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Abstract
Several mobile agents, modelled as deterministic finite automata, navigate in an infinite line in
synchronous rounds. All agents start in the same round. In each round, an agent can move to one of
the two neighboring nodes, or stay idle. Agents have distinct labels which are integers from the set
{1, . . . , L}. They start in teams, each of which consists of x agents, for some fixed integer x. Agents
in a team have the same starting node. The adversary decides the compositions of teams, and their
starting nodes. Whenever an agent enters a node, it sees the entry port number and the states of all
collocated agents; this information forms the input of the agent on the basis of which it transits to
the next state and decides the current action. The aim is for all agents to gather at the same node
and stop. Gathering is feasible, if this task can be accomplished for any decisions of the adversary,
and its time is the worst-case number of rounds from the start till gathering.

We consider the feasibility and time complexity of gathering teams of agents, and give a complete
solution of this problem. It turns out that both feasibility and complexity of gathering depend on
the crucial parameter x which is the size of teams. For the oriented line, gathering is impossible if
x = 1, and it can be accomplished in time O(D), for x > 1, where D is the distance between the
starting nodes of the most distant teams. This complexity is of course optimal. For the unoriented
line, the situation is different. For x = 1, gathering is also impossible, but for x = 2, the optimal
time of gathering is Θ(D log L), and for x ≥ 3 the optimal time of gathering is Θ(D).

Solving the gathering problem for agents that are finite automata navigating in an infinite
environment requires new methodological tools. Traditional gathering techniques in graphs are
count driven: agents make decisions based on counting steps. Since distances between agents may
be unbounded, agents have to count unbounded numbers of steps. When agents are finite automata,
counting unbounded numbers of steps is impossible, hence we must use different methods. In all our
gathering algorithms, changes of the agents’ behavior are triggered not by counting steps but by
events which are meetings between agents during which they interact. Hence our new technique
is event driven. Designing the behavior of the agents based on meeting events, so as to guarantee
gathering regardless of the adversary’s decisions is our main methodological contribution.
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1 Introduction

The background and the problem. Several mobile agents, navigating in a network, have
to meet at the same node. This basic task, known as gathering, has been thoroughly studied
in the literature. It has many applications, both in everyday life and in computer science.
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11:2 Gathering Teams of Deterministic Finite Automata on a Line

Mobile agents can be people who have to meet in a city whose streets form a network.
In computer science applications, agents can represent either software agents in computer
networks, or mobile robots in networks formed by, e.g., corridors of a contaminated mine,
where the access is dangerous for humans. The purpose of gathering may be to exchange data
previously collected by software agents that accessed a distributed database, or to coordinate
some future task of mobile robots, such as network decontamination, based on previously
collected samples of the ground or of air. Since, due to cost reasons, mobile agents are often
simple devices with limited memory, sensor capacity and computation power, it is natural to
model them as deterministic finite automata that can interact only when they meet.

We consider the feasibility and time complexity of gathering mobile agents, modelled as
automata, in one of the simplest networks that is the infinite line, i.e. the infinite graph
all of whose nodes have degree 2. While the gathering problem in networks has a long
research history, mobile agents in this context were usually modelled either as machines
with unbounded memory or it was assumed that agents can “see” other agents at a distance.
To the best of our knowledge, this classic problem has never been investigated before for
agents modelled as deterministic finite automata navigating in an infinite environment and
interacting with other agents only at meetings.1

The model. The environment in which agents navigate is modelled as an infinite line, i.e.,
the infinite graph all of whose nodes have degree 2. Nodes of the line do not have labels, and
ports at each node are labeled −1 and 1. We consider two variations of this port-labeled
graph: in the oriented line, ports corresponding to any edge at both extremities of it are
different; in the unoriented line, port labeling at any node is arbitrary.

There are several agents navigating in a line. They are modelled as deterministic finite
Mealy automata. Agents move in synchronous rounds. All agents start in the same round 0.
In each round, an agent can choose one of the following actions: take the port −1, take the
port 1, or stay idle. Agents have distinct labels which are integers from the set {1, . . . , L}.
Agents start in R teams, each of which consists of x agents, for some fixed integer x, where
xR ≤ L. Agents in a team have the same starting node, called the base of the team. The
integer x, the size L of the space of labels and the total number R of teams are known in
advance and can be used in the design of the agents. 2 Throughout the paper, we assume
that R > 1. If there is only one team, gathering is trivially achieved in the wake-up round.
The adversary knows all the agents and decides the composition of teams and their bases. In
the case of the unoriented line, the adversary also decides the port labeling at each node.

When entering a node, an agent sees the entry port number, and sees the set of states
of all currently collocated agents. If in the current round the agent stays idle, it also sees
this set of states. (This is how agents interact). This information, together with the size
L of the label space and the number R of teams, forms the input of the agent in a given
round. (L and R form the fixed part of the input that never changes). Based on its state
and this input, the agent transits to some state, and produces an output action belonging to
the set {−1, 1, 0}, to be executed in the next round. Output action −1 means taking port
−1, output action 1 means taking port 1, and output action 0 means staying idle in the next
round. The sequence of the above actions forms the trajectory of an agent. Each agent has a
special state STOP, upon transition to which, it stays idle forever.

1 It could seem that the recent paper [17] is a counterexample to this rule. However, the focus of [17] is
on computing functions by teams of automata, and the environment in which agents navigate is the
rooted oriented half-line. In this graph, gathering is trivial: all agents go toward the root and stop.

2 The discussion of the above assumptions is deferred to the full version of this paper.
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We now formalize the above intuitions. All agents are represented by the same deter-
ministic finite Mealy automaton A = (I, O, Q, δ, λ). The agent with label ℓ ∈ {1, . . . , L}
has the set of states Qℓ, where all sets Qℓ are pairwise disjoint. Thus the label of an agent
can be recognized from each of its states. Q = Q1 ∪ · · · ∪ QL denotes the union of sets
of states of all the agents. The size of Q, i.e., the number of states of the automaton, is
denoted by H. Let Q be the set of all subsets of Q. The common input alphabet for all
agents is the set I = {(L, R)} × {−1, 1, 0} × Q. This corresponds to the intuition that an
input I ∈ I is a triple whose first term is the fixed part of the input consisting of the pair of
integers (L, R), whose second term is the move part of the input which is either the entry
port number in the current round or 0 if the agent is idle in the current round (it is also 0
in round 0), and whose third term is the states part of the input which is the set of states
of other currently collocated agents. This set may be empty, if the agent is currently alone.
The common output alphabet O = {−1, 1, 0} corresponds to the output actions intuitively
described above.

