
Near-Optimal Communication Byzantine Reliable
Broadcast Under a Message Adversary
Timothé Albouy #

Univ Rennes, Inria, CNRS, IRISA,
35042 Rennes-cedex, France

Davide Frey #

Univ Rennes, Inria, CNRS, IRISA,
35042 Rennes-cedex, France

Ran Gelles #

Bar-Ilan University, Ramat Gan, Israel
Carmit Hazay #

Bar-Ilan University, Ramat Gan, Israel

Michel Raynal #

Univ Rennes, Inria, CNRS, IRISA,
35042 Rennes-cedex, France

Elad Michael Schiller #

Chalmers University of Technology,
Gothenburg, Sweden

François Taïani #

Univ Rennes, Inria, CNRS, IRISA,
35042 Rennes-cedex, France

Vassilis Zikas #

Georgia Institute of Technology,
Atlanta, GA, USA

Abstract
We address the problem of Reliable Broadcast in asynchronous message-passing systems with n

nodes, of which up to t are malicious (faulty), in addition to a message adversary that can drop
some of the messages sent by correct (non-faulty) nodes. We present a Message-Adversary-Tolerant
Byzantine Reliable Broadcast (MBRB) algorithm that communicates O(|m|+ nκ) bits per node,
where |m| represents the length of the application message and κ = Ω(log n) is a security parameter.
This communication complexity is optimal up to the parameter κ. This significantly improves
upon the state-of-the-art MBRB solution (Albouy, Frey, Raynal, and Taïani, TCS 2023), which
incurs communication of O(n|m|+ n2κ) bits per node. Our solution sends at most 4n2 messages
overall, which is asymptotically optimal. Reduced communication is achieved by employing coding
techniques that replace the need for all nodes to (re-)broadcast the entire application message m.
Instead, nodes forward authenticated fragments of the encoding of m using an erasure-correcting
code. Under the cryptographic assumptions of threshold signatures and vector commitments, and
assuming n > 3t + 2d, where the adversary drops at most d messages per broadcast, our algorithm
allows at least ℓ = n− t− (1 + ϵ)d (for any arbitrarily low ϵ > 0) correct nodes to reconstruct m,
despite missing fragments caused by the malicious nodes and the message adversary.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Asynchronous message-passing, Byzantine fault-tolerance, Message adversary,
Reliable broadcast, Erasure-correction codes, Threshold signatures, Vector commitments

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2024.14

Funding This work was partially supported by the French ANR projects ByBloS (ANR-20-CE25-
0002-01) and PriCLeSS (ANR-10-LABX-07-81), devoted to the modular design of building blocks for
large-scale Byzantine-tolerant multi-users applications. Research supported in part by the United
States-Israel Binational Science Foundation (BSF) through Grant No. 2020277.

Acknowledgements R. Gelles would like to thank Paderborn University and CISPA – Helmholtz
Center for Information Security for hosting him while part of this research was done.

1 Introduction

Reliable Broadcast allows n asynchronous nodes to agree eventually on a message sent
by a designated node, the sender, despite the possible malicious behavior by some nodes
and the transmission network. Reliable broadcast plays a crucial role in key applications,

© Timothé Albouy, Davide Frey, Ran Gelles, Carmit Hazay, Michel Raynal, Elad Michael Schiller,
François Taïani, and Vassilis Zikas;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles of Distributed Systems (OPODIS 2024).
Editors: Silvia Bonomi, Letterio Galletta, Etienne Rivière, and Valerio Schiavoni; Article No. 14; pp. 14:1–14:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:timothe.albouy@irisa.fr
https://orcid.org/0000-0001-9419-6646
mailto:davide.frey@inria.fr
https://orcid.org/0000-0002-6730-5744
mailto:ran.gelles@biu.ac.il
https://orcid.org/0000-0003-3615-3239
mailto:carmit.hazay@biu.ac.il
https://orcid.org/0000-0002-8951-5099
mailto:michel.raynal@irisa.fr
https://orcid.org/0000-0002-3355-8719
mailto:elad.schiller@chalmers.se
https://orcid.org/0000-0003-3258-3696
mailto:francois.taiani@irisa.fr
https://orcid.org/0000-0002-9692-5678
mailto:vzikas@gatech.edu
https://orcid.org/0000-0002-5422-7572
https://doi.org/10.4230/LIPIcs.OPODIS.2024.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Near-Optimal Communication BRB Under a Message Adversary

including consensus algorithms, replication, event notification, and distributed file systems.
These systems sometimes require broadcasting large messages or files (e.g., permissioned
blockchains), and thus, reducing the communication overhead to a minimum is an important
aspect of achieving scalability. In that vein, this work aims at providing communication
efficient solutions for the task of reliable broadcast in the presence of node and link faults.

Byzantine nodes [20, 29] are faulty nodes that are assumed to act cooperatively in an
arbitrary manner to hinder the non-faulty nodes (also known as correct nodes) from reaching
an agreement on the value of a sent message. These faulty nodes can manifest in various
ways, such as delivering fake messages that were never sent, altering the payload of messages
sent by any faulty nodes, delaying message delivery, or even omitting messages altogether.
Also, a Byzantine failure can present itself differently to different nodes.

Solving reliable broadcast in the presence of Byzantine nodes (a problem known as BRB
for Byzantine Reliable Broadcast [10]) has been extensively studied for at least four decades.
Bracha [11, 12] in particular showed that BRB could be implemented in asynchronous
networks as soon as the number t of Byzantine nodes is limited to be less than a third of the
nodes. This seminal result has since been followed by hundreds of works, with a various range
of optimizations and tradeoffs between different parameters such as resilience, efficiency, and
communication; see [38] for an excellent book on this topic.

A significant challenge to reliable broadcast algorithms arises when the message-passing
system is unreliable and possibly cooperates with the Byzantine nodes. Link faults [41, 43]
give Byzantine nodes (potentially limited) control over certain network links, enabling
them to omit or corrupt messages (an ability captured under the umbrella term message
adversary [37]). This work focuses on a specific type of message adversary [37] that can
only omit messages sent by correct nodes, but that cannot alter their content. This message
adversary abstracts cases related to silent churn, where nodes may voluntarily or involuntarily
disconnect from the network without explicitly notifying other nodes. During disconnection,
the adversary causes correct nodes to pause the execution of their algorithm temporarily and
resume upon reconnecting. In the message adversary model, correct nodes may miss messages
sent over reliable communication channels by other nodes while they are disconnected, as
there is no explicit notification about the message omission.

Problem overview. We assume n nodes over an asynchronous network, where a message
can be delayed for an arbitrary yet finite amount of time (unless omitted by the message
adversary). We assume the existence of t Byzantine nodes and a message adversary capable
of omitting up to d messages per node’s broadcast. To be more precise, a node communicates
through a comm primitive (or a similar multicast/unicast primitive that targets a dynamically
defined subset of nodes), which results in the transmission of n messages, with each node
being sent one message, including the sender. The message adversary can omit messages in
transit to a subset of at most d correct nodes. The adversary is only limited by the size of
that subset. For instance, between different comm invocations, the adversary can modify the
set of correct nodes to which messages are omitted. Furthermore, a designated sender node
holds a message m that it wishes to broadcast to all the nodes.

An algorithm that satisfies the requirements of reliable broadcast despite Byzantine
nodes and a message adversary is called a Message-adversary Byzantine Reliable Broadcast
(MBRB) algorithm. The detailed version of MBRB’s requirements was formulated in [4], see
Section 2. We informally summarize them here as follows. (1) For any sender invoking the
broadcast algorithm, no two correct nodes deliver m and m′, such that m′ ≠ m. (2) For any
sender invoking the broadcast algorithm, either zero or at least ℓ correct nodes will deliver m.

T. Albouy et al. 14:3

The quantity ℓ might depend on the adversary’s power, i.e., on t and d. (3) If a correct
node delivers some message m from a correct sender, this correct sender has broadcast m

previously and at least ℓ correct nodes will deliver it.

Background. Albouy, Frey, Raynal, and Taïani [4] recently proposed a Message-adversary
Byzantine Reliable Broadcast algorithm (denoted AFRT for short) for asynchronous networks
that withstands the presence of t Byzantine nodes and a message adversary capable of omitting
up to d messages per node’s broadcast. AFRT guarantees the reliable delivery of any message
when n > 3t+2d. Moreover, they demonstrate the necessity of this bound on the number of
Byzantine nodes and omitted messages, as no reliable broadcast algorithm exists otherwise.

One caveat of AFRT regards its communication efficiency. While it achieves an optimal
number of O(n2) messages, and an optimal delivery power ℓ = n − t − d, each node’s
communication requires O(n · (|m|+ nκ)) bits, where |m| represents the number of bits in
the broadcast message and κ is the length of the digital signatures used in their algorithm.
In the current work, we design an algorithm that significantly reduces the communication
cost per node while preserving the total number of messages communicated. Our solution
features at most 4n messages per correct node (corresponding to 4n2 messages overall),
and only O(|m|+ nκ) bits per correct node. Overall, O(n|m|+ n2κ) bits are communicated
by correct nodes. This bound is tight (up to the size of the signature κ) for deterministic
algorithms using signatures [18, 33], as every correct node must receive the message m, and
as the reliable broadcast of a single bit necessitates at least Ω(n2) messages [21].

Contributions and techniques. This paper is the first to present an MBRB algorithm able
to tolerate a hybrid adversary combining t Byzantine nodes and a Message Adversary of
power d, while providing optimal Byzantine resilience, near-optimal communication, and
near-optimal delivery power ℓ.

▶ Theorem 1.1 (Main, informal). For any ε > 0, there exists an efficient MBRB algorithm,
such that every message m broadcast via this scheme is delivered by at least ℓ = n−t−(1+ε)d
correct nodes under the assumption n > 3t + 2d. Each correct node communicates no more
than 4n messages and O(|m|+ nκ) bits overall, where |m| is the length of the message m.

The above asymptotic communication complexity holds assuming a sufficiently long
message m. Further, n − t − d is a natural upper bound on the delivery power ℓ of any
MBRB algorithm. This bound arises from the power of the message adversary to isolate
a subset of the correct parties of size d, and omit all messages sent to this subset. Our
solution obtains a delivery power ℓ that is as close to the limit as desired, at the cost of
increasing communication (through the hidden constants in the asymptotic O(·) term, which
depends on ε). Finally, n > 3t + 2d is a necessary condition to implement MBRB under
asynchrony [3], thus making our solution optimal in terms of Byzantine resilience.

The starting point of our algorithm is the AFRT algorithm [4]. This algorithm achieves
all the desired MBRB properties (Definition 2.3), albeit with a large communication cost
of at least n2|m| bits overall. This communication cost stems from the re-emission strategy
used by AFRT. In the AFRT algorithm, the sender first disseminates the message m to all
nodes. To counter a possibly faulty sender, each node that receives m signs it and forwards
it to the entire network, along with its own signature and any other signature observed so
far for that message. This re-broadcasting step leads to n2|m| bits of communication.

OPODIS 2024

14:4 Near-Optimal Communication BRB Under a Message Adversary

In order to reduce the communication costs, we apply a coding technique, inspired by an
approach by Alhaddad et al. [5]. Instead of communicating the message m directly, the sender
first encodes the message using an error-correction code and “splits” the resulting codeword
between the nodes, so that each node receives one fragment of size O(|m|/n) bits. Now, each
node needs to broadcast only its fragment of the message rather than the entire message.
This reduced per-node communication effectively reduces the overall communication for
disseminating the message itself to n|m| bits.

Due to the message adversary and the actions of the Byzantine nodes, some of the
fragments might not arrive at their destination. Error-correction codes have the property
that the message m can be reconstructed from any sufficiently large subset of the fragments.
But Byzantine nodes can do even worse, namely, they can propagate an incorrect fragment.
Correct nodes cannot distinguish correct fragments from incorrect ones (at least, not until
enough fragments are collected, and the message is reconstructed). Without this knowledge,
correct nodes might assist the Byzantine nodes in propagating incorrect fragments, possibly
harming the correctness and/or performance of the algorithm. To prevent this, the sender
could sign each fragment that it sends. A node receiving a fragment could then verify that it
is correctly signed by the sender and ignore it otherwise. The drawback of this solution is
that only the sender can generate signatures for fragments.

In our MBRB algorithm, we rely on correct nodes that have already reconstructed the
correct message to disseminate its fragments to the nodes that have not received any (say,
due to the message adversary). In principle, when a node reconstructs the correct message,
it can generate the codeword and obtain all the fragments, even if it did not receive some of
them beforehand. However, the node cannot generate the sender’s signature for the fragments
it generated by itself. Because of this, the node cannot relay these fragments to the other
nodes, potentially leading to a reduced delivery power ℓ.

