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Abstract
Byzantine reliable broadcast is a fundamental problem in distributed computing, which has been
studied extensively over the past decades. State-of-the-art algorithms are predominantly based on the
approach to share encoded fragments of the broadcast message, yielding an asymptotically optimal
communication complexity when the message size exceeds the network size, a condition frequently
encountered in practice. However, algorithms following the standard coding approach incur an
overhead factor of at least 3, which can already be a burden for bandwidth-constrained applications.
Minimizing this overhead is an important objective with immediate benefits to protocols that use a
reliable broadcast routine as a building block.

This paper introduces a novel mechanism to lower the communication and computational
complexity. Two algorithms are presented that employ this mechanism to reliably broadcast
messages in an asynchronous network where less than a third of all nodes are Byzantine. The first
algorithm reduces the overhead factor to 2 and has a time complexity of 3 if the sender is honest,
whereas the second algorithm attains an optimal time complexity of 2 with the same overhead factor
in the absence of equivocation. Moreover, an optimization is proposed that reduces the overhead
factor to 3/2 under normal operation in practice. Lastly, a lower bound is proved that an overhead
factor lower than 3/2 cannot be achieved for a relevant class of reliable broadcast algorithms.
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1 Introduction

The goal of Byzantine reliable broadcast is to disseminate a message efficiently and reliably
despite the presence of Byzantine nodes that may interfere with the protocol execution in
arbitrary ways. A reliable broadcast routine is a powerful primitive with a broad range of
applications including asynchronous atomic broadcast [15, 19, 18, 21, 27], distributed key
generation [2, 12, 20], secure data replication [8], and secret sharing [26]. Moreover, Byzantine
reliable broadcast plays a pivotal role in Byzantine fault-tolerant consensus protocols where
message dissemination is treated separately from message ordering to improve throughput [10].

The first Byzantine reliable broadcast algorithm is due to Bracha [6]. While it is elegant
in its simplicity, its main drawback is that the message m is broadcast by every node during
the execution of the algorithm, i.e., O(|m|n2) bits are sent overall, where |m| denotes the
size of m in bits and n is the number of nodes in the network. In the seminal paper by
Cachin and Tessaro [9], this bound was improved to O(|m|n + κn2 log(n)) bits using erasure
coding, where κ is the output size of a collision-resistant hash function. Since each node
must receive the message in a successful broadcast, this result is asymptotically optimal if
|m| ∈ Ω(κn log(n)). Subsequent work has primarily focused on getting closer to the lower
bound of Ω(|m|n + n2) [1, 4, 11, 22, 23]. These pieces of work follow the blueprint laid out
by Cachin and Tessaro and augment it with error-correction and cryptographic primitives to
achieve better asymptotic bounds.

© Thomas Locher;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles of Distributed Systems (OPODIS 2024).
Editors: Silvia Bonomi, Letterio Galletta, Etienne Rivière, and Valerio Schiavoni; Article No. 16; pp. 16:1–16:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thomas.locher@dfinity.org
https://doi.org/10.4230/LIPIcs.OPODIS.2024.16
https://arxiv.org/abs/2404.08070
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


16:2 Byzantine Reliable Broadcast with Low Communication and Time Complexity

 0

 1

 2

 3

 4

 5

 6

 0  20  40  60  80  100  120  140  160

Ti
m

e 
[m

s]

Network size

decode (n,t+1)
decode (n,2t+1)
encode (n,t+1)

encode (n,2t+1)

Figure 1 Given an input of size 1 MiB, encoding and decoding times for erasure codes with
parameters (n, t + 1) and (n, 2t + 1) are shown for different network sizes. The circles and bars mark
the averages and the 5th and 95th percentiles, respectively, of the measured times over 1000 runs.

Curiously, there is little work on minimizing the constant in the O(|m|n) term, although
it likely dominates the actual bandwidth consumption in practice and is therefore crucial for
real-world applications. The design by Cachin and Tessaro is based on a (n, t + 1)-erasure
code, where t < n/3 is the largest number of nodes that may exhibit Byzantine behavior.
In this design, nodes broadcast encoded fragments of size |m|/(t + 1) ≈ 3|m|/n instead of
broadcasting m, sending at least 3|m|n bits altogether. An overhead factor of 3 – compared
to the ideal scenario where each node receives exactly |m| bits – may already prove too costly
for applications with strict bandwidth constraints. All schemes that follow this approach
naturally inherit the overhead inherent in this design.

In this paper, a mechanism is introduced that departs from this blueprint in order to
reduce the communication complexity, i.e., the number of bits that need to be exchanged
in the worst case, for large messages. The core idea is quite simple: a (n, 2t + 1)-erasure
code is used instead, reducing the fragment size to |m|/(2t + 1) ≈ 3

2 |m|/n. This modification
obviously reduces the cost of broadcasting fragments; however, correctness is no longer given
without additional changes because some nodes may receive 2t + 1 fragments whereas others
merely obtain t + 1 fragment, which is not enough to recover the message. This problem is
addressed by introducing the following step. If a node with 2t + 1 fragments manages to
reconstruct the message, it disseminates fragments again but only to the t nodes from which
no fragment was received. As we will see, this step is sufficient to ensure correctness while
keeping the communication complexity low.

As an added benefit, the transition from a (n, t + 1)-erasure code to a (n, 2t + 1)-erasure
code results in substantial performance improvements, both with respect to the encoding
and decoding of fragments. Figure 1 shows performance numbers when encoding/decoding
an input of size 1 MiB for various network sizes and the two different parameterizations. The
experiments were conducted on an Intel Core i7 CPU with 6 cores and 32 GB of memory using
an optimized library1 for Reed-Solomon codes [24]. The figure confirms the practicality of
erasure coding due to its efficiency, exhibiting encoding and decoding times in the millisecond
range, and scalability with respect to the network size. Moreover, the figure reveals that the

1 See https://github.com/AndersTrier/reed-solomon-simd.

https://github.com/AndersTrier/reed-solomon-simd
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encoding (decoding) time is lower by a factor of 2.2–2.4 (1.8–2.0) for all network sizes when
using an (n, 2t + 1)-erasure code. Another interesting property is that the variance is also
significantly lower, leading to more predictable encoding and decoding times.