It remains to define the transition function δ and the output function λ. The transition
function δ : Q×I → Q takes the current state of an agent and its current input, and produces
the state to which this agent transits in the next round. The fact that Qℓ is the set of states
of agent ℓ is reflected by the following restriction: if q ∈ Qℓ, then δ(q, I) ∈ Qℓ, for any input
I, i.e., under any input, the transition function maps a state of a given agent to a state of
the same agent. The output function λ : Q × I → O takes the current state of an agent and
its current input, and produces the output action to be executed in the next round.

According to the established custom in the literature on automata navigating in graphs,
we present the behavior of our automata by designing procedures that need only remember
a constant number of bits, and thus can be executed by deterministic finite automata, rather
than formally describing the construction of a Mealy automaton by defining its output and
state transition functions.

The aim is for all agents to gather at the same node and transit to state STOP. The first
round in which all the agents are at the same node in state STOP is called the gathering round.
Gathering is feasible, if this task can be accomplished for any decisions of the adversary, and
its time is the worst-case (largest) gathering round, over all decisions of the adversary.

Our results. We give a complete solution of the problem of feasibility and time complexity
of gathering teams of agents on the infinite line. It turns out that both feasibility and
complexity of gathering depend on the crucial parameter x which is the size of teams. For
the oriented line, gathering is impossible if x = 1, and it can be accomplished in time O(D),
for any x > 1, where D is the distance between the bases of the most distant teams. The
first fact means that, for x = 1 and for arbitrary agents, the adversary can place them in the
oriented line (at distinct nodes) in such a way that they will never gather. The second fact
means that, for any x > 1 and any R > 1, there exist x · R agents, each assigned a distinct
label drawn from {1, . . . , L}, where L ≥ xR, such that if the adversary composes them in
arbitrary R teams of size x and selects the R bases of the teams as arbitrary nodes of the
oriented line with the most distant nodes at distance D, then the agents will gather in time
O(D). This complexity is of course optimal.

For the unoriented line, the situation is different. For x = 1, gathering is also impossible
which means that, for x = 1 and for arbitrary agents, the adversary can choose a port
labeling of the line, and can place the agents at distinct nodes in such a way that they will
never gather. This directly follows from the above impossibility result on the oriented line,
as the adversary can choose the port labeling as in the oriented line.

OPODIS 2024



11:4 Gathering Teams of Deterministic Finite Automata on a Line

However, for x = 2, the optimal time of gathering in the unoriented line turns out to be
Θ(D log L). To show this, we prove two facts. First, we show that there exist 2R agents, each
assigned a distinct label drawn from {1, . . . , L}, where L ≥ 2R, such that if the adversary
chooses an arbitrary port labeling of the line, composes the agents in arbitrary R teams
of size 2 and selects the R bases of the teams as arbitrary nodes of the line with the most
distant nodes at distance D, then the agents will gather in time O(D log L). Second, we
prove that this complexity is optimal, even for two teams of agents, each of size 2. In fact, we
show that the “difficult” port labeling of the line can be chosen the same for any agents: it is
the homogeneous port labeling in which, for every edge h, port numbers at both extremities
of h are equal. More precisely, we show that for any agents, the adversary can select two
teams of agents of size 2 and choose bases of these teams as nodes at an arbitrarily large
distance D on the line with homogeneous port labeling, so that the gathering time will be at
least cD log L, for some constant c. This shows that the complexity O(D log L) is tight.

Finally, we show that, for any x > 2 and any R > 1, there is an algorithm that gathers
all x · R agents partitioned in arbitrary R teams of size x, in time O(D), which is clearly
optimal.

Solving the gathering problem for agents that are finite automata navigating in an infinite
environment requires new methodological tools. Traditional gathering techniques in graphs
are count driven: agents make decisions based on counting steps. Since distances between
agents may be unbounded, agents have to count unbounded numbers of steps. When agents
are finite automata, counting unbounded numbers of steps is impossible3, hence we must
use different methods. In all our gathering algorithms, changes of the agents’ behavior are
triggered not by counting steps but by events which are meetings between agents during
which they interact. Hence our new technique is event driven. Designing the behavior of the
agents based on meeting events, so as to guarantee gathering regardless of the adversary’s
decisions is our main methodological contribution.

While we assume that agents operate in the infinite line, all our positive results remain
true also for arbitrary bounded lines and for arbitrary rings.

Related work. Gathering mobile agents in graphs, also called rendezvous if there are only
two agents, is a well studied topic in the distributed computing literature.

In the majority of the papers on gathering, it is assumed that nodes do not have distinct
identities, and agents cannot mark nodes: we follow these assumptions in the present paper.
However, departures from this model exist: rendezvous was also considered in graphs whose
nodes are labeled [8, 15], or when marking nodes by agents is allowed [14]. Randomized
rendezvous was surveyed in [1] and deterministic rendezvous – in [18].

Most of the literature on rendezvous considered finite graphs and assumed the synchronous
scenario, where agents move in rounds. In [19], the authors gave rendezvous algorithms with
time polynomial in the size of the graph and the length of agents’ labels. Gathering many
agents in the presence of Byzantine agents that can behave arbitrarily was studied in [6].

In the above cited papers, agents are modeled as Turing machines and their memory is
unbounded. Other studies concern the minimum amount of memory that agents must have
in order to accomplish rendezvous [9, 13]. In this case, agents are modeled as state machines
and the number of states is a function of the size of graphs in which they operate.

