
Quit-Resistant Reliable Broadcast and Efficient
Terminating Gather
Mose Mizrahi Erbes #

ETH Zurich, Switzerland

Roger Wattenhofer #

ETH Zurich, Switzerland

Abstract
Termination is a central property in distributed computing. A party terminates a protocol once it
stops accepting and sending messages. We discover that byzantine reliable broadcast is sometimes
used in a manner which leads to non-terminating protocols. We consider an asynchronous network
of n parties up to t of which are byzantine, and show that if each party is to broadcast its value and
terminate upon obtaining n− t values, then composing n parallel reliable broadcast instances leads to
non-termination. The issue is that a party must quit t broadcast instances early in order to terminate,
a behaviour not supported by ordinary reliable broadcast. So, we modify Bracha’s protocol into a
quit-resistant reliable broadcast (QBRB) protocol which lets the parties quit early. This protocol
retains its termination guarantees as long as no party quits before some party terminates.

Then, we turn our attention to Gather, an all-to-all broadcast primitive which guarantees that
the parties obtain n − t common values. Existing error-free deterministic Gather protocols either run
forever, or fail to terminate since the parties quit reliable broadcast instances. We design an error-free,
deterministic, terminating (and binding) Gather protocol for ℓ-bit inputs with the communication
complexity O(ℓn2 + n3 log n). This matches the state-of-the-art for non-terminating Gather.

Finally, inspired by our QBRB protocol, we design a reliable broadcast protocol which retains
its termination guarantees no matter when any party quits. To achieve this, we give each party the
option to output ⊥ if more than q parties quit before some party terminates. The protocol requires
4t + q < n, which is optimal, and it lets parties quit after they have suffered transient crash failures
so that they can help the remaining parties terminate.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Asynchronous networks, byzantine fault tolerance, protocol termination,
reliable broadcast, all-to-all broadcast, gather

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2024.15

1 Introduction

Byzantine reliable broadcast (BRB) is a fundamental asynchronous communication primitive.
Traditionally, a BRB protocol is run by n parties P1, P2, . . . , Pn, where up to t of the parties
may deviate arbitrarily from the protocol while the rest remain honest. Given a fixed sender
party P ∗ who eventually acquires an input v∗, a BRB protocol ensures the following:

Validity: If P ∗ is honest, and an honest Pi outputs yi, then P ∗ has acquired v∗ = yi.
Consistency: If honest parties Pi and Pj output yi and yj , then yi = yj .
Local Termination: If P ∗ is honest, then some honest party terminates.
Global Termination: If some honest party terminates, then all honest parties terminate.

Notice that we split the output correctness properties from the termination properties.
Since we focus on termination in this work, the breakdown above will be useful.

When we say that a protocol terminates, what do we mean? In their seminal work on
asynchronous byzantine agreement [12], Canetti and Rabin say that a protocol terminates if
all the honest parties “complete the protocol (i.e. terminate locally).” The way we understand

© Mose Mizrahi Erbes and Roger Wattenhofer;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles of Distributed Systems (OPODIS 2024).
Editors: Silvia Bonomi, Letterio Galletta, Etienne Rivière, and Valerio Schiavoni; Article No. 15; pp. 15:1–15:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mmizrahi@ethz.ch
https://orcid.org/0009-0009-9771-0845
mailto:wattenhofer@ethz.ch
https://orcid.org/0000-0002-6339-3134
https://doi.org/10.4230/LIPIcs.OPODIS.2024.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Quit-Resistant Reliable Broadcast and Efficient Terminating Gather

this is that they do not let parties keep sending messages after they locally terminate, and
thus define termination as we will. In [4], Abraham et al. define termination as Canetti and
Rabin do, but they also separately define “termination of output” to be the property that
every honest party eventually outputs.

Following the definitions in [9], we distinguish between liveness and termination. A
live protocol guarantees that if the honest parties all eventually acquire inputs and run
forever, then they all output. Liveness is the property called “termination of output” in [4].
Termination is stronger. A terminating protocol guarantees that if the honest parties all
eventually acquire inputs and run until they terminate, then they all terminate. A party can
terminate once it has output, and after terminating it can no longer accept or send messages.

Termination as opposed to liveness is useful in that it allows the parties to go offline
and forget about a protocol once they terminate. When the parties run an asynchronous
protocol that is live but not terminating, they must forever remain alert for further messages,
even if the network happens to be fast and they decide on their outputs almost instantly. In
contrast, if the parties run a terminating asynchronous protocol, then they can go offline
once they terminate. Even in networks where the parties are always active, termination lets
a party free the resources it has allocated for a protocol, while liveness does not.

It is common in distributed computing to compose n (or more) instances of BRB to
implement all-to-all broadcast. In all-to-all broadcast, each party Pi has an input vi which
it broadcasts to the other parties, and each party Pi outputs a set Xi of value-sender pairs
(m, P) with at most one value per sender. Typically, one requires at least the following:

For some constant z ≤ n− t, the honest output sets contain at least z value-sender pairs.
If there exists some (mj , Pj) ∈ Xi for any honest Pi and Pj , then mj = vj .
If there exist some (m, P) ∈ Xi and (m′, P) ∈ Xj for any honest Pi and Pj , then m = m′.

One simple all-to-all broadcast protocol which we name ΠAll achieves precisely the
guarantees above, with z maximally set to n− t. It consists of n parallel BRB instances, one
for each party to broadcast its input. The idea is that since there exist n− t honest parties,
every honest party eventually terminates n− t instances of BRB and thus terminates ΠAll.
In the wild, ΠAll and its variants are commonly used in agreement protocols. For instance,
Canetti and Rabin [12] use ΠAll (with z = 2t + 1) for secret sharing/reconstruction in their
seminal work on byzantine agreement [12], and Abraham, Amit and Dolev use a strengthened
variant of ΠAll as a core primitive in their seminal work on approximate agreement [2].

The problem the literature sometimes overlooks is that ΠAll achieves liveness, but not
termination. Observe that if a party Pi terminates ΠAll upon terminating n− t instances of
BRB and obtaining |Xi| = n− t, then it stops running the t instances of BRB it has not yet
terminated. However, unless the BRB protocol lets honest parties quit before they terminate,
honest parties quitting BRB instances early leads to ΠAll losing its liveness. We show this in
Section 3 with an attack when ΠAll uses Bracha’s reliable broadcast protocol ΠBracha [10].

One consequence of this issue is that the byzantine agreement protocol in [12] by Canetti
and Rabin, whose termination mechanism is an ΠAll variant which a party terminates after
terminating t + 1 broadcasts with identical outputs, does not achieve termination. The
protocol does achieve liveness, but it would also do so if one were to remove its termination
mechanism entirely. The approximate agreement protocol against t < n

3 corruptions in [2] by
Abraham et al. is similarly impacted. Contrary to how their protocol is written, a party can
never halt. More recent approximate agreement protocols such as [15, 20, 21, 24, 27] based
on the witness technique of [2] are impacted as well.

The question we thus ask is if we can redefine reliable broadcast to ensure the termination
of protocols like ΠAll where a party has to quit reliable broadcast instances to terminate. We
answer this affirmatively in Section 4 with quit-resistant reliable broadcast (QBRB), our

M. Mizrahi Erbes and R. Wattenhofer 15:3

new BRB variant where the parties can quit (and inform the other parties of their quitting)
before they terminate, with precisely the guarantees to prevent attacks of the sort against
ΠAll. A QBRB protocol retains validity and consistency no matter when any honest party
quits, and retains global termination as long as no honest party quits before some honest
party terminates. It turns out that one can easily modify ΠBracha into a QBRB protocol
resilient against t < n

3 corruptions. This is fortunate, as the aforementioned protocols which
do not terminate due to BRB not supporting quits become terminating if one replaces the
standard BRB invocations in them with QBRB invocations.

Note that a party informing the others when it quits (or wishes to quit) a protocol and
this playing a role in termination is an idea that has appeared in the literature before. In [5],
the authors design a protocol for byzantine agreement in partial synchrony where upon
running a view (i.e. a tagged protocol instance) for too long, a party sends everyone an abort
message, and these abort messages play a role in the parties switching to the next view.

We would also be remiss not to mention some of the techniques the literature uses to
terminate live agreement protocols. One can upgrade a live byzantine agreement protocol into
a terminating one with reliable consensus [13], a constant-round termination procedure based
on Bracha’s protocol with O(n2) messages carrying protocol outputs. More generally, one can
upgrade a live agreement protocol where the parties obtain at most ω distinct outputs (e.g.
for approximate agreement in a graph [24]) into a terminating one with the constant-round
termination procedure in [22] that builds on reliable consensus, if t < n

max(3,ω+1) .
However, for approximate agreement in Rd, we do not know of any prior termination

procedure. So, we offer two approaches to terminate approximate agreement in Rd. One
of them is QBRB, our general solution which by itself suffices to upgrade the protocols in
[21, 27] into terminating ones. Our second solution that allows the efficient bundling of many
approximate agreement instances (as in [18]) is a terminating Gather protocol. Gather is an
ΠAll variant which requires |

⋂
Pi is honest Xi| ≥ n− t. It is especially useful for approximate

agreement1 [2, 15, 19, 20, 21, 24, 27], though its variants (with additional properties such
as binding and verifiability, which we will discuss later) have been used for distributed key
generation [4], common coin tossing [14, 18] and asynchronous core set agreement [3, 16].

In Section 5, we design ΠGthr, an error-free deterministic Gather protocol optimally secure
against t < n

3 corruptions, usable as a termination procedure for any approximate agreement
protocol based on Gather iterations since it guarantees that if some honest party terminates,
then all of them do. As far as we are aware, no other error-free2 deterministic3 Gather
protocol in the literature achieves termination. The communication complexity of ΠGthr for
ℓ-bit inputs is O(ℓn2 + n3 log n) bits. This is the complexity of the most efficient live Gather
protocol (ΠLive

Gthr) we are aware of [15], when it is instantiated with a state-of-the-art standard
BRB protocol with the complexity O(ℓn + n2 log n) [6]. Our ΠGthr protocol additionaly lets
one extract a core set of n− t parties whose values are obtained by every honest party from
the view of any honest party who outputs; hence, it is binding. Binding Gather was developed
in [4], and there are cases involving secret shares which require the binding property [18].

In section 6, we return to QBRB, and design a QBRB variant ΠAny which retains local
and global termination even if any honest party quits whenever it wishes. The standard
output guarantees of reliable broadcast cannot be achieved with such lax participation, and

1 For approximate agreement, the typical requirement is that |Xi ∩ Xj | ≥ n − t for all honest Pi and Pj ,
which is implied by the stronger |

⋂
Pi is honest Xi| ≥ n − t.

