we partition R into smaller
rectangular regions inside which we will select only shorter line segments. It can happen that
a k-shape K contained in R is composed of at least one wide rectangle (of similar width as
the guessed long line segments) and of at least one narrow rectangle (see Figure 3). If the
guessed long line segments do not stab K, then it is clear that K needs to be stabbed by a
short line segment (that we select in one of the subproblems that we recurse into). Such line
segments can stab only the narrow rectangles of K. Therefore, in this case we remove the
wide rectangle from K and hence make K smaller. The hourglass condition ensures that
after this removal, the remainder of K still consists of only one connected component. We
crucially need this property in order to ensure that the subproblems of R we recurse into
form independent subproblems. This would not be the case if the remainder of K consisted
of two connected components such that each of them lies in a different subproblem.

K

Figure 3 The guessed (red) long segments do not stab K, so it has to be stabbed by a shorter
(blue) segment in a future step.

While the hourglass condition is crucial for our algorithm above, it could be that it is
not needed in an alternative algorithmic approach that computes a (1 + ε)-approximation
for, e.g., general k-shapes. However, we prove that this is not the case. We show that our
problem is APX-hard, already if the input consists only of 3-shapes that do not satisfy the
hourglass condition. On the other hand, note that each 2-shape automatically satisfies the
hourglass condition by definition.

In our proof of this APX-hardness result, we construct 3-shapes that are composed out
of three rectangles whose widths differ a lot. We prove that the latter is necessary in order
to prove that our problem is APX-hard. To this end, we show that it admits a polynomial
time (1 + ε)-approximation algorithm for any constant k ∈ N and ε > 0 if each k-shape is
composed out of rectangles whose widths are in a constant range. This yields our second
condition under which our problem admits a (1 + ε)-approximation. In fact, our result can
handle some other classes of polygons which may not even be k-shapes, including polyominoes
with O(1) number of cells such as trominoes, tetrominoes (shapes that appear in the game
Tetris), pentominoes, etc. Our algorithm is a generalization of the PTAS for rectangles [35].
One crucial insight is that if the widths of the rectangles of each input k-shape differ by at
most a constant factor of 1/δ, then we can reduce our problem to the setting of rectangles
by losing only a factor of O(k/δ). To do this, we simply replace each k-shape K by the

A. Khan, A. Subramanian, T. Widmann, and A. Wiese 27:5

smallest rectangle that contains K. We use this insight in one step of our algorithm where
we need an O(1)-approximation algorithm as a black box. More precisely, we again partition
the input plane hierarchically into smaller and smaller rectangular regions. In the process,
we repeatedly need to compute constant factor approximations for certain sets of k-shapes
that intuitively admit a solution whose cost is at most O(kδεOPT); for those, we use the
mentioned algorithm. We stab all other k-shapes with segments whose total cost is at most
(1 + ε)OPT, which yields a PTAS.

We round up our results by showing that for general k-shapes and, more generally, even
arbitrary rectilinear polygons that are composed of k rectangles each, Stabbing admits a
polynomial time O(k)-approximation algorithm. A natural question is whether the depend-
ence on k (and the input size) in the approximation ratio can be avoided and there is, e.g.,
also an O(1)-approximation. We show that this is not the case: for arbitrary k, we prove
that k-Stabbing is as difficult as arbitrary instances of Set Cover, which yields a lower
bound of Ω(log n) for our approximation ratio.

1.2 Other related work

As mentioned above, the Stabbing problem is a special case of Set Cover which is
NP-hard [23] and which does not admit a (c · ln n)-approximation algorithm for Set Cover
for any c < 1, assuming that P ̸= NP [15] (see also [18]). On the other hand, a simple
polynomial time greedy algorithm [12] achieves an approximation ratio of O(log n).

Das, Fleszar, Kobourov, Spoerhase, Veeramoni, and Wolff [13] studied approximation
algorithms for the Generalized Minimum Manhattan Network (GMMN) problem,
where given a set of n pairs of terminal vertices, the goal is to find a minimum-length
rectilinear network such that each pair is connected by a Manhattan path. The currently best
known approximation ratio for this problem is (4 + ε) log n, due to Khan, Subramanian, and
Wiese [35] by using their PTAS for Stabbing as a subroutine in a variant of the algorithm
of Das et al. [13].

Gaur, Ibaraki, and Krishnamurti [24] studied the problem of stabbing rectangles by a
minimum number of axis-aligned lines and obtained an LP-based 2-approximation algorithm.
Kovaleva and Spieksma [37] studied a weighted generalization of this problem and gave an
O(1)-approximation algorithm.

Geometric set cover is a related geometric special case of general Set Cover, where
the given sets are geometric objects. Brönnimann and Goodrich [5] first gave an O(d log(d ·
OPT))-approximation algorithm for unweighted geometric set cover where d is the dual VC
dimension of the set system and OPT is the value of the optimal solution. Aronov, Ezra,
and Sharir [3] utilized ε-nets to design an O(log log OPT)-approximation algorithm for the
hitting set problem involving axis-parallel rectangles. Varadarajan [46] provided an improved
approximation algorithm for weighted geometric set cover for fat triangles or disks, and his
techniques were extended by Chan, Grant, Könemann, and Sharpe [7] to any set system
with low shallow cell complexity. Subsequently, Chan and Grant [6], and Mustafa, Raman,
and Ray [42] have settled the APX-hardness statuses of (almost) all natural variants for this
problem. Recently, these problems are studied under online and dynamic setting as well
[2, 8, 31].

Maximum Independent Set of Rectangles is another related problem. The problem admits
a QPTAS [1], and recently a breakthrough O(1)-approximation algorithm was given by
Mitchell [41]. Subsequently, a (2 + ε)-approximation guarantee [21] was achieved.

FSTTCS 2024

27:6 On Approximation Schemes for Stabbing Rectilinear Polygons

Rectangle packing and covering problems such as two-dimensional knapsack [19, 28,
32], two-dimensional bin packing [4, 33], strip packing [27, 30] etc. are well-studied in
computational geometry and approximation algorithms. We refer the readers to [11] for a
survey on the approximation/online algorithms related to rectangles.

Rectilinear polygons appear naturally in the context of circuit design [38], architectural
design [44], geometric information systems [10], computer graphics [45], etc. In computational
geometry, often problems (for general polygons) are studied in the rectilinear setting, e.g.,
the art gallery problem [47], rectilinear convex hull [43], and rectilinear steiner tree [22].
Specially, L-shape polygons are encountered in many geometric problems as they are the
simplest nonconvex rectilinear polygons. These L-shapes appear in geometric packing [20, 32],
folding [14], VLSI layouts [39], lithography [48], etc. Polyominoes [26, 40] are special type of
rectilinear polygons that are formed by joining one or more equal squares edge to edge. They
are well-studied in the context of tiling [25], percolation theory and statistical physics [29],
polymer chemistry [17], etc. They also appear in many puzzles and board games, including
Tetris, Blokus, Rampart, Cathedral, etc.

1.3 Organization of this paper
First, in Section 2 we introduce some basic definitions and notation. Then, in Section 3 we
present our QPTAS for k-shapes satisfying the hourglass condition, and in Section 4 we
present our PTAS for k-shapes whose rectangles have a bounded ratio of widths. Finally, in
Section 5 we present our hardness results.

2 Preliminaries

We start with some basic definitions and notations. We represent a given axis-aligned
rectangle Ri as the Cartesian product of two given closed and bounded intervals, i.e.,
Ri = [xℓ

i , xr
i] × [yb

i , yt
i] for given coordinates xℓ

i , xr
i , yb

i , yt
i ∈ N, where xℓ

i ≤ xr
i and yb

i ≤ yt
i .

The following notation will be useful: we define
b(Ri) := [xℓ

i , xr
i] × {yb

i } as the bottom edge of Ri,
t(Ri) := [xℓ

i , xr
i] × {yt

i} as the top edge of Ri, and
w(Ri) := (xr

i − xℓ
i) as the width of Ri.

A horizontal line segment s ⊂ R2 is a Cartesian product s = [xℓ, xr] × {y} with coordinates
xℓ, xr, y ∈ N and xℓ ≤ xr. We say that s stabs the rectangle Ri if and only if Ri ∩ s =
[xℓ

i , xr
i] × {y}. Also, we define |s| := xr − xℓ to be the length or the cost of s. We will study

the Stabbing problem in the setting where each given object is a k-shape.
▶ Definition 1 (k-shape). Let k ∈ N. A k-shape K is the union of a sequence of at most
k axis-aligned rectangles (R1, R2, . . . , Rk) such that t(Ri) ⊆ b(Ri+1) or t(Ri) ⊇ b(Ri+1) for
each i ∈ {1, . . . , k − 1}.

We say that a k-shape K = R1 ∪ · · · ∪ Rk is stabbed by a line segment s, if there exists an
index i ∈ {1, . . . , k} such that the rectangle Ri is stabbed by s. This leads to the following
formal definition of the Stabbing problem for k-shapes.
▶ Definition 2. Let k ∈ N. An instance of the k-Stabbing problem is a finite set of k-shapes
K, where the objective is to find a set S of horizontal line segments of minimum total length,
such that every k-shape in K is stabbed by a segment in S.

In the following section, we shall use the term OPT interchangeably to refer to the optimal
solution to the problem, and also to represent its cost, i.e., the total length of segments in
the set. Similarly, SOL will be used to represent a solution set and also its cost.

A. Khan, A. Subramanian, T. Widmann, and A. Wiese 27:7

3 Quasi-polynomial-time approximation scheme

In this section, we present our QPTAS for k-Stabbing. The algorithm is an extension of
the QPTAS for Stabbing [16] to the more general case of k-shapes; also, we simplify some
of its steps.

Let ε > 0 and suppose we are given a set of k-shapes K. In this section, we assume that
each given k-shape K ∈ K satisfies the hourglass condition (see Figure 1).

▶ Definition 3. A k-shape K = (R1, R2, . . . , Rk) satisfies the hourglass condition if there is
no value i ∈ {2, . . . , k − 1} such that both w(Ri−1) < w(Ri) and w(Ri+1) < w(Ri).

For each given k-shape K, we define wmax(K) := maxi∈{1,...,k} w(Ri) and simil-
arly wmin(K) := mini∈{1,...,k} w(Ri) which are the widths of the widest and most nar-
row parts of K, respectively. For sets of k-shapes K′ ⊆ K, we define accordingly
wmax(K′) := maxK∈K′ wmax(K), wmin(K′) := minK∈K′ wmin(K). Moreover, we define
wrange(K′) := min{w | ∃x∀K ∈ K′ : K ⊆ [x, x + w] × R} as the width of the most narrow
strip that contains all k-shapes in K′. Further, we note here that there are n given k-shapes
and each is described by at most 2k distinct points. Therefore, the solution to the instance
has only

(2kn
2

)
combinatorially distinct candidate segments, which is a polynomial in n (we

shall use the notation that the number of candidate segments is poly(n)).

▶ Lemma 4. By losing a factor of 1 + ε in our approximation ratio, we assume that
ε
n < wmin(K) ≤ wmax(K) ≤ log n and wrange(K) ≤ n log n.

Let µ := ε/ log2 n. We partition the plane into relatively wide vertical strips of width
wmax(K)/µ each. We do this such that, intuitively, almost all input shapes are contained in
one of our strips, and the remaining shapes, which are intersected by the vertical grid lines,
can be stabbed very cheaply. To construct this partition, we define vertical grid lines with a
spacing of wmax(K)/µ and give them a random horizontal shift (see Figure 4). Then, each
shape in K intersects one of these grid lines only with very small probability. Therefore, we
can show that there exists a specific way to perform the shift of our grid lines such that all
input shapes intersecting our grid lines can be stabbed with line segments whose cost is at
most µ · OPT.

𝑧 + 1 ⋅ 𝑤/𝜇 𝑧 + 2 ⋅ 𝑤/𝜇 𝑧 + 3 ⋅ 𝑤/𝜇𝑧0
Figure 4 Partitioning the instance into narrow strips.

Formally, we invoke the following lemma with our choice for µ defined above. It guesses
a set of line segments that yield our desired partition into narrow strips, i.e., it produces
a polynomial number of candidate sets such that one of them has the claimed property.
Algorithmically, we recurse on each of these polynomially many options and at the end
output the returned solution with the smallest total cost.

FSTTCS 2024

27:8 On Approximation Schemes for Stabbing Rectilinear Polygons

▶ Lemma 5 (Partitioning into narrow strips). Let µ > 0 such that µ/n < wmin(K). In
polynomial time, we can guess a partition of K into sets K0, . . . , Kt and one special set Krest
such that

(i) OPT ≥
∑t

ℓ=1 OPT(Kℓ),
(ii) OPT(Krest) ≤ 8µ · OPT, and
(iii) wrange(Ki) ≤ wmax(K)/µ for each i ∈ {1, . . . , t}.

We compute an O(log n)-approximate solution for stabbing Krest by reducing our problem
to an instance of Set Cover (see full version [34] for details). By our choice of µ, the
resulting cost is at most O(log n · µ · OPT) = O(OPT · ε/ log n). Hence, this step is simpler
than the corresponding step in the previous QPTAS for Stabbing [16]. In that result, an
O(1)-approximation algorithm for Stabbing was needed, while we can simply call an arbitrary
standard O(log n)-approximation algorithm for Set Cover, e.g., the straight-forward greedy
algorithm.

Now let Ki be one of the sets of k-shapes due to Lemma 5. We define Si := [a, b] × R for
some values a, b ∈ R with b − a ≤ wmax(K)/µ such that each k-shape in Ki is contained in Si.
We want to partition Si along horizontal lines into rectangular pieces such that each resulting
piece contains line segments from OPT(Ki) of total cost at most O(wmax(K)/µ2). To this
end, we guess whether the segments in OPT(Ki) have a total cost of at most wmax(K)/µ2. If
this is not the case, we guess a line segment s = [a, b] × {h} for some value h ∈ N according
to the following lemma, which intuitively partitions Si in a balanced way according to the
segments in OPT(Ki). We call such a segment s a balanced horizontal cut. Also, here our
algorithm is simpler than the earlier QPTAS for Stabbing [16]. In the latter algorithm, an
O(1)-approximate algorithm for the problem was used to find the “correct” horizontal cuts
algorithmically. Instead, we show that it is sufficient to simply guess them.

▶ Lemma 6. If OPT(Ki) > wmax(K)/µ2 then in polynomial time we can guess a value h ∈ N
and a corresponding line segment s = [a, b] × {h} such that each connected component C of
Si \ s contains segments from OPT(Ki) whose total cost is at least OPT(Ki)/2 − wmax(K)/µ.

Proof. Since we use only horizontal segments to stab k-shapes, w.l.o.g. (by stretching along
the y direction) we can assume that the at most 2kn points describing the instance occupy
consecutive integral y-coordinates, starting at y = 0. Note that such a stretching step along
the y direction will not affect the length of the horizontal segments used to stab the k-shapes.

Consider the segments from OPT(Ki). Starting from y = 0 and going up, we can start
counting the cumulative cost of segments in OPT. Let h be the y-coordinate at which this
cumulative cost crosses OPT(Ki)/2, and s = [a, b]×{h} be the corresponding segment. Since
the width of Si is at most wmax(K)/µ, no segment in OPT(Ki) is wider than wmax(K)/µ.
From this we can infer that the cost of segments from OPT(Ki), below (and similarly, above)
the segment s should have been at least OPT(Ki)/2 − wmax(K)/µ.

Since there are only a polynomial (i.e., 2kn) number of possible y-coordinates, we can
guess this value h in polynomial time by enumeration. ◀

We add s to our solution and recurse on each connected component C of Si \ s separately.
The resulting subproblem is to stab all input shapes that are contained in C. Observe that s

stabs all k-shapes contained in Si that intersect both connected components of Si \s. Given C,
we guess again whether OPT(C), i.e., the optimal solution for all k-shapes contained in C,
has a total cost of at most wmax(K)/µ2, and if not, we guess a corresponding horizontal line
segment. Note that we stop after at most O(log n) recursion levels if all guesses are correct,

A. Khan, A. Subramanian, T. Widmann, and A. Wiese 27:9

since OPT(Si) ≤ OPT ≤ n log n due to our preprocessing in Lemma 4. We enforce that in
any case we stop after O(log n) recursion levels in order to guarantee a quasi-polynomial
bound on the running time later.

▶ Lemma 7. If all guesses for the balanced horizontal cuts are correct, then their total cost
is bounded by 3µ · OPT(Ki).

Proof. After our sequence of (correctly guessed) balanced horizontal cuts, let us assume that
there are t connected components, with cost at least wmax(Ki)/2µ2 − wmax(K)/µ. This can
happen only if there were t − 1 such cuts applied. If we charge the cost of every cut s to the
cost of segments of OPT(Ki) within a cell C, we get

|s|
OPT(C) = wmax(K)/µ

wmax(K)/2µ2 − wmax(K)/µ
= 2µ

1 − 2µ
≤ 3µ.

Where the last inequality follows under the assumption of µ ≤ ε < 1/3. Summing over all
such horizontal cuts, we get the total cost to be at most 3µ · wmax(Ki). ◀

At the end, each resulting subproblem is characterized by a rectangle C of width at most
wmax(K)/µ and for which OPT(C) ≤ wmax(K)/µ2. We guess all line segments in OPT(C)
whose width is larger than εwmax(K). Since OPT(C) ≤ wmax(K)/µ2 there can be at most
1/εµ2 = ε−3 log4 n of them, and for each of them there are only poly(n) options. Hence, we
can guess them in time nO(ε−3 log4 n). Let SC denote the guessed segments.

Our next step crucially differs from the known (Q)PTASs for stabbing rectangles [16, 35].
In particular, it is not necessary when all input objects are rectangles. Inside C, there might
be a k-shape K that is not stabbed by any segment in SC but for which one of its rectangles
Ri satisfies that w(Ri) > εwmax(K). Since we have guessed all segments in C of width larger
than εwmax(K) and did not yet stab K, we know that the optimal solution does not stab K

by stabbing Ri (but by stabbing another rectangle that K is composed of). Therefore, we
modify K by removing Ri from K. We do this for each rectangle Ri with w(Ri) > εwmax(K)
that is part of a k-shape K that is contained in C but not yet stabbed. Denote by K′(C) the
resulting set of k-shapes. Importantly, the hourglass property implies that still each k-shape
has only one single connected component. This is the reason why we imposed this property.

Observe that for each K ∈ K′(C) we have that wmax(K) ≤ ε · wmax(K). Thus, we made
progress in the sense that the maximum width of any k-shape reduces by a factor of ε. Also,
if all our guesses are correct, then our total cost is small, i.e., O(µ · OPT). Also, the number
of guesses is quasi-polynomially bounded since for each guess there are only nO(ε−3 log4 n)

many options and our recursion depth is only O(log n).

▶ Lemma 8. If all our guesses are correct, then the total cost for the selected line segments due
to Lemma 5 and Lemma 7 is bounded by O(µ ·OPT). Also, the total number of (combinations
of) guesses is bounded by nO(ε−3 log4 n).

We continue recursively with each resulting subproblem. Since initially ε
n < wmin(K) ≤

wmax(K) ≤ log n, we stop after applying the algorithm above for O(log(n/ε)) levels. Each level
incurs in total at most nO(ε−3 log4 n) guesses, which yields a total running time of nO(ε−4 log5 n).
Also, our approximation ratio can easily be bounded by (1 + µ)O(log n) = 1 + O(ε).

▶ Theorem 9. There is a QPTAS for the k-Stabbing problem, if all input k-shapes satisfy
the hourglass condition.

FSTTCS 2024

27:10 On Approximation Schemes for Stabbing Rectilinear Polygons

4 PTAS if pieces have bounded ratio of widths

In this section, we improve our QPTAS from Section 3 to a PTAS in the special case when k

is a constant and when for each given k-shape, for any two of its rectangles Ri, Rj , it holds
that δw(Rj) ≤ w(Ri) ≤ w(Rj)/δ for a given constant δ > 0. Our algorithm generalizes the
known PTAS for the case when all input objects are rectangles [35].

Let α be a constant for which the problem admits a polynomial time α-approximation
algorithm. We show in the full version [34] that such an algorithm exists. Without loss of
generality, we assume that α, (1/ε) ∈ N, and we say that an x-coordinate x ∈ R is discrete if
x is an integral multiple of εd, where we define d ∈ N such that ε3/n < εd ≤ ε2/n; note that
hence d is unique. Similarly, a y-coordinate is called discrete if it is integral. A point is called
discrete if its x- and y-coordinates are discrete, and similarly a segment or a rectangle is said
to be discrete if both of its end points, or both of its diagonally opposite corners are discrete.

▶ Lemma 10. Let α be a constant for which k-Stabbing admits an α-approximate algorithm
and let ε > 0 with ε < 1/3. In polynomial time we can compute a new instance of k-Stabbing,
in which each K ∈ K satisfies,

(i) αε
n < wmin(K) ≤ wmax(K) ≤ α,

(ii) all points defining K are discrete,
(iii) K lies within a bounding box of [0, αn] × [0, (k + 1)n],

and this new instance admits a solution of cost at most (1 + O(ε)) · OPT with each segment
in the solution being discrete, and having length at most α/ε.

First, we apply Lemma 10 in order to preprocess our instance. In our algorithm, we intuitively
embed the recursion of our QPTAS in Section 3 into a polynomial time dynamic program,
such that we can afford to forget most of the balanced horizontal cuts from the higher levels,
and only need to remember a constant number of the corresponding line segments. The idea
is to construct a DP-table that contains one cell for each possible subproblem of a recursive
call. Formally, we introduce one DP cell DP(R, S) for each combination of

a closed rectangle R ⊆ [0, αn] × [0, (k + 1)n] with discrete coordinates,
a set S of at most ε−3 discrete horizontal line segments, that all intersect R.

This DP cell encodes the subproblem of stabbing all input k-shapes that are contained in R

and that are not already stabbed by the segments in S. Clearly, the DP cell DP([0, αn] ×
[0, (k + 1)n], ∅) corresponds to our given problem.

Given a DP cell DP(R, S), we compute its solution as follows. The base case occurs when
the line segments in S already stab all k-shapes that are contained in R. Then we define
DP(R, S) := ∅. Another easy case occurs when there is a line segment ℓ ∈ S that stabs the
interior of R, i.e., R \ ℓ has two connected components R1 and R2. Assume that S1 and
S2 are parts of the line segments from S that intersect R1 and R2, respectively. Then we
define DP(R, S) := DP(R1, S1) ∪ DP(R2, S2) ∪ {ℓ}. We will refer to this later as the trivial
operation.

Otherwise, we compute a polynomial number of candidate solutions as follows,
1. Add operation. For each set S ′ of discrete segments contained in R for which |S| + |S ′| ≤

3ε−3 holds, we generate the candidate solution S ′ ∪ DP(R, S ∪ S ′).
2. Line operation. Consider each vertical line ℓ that intersects the interior of R. Let Kℓ

denote the set of k-shapes contained in R that intersect with ℓ. For each K ∈ Kℓ we
construct the smallest axis-parallel rectangle that contains K, let Rℓ denote the resulting
set of rectangles. We apply the PTAS for stabbing rectangles [35] to Rℓ, let Sℓ denote
the computed set of segments. We will show later that the optimal solution for Rℓ is by

A. Khan, A. Subramanian, T. Widmann, and A. Wiese 27:11

at most a factor O(k/δ) more expensive that the optimal solution for Kℓ, and that this
approximation ratio is good enough for our purposes in this step. Denote by R1 and R2 the
connected components of R\ℓ and by S1 and S2 the parts of segments from S that intersect
R1 and R2, respectively. We define the candidate solution Sℓ ∪ DP(R1, S1) ∪ DP(R2, S2).

We store in DP(R, S) the candidate solution with the smallest cost. Finally, we output the
solution stored in the cell DP([0, αn] × [0, 2kn], ∅).

Analysis
We first note that all DP subproblems and operations are defined on discrete coordinates,
and since there are only a polynomial αn

εd × 2kn ≤ 2αkε−3n3 number of discrete points, the
running time of the dynamic program is also polynomial.

▶ Lemma 11. The running time of the above dynamic program is (kn/ε)O(1/ε3).

Our proof for bounding our approximation factor is similar to the analysis of the PTAS
for rectangles [35] and our QPTAS in Section 3. We describe here its main structure and
highlight the key differences.

The solution computed by our DP corresponds to performing a sequence of trivial, add,
and line operations, and recursing on the respective subproblems. It is sufficient to argue
that there exists a sequence of these operations such that

there exists a DP cell for each arising subproblem; in particular, the number of line
segments in each subproblem is bounded by 3ε−3, and
the total cost of the computed solution is bounded by (1 + O(ε))OPT.

We now describe this sequence. It is based on a hierarchical grid of vertices lines, shifted
by a random offset r ∈ {0, εd, 2εd, . . . , αε−2} that we will fix later. For each level j ∈ N0, we
define a grid line {r + t · αεj−2} × R for each t ∈ Z. Note that for all j ≤ d + 2, grid lines
of level j have discrete x-coordinates. We say that a line segment ℓ ∈ OPT is of level j if
the length of ℓ is in (αεj , αεj−1]. We say that a line segment of some level j is well-aligned
if its left and right endpoint lies on a grid line of level j + 3, and if the y-coordinate of
both endpoints is discrete. We can extend each line segment ℓ ∈ OPT so that it becomes
well-aligned, by increasing its length by at most a factor of 1 + O(ε).

α α/4 α/16

Figure 5 For ε = 1/4, the figure shows vertical grid lines of level j = 2, 3, 4 (solid, dashed and
dotted lines respectively). Horizontal segments of level j = 0, 1 (red and blue respectively) are shown
where the solid segments are well-aligned, and the dashed ones are not.

▶ Lemma 12. For any value of our offset, by losing a factor of 1+O(ε) in our approximation
ratio, we can assume that each line segment ℓ ∈ OPT is well-aligned.

FSTTCS 2024

27:12 On Approximation Schemes for Stabbing Rectilinear Polygons

Note that each horizontal segment ℓ ∈ OPT satisfies that αε/n < |ℓ| ≤ αε−1. By our
choice of d we have εd−1 ≤ ε/n < εd−2 which implies αεd−1 < |ℓ| ≤ αε−1. Since a segment is
of level j if its length is in the range (αεj , αεj−1], we can conclude that all segments in OPT
belong to levels in the range {0, . . . , d − 1}. From this we can infer that any well-aligned
horizontal segment is aligned to a vertical grid line of level at most d + 2, which as we noted
earlier has discrete x-coordinates.

In our sequence of operations, we first perform one line operation for each (vertical) grid
line of level j = 0. This is similar to partitioning the instance into narrow strips as we did it
in Lemma 5. However, now each strip has a width of αε−2 instead of wmax(K)/µ. In our
following operations, we add horizontal line segments to partition each vertical strip, similar
to Section 3. Formally, we sort the segments from OPT of level j = 0 in increasing order of
their y-coordinates, and pick every (ε−3)-th segment, and do an add operation along the
(strip wide) line along it. This leads to a trivial operation immediately after that. Finally,
we perform add operations for all line segments of level j = 0 in OPT. We call the above
operations to be operations of level 0.

With the above operations for level j = 0 done, in increasing order of level j = 1, 2, . . .

we do operations of level j similarly as follows:
line operations on vertical grid lines of level j,
any valid trivial operations (this step is not done for level 0),
add, and trivial operations to divide the vertical strips into smaller subproblems,
and finally the add operations on the segments from OPT of level j,

mimicking the recursive structure from the analysis of the QPTAS.

▶ Lemma 13. The above sequence of operations always leads to valid DP subproblems.

We wish to bound the cost of the above operations. Suppose that we perform a line
operation with a vertical line ℓ and let Kℓ denote the k-shapes that ℓ intersects. Recall that
for each line operation, we compute a solution that stabs all k-shapes in Kℓ (and in fact
every rectangle in Rℓ). Note that any horizontal line segment ℓ′ ∈ OPT of some level j′ ≥ j

stabs a k-shape in Kℓ only if the distance between ℓ and ℓ′ is at most αεj−1. Another key
insight is that since the ratio between the widest and the narrowest part of any K ∈ Kℓ

is 1/δ, the solution we compute is also an O(k/δ + ε)-approximate solution. Using the
above facts, we claim that if we choose our offset r uniformly at random from the range
{0, εd, 2ε2d, . . . , αε−2}, then the overall cost of these line operations is only O(ε) · OPT.
Further to bound the cost of the add operations, we note that each add operation is either
done on a segment in OPT, or is an operation that created a subproblem. We will show
that we can charge the latter operations to segments from OPT inside the subproblem thus
created, whose total cost is at least ε−1 times the width of the subproblem. We refer to the
full version [34] for a formal description of our analysis.

▶ Lemma 14. There is a discrete value for the offset r ∈ {0, εd, 2εd, . . . , ε−2} such that the
described sequence of operations produces a solution of cost at most (1 + O(ε))OPT.

▶ Theorem 15. For each constant k ∈ N there is a PTAS for the k-Stabbing problem when
each given k-shape consists of pieces of a constant range of widths.

▶ Remark 16. In the proof of our result above, we used that the widths of the rectangles of
each input k-shape are in a bounded range. Strictly speaking, we used only that the width
“spanned” by each input k-shape is at most a constant factor larger than the width of the
narrowest rectangle of the k-shape. Hence, the result will also hold for other polygons, like
polyominoes with O(1) number of cells, that are not k-shapes but that do satisfy the latter
property.

A. Khan, A. Subramanian, T. Widmann, and A. Wiese 27:13

5 General case

In this section, we study the general case of stabbing rectilinear polygons. Please refer to the
full version [34] for the missing proofs, and details of the results in this section.

5.1 APX-hardness
In contrast to the cases studied in Sections 3 and 4, we show that the general case of the
stabbing problem does not admit a (1 + ε)-approximation algorithm, even for only slightly
more general types of instances. Formally, we prove that stabbing is APX-hard, already if
each input polygon is a 3-shape.

▶ Theorem 17. The stabbing problem for 3-shapes is APX-hard.

On the other hand, any 2-shape satisfies the hourglass property; hence, stabbing is
unlikely to be APX-hard for this class of objects since we have a QPTAS for this case.

▶ Proposition 18. Each 2-shape satisfies the hourglass property.

In the remainder of this subsection, we prove Theorem 17. We give an L-reduction from
the vertex cover problem to 3-Stabbing. Note that it is NP-hard to approximate vertex
cover with a strictly better approximation factor than

√
2 [36]. We will obtain the same

lower bound for stabbing.
Consider a given instance G = (V, E) of vertex cover. Remember that in vertex cover,

we are required to select a subset S ⊆ V of smallest size such that for each e ∈ E one of its
end points is in S. We construct an instance of k-Stabbing corresponding to G as follows.
Assume that V = {v1, . . . , vn}. For each vi ∈ V construct a 1 × 1 square si, such that they
are all arranged in a column separated by 1 unit distance each (see Figure 6). Formally, for
each vi ∈ V the top-left corner of the square si has the coordinates (0, 2i − 1). Note that the
squares s1, . . . , sn do not belong to our input shapes, but they only help us to construct the
latter. For each edge {vi, vj} ∈ E we define a 3-shape ri,j as the union of the three rectangles
si, [0, n + 1] × [2i − 1, 2j − 2] and sj (see Figure 6).

Note that none of the resulting shapes satisfies the hourglass property, and also for neither
of them the widths of its three rectangles are in a constant range. The width of the widest
rectangle of each constructed 3-shape is greater than n, but there is always a feasible solution
with cost n that simply stabs the square si for each vertex vi ∈ V . Thus, in any given
solution to the stabbing instance, we can assume w.l.o.g. that no 3-shape is stabbed across
its widest rectangle.

▶ Lemma 19. For each γ ∈ N, the given instance of vertex cover has a solution of size γ if
and only if the corresponding k-Stabbing instance has a solution of cost γ.

Proof. We first show that if there is a vertex cover of size γ then there is a solution of cost
γ to our instance of k-Stabbing. Given a solution S = {v1, v2, . . . , vγ} to the vertex cover
instance, construct a solution to the stabbing instance as follows: for each vi ∈ S, stab the
corresponding si along its top edge by a segment of length one. Clearly the cost of this set
of segments is γ. Now we notice that every k-shape ri,j corresponds to an edge e(vi, vj) in
the graph. Since this edge has been covered by one of its adjacent vertices vi ∈ S, ri,j is also
stabbed by the segment that stabs si. We know that every edge of the graph is covered by
some vertex in S, and hence every k-shape in the instance is also stabbed in the solution we
constructed.

FSTTCS 2024

27:14 On Approximation Schemes for Stabbing Rectilinear Polygons

...

s1

s2

s3

s4

sn

r1,2

r3,n

n+ 1

1

2

3

4

5

6

7

2n− 2

2n− 1

Figure 6 Construction of k-Stabbing instance in our reduction from vertex cover.

Next, we argue that a solution of cost γ to our instance of k-Stabbing yields a solution
to vertex cover of size at most γ. Consider any solution to the stabbing instance of cost
γ. We can assume that there are no segments of length greater than one in this solution,
since any segment of length at least n + 1, can be broken down into at most n segments of
length 1 stabbing the same set of k-shapes, but along their bordering squares; and segments
of length in the range (1, n + 1) can stab only one k-shape, and hence be shortened to length
one. Further, segments in any solution can also not be of length less than one, since such a
segment cannot stab any k-shape. Hence we conclude that all segments in the solution are of
length one, and by extension that they stab any k-shape along one of its bordering squares.

Now we construct a vertex cover solution by picking the vertices vi, that correspond
to any square si that has been stabbed by the given (or modified as mentioned above)
k-Stabbing solution. Note that every k-shape is stabbed by the given solution, and hence a
vertex adjacent to every edge in the vertex cover instance has been picked by us. This shows
that the selected set is in fact a valid vertex set, and is of size at most γ. ◀

This yields the proof of Theorem 17.

5.2 Set Cover hardness

We further show that k-Stabbing for arbitrary k-shapes cannot be approximated with a
ratio of o(log n), unless P = NP. In fact, we show that the problem is as hard as general
instances of Set Cover.

▶ Theorem 20. The k-Stabbing problem does not admit an o(log n)-approximation al-
gorithm, unless P = NP.

The proof of the above theorem is a generalization of the proof of Theorem 17, and its
details can be found in the full version [34].

A. Khan, A. Subramanian, T. Widmann, and A. Wiese 27:15

5.3 Approximation algorithm
We show that there is a polynomial time O(k)-approximation algorithm for k-Stabbing.
Given an instance K of k-Stabbing with n := |K|, we first show that we can restrict ourselves
to a polynomial number of line segments which we construct using the following lemma.

▶ Lemma 21. In polynomial time, we can construct a set C of line segments with the
following properties:

C contains O((kn)3) segments,
C contains no redundant segments, where a segment is redundant if it stabs exactly the
same k-shapes as another segment, or no k-shapes at all, and
K admits an optimal solution using only the segments from C.

Using C, we define a linear program that corresponds to K.

min
∑
s∈C

|s| · zs

s.t.
∑

s∈C : s stabs K

zs ≥ 1 ∀K ∈ K (1)

zs ≥ 0 ∀s ∈ C.

If each k-shape K ∈ K is a rectangle, then it was shown by Chan et al. [9] that this LP has
a constant integrality gap. We prove that for arbitrary k-shapes it has an integrality gap of
O(k), and we give a corresponding polynomial time rounding algorithm, in which we use the
result by Chan et al. [9] as a black-box.

▶ Theorem 22 ([9]). If each k-shape K ∈ K is a rectangle, then there is a constant α such
that for any solution z to LP (1), in polynomial time we can compute an integral solution
to (1) whose cost is at most α

∑
s∈F |s|żs.

Using Theorem 22, we construct now an (α · k)-approximation algorithm for arbitrary
k-shapes. Suppose we are given an optimal solution z∗ to the LP (1). We define a new
solution z̃ by setting z̃s := k · z∗

s for each segment s ∈ F . Each k-shape K ∈ K is composed
out of at most k rectangles. Thus, for each k-shape K ∈ K there is one of these rectangles R

for which
∑

s∈F : s stabs R z∗
s ≥ 1/k and, therefore,

∑
s∈F : s stabs R z̃s ≥ 1. Let R denote the

set of all these rectangles for all k-shapes in K. We apply Theorem 22 on z̃s and R which
yields a set of segments S̃ whose cost is at most α·

∑
s∈F |s|· z̃s = αk ·

∑
s∈F |s|·z∗

s ≤ αk ·OPT.
Since S̃ stabs R, it also stabs K. Hence, S̃ yields an O(k)-approximation to our problem.

▶ Theorem 23. There is a polynomial time O(k)-approximation algorithm for k-Stabbing.

We remark that our algorithm extends also to the setting in which each given shape
consists of at most k rectangles that are not necessarily connected, but such that still at
least one of them needs to be stabbed.

References
1 Anna Adamaszek, Sariel Har-Peled, and Andreas Wiese. Approximation schemes for independ-

ent set and sparse subsets of polygons. J. ACM, 66(4):29:1–29:40, 2019. doi:10.1145/3326122.
2 Pankaj K. Agarwal, Hsien-Chih Chang, Subhash Suri, Allen Xiao, and Jie Xue. Dynamic

geometric set cover and hitting set. ACM Trans. Algorithms, 18(4):40:1–40:37, 2022. doi:
10.1145/3551639.

FSTTCS 2024

https://doi.org/10.1145/3326122
https://doi.org/10.1145/3551639
https://doi.org/10.1145/3551639

27:16 On Approximation Schemes for Stabbing Rectilinear Polygons

3 Boris Aronov, Esther Ezra, and Micha Sharir. Small-size ε-nets for axis-parallel rectangles
and boxes. SIAM J. Comput., 39(7):3248–3282, 2010. doi:10.1137/090762968.

4 Nikhil Bansal and Arindam Khan. Improved approximation algorithm for two-dimensional
bin packing. In SODA, pages 13–25, 2014. doi:10.1137/1.9781611973402.2.

5 Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite VC-dimension.
Discret. Comput. Geom., 14(4):463–479, 1995. doi:10.1007/BF02570718.

6 Timothy M. Chan and Elyot Grant. Exact algorithms and APX-hardness results for geometric
packing and covering problems. Comput. Geom., 47(2):112–124, 2014. doi:10.1016/J.COMGEO.
2012.04.001.

7 Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted capacit-
ated, priority, and geometric set cover via improved quasi-uniform sampling. In SODA, pages
1576–1585, 2012. doi:10.1137/1.9781611973099.125.

8 Timothy M. Chan, Qizheng He, Subhash Suri, and Jie Xue. Dynamic geometric set cover,
revisited. In SODA, pages 3496–3528, 2022. doi:10.1137/1.9781611977073.139.

9 Timothy M. Chan, Thomas C. van Dijk, Krzysztof Fleszar, Joachim Spoerhase, and Alexander
Wolff. Stabbing rectangles by line segments - how decomposition reduces the shallow-cell
complexity. In ISAAC, pages 61:1–61:13, 2018. doi:10.4230/LIPICS.ISAAC.2018.61.

10 Kang-Tsung Chang. Introduction to geographic information systems (4. ed.). McGraw-Hill,
2008.

11 Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation
and online algorithms for multidimensional bin packing: A survey. Computer Science Review,
24:63–79, 2017. doi:10.1016/J.COSREV.2016.12.001.

12 Vasek Chvátal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4(3):233–235,
1979. doi:10.1287/MOOR.4.3.233.

13 Aparna Das, Krzysztof Fleszar, Stephen G. Kobourov, Joachim Spoerhase, Sankar Veeramoni,
and Alexander Wolff. Approximating the generalized minimum manhattan network problem.
Algorithmica, 80(4):1170–1190, 2018. doi:10.1007/S00453-017-0298-0.

14 Emily Dinan, Alice Nadeau, and Isaac Odegard. Folding concave polygons into convex
polyhedra: The L-shape. Rose-Hulman Undergraduate Mathematics Journal, 16(1):13, 2015.

15 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In STOC, pages
624–633, 2014. doi:10.1145/2591796.2591884.

16 Friedrich Eisenbrand, Martina Gallato, Ola Svensson, and Moritz Venzin. A QPTAS for
stabbing rectangles. arXiv, 2021. arXiv:2107.06571.

17 Adeel Farooq, Mustafa Habib, Abid Mahboob, Waqas Nazeer, and Shin Min Kang. Zagreb
polynomials and redefined zagreb indices of dendrimers and polyomino chains. Open Chemistry,
17(1):1374–1381, 2019. doi:10.1515/chem-2019-0144.

18 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
doi:10.1145/285055.285059.

19 Waldo Gálvez, Fabrizio Grandoni, Salvatore Ingala, Sandy Heydrich, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via L-packings. ACM Trans. Algorithms,
17(4):33:1–33:67, 2021. doi:10.1145/3473713.

20 Waldo Gálvez, Fabrizio Grandoni, Arindam Khan, Diego Ramírez-Romero, and Andreas
Wiese. Improved approximation algorithms for 2-dimensional knapsack: Packing into multiple
L-shapes, spirals, and more. In SoCG, pages 39:1–39:17, 2021. doi:10.4230/LIPICS.SOCG.
2021.39.

21 Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy Pittu, and
Andreas Wiese. A (2+ϵ)-approximation algorithm for maximum independent set of rectangles.
arXiv, 2021. arXiv:2106.00623.

22 M. R. Garey and David S. Johnson. The rectilinear steiner tree problem is NP complete.
SIAM Journal of Applied Mathematics, 32:826–834, 1977. doi:10.1137/0132071.

23 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979. doi:10.5555/574848.

https://doi.org/10.1137/090762968
https://doi.org/10.1137/1.9781611973402.2
https://doi.org/10.1007/BF02570718
https://doi.org/10.1016/J.COMGEO.2012.04.001
https://doi.org/10.1016/J.COMGEO.2012.04.001
https://doi.org/10.1137/1.9781611973099.125
https://doi.org/10.1137/1.9781611977073.139
https://doi.org/10.4230/LIPICS.ISAAC.2018.61
https://doi.org/10.1016/J.COSREV.2016.12.001
https://doi.org/10.1287/MOOR.4.3.233
https://doi.org/10.1007/S00453-017-0298-0
https://doi.org/10.1145/2591796.2591884
https://arxiv.org/abs/2107.06571
https://doi.org/10.1515/chem-2019-0144
https://doi.org/10.1145/285055.285059
https://doi.org/10.1145/3473713
https://doi.org/10.4230/LIPICS.SOCG.2021.39
https://doi.org/10.4230/LIPICS.SOCG.2021.39
https://arxiv.org/abs/2106.00623
https://doi.org/10.1137/0132071
https://doi.org/10.5555/574848

A. Khan, A. Subramanian, T. Widmann, and A. Wiese 27:17

24 Daya Ram Gaur, Toshihide Ibaraki, and Ramesh Krishnamurti. Constant ratio approximation
algorithms for the rectangle stabbing problem and the rectilinear partitioning problem. J.
Algorithms, 43(1):138–152, 2002. doi:10.1006/JAGM.2002.1221.

25 Solomon W. Golomb. Tiling with polyominoes. Journal of Combinatorial Theory, 1(2):280–296,
1966. doi:10.1016/S0021-9800(66)80033-9.

26 Solomon W. Golomb. Polyominoes: puzzles, patterns, problems, and packings, volume 111.
Princeton University Press, 1996. doi:10.2307/j.ctv10vm1sc.

27 Rolf Harren, Klaus Jansen, Lars Prädel, and Rob van Stee. A (5/3 + ϵ)-approximation for
strip packing. Comput. Geom., 47(2):248–267, 2014. doi:10.1016/J.COMGEO.2013.08.008.

28 Klaus Jansen, Arindam Khan, Marvin Lira, and K. V. N. Sreenivas. A PTAS for packing
hypercubes into a knapsack. In ICALP, pages 78:1–78:20, 2022. doi:10.4230/LIPICS.ICALP.
2022.78.

29 Iwan Jensen and Anthony J. Guttmann. Statistics of lattice animals (polyominoes) and
polygons. Journal of Physics A: Mathematical and General, 33(29):L257, 2000. doi:10.1088/
0305-4470/33/29/102.

30 Arindam Khan, Aditya Lonkar, Arnab Maiti, Amatya Sharma, and Andreas Wiese. Tight
approximation algorithms for two-dimensional guillotine strip packing. In ICALP, pages
80:1–80:20, 2022. doi:10.4230/LIPICS.ICALP.2022.80.

31 Arindam Khan, Aditya Lonkar, Saladi Rahul, Aditya Subramanian, and Andreas Wiese.
Online and dynamic algorithms for geometric set cover and hitting set. In SoCG, pages
46:1–46:17, 2023. doi:10.4230/LIPICS.SOCG.2023.46.

32 Arindam Khan, Arnab Maiti, Amatya Sharma, and Andreas Wiese. On guillotine separable
packings for the two-dimensional geometric knapsack problem. In SoCG, pages 48:1–48:17,
2021. doi:10.4230/LIPICS.SOCG.2021.48.

33 Arindam Khan and Eklavya Sharma. Tight approximation algorithms for geometric bin packing
with skewed items. Algorithmica, 85(9):2735–2778, 2023. doi:10.1007/S00453-023-01116-0.

34 Arindam Khan, Aditya Subramanian, Tobias Widmann, and Andreas Wiese. On approximation
schemes for stabbing rectilinear polygons. arXiv, 2024. doi:10.48550/arXiv.2402.02412.

35 Arindam Khan, Aditya Subramanian, and Andreas Wiese. A PTAS for the horizontal rectangle
stabbing problem. In IPCO, pages 361–374, 2022. doi:10.1007/978-3-031-06901-7_27.

36 Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in grassmann graph have
near-perfect expansion. In FOCS, pages 592–601, 2018. doi:10.1109/FOCS.2018.00062.

37 Sofia Kovaleva and Frits C. R. Spieksma. Approximation algorithms for rectangle stabbing
and interval stabbing problems. SIAM J. Discret. Math., 20(3):748–768, 2006. doi:10.1137/
S089548010444273X.

38 Jens Lienig and Juergen Scheible. Fundamentals of layout design for electronic circuits.
Springer, 2020. doi:10.1007/978-3-030-39284-0.

39 Mario Alberto López and Dinesh P. Mehta. Efficient decomposition of polygons into L-shapes
with application to VLSI layouts. ACM Trans. Design Autom. Electr. Syst., 1(3):371–395,
1996. doi:10.1145/234860.234865.

40 George Martin. Polyominoes: A guide to puzzles and problems in tiling. Cambridge University
Press, 1991. doi:10.1080/00029890.1993.11990425.

41 Joseph S. B. Mitchell. Approximating maximum independent set for rectangles in the plane.
In FOCS, pages 339–350, 2021. doi:10.1109/FOCS52979.2021.00042.

42 Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. Settling the apx-hardness status for
geometric set cover. In FOCS, pages 541–550, 2014. doi:10.1109/FOCS.2014.64.

43 Thomas Ottmann, Eljas Soisalon-Soininen, and Derick Wood. On the definition and com-
putation of rectilinear convex hulls. Information Sciences, 33(3):157–171, 1984. doi:
10.1016/0020-0255(84)90025-2.

44 Helmut Pottmann, Andreas Asperl, Michael Hofer, Axel Kilian, and Daril Bentley. Architectural
geometry, volume 724. Bentley Institute Press Exton, 2007. doi:10.1016/j.cag.2014.11.002.

FSTTCS 2024

https://doi.org/10.1006/JAGM.2002.1221
https://doi.org/10.1016/S0021-9800(66)80033-9
https://doi.org/10.2307/j.ctv10vm1sc
https://doi.org/10.1016/J.COMGEO.2013.08.008
https://doi.org/10.4230/LIPICS.ICALP.2022.78
https://doi.org/10.4230/LIPICS.ICALP.2022.78
https://doi.org/10.1088/0305-4470/33/29/102
https://doi.org/10.1088/0305-4470/33/29/102
https://doi.org/10.4230/LIPICS.ICALP.2022.80
https://doi.org/10.4230/LIPICS.SOCG.2023.46
https://doi.org/10.4230/LIPICS.SOCG.2021.48
https://doi.org/10.1007/S00453-023-01116-0
https://doi.org/10.48550/arXiv.2402.02412
https://doi.org/10.1007/978-3-031-06901-7_27
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1137/S089548010444273X
https://doi.org/10.1137/S089548010444273X
https://doi.org/10.1007/978-3-030-39284-0
https://doi.org/10.1145/234860.234865
https://doi.org/10.1080/00029890.1993.11990425
https://doi.org/10.1109/FOCS52979.2021.00042
https://doi.org/10.1109/FOCS.2014.64
https://doi.org/10.1016/0020-0255(84)90025-2
https://doi.org/10.1016/0020-0255(84)90025-2
https://doi.org/10.1016/j.cag.2014.11.002

27:18 On Approximation Schemes for Stabbing Rectilinear Polygons

45 Peter Shirley, Michael Ashikhmin, and Steve Marschner. Fundamentals of computer graphics.
AK Peters/CRC Press, 2009. doi:10.5555/1628957.

46 Kasturi R. Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In STOC,
pages 641–648, 2010. doi:10.1145/1806689.1806777.

47 Chris Worman and J. Mark Keil. Polygon decomposition and the orthogonal art gallery problem.
Int. J. Comput. Geom. Appl., 17(02):105–138, 2007. doi:10.1142/S0218195907002264.

48 Bei Yu, Jhih-Rong Gao, and David Z. Pan. L-shape based layout fracturing for e-beam
lithography. In ASP-DAC, pages 249–254, 2013. doi:10.1109/ASPDAC.2013.6509604.

https://doi.org/10.5555/1628957
https://doi.org/10.1145/1806689.1806777
https://doi.org/10.1142/S0218195907002264
https://doi.org/10.1109/ASPDAC.2013.6509604

Maximizing Phylogenetic Diversity Under
Ecological Constraints: A Parameterized
Complexity Study
Christian Komusiewicz #

Institute of Computer Science, Friedrich Schiller University Jena, Germany

Jannik Schestag #

Institute of Computer Science, Friedrich Schiller University Jena, Germany

Abstract
In the NP-hard Optimizing Phylogenetic Diversity with Dependencies (PDD) problem,
the input consists of a phylogenetic tree T over a set of taxa X, a food-web that describes the
prey-predator relationships in X, and integers k and D. The task is to find a set S of k species that
is viable in the food-web such that the subtree of T obtained by retaining only the vertices of S has
total edge weight at least D. Herein, viable means that for every predator taxon of S, the set S

contains at least one prey taxon.
We provide the first systematic analysis of PDD and its special case with star trees, s-PDD,

from a parameterized complexity perspective. For solution-size related parameters, we show that
PDD is fixed-parameter tractable (FPT) with respect to D and with respect to k plus the height
of the phylogenetic tree. Moreover, we consider structural parameterizations of the food-web. For
example, we show an FPT-algorithm for the parameter that measures the vertex deletion distance to
graphs where every connected component is a complete graph. Finally, we show that s-PDD admits
an FPT-algorithm for the treewidth of the food-web. This disproves, unless P = NP, a conjecture of
Faller et al. [Annals of Combinatorics, 2011] who conjectured that s-PDD is NP-hard even when
the food-web is a tree.

2012 ACM Subject Classification Applied computing → Computational biology; Theory of compu-
tation → Fixed parameter tractability

Keywords and phrases phylogenetic diversity, food-webs, structural parameterization, color-coding,
dynamic programming

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.28

Related Version Full Version: https://doi.org/10.48550/arXiv.2405.17314

1 Introduction

Human activity has greatly accelerated the rate at which biological species go extinct.
The conservation of biological diversity is thus one of mankind’s most urgent tasks. The
inherently limited amount of resources that one may devote to this task, however, necessitates
decisions on which conservation strategies to pursue. To support such decisions, one needs
to incorporate quantitative information on the possible impact and the success likelihood
of conservation strategies. In this context, one task is to compute an optimal conservation
strategy in light of this information.

To find a conservation strategy with the best positive impact, one would ideally aim to
maximize the functional diversity of the surviving taxa (species). However, measuring this
diversity is hard or impossible in many scenarios [18]. As a result, maximizing phylogenetic
diversity has become the standard, albeit imperfect, surrogate for maximizing functional
diversity [11, 13, 18]. Informally, phylogenetic diversity measures the evolutionary distance
of a set of taxa. In its most simple form, this measurement is based on an edge-weighted

© Christian Komusiewicz and Jannik Schestag;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 28; pp. 28:1–28:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:c.komusiewicz@uni-jena.de
https://orcid.org/0000-0003-0829-7032
mailto:j.t.schestag@uni-jena.de
https://orcid.org/0000-0001-7767-2970
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.28
https://doi.org/10.48550/arXiv.2405.17314
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Parameterized Complexity of PD with Ecological Constraints

phylogenetic tree T of the whole set of taxa X, and the phylogenetic diversity of a subset
of taxa S is the sum of the weights of the edges of the subtree of T obtained by retaining
only the taxa of S. Assuming equal protection costs for all taxa, the task is to find
a set S of at most k taxa that achieves maximal phylogenetic diversity. This problem,
called Maximize Phylogenetic Diversity [9], can be solved very efficiently by a greedy
algorithm [9, 19, 23, 27].

Computing an optimal conservation strategy becomes much more difficult, however, when
the success likelihood of a strategy is included in the model. One way to achieve this is to
add concrete survival probabilities for protected taxa, leading in its most general form to
the NP-hard Generalized Noah’s Ark Problem [12, 16]. This problem formulation,
however, still has a central drawback: It ignores that the survival of some taxa may also
depend on the survival of other taxa. This aspect was first considered by Moulton et al. [21]
in the Optimizing PD with Dependencies (PDD) problem. Here, the input additionally
contains a directed acyclic graph F with vertex set X where an arc uv is present if the
existence of taxa u provides all the necessary foundations for the existence of taxon v. In
other words, F models ecological dependencies between taxa. Now, a taxon v may survive
only if (i) it does not depend on other taxa at all, that is, it has no incoming arcs, or
(ii) at least one taxon u survives such that F contains the arc uv. The most-wide spread
interpretation of such ecological dependency networks are food-webs where the arc uv means
that taxon v feeds on taxon u.1 A subset of taxa X where every vertex fulfills (i) or (ii) is
called viable. The task in PDD is to select a viable set of k taxa that achieves a maximal
phylogenetic diversity. In this work, we study PDD from an algorithmic point of view.

Moulton et al. [21] showed that PDD can be solved by the greedy algorithm if the
objective of maximizing phylogenetic diversity agrees with the viability constraint in a precise
technical sense. Later, PDD was conjectured to be NP-hard [26]. This conjecture was
confirmed by Faller et al. [10], who showed that PDD is NP-hard even if the food-web F is
a tree. Further, Faller et al. [10] considered s-PDD, the special case where the phylogenetic
tree is restricted to be a star, and showed that s-PDD is NP-hard even for food-webs which
have a bipartite graph as underlying graph. Polynomial-time algorithms were provided for
very restricted special cases, for example for PDD when the food-web is a directed tree [10].
Finally, for food-webs with constant depth, PDD was shown to admit a constant-factor
approximation algorithm [8].