Several authors studied synchronous rendezvous in infinite graphs. In all cases, agents
had distinct identities and were modeled as Turing machines. In [8], the authors considered
rendezvous in infinite trees and grids, under the assumption that the agents know their

3 This is the reason for our impossibility result in case of teams of size 1.
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location in the graph (then the initial location can serve as a label). In [3], rendezvous in
infinite trees was investigated. Rendezvous in arbitrary graphs, finite or infinite, was studied
in [4, 16]. Rendezvous in the oriented grid was investigated, e.g., in [2, 4, 5, 8].

In several papers, asynchronous gathering was studied in the plane [7, 12] and in graphs
[5, 2, 11]. In the plane, agents are modeled as moving points, and it is usually assumed
that they can see the positions of other agents. In graphs, an agent chooses the edge to
traverse, but the adversary controls the speed of the agent. Then rendezvous at a node
cannot be guaranteed even in the two-node graph, hence the agents are permitted to meet
inside an edge. For asynchronous rendezvous, the optimization criterion is the cost, i.e., the
total number of edge traversals. In [2], the authors designed almost optimal algorithms for
asynchronous rendezvous in infinite multidimensional grids, assuming that an agent knows
its position in the grid. In [5, 11] this assumption was replaced by a weaker assumption
that agents have distinct identities. In [5], a polynomial-cost algorithm was designed for the
infinite oriented two-dimensional grid, and in [11] – for arbitrary finite graphs.

2 Preliminaries

In this section, we introduce the notions, notations and basic facts used throughout the
paper. All proofs omitted in this section are deferred to the full version of this paper.

For any port labeling of a line, we will use two notions describing the two directions of
the line. For any node, we define the plus direction and the minus direction as the directions
corresponding to port 1 and port −1, respectively. We also define the left and right directions
of any line. For the oriented line, the left (resp. right) direction is the minus (resp. plus)
direction. For any other port labeling, these directions are chosen arbitrarily. Hence, in the
oriented line, agents can identify directions left and right. For an arbitrary port labeling,
agents cannot identify them, so we will use these expressions only in comments and in the
analysis. For any two nodes v and v′ in a line, we define their distance dist(v, v′) as the
number of edges between them.

Agents are identified with their labels. The node at which a team of agents are woken
up is referred to as the base of the agents in the team. For any port labeling of a line, and
for any base of a single agent, navigating in the line, we define the trajectory of this agent
as the infinite sequence of terms −1, 0, 1 with the following meaning. The ith term of the
trajectory is 0 if the agent stays put in the ith round, it is −1 if the agent takes port −1 in
the ith round, and it is 1 if the agent takes port 1 in the ith round.

We say that a trajectory of an agent has a period of length τ if there exists an integer t ≥ 1,
such that, for any fixed 0 ≤ i < τ , the (t + jτ + i)th term of the trajectory is the same for all
j ≥ 0. The sequence of terms −1, 0, 1 corresponding to indices t+jτ, t+jτ +1, . . . , t+jτ +τ −1
is called a period of this trajectory, and the sequence of terms −1, 0, 1 corresponding to
indices 1, . . . , t − 1 is called a prefix corresponding to this period. A trajectory that has a
period is called periodic.

Apart from the port labeling that yields the oriented line (port numbers at both extremities
of each edge are different), we consider another important port labeling, called homogeneous,
in which, for every edge h, port numbers at both extremities of h are equal. A line with this
port labeling will be called homogeneous.

▶ Proposition 1. The trajectory of any agent navigating either in the oriented or in the
homogeneous line and starting at any node of it is periodic.

The notion of a period permits us to define three important notions concerning the
trajectory of an agent navigating in the oriented or in the homogeneous line: boundedness,
the progress direction and the speed. We first define these notions for an agent in the oriented
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11:6 Gathering Teams of Deterministic Finite Automata on a Line

line. Consider any starting node (base) of the agent, and consider a period of length τ of
its trajectory α. Let v and v′ be nodes where the agent is situated at the beginning of two
consecutive periods. There are three cases: v′ is left of v, v′ = v, and v′ is right of v. For the
oriented line, this is independent of the base of the agent. It is easy to see that:

if v′ is left (resp. right) of v then the agent visits all nodes of the line left (resp. right) of
the base and only a finite number r(α) (resp. l(α)) of nodes right (resp. left) of the base
(r(α) and l(α) are independent of the base); in this case we say that the trajectory of the
agent is left-progressing (resp. right-progressing);
if v′ = v then the agent visits only a finite number of nodes: at most b(α) nodes on each
side of the base (b(α) is independent of the base); in this case we say that the trajectory
of the agent is bounded;

If the trajectory of the agent is left- or right-progressing, its speed is defined as dist(v, v′)/τ .
The definition of the speed does not depend on the choice of the period of the trajectory.

In the case of the homogeneous line, the situation is slightly different for two reasons.
First, the progress direction of a trajectory depends on the base. Hence we will use notions
minus progressing and plus progressing, where the directions are defined with respect to the
base. Second (unlike in the oriented line), it is possible that the node v′ at the beginning
of a period is different from the node v at the beginning of the preceding period but after
two consecutive periods these nodes are the same. This happens, e.g., when the period is
(1, 1, −1). Hence, in order to define progress direction and boundedness properly, we consider
double periods: a period Q is double, if it is the concatenation P ∗ P , for some period P . For
double periods, the above issue disappears.

Consider any base u of the agent, and consider a double period of length τ of its trajectory
α. Let v and v′ be nodes where the agent is situated at the beginning of two consecutive
periods. We use the plus and minus direction with respect to u. There are three cases: v′ is
in minus direction from v, v′ = v, and v′ is in plus direction from v. We have:

if v′ is in minus (resp. plus) direction from v then the agent visits all nodes of the line in
minus (resp. plus) direction from u and only a finite number r(α) (resp. l(α)) of nodes in
plus (resp. minus) direction from u (r(α) and l(α) are independent of the base); in this
case we say that the trajectory of the agent is minus-progressing (resp. plus-progressing);
if v′ = v then the agent visits only a finite number of nodes: at most b(α) nodes on each
side of the base (b(α) is independent of the base); in this case we say that the trajectory
of the agent is bounded;

If the trajectory of the agent is minus- or plus-progressing, its speed is defined as dist(v, v′)/τ ,
for any double period. Similarly as before, the definition of the speed does not depend on the
choice of the double period of the trajectory. Notice that in the case of the homogeneous line,
for a fixed base of an agent, we can still use the expression “left-” or “right-progressing” with
respect to its trajectory, although, unlike for the oriented line, these notions also depend on
the base and not only on the trajectory.