We avert this issue by exploiting vector commitments [15]. This cryptographic primitive
generates a unique short digest C for any input vector of elements V . Additionally, it
generates succinct proofs of inclusion for each element in V . In our system, the fragments of
the (coded) message m form the vector V , and the inclusion proofs replace the need to sign
each fragment separately. In more detail, every fragment of the codeword communicated by
some node is accompanied by two pieces of information: the commitment C for the vector V

containing all fragments of m, and a proof of inclusion showing that the specific fragment
indeed belongs to V (see Section 2 for a formal definition of these properties). The sender
signs only the commitment C. This means that Byzantine nodes cannot generate an incorrect
fragment and a proof that will pass the verification, since they cannot forge the sender’s
signature on C. Yet, given the message m, generating a proof of inclusion for any specific
fragment can be done by any node. The vector commitment on the message m creates the
same commitment C and the same proofs of inclusion generated by the sender. These could
then be propagated to any other node along with the sender’s signature on C.

To complete the description of our MBRB algorithm, we mention that, similar to AFRT,
our algorithm tries to form a quorum of signatures on some specific vector commitment C. In
parallel, nodes collect fragments they verify as part of the message whose vector commitment
is C. Once a node collects enough signatures (for some C) and at the same time obtains enough
message fragments that are proven to belong to the same C, the node can reconstruct m and
deliver (accept) it. At this point, the node also disseminates the quorum of signatures along
with (some of) the fragments. This allows other correct nodes to reconstruct the message
and verify a quorum has been reached. In fact, the dissemination of fragments, including
fragments that this node did not have before reconstructing the message, is a crucial step in
amplifying the number of nodes that deliver m to our stated level of ℓ = n− t− (1 + ε)d.
See the full description of the MBRB algorithm in Section 3.

T. Albouy et al. 14:5

Although our algorithm builds quorums on commitments, it departs substantially from the
BRB algorithm proposed by Das, Xiang, and Ren [18], which avoids signatures and relies on
hashes only. Their solution provides an overall communication complexity in O(n|m|+ n2κ)
that is optimal up to the κ parameter. Following the sender’s initial dissemination of message
m, their proposal runs Bracha’s algorithm on the hash value of the broadcast message to
ensure agreement. Unfortunately, when used with a message adversary, Bracha’s algorithm
loses the sub-optimal Byzantine resilience n > 3t + 2d that AFRT and our solution provide,
which is why the solution presented in this paper avoids it. (See Section C for a more detailed
discussion of why this is so.) Due to the page limit, our algorithm’s complete analysis and
proof details appear in the Appendix.

Related work. Byzantine reliable broadcast (BRB) can be traced back to Pease, Shostak, and
Lamport [34], which considered the particular case of synchronous message-passing systems.
Since then, solutions for reliable broadcast, together with the related consensus problem, have
been considered for many distributed systems [38]. In asynchronous systems, BRB solutions
can be traced back to Bracha and Toueg [11, 12]. Recent advances [30, 27, 9, 23] in Byzantine
fault-tolerant (BFT) solutions to the problem of BRB include the above-mentioned AFRT [4],
which safeguards also against the message adversary. Our solution features substantially
lower communication than AFRT, without harming the other properties, e.g., the number of
messages or the delivery power.

Computation in networks with link faults, namely, with Byzantine links was considered
by Santoro and Widmayer [41, 42], who discussed various types of Byzantine actions, e.g.,
omitting messages, corrupting messages, injecting messages, and combinations thereof. The
works of [6, 43] focus on the case of reliable broadcast with such faults. In [35], Pelc proved
that robust communication is feasible over graphs whose edge-connectivity is more than 2f ,
assuming the number of Byzantine links is bounded by f . This is also implied by the
work of Dolev [20]. Censor-Hillel et al. [16] and Frei et al. [24] show that any computation
can be performed when all links suffer arbitrary substitution faults (but no crashes), given
that the network is 2-edge connected. When all links suffer corruption, but their overall
amount is restricted, any computation can be reliably performed by Hoza and Schulman [28],
for synchronous networks where the topology is known, or by Censor-Hillel, Gelles, and
Haeupler [17], for asynchronous networks with unknown topology, see also [25].

Settings that allow Byzantine nodes in addition to faulty links were considered [7, 8, 19,
26, 36, 46]. Building on [4], the algorithm was also extended to signature-free asynchronous
systems [3], albeit with lower delivery guarantees, and a weaker resilience with respect to d

and t. We consider fully connected asynchronous networks, Byzantine nodes, and omission
only link failures. But, our MBRB is the first, to the best of our knowledge, to offer a
near-optimal communication (up to the length of the signature, κ) and delivery power ℓ.

Coding techniques are implemented to minimize the dissemination costs associated with
message transmission across the network, ensuring the ability to reconstruct data in the
event of node failures or adversarial compromises. In the context of Blockchains, significant
contributions have been made by Cachin and Tessaro [14] as well as Cachin and Poritz
in SINTRA [13], followed by its successors such as HoneyBadgersBFT [32], BEAT [22],
DispersedLedger [47] and Alhaddad et al. [5]. These solutions leverage digital signatures and
coding techniques to provide a balanced and reliable broadcast. Our work contributes to
the advancement of the state of the art in the field of coded reliable broadcast by offering
improved fault-tolerance guarantees that are stronger than the aforementioned solutions.

OPODIS 2024

14:6 Near-Optimal Communication BRB Under a Message Adversary

2 Preliminaries

General notations and conventions. For a positive integer n, let [n] denote the set {1, 2, . . . , n}.
A sequence of elements (x1, . . . , xn) is shorthanded as (xi)i∈[n]. We use the symbol ‘-’ to
indicate any possible value. That is, (h, -) means a tuple where the second index includes
any arbitrary value which we do not care about. All logarithms are base 2.

Nodes and Network. We focus on asynchronous message-passing systems that have no
guarantees of communication delay. The system consists of a set, P = {p1, . . . , pn}, of n

fail-prone nodes that cannot access a clock or use timeouts. We identify node i with pi.
Communication means. Any ordered pair of nodes pi, pj ∈ P has access to a communication
channel, channeli,j . Each node can send messages to all nodes (possibly by sending a
different message to each node). That is, any node, pi ∈ P, can invoke the transmission
macro, comm(m1, . . . , mn), that communicates the message mj to pj over channeli,j . The
message mj can also be empty, in which case nothing will be sent to pj . However, in
our algorithms, all messages sent in a single comm activation will have the same length.
Furthermore, when a node sends the same message m to all nodes, we write broadcast(m) =
comm(m, m, . . . , m) for shorthand. We call each message mj transmitted by the protocol
an implementation message (or simply, a message) to distinguish such messages from the
application-level messages, i.e., the one the sender wishes to broadcast.
Byzantine nodes. Faulty nodes are called Byzantine, and their adversarial behavior can
deviate from the proposed algorithm in any manner. For example, they may crash or send
fake messages. Their ability to communicate and collude is unlimited. They might perform
any arbitrary computation, and we assume their computing power is at least as strong as
that of non-faulty nodes, yet not as strong as to undermine the security of the cryptographic
signatures we use. We assume that at most t nodes are faulty, where t is a value known to
the nodes. Non-faulty nodes are called correct nodes. The set of correct nodes contains c

nodes where n− t ≤ c ≤ n. The value of c is unknown.
Faulty nodes may deviate arbitrarily from the correct implementation of comm(·). For

instance, they may unicast messages to only a subset of the nodes in P . As mentioned, each
pair of nodes can communicate using channeli,j . While channeli,j is assumed to be a reliable
channel that is not prone to message corruption, duplication, or the creation of fake messages
that were never sent by nodes; the message adversary [41, 43, 37], which we specify next,
has a limited ability to cause message loss.
Message adversary. This entity can remove implementation messages from the communication
channels used by correct nodes when they invoke comm(·). More precisely, during each
activation of comm(m1, . . . , mn), the adversary has the discretion to choose up to d messages
from the set {mi} and eliminate them from the corresponding communication channels where
they were queued. We assume that the adversary has full knowledge of the contents of all
messages {mi}, and thus it makes a worst-case decision as to which messages to eliminate.

The failures injected by a message adversary differ from those of classical sender and/or
receiver omissions in that they are mobile. I.e., they are not pinned to a set of particular
nodes but may move between any correct nodes during the same execution since they are
defined per invocation of comm(·). In particular, no node is immune to the message adversary.

Note that for the case of d = 0, the adversary is as weak as the common settings in
which all communication channels are reliable (since no message is ever lost) and t nodes
are Byzantine. Assumption 2.1 limits the adversary’s power to avoid network partitions. As
mentioned above, this is necessary for any MBRB algorithm [4].

T. Albouy et al. 14:7

▶ Assumption 2.1 (Adversary-power-assumption). n > 3t+2d.

Since the message adversary can omit all implementation messages that are sent to a
given set D ⊆ P : |D| = d, we know that ℓ, the number of correct nodes that are guaranteed
to output the broadcast m correctly, must satisfy ℓ ≤ c− d.

Such a hybrid fault model has been studied in the past in synchronous networks [8],
but has remained little studied in an asynchronous setting, except for the work of Schmid
and Fetzer [44] that limits itself to round-based algorithms (unlike us) and does not cover
full disconnections of correct nodes (which we do). Modeling full disconnections is relevant
as this captures correct nodes that remain disconnected for long periods. In addition to
bounding the maximal number of outgoing messages that a correct sender might lose (as
we do), the model proposed by Schmid and Fetzer [44] also bounds the maximal number of
incoming messages that any correct node might miss. This adds an elegant symmetry to the
model but poses significant challenges when considering asynchronous networks, as there
is no obvious scope on which to limit the number of incoming messages missed by a given
node. Schmid and Fetzer [44] therefore restrict the fault model to round-based algorithms.
By contrast, our model allows for algorithms that do not follow this structure.

Error Correction Codes. A central tool used in our algorithm is an error-correction code
(ECC) [40]. Intuitively speaking, an ECC takes a message as input and adds redundancy to
create a codeword from which the original message can be recovered even when parts of the
codeword are corrupted. In this work, we focus on erasures, a corruption that replaces a
symbol of the codeword with a special erasure mark ⊥.

Let F denote a finite field whose size we set later, and let ⊥ be a special symbol ⊥ /∈ F.
Given two strings of the same length, x, y ∈ Fn, their Hamming distance is the number of
indices where they differ, ∆(x, y) = |{i ∈ [n] | xi ̸= yi}|. Given a subset I ⊆ [n], we denote
by xI ∈ F|I| the string x restricted to the indices in I.

To avoid confusion with global parameters, we denote the ECC-specific parameters by
using a bar (e.g., x̄). An error-correction code is a function ECC : Fk̄ → Fn̄, with rate r̄ = k̄/n̄,
and distance d̄ = minx,y∈Fk̄,x ̸=y ∆(ECC(x), ECC(y)). The Singleton bound determines that
d̄ ≤ n̄− k̄+1, and when the equality holds, the code is said to be maximum distance separable
(MDS). A prominent example of MDS codes is Reed-Solomon (RS) codes [39], which exist for
any k̄, n̄, and |F| ≥ n̄. Such codes can be efficiently encoded and decoded [40]. The erasure
correction capabilities of a code depend on its distance, as given by the following fact.

▶ Fact 2.2 (Erasure Correction Capability). Any error-correction code of distance d̄ can recover
up to d̄− 1 erasures. That is, for any y ∈ (F ∪ {⊥})n̄, let E = {i | yi = ⊥} the set of erased
indices. Then, if |E| < d̄, there is at most a single x ∈ Fk̄ such that y[n̄]\E = ECC(x)[n̄]\E.

Cryptographic Primitives. Our algorithm relies on cryptographic assumptions. We assume
that the Byzantine nodes are computationally bounded with respect to the security parameter,
denoted by κ. That is, all cryptographic algorithms are polynomially bounded in the input 1κ.
We assume that κ = Ω(log n). We further assume the availability of Public Key Infrastructure
(PKI), which is the setting that assumes each node is assigned a pair of public/private keys
generated according to some standard key-generation algorithm. Further, at the start of the
computation, each node holds its own private key and the public key of all other parties.
This setting implies private and authenticated channels. In particular, each node has public
and private keys to support the following cryptographic primitives.

OPODIS 2024

14:8 Near-Optimal Communication BRB Under a Message Adversary

Threshold signatures. In a (τ, n) threshold signature scheme [45], at least τ out of all n nodes
(the threshold) produce individual signatures shares σ for the same message m, which are
then aggregated into a fixed-size threshold signature Σ. Verifying Σ does not require the
public keys of the signers; one needs to use a single system-wide public key, the same for all
threshold signatures produced by the scheme. This system public key, known to everyone, is
generated during the system setup phase and distributed through the PKI.

Formally, we define a (τ, n) threshold signature scheme as a tuple of (possibly randomized)
algorithms TSIG = (ts_sign_share, ts_verify_share, ts_combine, ts_verify). The signing algo-
rithm executed by node pi (denoted, ts_sign_sharei) takes a message m (and implicitly a pri-
vate key) and produces a signature σ = ts_sign_sharei(m). The share verification algorithm
takes a message m, a signature share σi, and the identity i of its signer pi (and implicitly
pi’s public key), and outputs a single bit, b = ts_verify_share(m, σi, i) ∈ {valid, invalid},
which indicates whether the signature share is valid or not. The combination algorithm
takes a set sigs of τ valid signature shares produced by τ out of n nodes and the associ-
ated message m (and implicitly the system public key) and outputs a threshold signature
Σ = ts_combine(sigs). The threshold signature verification algorithm takes a message m

and a threshold signature Σ (and implicitly the system public key) and outputs a single bit
b = ts_verify(m, Σ) ∈ {valid, invalid}, indicating if the threshold signature is valid or not.