2 We call a protocol error-free if it achieves the properties required of it in every possible execution.
3 Gather is weakening of asynchronous core set agreement (ACS) [8], which requires Xi = Xj for any

honest Pi and Pj . Though there exist terminating ACS protocols [8], ACS implies byzantine agreement,
and error-free deterministic asynchronous byzantine agreement is impossible against one crash fault [17].

OPODIS 2024

15:4 Quit-Resistant Reliable Broadcast and Efficient Terminating Gather

for this reason we introduce the extra outputs ⊥ and ⊤. If at most q honest parties quit
before some honest party terminates, then ΠAny is just a QBRB protocol, albeit one with
an extra output ⊤ to indicate that the sender quit before it acquired an input. If more
than q honest parties quit before some honest party terminates, then we give each party the
individual option to output ⊥. The protocol ΠAny optimally requires 4t + q < n for this.

From a practical view, ΠAny is of interest in that it lets parties quit after they recover
from transient crashes to help the remaining parties terminate. For example, a party can
quit when it reconnects after a network disconnection, or when it restarts after a power loss.
This ensures that as long as the honest parties that transiently crash (no matter how many)
eventually come back online, all parties terminate ΠAny. We remark that reliable broadcast
with recoverable transient crashes has been studied before. In [7], one can find a live BRB
protocol against a polynomially bounded adversary for when 3t + 2f < n and at most f

honest parties suffer transient crashes for a polynomially bounded number of times.

2 Model

We consider an asynchronous network of n message-sending parties P = {P1, . . . , Pn} who
are connected pairwise via reliable authenticated channels. The party set P is publicly known.
The parties do not have access to synchronized clocks.

Our basic adversary, which we name the t-adversary, corrupts up to t parties. The corrupt
parties are byzantine; they deviate arbitrarily from the protocol. The rest of the parties are
honest. The adversary schedules messages as it wishes, and it is only required to eventually
deliver all messages from honest senders. The adversary can also adaptively corrupt parties
during the execution of a protocol depending on the sent messages and the parties’ internal
states, and drop messages from parties by corrupting them. So, we call a party honest if it is
never corrupted. Unless stated otherwise, our protocols are designed against the t-adversary.

By default, a party must run a protocol until it is instructed to terminate. However, a
QBRB protocol lets each party quit whenever it wishes by invoking the procedure Quit(), in
which the party might send some final messages to help the remaining parties terminate. The
adversary can influence if and when a party invokes Quit(). The invocation of Quit() is an
event which a party handles like any other. A QBRB protocol keeps validity and consistency
no matter when any honest party invokes Quit(), but potentially loses global termination if
an honest party invokes Quit() before some honest party terminates.

In Section 6, we design the broadcast protocol ΠAny against an adversary which can cause
a single transient crash for any honest party. This adversary can arbitrarily choose when any
crash occurs and how long it lasts. At the end of a crash, the recovering party immediately
invokes Quit(), having retained the information that Quit() needs (the kinds of messages the
party has sent in ΠAny). We define the (t, crash)-adversary to be the t-adversary with the
power to cause transient crashes as described above. Against the (t, crash)-adversary, ΠAny
achieves local and global termination no matter when any honest party quits, though with
weaker output guarantees if more than q honest parties quit before some honest termination.

When a party “multicasts” a message m, it sends m to all parties. To keep things simple,
we assume that the honest parties do not transiently crash while multicasting, though note
that we could remove this assumption by requiring any party that crashes while multicasting
any m to remember m so that it can multicast m again when it recovers from the crash.

For composability, the parties do not begin protocols “having” inputs. Instead, they
“acquire” inputs while they are running. This matters since we consider protocols where some
parties might quit before they acquire inputs, or terminate despite never acquiring inputs.

M. Mizrahi Erbes and R. Wattenhofer 15:5

3 Insufficiency of Standard BRB for Terminating All-to-All Broadcast

Below, we present the classical BRB protocol ΠBracha [10]. Note that a party Pi only accepts
a single ECHO message and a single READY message from any party Pj . We do not require a
party to multicast ⟨ECHO, v⟩ upon receiving t + 1 ⟨READY, v⟩ messages; this rule is absent in
modern renditions of the protocol [1, 11]. The protocol ΠBracha is proven secure in [1, 10, 11].

Protocol ΠBracha

Code for a party Pi

1: upon acquiring the input v∗ do //only run by the sender P ∗

2: multicast ⟨INIT, v∗⟩
3: upon receiving a message ⟨INIT, v⟩ for some v from P ∗ for the first time do
4: multicast ⟨ECHO, v⟩
5: upon receiving the message ⟨ECHO, v⟩ from ⌊n+t

2 ⌋+ 1 distinct parties do
6: if you have not sent a READY message before, then multicast ⟨READY, v⟩
7: upon receiving the message ⟨READY, v⟩ from t + 1 distinct parties do
8: if you have not sent a READY message before, then multicast ⟨READY, v⟩
9: upon receiving the message ⟨READY, v⟩ from 2t + 1 distinct parties do

10: output v and terminate

And now, we present a version of ΠAll which fails to terminate because it uses ΠBracha.

Protocol ΠAll

Code for a party Pi

1: Join n common instances of ΠBracha, named Π1
Bracha, . . . , Πn

Bracha. The party Pk is
the sender of Πk

Bracha.
2: Xi ← ∅
3: upon acquiring the input vi do
4: set vi as the input for Πi

Bracha

5: upon terminating Πk
Bracha with the output mk do

6: Xi ← Xi ∪ {(mk, Pk)}
7: if |Xi| = n− t then
8: output Xi and terminate //To halt, Pi must halt all ΠBracha instances.

Let us informally argue that ΠAll terminates against the t-adversary when t < n
3 . Since

there exist at least n− t honest parties and since ΠBracha guarantees termination for all honest
parties when the sender is honest, eventually, some first honest Pi terminates n− t instances
of ΠBracha and thus terminates ΠAll. Then, since ΠBracha guarantees termination for all honest
parties when some honest party terminates, every honest party can eventually terminate ΠAll
by terminating the n− t instances of ΠBracha terminated by Pi.

As Theorem 1 below indicates, this argument fails. The intuitive reason why is that
an honest party must stop participating in every ΠBracha instance to terminate ΠAll, which
means that the party must prematurely quit t instances of ΠBracha before terminating them.
Though some honest party eventually terminates n− t ΠBracha instances, these instances lose
global termination if other honest parties quit them before terminating them.

OPODIS 2024

15:6 Quit-Resistant Reliable Broadcast and Efficient Terminating Gather

▶ Theorem 1. When n = 7, the 2-adversary can prevent a particular party from terminating
ΠAll by making two parties omit sending messages to the party.

Proof. The adversary corrupts P2 and P3. The party P1 will be precluded from terminating.
The adversary lets every honest Pi acquire its input vi, and assigns arbitrary inputs to

the corrupt parties P2 and P3. These corrupt parties do not send P1 any messages, but
otherwise they behave honestly. The adversary begins with the following message scheduling:

The communication between P1 and the rest of the parties is indefinitely blocked.
For k ∈ {4, . . . , 7}, the communication for Πk

Bracha is indefinitely blocked for the party
Pnext(k), where next(k) = k + 1 if k < 7 and next(7) = 4.
Initially, all ECHO and READY messages are blocked.

First, each party Pi sends the INIT messages of its broadcast instance Πi
Bracha. The INIT

messages in Π1
Bracha are received by only P1. The INIT messages in Π2

Bracha and Π3
Bracha are

received by all parties except P1. For all k ≥ 4, the INIT messages in Πk
Bracha are received by

all parties except P1 and Pnext(k).
Then, the adversary unblocks the ECHO messages. The ECHO messages in Π1

Bracha are sent
and received by only P1. The ECHO messages in Π2

Bracha and Π3
Bracha are sent and received by

all parties except P1; so, all parties except P1 send READY messages in Π2
Bracha and Π3

Bracha.
For all k ≥ 4, the ECHO messages in Πk

Bracha are sent and received by all parties except P1
and Pnext(k); so, all parties except P1 and Pnext(k) send READY messages in Πk

Bracha.
Afterwards, the adversary unblocks the READY messages. No party sends READY messages

in Π1
Bracha. The READY messages in Π2

Bracha and Π3
Bracha are sent and received by all parties

except P1. For all k ≥ 4, the READY messages in Πk
Bracha are sent and received by all parties

except P1 and Pnext(k). So, for all k ≥ 4, the party Pnext(k) terminates ΠAll by receiving at
least n− 2 READY messages in all ΠBracha instances except Π1

Bracha and Πk
Bracha. Since next is

a permutation of {4, . . . , 7}, we get that the parties P4, . . . , P7 all terminate ΠAll.
Finally, the adversary unblocks all communication. No party sends READY messages in

Π1
Bracha, and so P1 does not terminate Π1

Bracha. In any broadcast instance Πk
Bracha where k ≥ 4,

the party P1 receives READY messages from the 3 parties in {P4, . . . , P7} \ {Pnext(k)}. This
suffices for P1 to send itself a READY message in Πk

Bracha. Even then, Pi only receives 4 READY
messages in Πk

Bracha, which is insufficient for termination. Since P1 cannot terminate any
ΠBracha instance except Π2

Bracha and Π3
Bracha, it cannot terminate ΠAll. ◀

4 Quit-Resistant BRB

One could thwart the attack with a termination procedure based on reliable consensus [13]
by exploiting the fact that if an honest party terminates a ΠBracha instance, then every party
learns the instance’s output by receiving n− 2t READY messages on the output. However, it
is hard to come up with a termination procedure that works with any BRB protocol instead
of just ΠBracha, and our view is not that ΠAll is lacking a termination procedure but that the
termination properties of standard BRB are lacking for protocols like ΠAll where a party must
quit remaining BRB instances to terminate. Hence, we define quit-resistant BRB (QBRB).
A QBRB protocol lets any party quit by invoking Quit(). Given a fixed sender party P ∗ who
might (or might not) eventually acquire an input v∗, a QBRB protocol ensures the following:

Validity: If P ∗ is honest, and an honest Pi outputs yi, then P ∗ has acquired v∗ = yi.
Consistency: If honest parties Pi and Pj output yi and yj , then yi = yj .
Local Termination: If P ∗ is honest, and it acquires an input, then either some honest
party terminates, or some honest party quits.
Global Termination: If some honest party terminates before any honest party quits,
then every honest party either terminates or quits.

M. Mizrahi Erbes and R. Wattenhofer 15:7

We keep the definitions of validity and consistency from standard BRB. However, while a
standard BRB protocol requires the parties to run until instructed to terminate, a QBRB
protocol lets each party quit whenever it wishes by invoking Quit(), and retains a meaningful
global termination guarantee if no honest party quits before some honest party terminates.

