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Abstract
We investigate crash-tolerant perpetual exploration algorithms by myopic luminous robots on ring
networks. Myopic robots mean that they can observe nodes only within a certain fixed distance ϕ,
and luminous robots mean that they have light devices that can emit a color from a set of colors.
The goal of perpetual exploration is to ensure that robots, starting from specific initial positions
and colors, move in such a way that every node is visited by at least one robot infinitely often. As a
main contribution, we clarify the tight necessary and sufficient number of robots to realize perpetual
exploration when at most f robots crash. In the fully synchronous model, we prove that f + 2 robots
are necessary and sufficient for any ϕ ≥ 1. In the semi-synchronous and asynchronous models, we
prove that 3f + 3 (resp., 2f + 2) robots are necessary and sufficient if ϕ = 1 (resp., ϕ ≥ 2).
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1 Introduction

1.1 Background and Motivation
In the field of distributed computing, theoretical researches on autonomous mobile robots
have attracted a lot of attention. The goal of the researches is to clarify the minimum
capabilities of robots to achieve a given task. For this reason, many researches consider
robots with very weak capabilities, that is, they are identical (i.e., robots execute the same
algorithm), oblivious (i.e., robots have no memory to record past history), and silent (i.e.,
robots do not send messages explicitly). As a model of weak robots, the Look-Compute-Move
(LCM) model [23] is commonly used. In the LCM model, each robot repeats a cycle of Look,
Compute, and Move phases: the robot takes a snapshot in the Look phase, computes its
behavior based on the snapshot in the Compute phase, and moves to a new position (if
necessary) in the Move phase. By using the LCM model, solvability is clarified on various
environments, various capabilities of robots, and various tasks. For example, some works focus
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12:2 Crash-Tolerant Perpetual Exploration with Myopic Luminous Robots on Rings

on continuous environments (aka two- or three-dimensional Euclidean space) [13, 23, 24]
or discrete environments (aka graph networks) [7, 11, 16]. Most traditional works assume
oblivious robots with unlimited visibility, but recently some works consider light devices [9, 14]
or limited visibility [13, 17]. As benchmark tasks, gathering [7, 23], exploration [8, 19], and
pattern formation [15, 24] are mainly studied. State-of-the-art surveys are given in [12].

In this paper, we focus on myopic luminous robots in discrete environments. Recently
many papers focus on myopic luminous robots because of the reasonable assumptions on
the observation, communication, and memory capability [2, 3, 6, 8, 18, 19]. Myopic robots
mean that they can observe nodes only within a certain fixed distance. This implies that
myopic robots are less powerful than traditional robots with unlimited visibility. Luminous
robots mean that they have light devices that can emit a color from a set of colors. The light
color is visible to other robots and not reset at the end of each cycle, and hence the light
device models a communication and memory device. This assumption is reasonable because
real weak robots (such as Kilobots [22]) also have weak communication devices and small
memories.

Since robots are weak, it is likely that robots crash during the execution, in particular
when they work in dangerous environments. Once robots have crashed, they continue to
reside in the system without moving or changing their colors, however they cannot be
distinguished from correct robots with the same color. For robots with unlimited visibility
in Euclidean plane, some works study crash-tolerant algorithms, for example, for gathering
[1, 10], flocking [25], and complete visibility [20]. For robots with unlimited visibility in graph
environments, some works study crash-tolerant algorithms for gathering [4, 5, 21]. On the
other hand, for myopic luminous robots in graph environments, to the best of our knowledge,
only one work [3] considers crash-tolerant algorithms. This work considers crash-tolerant
gathering algorithms on line networks. Hence it is not clear what tasks can be achieved by
myopic luminous robots when some robots may crash.

We focus on crash-tolerant perpetual exploration. The goal of perpetual exploration is to
ensure that robots, starting from specific initial positions and colors, move in such a way
that every node is visited by at least one robot infinitely often. The perpetual exploration
is a benchmark task of mobile robots, and it is useful for patrolling, cleaning, disinfecting,
searching, and so on. Thus, the perpetual exploration has been studied extensively. When
no crash occurs, on ring networks the case of visibility one is studied in [19] and the case of
visibility more than one is studied in [18]. On grid networks, many algorithms for various
assumptions are proposed in [2, 6].

1.2 Our Contributions
We investigate crash-tolerant perpetual exploration with myopic luminous robots on ring
networks. We assume that each robot observes robots on nodes within distance ϕ and has a
light device with l colors. In this paper, we clarify the minimum number of robots to achieve
perpetual exploration when at most f robots crash. Table 1 summarizes our contributions.

First, we consider the fully synchronous (FSYNC) model. In previous works [18, 19], it
is proven that, when robots do not crash, two robots are necessary for any ϕ and l, and
two robots are sufficient for ϕ = 1 and l = 2. From this fact, when at most f robots
crash, we can easily obtain that f + 2 robots are necessary for any ϕ and l, and that 2f + 2
robots are sufficient for ϕ = 1 and l = 2f + 2. For the sufficiency, let us construct f + 1
groups such that each group contains two robots, and make each group execute crash-free
perpetual exploration independently by assigning different colors to groups (i.e., l = 2f + 2).
This algorithm achieves perpetual exploration because at least one group can continue the
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Table 1 Perpetual ring exploration with myopic robots.