The paper is organized as follows. The model is formally introduced in §2. A concrete
algorithm that makes use of the novel mechanism is presented in §3. Its communication
complexity is 2|m|n plus a term independent of |m|. Given an honest (i.e., non-faulty)
sender, each honest node obtains the message after 3 rounds of communication. A natural
question is whether there is an algorithm with an overhead factor lower than 3 and that
terminates in an optimal 2 rounds given an honest sender. In §4, this question is answered
in the affirmative by presenting an algorithm with this property and the same overhead
factor if the sender does not equivocate. Otherwise, the worst-case overhead factor is 5

2 with
respect to the largest fragment size transmitted by honest nodes. While the first algorithm
only requires collision-resistant hash functions, the second algorithm makes use of threshold
signatures. Both algorithms further bound the number of bits that are stored at each node
in the worst case to a small multiple of a predetermined maximum message size. Practical
considerations with the goal of reducing the communication complexity further in real-world
deployments and simplifying the implementation are discussed in §5. A key observation is
that the overhead can be reduced to 3

2 during periods of synchrony and in the absence of
failures. As shown in §6, a lower overhead factor than 3

2 cannot be guaranteed for a particular
class of algorithms. Related work is summarized in §7 before the paper concludes in §8.

2 Model

The considered network comprises n = 3t + 1 nodes, where t denotes the maximum number
of Byzantine nodes, which may deviate arbitrarily from any given protocol. The other
2t + 1 nodes faithfully execute the given protocol and are called honest. Any two nodes can
communicate directly over an authenticated channel by exchanging messages. Communication
is assumed to be asynchronous in the sense that the delivery of messages, while guaranteed,
may be delayed indefinitely. In this communication model, nodes cannot make any assumption
about message delays, neither about the time required until sent message arrive at their
destinations nor about the time that elapses until certain (expected) messages are received.

A node may send a message to a single node or to multiple nodes. When a node v sends
a message to all nodes, we say that v broadcasts this message. A faulty node may fail to send
messages as specified in the protocol. The goal of reliable broadcast is to ensure, under some
conditions, that all honest nodes eventually deliver a certain message, i.e., mark it as the
accepted outcome of the reliable broadcast. The required properties of a reliable broadcast
protocol are stated formally in the following definition.

▶ Definition 1 (Reliable broadcast). A reliable broadcast protocol is a distributed protocol
to send a message m from a specific node called the sender to all nodes with the following
properties.

Validity: If the sender is honest and broadcasts m, then every honest node eventually
delivers m.
Agreement: If two honest node deliver messages m and m′, then m = m′.
Integrity: Every honest node delivers at most one message m.
Totality: If an honest node delivers m, then all honest nodes eventually deliver m.

In general, nodes may engage in multiple reliable broadcasts in parallel. In this case,
the integrity condition effectively requires that messages are attributable to a uniquely
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16:4 Byzantine Reliable Broadcast with Low Communication and Time Complexity

identifiable execution context. In the following, we assume that every message implicitly
contains an identifier and that each node runs a separate instance of the protocol for each
identifier. The sender for a particular execution context is assumed to be globally known.

As mentioned above, the objective is to reliably broadcast some message m, where
the notation |m| is used to denote the size of the message in bits. Instead of sending m,
the algorithms introduced in §3 and §4 send fragments of m, which can be either chunks
of m itself or encoded data derived from m. Without loss of generality, we assume that
there is some upper bound ℓmax on the message size, which in turn limits the fragment
size. State-of-the-art algorithms use either erasure codes, which can handle missing data, or
error-correcting codes, which support the correction of erroneous data. The algorithms in this
paper exclusively use an (n, k)-erasure codes with optimal reception efficiency, i.e., exactly k

out of n symbols are sufficient to reconstruct a message of k symbols. Throughout this paper,
the parameters n and k correspond to the total number of nodes and the number of honest
nodes, i.e., k := 2t + 1. We assume that each node has access to the routine get_fragments
that takes a message m as input and returns a list of n fragments of size |m|

k = |m|
2t+1 < 3

2
|m|
n

each. Furthermore, the nodes use the routine recover_message to recover m given any
subset F of the n fragments of size |F | ≥ k = 2t + 1. This routine is assumed to always
return some message, which may simply be a bit string of zeroes in case of an error, e.g.,
when the input contains fragments of different sizes.

In addition to fragments, the nodes also send hashes, identifiers, and, in the case of the
algorithm presented in §4, also signatures and signature shares. The hashes are assumed to
be cryptographically strong in the sense that it is infeasible to find hash collisions (except
with negligible probability). Naturally, it is also assumed that it is computationally infeasible
to spoof signatures or signature shares. Since the cryptographic properties only hold for
hashes, signatures, and shares of a certain minimum size, we introduce a security parameter
κ and define that the size of all data types other than fragments is bounded by O(κ).

Reliable broadcast algorithms are evaluated against multiple complexity measures. For a
specific number n of nodes and message size ℓ, the communication complexity C(n, ℓ) of an
algorithm is the total number of bits sent by all honest nodes in the worst case assuming
fewer than n/3 Byzantine nodes. If the sender is Byzantine, we define that ℓ is the message
size corresponding to the largest fragment sent by an honest node. Given that at least nℓ

bits need to be transferred and we are concerned with the overhead for large messages, the
primary goal is to minimize L(n) := limℓ→∞

C(n,ℓ)
ℓn . Additionally, the time complexity of an

algorithm is of great practical importance, measuring the duration of an execution when
normalizing the maximum message delay to 1 time unit. According to Definition 1, an
execution with a Byzantine sender may never terminate. Therefore, we restrict our attention
to the case where the sender is honest. Due to the validity condition, this good-case time
complexity must be bounded. Note that both presented algorithms ensure that the number of
communication rounds is also bounded given a Byzantine sender. Lastly, the space complexity
is considered as well, which is defined as the number of bits that any honest node stores
during the execution of the algorithm in the worst case.