Our Contribution. As PDD is NP-hard even on very restricted instances [10], we turn to
parameterized complexity in order to overcome this intractability. In particular, we aim to
identify problem-specific parameters κ such that PDD can be solved in f(κ) · |I|O(1) time
(these are called FPT-algorithms) or to show that such algorithms are unlikely, by showing
W[1]-hardness for the parameter κ. Here, we consider the most natural parameters related
to the solution, such as the solution size k and the threshold of diversity D, and parameters
that describe the structure of the input food-web F . We formally consider the decision
problem, where we ask for the existence of a viable solution with diversity at least D, but
our algorithms actually solve the optimization problem as well.

Our most important results are the following; Table 1 gives an overview. In Theorem 3.4,
we prove that PDD is FPT when parameterized with the solution size k plus the height of
the phylogenetic tree T . This also implies that PDD is FPT with respect to D, the diversity
threshold. We also consider the dual parameter D, that is, the amount of diversity that is
lost from T and show that PDD is W[1]-hard with respect to D.

1 We remark that previous works [21, 10] consider a reversed interpretation of the arcs. We define the
order such that a source of the network also corresponds to a source of the ecosystem.

C. Komusiewicz and J. Schestag 28:3

Table 1 Parameterized complexity results for PDD and s-PDD. Here, D.t. τ stands for Distance
to τ – the number of vertices that need to be removed to obtain a graph from graph class τ .

Parameter s-PDD PDD
Budget k FPT Thm. 3.2 XP (FPT is open) Obs. 3.1
Diversity D FPT Thm. 4.1 FPT Thm. 4.1
Species-loss k W[1]-hard, XP Prop. 4.2, Obs. 3.1 W[1]-hard, XP Prop. 4.2, Obs. 3.1
Diversity-loss D W[1]-hard, XP Prop. 4.2, Obs. 3.1 W[1]-hard, XP Prop. 4.2, Obs. 3.1
D.t. Cluster FPT Thm. 5.1 NP-h for 0 Thm. 5.3
D.t. Co-Cluster FPT Thm. 5.5 FPT Thm. 5.5
Treewidth twF FPT Thm. 5.6 NP-h for twF = 1 [10]

We then consider the structure of the food-web. In particular, we consider the special
case that each connected component of the food-web F is a complete digraph. As we will
show, this case is structurally equivalent to the case that each connected component of F is
a star with one source vertex. Thus, this case describes a particularly simple dependency
structure, where taxa are either completely independent or have a common source. We
show that PDD is NP-hard in this special case while s-PDD has an FPT-algorithm when
parameterized by the vertex deletion distance to this special case. Our results thus yield
structured classes of food-webs where the complexity of s-PDD and PDD strongly differ.
Finally, we show that s-PDD is FPT with respect to the treewidth of the food-web and
therefore can be solved in polynomial time if the food-web is a tree (Theorem 5.6). Our
result disproves a conjecture of Faller et al. [10, Conjecture 4.2] that s-PDD is NP-hard even
when the food-web is a tree (unless P = NP). Again, this result shows that s-PDD can be
substantially easier than PDD on some structured classes of food-webs.

Structure of the Paper. In Section 2, we formally define Optimizing PD with Depen-
dencies, give an overview of previous results and our contribution, and prove some simple
initial results. In Section 3, we study s-PDD and PDD with respect to k, the solution size.
In Section 4, we show that PDD is FPT with respect to the desired diversity but W[1]-hard
for the acceptable loss of diversity. In Section 5, we consider parameterization by structural
parameters of the food-web. Finally, in Section 6, we discuss future research ideas. The
proofs of theorems, lemmas, and observations marked with (⋆) are deferred to a full version
of this work.

2 Preliminaries

2.1 Definitions

For a positive integer a, by [a] we denote the set {1, 2, . . . , a}, and by [a]0 the set {0} ∪ [a].
We generalize functions f : A → B, where B is a family of sets, to handle subsets A′ ⊆ A of
the domain by defining f(A′) :=

⋃
a∈A′ f(a).

For any graph G, we write V (G) and E(G), respectively, to denote the set of vertices
and edges of G. We write {u, v} for an undirected edge between u and v. For a directed
edge from u to v, we write uv or (u, v) to increase readability. For a vertex set V ′ ⊆ V (G),
we let G[V ′] := (V ′, {e ∈ E(G) | both endpoints of e are in V ′}) denote the subgraph of G

induced by V ′. Moreover, with G − V ′ := G[V \ V ′] we denote the graph obtained from G

by removing V ′ and its incident edges.

FSTTCS 2024

28:4 Parameterized Complexity of PD with Ecological Constraints

Phylogenetic Trees and Phylogenetic Diversity. A tree T = (V, E) is a directed graph
in which the root is the only vertex with an in-degree of zero, each other vertex has an
in-degree of one. The root is denoted with ρ. The leaves of a tree are the vertices which
have an out-degree of zero. We refer to the non-leaf vertices of a tree as internal vertices. A
tree is a star if the root is the only internal vertex and all other vertices are leaves. For a
given set X, a phylogenetic X-tree T = (V, E, ω) is a tree T = (V, E) with an edge-weight
function ω : E → N>0 and a bijective labeling of the leaves with elements from X where all
non-leaves in T have out-degree at least two. We write maxω to denote the biggest edge
weight in T . The set X is a set of taxa (species). Because of the bijective labeling, we
interchangeably use the words taxon and leaf. In biological applications, the set X is a set
of taxa, the internal vertices of T correspond to biological ancestors of these taxa and ω(e)
describes the phylogenetic distance between the endpoints of e, as these endpoints correspond
to distinct (possibly extinct) taxa, we may assume this distance is greater than zero.

For a directed edge uv ∈ E, we say u is the parent of v and v is a child of u. If there is a
directed path from u to v in T (including when u = v), we say that u is an ancestor of v

and v is a descendant of u. The sets of ancestors and descendants of v are denoted by anc(v)
and desc(v), respectively. The set of descendants of v which are in X are offspring off(v) of
a vertex v. For an edge e = uv ∈ E, we denote off(e) = off(v).

For a tree T = (V, E) and a vertex set V ′ ⊆ V , the spanning tree of V ′ is denoted
by T ⟨V ′⟩. The subtree of T rooted at v is T ⟨{v} ∪ off(v)⟩ and denoted by Tv, for some
vertex v ∈ V . Given a set of taxa A ⊆ X, let ET (A) denote the set of edges e ∈ E with
off(e) ∩ A ̸= ∅. The phylogenetic diversity PDT (A) of A is defined by

PDT (A) :=
∑

e∈ET (A)

ω(e). (1)

In other words, the phylogenetic diversity PDT (A) of a set A of taxa is the sum of the
weights of edges which have offspring in A.

Food-Webs. For a set of taxa X, a food-web F = (X, E) on X is a directed acyclic graph.
If xy is an edge of E then x is prey of y and y is a predator of x. The set of prey and
predators of x is denoted with N<(x) and N>(x), respectively. A taxon x with an empty set
of prey is a source and sources(F) denotes the set of sources in the food-web F . For a taxon
x ∈ X we define X≤x to be the set of taxa X which can reach x in F . Analogously, X≥x is
the set of taxa which x can reach in F .

For a given food-web F and a set Z ⊆ X of taxa, a set of taxa A ⊆ Z is Z-viable
if sources(F [A]) ⊆ sources(F [Z]). A set of taxa A ⊆ X is viable if A is X-viable. In other
words, a set A ⊆ Z is Z-viable or viable if each source in F [A] is also a source in F [Z] or
in F , respectively.

Problem Definitions and Parameterizations. Our main problem is defined as follows.

Optimizing PD with Dependencies (PDD)
Input: A phylogenetic X-tree T , a food-web F on X, and integers k and D.
Question: Is there a viable set S ⊆ X such that |S| ≤ k and PDT (S) ≥ D?

Additionally in Optimizing PD in Vertex-Weighted Food-Webs (s-PDD) we
consider the special case of PDD in which the phylogenetic X-tree T is a star. Throughout
the paper, we adopt the convention that n is the number of taxa |X| and we let m denote
the number of edges in the food-web |E(F)|. Observe that T has O(n) edges.

C. Komusiewicz and J. Schestag 28:5

For an instance I = (T , F , k, D) of PDD, we define D := PDT (X)−D =
∑

e∈E ω(e)−D.
Informally, D is the acceptable loss of diversity: If we save a set of taxa A ⊆ X with
PDT (A) ≥ D, then the total amount of diversity we lose from T is at most D. Similarly, we
define k := |X|−k. That is, k is the minimum number of species that need to become extinct.

Parameterized Complexity. Throughout this paper, we consider a number of parameteriza-
tions of PDD and s-PDD. For a detailed introduction to parameterized complexity refer to
the standard monographs [5, 7]; we only give a brief overview here.

A parameterization of a problem Π associates with each input instance I of Π the value of
a specific parameter κ. A parameterized problem Π is fixed-parameter tractable (FPT) with
respect to some parameter κ if there exists an algorithm solving every instance (I, κ) of Π in
time f(κ) · |I|O(1). A parameterized problem Π is slice-wise polynomial (XP) with respect to
some parameter κ if there exists an algorithm solving every instance (I, κ) of Π in time |I|f(κ).
Here, in both cases, f is some computable function only depending on κ. Parameterized
problems that are W[1]-hard are believed not to be FPT. We use the O∗-notation which
omits factors polynomial in the input size.

Color Coding. For an in-depth treatment of color coding, we refer the reader to [5, Chapter 5]
and [1]. Here, we give some definitions which we use throughout the paper.

For integers n and k, an (n, k)-perfect hash family H is a family of functions f : [n] → [k]
such that for every subset Z of [n] of size k, some f ∈ H exists which is injective when restricted
to Z. For any integers n, k ≥ 1 an (n, k)-perfect hash family which contains ekkO(log k) · log n

functions can be constructed in time ekkO(log k) · n log n [22, 5].

2.2 Preliminary Observations
We start with some observations and reduction rules which we use throughout the paper.

▶ Observation 2.1. Let F be a food-web. A set A ⊆ X is viable if and only if there are
edges EA ⊆ E(F) such that every connected component in the graph (A, EA) is a tree with
root in sources(F).

Proof. If A is viable, then sources(F [A]) is a subset of sources(F). It follows that for each
taxon x ∈ A, either x is a source in F or A contains a prey y of x. Conversely, if such a
graph (A, EA) exists then explicitly the sources of F [A] are a subset of sources(F). ◀

▶ Observation 2.2. Let I = (T , F , k, D) be a yes-instance of PDD. Then k > |X| or a
viable set S ⊆ X with PDT (S) ≥ D exists which has size exactly k.

Proof. Let S be a solution for I. If S has a size of k, nothing remains to be shown.
Otherwise, observe that S ∪ {x} is viable and PDT (S ∪ {x}) ≥ PDT (S) for each taxon x ∈
(N>(S) ∪ sources(F)) \ S. Because (N>(S) ∪ sources(F)) \ S is non-empty unless S = X,
we conclude that S ∪ {x} is a solution and iteratively, there is a solution of size k. ◀

▶ Observation 2.3. Let I = (T , F , k, D) be an instance of PDD. In O(|I|2) time one
can compute an equivalent instance I ′ := (T ′, F ′, k′, D′) of PDD with only one source
in F ′, k′ := k + 1 and D′ ∈ O(D).

FSTTCS 2024

28:6 Parameterized Complexity of PD with Ecological Constraints

Proof. Let I = (T , F , k, D) be an instance of PDD. Add a new taxon ⋆ to F and add edges
from ⋆ to each taxon x of sources(F) to obtain F ′. To obtain T ′, add ⋆ as a child to the root
ρ of T and set ω′(ρ⋆) = D + 1 and ω′(e) = ω(e) for each e ∈ E(T). Finally, set k′ := k + 1
and D′ := 2 · D + 1 and let I ′ = (T ′, F ′, k + 1, 2 · D + 1). All steps can be performed in
O(|I|2) time.

The equivalence of I and I ′ follows from the observation that S ⊆ X is a solution for I
if and only if S ∪ {⋆} is a solution for I ′. ◀

▶ Reduction Rule 1. Let R ⊆ X be the set of taxa which have a distance of at least k to
every source. Then, set F ′ := F − R and T ′ := T − R.
▶ Lemma 2.4. Reduction Rule 1 is correct and can be applied exhaustively in O(n + m) time.
Proof. By definition, each viable set of taxa which has a size of k is disjoint from R. Therefore,
the set R is disjoint from every solution. The set R can be found in O(n + m) time by
breadth-first search. This is also the total running time for the rule, since one application of
the rule is exhaustive. ◀

After Reduction Rule 1 has been applied exhaustively, for any taxon x ∈ X there is
a viable set Sx of size at most k with x ∈ Sx. If some edge e has weight at least D,
then for each taxon x which is an offspring of e, the set Sx is viable, has size at most k,
and PDT (Sx) ≥ PDT ({x}) ≥ D. So, Sx is a solution. This implies the correctness of the
following rule.
▶ Reduction Rule 2. Apply Reduction Rule 1 exhaustively. If maxω ≥ D return yes.
We can also remove some edges which are not important for guaranteeing viability.
▶ Reduction Rule 3. Given an instance I = (T , F , k, D) of PDD with vw ∈ E(F). If v is
not a source and uw ∈ E(F) for each u ∈ N<(v), then remove vw from E(F).
▶ Lemma 2.5. Reduction Rule 3 is correct and can be applied exhaustively in O(n3) time.
Proof. First, observe that if I ′ is a yes-instance, then so is I because every set that is
viable in I ′ is viable in I. Conversely, let I be a yes-instance of PDD with solution S. If
v ̸∈ S, then S is also a solution for instance I ′. If v ∈ S then because S is viable in F , some
vertex u of N<(v) is in S. Consequently, S is also viable in F − vw, as w still could be fed
by u (if w ∈ S).

The running time can be seen as follows. For each pair of taxa v and w, we can
check N<(v) ⊆ N<(w) in O(n) time. Consequently, an exhaustive application of Reduc-
tion Rule 3 takes O(n3) time. ◀

3 Parameterization by the Solution Size

In this section, we consider parameterization by the size of the solution k. First, we observe
that PDD is XP when parameterized by k and k. In Section 3.1 we show that s-PDD is
FPT with respect to k. We generalize this result in Section 3.2 by showing that PDD is
FPT when parameterized by k + heightT . Recall that k := n − k.
▶ Observation 3.1. PDD can be solved in O(nk+2) and O(nk+2) time.
Proof. One may use the following brute-force algorithm: Iterate over the sets S of X of size
k. Return yes if there is a viable set S with PDT (S) ≥ D. Return no if there is no such set.

The correctness of the algorithm follows from Observation 2.2. Checking whether a set S

is viable and has diversity of at least D can be done O(n2) time. The running time bound
now follows because there are

(
n
k

)
=

(
n

n−k

)
=

(
n
k

)
subsets of X of size k. ◀

C. Komusiewicz and J. Schestag 28:7

3.1 s-PDD
We show that s-PDD is FPT when parameterized by the size of the solution k.

▶ Theorem 3.2 (⋆). s-PDD can be solved in O(23.03k+o(k) · nm · log n) time.

The idea behind the algorithm is to color the taxa and require that a solution should
contain at most one taxon of each color. Formally, we consider the following auxiliary
problem. In k-colored Optimizing PD in Vertex-Weighted Food-Webs (k-c-s-
PDD), alongside the usual input (T , F , k, D) of s-PDD, we are given a coloring c : X → [k]
which assigns each taxon a color c(x) ∈ [k]. We ask whether there is a viable set S ⊆ X of
taxa such that PDT (S) ≥ D, and c(S) is colorful. A set c(S) is colorful if c is injective on S.
Observe that each colorful set S satisfies |S| ≤ k. We first show how to solve k-c-s-PDD via
dynamic programming. Then, applying the color-coding toolbox allows us to extend this
result to the uncolored version.

▶ Lemma 3.3. k-c-s-PDD can be solved in O(3k · n · m) time.

Proof.
Table definition. Let I = (T , F , k, D, c) be an instance of k-c-s-PDD and by Observa-
tion 2.3 we assume that ⋆ ∈ X is the only source in F .

Given x ∈ X, a set of colors C ⊆ [k], and a set of taxa X ′ ⊆ X, we say that a
set S ⊆ X ′ ⊆ X is (C, X ′)-feasible if (i) c(S) = C, (ii) c(S) is colorful, and (iii) S is X ′-viable.
We define a dynamic programming algorithm with tables DP and DP′. For x ∈ X, C ⊆ [k]
we want entry DP[x, C] to store the maximum PDT (S) of (C, X≥x)-feasible sets S. Recall
X≥x is the set of taxa which x can reach in F . If no (C, X≥x)-feasible set S ⊆ X ′ exists, we
want DP[x, C] to store −∞. In other words, in DP[x, C] we store the biggest phylogenetic
diversity of a set S which is X≥x-viable and c bijectively maps S to C.

For any taxon x, let y1, . . . , yq be an arbitrary but fixed order of N>(x). In the auxiliary
table DP′, we want entry DP′[x, p, C] for p ∈ [q], and C ⊆ [k] to store the maximum PDT (S)
of (C, X ′)-feasible sets S ⊆ X ′, where X ′ = {x} ∪ X≥y1 ∪ · · · ∪ X≥yp

. If no (C, X ′)-feasible
set S ⊆ X ′ exists, we want DP′[x, p, C] to store −∞.

Algorithm. As a base case for each x ∈ X and p ∈ [|N>(x)|] let DP[x, ∅] and DP[x, p, ∅]
store 0 and let DP[x, C] store −∞ if C is non-empty and c(x) ̸∈ C. For each x ∈ X

with N>(x) = ∅, we store ω(ρx) in DP[x, {c(x)}]. Recall that ρx is an edge because T is a
star.

Fix a taxon x ∈ X. For every Z ⊆ C \ {c(x)}, we set DP′[x, 1, {c(x)} ∪ Z] := DP[y1, Z].
To compute further values, once DP′[x, q, Z] for each q ∈ [p], and every Z ⊆ C is computed,
for Z ⊆ C \ {c(x)} we use the recurrence

DP′[x, p + 1, {c(x)} ∪ Z] := max
Z′⊆Z

DP′[x, p, {c(x)} ∪ Z \ Z ′] + DP[yp+1, Z ′]. (2)

Finally, we set DP[x, C] := DP′[x, q, C] for every C ⊆ [k].
We return yes if DP[⋆, C] stores at least d for some C ⊆ [k]. Otherwise, we return no.

Correctness. The base cases are correct. The tables are computed first for taxa further
away from the source and with increasing size of C. Assume that for a fixed taxon x

with predators y1, . . . , yq and a fixed p ∈ [q], the entries DP[x′, Z] and DP′[x, p′, Z] for
each x′ ∈ N>(x), for each p′ ∈ [p], and every Z ⊆ [k] store the desired value. Fix a set C ⊆ [k]
with c(x) ∈ C. We show that if DP′[x, p + 1, C] stores d then there is a (C, X ′)-feasible set

FSTTCS 2024

28:8 Parameterized Complexity of PD with Ecological Constraints

S ⊆ X ′ ∪ X≥yp+1 for X ′ := {x} ∪ X≥y1 ∪ · · · ∪ X≥yp with PDT (S) = d. Afterward, we show
that if S ⊆ X ′ ∪ X≥yp+1 with PDT (S) = d is a (C, X ′)-feasible set then DP′[x, p + 1, C]
stores at least d.

If DP′[x, p + 1, C] = d > 0 then by Recurrence (2), there is a set Z ⊆ C \ {c(x)} such that
DP′[x, p, C \Z] = dx and DP[yp+1, Z] = dy with d = dx +dy. Therefore, there is a (C \Z, X ′)-
feasible set Sx ⊆ X ′ with PDT (Sx) = dx and a (Z, X≥yp+1)-feasible set Sy ⊆ X≥yp+1

with PDT (Sy) = dy. Define S := Sx ∪ Sy and observe that PDT (S) = d. It remains to
show that S is a (C, X ′ ∪ X≥yp+1)-feasible set. First, observe that because C \ Z and Z are
disjoint, we conclude that c(S) is colorful. Then, c(S) = c(Sx)∪c(Sy) = C \Z ∪Z = C where
the first equation holds because c(S) is colorful. The taxa x and yp+1 are the only sources
in F [X≥x] and F [X≥yp+1], respectively. Therefore, x is in Sx and yp+1 is in Sy unless Sy is
empty. If Sy = ∅ then S = Sx and S is X ′ ∪X≥yp+1 -viable because S is X ′-viable. Otherwise,
if Sy is non-empty then because Sy is X≥yp+1 -viable, we conclude sources(F [Sy]) = {yp+1}.
As x ∈ S and yp+1 ∈ N>(x) we conclude sources(F [S]) = {x} and so S is X ′ ∪X≥yp+1 -viable.
Therefore, S is a (C, X ′ ∪ X≥yp+1)-feasible set.

Conversely, let S ⊆ X ′ ∪ X≥yp+1 be a non-empty (C, X ′ ∪ X≥yp+1)-feasible set with
PDT (S) = d. Observe that X ′ and X≥yp+1 are not necessarily disjoint. We define Sy to be
the set of taxa of X≥yp+1 which are connected to yp+1 in F [X≥yp+1]. Further, define Z := c(Sy)
and define Sx := S \ Sy. As c(S) is colorful especially c(Sx) and c(Sy) are colorful. Thus,
Sy is a (Z, X≥yp+1)-feasible time. Further, c(Sx) = C \ c(Sy) = C \ Z. As sources(F [S]) =
sources(F [X ′ ∪ X≥yp+1]) = {x}, we conclude x ∈ S. Because F is a DAG, x is not in X≥yp+1

and so x is in Sx. Each vertex of S which can reach yp+1 in F [S] is in F≥yp+1 and subsequently
in Sy. Consequently, because S is X ′ ∪ X≥yp+1-viable we conclude sources(F [Sx]) = {x}.
Thus, Sx is (C\Z, X ′)-feasible. So, DP[yp+1, Z] = PDT (Sx) and DP′[x, p, C\Z] = PDT (Sy).
Hence, DP′[x, p + 1, C] stores at least PDT (S).

Running time. The base cases can be checked in O(k) time. As each c ∈ [k] in Recurrence (2)
can either be in Z ′, in {c(x)} ∪ Z \ Z ′ or in [k] \ ({c(x)} ∪ Z), all entries of the tables can be
computed in O(3k · n · m) time. ◀

We defer the details of the proof of Theorem 3.2 to the long version since this is essentially
standard application of color coding using a perfect hash family as defined in Section 2.1.

3.2 PDD on Trees with Bounded Height
Next, we generalize the result of the previous subsection and we show that PDD is FPT when
parameterized with the size of the solution k plus heightT , the height of the phylogenetic
tree. The algorithm uses color-coding, data reduction rules, and the enumeration of trees.

▶ Theorem 3.4. PDD can be solved in O∗(KK · 23.028K+o(K)) time where K := k · heightT .

To show Theorem 3.4, we use a subroutine for solving the following problem. We define
a pattern-tree TP = (VP , EP , cP) to be a tree (VP , EP) with a vertex-coloring cP : VP →
[k · heightT]. Recall that T ⟨Y ⟩ is the spanning tree of the vertices in Y . In Optimizing
PD with Pattern-Dependencies (PDD-pattern), we are given alongside the usual
input (T , F , k, D) of PDD a pattern-tree TP = (VP , EP , cP), and a vertex-coloring c :
V (T) → [k · heightT]. We ask whether there is a viable set S ⊆ X of taxa such that S has a
size of at most k, c(T ⟨S ∪ {ρ}⟩) is colorful, and T ⟨S ∪ {ρ}⟩ and TP are color-equal. That
is, there is an edge uv of T ⟨S ∪ {ρ}⟩ with c(u) = cu and c(v) = cv if and only if there is an
edge u′v′ of TP with c(u′) = cu and c(v′) = cv. Informally, given a pattern-tree we want that
it matches the colors of the spanning tree induced by the root and the solution.

C. Komusiewicz and J. Schestag 28:9

u′

v′

(1)
6 1 3 1 2

4 5 2 4 2 3

1 1

2 2

2

(2)
6 1 3

4 5 2

1 1

4 2 4 2 4

2

Figure 1 An example for Reduction Rule 6. (1) An instance of PDD-pattern (2) The instance
after an application of Reduction Rule 6 to the marked vertices. In both instances, the pattern-tree
is on the left and the phylogenetic tree is on the right.

Next we present reduction rules with which we can reduce the phylogenetic tree in an
instance of PDD-pattern to be a star which subsequently can be solved with Theorem 3.2.
Afterward, we show how to apply this knowledge to compute a solution for PDD.

▶ Reduction Rule 4. Let uv be an edge of T . If there is no edge u′v′ ∈ EP with cP (u′) = c(u)
and cP (v′) = c(v), then set T ′ := T − desc(v) and F ′ := F − off(v).

▶ Lemma 3.5. Reduction Rule 4 is correct and can be applied exhaustively in O(n3) time.

Proof. Assume S ⊆ X is a solution of the instance of PDD-pattern. As there is no edge
u′v′ ∈ EP with cP (u′) = c(u) and cP (v′) = c(v) we conclude that S ∩ desc(v) = ∅ and so the
reduction rule is safe.

The running time can be seen as follows. To check whether Reduction Rule 4 can be
applied, we need to iterate over both E(T) and EP . Therefore, a single application can be
executed in O(n2) time. In each application of Reduction Rule 4 we remove at least one
vertex so that an exhaustive application can be computed in O(n3) time. ◀

▶ Reduction Rule 5. Let u′v′ be an edge of TP . For each vertex u ∈ V (T) with c(u) = cP (u′)
such that u has no child v with c(v) = cP (v′), set T ′ := T − desc(v) and F ′ := F − off(v).

▶ Lemma 3.6. Reduction Rule 5 is correct and can be applied exhaustively in O(n3) time.

Proof. Let S be a solution for the instance of PDD-pattern. The spanning tree T ⟨S ∪{ρ}⟩
contains exactly one vertex w with color c(u). As c(w) = cP (u′) we conclude that w has a
child w′ and c(w′) = c(v′). Consequently, w ̸= u and S ∩ desc(u) = ∅.

As in Reduction Rule 4, we may apply the rule by iterating over the edges of T and TP .
Each application either removes at least one vertex or concludes that the reduction rule is
applied exhaustively. ◀

▶ Reduction Rule 6. Apply Reduction Rules 4 and 5 exhaustively. Let ρ be the root of T
and let ρP be the root of TP . Let v′ be a grand-child of ρP and let u′ be the parent of v′.
Then, do the following.
1. For each vertex u of T with c(u) = cP (u′) add edges ρv to T for every child v of u.
2. Set the weight of ρv to be ω(uv) if c(v) ̸= cP (v′) or ω(uv) + ω(ρu) if c(v) = cP (v′).
3. Add edges ρP w′ to TP for every child w′ of u′.
4. Set T ′

P := TP − u′ and T ′ := T − u.

Figure 1 depicts an application of Reduction Rule 6.

▶ Lemma 3.7. Reduction Rule 6 is correct and can be applied exhaustively in O(n3m) time.

FSTTCS 2024

28:10 Parameterized Complexity of PD with Ecological Constraints

Proof. Assume that I is a yes-instance of PDD-pattern with solution S. Because T ⟨S ∪
{ρ}⟩ and TP are color-equal also T ′⟨S ∪ {ρ}⟩ and T ′

P are color-equal. Let u∗ and w1 be the
unique vertices in T ⟨S ∪ {ρ}⟩ with c(u∗) = cP (u′) and c(w1) = cP (v′). Let w2, . . . , wℓ be the
other children of u∗. As PDT ′(S) is the sum of the weights of the edges of T ′⟨S ∪ {ρ}⟩ we
conclude PDT ′(S) = PDT (S) − (ω(ρu∗) +

∑ℓ
i=1 ω(u∗wi)) +

∑ℓ
i=1 ω′(ρwi). Since ω′(ρw1) =

ω(ρu∗) + ω(u∗w1) and ω′(ρwi) = ω(u∗wi) for i ∈ [ℓ] \ {1}, we conclude that PDT ′(S) =
PDT (S) ≥ D. Therefore, S is a solution for I ′. The converse direction of the equivalence
can be shown analogously.

It remains to bound the running time. For a given grand-child v′ of ρP , one performs O(n)
color-checks and adds O(n) edges. As the reduction rule can be applied at most |TP | ∈
O(n) times, an exhaustive application takes O(n2) time. So, the predominant factor in the
running time is the exhaustive application of the other reduction rules. ◀

With these reduction rules, we can reduce the phylogenetic tree of a given instance of
PDD-pattern to only be a star and then solve PDD-pattern by applying Theorem 3.2.

▶ Lemma 3.8. PDD-pattern can be solved in O(3k · n · m + n3) time.

Proof. Let I = (T , F , k, D, TP = (VP , EP , cP), c) be a given instance of PDD-pattern.
We use the following algorithm. If there is a vertex v ∈ VP and cP (v) ̸∈ c(V (T)) then return
no. If c(ρ) ̸= cP (ρP) where ρ and ρP are the roots of T and TP respectively, return no.
Otherwise, apply Reduction Rule 6 exhaustively. Then, both TP and T are stars. Return
yes if and only if (T ′, F ′, k, D, c) is a yes-instance of k-c-s-PDD.

For the correctness, first observe that if TP contains a vertex v with cP (v) ̸∈ c(V (T)), or
if c(ρ) ̸= cP (ρP), then I is a no-instance. For the remaining cases, the correctness follows
from Lemma 3.7 and Lemma 3.3.

The running time can be seen as follows. By Reduction Rule 6 can be applied exhaustively
in O(n2 · (n+m)) time. By Lemma 3.3, the overall running time thus is O(3k ·n ·m+n3). ◀

To prove Theorem 3.4 we reduce from PDD to PDD-pattern and apply Lemma 3.8.
For this, we use the fact that there are nn−2 labeled directed trees with n vertices [25] which
can be enumerated in O(nn−2) time [2]. To solve instance I of PDD, we will check each of
these trees as a pattern-tree for a given coloring of the phylogenetic tree. These colorings will
be defined with a perfect hash family as defined in Section 2.1. Recall that K = k · heightT .

Proof of Theorem 3.4.
Algorithm. Let I = (T , F , k, D) be an instance of PDD. Let the vertices of T
be v1, . . . , v|V (T)|. Iterate over i ∈ [min{K, |V (T)|}]. Compute a (|V (T)|, i)-perfect hash
family Hi. Compute the set Pi of labeled directed trees with i vertices.

For every TP = (VP , EP , cP) ∈ Pi, proceed as follows. Assume that the labels of TP

are in [i]. For every f ∈ Hi, first construct the coloring cf such that cf (vj) = f(j) for
each vj ∈ V (T). Then, solve instance ITP ,f := (T , F , k, D, TP , cf) of PDD-pattern
using Lemma 3.8. Return yes if and only if ITP ,f is a yes-instance for some f ∈ Hi and
some TP ∈ Pi.

Correctness. Any solution of an instance ITP ,f of PDD-pattern clearly is a solution for I.
Conversely, we show that if S is a solution for I, then there are TP and f such that ITP ,f

is a yes-instance of PDD-pattern. So let S be a viable set of taxa with |S| ≤ k and
PDT (S) ≥ D. Let V ∗ ⊆ V (T) be the set of vertices v that have offspring in S. It
follows |V ∗| ≤ heightT ·|S| ≤ K. Then, there is a hash function f ∈ HV ∗ mapping V ∗

bijectively to [|V ∗|]. Consequently, P|V ∗| contains a tree TP which is isomorphic to T [V ∗]
with labels cf . Hence, ITP ,f is a yes-instance of PDD-pattern.

C. Komusiewicz and J. Schestag 28:11

Running Time. For a fixed i ∈ [K], the set Hi contains eiiO(log i) · log n hash functions and
the set Pi contains O(ii−2) labeled trees. Both sets can be computed in O(ii−2 · n log n) time.

Each instance ITP ,f of PDD-pattern is constructed in O(n) time and can be solved
in O(3k · n3) time. Thus, the overall running time is O(K · eKKK−2+O(log K) · 3k · n3 log n),
which summarizes to O(KK · 21.443K+1.585k+o(K) · n3 log n). ◀

4 Parameterization by Desired Diversity and Accepted Diversity Loss

In this section, we first consider parameterization with the diversity threshold D. For this
parameter, we present an FPT algorithm for PDD. Afterward, we show that s-PDD is
intractable with respect to D, the acceptable loss of phylogenetic diversity. As the edge-
weights are integers, we conclude that we can return yes if k ≥ D or if the height of the
phylogenetic tree T is at least D, after Reduction Rule 1 has been applied exhaustively.
Otherwise, k + heightT ∈ O(D) and thus the FPT algorithm for k + heightT (Theorem 3.4)
directly gives an FPT algorithm for PDD in that case.

Here, we present another algorithm with a faster running time. To obtain this algorithm,
we subdivide edges of the phylogenetic tree according to their edge weights. We then use
color coding on the vertices of the subdivided tree. Let us remark that this technique is
closely related to an algorithm of Jones and Schestag [15] for another hard problem related
to diversity maximization.

▶ Theorem 4.1 (⋆). PDD can be solved in O(23.03(2D+k)+o(D) · nm + n2) time.

In some instances, the diversity threshold D may be very large. Then, however, the
acceptable loss of diversity D = PDT (X)−D could be small. Encouraged by this observation,
recently, several problems in maximizing phylogenetic diversity have been studied with respect
to the acceptable diversity loss [14, 15]. In this section, we show that, unfortunately, s-PDD
is already W [1]-hard with respect to D even if the edge weights are at most two.

To show this, we reduce from Red-Blue Non-Blocker. Here, the input is an undirected
bipartite graph G with vertex bipartition V = Vr ∪ Vb and an integer k. The question is
whether there is a set S ⊆ Vr of size at least k such that the neighborhood of Vr \ S is Vb.
Red-Blue Non-Blocker is W[1]-hard when parameterized by the solution size k [6].

▶ Proposition 4.2. s-PDD is W [1]-hard with respect to D, even if maxω = 2.

Proof.

Reduction. Let I := (G = (V = Vr ∪Vb, E), k) be an instance of Red-Blue Non-Blocker.
We construct an instance I ′ = (T , F , k′, D) of s-PDD as follows. Let T be a star with root
ρ ̸∈ V and leaves V . In T , an edge e = ρu has weight 1 if u ∈ Vr and otherwise ω(e) = 2, if
u ∈ Vb. Define a food-web F with vertices V and for each edge {u, v} ∈ E, and every tuple of
vertices u ∈ Vb, v ∈ Vr, add an edge uv to F . Finally, set k′ := |V |−k and D := 2·|Vb|+|Vr|−k,
or equivalently k = D = k.

Correctness. The reduction can be computed in polynomial time. We show that if I is a
yes-instance of Red-Blue Non-Blocker then I ′ is a yes-instance of PDD. Afterward,
we show the converse.

Assume that I is a yes-instance of Red-Blue Non-Blocker. Therefore, there is a
set S ⊆ Vr of size at least k such that NG(Vr\S) = Vb. (We assume |S| = k as NG(Vr\S) = Vb

still holds if we shrink S.) We define S′ := V \S and show that S′ is a solution for I ′. The size

FSTTCS 2024

28:12 Parameterized Complexity of PD with Ecological Constraints

of S′ is |V \ S| = |V | − |S| = k′. Further, PDT (S) = 2 · |Vb| + |Vr \ S| = 2 · |Vb| + |Vr| − k = D.
By definition, the vertices in Vr are sources. Further, because S is a solution for I, each
vertex of Vb has a neighbor in Vr \ S. So, S′ is viable and I ′ is a yes-instance of s-PDD.

Conversely, let S′ ⊆ V be a solution for instance I ′ of s-PDD. Without loss of generality,
S′ contains r vertices from Vr and b vertices of Vb. Consequently, |V | − k ≥ |S′| = b + r

and 2 · |Vb| + |Vr| − k = D ≤ PDT (S′) = 2b + r. We conclude r ≤ |V | − k − b and
so 2b ≥ 2 · |Vb| + |Vr| − k − r ≥ 2 · |Vb| + |Vr| − k − (|V | − k − b) = |Vb| + b. Therefore, b = |Vb|
and Vb ⊆ S′. Further, r = |Vr| − k. We define S := Vr \ S′ and conclude |S| = |Vr| − r = k.
Because S′ is viable, each vertex in Vb has a neighbor in S′ \ Vb. Therefore, S is a solution
for the yes-instance I of Red-Blue Non-Blocker. ◀

5 Structural Parameters of the Food-Web

Next, we study how the structure of the food-web affects the complexity of s-PDD and
PDD. First, we consider parameterization with respect to the distance of the food-web to
a cluster graph, denoted cvd. We show that PDD is NP-hard even if the food-web is a
cluster graph but s-PDD is FPT when parameterized by cvd. Afterward, we show that
PDD is FPT with respect to the distance to co-cluster and s-PDD is FPT with respect to
the treewidth of the food-web, denoted by twF .

5.1 Distance to Cluster Graphs

In this subsection, we consider the special case that given an instance of PDD or s-PDD,
we need to remove few vertices from the undirected underlying graph of the food-web F to
obtain a cluster graph. Here, a graph is a cluster graph if every connected component is
a clique. We show that s-PDD is easy on graphs that are close to being a cluster graph.
More precisely, in Theorem 5.1, we show that s-PDD is FPT with respect to the distance
to cluster. Herein, for a graph G = (V, E) the distance to cluster cvd(G) is the smallest
number d such that there exists a set Y ⊆ V of size at most d such that G − Y is a cluster
graph. The FPT-algorithm shows in particular that s-PDD is tractable even on some very
dense classes of food-webs. Afterward, we show that PDD is NP-hard on cluster graphs.

The FPT-algorithm exploits the following fact: If F is acyclic and its underlying graph
is a cluster graph, then every clique in F has exactly one vertex v0 ∈ V (C) such that
v0 ∈ N<(v) for each v ∈ V (C) \ {v0}. After applying Reduction Rule 3 exhaustively to a
cluster graph, each connected component of the food-web is thus an out-star.

▶ Theorem 5.1 (⋆). s-PDD can be solved in O(6d · n2 · m · k2) time, when we are given a
set Y ⊆ X of size d such that F − Y is a cluster graph.

To prove Theorem 5.1, we first show how to solve the case where we want to save all taxa
in Y .

▶ Lemma 5.2. Given an instance I = (T , F , k, D) of s-PDD and a set Y ⊆ X of size d

such that F − Y is a cluster graph, we can compute whether there is a viable set S ∪ Y

with |S ∪ Y | ≤ k and PDT (S ∪ Y) ≥ D in O(3d · n · k2) time.

Proof. We provide a dynamic programming algorithm. Let C1, . . . , Cc be the connected
components of F − Y and let x

(i)
1 , . . . , x

(i)
|Ci| be an order of Ci such that (x(i)

j1
, x

(i)
j2

) ∈ E(F)
for j1 < j2.

C. Komusiewicz and J. Schestag 28:13

Table definition. A set S ⊆ X \ Y of taxa is (ℓ, Z)-feasible, if |S| ≤ ℓ and S ∪ Z is viable.
The dynamic programming algorithm has tables DP and DPi for each i ∈ [c]. The entry
DP[i, ℓ, Z] for i ∈ [c], ℓ ∈ [k]0, and Z ⊆ Y stores the largest phylogenetic diversity PDT (S)
of an (ℓ, Z)-feasible set S ⊆ C1 ∪ · · · ∪ Ci and −∞ if no such set S exists.

The table entries DPi[j, b, ℓ, Z] additionally have a dimension b with b ∈ {0, 1}. For b = 0,
an entry DPi[j, b, ℓ, Z] with b ∈ {0, 1} stores the largest phylogenetic diversity PDT (S) of an
(ℓ, Z)-feasible set S ⊆ {x

(i)
1 , . . . , x

(i)
j }. For b = 1, additionally some vertex v

(i)
j′ with j′ < j

needs to be contained in S.

Algorithm. Iterate over the edges of F . For each edge uv ∈ E(F) with u, v ∈ Y , remove all
edges incoming at v, including uv, from E(F). After this removal, v is a new source.

We initialize the base cases of DPi by setting DPi[j, 0, 0, Z] := 0 for each i ∈ [c],
each j ∈ [|Ci|], and every Z ⊆ sources(F). Moreover, DPi[1, b, ℓ, Z] := ω(ρv

(i)
1) if ℓ ≥ 1

and Z ⊆ N>(v(i)
1) ∪ sources(F); and DPi[1, b, ℓ, Z] := −∞, otherwise.

To compute further values for j ∈ [|Ci| − 1], b ∈ {0, 1}, and ℓ ∈ [k] we use the recurrences

DPi[j + 1, b, ℓ, Z] = max{DPi[j, b, ℓ, Z], DPi[j, b′, ℓ − 1, Z \ N>(v(i)
j+1)] + ω(ρv

(i)
j+1)}, (3)

where b′ = 0 if there is an edge from a vertex in Y to x
(i)
j+1 and otherwise b′ = 1.

Finally, we set DP[1, ℓ, Z] := DP1[|C1|, 0, ℓ, Z] and compute further values with

DP[i + 1, ℓ, Z] = max
Z′⊆Z,ℓ′∈[ℓ]0

DP[i, ℓ′, Z ′] + DPi+1[|Ci+1|, 0, ℓ − ℓ′, Z \ Z ′]. (4)

There is a viable set S ∪ Y with |S ∪ Y | ≤ k and PDT (S ∪ Y) ≥ D if and only
if DP[c, k − |Y |, Z] ≥ D − PDT (Y).

Correctness. Assume that DP stores the intended values. Then, if DP[c, k − |Y |, Z] ≥
D − PDT (Y), there is an (ℓ, Z)-feasible set S ⊆ X \ Y . First, this implies that S ∪ Y is
viable. Moreover, since S has size at most k − |Y |, we obtain |S ∪ Y | ≤ k. Finally, because T
is a star and S and Y are disjoint, PDT (S) ≥ D − PDT (Y) implies PDT (S ∪ Y) ≥ D. The
converse direction can be shown analogously.

It remains to show that DP and DPi store the right values. The base cases are cor-
rect. Towards the correctness of Recurrence (3), as an induction hypothesis, assume that
DPi[j, b, ℓ, Z] stores the desired value for a fixed j ∈ [|Ci| − 1], each i ∈ [c], b ∈ {0, 1},
ℓ ∈ [k]0 and every Z ⊆ Y . Let DPi[j + 1, b, ℓ, Z] store d. We show that there is
an (ℓ, Z)-feasible set S ⊆ {x

(i)
1 , . . . , x

(i)
j+1}. By Recurrence (3), DPi[j, b, ℓ, Z] stores d or

DPi[j, 1, ℓ − 1, Z \ N>(v(i)
j+1)] stores d − ω(ρv

(i)
j+1). If DPi[j, b, ℓ, Z] stores d then there is

an (ℓ, Z)-feasible set S ⊆ {x
(i)
1 , . . . , x

(i)
j } ⊆ {x

(i)
1 , . . . , x

(i)
j+1}. If DPi[j, 1, ℓ − 1, Z \ N>(v(i)

j+1)]
stores d − ω(ρv

(i)
j+1) then there is an (ℓ − 1, Z \ N>(v(i)

j+1))-feasible set S ⊆ {x
(i)
1 , . . . , x

(i)
j }

containing x
(i)
1 or x

(i)
j′ ∈ N>(Y). Consequently, also S ∪ {x

(i)
j+1} is (ℓ, Z)-feasible.

Now, let S ⊆ {x
(i)
1 , . . . , x

(i)
j+1} be an (ℓ, Z)-feasible set. We show that DPi[j + 1, b, ℓ, Z]

stores at least PDT (S). If S ⊆ {x
(i)
1 , . . . , x

(i)
j } then we know from the induction hypothesis

that DPi[j, b, ℓ, Z] stores PDT (S) and then also DPi[j+1, b, ℓ, Z] stores PDT (S). If x
(i)
j+1 ∈ S,

then S contains x
(i)
1 or some x

(i)
j′ ∈ N>(Y). Define S′ := S \ {x

(i)
j+1}. Then, |S′| = ℓ − 1 and

S′ ∪ (Z \ N>(x(i)
j+1)) is viable because S is (ℓ, Z)-feasible. Consequently, DPi[j, 1, ℓ − 1, Z \

N>(x(i)
j+1)] ≥ PDT (S′) = PDT (S) − ω(ρx

(i)
j+1). Therefore, DPi[j + 1, b, ℓ, Z] ≥ PDT (S).

FSTTCS 2024

28:14 Parameterized Complexity of PD with Ecological Constraints

Now, we focus on the correctness of Recurrence (4). Let DP[i + 1, ℓ, Z] store d. We show
that there is an (ℓ, Z)-feasible set S ⊆ C1∪· · ·∪Ci+1 with PDT (S) = d. Because DP[i+1, ℓ, Z]
stores d, by Recurrence (4), there are Z ′ ⊆ Z and ℓ′ ∈ [ℓ]0 such that DP[i, ℓ′, Z ′] = d1,
DPi+1[|Ci+1|, 0, ℓ − ℓ′, Z \ Z ′] = d2 and d1 + d2 = d. By the induction hypothesis, there
is an (ℓ′, Z ′)-feasible set S1 ⊆ C1 ∪ · · · ∪ Ci and an (ℓ − ℓ′, Z \ Z ′)-feasible set S2 ⊆ Ci+1
such that PDT (S1) = d1 and PDT (S2) = d2. Then, S := S1 ∪ S2 holds |S| ≤ |S1| + |S2| ≤
ℓ′ + (ℓ − ℓ′) = ℓ. Further, because Y has no outgoing edges Z ′ ⊆ N>(S1) ∪ sources(F)
and Z \ Z ′ ⊆ N>(S2) ∪ sources(F). Therefore, Z ⊆ N>(S) ∪ sources(F) and S ∪ Z is viable.
We conclude that S is the desired set.

Let there be an (ℓ, Z)-feasible set S ⊆ C1 ∪ · · · ∪ Ci+1 with PDT (S) = d. We show that
DP[i + 1, ℓ, Z] stores at least d. Define S1 := S ∩ (C1 ∪ · · · ∪ Ci) and Z ′ := N>(S1) ∩ Z. We
conclude that S1 ∩ Z ′ is viable. Then, S1 is (ℓ′, Z ′)-feasible, where ℓ′ := |S1|. Define S2 :=
S ∩ Ci+1 = S \ S1. Because S ∪ Z is viable and Z does not have outgoing edges, we
know that Z ⊆ N>(S) ∪ sources(F). So, Z \ Z ′ ⊆ N>(S2) ∪ sources(F) and because
|S2| = |S| − |S1| = ℓ − ℓ′ we conclude that S2 is (ℓ − ℓ′, Z \ Z ′)-feasible. Consequently,
DP[i, ℓ′, Z ′] ≥ PDT (S1) and DPi+1[|Ci+1|, ℓ−ℓ′, Z\Z ′] ≥ PDT (S2). Hence, DP[i+1, ℓ, Z] ≥
PDT (S1) + PDT (S2) = PDT (S) because T is a star.

Running time. The tables DP and DPi for i ∈ [c] have O(2d ·n ·k) entries in total. Whether
one of the base cases applies can be checked in linear time. We can compute the set Z \N>(x)
for any given Z ⊆ Y and x ∈ X in O(d2) time. Therefore, the O(2d · n · k) times we need to
apply Recurrence (3) consume O(2dd2 · n · k) time in total. In Recurrence (4), each x ∈ Y

can be in Z ′, in Z \ Z ′ or in Y \ Z so that we can compute all the table entries of DP
in O(3d · n · k2) which is also the overall running time. ◀

Now Theorem 5.1 can be shown by reducing the general case to the special case of Lemma 5.2
as follows: Iterate over the O(2d) subsets of Y . For each subset Z ⊆ Y , compute whether
there is a solution S for I with S ∩ Y = Z; we defer the details of this branching to the long
version.

Next, we show that, in contrast to s-PDD, PDD is NP-hard even when the food-web
is restricted to be a cluster graph. We obtain this hardness by a reduction from Vertex
Cover on cubic graphs. Here, we are given an undirected graph G = (V, E) in which every
vertex has degree exactly three and an integer k and ask whether a set C ⊆ V of size at
most k exists such that u ∈ C or v ∈ C for each {u, v} ∈ E. The set C is called a vertex
cover. Vertex Cover remains NP-hard on cubic graphs [20].

▶ Theorem 5.3. PDD is NP-hard even if the food-web is a cluster graph.

Proof.
Reduction. Let (G, k) be an instance of Vertex Cover, where G = (V, E) is cubic. We
define an instance I = (T , F , k′, D) of PDD as follows. Let T have a root ρ. For each
vertex v ∈ V , we add a child v of ρ. For each edge e = {u, v} ∈ E, we add a child e of ρ

and two children [u, e] and [v, e] of e. Let N be a big integer. We set the weight of ρe

to N − 1 for each edge e in E. All other edges of T have a weight of 1. Additionally, for each
edge e = {u, v} ∈ E we add edges (u, [u, e]) and (v, [v, e]) to F . Finally, we set k′ := |E| + k

and D := N · |E| + k.

Correctness. The instance I of PDD is constructed in polynomial time. The sources of F
are V . Let e1, e2, and e3 be the edges incident with v ∈ V (G). Each connected component
in F contains four vertices, v, and [v, ei] for i ∈ {1, 2, 3}.

C. Komusiewicz and J. Schestag 28:15

We show that (G, k) is a yes-instance of Vertex Cover if and only if I is a yes-instance
of PDD. Let C ⊆ V be a vertex cover of G of size at most k. If necessary, add vertices to C

until |C| = k. For each edge e ∈ E, let ve be an endpoint of e that is contained in C. Note
that ve exists since C is a vertex cover. We show that S := C ∪ {[ve, e] | e ∈ E} is a solution
for I: The size of S is |C| + |E| = k + |E|. By definition, for each taxon [ve, e] we have
ve ∈ C ⊆ S, so S is viable. Further, as S contains a taxon [ve, e] for each edge e ∈ E, we
conclude that PDT (S) ≥ N · |E| + PDT (C) = N · |E| + k = D. Therefore, S is a solution.

Let S be a solution of instance I of PDD. Define C := S ∩ V (G) and define S′ := S \ C.
Because PDT (S) ≥ D, we conclude that for each e ∈ E at least one taxon [u, e] with u ∈ e

is contained in S′. Thus, |S′| ≥ |E| and |C| ≤ k. Because S is viable we conclude that u ∈ C

for each [u, e] ∈ S′. Hence, C is a vertex cover of size at most k of G. ◀

5.2 Distance to Co-cluster Graphs
In this section, we show that PDD is FPT with respect to the distance to co-cluster of the
food-web. A graph is a co-cluster graph if its complement graph is a cluster graph. Herein,
the complement graph is the graph obtained by replacing edges with non-edges and vice
versa. In other words, a graph is a co-cluster graph if its vertex set can be partitioned into
independent sets such that each pair of vertices from different independent sets is adjacent.

We define an auxiliary problem Hitting Set with Tree-Profits in which we are given
a universe U , a family of sets W over U , a U -tree T , and integers k and D. We ask whether
there is a set S ⊆ U of size at most k such that PDT (S) ≥ D and S ∩ W ≠ ∅ for each
W ∈ W. Solutions to this problem can be found with a dynamic programming algorithm
over the tree, similar to the idea in [24]. The proof is therefore deferred to the long version.

▶ Lemma 5.4 (⋆). Hitting Set with Tree-Profits can be solved in O(3|W| · n) time.

In the following we reduce from PDD to Hitting Set with Tree-Profits. Herein,
we select a subset of the modulator Y to survive. Additionally, we select the first taxon xi

which survives in X \ Y . Because F − Y is a co-cluster graph, xi is in a specific independent
set I ⊆ X and any taxon X \ (I ∪ Y) feed on xi. Then, by selecting taxon xj ∈ X \ (I ∪ Y),
any other taxon in X \ Y has some prey. Subsequently, a solution is found by Lemma 5.4.

▶ Theorem 5.5. PDD can be solved in O(6d · n3) time, when we are given a set Y ⊆ X of
size d such that F − Y is a co-cluster graph.

Proof.
Algorithm. Given an instance I = (T , F , k, D) of PDD. Let x1, . . . , xn be a topological
ordering of X which is induced by F . Iterate over the subsets Z of Y . Let PZ be the sources
of F in X \Y and let QZ be N>(Z)\Y , the taxa in X \Y which are being fed by Z. Further,
define RZ := PZ ∪ QZ ⊆ X \ Y . Iterate over the vertices xi ∈ RZ . Let xi be from the
independent set I of the co-cluster graph F − Y . Iterate over the vertices xj ∈ X \ (Y ∪ I).

For each set Z, and taxa xi, xj , with Lemma 5.4 we compute the optimal solution for
the case that Z is the set of taxa of Y that survive while all taxa of Y \ Z go extinct, xi is
the first taxon in X \ Y , and xj the first taxon in X \ (Y ∪ I) to survive. (The special cases
that only taxa from I ∪ Y or only from Y survive are omitted here.)

We define an instance IZ,i,j of Hitting Set with Tree-Profits as follows. Let the
universe Ui,j be the union of {xi+1, . . . , xj−1}∩I and {xj+1, . . . , xn}\Y . For each taxon x ∈ Z

compute N<(x). If x ̸∈ sources(F) and N<(x) ∩ (Z ∪ {xi, xj}) = ∅, then add N<(x) \ Y

to the family of sets WZ,i,j . Contract edges e ∈ E(T) with off(e) ∩ (Z ∪ {xi, xj}) ̸= ∅ to
obtain TZ,i,j . Finally, we define k′ := k − |Z| − 2 and D′ := D − PDT (Z ∪ {xi, xj}).

FSTTCS 2024

28:16 Parameterized Complexity of PD with Ecological Constraints

Solve IZ,i,j . If IZ,i,j is a yes-instance then return yes. Otherwise, continue with the
iteration. If IZ,i,j is a no-instance for every Z ⊆ Y , and each i, j ∈ [n], then return no.

Correctness. We show that the algorithm returns yes if and only if I is a yes-instance.
First, assume the algorithm returns yes. Then, there is a set Z ⊆ Y , and there are

taxa xi ∈ X \ Y and xj ∈ X \ (Y ∪ V (I)) such that IZ,i,j is a yes-instance of Hitting Set
with Tree-Profits. Here, I is the independent set such that xi ∈ V (I). Consequently, there
is a set S ⊆ Ui,j of size at most k−|Z|−2 such that PDTZ,i,j

(S) ≥ D′ = D−PDT (Z∪{xi, xj})
and S ∩ W ̸= ∅ for each W ∈ WZ,i,j . We show that S∗ := S ∪ Z ∪ {xi, xj} is a solution
for instance I of PDD. Clearly, |S∗| = |S| + |Z| + 2 ≤ k and PDT (S∗) = PDTZ,i,j

(S) +
PDT (Z ∪ {xi, xj}) ≥ D as TZ,i,j is the Z ∪ {xi, xj}-contraction of T . Further, by definition
xi ∈ (sources(F) ∪ N>(Z)) \ Y . Because F − Y is a co-cluster graph and xj is not in I,
the independent set in which xi is, we conclude that xj ∈ N>(xi). As S ∩ W ̸= ∅ for each
W ∈ WZ,i,j , each taxon x ∈ Z has a prey in Z ∪ {xi, xj} or in S so that N<(x) ∩ S∗ ̸= ∅.
Therefore, S∗ is viable and indeed a solution for I.