The following proposition bounds the length of a prefix and of a period of trajectories.

▶ Proposition 2. For any periodic trajectory α, denote by σ the length of the shortest period
of α and by π the length of the prefix preceding the first period of length σ. Then π + σ ≤ 3H.

We use the following fact holding both for the oriented and the homogeneous line. Consider
two agents a and b with bases u and v, respectively. We say that agent b follows agent a, if
either the trajectories of both of them are left-progressing and u is left of v, or the trajectories
of both of them are right-progressing and u is right of v. The following proposition says
intuitively that, if the initial distance between the agents is sufficiently large, then:
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Table 1 The four modes used in Algorithm Oriented and their corresponding actions.

Mode Action

right_slow Move one step right, stay put for one round, and repeat
right_fast Move one step right in each round
left_fast Move one step left in each round
sentinel Stay put

(i) if the follower is not faster than the followed agent, then agents can never meet, and
(ii) if the difference between the speeds of the agents is small, then they cannot meet soon.

▶ Proposition 3. Consider two agents, a and b, with bases u and v, respectively, either in
the oriented line or in the homogeneous line, such that D = dist(u, v) > 72H2 + 6H and
agent b follows agent a. Let z = V (b) − V (a), where V (a) and V (b) denote the speeds of the
trajectories of a and b, respectively.

i) If z ≤ 0, then agents a and b can never meet;
ii) If z > 0, then agents a and b cannot meet before round 3H +36H2+⌈(D−6H −72H2)/z⌉.

3 The Impossibility Result

In this section we show that, if the team size is x = 1, then gathering is impossible for some
port labeling of the line. This port labeling is that of the oriented line. The proof of the
following theorem is deferred to the full version of this paper.

▶ Theorem 4. Consider an arbitrary set of agents in teams of size 1, i.e., x = 1. The
adversary can place these agents at distinct nodes of the oriented line in such a way that no
pair of agents will ever meet.

4 The Oriented Line

In this section, we consider gathering of R teams of agents in the oriented line. In view of
Theorem 4, if the size x of each team is one, then the adversary can prevent gathering. So,
we assume that x > 1, throughout this section. Due to space limitation, we only present the
high-level idea of the algorithm, while its detailed description and the proof of its correctness
and complexity are deferred to the full version of this paper.

We now describe Algorithm Oriented that accomplishes gathering of arbitrary R teams
of x > 1 agents in the oriented line, in optimal time O(D), where D is the distance between
the bases of the most distant teams.

Modes. In each round of the algorithm execution, each agent is in some mode, encoded in
the state of the agent. In each mode, an agent performs some action. All modes and their
corresponding actions, used in Algorithm Oriented, are listed in Table 1.

The high-level idea of the algorithm. After waking up, the agent with the smallest label
in each team assigns itself mode right_slow which means that it moves right with speed
one-half, and the other x − 1 agents in the team assign themselves mode sentinel and stay
put at their base. An agent a in mode right_slow (except the agent from the rightmost
team) will meet agents in mode sentinel. Each time such a meeting happens, agent a

counts the total number of agents in mode sentinel it has seen so far. Notice that among
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11:8 Gathering Teams of Deterministic Finite Automata on a Line

all the agents in mode right_slow, only the agent b from the leftmost team will meet
(x − 1)(R − 1) agents in mode sentinel (except sentinel agents from its own team). After
meeting (x − 1)(R − 1) agents in mode sentinel, agent b switches to mode right_fast
which means that it moves right with speed 1. It is the only agent that ever switches to
mode right_fast. Speed 1 allows it to meet agents in mode right_slow that it follows.
Each time agent b meets an agent in mode right_slow, agent b counts the total number of
agents in mode right_slow it has seen so far, and the agent in mode right_slow switches
to mode sentinel. After meeting R − 1 agents in mode right_slow, agent b switches to
mode left_fast. Let c be the (R − 1)th agent in mode right_slow that agent b met. At
this meeting, agent c also switches to mode left_fast.

So, both agents b and c move together left with speed 1. At this time, all the other
(x · R − 2) agents are in mode sentinel, left of agents b and c. Then, each time a meeting
between agents in mode left_fast and agents in mode sentinel happens, all the agents
in mode sentinel switch to mode left_fast and move together with the other agents in
mode left_fast. In the end, all x · R agents gather at the base u of the leftmost team.
They know that this happened, by counting the number of agents at u, and transit to state
STOP. The following theorem states the correctness and complexity of Algorithm Oriented.
Its proof is deferred to the full version of this paper.

▶ Theorem 5. Algorithm Oriented gathers R teams of x > 1 agents each, in the oriented
line in 7D rounds, where D denotes the distance between the bases of the most distant teams.

5 The Unoriented Line

In this section, we consider gathering in the unoriented line, in which the port labeling at
each node is arbitrary. We will use the expressions “left” and “right”, to denote the two
directions of the line but we need to keep in mind that agents cannot identify these directions,
so we will use these expressions only in comments and in the analysis.

It follows from Section 3 that, if the team size is x = 1, then gathering is impossible for
some port labeling, namely that of the oriented line. This section is devoted to showing that,
in the unoriented line, the optimal gathering time is Θ(D log L), for x = 2, and it is Θ(D),
for x > 2, where D is the distance between the bases of the most distant teams. We first
consider the case x = 2.

5.1 Teams of size 2
Results of this section are by far the most technically difficult. The section is organized
as follows. First we prove that, regardless of the finite deterministic automaton used, and
even for two teams of size 2, the adversary can choose a particular port labeling of the line,
namely the homogeneous port labeling, and it can choose the bases at an arbitrarily large
distance D and a composition of teams in such a way that the time of gathering is at least
cD log L, for some positive constant c. Then we show, for any number R > 1 of teams of size
2, an algorithm that always guarantees gathering in time O(D log L). In view of the above
lower bound, this complexity is optimal. Proofs omitted in this section are deferred to the
full version of this paper.