3 Algorithm

3.1 Description
Algorithm Abit makes use of the routines get_fragments and recover_message intro-
duced in §2 to generate fragments of a given message and recover the message given at
least 2t + 1 valid fragments, respectively. Furthermore, it requires routines for Merkle
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Algorithm 1 Abit: Triggered actions at node vi. Initially, F = R = H = P = {}.

if reliable_broadcast(m) invoked and vi = sender then
(f1, . . . , fn) := get_fragments(m)
h := get_merkle_root(f1, . . . , fn)
for vj ∈ V do

πj := get_merkle_proof((f1, . . . , fn), j)
send fragment(h, j, fj , πj) to vj

if received fragment(h, j, fj , πj) from vk and (j = i or j = k) then
if (|H(vk)| < 2 or h ∈ H(vk)) and valid_merkle_proof(h, fj , j, πj) then

H(vk) := H(vk) ∪ {h}, R(h) := R(h) ∪ {vk}, F (h, vj) := (fj , πj)
if i = j and first fragment from vk = sender then

broadcast proposal(h)

if received proposal(h) from vk then
if |H(vk)| < 2 or h ∈ H(vk) then

H(vk) := H(vk) ∪ {h}, P (h) := P (h) ∪ {vk}

tree operations, specifically, get_merkle_root yields the Merkle root hash for a given set
of fragments, get_merkle_proof returns the Merkle proof for a specific fragment, and
valid_merkle_proof indicates whether a given Merkle proof is valid.

Each node executing Abit locally maintains the data structures F , R, H, and P . Let F ,
Π, and H denote the set of all possible fragments, Merkle proofs, and hashes, respectively.
The hash map F : H × V → F × Π stores the fragment fj ∈ F and Merkle proof πj ∈ Π
of node vj for the message with the root hash h ∈ H. If (fj , πi) is locally available, then
F (h, vj) = (fj , πj), and F (h, vj) = ⊥ otherwise. This hash map is used to collect fragments
with the goal of eventually recovering the corresponding message. We further define that
F (h) := ∪vj∈V F (h, vj) denotes the set of all collected (vj , πj) pairs for hash h. The hash
map R : H → 2V stores the nodes from which a fragment for root hash h has been obtained.
This hash map is needed to determine which nodes may still be missing their fragments.
Conversely, for any node v, the hash map H : V → 2H contains the set of hashes for which
a proposal or fragment was received from node v. The purpose of this data structure is to
bound both the communication and space complexity. Lastly, P : H → 2V indicates which
nodes have proposed the delivery of the message associated with the Merkle root hash h.
The collected proposals are used to ensure that only fragments with sufficient support are
broadcast. All hash maps are initially empty. In addition to the hash maps, each node
further uses the Boolean variable done, initially false, to capture the information whether
the execution has terminated, either with or without the delivery of a message. In the
latter case, the totality condition implies that no honest node will deliver a message for
this execution. Moreover, let H := ∪v∈V H(v) and hmax := arg maxh∈H |P (h)|, breaking ties
arbitrarily if there is no single hash for which the most proposals have been received.

We distinguish between “triggered actions”, which are executed when a function is invoked
or a message is received, and “state-based actions”, which occur when some conditions hold
for the local state. This separation facilitates the description and analysis of the algorithm’s
properties. The triggered actions are formally stated in Algorithm 1 and discussed next.

Given a message m, a reliable broadcast is triggered by invoking the routine
reliable_broadcast at node vi = sender, which performs the standard steps of gen-
erating n fragments f1, . . . , fn, computing the Merkle root hash h, and then transmitting the

OPODIS 2024



16:6 Byzantine Reliable Broadcast with Low Communication and Time Complexity

Algorithm 2 Abit: State-based actions at node vi. Initially, F = R = P = {}, done = false. Let
hmax := arg maxh∈H |P (h)|.

if |P (hmax)| ≥ 2t + 1 and not broadcast (fi, πi) := F (hmax, vi) ̸= ⊥ before then
broadcast fragment(hmax, fi, i, πi)

if (|F (hmax)| ≥ t + 1 and not broadcast proposal(hmax) before then
broadcast proposal(hmax)

if |P (hmax)| ≥ 2t + 1 and |F (hmax)| ≥ 2t + 1 and not done then
m := recover_message(F (hmax))
(f1, . . . , fn) := get_fragments(m)
h := get_merkle_root(f1, . . . , fn)
if h = hmax then

for vj ∈ V \ R(hmax)


Execute deliverydo

πj := get_merkle_proof((f1, . . . , fn), j)
send fragment(hmax, j, fj , πj) to vj

deliver(m)
done := true

fragment message fragment(h, j, fj , πj), which contains the corresponding Merkle proof πj ,
to vj for all j ∈ {1, . . . , n}. A node vi only accepts a received message fragment(h, j, fj , πj)
from some node vk under the following conditions. First, the sender vk must have sent
the fragment of the recipient vi (i.e., j = i) or its own fragment (i.e., j = k). Second, the
sender has not sent messages for two Merkle root hashes other than h before (formally,
|H(vk)| < 2 or h ∈ H(vk)) and, lastly, the Merkle proof πj in the received message is valid. If
all conditions are met, the hash maps H and R are updated by adding h and vk, respectively,
and the fragment and Merkle proof are stored (F (h, vj) := (fj , πj)). In the final step, if the
recipient received its fragment and it is the first fragment received from the dedicated sender,
then vi broadcasts proposal(h). Whenever a proposal of the form proposal(h) is received
from node vk, it is again only accepted if vk did not send messages associated with two other
hashes before, in which case h is added to H(vk) and vk is added to P (vk).

Algorithm 2 describes the state-based actions of algorithm Abit. An honest node vi

broadcasts its fragment fi, at most once, after collecting 2t+1 proposals for the corresponding
Merkle root hash h. By contrast, a node vi broadcasts a proposal for a specific root hash h

not only when it receives its fragment from the sender but also when at least t + 1 fragments
for the root hash h = hmax have been received and vi has not broadcast the proposal before.
Lastly, if a node vi receives at least 2t + 1 fragments and proposals for hmax, it recovers the
message m and, additionally, recomputes the fragments and the corresponding root hash. If
the computed hash matches hmax, node vi concludes that the fragments are valid and the
message m can be delivered. In this case, vi first recomputes the Merkle proof πj and sends
fragment(hmax, j, fj , πj) to each vj ∈ V \ R(hmax) before calling deliver(m) to deliver
the message. Note that done is set to true after executing these steps even if h ̸= hmax

because it is computationally infeasible to find any 2t + 1 fragments such that equality holds.