Assume now that S is a solution for instance I of PDD. We define Z := S ∩ Y and let xi

and xj be the taxa in S\Y , respectively S\(Y ∪I), with the smallest index. As before, I is the
independent set of xi. We show that instance IZ,i,j of Hitting Set with Tree-Profits
has solution S∗ := S \ (Z ∪ {xi, xj}). Clearly, |S∗| = |S| − |Z| − 2 ≤ k′ and by the definition
of TZ,i,j we also conclude PDTZ,i,j

(S∗) ≥ D′. Let M ∈ WZ,i,j . By definition, there is a
taxon z ∈ Z with M = N<(z) \ Y , and z ̸∈ sources(F), and N<(z) ∩ (Z ∪ {xi, xj}) = ∅.
Consequently, as S is viable, there is a taxon x ∈ S ∩ N<(z) so that S ∩ M ̸= ∅. Hence, S∗ is
a solution of instance IZ,i,j of Hitting Set with Tree-Profits.

Running time. For a given Z ⊆ Y , we can compute the topological order x1, . . . , xn and the
set RY in O(n2) time. The iterations over xi and xj take O(n2) time. Observe, |WZ,i,j | ≤ |Z|.
By Lemma 5.4 checking whether IZ,i,j is a yes-instance takes O(3dn) time each. The overall
running time is O(6d · n3) time. ◀

5.3 Treewidth
Faller et al. [10] conjectured that s-PDD remains NP-hard even when the underlying graph
of the food-web is a tree. We disprove this conjecture by showing that s-PDD can be solved
in polynomial time on food-webs which are trees (assuming P ̸=NP). We even show a stronger
result: s-PDD is FPT with respect to the treewidth of the food-web.

▶ Theorem 5.6 (⋆). s-PDD can be solved in O(9twF · nk) time.

To show Theorem 5.6, we define a dynamic programming algorithm over a tree-decomposi-
tion of F . In each bag, we divide the taxa into three sets indicating that they a) are supposed
to go extinct, b) will be saved but still need prey, c) or will be saved without restrictions.
The algorithm is similar to the standard treewidth algorithm for Dominating Set [5].

6 Discussion

Several interesting questions remain open after our examination of PDD and s-PDD.
Arguably the most relevant one is whether PDD is FPT with respect to k, the size of the
solution. Also, it remains open whether PDD can be solved in polynomial time if each
connected component in the food-web contains at most two vertices.

C. Komusiewicz and J. Schestag 28:17

Clearly, further structural parameterizations can be considered. We only considered
structural parameters which consider the underlying graph. But parameters which also
consider the orientation of edges, such as the largest anti-chain, could give a better view on
the structure of the food-web than parameters which only consider the underlying graph.

Liebermann et al. [17] introduced and analyzed weighted food-webs. Such a weighted
model may provide a more realistic view of a species’ effect on and interaction with other
species [4]. Maximizing phylogenetic diversity with respect to a weighted food-web in which
one potentially needs to save several prey per predator would be an interesting generalization
for our work and has the special case in which one needs to save all prey for each predator.

Recent works consider the maximization of phylogenetic diversity in phylogenetic net-
works [29, 3, 14, 28] which may provide a more realistic evolutionary model of the considered
species. It would be interesting to study these problems also under ecological constraints.
Do the resulting problems become much harder than PDD? Finally, it has been reported
that maximizing phylogenetic diversity is only marginally better than selecting a random set
of species when it comes to maximizing the functional diversity of the surviving species [18].
The situation could be different, however, when ecological constraints are incorporated. Here,
investigating the following two questions seems fruitful: First, do randomly selected viable
species sets have a higher functional diversity than randomly selected species? Second,
do viable sets with maximal phylogenetic diversity have a higher functional diversity than
randomly selected viable sets?

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844–856,

1995. doi:10.1145/210332.210337.
2 Terry Beyer and Sandra Mitchell Hedetniemi. Constant time generation of rooted trees. SIAM

Journal on Computing, 9(4):706–712, 1980. doi:10.1137/0209055.
3 Magnus Bordewich, Charles Semple, and Kristina Wicke. On the complexity of optimising

variants of phylogenetic diversity on phylogenetic networks. Theoretical Computer Science,
917:66–80, 2022. doi:10.1016/J.TCS.2022.03.012.

4 Alyssa R. Cirtwill, Giulio Valentino Dalla Riva, Marilia P. Gaiarsa, Malyon D. Bimler,
E. Fernando Cagua, Camille Coux, and D. Matthias Dehling. A review of species role concepts
in food webs. Food Webs, 16:e00093, 2018.

5 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

6 Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
II: On completeness for W[1]. Theoretical Computer Science, 141(1-2):109–131, 1995. doi:
10.1016/0304-3975(94)00097-3.

7 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

8 Wolfgang Dvorák, Monika Henzinger, and David P. Williamson. Maximizing a submodu-
lar function with viability constraints. Algorithmica, 77(1):152–172, 2017. doi:10.1007/
S00453-015-0066-Y.

9 Daniel P. Faith. Conservation evaluation and Phylogenetic Diversity. Biological Conservation,
61(1):1–10, 1992.

10 Beáta Faller, Charles Semple, and Dominic Welsh. Optimizing Phylogenetic Diversity with
Ecological Constraints. Annals of Combinatorics, 15(2):255–266, 2011.

11 Pille Gerhold, James F Cahill Jr, Marten Winter, Igor V Bartish, and Andreas Prinzing.
Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better).
Functional Ecology, 29(5):600–614, 2015.

FSTTCS 2024

https://doi.org/10.1145/210332.210337
https://doi.org/10.1137/0209055
https://doi.org/10.1016/J.TCS.2022.03.012
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/S00453-015-0066-Y
https://doi.org/10.1007/S00453-015-0066-Y

28:18 Parameterized Complexity of PD with Ecological Constraints

12 Klaas Hartmann and Mike Steel. Maximizing phylogenetic diversity in biodiversity conservation:
Greedy solutions to the Noah’s Ark problem. Systematic Biology, 55(4):644–651, 2006.

13 Nick JB Isaac, Samuel T Turvey, Ben Collen, Carly Waterman, and Jonathan EM Baillie.
Mammals on the edge: conservation priorities based on threat and phylogeny. PloS one,
2(3):e296, 2007.

14 Mark Jones and Jannik Schestag. How can we maximize phylogenetic diversity? Parameterized
approaches for networks. In Proceedings of the 18th International Symposium on Parameterized
and Exact Computation (IPEC 2023), volume 285 of LIPIcs, pages 30:1–30:12. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.IPEC.2023.30.

15 Mark Jones and Jannik Schestag. Maximizing Phylogenetic Diversity under Time Pressure:
Planning with Extinctions Ahead. arXiv preprint, 2024. doi:10.48550/arXiv.2403.14217.

16 Christian Komusiewicz and Jannik Schestag. A Multivariate Complexity Analysis of the
Generalized Noah’s Ark Problem. In Proceedings of the 19th Cologne-Twente Workshop on
Graphs and Combinatorial Optimization (CTW ’23), volume 13 of AIRO, pages 109–121.
Springer, 2023.

17 Erez Lieberman, Christoph Hauert, and Martin A. Nowak. Evolutionary dynamics on graphs.
Nature, 433(7023):312–316, 2005.

18 Florent Mazel, Matthew W Pennell, Marc W Cadotte, Sandra Diaz, Giulio Valentino Dalla Riva,
Richard Grenyer, Fabien Leprieur, Arne O Mooers, David Mouillot, Caroline M Tucker,
et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nature
Communications, 9(1):2888, 2018.

19 Bui Quang Minh, Steffen Klaere, and Arndt von Haeseler. Phylogenetic Diversity within
Seconds. Systematic Biology, 55(5):769–773, October 2006.

20 Bojan Mohar. Face covers and the genus problem for apex graphs. Journal of Combinatorial
Theory, Series B, 82(1):102–117, 2001. doi:10.1006/JCTB.2000.2026.

21 Vincent Moulton, Charles Semple, and Mike Steel. Optimizing phylogenetic diversity under
constraints. Journal of Theoretical Biology, 246(1):186–194, 2007.

22 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal
derandomization. In Proceedings of the 36th Annual Symposium on Foundations of Computer
Science (FOCS ’95), pages 182–191. IEEE Computer Society, 1995. doi:10.1109/SFCS.1995.
492475.

23 Fabio Pardi and Nick Goldman. Species Choice for Comparative Genomics: Being Greedy
Works. PLoS Genetics, 1, 2005.

24 Fabio Pardi and Nick Goldman. Resource-aware taxon selection for maximizing phylogenetic
diversity. Systematic Biology, 56(3):431–444, 2007.

25 Peter W Shor. A new proof of Cayley’s formula for counting labeled trees. Journal of
Combinatorial Theory, Series A, 71(1):154–158, 1995.

26 Andreas Spillner, Binh T. Nguyen, and Vincent Moulton. Computing phylogenetic diversity
for split systems. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
5(2):235–244, 2008. doi:10.1109/TCBB.2007.70260.

27 Mike Steel. Phylogenetic Diversity and the greedy algorithm. Systematic Biology, 54(4):527–529,
2005.

28 Leo van Iersel, Mark Jones, Jannik Schestag, Celine Scornavacca, and Mathias Weller. Maximiz-
ing network phylogenetic diversity. arXiv preprint, 2024. doi:10.48550/arXiv.2405.01091.

29 Kristina Wicke and Mareike Fischer. Phylogenetic Diversity and biodiversity indices on
Phylogenetic Networks. Mathematical Biosciences, 298:80–90, 2018.

https://doi.org/10.4230/LIPICS.IPEC.2023.30
https://doi.org/10.48550/arXiv.2403.14217
https://doi.org/10.1006/JCTB.2000.2026
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1109/TCBB.2007.70260
https://doi.org/10.48550/arXiv.2405.01091

Matchings in Low-Arboricity Graphs in the
Dynamic Graph Stream Model
Christian Konrad #

University of Bristol, UK

Andrew McGregor #

University of Massachusetts Amherst, MA, USA

Rik Sengupta #

IBM Research, Cambridge, MA, USA
University of Massachusetts Amherst, MA, USA

Cuong Than #

University of Massachusetts Amherst, MA, USA

Abstract
We consider the problem of estimating the size of a maximum matching in low-arboricity graphs in
the dynamic graph stream model. In this setting, an algorithm with limited memory makes multiple
passes over a stream of edge insertions and deletions, resulting in a low-arboricity graph. Let n be
the number of vertices of the input graph, and α be its arboricity. We give the following results.

1. As our main result, we give a three-pass streaming algorithm that produces an (α + 2)(1 + ϵ)-
approximation and uses space O(ϵ−2 · α2 · n1/2 · log n). This result should be contrasted with
the Ω(α−5/2 · n1/2) space lower bound established by [Assadi et al., SODA’17] for one-pass
algorithms, showing that, for graphs of constant arboricity, the one-pass space lower bound can
be achieved in three passes (up to poly-logarithmic factors). Furthermore, we obtain a two-pass
algorithm that uses space O(ϵ−2 · α2 · n3/5 · log n).

2. We also give a (1 + ϵ)-approximation multi-pass algorithm, where the space used is parameterized
by an upper bound on the size of a largest matching. For example, using O(log log n) passes, the
space required is O(ϵ−1 · α2 · k · log n), where k denotes an upper bound on the size of a largest
matching.

Finally, we define a notion of arboricity in the context of matrices. This is a natural measure of
the sparsity of a matrix that is more nuanced than simply bounding the total number of nonzero
entries, but less restrictive than bounding the number of nonzero entries in each row and column.
For such matrices, we exploit our results on estimating matching size to present upper bounds for
the problem of rank estimation in the dynamic data stream model.

2012 ACM Subject Classification Theory of computation → Sketching and sampling

Keywords and phrases Data Streams, Graph Matching, Graph Arboricity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.29

Funding Christian Konrad: Supported by EPSRC New Investigator Award EP/V010611/1.
Andrew McGregor : Funded in part by NSF Award CCF 1934846.
Rik Sengupta: Funded in part by NSF Award CCF 1934846.
Cuong Than: Funded by NSF CAREER Award CCF 2237288, NSF Award CCF 2121952, and a
Google Research Scholar Award.

Acknowledgements We wish to thank Cameron Musco, Hung Le, Rajarshi Bhattacharjee, and David
Woodruff for a lot of preliminary discussions about this work.

© Christian Konrad, Andrew McGregor, Rik Sengupta, and Cuong Than;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 29; pp. 29:1–29:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christian.konrad@bristol.ac.uk
https://orcid.org/0000-0003-1802-4011
mailto:amcgrego@umass.edu
https://orcid.org/0000-0002-2124-160X
mailto:rsengupta@cs.umass.edu
https://orcid.org/0000-0002-9238-5408
mailto:cthan@cs.umass.edu
https://orcid.org/0000-0001-7350-331X
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model

1 Introduction

Streaming algorithms for graph problems have been studied for more than 25 years [25]. In
this setting, an algorithm performs one or more passes over the input graph and produces a
solution using as little space as possible.

Much of the development of the literature on graph streams has been driven by the
study of the Maximum Matching problem (see, e.g., [2–6,10–12,17–19,22–24,28–34,36,41]
for a non-comprehensive list of recent and early works). This problem was first addressed
by Feigenbaum et al. [21], and a large number of algorithms and impossibility results
that cover various aspects of the problem are known today, such as one-pass/multi-pass
algorithms, adversarial/random order streams, insertion-only/insertion-deletion streams, and
dense/sparse input graphs.

In this paper, we consider the size estimating variant of the problem, which we denote
by Matching Size Estimation (MSE). This is in contrast to the much better understood
objective of outputting the actual edges of a large matching. We address MSE in dynamic
or insertion-deletion streams, i.e., streams consisting of a sequence of edge insertions and
deletions. Our focus lies on sparse graphs as parameterized by the arboricity of the input
graph. The arboricity of a graph is the smallest1 integer α such that the edges of the graph
can be partitioned into α forests. Nash-Williams [39] showed that an equivalent definition
of the arboricity is α = maxS⊆V |e(S)|/(|S| − 1) where e(S) is the number of edges in the
induced subgraph G[S].

Chitnis et al. [14] were the first to study MSE in graphs of bounded arboricity in the
dynamic graph stream setting. They showed that there is a one-pass Õ(α · n4/5)-space
algorithm2 with approximation factor O(α). Cormode et al. [15] subsequently gave an
Õ(α2)-approximation algorithm using space Õ(α10/3 · n2/3), albeit under the restriction that
the length of the input stream is O(α · n). On the lower bound side, Assadi et al. [7] showed
that computing an α-approximation in a single pass requires space Ω(n1/2 · α−5/2). The
problem is thus wide open, even in the one-pass setting, and even for constant-arboricity
graphs.

1.1 Our Results
In this paper, we give the first multi-pass algorithms for MSE in the dynamic graph stream
setting, for graphs of arboricity α. We assume throughout that n, m, and α are known
in advance. All our algorithms succeed with high probability, i.e., they output the correct
matching size with probability 1− 1/poly(n). We observe at this juncture that none of our
algorithms require the assumption that the input stream length is bounded. We reiterate
that the one-pass algorithm by Cormode et al. [15], which uses space O(α10/3 ·n2/3), requires
this assumption.

Our main result is a three-pass O(α)-approximation algorithm that uses roughly
√

n

space3.

▶ Theorem 1. There exists a three-pass algorithm using O(ϵ−2 · α2 · n1/2 · log3 n) space that
returns an (α + 2)(1 + ϵ)-approximation for MSE with high probability.

1 We shall abuse terminology slightly and say the arboricity of a graph G is α as long as the smallest
integer is at most α.

2 We write Õ(.) to mean O(.) with poly-log dependencies on n suppressed.
3 Henceforth, we say specify the space use of the algorithms in terms of the number of words of memory

where a word may store O(log n) bits.

C. Konrad, A. McGregor, R. Sengupta, and C. Than 29:3

This result should be contrasted with the “
√

n-barrier” result established by Assadi et
al. [7], who showed that one-pass α-approximation algorithms for MSE in dynamic graph
streams on graphs of arboricity α require space Ω(

√
n/α2.5). While our algorithm uses

three passes, and, consequently, the lower bound from [7] does not apply in this setting, we
nevertheless show that the

√
n-barrier can be achieved at the expense of just two additional

passes. Interestingly, we note that no multi-pass O(α)-approximation dynamic streaming
algorithms are known for MSE that break the

√
n-barrier, even if significantly more passes

are allowed.
Next, we also give a new two-pass algorithm that requires less space than the best one-pass

algorithms known (e.g., [15]).

▶ Theorem 2. There exists a two-pass algorithm using O(ϵ−2 · α2 · n3/5 · log3 n) space that
returns an (α + 2)(1 + ϵ)-approximation for MSE with high probability.

We also show a (1+ϵ)-approximation multi-pass algorithm, in the case when the maximum
matching size is bounded by a given parameter k.

▶ Theorem 3. If the maximum matching size is upper bounded by k, there exists a O(ϵ−1 ·
α2 · n1/(2p−1) · k1−1/(2p−1) · log n) space, p-pass dynamic graph streaming algorithm that
returns a (1 + ϵ)-approximation for MSE with high probability. In particular, there exists a
O(log log n)-pass algorithm that uses space O(ϵ−1 · α2 · k · log n).

This result is similar in spirit to a result by Chitnis et al. [14], who showed that, in general
graphs, a matching of size k (if there is one) can be computed in the one-pass dynamic setting
using space Õ(k2); this result can also be obtained from the algorithm given by Assadi et
al. [8]. Phrased differently, given an upper bound k on the size of a largest matching, we can
compute one using space Õ(k2).

Lastly, as a more conceptual contribution, we introduce the notion of low-arboricity
matrices. We say that a matrix A has arboricity α if every t× t submatrix of A has at most
α · t nonzero entries. This generalizes many natural subclasses of sparse matrices (including
the adjacency matrices of low-arboricity graphs). We show that, given such a matrix A, we
can associate a bipartite graph GA of arboricity at most α with A, such that the rank of A

is within an α-factor of µ(GA), where µ(GA) denotes the size of a largest matching in GA.
Hence, using any β-approximation algorithm for estimating the size of a maximum matching
in graphs of arboricity α (where β might depend on α), we obtain an (α · β)-approximation
to its rank. In particular, our two-pass and three-pass O(α)-approximation algorithms
immediately yield O(α2)-approximation algorithms for rank approximation in matrices of
arboricity α.

1.2 Our Techniques
We will first discuss the ideas behind our (1 + ϵ)-approximation algorithm and our two-pass
algorithm. Our three-pass algorithm, which constitutes our main result, combines ideas from
these two algorithms.

(1+ϵ)-approximation Algorithm. Our (1+ϵ)-approximation algorithm works by iteratively
identifying all “high” degree vertices with Count-Sketch. In the ith pass (for i ≤ p− 1) we
identify a set of vertices Vi in the induced subgraph G[V −V1− . . .−Vi−1] using estimates of
their degrees. Removing the high-degree vertices discovered in previous passes and exploiting
properties of the degree sequence of low-arboricity graphs enable us to get increasingly
accurate estimates of the degrees in the remaining graph. In the final pass, we collect

FSTTCS 2024

29:4 Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model

all edges in G[V − V1 − . . . − Vp−1], along with a few edges incident to every vertex in
V1 ∪ . . . ∪ Vp−1. We are then able to argue that, by carefully setting the parameters of the
algorithm and appealing to a sparsification result by Solomon [40], this approach can be
used to obtain a (1 + ϵ)-approximation. The space used by the algorithm (in terms of the
number of edges) decreases at a rate which is doubly-exponential in p. This space/passes
trade-off is somewhat unusual (but not unprecedented, e.g., [1, 9]); it is more typical in the
data streams literature to see a singly-exponential or even just a polynomial trade-off.

2-pass Algorithm. Our 2-pass algorithm uses a result about the fractional matching due to
McGregor and Vorotnikova [37]. They showed that it is possible to set a weight for each edge
that just depends on the degrees of the endpoints of the edge, such that the total weight of
all edges yields an (α + 2)-approximation to the size of the maximum matching. This yields
a simple 2-pass algorithm: we sample edges uniformly (first pass), compute their weights
(second pass), and return an estimator based on these weights. This approach works well
when the matching is large. By combining this approach with ideas from the previous result,
we get our final algorithm, which uses small space regardless of the size of the matching.

3-pass Algorithm. Our 3-pass algorithm combines ideas from the other two algorithms. In
the first pass, we identify all vertices with degree roughly

√
n or higher. Let EH be the edges

that share an endpoint with these vertices, and let EL be the remaining edges. The approach
is to sparsify EH to produce E′

H in such a way that µ(E′
H ∪ EL) ≥ µ(EH ∪ EL)(1− ϵ). We

then use uniform sampling to construct a multiset E′
L of edges, and use this, along with the

weights of these edges, to estimate µ(E′
H ∪ EL) via the fractional matching approach.

1.3 Further Related Work: Matching Size Estimation in Graph Streams

Esfandiari et al. [20] were the first to consider the MSE problem in low-arboricity graphs
in the streaming model. They focused on the insertion-only setting, where edges can only
be inserted but not deleted, and gave a one-pass O(α)-approximation algorithm that uses
Õ(α ·n2/3) space. This result was significantly improved by Cormode et al. [15], who gave an
algorithm with the same approximation guarantee, that uses only O(α · log2 n) space. This
was further improved, in terms of both the approximation factor and space, by McGregor
and Vorotnikova [38].

At the heart of many of the algorithms for approximating the matching size in low-
arboricity graphs lie structural lemmas that relate the maximum matching size to a function
of the degree sequence of the graph in question. McGregor and Vorotnikova [37] gave such a
characterization which gave rise to improved approximation guarantees over those established
by Esfandiari et al. See also [26] for a different structural result. In particular, they obtained
a (5 + ϵ)-approximation for planar graphs, improving over a (24 + ϵ)-approximation guarantee
established in [20].

Assadi et al. [7] gave various upper and lower bounds for approximating the matching
size in general graphs. They showed that there is a one-pass Õ(n2/α4)-space algorithm
that approximates the size of a matching within a factor of α in the dynamic graph stream
setting. They also gave a lower bound, showing that space n2−O(ϵ) is needed to obtain a
(1 + ϵ)-approximation factor.

C. Konrad, A. McGregor, R. Sengupta, and C. Than 29:5

1.4 Outline
In Section 2, we present known results, including a result due to McGregor and Vorot-
nikova [37] that links the matching size in low-arboricity graphs to the degree sequence of
the graph, as well as a matching-size preserving sparsification result by Solomon [40]. We
will need both of these in this paper. Subsequently, in Section 3, we give all our algorithmic
results. In Section 4, we introduce the notion of low-arboricity matrices and show how
their ranks can be approximated using algorithms for approximating the matching size in
low-arboricity graphs. Finally, we conclude in Section 5 with some open problems.

2 Preliminaries

Notation and Definitions. Given a graph G = (V, E), for each vertex u ∈ V , we denote by
deg(u) the degree of u. The size of the maximum matching of G is denoted by µ(G). We
also use µ(E′) to denote the maximum matching among any set E′ of edges. Throughout
this paper, we let n and m denote the sizes of the sets V and E respectively, and α denote
the arboricity of G. It is well-known that m ≤ α · n.

Algorithmic Primitives. We will use the following results throughout the remaining sections,
to simplify our proofs.

▶ Theorem 4 (Algorithmic Primitives [13, 16, 27]). There exist single-pass dynamic graph
stream algorithms for:
1. Uniformly sampling edges: The algorithm uses O(log2 n) space. This is a special case of

ℓ0-sampling [27].
2. Estimating degrees: We can compute estimates d̃eg such that with probability at least

1− 1/n:
a. For all u ∈ V : deg(u) ≤ d̃eg(u) ≤ deg(u) + ∥dw-tail∥1/w

b. For all u ∈ V : |d̃eg(u)− deg(u)| ≤ ∥dw-tail∥2/
√

w

where dw-tail is the vector of degrees with the largest w entries replaced by 0. The first
guarantee is achieved by CountMin sketch [16] and the second by CountSketch [13]. Both
algorithms use O(w log n) space.

Structural Results. We will make repeated use of the following structural results for low-
arboricity graphs. The first theorem effectively shows that there is a fractional matching
where (a) the weight of each edge is just a function of the degrees of the endpoints of that
edge, and (b) the total weight of the fractional matching is still a good approximation to the
maximum-cardinality matching.

▶ Theorem 5 (McGregor and Vorotnikova [37]). Given a graph G = (V, E) with arboricity at
least α, let:

w(G) =
∑

(u,v)∈E

wu,v, where wu,v = min
(

1
deg(u) ,

1
deg(v) ,

1
α + 1

)
.

Then, we have:

µ(G) ≤ (α + 1)w(G) ≤ µ(G) · γ, where γ =

α + 2 if α is odd
(α+3)(α+1)

α+2 if α is even
α + 1 if G is bipartite.

FSTTCS 2024

29:6 Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model

Algorithm 1 A p-pass algorithm for approximating matching size.

1. G1 ← G and s = m1/(2p−1) · (2k)1−1/(2p−1), where k is an upper bound on µ(G).
2. For i = 1 to p− 1:

a. Pass i: Use CountSketch to compute an estimate d̃eg(u) of the degree of each vertex u ∈ Gi.
Let Vi = {u ∈ Gi : d̃eg(u) ≥ 0.75 · τi+1}, where τ2 =

√
m/s and for i ≥ 2, we have

τi+1 = m1/2i

· (2k/s)1−1/2i−1
. Also let:

Gi+1 := G[V − V1 − V2 − . . .− Vi]

3. Pass p: Store all edges in Gp, and call this set EL. For each u ∈ V1 ∪ . . . ∪ Vp−1, store Θ(α/ϵ)
incident edges to u. Call these edges E′

H .
4. Output: µ(EL ∩ E′

H).

Note that, in all cases, γ ≤ α + 2. Furthermore, if h is the number of vertices of degree at
least α + 2, and s is the number of edges whose endpoints have degree strictly less than α + 2,
then µ(G) ≤ h + s ≤ (α + 2) · µ(G).

The next theorem demonstrates that, in a low-arboricity graph, it is possible to remove
most of the edges incident to high degree vertices without significantly reducing the size of
the maximum-cardinality matching.

▶ Theorem 6 (Solomon [40]). Fix a graph G with arboricity α, and a positive number ϵ > 0.
For each vertex u ∈ V (G), mark Θ(α/ϵ) arbitrary edges incident to u. Let G′ be the graph
containing edges marked by both ends. Then, µ(G′) ≤ µ(G) ≤ (1 + ϵ) · µ(G′).

3 Graph Results

3.1 (1 + ϵ)-Approximation
Consider Algorithm 1. The main idea behind the algorithm is to exploit the fact that, if G

has low arboricity and µ(G) is “small”, then G has only a “small” number of “high”-degree
vertices. If we can remove the high-degree vertices, then the remaining graph has significantly
fewer edges, by the following lemma.

▶ Lemma 7. Any graph G with maximum degree ∆ has at most (2∆− 1) · µ(G) < 2∆ · µ(G)
edges.

Proof. This follows because the endpoints of a maximal matching is a vertex cover. ◀

If we can decrease the total number of edges, we can estimate the degrees in the remaining
graph with greater accuracy. The next lemma quantifies this, where the proof exploits
properties of the degree sequence for low-arboricity graphs. Repeating this process for p− 1
passes allows us to iteratively “peel off” high-degree vertices, until we are left with a graph
that is sufficiently sparse such that it can be stored explicitly.

▶ Lemma 8. Let s ≥ (α + 2) · µ(G). Using O(α · s · log n) space in the dynamic graph
streaming model, given a graph with m edges, with high probability we can identify a subset
of vertices that includes all vertices of degree ≥

√
m/s, and no vertex of degree < 0.5

√
m/s.

C. Konrad, A. McGregor, R. Sengupta, and C. Than 29:7

Proof. We use CountSketch to find all vertices of degree more than
√

m/s. Let d1 ≥ d2 ≥
d3 ≥ . . . ≥ dn be the degree sequence of G. Observe that since s ≥ (α + 2) ·µ(G), Theorem 5
implies s is greater than the total number of vertices with degree at least α + 2. Thus, all
degrees di with i > s are at most α + 1.

Hence, the ℓ2
2 of the tail t = (ds+1, ds+2, . . . , dn) is at most ∥t∥∞ · ∥t∥1 ≤ m(α +1). Using

CountSketch with space O(α · s · log n), we can compute the degree of each vertex with
additive error:

ℓ2((ds+1, ds+2, . . . , dn))√
α · s

= O
(√

m/s
)

.

With the proper choice of the suppressed constant, we obtain an additive error of 0.25
√

m/s.
For each vertex u, let d̃eg(u) be the degree of u estimated by CountSketch. Let V ′ =
{u : d̃eg(u) ≥ 0.75

√
m/s}. For any u ∈ V ′, we have deg(u) ≥ 0.75

√
m/s− 0.25

√
m/s =

0.5
√

m/s. Furthermore, for every vertex u such that deg(u) ≥
√

m/s, we have d̃eg(u) ≥√
m/s− 0.25

√
m/s = 0.75

√
m/s, implying that u ∈ V ′. ◀

This leads to the following theorem.

▶ Theorem 3. If the maximum matching size is upper bounded by k, there exists a O(ϵ−1 ·
α2 · n1/(2p−1) · k1−1/(2p−1) · log n) space, p-pass dynamic graph streaming algorithm that
returns a (1 + ϵ)-approximation for MSE with high probability. In particular, there exists a
O(log log n)-pass algorithm that uses space O(ϵ−1 · α2 · k · log n).

Proof. Consider the multi-pass algorithm where in pass i, we find a subset Vi of vertices
in Gi = G[V − V1 − V2 − . . . − Vi−1] that includes all vertices of degree at least ∆i+1 =√

mi/s, where mi is the number of edges in Gi (see Algorithm 1). By Lemma 7, we have
mi ≤ 2∆i · µ(Gi) ≤ 2∆i · k, since the maximum degree of Gi is less than ∆i. Hence:

∆i+1 =
√

mi/s ≤ ∆1/2
i (2k/s)1/2

≤ ∆1/4
i−1(2k/s)1/2+1/4

≤ . . .

≤ ∆1/2i−1

2 (2k/s)1−1/2i−1

≤ m1/2i

(2k)1−1/2i−1
/s1−1/2i

,

since ∆2 ≤
√

m/s. In particular, if s = m1/(2p−1)(2k)1−1/(2p−1), then ∆p ≤ s/(2k).
Hence, Gp has at most 2(s/(2k)) ·k = s edges, which can be stored in memory. We collect

O(α/ϵ) edges incident to all vertices in V1 ∪ . . . ∪ Vp−1, and all edges between the remaining
vertices. Let GS be the new graph. The total number of edges in GS is at most the number
of edges in Gp, plus (α/ϵ) ·

∑p−1
i=1 |Vi|, which is at most α(α + 2) ·µ(G)/ϵ, since by Theorem 5,

the total number of vertices with degree higher than α + 2 is at most (α + 2) · µ(G).
We then have that µ(GS) ≤ µ(G) ≤ (1 + ϵ) ·µ(GS). It follows from Theorem 6 that GS is

a supergraph of some graph G′ satisfying µ(G′) ≥ µ(G)/(1 + ϵ). Thus, µ(GS) ≥ µ(G)/(1 + ϵ).
On the other hand, since GS is a subgraph of G, we obtain µ(GS) ≤ µ(G), as desired. ◀

3.2 O(α)-Approximation, Two Passes, and Õ(m3/5) Space
Consider Algorithm 2. The analysis to establish the following theorem is a relatively
straightforward application of the Chernoff bound.

FSTTCS 2024

29:8 Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model

Algorithm 2 A 2-pass algorithm for approximating matching size.

1. First Pass: Sample t := 3mϵ−2(α+1) log(2n)/k edges with replacement. Let E′ be the (multi-)set
of edges sampled.

2. Second Pass: For each (u, v) ∈ E′, compute wu,v = min
(

1
deg(u) , 1

deg(v) , 1
α+1

)
.

3. Output: W = (m/t) ·X, where X =
∑

e∈E′ we.

▶ Theorem 9. If µ(G) ≥ k, there exists a O(ϵ−2 · α ·mk−1 · log3 n) space, 2-pass dynamic
graph streaming algorithm that returns a (α+2)(1+ ϵ)-approximation of µ(G) with probability
at least 1− 1/n.

Proof. Note that E[X] = t · w(G)/m. Since each edge sampled is drawn independently and
each 0 ≤ wu,v ≤ 1, we can apply the Chernoff bound to conclude:

Pr [|W − w(G)| ≥ ϵ · w(G)] = Pr
[∣∣∣∣X − w(G) · t

m

∣∣∣∣ ≥ ϵ · w(G) · t
m

]
≤ 2 · exp

(
−ϵ2 · w(G) · t

3m

)
.

Theorem 5 implies w(G) ≥ k/(α + 1). Hence, setting t = 3mϵ−2(α + 1) · log(2n)/k ensures
Pr[|W − w(G)| ≥ ϵ · w(G)] ≤ 1/n. The result follows from Theorem 5. The space bound
follows from the space complexity of edge sampling (Theorem 4). ◀

We can then combine the approach above with the result in Theorem 3 to yield a two-pass
algorithm whose space complexity does not depend on upper or lower bounds on µ(G).
Specifically:
1. We run the algorithm in Theorem 3 with p = 2 passes, and k = m2/5, ϵ = 1. This uses

O(α2 · n3/5 · log n) space and returns a 2-approximation if µ(G) ≤ m2/5.
2. In parallel, we run Algorithm 2 with t = 12mϵ−2(α + 1) log(2n)/m2/5. This uses

O(ϵ−2 · α ·m3/5 · log3 n) space and returns an (α + 2)(1 + ϵ)-approximation if w(G) ≥
m2/5/(α + 1) · 1/4.

3. To determine whether to output the result from the first algorithm or the second algorithm,
we consider the variable X =

∑
e∈E′ we defined in Algorithm 2. Note E[X] = w(G) · t/m

and by an application of Chernoff bounds, if w(G) ≥ m2/5/(α + 1), then we have:

Pr[X ≤ θ] ≤ exp(−m2/5/(α+1)·t/m·(1/3)) ≤ 1/n , where θ = m2/5/(α+1)·(1/2)·t/m

whereas if w(G) ≤ m2/5/(α + 1) · (1/4), then we have:

Pr[X ≥ θ] ≤ exp(−m2/5/(α + 1) · t/m · (1/12)) ≤ 1/n .

Consider returning the result from the first algorithm if X < θ, and the result from
the second algorithm otherwise. If w(G) ≤ m2/5/(α + 1) · 1/4 then (a) with probability
1− 1/n we return the output of the first algorithm, and (b) µ(G) ≤ m2/5 by appealing
to Theorem 5. Hence, we achieve a 2-approximation with high probability. If w(G) ≥
m2/5/(α + 1), then with probability 1− 1/n we return the output of the second algorithm
and hence we achieve a (α + 2)(1 + ϵ)-approximation. If (1/4) ·m2/5/(α + 1) < w(G) <

m2/5/(α+1), then the approximation factor from either algorithm is at most (α+2)(1+ϵ).

▶ Theorem 2. There exists a two-pass algorithm using O(ϵ−2 · α2 · n3/5 · log3 n) space that
returns an (α + 2)(1 + ϵ)-approximation for MSE with high probability.

C. Konrad, A. McGregor, R. Sengupta, and C. Than 29:9

Algorithm 3 A 3-pass algorithm for approximating matching size.

1. First Pass: Use CountMin Sketch with O(α · n1/2 · log n) space to find approximations of all
degrees, such that with high probability, for all u ∈ V :

deg(u) ≤ d̃eg(u) ≤ deg(u) +
√

n/2 .

Let H = {v : d̃eg(u) ≥
√

n}, and note that H contains all vertices with degree at least
√

n and
no vertices with degree strictly less than

√
n/2. Let EH be the set of edges incident to a vertex

in H.
2. Second Pass: Let GL = (V \H, EL) be the graph formed by removing all vertices in H.

Compute mL, the number of edges in GL.
Sample t = 3ϵ−2 · n1/2 · ln(2n) edges E′

L from GL with replacement via ℓ0-sampling. Note
that E′

L could be a multiset.
For each v ∈ H, pick O(α/ϵ) incident edges. Let E′

H be the chosen edges.
3. Third Pass: For each edge (u, v) ∈ E′

L ∪ E′
H , compute

w′
u,v = min(1/ deg′(u), 1/ deg′(v), 1/(α + 1)) ,

where deg′(u) is the number of incident edges in E′
H ∪ EL

4. Output: w1 + w2 where w1 =
∑

e∈E′
H

w′
e and w2 = mL

t

∑
e∈E′

L
w′

e.

3.3 O(α)-Approximation, Three Passes, and Õ(m1/2) Space
Consider Algorithm 3. The analysis proceeds as follows. After the first pass, we have
partitioned the vertices into H and V \H, such that all vertices in H have degree at least√

n/2, and all vertices in V \ H have degree at most
√

n. We will argue via Theorem 6
that maintaining a few edges incident to each vertex in H (these edges are called E′

H in the
algorithm) decreases the size of the maximum matching by at most a factor of (1− ϵ). We
then approximate the matching in the resulting graph via fractional matchings. Let A be
the weight of the fractional matching on edges incident to H, and B be the weight of the
other edges. We can compute A exactly (this will be returned as w1), and we can estimate
B by sampling edges that are not incident to vertices in H. The next lemma shows that
our estimate for B is sufficiently accurate. The proof exploits that the weights of the edges
contributing to B are all at least 1/

√
n.

▶ Lemma 10. Pr[|w2 −B| ≥ ϵB] ≤ 1/n, where B =
∑

e∈EL
w′

e.

Proof. Let ∆L be the maximum degree of a vertex in V \H. The definition of H ensures
that ∆L <

√
n. The weight of each edge in EL is between 1/∆L and 1, and the average is

B/mL. Let X be the sum of w′
e for each e ∈ E′

L. Hence:

E[X] = tB/mL ≥ t/∆L .

By an application of the Chernoff bound, we have:

Pr[|X − E[X]| ≥ ϵ · E[X]] ≤ 2 · exp
(
−ϵ2 · E[X]

3

)
≤ 2 · exp

(
−ϵ2 · t

3∆L

)
.

Hence, setting t = 3ϵ−2 · n1/2 · ln(2n) makes the failure probability 1/n. ◀

▶ Theorem 1. There exists a three-pass algorithm using O(ϵ−2 · α2 · n1/2 · log3 n) space that
returns an (α + 2)(1 + ϵ)-approximation for MSE with high probability.

FSTTCS 2024

29:10 Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model

Proof. By Theorem 6, we have µ(E)/(1 + ϵ) ≤ µ(E′
H ∪ EL) ≤ µ(E). Hence, by Theorem 5:

µ(E)/(1 + ϵ) ≤ (α + 1) · w′(E′
H ∪ EL) ≤ (α + 2) · µ(E) .

Note that w′(E′
H ∪ E′

L) = w1 + w2, and w(E′
H ∪ EL) = w1 + B. But, by Lemma 10, with

probability at least 1− 1/n, we have (1− ϵ) ·B ≤ w2 ≤ (1 + ϵ) ·B. Therefore:

µ(E) · 1− ϵ

1 + ϵ
≤ w1 + w2 ≤ (α + 2) · (1 + ϵ) · µ(E) .

Reparameterizing ϵ ← ϵ/4 gives the claimed result. The space used by the algorithm is
O(|H| · α/ϵ + α · n1/2 log n + t log2 n). Note that |H| ≤ 2m/

√
n, and so the space is as

claimed. ◀

4 Estimating Rank of Sparse Matrices

In this section, we consider the problem of estimating the rank of a matrix. It is well-known
(e.g., see [35]) that the rank of the Tutte matrix4 of a graph G = (V, E) is exactly 2 · µ(G).
It is therefore natural to look for other connections between rank and matching size.

Given an arbitrary matrix A, we next define a bipartite graph GA that captures the
structure of the nonzero entries of A.

▶ Definition 11. Given an arbitrary n1×n2 matrix A define a bipartite graph GA = (L, R, E)
where L = [n1], R = [n2] and (i, j) ∈ E if A[i, j] ̸= 0. Note that a matching in GA corresponds
to a set of nonzero entries in M such that no two of these entries fall in the same column or
row of A.

Unfortunately it is too much to hope that rank(A) and µ(GA) are always closely related.
To see this, suppose that A is an n× n matrix of all 1s. Then, rank(A) = 1, but µ(GA) = n.
However, we show a significantly closer relationship for a certain family of sparse matrices
which, by analogy to graph terminology, we call α-arboricity matrices.

▶ Definition 12. A matrix is said to have arboricity α if every t× t submatrix has at most
α · t nonzero entries.

Note that the class of matrices of arboricity α is much larger than the class of matrices
which have a bounded number of nonzero entries in every row and column. However, it is
more restrictive than bounding the number of nonzero elements; an n× n matrix with at
most α · n nonzero entries does not necessarily have arboricity α. For example, let A be an
n× n matrix which has all zeros, except for a

√
α · n×

√
α · n submatrix of 1s; note that A

has only α · n nonzero entries, but does not have arboricity β for any β <
√

α · n.

▷ Claim 13. If G is a graph with arboricity α, its adjacency matrix AG has arboricity at
most 2α.

Proof. Consider an arbitrary t×t submatrix A′
G of AG, consisting of t rows and t columns from

AG. Suppose the indices of the common rows and columns are I = {i1, . . . , is}. In addition,
A′

G has rows rj1 , . . . , rjs′ and columns cj′
1
, . . . , cj′

s′
from AG, such that J = {j1, . . . , js′} and

J ′ = {j′
1, . . . , j′

s′} are disjoint. Note that I, J , and J ′ correspond to disjoint subsets of

4 Recall that the Tutte matrix TG of a graph G = (V, E) is the skew-symmetric matrix where T [i, j] = 0
if (i, j) ̸∈ E; T [i, j] = xi,j if i < j and (i, j) ∈ E; and T [i, j] = −xi,j if i > j and (i, j) ∈ E.

C. Konrad, A. McGregor, R. Sengupta, and C. Than 29:11

vertices of G, and so A′
G is a submatrix of the adjacency matrix for the induced subgraph

G[I∪J ∪J ′], which has at most 2α ·(|I|+ |J |+ |J ′|) nonzero entries. Each edge between I and
J (or between I and J ′) corresponds to exactly one nonzero entry in the submatrix. None
of the edges in G[J ∪ J ′] shows up. Finally, each edge in G[I] corresponds to two nonzero
entries (corresponding to the standard adjacency submatrix of AG). Altogether, counting
the weights of each of these relevant pairwise disjoint submatrices separately, this gives us
α · (2|I|+ |J |+ |J ′|) nonzero entries in A′

G, which is at most α(|I|+ |J |+ |I|+ |J ′|) = 2α · t,
as claimed. ◁

▶ Theorem 14. For any matrix A, we have µ(GA)/α ≤ rank(A) ≤ µ(GA).

Proof. To prove µ(GA) ≥ rank(A), let T be the Tutte matrix of GA. Then, from [35], we
know that rank(T) = 2·µ(GA). Furthermore, rank(T) ≥ 2·rank(A). Hence, rank(A) ≤ µ(GA),
as claimed.

To prove µ(GA)/α ≤ rank(A), note that we may permute the rows and columns of A

such that the first µ(GA) diagonal entries of A are all nonzero. Let F be the top left k × k

submatrix where k = µ(GA). Note rank(F) ≤ rank(A). To lower bound the rank of F , first
note that the total number of non-diagonal entries that are nonzero is at most (α− 1) · k,
and so, at least one of F or F T has (α− 1) · k/2 or fewer nonzero entries below the diagonal.
Assume this is the case for F (if not, we can apply the rest of the argument to F T rather
than F). We will show that F contains a (k/α)× (k/α) principal submatrix where all the
diagonal entries are nonzero and all entries below the diagonal are nonzero.

The process for finding this submatrix is as follows. We maintain a set D ⊆ [k], where
j ∈ D means that the jth row and jth column will not be included in the submatrix. D is
initially empty. We say that the jth column and row are marked if j ∈ D. Let nzi be the
total number of nonzero entries in the ith row and column of this submatrix that are below
the diagonal and are not in marked rows/columns , i.e.:

nzi = |Si|, where Si = {j < i : A[i, j] ̸= 0, j ̸∈ D} ∪ {j > i : A[j, i] ̸= 0, j ̸∈ D} .

Note that
∑

i̸∈D nzi ≤ (α− 1) · (k − |D|), because F has arboricity α, and the sum counts
each element twice. Hence, min(nzi) ≤ (α − 1). Let i∗ = argmini:nzi>0nzi and update
D ← D ∪ Si∗ . We repeat this process until all nonzero entries under the diagonal are in
marked rows/columns. In each iteration, |D| increases by at most α − 1, but there is at
least one more value i such that nzi = 0. Hence, at the end of the algorithm, we have
k − |D| ≥ k/α. ◀

Therefore, all our matching algorithms (and all previous results on MSE) also give
algorithms for estimating the rank of low-arboricity matrices, with an additional multiplicative
factor of α. Note that for rank approximation, we assume the dynamic model where at each
time step, some entry of the matrix is set to a nonzero value (if it was currently zero) or set
to zero (if it was currently nonzero).

The following example shows that the above bound is tight up to constants. And
furthermore, any approximation via w(G) loses an O(α2) factor.

▶ Example 15. Let A and B be an n× n binary matrices, where

A[i, j] =
{

1 if i ≤ α or j ≤ α

0 otherwise
and B[i, j] =

{
1 if i ≤ α or j ≤ α or i = j

0 otherwise.

FSTTCS 2024

29:12 Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model

First, note that rank(A) = 2, rank(B) = n − α + 1, µ(GA) = 2α, and µ(GB) = n. This
establishes that the quantity rank(M)/µ(GM) can vary by an Ω(α) factor.

w(GA) = α2

n
+ 2(n− α)α

n
≈ 2α and w(GB) = α2

n
+ 2(n− α)α

n
+ (n− α)

α + 1 ≈ n

α
.

Hence, rank(M)/w(GM) can vary by an Ω(α2) factor.

We end by noting that for a matrix A, the value of µ(GA) does not depend on the the
values of the nonzero entries in A. This immediately implies the following curious corollary.

▶ Corollary 16. Changing the nonzero values in a matrix of arboricity α can change its rank
by at most a factor of α.

5 Conclusion

In this paper, we gave new multi-pass streaming algorithms for MSE in dynamic graph streams
on graphs of arboricity α. As our main result, we showed that an O(α)-approximation can
be achieved in three passes with space O(ϵ−2 · α2 · n1/2 · log n), and we also gave a two-pass
algorithm with a similar approximation guarantee that uses space O(ϵ−2 · α2 · n3/5 · log n).
Furthermore, we designed a multi-pass algorithm with approximation factor (1 + ϵ) that
operates based on an upper bound k on the maximum matching size. For example, it can give
an O(log log n)-pass algorithm that uses space O(ϵ−1 · α2 · k · log n). Lastly, we introduced
the notion of low-arboricity matrices and argued that matching algorithms for low-arboricity
graphs can be used to approximate the rank of low-arboricity matrices with an O(α) loss in
the approximation factor.

We conclude with two open problems. First, we are particularly intrigued by whether the√
n-barrier established by Assadi et al. [7] for one-pass algorithms persists when multiple

passes over the input are allowed. For instance, is there a constant pass algorithm with
approximation factor O(α), whose space dependency on n is o(

√
n)? Second, can we tighten

the bounds in the one-pass setting?

References
1 Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.

Correlation clustering in data streams. Algorithmica, 83(7):1980–2017, 2021. doi:10.1007/
S00453-021-00816-9.

2 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with
application to the maximum matching problem. Inf. Comput., 222:59–79, 2013. doi:10.1016/
j.ic.2012.10.006.

3 Sepehr Assadi. A two-pass (conditional) lower bound for semi-streaming maximum matching.
In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 - 12, 2022, pages 708–742. SIAM, 2022. doi:10.1137/1.9781611977073.32.

4 Sepehr Assadi. A simple (1 - ϵ)-approximation semi-streaming algorithm for maximum
(weighted) matching. In Merav Parter and Seth Pettie, editors, 2024 Symposium on Simplicity
in Algorithms, SOSA 2024, Alexandria, VA, USA, January 8-10, 2024, pages 337–354. SIAM,
2024. doi:10.1137/1.9781611977936.31.

5 Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li. On regularity lemma and
barriers in streaming and dynamic matching. In Barna Saha and Rocco A. Servedio, editors,
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023,
Orlando, FL, USA, June 20-23, 2023, pages 131–144. ACM, 2023. doi:10.1145/3564246.
3585110.

https://doi.org/10.1007/S00453-021-00816-9
https://doi.org/10.1007/S00453-021-00816-9
https://doi.org/10.1016/j.ic.2012.10.006
https://doi.org/10.1016/j.ic.2012.10.006
https://doi.org/10.1137/1.9781611977073.32
https://doi.org/10.1137/1.9781611977936.31
https://doi.org/10.1145/3564246.3585110
https://doi.org/10.1145/3564246.3585110

C. Konrad, A. McGregor, R. Sengupta, and C. Than 29:13

6 Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Semi-streaming
bipartite matching in fewer passes and optimal space. In Joseph (Seffi) Naor and Niv
Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 627–669.
SIAM, 2022. doi:10.1137/1.9781611977073.29.

7 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph
streams. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 1723–1742. SIAM, 2017. doi:10.1137/1.9781611974782.113.

8 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in dy-
namic graph streams and the simultaneous communication model. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pages 1345–1364, 2016. doi:10.1137/1.9781611974331.ch93.

9 Sepehr Assadi, Christian Konrad, Kheeran K. Naidu, and Janani Sundaresan. O(log log n)
passes is optimal for semi-streaming maximal independent set. In Bojan Mohar, Igor Shinkar,
and Ryan O’Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 847–858. ACM,
2024. doi:10.1145/3618260.3649763.

10 Sepehr Assadi and Vihan Shah. An asymptotically optimal algorithm for maximum matching
in dynamic streams. In Mark Braverman, editor, 13th Innovations in Theoretical Computer
Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume
215 of LIPIcs, pages 9:1–9:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPICS.ITCS.2022.9.

11 Sepehr Assadi and Janani Sundaresan. Hidden permutations to the rescue: Multi-pass
streaming lower bounds for approximate matchings. In 64th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023,
pages 909–932. IEEE, 2023. doi:10.1109/FOCS57990.2023.00058.

12 Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in dynamic
data streams. In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece,
September 14-16, 2015, Proceedings, pages 263–274, 2015. doi:10.1007/978-3-662-48350-3_
23.

13 M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In
ICALP, pages 693–703, 2002.

14 Rajesh Hemant Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi,
Andrew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling
with applications to dynamic graph streams. CoRR, abs/1505.01731, 2015. URL: http:
//arxiv.org/abs/1505.01731, arXiv:1505.01731.

15 Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan. The
sparse awakens: Streaming algorithms for matching size estimation in sparse graphs. In Kirk
Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms, ESA
2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 29:1–29:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.ESA.2017.29.

16 Graham Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams. In
ACM Principles of Database Systems, pages 271–282, 2005. doi:10.1145/1065167.1065201.

17 Michael Crouch and Daniel S. Stubbs. Improved streaming algorithms for weighted matching,
via unweighted matching. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona,
Spain, pages 96–104, 2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.96.

18 Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-
window model. In Algorithms - ESA 2013 - 21st Annual European Symposium, Sophia
Antipolis, France, September 2-4, 2013. Proceedings, pages 337–348, 2013. doi:10.1007/
978-3-642-40450-4_29.

FSTTCS 2024

https://doi.org/10.1137/1.9781611977073.29
https://doi.org/10.1137/1.9781611974782.113
https://doi.org/10.1137/1.9781611974331.ch93
https://doi.org/10.1145/3618260.3649763
https://doi.org/10.4230/LIPICS.ITCS.2022.9
https://doi.org/10.1109/FOCS57990.2023.00058
https://doi.org/10.1007/978-3-662-48350-3_23
https://doi.org/10.1007/978-3-662-48350-3_23
http://arxiv.org/abs/1505.01731
http://arxiv.org/abs/1505.01731
https://arxiv.org/abs/1505.01731
https://doi.org/10.4230/LIPICS.ESA.2017.29
https://doi.org/10.1145/1065167.1065201
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
https://doi.org/10.1007/978-3-642-40450-4_29
https://doi.org/10.1007/978-3-642-40450-4_29

29:14 Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model

19 Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation guarantees
for weighted matching in the semi-streaming model. SIAM J. Discrete Math., 25(3):1251–1265,
2011. doi:10.1137/100801901.

20 Hossein Esfandiari, Mohammad Taghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh,
and Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs
and beyond. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1217–1233, 2015.
doi:10.1137/1.9781611973730.81.

21 J. Feigenbaum, S. Kannan, McGregor, S. Suri, and J. Zhang. On graph problems in a semi-
streaming model. Theoretical Computer Science, 348(2-3):207–216, 2005. doi:10.1016/J.TCS.
2005.09.013.

22 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2):207–216, 2005.
doi:10.1016/j.tcs.2005.09.013.

23 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, pages 468–485, 2012. URL: http://portal.acm.org/citation.cfm?id=2095157&CFID=
63838676&CFTOKEN=79617016, doi:10.1137/1.9781611973099.41.

24 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph
processing. In Proceedings of the 28th Conference on Computational Complexity, CCC 2013,
Palo Alto, California, USA, 5-7 June, 2013, pages 287–298, 2013. doi:10.1109/CCC.2013.37.

25 Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on data
streams. In James M. Abello and Jeffrey Scott Vitter, editors, External Memory Algorithms,
Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, May 20-22, 1998,
volume 50 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 107–118. DIMACS/AMS, 1998. doi:10.1090/DIMACS/050/05.

26 Hossein Jowhari. An estimator for matching size in low arboricity graphs with two applications.
J. Comb. Optim., 45(1):21, 2023. doi:10.1007/S10878-022-00929-Z.

27 Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp samplers, finding
duplicates in streams, and related problems. In Proceedings of the Thirtieth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’11, pages 49–58, New
York, NY, USA, 2011. Association for Computing Machinery. doi:10.1145/1989284.1989289.

28 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697, 2013. doi:10.1137/1.
9781611973105.121.

29 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 734–751,
2014. doi:10.1137/1.9781611973402.55.

30 Christian Konrad. Maximum matching in turnstile streams. In Algorithms - ESA 2015 -
23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages
840–852, 2015. doi:10.1007/978-3-662-48350-3_70.

31 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques - 15th International Workshop, APPROX 2012, and 16th Interna-
tional Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings,
pages 231–242, 2012. doi:10.1007/978-3-642-32512-0_20.

https://doi.org/10.1137/100801901
https://doi.org/10.1137/1.9781611973730.81
https://doi.org/10.1016/J.TCS.2005.09.013
https://doi.org/10.1016/J.TCS.2005.09.013
https://doi.org/10.1016/j.tcs.2005.09.013
http://portal.acm.org/citation.cfm?id=2095157&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095157&CFID=63838676&CFTOKEN=79617016
https://doi.org/10.1137/1.9781611973099.41
https://doi.org/10.1109/CCC.2013.37
https://doi.org/10.1090/DIMACS/050/05
https://doi.org/10.1007/S10878-022-00929-Z
https://doi.org/10.1145/1989284.1989289
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.1137/1.9781611973402.55
https://doi.org/10.1007/978-3-662-48350-3_70
https://doi.org/10.1007/978-3-642-32512-0_20

C. Konrad, A. McGregor, R. Sengupta, and C. Than 29:15

32 Christian Konrad and Kheeran K. Naidu. On two-pass streaming algorithms for maximum
bipartite matching. In Mary Wootters and Laura Sanità, editors, Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021,
August 16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference),
volume 207 of LIPIcs, pages 19:1–19:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPICS.APPROX/RANDOM.2021.19.