QBRB is what ΠAll needs to terminate. If in ΠAll one replaces ΠBracha with any QBRB
protocol, then the QBRB instances terminated by the first honest party who terminates ΠAll
retain global termination, and thus ΠAll terminates.

Below, we modify ΠBracha into a QBRB protocol ΠQuit, optimally secure when t < n
3 . We

do so with the QUIT message which a party multicasts when it invokes Quit(), making it easier
for the remaining parties to terminate. The QUIT messages do not compromise the safety
guarantees since t + 1 READY messages are required to obtain output, and global termination
relies on the fact that if the honest parties do not multicast QUIT before some honest party
terminates, then the first honest termination occurs after t + 1 honest parties multicast
⟨READY, v⟩ for some v, which means that every honest party will multicast ⟨READY, v⟩ or QUIT.

Protocol ΠQuit

Code for a party Pi

1: R← List(n) //list of accepted READY messages, indexed R[1], . . . , R[n]
2: yi ← ⊥ //output of Pi, undetermined for now
3: ai ← 0 //count of accepted QUIT messages
4: upon acquiring the input v∗ do //input acquisition code for P ∗

5: multicast ⟨INIT, v∗⟩
6: upon receiving a message ⟨INIT, v⟩ for some v from P ∗ for the first time do
7: multicast ⟨ECHO, v⟩
8: upon receiving the message ⟨ECHO, v⟩ from ⌊n+t

2 ⌋+ 1 distinct parties do
9: //Pi only accepts a single ECHO message from any Pj.

10: if you have not sent a READY message before, then multicast ⟨READY, v⟩
11: upon receiving some m such that m = QUIT or m = ⟨READY, v⟩ for some v for the

first time from a party Pj do //do not accept both a QUIT and a READY from Pj

12: if m = ⟨READY, v⟩ for some v then
13: R[j]← v

14: if R contains t + 1 copies of v then
15: yi ← v

16: if you have not sent a READY message before, then multicast ⟨READY, v⟩
17: if m = QUIT, then ai ← ai + 1
18: if yi ̸= ⊥ and R contains 2t + 1− ai copies of yi then
19: output yi and terminate
20: upon invoking Quit() do
21: if you have not sent a READY message before, then multicast QUIT
22: quit

▶ Theorem 2. ΠQuit is a secure QBRB protocol when t < n
3 .

Proof.

Consistency and Validity. For any v, let Pi be the first honest party who multicasts
⟨READY, v⟩. The party Pi cannot have done this after having received ⟨READY, v⟩ from t + 1
parties, because then there would need to exist a prior honest party who multicast ⟨READY, v⟩.
Therefore, Pi must have received ⟨ECHO, v⟩ from ⌊n+t

2 ⌋+ 1 parties.

OPODIS 2024

15:8 Quit-Resistant Reliable Broadcast and Efficient Terminating Gather

For contradiction, suppose that for some distinct v and v′, some honest parties multicast
⟨READY, v⟩ and some honest parties multicast ⟨READY, v′⟩. Let P and P ′ be the first honest
parties who respectively multicast ⟨READY, v⟩ and ⟨READY, v′⟩. Then, P must have received
⟨ECHO, v⟩ from ⌊n+t

2 ⌋+ 1 parties, and P ′ must have received ⟨ECHO, v′⟩ from ⌊n+t
2 ⌋+ 1 parties.

These quorums have an intersection of at least t+1 parties, and hence we get the contradiction
that an honest party must have sent ⟨ECHO, v⟩ to P and ⟨ECHO, v′⟩ to P ′.

Suppose some honest Pi outputs v. Then, Pi must have received ⟨READY, v⟩ from at least
t+1 parties, at least one of which is honest. Since honest parties cannot multicast ⟨READY, v′⟩
for any v′ ̸= v, no honest party outputs any v′ ̸= v. That is, we have consistency.

Furthermore, if P ∗ is honest, then the only message on which a party may receive ECHO
messages from ⌊n+t

2 ⌋ + 1 > t parties is the input v∗ of P ∗, after P ∗ has acquired v∗ and
multicast ⟨INIT, v∗⟩. This implies validity since an honest party can output any v only after
some honest party receives ⟨ECHO, v⟩ from ⌊n+t

2 ⌋+ 1 parties and multicasts ⟨READY, v⟩.

Local Termination. For contradiction, consider a counterexample execution of ΠQuit where
P ∗ is honest, and it acquires an input, but no honest party terminates or quits. Then, the
honest parties participate forever in the execution. Every honest party receives ⟨INIT, v∗⟩
from P ∗ and thus multicasts ⟨ECHO, v∗⟩. Then, every honest party receives ⟨ECHO, v∗⟩ from
n − t ≥ ⌊n+t

2 ⌋ + 1 parties and thus multicasts ⟨READY, v∗⟩ if it has not multicast a READY
message (which would have to be ⟨READY, v∗⟩) already. Finally, since all honest parties
multicast ⟨READY, v∗⟩, some honest party terminates after receiving the message QUIT from f

byzantine parties (where f ≤ t) and receiving ⟨READY, v∗⟩ from 2t + 1− f ≤ n− t parties.
This contradicts the assumption that no honest party terminates.

Global Termination. Suppose some honest Pi terminates with the output v, with no
honest parties terminating or quitting earlier. Then, Pi must have received ⟨READY, v⟩ from
2t + 1− f parties, where f is the number of QUIT messages Pi received. These f messages
must have corrupt senders because honest parties do not quit before Pi terminates. Since Pi

does not accept both a QUIT message and a READY message from the same party, at least
2t + 1−f − (t−f) = t + 1 of the parties from whom Pi accepted the message ⟨READY, v⟩ must
be honest. So, every honest party either multicasts QUIT, or receives ⟨READY, v⟩ from t + 1
parties, which makes it set its output to v and multicast ⟨READY, v⟩ if it has not multicast a
READY message (which would have to be ⟨READY, v⟩) already. Finally, every honest party either
quits, or terminates after receiving from 2t + 1 parties the messages QUIT or ⟨READY, v⟩. ◀

We remark that we purposefully defined global termination so that it guarantees nothing
if some honest party quits before any honest party terminates. In [23], the authors construct
a signature-based reliable broadcast protocol which a party terminates upon receiving/con-
structing a certificate (that consists of the output y and signatures on y from t + 1 parties),
after multicasting the certificate so that everyone can terminate by receiving it. This protocol
is (with the addition of an empty Quit() procedure) a QBRB protocol which guarantees
that if some honest party terminates, then every honest party who does not quit eventually
terminates, no matter when any honest party quits. Our ΠQuit does not achieve this stronger
global termination property, and we do not know whether any error-free QBRB protocol can.

5 Efficient Terminating Gather

In Gather, each party Pi may eventually acquire an ℓ-bit input vi (where ℓ is publicly known),
and each party Pi outputs a set of value-sender pairs Xi (with at most one value per sender).
Against the t-adversary, a Gather protocol must achieve the following correctness properties:

M. Mizrahi Erbes and R. Wattenhofer 15:9

Common Core: There exists a common core set C ⊆ P of size at least n− t such that
every honest output set Xi contains some (mj , Pj) for all Pj ∈ C.
Validity: If there exists some (mj , Pj) ∈ Xi for any honest Pi and Pj , then mj = vj .
Consistency: If there exist some (m, P) ∈ Xi and (m′, P) ∈ Xj for any honest Pi and
Pj , then m = m′.

If the protocol is binding, then the following stronger version of common core must hold:
Binding Common Core: At the moment when some honest party outputs for the first
time, one can extract a common core set C from the views of the honest parties.

Finally, the protocol should have one of the following termination-related properties:
Liveness: Suppose the honest parties all eventually acquire inputs. If the honest parties
all run the protocol forever, then they all obtain outputs from it.
Termination: Suppose the honest parties all eventually acquire inputs. If the honest
parties all run the protocol until they terminate it, then they all terminate the protocol.
Strong Termination: If all honest parties eventually acquire inputs, then some honest
party terminates; and if some honest party terminates, all honest parties terminate.

Strong termination is typically the termination property a termination procedure (e.g.
reliable consensus [13]) achieves. To see why it matters, let ΠL and ΠT be Gather protocols,
the former with liveness only. Let the parties run ΠL on their inputs, transform their ΠL

outputs into ΠT inputs, obtain final outputs from ΠT , and terminate when they output.
When a party terminates the composed protocol, it necessarily stops running ΠL. Hence, the
remaining parties might not output from ΠL, and thus not acquire ΠT inputs. Now, if ΠT

strongly terminates, then the composed protocol does so as well since no party quits ΠL before
some party terminates ΠT . However, if ΠT is just terminating, then the composed protocol
might not terminate since some honest parties might never obtain ΠT inputs. Approximate
agreement protocols often consist of Gather iterations composed like this, and the strong
termination of the last iteration suffices for the composed protocol to (strongly) terminate.

With ΠLive
Gthr we denote the most efficient live Gather protocol we know of [15]. Instantiated

with a state-of-the-art standard BRB protocol which requires O(ℓn + n2 log n) bits of
communication [6], it achieves the bit complexity O(ℓn2 + n3 log n). The protocol ΠLive

Gthr is
presented in [15], though for completeness we restate it and its security proof in the appendix.
Note that ΠLive

Gthr is not binding, but our strongly terminating Gather protocol ΠGthr will be.
The protocol ΠLive

Gthr involves n standard BRB broadcasts of ℓ-bit inputs, n standard
BRB broadcasts of n-bit inputs and n multicasts of n-bit inputs. To make ΠLive

Gthr (strongly)
terminate, it suffices to replace its standard BRB broadcasts and multicasts with QBRB
broadcasts. The issue is that against t < n

3 corruptions we do not know of a more efficient error-
free QBRB protocol than ΠQuit, and replacing all standard BRB broadcasts and multicasts
in ΠLive

Gthr with ΠQuit instances results in the bit complexity O(ℓn3 + n4). Our ΠGthr protocol
instead achieves strong termination while preserving the complexity O(ℓn2 + n3 log n).

5.1 k-slot Consensus
To construct ΠGthr, we need a 5-slot consensus4protocol with strong termination. In a k-slot
consensus protocol, each party Pi may eventually acquire an input vi ∈ {0, 1} and obtain an
output yi ∈ {0, 1

k−1 , . . . , k−2
k−1 , 1}. The following output correctness properties must hold:

4 In the literature 5-slot consensus is better known as (binary) graded consensus, with the possible outputs
(0, 2), (0, 1), (⊥, 0), (1, 1), (1, 2). We use the mapping [(0, 2), (0, 1), (⊥, 0), (1, 1), (1, 2)] ↔ [0, 1

4 , 2
4 , 3

4 , 1].
We define k-slot consensus so that we can compare k-slot consensus outputs with numbers.