#robots
ref. synchrony visbility ϕ #crashed necessary sufficient

[18, 19] FSYNC ≥1 0 2 2 (2 colors)
[19] SSYNC, ASYNC 1 0 3 3 (2 colors)
[18] SSYNC, ASYNC ≥2 0 2 2 (2 colors)
This FSYNC ≥1 f f + 2 f + 2 (3f + 2 colors)
This SSYNC, ASYNC 1 f 3f + 3 3f + 3 (2f + 2 colors)
This SSYNC, ASYNC ≥2 f 2f + 2 2f + 2 (2f + 2 colors)

algorithm. On the other hand, f +2 robots are necessary for any l because at least two robots
must remain after f robots crash. As the first main contribution, we close the gap between
the necessary number and the sufficient number by proposing a crash-tolerant algorithm
with f + 2 robots. The algorithm uses l = 3f + 2 colors, that is, it uses asymptotically the
same number of colors as the trivial algorithm mentioned above.

Next, we consider the semi-synchronous (SSYNC) and asynchronous (ASYNC) models.
In previous works [18, 19], it is proven that, when robots do not crash, if ϕ = 1 (resp., ϕ ≥ 2),
three (resp., two) robots are necessary for any l, and three (resp., two) robots are sufficient
for l = 2. Similarly to the FSYNC model, when at most f robots crash, we can obtain that,
if ϕ = 1 (resp., ϕ ≥ 2), 3f + 3 (resp., 2f + 2) robots are sufficient for l = 2f + 2. As the
second main contribution of this paper, we prove that, different from the FSYNC model,
these sufficient numbers are also necessary numbers for any l. That is, the trivial algorithms
are optimal in terms of the number of robots even if we can use any number of colors. To
prove this, we show that, if x robots are necessary when no robot crashes, (f + 1)x robots are
necessary when at most f robots crash. Intuitively, this is because robots cannot distinguish
crashed robots and slow robots. When some robot r seems crashed, other robots must leave
r and continue exploration. However, if robots leave r alone and r is just slow, this means
that robots abandon one correct robot. To avoid this situation, robots leave a group of x

robots so that the group does not get stuck. This implies that, if f robots crash dispersedly,
f + 1 groups of x robots can be created. For this reason (f + 1)x robots are necessary.

2 Preliminaries

In this section, we describe the system model and terminologies used in this paper. Most
definitions are the same as [18, 19] except for those of crash faults.

2.1 System model

The system consists of robots and an environment which is modeled by an n-node undirected
ring G = (V, E), where V = {v0, . . . , vn−1} and E = {(vi, vi+1 mod n) | 0 ≤ i ≤ n− 1}. For
simplicity we consider mathematical operations on node indices as operations modulo n. We
say vi and vi+1 are neighbors. We use v0, . . . , vn−1 for notation purposes only and no robot
has access to indices of nodes. The ring is unoriented, that is, robots cannot recognize the
direction of the ring. Robots do not know n, the size of the ring. When a robot r is on a
node v, we say r occupies v. The distance between two nodes is the number of links in a
shortest path between the nodes. The distance between two robots is the distance between
the two nodes occupied by them. Two robots are neighbors if the nodes occupied by them
are neighbors.

OPODIS 2024



12:4 Crash-Tolerant Perpetual Exploration with Myopic Luminous Robots on Rings

Robots are luminous, that is, each robot has a light (or state) that is visible to itself
and other robots. A robot can choose the color of its light from a set Col. The number of
available colors is denoted by l = |Col|. Robots have no other persistent memory. Each
robot can communicate by observing positions and colors of other robots (for collecting
information), and by changing its color and moving (for sending information). Robots are
myopic, that is, each robot can observe positions and colors of robots within a fixed distance
ϕ (ϕ > 0) from its current position. We assume that robots share the same ϕ. Robots execute
the same deterministic algorithm and their behaviors depend on only their observations
including their own colors.

Each robot executes an algorithm by repeating a cycle of Look, Compute, and Move
phases. At the beginning of the Look phase, the robot takes a snapshot of positions and
colors of robots within distance ϕ. During the Compute phase, the robot computes its next
color and movement according to the snapshot in the Look phase. The robot may change
its color at the end of the Compute phase. If the robot decides to move, it moves to a
neighboring node during the Move phase. Similarly to most works for graph environments,
we assume that moves are instantaneous, that is, all robots exist on nodes in a snapshot.
To model asynchrony of executions, we introduce the notion of scheduler that decides when
each robot executes phases. When the scheduler makes robot r execute some phase, we
say the scheduler activates the phase of r or simply activates r. We consider three types
of synchronicity: the FSYNC (fully synchronous) model, the SSYNC (semi-synchronous)
model, and the ASYNC (asynchronous) model. In all models, time is represented by an
infinite sequence of instants 0, 1, 2, .... No robot has access to this global time. In the FSYNC
model, the scheduler activates all robots at every instant t, and all robots execute a full
cycle of Look, Compute, and Move phases synchronously and concurrently between t and
t + 1. In the SSYNC model, the scheduler activates a non-empty subset of robots at every
instant t, and all the activated robots execute a full cycle of Look, Compute, and Move
phases synchronously and concurrently between t and t + 1. In the ASYNC model, the
scheduler activates a non-empty subset of robots at every instant t, and every activated
robot executes one of Look, Compute, and Move phases. If robot r executes a Look phase
and another robot r′ executes a Compute or Move phase at instant t, r obtains a snapshot
before r′ changes its color or its position. Note that, in the ASYNC model, the amount of
time between two successive phases of a robot is finite but unbounded: For example, after
some robot r executes a Look phase, some other robot r′ can execute an unbounded number
of Look, Compute, and Move phases before r executes its next Compute phase. This implies
that, in the ASYNC model, a robot can move based on an outdated view obtained during the
Look phase in the past configuration. Throughout the paper we assume that the scheduler is
fair, that is, each robot is activated infinitely often.

During execution of an algorithm, at most f robots crash. A robot can crash between two
consecutive phases in all of the FSYNC, SSYNC, and ASYNC models. If a robot crashes, the
robot neither changes its color nor its position after it crashes. Even after robot r crashes,
other robots still observe r and the color of r, however they cannot distinguish r from a
correct robot with the same color as r.