We require the conventional robustness and unforgeability properties for threshold signa-
tures. This scheme is parameterized by a security parameter κ, and the size of signature
shares and threshold signatures, |σ| = |Σ| = O(κ), is independent of the size of the signed
message, m. In our algorithm, we take τ = ⌊n+t

2 ⌋+1 (i.e., the integer right above n+t
2).

Vector commitments (VC). A vector commitment (VC) is a short digest C for a vector
of elements V , upon which a user can then generate a proof of inclusion π (sometimes
called partial opening) of some element in V without disclosing the other elements of V

to the verifier: the verifier only needs C, π, the element, and its index in the vector to
verify its inclusion in V . A Merkle tree [31] is a notable example of vector commitment,
although with several sub-optimal properties. For example, for a hash size of κ, a Merkle
proof of inclusion is of O(κ log |V |) bits, which is significantly larger than modern schemes
such as Catalano-Fiore vector commitments [15], which produce proofs of inclusion with an
optimal size of O(κ) bits. In our construction, we use these optimal VC schemes (such as
Catalano-Fiore’s), which provide commitments and proofs in O(κ) bits. The VC scheme
provides two operations, parameterized by the security parameter κ: vc_commit(·) and
vc_verify(·), that work as follows. For any vector of strings V = (x1, . . . , xn) = (xi)i∈[n],
the function vc_commit(V)→ (C, π1, . . . , πn) returns C, the commitment, and every πi, the
proof of inclusion for xi. The following hold.

1. Proof of inclusion (Correctness): Let (C, (πi)i∈[n]) = vc_commit((x1, . . . , xn)). Then
for any i ∈ [n], it holds that vc_verify(C, πi, xi, i) = valid.

2. Collision-resistance (Binding): For any j ∈ [n] and any randomized al-
gorithm A taking (xi)i∈[n] and (C, (πi)i∈[n]) = vc_commit(x1, . . . , xn) as input,
Pr[A outputs (x′

j , π′
j , j) ∧ vc_verify(C, π′

j , x′
j , j) = valid] < 2−Ω(κ). Namely, it is diffi-

cult to generate x′
j ̸= xj and a valid proof π′

j for the same commitment C.
We omit the traditional Hiding property of VC schemes (a commitment does not leak
information on the vector [2]) as it is unneeded in our algorithm. We also implicitly assume
that the vc_commit operation is deterministic: it always returns the same commitment
C given the same input vector V , no matter the calling node pi. This is the case for
Catalano-Fiore’s scheme [15], which does not use random salt.

T. Albouy et al. 14:9

Table 1 Notations used by Algorithm 2.

n total number of nodes
t upper bound on the number of Byzantine nodes
d removal power of the message adversary
k reconstruction threshold of the erasure code, k out of n

ps the designated sending node (with identity s)
σi signature share by node pi

sigi the pair (σi, i)
sigs, sigsi sets of (signature share,id) pairs

Σ threshold signature (TS)
τ threshold of the TS scheme (set to τ=⌊n+t

2 ⌋+1 in our algorithm)
m, m′, mi application messages
C, C′, Cm vector commitments

m̃i ith message fragment of application message m

π̃i proof of inclusion of fragment m̃i

Specification of the MBRB primitive. MBRB’s objective is to guarantee a reliable broad-
cast, meaning it aims to ensure that a bounded minimum number of correct nodes ultimately
deliver the broadcast messages to the application while upholding specific safety and liveness
criteria. This assurance holds even when confronted with Byzantine faults and a message
adversary capable of selectively suppressing messages.

An MBRB algorithm provides the MBRB-broadcast and MBRB-deliver operations. The
following specification is presented in a single-shot, single-sender version, where ps is the
sending node. A multi-sender, multi-shot version can be derived by adding the sender’s
identifier and a running sequence number to messages and signatures. Nodes invoke the
MBRB-deliver operation to deliver (to the application layer) messages broadcast by ps.

Definition 2.3 specifies the safety and liveness properties of MBRB. Safety ensures that
messages are delivered correctly without spurious messages, duplication, or duplicity. Liveness
guarantees that if a correct node broadcasts a message, it will eventually be delivered by at
least one correct node (MBRB-Local-delivery). If a correct node delivers a message from any
specific sender, that message will eventually be delivered by a sufficient number, ℓ, of correct
nodes (MBRB-Global-delivery), where ℓ is a measure of the delivery power of the MBRB
object. The parameter ℓ might depend on the adversary’s power, i.e., on t and d. Since the
message adversary can omit all implementation messages that are sent to an unknown set
D ⊆ P : |D| = d, we know that ℓ ≤ c− d.

▶ Definition 2.3. An MBRB is an algorithm that satisfies the following properties.
MBRB-Validity. If ps is correct and a correct node, pi, MBRB-delivers an application
message m, then, node ps has MBRB-broadcast m (before that MBRB-delivery).
MBRB-No-duplication. A correct node pi MBRB-delivers at most one application
message m.
MBRB-No-duplicity. No two different correct nodes MBRB-deliver different applica-
tion messages from node ps.
MBRB-Local-delivery. Suppose ps is correct and MBRB-broadcasts an application
message m. At least one correct node, pj, eventually MBRB-delivers m from node ps.
MBRB-Global-delivery. Suppose a correct node, pi, MBRB-delivers an application
message m from ps. Then, at least ℓ correct nodes MBRB-deliver m from ps.

OPODIS 2024

14:10 Near-Optimal Communication BRB Under a Message Adversary

3 The Coded-MBRB algorithm

The proposed solution, named Coded MBRB (Algorithm 2), allows a distinguished sender ps

(known to everyone) to disseminate one specific application message m. In Section A, we
discuss how to extend this algorithm so that it implements a general MBRB algorithm,
allowing any node to be the sender, as well as allowing multiple instances of the MBRB, either
with the same or different senders, to run concurrently. In the algorithm, we instantiate the
threshold signature scheme with the threshold value set to τ = ⌊n+t

2 ⌋+ 1 (see Section 2).
Algorithm 2 introduces the MBRB-broadcast(m) operation, which takes message m

and disseminates it reliably to a minimum bound of correct nodes, denoted ℓ. That is,
after executing Algorithm 2, and assuming a correct sender, at least ℓ correct nodes will
have invoked the MBRB-delivery(m) procedure, while no correct node will have invoked
MBRB-delivery with m′ ̸= m. Table 1 summarizes the notations used by Algorithm 2.

Algorithm description. MBRB-broadcast(m) allows the sender ps to start dissem-
inating the application message, m (line 2). The sender (line 2) starts by invoking
computeFragVecCommit(m) (Algorithm 1). This function encodes the message m using
an error-correction code, divides it into n fragments and constructs a vector commitment with
an inclusion proof for each fragment. The function returns several essential values: the com-
mitment C, and the fragment details (m̃j , πj , j), which contain the fragment data itself m̃j

(the j-th part of the codeword ECC(m); see below for detail), a proof of inclusion πj for
that part, and each fragment’s respective index j. For ease of reference, let Commitment(m)

Algorithm 1 Helper functions of the Coded MBRB Algorithm (code for pi).

1 Function computeFragVecCommit(m) is ▷Computes ECC fragments and VC
2 m̃← ECC(m) ▷See “The error-correction code in use” paragraph
3 let m̃1, . . . , m̃n be n equal size fragments of m̃

4 (C, π1, . . . , πn)← vc_commit(m̃1, . . . , m̃n) ;
5 return

(
C, (m̃j , πj , j)j∈[n]

)
6 Function isValid(C, fragsSet, sigs, isThreshSig) is ▷Checks the validity of received msgs

▷If sigs is a set of signature shares
7 if ¬isThreshSig then

▷Each signature in sigs must be valid
8 if ∃ (σx, x) ∈ sigs : ¬ts_verify_share(C, σx, x) then return False

▷sigs must contain the sender’s signature
9 if (-, s) ̸∈ sigs then return False

▷If sigs is a threshold signature, check if it aggregates at least τ=⌊n+t
2 ⌋+1 valid shares

10 else if ¬ts_verify(C, sigs) then return False
▷Each proof of inclusion in fragsSet must be valid

11 fragsSet ← fragsSet \ {⊥} ▷Ignoring ⊥ values
12 if ∃ (m̃x, πx, x) ∈ fragsSet : ¬vc_verify(C, πx, m̃x, x) then return False
13 return True

14 Function getThreshSig(C) is ▷Get the TS for C if it exists, ⊥ otherwise
15 sigsC ← {signatures shares stored by pi for commitment C}

16 return ΣC ←

the threshold signature saved for C if it exists
else, ts_combine(sigsC) if |sigsC | > n+t

2
⊥ otherwise

T. Albouy et al. 14:11

represent the commitment C obtained from computeFragVecCommit(m). This commit-
ment serves as a compact representation of the entire message m. The sender node ps is
responsible for signing the computed commitment C and generating a signature share sigs

(line 2) which includes ps’s identifier. The sender then initiates m’s propagation by employing
the operation comm (line 2), which sends to each node, pj , an individual message, vj . The
message vj includes several components: the message type (send), the commitment C, the
j-th fragment details (m̃j , πj , j), and the signature share sigs (line 2) for C.

The rest of the algorithm progresses in two phases, which we describe in turn. The first
phase is responsible for message dissemination, which forwards message fragments received
by the sender. The other role of this phase is reaching a quorum of nodes that vouch for
the same message. A node vouches for a single message by signing its commitment. Nodes
collect and store signature shares until it is evident that sufficiently many nodes agree on
the same message. The subsequent phase focuses on disseminating the quorum of signature
shares so that it is observed by at least ℓ correct nodes, and on successfully terminating
while ensuring the delivery of the reconstructed message.

Validating message integrity. The validity of the signatures and inclusion proofs are checked
each time a new message is received (at line 2) using the function isValid (Algorithm 1).
All message types (send, forward, and bundle) carry a vector commitment (C or C ′) and
up to two message fragments with their inclusion proofs. Moreover, the send and forward
types contain up to two signature shares for the provided commitment, and the bundle
type contains a threshold signature for the provided commitment. The validation hinges
on three key criteria. Every enclosed signature share or threshold signature must be valid
and correspond to the accompanying commitment. For send or forward messages, the
signature share from the designated sending node ps must be present. All message fragments
must contain valid inclusion proofs for the provided commitment. Note that πi, the proof of
inclusion of m̃i, does not need to be signed by ps, as the commitment already is.
Phase I: Message dissemination. This phase facilitates the widespread distribution of the
message fragments m̃j . Recall that the sender has sent each node a different (encoded)
fragment of the message m, however, no node currently holds enough information to retrieve m.
The phase also sets the ground for forming a quorum on m. When a node receives a send
message from the sender, it begins by validating the fragment’s authenticity (line 2), and it
forwards this fragment to all other nodes by broadcasting a forward message (line 2).

Upon receiving a ⟨send, C ′, (m̃i, πi, i), sigs⟩ message from ps, the recipient pi validates
the incoming message (line 2). pi then determines whether it had previously broadcast a
forward message at line 2 or signed a commitment C ′′ from ps distinct from the currently
received C ′, in which case the incoming message is discarded (line 2). Otherwise, pi proceeds
to store the received information (line 2), encompassing the fragment m̃i and the associated
signature share sigs, linked to the specific commitment C ′. We clarify that pi never stores
multiple copies of the same information, i.e., all store operations are to be read as adding an
item to a set. Subsequently, pi generates its own signature share sigi for the commitment C ′,
storing it for later utilization (line 2). Node pi then disseminates all the relevant information,
by broadcasting the message ⟨forward, C ′, (m̃i, πi, i), {sigs, sigi}⟩.

The broadcast of a forward message is instrumental in disseminating information for
several reasons. First, up to d nodes might not receive the sender’s send message. Second,
this is the node’s way to disseminate its own fragment and signature share for that specific C ′.

Upon the arrival of a ⟨forward, C ′, fragtuplej , sigsj⟩ message from pj (line 2), the
recipient pi validates the incoming message using the isValid function (Algorithm 1),
discarding invalid messages (line 2). As for send messages, pi checks if it already signed

OPODIS 2024

Algorithm 2 Phases of the Coded MBRB Algorithm (code for pi, single-shot, single-
sender, threshold for the TS scheme τ=⌊n+t

2 ⌋+1).