3.2 Analysis
In this section, we prove the correctness of Abit as well as its communication, time, and
space complexity. A series of lemmas is used to simplify the proof structure. The first lemma
is concerned with the fragments that honest nodes broadcast, showing that the proposal
mechanism ensures that honest nodes only broadcast fragments for one specific root hash.
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▶ Lemma 2. If honest nodes broadcast fragments for root hashes h and h′, then h = h′.

Proof. Without loss of generality, let h be the first hash for which 2t + 1 proposals are
received at some node v. Thus, there are at least t + 1 honest nodes that received their
fragments from the sender and then broadcast their first proposal for root hash h.

Let v′ be the first node that broadcasts a fragment for a hash h′ ̸= h. Since it must hold
that |P (h′)| ≥ 2t + 1 at node v′, there must be at least t + 1 honest nodes that broadcast
the proposal for root hash h′. Consequently, there must be an honest node v∗ that first
proposed h and then h′. However, v∗ only sends a proposal for h′ if |F (h′)| ≥ t + 1 according
to Algorithm 2, which implies that an honest node must have sent a fragment for root hash
h′ before, a contradiction to the assumption that v′ is the first such node. ◀

Since algorithm Abit imposes restrictive rules for the acceptance of received messages, we
must show that honest nodes always accept messages from other honest nodes regardless of
the messages of Byzantine nodes.

▶ Lemma 3. If an honest node v sends a proposal or fragment message to an honest node
v′, then v′ accepts and processes the received message.

Proof. According to Algorithm 1, v′ accepts messages associated with at most two different
hashes for any sender v. After an initial proposal for some root hash h, v may send a second
proposal for h′ if |F (h′)| ≥ t + 1, i.e., there is at least one honest node that has broadcast a
fragment for root hash h′. Assume that v sends another proposal for a different root hash
h′′, which again implies that at least one honest node must have broadcast a fragment for
this root hash, a contradiction to Lemma 2.

Regarding the transmission of fragments, Lemma 2 also implies that an honest node
only sends fragments for one root hash. Assume that v sends fragments for a root hash h′′

that differs from the hashes h and h′ for which it sends proposals. In this case, v must have
received at least t + 1 fragments for root hash h or h′. Hence it follows that an honest node
broadcast a fragment for a root hash other than h′′, again contradicting Lemma 2. ◀

An important criterion for the totality property is that all honest eventually obtain
sufficiently many fragments of a message m and proposals for the corresponding root hash if
there is an honest node that delivers m. The last lemma states that this is indeed the case.

▶ Lemma 4. If an honest node v delivers m with root hash h, all honest nodes will eventually
store at least 2t + 1 proposals for h and 2t + 1 fragments of m.

Proof. Assume that v delivers m with root hash h. Since |F (h)| ≥ 2t + 1, v received
fragments of m from at least t + 1 honest nodes, i.e., every honest node eventually receives
at least t + 1 fragments of m. As a result, every honest node broadcasts proposal(h) at some
point and thus |P (h)| ≥ 2t + 1 eventually holds at all honest nodes.

Node v adds all nodes from which it received fragments for root hash h to the set R(h).
For any node v′ ∈ R(h) it holds that v′ either sent its own fragment or v’s fragment. However,
the latter case also implies that v′ must have its own fragment. According to Algorithm 1, v

sends fj to vj for all vj ∈ V \ R(h), guaranteeing that these nodes eventually receive and,
due to Lemma 3, store their fragments as well. Thus, it eventually holds that |P (h)| ≥ 2t + 1
and F (h) ̸= ⊥ at all honest nodes, causing them to broadcast their fragments. Consequently,
every honest node will eventually receive at least 2t + 1 fragments of m. ◀

We are now in the position to prove the following main result.
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16:8 Byzantine Reliable Broadcast with Low Communication and Time Complexity

▶ Theorem 5. Algorithm Abit implements reliable broadcast in the asynchronous communi-
cation model with t < n/3 Byzantine nodes.

Proof. The four conditions of reliable broadcast are proved separately.
Validity. If the sender v of a message m with root hash h is honest, it sends the fragment
fj to vj for all vj ∈ V . Subsequently, every honest nodes broadcasts proposal(h). Since all
honest nodes eventually receive at least 2t + 1 proposals for hash h (and only for hash h),
they all broadcast their fragments. Thus, eventually |F (h)| ≥ 2t + 1 and |P (h)| ≥ 2t + 1
holds at all honest nodes, triggering the delivery of m.
Agreement. Assume for the sake of contradiction that honest nodes v and v′ deliver distinct
messages m and m′ with root hashes h and h′, respectively. Since |F (h)| ≥ 2t + 1 at v and
|F (h′)| ≥ 2t + 1 at v′, there must be honest nodes that have broadcast fragments for h and
h′, which contradicts Lemma 2.
Integrity. Lemma 2 implies that there can only be sufficiently many fragments for at most
one hash and hence at most one message can be delivered.
Totality. Let v be a node that delivers a message m with root hash h. Due to Lemma 4,
it holds eventually that |F (h)| ≥ 2t + 1 and |P (h′)| ≥ 2t + 1 at all honest nodes. Since v

managed to verify the correctness of the fragments and the corresponding root hash, the
verification also succeeds at all other nodes. Thus, all honest nodes eventually deliver m. ◀

The following theorem states the communication complexity of algorithm Abit.

▶ Theorem 6 (Communication complexity). It holds for algorithm Abit that L(n) = 2.