In the sequel, Mi(t) denotes the multiset of colors of robots located in node vi at an
instant t. If vi is not occupied by any robot at t, then Mi(t) = ∅ holds. Let Crashed(t) be
the set of crashed robots at an instant t. A configuration of the system at an instant t is
defined as γ(t) = (Crashed(t), M0(t), M1(t), ..., Mn−1(t)). If t is clear from the context, we
simply write γ = (Crashed, M0, M1, ..., Mn−1).
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When a robot takes a snapshot of its environment, it gets a view up to distance ϕ. Consider
a robot r on node vi; then, r obtains two views: the forward view and the backward view. The
forward and backward views of r are defined as Vf = (cr, Mi−ϕ, ..., Mi−1, Mi, Mi+1, ..., Mi+ϕ)
and Vb = (cr, Mi+ϕ, ..., Mi+1, Mi, Mi−1, ..., Mi−ϕ), respectively, where cr denotes r’s color.
Since robots cannot recognize the direction, they cannot recognize which of the two views is
forward and which is backward. If the forward view and the backward view of r are identical,
then r’s view is symmetric. In this case, r cannot distinguish between the two directions
when it moves, and the scheduler decides which direction r moves to. Note that the scheduler
can independently decide the direction regardless of any other movements. If r observes no
other robot in its view, r is isolated.

2.2 Execution, problem, and exploration problem
In the FSYNC and SSYNC models, we say that an infinite sequence of configurations
E = γ0, γ1, ..., γi, ... is an execution from initial configuration γ0 if, for any j > 0, γj is
obtained from γj−1 after every non-crashed robot activated in instant j − 1 executes a cycle.
In the ASYNC model, we say that an infinite sequence of configurations E = γ0, γ1, ..., γi, ...

is an execution from initial configuration γ0 if (i) for any j > 0, γj is obtained from γj−1
after every non-crashed robot activated in instant j − 1 executes a Look, Compute, or Move
phase, and (ii) every robot repeats Look, Compute, and Move phases in this order.

A problem P is defined as a set of executions: An execution E solves P if E ∈ P holds.
An algorithm A solves problem P from initial configuration γ0 if any execution from γ0
solves P. An algorithm A solves problem P if there exists a configuration γ0 such that A
solves P from γ0.

In this paper, we consider the perpetual exploration problem.

▶ Definition 1 (Perpetual exploration problem). Perpetual exploration is defined as a set
of executions E such that every node is visited by at least one robot infinitely often in E.

Since robots do not know n, they should explore a ring with any number of nodes
in principle. However some algorithms for large rings cannot work on small rings, and
consequently many works assume the minimum size of rings to propose algorithms. In this
paper, we also assume the minimum size of rings to propose algorithms. On the other hand,
for the impossibility, we prove that no algorithm exists for large rings.

3 The FSYNC model

In this section, we consider crash-tolerant perpetual exploration in the FSYNC model.

3.1 Impossibility
First, we show the necessary number of robots to achieve crash-tolerant perpetual exploration.

▶ Theorem 2. If the number of robots is smaller than f + 2, the robots cannot achieve
perpetual exploration regardless of the number of colors when at most f robots crash.

Proof. Consider a sufficiently large ring. Assume that there exists an algorithm that solves
perpetual exploration with f + 1 robots. Assume that initially f robots crash. Then only one
correct robot moves, and let rc be the correct robot. Since we consider a sufficiently large
ring, there exist 2ϕ + 2 consecutive nodes vi−ϕ, . . . , vi, vi+1, . . . , vi+ϕ+1 where no crashed
robots exist. To achieve perpetual exploration, rc should eventually visit vi. At that time, rc

OPODIS 2024
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Algorithm 1 Crash-tolerant perpetual exploration with f + 2 robots with 3f + 2 colors. Initially
F0, S1, S2, . . . , Sf stay on a node w and B0 stays on a node neighboring to w. The view of r consists
of cr (its color), C0 (the set of colors in its current node), and C−1 and C1 (the sets of colors in its
two neighboring nodes).

1: // A cycle of robot r with view (cr, C−1, C0, C1)
2: Call ← C−1 ∪ C0 ∪ C1, m← max{i | Fi ∈ Call ∨Bi ∈ Call}
3: if cr = Si for some i then
4: if Fm ∈ C0 ∧ ∃j ∈ {−1, 1}[Bm ∈ Cj ] then
5: move toward C−j ▷ Rule S1
6: else if ∃j ∈ {−1, 1}[Bm ∈ Cj ∧ Fm /∈ Cj ] then
7: change the color to Si−1 (resp., Fm) if i ≥ 2 (resp., i = 1) ▷ Rule S2
8: else
9: change the color to Si−1 (resp., Fm+1) if i ≥ 2 (resp., i = 1) ▷ Rule S3

10: end if
11: else if cr = Fm then
12: if ∃j ∈ {−1, 1}[Bm ∈ Cj ] then
13: move toward C−j ▷ Rule F1
14: else if Bm /∈ C−1 ∪ C1 then
15: change the color to Bm+1 and move toward C−1 or C1 ▷ Rule F2
16: end if
17: else if cr = Bm then
18: if ∃j ∈ {−1, 1}[Fm ∈ C−j ] then
19: move toward C−j ▷ Rule B1
20: else if Fm ∈ C0 then
21: change the color to Bm+1 ▷ Rule B2
22: end if
23: end if

is isolated and consequently its view is symmetric. Hence, if rc moves, the scheduler can
decide the direction and makes rc move to vi+1. Similarly, since rc is isolated on vi+1, the
scheduler makes rc move to vi if rc moves. This implies that rc can visit only vi and vi+1
after that. This is a contradiction. ◀

3.2 Possibility
In this subsection, we propose an algorithm with f + 2 robots in case of visibility ϕ = 1.
From Theorem 2, this algorithm is optimal in terms of the number of robots.