17 Function MBRBbroadcast(m) is ▷only executed by the sender, ps

18
(
C, (m̃j , πj , j)j

)
← computeFragVecCommit(m)

19 sigs ←
(
ts_sign_shares(C), s

)
20 comm(v1, . . . , vn) where vj = ⟨send, C, (m̃j , πj), sigs⟩

Phase I: Message dissemination

21 Upon ⟨send, C ′, (m̃i, πi, i), sigs⟩ arrival from ps do
22 if ¬isValid

(
C ′, {(m̃i, πi, i)}, {sigs}, isThreshSig=False

)
then return

23 if pi already executed line 2 or signed some commitment C ′′ ̸= C ′ then return
24 sigi ←

(
ts_sign_sharei(C ′), i

)
; store m̃i, sigs, and sigi for C ′

25 broadcast ⟨forward, C ′, (m̃i, πi, i), {sigs, sigi}⟩

26 Upon ⟨forward, C ′, fragtuplej , sigsj = {sigs, sigj}⟩ arrival from pj do
27 if ¬isValid

(
C ′, {fragtuplej}, sigsj , isThreshSig=False

)
then return

28 if pi already signed some commitment C ′′ ̸= C ′ then return
29 store sigsj for C ′

30 if fragtuplej ̸= ⊥ then
31 (m̃j , πj , j)← fragtuplej ; store m̃j for C ′

32 if no forward message sent yet then
33 sigi ←

(
ts_sign_sharei(C ′), i

)
; store sigi for C ′

34 broadcast ⟨forward, C ′,⊥, {sigs, sigi}⟩

Phase II: Reaching Quorum and Termination

35 When
{
∃C ′ : getThreshSig(C ′) ̸= ⊥ ∧

∣∣{stored m̃j for C ′}
∣∣ ≥ k

∧ no message has been MBRB-delivered yet

}
do

36 mi ← ECC−1(m̃1, . . . , m̃n),
{

where m̃j are taken from line 35;
when a fragment is missing use ⊥.

37
(
C, (m̃′

j , π′
j , j)j

)
← computeFragVecCommit(mi)

38 if C ′ ̸= C then return
39 ΣC ← getThreshSig(C)
40 comm(v1, . . . , vn) where vj = ⟨bundle, C, (m̃′

i, π′
i, i), (m̃′

j , π′
j , j), ΣC⟩

41 MBRBdeliver(mi)

42 Upon ⟨bundle, C ′, (m̃′
j , π′

j , j), fragtuple′
i, Σ⟩ arrival from pj do

43 if ¬isValid
(
C ′,

{
(m̃′

j , π′
j , j), fragtuple′

i

}
, Σ, isThreshSig=True

)
then return

44 store (m̃′
j , π′

j , j) and Σ for C ′

45 if no bundle message has been sent yet ∧ fragtuple′
i ̸= ⊥ then

46 (m̃′
i, π′

i, i)← fragtuple′
i

47 store (m̃′
i, π′

i, i) for C ′

48 broadcast ⟨bundle, C ′, (m̃′
i, π′

i, i),⊥, Σ⟩

T. Albouy et al. 14:13

a message from ps with a different commitment C ′′, in which case it discards the message
(line 2). Subsequently, pi stores the set of signature shares sigsj linked to the specific
commitment C ′ (line 2) and fragtuplej contained in this message, if any (line 2). Also, pi

assesses whether a forward message has been previously dispatched. If it has already done
so, there is no reason to re-send it, and the processing ends here. Otherwise, similar to above,
pi generates its own signature share sigi for the commitment C ′, and broadcasts the message
⟨forward, C ′,⊥, sigs, sigi⟩. Note that, in this case, pi is unaware of his own fragment (i.e.,
it has not received a send message, or otherwise it would have already sent a forward
message in line 2); therefore it sends the sentinel value ⊥ instead.
Phase II: Reaching quorum and termination. This phase relies on the getThreshSig
function described in Algorithm 1, which, given a commitment C, either returns a threshold
signature for C (received beforehand or aggregating τ = ⌊n+t

2 ⌋+ 1 signature shares stored
for C) if it exists, or ⊥ otherwise. This phase focuses on ensuring that, once a Byzantine
quorum (represented by the threshold signature returned by getThreshSig) and enough
message fragments for reconstructing the original message m are gathered, at least ℓ correct
nodes deliver m and terminate. Node pi enters Phase II only when there is a commitment
C ′ for which getThreshSig returns a valid threshold signature, and pi stores at least
k message fragments. As long as no application message from ps was delivered (line 2),
pi reconstructs the application message mi (line 2) using the stored message fragments,
and use this message as an input to computeFragVecCommit (line 2), which outputs
its commitment C = Commitment(mi) along with coded message fragments and proofs of
inclusion, (m̃′

j , π′
j , j). Node pi then ensures that the computed commitment C matches the

stored commitment C ′ (line 2). If this condition holds true, then mi = m is the message sent
by the sender1, and in particular, pi now holds all the possible fragments for m along with
their valid proof of inclusion, including fragments it has never received before! Node pi then
retrieves the threshold signature ΣC of C using the getThreshSig function (line 2), and
disseminates it along with the message fragments to the rest of the network. In particular,
to each pj in the network, pi sends a bundle message (line 2) that includes the commitment
C, fragment details (m̃′

i, π′
i, i) and (m̃′

j , π′
j , j), and the associated threshold signature ΣC .

After these transmissions, pi can MBRB-deliver the reconstructed message mi (line 2).
The parameter k used at line 2 is the number of (valid) fragments sufficient to reconstruct

the application message m by the error-correction code ECC. This parameter should be
practically selected by the desired ℓ given in Theorem A.12. That is, one needs to set ε > 0
for ℓ = n− t− (1 + ε)d and then choose k ≤ 1 + ε

1+ε (n− t− d). See details in Section A.
Upon the arrival of a bundle message, i.e., ⟨bundle, C ′, (m̃′

j , π′
j , j), fragtuple′

i, Σ⟩ ar-
riving from pj (line 2), the recipient pi validates the received message using the isValid
function (with the isThreshSig parameter set to True to indicate that we verify a threshold
signature) and discards invalid messages (line 2). Node pi proceeds to store the arriving
information regarding the message segments (m̃′

j , π′
j , j) and threshold signature Σ for the

specific commitment C ′ (line 2). In the case that no bundle message was sent by pi and the
received fragtuple′

i is nonempty (so pi learns its fragment, which it stores at line 2, unless
already known), pi broadcasts a ⟨bundle, C ′, (m̃′

i, π′
i, i),⊥, Σ⟩ message (line 2).

The use of ⊥ values appears also in bundle messages (line 2). A bundle message might
contain up to two fragments: the sender’s fragment (m̃′

i in the pseudo-code), which is always
included, and the receiver’s fragment (m̃′

j), which is included only when the sender was

1 To see why this is needed, consider a Byzantine sender that disseminates fragments m̃1, . . . , m̃n, that
do not form a proper codeword.

OPODIS 2024

14:14 Near-Optimal Communication BRB Under a Message Adversary

able to reconstruct the message m (at line 2). The sender’s fragments are collected by the
receivers and allow reconstruction of the message once enough bundle messages are received.
The receiver’s fragment allows the receiver to send bundle messages (with its fragment),
facilitating the dissemination of both threshold signatures and fragments.

The error-correction code in use. computeFragVecCommit (Algorithm 1) uses an
error-correction code at line 1 to encode the application message m, before it is split into
n fragments that will be disseminated by the parties. The code uses a fixed parameter k, that
can be set later. Our algorithm requires that the ECC will be able to decode the message m

from any subset of k fragments out of the n fragments generated at line 1. That is, we need
an ECC that can deal with erasures, where the erased symbols are those contained in the
n − k missing fragments. To that end, we use a Reed-Solomon code ECC : Fk̄ → Fn̄ with
k̄ > |m|/ log |F|. Each fragment contains n̄/n symbols of the codeword, and to be able to
recover from (n− k) · n̄/n erased symbols by Theorem 2.2, we can set the code’s distance to
be d̄ > (n− k) · n̄/n. Since a Reed-Solomon code is MDS (see Section 2), d̄ ≤ n̄− k̄ + 1, and
we can set n̄ > n

k (k̄ − 1). The code will have a constant rate, i.e., |ECC(m)| = O(|m|), as
long as m is sufficiently long, i.e., |m| = Ω(n log |F|), which implies that k̄ = Ω(n), and as
long as k = Ω(n). Recall also that |F| ≥ n̄ is in a Reed-Solomon code.

Analysis. The following main theorem states that our algorithm is correct.

▶ Theorem 3.1 (main). Assume n > 3t + 2d, k ≤ (n − t − 2d) and ε > 0. Algorithm 2
implements MBRB with ℓ > n−t−(1+ε)d. Any algorithm activation on the input message m

communicates 4n2 messages, where each node communicates O(|m|+ nκ) bits.

Due to the page limit, the complete proof appear in Sections A and B. Here, we sketch the
proof of the MBRB-Global-delivery property in Theorem 3.2 (assuming the other properties
hold) and the communication analysis in Theorem 3.3.

▶ Lemma 3.2 (MBRB-Global-delivery). If a correct node pi MBRB-delivers an application
message m, then at least ℓ = c− d/(1− ((k − 1)/(c− d))) correct nodes MBRB-deliver m.

Proof Sketch of Lemma 3.2. Let Cm = Commitment(m). The proof counts the bundle
messages disseminated by correct nodes. If a correct node disseminates a bundle message
both at line 2, we only consider the one from line 2. Let Bsend be the set of correct nodes
that disseminate at least one bundle message, let Brecv be the set of correct nodes that
receive at least one valid bundle message from a correct node during their execution, and
let Bk,recv be the set of correct nodes that receive bundle messages from at least k distinct
correct nodes. The following holds.

▶ Observation 3.2.1. c ≥ |Brecv| ≥ c− d and c ≥ |Bsend| ≥ c− d.

Proof of Observation 3.2.1. Since Bsend and Brecv contain only correct nodes, trivially
c ≥ |Bsend| and c ≥ |Brecv|. |Brecv| ≥ c− d and |Bsend| ≥ c− d follow from the definition of
the message adversary, and the way the algorithm chains bundle messages. ◀

▶ Observation 3.2.2. |Bk,recv| × |Bsend|+ (k − 1)(|Brecv| − |Bk,recv|) ≥ |Bsend|(c− d).

Proof of Observation 3.2.2. The inequality follows from a counting argument on the overall
number of valid bundle messages received by correct nodes from distinct correct senders.
In particular, we use the fact that nodes in Brecv \Bk,recv each receives at most k − 1 valid
bundle messages from distinct correct senders. ◀

T. Albouy et al. 14:15

▶ Observation 3.2.3. |Bk,recv| ≥ c− d/(1− ((k − 1)/(c− d))).

Proof of Observation 3.2.3. The observation is obtained by isolating Bk,recv in Observa-
tion 3.2.2, and minimizing the right-hand side to remove the dependence on |Bsend|. ◀

▶ Observation 3.2.4. All nodes in Bk,recv MBRB-deliver m.

Proof of Observation 3.2.4. The observation results from the properties of the vector com-
mitment scheme, the unforgeability of signatures, and the ability of the ECC scheme to
reconstruct m from k distinct valid fragments for m. ◀

As all nodes in Bk,recv are correct, the above observations yield the lemma. (The full
proof of this lemma can be found in Section A, page 24.) ◀

▶ Lemma 3.3. Correct nodes collectively communicate at most 4n2 messages. Each correct
node sends at most O(|m|+ nκ) bits. Overall, the system sends at most O(n|m|+ n2κ) bits.

Proof Sketch of Lemma 3.3. For concision, we use in the following the verb disseminate
for referring to a correct node that sends a message to all n nodes of the system, whether it
be using the broadcast operation or the comm operation.

Let us first consider message complexity. If the sender ps is correct, it disseminates one
send message to all nodes at line 2, receives it immediately at line 2, and disseminates one
forward message at line 2 (as ps cannot not pass line 2 afterward). Every other correct
node disseminates at most two forward messages at line 2. Moreover, each correct node
disseminates at most two bundle messages at line 2. This amounts to at most 4n2 messages
sent by correct nodes.

Let us now analyze the bit complexity of the algorithm. If the sender ps is correct,
it disseminates a send message (line 2) including a fragment of m (O(|m|/n) bits) with
its proof of inclusion (O(κ) bits), a commitment (O(κ) bits), and a signature share (O(κ)
bits). Thus, ps communicates at most O(|m|+ nκ) bits in send messages. Moreover, a
forward message contains a commitment (O(κ) bits), at most one message fragment with
its proof of inclusion (O(|m|/n + κ) bits), and two signature shares (O(κ) bits). Hence,
every correct node communicates at most O(|m|+ κn) bits in forward messages (line 2
or 34). Additionally, a bundle message contains a commitment (O(κ) bits), at most two
message fragments with their proof of inclusion (O(|m|/n + κ) bits), and one threshold
signature (O(κ) bits). Therefore, every correct node communicates at most O(|m|+ κn) bits
in bundle messages (line 2 or 34). This amounts to a total communication of O(|m|+ nκ)
bits sent per correct node, and O(n|m|+ n2κ) bits sent overall.