Proof. Let |f | := 3
2 |m|/n + O(κ log(n)) denote the size of the largest fragment message sent

by an honest node. If the sender is honest, |f | corresponds to the size of a fragment message
containing a valid fragment of message m. The sender may send fragment messages to all
other nodes for a total of at most (n − 1)|f | bits. Each honest node may broadcast one
fragment message containing its fragment and at most two proposals of size O(κ). After
reconstructing the message m, an honest node further sends a fragment message containing
fj to all vj ∈ V \ R(h), where |V \ R(h)| ≤ t < n/3. Not counting messages that nodes send
to themselves, the communication complexity C(n, |m|) is therefore upper bounded by

(n − 1)|f | + n · (n − 1 + t)|f | + O(κn2) < 2n|m| + O(κn2 log(n)),

and therefore L(n) = lim|m|→∞
1

n|m| C(n, |m|) = 2. ◀

As stated in §2, we consider the good-case time complexity with an honest sender. The
following theorem states the time complexity of Abit for this case.

▶ Theorem 7 (Time complexity). If the sender is honest, Abit has a time complexity of 3.

Proof. If the sender is honest, all honest nodes receive their fragments and send the proposal
for the corresponding root hash after at most 1 time unit. Thus, after at most 2 time units,
all honest nodes get at least 2t + 1 proposals and broadcast their fragments. After at most 3
time units, the honest nodes receive at least 2t + 1 fragments and deliver the message. ◀

If the sender is Byzantine, an honest node may still deliver m eventually. It is easy to see
that every honest node delivers m at most 3 time units later in this case.

As far as the space complexity is concerned, recall that ℓmax denotes the largest permissible
message size, which is a lower bound on the space complexity. Given this bound, the following
result shows that honest nodes require little additional storage space.
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Algorithm 3 Asig: Triggered actions at node vi. Initially, F = R = H = S = {}, h∗ = σ∗ = ⊥.

if reliable_broadcast(m) invoked and vi = sender then
Execute reliable_broadcast(m) of Algorithm 1

if received fragment(h, j, fj , πj) from vk and (j = i or j = k) then
if (|H(vk)| < 2 or h ∈ H(vk)) and valid_merkle_proof(h, fj , j, πj) then

H(vk) := H(vk) ∪ {h}, R(h) := R(h) ∪ {vk}, F (h, vj) := (fj , πj)
if i = j and first fragment from vk = sender then

σi := threshold_sign(h)
broadcast [proposal(h, σi), fragment(h, fi, i, πi)]

if received proposal(h, σ) from vk then
if valid_signature(h, σ) then

σ∗ := σ, h∗ := h

else if ((|H(vk)| < 2 or h ∈ H(vk)) and valid_share(h, vk, σ) then
H(vk) := H(vk) ∪ {h}, S(h, vk) := σ

▶ Theorem 8 (Space complexity). Algorithm Abit has a space complexity of 2ℓmax + O(nκ).

Proof. While honest nodes send fragments for at most one root hash, Byzantine nodes cannot
send fragments for more than two hashes, resulting in a total of at most t ·2+(2t+1) ·1 < 4

3 n

fragments of size 3
2 ℓmax/n each. Thus, the space required to store received fragments is

upper bounded by 2ℓmax. The other data structures merely contain identifiers and hashes of
size O(κ). Since they may contain entries for at most 2 hashes per node, it follows that the
total size of these data structures is bounded by O(nκ). ◀

Note that the space complexity can trivially be lowered to 3
2 ℓmax + O(nκ) by introducing

the rule that received fragments for different hashes from the same node are rejected.

4 Variant with Threshold Signatures

4.1 Description
Algorithm Asig uses signed proposal messages of the form proposal(h, σ), where σ is

either a signature share of h of a particular node or a signature of h derived from at least
2t + 1 signature shares. Note that, in practice, it is a signature of h and the identifier in
order to tie the signature to a particular execution. The algorithm still uses the hash maps
F , H, and R. Signature shares are collected in the hash map S : H × V → S, where S
denotes the set of all possible signature shares. We further define that S(h) := ∪v∈V S(h, v).
In this section, hmax is defined as hmax := arg maxh∈H |S(h)|. In addition to done, each
node further stores h∗, the root hash of the message that will be delivered if set, and the
corresponding signature σ∗ (initially, h∗ = σ∗ = ⊥).

The steps of algorithm Asig for triggered actions are shown in Algorithm 3. When
reliable_broadcast is invoked, exactly the same steps as in Algorithm 1 are executed. A
fragment message is handled the same way as in Abit apart from two differences: h is signed
and both proposal(h, σi) and fragment(h, fi, i, πi) are broadcast if it is the first (valid)
fragment received from the sender. When receiving proposal(h, σ) from some node vk, the
action depends on σ. If it is a valid signature, σ∗ and h∗ are set to σ and h, respectively.
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Algorithm 4 Asig: State-based actions at node vi. Initially, F = R = S = {}, h∗ = σ∗ = ⊥, and
done = false. Let hmax := arg maxh∈H |S(h)|.

if |S(hmax)| ≥ 2t + 1 and h∗ = ⊥ then
σ∗ := compute_signature(S(hmax))
h∗ := hmax

if h∗ ̸= ⊥ and not broadcast (fi, πi) := F (h∗, i) ̸= ⊥ before then
broadcast fragment(h∗, fi, i, πi)

if h∗ ̸= ⊥ and |F (h∗)| ≥ 2t + 1 and not done then
broadcast proposal(h∗, σ∗)
Execute delivery as in Algorithm 2

Otherwise, if it is a valid signature share and H(vk) does not contain two hashes different
from h, then h is added to H(vk) and S(h, vk) is set to σ.

The state-based actions are shown in Algorithm 4. If at least 2t + 1 signature shares
have been collected for some root hash hmax, then σ∗ is set to the computed signature and
h∗ is set to hmax. Node vi broadcasts fi (including πi) if h∗ is set, fi is locally available,
and it has not been broadcast before. Lastly, if h∗ ̸= ⊥ and |F (h∗)| ≥ 2t + 1, vi broadcasts
proposal(h∗, σ∗) before executing the same delivery steps as in Algorithm 2.

4.2 Analysis
It is evident from the description of algorithm Asig that honest nodes must set h∗ to the
same hash as otherwise the integrity property may be violated. The following lemma states
that honest nodes indeed cannot set h∗ to different hashes.