33 Christian Konrad and Kheeran K. Naidu. An unconditional lower bound for two-pass streaming
algorithms for maximum matching approximation. In David P. Woodruff, editor, Proceedings of
the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA,
January 7-10, 2024, pages 2881–2899. SIAM, 2024. doi:10.1137/1.9781611977912.102.

34 Christian Konrad, Kheeran K. Naidu, and Arun Steward. Maximum matching via maximal
matching queries. In Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha
Kanté, editors, 40th International Symposium on Theoretical Aspects of Computer Science,
STACS 2023, March 7-9, 2023, Hamburg, Germany, volume 254 of LIPIcs, pages 41:1–41:22.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.STACS.2023.
41.

35 László Lovász. On determinants, matchings, and random algorithms. In Lothar Budach,
editor, Fundamentals of Computation Theory, FCT 1979, Proceedings of the Conference on
Algebraic, Arthmetic, and Categorial Methods in Computation Theory, Berlin/Wendisch-Rietz,
Germany, September 17-21, 1979, pages 565–574. Akademie-Verlag, Berlin, 1979.

36 Andrew McGregor. Finding graph matchings in data streams. APPROX-RANDOM, pages
170–181, 2005. doi:10.1007/11538462_15.

37 Andrew McGregor and Sofya Vorotnikova. Planar matching in streams revisited. In Klaus
Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans, editors, Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2016, September 7-9, 2016, Paris, France, volume 60 of LIPIcs, pages 17:1–17:12. Schloss Dag-
stuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPICS.APPROX-RANDOM.2016.17.

38 Andrew McGregor and Sofya Vorotnikova. A simple, space-efficient, streaming algorithm for
matchings in low arboricity graphs. In Raimund Seidel, editor, 1st Symposium on Simplicity
in Algorithms, SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, volume 61 of
OASIcs, pages 14:1–14:4. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/OASICS.SOSA.2018.14.

39 C. St.J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of the London
Mathematical Society, s1-36(1):445–450, 1961. doi:10.1112/jlms/s1-36.1.445.

40 Shay Solomon. Local algorithms for bounded degree sparsifiers in sparse graphs. In Anna R.
Karlin, editor, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018,
January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 52:1–52:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.ITCS.2018.52.

41 Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica, 62(1-2):1–20,
2012. doi:10.1007/s00453-010-9438-5.

FSTTCS 2024

https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2021.19
https://doi.org/10.1137/1.9781611977912.102
https://doi.org/10.4230/LIPICS.STACS.2023.41
https://doi.org/10.4230/LIPICS.STACS.2023.41
https://doi.org/10.1007/11538462_15
https://doi.org/10.4230/LIPICS.APPROX-RANDOM.2016.17
https://doi.org/10.4230/OASICS.SOSA.2018.14
https://doi.org/10.4230/OASICS.SOSA.2018.14
https://doi.org/10.1112/jlms/s1-36.1.445
https://doi.org/10.4230/LIPICS.ITCS.2018.52
https://doi.org/10.1007/s00453-010-9438-5

Improved Linearly Ordered Colorings of
Hypergraphs via SDP Rounding
Anand Louis #

Indian Institute of Science, Bengaluru, India

Alantha Newman #

Université Grenoble Alpes, France

Arka Ray #

Indian Institute of Science, Bengaluru, India

Abstract
We consider the problem of linearly ordered (LO) coloring of hypergraphs. A hypergraph has
an LO coloring if there is a vertex coloring, using a set of ordered colors, so that (i) no edge is
monochromatic, and (ii) each edge has a unique maximum color. It is an open question as to whether
or not a 2-LO colorable 3-uniform hypergraph can be LO colored with 3 colors in polynomial time.
Nakajima and Živný recently gave a polynomial-time algorithm to color such hypergraphs with
Õ(n1/3) colors and asked if SDP methods can be used directly to obtain improved bounds. Our
main result is to show how to use SDP-based rounding methods to produce an LO coloring with
Õ(n1/5) colors for such hypergraphs. We show how to reduce the problem to cases with highly
structured SDP solutions, which we call balanced hypergraphs. Then we discuss how to apply classic
SDP-rounding tools in this case to obtain improved bounds.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases hypergraph coloring, SDP rounding, promise constraint satisfaction problems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.30

Related Version Full Version: https://arxiv.org/abs/2405.00427 [21]

Funding Anand Louis: Supported in part by SERB Award CRG/2023/002896 and the Walmart
Center for Tech Excellence at IISc (CSR Grant WMGT-23-0001).
Arka Ray: Supported in part by the Walmart Center for Tech Excellence at IISc (CSR Grant
WMGT-23-0001).

1 Introduction

Approximate graph coloring is a well-studied “promise” optimization problem. Given a
simple graph G = (V, E) that is promised to be k-colorable, the goal is to find a coloring
of G using the minimum number of colors. A (proper) coloring is an assignment of colors,
which can be represented by positive integers, to the vertices of G so that for each edge ij in
G, the vertices i and j are assigned different colors. The most popular case of this problem
is when the input graph is promised to be 3-colorable. Even with this very strong promise,
the gap between the upper and lower bounds are quite large: the number of colors used by
the state-of-the-art algorithm is Õ

(
n0.19996) [19], while it is NP-hard to color a 3-colorable

graph with 5 colors [4]. There is also super constant hardness conditioned on assumptions
related to the Unique Games Conjecture [11]. More generally, when we are promised that
the graph G is k-colorable, it is NP-hard to color it using

(
k

⌊k/2⌋
)

− 1 colors [25]. Regarding
upper bounds, we note that almost all algorithms for coloring 3-colorable graphs use some
combination of semidefinite programming (SDP) and combinatorial tools [17, 2, 19].

© Anand Louis, Alantha Newman, and Arka Ray;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 30; pp. 30:1–30:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anandl@iisc.ac.in
https://orcid.org/0000-0002-4727-9219
mailto:alantha.newman@grenoble-inp.fr
mailto:arkaray@iisc.ac.in
https://orcid.org/0000-0002-2428-6504
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.30
https://arxiv.org/abs/2405.00427
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Improved Linearly Ordered Colorings of Hypergraphs via SDP Rounding

Approximate hypergraph coloring is a natural generalization of the above problem to
hypergraphs. Here, we want to assign each vertex a color such that there are no monochro-
matic edges, while using the minimum number of colors. In the case of hypergraph coloring,
we know that for every pair of constants ℓ ⩾ k ⩾ 2, it is NP-hard to ℓ-color a k-colorable
3-uniform hypergraph [12]. Even in the special case, when the 3-uniform hypergraph is
promised to be 2-colorable, there is a large gap between the best algorithm, which uses at
most Õ

(
n1/5) colors [20, 1, 10] and the aforementioned (super constant) lower bound.

In this paper, we study a variant of the hypergraph coloring problem known as linearly
ordered coloring, introduced in several different contexts by [18, 9, 3]. A linearly ordered
(LO) k-coloring of an r-uniform hypergraph assigns an integer from {1, . . . , k} to every vertex
so that, in each edge in the hypergraph, there is a unique vertex assigned the maximum
color in the (multi)set of colors for that edge. Recently, there has been a renewed interest in
studying this problem. This is because this problem constitutes a gap in the understanding
of the complexity of an important class of problems called promise constraint satisfaction
problems (PCSPs). To elaborate, [13, 7] classified the complexity of all (symmetric) PCSPs
on the binary alphabet, showing that these problems are either polynomial-time solvable or
NP-complete. Subsequently, [3] gave a complete classification for PCSPs of the form: given a
2-colorable 3-uniform hypergraph, find a 3-coloring. Here, the notion of “coloring” can have
several definitions. As highlighted by [3], the only PCSP of this type whose complexity is
unresolved is that of determining whether a 3-uniform hypergraph is 2-LO colorable or is
not even 3-LO colorable. In contrast, it was recently shown that it is NP-complete to decide
if a 3-uniform hypergraph is 3-LO colorable or not even 4-LO colorable [14].

The work [22] addresses the corresponding optimization problem by giving an algorithm
to compute an LO coloring using at most Õ

(
n1/3) colors for a 2-LO colorable 3-uniform

hypergraph. [22] leave open the question of finding an LO coloring for such a hypergraph
using fewer colors. Moreover, they state that they do not know how to directly use SDP-
based methods1 and remark that SDP-based approaches seem “less suited for LO colorings”.
In this paper, one of our main contributions is to show how to use SDP relaxations to
give an improved bound for coloring such hypergraphs. Our main result improves this
bound significantly by using at most Õ

(
n1/5) colors to LO color a 2-LO colorable 3-uniform

hypergraph.

▶ Theorem 1. Let H be a 2-LO colorable 3-uniform hypergraph on n vertices. Then there
exists a (randomized) polynomial-time algorithm that finds an LO coloring of H using
Õ
(
n1/5) colors.

The SDP relaxation that we use is similar to the natural SDP used in the case of 2-
colorable 3-uniform hypergraphs [20]. In fact, the upper bound on the number of colors used
in Theorem 1 is the same as the upper bound given by [20] to color 2-colorable 3-uniform
hypergraphs. It is the same SDP used by [8] who show that a straightforward hyperplane
rounding algorithm yields a solution to the PCSP (1-in-3-SAT, NAE-3-SAT), in which we
are given a satisfiable instance of the first problem and we want to find a feasible solution for
the second. Notice that a satisfiable (1-in-3-SAT) instance on all positive literals is exactly
a 2-LO colorable 3-uniform hypergraph.

1 However, they do use [15] which is an indirect use of SDP-based methods.

A. Louis, A. Newman, and A. Ray 30:3

General Framework for (Hyper)Graph Coloring

Most algorithms for coloring graphs and hypergraphs proceed iteratively, producing a partial
coloring of the remaining (uncolored) vertices at each step. This was formalized by [5],
following [23]. The goal is to color a significant number of vertices with few colors in each
step, ensuring that the number of iterations and therefore, the overall number of colors used,
is small. Typically, in each step, the method used to color the vertices is chosen according to
the degree of the graph (or hypergraph) induced on the remaining vertices. In particular, if
the induced graph (or hypergraph) has a low degree, then most algorithms use an SDP-based
method to find a large independent set, which can be assigned a single color [17, 6, 2]. The
algorithm for LO-coloring presented in [22], as well as ours, uses this general framework,
except that in [22], they did not use an SDP-based method directly, and instead used [15] to
find a large independent set. The improved upper bound on the number of colors output by
our algorithm comes from using an SDP and rounding methods tailored to LO coloring.

Overview of our SDP-Based Approach

As noted, we first solve a natural SDP relaxation for 2-LO coloring. Then our rounding
proceeds in two steps. In the first step we look at the projection of the vectors to a particular
special vector (the vector v∅ in Proposition 2) from the solution of the SDP, which signifies the
color that is unique in all edges in the promised 2-LO coloring. For each of the three vertices
in an edge, all three of the corresponding vectors can have a projection onto this special
vector with roughly the same value (a balanced edge), or they can have very different values
(an unbalanced edge). It is also possible to classify vertices into balanced and unbalanced
(see Definition 4 for formal definitions) so that balanced edges contain only balanced vertices.
We use a combinatorial rounding procedure to color all the unbalanced vertices with a
small number of colors, leaving only a balanced (sub)hypergraph to be colored. Since this
number of colors is much smaller than the bound stated in Theorem 1, this can be viewed
as a reduction of the problem to the balanced case. To the best of our knowledge, this
rounding method is not present in previous works on LO-coloring and thus, this tool can
be considered a main contribution of this paper. We note that [20] showed that the vectors
can be “bucketed” with respect to their projection onto a special vector, and used a simple
argument to show that there is a large bucket on which they can focus. Our approach allows
us to focus on a single bucket containing vectors with projection ≈ −1/3 with the special
vector, which have useful geometric properties.

In the second step we color the hypergraph containing the balanced edges. In this step,
we produce (following [22]) an “even” independent set or an “odd” independent set at each
round. An even independent set is one which intersects each hyperedge two or zero times,
while an odd independent set intersects each hyperedge one or zero times. To find an even
independent set, we use the same approach used by [22]. To find an odd independent set, we
use a variant of the standard threshold rounding for a coloring SDP [15, 20]. As in [20] rather
than use the vectors output by the SDP solution, we use a modified set of vectors, which
have properties useful to obtain better bounds from the threshold rounding. Specifically,
the set consists of the normalized projections of the vectors from the SDP solution onto
the space orthogonal to the special vector; in the balanced case, the special vector seems to
provide no information that is useful to construct a coloring. Combining all the colorings
requires some technical care, since we need to always maintain an LO coloring, but it can be
done and some of the work has already been done in [22].

FSTTCS 2024

30:4 Improved Linearly Ordered Colorings of Hypergraphs via SDP Rounding

Update on Independent and Subsequent Work

After the initial conference submission of our paper, the work [16] appeared on the arXiv.
The second version appeared after we posted our paper to arXiv and pointed out that in fact
we do not need to consider the balanced case. Indeed, the observation in Section 3 of [16]
can be interpreted as giving an alternative and better SDP rounding in the balanced case,
directly reducing the balanced case to the unbalanced case. We discuss this more at the end
of Section 4.

2 Tools for LO Coloring and Proof of the Main Theorem

In this section, we give an overview of our approach to color a 2-LO colorable 3-uniform
hypergraph H = (V, E) with few colors. Following [22], we assume that the input hypergraph
H is a linear hypergraph, which is defined as follows.

▶ Definition 2. A 3-uniform hypergraph is linear if every pair of edges intersects in at most
one vertex.

This is not a restriction because we can construct an equivalent 3-uniform hypergraph.

▶ Proposition 3 (Proposition 3 in [22]). There is a polynomial-time algorithm that, if given
an 2-LO colorable 3- uniform hypergraph H, constructs an 2-LO colorable linear 3-uniform
hypergraph H ′ with no more vertices than H such that, if given an LO k-colouring of H ′,
one can compute in polynomial time an LO k-colouring of H.

Given an 2-LO colorable 3-uniform hypergraph H = (V, E), one can consider LO coloring
it with {−1, +1}, with the natural ordering. Then we have xa + xb + xc = −1 for each edge
{a, b, c} ∈ E, where xa is the color assigned to vertex a ∈ V . Relaxing this constraint to a
vector program we get SDP 2.2 SDP

va + vb + vc = −v∅ ∀ {a, b, c} ∈ E, (1)

∥va∥2 = 1 ∀a ∈ V ∪ {∅} . (2)

For any a ∈ V , we now define γa
def= ⟨va, v∅⟩. The values {γa}a∈V might not be integral

and could even be perfectly balanced (i.e., γa = γb = γc = − 1
3 for an edge {a, b, c} ∈ E).

Hence, these values might not contain any information as to how the colors should be assigned
to the vertices, and they might not even reveal information as to which vertex in an edge
should receive the largest color. However, when all edges contain balanced vertices (i.e.,
γv ≈ − 1

3 for all vertices), threshold rounding will be used. Formally, we have the following
definition.

▶ Definition 4. For ε > 0, we say a vertex v ∈ V is ε-balanced if γv ∈ [−1/3 − ε, −1/3 + ε].

For the rest of this paper, we fix ε = 1/n100, where n is the number of vertices in the
(fixed) hypergraph that we are trying to LO color. This is an abuse of notation, but simplifies
our presentation. If a vertex is not ε-balanced, we say that it is unbalanced. If all vertices of
a hypergraph H are ε-balanced, we say that H is an ε-balanced hypergraph.

We observe that there is a combinatorial method to color all unbalanced vertices using
relatively few colors. This rounding method uses a bisection-like strategy on {γa}a∈V to
color the unbalanced vertices and outputs a partial LO coloring, which we define as follows.

2 Observe that SDP 2 can equivalently be written in terms of dot products using the following constraints:
(i) ⟨va + vb + vc + v∅, va + vb + vc + v∅⟩ = 0 ∀{a, b, c} ∈ E, and (ii) ⟨va, va⟩ = 1 ∀a ∈ V ∪ {∅}.

A. Louis, A. Newman, and A. Ray 30:5

▶ Definition 5. A partial LO coloring of a 3-uniform hypergraph H = (V, E) is a coloring
of a subset of vertices V1 ⊆ V using the set of colors C such that for each edge e ∈ E, the set
e ∩ V1 has a unique maximum color from C.

The next lemma is proved in Section 3.

▶ Lemma 6. Let H = (V, E) be a 2-LO colorable 3-uniform hypergraph and let ε > 0. Then
there exists a polynomial-time algorithm that computes a partial LO coloring of H using
O
(
log
(1

ε

))
colors that colors all unbalanced vertices.

We remark that the previous lemma can be viewed as a reduction from LO coloring in
2-LO colorable 3-uniform hypergraphs to LO coloring in 2-LO colorable 3-uniform balanced
hypergraphs. To formalize this, let VU denote the vertices that are colored in a partial LO
coloring produced via Lemma 6. Let VB = V \ VU . Notice that VB contains only ε-balanced
vertices, while VU contains all the unbalanced vertices but might also contain some ε-balanced
vertices. Thus, the induced hypergraph HB = (VB , E(VB)) is a balanced hypergraph.3 We
now show that we can combine a partial LO coloring for H = (V, E) which colors VU and an
LO coloring for HB = (VB , E(VB)) to obtain an LO coloring of H.

▶ Proposition 7. Let H = (VB ∪ VU , E) be a 2-LO colorable 3-uniform hypergraphs, let
ε > 0. Let cU be a partial LO coloring of H using colors from the set CU that only assigns
colors to VU and let cB be an LO coloring of HB = (VB , E(VB)) using colors from the set
CB. Then we can obtain an LO coloring of H using at most |CU | + |CB | colors.

Proof. We assume that the colors in the set CU are larger than the colors in the set CB.
We want to show that the given assignment of colors from CU for vertex set VU and CB for
vertex set VB taken together forms a proper LO coloring of H.

Any edge e ∈ E with |e ∩ VB | = 3 or |e ∩ VU | = 3 has a unique maximum color by
assumption since cB is an LO coloring of HB and cU is a partial LO coloring of H . Suppose
|e ∩ VU | = 2. Then, by definition of partial LO coloring, it has a unique maximum in CU

and will have a unique maximum in the output coloring. If |e ∩ VU | = 1, then e has a unique
maximum color, because all colors in CU are larger than the colors in CB . ◀

Thus, if our goal is to LO color 2-LO colorable 3-uniform hypergraphs with a polynomial
number of colors, we can focus on LO coloring balanced 2-LO colorable 3-uniform hypergraphs.
The next corollary follows from Lemma 6 and Proposition 7.

▶ Corollary 8. Let α ∈ (0, 1). Suppose we can LO color an ε-balanced 2-LO colorable 3-
uniform hypergraph H with Õ(nα) colors. Then we can LO color a 2-LO colorable 3-uniform
hypergraph with Õ(nα) colors.

Now we can focus on balanced hypergraphs. We capitalize on the promised structure to
prove the next lemma, in which we show that we can find an LO coloring for a balanced
hypergraph, in particular for HB = (VB , E(VB)).

▶ Lemma 9. Let HB = (VB , EB) be an ε-balanced 2-LO colorable 3-uniform hypergraph.
Then there exists a polynomial-time algorithm that computes an LO coloring using at most
Õ(|VB |1/5) colors.

3 Note that for a hypergraph H = (V, E) and S ⊂ V , we say H ′ = (S, E(S)) contains the edges induced
on S, meaning an edge belongs to H ′ if all of its vertices belong to S. In other words, an induced
subhypergraph of a 3-uniform must also be 3-uniform (or empty). Notice that S can contain vertices
that do not belong to any edge in E(S). These vertices can receive any color in a valid LO coloring of
H ′.

FSTTCS 2024

30:6 Improved Linearly Ordered Colorings of Hypergraphs via SDP Rounding

We recall our main theorem.

▶ Theorem 1. Let H be a 2-LO colorable 3-uniform hypergraph on n vertices. Then there
exists a (randomized) polynomial-time algorithm that finds an LO coloring of H using
Õ
(
n1/5) colors.

The proof of Theorem 1 follows from Corollary 8 and Lemma 9. It remains to prove
Lemma 9, which we discuss next.

Coloring by Finding Independent Sets
In many graph coloring algorithms, we “make progress” by finding an independent set and
coloring it with a new color [5, 17, 6, 20, 22]. When LO coloring a hypergraph, a similar idea
may be used, but we need to consider certain types of independent sets. With the standard
notion of independent set in a 3-uniform hypergraph, in which the independent set intersects
each edge of the hypergraph at most twice, it is not clear how to obtain a coloring in which
each edge contains a unique maximum color. Thus, for a 3-uniform hypergraph H = (V, E),
following the approach of [22], we consider the following two types of independent sets.4

Odd Independent Set: We call S ⊆ V an odd independent set if |S ∩ e| ⩽ 1 for each edge
e ∈ E.

Even Independent Set: We call S ⊆ V an even independent set if |S ∩ e| ∈ {0, 2} for each
edge e ∈ E.

In Lemma 10, we show that we can make progress by coloring an odd independent set
with a “large” color or by coloring an even independent set with a “small” color. This is
formally stated in a proposition from [22]. Since we modify the presentation slightly to
ensure compatibility with our framework, we include the statement and the proof here for
the sake of completeness.

▶ Lemma 10 (Corollary of Proposition 5 in [22]). Let H = (V, E) be a hypergraph, let S1 ⊆ V

be an odd independent set and let S2 ⊆ V be an even independent set. Let H1 = (V1, E1),
H2 = (V2, E2) be the hypergraphs induced by V1 = V \ S1 and V2 = V \ S2, respectively. Then,
1. An LO coloring of H1 using a set of colors C1 can be extended to an LO coloring of H by

assigning a color c1 that is strictly larger than all the colors in C1 to the vertices in S1.
2. Analogously, an LO coloring of H2 using a set of colors C2 can be extended to an LO

coloring of H by assigning c2 to the vertices in S2 where c2 is strictly smaller than all
the colors in C2.

Proof. In the proposed extension of the coloring from H1 to H, there is no edge e ∈ E1
where the maximum color in e occurs more than once in e; otherwise, the promised coloring
of H1 using C1 is not valid. Consider any edge {u, v, w} ∈ E \ E1. By definition of S1, we
have |{u, v, w} ∩ S1| ⩽ 1. Note that |{u, v, w} ∩ S1| ̸= 0 as {u, v, w} ̸∈ E1. Therefore, we
must have |{u, v, w} ∩ S1| = 1. Without loss of generality, assume that u ∈ S1 and v, w ̸∈ S1.
Then, in the proposed coloring, c1 is only used for u, while v, w are colored using some
color(s) from C1. So, c1 is the largest color in {u, v, w} and occurs exactly once. Hence, for
every edge, the corresponding (multi)set of colors has a unique maximum, and we conclude
that the proposed coloring is a proper LO coloring of H.

4 We remark that what [22] refer to as an “independent set” is what we refer to here as an “odd independent
set”.

A. Louis, A. Newman, and A. Ray 30:7

Similarly, in the proposed extension of coloring from H2 to H there is no edge e ∈ E2
where the maximum color in e occurs more than once in e. Again, consider any edge
{u, v, w} ∈ E \ E2. In this case, we have |{u, v, w} ∩ S2| = 2. Without loss of generality,
assume that u, v ∈ S2 and w ̸∈ S2. Then, in the proposed coloring, c2 is only used on u, v,
while w is colored using some color c from C2. So, c is the largest color in {u, v, w} and
it occurs exactly once. Hence, for every edge, the corresponding (multi)set of color has a
unique maximum, and the proposed coloring is therefore a proper LO coloring of H. ◀

The following proposition is essentially Lemma 1 in [5] and follows in a straight-forward
manner from Lemma 10.

▶ Proposition 11 (Proposition 5 in [22]). Let H = (V, E) be an ε-balanced, 2-LO colorable
3-uniform linear hypergraph on m vertices. Suppose we can find an odd independent set of
size at least f(m) in H or an even independent set of size at least f(m) in H (where f is
nearly-polynomial5), then there exists a polynomial-time algorithm that colors any ε-balanced,
2-LO colorable 3-uniform linear hypergraph on n vertices with n/f(n) colors.

Following this standard notion of “making progress” from [5], we simply need to show
that we can find an even or an odd independent set of size at least f(m) in a 2-LO colorable
3-uniform ε-balanced hypergraph on m vertices. This will imply that we can color HB with
|VB |/f(VB) colors. We will show that we can set f(m) = Θ̃(m4/5), which will yield the
bound in Lemma 9.

As is typical, our coloring algorithm makes progress using two different methods and
chooses between the two methods depending on the degree. In the high-degree case, we use
the method from [22] to find a large even independent set. The method to find a large even
independent from [22] requires the input hypergraph to be a linear hypergraph, which, as
discussed previously, we can assume by Proposition 3.

▶ Proposition 12 (Proposition 11 in [22]). Let H = (V, E) be a linear 2-LO colorable 3-
uniform hypergraph and ∆ be such that |E| = Ω(∆ |V |). Then there is a polynomial-time
algorithm that finds a even independent set of size at least Ω(

√
|V |∆).

In the low-degree case, we show how to use an SDP based rounding method to find a
large odd independent set. Here, we capitalize on the assumption that our input hypergraph
is ε-balanced to obtain an improvement over the analogous lemma from [22]. In Section 4,
we prove Lemma 13.

▶ Lemma 13. Let H = (V, E) be a 1
|V |100 -balanced 2-LO colorable 3-uniform hypergraph

H = (V, E) with average degree at most ∆. Then there exists a (randomized) polynomial-time
algorithm to compute an odd independent set of size at least Ω

(
|V |

∆1/3(ln ∆)3/2

)
.

Finally, we are now ready to prove Lemma 9.

Proof of Lemma 9. We need to show that on a linear 2-LO-colorable 3-uniform ε-balanced
hypergraph on m vertices, we can always find either an even independent set or an odd
independent set of size at least f(m) = Ω̃(m4/5). By Lemma 10, this will imply we can color
HB with |VB |/f(|VB |) colors.

5 Definition 1 in [5]. A function f(m) = mαpolylogm for α > 0 is nearly-polynomial.

FSTTCS 2024

30:8 Improved Linearly Ordered Colorings of Hypergraphs via SDP Rounding

Take ∆ be a parameter (fixed later) so that we say we are in the high-degree regime if
the average degree is higher than ∆. Otherwise, we say that we are in the low-degree regime.
In the high degree-regime, use Proposition 12 to find an even independent set S of size at
least Ω(

√
m∆). In the low-degree regime, we invoke Lemma 13 to find an odd independent

set S of size at least Ω̃(m/∆1/3). Setting ∆ = m3/5 implies that the independent set we find
has size at least m4/5. Finally, by Proposition 11 we have the desired bound on the number
of colors used. ◀

3 Combinatorial Rounding for Unbalanced Vertices

In this section, we prove Lemma 6. In other words, we show that for any ε > 0, Algorithm 1
outputs a partial LO coloring using O

(
log
(1

ε

))
colors so that all the unbalanced vertices are

assigned a color.

▶ Lemma 6. Let H = (V, E) be a 2-LO colorable 3-uniform hypergraph and let ε > 0. Then
there exists a polynomial-time algorithm that computes a partial LO coloring of H using
O
(
log
(1

ε

))
colors that colors all unbalanced vertices.

To prove this lemma, we give an algorithm, which given the value {γv} for each vertex v

(from SDP 2), is then combinatorial. The algorithm also takes as input the value of ε, which
is the parameter we use to define ε-balanced.

Algorithm 1 Combinatorial Rounding.

Input: A 2-LO colorable 3-uniform hypergraph H = (V, E), ε > 0, the values {γa} for all
a ∈ V and set C of linearly ordered colors.
Output: A partial LO coloring of all unbalanced vertices in V .
1. Set j := 0, ℓ0 := −1, u0 := 1, I0 := [ℓ0, u0].
2. While Ij ⊈ [−1/3 − ε, −1/3 + ε] do:

a. If j is even then set Ij+1 to the lower half of Ij , if j is odd then set Ij+1 to be the
upper half of Ij . More precisely, set

ℓj+1 :=
{

ℓj+uj

2 j is odd
ℓj otherwise

uj+1 :=
{

ℓj+uj

2 j is even
uj otherwise

and set Ij+1 := [ℓj+1, uj+1].
b. Set Sj+1 := {a ∈ V |γa ∈ Ij \ Ij+1} and color Sj+1 using the largest unused color from

C.
c. Set j := j + 1.

We will use the following observation.

▶ Observation 14. For any {a, b, c} ∈ E, we have γa + γb + γc = −1.

Proof. From constraint (1), we get γa + γb + γc = ⟨va + vb + vc, v∅⟩ = ⟨−v∅, v∅⟩ = −1. ◀

On a high level, the algorithm partitions the interval [−1, 1] and assigns colors to vertices
depending on where their corresponding γa values fall in this interval. For example, in the
first iteration of the algorithm, we set S1 to contain all vertices whose γa values fall into
the interval (0, 1]. Notice that by Observation 14, at most one vertex from an edge will
qualify. Now, all remaining vertices have γa values in the interval [−1, 0]. Next, we consider

A. Louis, A. Newman, and A. Ray 30:9

all vertices whose γa values fall into the interval [−1, −1/2). Again, an edge with all three
values in [−1, 0] can not have more than one vertex with γa value in [−1, −1/2), and so on.
We now formally analyze the algorithm.

▶ Lemma 15. For even j ⩾ 2, the interval [ℓj , uj] is[
−(2j−1 − 2)/3 − 1

2j−1 ,
−(2j−1 − 2)/3

2j−1

]
.

For odd j ⩾ 1, the interval [ℓj , uj] is[
−(2j−1 − 1)/3 − 1

2j−1 ,
−(2j−1 − 1)/3

2j−1

]
.

Proof. For j = 1 the interval is [−1, 0] and j = 2 the interval is [−1/2, 0]. For odd j, we have

ℓj+1 = ℓj + uj

2 = −(2j−1 − 1)/3 − 1 − (2j−1 − 1)/3
2j

= −(2j − 2)/3 − 1
2j

,

and

uj+1 = −(2j−1 − 1)/3
2j−1 = −(2j − 2)/3

2j
.

For even j, we have

uj+1 = ℓj + uj

2 = −(2j−1 − 2)/3 − 1 − (2j−1 − 2)/3
2j

= −(2j − 1)/3
2j

,

and

ℓj+1 = −(2j−1 − 2)/3 − 1
2j−1 = −(2j − 4)/3 − 2

2j
= (−2j + 1 − 3)/3

2j
= −(2j − 1)/3 − 1

2j
. ◀

As a consequence of Lemma 15, we immediately get a bound on the number of iterations
in form of Corollary 16.

▶ Corollary 16. For j ⩾ log (4
3ε), we have Ij ⊆ [−1/3 − ε, −1/3 + ε].

Proof. By Lemma 15 we have the following bounds on Ij . For even j ⩾ 2, the interval
Ij = [ℓj , uj] is[

−1
3 − 1

3 · 2j−1 , −1
3 + 2

3 · 2j−1

]
.

For odd j ⩾ 1, the interval Ij = [ℓj , uj] is[
−1

3 − 2
3 · 2j−1 , −1

3 + 1
3 · 2j−1

]
.

Setting ε = 1
3·2j−2 = 4

3·2j , we have Ij ⊆ [− 1
3 − ε, − 1

3 + ε]. Thus, j = log (4
3ε). ◀

In Lemma 17 we show that in each iteration Algorithm 1 colors an odd independent set.
Lemma 17 also follows from Lemma 15.

▶ Lemma 17. For each j ⩾ 0, let Hj = (Sj , Ej) be a hypergraph with Ej = {e ∈ E : e ⊆ Sj}.
Then for any j ⩾ 0, the set Sj+1 is an odd independent set (i.e., we have |Sj+1 ∩ e| ⩽ 1 for
any e ∈ Ej).

FSTTCS 2024

30:10 Improved Linearly Ordered Colorings of Hypergraphs via SDP Rounding

Proof. Let {a, b, c} ∈ Ej . Suppose a, b ∈ Sj+1. If j is odd, then γa, γb ∈ [ℓj , ℓj+1). Therefore,
we get γa + γb < 2ℓj+1. This implies, by Observation 14, γc > −1 − 2ℓj+1. Therefore, we
have

γc > −1 − 2ℓj+1 = −1 − 2
(

−(2j − 2)/3 − 1
2j

)
= −1 + 2

(
(2j − 2)/3 + 1

2j

)
= −3 · 2j + 2(2j − 2) + 6

3 · 2j
= −2j + 2

3 · 2j
= uj ,

which is a contradiction since γc ∈ [ℓj , uj].
Similarly, if j is even, then γa, γb ∈ (uj+1, uj] as a, b ∈ Sj+1. Therefore, we get γa + γb >

2uj+1. This implies, by Observation 14, γc < −1 − 2uj+1. Therefore, we have

γc < −1 − 2uj+1 = −3 · 2j + 2 · 2j − 2
3 · 2j

= −2j − 2
3 · 2j

= ℓj ,

which is again a contradiction to the fact that γc ∈ [ℓj , uj]. ◀

Proof of Lemma 6. By Corollary 16, Algorithm 1 runs for O
(
log
(1

ε

))
iterations. In each

iteration, it uses exactly one color, which yields the stated bound on the number of colors
used. To show that the output coloring is a partial LO coloring, we apply Lemma 17, which
states that each color corresponds to an odd independent set.

Now, we need to show that any edge with at least one colored vertex will have a unique
maximum color. Consider such an edge e = {a, b, c}. If only one vertex in e is colored,
then we are done. First, assume exactly two vertices in e (say a, b) were colored. Let a be
colored in the ja-th iteration and b be colored in the jb-th iteration. Assume (without loss of
generality) that ja ⩾ jb. Then, by Lemma 17 we have ja ̸= jb (i.e., ja > jb). As the color
used in the iteration j is the j-th largest color in C (by a simple induction) color assigned to
a is strictly larger than the color assigned to b. Finally, if all the vertices, a, b, c were colored
at iterations ja ⩾ jb ⩾ jc, respectively. Then, again by the same arguments we have ja > jb

and ja > jc, so the maximum color is assigned to only a. ◀

4 SDP Rounding for Balanced Hypergraphs

In this section we show that Algorithm 2 outputs an odd independent set in an ε-balanced
2-LO colorable 3-uniform hypergraph HB = (VB , EB). Thus, we will prove Lemma 13.

▶ Lemma 13. Let H = (V, E) be a 1
|V |100 -balanced 2-LO colorable 3-uniform hypergraph

H = (V, E) with average degree at most ∆. Then there exists a (randomized) polynomial-time
algorithm to compute an odd independent set of size at least Ω

(
|V |

∆1/3(ln ∆)3/2

)
.

Recall that we have a solution for the SDP 2. Let ua be the unit vector along the
component orthogonal to v∅ (if the orthogonal component is zero, then we define ua to be
any arbitrarily chosen unit vector). Therefore,

ua = va − γav∅
∥va − γav∅∥

= va − γav∅√
∥va∥2 + γ2

a − 2γa ⟨va, v∅⟩
= va − γav∅√

1 − γ2
a

. (3)

Let function Φ̄ : R → [0, 1] be defined as Φ̄ (t) def= Pg∼N (0,1) [g ⩾ t].

A. Louis, A. Newman, and A. Ray 30:11

Algorithm 2 Randomized Rounding.

Input: HB a ε-balanced 2-LO colorable 3-uniform hypergraph and a parameter α (see
Lemma 20 for values of ε and α to be used).
Output: An odd independent set.
1. Let t be such that α = Φ̄ (t).
2. Sample g ∼ N (0, 1)|VB | and set S(t) := {a ∈ VB : ⟨ua, g⟩ ⩾ t}.

3. Set S′(t) := S(t) \

 ⋃
e∈EB

|e∩S(t)|⩾2

e

.

4. Output S′(t).

In case of an edge {a, b, c} with perfectly balanced vertices (i.e., if we have γa = γb =
γc = −1/3), one can observe that the component orthogonal to v∅ of the corresponding
vectors sum to 0 (i.e., we have ua + ub + uc = 0). In Lemma 18 we show a generalization of
this observation for an ε-balanced hypergraph. Recall that in an ε-balanced hypergraph, we
have γa ∈ [−1/3 − ε, −1/3 + ε] for each vertex. The proof of the next lemma can be found
in Appendix C.

▶ Lemma 18. Let {a, b, c} be an edge in an ε-balanced hypergraph HB. Then
∥ua + ub + uc∥2 ⩽ 18ε.

When all the vertices in {a, b, c} are perfectly balanced then the event that both a and
b belong to S(t) is equivalent to ⟨uc, g⟩ ⩽ −2t as ua + ub + uc = 0. Therefore, we can use
bounds on Gaussians to bound the probability of the aforementioned event. Again, Lemma 19
generalizes this to ε-balanced vector for small enough ε.

▶ Lemma 19. Take ε = 1
|VB |100 and let a, b be adjacent vertices in HB. Then

P [a ∈ S(t) ∧ b ∈ S(t)] ⩽ Φ̄ (2t) + 2
|VB |25 .

Proof. Suppose e = {a, b, c} is an edge in HB containing both a and b. If both a and b belong
to S(t), then ⟨ua, g⟩ ⩾ t and ⟨ub, g⟩ ⩾ t. Note that ∥ua + ub + uc∥ ⩽ 3

√
2ε by Lemma 18. If

we additionally assume that ∥g∥ ⩽ |VB |25 (this assumption is violated with low probability)
we have

3
√

2ε|VB |25 ⩾ ⟨ua + ub + uc, g⟩ (Cauchy-Schwarz)
= ⟨ua, g⟩ + ⟨ub, g⟩ + ⟨uc, g⟩
⩾ 2t + ⟨uc, g⟩ (⟨ua, g⟩ ⩾ t and ⟨ub, g⟩ ⩾ t)

we get ⟨uc, g⟩ ⩽ −2t + 3
√

2ε|VB |25.
Thus, we can upper bound P

[
(⟨ua, g⟩ ⩾ t) ∧ (⟨ub, g⟩ ⩾ t) ∧

(
∥g∥ ⩽ |VB |25)] by

P
[(

⟨uc, g⟩ ⩽ −2t + 3
√

2ε|VB |25
)

∧
(
∥g∥ ⩽ |VB |25)]

⩽ P
[
⟨uc, g⟩ ⩽ −2t + 3

√
2ε|VB |25

]
= Φ̄

(
2t − 3

√
2ε|VB |25

)
⩽ Φ̄ (2t) +

√
ε|VB |25 (Fact 21)

⩽ Φ̄ (2t) + 1
|VB |25 .

(
ε = 1

|VB |100

)

FSTTCS 2024

30:12 Improved Linearly Ordered Colorings of Hypergraphs via SDP Rounding

Now, in the following step we look at the case when the assumption ∥g∥ ⩽ |VB |25 is violated.
P
[

(⟨ua, g⟩ ⩾ t) ∧ (⟨ub, g⟩ ⩾ t) ∧
(

∥g∥ > |VB |25
)]

⩽ P
[

∥g∥ > |VB |25
]

⩽ P
[

∥g∥2
> |VB |50

]
⩽

1
|VB |49

(
E
[

∥g∥2
]

= |VB | and Markov bound
)

Adding up the two disjoint cases we get the required bound. ◀

▶ Lemma 20. Let ∆ ⩾ 4 be an upper bound on the average degree of a vertex in HB (i.e.,
|EB | ⩽ ∆|VB |

3). Take α = 1
32

1
∆

1
3 (ln ∆)1/2

and ε = 1
|VB |100 . Then, we have E [|S′(t)|] ⩾ 3

4 α |VB | .

Proof. To lower bound the expected size of S′(t) we lower bound the expected size of S(t)
and upper bound the expected number of vertices participating in a bad edge (i.e., an edge e

such that |e ∩ S(t)| ⩾ 2) separately.
First, we lower bound the size of |S(t)| as follows.

E [|S(t)|] =
∑

a∈VB

P [⟨ua, g⟩ ⩾ t] = α |VB | .

Now, to get an upper bound we note that each bad edge can contribute at most 3 vertices
in the total number of vertices participating in some bad edge. Formally, we have the
following.∣∣∣∣∣∣∣∣

⋃
e∈EB

|e∩S(t)|⩾2

e

∣∣∣∣∣∣∣∣ ⩽
∑

e∈EB

|e∩S(t)|⩾2

|e| (Union Bound)

⩽ 3 |{e ∈ EB s.t. |e ∩ S(t)| ⩾ 2}| (|e| = 3)

If an edge {a, b, c} is bad, i.e., we have | {a, b, c} ∩ S(t)| ⩾ 2, then either {a, b} ⊆ S(t) or
{a, c} ⊆ S(t) or {b, c} ⊆ S(t). Therefore, by union bound E [|{e ∈ EB s.t. |e ∩ S(t)| ⩾ 2}|]
is at most∑

{a,b,c}∈EB

(
P [a ∈ S(t) ∧ b ∈ S(t)] + P [a ∈ S(t) ∧ c ∈ S(t)] + P [c ∈ S(t) ∧ b ∈ S(t)]

)
⩽
∑

e∈EB

3 ·
(

Φ̄ (2t) + 2
|VB |25

)
= 3|EB | · Φ̄ (2t) + 6|EB |

|VB |25 ,

where the second inequality follows from Lemma 19. Let us now upper bound the first term
as follows.

3|EB |Φ̄ (2t) ⩽ ∆|VB | · 512Φ̄ (t)4 ·
(
ln(1/Φ̄ (t))

)3/2
(

|EB | ⩽ ∆|VB |
3 and Corollary 25

)
⩽ ∆|VB | · 512α4 · (ln(1/α))3/2 (Φ̄ (t) = α)

⩽
1
8α|VB |

(
ln(1/α)
4 ln ∆

)3/2
(Substituting α)

⩽
1
8α|VB | (∆ ⩾ 4)

A. Louis, A. Newman, and A. Ray 30:13

Note that in the first inequality above we could use Corollary 25 as ∆ ⩾ 4 implies t ⩾ 1. It
is easy to show that 6|EB |

|VB |25 ⩽ 1
8 α|VB |. Therefore, we get

E [|{e ∈ EB s.t. |e ∩ S(t)| ⩾ 2}|] ⩽ 1
4α|VB |.

Thus, by combining the two bounds we get that

E [|S′(t)|] = E [|S(t)|] − E

∣∣∣∣∣∣∣∣

⋃
e∈EB

|e∩S(t)|⩾2

e

∣∣∣∣∣∣∣∣
 ⩾

(
1 − 1

4

)
α |VB | ⩾ 3

4α |VB | . ◀

Proof of Lemma 13. This follows from Lemma 20 and the proof is standard Markov bound
followed by an amplification argument where you repeat Algorithm 2 polynomially many
times and choose the best odd independent set among all repetitions. The probability of
even the best odd independent set not being of the required size is then inverse exponential
with respect number of iterations. We refer the reader to Section 13.2 of [24] for further
reference. ◀

A Better SDP Rounding

Here we note that there is in fact a better way to round the SDP in the balanced case,
which follows from [16] and essentially reduces the balanced case to the unbalanced case. Let
H = (V, E) be an ε-balanced hypergraph on n vertices. Recall that ε ⩽ 1/n100.

As in Algorithm 2, we sample a gaussian g ∼ N (0, 1)n. For each (unit) vector ua for
a ∈ V , let ζa = ⟨ua, g⟩. Observe that |ζa| ∈ [1/n2, n2] with probability 1 − O(1/n2). Now for
all a ∈ V , set ζ ′

a = ζa/n2 and set γ′
a = γa + ζ ′

a. Thus, with probability at least (roughly)
1 − O(1/n), for all vertices a ∈ V , we have

|ζ ′
a| ∈ [1/n4, 1] and γ′

a /∈ (−1/3 − 1/n100, −1/3 + 1/n100).

Since for every hyperedge {a, b, c} ∈ E, we have ζ ′
a + ζ ′

b + ζ ′
c = 0 (because ua + ub + uc = 0,

which implies ⟨ua, g⟩ + ⟨ub, g⟩ + ⟨uc, g⟩ = 0).
Then for every hyperedge {a, b, c} ∈ E, we have γ′

a + γ′
b + γ′

c = −1. Thus, we can
run Algorithm 1 on the inputs {γ′

a}a∈V and ε = 1/n100. By Lemma 6, it will output an
LO-coloring of H using at most O(log 1

ε) colors.

5 Conclusion

We have presented an improved bound on the number of colors needed to efficiently LO
color a 2-LO colorable 3-uniform hypergraph, and demonstrated that SDP-based rounding
methods can indeed be applied to LO coloring. A natural question is if we can do better
than O(log n) colors in the balanced case; this might be a step towards improving on the
bound of O(log n) colors for the general case given in [16].

References
1 Noga Alon, Pierre Kelsen, Sanjeev Mahajan, and Hariharan Ramesh. Coloring 2-colorable

hypergraphs with a sublinear number of colors. Nordic Journal of Computing, 3:425–439, 1996.
2 Sanjeev Arora, Eden Chlamtac, and Moses Charikar. New approximation guarantee for

chromatic number. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing
(STOC), pages 215–224, 2006.

FSTTCS 2024

30:14 Improved Linearly Ordered Colorings of Hypergraphs via SDP Rounding

3 Libor Barto, Diego Battistelli, and Kevin M. Berg. Symmetric promise constraint satisfaction
problems: Beyond the Boolean case. In 38th International Symposium on Theoretical Aspects
of Computer Science (STACS), volume 187 of LIPIcs, pages 10:1–10:16, 2021. doi:10.4230/
LIPICS.STACS.2021.10.

4 Libor Barto, Jakub Bulín, Andrei A. Krokhin, and Jakub Oprsal. Algebraic approach to promise
constraint satisfaction. Journal of the ACM, 68(4):28:1–28:66, 2021. doi:10.1145/3457606.

5 Avrim Blum. New approximation algorithms for graph coloring. Journal of the ACM, 41(3):470–
516, 1994. doi:10.1145/176584.176586.

6 Avrim Blum and David R. Karger. An O(n3/14)-coloring algorithm for 3-colorable graphs.
Information Processing Letters, 61(1):49–53, 1997. doi:10.1016/S0020-0190(96)00190-1.

7 Joshua Brakensiek and Venkatesan Guruswami. Promise constraint satisfaction: Algebraic
structure and a symmetric Boolean dichotomy. SIAM Journal on Computing, 50(6):1663–1700,
2021. doi:10.1137/19M128212X.

8 Joshua Brakensiek, Venkatesan Guruswami, and Sai Sandeep. SDPs and robust satisfiability
of promise CSP. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing
(STOC), pages 609–622, 2023. doi:10.1145/3564246.3585180.

9 Panagiotis Cheilaris and Géza Tóth. Graph unique-maximum and conflict-free colorings.
Journal of Discrete Algorithms, 9(3):241–251, 2011. doi:10.1016/J.JDA.2011.03.005.

10 Hui Chen and Alan Frieze. Coloring bipartite hypergraphs. In International Conference
on Integer Programming and Combinatorial Optimization (IPCO), pages 345–358, 1996.
doi:10.1007/3-540-61310-2_26.

11 Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate coloring.
In Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC), pages
344–353, 2006. doi:10.1145/1132516.1132567.

12 Irit Dinur, Oded Regev, and Clifford D. Smyth. The hardness of 3-uniform hypergraph coloring.
Combinatorica, 25(5):519–535, 2005. doi:10.1007/S00493-005-0032-4.

13 Miron Ficak, Marcin Kozik, Miroslav Olsák, and Szymon Stankiewicz. Dichotomy for symmetric
Boolean PCSPs. In 46th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 132 of LIPIcs, pages 57:1–57:12, 2019. doi:10.4230/LIPICS.ICALP.2019.57.

14 Marek Filakovský, Tamio-Vesa Nakajima, Jakub Opršal, Gianluca Tasinato, and Uli Wagner.
Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs. In 41st
International Symposium on Theoretical Aspects of Computer Science, (STACS), volume 289
of LIPIcs, pages 34:1–34:19, 2024. doi:10.4230/LIPICS.STACS.2024.34.

15 Magnús M. Halldórsson. Approximations of weighted independent set and hereditary subset
problems. J. Graph Algorithms Appl., 4(1):1–16, 2000. doi:10.7155/JGAA.00020.

16 Johan Håstad, Björn Martinsson, Tamio-Vesa Nakajima, and Stanislav Živný. A logarithmic
approximation of linearly-ordered colourings. In Amit Kumar and Noga Ron-Zewi, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2024, August 28-30, 2024, London School of Economics, London, UK,
volume 317 of LIPIcs, pages 7:1–7:6. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
doi:10.4230/LIPICS.APPROX/RANDOM.2024.7.

17 David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by
semidefinite programming. Journal of the ACM, 45(2):246–265, 1998. doi:10.1145/274787.
274791.

18 Meir Katchalski, William McCuaig, and Suzanne Seager. Ordered colourings. Discrete
Mathematics, 1(142):141–154, 1995. doi:10.1016/0012-365X(93)E0216-Q.

19 Ken-ichi Kawarabayashi and Mikkel Thorup. Coloring 3-colorable graphs with less than n1/5

colors. Journal of the ACM, 64(1):4:1–4:23, 2017. doi:10.1145/3001582.
20 Michael Krivelevich, Ram Nathaniel, and Benny Sudakov. Approximating coloring and

maximum independent sets in 3-uniform hypergraphs. Journal of Algorithms, 41(1):99–113,
2001. doi:10.1006/jagm.2001.1173.

https://doi.org/10.4230/LIPICS.STACS.2021.10
https://doi.org/10.4230/LIPICS.STACS.2021.10
https://doi.org/10.1145/3457606
https://doi.org/10.1145/176584.176586
https://doi.org/10.1016/S0020-0190(96)00190-1
https://doi.org/10.1137/19M128212X
https://doi.org/10.1145/3564246.3585180
https://doi.org/10.1016/J.JDA.2011.03.005
https://doi.org/10.1007/3-540-61310-2_26
https://doi.org/10.1145/1132516.1132567
https://doi.org/10.1007/S00493-005-0032-4
https://doi.org/10.4230/LIPICS.ICALP.2019.57
https://doi.org/10.4230/LIPICS.STACS.2024.34
https://doi.org/10.7155/JGAA.00020
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2024.7
https://doi.org/10.1145/274787.274791
https://doi.org/10.1145/274787.274791
https://doi.org/10.1016/0012-365X(93)E0216-Q
https://doi.org/10.1145/3001582
https://doi.org/10.1006/jagm.2001.1173

A. Louis, A. Newman, and A. Ray 30:15

21 Anand Louis, Alantha Newman, and Arka Ray. Improved linearly ordered colorings of
hypergraphs via SDP rounding. CoRR, abs/2405.00427, 2024. doi:10.48550/arXiv.2405.
00427.

22 Tamio-Vesa Nakajima and Stanislav Živný. Linearly ordered colourings of hypergraphs. ACM
Trans. Comput. Theory, 14(3-4):1–19, 2022. doi:10.1145/3570909.

23 Avi Wigderson. Improving the performance guarantee for approximate graph coloring. Journal
of the ACM, 30(4):729–735, 1983. doi:10.1145/2157.2158.

24 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

25 Marcin Wrochna and Stanislav Živný. Improved hardness for H -colourings of G-colourable
graphs. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, (SODA),
pages 1426–1435, 2020. doi:10.1137/1.9781611975994.86.

A Properties of Gaussian

Let function Φ : R → [0, 1] be defined as Φ (t) def= Pg∼N (0,1) [g ⩽ t], and let function Φ̄ : R →
[0, 1] be defined as Φ̄ (t) def= Pg∼N (0,1) [g ⩾ t].

▶ Fact 21. For any a ⩽ b, we have Φ̄ (b) − Φ̄ (a) = Pg∼N (0,1) [g ∈ [a, b]] ⩽ b−a√
2π

.

Proof. The statement follows from the following computations.

P [g ∈ [a, b]] =
∫ b

a

e−x2/2
√

2π
dx ⩽

1√
2π

∫ b

a

sup
y∈R

e−y2/2 dx = b − a√
2π

. ◀

▶ Fact 22 (Folklore). For every t > 0,
t√

2π(t2 + 1)
e− 1

2 t2
< Φ̄ (t) <

1√
2πt

e− 1
2 t2

.

▶ Corollary 23 (Folklore). Fix t ⩾ 1 and let β = Φ̄ (t). Then we have√
2 ln 1

β
− ln ln 1

β
− ln 16π ⩽ t ⩽

√
2 ln 1

β
− ln ln 1

β
⩽

√
2 ln 1

β
.

In fact, t <
√

2 ln 1
β holds even if t ∈ (0, 1).

Proof. Let t > 0 (note here we allow t ∈ (0, 1)) and let β = Φ̄ (t). By taking logarithm and
multiplying by −2, the inequalities in Fact 22 imply

2 ln
(

1
β

)
> t2 + 2 ln

(√
2πt
)

, (4)

2 ln
(

1
β

)
< t2 + 2 ln

(√
2π

(
t2 + 1

t

))
. (5)

We can now use (4) to get

2 ln
(

1
β

)
> t2 + 2 ln

(√
2πt
)
⩾ t2.

Hence, we have t <
√

2 ln 1
β for any t > 0. Again, by multiplying by 1

2 and taking logarithms,
the (4), (5) imply

ln ln
(

1
β

)
> ln

(
t2/2 + ln

(√
2πt
))

, (6)

ln ln
(

1
β

)
< ln

(
t2/2 + ln

(√
2π

(
t2 + 1

t

)))
. (7)

FSTTCS 2024

https://doi.org/10.48550/arXiv.2405.00427
https://doi.org/10.48550/arXiv.2405.00427
https://doi.org/10.1145/3570909
https://doi.org/10.1145/2157.2158
https://doi.org/10.1137/1.9781611975994.86

30:16 Improved Linearly Ordered Colorings of Hypergraphs via SDP Rounding

From hereon we assume t ⩾ 1. (4) − (7) gives us

2 ln
(

1
β

)
−ln ln

(
1
β

)
> t2+ln

(
2πt2

t2/2 + ln
(√

2π
(

t2+1
t

))) = t2+ln

(
4πt2

t2 + 2 ln
(√

2π
(

t2+1
t

))) (8)

▷ Claim 24. 4πt2 ⩾ t2 + 2 ln
(√

2π
(

t2+1
t

))
.

Proof. Note that the above inequality is equivalent to
(4π−1

2
)

t2 ⩾ ln
√

2π+ln
(
t + 1

t

)
. Indeed

we have

ln
√

2π + ln
(

t + 1
t

)
⩽ ln

√
2π + ln(t + 1) (t ⩾ 1)

⩽ ln
√

2π + t (ln(1 + x) ⩽ x)

⩽ ln
√

2π + t2 (t ⩾ 1)

⩽

(
4π − 3

2

)
+ t2

(
4π − 3

2 ⩾ ln
√

2π

)
⩽

(
4π − 1

2

)
t2 (t ⩾ 1) ◁

Using this claim and (8) we get

t2 ⩽ 2 ln 1
β

− ln ln 1
β

.