3.2.1 An algorithm
The algorithm uses f + 2 robots with 3f + 2 colors, and achieves perpetual exploration on
rings when n ≥ 4. The set of colors is divided into f + 1 forward colors, f + 1 backward
colors, and f spare colors. Forward colors are represented by Fi (0 ≤ i ≤ f), backward colors
are represented by Bi (0 ≤ i ≤ f), and spare colors are represented by Si (1 ≤ i ≤ f). We
refer a robot with a forward, backward, and spare color as a forward, backward, and spare
robot, respectively. For simplicity, we refer a robot with color X as robot X. We give the
details of the algorithm in Algorithm 1. We also draw the behavior in Fig. 1.

Initially we deploy f + 2 robots as follows. Put robot F0 and f robots S1, . . . , Sf on
a single node, and on its neighboring node put robot B0. That is, a forward robot and a
backward robot occupy two neighboring nodes, and other robots are spare robots and stay
with a forward robot (see the case of m = 0 in Fig. 2a). In this algorithm, all robots move
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Figure 1 Behaviors of robots. A robot with a cross mark means that the robot does not exist
in the specified node. In Rules F1, F2, B1, and B2, we omit spare robots because the behavior of
robots does not depend on spare robots.

based on the forward and backward robots. In normal configurations the forward robot and
spare robots move away from the backward robot (Rules F1 and S1), and the backward
robot moves toward the forward robot (Rule B1). Unless either the forward or backward
robot crashes, robots can maintain the same formation and continue exploration.

If the forward or backward robot crashes, robots create a new forward or backward robot.
Note that robots can detect the crashes because the formation becomes different from the
correct one. When robots create new forward and backward robots, we use indices of forward
and backward colors to recognize new ones. Recall that initially the forward robot is F0 and
the backward robot is B0. If at least one of them crashes, we make a new forward robot F1
and a new backward robot B1. Similarly, if forward robot Fm or backward robot Bm crashes,
we make a new forward robot Fm+1 and a new backward robot Bm+1. This means that
forward and backward robots with smaller indices have crashed, and consequently correct
robots can ignore such robots.

In principle, robots create new forward and backward robots as follows. If only forward
robot Fm crashes (see Fig. 2b), backward robot Bm becomes Bm+1 (Rule B2) and spare
robot S1 becomes Fm+1 (Rule S3). If only backward robot Bm crashes (see Fig. 2c), forward
robot Fm becomes Bm+1 and changes its position (Rule F2) and spare robot S1 becomes
Fm+1 (Rule S3). If both forward robot Fm and backward robot Bm crash (see Fig. 2d), spare
robot S1 becomes Fm+1 (Rule S3). In the last case, the resultant configuration is similar
to the configuration where robot Bm+1 crashes when the forward and backward robots are
Fm+1 and Bm+1, and consequently robots create Fm+2 and Bm+2 similarly to the first case.
Note that, during these movements, some robot such as S1 can additionally crash. To treat
this situation, when robots execute the above actions, every spare robot Si becomes Si−1 at
the same time (Rules S2 and S3). This maintains that all correct spare robots have different
indices. Since at most f − 1 spare robots can crash (when a forward or backward robot
crashes), eventually exactly one correct spare robot becomes S1 and then becomes Fm+1.
We treat all possible situations in the algorithm.

3.2.2 Correctness
In the following, we prove the correctness of Algorithm 1. Let m(γ) be the maximum index
of forward or backward colors that exist in configuration γ. For configuration γ, let f(γ) be
the number of crashed robots, and let f ′(γ) be the number of crashed robots other than
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Figure 2 Four types of legitimate configurations. A robot with a cross mark means that the
robot does not exist in the specified node. A robot with another red mark means that the robot has
crashed.

Fm(γ) and Bm(γ). As we will show, we always have m(γ) ≤ f ′(γ) ≤ f(γ) and consequently
the maximum index f of forward and backward colors is sufficient. Next we define legitimate
configurations, which specify necessary conditions of configurations reachable from the initial
configuration.

▶ Definition 3. Configuration γ is legitimate iff all the following conditions hold in γ:
1. m(γ) ≤ f ′(γ),
2. all correct robots stay on a single node or two neighboring nodes,
3. each correct robot has a color in {Si | 1 ≤ i ≤ f} ∪ {Fm(γ), Bm(γ)},
4. all correct spare robots have different colors and stay on a single node,
5. at most one robot has color Fm(γ),
6. at most one robot has color Bm(γ),
7. if both correct robot Fm(γ) and a correct spare robot exist, then they stay on the same

node, and
8. if both correct robot Bm(γ) and a correct spare robot exist, they stay on different but

neighboring nodes.

In the following, we define four types of legitimate configurations Γsafe
m , Γf

m, Γb
m, and Γfb

m .
Intuitively Γsafe

m includes configurations such that robots can continue exploration based on
robots Fm and Bm. This configuration changes one in Γf

m, Γb
m, and Γfb

m if Fm, Bm, and both
of them crash, respectively. Note that, since n ≥ 4, correct spare robots and correct forward
robot Fm do not observe crashed backward robot Bm. The configurations are illustrated in
Fig. 2.