▶ Lemma 9. If honest nodes set h∗, they set it to the same hash.

Proof. According to Algorithm 3, only the first message from the sender is threshold-signed,
i.e., every honest node provides a signature share for at most one hash. However, setting
h∗ to some hash h requires 2t + 1 signature shares of h. If we assume that there are two
different hashes for which 2t + 1 signature shares have been collected, there must be at least
one honest node that threshold-signed two different hashes, which contradicts the rule that
honest nodes only threshold-sign at most one hash. ◀

A Byzantine sender may send fragments for different root hashes to the honest nodes,
causing wasteful transmissions of fragments. However, algorithm Asig ensures that the
number of transmissions is bounded as the next lemma shows.

▶ Lemma 10. Every honest node sends fragments for at most two different root hashes.

Proof. An honest node vi broadcasts its fragment fi for some root hash h when receiving
fi from the sender. Apart from this transmission, according to Algorithm 3, vi only sends
fragments associated with h∗. Since h∗ never changes once set, the claim follows. ◀

Since algorithm Asig enforces similar restrictions for the acceptance of messages as
algorithm Abit, Lemma 3 holds for Asig as well.

▶ Lemma 11. Lemma 3 (“If an honest node v sends a proposal or fragment message to an
honest node v′, then v′ accepts and processes the received message.”) holds for Asig.
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Proof. Algorithm Asig and Abit share the property that messages for two different hashes are
accepted from any node. According to Algorithm 3, an honest node broadcasts a signature
and fragment message for the same hash h when receiving its fragment from the sender.
Algorithm 4 states that any further transmission of a signature or fragment message must be
for hash h∗ ̸= ⊥. Since h∗ never changes when set, the claim follows. ◀

The following variant of Lemma 4 holds for algorithm Asig.

▶ Lemma 12. If an honest node delivers m with root hash h, all honest nodes will eventually
store at least 2t + 1 fragments of m and set h∗ to h.

Proof. The same argument as for algorithm Abit applies, which proves that every honest
node gets its fragment eventually after an honest node v has delivered a message m for some
hash h, which it accepts due to Lemma 11. Since v must have computed and broadcast a
valid signature σ, it eventually holds at all honest nodes that h∗ = h (and σ∗ = σ). According
to Lemma 9, honest nodes all set h∗ to the same value. Consequently, every honest node will
eventually broadcast its fragment and thus also receive at least 2t + 1 fragments of m. ◀

As in §3, the first main result is that Asig is a correct reliable broadcast algorithm.

▶ Theorem 13. Algorithm Asig implements reliable broadcast in the asynchronous commu-
nication model with t < n/3 Byzantine nodes.

Proof. The four conditions of reliable broadcast are again proved separately.
Validity. If the sender v of a message m with root hash h is honest, it sends fj to vj for all
vj ∈ V . Every honest node vj broadcasts its fragment and signature share and, consequently,
receives at least 2t + 1 signature shares and fragments eventually. It follows that every honest
node eventually computes σ∗, sets h∗ := h, and proceeds to deliver m.
Agreement. If two honest nodes v and v′ deliver different messages m and m′, they must
have set h∗ to different hashes, a contradiction to Lemma 9.
Integrity. Due to Lemma 9, every honest node delivers at most one message.
Totality. If an honest node v delivers a message m with root hash h, it eventually holds at
all honest nodes that h∗ = h and |F (h∗)| ≥ 2t + 1 due to Lemma 12. Since v managed to
verify the correctness of the fragments and the root hash, it holds that the verification must
succeed at other nodes as well, which entails that every honest node delivers m. ◀

Compared to Abit, the communication complexity of algorithm Asig is worse, which
appears to be inevitable given that the nodes must broadcast fragments without delay
to achieve an optimal time complexity. However, the following lemma states that even a
Byzantine sender cannot induce many (wasteful) transmissions of fragments.

▶ Lemma 14. At most t honest nodes send fragments for 2 different root hashes.

Proof. Let S denote the set of honest nodes that send fragments for more than one root hash.
Algorithm 3 dictates that honest nodes only send another fragment when h∗ ̸= ⊥. If there
are t′ ≤ t Byzantine nodes in the execution, at least 2t+1− t′ honest nodes must receive their
fragments for hash h∗ in order to obtain a signature σ∗ for this hash. Since none of these
nodes sends fragments for other root hashes, we get that |S| ≤ 3t+1−(2t+1−t′)−t′ = t. ◀

As the following theorem shows, Asig achieves an overhead factor of 5/2 for |m| → ∞.

▶ Theorem 15 (Communication complexity). It holds for algorithm Asig that L(n) = 5
2 .
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Proof. The dissemination of fragments by the sender requires at most (n − 1)|f | bits, where
|f | again denotes the size of the largest fragment message sent by an honest node. Due to
Lemma 14, at most t honest nodes broadcast fragments twice, and the other honest nodes
broadcast at most one fragment. Additionally, each node sends O(κn) bits for the signed
proposal messages and fj to all vj ∈ V \ R(h), where |V \ R(h)| ≤ t < n/3 as before. Hence
it follows that C(n, |m|) is at most

(n − 1)|f | + (2t + 1)(n − 1)|f | + 2t(n − 1)|f | + t(n − 1)|f | + O(κn2)
< (n − 1)|f | + 5

3 n(n − 1)|f | + O(κn2) < 5
2 n|m| + O(κn2 log(n)),

where the first inequality holds because (5t + 1) < 5
3 (3t + 1) = 5

3 n. Thus, L(n) = 5
2 . ◀

It is worth noting that the communication complexity is only worse compared to Abit if
the sender deliberately transmits conflicting fragments, i.e., L(n) = 2 still holds otherwise.
The main advantage of Asig over Abit is its superior time complexity.

▶ Theorem 16 (Time complexity). If the sender is honest, Asig has a time complexity of 2.