5.1.1 The lower bound
Consider the homogeneous line. Let C = ⌊L/2⌋. We will consider the following C teams of
size 2: {1, 2}, {3, 4}, ... , {2C − 1, 2C}. For each of those teams {a, a + 1}, there are fixed
trajectories α(a) and α(a + 1) corresponding to agents a and a + 1, respectively, yielded by
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the finite deterministic automaton used. Each of the above teams is called one-way if either
both corresponding trajectories are plus-progressing, or both are minus-progressing, or at
least one of them is bounded.

▶ Lemma 6. If there exist two one-way teams {a, a + 1} and {b, b + 1}, for odd a, b ≤ 2C − 1,
then there exist arbitrarily large integers D such that the adversary can place these teams at
two bases at distance D, so that gathering will never happen.

In view of Lemma 6, we may assume that there is at most one one-way team. Hence
there exist C − 1 teams {a, a + 1}, for odd a ≤ 2C − 1 that are not one-way. Call these teams
canonical. By definition, for every canonical team, one of the corresponding trajectories is
plus-progressing and the other is minus-progressing. Call the plus-progressing (resp. minus-
progressing) trajectory the plus-trajectory (resp. the minus-trajectory) of the team. Agents
corresponding to these trajectories are called the plus-agent (resp. minus-agent) of the team.

Consider two agents a and b with bases u and v, respectively, such that u is left of v. We
say that the agents are diverging, if the trajectory of a is left-progressing and the trajectory
of b is right-progressing.

▶ Lemma 7. If the distance between the bases u and v of diverging agents is larger than 6H

then these agents can never meet.

We will use the following lemma that is a direct consequence of [10, Theorem 3.1]. 4

▶ Lemma 8. Consider a set of g agents, each of which is assigned a trajectory. There exist
two agents in this set, such that if they start at two nodes of a line at distance D and follow
their trajectories then the first meeting between them occurs after at least 1

6 D log g rounds.

The main result of this subsection is the following theorem.

▶ Theorem 9. For any finite deterministic automaton formalizing the agents, there exists a
positive constant c such that, for arbitrarily large D, the adversary can choose two canonical
teams and their bases at distance D on the homogeneous line, so that gathering takes time at
least cD log L.

Proof. Let p = ⌊L1/3⌋. We consider the partition of the interval (0, 1] into subintervals
I1, . . . , Ip, where Ii = ( i−1

p , i
p ], for i = 1, . . . , p. For any i, j ∈ {1, . . . , p}, denote Σi,j = Ii ×Ij .

Hence, Σi,j form a partition of the square (0, 1] × (0, 1] into p2 squares. We assign each
canonical team to one of these squares as follows: a canonical team is assigned to square Σi,j ,
if the speed of the minus-trajectory of the team is in Ii and the speed of the plus-trajectory
of the team is in Ij . Since there are p2 squares and C − 1 = ⌊L/2⌋ − 1 canonical teams,
there is at least one square Σi,j to which at least g = p/2 canonical teams are assigned. Let
Σ = Σi,j denote any such square (there can be many of them).

We now describe the decisions of the adversary. Let D be any odd integer larger than
2 · (72H2 + 6H). There are two cases.
Case 1. i ≥ j. Consider the plus-agents of the teams assigned to Σ. There are at least
g of them. By Lemma 8, there exist two of them, p1 and p2, such that if they are placed
at any two nodes at distance D and follow their trajectories, then they cannot meet before
1
6 D log g rounds. Now the adversary makes its first choice: it chooses canonical teams to
which p1 and p2 belong. These are teams {p1, q1} and {p2, q2}, where qi denote the minus

4 [10, Theorem 3.1] holds even in a ring and even if agents are Turing machines.
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11:10 Gathering Teams of Deterministic Finite Automata on a Line

agents in each team. (Note that we do not know which of the agents has an even label and
which has an odd label in each team). It remains to choose the bases. As u, the adversary
chooses any node in the line, such that port 1 is in the right direction, and chooses as v the
(unique) node at distance D right of u. Finally the adversary chooses u as the base of team
{p1, q1} and chooses v as the base of team {p2, q2}.
Case 2. i < j. Now the decisions of the adversary are symmetric with respect to Case 1.
This time, consider the minus-agents of the teams assigned to Σ. There are at least g of
them. By Lemma 8, there exist two of them, q1 and q2, such that if they are placed at
any two nodes at distance D and follow their trajectories, then they cannot meet before
1
6 D log g rounds. The adversary chooses canonical teams to which q1 and q2 belong. These
are teams {p1, q1} and {p2, q2}, where pi denote the plus agents in each team. It remains to
choose the bases. As u the adversary chooses any node in the line such that port −1 is in
the right direction, and chooses as v the (unique) node at distance D right of u. Finally the
adversary chooses u as the base of team {p1, q1} and chooses v as the base of team {p2, q2}
(here nothing changes).

▷ Claim 10. There is a positive constant c such that, for the above choices of the adversary,
the first meeting between agents of different teams occurs after at least cD log L rounds.

Proof. In order to prove the claim, we consider Case 1. The argument in Case 2 is similar.
The choice of teams {p1, q1} and {p2, q2} guarantees that the meeting between agents p1

and p2 requires at least 1
6 D log g = 1

6 D log p
2 rounds, as g = p/2.

Agent q1, based at u, is a minus-agent and its trajectory is left-progressing; agent q2,
based at v, is a minus-agent and its trajectory is right-progressing. Hence, agents q1 and q2
are diverging. As D > 6H, agents q1 and q2 can never meet, in view of Lemma 7.