▶ Definition 4. We define configurations Γsafe
m , Γf

m, Γb
m, and Γfb

m as follows.
Configuration γ is in Γsafe

m iff 1) γ is legitimate, 2) m = m(γ) holds, 3) forward robot
Fm and correct spare robots stay on the same node, and 4) backward robot Bm stays on a
neighboring node of Fm.
Configuration γ is in Γf

m iff 1) γ is legitimate, 2) m = m(γ) holds, 3) forward robot Fm

has crashed and stays on the same node as Bm, and 4) backward robot Bm stays on a
neighboring node of correct spare robots.
Configuration γ is in Γb

m iff 1) γ is legitimate, 2) m = m(γ) holds, 3) forward robot Fm

stays on the same node as correct spare robots, 4) if backward robot Bm exists, it has
crashed and does not stay on the neighboring nodes of Fm, and 5) if backward robot Bm

does not exist, m + 1 ≤ f ′(γ) holds.
Configuration γ is in Γfb

m iff 1) γ is legitimate, 2) m = m(γ) holds, 3) forward robot Fm

has crashed and stays on a node neighboring to correct spare robots, and 4) backward
robot Bm has crashed and does not stay on the neighboring nodes of correct spare robots.
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Figure 3 Cases in the proof of Lemma 7.

An initial configuration is in Γsafe
0 . In Lemma 5, we prove that, if a configuration is in

Γsafe
m for some m, robots can keep a configuration in Γsafe

m and continue exploration unless
forward robot Fm or backward robot Bm crashes. If forward robot Fm, backward robot Bm,
or both of them crash in Γsafe

m , the configuration becomes one in Γf
m, Γb

m, or Γfb
m , respectively.

In Lemmas 7, 8, and 9, we prove that, from these configurations, robots reach a configuration
in Γsafe

m′ for some m′ > m. Since at most f robots crash, after some configuration no new
crash occurs forever, which implies robots achieve perpetual exploration.

▶ Lemma 5. Consider γ ∈ Γsafe
m for some m and let γ′ be a next configuration of γ. If

neither Fm nor Bm crashes between γ and γ′, γ′ is in Γsafe
m and each correct robot moves in

the direction from Bm to Fm between γ and γ′.

Proof. In γ, spare robots can execute Rule S1, forward robot Fm can execute Rule F1, and
backward robot Bm can execute Rule B1. Since neither Fm nor Bm crashes, all correct
robots move in the direction from Bm to Fm and the resultant configuration γ′ is clearly in
Γsafe

m . ◀

Lemma 5 implies that, if robots reach a configuration in Γf
m, Γb

m, or Γfb
m , at least one of

F0 and B0 has crashed. This implies that, in these configurations, at least one spare robot
never crashes because the initial number of spare robots is f and at most f robots crash.
Hence the following corollary holds.

▶ Corollary 6. Consider γ ∈ Γf
m ∪ Γb

m ∪ Γfb
m for some m. After γ, at least one spare robot

never crashes.

▶ Lemma 7. Consider γ ∈ Γb
m for some m. After γ, robots eventually reach a configuration

in Γsafe
m′ for some m′ > m.

Proof. From the definition of legitimate configurations, m ≤ f ′(γ) holds. Recall that, from
the definition of Γb

m, either Bm exists (and has crashed) in γ or m + 1 ≤ f ′(γ) holds. In γ,
spare robots can execute Rule S3 and forward robot Fm can execute Rule F2. Note that from
Corollary 6 at least one spare robot never crashes. Let γ′ be a next configuration of γ. We
consider three cases depending on the behavior of Fm between γ and γ′. The configurations
are illustrated in Fig. 3. For all cases, we prove that robots reach a configuration in Γsafe

m+1
or Γb

m+1.

Case 1: Fm does not crash between γ and γ′. In this case, Fm changes its color to Bm+1
and moves to its neighboring node by Rule F2.

Case 1-1: Some spare robot becomes Fm+1 at the same time. In this case m(γ′) = m+1
holds. If Bm exists and has crashed in γ, we have f ′(γ′) ≥ f ′(γ)+1 (because Bm is not
counted in f ′(γ) but counted in f ′(γ′)) and hence m(γ′) = m + 1 ≤ f ′(γ) + 1 ≤ f ′(γ′)
holds. Otherwise, m(γ′) = m + 1 ≤ f ′(γ) ≤ f ′(γ′) holds. Since m(γ′) ≤ f ′(γ′) holds
and we can easily check other conditions, γ′ ∈ Γsafe

m+1 holds.
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Case 1-2: No spare robot becomes Fm+1. In this case, Bm+1 cannot execute any rule
and spare robots can execute rule S2 in γ′. Hence eventually some spare robot becomes
Fm+1 in some configuration γ′′. Similarly to the above case, γ′′ ∈ Γsafe

m+1 holds.
Case 2: Fm crashes before it changes its color.

Case 2-1: Some spare robot becomes Fm+1 in γ′. In this case, m(γ′) = m + 1 holds. If
Bm exists and has crashed in γ, since Fm also crashes, we have f ′(γ′) ≥ f ′(γ) + 2 and
hence m(γ′) + 1 = m + 2 ≤ f ′(γ) + 2 ≤ f ′(γ′). Otherwise, m + 1 ≤ f ′(γ) holds, and,
since Fm crashes between γ and γ′, we have f ′(γ′) ≥ f ′(γ) + 1 ≥ m + 2 = m(γ′) + 1.
Hence m(γ′) + 1 ≤ f ′(γ′) holds, and, since we can easily check other conditions,
γ′ ∈ Γb

m+1 holds.
Case 2-2: No spare robot becomes Fm+1. In this case, spare robots can execute rule
S3 in γ′. Hence eventually some spare robot becomes Fm+1 in some configuration γ′′.
Similarly to the above case, γ′′ ∈ Γb

m+1 holds.
Case 3: Fm crashes after it changes its color to Bm+1 before it moves.