Let us remark that the above analysis also holds in the presence of Byzantine nodes, even
if ps is Byzantine. (The full proof of this lemma can be found in Section B, page 27.) ◀

4 Conclusion

We introduced a Coded MBRB algorithm that significantly improves the state-of-the-art
solution. It achieves optimal communication (up to the size of cryptographic parameter κ)
while maintaining a high delivery power, i.e., it ensures that messages are delivered by at least
ℓ = n− t− (1 + ε)d correct nodes, where ε > 0 is a tunable parameter. The proposed solution
is deterministic up to its use of cryptography (threshold signatures and vector commitments).
Each correct node sends no more than 4n messages and communicates at most O(|m|+ nκ)
bits, where |m| represents the length of the input message and κ is a security parameter.
We note that the algorithm’s communication efficiency holds for sufficiently long messages
and approaches the natural upper bound on delivery power, n− t− d, which accounts for

OPODIS 2024

14:16 Near-Optimal Communication BRB Under a Message Adversary

the message adversary’s ability to isolate a subset of correct nodes. The proposed approach
achieves a delivery power ℓ that can be made arbitrarily close to this limit, albeit with
a marginal increase in communication costs, which depends on the chosen ε. This work
represents a significant advancement in Byzantine Reliable Broadcast, offering a practical
solution for robust communication in asynchronous message-passing systems with malicious
nodes and message adversaries. One intriguing question is whether it is possible to devise
an (M)BRB algorithm without the κ parameter in its communication complexity or the ϵ

parameter in its delivery power ℓ, e.g., by leveraging randomization [1] or error-freedom [5].

References

1 Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and
Elaine Shi. Communication complexity of byzantine agreement, revisited. Distributed Comput.,
36(1):3–28, 2023. doi:10.1007/S00446-022-00428-8.

2 Timothé Albouy, Emmanuelle Anceaume, Davide Frey, Mathieu Gestin, Arthur Rauch, Michel
Raynal, and François Taïani. Asynchronous BFT asset transfer: quasi-anonymous, light, and
consensus-free. CoRR, arXiv:2405.18072, 2024. doi:10.48550/arXiv.2405.18072.

3 Timothé Albouy, Davide Frey, Michel Raynal, and François Taïani. A modular approach to
construct signature-free BRB algorithms under a message adversary. In 26th International
Conference on Principles of Distributed Systems (OPODIS 2022), volume 253 of LIPIcs, pages
26:1–26:23, 2023. doi:10.4230/LIPICS.OPODIS.2022.26.

4 Timothé Albouy, Davide Frey, Michel Raynal, and François Taïani. Asynchronous Byzantine
reliable broadcast with a message adversary. Theor. Comput. Sci., 978:114110, 2023. doi:
10.1016/J.TCS.2023.114110.

5 Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and
Haibin Zhang. Balanced Byzantine reliable broadcast with near-optimal communication
and improved computation. In Proceedings of the 2022 ACM Symposium on Principles of
Distributed Computing, PODC’22, pages 399–417, 2022. doi:10.1145/3519270.3538475.

6 Piotr Berman, Krzysztof Diks, and Andrzej Pelc. Reliable broadcasting in logarithmic time
with Byzantine link failures. Journal of Algorithms, 22(2):199–211, 1997. doi:10.1006/jagm.
1996.0810.

7 Martin Biely. An optimal Byzantine agreement algorithm with arbitrary node and link failures.
In IASTED Parallel and Distributed Computing and Systems, volume 1, pages 146–151, 2003.
URL: https://www.auto.tuwien.ac.at/Projects/W2F/documents/pdcs03.ps.gz.

8 Martin Biely, Ulrich Schmid, and Bettina Weiss. Synchronous consensus under hybrid
process and link failures. Theoretical Computer Science, 412(40):5602–5630, 2011. doi:
10.1016/j.tcs.2010.09.032.

9 Silvia Bonomi, Jérémie Decouchant, Giovanni Farina, Vincent Rahli, and Sébastien Tixeuil.
Practical Byzantine reliable broadcast on partially connected networks. In ICDCS, pages
506–516. IEEE, 2021. doi:10.1109/ICDCS51616.2021.00055.

10 Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput., 75(2):130–143,
1987. doi:10.1016/0890-5401(87)90054-X.

11 Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In Proceedings of the Second
Annual ACM Symposium on Principles of Distributed Computing, pages 12–26. ACM, August
1983. doi:10.1145/800221.806706.

12 Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. J. ACM,
32(4):824–840, 1985. doi:10.1145/4221.214134.

13 C. Cachin and J.A. Poritz. Secure INtrusion-tolerant replication on the internet. In Proceedings
International Conference on Dependable Systems and Networks (DSN), pages 167–176, 2002.
doi:10.1109/DSN.2002.1028897.

https://doi.org/10.1007/S00446-022-00428-8
https://doi.org/10.48550/arXiv.2405.18072
https://doi.org/10.4230/LIPICS.OPODIS.2022.26
https://doi.org/10.1016/J.TCS.2023.114110
https://doi.org/10.1016/J.TCS.2023.114110
https://doi.org/10.1145/3519270.3538475
https://doi.org/10.1006/jagm.1996.0810
https://doi.org/10.1006/jagm.1996.0810
https://www.auto.tuwien.ac.at/Projects/W2F/documents/pdcs03.ps.gz
https://doi.org/10.1016/j.tcs.2010.09.032
https://doi.org/10.1016/j.tcs.2010.09.032
https://doi.org/10.1109/ICDCS51616.2021.00055
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1145/800221.806706
https://doi.org/10.1145/4221.214134
https://doi.org/10.1109/DSN.2002.1028897

T. Albouy et al. 14:17

14 C. Cachin and S. Tessaro. Asynchronous verifiable information dispersal. In 24th IEEE
Symposium on Reliable Distributed Systems (SRDS’05), pages 191–201, 2005. doi:10.1109/
RELDIS.2005.9.

15 Dario Catalano and Dario Fiore. Vector commitments and their applications. In Proc.
16th Int’l Conference on Practice and Theory in Public-Key Cryptography (PKC’13), volume
7778 of Lecture Notes in Computer Science, pages 55–72. Springer, 2013. doi:10.1007/
978-3-642-36362-7_5.

16 Keren Censor-Hillel, Shir Cohen, Ran Gelles, and Gal Sela. Distributed computations in fully-
defective networks. In Proceedings of the 2022 ACM Symposium on Principles of Distributed
Computing, PODC’22, pages 141–150, 2022. doi:10.1145/3519270.3538432.

17 Keren Censor-Hillel, Ran Gelles, and Bernhard Haeupler. Making asynchronous distributed
computations robust to noise. Distributed Computing, 32(5):405–421, 2019. doi:10.1007/
s00446-018-0343-5.

18 Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its applica-
tions. In CCS, pages 2705–2721. ACM, 2021. doi:10.1145/3460120.3484808.

19 Pallab Dasgupta. Agreement under faulty interfaces. Information Processing Letters, 65(3):125–
129, 1998. doi:10.1016/S0020-0190(97)00202-0.

20 Danny Dolev. The Byzantine generals strike again. Journal of Algorithms, 3(1):14–30, 1982.
doi:10.1016/0196-6774(82)90004-9.

21 Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for Byzantine agreement.
J. ACM, 32(1):191–204, January 1985. doi:10.1145/2455.214112.

22 Sisi Duan, Michael K. Reiter, and Haibin Zhang. BEAT: asynchronous BFT made practical.
In CCS, pages 2028–2041. ACM, 2018. doi:10.1145/3243734.3243812.

23 Romaric Duvignau, Michel Raynal, and Elad M. Schiller. Self-stabilizing Byzantine
fault-tolerant repeated reliable broadcast. In Stabilization, Safety, and Security of Dis-
tributed Systems, pages 206–221. Springer International Publishing, 2022. doi:10.1007/
978-3-031-21017-4_14.

24 Fabian Frei, Ran Gelles, Ahmed Ghazy, and Alexandre Nolin. Content-oblivious leader
election on rings. In 38th International Symposium on Distributed Computing (DISC 2024),
volume 319, pages 24:1–24:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
doi:10.4230/LIPICS.DISC.2024.26.

25 Ran Gelles. Coding for interactive communication: A survey. Foundations and Trends® in
Theoretical Computer Science, 13(1–2):1–157, 2017. doi:10.1561/0400000079.

26 Li Gong, Patrick Lincoln, and John Rushby. Byzantine agreement with authentication:
Observations and applications in tolerating hybrid and link faults. In Dependable Computing
and Fault Tolerant Systems, volume 10, pages 139–158. IEEE, 1995.

27 Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Yvonne-Anne Pignolet, Dragos-Adrian
Seredinschi, and Andrei Tonkikh. Dynamic Byzantine reliable broadcast. In 24th International
Conference on Principles of Distributed Systems (OPODIS 2020), volume 184, pages 23:1–23:18,
Dagstuhl, Germany, 2021. doi:10.4230/LIPIcs.OPODIS.2020.23.

28 William M. Hoza and Leonard J. Schulman. The adversarial noise threshold for distributed
protocols. In ACM-SIAM Symposium on Discrete Algorithms, pages 240–258, 2016. doi:
10.1137/1.9781611974331.ch18.

29 Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982. doi:10.1145/357172.357176.

30 Alexandre Maurer and Sébastien Tixeuil. Self-stabilizing Byzantine broadcast. In 2014
IEEE 33rd International Symposium on Reliable Distributed Systems, pages 152–160, 2014.
doi:10.1109/SRDS.2014.10.

31 Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in
Cryptology — CRYPTO’ 89 Proceedings, pages 218–238, New York, NY, 1990. Springer New
York. doi:10.1007/0-387-34805-0_21.

OPODIS 2024

https://doi.org/10.1109/RELDIS.2005.9
https://doi.org/10.1109/RELDIS.2005.9
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1145/3519270.3538432
https://doi.org/10.1007/s00446-018-0343-5
https://doi.org/10.1007/s00446-018-0343-5
https://doi.org/10.1145/3460120.3484808
https://doi.org/10.1016/S0020-0190(97)00202-0
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1145/2455.214112
https://doi.org/10.1145/3243734.3243812
https://doi.org/10.1007/978-3-031-21017-4_14
https://doi.org/10.1007/978-3-031-21017-4_14
https://doi.org/10.4230/LIPICS.DISC.2024.26
https://doi.org/10.1561/0400000079
https://doi.org/10.4230/LIPIcs.OPODIS.2020.23
https://doi.org/10.1137/1.9781611974331.ch18
https://doi.org/10.1137/1.9781611974331.ch18
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/SRDS.2014.10
https://doi.org/10.1007/0-387-34805-0_21

14:18 Near-Optimal Communication BRB Under a Message Adversary

32 Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of
BFT protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 31–42, 2016. doi:10.1145/2976749.2978399.

33 Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. Improved extension
protocols for Byzantine broadcast and agreement. In 34th International Symposium on
Distributed Computing (DISC 2020), volume 179, pages 28:1–28:17, 2020. doi:10.4230/
LIPIcs.DISC.2020.28.

34 M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228–234, April 1980. doi:10.1145/322186.322188.

35 Andrzej Pelc. Reliable communication in networks with Byzantine link failures. Networks,
22(5):441–459, 1992. doi:10.1002/net.3230220503.

36 Kenneth J. Perry and Sam Toueg. Distributed agreement in the presence of processor and
communication faults. IEEE Trans. Softw., SE-12(3):477–482, 1986. doi:10.1109/TSE.1986.
6312888.

37 Michel Raynal. Message adversaries. In Encyclopedia of Algorithms, pages 1272–1276. Springer,
2016. doi:10.1007/978-1-4939-2864-4_609.

38 Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic Approach.
Springer, 2018. doi:10.1007/978-3-319-94141-7.

39 Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of
the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

40 Ron M. Roth. Introduction to coding theory. Cambridge University Press, 2006.
41 Nicola Santoro and Peter Widmayer. Time is not a healer. In STACS 89, pages 304–313,

Berlin, Heidelberg, 1989. Springer Berlin Heidelberg. doi:10.1007/BFb0028994.
42 Nicola Santoro and Peter Widmayer. Distributed function evaluation in the presence of

transmission faults. In International Symposium on Algorithms, pages 358–367. Springer, 1990.
doi:10.1007/3-540-52921-7_85.

43 Nicola Santoro and Peter Widmayer. Agreement in synchronous networks with ubiquitous
faults. Theor. Comput. Sci., 384(2-3):232–249, 2007. doi:10.1016/J.TCS.2007.04.036.

44 Ulrich Schmid and Christof Fetzer. Randomized asynchronous consensus with imperfect
communications. In SRDS, pages 361–370. IEEE Computer Society, 2003. doi:10.1109/
RELDIS.2003.1238089.

45 Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Proc. Int’l Conference
on the Theory and Application of Cryptographic Techniques (EUROCRYPT’2000), volume
1807 of Lecture Notes in Computer Science, pages 207–220. Springer, 2000. doi:10.1007/
3-540-45539-6_15.

46 Hin-Sing Siu, Yeh-Hao Chin, and Wei-Pang Yang. Byzantine agreement in the presence of
mixed faults on processors and links. IEEE Transactions on Parallel and Distributed Systems,
9(4):335–345, April 1998. doi:10.1109/71.667895.