OPODIS 2024

15:10 Quit-Resistant Reliable Broadcast and Efficient Terminating Gather

Validity: If for some b every honest input is b, then every honest output is b.
k-Consistency: There exists some z such that every honest output is in {z, z + 1

k−1}.
Of course, a k-slot consensus protocol must also have some termination guarantee. This may
be liveness, termination or strong termination, which are defined as they were for Gather.

In [22], the authors present a constant-round quorum-based termination procedure which
when t < n

max(3,ω+1) turns any live protocol Π where the honest parties obtain at most ω

distinct outputs into a strongly terminating5 protocol where each honest party runs Π with
its input and terminates with the Π output of some honest party. The procedure has an
overhead of 3 additional rounds and O(ωn2) additional messages carrying Π outputs.

Since from k-slot consensus the honest parties obtain at most 2 distinct outputs and since
k-slot consensus remains secure if the honest parties exchange their outputs, the procedure
is perfectly suited to upgrade a live k-slot consensus protocol into a strongly terminating one
when t < n

3 . In the appendix, we present the strongly terminating k-slot consensus protocol
Πk-slot where we use the procedure on a live k-slot consensus protocol Πk-slot, alongside a
proof since strong termination is not formally considered in [22].

In the rest of this section, we denote by Π5-slot the protocol Πk-slot instantiated with the
constant-round error-free deterministic live 5-slot consensus protocol in [9] which we call
Π5-live. Against t < n

3 corruptions, Π5-live achieves 5-slot consensus with O(n2) bits/messages.
The 5-slot consensus protocol Π5-slot has the same corruption tolerance t < n

3 and the same
asymptotic complexity as Π5-live, and it is error-free and deterministic like Π5-live.

5.2 Online Error Correction
We use online error correction [8] based on Reed-Solomon error correcting codes [25] in
order to obtain a communication complexity of the form O(ℓn2 + . . .) for ΠGthr. For some
a > log2(n), we use the following two functions:

Encode(m): This function takes a message m of length a ·(n−2t), and outputs a codeword
(s1, . . . , sn) of n symbols in the Galois Field GF (2a), each of which are a bits long.
TryDecode(s1, . . . , sn): This function takes as input n symbols s1, . . . , sn ∈ GF (2a)∪{⊥}.
With respect to a message m with Encode(m) = (s′

1, . . . , s′
n); we call a symbol sj correct

if sj = s′
j , missing if sj = ⊥, and incorrect otherwise. When used with at most t missing

symbols and at most t incorrect symbols with respect to some m, TryDecode(s1, . . . , sn)
outputs m if at least n− t of the symbols are correct with respect to m, and ⊥ otherwise.

To use error correction on messages of any arbitrary length ℓ, we pad the messages to the
length a · (n− 2t) for some a > log2(n). This gives us the symbol bit length a = max(⌈ ℓ

n−2t⌉,
⌊log2(n)⌋+1) = O(ℓ

n +log n). For readability, we omit explicit padding/unpadding operations.
Online error correction is useful when there is a message m with Encode(m) = (s1, . . . , sn)

such that each honest Pj multicasts sj . Then, each honest Pi can keep track of the symbols
it receives, and upon receiving n− t + r symbols for each r ∈ {0, . . . , t} run TryDecode in an
attempt to obtain m. The output will be m or ⊥ in each trial as in each trial there will be
at most t missing symbols and at most t incorrect symbols with respect to m. Furthermore,
since Pi can eventually receive the symbol sj from each honest Pj , in some TryDecode trial
there will be n− t correct symbols and m will be the output.

5 In [22], the authors do not consider strong termination, and only prove that their procedure upgrades
live protocols into terminating ones. However, upon inspection one can observe that their procedure
results in strong termination. This is also the case for the reliable consensus termination procedure [13].

M. Mizrahi Erbes and R. Wattenhofer 15:11

The most efficient standard BRB protocol we are aware of [6] uses the online error
correction approach above to achieve the bit complexity O(ℓn + n2 log n). The approach
falters for QBRB because an honest party may quit a QBRB instance without ever sending
any message related to the sender’s input. This prevents us from designing a QBRB protocol
against t < n

3 corruptions (and not just t ≤ (1−ε)n
3 for a positive constant ε) with the bit

complexity O(ℓn + n2 log n). Nevertheless, we are able to use online error correction in ΠGthr.

5.3 The Gather Protocol
The Gather protocol ΠLive

Gthr is similar to ΠAll in that the parties broadcast their inputs with
standard BRB instances, and each honest Pi inserts a value-sender pair to its output set Xi

when it terminates a BRB instance. In ΠGthr we use ΠLive
Gthr, but with external access to the

output set Xi which each honest Pi builds in ΠLive
Gthr. Hence, we denote the ΠLive

Gthr output of
each honest Pi with Zi. The set Zi is a snapshot of Xi made when Pi outputs from ΠLive

Gthr.
Inspired by the classical ACS protocol in [8] which involves one byzantine agreement

instance per party to decide whether the party’s input gets into the core set, we run n

instances of Π5-slot, named Π1
5-slot, . . . , Πn

5-slot. Upon obtaining Zi from ΠLive
Gthr, the party Pi

provides an input to each Π5-slot instance; the input is 1 if there exists a pair (mj , Pj) ∈ Zi.
We call an honest Pi happy if it has terminated every Π5-slot instance, and has inserted some

(mj , Pj) to Xi whenever gj
i ≥ 1

4 . Note that gj
i > 1

4 indicates by the validity of Π5-slot that some
honest Pk has (mj , Pj) ∈ Zk. So, unless some honest party stops running ΠLive

Gthr, eventually Pi

can terminate the standard BRB terminated by Pk and insert (mj , Pj) to Xi. Upon becoming
happy, the party Pi lets (Sj,1, . . . Sj,n) = Encode(mj) if gj

i ≥ 1
4 , and lets (Sj,1, . . . Sj,n) =

(⊥, . . . ,⊥) otherwise. Then, Pi sends each Pj the message ⟨YOURS, (S1,j , . . . , Sn,j)⟩.
Suppose that a party Pi terminates Πj

5-slot with gj
i ≥ 2

4 , and that there are at least t + 1
happy parties. Then, by the 5-consistency of Πj

5-slot, every happy party Pk has gj
k ≥

1
4 , and

thus the happy parties send YOURS vectors to Pi with a common non-⊥ jth symbol. So, every
party Pi can (and must, before it terminates ΠGthr) eventually multicast ⟨MINE, (s1, . . . , sn)⟩,
where for all j, if gj

i ≤ 1
4 then sj = ⊥, and otherwise sj is the common non-⊥ jth symbol

in t + 1 YOURS vectors which Pi receives. Note that if sj ≠ ⊥, then sj is the ith symbol of
Encode(mj), where mj is the unique message such that some honest Pk has (mj , Pj) ∈ Xk.

Finally, a party Pi could terminate Πj
5-slot with gj

i ≥ 3
4 . Then, to ensure the binding

common core property, Pi must insert some (mj , Pj) to its ΠGthr output set Qi. By the
5-consistency of Πj

5-slot, every honest Pk has gj
k ≥

2
4 , which means that Pk multicasts a MINE

vector whose jth symbol is the kth symbol of Encode(mj), where mj is the unique message
such that some honest Pq has (mj , Pj) ∈ Xq. So, Pi can obtain mj via online error correction.

In ΠGthr, we use READY quorums of size t+1 and 2t+1 in the manner of Bracha’s protocol
to ensure without impacting liveness that no honest party terminates before t + 1 parties
become happy. Since a party must terminate every Π5-slot instance to become happy, the
strong termination of Π5-slot ensures that every honest party terminates every Π5-slot instance.
Furthermore, the YOURS vectors multicast by at least t + 1 happy parties ensure that the
parties all multicast MINE vectors, and thus that they all construct the messages they need.

When a party Pi terminates ΠGthr, one can use its view to compute the binding common
core Ci = {Pj ∈ P : gj

i = 1}. The common core property of ΠLive
Gthr and the validity of Π5-slot

ensure that Ci ⊇ C′ where C′ is any common core of ΠLive
Gthr, and therefore that |Ci| ≥ n− t.

Moreover, Ci is a common core since the 5-consistency of Π5-slot ensures that for all Pk ∈ Ci,
every honest Pj obtains gk

j ≥ 3
4 , and therefore inserts some (mk, Pk) to Qj .

OPODIS 2024

15:12 Quit-Resistant Reliable Broadcast and Efficient Terminating Gather

In ΠGthr, the parties send O(ℓn2 + n3 log n) bits/O(n3) messages in ΠLive
Gthr, O(n3 log n)

bits/O(n3) messages in the n instances of Π5-slot (the log n factor is from ⌈log2(n)⌉-bit message
tags which are necessary to distinguish the Π5-slot instances), O(n2) bits/messages for the
READY notifications, and finally O(ln2 + n3 log n) bits/O(n2) messages for the YOURS and
MINE vectors. Hence, the complexity of ΠGthr is O(ℓn2 + n3 log n) bits and O(n3) messages.

Protocol ΠGthr

Code for a party Pi

1: Join a common instance of ΠLive
Gthr. Let Xi be the output set incrementally built in

ΠLive
Gthr via n instances of standard BRB.

2: Join n common instances of Π5-slot, named Π1
5-slot, . . . , Πn

5-slot. Represent with gj
i

the output from Πj
5-slot.