Hence, we have t ⩽
√

2 ln 1
β − ln ln 1

β . For the remaining inequality, we again see that (5) −
(6) gives us

2 ln 1
β

− ln ln 1
β

< t2 + ln
(

4π
(
t + 1

t

)
t2 + 2 ln(

√
2πt)

)

⩽ t2 + ln 4π + ln
(

(t + 1)2

t2

)
(t ⩾ 1)

⩽ t2 + ln 4π + 2 ln
(

1 + 1
t

)
⩽ t2 + ln 4π + 2 ln 2 = t2 + ln 16π (t ⩾ 1)

√
2 ln 1

β − ln ln 1
β − ln 16π ⩽ t follows from the above inequality. Hence, we have all the

required inequalities. ◀

▶ Corollary 25 (Folklore). Fix t ⩾ 1. Then, we have

Φ̄ (2t) ⩽ 512
(

ln
(

1
Φ̄ (t)

))3/2
Φ̄ (t)4

.

A. Louis, A. Newman, and A. Ray 30:17

Proof. For any t ⩾ 1 and δ ∈ (0, 1) the following holds.

Φ̄ (2t) ⩽ 1
2
√

2πt
e−2t2

(Fact 22)

⩽
1

2
√

2πt
·

(2π)2 (
t2 + 1

)4

t4 · Φ̄ (t)4
(

t√
2π(t2 + 1)

e− 1
2 t2

⩽ Φ̄ (t) by Fact 22
)

= (2π)3/2 1
2t

(
t + 1

t

)4
Φ̄ (t)4

⩽ (2π)3/2(2t)3Φ̄ (t)4 (t ⩾ 1)

⩽ (4
√

π)3
(

ln
(

1
Φ̄ (t)

))3
· Φ̄ (t)4 (by Corollary 23)

⩽ 512
(

ln
(

1
Φ̄ (t)

))3
Φ̄ (t)4 (

√
π ⩽ 2).

◀

B Coloring of 2-LO Colorable 3-Uniform Hypergraphs

In this section, we show how to color a 2-LO colorable 3-uniform hypergraph with 2 colors.
For simplicity, we define balanced vertices to be those with γa = −1/3. It is straightforward
to extend to the case of ε-balanced for small but (strictly) positive ε.

Algorithm 3 2-Coloring Algorithm.

Input: A solution to SDP 2.
Two-Sided Combinatorial Rounding
1. Set Sl :=

{
a ∈ V

∣∣ γa < − 1
3
}

, Sr :=
{

a ∈ V
∣∣ γa > − 1

3
}

, and Sb :=
{

a ∈ V
∣∣ γa = − 1

3
}

.
2. Color Sl using color 1 and Sr using color 2.
Two-Sided Hyperplane Rounding
resume Choose a uniformly random unit vector r over the sphere.
resume Set Hr := {a ∈ Sb | ⟨r, ua⟩ ⩾ 0} and Hl := {a ∈ Sb | ⟨r, ua⟩ < 0}.
resume Color Hl using 1 and Hr using 2.

▶ Lemma 26. Let Sl, Sr be as defined in Algorithm 3. Then, for any edge e ∈ E, we have
Sl ∩ e ̸= ∅ if and only if Sr ∩ e ̸= ∅.

Proof. Fix an edge {a, b, c} = e ∈ E. Observation 14 states that γa + γb + γc = −1 Suppose
that e ∩ Sl ̸= ∅ and e ⊆ Sl ∪ Sb. Then, we get γa + γb + γc < −1, a contradiction. Hence,
e ∩ Sl ̸= ∅ implies e ∩ Sr ̸= ∅ The proof of the converse is similar. ◀

▶ Lemma 27. Let r be unit vector distributed uniformly over the sphere and let Hl, and
Hr be defined as in Algorithm 3. Then, for any edge e ∈ E, we have |Hl ∩ e| ⩽ 2 and
|Hr ∩ e| ⩽ 2 (with probability 1).

Proof. We can assume that Hr = {a ∈ Sb| ⟨r, ua⟩ > 0}, as this is true with probability 1.
Fix any e ∈ E. Assume that {a, b, c} = e ⊆ Sb; otherwise, we are done. Using Lemma 18
with ε = 0 we get ∥ua + ub + uc∥2 = 0, which implies ua + ub + uc = 0. Therefore, we have
⟨r, ua⟩ + ⟨r, ub⟩ + ⟨r, uc⟩ = 0. But, if e ⊆ Hl, then we have ⟨r, ua⟩ + ⟨r, ub⟩ + ⟨r, uc⟩ < 0, a
contradiction. Similarly, if e ⊆ Hr, then we have a contradiction in form of ⟨r, ua⟩ + ⟨r, ub⟩ +
⟨r, uc⟩ > 0. ◀

FSTTCS 2024

30:18 Improved Linearly Ordered Colorings of Hypergraphs via SDP Rounding

▶ Theorem 28. There is a polynomial-time algorithm that, if given a 2-LO colorable 3-
uniform hypergraph H with n vertices, finds an 2-coloring of H.

Proof. Solve SDP 2 and use Algorithm 3. Consider any edge e = {a, b, c}. If e is not
completely contained in Sb, then by Lemma 26 we at least one vertex each from Sl and Sr;
hence, e is non-monochromatic. Otherwise, e is non-monochromatic by Lemma 27. ◀

C Omitted Proofs

Proof of Lemma 18

Before we proceed to prove Lemma 18 we need the following lemma.

▶ Lemma 29. Let {a, b, c} ∈ E and γa = −1/3 + εa, γb = −1/3 + εb, γc = −1/3 + εc. Then
the following hold.
1. εa + εb + εc = 0.
2. ⟨va, vb⟩ = −1/3 + εc, ⟨vb, vc⟩ = −1/3 + εa, and ⟨vc, va⟩ = −1/3 + εb.

Proof. Using Observation 14 we get

−1/3 + εa − 1/3 + εb − 1/3 + εc = −1,

which implies εa +εb +εc = 0. Taking inner products with va, vb, vc on both sides of constraint
(1) of SDP 2 we get

1 + ⟨va, vb⟩ + ⟨va, vc⟩ = 1/3 − εa,

⟨vb, va⟩ + 1 + ⟨vb, vc⟩ = 1/3 − εb,

⟨vc, va⟩ + ⟨vc, vb⟩ + 1 = 1/3 − εc,

which imply

⟨va, vb⟩ + ⟨va, vc⟩ = −(2/3 + εa), (9)
⟨vb, va⟩ + ⟨vb, vc⟩ = −(2/3 + εb), (10)
⟨vc, va⟩ + ⟨vc, vb⟩ = −(2/3 + εc). (11)

(9)+(10)−(11) gives us

2 ⟨va, vb⟩ = −2/3 − εa − εb + εc.

Using Item 1 of this lemma and dividing by 2 we get ⟨va, vb⟩ = −1/3+εc as needed. Similarly,
we get ⟨va, vc⟩ = −1/3 + εb, ⟨vc, vb⟩c = −1/3 + εa. ◀

Proof of Lemma 18. Note that

⟨ua, ub⟩ =
〈

va − γav∅√
1 − γ2

a

,
vb − γbv∅√

1 − γ2
b

〉
= ⟨va, vb⟩ − γa ⟨v∅, vb⟩ − γb ⟨v∅, va⟩ + γaγb ⟨v∅, v∅⟩√

(1 − γ2
a) (1 − γ2

b)

= ⟨va, vb⟩ − γaγb√
(1 − γ2

a) (1 − γ2
b)

.

A. Louis, A. Newman, and A. Ray 30:19

First let us upper-bound the denominator in the above expression using γa, γb ∈ [−1/3 −
ϵ, −1/3 + ϵ] as follows.√

(1 − γ2
a) (1 − γ2

b) ⩽
√

(1 − (1/3 − ϵ)2)(1 − (1/3 − ϵ)2)

= 8
9 + 2ϵ

3 − ϵ2

⩽
8
9 + 2ϵ

3 .

This implies that

1√
(1 − γ2

a) (1 − γ2
b)

⩾
1

8
9
(
1 + 9ϵ

4
)

⩾
9
8

(
1 − 9ϵ

4 +
(9ϵ

4
)2(

1 + 9ϵ
4
))

⩾
9
8

(
1 − 9ϵ

4

)
.

By Lemma 29, we have ⟨va, vb⟩ ∈ [−1/3 − ϵ, −1/3 + ϵ]. So, we can also bound the numerator
in the expression for ⟨ua, ub⟩ by using the fact that ⟨va, vb⟩ , γa, γb ∈ [−1/3 − ϵ, −1/3 + ϵ] as
follows.

⟨va, vb⟩ − γaγb ⩽ −1
3 + ϵ −

(
1
3 − ϵ

)2

= −4
9 + 5ϵ

3 − ϵ2

⩽ −4
9 + 5ϵ

3 .

Therefore, we get

⟨ua, ub⟩ ⩽ −4
9

(
1 − 15ϵ

4

)
· 9

8

(
1 − 9ϵ

4

)
⩽ −1

2 (1 − 6ϵ) .

Finally, for the edge {a, b, c} we get

∥ua + ub + uc∥2 = ∥ua∥2 + ∥ub∥2 + ∥uc∥2 + 2 ⟨ua, ub⟩ + 2 ⟨ub, uc⟩ + 2 ⟨uc, ua⟩
= 3 + 2 (⟨ua, ub⟩ + ⟨ub, uc⟩ + ⟨uc, ua⟩)
⩽ 18ε

where the last inequality follows from the fact that ⟨ua, ub⟩, ⟨ub, uc⟩, and ⟨uc, ua⟩ are all at
most − 1

2 + 3ε. ◀

FSTTCS 2024

Parameterized Algorithms and Hardness for the
Maximum Edge q-Coloring Problem
Rogers Mathew #

Department of Computer Science and Engineering, IIT Hyderabad, India

Fahad Panolan #

School of Computer Science, University of Leeds, UK

Seshikanth #

Department of Computer Science and Engineering, IIT Hyderabad, India

Abstract
An edge q-coloring of a graph G is a coloring of its edges such that every vertex sees at most q colors
on the edges incident on it. The size of an edge q-coloring is the total number of colors used in the
coloring. Given a graph G and a positive integer t, the Maximum Edge q-Coloring problem is
about whether G has an edge q-coloring of size t. Studies on this coloring problem were motivated
by its application in the channel assignment problem in wireless networks.

Goyal, Kamat, and Misra (MFCS 2013) studied Maximum Edge 2-Coloring from the per-
spective of parameterized complexity. Given a graph on n vertices, they considered the standard
parameter t, the number of colors in an optimal edge 2-coloring, and the dual parameter ℓ, where n−ℓ

is the number of colors in an optimal edge 2-coloring. They designed FPT algorithms for Maximum
Edge 2-Coloring parameterized by t and ℓ. In this paper, we revisit and study Maximum Edge
2-Coloring from the perspective of parameterized complexity and show the following results.
1. Let γ(G) denote the maximum matching size in a given graph G. It is easy to see that a

maximum edge 2-coloring of G is of size at least γ(G). Goyal, Kamat, and Misra (MFCS 2013)
had asked if there exists an FPT algorithm for Maximum Edge 2-Coloring parameterized
by k, where k := (size of a maximum edge 2-coloring of G) − γ(G). We show that Maximum
Edge 2-Coloring parameterized by k is W[1] hard.

2. On the positive side, we show that there is an algorithm that, given a graph G on n vertices
and a tree decomposition of width tw, runs in time 2O(qtw log qtw)n and outputs a maximum edge
q-coloring of G.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases FPT algorithm, Edge coloring, Treewidth, W[1]-hardness

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.31

1 Introduction

Given a graph G and a positive integer q, an edge q-coloring is a coloring (not necessarily
proper) of the edges of G such that every vertex sees at most q colors on the edges incident
on it. The size of an edge q-coloring is the total number of colors used in the coloring.
Assigning every edge of G the same color is indeed a valid edge q-coloring. However, we
are interested in obtaining a maximum edge q-coloring of G, an edge q-coloring of G of the
maximum possible size.

In 2005, Raniwala, Chiueh, and Gopalan in [12] and [11] proposed Hyacinth, a multichannel
wireless mesh network architecture that uses 802.11 Network Interface Cards (NICs) at each
node of the mesh network. They observed that two NICs on each node may improve network
throughput by a factor of 6 to 7 compared to conventional single-channel ad hoc networks.
A network can be modeled as a graph where each computer is a vertex. Assigning channels

© Rogers Mathew, Fahad Panolan, and Seshikanth;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 31; pp. 31:1–31:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rogers@cse.iith.ac.in
https://orcid.org/0000-0003-4536-1136
mailto:F.Panolan@leeds.ac.uk
https://orcid.org/0000-0001-6213-8687
mailto:cs21resch01001@iith.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Parameterized Algorithms and Hardness for the Maximum Edge q-Coloring Problem

to computers with two interface cards corresponds to an edge 2-coloring of the graph. The
maximum number of colors in an edge 2-coloring represents the number of channels that can
be used simultaneously in the network.

Maximum edge q-coloring of graphs has been studied from an algorithmic as well as a
structural graph theoretic perspective. Adamaszek and Popa [1] proved that the decision
version of the maximum edge q-coloring problem is NP-hard for every q ≥ 2. Further they
showed that, for every q ≥ 2, the maximum edge q-coloring problem is APX-hard. For q = 2,
the paper gives a 5/3-factor approximation algorithm for graphs having a perfect matching.
For triangle-free graphs having a perfect matching, Chandran et al. [3] gave an 8/5-factor
approximation algorithm for the maximum edge q-coloring problem. Later, in [2], Chandran
et al. showed that the approximation factors of 5/3 and 8/5 can be improved under certain
assumptions on the minimum degree of the graph under consideration. As for general graphs,
Feng et al. in [8] gave a 2-factor approximation algorithm for the maximum edge 2-coloring
problem. In the same paper, the authors showed that the maximum edge 2-coloring problem
is polynomial-time solvable for trees and complete graphs. In [6], Dvorak et al. show that
there is a PTAS known for the maximum edge q-coloring problem on minor-free graphs.

From a parameterized complexity perspective, Goyal, Kamat, and Misra in [10] gave
fixed-parameter tractable algorithms for maximum edge 2-coloring of G for both the standard
parameter (say t, if t is the size of an optimal edge 2-coloring of G) and the dual parameter
(say ℓ, if n − ℓ is the size of an optimal edge 2-coloring, where n is the number of vertices in
the input graph). It is known that the maximum number of colors used in an edge 2-coloring
of a graph G is at most the number of vertices in G, and hence, with the dual parameter ℓ,
the number of colors asked for is n − ℓ. For the dual parameterization, the authors obtained
a linear vertex kernel with O(ℓ) vertices and O(ℓ2) edges.

The maximum edge q-coloring problem is related to another parameter called anti-Ramsey
number, a concept introduced by Erdős, Simonovitz and Sós in 1975 [7]. Given a host graph
G and a pattern graph H, the anti-Ramsey number ar(G, H) is defined as the smallest
positive integer k such that any coloring of the edges of G with k colors will have a rainbow
subgraph (a subgraph no two of whose edges have the same color) isomorphic to H . In other
words, ar(G, H) is one more than the largest k for which there exists a coloring of the edges of
G with k colors such that there is no rainbow subgraph isomorphic to H under this coloring.
See [9] for a survey on anti-Ramsey numbers, a notion that has been extensively studied
in extremal graph theory. From its definition, it is clear that the size of a maximum edge
q-coloring of a graph G is one less than ar(G, K1,q+1), where K1,q+1 denotes the complete
bipartite graph with 1 vertex in one part and q + 1 vertices in the other.

Our contributions
In Section 3 we give a fixed parameter tractable algorithm for Maximum Edge q-Coloring
parameterized by the treewidth of the graph under consideration.

▶ Theorem 1. There is an algorithm that, given an n-vertex graph G and its tree decom-
position of width tw, runs in time 2O(tw·q log(tw·q))n, and outputs a maximum edge q-coloring
of G.

To explain the significance of this result, let us recall the work of Goyal et al. [10] for
Maximum Edge 2-Coloring with respect to the parameter k, the number of colors in the
output edge 2-coloring of the graph. Let G be the input graph, and let γ(G) denote the size
of a maximum matching in G. They first observe that the size of a maximum edge 2-coloring
of G is at least γ(G) as coloring all the edges in a maximum matching with distinct colors
and then coloring the remaining edges with a new color is indeed a valid edge 2-coloring of G.

R. Mathew, F. Panolan, and Seshikanth 31:3

Thus, the problem becomes challenging only when γ(G) ≤ k. In this case, the vertex cover
number of G is at most 2k. Then, Goyal et al. [10] observed that maximum edge q-coloring
can be expressed in Monadic Second Order (MSO2) logic. Since the treewidth of G is at
most its vertex cover number, which is upper bounded by 2k, an application of Courcelle’s
theorem [4] provides a fixed parameter tractable (FPT) algorithm for the problem, but its
running time will be impractical. Goyal et al. [10] gave a combinatorial algorithm with
running time 2O(k log k)nO(1), using the fact that the vertex cover number will be at most 2k.
As a corollary, one gets an FPT algorithm parameterized by the vertex cover number because
the number of colors in an edge 2-coloring is at most two times the vertex cover number.

However, the case where the parameter is treewidth is not trivial. First of all, the edge
2-coloring number can be arbitrarily larger than the treewidth. Consider the graph, which is
a path on n vertices. Here, the pathwidth (and hence the treewidth) is one, but coloring all
the n − 1 edges with distinct colors is a valid edge 2-coloring. Next, it is tempting to believe
that since the problem is expressible in MSO2, we get an FPT algorithm parameterized by
treewidth. In fact, there is a caveat here. The length of the MSO2 formula depends on the
total number of colors used in the edge coloring (hence it is large), and the running time of
the algorithm by the application of Courcelle’s theorem depends exponentially on the length
of the formula as well. Thus, it is important to design an algorithm for the problem when
the parameter is treewidth. To the best of our knowledge, this is the first FPT algorithm for
the problem when parameterized by treewidth.

Recall the the size of a maximum edge 2-coloring is at least γ(G). Goyal et al. [10] asked
if there exists an FPT algorithm for the maximum edge 2-coloring problem parameterized by
k, where k := (size of a maximum edge 2-coloring of G) − γ(G). In Section 4, we resolve
this question by showing that the problem is W[1] hard.

▶ Theorem 2. It is W[1]-hard parameterized by k to decide if the given graph G has an edge
2-coloring using at least γ(G) + k colors.

2 Preliminaries

We use N to denote the set of natural numbers. For n ∈ N, we use [n] to denote {1, . . . , n}.
For a function f : A → B and A′ ⊆ A, f(A′) = {f(a) : a ∈ A′}. For two functions f : A → B

and g : B → C, g ◦ f is the function from A to C defined as follows: (g ◦ f)(a) = g(f(a)), for
all a ∈ A. Let f : A1 → B and g : A2 → B be two functions. We use f ⊕ g to denote the
function defined as follows: (f ⊕ g)(a) = f(a) if a ∈ A1 and (f ⊕ g)(a) = g(a), if a ∈ A2 \ A1.
If f(a) = g(a) for all a ∈ A1 ∩ A2, then f ∪ g denotes the the union of the functions f and g.
Here, (f ∪ g)(a) = f(a) if a ∈ A1 and (f ∪ g)(a) = g(a), otherwise. If A1 ∩ A2 = ∅, then we
may also write f ⊎ g instead of f ∪ g.

Throughout this paper, we use simple, undirected graphs. We say a graph is connected
if, for any pair of vertices in it, there is a path between them in the graph. Let G be a
graph. We use V (G) and E(G) to denote its vertex and edge sets, respectively. We use
{u, v} as well as uv to denote the edge between vertex u and vertex v. For a vertex subset
U ⊆ V (G), EG(U) denotes the set of edges incident on U . That is, EG(U) = {{x, y} ∈
E(G) : x ∈ U ∨ y ∈ U}. For a vertex v, we use EG(v) to denote the set E({v}). For a vertex
subset U ⊆ E(G), we use EG[U] to denote the set of edges with both endpoints in G. That
is, EG[U] = {{u, v} ∈ E(G) : u, v ∈ U}. For an edge subset F ⊆ E(G), we use VG(F) to
denote the set of endpoints of the edges in F . When the graph is clear from the context, we
remove the subscript G in the above notations. For a vertex subset U ⊆ V (G), we use G[U]
to denote the subgraph of G induced by U . That is, V (G[U]) = U and E(G[U]) = EG[U].
For an edge subset F ⊆ E(G), we use G[F] to denote the subgraph of G induced by F . That

FSTTCS 2024

31:4 Parameterized Algorithms and Hardness for the Maximum Edge q-Coloring Problem

is, V (G[F]) = VG(F) and E(G[F]) = F . A separation of G is a pair (A, B) of vertex subsets
such that A ∪ B = V (G), and there is no edge with one endpoint in A \ B and the other in
B \ A. The separator of this separation is A ∩ B, and the order of the separation is |A ∩ B|.

The following lemma is a folklore.

▶ Lemma 3. Let G be a graph, q ∈ N, and d : E(G) → N be an edge q-coloring using
the maximum number of colors. Then, for any color r ∈ N with d−1(r) ̸= ∅, G[d−1(r)] is
connected.

Proof. Suppose by contradiction, if G[d−1(r)] is disconnected, we have two disjoint compon-
ents. It means we can give one new color (say r′ ≠ r) to any one component and strictly
increase the number of colors used by one. This will be again a q-coloring of G. However,
this is a contradiction as the given coloring uses the maximum number of colors. ◀

Tree decompositions. A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T)),
where T is a tree and every node t ∈ V (T) is assigned a vertex subset Xt ⊆ V (G), called a
bag, such that the following three conditions hold:
1.

⋃
t∈V (T) Xt = V (G).

2. For every {u, v} ∈ E(G), there is a node t ∈ V (T) such that u, v ∈ Xt.
3. For every u ∈ V (G), the subgraph of T induced by Tu = {t ∈ V (T) : u ∈ Xt} is

connected.

The width of tree decomposition T = (T, {Xt}t∈V (T)) is maxt∈V (T) |Xt|−1. The treewidth
of a graph G, denoted by tw(G), is the minimum width among all tree decompositions of
G. To explain dynamic programming in an easier way, we recall the definition of a nice tree
decomposition. A nice tree decomposition if a T = (T, {Xt}t∈V (T)) where T is a rooted tree
and satisfies the following additional conditions. Let r be the root node in T.
1. Xr = ∅ and Xℓ = ∅ for every leaf node ℓ.
2. Each non-leaf node of T has one of the following three types:

Introduce node: A node t with exactly one child t′ such that Xt = Xt′ ∪ {v} and
v /∈ Xt′ ; we say that v is introduced at t.
Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {w} for some
vertex w ∈ Xt′ ; we say that w is forgotten at t.
Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .

▶ Lemma 4 (Lemma 7.4 in [5]). If a graph G admits a tree decomposition of width at most
k, then it also admits a nice tree decomposition of width at most k. Moreover, given a
tree decomposition T = (T, {Xt}t∈V (T)) of G of width at most k, one can in time O(k2 ·
max(|V (T)|, |V (G)|)) compute a nice tree decomposition of G of width at most k that has at
most O(k|V (G)|) nodes.

Parameterized complexity. A parameterized problem P is a subset of Σ∗ × N, where Σ
is the finite alphabet. Fixed parameter traceability of a problem P means whether we can
decide the problem in O(f(k) · p(n)) time, where k is the fpt parameter, n is the input size,
f(.) is some arbitrary function and p(.) is a polynomial function.

▶ Definition 5 (Parameterized reduction [5]). Let A, B ⊆ Σ∗ × N be two parameterized
problems. A parameterized reduction from A to B is an algorithm that, given an instance
(x, k) of A, outputs an instance (x′, k′) of B such that
1. (x, k) ∈ A ⇐⇒ (x′, k′) ∈ B.
2. k′ ≤ g(k) for some computable function g(.), and
3. the running time is f(k) · |x|O(1) for some computable function f(.).

R. Mathew, F. Panolan, and Seshikanth 31:5

3 FPT algorithm parameterized by treewidth

We give a dynamic programming algorithm for Maximum Edge q-Coloring when a tree
decomposition of width at most k is given as part of the input. Without loss of generality,
we assume that a nice tree decomposition is part of the input. Let (G, T = (T, {Xt}t∈V (T)))
be the input. Let n = |V (G)|, m = |E(G)|, and the width of the tree decomposition T is k.
Our algorithm should output an edge q-coloring of G using the maximum number of colors.

Let us define some notations which we use in this section. Recall that T is a rooted tree.
Let r be the root of T . For a node t ∈ V (T), Vt is the union of the bags in the subtree rooted
at t. That is, if Tt is the subtree of T rooted at t, then Vt =

⋃
t′∈V (Tt) Xt′ . We use Gt to

denote the graph G[Vt]. Notice that for any t ∈ V (T), (Vt, (V (G) \ Vt) ∪ Xt) is a separation
of G of order |Xt|, which is upper bounded by k. Now consider the following lemma.

▶ Lemma 6. Let G be a graph, q ∈ N, and d : E(G) → N be an edge q-coloring using a
maximum number of colors. Let (A, B) be a separation of G and there is a color r such that
r ∈ d(EG[A \ B]) and r /∈ d(EG[A] \ EG[A \ B]). Then, r /∈ EG[B].

Proof. Let r be the color specified in the lemma and let {u, v} ∈ d−1(r). From the definition
of EG[A \ B], we have u, v ∈ A \ B. We are given that r /∈ d(EG[A] \ EG[A \ B]). It means
there is no edge with at least one endpoint in A ∩ B with color r. The reason is that
EG[A \ B] is the set of edges with both the endpoints in A \ B and EG[A] = {{x, y} : x, y ∈
A \ B} ∪ {{x, y} : x ∈ A ∩ B ∨ y ∈ A ∩ B}. This implies that there is no edge from EG[A]
with at least one endpoint in A ∩ B and colored with r. We need to prove that there is no
edge in EG[B] colored with r. Now, for the sake of contradiction, say we have an edge with
color r, and it is in EG[B]. By Lemma 3, there should be a path from the edge {u, v} (as
defined above) to this edge in EG[B] and all the edges in this path are colored r. This path
must pass through at least one vertex in A ∩ B as (A, B) is a separation of G. But it leads
to contradiction as we are given that r /∈ d(EG[A] \ EG[A \ B]). It means r /∈ EG[B]. ◀

Lemma 6 helps us to design a dynamic programming algorithm. Because of Lemma 6,
at any node t ∈ V (T), for any coloring of Gt, we do not need to remember the colors of
the edges incident on the vertices other than Xt, as it will not be used to color the “future”
edges. More formally, in the dynamic programming for any node t we compute and store
a set Ct of edge q-colorings of Gt. Here, we use two disjoint sets of colors; the first set is
[qk] = {1, 2, . . . , qk} and the other set is {a1, a2, . . . , anq}. We use only the colors from [qk]
to color the edges incident on Xt. Other edges in Gt can be colored with any colors from
[qk]∪{a1, a2, . . . , anq}. But, we make sure that if an edge in Gt is colored with a color c from
[qk], then at least one edge incident on Xt is colored with c. Consider two edges q-coloring
g1 and g2 of Gt that satisfy the conditions mentioned above. We say that g1 and g2 are
equivalent, denoted by g1 ∼t g2, if the following conditions hold.

(i) |g1(E(Gt))| = |g2(E(Gt))|. That is, the number of colors used by both g1 and g2 are
the same.

(ii) For all u ∈ Xt, g1(EGt
(u)) = g2(EGt

(u)). That is, the colors seen by the edges incident
on u are the same in both the colorings g1 and g2, for any vertex u ∈ Xt.

Lemma 6 implies that if g1 ∼t g2, and g1 can be extended to a maximum edge q-coloring
of G, then g2 can be extended to a maximum edge q-coloring of G. This is formulated in the
following lemma.

▶ Lemma 7. Suppose g1 ∼t g2. If there is an edge q-coloring f1 of G such that f1|E(Gt) = g1,
then there is an edge q-coloring f2 of G such that f2|E(Gt) = g2 and |f1(E(G))| = |f2(E(G))|.

FSTTCS 2024

31:6 Parameterized Algorithms and Hardness for the Maximum Edge q-Coloring Problem

Proof. We know that both g1 and g2 satisfy the following conditions.
(a) All the edges incident on Xt are colored using the colors from [qk] by g1 and g2.
(b) All the edges in Gt are colored using colors from [qk] ∪ {a1, . . . , aqn}. Moreover, for each

i ∈ [2], if a color c ∈ [qk] is used by gi, then there is an edge e ∈ EGt
(Xt) such that

gi(e) = c.
Since g1 ∼t g2 and condition (b) above implies that the number of colors from {a1, . . . , aqn}
used by both g1 and g2 are same. Without loss of generality let a1, . . . , aℓ be the colors
in {a1, . . . , aqn} used by the coloring g2. As mentioned before, there are exactly ℓ colors
from {a1, . . . , aqn} used by g1. Let i1, . . . , iℓ be the distinct indices in [qn] such that the
colors from {a1, . . . , aqn} used by g1 are ai1 , . . . , aiℓ

. Now, we obtain a coloring f̂1 from f1
as follows. Let β : {a1, . . . , aqn} ∪ [qk] → {a1, . . . , aqn} ∪ [qk] be an arbitrary bijection such
that β(r) = r for all r ∈ [qk] and β(aij

) = aj for all j ∈ [ℓ]. Now the coloring f̂1 is defined as
follows. For each e ∈ E(Gt), f̂1(e) = β(f1(e)) and for each e ∈ E(G) \ E(Gt), f̂1(e) = f1(e).
Let f̂1|E(Gt) = ĝ1. Since β is a bijection as defined above, f̂1 is an edge q-coloring of G,
ĝ1 ∼t g2, |f1(E(G))| = |f̂1(E(G))|, and ĝ1(E(Gt)) = g2(E(Gt)).

We define an edge q-coloring f2 of G as below:

f2(e) =
{

f̂1(e), if e ∈ E(G) \ E(Gt)
g2(e), otherwise, i.e., e ∈ E(Gt)

Since g2(E(Gt)) = ĝ1(E(Gt)) and f̂1|E(Gt) = ĝ1, we have |f2(E(G))| = |f̂1(E(G))| =
|f1(E(G))|. Next we prove that indeed f2 is an edge q-coloring of G. Towards that we need
to prove that for all u ∈ V (G), |f2(EG(u))| ≤ q. Fix a vertex u ∈ V (G). First, consider
the case when u ∈ Vt \ Xt. Then, f2(E(u)) = g2(E(u)) and g2 is an edge q-coloring of the
induced subgraph Gt. Hence, |f2(E(u))| ≤ q. Now, consider the case u ∈ Xt. Since ĝ1 ∼t g2,
ĝ1(EGt

(u)) = g2(E(Gt(u)). Thus, by the definition of f2, we get that f2(EG(u)) = f̂1(EG(u)).
This implies that |f2(E(u))| ≤ q. Finally, consider the case when u ∈ V (G) \ Vt. In this case,
f2(EG(u)) = f̂1(EG(u)) and hence |f2(E(u))| ≤ q. ◀

Because of Lemma 7, it is enough to keep one coloring from an equivalence class of ∼t.
Let St be the set of all edge q-colorings of Gt such that
(a) all the edges incident on Xt are colored from the set [qk],
(b) all other edges are colored from the set [qk] ∪ {a1, . . . , anq}, and
(c) if an edge in Gt is colored with a color c from [qk], then at least one edge incident on Xt

is colored with c.

Two colorings in St are equivalent in ∼t if the conditions (i) and (ii) defined before, hold.

▶ Lemma 8. The number of equivalence classes in ∼t is upper bounded by
(

qk
q

)k · qk+1 · n.

Proof. From the definition of an equivalence class, the number of equivalence classes is
determined by the product of the number of possibilities for conditions (i) and (ii) mentioned
above in this section. For any n-vertex graph G, the number of colors used by any edge
q-coloring is at most nq, because for any vertex, the number of colors used for the incident
edges is at most q. Recall that |Xt| ≤ k. Next we count the number of distict combination
for the condition (2) (i.e., for all u ∈ Xt, g1(EGt

(u)) = g2(EGt
(u))). This number is upper

bounded by (
∑q

j=0
(

qk
j

)
)k ≤ qk

(
qk
q

)k, since for any vertex in Xt, we choose at most q out of
qk colors for coloring the incident edges. Therefore, the total number of equivalence classes
in ∼t is upper bounded by

(
qk
q

)k · n · qk+1. ◀

R. Mathew, F. Panolan, and Seshikanth 31:7

Because of Lemmas 7 and 8, for each node t in T , we compute and store a family Ct ⊆ St

of edge q-colorings of Gt such that |Ct| ≤ 2O(qk log qk) · n and at least one coloring in it can
be extended to a maximum edge q-coloring of G. Now, we explain how to compute Ct in a
bottom-up fashion. Let t be a node in T and assume that we have computed Ct′ for all node
t′ such that t ̸= t′ and t′ is a node in the subtree rooted at t.

Leaf Node. In this case V (Gt) = ∅, and hence Ct contains only one coloring which is an
empty function.

Introduce Node. Suppose t is an introduce node with a child t′ such that Xt = Xt′ ∪ {v}
for some v /∈ Xt′ . Recall that we have already computed Ct′ . Notice that v is adjacent
to at most k − 1 vertices in Gt. Moreover, NGt(v) ⊆ Xt and E(Gt) = E(Gt′) ⊎ EGt(v).
Now construct a set Dt as follows. Initially we set Dt := ∅. Now for each coloring f ∈ Ct′

and each coloring g : EGt(v) → [qk] such that f ⊎ g is an edge q-coloring of Gt, we add
f ⊎ g to Dt. Finally, construct a minimal subfamily Ct ⊆ Dt such that for each non-empty
equivalence class of ∼t in Dt, there is exactly one such coloring in Ct. The subfamily Ct is
easy to compute. Initially, we set Ct := Dt, and while there are two colorings in Ct which are
equivalent, delete one of them and repeat this step.

Forget Node. Suppose t is a forget node with a child t′ such that Xt = Xt′ \ {w} for some
w ∈ Xt′ . Notice that here Gt = Gt′ and we have already computed Ct′ . But Xt = Xt′ \ {w}.
We want each of the colorings in Ct to have the following property. If a color is used only
to color the edges from E(Gt) \ EGt(Xt), then that color should be from {a1, . . . , aqn}. For
each coloring f ∈ Ct′ , we construct a coloring f ′ as follows. If a color c ∈ [qk] is used to
color an edge in E(Gt) \ EGt

(Xt) and not used to color any edge in EGt
(Xt), then recolor

those edges with an unused color from {a1, . . . , aqn}. The set Ct is the collection of such
colorings f ′. Clearly |Ct| = |Ct′ |.

Join Node. Let t1 and t2 be the children of t. In this case, we have Xt = Xt1 = Xt2 and Gt is
the union of Gt1 and Gt2 . That is, V (Gt) = V (Gt1) ∪ V (Gt2) and E(Gt) = E(Gt1) ∪ E(Gt2).
Also, we have already computed Ct1 and Ct2 . We want to construct Ct by combining
functions from Ct1 and Ct2 . Initially we set Dt := ∅. For a function f1 ∈ Ct1 and a
function f2 ∈ Ct2 , we construct an edge coloring of Gt, which is described below. Let
Aj = fj(EGtj

) ∩ {a1, . . . , anq} and ℓj = |Aj |, for all j ∈ {1, 2}. Let β1 : A1 → {a1, . . . , aℓ1}
and β2 : A2 → {aℓ1+1, . . . , aℓ1+ℓ2} be two arbitrary fixed bijections. Notice that since f1 and
f2 are edge q-colorings from Ct1 ⊆ St1 and Ct2 ⊆ St2 , respectively, and (Vt1 ∩ Vt2) \ Xt = ∅,
we have that ℓ1 + ℓ2 ≤ nq, and hence β1 and β2 are well defined. Now, for all j ∈ {1, 2},
f ′

j : Vtj
→ [qk] ∪ {a1, . . . , anq} be the edge q-colorings defined as follows: f ′

j(e) = fj(e), if
fj(e) ∈ [qk], and f ′

j(e) = βj(fj(e)) if fj(e) ∈ {a1, . . . , anq}. It is easy to see that fj ∼tj f ′
j

and f ′
j is indeed an edge q-coloring of Gtj

. Moreover f ′
1(E(Gt1)) ∩ f ′

2(E(Gt2)) ⊆ [qk]. Now
define an edge coloring f ′

1 ⊕ f ′
2 of Gt as follows.

f ′
1 ⊕ f ′

2(e) =
{

f ′
1(e), if e ∈ E(Gt1)

f ′
2(e), otherwise, i.e., e ∈ E(Gt2) \ E(Gt1)

Notice that each edge in Gt gets exactly one color in f ′
1 ⊕ f ′

2, and hence f ′
1 ⊕ f ′

2 is edge
coloring of Gt. If f ′

1 ⊕ f ′
2 ∈ St, then we include f ′

1 ⊕ f ′
2 in Dt. Notice that when f ′

1 ⊕ f ′
2 ∈ St,

f ′
1 ⊕ f ′

2 is an edge q-coloring of Gt. Finally, construct a minimal subfamily Ct ⊆ Dt such that
for each non-empty equivalence class of ∼t in Dt, there is exactly one such coloring in Ct.

FSTTCS 2024

31:8 Parameterized Algorithms and Hardness for the Maximum Edge q-Coloring Problem

This completes the construction of Ct. Recall that r is the root of T . Finally, we output
a coloring from Cr that uses maximum number of colors.

Correctness. For the correctness proof, it is enough to prove the following statement.
For any maximum edge q-coloring h of G, any node t ∈ V (T), and any injective function
β : h(E(G)) → [qk]∪{a1, . . . , anq} such that β◦h(EGt

(Xt)) ⊆ [qk], there is an edge q-coloring
f ∈ Ct such that f ∼t (β ◦ h)|E(Gt). We prove the statement using mathematical induction,
where the base case is when t is a leaf node. The base case is trivially true, because V (Gt) = ∅
for a leaf node t.

Consider the case when t is labelled as an introduce node. Let t′ be the child of t and Xt′ =
Xt \ {v}. Let h be a maximum edge q-coloring of G and β : h(E(G)) → [qk] ∪ {a1, . . . , anq}
be an injective function such that (β ◦ h)(EGt(Xt)) ⊆ [qk]. Let f = (β ◦ h)|E(Gt′) and
g = (β ◦ h)|EGt (v). By induction hypothesis, there is f ′ ∈ Ct′ with f ′ ∼t′ f = (β ◦ h)|E(Gt′).
Then, f ′ ⊎ g ∈ Dt and there is a function f ′′ ∈ Ct such that f ′′ ∼t f ′ ⊎ g. Since, f ′ ∼t′ f , we
get that f ′′ ∼t (β ◦ h)|E(Gt).

Consider the case when t is labelled as forget node and t′ be the child of t. Notice that in
this case for any coloring f in Ct′ , we changed some colors that are not used to color the
edges in EGt

(Xt) to some other unused colors. Hence, the proof is simple and we omit here.
Consider the case when t is labelled as a join node. Let t1 and t2 be the children

of t. Here, we have Xt = Xt1 = Xt2 . Let h be a maximum edge q-coloring of G and
β : h(E(G)) → [qk]∪{a1, . . . , anq} be an injective function such that (β ◦h)(EGt(Xt)) ⊆ [qk].
Let g1 = (β ◦ h)|E(Gt1) and g2 = (β ◦ h)|E(Gt2). By induction hypothesis, there are function
f1 ∈ Ct1 and f2 ∈ Ct2 such that f1 ∼t1 g1 and f2 ∼t2 g2. Recall the functions f ′

1 and f ′
2

constructed in the algorithm. Since g1 ⊕ g2 = g1 ∪ g2 is an edge q-coloring of Gt, f1 ∼t1 g1
and f2 ∼t2 g2, we get that f ′

1 ⊕ f ′
2 is an edge q-coloring of Gt. Moreover, by the construction

of f ′
1 and f ′

2, the number of colors used by f ′
1 ⊕ f ′

2 is same as the number of colors used by
g1 ∪ g2. Also, since f1 ∼t1 g1 and f2 ∼t2 g2, we get that (f ′

1 ⊕ f ′
2) ∼t (g1 ∪ g2) = (β ◦ h)|E(Gt).

This completes the correctness proof.

Runtime analysis. Lemma 8 implies that for all t ∈ V (T), |Ct| ≤
(

qk
q

)k · qk+1 · n. There
are O(kn) nodes in T and the bottleneck in the computation is the computation of Ct for a
join node. This running time is upper bounded by O(|Ct1 | · |Ct2 | · n), where t1 and t2 are the
children of t. This is upper bounded by 2O(kq log kq)n3. Thus the total running time is upper
bounded by 2O(kq log kq)n4.

Improving the running time. Recall the definition of ∼t. Two functions g1 and g2 are
equivalent under ∼t, if the following conditions hold.

(i) |g1(E(Gt))| = |g2(E(Gt))|. That is, the number of colors used by both g1 and g2 are
the same.

(ii) For all u ∈ Xt, g1(EGt
(u)) = g2(EGt

(u)). That is, the colors seen by the edges incident
on u are the same in both the colorings g1 and g2.

Instead of this, we may define the equivalence only when condition (ii) is satisfied. Then, in
the computation we may store one from the equivalence class that uses maximum number of
colors. This will reduce the number of equivalence classes to

(
qk
q

)k · qk and thus the total
running time to 2O(kq log kq)n.

R. Mathew, F. Panolan, and Seshikanth 31:9

4 Hardness result

A matching M in a graph G is a collection of pairwise vertex disjoint edges, and the size
of M is the number of edges in M . A maximum matching is a matching of the largest size.
We shall use γ(G) to denote the size of a maximum matching in G. It is known that every
graph G has an edge 2-coloring of size at least γ(G) as assigning every edge in a maximum
matching a distinct color and the rest of the edges another new color is indeed a valid edge
2-coloring. We thus consider the following above-guarantee version of the maximum edge
2-coloring problem.

Above-Guarantee Edge 2-coloring Parameter: k

Input: An undirected graph G and k ∈ N.
Question: Does G have an edge 2-coloring of size γ(G) + k?

An independent set I in a graph G is a subset of its vertices such that no two vertices in
I are adjacent to each other in G. The size of I is its cardinality. A maximum independent
set in a graph G is an independent set of largest size. We shall use α(G) to denote the size
of a largest independent set in G. It is known [5] that the following problem on whether a
graph G has an independent set of size ℓ parameterized by ℓ is W[1]-hard.

Independent Set Parameter: ℓ

Input: An undirected graph G and ℓ ∈ N
Question: Does G have an independent set of size ℓ?

In this section, we prove that the Above-Guarantee Edge 2-coloring problem is
W[1]-hard by giving an parameterized reduction from the Independent Set problem to the
former.

4.1 Construction
Let (H, ℓ) be an instance of the Independent Set problem. Let V (H) = {1, . . . , n}. From
H we construct a bipartite graph G as described below:
1. For each vertex i ∈ V (H), we have an edge uiu

′
i in G. Let U = {ui : i ∈ V (H)}∪{u′

i : i ∈
V (H)}.

2. For each edge ij ∈ E(H), we have a vertex xi,j that is adjacent to ui and uj . Let
X = {xi,j : ij ∈ E(H)}.

3. Finally, we have an edge ww′ in G with w adjacent to every vertex in X. Let W = {w, w′}.
See Figure 1 for an example of the construction of the graph G from H = K4. Here,
V (H) = [4] and E(H) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}}).

Thus, V (G) = U ∪ X ∪ W , and the set of edges of G is as defined above. In the rest of
this section, we shall use U -X edges to denote the set of edges having one endpoint in U and
the other in X. In a similar way, we define X-W edges. Finally, for any vertex v in G, we
shall use v-U (resp., v-X, v-W) edges to denote the set of edges from v to U (resp., X, W).

4.2 The proof
Throughout this section, we assume that (i) H is a graph on n vertices, and (ii) G is the
graph constructed from H as described in Section 4.1.

▶ Proposition 9. γ(G) = n + 1.

FSTTCS 2024

31:10 Parameterized Algorithms and Hardness for the Maximum Edge q-Coloring Problem

u′
1 u′

2 u′
3 u′

4

u1 u2 u3 u4

x1,2
x1,3

x1,4 x2,3 x2,4

x3,4

w

w′

Figure 1 Graph G constructed from H = K4.

Proof. The set M = {uiu
′
i : i ∈ [n]}∪{ww′} is a matching of size n+1. Thus, γ(G) ≥ n+1.

To show that γ(G) ≤ n + 1, consider any matching A of G. We construct a matching A′

out of A with |A′| = |A| below. If A contains any w-X edge, replace it with ww′ in A′. If A

contains any xi,jui edge, replace it with uiu
′
i in A′. Thus, every edge in A′ is a pendant edge

of G. Since the number of pendant edges in G equals n + 1, we have |A| = |A′| ≤ n + 1. ◀

▶ Lemma 10. Given any edge 2-coloring f of G, one can obtain another edge 2-coloring f ′

of G such that
1. Every w-X edge in G has color cF under f ′,
2. For every ui, all ui-X edges are of the same color under f ′.
3. f ′ uses the same number of colors as f

Proof. Below, we construct the coloring f ′ from f . Without loss of generality, assume that
cF is a color seen by the vertex w under f . If w sees only one color under f , then do nothing.
Suppose w sees two colors, say c and cF . In that case, replace every occurrence of c in the
given coloring of G with cF and finally assign the color c to the edge ww′. The resultant
coloring is a valid edge 2-coloring as every vertex continues to see the same number of colors.
Further, we have managed to satisfy Condition 1. The size of the new coloring obtained is
the same as that of f . Now, consider each vertex ui, 1 ≤ i ≤ n, individually. If ui sees only
one color under f , then do nothing.

Suppose ui sees two colors. In that case, (i) if cF and, without loss of generality, c are the
two colors seen by ui, then replace every occurrence of c in the given coloring of G with cF

and finally assign the color c to the edge uiu
′
i, or (ii) if, without loss of generality, c and c′ are

the two colors seen by ui, then replace every occurrence of say c′ in the given coloring with c

and finally assign the color c′ to the edge uiu
′
i. Let us call the resultant coloring f ′. Note

that f ′ satisfies Condition 2. Lastly, note that the size of f ′ is the same as that of f . ◀

▶ Lemma 11. Any maximum edge 2-coloring of G is of size n + α(H) + 2.

Proof. Assign color ci to every uiu
′
i edge, color c0 to the ww′ edge, and color cF to every

w-X edge. Let S ⊆ V (H) be a maximum independent set in H. For each i ∈ S, assign the
color c′

i to every ui-X edge. For all the remaining X-U edges, assign the color cF . Note that

R. Mathew, F. Panolan, and Seshikanth 31:11

in the above coloring, (i) the vertex w sees the colors c0 and cF , (ii) every ui ∈ S sees colors
ci and c′

i, and (iii) every ui ∈ U \ S sees colors cF and ci. Now consider a vertex xi,j ∈ X.
Since S is an independent set in H, S won’t contain both i and j. If S contains neither,
then xi,j sees only color cF . Without loss of generality, assume i ∈ S. Then, xi,j sees the
colors c′

i and cF . Thus, the above coloring is a valid edge 2-coloring. Note that the size of
the above coloring is n + α(H) + 2. We have thus shown that the size of a maximum edge
2-coloring of G is at least n + α(H) + 2.

We now show that any edge 2-coloring of G is of size at most n + α(H) + 2. Let f be an
edge 2-coloring of G. Apply Lemma 10 to obtain the coloring f ′ from f . Let Pf ′ be the set
of colors seen by the pendant vertices of G under f ′. Since G has n + 1 pendant vertices,
|Pf ′ | ≤ n + 1. We know that, under f ′, every w-X edge is assigned the color cF , and for
every ui, all ui-X edges are of the same color. Let Rf ′ denote the set of all colors used by
the coloring f ′ that are not present in Pf ′ ∪ {cF }. Observe that every color in Rf ′ is used
to color U -X edges (as the color of every other edge is present in Pf ′ ∪ {cF }). Let UR ⊆ U

be a set of size r := |Rf ′ | such that (i) for any two distinct ui, uj ∈ UR, the color of ui-X
edges is different from the color of uj-X edges, and (ii) the set of colors used to color the
UR-X edges is equal to Rf ′ . Without loss of generality, assume UR = {u1, . . . , ur}. We claim
that the set {1, . . . , r} is an independent set in H. Suppose not. Then ij ∈ E(H), for some
1 ≤ i < j ≤ r. However, this would mean that the vertex xi,j sees three distinct colors (on
its edges xi,jui, xi,juj , and xi,jw) which is a contradiction to the fact that f ′ is a valid edge
2-coloring. Hence, {1, . . . , r} is an independent set in H and therefore, r ≤ α(H). The set of
colors used by f ′ is Pf ′ ∪{cF }∪Rf ′ which is at most (n+1)+(1)+(α(H)) = n+α(H)+2. ◀

▶ Theorem 12. Above-Guarantee Edge 2-coloring is W[1]-hard.

Proof. Let (H, ℓ) be an instance of Independent Set. We construct G from H as described
in Section 4.1. Note that this construction can be done in O(n2) time. Let k = ℓ + 1. We
claim that (H, ℓ) ∈ Independent Set if and only (G, k) ∈ Above-Guarantee Edge
2-coloring. If H has an independent set of size ℓ, then, by Lemma 11, G has an edge
2-coloring of size n + α(H) + 2 ≥ γ(G) + k (because α(H) ≥ ℓ and from Proposition 9, we
have γ(G) = n + 1). From such a coloring, it is easy to obtain a valid edge 2-coloring of
size exactly γ(G) + k (see Proposition 1 in [10] for a proof of this statement). To prove the
converse, suppose H does not have any independent set of size ℓ. Then, by Lemma 11, G

has no edge 2-coloring of size n + ℓ + 2 = (n + 1) + (ℓ + 1) = γ(G) + k. This completes
the reduction. Note that this is a parameterized reduction from Independent Set to
Above-Guarantee Edge 2-coloring as it satisfies all the three conditions of Definition
5. Since Independent Set is known to be W[1]-hard, we have the theorem. ◀

5 Concluding remarks

In this work, we resolve an open question of Goyal et al. [10]. Further, we give an FPT
algorithm of running time 2O(tw·q log(tw·q))n for Maximum Edge q-Coloring, where tw
is the treewidth of the input graph. It is natural to ask if this running time is optimal.
We would like to mention that as a corollary of a result of Goyal et al. [10] (as well as
our result above), one gets an FPT algorithm of running time 2O(vc log(vc))n for Maximum
Edge 2-Coloring, where vc is the vertex cover number of the input graph. It would be
interesting to obtain a single exponential FPT algorithm and a polynomial kernel even when
the parameter is vertex cover number.

FSTTCS 2024

31:12 Parameterized Algorithms and Hardness for the Maximum Edge q-Coloring Problem

References
1 Anna Adamaszek and Alexandru Popa. Approximation and hardness results for the maximum

edge q-coloring problem. Journal of Discrete Algorithms, 38:1–8, 2016. doi:10.1016/J.JDA.
2016.09.003.

2 L. Sunil Chandran, Talha Hashim, Dalu Jacob, Rogers Mathew, Deepak Rajendraprasad,
and Nitin Singh. New bounds on the anti-ramsey numbers of star graphs via maximum edge
q-coloring. Discret. Math., 347(4):113894, 2024. doi:10.1016/J.DISC.2024.113894.

3 L. Sunil Chandran, Abhiruk Lahiri, and Nitin Singh. Improved approximation for maximum
edge colouring problem. Discret. Appl. Math., 319:42–52, 2022. doi:10.1016/J.DAM.2021.05.
017.

4 B Courcelle. The monadic second-order theory of graphs i: Recognizable sets of finite graphs.
Information and Computation, 1990.

5 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5(4).
Springer, 2015. doi:10.1007/978-3-319-21275-3.

6 Zdeněk Dvořák and Abhiruk Lahiri. Maximum edge colouring problem on graphs that exclude
a fixed minor. In Daniël Paulusma and Bernard Ries, editors, Graph-Theoretic Concepts in
Computer Science, pages 291–304, Cham, 2023. Springer Nature Switzerland.

7 Pál Erdős, Miklós Simonovits, and Vera T Sós. Anti-ramsey theorems. In Infinite and finite
sets: To Paul Erdős on his 60th birthday. North-Holland Publishing Company, 1975.

8 Wangsen Feng, Hanpin Wang, et al. Approximation algorithm for maximum edge coloring.
Theoretical computer science, 410(11):1022–1029, 2009. doi:10.1016/J.TCS.2008.10.035.

9 Shinya Fujita, Colton Magnant, and Kenta Ozeki. Rainbow generalizations of ramsey theory:
a survey. Graphs and Combinatorics, 26:1–30, 2010. doi:10.1007/S00373-010-0891-3.

10 Prachi Goyal, Vikram Kamat, and Neeldhara Misra. On the parameterized complexity of
the maximum edge 2-coloring problem. In Mathematical Foundations of Computer Science
2013: 38th International Symposium, MFCS 2013, Klosterneuburg, Austria, August 26-30,
2013. Proceedings 38, pages 492–503. Springer, 2013. doi:10.1007/978-3-642-40313-2_44.

11 Ashish Raniwala and Tzi-cker Chiueh. Architecture and algorithms for an ieee 802.11-based
multi-channel wireless mesh network. In Proceedings IEEE 24th Annual Joint Conference of
the IEEE Computer and Communications Societies., volume 3, pages 2223–2234. IEEE, 2005.
doi:10.1109/INFCOM.2005.1498497.

12 Ashish Raniwala, Kartik Gopalan, and Tzi-cker Chiueh. Centralized channel assignment and
routing algorithms for multi-channel wireless mesh networks. ACM SIGMOBILE Mobile
Computing and Communications Review, 8(2):50–65, 2004. doi:10.1145/997122.997130.

https://doi.org/10.1016/J.JDA.2016.09.003
https://doi.org/10.1016/J.JDA.2016.09.003
https://doi.org/10.1016/J.DISC.2024.113894
https://doi.org/10.1016/J.DAM.2021.05.017
https://doi.org/10.1016/J.DAM.2021.05.017
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/J.TCS.2008.10.035
https://doi.org/10.1007/S00373-010-0891-3
https://doi.org/10.1007/978-3-642-40313-2_44
https://doi.org/10.1109/INFCOM.2005.1498497
https://doi.org/10.1145/997122.997130

Additive Word Complexity and Walnut
Pierre Popoli # Ñ

Department of Mathematics, University of Liège, Belgium

Jeffrey Shallit # Ñ

School of Computer Science, University of Waterloo, Canada

Manon Stipulanti # Ñ

Department of Mathematics, University of Liège, Belgium

Abstract
In combinatorics on words, a classical topic of study is the number of specific patterns appearing in
infinite sequences. For instance, many works have been dedicated to studying the so-called factor
complexity of infinite sequences, which gives the number of different factors (contiguous subblocks of
their symbols), as well as abelian complexity, which counts factors up to a permutation of letters. In
this paper, we consider the relatively unexplored concept of additive complexity, which counts the
number of factors up to additive equivalence. We say that two words are additively equivalent if they
have the same length and the total weight of their letters is equal. Our contribution is to expand
the general knowledge of additive complexity from a theoretical point of view and consider various
famous examples. We show a particular case of an analog of the long-standing conjecture on the
regularity of the abelian complexity of an automatic sequence. In particular, we use the formalism
of logic, and the software Walnut, to decide related properties of automatic sequences. We compare
the behaviors of additive and abelian complexities, and we also consider the notion of abelian and
additive powers. Along the way, we present some open questions and conjectures for future work.