Proof. If the sender is honest, all honest nodes receive their fragments within 1 time unit
and broadcast their signature shares and fragments. After 2 time units, all honest nodes
must have received at least 2t + 1 signature shares and fragments for the same root hash.
Thus, all honest nodes compute the signature σ∗ and set h∗, triggering the delivery of m. ◀

If an honest node v delivers m despite a Byzantine sender, it is straightforward to show
that each honest node delivers m at most 2 time units later. While the time complexity of
Asig is lower, it has a slightly higher space complexity.

▶ Theorem 17 (Space complexity). Algorithm Asig has a space complexity of 5
2 ℓmax + O(nκ).

Proof. According to Lemma 14, there are at most t honest nodes that send their fragments
for 2 root hashes, i.e., there are at least t + 1 honest nodes that only send their fragment
once. Thus, an honest node may store 2t · 2 + (t + 1) · 1 ≤ 5

3 n fragments of size 3
2 ℓmax/n for

a total of 5
2 ℓmax. Algorithm Asig also utilizes R, containing at most 2 node identifiers of size

O(κ) per node, and S, storing at most 2 signature shares of size O(κ) per node. Thus, the
space complexity of these data structures is upper bounded by O(nκ). ◀

5 Practical Considerations

In this section, optimizations that may be relevant for practical applications are discussed.

Partially synchronous communication. Byzantine behavior and unpredictable message
latencies are often exceptional situations in practice. While Asig and Abit are both tailored
to the asynchronous communication model, they can easily be adapted to the partially
synchronous model where periods of synchrony are assumed. Given an upper bound d on the
message delay that holds for some periods of time, both algorithms can be modified to improve
the communication complexity during these times in the absence of faults. Specifically, the
additional constraint can be introduced that at least δ time must have passed since the first
fragment was received before delivering m. The following theorem states the effect of this
modification on the communication complexity for an algorithm-specific δ.

▶ Theorem 18. If communication is synchronous from the start of the execution for δ = 3d

(δ = 2d) time and there are no faults, then L(n) = 3
2 for the adapted version of Abit (Asig).
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Proof. As there are no faults by assumption, Theorem 7 and Theorem 16 imply that all nodes
receive n fragments after at most 3d (2d) time for Abit (Asig). Thus, R(h) = V for the root
hash h of m, which entails that the nodes do not disseminate any additional fragments before
delivering, resulting in a communication complexity of (n − 1)|f | + n(n − 1)|f | + O(κn) <

n2|f | + O(κn) ≤ 3
2 |m|n + O(κn2 log(n)) and thus L(n) = 3

2 . ◀

Naturally, this modification does not improve any worst-case bounds because L(n) = 2
still holds even for t crash failures but it may be beneficial in practice nonetheless.

Simplified structure. The second optimization only concerns Asig. Instead of handling
fragments and proposals separately, signature shares and signatures can be appended to
the fragment message. As a result, nodes only send and process messages of a single type.
Fragments and proposals are kept separate in algorithm Asig to retain as much similarity
to Abit as possible in order to emphasize the key differences and simplify the presentation.
This modification requires the addition of a simple rule: a node appends its signature share
as long as h∗ = ⊥ and the signature σ∗ otherwise. Note that σ∗ ̸= ⊥ always holds when
h∗ ̸= ⊥. Signature shares and signatures are still processed as shown in Algorithm 3.

According to Algorithm 4, the signature is broadcast before executing the message delivery.
It is easy to see that this step can safely be omitted when adding the rule above.

6 Lower Bound

The preceding section showed that an overhead factor of 3
2 for large messages can be attained

in practice under normal network conditions and in the absence of faults. In this section, we
shed light on the question whether we can hope to further improve upon this bound. The
question is answered in the negative, at least for a specific but relevant class of algorithms.

The lower bound holds in the synchronous communication model where all nodes perform
some computation, send messages, and receive the sent messages within the same round of
a bounded and known duration. Furthermore, the lower bounds holds in the crash failure
model where a faulty node stops executing at any point during the execution but it never
deviates from the correct protocol execution until it fails. In order to utilize the available
bandwidth efficiently, it is beneficial to minimize the maximum bandwidth consumption
over all nodes. If each node sends the same amount of data up to a constant factor, the
algorithm is called balanced [4]. Any imbalance beyond a constant factor is usually due to
the sender transmitting more data, typically in the first round. We focus on a broader class
of “weakly balanced” algorithms where the sender can send arbitrarily sized messages to
other nodes but at most o(|m|n) bits overall in the first round. Note that each node sends
O(|m| + κn log(n)) bits in both Abit and Asig.

We further restrict our attention to reliable broadcast algorithms that, given an honest
sender, guarantee that all honest nodes deliver m after at most 3 (synchronous) rounds. This
class of algorithms is interesting because it covers Abit, Asig, as well as other algorithms in
the literature including the algorithm by Cachin and Tessaro.

Formally, a (b, r)-reliable broadcast algorithm is defined as a reliable broadcast algorithm
that sends messages of size at most b bits in the first round and delivers the message of an
honest sender at all honest nodes within at most r rounds. Let bj denote the bits (of entropy)
that the sender sends to vj in the first round according to the given algorithm in some
execution without any failures. As mentioned before, we assume that

∑n
j=1 bj ∈ o(|m|n). (1)

Let bij further denote the bits that vi sends to vj in rounds 2, . . . , r in the same execution.
Due to the validity condition and the fact that we consider algorithms with a good-case time
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complexity of at most r, all honest nodes must receive m by the end of round r. Let Sj

denote the set {vi ∈ V | bij > 0}, i.e., the set of nodes that send some bits to vj . Moreover,
let R := {vj ∈ V | bj ≥ |m|} denote the set of nodes that receive at least |m| bits in round
1. Since

∑n
j=1 bj ∈ o(|m|n), it must hold that |R| ∈ o(n). Let b̄j := 1

|Sj |
∑n

i=1 bij denote the
average number of bits sent to vj from the nodes in Sj in rounds 2, . . . , r.