Observe that agent p2 follows agent q1. First, suppose that i > j. The speed V (q1) of the
trajectory of q1 is larger than the speed V (p2) of the trajectory of p2. As D > 2 ·(72H2 +6H),
agent p2 can never meet agent q1, in view of Proposition 3 (i). Next, suppose that i = j.
Then |V (p2) − V (q1)| < 1/p, because V (q1) and V (p2) are both in the interval Ii. If
V (p2) − V (q1) ≤ 0, then agent p2 can never meet agent q1, in view of Proposition 3 (i).
Otherwise, as D > 2 · (72H2 + 6H), Proposition 3 (ii) implies that the meeting between p2
and q1 cannot be achieved before round 3H +36H2 +⌈(D−6H −72H2)p⌉ > D

2 p ∈ ω(D log p).
Symmetrically, agent p1 follows agent q2. Using similar arguments, agents p1 and q2 either
never meet or meet after time ω(D log p). It follows that for a sufficiently small constant c′,
any meeting between agents p1 and q2 or p2 and q1 cannot happen before round c′D log p.
Hence, for a sufficiently small constant c, the first meeting between agents of different teams
occurs after at least cD log L rounds. ◁

Claim 10 concludes the proof of the Theorem. ◀

5.1.2 The algorithm
We now describe Algorithm Small Teams Unoriented that guarantees gathering teams of
size 2 in an unoriented line, in time O(D log L). More precisely, the algorithm accomplishes
gathering of arbitrary R teams of size 2 in time O(D log L), where D is the distance between
the bases of the most distant teams, and the port labeling of the line is arbitrary.

In our algorithm, we will use the following procedure Dance (string, p). Its parameter
string is a finite binary sequence, and its parameter p is one of the possible ports −1 or 1.
Intuitively, procedure Dance (string, p) is an infinite procedure divided into phases of k

rounds each, where k is the length of the binary sequence string. In each phase, the agent
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Table 2 The seven modes in which an agent with label ℓ can be, where α = T r(ℓ) and β = (1110).

Mode Action

(−1) − slow Dance (α, −1)
(+1) − slow Dance (α, +1)
(−1) − fast Dance (β, −1)
(+1) − fast Dance (β, +1)

idle Stay put
hibernate Stay put
sentinel Stay put

first chooses the edge h on which the dance will be executed, and then performs the dance
itself on edge h. In the first phase, h corresponds to port p, and in each subsequent phase, h

is the edge incident to the current node, which is different from the edge on which the dance
in the previous phase was executed. The agent processes k bits of the sequence string in k

consecutive rounds as follows: if the bit is 1, then traverse edge h; otherwise, stay idle. The
pseudo-code of procedure Dance is deferred to the full version of this paper.

While procedure Dance is formulated as an infinite procedure, it will be interrupted in
some round of the execution of the algorithm, and a new procedure Dance with different
parameters will be started.

Label transformation. Recall that labels of all agents are different integers from the set
{1, . . . , L}. Let len denote ⌊log L⌋ + 1. Consider a label ℓ ∈ {1, . . . , L}. We represent it by
the unique binary sequence Bin(ℓ) = (b1b2 · · · blen) which is the binary representation of ℓ,
with a string of zeroes possibly added as a prefix, to get length len.

Let z = 2 · len + 4. We now define the transformed label obtained from ℓ. This is the
binary sequence Tr(ℓ) of length z defined as follows: In Bin(ℓ) = (b1b2 · · · blen), replace each
bit 1 by the string 11, replace each bit 0 by the string 00, add the string 10 as a prefix and
the string 00 as a suffix. Due to the added prefix string 10, Tr(ℓ) always contains an odd
number of bits 1. For example, if L is 15 and ℓ is 3, then Bin(ℓ) is the binary sequence
(0011), and Tr(ℓ) is the binary sequence (100000111100).

Modes. In each round of the algorithm execution, each agent is in some mode, encoded in
the state of the agent. In each mode, an agent performs some action. Four of these modes
instruct the agent to execute procedure Dance with various parameters, and three other
modes instruct it to stay put. Modes are changed at meetings of the agents, called events.
In Table 2, we list seven modes in which an agent can be.

We now explain the roles that are played by the seven modes. An agent in any of the
modes idle, hibernate, or sentinel stays at the current node until a new event happens at
this node. Mode hibernate is used only in the first z rounds of the algorithm, while modes
idle and sentinel are used in the remaining rounds. In particular, mode sentinel is only
assigned to the leftmost and rightmost agents, once these agents identify themselves as such.

Modes (−1) − slow and (+1) − slow will be called slow modes, and modes (−1) − fast
and (+1) − fast will be called fast modes. For simplicity, we call an agent in slow (resp.
fast) mode a slow (resp. fast) agent. In view of procedure Dance, a slow or fast agent dances
along the same edge in each phase. We call the edge endpoint, at which a phase starts,
the dancing source of the agent, in this phase. Let ℓ denote the label of an agent, and let
α = Tr(ℓ) and β = (1110). As shown in Table 2, a slow or a fast agent executes procedure
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· · ·

g1

g2

g2r−1

g2r

g2r+1

g2r+2

g2r+3

· · ·

g2R−1

g2Rg2r+4

Figure 1 Agents g1, . . . , g2R on the unoriented line. Agents in red indicate a pair of neighbors.

Dance with binary sequences α and β, respectively. Observe that the sequences α and β used
in modes slow and fast have an odd number of bits 1. Hence, after each phase, the dancing
source of a slow or fast agent is changed to be the other endpoint of this edge. During an
execution of procedure Dance, the way that the dancing source changes looks like an object
moving on the unoriented line exactly one step in the same direction in each phase. We call
the direction, in which the dancing source of an agent executing Dance moves, the progress
direction of the agent. Although the port numbers at each node are assigned arbitrarily by
the adversary and a slow or fast agent cannot tell which direction is left or right, it is always
aware of its progress direction. Indeed, consider an agent g that arrives at node u in some
round of the execution of Dance. The agent knows if, in this phase, u is the dancing source
or not. If u is the dancing source of g, then the port via which g arrives at u, indicates
its progress direction; otherwise, its progress direction is indicated by the other port at u.
This is true, because sequences α and β start with bit 1, end with bit 0, and contain an odd
number of bits 1.