Case 3-1: Some spare robot becomes Fm+1 at the same time. In this case, m(γ′) = m+1
holds. If Bm exists and has crashed in γ, f ′(γ′) ≥ f ′(γ)+1 (because Bm is not counted
in f ′(γ) but counted in f ′(γ′)) and hence m(γ′) = m + 1 ≤ f ′(γ) + 1 ≤ f ′(γ′) holds.
Otherwise, m(γ′) = m + 1 ≤ f ′(γ) ≤ f ′(γ′) holds. Hence m(γ′) ≤ f ′(γ′) holds, and,
since Bm+1 has crashed and we can easily check other conditions, γ′ ∈ Γb

m+1 holds.
Case 3-2: No spare robot becomes Fm+1. In this case, spare robots can execute rule S3.
Hence eventually some spare robot becomes Fm+1 in some configuration γ′′. Similarly
to the above case, γ′′ ∈ Γb

m+1 holds.

For all cases, we have proved that robots reach a configuration in Γsafe
m+1 or Γb

m+1. If they
reach a configuration in Γb

m+1, by the same discussion they reach a configuration in Γsafe
m+2 or

Γb
m+2. We can repeat this discussion, however robots change the configuration from one in

Γb
m+i for some i to one in Γb

m+i+1 only if Fm+i crashes. Since the number of crashes is at
most f , eventually robots reach a configuration in Γsafe

m′ for some m′ > m. ◀

▶ Lemma 8. Consider γ ∈ Γf
m for some m. After γ, robots eventually reach a configuration

in Γsafe
m′ for some m′ > m.

Proof. From the definition of legitimate configurations, m ≤ f ′(γ) holds. In γ, spare robots
can execute Rule S3 and backward robot Bm can execute Rule B2. Note that from Corollary
6 at least one spare robot never crashes. Let γ′ be a next configuration of γ. We consider two
cases depending on the behavior of Bm between γ and γ′. The configurations are illustrated
in Fig. 4. For all cases, we prove that robots reach a configuration in Γsafe

m+1 or Γb
m+1. This

derives the lemma because from a configuration in Γb
m+1 robots reach a configuration in

Γsafe
m′ for some m′ > m + 1 by Lemma 7.

Case 1: Bm does not crash between γ and γ′. In this case, Bm changes its color to Bm+1.
Case 1-1: Some spare robot becomes Fm+1 at the same time. In this case m(γ′) = m+1
holds. Since Fm has crashed in γ, we have f ′(γ′) ≥ f ′(γ)+1 because Fm is not counted
in f ′(γ) but counted in f ′(γ′). Hence m(γ′) = m + 1 ≤ f ′(γ) + 1 ≤ f ′(γ′) holds, and,
since we can easily check other conditions, γ′ ∈ Γsafe

m+1 holds.
Case 1-2: No spare robot becomes Fm+1. In this case, Bm+1 cannot execute any rule
and spare robots can execute rule S2. Hence eventually some spare robot becomes
Fm+1 in some configuration γ′′. Similarly to the above case, γ′′ ∈ Γsafe

m+1 holds.
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Figure 4 Cases in the proof of Lemma 8.

Case 2: Bm crashes before it changes its color.
Case 2-1: Some spare robot becomes Fm+1 in γ′. In this case, m(γ′) = m + 1 holds.
Since Fm and Bm have crashed in γ′, we have f ′(γ′) ≥ f ′(γ′)+2 because Fm and Bm are
not counted in f ′(γ) but counted in f ′(γ′). Hence m(γ′)+1 = m+2 ≤ f ′(γ)+2 ≤ f ′(γ′)
holds, and, since we can easily check other conditions, γ′ ∈ Γb

m+1 holds.
Case 2-2: No spare robot becomes Fm+1. In this case, spare robots can execute rule S3.
Hence eventually some spare robot becomes Fm+1 in some configuration γ′′. Similarly
to the above case, γ′′ ∈ Γb

m+1 holds. ◀

▶ Lemma 9. Consider γ ∈ Γfb
m for some m. After γ, robots eventually reach a configuration

in Γsafe
m′ for some m′ > m.

Proof. From the definition of legitimate configurations, m ≤ f ′(γ) holds. In γ, spare robots
can execute Rule S3. Note that from Corollary 6 at least one spare robot never crashes.
Hence eventually some spare robot becomes Fm+1 in γ′. Now m(γ′) = m + 1 holds. Since
Fm and Bm have crashed in γ, we have f ′(γ′) ≥ f ′(γ) + 2 because Fm and Bm are not
counted in f ′(γ) but counted in f ′(γ′). Hence m(γ′) + 1 = m + 2 ≤ f ′(γ) + 2 ≤ f ′(γ′) holds,
and, since we can easily check other conditions, γ′ ∈ Γb

m+1 holds. This derives the lemma
because from a configuration in Γb

m+1 robots reach one in Γsafe
m′ for some m′ > m + 1 by

Lemma 7. ◀

▶ Theorem 10. Algorithm 1 solves perpetual exploration on rings with n ≥ 4 in the FSYNC
model even if at most f robots crash. It uses f + 2 robots and 3f + 2 colors.

Proof. The initial configuration is in Γsafe
0 . If Fm or Bm crashes in a configuration in Γsafe

m

for some m, robots reach a configuration in Γf
m, Γb

m, or Γfb
m . However, by Lemmas 7, 8, and

9, they eventually reach a configuration in Γsafe
m′ for some m′ > m. Since at most f robots

crash, eventually they keep configurations in Γsafe
m′′ for some m′′ forever. Hence, by Lemma

5, robots achieve perpetual exploration. From the definition, the algorithm uses f + 2 robots
and 3f + 2 colors. ◀

4 The SSYNC and ASYNC models

In this section, we consider crash-tolerant perpetual exploration in the SSYNC and ASYNC
models.