3: Y ← Matrix(n× n) //matrix of accepted YOURS symbols, initially filled with ⊥
4: M ← Matrix(n× n) //matrix of accepted MINE symbols, initially filled with ⊥
5: Qi ← ∅ //Qi will be the ΠGthr output set of Pi

6: upon acquiring the input vi do
7: set vi as the input for ΠLive

Gthr

8: upon obtaining the output Zi from ΠLive
Gthr do

9: for each j, set bj as the input for Πj
5-slot, where bj = 1 if there exists some

(mj , Pj) ∈ Zi and bj = 0 otherwise
10: upon receiving some ⟨YOURS, (s1, . . . , sn)⟩ for the first time from a party Pj do
11: (Yj,1, . . . , Yj,n)← (s1, . . . , sn)
12: upon receiving YOURS vectors from 2t + 1 parties or READY from t + 1 parties do
13: multicast READY
14: Activate the rules below after terminating all Π5-slot instances. Before that happens,

buffer up to one received MINE vector from each Pj.
15: when there exists some (mj , Pj) ∈ Xi whenever gj

i ≥ 1
4 do //when Pi is happy

16: for j ∈ {1, . . . , n} do
17: if gj

i ≥ 1
4 , then (Sj,1, . . . , Sj,n)← Encode(mj), where (mj , Pj) ∈ Xi

18: if gj
i = 0, then (Sj,1, . . . , Sj,n)← (⊥, . . . ,⊥)

19: to each party Pj , send the message ⟨YOURS, (S1,j , . . . , Sn,j)⟩
20: when a non-⊥ symbol sj is repeated at least t + 1 times in the jth column of Y

whenever gj
i ≥ 2

4 do
21: multicast ⟨MINE, (s′

1, . . . , s′
n)⟩, where s′

j = sj if gj
i ≥ 2

4 and s′
j = ⊥ otherwise

22: upon receiving some ⟨MINE, (s1, . . . , sn)⟩ for the first time from a party Pj do
23: (M1,j , . . . , Mn,j)← (s1, . . . , sn)
24: for all k ∈ {1, . . . , n} such that gk

i ≥ 3
4 do

25: if (Mk,1, . . . , Mk,n) has at most t copies of ⊥ and ∄(mk, Pk) ∈ Qi then
26: mk ← TryDecode(Mk,1, . . . , Mk,n)
27: if mk ̸= ⊥, then Qi ← Qi ∪ {(mk, Pk)}
28: when you have received READY from 2t + 1 parties, you have multicast READY and

some MINE vector, and there exists some (mj , Pj) ∈ Qi whenever gj
i ≥ 3

4 do
29: stop running ΠLive

Gthr, output Qi and terminate

▶ Theorem 3. ΠGthr is a secure binding Gather protocol with strong termination when t < n
3 .

Due to a lack of space, we formally prove Theorem 3 in the appendix.

M. Mizrahi Erbes and R. Wattenhofer 15:13

Some Gather variants also achieve the property verifiability [3, 4, 26]. Essentially (as
defined in [26]), each honest Pi has a function Verifyi which outputs a bit given Pi’s current
view and any party set P ′. Verifyi(P ′) outputs 0 if P ′ does not contain the binding common
core, and eventually outputs 1 if P ′ is the set of the senders in Qj for some honest Pj . Also,
if Verifyi(P ′) = 1 at any time, then Verifyi(P ′) = 1 at any later time. To achieve verifiability,
we can replace 5-slot consensus in ΠGthr with 6-slot consensus, and require each Pi to include
some (mj , Pj) in its output set Qi when gj

i ≥ 3
5 . Then, from Pi we can extract the binding

common core {Pj ∈ P : gj
i = 1}, and for each Pj let Verifyj(P ′) output 1 after Pj terminates

iff P ′ ⊇ {Pk ∈ P : gk
j ≥ 4

5}. However, this is insufficient for the “agreement on verification”
in [3, 4], which requires for all P ′ that if Verifyi(P ′) outputs 1 for some Pi, then eventually
Verifyj(P ′) outputs 1 for all Pj . We do not see a way to achieve termination and “agreement
on verification” together without switching from Gather to asynchronous core set agreement.

6 QBRB Against Arbitrary Quits

The QBRB protocol ΠQuit in Section 4 loses its termination guarantees if any honest party
quits before some honest party terminates. Now, we design an error-free deterministic QBRB
variant ΠAny which keeps its termination guarantees no matter when any honest party quits.

Of course, such lax participation from the honest parties makes the standard output
guarantees impossible. Hence, we introduce the extra outputs ⊥ and ⊤. For some publicly
known q, if at most q honest parties quit before some honest party terminates, then ΠAny is
just a QBRB protocol, albeit one with an extra output ⊤ to indicate that the sender quit
before it acquired an input. If more than q honest parties quit before some honest party
terminates, then we relax the output guarantees and give each party the individual option
to output ⊥. The protocol ΠAny optimally requires 4t + q < n for this, which means that if
t≪ n, then almost every honest party can quit without the output ⊥ becoming permitted.

Formally, let M be the input domain of ΠAny, with M∩{⊥,⊤} = ∅. The protocol ΠAny
has the output domain M∪ {⊥,⊤}, and given a fixed sender party P ∗ who may eventually
acquire an input v∗ ∈M, it guarantees the following against the (t, crash)-adversary:

Validity: Suppose P ∗ is honest. If an honest Pi outputs yi ∈M, then P ∗ has acquired
v∗ = yi, and if an honest Pi outputs ⊤, then P ∗ has quit before acquiring an input.
Consistency: If honest parties Pi and Pj output yi ̸= ⊥ and yj ̸= ⊥, then yi = yj .
Robustness: If at most q honest parties quit before some honest party terminates, then
no honest party outputs ⊥.
Local Termination: If P ∗ is honest, and it either acquires an input or quits before
doing so, then either some honest party terminates, or all honest parties quit.
Global Termination: If some honest party terminates, then every honest party either
terminates or quits.

As per the definition of the (t, crash)-adversary in Section 2, the protocol ΠAny achieves
security even if the reason a party quits is that it has suffered a transient crash. This makes
ΠAny of practical interest when the parties are prone to such crashes. For example, a party
could get disconnected from the network or run out of battery while running ΠAny. Then,
upon recovering, the party would invoke Quit() to help the remaining parties terminate.

In ΠAny, transient crash tolerance follows from quit tolerance. If a party invokes Quit()
upon recovering from a crash, then the protocol proceeds almost as if the party never crashed,
but just invoked Quit() while running normally. From before crashing a party must retain
only the information that Quit() needs. In ΠAny, a party must remember the kinds of messages
(among INIT, ECHO, READY) that it multicast before crashing.

▶ Theorem 4. ΠAny is secure when 4t + q < n.

OPODIS 2024

15:14 Quit-Resistant Reliable Broadcast and Efficient Terminating Gather

Due to a lack of space, we formally prove Theorem 4 in the appendix. Note that 4t+q < n

is optimal (by Theorem 5) even if the honest parties cannot transiently crash.
The main innovation in ΠAny is the flexible ECHO quorum threshold, which allows the

honest parties to form ECHO quorums on the INIT value v∗ of an honest sender P ∗ (the input
of P ∗, or ⊤ if P ∗ quits before acquiring an input) as long as at most t + q honest parties quit.
If P ∗ is honest, it multicasts ⟨INIT, v∗⟩, and at most t + q honest parties quit, then for some
f ≤ t + q there exist at least n− t− f honest parties who multicast ⟨ECHO, v∗⟩ and at least
f honest parties who multicast ⟨ECHO,⊥⟩. Since n− t− f > max(t, n+t−f

2), this suffices for
the honest parties to be able to form quorums on v∗.

As usual, conflicting ECHO quorums do not occur because each honest party multicasts at
most one ECHO message. Intuitively, if the adversary can create conflicting quorums on v and
v′ with ⟨ECHO,⊥⟩ messages, then it can also do so with just ⟨ECHO, v⟩ and ⟨ECHO, v′⟩ messages.
So, consider the case where the corrupt parties never send ⟨ECHO,⊥⟩. If f ≤ n honest parties
multicast ⟨ECHO,⊥⟩, then a party must receive ⟨ECHO, v⟩ from more than n+t−f

2 parties to
form an ECHO quorum on v. Conflicting quorums on v ̸= v′ do not occur since at most n− f

parties send either ⟨ECHO, v⟩ or ⟨ECHO, v′⟩. Lastly, an invalid quorum on v (formed without P ∗

sending ⟨INIT, v⟩) is prevented by a quorum on v requiring at least t + 1 ⟨ECHO, v⟩ messages.

Protocol ΠAny

Code for a party Pi

1: R, E ← List(n), List(n) //respective lists of accepted READY and ECHO messages
2: yi ← ⊥ //output of Pi, initially set to ⊥
3: upon acquiring the input v∗ do
4: multicast ⟨INIT, v∗⟩
5: upon receiving a message ⟨INIT, v⟩ for some v ̸= ⊥ from P ∗ for the first time do
6: multicast ⟨ECHO, v⟩
7: upon receiving a message ⟨ECHO, v⟩ for the first time from a party Pj do
8: E[j]← v

9: f ← the number of ⊥ symbols in E

10: if E contains max(t, ⌊n+t−f
2 ⌋) + 1 copies of some v′ ̸= ⊥ then

11: if you have not sent a READY message before, then multicast ⟨READY, v′⟩
12: upon receiving QUIT from t + q + 1 parties or ⟨READY,⊥⟩ from t + q + 1 parties do
13: if you have not sent a READY message before, then multicast ⟨READY,⊥⟩
14: upon receiving a message ⟨READY, v⟩ for the first time from a party Pj do
15: R[j]← v

16: if R contains t + 1 copies of some v ̸= ⊥ then
17: yi ← v

18: if you have not sent a READY message before, then multicast ⟨READY, v⟩
19: if R contains n− t values in M∪ {⊥,⊤} then
20: output yi and terminate
21: upon invoking Quit() do
22: if Pi = P ∗ and you have not sent an INIT message before, then multicast

⟨INIT,⊤⟩
23: if you have not sent an ECHO message before, then multicast ⟨ECHO,⊥⟩
24: if you have not sent a READY message before, then multicast ⟨READY,⊥⟩
25: multicast QUIT and quit

M. Mizrahi Erbes and R. Wattenhofer 15:15

If an honest party quits, then it multicasts both QUIT and some READY message. If t+q +1
honest parties quit, then the t + q + 1 QUIT messages they multicast suffice for every honest
party to multicast a READY message. Hence, every honest party can receive READY messages
from n− t parties and terminate. On the other hand, if at most t+q honest parties quit, then
we get local termination by the fact that after the honest sender P ∗ multicasts ⟨INIT, v∗⟩,
every honest party receives sufficiently many ECHO messages to multicast ⟨READY, v∗⟩.

If some honest party terminates, then there are at least n − 2t ≥ 2t + q + 1 honest
parties who multicast READY messages. Since for some v ̸= ⊥ every honest READY message is
either ⟨READY, v⟩ or ⟨READY,⊥⟩, either there are at least t + 1 honest parties who multicast
⟨READY, v⟩, or there are at least t+ q +1 honest parties who multicast ⟨READY,⊥⟩. Either way,
every honest party multicasts a READY message, and so every honest party can terminate.

Finally, if at most q honest parties quit before some honest Pi terminates, then Pi

terminates with at most q honest copies of ⟨READY,⊥⟩. Hence, Pi terminates with at least
n− 2t− q honest copies of ⟨READY, v⟩ for some v ≠ ⊥. The senders of these copies do not
send READY messages on any v′ ̸= v; so, any honest Pj who terminates (including Pi) does so
after receiving n− 3t− q ≥ t + 1 honest copies of ⟨READY, v⟩ and setting its output to v.