47 Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse. Disperse-
dledger: High-throughput byzantine consensus on variable bandwidth networks. In NSDI,
pages 493–512. USENIX Association, 2022. URL: https://www.usenix.org/conference/
nsdi22/presentation/yang.

A Correctness analysis

We now analyze Algorithm 2 and show it satisfies the MBRB properties specified in Theo-
rem 2.3. This analysis, along with the communication analysis in Theorem B.1 prove our
main Theorem 3.1.

▶ Assumption A.1 (coded-MBRB-assumption). n > 3t + 2d and k ≤ (n− t)− 2d.

▶ Theorem A.2. For any network that satisfies Theorem A.1 and for any ε > 0, Algorithm 2
implements an MBRB algorithm (Theorem 2.3) with ℓ > n− t− (1 + ε)d.

https://doi.org/10.1145/2976749.2978399
https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.1145/322186.322188
https://doi.org/10.1002/net.3230220503
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1007/978-1-4939-2864-4_609
https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1007/BFb0028994
https://doi.org/10.1007/3-540-52921-7_85
https://doi.org/10.1016/J.TCS.2007.04.036
https://doi.org/10.1109/RELDIS.2003.1238089
https://doi.org/10.1109/RELDIS.2003.1238089
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1109/71.667895
https://www.usenix.org/conference/nsdi22/presentation/yang
https://www.usenix.org/conference/nsdi22/presentation/yang

T. Albouy et al. 14:19

Recall that any MBRB algorithm requires n > 3t + 2d [4]. Our coded MBRB algorithm
uses an error-correction code that can reconstruct any encoded message from k fragments of
the codeword. While we have some flexibility in selecting the value of k, which affects the
parameters of the ECC and thus the communication complexity, our proof requires that k

will not be too large. We begin with a few technical lemmas.

▶ Lemma A.3. If a correct node pu stores a message fragment m̃j associated to a proof of
inclusion πj for some commitment C ′ and node identity j, then πj is valid with respect to C ′,
that is vc_verify(C ′, πj , m̃j , j) = valid.

Proof of Lemma A.3. A correct node stores fragments for a commitment C ′ at line 2, when
receiving send, forward, or bundle messages, respectively. The fragments stored at these
lines and their proof have been received through the corresponding message, whose content
is verified by a call to isValid (at line 2). isValid (described in Algorithm 1) checks that
proofs of inclusion are valid for the corresponding commitment. ◀

The following notion of valid messages will be used throughout the analysis to indicate
messages containing only valid information, as the algorithm dictates.

▶ Definition A.4 (Valid messages). We say that a message of type send, forward, or
bundle is valid if and only if isValid returns True at line 22, 27, or 43, respectively, upon
the receipt of that message.

Operatively, valid messages satisfy the following which is immediate from the definition of
the isValid function (Algorithm 1).

▶ Corollary A.5. To be valid, a message must meet the following criteria: (i) all the signatures
shares or threshold signatures it contains must be valid and correspond to the commitment
included in the message; (ii) if it is of type send or forward, it must contain a signature
by the designated sending node ps; and (iii) all inclusion proofs must be valid with respect to
the commitment included in the message.

We now show that the correct parties always send valid messages. However, they might
receive invalid messages sent by Byzantine nodes.

▶ Lemma A.6. All send, forward, or bundle messages sent by a correct node pu, are
valid.

Proof of Lemma A.6. The only correct node that sends send messages is ps at line 2.
Indeed, when ps is correct, this message will contain a valid signature share by ps and all
proofs of inclusion are valid, by line 2.

Now consider a forward message sent either at lines 25 or 34. To reach there, pu must
have passed line 2 or line 2, which guarantees pu received a valid signature for C ′ made
by ps (where C ′ is the commitment in the received message triggering this code). Then, at
line 2 or at line 2, pu stores a signature of ps for this C ′, and at line 2, pu signs the same C ′.
Thus, conditions (i) and (ii) of Theorem A.5 hold, and if the forward is sent at line 2, then
condition (iii) vacuously holds as well. If the forward message is sent at line 2, it contains
a fragment that was stored by pu for the same C ′, and by Theorem A.3, its associated proof
of inclusion is valid; thus condition (iii) holds in this case as well.

Finally, consider a bundle message. First off, this type of message is not concerned by
condition (ii) of Theorem A.5. For the transmission at line 2, condition (i) follows from the
construction of the threshold signature ΣC at line 2. ΣC is guaranteed to be non-⊥ by the

OPODIS 2024

14:20 Near-Optimal Communication BRB Under a Message Adversary

condition at line 2 of Algorithm 2, and is provided by the helper function getThreshSig(·)
(line 1 of Algorithm 1). When executing getThreshSig(·), the first possibility is that ΣC

is already known by pu because it was received by pu at line 2 and stored at line 2. In this
case, the validity of ΣC is ensured by the check at line 2. The second possibility is that ΣC

aggregates τ = ⌊n+t
2 ⌋+ 1 signature shares received by pu at line 2 or line 2, and stored at

line 2 or line 2, respectively. In this case, the validity of all these signature shares is ensured
by the checks at line 2 and line 2, respectively, and thus the aggregated threshold signature
ΣC is also valid. Condition (iii) follows since the proofs of inclusion were computed at line 2
by pu and match the same commitment C ′ used in that bundle message, as enforced by
line 2. For the broadcast at line 2, conditions (i) and (iii) follow since the threshold signature
Σ and the fragment tuple (m̃′

j , π′
j , j) come from the incoming bundle message at line 2,

whose validity (w.r.t. C ′) has been verified at line 2. ◀

▶ Lemma A.7. A correct node p signs a most a single commitment C.

Proof of Lemma A.7. p signs a commitment either at line 2 (for ps), 24 or 33. We consider
two cases, depending on whether p is ps or not.

Case 1: Assume p ≠ ps. p can sign some commitment only at line 2 or 33. By the
conditions at line 2, line 2 are executed only if either p has not signed any commitment
yet, or has already signed the exact same commitment C ′.
Case 2: If p = ps, because valid messages must contain ps’s signature share (due to calls
to isValid() at line 2), and because we have assumed that signatures cannot be forged,
line 2 is always executed before line 2. By the same reasoning as Case 1, ps therefore
never signs a different commitment at line 2 or 33. ◀

We recall that the above lemmas, and as a consequence, the upcoming theorems, hold
with high probability, assuming a computationally-bounded adversary that forges signature
shares/threshold signatures or finds commitment collisions with only negligible probability.
We can now prove the properties required for an MBRB algorithm, as depicted in Theorem 2.3.

▶ Lemma A.8 (MBRB-Validity). Suppose ps is correct and a correct node, pi, MBRB-delivers
an application message, m. Then, node ps has previously MBRB-broadcast m.

Proof of Lemma A.8. Suppose pi MBRB-delivers m at line 2. Consider C ′ the commitment
that renders true the condition at line 2, and C the commitment that is computed at line 2.
It holds that C ′ = C by line 2, or otherwise pi could not have reached line 2.

Consider the threshold signature ΣC returned by the getThreshSig function at line 2.
Using the same reasoning as in the proof of Theorem A.6, ΣC is valid, and must, therefore,
aggregate at least τ = ⌊n+t

2 ⌋+ 1 valid signature shares for C. Let us remark that, out of all
these valid signature shares, at least ⌊n+t

2 ⌋+ 1− t = ⌊n−t
2 ⌋+ 1 ≥ 1 are generated by correct

nodes2. Thus, at least one correct node pj must have produced a signature share for C,
whether it be at line 2 or line 2 if pj ≠ ps, or at line 2 if pj = ps. However, in all these cases,
the sender ps must have necessarily produced a signature share for C: the case pj = ps is
trivial, and in the case pj ̸= ps, pj must have verified the presence of a valid signature share
from ps in the message it received, at line 2 or line 2, respectively.

Under the assumption that the adversary cannot forge signature shares/threshold signa-
tures (Section 2), and recalling that ps is correct, the only way in which ps could have signed C ′

is by executing line 2 when MBRB-broadcasting some message m′ at line 2; see also the proof
of Theorem A.7. Furthermore, recall that the commitment is collision-resistant (or binding,
see Section 2), meaning that except with negligible probability, the message m′ that ps uses in
line 2 satisfies m′ = m, since it holds that C ′ = Commitment(m′) = Commitment(m) = C. ◀

2 Remind that, ∀x ∈ R, i ∈ Z : ⌊x⌋+ i = ⌊x + i⌋.

T. Albouy et al. 14:21

▶ Lemma A.9 (MBRB-No-duplication). A correct node pi MBRB-delivers at most one
application message, m.

Proof of Lemma A.9. The condition at line 2 directly implies the proof. ◀

▶ Lemma A.10 (MBRB-No-duplicity). No two different correct nodes MBRB-deliver different
application messages.

Proof of Lemma A.10. Suppose, towards a contradiction, that pi MBRB-delivers m and
pj MBRB-delivers m′ ̸= m, where pi and pj are both correct nodes. Let us denote by C,
resp. C ′, the commitment returned by computeFragVecCommit() for m, resp. for m′.
As commitments are assumed to be collision-resistant (Section 2), m ̸= m′ implies C ̸= C ′.

By the condition at line 2, pi gets a threshold signature Σi ̸= ⊥ from the getThreshSig
function that aggregates a set Qi containing τ = ⌊n+t

2 ⌋ + 1 valid signature shares for
C. Similarly, pj gets a threshold signature Σj aggregating a set Qj of signature shares
for C ′. We know that |Qi ∪ Qj | = |Qi| + |Qj | − |Qi ∩ Qj |. Moreover, we know that,
∀x ∈ R, k ∈ Z : k = ⌊x⌋ + 1 =⇒ k > x, and hence we have Qi > n+t

2 < Qj . Thus,
|Qi ∩ Qj | ≥ |Qi|+ |Qj | − n > 2n+t

2 − n = t. In other words, Qi and Qj have at least one
correct node, pu, in common that has signed both C and C ′. Theorem A.7, and the fact that
pu has signed both C and C ′ leads the proof to the needed contradiction. Thus, m = m′,
and the lemma holds. ◀

▶ Lemma A.11 (MBRB-Local-delivery). Suppose ps is correct and MBRB-broadcasts m. At
least one correct node, say, pj, MBRB-delivers m.

Proof of Lemma A.11. Let us denote by Cm the commitment computed at line 1 when
executing computeFragVecCommit(m). The proof of the lemma will follow from Obser-
vations A.11.1–A.11.8 stated and proven below.

▶ Observation A.11.1. All valid send, forward, or bundle messages received by some
correct node pu contain Cm.

Proof of Observation A.11.1. Recall that ps MBRB-broadcasts m, thus we know that ps

has included its own signature share, sigs =
(
ts_sign_shares(Cm), s

)
, when it propagates

⟨send, Cm, (m̃j , πj , j), sigs⟩ (lines 2–2). Consider a correct node pu that receives a valid
send, forward, or bundle message containing a commitment Cu at lines 21, 26, or 42. If
the message is of type send or forward, then, as it is valid, it must contain ps’s signature
on Cu. If the message is of type bundle, then, similarly to Theorem A.8, its valid threshold
signature for Cu aggregates a set of valid signature shares for Cu that contains at least one
share produced by a correct node px. But for px to produce this share, ps must also have
produced a valid signature share for Cu, either because px must have checked its existence
at line 2 or line 2 (prior to signing, at line 2 or line 2, respectively), or because px is the
sender. Hence, in any case, ps produces a signature share for Cu. Since ps is correct, by
Theorem A.7, it does not sign another commitment C ′ ≠ Cm. Under the assumption that
signatures cannot be forged, the above implies that Cu = Cm. ◀

▶ Observation A.11.2. A correct node pu only signs valid signature shares for Cm.

Proof of Observation A.11.2. If pu = ps, it MBRB-broadcasts a single message and executes
line 2 only once, signing Cm. Besides line 2, a correct node pu only signs signature shares
after receiving a valid send or forward message (at line 2), and when it does, pu only ever
signs the commitment received in the message. By Observation A.11.1, this implies pu never
signs any C ′ ̸= Cm. ◀

OPODIS 2024

14:22 Near-Optimal Communication BRB Under a Message Adversary

▶ Observation A.11.3. If a correct node pu broadcasts a forward message, this message is
of the form ⟨forward, Cm, -, {sigs, sigu}⟩, where sigs, sigu are ps’s and pu’s valid signature
shares for Cm.

Proof of Observation A.11.3. Consider a correct node pu that broadcasts a message
⟨forward, C ′, -, sigs⟩ either at lines 25 or 34. By Observation A.11.1, C ′ = Cm. The
observation then follows from Theorem A.6. ◀

We now define Frecv to be the set of correct nodes that receive a valid message ⟨forward,

Cm, -, sigs⟩ at line 2, where sigs contains ps’s valid signature for Cm. We analyze its size and
the behavior of such nodes in the following observations.