4.1 Possibility
As described in Section 1.2, we can design simple crash-tolerant algorithms by having f + 1
teams of robots independently execute crash-free algorithms. Note that the team size depends
on ϕ. When ϕ ≥ 2, a team of two robots (e.g., red and blue robots) can achieve perpetual
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exploration as follows: if the two robots are neighbors, the red robot moves away from the
blue robot; otherwise, the blue robot moves toward the red robot [18]. This behavior is not
feasible when ϕ = 1, however by adding an additional robot, they can achieve perpetual
exploration as demonstrated in [19]. We formalize these facts in the following theorem.

▶ Theorem 11. In the SSYNC and ASYNC models, when at most f robots crash, 3f + 3
(resp., 2f + 2) robots with 2f + 2 colors can achieve perpetual exploration on rings with n ≥ 3
(resp., n ≥ 5) if ϕ = 1 (resp., ϕ ≥ 2).

Proof. In case of ϕ = 1, there exists an algorithm A such that three robots with two colors
can achieve perpetual exploration on rings with n ≥ 3 when no robot crashes [19]. Let ColA
be the set of colors used in A. Assume that, in the initial configuration of A, three robots
r1, r2, and r3 have colors c1, c2, and c3 and occupy nodes w1, w2, and w3, respectively. In
the following, we convert algorithm A to algorithm A′ that works when at most f robots
crash. The set of colors used in A′ is defined as ColA′ = {0, . . . , f} × ColA (this implies
|ColA′ | = 2f + 2). Algorithm A′ divides 3f + 3 robots r1, . . . , r3f+3 into f + 1 groups and
makes each group execute algorithm A. That is, for g ∈ {0, . . . , f} and i ∈ {1, 2, 3}, A′

makes robot r3g+i have color (g, ci) and occupy node wi in the initial configuration. After
that, for each g, three robots with colors (g, c) (c ∈ ColA) make the same behavior as A by
changing the second elements of their colors. When at most f robots crash, all robots in at
least one group execute algorithm A correctly. Hence A′ achieves perpetual exploration.

In case of ϕ ≥ 2, there exists an algorithm such that two robots with two colors can
achieve perpetual exploration on rings with n ≥ 5 when no robot crashes [18]. Similarly to
the above case, we can construct a crash-tolerant algorithm. ◀

4.2 Impossibility
In the previous subsection, we proved that, when at most f robots crash, 3f + 3 (resp.,
2f + 2) robots can achieve perpetual exploration if ϕ = 1 (resp., ϕ ≥ 2). In this subsection,
we prove that these numbers of robots are necessary. To prove this fact, we use the following
lemmas for the case of no crashed robots.

▶ Lemma 12 ([19]). If the number of robots is one, the robot cannot visit more than two
nodes regardless of the number of colors in the FSYNC, SSYNC, and ASYNC models.

▶ Lemma 13 ([19]). If the number of robots is two and ϕ = 1 holds, the robots cannot visit
more than five nodes regardless of the number of colors in the SSYNC and ASYNC models.

Since these lemmas are almost trivial, we give brief proofs of them. If the number of
robots is one, the view of the robot is always symmetric and hence the scheduler decides the
direction of the movement. This makes the robot continue to move backward and forward
on two neighboring nodes. If the number of robots is two and ϕ = 1 holds, the scheduler can
make two robots separated. This is because, when two robots move in the same directions,
the scheduler can activate only the head robot. Once two robots get separated, the views of
the two robots are symmetric, and hence they continue to move backward and forward on
neighboring nodes.

In the rest of this section, we prove the main impossibility. To prove the impossibility,
we consider the behaviors of robots on an infinite line. This is because, if robots can achieve
perpetual exploration in any ring, they should visit infinite nodes on an infinite line. Indeed,
if robots can visit at most n nodes on an infinite line, they can also visit at most n nodes on
a ring with more than n + ϕ nodes and hence they cannot achieve perpetual exploration. On
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an infinite line, we define a hole as a set of successive non-occupied nodes such that each end
node is a neighbor of an occupied node. The size of a hole is defined as the number of nodes
in the hole.

▶ Theorem 14. Fix the SSYNC or ASYNC model. Fix visibility ϕ. In this setting, assume
that, if the number of robots is smaller than x, the robots cannot visit more than n0 nodes
regardless of the number of colors when no robots crash. In the same setting, there exists an
integer nf such that, if the number of robots is smaller than (f + 1)x, the robots cannot visit
more than nf nodes regardless of the number of colors when at most f robots crash.

Proof. We prove the following proposition by induction.

Proposition A: For any integer h ≥ 0, there exists an integer nh such that, if the
number of robots is smaller than (h + 1)x, the robots cannot visit more than nh nodes
regardless of the number of colors when at most h robots crash.

From the assumption of the theorem, Proposition A holds for h = 0. In the following, we
assume that, for some k ≥ 1, the proposition holds for the case of h = 0, . . . , k − 1. To prove
the case of h = k, we prove the following proposition by induction.

Proposition B: For any integer i (0 ≤ i ≤ x − 1), there exists an integer mi such
that, if the number of robots is kx + i, the robots cannot visit more than mi nodes
regardless of the number of colors when at most k robots crash.

Recall that we assume Proposition A for h = k − 1. This implies that, if the number of
robots is smaller than kx, the robots cannot visit more than nk−1 nodes when at most k − 1
robots crash. Hence Proposition B holds for i = 0 by assigning m0 = nk−1. In the following
claim, we consider the inductive case.

▷ Claim 15. Assume that, for some ℓ (1 ≤ ℓ ≤ x−1), Proposition B holds for i = 0, . . . , ℓ−1.
In this case, Proposition B holds for i = ℓ.