▶ Theorem 5. If |M| ≥ 2, n ≥ 3, t ≥ 1 and 4t + q ≥ n, then no broadcast protocol achieves
against the t-adversary the properties validity, consistency, robustness, local termination and
global termination (all as defined for ΠAny).

Proof. Suppose M⊇ {m, m′} for some m ≠ m′, n ≥ 3, t ≥ 1 and 4t + q ≥ n. We partition
P into five sets S1, S2, S3, QC , QH , where 1 ≤ |S1|, |S2|, |S3| ≤ t, |QC | ≤ t and |QH | ≤ q. Let
us consider a broadcast instance where P ∗ ∈ S2.

In the five scenarios below, the parties in QH are honest, and they quit immediately.
The parties in QC also quit immediately, but they may be corrupt parties only pretending
to quit. Note that the sender’s input does not influence the behavior of a non-sender who
immediately quits. Finally, the parties in S1, S2 and S3 never quit or pretend to quit. In the
first two scenarios, the parties in S1 and S2 are honest, and P ∗ has the input m.

Scenario 1: In this scenario, S3 is the set of corrupt parties, and the parties in S3
immediately crash. The parties in S1 must terminate despite never hearing from S3.
Scenario 2: In this scenario, QC is the set of corrupt parties, and the messages from S3
are delayed. The parties in S1 cannot afford to wait for messages from S3, because for
them this scenario is indistinguishable from Scenario 1. Hence, they must all terminate.
Furthermore, they must output m because at most q honest parties quit before some
honest party terminates and because the honest sender P ∗ never quits.

In the next two scenarios, the parties in S2 and S3 are honest, and P ∗ has the input m′.
Scenario 3: In this scenario, S1 is the set of corrupt parties, and the parties in S1
immediately crash. The parties in S3 must terminate despite never hearing from S1.
Scenario 4: In this scenario, QC is the set of corrupt parties, and the messages from S1
are delayed. Being in the same predicament as the parties in S1 in Scenario 2, the parties
in S3 must all terminate with the output m′ without waiting for messages from S1.

Finally, consider Scenario 5, where the adversary successfully executes a split-brain attack.
Scenario 5: In this scenario, S2 is the set of corrupt parties. The parties in S2 act
towards S1 as if P ∗ has the input m and the messages from S3 are delayed, and act
towards S2 as if P ∗ has the input m′ and the messages from S1 are delayed. Moreover, the
communication between S1 and S3 is indefinitely delayed. The parties in S1 output m as
they cannot distinguish this scenario from Scenario 2. Likewise, the parties in S3 output
m′ as they cannot distinguish this scenario from Scenario 4. This violates consistency. ◀

OPODIS 2024

15:16 Quit-Resistant Reliable Broadcast and Efficient Terminating Gather

References
1 Ittai Abraham. Living with asynchrony: Bracha’s reliable broadcast. Decentralized

Thoughts, 2020. URL: https://decentralizedthoughts.github.io/2020-09-19-living-
with-asynchrony-brachas-reliable-broadcast/.

2 Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal resilience asynchronous approximate
agreement. In Proceedings of the 8th International Conference on Principles of Distributed
Systems, OPODIS ’04, pages 229–239, Berlin, Heidelberg, 2004. Springer-Verlag. doi:10.1007/
11516798_17.

3 Ittai Abraham, Gilad Asharov, Arpita Patra, and Gilad Stern. Perfectly secure asynchronous
agreement on a core set in constant expected time. Cryptology ePrint Archive, Paper 2023/1130,
2023. URL: https://eprint.iacr.org/2023/1130.

4 Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin
Tomescu. Reaching consensus for asynchronous distributed key generation. In Proceedings of the
2021 ACM Symposium on Principles of Distributed Computing, PODC ’21, pages 363–373, New
York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3465084.3467914.

5 Ittai Abraham and Gilad Stern. Information Theoretic HotStuff. In Quentin Bramas, Rotem
Oshman, and Paolo Romano, editors, 24th International Conference on Principles of Distributed
Systems (OPODIS 2020), volume 184 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 11:1–11:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.OPODIS.2020.11.

6 Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and
Haibin Zhang. Balanced byzantine reliable broadcast with near-optimal communication
and improved computation. In Proceedings of the 2022 ACM Symposium on Principles of
Distributed Computing, PODC ’22, pages 399–417, New York, NY, USA, 2022. Association for
Computing Machinery. doi:10.1145/3519270.3538475.

7 Michael Backes and Christian Cachin. Reliable broadcast in a computational hybrid model
with byzantine faults, crashes, and recoveries. In 2003 International Conference on Dependable
Systems and Networks, 2003. Proceedings., pages 37–46, 2003. doi:10.1109/DSN.2003.1209914.

8 Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, STOC
’93, pages 52–61, New York, NY, USA, 1993. Association for Computing Machinery. doi:
10.1145/167088.167109.

9 Erica Blum, Jonathan Katz, and Julian Loss. Synchronous consensus with optimal asyn-
chronous fallback guarantees. In Theory of Cryptography, pages 131–150, Cham, Switzerland,
2019. Springer International Publishing. doi:10.1007/978-3-030-36030-6_6.

10 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987. doi:10.1016/0890-5401(87)90054-X.

11 Christian Cachin. Secure distributed computing. École Polytechnique Fédérale de Lausanne,
2009. URL: https://dcl.epfl.ch/site/_media/education/sdc_byzconsensus.pdf.

12 Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, STOC
’93, pages 42–51, New York, NY, USA, 1993. Association for Computing Machinery. doi:
10.1145/167088.167105.

13 Annick Chopard, Martin Hirt, and Chen-Da Liu-Zhang. On communication-efficient asyn-
chronous mpc with adaptive security. In Theory of Cryptography: 19th International Conference,
TCC’21, pages 35–65, Berlin, Heidelberg, 2021. Springer-Verlag. doi:10.1007/978-3-030-
90453-1_2.

14 Ran Cohen, Pouyan Forghani, Juan Garay, Rutvik Patel, and Vassilis Zikas. Concurrent
asynchronous byzantine agreement in expected-constant rounds, revisited. In Theory of
Cryptography, pages 422–451, Cham, Switzerland, 2023. Springer Nature Switzerland. doi:
10.1007/978-3-031-48624-1_16.

https://decentralizedthoughts.github.io/2020-09-19-living-with-asynchrony-brachas-reliable-broadcast/
https://decentralizedthoughts.github.io/2020-09-19-living-with-asynchrony-brachas-reliable-broadcast/
https://doi.org/10.1007/11516798_17
https://doi.org/10.1007/11516798_17
https://eprint.iacr.org/2023/1130
https://doi.org/10.1145/3465084.3467914
https://doi.org/10.4230/LIPIcs.OPODIS.2020.11
https://doi.org/10.1145/3519270.3538475
https://doi.org/10.1109/DSN.2003.1209914
https://doi.org/10.1145/167088.167109
https://doi.org/10.1145/167088.167109
https://doi.org/10.1007/978-3-030-36030-6_6
https://doi.org/10.1016/0890-5401(87)90054-X
https://dcl.epfl.ch/site/_media/education/sdc_byzconsensus.pdf
https://doi.org/10.1145/167088.167105
https://doi.org/10.1145/167088.167105
https://doi.org/10.1007/978-3-030-90453-1_2
https://doi.org/10.1007/978-3-030-90453-1_2
https://doi.org/10.1007/978-3-031-48624-1_16
https://doi.org/10.1007/978-3-031-48624-1_16

M. Mizrahi Erbes and R. Wattenhofer 15:17

15 Andrei Constantinescu, Diana Ghinea, Roger Wattenhofer, and Floris Westermann. Convex
Consensus with Asynchronous Fallback. In Dan Alistarh, editor, 38th International Symposium
on Distributed Computing (DISC 2024), volume 319 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 15:1–15:23, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.DISC.2024.15.

16 Sourav Das, Sisi Duan, Shengqi Liu, Atsuki Momose, Ling Ren, and Victor Shoup. Asyn-
chronous consensus without trusted setup or public-key cryptography. Cryptology ePrint
Archive, Paper 2024/677, 2024. Appeared in ACM CCS ’24. doi:10.1145/3658644.3670327.

17 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. In Proceedings of the 2nd ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems, PODS ’83, pages 1–7, New York, NY, USA,
1983. Association for Computing Machinery. doi:10.1145/588058.588060.

18 Luciano Freitas, Petr Kuznetsov, and Andrei Tonkikh. Distributed Randomness from Approxi-
mate Agreement. In Christian Scheideler, editor, 36th International Symposium on Distributed
Computing (DISC 2022), volume 246 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 24:1–24:21, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.DISC.2022.24.

19 Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. Optimal synchronous approximate
agreement with asynchronous fallback. In Proceedings of the 2022 ACM Symposium on
Principles of Distributed Computing, PODC ’22, pages 70–80, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3519270.3538442.

20 Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. Multidimensional approximate
agreement with asynchronous fallback. In Proceedings of the 35th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’23, pages 141–151, New York, NY, USA,
2023. Association for Computing Machinery. doi:10.1145/3558481.3591105.

21 Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in
byzantine asynchronous systems. In Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, STOC ’13, pages 391–400, New York, NY, USA, 2013. Association
for Computing Machinery. doi:10.1145/2488608.2488657.

22 Mose Mizrahi Erbes and Roger Wattenhofer. Asynchronous approximate agreement with
quadratic communication, 2024. arXiv:2408.05495, doi:10.48550/arXiv.2408.05495.

23 Atsuki Momose and Ling Ren. Multi-threshold byzantine fault tolerance. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security, CCS
’21, pages 1686–1699, New York, NY, USA, 2021. Association for Computing Machinery.
doi:10.1145/3460120.3484554.

24 Thomas Nowak and Joel Rybicki. Byzantine Approximate Agreement on Graphs. In Jukka
Suomela, editor, 33rd International Symposium on Distributed Computing (DISC 2019),
volume 146 of Leibniz International Proceedings in Informatics (LIPIcs), pages 29:1–29:17,
Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.DISC.2019.29.

25 I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society
for Industrial and Applied Mathematics, 8(2):300–304, 1960. doi:10.1137/0108018.

26 Gilad Stern and Ittai Abraham. Gather with binding and verifiability. Decentralized
Thoughts, 2024. URL: https://decentralizedthoughts.github.io/2024-01-09-gather-
with-binding-and-verifiability/.

27 Nitin H. Vaidya and Vijay K. Garg. Byzantine vector consensus in complete graphs. In
Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing, PODC
’13, pages 65–73, New York, NY, USA, 2013. Association for Computing Machinery. doi:
10.1145/2484239.2484256.