An agent in mode (−1) − slow or mode (−1) − fast (resp. mode (+1) − slow or mode
(+1) − fast) leaves the current node via port −1 (resp. 1), in the first round of the execution
of procedure Dance. This is because the second parameter in the procedure is −1 (resp. 1)
and sequences α and β both start with bit 1. We will prove that two slow agents, moving
towards each other while executing procedure Dance, will meet in a phase, when their dancing
sources are at a distance either 1 or 2.

Meetings of a fast and a slow agent happen for a different reason. When a fast agent
meets a slow agent progressing in the same direction, we will say that the fast agent catches
the slow agent. In view of definitions of sequences α and β, each phase of procedure Dance
in a slow mode lasts z = |Tr(ℓ)| > 4 rounds, while each phase in a fast mode lasts only four
rounds. This means that the dancing source of a slow agent changes every z rounds, while the
dancing source of a fast agent changes every four rounds. Observe that any 4-bit sub-segment
of α is different from β. Due to this observation and the difference of the dancing source
changing frequency for slow and fast agents, we will show that a fast agent following a slow
agent progressing in the same direction always catches it.

The high-level idea of the algorithm. In the wake-up round, agents are at their bases in
teams of size 2. Since they can see each other’s labels, they can compare them and assign
modes as follows: the agent with smaller label assigns itself mode (−1) − slow and the
agent with larger label assigns itself mode (+1) − slow. Conceptually, we number agents
g1, . . . , g2R as follows (see Fig. 1).

Consider the r-th team from the left, where r = 1, . . . , R. Agent g2r−1 is the agent from
the r-th team that first moves left, and agent g2r is the agent from the r-th team that first
moves right. Agent g2r−1 will be called the left agent of the r-th team, and agent g2r will
be called the right agent of the r-th team. Notice that an agent does not know in which
team it is, and it does not know if it is the left or the right agent in a team, due to the
adversarial port labeling of the undirected line. Let’s call agents g2r and g2r+1 neighbors, for
any r = 1, . . . , R − 1.
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Our algorithm guarantees that in some round of its execution, all neighbors will meet in
pairs. After such a meeting, both agents switch to mode (+1) − fast, however this change
might not happen immediately at the meeting. If the bases of the r-th team and the (r+1)-th
team are at a distance exactly one, then both neighbors from these teams switch to mode
hibernate at their meeting and then switch to mode (+1) − fast in round z. If the distance
between their bases is exactly two, then both neighbors maintain their slow modes until
round z and switch to mode (+1) − fast in this round. (Note that, in both above cases, the
earliest round when both neighbors meet could be earlier than round z).

Otherwise, when the distance between bases is more than two, then both neighbors switch
to mode (+1) − fast immediately after the meeting. After changing to a fast mode, an agent
swings (possibly switching from mode (+1) − fast to (−1) − fast or vice versa) between
agent g1 and agent g2R both of which are still in slow modes. Therefore, it is crucial to
identify these agents. To this end, each agent e in a slow mode keeps a bag to which it adds
labels of fast agents that have caught it. We will show that only bags of g1 and g2R can have
size (2R − 2) and that, in some round, they will have this size. This is how the pair of agents
g1 and g2R is identified. At this time these agents switch mode to sentinel.

However, an agent in mode sentinel does not know whether it is g1 or g2R. We will
distinguish g1 from g2R indirectly, using fast agents. The 2R − 2 fast agents swing from one
agent in mode sentinel to the other, gather their labels, compare them, go to the agent
with the smaller label and change state to idle. Without loss of generality, suppose that
the label of agent g1 is smaller than that of g2R. As a result, all 2R − 2 fast agents meet
g1 and stay with it in mode idle; in other words, 2R − 1 agents gather at the same node
in some round. When this happens, each of these 2R − 1 agents switches to a fast mode
and progresses in the direction opposite to their last move. Hence they will meet agent g2R

which stays put in mode sentinel. In the end, all 2R agents gather at the same node where
g2R stays, and transit to state STOP. The detailed description of Algorithm Small Teams
Unoriented is deferred to the full version of this paper.

The complexity of the algorithm is stated as Theorem 11.

▶ Theorem 11. Suppose that agents have distinct labels drawn from the set {1, · · · , L}, that
teams are of size 2, and that the distance between the bases of the most distant teams is D.
Algorithm Small Teams Unoriented gathers all agents at the same node of an unoriented
line in time O(D log L).

Due to space limitation, we present a sketch proof for Theorem 11. Without loss of
generality, assume that the label of g1 is smaller than the label of g2R. First, we prove that
agent g2r meets its neighbor g2r+1, for each 1 ≤ r < R. After the meeting, g2r and g2r+1
become fast agents and swing between g1 and g2R. Then, we show that only g1 and g2R

will change (possibly in different rounds) to mode sentinel. As agents g2, . . . , g2R−1 swing
between g1 and g2R, and g1 is in mode sentinel, agents g2, . . . , g2R−1 will meet g1 and stay
with it in mode idle. Next, we prove that by the earliest round when all 2R − 2 fast agents
gather at the same node where g1 stays, agent g2R has already changed to mode sentinel.
As a result, all 2R − 1 agents, apart from g2R, become fast agents, progress towards g2R and
eventually meet g2R, while g2R stays put in mode sentinel. Then gathering is achieved and
all agents transit to state STOP. To establish the complexity of the algorithm, let t1 denote
the earliest round in which agent gi becomes a fast agent after meeting its neighbor, for all
1 < i < 2R. Let t2 denote the earliest round in which both g1 and g2R switched to mode
sentinel. Let t3 denote the earliest round in which all 2R − 1 agents, apart from g2R, have
gathered at the same node. Let t4 denote the earliest round in which all 2R agents gather
at the same node. Our goal is to prove that all rounds t1, . . . , t4 exist; furthermore, we will
show that t1 < t2 ≤ t3 < t4 ∈ O(D log L).
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Table 3 The five modes in Algorithm Large Teams Unoriented and the corresponding actions.