Proof. For contradiction, assume that kx + ℓ robots can visit any number of nodes when at
most k robots crash. Let D = 2(max{n0, . . . , nk−1, m0, . . . , mℓ−1}+ ϕ).

Let r be some robot. Starting from an initial configuration, the scheduler activates all
robots except for r. Note that such an activation is possible during an arbitrarily long period
in the SSYNC and ASYNC model. Since robots can visit any number of nodes even when r

has crashed, eventually a hole with size D is created. Let γ be the first such configuration.
We divide a set of all robots into two sets A and B so that a hole with size D exists between
A and B in γ. Without loss of generality, we assume 1 ≤ |A| ≤ |B|. We consider two cases.

Case 1: Consider the case that |A| ≤ ℓ holds. Consequently |B| = kx + j holds for
j = ℓ− |A| ≥ 0. In this case, after configuration γ, we assume that no robots in A crash
and that at most k robots in B crash. Since |A| < x, robots in A cannot visit more
than n0 nodes unless they meet some robot in B. From the assumption of Claim 15
and |B| = kx + j for j = ℓ− |A| ≤ ℓ− 1, robots in B cannot visit more than mj nodes
unless they meet some robot in A. From the definition of D, robots in A and B cannot
meet, and hence the number of nodes they can visit is finite. That is, this case derives a
contradiction.
Case 2: Consider the case that |A| > ℓ holds. Let a and b are integers such that
|A| = ℓ + ax + b, 0 ≤ a, and 0 ≤ b ≤ x− 1. Note that a > 0 ∨ b > 0 holds. Consequently
|B| = (k− a)x− b holds, and we have a < k/2 from |A| ≤ |B|. We further consider three
sub-cases depending on k and b.
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Case 2-1: Consider the case of k = 1. From a < k/2, we have a = 0 and consequently
b > 0. This implies that |A| ≤ |B| = x− b < x. Hence, from the inductive assumption
of Proposition A, robots in A (resp. B) cannot visit more than n0 nodes unless they
meet some robot in B (resp. A). From the definition of D, robots in A and B cannot
meet, and hence the number of nodes they can visit is finite. That is, this sub-case
derives a contradiction.
Case 2-2: Consider the case of k ≥ 2 and b > 0. In this case, after configuration
γ, we assume that at most a + 1 robots in A crash and at most k − a− 1 robots in
B crash. From a + 1 < k/2 + 1 ≤ k/2 + k/2 = k, we have a + 1 ≤ k − 1 because
a and k are integers. Hence, from the inductive assumption of Proposition A and
|A| = ℓ + ax + b < (a + 2)x, robots in A cannot visit more than na+1 nodes unless they
meet some robot in B. Similarly, from k−a−1 ≤ k−1 and |B| = (k−a)x−b < (k−a)x,
robots in B cannot visit more than nk−a−1 nodes unless they meet some robot in A.
From the definition of D, robots in A and B cannot meet, and hence the number of
nodes they can visit is finite. That is, this sub-case derives a contradiction.
Case 2-3: Consider the case of k ≥ 2 and b = 0. This implies a > 0. In this case, after
configuration γ, we assume that at most a robots in A crash and at most k − a robots
in B crash. Since a ≤ k− 1 holds, from the inductive assumption of Proposition A and
|A| = ℓ + ax < (a + 1)x, robots in A cannot visit more than na nodes unless they meet
some robot in B. Similarly, from k − a ≤ k − 1 and |B| = (k − a)x < (k − a + 1)x,
robots in B cannot visit more than nk−a nodes unless they meet some robot in A.
From the definition of D, robots in A and B cannot meet, and hence the number of
nodes they can visit is finite. That is, this sub-case derives a contradiction.

Since all cases derive a contradiction, we have proved the claim. ◁

Since both the base case and the inductive case (Claim 15) hold, Proposition B holds for
any i (0 ≤ i ≤ x− 1). This implies that Proposition A holds for h = k. Hence, the theorem
holds. ◀

From Theorem 14 and Lemmas 12 and 13, we have the following corollaries.

▶ Corollary 16. In the SSYNC and ASYNC models, if the number of robots is smaller than
2f + 2, the robots cannot achieve perpetual exploration regardless of the number of colors
when at most f robots crash.

▶ Corollary 17. In the SSYNC and ASYNC models, if the number of robots is smaller than
3f + 3 and ϕ = 1 holds, the robots cannot achieve perpetual exploration regardless of the
number of colors when at most f robots crash.

5 Conclusions

We investigate crash-tolerant perpetual exploration algorithms by myopic luminous robots
on ring networks. As a main contribution, we clarify the tight necessary and sufficient
number of robots to realize perpetual exploration when at most f robots crash. In the fully
synchronous model, we prove that f + 2 robots are necessary and sufficient for any ϕ ≥ 1. In
the semi-synchronous and asynchronous models, we prove that 3f + 3 (resp., 2f + 2) robots
are necessary and sufficient if ϕ = 1 (resp., ϕ ≥ 2).

This paper leaves many interesting open issues.
What is the minimum number of colors to achieve perpetual exploration with optimal
number of robots?
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What is the minimum number of robots and colors to achieve terminating exploration?
It is easy to observe that one additional robot with one additional color is sufficient to
realize terminating exploration. The special robot just stops as a landmark, and other
robots execute perpetual exploration from the landmark. Then, when the robots come
back to the landmark from the opposite direction, they stop moving. The question is
whether such an additional robot and/or an additional color is necessary for any f?
Is it possible to weaken the assumptions about initial positions and colors? The proposed
algorithms, like those in related works, assume specific initial positions and colors. Some
assumptions of initial positions are essential, as exploration is impossible if no robot
observes another initially. The question is whether the problem is solvable given certain
initial positions and arbitrary colors.
It is also interesting to study other tasks such as pattern formation and complete visibility.
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