▶ Observation A.11.4. Frecv contains at least one correct node, i.e., Frecv ̸= ∅.

Proof of Observation A.11.4. If ps is correct and MBRB-broadcasts m, it executes line 2
and disseminates messages of the form ⟨send, Cm, (m̃j , πj), sigs⟩ to all nodes, where sigs is
ps’s signature share of Cm. By definition of the message adversary, these send messages are
received by at least c− d correct nodes.

By Theorem A.1, n > 3t + 2d, and therefore c− d ≥ n− t− d > 0. At least one correct
node px, therefore, receives one of the send messages disseminated by ps at line 2. As ps is
correct, by Theorem A.6, this message is valid, and is handled by px at lines 2–2.

By Observation A.11.2, px only signs signature shares for Cm, and thus passes the test at
line 2, and reaches line 2, where it disseminates a forward message. By Observation A.11.3,
this message is of the form ⟨forward, Cm, -, {sigs, sigx}⟩, and is valid. As above, by definition
of the message adversary, this forward message is received by at least c− d > 0 correct
nodes. By definition these nodes belong to Frecv, which yield |Frecv| > 0 and Frecv ̸= ∅. ◀

▶ Observation A.11.5. Any pu ∈ Frecv broadcasts a ⟨forward, Cm, -, {sigs, sigu}⟩ message,
where sigs and sigu are ps and pu’s valid signature shares for Cm, respectively.

Proof of Observation A.11.5. Let pu ∈ Frecv upon receiving a valid forward message
⟨forward, Cm, -, sigs⟩ at line 2. By the condition of line 2, pu has either previously sent
a forward message at line 2 or it will send such a message at line 2. In both cases,
Observation A.11.3 applies and guarantees that this message contains Cm and both pu’s and
ps’s valid signature shares. ◀

Note that Frecv is defined over an entire execution of Algorithm 2. Observation A.11.5
therefore states that any correct node pu that receives a valid forward message at some
point of its execution also broadcasts a matching forward message at some point of its
execution. The two events (receiving and sending a forward message) might, however,
occur in any order. For instance, pu might first receive a send message from ps at line 2,
disseminate a forward message as a result at line 2, and later on possibly receive a forward
message from some other node at line 2. Alternatively, pu might first receive a forward
message at line 2, and disseminate its own forward message at line 2 as a result. In this
second case, pu might also eventually receive a send message from ps (at line 2). If this
happens, pu will disseminate a second forward message at line 2. A correct node, however,
never disseminates more than two forward messages (at line 2).

▶ Observation A.11.6. Any broadcast of ⟨forward, Cm, fragtuple, {sigs, sigu}⟩ by a correct
pu ∈ Frecv arrives to at least c− d correct nodes that are each, eventually, in Frecv.

T. Albouy et al. 14:23

Proof of Observation A.11.6. Each broadcast by a correct pu of a forward message is
eventually received by at least c− d correct nodes by definition of the message adversary. By
Observation A.11.3 the forward message contains Cm, by Theorem A.6 it is valid. Thus,
each of its at least c− d correct recipients belong in Frecv, by definition. ◀

Because forward messages are disseminated at line 2, the reception and sending of
forward messages by correct nodes will induce a “chain reaction” until a correct node is
reached that has already disseminated a forward message. This “chain reaction” mechanism
is the intuitive reason why some correct node will eventually receive enough distinct forward
messages to trigger an MBRB-delivery, as captured by the following observation.

▶ Observation A.11.7. There exists a correct node pj that receives messages
⟨forward, Cm, -, sigsu = {sigs, sigu}⟩ from at least (c− d) distinct correct nodes pu, where
sigs = (ts_sign_shares(Cm), s) and sigu = (ts_sign_shareu(Cm), u) are ps and pu’s valid
signature shares for Cm, respectively, and the forward message is the last message sent
by pu.

Proof of Observation A.11.7. By Observation A.11.5, any nodes pu ∈ Frecv broadcasts at
least one message ⟨forward, Cm, -, sigsu = {sigs, sigu}⟩, that includes pu’s valid signature
share for Cm, sigu =

(
ts_sign_shareu(Cm), u

)
. Consider all the forward messages sent by

nodes in Frecv during the last time they perform such a broadcast. By Observation A.11.6,
there are |Frecv| senders, pu ∈ Frecv, such that each of pu’s last broadcast of a forward
message is guaranteed to be delivered to at least c− d correct nodes px, such that eventually
px ∈ Frecv. Thus, at least |Frecv|(c−d) such messages are received by nodes in Frecv, overall. By
Observation A.11.4, Frecv contains at least one node. We can, therefore, apply the pigeonhole
principle, where Frecv are the holes and the above |Frecv|(c− d) messages are the pigeons, and
observe that there exists a node pj ∈ Frecv that will receive at least |Frecv|(c− d)/|Frecv| such
messages. Since we limit the discussion to a single, i.e., the last, broadcast performed by
each node in Frecv, no node in Frecv receives two of the above messages that were originated
by the same node in Frecv. Therefore, we deduce that pj has received messages of the form
⟨forward, Cm, -, sigsu⟩ from at least (c − d) distinct correct nodes pu and the forward
message is the last message sent by pu. ◀

▶ Observation A.11.8. At least one correct node MBRB-delivers m from ps.

Proof of Observation A.11.8. By Observation A.11.7, there is a correct node pj that receives
messages of the form ⟨forward, Cm, -, sigsu⟩ from at least (c− d) distinct correct nodes pu,
such that these forward messages are the last message sent by each pu. Let us denote by
U the set of such nodes pu, hence, |U | ≥ c− d.

Still by Observation A.11.7, pj receives a valid signature share sigu =
(ts_sign_shareu(Cm), u) from each node pu ∈ U . It thus receives at least (c − d) dis-
tinct signature shares for Cm. Theorem A.1 says 3t + 2d < n, and thus, n + 3t + 2d < 2n

and n + t < 2n− 2t− 2d. Since n− t ≤ c, we have (n + t)/2 < n− t− d ≤ c− d. Thus, pj

receives more than (n + t)/2 valid distinct signature shares for Cm.
Let us now consider the set of correct nodes S that receive the initial send messages

disseminated by ps at line 2. Any node px ∈ S receives through the send message its
allocated fragment (m̃x, πx, x) from ps. By definition of the message adversary, the send
messages disseminated at line 2 are received by at least c − d correct nodes, therefore
|S| ≥ c− d. Furthermore, all nodes in S broadcast a forward message at line 2, and this
will be their last forward message, due to the condition of line 2. By the above reasoning,
this forward message will contain their message fragment, that is, it will be of the form
⟨forward, Cm, (m̃x, πx, x), sigsu⟩. By Theorem A.6, they are all valid.

OPODIS 2024

14:24 Near-Optimal Communication BRB Under a Message Adversary

By definition of S and U , both these sets contain only correct nodes, thus, |S ∪ U | ≤ c.
As a result, |S ∩ U | = |S| + |U | − |S ∪ U | ≥ 2 × (c − d) − c = c − 2d. The last forward
messages broadcast by nodes in S ∩ U are received by pj by the definition of U . As argued
above about nodes in S (and thus applying to nodes in S ∩ U), forward messages sent by
a node in S ∩ U contain their valid message fragment and proof of inclusion (m̃x, πx, x). It
follows that pj accumulates at least c− 2d distinct such message fragments with their (valid)
proof of inclusion. By Theorem A.1, c− 2d ≥ k.

To conclude the proof, note that we have shown that pj eventually receives more than
(n + t)/2 valid distinct signature shares for Cm, and additionally, that pj accumulates at least
k valid message fragments with their proof of inclusion. At this point, the condition of line 2
becomes True for pj . Because the commitment is collision-resistant (Section 2), once Cm is
fixed, we can assume that, except with negligible probability, all the message fragments that
pj has received correspond to the fragments computed by ps at line 2. By the parameters
of the ECC we use, it can recover the message m from any k or more (correct) fragments
generated by ps, where missing fragments are considered as erasures. Therefore, the message
mj reconstructed at line 2 by pj is the message initially MBRB-broadcast by ps. As a result
mj = m, and pj MBRB-delivers m at line 2. ◀

◀

Theorem A.12 is the detailed version of Theorem 3.2.

▶ Lemma A.12 (MBRB-Global-delivery). Suppose a correct node, pi, MBRB-delivers an

application message m. At least ℓ = c− d

 1
1−

(
k−1
c−d

)
 correct nodes MBRB-deliver m.

Proof of Lemma A.12. Suppose a correct node pi MBRB-delivers m (line 2). Let us denote
by Cm the commitment returned by computeFragVecCommit(m). The proof follows a
counting argument on the bundle messages disseminated by correct nodes at line 2. In the
following, if a correct node disseminates a bundle message both at line 2, we only consider
the one from line 2.

▶ Observation A.12.1. All valid bundle messages exchanged during the execution of
Algorithm 2 contain Cm, the commitment of the message m, where m is the message MBRB-
delivered by pi.

Proof of Observation A.12.1. Consider a valid message ⟨bundle, C ′, fragtuple′
j ,

fragtuple′
i, Σ′⟩. By definition of a valid bundle message, Σ′ aggregates a set sigs′

of τ = ⌊n+t
2 ⌋+ 1 valid signature shares for C ′. Similarly, when pi MBRB-delivers m at line 2,

it has a threshold signature Σm which aggregates a set sigsm of τ = ⌊n+t
2 ⌋+ 1 valid signature

shares for Cm. By a reasoning identical to that of Theorem A.10, these two inequalities
imply that sigs′ ∩ sigsm contains the signature shares from at least one common correct
node, pu. As signature shares cannot be forged, pu has issued signature shares for both C ′

and Cm, and by Theorem A.7, C ′ = Cm. To complete the proof, note that by the definition
of a valid bundle message, the threshold signature it contains is valid with respect to the
commitment it carries. Hence, all valid bundle messages must contain the commitment Cm

of the application message m that matches the threshold signature Σ′ they contain. ◀

Let Bsend be the set of correct nodes that disseminate at least one bundle message during
their execution. Similarly, let Brecv be the set of correct nodes that receive at least one valid
bundle message from a correct node during their execution. The following holds.

T. Albouy et al. 14:25

Observation A.12.2 is a detailed version of Observation 3.2.1 in Theorem 3.2.

▶ Observation A.12.2. c ≥ |Brecv| ≥ c− d and c ≥ |Bsend| ≥ c− d.

Proof of Observation A.12.2. Since Bsend and Brecv contain only correct nodes, trivially
c ≥ |Bsend| and c ≥ |Brecv|. Since pi MBRB-delivers m at line 2, it must have disseminated
bundle messages of the form ⟨bundle, Cm, (m̃′

i, π′
i, i), (m̃′

j , π′
j , j), ΣC⟩ at line 2. The bundle

messages sent by pi eventually reach at least c− d correct nodes, as the message adversary
can remove at most d of these bundle messages. By Theorem A.6, these bundle messages
are valid. Hence, Brecv ≥ c− d > 0 proves the lemma’s first part.

The nodes in Brecv (which are correct) execute line 2, and reach line 2. Because pi has
included a non-⊥ second fragment in all its bundle message, any of the (c − d) nodes of
Brecv that receive one of pi’s bundle messages and has not already sent a bundle message
passes the condition at line 2. Each such node then disseminates a (valid) bundle message
at line 2. This behavior yields |Bsend| ≥ c− d. ◀

Let Bk,recv be the set of correct nodes that receive bundle messages from at least k

distinct correct nodes.

Observation A.12.3 is a detailed version of Observation 3.2.2 in Theorem 3.2.

▶ Observation A.12.3. |Bk,recv| × |Bsend|+ (k − 1)(|Brecv| − |Bk,recv|) ≥ |Bsend|(c− d).

received
bundle

correct
nodes

|Bsend|

|Bk,recv|

k − 1

|Brecv|

Figure 1 Distribution of distinct bundle messages received by correct nodes. The proof of
Observation A.12.4 shows that |Bsend| > k − 1.

Proof of Observation A.12.3. Let us denote by #bundle the overall number of valid
bundle messages received by correct nodes from distinct correct senders. More specifically,
in the case when a correct node disseminates bundle messages both at line 2, we only
consider the last bundle message, i.e., the one of line 2. We know that each p ∈ Bsend sends
a bundle message, which by Theorem A.6 is valid. As the message adversary may drop up
to d out of the n messages of this comm, we are guaranteed that at least c− d correct nodes
receive p’s bundle message. This immediately implies that

#bundle ≥ |Bsend|(c− d). (1)

As illustrated in Figure 1, the nodes in Bk,recv may receive up to |Bsend| valid bundle
messages from distinct correct senders (one from each sender in Bsend), for a maximum of
|Bk,recv| × |Bsend| bundle messages overall. The remaining nodes of Brecv \Bk,recv may each
receive up to k − 1 valid bundle messages from distinct correct senders, by definition of
Bk,recv. As Bk,recv ⊆ Brecv by definition, |Brecv \Bk,recv| = |Brecv| − |Bk,recv|, and the nodes of
Brecv \ Bk,recv accounts for up to (k − 1)(|Brecv| − |Bk,recv|) valid bundle messages overall.
As the bundle messages counted by #bundle are received either by correct nodes in Bk,recv
or in Bk,recv \Brecv, these observations lead to

OPODIS 2024

14:26 Near-Optimal Communication BRB Under a Message Adversary

|Bk,recv| × |Bsend|+ (k − 1)(|Brecv| − |Bk,recv|) ≥ #bundle. (2)

Combining Equations (1) and (2) yields the desired inequality. ◀

Observation A.12.4 is a detailed version of Observation 3.2.3 in Theorem 3.2.