Mode Action

(−1) − slow Proceed (−1, true)
(+1) − slow Proceed (1, true)
(−1) − fast Proceed (−1, false)
(+1) − fast Proceed (1, false)

sentinel Stay put

5.2 Teams of size larger than 2
It remains to consider the gathering problem in any unoriented line for teams of size larger
than 2. Using more than two agents in each team, we design Algorithm Large Teams
Unoriented, faster than that for teams of size 2: our gathering algorithm for larger teams
works in optimal O(D) rounds. In this section, we only present the high-level idea of the
algorithm, while the omitted details are deferred to the full version of this paper.

Algorithm Large Teams Unoriented uses procedure Proceed (p, slow). The procedure
has two parameters: p is a port number drawn from {−1, 1}, and slow is a Boolean value. Like
procedure Dance, Proceed (p, slow) is an infinite procedure, divided into phases. Assume
that an agent a starts performing Proceed (p, slow) at node u. If slow is false, then each
phase has one round. In the first phase, the agent moves to the neighbor u′ of u corresponding
to port p at u. Let w denote the node that the agent reached in the (i − 1)-th phase, for
i > 1. In the i-th phase, the agent moves to the neighbor w′ of w such that dist(w′, u) is i.
Intuitively, the agent moves away from u with speed one in the direction of port p at node u.

If slow is true, each phase consists of two consecutive rounds. In the first phase, the
agent moves to the neighbor u′ of u corresponding to port p at u, and stays at u′ for one
round. For any phase i > 1, let w denote the node that the agent reached in the (i − 1)-th
phase. In the i-th phase, the agent moves to the neighbor w′ of w such that dist(w′, u) is i

and stays at w′ for one round. Intuitively, the agent moves away from u with speed one-half
in the direction of port p at u. The pseudo-code of the procedure is deferred to the full
version of this paper.

Modes. Similarly to the previous two algorithms, during the execution of Algorithm Large
Teams Unoriented, each agent is in one of five modes, encoded in the states of the automaton.
Each mode corresponds to a different action, as shown in Table 3. Hence, there are five
different actions an agent can choose to take. Four of them are to call procedure Proceed
(with different parameters), and the fifth is to stay put, waiting for future events.

We call agents in modes right_fast and left_fast fast agents, agents in modes
left_slow and right_slow slow agents, and agents in mode sentinel sentinel agents.

The high-level idea of the algorithm. After wake-up, in each team, the agent with the
smallest label assigns itself mode (−1) − slow, the agent with the second smallest label
assigns itself mode (+1) − slow, and all the other (x − 2) agents assign themselves mode
sentinel. Notice that, in each team, the agents with the two smallest labels proceed in
different directions, and the agent with the largest label assigns itself mode sentinel.

Slow agents move along the line with speed one-half. For an agent, we call any base other
than its own a foreign base. Each time a slow agent meets (x − 2) agents in mode sentinel,
it reaches a foreign base. A slow agent can tell how many foreign bases it has reached, by
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counting the total number of sentinel agents it has seen so far. During the execution of the
algorithm, only two of the slow agents can reach (R − 1) foreign bases. These two slow agents
are from the two most distant teams. Let u denote the (R − 1)-th foreign base that a slow
agent a reaches. By the round when agent a reaches u, it has met (x − 2)(R − 1) agents in
mode sentinel. Agent a switches to mode sentinel. The largest label ℓ1 among agents
from the team of a is compared to the largest label ℓ2 among agents based at u. (These
labels are coded in the states of agents currently collocated at u). If ℓ1 < ℓ2, then the agent
with label ℓ2 becomes a fast agent. This agent, called e, has the largest label among all
agents in the two most distant teams. e is the first agent to become fast. When this happens,
all the x · R agents are distributed on the line as follows: there are (x − 2) sentinel agents
at node u, along with the fast agent e; there are only (R − 1) slow agents, on one side of u,
progressing away from u; there are (x − 2)(R − 1) + 1 sentinel agents and (R − 1) slow agents
on the other side of u, and these slow agents are progressing away from u as well. Agent e

progresses in the direction (with respect to u) where only slow agents are located.
As a fast agent, agent e moves with speed one. The fast speed allows agent e to meet all

the (R − 1) slow agents that it follows. Each time agent e meets a slow agent, it increments
the total number of slow agents it has seen since becoming fast, and the slow agent switches
to the same mode as that of e and moves together with agent e from now on. Let v denote
the node where agent e meets the (R − 1)-th slow agent. In the round when agent e reaches
node v, there are R agents at this node, including agent e itself. In this round, all these
R agents become fast agents and move in the direction that agent e comes from. At this
point, all the x · R agents are distributed on the line as follows: there are R fast agent at
node v; there are no agents at all on one side of v; there are (x − 1)R − (R − 1) agents in
mode sentinel and R − 1 slow agents on the other side of v, and these slow agents move
away from v. Hence, all R fast agents follow these R − 1 slow agents. Since then, each time
a meeting happens at some node w, all the non-fast agents at node w (i.e., slow agents and
sentinel agents) switch to the mode shared by all fast agents at node w. In this way, all the
agents at node w move together, after the meeting. When a meeting happens at a node
where x · R agents gather, all the agents transit to state STOP. These agents know when
gathering occurs by counting the number of agents collocated at each meeting. The detailed
description of the algorithm is deferred to the full version of this paper. Theorem 12 states
the correctness and complexity of the algorithm.

▶ Theorem 12. Algorithm Large Teams Unoriented gathers R teams of x > 2 agents each,
on an unoriented line in 14D rounds, where D denotes the maximum distance between bases.

6 Conclusion

We gave a complete solution of the feasibility and complexity problem of gathering teams of
agents modeled as deterministic finite automata on oriented and unoriented lines, showing
differences that arise from the orientation feature. To the best of our knowledge, this is the
first time gathering of deterministic finite automata that cannot communicate remotely is
considered in an infinite environment. It is impossible to design a finite automaton that
explores infinite lines, and hence we had to invent new gathering techniques. A natural
generalization of our results would be to study gathering of teams of automata in arbitrary
(connected) infinite graphs. In this paper we assumed that all teams of agents are of equal
size. Generalizing our results to teams of possibly different sizes is another open problem.
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