2012 ACM Subject Classification Mathematics of computing → Combinatorics on words

Keywords and phrases Combinatorics on words, Abelian complexity, Additive complexity, Automatic
sequences, Walnut software

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.32

Funding Pierre Popoli: supported by ULiège’s Special Funds for Research, IPD-STEMA Program.
Jeffrey Shallit: supported by NSERC grants 2018-04118 and 2024-03725.
Manon Stipulanti: FNRS Research Associate supported by the Research grant 1.C.104.24F.

Acknowledgements We thank the reviewers for providing valuable remarks leading to a better version
of the paper. We also thank Matthieu Rosenfeld and Markus Whiteland for helpful discussions, and
Eric Rowland for implementing useful Mathematica code.

1 Introduction

Combinatorics on words is the study of finite and infinite sequences, also known as streams
or strings in other theoretical contexts. Although it is rooted in the work of Axel Thue,
who was the first to study regularities in infinite words in the early 1900’s, words became a
systematic topic of combinatorial study in the second half of the 20th century [8]. Since then,
many different approaches have been developed to analyze words from various points of view.
One of them is the celebrated factor or subword complexity function: given an infinite word
x and a length n ≥ 0, we compute the size of Ln(x), which contains all length-n contiguous
subblocks of x, also called factors or subwords in the literature. One of the most famous
theorems in combinatorics on words related to the factor complexity function is due to Morse
and Hedlund in 1940 [27], where they obtained a characterization of ultimately periodic
words. As a consequence of this result, combinatorists defined binary aperiodic infinite words
having the smallest possible factor complexity function, the so-called Sturmian words.

© Pierre Popoli, Jeffrey Shallit, and Manon Stipulanti;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 32; pp. 32:1–32:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.popoli@uliege.be
https://sites.google.com/view/pierre-popoli-en/welcome?authuser=0
https://orcid.org/0000-0002-4243-9180
mailto:shallit@waterloo.ca
https://cs.uwaterloo.ca/~shallit/
https://orcid.org/0000-0003-1197-3820
mailto:m.stipulanti@uliege.be
https://www.manon-stipulanti.be/
https://orcid.org/0000-0002-2805-2465
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Additive Word Complexity and Walnut

Many other complexity functions have been defined on words depending on the proper-
ties combinatorists wanted to emphasize; see, for instance, the non-exhaustive list in the
introduction of [1]. As the literature on the topic is quite large, we only cite the so-called
abelian complexity function. Instead of counting all distinct factors, we count them up to
abelian equivalence: two words u and v are abelian equivalent, written u ∼ab v, if they are
permutations of each other. For instance, in English, own, now, and won are all abelian
equivalent. For an infinite word x, we let ρab

x denote its abelian complexity function. In
this paper, we study yet another equivalence relation on words; namely, additive equivalence.
Roughly, two words are additively equivalent if the total weight of their letters is equal. In
the following, for a word w ∈ Σ∗, we let |w| denote its length, i.e., the number of letters it is
composed of. Furthermore, for each letter a ∈ Σ, we let |w|a denote the number of a’s in w.

▶ Definition 1. Fix an integer ℓ ≥ 1 and the alphabet Σ = {0, 1, . . . , ℓ}. Two words u, v ∈ Σ∗

are additively equivalent if |u| = |v| and
∑ℓ

i=0 i|u|i =
∑ℓ

i=0 i|v|i, which we write as u ∼add v.

▶ Example 2. Over the three-letter alphabet {0, 1, 2}, we have 020 ∼add 101.

▶ Definition 3. Fix an integer ℓ ≥ 1 and the alphabet Σ = {0, 1, . . . , ℓ}. Let x be an infinite
word on Σ. The additive complexity of x is the function ρadd

x : N → N, n 7→ #(Ln(x)/∼add),
i.e., length-n factors of x are counted up to additive equivalence.

Surprisingly, not so many results are known for additive equivalence and the corresponding
complexity function, in contrast with the abundance of abelian results in combinatorics;
see [32, 33, 39, 43, 44], for example. Notice that over a two-letter alphabet, the concepts of
abelian and additive complexity coincide. Additive complexity was first introduced in [5],
where the main result states that bounded additive complexity implies that the underlying
infinite word contains an additive k-power for every k (an additive k-power is a word w that
can be written as x1x2 · · ·xk where the words x1, x2, . . . , xk are all additively equivalent).

Later, words with bounded additive complexity were studied: first in [5], and with
more attention in [6]. In particular, equivalent properties of bounded additive complexity
were found. We also mention work on the particular case of constant additive and abelian
complexities [6, 20, 33, 37]. As already observed, combinatorists expanded the notion of
pattern avoidance to additive powers. See the most recent preprint [4] for a nice exposition
of the history. For instance, Cassaigne et al. [14] proved that the fixed point of the morphism
0 7→ 03, 1 7→ 43, 3 7→ 1, 4 7→ 01 avoids additive cubes (see Section 2 for concepts not defined in
this introduction). Rao [31] proved that it is possible to avoid additive cubes over a ternary
alphabet and mentioned that the question about additive squares (in one dimension and over
the integers) is still open. Furthermore, we mention the following related papers. Brown and
Freedman [11] also talked about the open problem about additive squares. A notion of “close”
additive squares is defined in [12]. In [24], the authors showed that in every infinite word over
a finite set of non-negative integers there is always a sequence of factors (not necessarily of
the same length) having the same sum. In [30], the more general setting of k-power modulo
a morphism was studied. Finally, in terms of computing the additive complexity of specific
infinite words, to our knowledge, only that of a fixed point of a Thue–Morse-like morphism
is known [17].

In this paper, we expand our general knowledge of additive complexity functions of
infinite words. After giving some preliminaries in Section 2, we obtain several general results
in Section 3, and in Theorem 10 we prove a particular case of the conjecture below. Note
that it is itself a particular case of the long-standing similar conjecture in an abelian context:
the abelian complexity of a k-automatic sequence is a k-regular sequence [29].

P. Popoli, J. Shallit, and M. Stipulanti 32:3

▶ Conjecture 4. The additive complexity of a k-automatic sequence is a k-regular sequence.

In particular, the proof of our Theorem 10 relies on the logical approach to combinatorics
on words: indeed, many properties of words can be phrased in first-order logic. Based
on this, Mousavi [28] designed the free software Walnut that allows one to automatically
decide the truth of assertions about many properties for a large family of words. See [40]
for the formalism of the software and a survey of the combinatorial properties that can be
decided. In Section 3, we show how Walnut may be used in an ad-hoc way to give partial
answers to Conjecture 4. In Section 4, we compare the behaviors of the additive and abelian
complexity functions of various words. We highlight the fact that they may behave quite
differently, sometimes making use of Walnut. Motivated by the various behaviors we observe,
we study in Section 5 some words for which the additive and abelian complexity functions are
in fact equal. We end the paper by considering the related notions of abelian and additive
powers.

2 Preliminaries

For a general reference on words, we guide the reader to [26]. An alphabet is a finite set of
elements called letters. A word over an alphabet Σ is a finite or infinite sequence of letters
from Σ. The length of a finite word w, denoted |w|, is the number of letters it is made of.
The empty word is the only 0-length word, denoted by ε. For all n ≥ 0, we let Σn denote the
set of all length-n words over Σ. We let Σ∗ denote the set of finite words over A, including
the empty word, and equipped with the concatenation. In this paper, we distinguish finite
and infinite words by writing the latter in bold. For each letter a ∈ Σ and a word w ∈ Σ∗, we
let |w|a denote the number of a’s in w. Let us assume that the alphabet Σ = {a1 < · · · < ak}
is ordered. For a word w ∈ Σ∗, we let Ψ(w) denote the abelianization or Parikh vector
(|w|a1 , . . . , |w|ak

), which counts the number of different letters appearing in w. For example,
over the alphabet {e < l < s < v}, we have Ψ(sleeveless) = (4, 2, 3, 1).

A factor of a word is one of its (contiguous) subblocks. For a given word x, for all n ≥ 0,
we let Ln(x) denote the set of length-n factors of x. A prefix (resp., suffix) is a starting
(resp., ending) factor. A prefix or a suffix is proper if it is not equal to the initial word.
Infinite words are indexed starting at 0. For such a word x, we let x(n) denote its nth letter
with n ≥ 0 and, for 0 ≤ m ≤ n, we let x[m..n] denote the factor x(m) · · · x(n).

Let Σ and Γ be finite alphabets. A morphism f : Σ∗ → Γ∗ is a map satisfying f(uv) =
f(u)f(v) for all u, v ∈ Σ∗. In particular, f(ε) = ε, and f is entirely determined by the images
of the letters in Σ. For an integer k ≥ 1, a morphism is k-uniform if it maps each letter
to a length-k word. A 1-uniform morphism is called a coding. A sequence x is morphic if
there exist a morphism f : Σ∗ → Σ∗, a coding g : Σ∗ → Γ∗, and a letter a ∈ Σ such that
x = g(fω(a)), where fω(a) = limn→∞ fn(a). The latter word fω(a) is a fixed point of f .

Introduced by Cobham [18] in the early 1970s, automatic words have several equivalent
definitions depending on the point of view one wants to adopt. For the case of integer base
numeration systems, a comprehensive presentation of automatic sequences is [3], while [34, 38]
treat the case of more exotic numeration systems. We start with the definition of positional
numeration systems. Let U = (U(n))n≥0 be an increasing sequence of integers with U(0) = 1.
A positive integer n can be decomposed, not necessarily uniquely, as n =

∑t
i=0 c(i)U(i) with

non-negative integer coefficients c(i). If these coefficients are computed greedily, then for
all j < t we have

∑j
i=0 c(i)U(i) < U(j + 1) and repU (n) = c(t) · · · c(0) is said to be the

(greedy) U -representation of n. By convention, that of 0 is the empty word ε, and the greedy
representation of n > 0 starts with a non-zero digit. A sequence U satisfying all the above

FSTTCS 2024

32:4 Additive Word Complexity and Walnut

conditions defines a positional numeration system. Let U = (U(n))n≥0 be such a numeration
system. A sequence x is U -automatic if there exists a deterministic finite automaton with
output (DFAO) A such that, for all n ≥ 0, the nth term x(n) of x is given by the output
A(repU (n)) of A. In the particular case where U is built on powers of an integer k ≥ 2, then
x is said to be k-automatic. It is known that a sequence is k-automatic if and only if it is
the image, under a coding, of a fixed point of a k-uniform morphism [3].

A generalization of automatic sequences to infinite alphabets is the notion of regular
sequences [3, 34, 38]. Given a positional numeration system U = (U(n))n≥0, a sequence x is
U -regular if there exist a column vector λ, a row vector γ and matrix-valued morphism µ,
i.e., the image of each letter is a matrix, such that x(n) = λµ(repU (n))γ. Such a system of
matrices forms a linear representation of x. In the particular case where U is built on powers
of an integer k ≥ 2, then x is said to be k-regular. Another definition of k-regular sequences
is the following one [3]. Consider a sequence x and an integer k ≥ 2. The k-kernel of x is
the set of subsequences of the form (x(ken+ r))n≥0 where e ≥ 0 and r ∈ {0, 1, . . . , ke − 1}.
Equivalently, a sequence is k-regular if the Z-module generated by its k-kernel is finitely
generated. A sequence is then k-automatic if and only if its k-kernel is finite [3].

Introduced in 2001 by Carpi and Maggi [13], synchronized sequences form a family between
automatic and regular sequences. Given a positional numeration system U = (U(n))n≥0, a
sequence x is U -synchronized if there exists a deterministic finite automaton (DFA) that
recognizes the language of U -representations of n and x(n) in parallel.

3 General results

In this section, we gather general results on the additive complexity of infinite words. Since
abelian equivalence implies additive equivalence, we have the following lemma.

▶ Lemma 5. For all infinite words x, we have ρadd
x (n) ≤ ρab

x (n) for all n ≥ 0.

As in the case of abelian complexity, we have the following lower and upper bounds for
additive complexity. See [19, Rk. 4.07] and [33, Thm 2.4].

▶ Lemma 6. Let k ≥ 1 be an integer and let x be an infinite word on {a1 < · · · < ak}. We
have 1 ≤ ρadd

x (n) ≤
(

n+k−1
k−1

)
for all n ≥ 0.

Note that the lower bound of the previous result is reached for (purely) periodic sequences.
The story about the upper bound is a little more puzzling. In fact, for a window length
N ≥ 1, we can find an alphabet and a sequence over this alphabet for which its additive
complexity reaches the stated upper bound on its first N values. Indeed, fix an integer k ≥ 3
and an alphabet Σ = {a1 < · · · < ak} of integers. Consider the Champernowne-like sequence
defined on Σ by concatenating all words of Σ∗ in lexicographic order. Then, for all N ≥ 1,
we can find a valuation of Σ (i.e., a distribution of integral values for the letters of Σ) such
that ρadd

x (n) =
(

n+k−1
k−1

)
for all n ≤ N . However, it does not seem possible to find a sequence

for which its additive complexity always reaches the upper bound. This already highlights
the unusual fact that the underlying alphabet of the words plays a crucial role in additive
complexity.

The classical theorem of Morse and Hedlund [27] characterizes ultimately periodic infinite
words by means of their factor complexity. With the notion of additive complexity, we no
longer have a characterization, only the implication below. The converse of Proposition 7
does not hold, as illustrated by several examples in Section 4.

▶ Proposition 7. The additive complexity of an ultimately periodic word is bounded.

P. Popoli, J. Shallit, and M. Stipulanti 32:5

Similarly, balanced words may be characterized through their abelian complexity. A
word x is said to be C-balanced if ||u|a − |v|a| ≤ C for all a ∈ Σ and all factors u, v of x of
equal length. Richomme, Saari and Zamboni [33, Lemma 3] proved that an infinite word x
is C-balanced for some C ≥ 1 if and only if ρab

x is bounded. In our case, we only have one
implication, as stated in Proposition 8, and we also provide an upper bound.

▶ Proposition 8. Let Σ = {a1 < · · · < ak} and let x be a C-balanced word on Σ. Then
the additive complexity of x is bounded by a constant. More precisely, we have ρadd

x (n) ≤
C

∑⌈k/2⌉
i=1 (ai − ak+1−i) + 1 for all n ≥ 0.

Proof. For all length-n factors y, z of x and a ∈ Σ, we have ||y|a − |z|a| ≤ C. So the largest
possible gap between the sum of letters of y and the sum of letters of z is when, for all
i ∈ {1, . . . , ⌈k/2⌉}, |y|ai

= |z|ai
+C and |y|ak+1−i

= |z|ak+1−i
−C, or vice versa (in short, we

swap C letters from ak to a1, C others from ak−1 to a2, and so on and so forth). ◀

Note that Proposition 8 is a particular case of [6, Theorem 4]. However, there are infinite
words with bounded additive complexity and unbounded abelian complexity, making them
not balanced. For an example, see Section 4.2.

Computing additive and abelian complexity might be “easy” in some cases. Recently,
Shallit [39] provided a general method to compute the abelian complexity of an automatic
sequence under some hypotheses.

▶ Theorem 9 ([39, Thm. 1]). Let x be a sequence that is automatic in some regular numeration
system. Assume that
1. the abelian complexity ρab

x of x is bounded above by a constant, and
2. the Parikh vectors of length-n prefixes of x form a synchronized sequence.

Then ρab
x is an automatic sequence and the DFAO computing it is effectively computable.

We obtain an adapted version in the framework of additive complexity.

▶ Theorem 10. Let x be a sequence that is automatic in some additive numeration system.
Assume that
1. the additive complexity ρadd

x of x is bounded above by a constant, and
2. the Parikh vectors of length-n prefixes of x form a synchronized sequence.

Then ρadd
x is an automatic sequence and the DFAO computing it is effectively computable.

Proof. Let Σ = {a1 < · · · < ak} ⊂ N be an ordered finite alphabet. The weighted Parikh
vector of a finite word w ∈ Σ∗ is ψ∗(w) = (a1|w|a1 , . . . , ak|w|ak

). Then two words x, y
are additively equivalent if and only if

∑
a∈Σ[ψ∗(x)]a =

∑
a∈Σ[ψ∗(y)]a, where [ψ∗(x)]a

designates the ath component of the vector ψ∗(x). We adapt the proof of [39, Thm. 1] in
the framework of the additive complexity. The steps to find the automaton computing the
additive complexity ρadd

x are the following:
1. Since the Parikh vectors of length-n prefixes of x form a synchronized sequence by

assumption, so are the weighted Parikh vectors for arbitrary length-n factors x[i..i+n−1].
This is expressible in first-order logic.

2. For i ≥ 0 and n ≥ 1, let us denote ∆x(i, n) the following integer

∆x(i, n) =
∑
a∈Σ

[ψ∗(x[i..i+ n− 1])]a −
∑
a∈Σ

[ψ∗(x[0..n− 1])]a.

The additive complexity ρadd
x is bounded if and only if there is a constant C such that

the cardinality of the set A∗
n := {∆x(i, n) : i ≥ 0}, is bounded above by C for all n ≥ 1.

FSTTCS 2024

32:6 Additive Word Complexity and Walnut

3. In this case, the range of possible values of A∗
n is finite (it may take at most 2C+1 values)

and can be computed algorithmically.
4. Once this range is known, there are finitely many possibilities for ∆x(i, n) for all i ≥ 0.

Then, we compute the set S of all of these possibilities.
5. Once we have S, we can test each of the finitely many values to see if it occurs for some

n, and we obtain an automaton recognizing those n for which it does.
6. All the different automata can then be combined into a single DFAO computing ρadd

x (n),
using the direct product construction.

This finishes the proof. ◀

▶ Remark 11. The advantage of the proof above is that it is constructive. However, in practice,
it will be more convenient to use the so-called semigroup trick algorithm, as discussed in [40,
§ 4.11]. This algorithm should be used when a regular sequence is believed to be automatic,
i.e., when it takes only finitely many values. The semigroup trick algorithm halts if and only
if the sequence is automatic and produces a DFAO if this is the case. Therefore, Theorem 10
ensures that, under some mild hypotheses, the algorithm halts.

Theorem 10 may be applied to a particular family of infinite words: those that are
generated by so-called Parikh-collinear morphisms. In recent years, combinatorists have been
studying them; see, e.g., [16, 2, 35, 36].

▶ Definition 12. A morphism φ : Σ∗ → ∆∗ is Parikh-collinear if the Parikh vectors Ψ(φ(a)),
a ∈ Σ, are collinear (or pairwise Z-linearly dependent). In other words, the associated
adjacency matrix of φ, i.e., the matrix whose columns are the vectors Ψ(φ(a)), for all a ∈ Σ,
has rank 1.

▶ Theorem 13 ([35, 36]). Let φ : Σ∗ → Σ∗ be a Parikh-collinear morphism prolongable
on the letter a, and write x := φω(a). Then the abelian complexity function ρab

x of x is
k-automatic for k =

∑
b∈Σ |φ(b)|b. Moreover, the automaton generating ρab

x can be effectively
computed given φ and a.

Putting together Lemma 5 and Theorem 13, we obtain the following.

▶ Corollary 14. Let x be a fixed point of a Parikh-collinear morphism. Then the abelian and
additive complexity functions of x are bounded.

▶ Theorem 15. Let φ : Σ∗ → Σ∗ be a Parikh-collinear morphism prolongable on the letter
a, and write x := φω(a). The additive complexity function ρadd

x of x is k-automatic for
k =

∑
b∈Σ |φ(b)|b. Moreover, the automaton generating ρadd

x can be effectively computed
given φ and a.

Proof. By Corollary 14, ρadd
x is bounded by a constant, so Item 1 of Theorem 10 is satisfied.

Then Item 2 of of Theorem 10 holds by [36, Lemma 26]. Hence, Theorem 10 allows to finish
the proof. ◀

We now give a detailed example of Theorem 15. Let f : {0, 1, 2}∗ → {0, 1, 2} be defined
by 0 7→ 012, 1 7→ 112002, 2 7→ ε. Since the three vectors Ψ(f(0)) = (1, 1, 1), Ψ(f(1)) =
(2, 2, 2) and Ψ(f(2)) = (0, 0, 0) are collinear, it follows that f is Parikh-collinear. Consider
x = 012112002112002 · · · , the fixed point of f starting with 0. In [36], the authors proved
that the abelian complexity of x is equal to the eventually periodic word 135(377)ω. We
have a similar result for additive complexity.

▶ Proposition 16. Let f : {0, 1, 2}∗ → {0, 1, 2}, 0 7→ 012, 1 7→ 112002, 2 7→ ε. The additive
complexity of the fixed point x = 0121120022112002 · · · of f is equal to 134(355)ω.

P. Popoli, J. Shallit, and M. Stipulanti 32:7

Proof. Computing
∑2

a=0|f(a)|a = 3, we know from classical results that x is 3-automatic.
We thus know that x is generated by a 3-uniform morphism. Following the procedure
of [35], we have x = τ(hω(0)) with h : 0, 6 7→ 012, 1, 4 7→ 134, 2, 3, 5 7→ 506, and the coding
τ : 0, 5 7→ 0, 1, 3 7→ 1, and 2, 4, 6 7→ 2.

In Walnut, we can compute the synchronized functions fac0, fac1 and fac2 that computes
the number of letter 0, 1 and 2 in every factor of x, see [36] for more details.

Next, we test whether the factors u = x[i..i + n − 1] and v = x[j..j + n − 1] of x are
additively equivalent. For that, it is enough to check the equality between the quantities
|u|1 + 2|u|2 and |v|1 + 2|v|2.

def addFacEq "?msd_3 Ep,q,r,s $fac1(i,n,p) & $fac2(i,n,q)
& $fac1(j,n,r) & $fac2(j,n,s) & p+2*q=r+2*s":

Finally, we write that x[i..i+n−1] is a novel occurrence of a length-n factor of x representing
its additive equivalence class and obtain a linear representation for the number of such
positions i as follows:

eval addCompRepLin n "?msd_3 Aj j<i => ~$addFacEq(i,j,n)":

Walnut then returns a linear representation of size 55.
The first step is to take the linear representation computed by Walnut, and minimize it.

The result is a linear representation of rank 7, using the algorithm in [9, § 2.3]. Once we
have this linear representation, we can carry out the so-called semigroup trick algorithm, as
discussed in [40, § 4.11]. As it terminates, we prove that the additive complexity of the word
x is bounded, and takes on only the values {1, 3, 4, 5} for n ≥ 0. Furthermore, it produces a
4-state DFAO computing the additive complexity, called addCompExample, that we display
in Figure 1.

q0/1 q1/3

q2/4 q3/5

0

1

2

0

1, 20

1, 2
1, 2

0

Figure 1 A four-state DFAO computing the additive complexity of the fixed point of
f : {0, 1, 2}∗ → {0, 1, 2}, 0 7→ 012, 1 7→ 112002, 2 7→ ε.

By inspecting this DFAO, we easily prove that the additive complexity of x is 134(355)ω.
This could also be checked easily with Walnut with the following commands:

reg form3 msd_3 "0*(0|1|2)*0":
eval check3 "?msd_3 An ($form3(n) & n>=3) => addCompExample[n]=@3":
reg form5 msd_3 "0*(0|1|2)*(1|2)":
eval check5 "?msd_3 An ($form5(n) & n>=3) => addCompExample[n]=@5":

and both return True. Notice that these two forms cover all integers n ≥ 3 and the first few
values can be checked by hand. ◀

FSTTCS 2024

32:8 Additive Word Complexity and Walnut

4 Different behaviors and curiosities

In this section, we exhibit different behaviors between the additive and abelian complexity
functions by making use of the software Walnut. By Lemma 5, the behavior of additive
complexity of a sequence is constrained by its abelian complexity. Here we show that the
functions may behave differently; in particular, see Section 4.2.

4.1 Bounded additive and abelian complexities
4.1.1 The Tribonacci word
The Tribonacci word tr is the fixed point of the morphism 0 7→ 01, 1 7→ 02, 2 7→ 0. This
well-known word belongs to the family of episturmian words, a generalization of the famous
Sturmian words. This word is Tribonacci-automatic, where the underlying numeration system
is built on the sequence of Tribonacci numbers defined by T (0) = 1, T (1) = 2, T (2) = 4, and
T (n) = T (n− 1) + T (n− 2) + T (n− 3) for all n ≥ 3. Notice that this word is not the fixed
point of a Parikh-collinear morphism; otherwise it would be k-automatic for some integer
k ≥ 2. A generalization of Cobham’s theorem for substitutions [21] would then imply that
tr is ultimately periodic. The possible values of the abelian complexity of the word tr were
studied in [32, Thm. 1.4]. Also see Figure 2.

▶ Theorem 17 ([32, Thm. 1.4]). Let tr be the Tribonacci word, i.e., the fixed point of the
morphism 0 7→ 01, 1 7→ 02, 2 7→ 0. The abelian complexity function ρab

tr takes on only the
values in the set {3, 4, 5, 6, 7} for n ≥ 1.

This result was reproved by Shallit [39] using Walnut by providing an automaton comput-
ing ρab

tr . Furthermore, this automaton allows us to prove that each value is taken infinitely
often. We prove the following result concerning the additive complexity of the Tribonacci
word. See again Figure 2.

▶ Theorem 18. Let tr be the Tribonacci word, i.e., the fixed point of the morphism 0 7→ 01,
1 7→ 02, 2 7→ 0. The additive complexity function ρadd

tr takes on only the values in the set
{3, 4, 5} for n ≥ 1. Furthermore, each of the three values is taken infinitely often and it is
computed by a 76-state Tribonacci DFAO.

Proof. We reuse some ideas (especially, Walnut code) from [39, 41]. The Tribonacci word is
stored as TRL in Walnut. The synchronized function rst takes the Tribonacci representations
of m and n in parallel and accepts if (n)T is the right shift of (m)T . In Walnut, the following
three predicates allow us to obtain DFAO’s that compute the maps n 7→ |tr[0..n− 1]|a for
a ∈ {0, 1, 2}, i.e., the number of letters 0, 1, 2 in the length-n prefix of the Tribonacci word tr.
Note that the predicates are obtained using a special property of tr; for a full explanation,
see [39, Sec. 3].

def tribsync0 "?msd_trib Ea Eb (s=a+b) & ((TRL[n]=@0)=>b=0)
& ((TRL[n]=@1)=>b=1) & $rst(n,a)":

def tribsync1 "?msd_trib Ea Eb Ec (s=b+c) & ((TRL[a]=@0)=>c=0)
& ((TRL[a]=@1)=>c=1) & $rst(n,a) & $rst(a,b)":

def tribsync2 "?msd_trib Ea Eb Ec Ed (s=c+d) & ((TRL[b]=@0)=>d=0)
& ((TRL[b]=@1)=>d=1) & $rst(n,a) & $rst(a,b) & $rst(b,c)":

From now on, we follow the same steps as Proposition 16. First, we compute the Tribonacci
synchronized functions n 7→ |tr[i..i+ n− 1]|a for a ∈ {0, 1, 2}, that are

P. Popoli, J. Shallit, and M. Stipulanti 32:9

def tribFac0 "?msd_trib Aq Ar ($tribsync0(i+n,q)
& $tribsync0(i,r)) => (q=r+s)":

def tribFac1 "?msd_trib Aq Ar ($tribsync1(i+n,q)
& $tribsync1(i,r)) => (q=r+s)":

def tribFac2 "?msd_trib Aq Ar ($tribsync2(i+n,q)
& $tribsync2(i,r)) => (q=r+s)":

Next, we compute the additive equivalence between two factors, that is the following
Tribonacci synchronized function

def tribAddFacEq "?msd_trib Ep,q,r,s $tribFac1(i,n,p) & $tribFac2(i,n,q)
& $tribFac1(j,n,r) & $tribFac2(j,n,s) & p+2*q=r+2*s":

Finally, we obtain a linear representation, as defined at the end of Section 2, of the additive
complexity as follows

eval tribAddCompRepLin n "?msd_trib Aj j<i => ~$tribAddFacEq(i,j,n)":

And Walnut then returns a linear representation of size 184. Then we apply the same
procedure than in Proposition 16.

After minimization, the result is a linear representation of rank 62 and we carry out the
semigroup trick. This algorithm terminates, which proves that the additive complexity of the
Tribonacci word is bounded, and takes on only the values {1, 3, 4, 5} for n ≥ 0. Furthermore,
it produces a 76-state DFAO computing the additive complexity. In Walnut, let us import
this DFAO under the name TAC. To show that each value appears infinitely often, we test
the following three predicates

eval tribAddComp_3 "?msd_trib An Em (m>n) & TAC[m]=@3":
eval tribAddComp_4 "?msd_trib An Em (m>n) & TAC[m]=@4":
eval tribAddComp_5 "?msd_trib An Em (m>n) & TAC[m]=@5":

and Walnut then returns TRUE each time. ◀

Figure 2 The first few values of the abelian and additive complexities for the Tribonacci word.

▶ Remark 19. From the automaton, which is too large to display here, it is easy to find
infinite families for each value of the additive complexity function. Indeed, it suffices to
detect a loop in the automaton leading to a final state for each value. For instance, we have
the following infinite families:
(a) If (n)T = 100(100)k, for k ≥ 0, then ρadd

tr (n) = 3.
(b) If (n)T = 1101(01)k, for k ≥ 0, then ρadd

tr (n) = 4.
(c) If (n)T = 1101001100(1100)k, for k ≥ 0, then ρadd

tr (n) = 5.

FSTTCS 2024

32:10 Additive Word Complexity and Walnut

One can check with Walnut that these infinite families are convenient with the following
commands

reg form3 msd_trib "0*100(100)*":
reg form4 msd_trib "0*1101(01)*":
reg form5 msd_trib "0*1101001100(1100)*":
eval check3 "?msd_trib An ($form3(n) & n>=1) => TAC[n]=@3":
eval check4 "?msd_trib An ($form4(n) & n>=1) => TAC[n]=@4":
eval check5 "?msd_trib An ($form5(n) & n>=1) => TAC[n]=@5":

which returns TRUE for each command. One can also notice that from the automaton, we
can build infinitely many infinite families of solutions of each of those values. However, the
question about the respective proportion of solutions remains open.
▶ Remark 20. With Walnut, we can also build a DFAO computing the minimum (resp.,
maximum) possible sum of a length-n block occurring in tr. Furthermore, for each n, every
possible sum between these two extremes actually occurs for some length-n factor in tr.

4.1.2 The generalized Thue–Morse word on three letters
We introduce a family of words over three letters that are closed to a generalization of the
Thue–Morse word.

▶ Definition 21. Let ℓ,m be integers such that 1 ≤ ℓ < m. The (ℓ,m)-Thue–Morse word
tℓ,m is the fixed point of the morphism 0 7→ 0ℓm, ℓ 7→ ℓm0, m 7→ m0ℓ.

In the case where ℓ = 1 and m = 2, we find the so-called ternary Thue–Morse word
t3, which is the fixed point of the morphism 0 7→ 012, 1 7→ 120, 2 7→ 201. This word is a
natural generalization of the ubiquitous Thue–Morse sequence, since it corresponds to the
sum-of-digit function in base 3, taken mod 3.

▶ Theorem 22 ([25, Thm. 4.1]). Consider the ternary Thue–Morse word t3, i.e., the fixed
point of the morphism 0 7→ 012, 1 7→ 120, 2 7→ 201. The abelian complexity function ρab

t3
is

the periodic infinite word 13(676)ω.

▶ Theorem 23. Consider the ternary Thue–Morse word t3, i.e., the fixed point of the
morphism 0 7→ 012, 1 7→ 120, 2 7→ 201. The additive complexity function ρadd

t3
is the periodic

infinite word 135ω.

Proof. The following Walnut provides a linear representation of size 138 for the additive
complexity of t3:

morphism h "0->012 1->120 2->201":
promote TMG h:

def tmgPref0 "?msd_3 Er,t n=3*t+r & r<3 & (r=0 => s=t)
& ((r=1 & TMG[n-1]=@0) => s=t+1)
& ((r=1 & (TMG[n-1]=@1 | TMG[n-1]=@2)) => s=t)
& ((r=2 & (TMG[n-1]=@0 | TMG[n-1]=@1)) => s=t+1)
& ((r=2 & TMG[n-1]=@2) => s=t)":

def tmgPref1 "?msd_3 Er,t n=3*t+r & r<3 & (r=0 => s=t)
& ((r=1 & TMG[n-1]=@1) => s=t+1)
& ((r=1 & (TMG[n-1]=@0 | TMG[n-1]=@2)) => s=t)

P. Popoli, J. Shallit, and M. Stipulanti 32:11

& ((r=2 & (TMG[n-1]=@1 | TMG[n-1]=@2)) => s=t+1)
& ((r=2 & TMG[n-1]=@0) => s=t)":

def tmgPref2 "?msd_3 Eq,r $tmgPref0(n,q) & $tmgPref1(n,r) & q+r+s=n":

def tmgFac0 "?msd_3 Et,u $tmgPref0(i+n,t) & $tmgPref0(i,u) & s+u=t":
def tmgFac1 "?msd_3 Et,u $tmgPref1(i+n,t) & $tmgPref1(i,u) & s+u=t":
def tmgFac2 "?msd_3 Et,u $tmgPref2(i+n,t) & $tmgPref2(i,u) & s+u=t":

def tmgAddFacEq "?msd_3 Ep,q,r,s $tmgFac1(i,n,p) & $tmgFac2(i,n,q)
& $tmgFac1(j,n,r) & $tmgFac2(j,n,s) & p+2*q=r+2*s":

eval tmgAddCompRepLin n "?msd_3 Aj j<i => ~$tmgAddFacEq(i,j,n)":

The end of the proof is the same as for Theorem 18. The size of the minimal linear
representation is 13 and the semigroup trick algorithm terminates and produces the 3-state
DFAO of Figure 3. The result follows immediately. ◀

q0/1 q1/3 q2/5

0

1

2

0, 1, 2

0, 1, 2

Figure 3 A DFAO computing the additive complexity of the (1, 2)-Thue–Morse word.

Changing the letters ℓ and m does not modify the abelian complexity, so for all 1 ≤ ℓ < m,
we have ρab

tℓ,m
= ρab

t3
. However, additive complexity might change over a different alphabet.

In the particular case where ℓ = 1 and m = 2, the following gives an alternative proof
of Theorem 23 with only combinatorial tools. Note that the statement on ρab

tℓ,m
was also

proven in [25], but we provide here a simpler and more concise proof.

▶ Theorem 24. Let ℓ,m be integers such that 1 ≤ ℓ < m. Consider the (ℓ,m)-Thue–Morse
word, i.e., the fixed point of the morphism 0 7→ 0ℓm, ℓ 7→ ℓm0, m 7→ m0ℓ. Then its abelian
complexity satisfies ρab

tℓ,m
= 136(766)ω and its additive complexity satisfies ρadd

tℓ,m
= ρab

tℓ,m
if

m ̸= 2ℓ, and ρadd
tℓ,m

= 135ω if m = 2ℓ.

Proof. We clearly have ρadd
tℓ,m

(0) = 1, ρadd
tℓ,m

(1) = 3, and ρadd
tℓ,m

(2) is equal to 5 or 6 depending
on whether m = 2ℓ or not. We examine length-n factors of tℓ,m for n ≥ 2. Each such
factor can be written as y = pf(x)s where f is the morphism 0 7→ 0ℓm, ℓ 7→ ℓm0, m 7→ m0ℓ
of Definition 21 and p (resp., s) is a proper suffix (resp., prefix) of an image f(a) for
a ∈ {0, ℓ,m}. In particular, note that p, s ∈ {ε, 0, ℓ,m, 0ℓ, ℓm,m0}. In the following, we
examine the weight of y, which is the quantity 0 · |y|0 + ℓ · |y|ℓ +m · |y|m. More precisely, we
count how many different weights y can have, which in turn gives the number of different
additive equivalence classes.

First assume that |y| = 3n for some n ≥ 1. Then we have two cases depending on whether
p, s are empty or not. If p = s = ε, then |x| = n and this case corresponds to the first line
of Table 1. Otherwise, |x| = n − 1 and |ps| = 3. In that case, since the roles of p and s

are symmetric when computing the weight of the factor, all the possible cases are depicted
in Table 1.

FSTTCS 2024

32:12 Additive Word Complexity and Walnut

Table 1 The possible weights of factors of the (ℓ, m)-Thue–Morse word tℓ,m of the form y = pf(x)s
where |y| = 3n for some n ≥ 1.

p s |y|0 |y|ℓ |y|m 0 · |y|0 + ℓ · |y|ℓ + m · |y|m
ε ε n n n ℓn + mn

0 0ℓ n + 1 n n − 1 ℓn + m(n − 1)
0 ℓm n n n ℓn + mn

0 m0 n + 1 n − 1 n ℓ(n + 1) + m(n − 1)
ℓ 0ℓ n n + 1 n − 1 ℓn + m(n + 1)
ℓ ℓm n − 1 n + 1 n ℓ(n − 1) + mn

ℓ m0 n n n ℓn + mn

m 0ℓ n n n ℓn + mn

m ℓm n − 1 n n + 1 ℓn + m(n + 1)
m m0 n n − 1 n + 1 ℓ(n − 1) + m(n + 1)

From the third, fourth and fifth columns of the table, we observe that there are seven
different abelian classes (only the class where |y|0 = |y|ℓ = |y|m = n appears more than once)
and this proves that ρab

tℓ,m
(3n) = 7. The corresponding weights of these seven abelian classes

can be written as (n− 1) · (ℓ+m) + δ with δ ∈ {ℓ,m, 2ℓ, ℓ+m, 2m, 2ℓ+m, ℓ+ 2m}. Since

ℓ < min{m, 2ℓ} ≤ max{m, 2ℓ} < ℓ+m

< min{2m, 2ℓ+m} ≤ max{2m, 2ℓ+m} < ℓ+ 2m,

this now proves that ρadd
tℓ,m

(3n) is equal to 7 if m ̸= 2ℓ, and to 5 otherwise.
The proof of the remaining cases |y| = 3n+ 1 and |y| = 3n+ 2 are very similar and are

left to the reader. Finally, we obtain that ρadd
tℓ,m

(3n+ 1) and ρadd
tℓ,m

(3n+ 2) are equal to 6 if
m ̸= 2ℓ, and to 5 otherwise. ◀

4.2 Bounded additive and unbounded abelian complexities: a variant of
the Thue–Morse word

Thue introduced a variation of his sequence that is sometimes called the ternary squarefree
Thue–Morse word, and abbreviated as vtm (the letter “v” stands for “variant”). It is the
sequence [42, A036577] in the OEIS; for more on the word vtm, see [7].

▶ Definition 25 (Variant of Thue–Morse). We let vtm be the fixed point of f : 0 7→ 012, 1 7→
02, 2 7→ 1, starting with 0.

The abelian complexity of the variant of the Thue–Morse word is unbounded.

▶ Theorem 26 ([10, Cor. 1]). Let vtm be the fixed point of f : 0 7→ 012, 1 7→ 02, 2 7→ 1,
starting with 0. Its abelian complexity is O(log n) with constant approaching 3/4 (assuming
base-2 logarithm), and it is Ω(1) with constant 3.

However, we prove that the additive complexity of the word vtm is bounded.

▶ Theorem 27. Let vtm be the fixed point of f : 0 7→ 012, 1 7→ 02, 2 7→ 1, starting with 0.
Its additive complexity is the periodic infinite word 13ω.

P. Popoli, J. Shallit, and M. Stipulanti 32:13

Proof. Let n ≥ 1 and x ∈ Ln(vtm). Let us prove that
∑2

a=0 a · |x|a ∈ {n−1, n, n+1}. Write
x = pf(y)s where p (resp., s) is a proper suffix (resp., prefix) of an image f(a), a ∈ {0, 1, 2}.
Then we have p ∈ {ε, 12, 2} and s ∈ {ε, 0, 01}. By definition of the morphism f , observe
that |f(y)|2 = |f(y)|0. Therefore, depending on the words p and s, |x|2 = |x|0 + c with
c ∈ {−1, 0, 1}, which suffices since |x|0 + |x|1 + |x|2 = n. ◀

Therefore, the word vtm has unbounded abelian complexity and bounded additive
complexity; also see Figure 4. In particular, [33, Lemma 3] implies that vtm cannot be
balanced, so there exist non-balanced infinite words with bounded additive complexity.
Another example exhibiting the same behavior for its abelian and additive complexity is
given in [5].

Figure 4 The first few values of the abelian and additive complexities for the variant of the
Thue–Morse word.

4.3 Unbounded additive and abelian complexities
In this short section, we exhibit a word such that both its additive and abelian complexities
are both unbounded.

▶ Theorem 28 ([17, Thm. 1 and Cor. 1]). Let x be the fixed point of the Thue–Morse-like
morphism 0 7→ 01, 1 7→ 12, 2 7→ 20. Then ρadd

x (n) = 2⌊log2 n⌋+3 for all n ≥ 1. In particular,
the sequence (ρadd

x (n))n≥0 is 2-regular.

Recall that, for an integer k ≥ 1, a word w is an abelian k-power if we can write
w = x1x2 · · ·xk where each xi, i ∈ {1, . . . , k}, is a permutation of x1. For instance, reap·pear
and de · ed · ed are respectively an abelian square and cube in English. Similarly, w is an
additive k-power if we can write w = x1x2 · · ·xk with |xi| = |x1| for all i ∈ {1, . . . , k} and
x1 ∼add x2 ∼add · · · ∼add xk. The length of each xi, i ∈ {1, . . . , k}, is called the order of w.
As mentioned in the introduction, the following result is one of the main results known on
additive complexity.

▶ Theorem 29 ([5, Thm. 2.2]). Let x be an infinite word over a finite subset of Z. If ρadd
x is

bounded, then x contains an additive k-power for every positive integer k.

▶ Proposition 30. Let w be the fixed point of the morphism 0 7→ 03, 1 7→ 43, 3 7→ 1, 4 7→ 01.
Then ρadd

w is unbounded.

Proof. In [14] it is shown that w is additive-cube-free. The result then follows from The-
orem 29. ◀

FSTTCS 2024

32:14 Additive Word Complexity and Walnut

However, for the latter word w, it seems interesting to study ρab
w − ρadd

w , since these
two complexities are very close. Indeed, surprisingly the first time these two complex-
ities are different appears at n = 23, as the two factors 11011031430110343430314 and
30310110110314303434303 are additively but not abelian equivalent. Also, notice that every
additive square of the word w is an abelian square [14, Theorem 5.1]. Together with the
fact that this word is additive-cube-free, it shows that abelian and additive properties of
this word are relatively close. Indeed, Figure 5 illustrates that the values of the difference
between the additive and abelian complexity functions is close to 0. This motivates the study
of the next section.

Figure 5 The first few values of the abelian and additive complexities as well as their difference
for the fixed point of the morphism 0 7→ 03, 1 7→ 43, 3 7→ 1, 4 7→ 01.

5 Equality between abelian and additive complexities

It is clear that abelian complexity does not depend on the values of the alphabet, in contrast
with additive complexity. A map v : A → N is called a valuation over an alphabet A. One
might consider the following question.

▶ Question 31. Given an alphabet A, is there a valuation such that the additive complexity
of a given sequence is equal to its abelian complexity?

For instance for the word vtm, defined originally over the alphabet {0, 1, 2}, we have
already proved in Theorem 27 that ρadd

vtm(n) = 3 for all n ≥ 1. However, over the alphabet
{0, 1, 3}, i.e., changing 2 into 3, (resp., {0, 1, 4}), one can easily check that the first time that
the additive and abelian complexities are not equal is for n = 11 (resp., n = 43). But, over
the alphabet {0, 1, 5}, we have observed that both complexities are equal up to n = 50000.
The main idea is that if the value of a letter is sufficiently large compared to the other values,
then two additively equivalent factors are also abelian equivalent. Using this idea, we prove
the following theorem.

▶ Theorem 32. Consider the fixed point vtmλ of the morphism fλ : 0 7→ 01λ, 1 7→ 0λ, λ 7→ 1,
where λ is a non-negative integer and λ ≥ 2. For all λ ≥ 5, we have ρadd

vtmλ
(n) = ρab

vtmλ
(n).

Proof. By Lemma 5, it is sufficient to prove that two factors are additively equivalent if and
only if they are abelian equivalent.

Let x, y ∈ Ln(vtmλ) such that x ∼add y. Write x = pfλ(x′)s where p (resp., s) is a
proper suffix (resp., prefix) of an image fλ(a) with a ∈ {0, 1, λ}. Observe that p ∈ {ε, λ, 1λ}
and s ∈ {ε, 0, 01}. Also, by definition of the morphism fλ, we have |fλ(x′)|λ = |fλ(x′)|0.
Therefore, depending on the words p and s, we have |x|λ = |x|0 + cx for some cx ∈ {−1, 0, 1}.

P. Popoli, J. Shallit, and M. Stipulanti 32:15

In a similar way, we have |y|λ = |y|0 + cy for some cy ∈ {−1, 0, 1}. By the assumption that
x ∼add y, we have 0|x|0 +1|x|1 +λ|x|λ = 0|y|0 +1|y|1 +λ|y|λ. From the previous observations,
we may write this equality as

|x|0 + |x|1 + |x|λ + (λ− 2)|x|λ + cx = |y|0 + |y|1 + |y|λ + (λ− 2)|y|λ + cy.

Since |x|0 + |x|1 + |x|λ = n = |y|0 + |y|1 + |y|λ, we have (λ−2)(|x|λ −|y|λ) = cy −cx. However,
cy − cx ∈ {−2, . . . , 2} implies that |x|λ = |y|λ and cy = cx, since λ− 2 ≥ 3. Thus, |x|0 = |y|0.
Since |x| = n = |y|, we also have |x|1 = |y|1, and then that x and y are abelian equivalent.
This ends the proof. ◀

For C-balanced words over an alphabet of fixed size k, we prove that it is always possible
to find a valuation for the alphabet such that the additive complexity is the same as the
abelian complexity.

▶ Theorem 33. Let k, C ≥ 1 be two integers. There exists an alphabet Σ ⊂ N of size k such
that, for each C-balanced word w over Σ, we have ρadd

w = ρab
w .

Proof. Such as in the proof of Theorem 32, we prove that over the alphabet Σ, two additively
equivalent same-length factors of w are also abelian equivalent. Let Σ = {a1, . . . , ak} be a
subset of N such that

a1 = 0, a2 = 1 and (a1 + · · · + aj−1)C < aj for all 2 ≤ j ≤ k. (1)

Now take x, y ∈ Ln(w) with x ∼add y. This condition can be rewritten as

a1(|x|a1 − |y|a1) + · · · + ak−1(|x|ak−1 − |y|ak−1) = ak(|y|ak
− |x|ak

). (2)

Observe that the balancedness of w together with Inequalities (1) imply that the left-hand
side of Equality (2) belongs to the set {−ak + 1, . . . , ak − 1}. Since the right-hand side of
Equality (2) is a multiple of ak, we must have{

|x|ak
= |y|ak

,

a1(|x|a1 − |y|a1) + · · · + ak−1(|x|ak−1 − |y|ak−1) = 0. (3)

Using similar reasoning, replacing Equality (2) with Equalities (3), we deduce that |x|ak−1 =
|y|ak−1 . Continuing in this fashion, we prove that |x|a = |y|a for every a ∈ Σ, which is
enough. ◀

▶ Remark 34. Since the Tribonacci word tr is 2-balanced, Theorem 33 implies that over the
alphabet {0, 1, 3}, its additive complexity is equal to its abelian complexity.

6 Abelian and additive powers

In [22, 23], abelian powers of Sturmian words were examined. In particular, the following
result was obtained for the Fibonacci word f = 010010100100101001010 · · · , which is the
fixed point of the morphism 0 7→ 01, 1 7→ 0. Also, see the sequence [42, A336487] in the
OEIS.

▶ Proposition 35 ([22, 23]). Let k ≥ 1 be an integer and consider the Fibonacci word f , i.e.,
the fixed point of the morphism 0 7→ 01, 1 7→ 0. Then f has an abelian k-power of order n if
and only if ⌊kφn⌋ ≡ 0,−1 (mod k), where φ = 1+

√
5

2 is the golden ratio.

FSTTCS 2024

32:16 Additive Word Complexity and Walnut

For instance, when k = 3, we can compute an 11-state DFA accepting, in Fibonacci
representations, exactly those n for which there is an abelian cube of order n in f .

As Arnoux-Rauzy and episturmian sequences generalize Sturmian sequences, it is quite
natural to try to understand the orders of abelian and additive powers in these sequences.
An archetypical example is the Tribonacci word tr (recall Section 4.1.1). We obtain the
following results on squares and cubes using Walnut and the fact that the frequency of each
letter 0, 1, 2 in tr is Tribonacci-synchronized (see [40, § 10.12] and/or Section 4.1.1).

▶ Theorem 36 ([40, Thm. 10.13.5]). Let tr be the Tribonacci word, i.e., the fixed point of
the morphism 0 7→ 01, 1 7→ 02. There are abelian squares of all orders in tr. Furthermore, if
we consider two abelian squares xx′ and yy′ to be equivalent if x ∼ab y, then every order has
either one or two abelian squares. Both possibilities occur infinitely often.

▶ Theorem 37. Let tr be the Tribonacci word, i.e., the fixed point of the morphism 0 7→ 01,
1 7→ 02. There is a (minimal) Tribonacci automaton of 1169 (resp., 4927) states recognizing
the Tribonacci representation of those n for which there is an abelian (resp., additive) cube
of order n in tr.

Proof. For the part about abelian cubes, see [40, p. 295]. See also the respective sequences [42,
A345717,A347752] in the OEIS. For the additive cubes, we can determine the orders of
additive cubes in tr with the following function:

def tribAddCube "?msd_trib Ei $tribAddFacEq(i,i+n,n)
& $tribAddFacEq(i,i+2*n,n)":

where tribAddFacEq is the function defined in the proof of Theorem 18. This leads to a
Tribonacci automaton of 4927 states. ◀

We also note that Theorems 18 and 29 imply the existence of additive k-powers in tr for
all k ≥ 1. When k = 2, additive squares exist for all orders by Theorem 36. For k = 3, orders
of additive cubes are given in Theorem 37 by a large automaton, and no simple description
seems to be possible. When k = 4, the same procedure on Walnut requires a much larger
memory, and it appears that a simple desk computer cannot achieve it. We naturally wonder
about larger powers and leave the following as a relatively difficult open question.

▶ Problem 38. Characterize the orders of additive k-powers in the Tribonacci word tr.

It is shown in [15] that the behavior of the abelian complexity of Arnoux-Rauzy words
might be erratic. In particular, there exist such words with unbounded abelian complexity.
We leave open the research direction of studying the additive complexity of such words
and episturmian sequences. For instance, is there a result similar to Proposition 35 in the
framework of additive powers?

References
1 Jean-Paul Allouche, John Campbell, Jeffrey Shallit, and Manon Stipulanti. The reflection

complexity of sequences over finite alphabets. arXiv preprint. doi:10.48550/arXiv.2406.
09302.

2 Jean-Paul Allouche, Michel Dekking, and Martine Queffélec. Hidden automatic sequences.
Comb. Theory, 1:15, 2021. Id/No 20. doi:10.5070/C61055386.

3 Jean-Paul Allouche and Jeffrey Shallit. Automatic sequences: Theory, applications, generaliza-
tions. Cambridge University Press, Cambridge, 2003. doi:10.1017/CBO9780511546563.

https://doi.org/10.48550/arXiv.2406.09302
https://doi.org/10.48550/arXiv.2406.09302
https://doi.org/10.5070/C61055386
https://doi.org/10.1017/CBO9780511546563

P. Popoli, J. Shallit, and M. Stipulanti 32:17

4 Jonathan Andrade and Lucas Mol. Avoiding abelian and additive powers in rich words, 2024.
arXiv preprint. doi:10.48550/arXiv.2408.15390.

5 Hayri Ardal, Tom Brown, Veselin Jungić, and Julian Sahasrabudhe. On abelian and
additive complexity in infinite words. Integers, 12(5):795–804, 2012. doi:10.1515/
integers-2012-0005.

6 Graham Banero. On additive complexity of infinite words. J. Integer Seq., 16(1):Article 13.1.5,
20, 2013.

7 Jean Berstel. Sur les mots sans carré définis par un morphisme. In Automata, languages and
programming (Sixth Colloq., Graz, 1979), volume 71 of Lecture Notes in Comput. Sci., pages
16–25. Springer, Berlin-New York, 1979. doi:10.1007/3-540-09510-1_2.

8 Jean Berstel and Dominique Perrin. The origins of combinatorics on words. Eur. J. Comb.,
28(3):996–1022, 2007. doi:10.1016/j.ejc.2005.07.019.

9 Jean Berstel and Christophe Reutenauer. Noncommutative Rational Series With Applications,
volume 137 of Encyclopedia of Mathematics and Its Applications. Cambridge Univ. Press,
2011.

10 Francine Blanchet-Sadri, James D. Currie, Narad Rampersad, and Nathan Fox. Abelian
complexity of fixed point of morphism 0 7→ 012, 1 7→ 02, 2 7→ 1. Integers, 14:A11, 2014. URL:
http://math.colgate.edu/%7Eintegers/o11/o11.Abstract.html.

11 Thomas C. Brown and Allen R. Freedman. Arithmetic progressions in lacunary sets. Rocky
Mountain J. Math., 17:587–596, 1987.

12 Tom Brown. Approximations of additive squares in infinite words. Integers, 12(5):805–809,
a22, 2012. doi:10.1515/integers-2012-0006.

13 Arturo Carpi and Cristiano Maggi. On synchronized sequences and their separators. Theor.
Inform. Appl., 35(6):513–524, 2001. doi:10.1051/ita:2001129.

14 Julien Cassaigne, James D. Currie, Luke Schaeffer, and Jeffrey Shallit. Avoiding three
consecutive blocks of the same size and same sum. J. ACM, 61(2):Art. 10, 17, 2014. doi:
10.1145/2590775.

15 Julien Cassaigne, Sébastien Ferenczi, and Luca Q. Zamboni. Imbalances in Arnoux-Rauzy
sequences. Ann. Inst. Fourier, 50(4):1265–1276, 2000. doi:10.5802/aif.1792.

16 Julien Cassaigne, Gwénaël Richomme, Kalle Saari, and Luca Q. Zamboni. Avoiding abelian
powers in binary words with bounded abelian complexity. Int. J. Found. Comput. Sci.,
22(4):905–920, 2011. doi:10.1142/S0129054111008489.

17 Jin Chen, Zhixiong Wen, and Wen Wu. On the additive complexity of a Thue-Morse-like
sequence. Discrete Appl. Math., 260:98–108, 2019. doi:10.1016/j.dam.2019.01.008.

18 Alan Cobham. Uniform tag sequences. Math. Systems Theory, 6:164–192, 1972. doi:
10.1007/BF01706087.

19 Ethan M. Coven and G. A. Hedlund. Sequences with minimal block growth. Math. Systems
Theory, 7:138–153, 1973. doi:10.1007/BF01762232.

20 James Currie and Narad Rampersad. Recurrent words with constant abelian complexity. Adv.
Appl. Math., 47(1):116–124, 2011. doi:10.1016/j.aam.2010.05.001.