OPODIS 2024

https://doi.org/10.4230/LIPIcs.DISC.2024.15
https://doi.org/10.1145/3658644.3670327
https://doi.org/10.1145/588058.588060
https://doi.org/10.4230/LIPIcs.DISC.2022.24
https://doi.org/10.1145/3519270.3538442
https://doi.org/10.1145/3558481.3591105
https://doi.org/10.1145/2488608.2488657
https://arxiv.org/abs/2408.05495
https://doi.org/10.48550/arXiv.2408.05495
https://doi.org/10.1145/3460120.3484554
https://doi.org/10.4230/LIPIcs.DISC.2019.29
https://doi.org/10.4230/LIPIcs.DISC.2019.29
https://doi.org/10.1137/0108018
https://decentralizedthoughts.github.io/2024-01-09-gather-with-binding-and-verifiability/
https://decentralizedthoughts.github.io/2024-01-09-gather-with-binding-and-verifiability/
https://doi.org/10.1145/2484239.2484256
https://doi.org/10.1145/2484239.2484256

15:18 Quit-Resistant Reliable Broadcast and Efficient Terminating Gather

A Strongly Terminating k-slot Consensus

In the protocol Πk-slot below, we use the termination procedure from [22] to upgrade any live
k-slot consensus protocol Πk-live into a strongly terminating one. Strong termination is the
combination of local termination (some honest party terminates) and global termination
(if some honest party terminates, every honest party terminates), and Πk-slot ensures global
termination with READY quorums. If some honest party terminates, then it has received 2t + 1
READY messages, at least t + 1 of which are honest, and so every honest party receives t + 1
honest READY messages, multicasts READY, and receives 2t + 1 READY messages. Furthermore,
the first honest party who multicasts READY does so upon receiving some Πk-live output z from
2t + 1 parties, which means that every honest party can set z as its output upon receiving z

from t + 1 honest parties.

Protocol Πk-slot

Code for a party Pi

1: yi ← ⊥ //output of Pi, undetermined for now
2: upon acquiring the input vi do
3: set vi as the input for Πk-live

4: upon obtaining the output zi from Πk-live do
5: if you have not multicast zi before, then multicast zi

6: upon receiving any z ∈ {0, 1
k−1 , . . . , 1} from t + 1 distinct parties do

7: if yi = ⊥, then yi ← z

8: if you have not multicast z before, then multicast z

9: upon receiving any z ∈ {0, 1
k−1 , . . . , 1} from 2t + 1 distinct parties do

10: if you have not multicast READY before, then multicast READY

11: upon receiving READY from t + 1 distinct parties do
12: if you have not multicast READY before, then multicast READY

13: upon having received READY from 2t + 1 distinct parties and having yi ̸= ⊥ do
14: output yi and terminate

▶ Theorem 6. Suppose Πk-live achieves validity, k-consistency and liveness when t < n
3 .

Then, Πk-slot achieves validity, k-consistency and strong termination when t < n
3 .

Proof.

k-Consistency and Validity. An honest party must receive z from t + 1 parties (at least one
of which is honest) to output z, and for any z, the first honest party who multicasts z must
have output z from Πk-live. Hence, every honest Πk-slot output is the Πk-live output of some
honest party. The k-consistency and validity of Πk-slot thus follow from the k-consistency
and validity of Πk-live.

Strong Termination. To prove strong termination, we prove local termination and global
termination. Local termination guarantees that if the honest parties all eventually acquire
inputs, then some honest party terminates. Global termination guarantees that if some
honest party terminates, then all honest parties terminate.

For the sake of contradiction, consider an execution of Πk-slot where local termination fails.
Every honest party provides an input to Πk-live, and hence every honest party obtains a Πk-live
output. By the k-consistency of Πk-live there exists some z such that every honest Πk-live
output is either z or z + 1

k−1 . By the pigeonhole principle there exists some z′ ∈ {z, z + 1
k−1}

M. Mizrahi Erbes and R. Wattenhofer 15:19

such that at least ⌈n−t
2 ⌉ ≥ t + 1 honest parties output z′ from Πk-live. At least t + 1 honest

parties multicast z′, and this suffices for every honest Pi to receive z′ from t + 1 parties, set
yi ← z′ if yi = ⊥ and multicast z′. Since all honest parties multicast z′, all honest parties
can receive z′ from 2t + 1 parties and thus multicast READY. Finally, since all honest parties
multicast READY, all honest parties can receive READY from 2t + 1 parties and thus terminate.

Now, let us show global termination. If some honest party terminates, then it must have
received READY from 2t + 1 parties, at least t + 1 of which are honest. Hence, every honest
party multicasts READY, at the latest upon receiving READY from t + 1 parties, and so any
honest Pi who sets yi ̸= ⊥ becomes able to terminate by receiving READY from 2t + 1 parties.
Furthermore, the first honest party who multicasts READY does so when it has received some
z from 2t + 1 parties, at least t + 1 of which are honest. Since t + 1 honest parties multicast
z, every honest Pj can receive z from t + 1 parties and set yj ← z. ◀

B The Live Gather Protocol

Below, we present ΠLive
Gthr, the most efficient live Gather protocol we are aware of [15]. It

achieves the bit complexity O(ℓn2 + n3 log n) when instantiated with the state-of-the-art
standard BRB protocol ΠLBRB with the bit complexity O(ℓn + n2 log n) [6].

Protocol ΠLive
Gthr

Code for a party Pi

1: Join 2n common instances of ΠLBRB, named Π0,1
LBRB, . . . , Π0,n

LBRB, Π1,1
LBRB, . . . , Π1,n

LBRB.
The party Pk is the sender of Π0,k

LBRB and Π1,k
LBRB.

2: W i
0, W i

1, W i
2 ← ∅,∅,∅ //“witness sets” of Pi, as per the witness technique of [2]

3: Xi ← ∅ //Xi is the output set of Pi, updated even after Pi outputs
4: upon acquiring the input vi do
5: set vi as the input for Π0,i

LBRB

6: upon terminating Π0,j
LBRB with the output mj do

7: Xi ← Xi ∪ {(mj , Pj)}
8: W i

0 ←W i
0 ∪ {Pj}

9: when |W i
0| = n− t do

10: set W i
0 as the input for Π1,i

LBRB

11: upon terminating Π1,j
LBRB with an output W0 ⊆ P of size n− t do

12: once W0 ⊆W i
0, add Pj to W i

1

13: when |W i
1| = n− t do

14: multicast W i
1

15: upon receiving a set W1 ⊆ P of size n− t for the first time from a party Pj do
16: once W1 ⊆W i

1, add Pj to W i
2

17: when |W i
0| ≥ n− t, |W i

1| ≥ n− t and |W i
2| ≥ n− t do

18: output Xi, but keep running the protocol and updating sets (including Xi)

▶ Theorem 7. ΠGthr is a secure Gather protocol with liveness when t < n
3 .

Proof.

Consistency and Validity. The consistency and validity of ΠLive
Gthr follow from the consistency

and validity of Π0,1
LBRB, . . . , Π0,n

LBRB.

OPODIS 2024

15:20 Quit-Resistant Reliable Broadcast and Efficient Terminating Gather

Liveness. Since all honest parties broadcast their inputs, every honest Pi terminates n− t

input broadcasts, and thus broadcasts W i
0. All honest parties terminate all honest W0 set

broadcasts, and if some honest Pi broadcasts W i
0, then, by the global termination of ΠLBRB,

every honest Pj terminates all input broadcasts terminated by Pi, obtains W j
0 ⊇W i

0, and
adds Pi to W j

1 . This means that every honest Pi adds every honest Pj to W i
1, and therefore

that eventually |W i
1| ≥ n− t holds and Pi multicasts W i

1. Afterwards, every honest Pj adds
Pi to W j

2 after receiving W i
1 from Pi because eventually W j

1 ⊇ W i
1 holds, due to the fact

that whenever Pi adds any Pk to W i
1, eventually Pj adds Pk to W j

1 as well since eventually
W j

0 ⊇W i
0 holds and since Pj terminates Pk’s W0 set broadcast with the same W0 set as Pi.

So, since every honest party adds every honest party to its W2 set, eventually |W i
2| ≥ n− t

holds for every honest Pi. Finally, we conclude that every honest Pi obtains |W i
0| ≥ n− t,

|W i
1| ≥ n− t and |W i

2| ≥ n− t, which leads to Pi outputting Xi.

Common Core. Let H be the set of the first n− t honest parties Pi who obtain |W i
1| = n− t.

For each Pi ∈ H, the set W i
1 which Pi multicasts contains n− t parties, at least n− 2t of

which are in H. Hence,
∑

Pi∈H |W i
1 ∩H| ≥ (n− 2t)(n− t).

There exists some Pk ∈ H included in the multicast W1 sets of at least n−2t parties in H.
For contradiction, suppose otherwise. Then, for each Pj ∈ H, less than n− 2t parties in H
have W1 sets which include Pj . This implies

∑
Pj∈H |{Pi ∈ H : Pj ∈W i

1}| < (n− 2t)(n− t),
which contradicts

∑
Pj∈H |{Pi ∈ H : Pj ∈W i

1}| =
∑

Pi∈H |W i
1 ∩H| ≥ (n− 2t)(n− t).

Suppose some honest Pi outputs from ΠLive
Gthr. Consider the set W k

0 at the instant when Pk

broadcasts it. Since at least n−2t ≥ t+1 honest parties include Pk in the W1 sets which they
multicast, Pi must have added some honest Pj to W i

2 from whom Pi received some W j
1 ⊇ {Pk}.

This implies W i
1 ⊇ {Pk}, and W i

1 ⊇ {Pk} implies W k
0 ⊆W i

0 = {Pj ∈ P : ∃(m, Pj) ∈ Xi}. So,
W k

0 is a common core. ◀

C Skipped Proofs

▶ Theorem 3. ΠGthr is a secure binding Gather protocol with strong termination when t < n
3 .

Proof. As we did for Πk-slot, we split strong termination into local and global termination.