In the following, we consider the case r = 3, which permits a simple strategy to derive a
lower bound because a node failing to receive expected messages in the second round can
only inform other nodes about the failure in the third round. Requiring a fourth round to
send the missing bits violates the requirement that all honest nodes deliver the message by
round 3 in case of a non-faulty sender. Therefore, the strategy is simply to mark those nodes
as faulty that send many bits in rounds 2 and 3. Given this strategy, it is easy to see that
|Sj | > t and b̄j > 0 must hold for any vj ∈ V \ R as otherwise vj may not receive m by the
end of round 3. The following lemma provides a lower bound on b̄j for the case |Sj | > t.

▶ Lemma 19. For all j ∈ {1, . . . , n}, |Sj | > t, it must hold that b̄j ≥ (|m| − bj)/(|Sj | − t). (2)

Proof. Note that bj ≥ |m| implies that b̄j ≥ 0, which holds trivially. Thus, we consider the
case bj < |m|. Assume that b̄j < (|m| − bj)/(|Sj | − t) and that the t nodes in Sj that send
the largest number of bits are faulty and never send anything. Let S′

j denote the remaining
nodes that send bits in rounds 2 and 3. In this case, node vj receives

bj +
∑

vi∈S′
j

bij ≤ bj + (|Sj | − t)b̄j < bj + (|Sj | − t)(|m| − bj)/(|Sj | − t) = |m|

bits by the end of round 3, which implies that vj does not receive the whole message. ◀

The following theorem states the main result that the overhead factor must be at least 3
2

for the considered class of algorithms as n tends to infinity.

▶ Theorem 20. If communication is synchronous and there are t < n/3 faulty nodes, it
holds that L(n, t) ≥ 3

2 for every (o(|m|n), 3)-reliable broadcast algorithm as n → ∞.

Proof. The communication complexity is at least
n∑

j=1
bj +

n∑
j=1

n∑
i=1

bij ≥
∑

vj∈V \R

n∑
i=1

bij =
∑

vj∈V \R

|Sj |b̄j

(2)
≥

∑
vj∈V \R

|Sj | |m| − bj

|Sj | − t

≥
∑

vj∈V \R

n

n − t
(|m| − bj) = (n − |R|) n

n − t
|m| −

∑
vj∈V \R

n

n − t
bj

(1)
≥ (n − |R|) n

n − t
|m| − o(|m|n) n→∞= n

n

n − n/3 |m| = 3
2 |m|n. ◀

7 Related Work

As mentioned in §1, the first reliable broadcast algorithm, achieving a communication
complexity of O(|m|n2), was presented by Bracha [6]. An algorithm with a much improved
bound of O(|m|n + κn2 log(n)), making use of erasure codes, was published 18 years later by
Cachin and Tessaro [9], making use of collision-resistant hash functions of size κ. By contrast,
Bracha’s algorithm is error-free, i.e., it does not rely on any cryptographic assumptions.

Subsequently, error-free reliable broadcast algorithms with lower communication com-
plexity were proposed, guaranteeing bounds of O(n|m| + n4 log(n)) [23] and O(n|m| +
n3 log(n)) [22]. While the latter algorithm achieves a lower asymptotic communication
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complexity, it is not balanced in that a single node, the sender, must transmit more bits
than the other nodes. A reliable broadcast algorithm is said to be balanced if all nodes
send the same number of bits up to a constant factor [4]. Note that the algorithms pre-
sented in §3 and §4 are both balanced. The best known bound for error-free algorithms
is O(n|m| + n2 log(n)) [4]. Abraham and Asharov proposed a probabilistic algorithm with
a similar bound of O(n|m| + n2 log(n3/ε)), guaranteeing validity but the agreement and
totality properties only hold with probability 1 − ε [1].

It has also been shown how to achieve a communication complexity of O(n|m| + κn2)
using only collision-resistant hash functions [11], improving upon the algorithm by Cachin
and Tessaro. The downside of this algorithm is that it is not balanced and it has a higher
computational cost. Algorithm Abit introduced in §3 falls into the category of reliable
broadcast algorithms that rely on collision-resistant hash functions as well. There are reliable
broadcast algorithms that require other cryptographic primitives. For example, an algorithm
has been proposed that achieves a communication complexity of O(n|m|+κn2) but requires a
trusted setup for a public key infrastructure and cryptographic accumulators [22]. This bound
has been improved to O(n|m| + κn + n2) using threshold signatures [4]. The algorithm Asig

defined in §4 uses threshold signatures to achieve an optimal (good-case) time complexity.
The best known upper bounds, with and without cryptographic assumptions, are almost

asymptotically tight considering the lower bound of Ω(n|m|+n2) [14]. The algorithms in this
paper improve the effective communication complexity for large messages by reducing the
constant of the first term. Moreover, most error-free algorithms, excluding Bracha’s algorithm,
and also the algorithms that use more cryptographic tooling than hash functions, have a
higher time complexity than Abit and Asig, the latter having an optimal time complexity [3].

Byzantine reliable broadcast has further been studied in a variety of models that differ from
the model used in most related work. There is a probabilistic algorithm based on stochastic
samples that allows each property to be violated with a fixed and small probability [17]. An
algorithm for a model with dynamic membership has also been proposed [16]. There is further
work on consistent broadcast, a variant of reliable broadcast without the totality property,
and its applications [7, 25]. Lastly, in an effort to minimize the actual latency and bandwidth
consumption, simulations have been used to show the efficacy when combining Bracha’s
algorithm with Dolev’s reliable communication protocol [13] to disseminate messages reliably
in partially connected networks [5].

8 Conclusion

The mechanism introduced in this paper lowers the communication complexity of Byzantine
reliable broadcast for large messages. The presented algorithms, which utilize this mechanism,
further guarantee near-optimal and optimal bounds on the time complexity while also keeping
the space complexity close to optimal. As mentioned in §1, numerous applications make use
of reliable broadcast as a subroutine. Therefore, it may be worthwhile to revisit selected
applications to determine if the presented techniques can be used to obtain stronger results.

A fundamental open question is whether a lower communication complexity for large
messages, i.e., a lower overhead factor, can yet be attained, ideally without increasing the
time complexity substantially. We conjecture that the lower bound of 3/2, which has been
shown for a specific class of algorithms, holds more generally, i.e., with one or both of
the imposed restrictions lifted. Deriving a tight bound for the overhead factor is another
important avenue for future research.
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