21 Fabien Durand. Cobham’s theorem for substitutions. Journal of the European Mathematical
Society, 13(6):1799–1814, September 2011. doi:10.4171/jems/294.

22 Gabriele Fici, Alessio Langiu, Thierry Lecroq, Arnaud Lefebvre, Filippo Mignosi, Jarkko
Peltomäki, and Élise Prieur-Gaston. Abelian powers and repetitions in Sturmian words.
Theoret. Comput. Sci., 635:16–34, 2016. doi:10.1016/j.tcs.2016.04.039.

23 Gabriele Fici, Alessio Langiu, Thierry Lecroq, Arnaud Lefebvre, Filippo Mignosi, and Élise
Prieur-Gaston. Abelian repetitions in Sturmian words. In Developments in Language Theory,
volume 7907 of Lecture Notes in Comput. Sci., pages 227–238. Springer, Heidelberg, 2013.
doi:10.1007/978-3-642-38771-5_21.

24 Lorenz Halbeisen and Norbert Hungerbühler. An application of Van der Waerden’s theorem
in additive number theory. INTEGERS, 0:#A7, 2000. Available online at https://math.
colgate.edu/~integers/a7/a7.pdf.

FSTTCS 2024

https://doi.org/10.48550/arXiv.2408.15390
https://doi.org/10.1515/integers-2012-0005
https://doi.org/10.1515/integers-2012-0005
https://doi.org/10.1007/3-540-09510-1_2
https://doi.org/10.1016/j.ejc.2005.07.019
http://math.colgate.edu/%7Eintegers/o11/o11.Abstract.html
https://doi.org/10.1515/integers-2012-0006
https://doi.org/10.1051/ita:2001129
https://doi.org/10.1145/2590775
https://doi.org/10.1145/2590775
https://doi.org/10.5802/aif.1792
https://doi.org/10.1142/S0129054111008489
https://doi.org/10.1016/j.dam.2019.01.008
https://doi.org/10.1007/BF01706087
https://doi.org/10.1007/BF01706087
https://doi.org/10.1007/BF01762232
https://doi.org/10.1016/j.aam.2010.05.001
https://doi.org/10.4171/jems/294
https://doi.org/10.1016/j.tcs.2016.04.039
https://doi.org/10.1007/978-3-642-38771-5_21
https://math.colgate.edu/~integers/a7/a7.pdf
https://math.colgate.edu/~integers/a7/a7.pdf

32:18 Additive Word Complexity and Walnut

25 Idrissa Kaboré and Boucaré Kientéga. Abelian complexity of Thue-Morse word over a ternary
alphabet. In Combinatorics on words, volume 10432 of Lecture Notes in Comput. Sci., pages
132–143. Springer, Cham, 2017. doi:10.1007/978-3-319-66396-8_13.

26 M. Lothaire. Combinatorics on words. Cambridge Mathematical Library. Cambridge University
Press, Cambridge, 1997. doi:10.1017/CBO9780511566097.

27 Marston Morse and Gustav A. Hedlund. Symbolic dynamics. II: Sturmian trajectories. Am. J.
Math., 62:1–42, 1940. doi:10.2307/2371431.

28 Hamoon Mousavi. Automatic theorem proving in Walnut, 2016. arXiv preprint. doi:
10.48550/arXiv.1603.06017.

29 Aline Parreau, Michel Rigo, Eric Rowland, and Élise Vandomme. A new approach to
the 2-regularity of the ℓ-abelian complexity of 2-automatic sequences. Electron. J. Comb.,
22(1):research paper p1.27, 44, 2015. URL: www.combinatorics.org/ojs/index.php/eljc/
article/view/v22i1p27.

30 Giuseppe Pirillo and Stefano Varricchio. On uniformly repetitive semigroups. Semigroup
Forum, 49:125–129, 1994.

31 Michaël Rao. On some generalizations of abelian power avoidability. Theoret. Comput. Sci.,
601:39–46, 2015. doi:10.1016/j.tcs.2015.07.026.

32 Gwénaël Richomme, Kalle Saari, and Luca Q. Zamboni. Balance and abelian complexity of the
Tribonacci word. Adv. in Appl. Math., 45(2):212–231, 2010. doi:10.1016/j.aam.2010.01.006.

33 Gwénaël Richomme, Kalle Saari, and Luca Q. Zamboni. Abelian complexity of minimal
subshifts. J. Lond. Math. Soc. (2), 83(1):79–95, 2011. doi:10.1112/jlms/jdq063.

34 Michel Rigo and Arnaud Maes. More on generalized automatic sequences. Journal of Automata,
Languages, and Combinatorics, 7(3):351–376, 2002. doi:10.25596/jalc-2002-351.

35 Michel Rigo, Manon Stipulanti, and Markus A. Whiteland. Automaticity and Parikh-collinear
morphisms. In Combinatorics on words, volume 13899 of Lecture Notes in Comput. Sci., pages
247–260. Springer, Cham, 2023. doi:10.1007/978-3-031-33180-0_19.

36 Michel Rigo, Manon Stipulanti, and Markus A. Whiteland. Automatic abelian complexities
of Parikh-collinear fixed points, 2024. To be published in Theory Comput. Syst. doi:
10.48550/arXiv.2405.18032.

37 Julian Sahasrabudhe. Sturmian words and constant additive complexity. Integers, 15:Paper
No. A30, 8, 2015.

38 Jeffrey Shallit. A generalization of automatic sequences. Theoret. Comput. Sci., 61(1):1–16,
1988. doi:10.1016/0304-3975(88)90103-X.

39 Jeffrey Shallit. Abelian complexity and synchronization. Integers, 21:Paper No. A36, 14, 2021.
40 Jeffrey Shallit. The logical approach to automatic sequences—exploring combinatorics on words

with Walnut, volume 482 of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 2023.

41 Jeffrey Shallit. Note on a Fibonacci parity sequence. Cryptogr. Commun., 15(2):309–315, 2023.
doi:10.1007/s12095-022-00592-5.

42 Neil J. A. Sloane and et al. The On-Line Encyclopedia of Integer Sequences. URL: https:
//oeis.org.

43 Ondřej Turek. Abelian complexity and abelian co-decomposition. Theoret. Comput. Sci.,
469:77–91, 2013. doi:10.1016/j.tcs.2012.10.034.

44 Ondřej Turek. Abelian complexity function of the Tribonacci word. J. Integer Seq., 18(3):Article
15.3.4, 29, 2015.

https://doi.org/10.1007/978-3-319-66396-8_13
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.2307/2371431
https://doi.org/10.48550/arXiv.1603.06017
https://doi.org/10.48550/arXiv.1603.06017
www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p27
www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p27
https://doi.org/10.1016/j.tcs.2015.07.026
https://doi.org/10.1016/j.aam.2010.01.006
https://doi.org/10.1112/jlms/jdq063
https://doi.org/10.25596/jalc-2002-351
https://doi.org/10.1007/978-3-031-33180-0_19
https://doi.org/10.48550/arXiv.2405.18032
https://doi.org/10.48550/arXiv.2405.18032
https://doi.org/10.1016/0304-3975(88)90103-X
https://doi.org/10.1007/s12095-022-00592-5
https://oeis.org
https://oeis.org
https://doi.org/10.1016/j.tcs.2012.10.034

Pseudo-Deterministic Construction of Irreducible
Polynomials over Finite Fields
Shanthanu S. Rai #

Tata Institute of Fundamental Research, Mumbai, India

Abstract
We present a polynomial-time pseudo-deterministic algorithm for constructing irreducible polynomial
of degree d over finite field Fq. A pseudo-deterministic algorithm is allowed to use randomness, but
with high probability it must output a canonical irreducible polynomial. Our construction runs in
time Õ(d4 log4 q).

Our construction extends Shoup’s deterministic algorithm (FOCS 1988) for the same problem,
which runs in time Õ(d4p

1
2 log4 q) (where p is the characteristic of the field Fq). Shoup had shown a

reduction from constructing irreducible polynomials to factoring polynomials over finite fields. We
show that by using a fast randomized factoring algorithm, the above reduction yields an efficient
pseudo-deterministic algorithm for constructing irreducible polynomials over finite fields.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Algebra and Computation, Finite fields, Factorization, Pseudo-deterministic,
Polynomials

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.33

Related Version arXiv Version: https://arxiv.org/abs/2410.04071

Funding Research supported by the Department of Atomic Energy, Government of India, under
project 12-R&D-TFR-5.01-0500.

Acknowledgements The author would like to thank Mrinal Kumar and Ramprasad Saptharishi for
introducing him to the question of pseudo-deterministic construction of irreducible polynomials and
for the many insightful discussions along the way.

1 Introduction

A polynomial f(X) over a finite field Fq (q is a prime power) is said to be irreducible if
it doesn’t factor as f(X) = g(X)h(X) for some non-trivial polynomials g(X) and h(X).
Irreducible polynomials over finite fields are algebraic analogues of primes numbers over
integers. It is natural to ask if one can construct an irreducible polynomial of degree d over
Fq efficiently. Constructing these irreducible polynomials are important since they yield
explicit construction of finite fields of non-prime order. Working over such non-prime finite
fields is crucial in coding theory, cryptography, pseudo-randomness and derandomization.
Any algorithm that constructs irreducible polynomials of degree d over Fq would output
d log q bits, so we expect an efficient algorithm for constructing irreducible polynomials would
run in time poly(d, log q).

About 1
d fraction of polynomials of degree d are irreducible over Fq [9, Ex. 3.26 and

3.27]. This gives a simple “trial and error” randomized algorithm for constructing irreducible
polynomials, namely, pick a random degree d polynomial and check if it is irreducible. We
can use Rabin’s algorithm [10] for checking if a polynomial is irreducible, which can be
implemented in Õ(d log2 q) [7, Section 8.2]1. In order to improve the probability of finding

1 Õ notation omits log factors in d and log q.

© Shanthanu S. Rai;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 33; pp. 33:1–33:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shanthanu.rai@tifr.res.in
https://orcid.org/0009-0003-1103-5719
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.33
https://arxiv.org/abs/2410.04071
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Pseudo-Deterministic Construction of Irreducible Polynomials over Finite Fields

an irreducible polynomial to 1
2 , we sample about d polynomials of degree d and check if any

one of them is irreducible. Thus, the “trial and error” algorithm runs in time Õ(d2 log2 q).
Couveignes and Lercier [5] give an alternative randomized algorithm that runs in time
Õ(d log5 q), which is optimal in the exponent of d. Their algorithm constructs irreducible
polynomials by using isogenies between elliptic curves.

Motivated by this, it is natural to ask if there is also an efficient deterministic algorithm
for constructing irreducible polynomials. In the 80s, some progress was made towards
this problem. Adleman and Lenstra [1] gave an efficient deterministic algorithm for this
problem conditional on the generalized Riemann hypotheses. They also gave an unconditional
deterministic algorithm which outputs an irreducible polynomial of degree approximately d.
Shoup [12] gives a deterministic algorithm of constructing degree d irreducible polynomial
which runs in time Õ(d4p

1
2 log4 q) (where p is the characteristic of Fq). So, Shoup’s algorithm

is efficient for fields of small characteristic (p << d). But when p is large (say super
exponential in d), the algorithm does not run in polynomial time due to the p

1
2 factor in

the run time. Since then, there hasn’t been much progress towards this problem and in
particular, the problem of efficient and unconditional deterministic construction of irreducible
polynomials over Fq remains open! In fact, the special case of efficient and unconditional
deterministic construction of quadratic non-residues in Fp is also open.

One can ask similar questions in the integer world, namely, “How to efficiently construct
n-bit prime numbers?”. By the Prime Number Theorem, there are about 1

n n-bit prime
numbers (note the similarity between density of primes and density of irreducible polynomials
over Fq). Again this gives a simple randomized algorithm of just sampling a random n-bit
number and checking if it’s prime using AKS primality test [2]. But here too, there is no
known efficient deterministic algorithm for constructing n-bit prime numbers [13].

Due to the difficulty in finding deterministic algorithms for these problems, we ask a
slightly weaker but related question. Are there efficient pseudo-deterministic algorithms for
these problems?

▶ Definition 1.1. A pseudo-deterministic algorithm is a randomized algorithm which for a
given input, generates a canonical output with probability at least 1

2 .

Gat and Goldwasser [6] first introduced the notion of pseudo-deterministic algorithm (they
had called it Bellagio algorithm). Pseudo-deterministic algorithm can be viewed as a middle
ground between a randomized and a deterministic algorithm. From an outsider’s perspective,
a pseudo-deterministic algorithm seems like a deterministic algorithm in the sense that with
high probability it outputs the same output for a given input. The breakthrough result of
Chen et al. [4] gave a polynomial-time pseudo-deterministic algorithm for constructing n-bit
prime numbers in the infinitely often regime.

▶ Theorem 1.2. There is a randomized polynomial-time algorithm B such that, for infinitely
many values of n, B(1n) outputs a canonical n-bit prime pn with high probability.

In particular, their algorithm doesn’t give valid outputs for all values of the input n.
Surprisingly, their algorithm is based on complexity theoretic ideas, and not number theoretic
ideas. In fact, they show a more general result that if a set of strings Q are “dense” and
it is “easy” to check if a string x is in Q, then there is an efficient pseudo-deterministic
algorithm for generating elements of Q of a particular length in the infinitely often regime.
Both prime numbers and irreducible polynomials over Fq satisfy this property. Thus, this
gives an efficient pseudo-deterministic algorithm for constructing irreducible polynomials
over Fq in the infinitely often regime.

S. S. Rai 33:3

But not only does this algorithm not work for all d, there are no good density bounds for
the fraction of d where the algorithm gives valid output. So it is natural to ask if we can
extend this result to all values of degree d over all finite fields Fq. In this paper, we present
a more direct pseudo-deterministic algorithm for constructing irreducible polynomials over
Fq (for all degrees d) which crucially relies on the structure of irreducible polynomials. Our
result extends Shoup’s [12] deterministic algorithm for constructing irreducible polynomials.
Shoup reduces the problem of constructing irreducible polynomials to factoring polynomials
over Fq. We observe that by making use of the fast randomized factoring algorithm, and the
“canonization” process described by Gat and Goldwasser [6] for computing q-th residues over
Fp, the above reduction yields an efficient pseudo-deterministic algorithm for constructing
irreducible polynomials over Fq.

▶ Theorem 1.3. There is a pseudo-deterministic algorithm for constructing an irreducible
polynomial of degree d over Fq (q is prime power) in expected time Õ(d4 log4 q).

2 Overview

As mentioned earlier, Shoup’s deterministic algorithm [12] is efficient for fields of small
characteristic. We extend Shoup’s algorithm and make it efficient over all fields, but at the
cost of making the algorithm pseudo-deterministic. In order to see the main ideas involved,
let’s consider a toy problem of constructing irreducible polynomial of degree 2 over Fp (p is
prime). Suppose we could get our hands on some quadratic non residue α, then X2−α would
be irreducible. There are p−1

2 quadratic non residues in Fp, so if we randomly pick an α ∈ Fp

and output X2 − α, it would be irreducible with about 1
2 probability. But this approach

wouldn’t be pseudo-deterministic, since in each run we will very likely choose different α.
In order to obtain a canonical quadratic non residue α, we first set α = −1 and repeatedly

perform α ←
√

α (choosing the smallest square root) until α is a quadratic non residue.
Here, β is a square root of α if β2 = α (mod p). For computing the square root, we can use
Cantor-Zassenhaus randomized factoring algorithm [3]. In Example 2.1, we illustrate the
above strategy over a specific finite field. Algorithm 1 implements this strategy.

▶ Example 2.1. Let’s try to pseudo-deterministically construct a quadratic non-residue in
F73. We first set α = −1. Square roots of −1 (mod 73) are 27 and 46. The square roots are
computed using Cantor-Zassenhaus randomized factoring algorithm [3].

We choose the smallest square root 27 and set α = 27. Square roots of 27 (mod 73) are
10 and 63. We choose the smallest square root 10 and set α = 10. Since 10 is a quadratic
non-residue, we output 10 (we use Euler’s criterion2 to check if 10 is a quadratic non-residue).

Algorithm 1 Pseudo-deterministically constructing irreducible polynomial of degree 2 over Fp.

1: α← −1
2: while α is a quadratic residue do
3: Factorize X2 − α = (X − β1)(X − β2)
4: α← min(β1, β2)
5: end while
6: Output X2 − α

2 Euler’s criterion: For odd prime p, a is a quadratic non residue iff a(p−1)/2 = −1

FSTTCS 2024

33:4 Pseudo-Deterministic Construction of Irreducible Polynomials over Finite Fields

Suppose p − 1 = 2kl (where l is odd). Each time we take square root, the order3 of
α (mod p) doubles. Since the order of α divides

∣∣F∗
p

∣∣ = 2kl (by Lagrange’s theorem), we
can repeatedly take square roots in Algorithm 1 at most k times. Thus, Algorithm 1 will
terminate with at most log p iterations of the while loop. This algorithm is based on Gat and
Goldwasser’s algorithm [6] for computing q-th residues over Fp. The algorithm is pseudo-
deterministic since at each iteration of the while loop, we “canonize” our choice of square
root by picking the smallest one among the two choices. Note that we used Euler’s criterion
for checking if α is a quadratic residue or not in Line 2.

We can generalize the above ideas for constructing irreducible polynomials over finite
fields. Shoup [12] showed that constructing irreducible polynomials over Fp reduces to finding
q-th non residues over appropriate field extensions (q is prime). These q-th non residues can
be pseudo-deterministically constructed using similar techniques as in Algorithm 1.

The rest of the paper is organized as follows. We start with some preliminaries in
Section 3. In Section 4, we will reduce the problem of constructing irreducible polynomials
over extensions fields Fpk to constructing them over Fp. Section 5 will make use of Shoup’s
observation mentioned in previous paragraph to construct irreducible polynomials over Fp.
Finally, in Section 6 we conclude with some open problems.

3 Preliminaries

3.1 Pseudo-deterministic algorithms
We defined pseudo-deterministic algorithm to be randomized algorithm which for a given
input, generates a canonical output with probability at least 1

2 . In this paper, whenever the
pseudo-deterministic algorithm doesn’t generate a canonical output, it just fails and doesn’t
give any valid output. In such cases, we can just rerun the algorithm until we get some valid
output (which is bound to be canonical). Now the runtime of the algorithm will be random,
but the expected runtime will be (asymptotically) same as the original runtime.

For all the pseudo-deterministic algorithms in this paper, we report the expected run time
in the above sense. These algorithms always generate a canonical output, but the amount of
time they take to do so is random.

3.2 Finite Field primer
In this subsection, we go over some basic facts about finite fields that will be useful in later
sections.

3.2.1 Splitting field
A polynomial h(X) ∈ K[X] may not factorize fully into linear factors over the field K.
Suppose F is the smallest extension of K such that h(X) fully factorizes into linear factors
over F. In other words, there exists α1, α2, . . . αk ∈ F such that,

h(X) = (X − α1)(X − α2) · · · (X − αk)

Then F is the called the splitting field of h(X) over K [9, Definition 1.90]. Note that for
any other extension of K that is a proper subfield of F, h(X) will not fully factorize into
linear factors.

3 Order of α is the least integer k > 0 such that αk = 1 in Fp

S. S. Rai 33:5

3.2.2 Structure of Finite Fields
For every prime power pn (p is prime), there exists a finite field of size pn and all finite fields
of size pn are isomorphic to each other [9, Theorem 2.5].

▶ Theorem 3.1 (Existence and Uniqueness of Finite Fields). For every prime p and every
positive integer n there exists a finite field with pn elements. Any finite field with q = pn

elements is isomorphic to the splitting field of Xq −X over Fp.

Thus, elements of Fpn are roots of Xpn−X. From this, we get the following generalization
of Fermat’s little theorem for finite fields:

▶ Theorem 3.2 (Fermat’s little theorm for finite fields). If α ∈ Fpn , then αpn = α. Conversely,
if α is in some finite field and αpn = α, then α ∈ Fpn .

The below theorem gives the necessary and sufficient condition for a finite field Fpm to
be a subfield of another finite field Fpn [9, Theorem 2.6].

▶ Theorem 3.3 (Subfield Criterion). Let Fq be a finite field with q = pn elements. Then
every subfield of Fq has order pm, where m is the positive divisor of n. Conversely, if m is
the positive divisor of n, then there is exactly one subfield of Fq with pm elements.

From Theorem 3.2 and Theorem 3.3, we get the following useful lemma:

▶ Lemma 3.4. Suppose α is some finite field element. Let k be the smallest integer greater
than 0 such that αpk = α. Then, Fpk is the smallest extension of Fp that contains α. In
other words, α ∈ Fpk and for all 1 ≤ k′ < k, α /∈ Fpk′ .

3.2.3 Conjugates and Minimal polynomial
Let f(X) be an irreducible polynomial of degree n over Fq (q is prime power). Then, f(X)
has some root α ∈ Fqn . Also, the elements α, αq, αq2

, . . . , αqn−1 are all distinct and are the
roots of f(X) [9, Theorem 2.14].

f(X) = (X − α)(X − αq)(X − αq2
) · · · (X − αqn−1

)

The splitting field of f(X) with respect to Fq is Fqn [9, Corollary 2.15]. The minimal
polynomial of α over Fq is f(X).

Above, the roots of f(X) are all of the form αqi . We will call such elements conjugates α

with respect to Fq:

▶ Definition 3.5. Let Fqn be an extension of Fq and let β ∈ Fqn . Then, β, βq, βq2
, . . . , βqn−1

are called the conjugates of β with respect to Fq.

In the following sections, we will be using the below lemma to show that certain polyno-
mials are irreducible.

▶ Lemma 3.6 (Minimal polynomial of β ∈ Fqn). Suppose β ∈ Fqn and conjugates of β with
respect to Fq are all distinct. Then the minimal polynomial of β over Fq has degree n and is
of the form:

g(X) = (X − β)(X − βq)(X − βq2
) · · · (X − βqn−1

)

Thus, g(X) ∈ Fq[X] is an irreducible polynomial.

FSTTCS 2024

33:6 Pseudo-Deterministic Construction of Irreducible Polynomials over Finite Fields

Proof. The minimal polynomial g(X) of β over Fq is the smallest degree polynomial in Fq[X]
such that g(β) = 0. Since, g(βqi) = g(β)qi = 0, all conjugates of β are roots of g(X). Hence,
degree of g(X) is at least n (since the conjugates are all distinct). Also since β ∈ Fqn , degree
of g(X) is at most n. Thus, the degree of g(X) is n.

Thus, g(X) = (X − β)(X − βq)(X − βq2) · · · (X − βqn−1). Since g(X) is a minimal
polynomial of β over Fq, it will be in Fq[X] and is irreducible. ◀

3.2.4 Representing finite field elements
Throughout the paper, we assume that extension fields Fpk are given to us as Fp[X]/(f(X)),
where f(X) is an irreducible polynomial of degree k over Fp (refer [8] for working with other
representations). Each element in Fp[X]/(f(X)) can be viewed as a polynomial with degree
at most k over Fp. The coefficient vectors of these polynomials are in Fk

p. This gives a
natural isomorphism Φ : Fpk → Fk

p. In Fk
p, we can order elements in lexicographic order in

the natural sense.

▶ Definition 3.7. We say that α ∈ Fpk is lexicographically smaller than β ∈ Fpk , if Φ(α) ∈ Fk
p

is lexicographically smaller than Φ(β) ∈ Fk
p.

In the above definition, we compare the coordinates of Φ(α) and Φ(β) by fixing some
ordering on elements on Fp (for e.g., we can consider the natural ordering one gets from
the additive group structure of Fp). Checking if Φ(α) is lexicographically smaller than Φ(β)
requires k comparisons, with each comparison taking O(log p) time. Thus, overall it takes
O(k log p) time to check if Φ(α) is lexicographically smaller than Φ(β).

Similarly, we can define a lexicographic ordering on polynomials over Fpk .

▶ Definition 3.8. Suppose we are given two polynomials g(X) and h(X) of degree d over Fpk .
Then we say that g(X) is lexicographically smaller than h(X) if the coefficient vector of g(X)
is lexicographically smaller than coefficient vector of h(X) (the coefficients are compared
using Φ).

Checking if g(X) is lexicographically smaller than h(X) requires d + 1 comparisons, with
each comparison taking O(k log p) time. Thus, overall it takes O(dk log p) time to check if
g(X) is lexicographically smaller than h(X).

▶ Lemma 3.9 (Picking lexicographically smallest polynomial). Suppose we are given n polyno-
mials f1(X), f2(X), . . . , fn(X) of degree d over Fpk . Then, there is an algorithm that outputs
the lexicographically smallest polynomial among them in O(ndk log p) time.

Proof. We go over each polynomial fi(X) one by one, checking if fi(X) is lexicographically
smaller than the lexicographically smallest polynomial we have seen so far. Since each
comparison takes O(dk log p) time, and we do at most n comparisons, the algorithm runs in
O(ndk log p) time. ◀

3.3 Equal degree polynomial factorization
Shoup [12] reduced constructing irreducible polynomials to factoring polynomials over finite
field. It turns out that the reduction factors polynomials whose irreducible factors all have
same degree. Hence, equal degree factorization is a crucial sub-routine for constructing irre-
ducible polynomials. There are several fast randomized equal degree factorization algorithms,
and below we mention one of them:

S. S. Rai 33:7

▶ Theorem 3.10 (Equal degree factorization). Suppose f(X) is a polynomial of degree d over
Fq (q is prime power) which factors into irreducible polynomials of equal degree. Then, the
equal degree factorization algorithm by von zur Gathen & Shoup [15] factors f(X) in expected
time Õ(d log2 q).

4 Construction of irreducible polynomials over extension fields Fpk

We first show in Algorithm 2 that constructing irreducible polynomials over extension fields
Fpk can be reduced to constructing irreducible polynomials over Fp (p is prime). Theorem 4.1
shows the correctness and running time of Algorithm 2.

Algorithm 2 Pseudo-deterministic construction of irreducible polynomials over Fpk .

Input: Degree d

Output: Irreducible polynomial of degree d over Fpk

1: Pseudo-deterministically construct irreducible polynomial f(X) over Fp of degree dk.
2: Factor f(X) =

∏k−1
i=0 fi(X) over Fpk using Theorem 3.10.

3: Output the lexicographically smallest factor fi(X).

▶ Theorem 4.1 (Correctness and Running time of Algorithm 2). Suppose there is a pseudo-
deterministic algorithm for constructing irreducible polynomials of degree l over Fp (p prime),
that runs in expected time T (l, p). Then Algorithm 2 pseudo-deterministically constructs
irreducible polynomials of degree d over extension field Fpk in expected time T (dk, p) +
Õ(dk3 log p).

Proof. Algorithm 2 first constructs an irreducible polynomial f(X) of degree dk over Fp.
Note that Fp[X]/(f(X)) is isomorphic to Fpdk . Some α ∈ Fpdk will be a root of f(X).
The conjugates of α with respect to Fp are all distinct and are the roots of f(X) (refer
Section 3.2.3):

f(X) = (X − α)(X − αp)(X − αp2
) · · · (X − αpdk−2

)(X − αpdk−1
)

Rearranging the above terms, we get:

f(X) =
[
(X − α)(X − αpk

)(X − αp2k

) · · · (X − αp(d−1)k

)
]

[
(X − αp)(X − αpk+1

)(X − αp2k+1
) · · · (X − αp(d−1)k+1

)
]

[
(X − αp2

)(X − αpk+2
)(X − αp2k+2

) · · · (X − αp(d−1)k+2
)
]

...[
(X − αp(k−1)

)(X − αpk+(k−1)
)(X − αp2k+(k−1)

) · · · (X − αp(d−1)k+(k−1)
)
]

=
k−1∏
i=0

d−1∏
j=0

(X − αpjk+i

)

:=
k−1∏
i=0

fi(X)

Let q = pk. fi(X) has degree d and its roots are conjugates of αpi ∈ Fqd with respect to
Fq (which are all distinct). Thus, from Lemma 3.6, fi(X) ∈ Fq[X] is the minimal polynomial
of αpi over Fq, and hence fi(X) is irreducible over Fq. So, we can use Theorem 3.10 to

FSTTCS 2024

33:8 Pseudo-Deterministic Construction of Irreducible Polynomials over Finite Fields

factorize f(X) over Fq, obtaining all factors fi(X) of degree d. We then use Lemma 3.9 to
output the lexicographically smallest factor among fi(X). Let the lexicographically smallest
factor be denoted by fi∗(X). Given a polynomial f(X) of degree dk, fi∗(X) is canonical.
Thus, the above construction is pseudo-deterministic.

For the running time, it takes T (dk, p) time to construct f(X), and then Õ(dk3 log p)
time to factor f(X) over field Fpk (from Theorem 3.10). Finally, choosing fi∗(X) among
fi(X) can be computed in time O(dk2 log p) (from Lemma 3.9). Thus, the overall running
time of the algorithm is T (dk, p) + Õ(dk3 log p). ◀

5 Construction of irreducible polynomials over Fp

Shoup’s algorithm reduces constructing irreducible polynomials over Fp to finding q-th non
residues in splitting field of Xq−1, for all prime divisors q of d (and q ̸= p). For completeness,
we reproduce the theorem below and refer to Theorem 2.1 in [12] for it’s proof.

▶ Theorem 5.1 (Reduction to finding q-th non residues). Assume that for each prime q | d,
q ̸= p, we are given a splitting field K of Xq−1 over Fp and a q-th non residue in K. Then we
can find an irreducible polynomial over Fp of degree d deterministically with Õ(d4 log p+log2 p)
operations in Fp.

Shoup constructs the splitting field4 K of Xq − 1 over Fp and a q-th non residue in K
by reducing to deterministic polynomial factorization. Since no known efficient determin-
istic factoring algorithms are known, his algorithm is not efficient for finite fields of large
characteristic. In this section, we will find a canonical splitting field K and a canonical q-th
non residues by using a fast randomized factoring algorithm. Thus, we obtain an efficient
algorithm for constructing irreducible polynomials over Fp, but at the cost of making the
algorithm pseudo-deterministic.

For each prime q | d, q ̸= p, we will pseudo-deterministically construct a splitting field
K of Xq − 1 over Fp and find a q-th non residue in K. To this end, we first analyze the
factorization of Xq − 1 ∈ Fp[X].

▶ Lemma 5.2. Consider the polynomial Xq − 1 ∈ Fp[X] (p, q are prime numbers). Let k be
the smallest integer greater than 0 such that q | pk − 1 (in other words, k is the order of p

(mod q)). Then,
1. The splitting field of Xq − 1 over Fp is Fpk

2. Xq−1 = (X−1)g1(X)g2(X) · · · g q−1
k

(X) where gi(X) ∈ Fp[X] are irreducible polynomials
of degree k.

Proof. Let K be the splitting field of Xq − 1 over Fp. The roots of Xq − 1 in K are by
definition the q-th roots of unity. Suppose ω ∈ K is some primitive q-th root of unity. Then,
{1, ω, ω2, . . . , ωq−1} are all the q-th roots of unity, and they form a multiplicative subgroup
in K∗. In fact, since q is prime, each of {ω, ω2, . . . , ωq−1} is a primitive q-th root of unity.

Since ωq = 1, we have ωpk = ω and hence from Theorem 3.2, ω ∈ Fpk . By definition of k,
k is the smallest integer greater than 0 such that ωpk = ω. So from Lemma 3.4, Fpk is the
smallest extension of Fp that contains ω. Xq − 1 splits linearly as:

Xq − 1 = (X − 1)(X − ω)(X − ω2) · · · (X − ωq−1)

4 Shoup constructs an irreducible polynomial g(X) ∈ Fp[X] such that Fp/(g(X)) is isomorphic to splitting
field of Xq − 1 over Fp

S. S. Rai 33:9

Fpk is the smallest extension of Fp that contains all the roots of Xq − 1. Thus, Fpk is the
splitting field of Xq − 1. We next consider the factorization pattern of Xq − 1 over Fp.

Let G be the multiplicative group of integers modulo q. Since q is prime, elements of G

are {1, 2, . . . , q − 1}. Consider the cyclic subgroup H of G generated by p. The elements
of H are {1, p, p2, . . . , pk−1}. The cosets of H partition G. Let a1H, a2H, . . . , a(q−1)/kH

be the (q − 1)/k cosets of H that partition G. Then, Xq − 1 ∈ Fp[X] can be factorized as
follows:

Xq − 1 = (X − 1)(X − ω)(X − ω2) · · · (X − ωq−1)

= (X − 1)
(q−1)/k∏

i=1

∏
j∈aiH

(X − ωj)

= (X − 1)
(q−1)/k∏

i=1
(X − ωai)(X − ωaip)(X − ωaip2

) · · · (X − ωaipk−1
)

:= (X − 1)
(q−1)/k∏

i=1
gi(X)

gi(X) has degree k and its roots are conjugates of ωai ∈ Fpk with respect to Fp (which
are all distinct). Thus, from Lemma 3.6, gi(X) ∈ Fp[X] is the minimal polynomial of ωai

over Fp, and hence is irreducible over Fp. ◀

Thus, the splitting field of Xq− 1 over Fp is Fpk . It is easy to see that Fpk contains a q-th
non residue, since the map Φ : α 7→ αq is not surjective in Fpk (since for every i, Φ(ωi) = 1,
where ω is some primitive q-th root of unity).

In order to get our hands on a canonical representation of Fpk , we can factorize (Xq −
1)/(X − 1) = Xq−1 + Xq−2 + · · ·+ X + 1 over Fp and pick the lexicographically smallest
degree k irreducible factor h(X). Then, Fp[X]/h(X) is isomorphic to Fpk . Let ω be an
element in Fpk isomorphic to X ∈ Fp[X]/h(X). Next, to find a canonical q-th non residue
α ∈ Fpk , we set α = ω and repeatedly perform α ← q

√
α (choosing the lexicographically

smallest q-th root) until α is a q-th non residue. Algorithm 3 implements the above idea
and constructs an irreducible polynomial of degree d. In Line 3 and Line 8, factorization is
done using Theorem 3.10. We analyze the correctness and running time of Algorithm 3 in
Theorem 5.3.

▶ Theorem 5.3 (Correctness and Runtime of Algorithm 3). Algorithm 3 pseudo-
deterministically constructs an irreducible polynomial of degree d over Fp and runs in expected
time Õ(d4 log3 p).

Proof. We need to show that the for loop in Algorithm 3 correctly computes the splitting
field of Xq − 1 and finds a q-th non residue in the splitting field. Then, Line 13 will correctly
output an irreducible polynomial of degree d over Fp (from Theorem 5.1).

Let k be the smallest integer greater than 0 such that q | pk − 1 (k is the order of p

(mod q)). From Lemma 5.2, Xq−1 + Xq−2 + · · ·+ X + 1 factorizes as g1(X)g2(X) · · · g q−1
k

(X)
where gi(X) are degree k irreducible polynomials. Thus, by choosing the lexicographically
smallest degree k irreducible factor h(X) of Xq − 1, we ensure that the choice of h(X) is
canonical. Fpk

∼= Fp[X]/h(X) is the splitting field of Xq − 1 which contains a q-th non
residue.

Let ω ∈ Fpk be some primitive q-th root of unity. Suppose α is a q-th residue, and let
β ∈ Fpk such that α = βq (β is a q-th root of α). Then, {β, βω, βω2, . . . , βωq−1} are all q-th
roots of α. Thus, as required in Line 8, Xq − α will factorize into linear factors. By ensuring

FSTTCS 2024

33:10 Pseudo-Deterministic Construction of Irreducible Polynomials over Finite Fields

Algorithm 3 Pseudo-deterministic construction of irreducible polynomials over Fp.

Input: Degree d

Output: Irreducible polynomial of degree d over Fp

1: Initialize arrays H ← [], Λ← []
2: for prime q | d, q ̸= p do
3: Factorize Xq−1 + Xq−2 + · · ·+ X + 1 = g1(X)g2(X) · · · g q−1

k
(X) over Fp

4: h(X)← lexicographically smallest degree k factor among g1(X), g2(X), . . . , g q−1
k

(X)

5: Field arithmetic over Fpk will henceforth be performed over Fp[X]/h(X).
6: α← element in Fpk isomorphic to X in Fp[X]/h(X)
7: while α is a q-th residue do
8: Factorize Xq − α = (X − β1)(X − β2) · · · (X − βq) over Fpk

9: α← lexicographically smallest element among β1, β2, . . . , βq in Fpk

10: end while
11: Append h(X) to array H and α to array Λ
12: end for
13: Using arrays H and Λ and Theorem 5.1, deterministically construct an irreducible

polynomial of degree d over Fp.

that we pick the lexicographically smallest q-th root of α, we “canonize” the computation
of q-th non residue. This “canonization” process is akin to the one Gat and Goldwasser [6,
Section 5] used to compute q-th non residue in Fp.

But we still need to ensure that the while loop eventually terminates. Let pk − 1 = qℓr,
where r is not divisible by q. Note that ℓ ≤ k log p. In each iteration of the while loop, the
order of α in F∗

pk increases by a factor of q. Since the order of α divides
∣∣∣F∗

pk

∣∣∣ = qℓr (by
Lagrange’s theorem), the while loop will terminate in at most ℓ steps. Thus, for each prime
q | d, q ̸= p, the for loop at Line 2 pseudo-deterministically constructs the splitting field Fpk

of Xq − 1 and a q-th non residue in Fpk .
Now we analyze the runtime. From Theorem 3.10, equal degree factorization in Line 3

takes Õ(q log2 p). From Lemma 3.9, lexicographically smallest h(X) in Line 4 can be chosen
in O(q log p). The while loop at Line 7 runs at most ℓ times. The factoring step at Line 8
takes Õ(qk2 log2 p) (using Theorem 3.10) and the lexicographically smallest q-th root can be
picked in O(qk log p) time. Thus, the while loop takes Õ(ℓqk2 log2 p). Since ℓ ≤ k log p and
k < q, the running time of the while loop can be upper bounded by Õ(q4 log3 p). Thus the
overall running time of each iteration of the for loop is Õ(q4 log3 p). So we can upper bound
the running time of the entire for loop by Õ(d4 log3 p). Since the running time of Line 13
is also upper bounded by Õ(d4 log3 p) (from Theorem 5.1), the overall running time of the
algorithm is Õ(d4 log3 p). ◀

We end this section by completing the proof of Theorem 1.3.

Proof of Theorem 1.3. Algorithm 2 pseudo-deterministically constructs irreducible polyno-
mial of degree d over Fpk . From Theorem 4.1, it takes time T (dk, p) + Õ(dk3 log p), where
T (dk, p) is time taken for the sub-routine which constructs degree dk irreducible polynomial
over Fp. We use Algorithm 3 to implement this sub-routine, which from Theorem 5.3 takes
time Õ(d4k4 log3 p). Thus, the overall running time is Õ(d4k4 log3 p). Let q = pk. Thus,
we have given a pseudo-deterministic algorithm for constructing irreducible polynomials of
degree d over Fq in expected time Õ(d4 log4 q). ◀

S. S. Rai 33:11

6 Conclusion

We have shown an efficient pseudo-deterministic algorithm for constructing irreducible
polynomials of degree d over finite field Fq. It is natural to ask if this algorithm can be
derandomized to get a fully deterministic algorithm. Since our approach heavily relies on
fast randomized polynomial factoring algorithms, and no efficient deterministic factoring
algorithms are known, it is unclear how to derandomize it using the above approach. In fact,
we don’t even know how to deterministically construct a quadratic non residue modulo p (p
is prime).

Another interesting question is to compare the hardness of deterministically factoring
polynomials and deterministically constructing irreducible polynomials over finite fields. As
mentioned earlier, Shoup [12] had showed that constructing irreducible polynomials over
finite fields can be efficiently (and deterministically) reduced to factoring polynomials. This
suggests that factoring polynomials is as hard as constructing irreducible polynomials. But
what about the other direction? Would we be able to factor polynomials efficiently if we
could construct irreducible polynomials?

The answer is affirmative in the quadratic case. Suppose we are given a quadratic non
residue β modulo p. Then we can compute the square roots of any quadratic residue α

module Fp. In other words, given an irreducible polynomial X2− β, we can factorize X2−α.
This can be achieved using the Tonelli-Shanks [11, 14] algorithm for computing square roots
modulo p. However, this technique does not easily generalize to higher degrees d, so there
isn’t enough evidence to confirm that constructing irreducible polynomials is as hard as
factoring polynomials in general. We believe this is an interesting open question that can
shine more light on the complexity of both these problems.

Gat and Goldwasser [6] highlighted the open problem of pseudo-deterministically con-
structing n-bit prime numbers, which still remains unsolved. Chen et al. [4] solved this
problem but with the caveat that their algorithm works in the infinitely often regime. Their al-
gorithm is based on complexity theoretic ideas. In this paper, we gave a pseudo-deterministic
algorithm for constructing irreducible polynomials, which leverages the structure of irredu-
cible polynomials. Perhaps similarly one could hope to get an efficient pseudo-deterministic
algorithm for constructing primes using some number theoretic approaches.

References
1 Leonard M. Adleman and Hendrik W. Lenstra Jr. Finding irreducible polynomials over finite

fields. In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium on Theory
of Computing, May 28-30, 1986, Berkeley, California, USA, STOC ’86, pages 350–355, New
York, NY, USA, 1986. ACM. doi:10.1145/12130.12166.

2 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics,
160(2):781–793, 2004. URL: http://www.jstor.org/stable/3597229.

3 David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite
fields. Mathematics of Computation, 36(154):587–592, 1981. URL: http://www.jstor.org/
stable/2007663.

4 Lijie Chen, Zhenjian Lu, Igor C. Oliveira, Hanlin Ren, and Rahul Santhanam. Polynomial-time
pseudodeterministic construction of primes. In 64th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 1261–
1270, Los Alamitos, CA, USA, November 2023. IEEE. doi:10.1109/FOCS57990.2023.00074.

5 Jean-Marc Couveignes and Reynald Lercier. Fast construction of irreducible polynomials
over finite fields. Israel Journal of Mathematics, 194(1):77–105, March 2013. doi:10.1007/
s11856-012-0070-8.

FSTTCS 2024

https://doi.org/10.1145/12130.12166
http://www.jstor.org/stable/3597229
http://www.jstor.org/stable/2007663
http://www.jstor.org/stable/2007663
https://doi.org/10.1109/FOCS57990.2023.00074
https://doi.org/10.1007/s11856-012-0070-8
https://doi.org/10.1007/s11856-012-0070-8

33:12 Pseudo-Deterministic Construction of Irreducible Polynomials over Finite Fields

6 Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and their
cryptographic applications. Electron. Colloquium Comput. Complex., TR11-136(TR11-136),
October 2011. URL: https://eccc.weizmann.ac.il/report/2011/136.

7 Kiran S. Kedlaya and Christopher Umans. Fast polynomial factorization and modular
composition. SIAM J. Comput., 40(6):1767–1802, 2011. doi:10.1137/08073408X.

8 H. W. Lenstra. Finding isomorphisms between finite fields. Mathematics of Computation,
56(193):329–347, 1991. doi:10.1090/S0025-5718-1991-1052099-2.

9 Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and their Applications.
Cambridge University Press, Cambridge, 2 edition, 1994. doi:10.1017/CBO9781139172769.

10 Michael O. Rabin. Probabilistic algorithms in finite fields. SIAM J. Comput., 9(2):273–280,
1980. doi:10.1137/0209024.

11 Daniel Shanks. Five number-theoretic algorithms. In Proceedings of the Second Manitoba
Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1972), volume No.
VII of Congress. Numer., pages 51–70. Utilitas Math., Winnipeg, MB, 1973.

12 Victor Shoup. New algorithms for finding irreducible polynomials over finite fields. In 29th
Annual Symposium on Foundations of Computer Science, White Plains, New York, USA, 24-26
October 1988, pages 283–290. IEEE Computer Society, 1988. doi:10.1109/SFCS.1988.21944.

13 Terence Tao, Ernest Croot III, and Harald Helfgott. Deterministic methods to find primes.
Math. Comput., 81(278):1233–1246, 2012. doi:10.1090/S0025-5718-2011-02542-1.

14 Alberto Tonelli. Bemerkung über die auflösung quadratischer congruenzen. Nachrichten von
der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen,
1891:344–346, 1891. URL: http://eudml.org/doc/180329.

15 Joachim von zur Gathen and Victor Shoup. Computing frobenius maps and factoring polyno-
mials. Comput. Complex., 2(3):187–224, September 1992. doi:10.1007/BF01272074.

https://eccc.weizmann.ac.il/report/2011/136
https://doi.org/10.1137/08073408X
https://doi.org/10.1090/S0025-5718-1991-1052099-2
https://doi.org/10.1017/CBO9781139172769
https://doi.org/10.1137/0209024
https://doi.org/10.1109/SFCS.1988.21944
https://doi.org/10.1090/S0025-5718-2011-02542-1
http://eudml.org/doc/180329
https://doi.org/10.1007/BF01272074

A Quadratic Upper Bound on the Reset Thresholds
of Synchronizing Automata Containing a Transitive
Permutation Group
Yinfeng Zhu #

Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia

Abstract
For any synchronizing n-state deterministic automaton, Černý conjectures the existence of a
synchronizing word of length at most (n − 1)2. We prove that there exists a synchronizing word of
length at most 2n2 − 7n + 7 for every synchronizing n-state deterministic automaton that satisfies
the following two properties: 1. The image of the action of each letter contains at least n − 1 states;
2. The actions of bijective letters generate a transitive permutation group on the state set.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Černý conjecture, deterministic finite automaton, permutation group, reset
threshold, synchronizing automaton

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2024.34

Related Version Previous Version: https://arxiv.org/abs/2407.08135

Acknowledgements I thank Prof. Mikhail V. Volkov for valuable discussions, feedback and research
suggestions.

1 Introduction

1.1 Synchronizing automata and Černý Conjecture
Let Q be a set. Denote the set of all mappings from Q to itself by T(Q). For the purposes of
this article, an automaton A is a triple (Q, Σ, δ) where Q and Σ are two finite sets, δ is a
mapping from Σ to T(Q). The elements of Q are called states of A; the elements of Σ are
called letters of A; and δ is called the transition function of A. For a mapping f : X → Y

and x ∈ X, we denote the value of f at x by x.f or f(x). When the transition function
δ is clear from the context, to simplify notations, q.(δ(a)) will be shortened to q.a where
q ∈ Q and a ∈ Σ. For subsets P ⊆ Q and A ⊆ Σ, write P.A, or P.a if A = {a}, for the set
{p.a : p ∈ P, a ∈ A}.

Let X be a set. Finite sequences over X (including the empty sequence denoted by ϵ)
are called words. For each nonnegative integer i, write Xi (X≤i, respectively) for the set of
words of length i (at most i, respectively). Denote the set of all words over X by X∗.

The transition function δ extends to the mapping of the set of finite words Σ∗ on T(Q)
(still denoted by δ) via the recursion: q.ϵ = q and q.(wa) = (q.w).a for every w ∈ Σ∗, a ∈ Σ
and q ∈ Q.

Let A = (Q, Σ, δ) be an automaton. A word w ∈ Σ∗ is a reset word if |Q.w| = 1. An
automaton that admits a reset word is called a synchronizing automaton. The minimum
length of reset words for A is called the reset threshold of A, denoted rt(A). For example,
Figure 1 shows a synchronizing automaton C4 with the state set {1, 2, 3, 4} and two letters a

and b and transition function δ such that

δ(i, a) = i.a =
{

1 if i = 4,
i otherwise;

and δ(i, b) = i.b =
{

1 if i = 4,
i + 1 otherwise,

for i ∈ {1, 2, 3, 4}. The shortest reset word of C4 is ab3ab3a and rt(C4) = 9.
© Yinfeng Zhu;
licensed under Creative Commons License CC-BY 4.0

44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2024).
Editors: Siddharth Barman and Sławomir Lasota; Article No. 34; pp. 34:1–34:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yinfeng.zhu7@gmail.com
https://orcid.org/0000-0003-1724-5250
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.34
https://arxiv.org/abs/2407.08135
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Reset Thresholds of ST-Automata

1 2

34

b

b

b

a, b

a a

a

Figure 1 The automaton C4.

The following conjecture is the most famous conjecture of synchronizing automata.

▶ Conjecture 1 (Černý-Starke). Let A be an n-state synchronizing automaton. Then rt(A) ≤
(n − 1)2.

This conjecture is usually called Černý Conjecture [6], although it was first published in 1966
by Starke [21]. Regarding the history of Conjecture 1, we recommend [27, Section 3.1].

Černý [5] showed that there exists an n-state automaton with the reset threshold equal
to (n − 1)2 for every n. That means the upper bound in Conjecture 1 is optimal.

For a long time, the best upper bound of reset thresholds was n3−n
6 , obtained by Pin

and Frankl [9, 14]. In 2018, Szykuła [24] improved the Pin-Frankl bound. Based on
Szykuła’s method, Shitov [20] made a further improvement and obtained the new upper
bound cn3 + o(n3), where the coefficient c is close to 0.1654.

Although Černý Conjecture is widely open in general, it has been shown to be true in
many special classes e.g. [7, 11, 25, 26]. For a summary of the state-of-the art around the
Černý Conjecture, we recommend the two surveys [12, 27].

1.2 Automata containing transitive groups and our contribution
Let A = (Q, Σ, δ) be an automaton. The defect of a word w ∈ Σ∗ is the integer |Q| − |Q.w|.
For a non-negative integer i, write Σi for the set of letters of defect i.

Let A ⊆ Σ0. Observe that δ induces a homomorphism from the free monoid A∗ to the
symmetric group Sym(Q). We say that A contains the permutation group δ(A∗) with the
generating set δ(A). A subgroup G of Sym(Q) is transitive if q.G = {q.g : g ∈ G} = Q

for each q ∈ Q. We use ST to denote the family of synchronizing automata that contain
a transitive permutation group on its state set. Note that the automaton C4 displayed in
Figure 1 belongs ST.

In this article, we focus on automata in ST. Many subfamilies of ST have been studied
in detail [1, 16, 17, 18, 19, 15, 22]. We introduce two important results that are strongly
relevant to this article.

For any A ⊆ Σ0, the minimum integer d such that δ(Ad) = δ(A∗) is denoted by dA(A).
Observe that dA(A) is the diameter of the Cayley digraph of the group δ(A∗) with the
generating set δ(A). As an example, a Cayley graph of the symmetric group Sym({1, 2, 3})
is depicted in Figure 2.

The following theorem is essentially contained in the results of Rystsov [16].

▶ Theorem 2 (Rystsov). Let A = (Q, Σ, δ) ∈ ST be an n-state automaton. Then rt(A) ≤
1 + (n − 2)(n − 1 + dA(A)), where A ⊆ Σ0 such that δ(A∗) is transitive.

Araújo, Cameron and Steinberg [1, Theorem 9.2], using representation theory over the field
of rationals Q, have improved Rystsov’s bound as displayed in Theorem 3. It is worth
mentioning that a similar result can be also found in [22, Theorem 3.4].

Y. Zhu 34:3

1

a a2

b

ab a2b

a

a

a
a

a

a

b

b b

Figure 2 The Cayley digraph of Sym({1, 2, 3}) with the generating set {a, b}, where a = (123)
and b = (12). Its vertex set is Sym({1, 2, 3}). For any two vertices x, y and a generator g ∈ {a, b},
there exists an arc with label g from x to y if xg = y.

▶ Theorem 3 (Araújo-Cameron-Steinberg). Let A = (Q, Σ, δ) ∈ ST be an n-state automaton.
Then rt(A) ≤ 1 + (n − 2)(n − m + dA(A)), where A ⊆ Σ0 such that δ(A∗) is transitive and
m is the maximum dimension of an irreducible Q(δ(A∗))-module of QQ

In the case that dA(A) is small (a linear function of n), Theorems 2 and 3 bound rt(A) from
above by a quadratic function of n, or even verify Černý Conjecture [16, 1, 22]. However,
generally, dA(A) is not a linear function of n: in the case that A = {(12), (12, . . . , n)}, we
have dA(A) ≈ 3

4 n2 (asymptotically) [28].
In this article, we obtain Theorem 13 which improves Theorem 2 in a different way. As

an application of Theorem 13, we obtain the following result.

▶ Theorem 4. Let A ∈ ST be an n-state automaton. If Σ = Σ0∪Σ1, then rt(A) ≤ 2n2−7n+7.

1.3 Approach and layout
To prove Theorems 4 and 13, we use the so-called extension method which is based on
Proposition 5. The proof of Proposition 5 can be found in many papers (e.g. [27, Section 3.4]).

Let A = (Q, Σ, δ) is an automaton. For a subset S ⊆ Q and a word w ∈ Σ∗, write
S.w−1 for the set {q ∈ Q : q.w ∈ S}, that is, the set of states from which upon reading
w, the automaton reaches a state in S. A subset S ⊆ Q is extended by a word w ∈ Σ∗ if
|S.w−1| > |S|. A subset S ⊆ Q is called m-extensible, if S is extended by a word of length at
most m.

▶ Proposition 5. Let A = (Q, Σ, δ) be a synchronizing automaton. If every nonempty proper
subset S of Q is m-extensible, then rt(A) ≤ 1 + (n − 2)m.

The remaining of this article will proceed as follows. In Section 2, combining the extension
method and a dimensional argument for a linear structure, we establish a upper bound for
the reset thresholds of automata in ST, see Theorem 13. In Section 3, using some graph
theoretical techniques, we present a proof of Theorem 4. Using these graph theoretical
techniques, we can slightly improve some known results about reset thresholds. At the end,
we summarize our results in Section 4.

2 Linear structure

In this section, we will encode some information of an n-state synchronizing automaton into
some objects in Qn. Using the linear structure of Qn, we will obtain a upper bound for its
reset threshold.

FSTTCS 2024

34:4 Reset Thresholds of ST-Automata

Let A = (Q, Σ, δ) be an n-state automaton. We always assume that Q = {1, . . . , n}. Fix
a subset A of Σ0 and denote δ(A∗) by G.

Firstly, let us recall some concepts in linear space. Let X ⊆ Qn. The linear subspace
spanned by X, denoted by span(X), is defined as

span(X) :=
{∑

x∈X

cxx : cx ∈ Q

}
.

The cone generated by X, denoted cone(X), is the set

cone(X) :=
{∑

x∈X

cxx : cx ∈ Q≥0

}

where Q≥0 is the set of non-negative rationals. Write ⟨·, ·⟩ for the standard inner product of
Qn, that is the map such that ⟨x, y⟩ =

∑n
i=1 x(i)y(i) for every x, y ∈ Qn. The polar cone of

X, denoted X◦, is the set

X◦ := {y ∈ Qn : ⟨x, y⟩ ≤ 0, ∀x ∈ X}.

If X is a linear subspace of Qn, the orthogonal complement of X, denoted X⊥, is defined as

X⊥ = {y : ⟨x, y⟩ = 0, ∀x ∈ X}.

It clearly holds X◦ = X⊥ in the case that X is a linear subspace.
Next we will encode some information of an n-state synchronizing automaton into some

objects in Qn. For a subset S ⊆ Q, define 1S to be the (1 × n)-vector over Q such that its
i-th coordinate is

1S(i) =
{

1 if i ∈ S,
0 otherwise.