Consistency and Validity. Suppose some honest Pi includes some (mj , Pj) in its output set
Qi. This requires gj

i ≥ 3
4 ; hence, by the validity of Π5-slot, there exists some (unique, by the

consistency of ΠLive
Gthr) m′

j such that some honest parties have (m′
j , Pj) in their ΠLive

Gthr output
sets. We show below that mj = m′

j . Note that this gives us consistency because if some Pk

has some (m′′
j , Pj) ∈ Qk, then we have m′

j = mj = m′′
j . We also get validity: If Pj is honest,

then m′
j = mj must be the input of Pj by the validity of ΠLive

Gthr.
Let (s1, . . . , sn)← Encode(m′

j). The party Pi obtains mj via TryDecode(Mj,1, . . . , Mj,n),
where Mj,k is either ⊥, or the non-⊥ jth symbol in the MINE vector Pk sends to Pi. Assume
now that if the latter is the case and Pk is honest, then Mj,k = sk. This implies that in
any TryDecode attempt the vector (Mj,1, . . . , Mj,n) contains with respect to m′

j at most t

incorrect symbols (from corrupt parties) and at most t missing symbols. Thus, the correctness
of TryDecode ensures that TryDecode(Mj,1, . . . , Mj,n) ∈ {m′

j ,⊥} always holds.
It remains to prove the assumption that if Mj,k ̸= ⊥ and Pk is honest, then Mj,k = sk.

If Mj,k ̸= ⊥ and Pk is honest, then Mj,k is a non-⊥ symbol repeated at least t + 1 times in
the jth column of the Y matrix of Pk. Hence, some honest Pq must have sent Pk a message
⟨YOURS, (S1,k, . . . , Sn,k)⟩ with Sj,k = Mj,k. The party Pq must have had (m′

j , Pj) ∈ Xq and
computed (Sj,1, . . . , Sj,n)← Encode(m′

j). Therefore, we conclude that Mj,k = Sj,k = sk.

M. Mizrahi Erbes and R. Wattenhofer 15:21

Global Termination. If some honest party terminates, then it has received READY from
2t + 1 parties. We show below that for all honest parties to terminate, it suffices for some
honest party to receive READY from 2t + 1 parties.

If an honest party has received READY from 2t+1 parties, then at least t+1 honest parties
have multicast READY. Every honest party becomes able to multicast READY by receiving
READY from t + 1 parties, and so every honest party receives READY from 2t + 1 parties.

The first honest party who multicasts READY must have done so because it has received
YOURS vectors from 2t+1 parties. Hence, there must exist at least t+1 happy parties Pi such
that Pi has terminated all Π5-slot instances and there exists some (mj , Pj) ∈ Xi whenever
gj

i ≥ 1
4 . Furthermore, because the happy parties have terminated all Π5-slot instances, the

strong termination of Π5-slot implies that every honest party terminates every Π5-slot instance.
Suppose some honest Pi has gj

i ≥ 2
4 for some j. Then, every happy Pk has gj

k ≥
1
4 and

thus has some (mj , Pj) ∈ Xk. This mj is the same for all happy parties by the consistency of
standard BRB. Hence, every happy Pk computes (s1, . . . , sn)← Encode(mj) and sends Pi a
YOURS vector with the jth symbol si. The party Pi can thus find si to be the non-⊥ symbol
repeated at least t + 1 times in the jth column of its matrix Y . This happens eventually for
any j where gj

i ≥ 2
4 ; hence, every honest party eventually multicasts some MINE vector.

Finally, suppose some honest Pi has gj
i ≥ 3

4 for some j. Then, every honest Pk has gj
k ≥

2
4 ,

which means that the jth symbol of the MINE vector which Pk multicasts is the non-⊥ symbol
sk, which (as we showed while proving consistency) is such that (s1, . . . , sn) = Encode(mj)
for some mj that is consistent for all honest parties. Since Pi can eventually store sk as Mj,k,
eventually Pi’s vector (Mj,1, . . . , Mj,n) contains n − t correct symbols with respect to mj ,
TryDecode(Mk,1, . . . , Mk,n) outputs mj , and Pi inserts (mj , Pj) to Qi.

In the end, every honest Pi terminates ΠGthr after terminating every Π5-slot instance,
multicasting READY and receiving READY from 2t + 1 parties, multicasting some MINE vector
and inserting some (mj , Pj) to Qi whenever gj

i ≥ 3
4 . This gives us global termination.

Local Termination. For contradiction, suppose no honest party terminates. Then, every
honest Pi eventually outputs some Zi from ΠLive

Gthr and thus provides inputs to all Π5-slot
instances. Hence, the honest parties terminate all Π5-slot instances. For any honest Pi, if for
some j it is the case that gj

i ≥ 1
4 , then by the validity of Π5-slot some honest party must have

terminated the standard BRB instance in ΠLive
Gthr with which Pj broadcasts its input, and hence

Pi terminates this BRB instance and inserts some (mj , Pj) to Xi as well. So, every honest
Pi eventually becomes happy and sends out YOURS vectors. Consequently, every honest party
receives YOURS vectors from 2t + 1 parties and multicasts READY, and then every honest party
receives READY from 2t + 1 parties. As we showed to prove global termination, for all honest
parties to terminate it suffices for some honest party to receive READY from 2t + 1 parties.
So, we reach the contradictory conclusion that all honest parties terminate. ◀

▶ Theorem 4. ΠAny is secure when 4t + q < n.

Proof.

Consistency. We show that there exist no distinct v ̸= ⊥ and v′ ≠ ⊥ such that some
honest parties multicast ⟨READY, v⟩ while others multicast ⟨READY, v′⟩. As in ΠBracha and
ΠQuit, the first honest party who multicasts ⟨READY, v⟩ for any particular v ̸= ⊥ must have
done so upon receiving enough ECHO messages to form an ECHO quorum on v. For the sake of
contradiction, let Pi and Pj be the first honest parties who respectively multicast ⟨READY, vi⟩
and ⟨READY, vj⟩ for some distinct vi ̸= ⊥ and vj ̸= ⊥, let H be a set of n− t honest parties,
and let f be the number of parties in H who multicast ⟨ECHO,⊥⟩. For each k ∈ {i, j}, let

OPODIS 2024

15:22 Quit-Resistant Reliable Broadcast and Efficient Terminating Gather

bk be the number of ⟨ECHO, vk⟩ messages from parties in H counted in Pk’s quorum,
ck be the number of ⟨ECHO, vk⟩ messages from parties outside H counted in Pk’s quorum,
dk be the number of ⟨ECHO,⊥⟩ messages from parties in H counted in Pk’s quorum,
ek be the number of ⟨ECHO,⊥⟩ messages from parties outside H counted in Pk’s quorum.

For each k ∈ {i, j}, we have dk ≤ f and ck + ek ≤ t. For the quorum of Pk to be of sufficient
size, we must have bk + ck > max(t, n+t−dk−ek

2), which implies bk > n+t−dk−ek

2 − ck ≥
n+t−dk−2(ck+ek)

2 ≥ n−t−f
2 . However, H consists of f honest parties who multicast ⟨ECHO,⊥⟩

and thus contribute to neither bi nor bj , and n− t− f honest parties who contribute to at
most one of bi and bj since an honest party cannot send ⟨ECHO, vi⟩ to Pi and ⟨ECHO, vj⟩ to
Pj . This gives us bi + bj ≤ n− t− f , which contradicts bi > n−t−f

2 ∧ bj > n−t−f
2 . Finally,

consistency follows because in order to output v ̸= ⊥, an honest party must receive ⟨READY, v⟩
from t + 1 parties, at least one of which is honest.
Validity. For some honest party to output v ̸= ⊥, there must exist a first honest Pi who
multicasts ⟨READY, v⟩. To do so, Pi must receive ⟨ECHO, v⟩ from at least t + 1 parties, at least
one of which is honest. This can happen only after the sender P ∗ sends ⟨INIT, v⟩ to some
honest party. Now suppose P ∗ is honest. If P ∗ acquires an input v∗, then it multicasts
⟨INIT, v∗⟩, and this makes v∗ the unique possible non-⊥ output. If P ∗ quits before acquiring
an input, then it multicasts ⟨INIT,⊤⟩, and thus ⊤ becomes the unique possible non-⊥ output.
Local Termination. For contradiction, suppose that the sender P ∗ is honest, that it either
acquires an input or quits before doing so, that not all honest parties quit, and that despite
all the preceding no honest party terminates. We separately consider the case where at least
t + q + 1 honest parties quit, and the case where at most t + q honest parties quit. Note that
an honest party does not quit without multicasting a READY message.

Suppose at least t + q + 1 honest parties quit. Because an honest party multicasts QUIT
when it quits, every honest party either quits, or eventually receives QUIT from t + q + 1
parties and thus becomes able to multicast a READY message.
Suppose f ≤ t + q honest parties quit. The sender P ∗ eventually multicasts ⟨INIT, v∗⟩,
where v∗ is either its input or ⊤. Then, at least n − t − f honest parties multicast
⟨ECHO, v∗⟩. Since we have n− t− f > (n

2 + 4t+q
2)− t− (f

2 + t+q
2) = n+t−f

2 ≥ n−q
2 > 2t,

every honest party either quits, or eventually receives ⟨ECHO, v∗⟩ from sufficiently many
parties to multicast a READY message.

In both cases, every honest party multicasts a READY message, which means that every honest
party either quits, or terminates after receiving READY messages from n− t parties.
Global Termination. If an honest party terminates, then it has received READY messages
from n − t parties, at least n − 2t ≥ 2t + q + 1 of which are honest. Since there is some
v ̸= ⊥ such that every honest READY message is on either v or ⊥, either there are at least
t + 1 honest parties who multicast ⟨READY, v⟩, or there are at least t + q + 1 honest parties
who multicast ⟨READY,⊥⟩. In either case, every honest party can multicast a READY message
either before quitting, or after receiving sufficiently many honest READY messages. So, every
honest party either quits, or terminates after receiving READY messages from n− t parties.
Robustness. Suppose at most q honest parties have quit when some honest Pi terminates
for the first time. Then, an honest Pj can multicast ⟨READY,⊥⟩ before Pi terminates only if it
quits, as Pj cannot receive QUIT or ⟨READY,⊥⟩ from t + q + 1 parties before Pi terminates. So,
Pi terminates with at most t corrupt READY messages, at most q honest ⟨READY,⊥⟩ messages,
and at least n− 2t− q honest READY messages not on ⊥. Since for some v ̸= ⊥ every honest
READY message is on either v or ⊥, there are at least n− 2t− q honest parties who multicast
⟨READY, v⟩ for some v. Hence, any honest Pj (including Pi) can terminate only after receiving
at least n− 3t− q ≥ t + 1 honest ⟨READY, v⟩ messages and setting yj ← v. ◀

	1 Introduction
	2 Model
	3 Insufficiency of Standard BRB for Terminating All-to-All Broadcast
	4 Quit-Resistant BRB
	5 Efficient Terminating Gather
	5.1 k-slot Consensus
	5.2 Online Error Correction
	5.3 The Gather Protocol

	6 QBRB Against Arbitrary Quits
	A Strongly Terminating k-slot Consensus
	B The Live Gather Protocol
	C Skipped Proofs