▶ Observation A.12.4. |Bk,recv| ≥ c− d

 1
1−

(
k−1
c−d

)
 .

Proof of Observation A.12.4. Rearranging the terms of Observation A.12.3, and recalling
that |Brecv| ≤ c and k ≥ 1, we get

|Bk,recv| × (|Bsend| − k + 1) ≥ |Bsend|(c− d)− |Brecv|(k− 1) ≥ |Bsend|(c− d)− c(k− 1). (3)

By Observation A.12.2 and Theorem A.1, |Bsend| ≥ c−d ≥ c−2d ≥ k, therefore |Bsend|−k+1 >

0, and the previous equation can be transformed in

|Bk,recv| ≥
|Bsend|(c− d)− c(k − 1)

|Bsend| − k + 1 . (4)

Note that the right-hand side of Equation (4) is a monotone increasing function in |Bsend|
when |Bsend| > k − 1, as its derivative, d(k+1)

(|Bsend|−k+1)2 , is positive. By Observation A.12.2,
|Bsend| ∈ [c− d, c] ⊆ [k, c]. The minimum of the right-hand side of Equation (4) is therefore
obtained for Bsend = c− d, yielding

|Bk,recv| ≥
(c− d)2 − c(k − 1)

(c− d)− k + 1 = c− d

 1
1−

(
k−1
c−d

)
 . (5)

◀

Observation A.12.5 is a detailed version of Observation 3.2.4 in Theorem 3.2.

▶ Observation A.12.5. All nodes in Bk,recv MBRB-deliver m.

Proof of Observation A.12.5. Consider pu ∈ Bk,recv. By the definition of Bk,recv, the
node pu receives k valid bundle messages from k distinct correct nodes. Let us denote by
⟨bundle, Cx, (m̃x, πx, x), -, Σx⟩ these k messages with x ∈ [k]. By Observation A.12.1, for
all x ∈ [k], Cx = Cm. In addition, pu stores each received threshold signature Σx, which is
valid for Cm.

Because the messages are valid, so are the proofs of inclusions πx, and as we have assumed
that the commitments are collision-resistant, Cx = Cm implies that the received fragments
m̃x all belong to the set of fragments computed by ps at line 2 for m. As the bundle
messages were received from k distinct correct nodes, the node pu receives at least k distinct
valid fragments for m during its execution. If pu has not MBRB-delivered any message yet,
the condition at line 2 eventually becomes true for Cm, and pu reconstructs m at line 2, since
it possesses at least k (correct) message fragments, which are sufficient for the correct recovery
of m by our choice of ECC. Then, pu MBRB-delivers m at line 2. On the other hand, if pu

has already MBRB-delivered some message m′, then Theorem A.10 (MBRB-No-duplicity)
implies m′ = m, since pi is known to have MBRB-delivered m. Therefore, in all possible
cases, pu MBRB-delivers m. ◀

Theorem A.12 follows from Observations A.12.4 and A.12.5 and the fact that all nodes in
Bk,recv are correct. ◀

T. Albouy et al. 14:27

Discussion: Selection of k. In the above analysis, we set k to be a parameter that controls
the number of fragments that allow decoding the ECC. To obtain the communication depicted
in Section 3, we assumed k = Ω(n). Furthermore, this parameter affects the delivery power

of the MBRB algorithm, as seen in Theorem A.12, namely ℓ = c− d

(
1−

(
k − 1
c− d

))−1
.

Let us assume that we wish to design an MBRB algorithm with a specified delivery power
of ℓ = c− (1 + ε)d, for some ε > 0. Plugging in Theorem A.12, we need the delivery power ℓ

provided by the Algorithm 2 to surpass c− (1 + ε)d, thus

c− (1 + ε)d ≤ c− d

 1
1−

(
k−1
c−d

)

leading to k ≤ ε
1+ε (c− d) + 1. That is, choosing any integer k ≤ ε

1+ε (n− t− d) + 1, satisfies
the above. Recall that the blowup of the ECC is given by n̄/k̄ ≈ n/k (Section 3), which
implies that for any application message m, we have |ECC(m)| ≈ n

k |m| =
1+ε

ε ·
n

n−t−d |m|.
Together with Theorem A.1, we conclude that the constraints on k that support delivery

power of ℓ ≥ n− t− (1 + ε)d, are

k ≤ min
{

n− t− 2d,
ε

1 + ε
(n− t− d) + 1

}
.

Supporting multiple instances and multiple senders. We remark that the above analysis
fits the single-shot broadcast algorithm with a fixed sender. As mentioned above, a multi-shot
multi-sender algorithm can be achieved by communicating the identity of the sender and a
sequence number along with any piece of information communicated or processed during
this algorithm. This added information uniquely identifies any piece of information with the
respective instance. Additionally, signature shares, threshold signatures, commitments, and
proofs of inclusion should be performed on the application message m augmented with the
sender’s identifier and the sequence number. This will prevent Byzantine nodes from using
valid signature shares/threshold signatures from one instance in a different instance. As a
result, an additive factor of O(log n) bits has to be added to each communicated message,
which yields additive communication of O(n2 log n) and has no effect on the asymptotic
communication, as we explained in the proof of Theorem B.1. Other changes, such as
augmenting the application message m with the sender’s identifier and sequence number do
not affect the length of signature shares, threshold signatures, commitments, and proofs of
inclusion.

B Communication analysis

This appendix section analyzes the communication cost of Algorithm 2. Theorem B.1 is the
detailed version of Theorem 3.3.

▶ Lemma B.1. Correct nodes collectively communicate at most 4n2 messages. Each correct
node sends at most O(|m|+ nκ) bits. Overall, the system sends at most O(n|m|+ n2κ) bits.

Proof of Lemma B.1. Let us count the messages communicated by counting comm and
broadcast invocations. The sender, ps, sends send messages at line 2. In Phase I, each
correct node that has received a send message broadcasts a forward message once (line 2).
However, if it receives a forward before the send arrives, it performs one additional
forward broadcast (line 2). This yields at most 2 comm and broadcast invocations per

OPODIS 2024

14:28 Near-Optimal Communication BRB Under a Message Adversary

correct node until the end of Phase I. We can safely assume that a correct sender always sends
a single forward (i.e., it immediately and internally receives the send message sent to self).
Thus, ps is also limited to at most 2 invocations up to this point. In Phase II, each correct
node that MBRB-delivers a message at line 2 transmits bundle messages at line 2. This
can only happen once due to the condition at line 2. Additionally, it may transmit bundle
messages also at line 2, upon the reception of a bundle. However, this second bundle
transmission can happen at most once, due to the if-statement at line 2. This leads to at
most 2 additional comm and broadcast invocations per correct node. Thus, as the number
of correct nodes is bounded by n, the two phases incur in total at most 4n invocations of
comm and broadcast overall. Since each invocation communicates exactly n messages, the
total message cost for correct nodes when executing one instance of Algorithm 2 is upper
bounded by 4n2. Note that the above analysis holds for correct nodes also in the presence of
Byzantine participants, including when ps is dishonest.

We now bound the number of bits communicated by correct nodes throughout a single
instance of Algorithm 2. Consider computeFragVecCommit. Let m be a specific
application message. We have |m̃| = O(|m|) since we use a code with a constant rate. Thus,
any specific fragment m̃i has length |m̃i| = O(|m|/n). Recall that the sizes of a signature
share σ, a threshold signature Σ, a commitment C, and an inclusion proof π all have O(κ) bits
(Section 2). Along a signature share pair sig, the identifier of the signing node is included,
which takes additional O(log n) bits. However, since κ = Ω(log n), the inclusion of this field
does not affect asymptotic communication costs.

We now trace all the comm and broadcast instances in Algorithm 2 and analyze the
number of bits communicated in each. The send comm (line 2) communicates n messages,
where each message includes a fragment of m (O(|m|/n) bits) with its proof of inclusion (O(κ)
bits), a commitment (O(κ) bits), and a signature share (O(κ) bits). Thus, this operation
allows the sender to communicate at most O(|m|+ nκ) bits. Each forward broadcast in
lines 25 and 34 sends n copies of a message containing a commitment (O(κ) bits), at most
one message fragment with its proof of inclusion (O(|m|/n + κ) bits), and two signature
shares (O(κ) bits). Hence, each one of lines 25 and 34 communicates a total of O(|m|+ κn)
bits. The bundle communication (lines 40 or 48) sends n messages, where each contains
a commitment (O(κ) bits), at most two message fragments with their proof of inclusion
(O(|m|/n + κ) bits), and one threshold signature (O(κ) bits). Hence, each line communicates
at most O(|m|+ nκ) bits. As analyzed above, the sending node (ps, when correct) performs
at most one comm of send messages, while each correct node performs at most two broadcast
of forward messages, and at most two comm/broadcast of bundle messages. Thus, each
node communicates at most O(|m|+ nκ) bits. Overall, the total bit communication by
correct nodes during Algorithm 2’s execution is O(n|m|+ n2κ). As mentioned above, the
analysis holds in the presence of Byzantine nodes, even if ps is dishonest. ◀

C Using Bracha’s BRB on hash values under a message adversary

Das, Xiang, and Ren [18] have proposed a communication optimal BRB algorithm that
does not use signatures and relies on Bracha instead to reliably broadcast a hash value
of the initial sender’s message. One might legitimately ask whether this approach could
not be easily adapted to withstand a message adversary, possibly resulting in an MBRB
algorithm exhibiting optimal communication complexity (up to the size of hashes κ), optimal
Byzantine resilience (n > 3t + 2d), and optimal delivery power n− t− d (or at least some
close-to-optimal delivery power ℓ, up to some factor ϵ).

T. Albouy et al. 14:29

Unfortunately, under a message adversary, Bracha’s BRB leads to a sub-optimal Byzantine
resilience, and degraded delivery power ℓ. In particular, Albouy, Frey, Raynal and Taiani [3]
have shown that Bracha can be used to implement a MBRB algorithm, but their solution
requires a sub-optimal resilience bound (n > 3t + 2d + 2

√
td) and yields a reduced delivery

power ℓBRB =
⌈
n− t−

(
n−t

n−3t−d

)
d
⌉
. Disappointingly, these less-than-optimal properties

would in turn be passed on to any MBRB algorithm using Bracha’s BRB along the lines of
Das, Xiang, and Ren’s solution.3 By contrast, the algorithm we propose is optimal in terms
of communication cost (up to κ) and Byzantine resilience, and close to optimal in terms of
delivery power (up to some parameter ϵ that can be chosen arbitrarily small).

To provide a hint of why Bracha’s BRB leads to degraded resilience and delivery power
when confronted with a message adversary (MA), consider the classical echo phase of
Bracha’s BRB [10]. At least one correct node must receive (n+ t)/2 echo messages to ensure
the first ready message by a correct node can be emitted. To ensure Local-delivery, the
threshold (n + t)/2 must remain lower than the worst number of echo messages a correct
node can expect to receive when the sender is correct. Without an MA this constraint leads
to (n + t)/2 < n − t, which is verified by assuming n > 3t. With an MA, the analysis is
more complex. Applying a similar argument to that of the proof of Theorem 3.2, one can
show that in the worst case the adversary can ensure that no correct node receives more
than (n− t− d)2/(n− t) echo messages. Ensuring that at least one correct node reaches
the Byzantine quorum threshold (n + t)/2 requires therefore that

(n + t)/2 < (n− t− d)2/(n− t).

This leads to a quadratic inequality involving n, t and d, which results in the following
constraint on n:

n > 2t + 2d +
√

(d + t)2 + d2 ≥ 3t + 3d.

In their analysis [3], Albouy, Frey, Raynal, and Taiani improve on this resilience bound by
systematically optimizing the various retransmission and phase thresholds used by Bracha’s
BRB algorithm, but their solution still falls short of the optimal lower bound n > 3t + 2d,
which the solution presented in this paper provides.

3 Taking into account the initial dissemination of the message m by the broadcaster, which is also
impacted by the message adversary, such an algorithm could in fact at most reach a delivery power of
max

(
0, (n− t− d) + ℓBRB − (n− t)

)
= max

(
0, ℓBRB − d

)
= max

(
0,

⌈
n− t−

(
n−t

n−3t−d + 1
)
d
⌉)

.

OPODIS 2024

	1 Introduction
	2 Preliminaries
	3 The Coded-MBRB algorithm
	4 Conclusion
	A Correctness analysis
	B Communication analysis
	C Using Bracha's BRB on hash values under a message adversary