For any q ∈ Q, to simplify notation, we write 1q for 1{q}. Let w be an arbitrary word in Σ∗.
Define [w] to be the (n × n)-matrix over Q such that 1q[w] = 1q.w−1 for all q ∈ Q. It is clear
that 1S [w] = 1S.w−1 for all S ⊆ Q. Define kw for the (1 × n)-vector over Q such that its i-th
coordinate is

kw(i) = |i.w−1| − 1.

For every g ∈ G, set kg to be kw and [g] to be [w], where w ∈ Σ∗ is an arbitrary word such
that δ(w) = g.

▶ Example 6. Consider the automata C4 (see Figure 1) and the words a, b and ab. One can
calculate that

1.a−1 = {1, 4}, 2.a−1 = {2}, 3.a−1 = {3}, 4.a−1 = ∅;
1.b−1 = {4}, 2.b−1 = {1}, 3.b−1 = {2}, 4.b−1 = {1};
1.ab−1 = ∅, 2.ab−1 = {1, 4}, 3.ab−1 = {2}, 4.ab−1 = {3}.

And then ka = (1, 0, 0, −1), kb = (0, 0, 0, 0), and kab = (−1, 1, 0, 0).

A sequence (Xi)i≥0 is called eventually constant if there exists an integer j ≥ 0 such that
for all k > j, Xk = Xj . For an eventually constant sequence X = (Xi)i≥0, the minimum
integer j such that for all k > j, Xk = Xj is called transient length of X , denoted by len(X)

Y. Zhu 34:5

and we denote the limit of the sequence X by lim X which clearly equals Xlen(X). In the
following, we will define some eventually constant sequences which play a crucial role in our
proof.

Define T (A, A) = (Ti)i≥0 and K(A, A) = (Ki)i≥0, to be the two sequences such that

Ti :=
{

kw : w ∈ (Σ \ Σ0)A≤i
}

and Ki := cone(Ti),

for every i ≥ 0. To simplify notations, without ambiguity, we write T and K for T (A, A)
and K(A, A), respectively.

Since ⟨A⟩ is a finite group, both T and K are eventually constant. Denote lim T and
lim K by T∞ and K∞, respectively. Observe that K∞ = cone(T∞) and then

len(T) ≥ len(K). (1)

We begin with some elementary results. According to the definition, it clearly holds that

|S.w−1| − |S| = ⟨1S , kw⟩ (2)

for every S ⊆ Q and w ∈ Σ∗. As a consequence, we have the following lemma.

▶ Lemma 7. Let S ⊆ Q.
1. The subset S is extended by w if and only if ⟨1S , kw⟩ > 0.
2. If 1S ∈ (K∞)◦ then |S.a−1| = |S| for all a ∈ Σ.
3. For every vector x ∈ K∞,

∑n
i=1 x(i) = ⟨1Q, x⟩ = 0.

We say that A is strongly connected if for every two states p and q, there exists a word
w ∈ Σ∗ such that p.w = q.

▶ Lemma 8. Assume that A = (Q, Σ, δ) is synchronizing and strongly connected. Let S be
a nonempty proper subset of Q. If 1S ∈ (K∞)◦, then there exists a word w ∈ Σ∗ such that
1S.w−1 /∈ K◦.

Proof. Since A is synchronizing and strongly connected, there exists a word

u = u1u2 · · · ut ∈ Σ∗

such that S.u−1 = Q. Since |S| < |Q|, by Lemma 7 Item 2, there exists an integer t′ < t

such that 1S.v−1 /∈ (K∞)◦, where v = u1u2 · · · ut′ . ◀

Due to Lemma 8, we can define ℓ(S) to be the length of a shortest word w such that
1S.w−1 /∈ (K∞)◦ for every nonempty proper subset S ⊊ Q.

▶ Proposition 9. Assume that A is synchronizing and strongly connected. Let S be a
nonempty proper subset of Q. Then S is (len(K) + ℓ(S) + 1)-extensible.

Proof. Let k = len(K) and ℓ = ℓ(S). By Lemma 8, there exists an ℓ-length word w =
(w1, . . . , wℓ) ∈ Σ∗ such that 1S .w−1 /∈ (K∞)◦. Since

S.(w2, . . . , wℓ)−1 ∈ (K∞)◦,

by Lemma 7 Item 2, |S.w−1| = |S|.
Let P = S.w−1. Since 1P /∈ (K∞)◦, there exists a vector x ∈ K∞ such that ⟨x, 1P ⟩ > 0.

Since K∞ = cone(Tk), there exists a vector y ∈ Tk such that ⟨y, 1P ⟩ > 0. By the definition
of Tk, we can find a word u ∈ (Σ \ Σ0)A≤k such that y = ku. By Lemma 7 Item 1,
|P.u−1| > |P | = |S|. Hence, uw extends S and then S is (k + ℓ + 1)-extensible. ◀

FSTTCS 2024

34:6 Reset Thresholds of ST-Automata

If len(K) and ℓ(S) can be bounded by a linear function of n, using Proposition 5, one
can bound rt(A) by a quadratic function of n. In general, it is hard to estimate len(K) and
ℓ(S) of an automaton. However, in the next section, we will establish some linear bounds for
len(K) with the assumption A ∈ ST and Σ = Σ0 ∪ Σ1. And, in the rest of this section, we
will establish the following linear bound for ℓ(S) in the case that K∞ is a linear subspace
of Qn.

▶ Proposition 10. Assume that A is synchronizing and strongly connected. If K∞ is a linear
subspace of Qn, then ℓ(S) ≤ n − 1 − dim(K∞) for every nonempty proper subset S ⊊ Q.

Before proving Proposition 10, we show that “G is transitive” implies “K∞ is a linear
subspace of Qn”.

▶ Lemma 11. If G is transitive, then K∞ is the linear subspace spanned by T∞.

Proof. It is sufficient to prove −x ∈ K∞ = cone(T∞) for each x ∈ T∞. Take an arbitrary
x ∈ T∞ and let

y :=
∑
g∈G

x[g].

It is clear that y ∈ K∞. Let i and j be two arbitrary integers in {1, . . . , n}. Since G is
transitive, there exists h ∈ G such that i.h = j. Note that y[h](i) = y(j) and

y[h] =
∑
g∈G

x[g][h] =
∑
g∈G

x[g] = y.

Then y(i) = y(j). By the arbitrariness of i and j, it holds that y = c 1Q for some c ∈ Q.
Since y ∈ K∞, by Lemma 7 Item 3, we have

∑n
i=1 y(i) = 0. This implies c = 0 and then

−x =
∑

g∈G\{id}

x[g],

where id is the identity map in Sym(Q). Since x[g] ∈ T∞ for all g ∈ G, we obtain that
−x ∈ K∞ as wanted. ◀

Now, we go back to prove Proposition 10. The following dimension argument plays a
crucial role in our proof.

▶ Lemma 12. Let L be a subspace of Qn and a non-zero vector x ∈ L. If there exists a
word w ∈ Σ∗ such that x[w] /∈ L then there exists a word w′ ∈ Σ∗ such that x[w′] /∈ L and
|w′| ≤ dim(L).

Proof. For every nonnegative integer i, define Li := span(xv : v ∈ Σ≤i). Observe that there
exists a unique integer j such that

L0 ⊊ L1 ⊊ · · · ⊊ Lj = Lj+1 = · · ·

Let t be the minimum integer such that Lt ⊈ L. Observing that t ≤ j, we have

t = dim(L0) + t − 1 ≤ dim(Lt−1) ≤ dim(L).

Then there exists a word w′ of length ≤ dim(L) such that x[w′] /∈ L. ◀

Y. Zhu 34:7

Proof of Proposition 10. Since K∞ is a linear subspace of Qn, it holds that (K∞)◦ = (K∞)⊥

is also a linear subspace of Qn. Observe that 1Q ∈ (K∞)◦. Then we can decompose (K∞)◦

as (K∞)◦ = V0 ⊕ V1, where

V0 = {x ∈ (K∞)◦ : ⟨1Q, kw⟩ = 0} and V1 = span(1Q).

For every subset R ⊆ Q, define pR := 1R − |R|
n 1Q. For each R ⊆ Q, observe that 1R ∈ (K∞)◦

if and only if pR ∈ V0.
Let S be a nonempty proper subset of Q such that 1S ∈ (K∞)◦. Since A is synchronizing

and strongly connected, let w′ be a reset word such that Q.w′ ⊆ S. Then

pS [w′] = 1S [w′] − |S|
n

1Q[w′] =
(

1 − |S|
n

)
1Q /∈ V0.

Let w = va be a shortest word such that pS [w] /∈ V0. Lemma 12 provides that the length of
w is at most dim(V0) = n − 1 − dim(K∞).

We will complete the proof by showing 1S.w−1 /∈ (K∞)◦. Note that pS [v] = 1S.v−1 − |S|
n 1Q.

Since pS [v], 1Q ∈ (K∞)◦, we have 1S.v−1 ∈ (K∞)◦. By Lemma 7 Item 2, |S| = |S.v−1| =
|S.w−1|. Hence,

pS.w−1 = 1S.w−1 −|S.w−1|
n

1Q = 1S.w−1 −|S|
n

1Q = pS [w] /∈ V0

which is equivalent to 1S.w−1 /∈ (K∞)◦. ◀

Combining Propositions 5, 9, and 10 and Lemma 11, we establish the following bound.

▶ Theorem 13. Let A = (Q, Σ, δ) ∈ ST be an n-state automaton. Then rt(A) ≤ 1 + (n −
2)(n − dim(K∞) + len(K(A, A))), where A ⊆ Σ0 such that δ(A∗) is transitive.

▶ Remark 14. Note that dim(K∞) ≥ 1 and dA(A) ≥ len(K(A, A)).
1. Theorem 13 improves Theorem 2.
2. One of Theorem 3 and Theorem 13 cannot deduce the other one. If we only want to

establish a quadratic upper bound for reset thresholds of a special class of automata, it is
easier to establish a linear upper bound for len(K(A, A)) than for dA(A). In this sense,
Theorem 13 may have more advantages.

3 Rystsov digraphs

This section is divided into two parts:
In Section 3.1, we establish some results for digraphs.
In Section 3.2, we derive some directed graphs from automata. Using the results in
Section 3.1 and Theorem 13, we prove Theorem 4.

3.1 Digraphs
Firstly, we recall some notations of digraphs. A digraph Γ = (V, E) is an ordered pair of sets
such that E ⊆ V × V . The set V is called the vertex set of Γ and the E is called the arc
set of Γ. We assume that the digraphs in this section are loop-free, that is, (v, v) is not an
arc for every vertex v. Let u and v be two vertices of Γ. A sequence of vertices (v1, . . . , vt)
is called a path from u to v if v1 = u, vt = v and (vi, vi+1) ∈ E for every 1 ≤ i ≤ t − 1.
We say that u and v are connected if there exists a sequence of vertices (v1, . . . , vt) such

FSTTCS 2024

34:8 Reset Thresholds of ST-Automata

that v1 = u, vt = v and either (vi, vi+1) ∈ E or (vi+1, vi) ∈ E for every 1 ≤ i ≤ t − 1. The
strong connectivity of Γ, denoted sc(Γ), is the equivalence relation such that (u, v) ∈ sc(Γ) if
and only if there exist a path from u to v and a path from v to u. The weak connectivity
of Γ, denoted wc(Γ), is the equivalence relation such that (u, v) ∈ wc(Γ) if and only if u, v

are connected. A strongly connected component C of Γ is called a sink component of Γ if
there is no arc (u, v) ∈ E such that u ∈ C and v /∈ C; is called a source component of Γ if
there is no arc (u, v) ∈ E such that u /∈ C and v ∈ C. A strongly connected component is
non-sink (non-source, resp.) if it is not a sink (source, resp.) component of Γ. Write SCC(Γ)
(WCC(Γ), SinkC(Γ), resp.) for the set of strongly connected components (weakly connected
components, sink components, resp.) of Γ. Equivalence classes of sc(Γ) (wc(Γ) resp.,) are
called a strongly connected components (weakly connected components resp.,) of Γ.

Let V = {1, . . . , n} and A ⊆ Sym(V). We will say that the sequence Γ0, Γ1, . . . is an
A-growth of Γ0 if

Γ0 = (V, E0) is a digraph with vertex set V ;
for every positive integer i, Γi = (V, Ei) is the digraph such that Ei = {(p.w, q.w) :
(p, q) ∈ E0, w ∈ A≤i}.

This concept, also called Rystsov Digraphs, was firstly used in [17], and appears widely in
the research of synchronizing automata [3, 4, 10, 17, 19].

In the rest of Section 3.1, we set Γ0, Γ1, . . . is an A-growth of Γ0. Write G = ⟨A⟩. Since
G is finite, the sequence Γ0, Γ1, . . . is eventually constant. Denote lim(Γ0, Γ1, . . .) by Γ∞.

▶ Lemma 15. If G is transitive, wc(Γ∞) = sc(Γ∞).

Proof. For any element g ∈ G and two vertices u, v ∈ V , observe that (u.g, v.g) is an arc of
Γ∞ if and only if (u, v) is an arc of Γ∞. And then every element of G is a graph automorphism
of Γ∞.

For any vertex v ∈ V , let R(v) be the subset of vertices such that u ∈ R(v) if and only if
there exists a path from v to u.

Let (u, v) be an arc of Γ∞. It is clear that R(v) ⊆ R(u). Since G is transitive, we can
pick g ∈ G such that u.g = v. Since g is a graph automorphism, it induces a bijection from
R(u) to R(v). Then R(u) = R(v). Hence, if two vertices x and y belong to the same weakly
connected component of Γ∞, it holds R(x) = R(y). This completes the proof. ◀

For all (p, q) ∈ V × V , the incidence vector of (p, q) is the vector 1p − 1q, denoted χ(p,q).
For a digraph Γ = (V, E), write L(Γ) for the subspace span(χe : e ∈ E) of Qn. The following
result is well-known in algebraic graph theory (see [2, Chapter 4]).

▶ Lemma 16. Assume that W1, . . . , Wd are all weakly connected components of a digraph
Γ = (V, E). Then the subspace (L(Γ))⊥ is the d-dimensional subspace span(1W1 , . . . , 1Wd

).

▶ Lemma 17. Let d = | SCC(Γ∞)|. If the arc set of Γ0 is nonempty and G is transitive,
then wc(Γn−d−1) = wc(Γ∞) = sc(Γ∞).

Proof. By Lemma 15, wc(Γ∞) = sc(Γ∞). It is sufficient to show wc(Γn−d−1) = wc(Γ∞).
Define L = (Li)i≥0 to be the sequence of linear spaces, where Li := L(Γi) for every

i ≥ 0. Write L∞ = lim L. By Lemma 16, dim((L∞)⊥) = d and then dim(L∞) = n − d.
For every i < len(L), since Li and Li+1 are linear subspaces with Li ⊊ Li+1, we have
dim(Li) < dim(Li+1). Due to E0 ̸= ∅, it holds that dim(L0) ≥ 1 and then Ln−d−1 = L∞. By
Lemma 16, wc(Γn−d−1) = wc(Γ∞). ◀

▶ Lemma 18. Assume that E0 ̸= ∅ and G is transitive. For every v ∈ V , there exist two
vertices p, q ∈ V such that (v, p), (q, v) ∈ En−1.

Y. Zhu 34:9

Proof. Since E0 ̸= ∅, let x, y be two vertices such that (x, y) ∈ E0. Let v be an arbitrary
vertex in V . Since G is transitive, there exist two words w, w′ ∈ A≤n−1 such that x.w =
y.w′ = v. Then (v, y.w), (x.w′, v) ∈ En−1. ◀

▶ Lemma 19. Let i be a positive integer. If sc(Γi+1) = sc(Γi) ̸= sc(Γ∞) and G is transitive,
then there exists a non-sink strongly connected component C of Γi and a ∈ A such that C.a

is a sink component of Γi.

Proof. Since sc(Γi+1) = sc(Γi), every a ∈ A induces a permutation on SCC(Γi), denoted by
a′, such that X.a′ = X.a ∈ SCC(Γi).
Case 1: There exists a non-sink strongly connected component of Γi. Assume, for a con-

tradiction, that every non-sink strongly connected component C and a ∈ A satisfy
C.a ∈ SCC(Γi) \ SinkC(Γi). Let A′ be the set {a′ : a ∈ A}. Since G = ⟨A⟩ is trans-
itive on V , the permutation group ⟨A′⟩ is transitive on SCC(Γi). Then there exist
C ∈ SCC(Γi) \ SinkC(Γi) and a ∈ A such that C.a ∈ SinkC(Γi).

Case 2: There is no non-sink strongly connected component of Γi. In this case, we have
wc(Γi) = sc(Γi). For every a ∈ A and X ∈ SCC(Γi), since X.a ∈ SCC(Γi), there are no
arcs outside strongly connected components of Γi+1. Then wc(Γi+1) = sc(Γi+1). Using
this argument repeatedly, we have sc(Γi+1) = sc(Γi+2) = · · · = sc(Γ∞) which contradicts
with sc(Γi+1) ̸= sc(Γ∞). ◀

▶ Lemma 20. Let i be a non-negative integer such that sc(Γi) ̸= sc(Γ∞). If G is transitive,
then either

| SCC(Γi)| > | SCC(Γi+1)|

or

| SinkC(Γi)| > | SinkC(Γi+1)|.

Proof. If | SCC(Γi)| > | SCC(Γi+1)|, we are done. Otherwise, since sc(Γi) ⊆ sc(Γi+1), we
have sc(Γi) = sc(Γi+1) and

SinkC(Γi) ⊇ SinkC(Γi+1). (3)

By Lemma 19, there exist C ∈ SCC(Γi) \ SinkC(Γi) and a ∈ A such that C.a ∈ SinkC(Γi).
Since C ∈ SCC(Γi) \ SinkC(Γi), there exists an arc (p, q) ∈ Ei such that p ∈ C and q /∈ C.
Note that (p.a, q.a) ∈ Ei+1. Since p.a ∈ C.a and q.a /∈ C.a, it holds that C.a is a non-sink
component of Γi+1. By Equation (3), we have | SinkC(Γi)| > | SinkC(Γi+1)|. ◀

▶ Lemma 21. Let d = | SCC(Γ∞)|. If G is transitive and d > n
3 , then sc(Γn) = sc(Γ∞).

Proof. Since G is transitive, d divides n. Then d ∈ { n
2 , n}. Noting that, by Lemma 15, every

weakly connected component of Γ∞ is strongly connected. Since each strongly connected
component of Γ∞ has at most 2 vertices, it is clear that there exist at most n arcs in Γ∞.
Note that |Ei| < |Ei+1| for every integer i such that Γi ̸= Γ∞. Then sc(Γn) = sc(Γ∞). ◀

▶ Lemma 22. Let d = | SCC(Γ∞)|. If G is transitive and d ≤ n
3 , then sc(Γ2n−3d−1) = sc(Γ∞).

Proof. Let m be the minimum integer such that sc(Γm) = sc(Γ∞). Define

f(i) = | SCC(Γi)| + | SinkC(Γi)|,

for each i ≥ 0.

FSTTCS 2024

34:10 Reset Thresholds of ST-Automata

Consider Γn−1. By Lemma 17, Γn−1 has d weakly connected components and wc(Γn−1) =
sc(Γm). In the case that m ≤ n − 1, then m ≤ 2n − 3d − 1 and we are done.

Now we assume that m > n − 1. Let C be a weakly connected component of Γn−1 but
not a strongly connected component of Γn−1. Define

a := the number of source components of Γn−1 in C;
b := the number of non-source non-sink components of Γn−1 in C;
c := the number of sink components of Γn−1 in C.

Let D be either a source component or a sink component of Γn−1 in C. By Lemma 18,
there exists an arc in D and then there are at least two vertices in D. This implies

2a + b + 2c ≤ |C| = n

d
.

Since a ≥ 1, we have

(a + b + c) + c ≤ n

d
− 1. (4)

The left hand side of Equation (4) is the sum of the number of strongly connected components
and the number of sink components of Γn−1 in C. Since d ≤ n

3 , we have

f(n − 1) ≤ (n

d
− 1)x + 2(d − x) (by Equation (4))

≤ (n

d
− 1)d (by n/d − 1 ≥ 2)

= n − d,

where x = | WCC(Γn−1) \ SCC(Γn−1)|.
Since f(m) = 2d, using Lemma 20, we have

m − (n − 1) ≤ f(n − 1) − f(m) ≤ (n − d) − 2d = n − 3d.

Hence, m ≤ 2n − 3d − 1. ◀

▶ Remark 23.
1. In the case that Γ∞ is strongly connected and n ≥ 3, Lemmas 21 and 22 show that

sc(Γ2n−4) = sc(Γ∞). This slightly improves [17, Theorem 2], [10, Lemma 6] and [19,
Theorem 2]. And then one can slightly improve the bounds of reset thresholds in [17,
Theorem 3], [10, Theorem 7] and [19, Theorem 4].

2. Assume G is transitive. Lemmas 21 and 22 show that sc(ΓO(n)) = sc(Γ∞). The following
example shows that ΓO(n) = Γ∞ is not true.
A permutation group G ⊆ Sym(Q) is called 2-homogeneous if for every 2-element subsets
X, Y ⊆ Q, there exists g ∈ G such that X.g = Y . Observe that a 2-homogeneous
permutation group is transitive.
In [10, Section 3], for every odd integer n ≥ 7, Gonze, Gusev, Gerencsér, Jungers and
Volkov constructed two permutations a, b ∈ Sym(n) such that

⟨a, b⟩ is 2-homogeneous;
for any word w ∈ {a, b}∗, if {2, 4}.w = { n−1

2 , n+3
2 }, then |w| ≥ n2

4 + O(n).
Let Γ0 = (V, E) be a digraph such that V = {1, . . . , n} and E = {(2, 4)}. Let Γ0, Γ1, . . .

be the {a, b}-growth of Γ0. Since ⟨a, b⟩ is 2-homogeneous, Γ∞ is a complete digraph. By
the second property of these two permutation, if Γm = Γ∞, then m ≥ n2

4 + O(n).
Meanwhile, the above two permutations also provide a negative answer for [1, Problem
12.39].

Y. Zhu 34:11

3.2 Automata
In this subsection, we will define a sequence of digraphs with respect to an automaton
A = (Q, Σ, δ) and A ⊆ Σ0.

For a 1-defect word w ∈ Σ∗, the excluded state of w is the state such that excl(w) /∈ Q.w,
denoted excl(w); the duplicate state is the state q such that |q.w−1| > 1, denoted dupl(w).

For i ≥ 0, define Γi := (Q, Ei) to be the digraph where

Ei :=
{

(excl(w), dupl(w)) : w ∈ Σ1A≤i
}

.

▶ Lemma 24. The sequence (Γ0, Γ1, . . .) is the δ(A)-growth of Γ0.

Proof. We need to prove Ei+1 = Ei ∪Ei.Σ0 for every i ≥ 0. Let i be an arbitrary nonnegative
integer.

Let (p, q) ∈ Ei. Take w ∈ Σ1Σ≤i
0 such that p = excl(w) and q = dupl(w). By directly

computing, we have excl(wa) = excl(w).a and dupl(wa) = dupl(w).a for all a ∈ Σ0. Then
(p.a, q.a) ∈ Ei+1 which implies Ei+1 ⊇ Ei ∪ Ei.Σ0.

Let (x, y) ∈ Ei+1. Take w′ ∈ Σ1Σ≤i+1
0 such that x = excl(w′) and y = dupl(w′). If the

length of w′ is less than i + 2, then (x, y) ∈ Ei. Otherwise, w′ = wa where w ∈ Σ1Σi
0 and

a ∈ Σ0. It is clear that (excl(w), dupl(w)) ∈ Ei and (excl(w).a, dupl(w).a) = (x, y). Then
Ei+1 ⊆ Ei ∪ Ei.Σ0. ◀

▶ Proposition 25. Assume that A = (Q, Σ, δ) ∈ ST. If K∞ is a linear subspace of Qn and
Σ = Σ0 ∪ Σ1, then

len(K) ≤

{
n if dim(K∞) = n

2 ,
3 dim(K∞) − n − 1 otherwise.

Proof. Recall the definition of Ti that Ti := {kw : w ∈ Σ≥1A≤i} for i ≥ 0. Since Σ =
Σ0 ∪ Σ1, we have Ti = {−χe : e ∈ Ei} for i ≥ 0. Let m be the minimal integer such that
sc(Γm) = sc(Γ∞). By Lemmas 15 and 24, sc(Γ∞) = wc(Γ∞) and sc(Γm) = wc(Γm). This
implies that span(T∞) = cone(T∞) and span(Tm) = cone(Tm). Let C1, . . . , Cd be the strongly
connected components of Γm. Since δ(Σ0) is transitive, using Lemma 16,

span(1C1 , . . . , 1Cd
) = span(Tm)⊥ = cone(Tm)⊥ = K◦

m

and

span(1C1 , . . . , 1Cd
) = span(T∞)⊥ = cone(T∞)⊥ = K◦

∞.

Then Km = K∞ and dim(K∞) = n − d. By Lemmas 21 and 22,

len(K) ≤

{
n if dim(K∞) = n

2 ,
3 dim(K∞) − n − 1 otherwise.

◀

Proof of Theorem 4. Computer experiments confirmed Černý conjecture for any synchron-
izing automata with at most 5 states (see [13, Table 2]). One can check directly that
rt(A) ≤ (n − 1)2 ≤ n2 − 7n + 7 for n ≤ 5.

Now, we assume that n ≥ 6. Using Lemmas 15 and 16, n
2 ≤ dim(K∞) ≤ n − 1. Let S be

a nonempty proper subset of Q. By Propositions 10 and 25, if dim(K∞) = n
2 then

len(K) + ℓ(S) + 1 ≤ n + (n − 1 − n

2) + 1

= 2n − 3 − (n

2 − 3) ≤ 2n − 3; (5)

FSTTCS 2024

34:12 Reset Thresholds of ST-Automata

if dim(K∞) > n
2 ,

len(K) + ℓ(S) + 1 ≤ (3 dim(K∞) − n − 1) + (n − 1 − dim(K∞)) + 1
= 2 dim(K∞) − 1 ≤ 2(n − 1) − 1 = 2n − 3. (6)

Combining Proposition 9 and Equations (5) and (6), every nonempty proper subset of Q is
(2n − 3)-extensible. Using Proposition 5, we obtain that

rt(A) ≤ 1 + (n − 2)(2n − 3) = 2n2 − 7n + 7. ◀

4 Conclusion and discussions

We obtain an upper bound for the reset thresholds of ST-automata which improves Rystsov’s
bound. Using this upper bound, we prove that there exists a synchronizing word of length at
most 2n2 − 7n + 7 for every synchronizing n-state ST-automata whose letters of defect at
most 1.

While Theorem 4 is about a specific class of automata, the lemmas presented in Section 2
may be useful tools for the broader study of synchronizing words. We conclude the article by
discussing two classes of automata for which these tools have potential applications.

4.1 One-cluster automata

An automaton (Q, Σ, δ) is called one-cluster if it has a letter with only one simple cycle
on the set of states, more precisely, there exists a letter a ∈ Σ which acts on P as a cyclic
permutation where P = Q.a|Q|−1. Write OC for the family of one-cluster automata. It is
clear that one of OC and ST do not include the other one. Meanwhile, OC and ST have
nonempty intersection (e.g. the automaton C4, see Figure 1).

Steinberg [23] proved Černý Conjecture for one-cluster automata with prime length cycles.
Béal, Berlinkov and Perrin showed the reset threshold of n-state one-cluster automata is at
most 2n2 − 7n + 7. To establish this upper bound, Béal, Berlinkov and Perrin use a linear
algebra approach which is different from the approach in Section 2. Observing that the two
upper bounds are the same, this may not be a coincidence and it is worth unifying these
two proofs. It is also interesting to obtain a better upper bound by combining these two
approach.

4.2 Completely reachable automata

An automaton (Q, Σ, δ) is called completely reachable if for every nonempty subset P ⊆ Q,
there exists a word w ∈ Σ∗ such that P = Q.w. Ferens and Szykuła [8, Corollary 31] proved
that the reset threshold of n-state completely reachable automata is at most 2n2−n ln n−4n+2.
It is clear that every completely reachable automaton has at least one letter of defect 1,
since subsets of (n − 1) states are reachable. It is not hard to show if a completely reachable
automaton has exactly one letter of defect 1, then it contains a transitive permutation group.
Hence, the overlap of completely reachable automata and ST-automata with letters of defect
≤ 1 is quite substantial. Therefore, we believe that the tools presented in this article may
also useful for studying completely reachable automata.

Y. Zhu 34:13

References
1 João Araújo, Peter J. Cameron, and Benjamin Steinberg. Between primitive and 2-transitive:

synchronization and its friends. EMS Surv. Math. Sci., 4(2):101–184, 2017. doi:10.4171/
EMSS/4-2-1.

2 Norman Biggs. Algebraic graph theory, volume No. 67 of Cambridge Tracts in Mathematics.
Cambridge University Press, London, 1974. doi:10.1017/CBO9780511608704.

3 Eugenija A. Bondar, David Casas, and Mikhail V. Volkov. Completely reachable automata: an
interplay between automata, graphs, and trees. Internat. J. Found. Comput. Sci., 34(6):655–
690, 2023. doi:10.1142/s0129054123450053.

4 Eugenija A. Bondar and Mikhail V. Volkov. Completely reachable automata. In Descriptional
complexity of formal systems, volume 9777 of Lecture Notes in Comput. Sci., pages 1–17.
Springer, [Cham], 2016. doi:10.1007/978-3-319-41114-9_1.

5 Ján Černý. A remark on homogeneous experiments with finite automata. Mat.-Fyz. Časopis.
Sloven. Akad. Vied., 14:208–216, 1964.

6 Ján Černý, Alica Pirická, and Blanka Rosenauerová. On directable automata. Kybernetika
(Prague), 7:289–298, 1971. URL: http://www.kybernetika.cz/content/1971/4/289.

7 L. Dubuc. Sur les automates circulaires et la conjecture de Černý. RAIRO Inform. Théor.
Appl., 32(1-3):21–34, 1998. doi:10.1051/ita/1998321-300211.

8 Robert Ferens and Marek Szykuła. Completely Reachable Automata: A Polynomial Algorithm
and Quadratic Upper Bounds. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors,
50th International Colloquium on Automata, Languages, and Programming (ICALP 2023),
volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 59:1–59:17,
Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.ICALP.2023.59.

9 P. Frankl. An extremal problem for two families of sets. European J. Combin., 3(2):125–127,
1982. doi:10.1016/S0195-6698(82)80025-5.

10 François Gonze, Vladimir V. Gusev, Raphaël M. Jungers, Balázs Gerencsér, and Mikhail V.
Volkov. On the interplay between Černý and Babai’s conjectures. Internat. J. Found. Comput.
Sci., 30(1):93–114, 2019. doi:10.1142/S0129054119400057.

11 Jarkko Kari. Synchronizing finite automata on Eulerian digraphs. In Mathematical foundations
of computer science, 2001 (Mariánské Láznĕ), volume 2136 of Lecture Notes in Comput. Sci.,
pages 432–438. Springer, Berlin, 2001. doi:10.1007/3-540-44683-4_38.

12 Jarkko Kari and Mikhail Volkov. Černý’s conjecture and the road colouring problem. In
Handbook of Automata Theory. Vol. I. Theoretical Foundations, pages 525–565. EMS Press,
Berlin, 2021. doi:10.4171/AUTOMATA-1/15.

13 Andrzej Kisielewicz, Jakub Kowalski, and Marek Szykuła. Experiments with synchronizing
automata. In Implementation and application of automata, volume 9705 of Lecture Notes in
Comput. Sci., pages 176–188. Springer, [Cham], 2016. doi:10.1007/978-3-319-40946-7_15.

14 J.-E. Pin. On two combinatorial problems arising from automata theory. In Combinatorial
mathematics (Marseille-Luminy, 1981), volume 75 of North-Holland Math. Stud., pages
535–548. North-Holland, Amsterdam, 1983. doi:10.1016/S0304-0208(08)73432-7.

15 Jakub Ruszil. Synchronizing automata with coinciding cycles. In Developments in language
theory, volume 13911 of Lecture Notes in Comput. Sci., pages 208–218. Springer, Cham, 2023.
doi:10.1007/978-3-031-33264-7_17.

16 I. K. Rystsov. Quasioptimal bound for the length of reset words for regular automata.
Acta Cybernet., 12(2):145–152, 1995. URL: https://cyber.bibl.u-szeged.hu/index.php/
actcybern/article/view/3453.

17 I. K. Rystsov. On the length of reset words for automata with simple idempotents. Kibernet.
Sistem. Anal., 36(3):32–39, 187, 2000. doi:10.1007/BF02732984.

18 I. K. Rystsov. On the Cerny problem for automata with simple idempotents. Kibernet. Sistem.
Anal., 58(1):3–10, 2022.

FSTTCS 2024

https://doi.org/10.4171/EMSS/4-2-1
https://doi.org/10.4171/EMSS/4-2-1
https://doi.org/10.1017/CBO9780511608704
https://doi.org/10.1142/s0129054123450053
https://doi.org/10.1007/978-3-319-41114-9_1
http://www.kybernetika.cz/content/1971/4/289
https://doi.org/10.1051/ita/1998321-300211
https://doi.org/10.4230/LIPIcs.ICALP.2023.59
https://doi.org/10.4230/LIPIcs.ICALP.2023.59
https://doi.org/10.1016/S0195-6698(82)80025-5
https://doi.org/10.1142/S0129054119400057
https://doi.org/10.1007/3-540-44683-4_38
https://doi.org/10.4171/AUTOMATA-1/15
https://doi.org/10.1007/978-3-319-40946-7_15
https://doi.org/10.1016/S0304-0208(08)73432-7
https://doi.org/10.1007/978-3-031-33264-7_17
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3453
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3453
https://doi.org/10.1007/BF02732984

34:14 Reset Thresholds of ST-Automata

19 Igor Rystsov and Marek Szykuła. Reset thresholds of transformation monoids. Cybernetics
and Systems Analysis, pages 1–9, 2024. doi:10.1007/s10559-024-00660-z.

20 Yaroslav Shitov. An improvement to a recent upper bound for synchronizing words of finite
automata. J. Autom. Lang. Comb., 24(2-4):367–373, 2019. doi:10.15388/na.2019.3.3.

21 P. H. Starke. Eine Bemerkung über homogene Experimente. Elektron. Informationsverarbeitung
Kybernetik, 2:257–259, 1966.

22 Benjamin Steinberg. Černý’s conjecture and group representation theory. J. Algebraic Combin.,
31(1):83–109, 2010. doi:10.1007/s10801-009-0185-0.

23 Benjamin Steinberg. The černý conjecture for one-cluster automata with prime length cycle.
Theoret. Comput. Sci., 412(39):5487–5491, 2011. doi:10.1016/j.tcs.2011.06.012.

24 Marek Szykuła. Improving the Upper Bound on the Length of the Shortest Reset Word.
In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of
Computer Science (STACS 2018), volume 96 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 56:1–56:13, Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.STACS.2018.56.

25 A. N. Trahtman. The Černý conjecture for aperiodic automata. Discrete Math. Theor. Comput.
Sci., 9(2):3–10, 2007. doi:10.46298/dmtcs.395.

26 M. V. Volkov. Synchronizing automata preserving a chain of partial orders. Theoret. Comput.
Sci., 410(37):3513–3519, 2009. doi:10.1016/j.tcs.2009.03.021.

27 M. V. Volkov. Synchronization of finite automata. Russian Mathematical Surveys, 77(5):819–
891, 2022. doi:10.4213/rm10005e.

28 A. Yu. Zubov. On the diameter of the group SN with respect to a system of generators
consisting of a complete cycle and a transposition. In Proceedings in discrete mathematics,
Vol. 2 (Russian), volume 2 of Tr. Diskretn. Mat., pages 112–150. Nauchn. Izd. TVP, Moscow,
1998.

https://doi.org/10.1007/s10559-024-00660-z
https://doi.org/10.15388/na.2019.3.3
https://doi.org/10.1007/s10801-009-0185-0
https://doi.org/10.1016/j.tcs.2011.06.012
https://doi.org/10.4230/LIPIcs.STACS.2018.56
https://doi.org/10.46298/dmtcs.395
https://doi.org/10.1016/j.tcs.2009.03.021
https://doi.org/10.4213/rm10005e

	p000-Frontmatter
	Preface
	Programme Committee

	p001-Chistikov
	1 What is linear integer arithmetic?
	2 Syntax and semantics (formal definitions)
	3 Three views on linear integer arithmetic
	3.1 A view from geometry: semi-linear sets
	3.2 A view from automata theory: k-automatic sets
	3.3 A view from symbolic computation: quantifier elimination

	4 Alternation of quantifiers and computational complexity
	4.1 Handling quantifiers in decision procedures
	4.2 Using quantifiers to write succinct formulas

	5 Three views on integer programming
	5.1 A view from geometry: discrete convex polyhedra
	5.2 A view from automata theory: pumping lemma
	5.3 A view from symbolic computation: Gaussian elimination

	6 Further directions

	p002-Siebertz
	1 Logics Expressing Computational Problems – Descriptive Complexity
	1.1 Logics to Express Computational Problems
	1.2 Data and Combined Complexity
	1.3 The Complexity and Shortcomings of First-Order Logic

	2 A Fine-Grained View on the Model Checking Problem – Parameterized Complexity
	2.1 Parameterized Complexity and the A- and W-Hierarchy
	2.2 The Need for Structural Parameters
	2.3 MSO and the Parameters Treewidth and Cliquewidth
	2.4 More Parameters for FO
	2.5 Algorithmic Meta Theorems
	2.6 The Limits of Tractability
	2.7 New Directions for FO Model Checking
	2.8 Why do we not study the other classical logics
	2.9 FO plus connectivity, compound logic, and more
	2.10 Advances in Algorithmic Meta Theorems
	2.11 Structure of this paper

	3 Preliminaries
	3.1 Structures
	3.2 First-order and monadic second-order logic
	3.3 Interpretations and transductions
	3.4 Gaifman graphs and incidence structures

	4 Reductions Between Algorithmic Meta Theorems
	4.1 Example: Reducing Separator Logic to FO with MSO Atoms on Augmented Trees
	4.2 Example: Reducing CMSO/tw+dp on Classes with Excluded Minors to CMSO on Classes with Bouunded Treewidth

	5 The Interpretation Method
	5.1 Example: The CMSO-Encoding on Classes with Bounded Cliquewidth in Colored Trees
	5.2 Example: Structurally sparse graph classes

	6 Quantifier elimination
	6.1 Example: Quantifier Elimination on Classes with Bounded Expansion

	7 The composition method
	8 The automata based method
	9 Locality and Game-based Decompositions of Local Neighborhoods
	10 Twinwidth
	10.1 Around twinwidth

	p003-Andre
	1 Introduction
	1.1 Contributions
	1.2 Related works

	2 Preliminaries
	2.1 Parametric timed automata
	2.2 Reachability synthesis
	2.3 Execution-time opacity problems

	3 A parametric execution times-based semi-algorithm for existsOS and FOS
	3.1 Parametric execution times
	3.2 existsOS and FOS problems

	4 Decidability and undecidability of FOE for 1-clock-PTAs
	4.1 Encoding infinite PET for (1, 0, {*})-PTAs
	4.1.1 Defining the set of reset-free PTAs
	4.1.2 Reconstruction of PET from the reachability synthesis of the reset-free PTAs
	4.1.3 Summary and illustration of the encoding

	4.2 Solving the {FOE} problem through a translation of PET to parametric Presburger arithmetic

	5 Decidability of existsOE for (1, 0, *)-PTAs for integer-valued parameters
	5.1 General case
	5.2 Discrete time case

	6 Conclusion and perspectives
	A Recalling the correctness of EFsynth
	B Proof of results
	B.1 Proof of Proposition 18
	B.2 Proposition 34
	B.3 Proposition 35
	B.4 Proof of Proposition 24
	B.5 Proof of Theorem 26

	p004-Arvind
	1 Introduction
	2 Preliminaries
	3 A Dynamic CGM Algorithm for Commutative Monoids
	4 The Dynamic CGM Problem for Abelian Groups
	5 A Deterministic Dynamic Algorithm for Abelian CGM
	6 Dynamic Abelian group isomorphism
	7 Making the multiplication table dynamic
	8 Conclusion and open ends
	A Missing proofs from Section 3
	B Missing proofs from Section 4
	C Missing proofs from Section 5
	D Missing parts from Section 6
	E Missing parts from Section 7

	p005-Asadi
	1 Introduction
	2 Preliminaries
	3 Overview of Results
	4 Mathematical Properties
	4.1 Definitions
	4.2 Bounds on Roots of Polynomials with Integer Coefficients
	4.3 Characterization of Stateful-discounted Value
	4.4 Characterization of Limit Value
	4.5 Approximation of Limit Value

	5 Algorithms for LIMITVALUE and PARITYVALUE
	5.1 Algorithm for Approximate Stateful-discounted Value
	5.2 Algorithms for Approximate Limit and Parity Values

	6 Computational Complexities of LIMITVALUE and PARITYVALUE
	6.1 Definitions
	6.2 Complexity Results

	p006-Ayyadevara
	1 Introduction
	1.1 Weighted k-server
	1.2 Our Contributions

	2 Preliminaries
	2.1 Service Patterns, Feasible Labelings, Extensions
	2.2 Problem Definitions

	3 The Composition Theorem
	4 Competing with a Revealed Service Pattern
	4.1 Structural Results
	4.2 Algorithm
	4.3 Competitive Analysis

	5 Concluding Remarks and Open Problems
	A Lower Bound for WkS-RSP

	p007-Banik
	1 Introduction
	2 Notation and Preliminary Results
	3 NP-hardness of MCS for Trees
	4 MCS for Trees: A Parameterized Algorithm
	5 NP-hardness of MCS for Interval Graphs
	6 Conclusion

	p008-Barbot
	1 Introduction
	2 Preliminaries
	3 Analysis of decisive Markov chains
	3.1 Decisiveness and approximation algorithm
	3.2 Decisiveness and (standard) statistical model-checking

	4 Beyond decisiveness
	4.1 Model-checking via a biased Markov chain
	4.2 Construction of a biased Markov chain via an abstraction
	4.3 A generic framework based on random walks

	5 Applications and experiments
	6 Conclusion
	A Some missing proofs of Section 4
	A.1 Proofs of results of Section 4.1
	A.2 Proofs of results of Section 4.2
	A.3 Proofs of results of Section 4.3

	B Details on the implementation presented in Section 5
	B.1 Data-structure for exact summation
	B.2 Heap with update
	B.3 Implementation of the numerical algorithm for decisive Markov chains

	p009-Bellier
	1 Introduction
	2 Preliminaries
	3 A Logic of Plans
	4 Adequacy with Strategy Logic under Timeline Semantics
	4.1 Strategy Logic under Timeline Semantics and Plan Logic
	4.2 Game-theoretic Semantics of SL[CG/DG]

	5 Model Checking of Plan Logic
	6 Conclusion

	p010-Bhargava
	1 Introduction
	1.1 Read-once Oblivious ABPs (ROABPs)
	1.2 Variants of ROABPs
	1.3 Waring rank, partial derivatives and ROABPs
	1.4 Our contribution

	2 Preliminaries
	2.1 Formal definitions
	2.2 Concepts from algebra
	2.3 Multiplication tables: from ideals to matrices

	3 Constructing commutative ROABPs from apolarities
	3.1 Apolar ideal of a polynomial
	3.2 Proof of Theorem 1.4

	4 The Determinant
	4.1 Derivative Space, Apolar Ideal, and its Normal Set
	4.2 Multiplication tables for the apolar ideal
	4.3 Commutative Set-multilinear ABP

	5 Discussion

	p011-Bhattacharya
	1 Introduction
	1.1 Our Contribution
	1.1.1 Our Results

	1.2 Related Work
	1.3 Future Directions
	1.4 Organization Of The Paper

	2 Preliminaries and Notations
	3 Alphabet Reduction
	3.1 Normalized Scaled Isometric Embedding – Our Finding
	3.2 Upper Bounds
	3.2.1 The Embedding

	3.3 Lower Bounds

	4 Alphabet Reduction – Binary Alphabets

	p012-Bhore
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Lower Bound
	3 Geometric Bipartite Matching
	3.1 Union of Near-Minimum Weight Perfect Matchings
	3.2 Weight scheme
	3.2.1 Weight scheme

	4 Conclusion

	p013-Blaser
	1 Introduction
	1.1 Straight Line Programs and PosSLP
	1.2 How Hard is PoSLP?
	1.3 Our Results

	2 SLPs as Sums of Three Squares
	2.1 Lower Bound for 3SoSSLP
	2.2 Upper Bound for 3SoSSLP
	2.3 Complexity of Div2SLP

	3 SLPs as Sum of Two and Fewer Squares
	3.1 Lower Bounds for 2SoSSLP

	4 Polynomials as Sum of Squares
	4.1 Positivity of Polynomials
	4.2 Checking if a Polynomial is a Square

	5 Conclusion and Open Problems
	A Missing Proofs
	B Alternative Proof of 2.12
	C Reduction from multivariate DegSLP to univariate DegSLP

	p014-Bombardelli
	1 Introduction
	2 Background
	3 Unifying Framework for Asynchronous Extensions of HyperLTL
	3.1 PLTL-Relativized Stuttering and Context Modalities
	3.2 Generalized HyperLTL with Stuttering and Contexts
	3.3 The Simple Fragment of {{GHyperLTL$_{S+C}$}}
	3.4 Examples of Specifications in Simple {{GHyperLTL$_{S+C}$}}
	3.5 Expressiveness Issues

	4 Decidability of Model Checking against Simple {{GHyperLTL$_{S+C}$}}
	5 Conclusion

	p015-Busatto-Gaston
	1 Introduction
	2 Preliminaries
	3 Prompt Muller formulas
	3.1 Pumping a counter example
	3.2 Canonical representation for witnesses
	3.3 Universal model checking
	3.4 Expressiveness under the fairness assumption

	4 Initialized systems
	4.1 Towards prefix independence
	4.2 Universal model checking
	4.3 Fair model checking

	5 Discussion and conclusion
	A Multi-pumpings and their properties

	p016-Chakrabarty
	1 Introduction
	1.1 Related works

	2 O(n) Query Deterministic Algorithm
	2.1 Definitions
	2.2 Merging Independent Sets
	2.3 The algorithm and analysis

	3 General Partition Matroids
	3.1 Finding Representatives via Binary Search

	4 Conclusion

	p017-Chandran
	1 LPT heuristic for uniform scheduling
	2 First result: A near-linear time implementation of LPT
	3 Second result: LPT for the drones warehouse problem (DWP)
	3.1 The drones warehouse problem (DWP)
	3.2 Our results and techniques

	4 Related work on machine scheduling
	4.1 Uniform machines scheduling problem (USP)
	4.2 ISP subset USP subset DWP
	4.3 DWP subset USP-C subset UnrelSP
	4.4 Other algorithms and optimization measures

	5 Near linear time implementation
	5.1 Longest processing time first (LPT)
	5.2 Dynamic Lower Envelope

	6 phi-approximation for the Drone Warehouse Problem
	6.1 Algorithm
	6.2 Implementation
	6.3 Proof for phi-approximation
	6.3.1 Idea-1: Working with minimal instances
	6.3.2 Idea-2: A schedule without the last parcel
	6.3.3 Idea-3: Classification of parcels
	6.3.4 Idea-4: Discretizing Distances

	6.4 How much can the above analysis of LPT be improved?

	7 Future work

	p018-Chede
	1 Introduction
	2 Preliminaries
	2.1 Assignments
	2.2 Circuits
	2.3 Proof Systems
	2.3.1 Propositional Proof Systems

	3 Circuit Linear Induction Proposition (CLIP) Proof Framework
	4 CLIP+eFrege simulates existing #SAT proof systems
	4.1 Simulation Technique (Part 1) : Cumulator Extraction
	4.1.1 Formalising Fenwick Assignments

	4.2 Simulation Technique (Part 2): eFrege certification of the cumulator

	5 CLIP framework simulation of CPOG
	6 Exponential Improvement on Existing #SAT proof systems
	7 Conclusion
	A Missing proof and algorithm from Section 4.1
	B Missing lemmas and proofs from Section 4.1.1
	C Missing proofs from Section 5

	p019-Cornelissen
	1 Introduction
	2 Preliminaries
	3 Sabotage complexity
	3.1 Formal setup of sabotage complexity
	3.2 Quantum sabotage complexity

	4 Upper bounds on QS
	5 QS_str(f) vs. sqrt{fbs(f)}
	5.1 A general lower bound
	5.2 A stronger lower bound for Indexing

	6 Open questions
	A Randomized sabotage complexity
	B Lower bounds on QS(f) and RS(f) in terms of fbs(f)
	C Missing proof

	p020-Das
	1 Introduction
	2 Preliminaries
	3 Cyclic cover of a group and organization of the paper
	4 Structure of closed-twins in a power graph
	5 Finding a CCG-set of a group from its power graph and enhanced power graph
	5.1 Finding a CCG-set of a group from its power graph
	5.2 Finding a CCG-set of a group from its enhanced power graph

	6 Isomorphism of directed power graphs
	7 Reconstruction Algorithms
	A Appendix
	A.1 Omitted Proofs
	A.2 Algorithm to construct an isomorphic copy of Reduction graph

	p021-Doveri
	1 Introduction
	2 Background
	3 Languages with Integer Resets
	4 From Equivalences to Automata and Back
	5 A Nerode-style Equivalence
	6 The Canonical Form
	6.1 Computing the Canonical Form
	6.2 Learning the Canonical Form

	7 Conclusion

	p022-Finkbeiner
	1 Introduction
	1.1 Illustrative Example
	1.2 Outline and Contributions

	2 Preliminaries
	2.1 Actual Causality
	2.2 Networks of Timed Automata
	2.3 Metric Interval Temporal Logic

	3 Counterfactual Causality in Real-Time Systems
	3.1 Interventions on Timed Traces
	3.2 But-For Causality in Networks of Timed Automata
	3.3 Contingencies in Networks of Timed Automata

	4 Computing Counterfactual Causes
	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	A Proofs of Section 3
	B Algorithms and Proofs of Section 4
	C Contingency Automaton
	D Experimental Setup and Results for Fischer's Protocol

	p023-Gajulapalli
	1 Introduction
	1.1 Background
	1.1.1 Symmetric Time
	1.1.2 Oblivious Complexity Classes
	1.1.3 Sparsity
	1.1.4 Range Avoidance
	1.1.5 Time Hierarchy Theorem

	1.2 Previous Results
	1.3 Our Results
	1.4 Proof Overview

	2 Preliminaries
	2.1 Complexity Classes
	2.2 Nonuniformity
	2.3 Range Avoidance
	2.4 Sparse Languages

	3 Lower Bounds & Hierarchy Theorem
	4 Sparsity
	5 Open Problems

	p024-Gupta
	1 Introduction
	2 Obnoxious Egalitarian Chamberlin-Courant (CC)
	2.1 Polynomial Time algorithm in Rd for lambda = 1
	2.2 Hardness in Graph Metric
	2.3 Approximation Algorithm in General Metric Space

	3 OBNOXIOUS EGALITARIAN MEDIAN COMMITTEE SELECTION for lambda > 1
	3.1 Hardness
	3.2 FPT-AS in Euclidean and Doubling Spaces

	4 Outlook

	p025-Harms
	1 Introduction
	2 Definitions: Communication Problems and Oracles
	3 Better Boosting of Equality Protocols
	4 No Better Boosting for Hamming Distance, and Consequences
	4.1 Randomized Reduction Lemma
	4.2 Direct Sum Theorem for 1 Hamming Distance
	4.3 Lower Bound on Computing 1-Hamming Distance with Equality Queries

	5 Noisy-Tree Fails for Other Oracles

	p026-Honsell
	1 Introduction
	2 Preliminaries
	3 The Top-down Perspective on Unification
	4 GoI-unification: the Bottom-up Perspective of Paths
	5 GoI-unification at Work
	6 Proof of the Main Theorem
	6.1 GoI-unification -3mu Unification
	6.2 Unification = = > GoI-unification

	7 Generalizations
	7.1 Constants and Hapax Variables
	7.2 Unifying Terms with Common Variables

	8 Conclusion and Final Remarks

	p027-Khan
	1 Introduction
	1.1 Our contribution
	1.2 Other related work
	1.3 Organization of this paper

	2 Preliminaries
	3 Quasi-polynomial-time approximation scheme
	4 PTAS if pieces have bounded ratio of widths
	5 General case
	5.1 APX-hardness
	5.2 Set Cover hardness
	5.3 Approximation algorithm

	p028-Komusiewicz
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Preliminary Observations

	3 Parameterization by the Solution Size
	3.1 s-PDD
	3.2 PDD on Trees with Bounded Height

	4 Parameterization by Desired Diversity and Accepted Diversity Loss
	5 Structural Parameters of the Food-Web
	5.1 Distance to Cluster Graphs
	5.2 Distance to Co-cluster Graphs
	5.3 Treewidth

	6 Discussion

	p029-Konrad
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Further Related Work: Matching Size Estimation in Graph Streams
	1.4 Outline

	2 Preliminaries
	3 Graph Results
	3.1 (1+epsilon)-Approximation
	3.2 O(alpha)-Approximation, Two Passes, and O~(m^{3/5}) Space
	3.3 O(alpha)-Approximation, Three Passes, and O~(m^{1/2}) Space

	4 Estimating Rank of Sparse Matrices
	5 Conclusion

	p030-Louis
	1 Introduction
	2 Tools for LO Coloring and Proof of the Main Theorem
	3 Combinatorial Rounding for Unbalanced Vertices
	4 SDP Rounding for Balanced Hypergraphs
	5 Conclusion
	A Properties of Gaussian
	B Coloring of 2-LO Colorable 3-Uniform Hypergraphs
	C Omitted Proofs

	p031-Mathew
	1 Introduction
	2 Preliminaries
	3 FPT algorithm parameterized by treewidth
	4 Hardness result
	4.1 Construction
	4.2 The proof

	5 Concluding remarks

	p032-Popoli
	1 Introduction
	2 Preliminaries
	3 General results
	4 Different behaviors and curiosities
	4.1 Bounded additive and abelian complexities
	4.1.1 The Tribonacci word
	4.1.2 The generalized Thue–Morse word on three letters

	4.2 Bounded additive and unbounded abelian complexities: a variant of the Thue–Morse word
	4.3 Unbounded additive and abelian complexities

	5 Equality between abelian and additive complexities
	6 Abelian and additive powers

	p033-Rai
	1 Introduction
	2 Overview
	3 Preliminaries
	3.1 Pseudo-deterministic algorithms
	3.2 Finite Field primer
	3.2.1 Splitting field
	3.2.2 Structure of Finite Fields
	3.2.3 Conjugates and Minimal polynomial
	3.2.4 Representing finite field elements

	3.3 Equal degree polynomial factorization

	4 Construction of irreducible polynomials over extension fields F_{p^k}
	5 Construction of irreducible polynomials over F_p
	6 Conclusion

	p034-Zhu
	1 Introduction
	1.1 Synchronizing automata and Černý Conjecture
	1.2 Automata containing transitive groups and our contribution
	1.3 Approach and layout

	2 Linear structure
	3 Rystsov digraphs
	3.1 Digraphs
	3.2 Automata

	4 Conclusion and discussions
	4.1 One-cluster automata
	4.2 Completely reachable automata

